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Abstract

Buoyant plumes are widespread physical phenomena, present across a large

range of scales, from the plume generated by a candle to a mantle plume

beneath the crust of the Earth, and spanning laminar to fully turbulent flow.

In its most basic form, a plume is the vertical transport of heat emanating from

a buoyancy source. Despite the ubiquity of plumes and their role in heat and

mass transport, many aspects of their dynamics are still not fully understood.

In the literature, plumes are often separated into laminar and turbulent re-

gimes and are yet to be combined into a cohesive theory of plume evolution

and structure. In this thesis, I perform a theoretical and numerical analysis

of pure plumes generated by a localised point source of heat in order to unify

these separate theories in a description of a hybrid laminar-turbulent plume.

The governing equations for a plume are shown to be dependent on only one

dimensionless parameter, the Prandtl number Pr, which is the ratio of kin-

ematic viscosity ν to thermal diffusivity κ. Using direct numerical simulations

(DNS) combined with scaling analysis, I establish some universal properties

of pure plumes. Following the laminar regime, the height at which instability

occurs, hereafter referred to as height to instability, for the case Pr = 1, is

found to be z∗ = f(Pr)(κ3/F0)
1/2, where F0 is the source buoyancy flux, and

f(Pr) is a Prandtl number dependent dimensionless prefactor. The turbulent

regime is described using similarity scalings and a virtual origin z0 6= z∗ is

found, implying that the transition region exists over a nonzero spatial range.

Expanding on this work, further DNS are undertaken to derive a unified

laminar-turbulent theory of a plume in an unstratified environment emanating

from a point source over a range of Prandtl numbers. The height to instability

z∗ is found to increase sublinearly with Pr and a formula for interpolating the

height to instability within the range Pr ∈ [0.1, 2.0] is fitted to the results.

My investigation into developing a unified laminar-turbulent theory of plume

rise from a point source is further expanded by introducing a linear stratifica-

tion to the background. This introduces another length scale to the problem

and the relationship between height to instability and maximum rise height is

investigated. I performed DNS of plumes across a wide spectrum of Reynolds

numbers and developed a simplified theory of low-Re plumes, resulting in ex-

cellent agreement with the predictions of the DNS. Interestingly, the results
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demonstrate a non-monotonic relationship between rise height and Reynolds

number, with a global maximum at Re ≈ 1500.

Finally, the unstratified results are applied to the transport (e.g. of pathogens)

in the built environment by local sources of heat. A hybrid laminar-turbulent

theory of particle transport in rooms is developed using the results of height

to instability. Remarkably, a strongly non-monotonic relationship between

transport rates of particles and the initial buoyancy flux, with two turning

points, is discovered.
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Chapter 1

Introduction

Contents

1.1 Modelling plumes . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Laminar plumes . . . . . . . . . . . . . . . . . . . . 7

1.1.2 Turbulent plumes . . . . . . . . . . . . . . . . . . . 15
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1.1.5 Starting plumes . . . . . . . . . . . . . . . . . . . . 24

1.1.6 Particle transport . . . . . . . . . . . . . . . . . . . 25

1.2 Modelling plumes using high-order methods . . . . . . . . 26

1.2.1 Finite element methods (FEM) . . . . . . . . . . . 27

1.2.2 Spectral methods . . . . . . . . . . . . . . . . . . . 30

1.2.3 Spectral element methods (SEM) . . . . . . . . . . 32

1.2.4 Description of the code . . . . . . . . . . . . . . . . 32

1.3 Research questions and thesis summary . . . . . . . . . . 34

Buoyant plumes arise throughout the natural world, across a wide

range of scales. In the atmosphere, erupting volcanoes produce buoyant plumes,

the largest of which transport ash and smoke on a global scale (Woodhouse

et al., 2013). Beneath the Earth’s surface, mantle plumes transport heat and

result in the movement of continents (Loper, 1991). In the ocean, sea-floor

vents and volcanic eruptions produce plumes that can influence ocean cur-

rents and spread biota (Speer & Rona, 1989; Pegler & Ferguson, 2021) and

deep-sea oil spills can lead to the spread of contaminants (Fabregat Tomàs

et al., 2016). On smaller scales, smoke-stacks at power stations and factories

outputting pollutants (Hewett et al., 1971), and forest fires producing ash and

smoke (Henderson et al., 2008), are present across the planet, often in areas

near to human habitation (Liu et al., 2014). On yet smaller scales, the heat
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generated by a candle (Maxworthy, 1999), computer, or a human (Craven &

Settles, 2006) warms the air above and generates convection, resulting in a

plume with impact on ventilation in rooms and the potential transmission of

airborne pathogens (Bhagat et al., 2020). As plumes are so widespread, it is

not surprising that plumes have been researched extensively, using techniques

such as physical observations, laboratory experiments, mathematical model-

ling, and more recently, computationally intensive numerical simulations. Des-

pite extensive work on plumes covering the best part of the last century, there

still remain numerous open questions. For example: What causes a plume

to transition from laminar to turbulent flow, and where does this transition

happen? What effect do material and environmental properties have on plume

flow? Under what conditions can a plume be said to be independent of fluid

viscosity? How does the viscosity of a plume in a stratified fluid affect the rise

height? The work in this thesis addresses these questions by making use of

scaling analyses, simplified theories, and direct numerical simulations (DNS)

of the Navier-Stokes equations.

A plume is a fluid-dynamical phenomenon that occurs whenever a

maintained source of buoyancy results in a rising region of fluid upward and

away from the buoyancy source. It is a fundamental problem in fluid dynam-

ics and a clear example can be readily witnessed in the smoke trail above

a recently extinguished candle. The development and behaviour of a plume

is dependent on the relationship between its source conditions and the en-

vironment it is in. There exist a number of different parameters that have

varying effects on the flow, for example the size, velocity, and temperature of

the source, background effects, and material properties such as viscosity and

thermal diffusivity. Many plumes in nature occur in stratified environments.

For many plumes in a stratification, there exists a laminar flow region near to

the source behaving similarly to that of a plume in an unstratified environment.

In some scenarios the size of the laminar region is negligible or not present due

to external disturbances. As laminar flows transport heat much faster than

turbulent flows, it is important to understand the behaviour of this region, to

know in which circumstances it will be present, and to know how large it will

be. In scenarios such as the transport of heat above a lit candle in a room,

the laminar region can be a significant portion of the flow, as illustrated by

the schlieren image in figure 1.1. Laminar plumes have relevance in the study

of natural ventilation and in particular, due to recent events (i.e. the global

Covid-19 pandemic), the spread of airborne pathogens in indoor environments
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Figure 1.1: A schlieren image of the laminar to turbulent transition of a plume
generated by a candle flame. The image illustrates the significance of the
laminar region and the transition to turbulence. The image was made using a
1-metre-diameter schlieren mirror by Dr. Gary Settles and is licensed under the
Creative Commons Attribution-Share Alike 3.0 Unported license (CC BY-SA
3.0).

(Bhagat et al., 2020). It is important to understand the behaviour of the lam-

inar as well as the turbulent region, and the transition between them, as it can

have a large impact when flows become more complicated, for example when

the environment is stratified.

Modelling plumes from a point source of heat reduces the complexity

of the problem, and can ensure the plume is ‘pure’, with neither a momentum

deficit (lazy) or a momentum surplus (forced) (Morton & Middleton, 1973).

In an unstratified environment, there is an initial region in which the diffusive

heat source results in a movement of fluid vertically, resulting in the develop-

ment of a laminar plume. The plume will continue to rise in a slender stem

until it reaches a critical height at which it transitions to turbulence, after

which the turbulent plume will continue to rise indefinitely. In this case, both

laminar and turbulent regimes admit separate similarity solutions (Zeldovich,

1937). In a stratified ambient, however, there exists a neutral buoyancy level

(NBL) where the buoyancy of the plume fluid becomes zero and beyond which

the resultant forces on the fluid motion are no longer upward but downward
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Figure 1.2: Illustration of a volcanic plume in a stratified ambient. In this
example the plume is essentially turbulent from the offset. There is a turbu-
lent plume stem, until the effect of the stratification becomes dominant and
the direction of buoyancy reverses. The positive momentum at the neutral
buoyancy level (NBL) results in an overshoot and subsequently the flow moves
laterally outwards and forms an ‘umbrella’ region.

and horizontal. This causes a reversal in buoyancy and the flow subsequently

spreads radially outwards along the NBL, forming a neutrally buoyant gravity

current or intrusion (known as an umbrella region in volcanology). This be-

haviour is illustrated in figure 1.2 using the illustration of a volcanic eruption

(although an initial laminar region does not exist for a volcanic eruption, the

image is just used here for illustration). In the stratified case there are two

possible scenarios. The transition to turbulence can occur lower than the NBL

whereby the plume transitions to turbulence in the stem phase and reaches

the NBL as a turbulent flow. Alternatively, the transition to turbulence can

occur after the flow reaches the NBL whereby the flow will reach the NBL as

a laminar flow.

There are a number of different ways to study the behaviour of a

plume. In the case of something large like a plume generated by a volcanic

eruption, travel to the volcano is required to take readings, observe the be-

haviour, and understand the effect on the environment. Direct observational

studies can be challenging, however. If one wanted to study a large volcanic

eruption, for example, it may be necessary to wait months or years before an

eruption. If results obtained are applied to another volcanic eruption, differ-

ing buoyancy flux, wind profiles, elevation, fluid density and other parameters
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between them may render predictions inaccurate. Despite these limitations,

observations are critically important for the verification of numerical models.

One could also generate plumes experimentally in a laboratory (e.g.

Shabbir & George, 1994; Kaminski & Jaupart, 2003; Xue et al., 2019). This

requires certain assumptions in order to make observations. Length scales in a

laboratory will never reach those present in a flow as large as a volcanic erup-

tion or a mantle plume, and hence certain dimensionless numbers, such as the

Reynolds number, will never be comparable to the physical counterpart. Other

challenges can include accounting for the effect of the experimental setup on

the plume, such as the fluid tank walls and the nozzle details, and taking flow

measurements without disrupting the flow. Despite these challenges, labor-

atory experiments result in physically correct flow data and are vital for the

verification of simple models and numerics.

Another way of studying a plume is by solving simplified differen-

tial equations, often making use of scaling arguments to make simplifying

assumptions, to result in macroscopic descriptions of the flow. Despite these

assumptions, comparisons to observations, often using empirically determined

parameters, can result in extraordinarily accurate predictions of bulk flow prop-

erties, such as width-averaged fluxes or plume rise height in a stratified envir-

onment. An overview of the models used to make these predictions is presented

in section 1.1. This method, of solving simplified differential equations, com-

bined with that of making observations of the world and experiments, was the

main way in which plumes were modelled until recent technological advances

have resulted in large amounts of computing power being made available to

scientific researchers.

This recent increase in computing power has made solving large prob-

lems with high-order numerical methods feasible. For some small parameter

h, which for instance can be the grid size or time step, a numerical method

has order p if the numerical error is bounded by Chp, for some constant C.

Direct numerical simulations (DNS), one of the most computationally intens-

ive forms of numerical fluids research, can be used to solve high-order methods

and resolve every detail of a flow, down to the smallest eddy, on a numerical

mesh. While requiring significant computing power, this technique enables the

researcher to study the problem of a plume in its entirety, resulting in complete

information about flow fields. This is the main technique used in this thesis,
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along with scaling analysis, simpler numerical models, and comparisons to the

work of previous authors.

In this chapter, the different techniques that have been used to study

plumes in the past are discussed by giving a comprehensive overview of the

literature on the topic. In section 1.1, previous work to create simplified the-

oretical models of both laminar and turbulent plumes is reviewed. Section 1.2

discusses high order computational methods and techniques for studying plume

dynamics, and finally section 1.3 addresses open research questions and lays

out an overview of the rest of this thesis.

1.1 Modelling plumes

The full motion of a plume, from laminar to turbulent flow and from unsteady

development to a steady state, can be described using the Navier-Stokes equa-

tions (Navier, 1827; Stokes, 1849). The Navier-Stokes equations are a set of

partial differential equations which describe the motion of fluids. They consist

of conservation of momentum and mass equations, and can be combined with

a conservation of temperature equation to model fluid flow and heat transfer

in a wide range of applications. They are given by

Du

Dt
= −∇p

ρ0
+ ν∇2u + gβT ẑ, (1.1a)

∇ · u = 0, (1.1b)

DT

Dt
= κ∇2T, (1.1c)

where x = (x, y, z) is the position vector, t is time, ∇ is the gradient operator,

u(x, t) = (u, v, w) is the fluid velocity, p is the fluid pressure, ρ0 is a refer-

ence density, ν is the kinematic viscosity, T (x, t) is the temperature difference

from the ambient, κ is the thermal diffusivity, β is the coefficient of thermal

expansion, and g is acceleration due to gravity. In the equations above, the

Boussinesq approximation has been made, i.e. that the density of the fluid

does not vary significantly from the reference value ρ0. This results in the

density (in this case the temperature T ) appearing only in the forcing term of

the momentum equation (1.1a).

In order to model a plume emanating from a point source, the solution
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to the equations above is considered in the semi-infinite region z ≥ 0 subject

to no-slip and insulation conditions at z = 0, given by

u(x, y, 0, t) = 0,
∂T

∂n
(x, y, 0, t) = 0, (1.2)

respectively. In the far-field of the domain (encompassing both the limits of

x, y →∞ for z ≥ 0 and z →∞), it is assumed that the fluid is stagnant and

that the temperature is given by the ambient value, as specified by

lim
R→∞

u = 0, lim
R→∞

T = 0, (1.3)

where R =
√
x2 + y2 + z2 is the spherical radial coordinate. To prescribe

the source of buoyancy, a point-source condition of constant thermal flux is

imposed at z = 0 by

lim
ε→0

∫
Sε

r

(
−κ∂T

∂n

)
dS = F0, (1.4)

where r =
√
x2 + y2 is the cylindrical radial coordinate, Sε is the hemisphere

of radius R = ε in the region z ≥ 0, and F0 is the prescribed constant source

buoyancy flux.

Plumes have been well studied at the end member cases of asymp-

totically high and low Reynolds number regimes. In many previous studies,

plumes have often been separated into two regimes. Namely, that of turbu-

lent and laminar plumes. Chapters 2 and 3 discuss how these two regimes are

asymptotic limits of a single, universal plume dependent only on the Prandtl

number. The essentials of plume theory, describing both the laminar and tur-

bulent similarity solutions, were developed by Zeldovich (1937) (an English

translation is available in Zeldovich (1992)). In the following sub-sections the

two topics are considered separately, since previous studies tended to focus on

just one of the regimes.

1.1.1 Laminar plumes

For laminar plumes, similarity, boundary layer, and higher order numerical

methods have been employed to study the flow regimes. The first work on

laminar plumes proposed a similarity solution (derived in detail later), with
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constant velocity w and height-multiplied temperature T , for an axisymmetric

laminar plume (Zeldovich, 1937), given by

w = (F0/κ)1/2 f
((
F0/κ

3
)1/4

rz−1/2
)
, (1.5a)

T = (F0/gβκ)z−1h
((
F0/κ

3
)1/4

rz−1/2
)
, (1.5b)

for radial coordinate r and vertical coordinate z, where f and h are structure

functions that describe the shape of the velocity and temperature profiles,

respectively (reviewed in detail below). The scaling between radius and height

is derived from the assumption of a slender flow and predicts that the laminar

plume rises in the shape of a parabola, illustrated in figure 1.3. Building

from this, Yih (1951) provided a more detailed treatment of a laminar plume,

determining a system of similarity equations dependent on Prandtl number,

and solving them analytically for Pr = 1 and Pr = 2, to establish the spatial

structure of the velocity and temperature fields (see Yih (1977) for a review,

or Brand & Lahey (1967) for similar results).

In the laminar plume region, the studies above (Zeldovich, 1937; Yih,

1951; Brand & Lahey, 1967) make certain assumptions about the flow in order

to simplify modelling. As a three-dimensional plume is axisymmetric when

averaged over a sufficiently large time window, it is reasonable to assume the

axisymmetric form of the system (1.1)–(1.4). As the laminar region is of a

fixed height, and becomes steady after enough time, it can be reduced to a

steady, axisymmetric problem by removing all terms with a time derivative

∂/∂t, converting to cylindrical coordinates, and removing all terms with an

azimuthal derivative from the equations. As a result, system (1.1) becomes

u
∂u

∂r
+ w

∂u

∂z
= − 1

ρ0

∂p

∂r
+ ν

(
1

r

∂

∂r

(
r
∂u

∂r

)
+
∂2u

∂z2

)
, (1.6a)

u
∂w

∂r
+ w

∂w

∂z
= − 1

ρ0

∂p

∂z
+ ν

(
1

r

∂

∂r

(
r
∂w

∂r

)
+
∂2w

∂z2

)
+ gβT, (1.6b)

1

r

∂(ru)

∂r
+
∂w

∂z
= 0, (1.6c)

u
∂T

∂r
+ w

∂T

∂z
= κ

(
1

r

∂

∂r

(
r
∂T

∂r

)
+
∂2T

∂z2

)
, (1.6d)

and the boundary conditions (1.2) and (1.3) become

u(r, 0, t) = 0,
∂T

∂z
(r, 0, t) = 0, (1.7)
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and

lim
r→∞

u = 0, lim
r→∞

T = 0, (1.8)

respectively. Rather than using the point source condition specified in (1.4),

a condition on the advective buoyancy flux is imposed (derived and justified

later in section 2.1.1 and section 2.3.3, respectively),

2π

∞∫
0

gβrT (r, zs, t)w(r, zs, t) dr = F0, (1.9)

where F0 is a prescribed, constant buoyancy flux at z = zs, and it is assumed

that the flow starts at some displaced origin zs > 0, directly in the laminar

plume regime. This assumption is made in a large number of studies of laminar

plumes (Zeldovich, 1937; Yih, 1951; Brand & Lahey, 1967; Worster, 1986).

Finally, symmetry conditions along the plume centre at r = 0 are introduced

∂u

∂r
(0, z, t) = 0,

∂T

∂r
(0, z, t) = 0, u(0, z, t) = 0. (1.10)

Boundary layer theory

Boundary layer theory is used to further simplify the axisymmetric equations

(1.6)–(1.10). The main assumption of a boundary layer (Schlichting & Gersten,

2003) is that the velocity gradients in the horizontal are large compared to

those in the vertical (∂/∂r � ∂/∂z). In the axisymmetric case (1.6)–(1.10),

velocity gradients normal to the vertical axis of symmetry (i.e. in the radial

direction) are assumed to be very large compared to those along the axis of

symmetry.

In order to simplify the governing equations (1.6), boundary layer

theory is used to estimate the relative sizes of certain terms (Yih, 1951; Brand

& Lahey, 1967). Within the boundary layer, the radial length r scales with

the width of the boundary layer r ∼ δ. The boundary layer is assumed to be

slender and hence the ratio of radial to vertical length scales ε = δ/L � 1,

where vertical length scales like z ∼ L. Vertical velocity is also defined to scale

like w ∼ W . Hence, from mass conservation (1.6c), the radial velocity is of

the order

u = O(εW ). (1.11)
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Now the order of terms in the radial momentum equation (1.6a) can be written

beneath each term to find that

u
∂u

∂r
+ w

∂u

∂z︸ ︷︷ ︸
=O

(
εW2

L

)
= − 1

ρ0

∂p

∂r
+ ν

(
1

r

∂

∂r

(
r
∂u

∂r

)
︸ ︷︷ ︸

=O( W
δL)

+
∂2u

∂z2︸︷︷︸
=O

(
ε2W2

L2

)
)
. (1.12)

By comparing the orders of each term in (1.12) the appearance of ε� 1 in the

advection and z-diffusion term render them much smaller than the r-diffusion

term. Therefore, assuming that the remaining terms scale similarly results in

the order of the partial derivative of the pressure with respect to r

∂p

∂r
= O

(
ρ0ν
W
δL

)
, (1.13)

and as a result, the order of the partial derivative of the pressure with respect

to z is given by

∂p

∂z
= O

(
ρ0ν
W
L2

)
. (1.14)

Now comparing the order of terms in the vertical momentum equation (1.6b)

results in

u
∂w

∂r
+ w

∂w

∂z︸ ︷︷ ︸
=O

(
W2

L

)
= − 1

ρ0

∂p

∂z︸ ︷︷ ︸
=O(ν W

L2 )

+ν

(
1

r

∂

∂r

(
r
∂w

∂r

)
︸ ︷︷ ︸

=O(W
δ2

)

+
∂2w

∂z2︸︷︷︸
=O

(
W2

L2

)
)

+ gβT, (1.15)

illustrating both that

− 1

ρ0

∂p

∂z
� ν

1

r

∂

∂r

(
r
∂w

∂r

)
, and

∂2w

∂z2
� ν

1

r

∂

∂r

(
r
∂w

∂r

)
, (1.16)

because δ � L. As a result, both the pressure term and the z-diffusion term

can be neglected from the vertical momentum equation (1.15). Similarly, the

z-diffusion term can be neglected from the temperature conservation equation
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(1.6d), resulting in the boundary layer equations at leading order

u
∂w

∂r
+ w

∂w

∂z
= ν

(
1

r

∂

∂r

(
r
∂w

∂r

))
+ gβT, (1.17a)

1

r

∂(ru)

∂r
+
∂w

∂z
= 0, (1.17b)

u
∂T

∂r
+ w

∂T

∂z
= κ

(
1

r

∂

∂r

(
r
∂T

∂r

))
. (1.17c)

At the centre of plume, the symmetry conditions (1.10) are

∂w

∂r
= 0,

∂T

∂r
= 0, u = 0, at r = 0. (1.18)

The far-field conditions (1.8) are

w → 0, T → 0, as r, z →∞, (1.19)

and the buoyancy flux condition (1.9) remains

2π

∞∫
0

gβrTw dr = F0. (1.20)

The system (1.17)–(1.20) forms a fifth order (2nd order from (1.17a) + 1st

order from (1.17b) + 2nd order from (1.17c)) coupled diffusion problem with

five boundary conditions. If desirable, the numerical solution of this system

can be found using a time-marching procedure for z until the solution reaches

a ‘steady state’. This process will be used later in chapter 4 to predict the

maximum rise height of a laminar plume in a stratification. Instead, however,

in an unstratified environment, the boundary layer equations can be further

simplified by making use of similarity scalings (Zeldovich, 1937).

Similarity theory

A similarity solution of a set of partial differential equations is a solution that

depends on certain groupings of the independent variables, rather than on

each variable separately. Similarity solutions occur when the system has no

characteristic length or time scale. The unstratified plume will be shown to

admit a similarity solution in the following.
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Investigating the scalings between the advection and source terms

(1.17a), the advection and diffusion terms in (1.17c), and the buoyancy flux

condition (1.20) results in the scaling relationships

w
∂w

∂z
∼ gβT, w

∂T

∂z
∼ κ

(
1

r

∂

∂r

(
r
∂T

∂r

))
, 2π

∫ ∞
0

gβrTw dr ∼ F0, (1.21)

leading to w2 ∼ gβTz, r2w ∼ κz, and gβr2Tw ∼ F0, respectively. Resolving

these, one finds that the only intrinsic horizontal length scale in the system

r ∼ (κ3/F0)
1/4z1/2 and is dependent only on z, revealing that the system

exhibits a similarity solution. The scaling further reveals that the independent

variable in the similarity solution can be defined as

η =
(
F0/κ

3
)1/4

rz−1/2. (1.22)

Using a similarity solution allows the problem to be reduced from two inde-

pendent variables r and z, and three dependent variables u, w, and T , to a

problem with one independent variable η and two dependent variables f and

h (these will be defined shortly). This greatly reduces the complexity of the

problem.

In order to derive the similarity system, the Stokes stream function

ψ is first defined such that

w =
1

r

∂ψ

∂r
, u = −1

r

∂ψ

∂z
. (1.23)

Substituting the Stokes stream function into the boundary layer equations

(1.17a) and (1.17c) results in

1

r3
∂ψ

∂z
· ∂ψ
∂r
− 1

r2
∂ψ

∂z
· ∂

2ψ

∂r2
+

1

r2
∂ψ

∂r
· ∂

2ψ

∂z ∂r

= ν

(
1

r3
∂ψ

∂r
− 1

r2
∂2ψ

∂r2
+

1

r

∂3ψ

∂r3

)
+ gβT,

(1.24a)

− 1

r

∂ψ

∂z
· ∂T
∂r

+
1

r

∂ψ

∂r
· ∂T
∂z

= κ

(
1

r

∂T

∂r
+
∂2T

∂r2

)
, (1.24b)

respectively. By investigating the scalings between terms in (1.24) and the

buoyancy flux condition (1.20), the following scaling relationships between ψ,
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Figure 1.3: Schematic to compare the shapes of the laminar (left) and turbulent
(right) similarity solutions of a plume. A laminar plume is shaped like a
parabola according to the scaling in (1.5) and a turbulent plume is shaped
like a cone according to the scaling in (1.35). A Gaussian curve of the form
a exp(−bξ2) for ξ = rz−1 is plotted over the turbulent plume to illustrate using
Gaussians as the structure functions φ and ϑ in (1.35).

T , and z can be derived

ψ ∼ κz, T ∼
(
F0

gβκ

)
z−1. (1.25)

As for the independent variable η in (1.22), the scalings (1.25) allow for the

definition of the two dependent similarity variables f(η) and h(η) such that

ψ = κzf(η), T =

(
F0

gβκ

)
z−1h(η), (1.26)

where f(η) and h(η) are known as structure functions (Zeldovich, 1937) rep-

resenting the height-independent radial profiles of velocity and temperature,

respectively. By substituting the equation for ψ (1.26) into the definition of

the stream function (1.23), the vertical velocity w is given by

w =

(
F0

κ

)1/2
f ′(η)

η
. (1.27)

In accordance with (1.22), (1.26) and (1.27), the vertical velocity w is con-

stant with height, the temperature T ∼ z−1 decays linearly with height, and

the radius of the plume expands as r ∼ z1/2, resulting in the laminar plume

exhibiting a parabolic shape, illustrated in figure 1.3. Substituting the rela-

tions (1.26) into (1.24) and rearranging using (1.22) to replace rz−1/2 groupings

results in the ODEs (Brand & Lahey, 1967)
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1

η
ff ′ − ff ′′ = Pr

(
1

η
f ′ − f ′′ + ηf ′′′

)
+ η2h, (1.28a)

−1

η
fh′ − 1

η
f ′h =

1

η
h′ + h′′, (1.28b)

where the Prandtl number Pr = ν/κ is the ratio of viscosity to thermal dif-

fusivity. Note that (1.28b) can be simplified by multiplying through by η and

using an application of the product rule of differentiation on both the left and

right hand side of (1.28b) to result in

− (fh)′ = (ηh′)
′
. (1.29)

Subsequently integrating (1.29) subject to the boundary conditions at η = 0,

and rearranging (1.28a), results in the system (Yih, 1951)

−f
(
f ′

η

)′
= Pr

(
η

(
f ′

η

)′)′
+ ηh, (1.30a)

h′ = −1

η
fh. (1.30b)

The velocity boundary conditions defined in (1.18) are reframed in similarity

form using (1.23), (1.26) and (1.27) to result in

lim
η→0

(
−1

η
f ′(η) + f ′′(η)

)
= 0, lim

η→0

(
f(η)− 1

2
ηf ′(η)

)
= 0. (1.31)

As are the far-field conditions (1.19), to result in

f ′ = 0, h = 0, as η →∞. (1.32)

Finally the buoyancy flux condition (1.20), is written in similarity form

2π

∞∫
0

hf ′ dη = 1. (1.33)

Since the introduction of the similarity solution (Zeldovich, 1937; Yih,

1951; Brand & Lahey, 1967) there have been a number of studies of both two-

dimensional and axisymmetric laminar plumes. For example Morton (1967)

proposed an entrainment model for laminar plumes for both high and low

Prandtl numbers, Roberts (1977) studied convection from a heated strip in

two dimensions, finding a scaling for the dimensionless heat flux in terms of
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the Rayleigh number, and Loper & Stacey (1983) analytically investigated

and described the structure of mantle plumes with temperature dependent

viscosity.

Worster (1986) considered the asymptotic reduction of the similar-

ity system (1.30)–(1.33) for large Prandtl number (large viscosity), matching

an inner viscous region to an outer buoyancy-driven flow to develop asymp-

totic predictions for the velocity and temperature profiles. Worster (1986)

determined the asymptotes for dimensionless centreline values of velocity w0

and temperature h0 to be

w0 ≡ lim
η→0

(
f ′(η)

η

)
∼ 0.40 ε2 log(ε−2), (1.34a)

h0 ≡ h(0) ∼ 0.079, (1.34b)

as Pr →∞, where ε is a small parameter defined implicitly by ε4 log(ε−2) =

Pr−1.

More recently, Kaminski & Jaupart (2003) used numerical simula-

tions and laboratory experiments to study the temporal evolution of laminar

plumes at high Prandtl number, showing that near the source plumes accel-

erate due to development of the viscous boundary layer, and outside of this

layer, plumes ascend as predicted by steady plume theory. Whittaker & Lister

(2006) addressed an axisymmetric laminar plume rising from a point source

in a very viscous fluid. They found a vertical length scale on which advection

becomes comparable with diffusion and derived an asymptotic solution for flow

above this height.

1.1.2 Turbulent plumes

At the turbulent end of the spectrum, Zeldovich (1937) proposed, on the basis

of scaling, that the vertical velocity w and temperature T fields of a turbu-

lent plume fed by a constant source of buoyancy, decrease with height z in

proportion to z−1/3 and z−5/3, respectively, given by

w = F
1/3
0 z−1/3φ(rz−1), T = (F

2/3
0 /gβ)z−5/3ϑ(rz−1), (1.35)
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where, as in the laminar regime, φ and ϑ are structure functions that describe

the shape of the velocity and temperature profiles. These scalings result from

an assumption that both horizontal and vertical scales remain comparable,

differing from the asymptotic assumption of a slender flow underlying the the-

ories of laminar plumes, and predicting that a turbulent plume rises in a cone

of fixed angle, illustrated in figure 1.3. While in a laminar plume the velocity

remains constant throughout the height of the plume, in the turbulent case the

vertical velocity decreases with height like z−1/3. In both cases the temperat-

ure drops with height, however it does so faster in the turbulent regime. In the

laminar plume the temperature falls with z−1 whereas in the turbulent regime

it decreases like z−5/3. These scalings for vertical velocity and temperature,

first described by Zeldovich (1937), have been used widely in plume modelling

since their initial description (Hunt & Van den Bremer, 2011). Separately,

Schmidt (1941) presented a more detailed eddy-viscosity model of turbulent

plumes, which preserves the scalings introduced by Zeldovich (1937) and fur-

ther makes predictions for the approximate structure functions describing the

transverse velocity and temperature profiles.

The forms of the structure functions φ and ϑ (1.35) were constrained

directly using experiments by Rouse et al. (1952), who suggest they conform

closely to Gaussians of the form φ(ξ) = aw exp(−bwξ2) for vertical velocity w

and ϑ(ξ) = aT exp(−bT ξ2) for temperature T , where the similarity variable

ξ = rz−1 and a and b are profile coefficients with subscripts w and T , for

vertical velocity and temperature, respectively. A Gaussian is plotted over

the schematic of the turbulent plume in figure 1.3 to illustrate using Gaus-

sians as structure functions. Rouse et al. (1952) found values for bw = 96

and bT = 71 for vertical velocity and temperature respectively, in essence

suggesting that the vertical velocity profile is thinner than the temperature

profile. Papanicolaou & List (1988) agree, stating that authors who disagree,

such as George Jr et al. (1977) and Nakagome & Hirata (1977), took meas-

urements too close to the source. Later, Shabbir & George (1994) also found

that the vertical velocity profile was wider than the the temperature profile,

with exponential coefficients of bw = 58 and bT = 68, respectively. Since the

widespread accessibility of computational resources, studies have been able to

report Gaussian profiles more accurately by using numerical simulations to

study plume flow. Plourde et al. (2008); Van Reeuwijk et al. (2016) both re-

port approximate Gaussian profiles for vertical velocity and temperature, and

Devenish et al. (2010) report the same value for both velocity and temperat-
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ure of bw = bT = 60 ± 10. Despite some of the variability in the coefficients

aw, aT , bw, and bT , defining the structure functions and finding accurate values

for the coefficients enables researchers to develop simple predictive models of

plume rise, such as the well-known Morton et al. (1956) model.

Arguably the most widespread turbulent plume model is that de-

scribed by Morton et al. (1956), so much so that it is often given its own

nickname, the MTT model, for its authors: B. R. Morton, G. I. Taylor, and

J. S. Turner. Their model describes an axisymmetric, turbulent plume rising

from a point source. They proposed a width-averaged theory of turbulent

plumes based on parametrising turbulent entrainment, applicable to stratified

and unstratified environments. They claim that the inflow at the edge of a

convective plume is related to some characteristic velocity of the plume itself.

The main assumptions are: that the plume is fully turbulent; that the rate of

entrainment is proportional to the vertical velocity at that height, this is imple-

mented by introducing an entrainment coefficient (known as the entrainment

hypothesis); that the profiles of mean vertical velocity and temperature in ho-

rizontal sections are of similar forms at all heights; and that the Boussinesq

approximation applies, namely that the largest local density variations in the

field of motion are small in comparison with the density of the ambient at the

source level. They also make predictions for the height of the neutral buoy-

ancy level (NBL). By modelling horizontally averaged volume Q, momentum

M , and buoyancy F fluxes, defined by

Q = 2π

∫ ∞
0

wr dr, M = 2π

∫ ∞
0

w2r dr, F = 2π

∫ ∞
0

g′wr dr, (1.36)

for vertical velocity w, radial coordinate r, and reduced gravity g′, Morton et al.

(1956) developed the following dimensional differential equations describing

the steady-state behaviour of a plume

dQ

dz
= 2αM1/2, (1.37a)

dM

dz
=
FQ

M
, (1.37b)

dF

dz
= −N2Q, (1.37c)

where z is height, N is the Brunt-Väisälä frequency, and α is a constant coeffi-

cient parametrising entrainment of fluid into the plume. The initial conditions
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are given by

Q = Q0 m3 s−1, M = M0 m4 s−2, F = F0 m4 s−3. (1.38)

The Brunt-Väisälä frequency, N , represents the stratification of the ambient.

In the case where the density of the ambient fluid is constant with height

(N = 0) the right hand side of (1.37c) vanishes and the system can be solved

analytically by substituting solutions of the form Q = pza and M = qzb, where

p and q are constants, to find

Q =
6α

5

(
9

10
αF0z

5

)1/3

m3 s−1, (1.39a)

M =

(
9

10
αF0z

2

)2/3

m4 s−2, (1.39b)

F = F0 m4 s−3. (1.39c)

In the stratified case (N > 0) the equations can be solved numerically, using a

fourth-order Runge-Kutta method, terminating where the momentum of the

plume is zero. The location of zero buoyancy is the NBL and the location of

zero momentum is the maximum rise height of the plume. Both the unstratified

and stratified solutions are included in figure 1.4. The description of the plume

fluxes and the rise height (in the stratified case) can be compared to laboratory,

numerical, and real-world plumes for verification of other numerical models or

for making predictions of plumes in the physical world.

An alternative model of plume rise, developed at a similar time as

that of Morton et al. (1956), is that of Priestley & Ball (1955). Instead of a

model based on volume, momentum, and buoyancy flux, they described plume

evolution using volume, momentum, and kinetic energy flux of the plume.

They also introduced an entrainment relation for turbulent plume flow. Fox

(1970) compared both models in an attempt to reconcile the two theories,

showing that the entrainment parameter α is dependent on the Reynolds stress

and the shape of the velocity and buoyancy profiles.

The models described by both Priestley & Ball (1955) and Morton

et al. (1956) consider a turbulent plume that originates at an idealised point

source, forming a so-called ‘pure’ plume. This is an assumption used to simplify

the problem. It is not possible for a real-world plume to have zero radius,

there must be some finite area at which buoyancy is introduced. Making a
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Figure 1.4: Solutions of the model described by Morton et al. (1956). In panel
(a) is the analytical solution to the unstratified case, described in (1.39), for
Q0 = 0 m3 s−1, M0 = 0 m4 s−2, F0 = 1 m4 s−3 and α = 0.1. In panel (b) is the
numerical solution to the stratified case, described in (1.37)–(1.38) and (1.38),
for Q0 = 0 m3 s−1, M0 = 0 m4 s−2, F0 = 1 m4 s−3, N = 1 s−1, and α = 0.1, and
solved using a fourth-order Runge-Kutta method.

point source assumption, however, simplifies the physics to facilitate a unique

solution of a plume without considering the effect of source conditions, which

can have a large impact on the flow. As a result, the point source assumption

is made for all the plumes considered in this thesis. Morton (1959) showed

that the behaviour of a plume from a finite-sized source can be related to a

virtual point source of buoyancy and momentum, introducing a method that

enables plumes generated from a finite-sized source to be compared to plumes

from a point source.

Morton & Middleton (1973) described a lazy plume, one with a defi-

cit of momentum flux at the source compared to a ‘pure’ plume with the same

volume flux and buoyancy flux. They also proposed the existence of a vir-

tual origin above the theoretical origin, and described and observed an initial

narrowing of the plume, caused by the excess buoyancy accelerating the flow.

They base this location on the definition of a source parameter that relates the

initial fluxes. Hunt & Kaye (2005) extended the work of Morton & Middleton

(1973) to include sources with non-zero radius, describe the region in which

the plume transitions from the source conditions to a turbulent ‘pure’ plume,

and compare their results to the work of Morton et al. (1956). These studies

brought into plume terminology the terms pure, lazy, and forced to describe

plumes. The terms refer to the initial state of the plume source. A lazy plume

is said to have an initial buoyancy flux that dominates over the initial mo-
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mentum flux, resulting in an acceleration and narrowing of the plume as the

two equilibrate. A forced plume is the opposite, with the initial momentum

flux dominating the buoyancy flux, resulting in a deceleration and widening of

the plume. The works of Morton & Middleton (1973) and Hunt & Kaye (2005)

both suggested that the Morton et al. (1956) model takes over once the initial

behaviour has been ‘resolved’ by the governing equations. The pure plume,

then, is the one that both the forced and lazy plumes transition towards, after

the initial source condition has been resolved. As the plumes considered in this

thesis emanate from a point source, they are all, by definition, pure plumes.

There have been numerous works on the entrainment hypothesis pro-

posed by Morton et al. (1956), starting with Fox (1970) who developed a plume

model for forced plumes with entrainment strongly related to the mean axial

velocity of the flow. Hunt & Kaye (2005) suggested that while the constant-

entrainment model is not always accurate, some reduced-entrainment flows

can be modelled using constant α, given source conditions and buoyancy flux

gain (buoyancy flux can increase as the plume rises in certain atmospheric

flows) is taken into account. It is also suggested by Carazzo et al. (2008) that

the constant-entrainment model does not make accurate predictions of the

rise height of submarine hydrothermal vents and terrestrial volcanic eruptions

because the effect of the turbulent mixing on the plume rise is not properly cap-

tured. They proposed a new model using variable entrainment, dependent on

the buoyancy of the plume, that was shown to predict flux values of plumes on

Earth, and rise heights of Martian and Venusian plumes, more accurately than

the Morton et al. (1956) model. Van Reeuwijk & Craske (2015) integrated the

volume, momentum, buoyancy, and kinetic energy equations, using both the

Morton et al. (1956) and Priestley & Ball (1955) models, to over-constrain the

equations and hence find a restriction on the entrainment coefficient. They de-

composed the entrainment coefficient into contributions due to the production

of turbulence kinetic energy, buoyancy, and profile coefficients and found that

larger entrainment in a plume over a jet is due to the buoyancy effects asso-

ciated with the mean flow, rather than the effects of buoyancy on turbulence.

They conclude that a variable-entrainment model may be more appropriate

than a constant model for predictions of real world plumes. The entrainment

parameter is used widely in much of plume research, however the entrainment

of fluid is modelled directly in the simulations performed in this thesis. As

the entrainment parameter is empirically defined, simulations can be used to

confirm its value.
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1.1.3 Instability in plume dynamics

Bridging the gap between the laminar and turbulent flow is a transition zone

that links the two regimes. As the laminar plume rises, scaling analysis of

(1.5) shows that the local laminar Reynolds number scales like ReL ∼ z1/2

with height z and hence increases as the plume rises until an instability causes

a transition to turbulence. To date, a complete description of the spatial

structure arising from the transition to fully developed turbulence of a classical

plume remains an open problem, however a number of studies have investigated

instabilities in plumes.

Dombrowski et al. (2005) conducted laboratory experiments and per-

formed a similarity scaling of a saline jet (or a forced plume) in a stratification.

They empirically derived a scaling law for the location of a specific type of in-

stability, known as a coiling instability, finding a linear relationship between

the velocity of the jet and the square of the height to instability. They also

found that the rise height (penetration depth using the orientation of their

experiments) is non-monotonic with inlet velocity due to the instability that

occurs earlier in faster flows.

In a similar vein, Lombardi et al. (2011) used laboratory experiments

and DNS to focus on the sinuous versus varicose instability specific to a two-

dimensional plume, with high Prandtl number, originating from a finite areal

source. They focused on analysing the effect of a stratification in suppressing

the short-term initial instability of a plume, developing a scaling law for the rise

height of a plume based on the source area, the volume flux, the stratification,

and the viscosity. They also showed that, in a stratification, the maximum

height attained by a plume is dependent on the final steady state, rather than

on the instability.

Instead of a investigating the instability of a plume in a stratifica-

tion, López Moscat & Marqués Truyol (2013) focused on the various types of

instability exhibited by a plume in an unstratified, enclosed cylinder emanat-

ing from an areal source for increasing Rayleigh number. They investigated

the emergence of symmetries in the initial instability of plumes, providing a

classification of different symmetries from the perspective of a dynamical sys-

tem. They reported behaviour ranging from a laminar plume, to ‘puffing’ phe-

nomena and symmetry-breaking tilted rings emitted directly from the heated
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source, to the source emitting several plume-like eruptions. A linear global

stability analysis performed by Lesshafft (2015) suggested that at least one of

the behaviours demonstrated by López Moscat & Marqués Truyol (2013) was

due to the presence of the top and bottom walls enclosing the plume, illustrat-

ing that a solid enclosure can have a profound impact on the plume flow and

transition to instability.

Extending the linear instability analysis of Lesshafft (2015) to unen-

closed plumes, Chakravarthy et al. (2018) found that the dominant force pro-

ducing an instability in laminar lazy plumes is buoyancy, rather than shear,

with the converse true for jets. However, they also cautioned that the char-

acteristics of the instability are sensitive to the profile of the flow at the inlet

and hence may not be extendable to generic plume flows, such as a pure plume

generated at a point source of heat.

Another form of instability often studied in plume dynamics is that

generated by time-varying source conditions, referred to as an unsteady plume.

Scase & Hewitt (2012) investigated a number of previous unsteady turbulent

plume models and claimed that they were ill-posed, but could be regularised

in some cases by the addition of a velocity diffusion term. Scase & Hewitt

(2012) found that this new term had little effect for applications in which the

plume source is steady, however. In the laminar regime Hewitt & Duck (2011)

found that an unsteady source leads to downstream growth of a short-wave

linear instability which triggers the breakdown of the laminar boundary layer

structure. This breakdown in the unsteady regime is similar to that in plumes

with steady source conditions, such as those considered in this thesis, but

varies in that the instability and transition to turbulence is caused by wave

propagation from the varying source conditions, a process that does not occur

in plumes with steady sources.

1.1.4 Plumes in a stratification

One of the first works of turbulent plume rise, with a point source and in a

stratification, was performed by Morton et al. (1956), using the model (1.37)–

(1.38) for N > 0. The model can be solved by numerically integrating (1.37)

subject to the source conditions (1.38) and terminating when the momentum

flux becomes zero. The solution for volume Q, momentum M , and buoyancy
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F flux, for F0 = 1 m4 s−3 and N = 1 s−1, is plotted in figure 1.4. The buoyancy

flux decreases with height, and the neutral buoyancy level (NBL) of the plume

is located at a height of 3.28 (F0N
−3)1/4 m where the buoyancy flux is zero. The

momentum flux first increases from zero and begins to decrease after the plume

passes its NBL. The rise height is located at a height of 4.32 (F0N
−3)1/4 m

where the momentum flux becomes zero. The model described by Morton

et al. (1956) is often used in the study of plumes, from comparisons with

higher order models (Devenish et al., 2010) to modelling particle dispersal

from the NBL (Sparks et al., 1991).

There have been a number of studies of turbulent plumes in a strat-

ification. For example, Kotsovinos (2000) performed experiments on a plume

rising in an unstratified layer and subsequently penetrating into a stratified

layer to investigate the growth of the neutrally buoyant intrusion layer at the

NBL. Devenish et al. (2010) used large-eddy simulations to investigate the

behaviour of plumes in both unstratified and stratified environments. They

showed good agreement with the simpler model of Morton et al. (1956) for the

unstratified case, but in the stratified case suggested that the effects of the

finite source are still impacting the flow even up to the height where strati-

fication becomes important. Rooney & Devenish (2014) performed a scaling

analysis and suggested that plume rise and spread in a linear stratification is

controlled by the buoyancy frequency and the source buoyancy flux. Mira-

jkar & Balasubramanian (2017) varied stratification strengths showing that

increasing the strength of the stratification leads to a decrease in maximum

rise height. All the studies listed here are examples of studies that have in-

vestigated the behaviour of turbulent plumes in a stratification, however, none

of them consider the behaviour of plumes in a stratification across a spectrum

of laminar to turbulent flow.

There has been little work to date on the rise height of laminar plumes

in a stratification. Performing experiments on turbulent jets, Dombrowski

et al. (2005) found that the rise height varies non-monotonically with inlet

velocity due to the instability that occurs earlier in faster flows. Lombardi et al.

(2011) used laboratory experiments and DNS to analyse the initial instability of

a plume and developed a scaling law for the rise height based on the source area,

volume flux, stratification, and viscosity, showing that the rise height is largely

unaffected by the initial instability and determined largely by the steady state

flow. Xue et al. (2019) performed laboratory experiments of fountains, similar
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to jets but with a negative buoyancy, by pouring a liquid into a container filled

with a denser fluid. They characterised the flow based on the Reynolds number,

focusing on lower Reynolds numbers, and find that rise height (or penetration

depth to use their orientation) varies with Reynolds number, with a maximum

rise height at Re ≈ 200. The work of Xue et al. (2019) considered the rise

height of fountains, however, a gap in the literature has been identified here

for the rise height of plumes, rather than fountains or jets, across a spectrum

of Reynolds numbers.

1.1.5 Starting plumes

So far, all of the preceding discussion has focused on steady state plumes. A

starting plume is the time-dependent precursor to the steady plume, consisting

of the production of an advancing ‘head’ or ‘cap’ at the transient front of the

plume flow which can be laminar or turbulent, and leaves the steady plume

flow behind it as it progresses. Experiments of starting plumes illustrate the

development of a pronounced head above a thin, approximately steady stem

(e.g. Moses et al., 1993). Turner (1962) and Bhamidipati & Woods (2017)

both use laboratory experiments to determine that for a turbulent plume the

head rises at 0.6 times the mean stem speed. Bhamidipati & Woods (2017)

propose a theoretical model that suggests that 61% of the total buoyancy

released from the source accumulates in the plume head. These two studies

both assume that the plume beneath the head is turbulent, leading us to

question how the head behaves in higher viscosity plumes.

Moses et al. (1993) consider a laminar starting plume and find that

the laminar head rises at a constant velocity, from a finite areal source. They

suggest that the increasing Reynolds number of the growing head causes the

plume to become unstable. Using scaling arguments it can be shown that the

width of the stem grows as time t1/2 (Batchelor, 1954) and Moses et al. (1993)

suggest that the width of the plume head grows at the same rate. They also find

that the head ascent velocity is ḣp = 0.23 (F0/ν)1/2 m s−1 for buoyancy flux F

and viscosity ν, which is a result that can be compared to numerical simulations

of plumes. In the large Prandtl number regime, Kaminski & Jaupart (2003)

find that the rise speed of the head is dependent on the Prandtl number for

Pr > 7, suggesting that the rise speed of the plume front is proportional to the

centreline value of velocity (1.34) predicted by Worster (1986). For simulations
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investigating plume rise over a range of Prandtl numbers, the work of Kaminski

& Jaupart (2003) can used to predict the rise speed of the plume front.

More recently, Vatteville et al. (2009) and Davaille et al. (2011)

have performed detailed laboratory and numerical analysis of starting laminar

plumes in viscous fluids at various initial buoyancy fluxes, to show that the

flow in the laboratory can be accurately obtained using numerical predictions.

Both studies suggest that temperature-dependent viscosity has a significant

impact on plume flow in high-Prandtl number plumes, noting discrepancies

from the uniform-viscosity models of Worster (1986) and Kaminski & Jaupart

(2003).

1.1.6 Particle transport

There are many examples of particle transport by plumes in nature in the

literature, from a volcanic eruption to aerosols in a room. In particular the

field of natural ventilation, in which particle transport in laminar plumes are

significant, has been of interest in recent years due to the Covid-19 pandemic,

with a focus on air quality in offices, classrooms, and hospital wards (Tang

et al., 2006). A gap in the literature has been identified regarding particle

transport in both laminar and hybrid laminar-turbulent plumes.

Many studies have focused on particle fallout from turbulent plumes,

with some producing predictions for particle build up. Some of these are listed

and discussed below, as the results can be used in the study of laminar and

hybrid laminar-turbulent plumes. For example, Ernst et al. (1996) developed

a theoretical model for sedimentation from the outer edge of a particle-laden

turbulent plume in an unstratified, quiescent environment, and more recently,

Pegler & Ferguson (2021) developed a model for the dispersal of particles

from hydrothermal plumes. These studies illustrate the work done on particle

transport in turbulent plumes and comparisons between them and particle

transport in laminar and hybrid laminar-turbulent plumes can be made to

verify new models.
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1.2 Modelling plumes using high-order numer-

ical methods

The invention and widespread availability of high performance computing

(HPC) for scientific research has enabled researchers to solve complicated par-

tial differential equations describing the behaviour of plumes numerically. The

benefit of this method can be (relatively) quick, reproducible simulations with

which many different numerical experiments can be performed in a short space

of time, resulting in comprehensive parametric studies. This technique is not

infallible, however, because it can require certain assumptions and simplifica-

tions. For example, lower Reynolds numbers than present in physical phenom-

ena may be necessary. Furthermore, it has its own set of quantities that must

be satisfied, such as mesh sensitivity, stability criteria, and convergence cri-

teria. High-order numerical methods are the main approach used for modelling

plumes in this thesis.

There are a number of different simulation methods to choose from

when performing numerical simulations. A short, incomprehensive list includes

techniques such as Reynolds-averaged Navier-Stokes (RANS) modelling, large-

eddy simulation (LES), smoothed-particle hydrodynamics (SPH), and direct

numerical simulations (DNS). For the majority of options, the governing equa-

tions require modification to reduce the complexity of the solution, often para-

metrising the small scale motions of the flow using a turbulence model.

One of the most intensive forms of numerical fluids research, DNS,

solves the governing equations without any turbulence modelling and hence

requires a mesh fine enough to resolve every detail of a flow. This is both the

main advantage and disadvantage of DNS, in that the equations modelled are

‘correct’, yet the requirement on the mesh resolution results in a very numer-

ically expensive simulation. A further advantage is that turbulence models do

not have to be tested and verified, compared to techniques such as RANS and

LES.

The detail in the flow fields that result from using DNS enable it

to be used in studying fundamental behaviour within the plume. DNS has

been employed in the field of plume dynamics to study the formation of vor-

tices in the near-source region and their dependence on source temperature

of axisymmetric plumes (Jiang & Luo, 2000), the accuracy of subgrid-scale
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FEM

+

Spectral method

=

SEM

Figure 1.5: Illustration of the meshes of finite element methods (FEM) and
spectral methods combining to produce the mesh used for spectral element
methods (SEM).

models (Pham et al., 2007) for large eddy simulation (LES), the near source

behaviour of heated, areal sources (Plourde et al., 2008), the effect of rotation

on plume evolution and structure (Fabregat Tomàs et al., 2016), the detailed

flow properties of jets, forced plumes, and pure plumes validating the Priestley

& Ball (1955) entrainment model (Van Reeuwijk et al., 2016), and the effect of

wind-advection (Jordan et al., 2022). These studies all use DNS to investigate

a specific part of turbulent plumes.

After making the decision to use DNS for the numerical simulations

in this thesis, a further choice of the type of discretisation scheme is required

since, without making simplifying assumptions such as axisymmetry or bound-

ary layer assumptions, an analytical solution is unavailable for the fully 3D

governing equations (1.1)–(1.4). The governing equations need to be discret-

ised in order to model the flow on a computational mesh. Some options for

discretisation methods include finite difference, finite volume, finite element

(FEM), spectral, and spectral element methods (SEM). A SEM is a combin-

ation of a FEM and a spectral method (Boyd, 2001), examples of a simple

mesh used for each method are presented in figure 1.5. The SEM was first in-

troduced by Patera (1984) and is the choice of discretisation for the numerical

simulations in this thesis.

1.2.1 Finite element methods (FEM)

In order to describe the spectral element method (SEM), the concepts of finite

element methods (FEM) and spectral methods are first introduced. Some of

the earliest work on FEM can be found in Courant (1943), for a historical

review see Oden (1991). It should be noted that the presentation of finite
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elements in this section is constructive and avoids a number of subtleties that

are discussed in textbooks such as Oden (1991).

While the equations in this thesis are three-dimensional with a num-

ber of dependent variables (e.g. velocity, temperature, pressure), the topic is

introduced using a simple one dimensional problem with one dependent vari-

able u(x, t) that is continuous across the domain of interest. Let x and t be

spatial and time coordinates and let the differential equation and boundary

condition to be solved take the form

∂

∂x
u(x, t)− f(x) = 0, u(x, t0) = ut0(x), (1.40)

for some function f(x), initial condition ut0(x) and spatial domain x ∈ [0, L]

with boundary conditions

u(0, t) = u0(t), u(L, t) = uL(t), (1.41)

for boundary functions u0(t) and uL(t), respectively. Solving this general dif-

ferential equation using a FEM involves first deriving the so-called weak for-

mulation of the governing equations by multiplying through by an arbitrary

smooth function v(x) that spans [0, L] and integrating over the domain to

result in ∫ L

0

v(x)u′(x, t) dx−
∫ L

0

v(x)f(x) dx = 0, (1.42)

where primes represent differentiation with respect to x and v(x) is called the

test function. Using integration by parts, this equation can be rewritten as

[
vu
]L
0
−
∫ L

0

v′(x)u(x, t) dx =

∫ L

0

v(x)f(x) dx. (1.43)

In order to solve the equations, they now need to be discretised onto

a computational ‘element’ mesh. The variable u is expanded in a series that

approximates the solution to the differential equation (1.40) in terms of a finite

number of (pre-determined) basis functions

u(x, t) ≈
N∑
i=1

wi(x)ui(t), (1.44)
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for the number of elements N , element index i, basis functions wi(x), and

approximations to u(x, t) on each element ui(t). Choosing appropriate basis

functions depends on the type of problem being solved. Similar expressions

for v and f are

v(x, t) ≈
N∑
i=1

wi(x)vi, f(x, t) ≈
N∑
i=1

wi(x)fi. (1.45)

By noting that only the basis functions wi are dependent on x, the derivative

with respect to x (denoted by dash notation) of one of these summations (using

u as an example) is simply(
N∑
i=1

wi(x)ui

)′
=

N∑
i=1

w′i(x)ui. (1.46)

By introducing the matrix notation

[M ]{u} ≡
N∑
i=1

wi(x)ui, (1.47)

[M ′]{u} ≡
N∑
i=1

w′i(x)ui, (1.48)

and then substituting the discretised variables (1.44) and (1.45) into the weak

formulation (1.43) results in the matrix equation

[
{v}T [M ]T [M ]{u}

]L
0
−
∫ L

0

{v}T [M ′]T [M ]{u} dx =

∫ L

0

{v}T [M ]T [M ]{f} dx.

(1.49)

As ui and vi are independent of x, the [M ] terms can be separated from the

{u} and {v} terms which can be moved outside the integrals. As a result the

test functions {v}T cancels (hence justifying why its choice was arbitrary) and

the matrix equation becomes([
[M ]T [M ]

]L
0
−
∫ L

0

[M ′]T [M ] dx

)
{u} =

∫ L

0

[M ]T [M ]{f} dx. (1.50)

Solving the differential equation (1.40) has hence been reduced to solving the

matrix equation (1.50) using a numerical scheme of choice. The above descrip-

tion is for a linear problem. To extend the analysis to a more complicated

problem with non-linear equations, such as the Navier-Stokes equations (1.1)–
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(1.4), a similar process is employed. Instead of just solving an equivalent

matrix equation (1.50) however, an iterative scheme is required, such as New-

ton’s method (Galántai, 2000), which generates a sequence of linear problems

whose solutions then converge to the correct solution of the non-linear problem

(Wriggers, 2008).

1.2.2 Spectral methods

In the previous subsection, it was shown that a FEM makes use of a com-

putational mesh on which the solution to the differential equation (1.40) is

approximated. Typically, these approximations are of low order and as a res-

ult a very large mesh can be required to capture the relevant flow physics.

A spectral method is a so-called global method, whereby the computation at

any given point in the domain depends on information from the entire do-

main, rather than just from neighbouring points (like in a FEM). It therefore

allows the use of a coarser grid by using higher order approximations to the

differential equation being solved (Boyd, 2001).

Spectral methods approximate the solution to a differential equation

for a variable u by using the series expansion

u(x, t) ≈ uN(x) ≡
N+1∑
i=1

ui(t)φi(x), (1.51)

where φi(x) are a set of N orthonormal basis functions. While this expansion

is exact in the limit of N →∞, the physical limits of computational resources

require truncating to some finiteN . The choice of these basis functions can be a

non-trivial problem and can depend on the equations being solved. An example

of a set of basis functions that can be chosen are the Lagrange polynomials,

given by

`
(N)
i ≡

N+1∏
k=1,k 6=i

x− xk
xi − xk

, (1.52)

such that the interpolating polynomial (1.51) becomes

uN(x) =
N+1∑
i=1

ui `
(N)
i (x). (1.53)
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Figure 1.6: The Lagrange polynomials (1.52) for N = 3 (panel a) and N = 5
(panel b). Grey vertical lines illustrate the locations of the collocation points,
given by maxima of the Lagrange polynomials. The figure illustrates that at
each collocation point, one of the Lagrange polynomials has a value of one,
while all the others are equal to zero.

The Lagrange polynomials (1.51) are one of the most commonly used sets of

basis functions in spectral methods, and are in fact used by the code for the

simulations in this thesis. The locations of the points of the computational

grid (often referred to as collocation points) are hence given by the maxima of

these polynomials. The Lagrange polynomials for N = 3 and for N = 5 are

plotted in figure 1.6, illustrating that at each collocation point one polynomial

has a value of one and all the others are equal to zero. The locations of

these collocation points (i.e. the computational grid points) are indicated

with vertical grey lines.

The spectral method algorithm then solves for the unknown basis

coefficients ui using a fast Fourier transform and makes use of what is known

as ‘spectral convergence’, whereby the error decreases exponentially as N is

increased, which results in high accuracy. One of the key disadvantages of

spectral methods compared to FEM is the nature of the geometry required. A

spectral method essentially requires a cuboidal geometry (in three dimensions)

with mesh points specified by the basis functions. For modelling plumes, it

is desirable to cluster mesh points in certain regions of the domain so as to

capture the plume flow without needing to prescribe a high density of mesh

points in a region with stagnant flow.
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1.2.3 Spectral element methods (SEM)

Spectral element methods (SEM), first proposed by Patera (1984) are so called

because they take inspiration from both FEM and spectral methods. They

involve using the FEM to solve a differential equation like in section 1.2.1 but

instead of using low-order basis functions wi in (1.44) they use the high order

basis functions, such as Lagrange polynomials (1.52) from the spectral method,

like in (1.51). Essentially, this results in a small spectral method mesh within

each finite element, therefore combining the high accuracy of spectral methods

with the versatility of FEM. A simple, graphical illustration of example meshes

for each method is given in figure 1.5.

One of the key benefits of using a SEM is that they exhibit very little

numerical dispersion and dissipation. This is important for high Reynolds

number flows, such as a turbulent plume. SEM also exhibit spectral conver-

gence, whereby the error decreases exponentially with increasing polynomial

order, and due to their high order basis functions, results in high accuracy

with fewer degrees of freedom compared to a FEM (Deville et al., 2002).

1.2.4 Description of the code

The solver used to solve the discretised governing equations is the open source

code Nek5000 (Fischer et al., 2007). It has been used previously by multiple

authors to model jets and plumes (Peplinski et al., 2014; Fabregat Tomàs

et al., 2016; Ezhova et al., 2017), and has been demonstrated to have excellent

scalability on large numbers of cores (Offermans et al., 2016). The equations

solved by Nek5000 are the Navier-Stokes and conservation of energy equations,

written conventionally in the dimensionless form as

Du

Dt
= −∇p+

1

Re∗
∇2u + F , (1.54a)

∇ · u = 0, (1.54b)

DT

Dt
=

1

Pe∗
∇2T +Qs, (1.54c)

where F is a forcing term, Qs is a source term, and Re∗ = UL/ν and

Pe∗ = UL/κ are a Reynolds number and Péclet number, respectively, for

characteristic length L and velocity U scales.
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Nek5000 makes use of a SEM decomposition of the Navier-Stokes

equations, as discussed in section 1.2.3, to discretise in space. In time, the

code is discretised using a semi-implicit method making use of a k-th order (in

this thesis k = 3) backwards differencing and extrapolation schemes (referred

to as the BDFk/EXTk scheme) (Boström, 2015). For a general time dependent

problem

∂U

∂t
= L[U ], U (t0,x) = U0, (1.55)

where L represents spatial operators. Then the backwards differencing scheme

of order k (BDFk) approximates the partial time derivative as

1

∆t

k∑
i=0

βiU
n+1−i ≈ L[Un+1], (1.56)

where Un represents the solution at time step n, βi are backwards differencing

coefficients for i = 1, . . . , k, and ∆t is the time-step size. The advection terms

in Navier-Stokes equations (1.54) are treated explicitly by using a high-order

extrapolation on the non-linear terms. The k-th order extrapolation (EXTk)

of a general non-linear term L(Un+1) is

L(Un+1) ≈
k∑
i=1

αiL(Un+1−i), (1.57)

where αi are a set of extrapolation coefficients for i = 1, . . . , k. Combining the

two schemes (1.56) and (1.57) results in

1

∆t

k∑
i=0

βiU
n+1−i ≈

k∑
i=1

αiL(Un+1−i). (1.58)

The BDF3/EXT3 scheme (used for the simulations in this thesis) is order

O(∆t3) accurate (Fischer et al., 2016). When making use of an explicit time-

stepping method, stability is maintained by restricting the ratio between the

spatial-step and the time-step. The Courant-Friedrichs-Lewy (CFL) constraint

ensures the stability of the time-stepping scheme by requiring that the Courant

number

C =
|u|∆t
∆x

< 0.5, (1.59)

where |u| is the root mean square of the velocity and ∆x is the largest spatial-
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step in the domain.

1.3 Research questions and thesis summary

The problem of a plume emanating from a point source of heat in a quiescent,

unstratified environment transitioning from its inception to laminar flow and

through a transition to turbulent flow is investigated using various approaches

of study, such as direct numerical simulations (DNS) and scaling analysis.

Both these approaches of study are used to model a fully 3D laminar and

turbulent plume in an unstratified environment with Pr = 1 and confirm

descriptions of flow profiles in laminar and turbulent regimes in chapter 2.

Firstly, a description of the height to instability for a plume generated by a

point source of heat is investigated, addressing research question 1.

Research Question 1

What is the height to instability for a plume generated by a point source

of heat?

A plume initialised from a point source will undergo a transition from

laminar to turbulent flow. The location of this height to instability is

currently an open question. The most related work in the literature is

that discussed in section 1.1.3. Dombrowski et al. (2005) and Lombardi

et al. (2011) both investigated the instability of plumes in a stratific-

ation and both studies focused on the initial time dependent instabil-

ity of a plume emanating from a finite areal source. López Moscat &

Marqués Truyol (2013) investigated the emergence of symmetries using

a dynamical systems perspective.

The answer to this research question is distinguished from previous

work as it considers the full spatial structure of a plume initialised at a

point source, to a laminar regime, through an instability region with a

quasi-steady height, and finally to a fully turbulent regime to determ-

ine the location of a universal height to instability for a plume in an

unstratified environment. Direct numerical simulations and similarity

theory are employed to answer this question in chapters 2 and 3.
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Secondly, the location of the virtual origin for the turbulent regime

of a plume emanating from a point source in an unstratified environment is

investigated, addressing research question 2.

Research Question 2

Can a unified theory of a plume be developed, encompassing both lam-

inar and turbulent sections and the transition between?

A unified theory of a plume would involve a laminar similarity solution

(1.30)–(1.33) (Zeldovich, 1937; Yih, 1951), a turbulent similarity solution

(1.35) (Zeldovich, 1937; Schmidt, 1941), and a quantitative description

of how the former transitions into the latter. This can be achieved using

the height to instability discussed in research question 1 and a virtual

origin for the turbulent regime, describing the region over which the

plume undergoes instability and transitions to turbulence.

There have been many studies predicting the virtual origins of plumes.

Morton & Middleton (1973) and Hunt & Kaye (2001) both did so for lazy

turbulent plumes, whereby the momentum deficit at the source needs

resolving to a virtual origin. No previous work has been found, however,

that investigates the location of the virtual origin of a turbulent plume

resulting from a laminar plume undergoing a transition to turbulence.

A short study showing that the laminar portion of a plume emanating

from a point source can be approximated using the laminar similarity solution

(1.30)–(1.33) is conducted in chapter 2, addressing research question 3.

Research Question 3

How does a point source of heat evolve into a laminar plume?

This research question addresses the fundamental question of initial-

ising a laminar plume. In (1.4), a source condition on the input of heat

at a point was introduced. No work in the literature was found that

investigates how a conductive source of a pure plume transitions into a

(convective) plume. In answering research question 3 it will be shown

that this condition can be replaced with relevant variables from the lam-
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inar similarity solution (1.30)–(1.33) (Zeldovich, 1937; Yih, 1951) with

negligible loss of information.

Finally in chapter 2, an investigation into the time-dependent plume

regime comparing head and stem widths is conducted, addressing research

question 4.

Research Question 4

How does the time-dependent front of a plume generated by a point

source of heat evolve in time?

Before reaching a steady state, a plume generated by a point source

of heat will evolve in time exhibiting a head-like structure in front of the

laminar regime. There have been a number of studies that have focused

on the time-dependent evolution of a plume. Moses et al. (1993), for

example, suggested that the width of the laminar head at the front of

the plume grows at the same rate as the stem, namely as t1/2. In the

high Prandtl number limit, Kaminski & Jaupart (2003) suggest that the

initial rise speed is proportional to the bulk flow velocity (1.34) defined

by Worster (1986).

In section 2.4.1, the hypothesis proposed by Moses et al. (1993) that

the head expands as t1/2 will be tested using the results of the DNS, and

a new prediction will be proposed for head growth as a function of time.

In section 3.3.3, a new theory of plume head ascent velocity is derived

using a constraint on the total buoyancy flux in the plume.

The work from chapter 2 is then extended in two ways. Firstly,

in chapter 3, to consider plumes in an unstratified environment, initialised

at a point source, with varying viscosity and temperature diffusivity ratio

(varying Prandtl numbers) to investigate the effect of Prandtl number on plume

structure and the location of instability using DNS of a plume with Pr ∈
[0.1, 2.0], addressing research question 5.
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Research Question 5

How does the height to instability and the overall plume structure de-

pend on the ratio of viscosity to thermal diffusivity?

The full spatial structure of a plume initialised at a point source, to a

laminar regime, and through a steady instability to a turbulent regime

will be shown to be dependent just on the ratio of viscosity to thermal

diffusivity, namely the Prandtl number. DNS and scaling analysis will

be used in chapter 3 to describe the dependence of this full structure on

the Prandtl number.

Also in chapter 3, plumes in unstratified environments at low and

high limits of Prandtl number are investigated, introducing a theory for the

low Pr → 0 limit, addressing research question 6.

Research Question 6

What is the behaviour of plumes in both the low and high limits of the

ratio of viscosity to thermal diffusivity?

Worster (1986) investigated the limit of Prandtl number Pr → ∞,

however there has been little work on that of an inviscid plume, that of

Pr → 0. In section 3.3.1 the similarity equations for an inviscid plume

are solved and compared to the full similarity equations (1.30)–(1.33)

and high Prandtl number limit.

Secondly, the work in chapter 2 is extended in chapter 4 to consider

plumes initialised at a point source in a stratification, where an investigation

of the change in rise height and neutral buoyancy level with Reynolds number

is undertaken, addressing research question 7.

Research Question 7

How do the maximum rise height and the neutral buoyancy of a plume

in a stratification depend on viscosity?
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Morton et al. (1956) produced the first description of the maximum

rise height and the neutral buoyancy level (NBL) of a plume in a strati-

fication for a fully turbulent plume, there has been little work, however,

on the rise height and NBL of low-Re (laminar) and mid-Re number

(transitional) plumes.

Xue et al. (2019) found a link between the rise height of negatively

buoyant fountains and the Reynolds number using laboratory experi-

ments. Dombrowski et al. (2005) found that rise height of a plume

varies non-monotonically with inlet velocity and Lombardi et al. (2011)

developed a scaling law for the rise height of two-dimensional plumes.

On the other hand, there have been many studies of turbulent plumes

in a stratification (Morton et al., 1956; Plourde et al., 2008; Devenish

et al., 2010; Rooney & Devenish, 2014; Fabregat Tomàs et al., 2016),

yet there has been little work on the steady maximum rise height and

NBL of plumes over a range of Reynolds numbers spanning laminar to

turbulent plumes.

In chapter 4, DNS of plume over a wide range of Reynolds numbers are

investigated and the maximum rise height and NBL for each is described.

A simple model of plume rise is developed using boundary layer theory

to predict the steady maximum rise height and NBL for laminar plumes.

The relationship between height to instability and rise height for

plumes in a stratification with varying viscosity at a fixed Prandtl number

is also investigated in chapter 4, addressing research question 8.

Research Question 8

What is the relationship between the maximum rise height and height

to instability for a plume in a stratification?

There has been little work on the steady transition to instability of

a plume in a stratification and the relationship between maximum rise

height of plumes and the height to instability. In chapter 4, DNS of

plumes emanating from a point source into a linearly stratified envir-

onment, over a wide range of Reynolds numbers are investigated. This
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study describes the relationship between the steady height to instability

for plumes in unstratified environments, discussed in research question

1, and the maximum rise height of a plume.

Choosing an appropriate numerical Reynolds number for the numer-

ical study of plumes in a stratification for large applications, such as volcanic

eruptions, is also discussed in chapter 4, addressing research question 9.

Research Question 9

What numerical Reynolds number is appropriate for simulating the

rise height of highly turbulent plumes?

In numerical investigations into turbulent plumes, many studies pick a

large Reynolds number, often near the value of 7000 (Pham et al., 2007;

Plourde et al., 2008; Fabregat Tomàs et al., 2016) to represent an often

much larger Reynolds number. For example, in the case of a volcanic

eruption the Reynolds number can be > 106 (Pyle, 1995). Few studies,

however, discuss in much detail why this particular number was chosen

with most studies suggesting it is high enough to produce the relevant

flow physics. In chapter 4, this research question is investigated in an

attempt to assert the lowest Reynolds number that will represent a high

Reynolds number turbulent plume.

The theory of plume rise from a plume an unstratified environment

developed in chapters 2 and 3 is applied to a model of aerosol transport in the

indoor environment in chapter 5 to determine the time taken for particles to

be dispersed within the height of a room, addressing research question 10.

Research Question 10

What are the implications of a hybrid laminar-turbulent plume trans-

ition for aerosol transport?

Previous studies of particle transport in plumes have often focused
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on particle fallout and spread through the neutrally buoyant gravity

current stage at a NBL of a turbulent plume (Sparks et al., 1991; Johnson

et al., 2015; Sutherland & Hong, 2016). Few studies, however, have

investigated the transport of particles in laminar and hybrid laminar-

turbulent plumes. In chapter 5, the laminar (1.30)–(1.33) and turbulent

(1.35) similarity solutions, combined with the height to instability and

turbulent virtual origin, of a plume are used to make predictions of a

combined hybrid laminar-turbulent theory of aerosol transport in the

indoor environment.

Finally, conclusions from the preceding four chapters are drawn in

chapter 6, summarising all presented work and detailing areas that require

further research.
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Chapter 2

A unified laminar-turbulent

theory of plumes in an

unstratified environment
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In this chapter, I present a theoretical analysis addressing the fun-

damental flow of a pure plume generated by a localised buoyancy source, its

subsequent transition to turbulence, and final structure comprising both lam-

inar and turbulent regimes. As detailed in section 1.3, plumes have been
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well studied at the end-member cases of laminar and turbulent flow. Both

laminar and turbulent plumes have been described with similarity solutions,

given by (1.30)–(1.33) (Zeldovich, 1937; Yih, 1951) and (1.35) (Zeldovich, 1937;

Schmidt, 1941), respectively. As reviewed in section 1.1.3, instabilities in

plumes have also been studied (Dombrowski et al., 2005; Lombardi et al.,

2011; López Moscat & Marqués Truyol, 2013), but with little focus on the

steady transition to instability linking the laminar and turbulent regimes. A

key open research question involves locating this height to instability (research

question 1), with another involving the description of the full structure of a

plume emanating from a point source (research question 2).

The equations that govern the behaviour of a plume are presented and

scaling arguments are used to perform a non-dimensionalisation that reveals

the dependence of the flow on only one dimensionless variable, the Prandtl

number. Using direct numerical simulations (DNS) combined with scaling

analysis, the universal properties of a pure plume with Pr = 1 are established.

The classical transition to instability of a plume generated by a point source

of heat is investigated by systematically documenting the full evolution of a

plume from inception at a point source of heat, through the development of

the laminar plume, to the initiation of instability and the transience during

instability, and finally to the statistically steady state comprising both laminar

and turbulent regimes.

Initially, a theoretical model of a plume in an unstratified environ-

ment is introduced in section 2.1. A scaling analysis is then performed in

section 2.2 to reveal the intrinsic scales and non-dimensionalise the governing

equations. The details involved in modelling a plume using DNS are discussed

in section 2.3, with a description of the evolution of a point source of heat into

a laminar plume, research question 3, in section 2.3.3. The laminar bound-

ary layer and similarity theory (Zeldovich, 1937; Yih, 1951) are presented and

solved in section 2.4, and comparisons to the DNS are made to investigate the

height to instability, addressing research question 1, and the time-dependent

plume front, research question 4. In section 2.5 the instability and turbulent

similarity theory (Zeldovich, 1937; Schmidt, 1941) are compared to the DNS,

and a unified theory of a laminar-transitional-turbulent plume is developed,

addressing research question 2. Finally, a summary of the final structure in

dimensional form is included in section 2.6 and concluding remarks and further

work are presented in section 2.7.
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2.1 Modelling a plume emanating from a point

source in an unstratified environment

The environment in which a plume resides is referred to as unstratified if its

density is uniform. A plume in an unstratified environment admits a different

similarity solution for the laminar (1.5) and turbulent (1.35) regimes, which

can be analysed using scaling arguments (Zeldovich, 1937). In this section, the

governing equations of a plume emanating from a point source in an unstrati-

fied environment are presented and analysed to derive important parameters,

determine intrinsic scales, and to non-dimensionalise the governing equations.

In the case of a plume in an unstratified environment emanating

from a point source at x = (0, 0, 0), as discussed in section 1.1 and illustrated

schematically in figure 2.1, the flow is modelled using the Navier-Stokes equa-

tions and energy conservation equation (1.1)–(1.4) subject to the Boussinesq

approximation

Du

Dt
= −∇p

ρ0
+ ν∇2u + gβT ẑ, (2.1a)

∇ · u = 0, (2.1b)

DT

Dt
= κ∇2T, (2.1c)

where x = (x, y, z) is the position vector, t is time, ∇ is the gradient operator,

u(x, t) = (u, v, w) is the fluid velocity, p is the fluid pressure, ρ0 is a refer-

ence density, ν is the kinematic viscosity, T (x, t) is the temperature difference

from the ambient, κ is the thermal diffusivity, β is the coefficient of thermal

expansion, and g is acceleration due to gravity.

The solution to the equations is considered in the semi-infinite region

z ≥ 0 subject to no-slip and insulation conditions at z = 0, given by

u(x, y, 0, t) = 0,
∂T

∂n
(x, y, 0, t) = 0, (2.2)

respectively. In the far-field of the domain (encompassing both the limits of

x, y →∞ for z ≥ 0 and z →∞), it is assumed that the fluid is stagnant and

that the temperature is given by the ambient value, as specified by

lim
R→∞

u = 0, lim
R→∞

T = 0, (2.3)
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Figure 2.1: Representation of source conditions and overview of the plume flow.
(Left) Zoomed in view of the point source illustrating the diffusive source region
with an illustration of the hemisphere Sε of radius ε in (2.4) and the trans-
ition to a laminar plume as advection becomes a dominant transport mechan-
ism. (Right) Overview of a steady plume in an unstratified environment with
transition from a diffusive heat source to laminar flow, to laminar-turbulent
instability, and finally to a turbulent plume.

where R =
√
x2 + y2 + z2 is the spherical radial coordinate. To prescribe the

source of buoyancy, the point-source condition of constant thermal flux,

lim
ε→0

∫
Sε

r

(
−κ∂T

∂n

)
dS = F0, (2.4)

is imposed, where r =
√
x2 + y2 is the cylindrical radial coordinate, Sε is the

hemisphere of radius R = ε in the region z ≥ 0 (illustrated in figure 2.1), and

F0 is the prescribed buoyancy source flux.

2.1.1 Plume fluxes

It should be noted that (2.4) differs from the more typical source condition

applied in studies of laminar or turbulent plumes, given in (1.9) (Morton et al.,

1956; Brand & Lahey, 1967; Worster, 1986). In this subsection, the equation

for the width-averaged buoyancy flux F at a given height z is derived from

the temperature conservation equation (2.1c), and is shown to consist of both

advective and convective terms. In section 2.3.3 it will be shown that the

assumption of an advective buoyancy flux is justified and that the convective

term can be neglected at a height sufficiently far above the point source.

The equations governing the behaviour of a plume emanating from

a point source were introduced in (2.1)–(2.4). For convenience in specify-
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ing source conditions, and as plumes exhibit axisymmetric behaviour when

averaged temporally, cylindrical coordinates are used to specify the source

fluxes. Vertical velocity and temperature are written as w = w(r, ϕ, z, t) and

T = T (r, ϕ, z, t), respectively. Making use of the product rule of differenti-

ation and using incompressibility (2.1b), the temperature conservation equa-

tion (2.1c) is rewritten as

∂T

∂t
+∇ ·

(
Tu− κ∇T

)
= 0, (2.5)

resulting in the definition of the heat flux q(r, ϕ, z, t) = ρ0cp (Tu− κ∇T ),

where cp is the specific heat capacity of the fluid. Partitioning the heat flux

into radial, azimuthal, and vertical parts, and assuming that the flow is steady,

it holds that

∇ · q =∇ ·
(
qrr̂ + qϕϕ̂ + qzẑ

)
=

1

r

∂

∂r
(rqr) +

1

r

∂qϕ
∂ϕ

+
∂qz
∂z

= 0. (2.6)

Multiplying through by r and integrating with respect to radius and azimuthal

direction results in the heat flux through a horizontal plane (with normal in

the z-direction)

2π∫
0

∞∫
0

∂

∂r
(rqr) +

∂qϕ
∂ϕ

+ r
∂qz
∂z

dr dϕ = 0. (2.7)

Evaluating the radial integral over the first term and the azimuthal integral

over the second term and rearranging results in

2π [rqr]
∞
0 +

∞∫
0

[qϕ]2π0 dr +
∂

∂z

2π∫
0

∞∫
0

rqz dr dϕ = 0. (2.8)

The zero far field conditions (2.3), and the periodicity of qϕ, reveal that the

radial and azimuthal terms are zero. Substituting in the z component of q

results in

∂

∂z

ρ0cp 2π∫
0

∞∫
0

r

(
Tw − κ∂T

∂z

)
dr dϕ

 = 0. (2.9)

It is more convenient when studying plumes to use the buoyancy flux

instead of the heat flux. To make this conversion the term inside the derivative
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in (2.9) is multiplied by the group gβ/ρ0cp (Gill, 1982), resulting in an equation

for the width-averaged buoyancy flux

F (z, t) =

2π∫
0

∞∫
0

gβr

(
Tw − κ∂T

∂z

)
dr dϕ ≡ FA(z, t) + FC(z, t), (2.10)

which, due to (2.9), is constant with height in an unstratified environment.

Included are both the advective and conductive contributions to the buoyancy

flux, denoted FA(z, t) and FC(z, t), respectively. Studies of both laminar and

turbulent plumes to date have generally assumed that F ≡ FA uniformly, with

an advectively specified input condition F (0, t) ≡ FA. The purely conductive

condition F (0, t) = FC assumes nothing about the form of the generated plume

(whether turbulent or laminar), of the amount of turbulence already present,

nor of the details of an inflow geometry. The boundary condition at the point

source of a pure plume is hence given by

F (0, t) = FC(0, t) ≡ lim
ε→0

∫
Sε

r

(
−κ∂T

∂n

)
dS = F0, (2.11)

where F0 is a prescribed buoyancy flux representing the rate of thermal input,

Sε is the hemisphere of radius R = ε in the region z ≥ 0, and n is the normal

to the surface of the hemisphere Sε.

By calculating the values of FA(z, t) and FC(z, t) in (2.10) for a sim-

ulation near the source, it is demonstrated in section 2.3.3 that in the region

above the source, outside of the diffusive region near the point source, that

FC can be neglected as fluid transport due to advection dominates diffusion,

see figure 2.7. The buoyancy flux used in both the laminar and turbulent

plume regions is therefore approximated by the advective buoyancy flux with

negligible loss of accuracy

F (z, t) = FA(z, t) ≡
2π∫
0

∞∫
0

gβrTw dr dϕ. (2.12)

This integral is used in conjunction with similarity theory (introduced in sec-

tion 1.1.1) in later sections to initialise a laminar plume directly, without hav-

ing to model the diffusive source. It is also used in both laminar and turbulent

regimes to make comparisons between simulations and theory (Yih, 1951; Mor-

ton et al., 1956).
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While not appearing explicitly in the model, it is useful to consider

the volume Q and momentum M fluxes, as they are common in many studies of

plumes. For example Morton et al. (1956) base their plume model on volume,

momentum, and buoyancy flux. They are given by

Q(z, t) =

2π∫
0

∞∫
0

rw dr dϕ, M(z, t) =

2π∫
0

∞∫
0

rw2 dr dϕ, (2.13)

and are used later in the analysis for comparison between theory and simula-

tions in both the laminar and turbulent regimes.

2.2 Intrinsic scales and nondimensionalisation

The system (2.1)–(2.4) is dependent on a total of five parameters: ρ0, ν, (gβ),

κ and F0. By performing a scaling analysis to determine the intrinsic scales

and subsequently using them to non-dimensionalise, the five-way dependence

can be reduced to a dependence on just a single parameter.

Firstly, the intrinsic scales for length x ∼ L, time t ∼ τ , and temper-

ature T ∼ T are defined. By comparing the the advective and forcing terms

in (2.1a), the advective and diffusive terms in (2.1c), and the terms in (2.10),

the following scaling relationships are uncovered

L ∼ gβT τ 2 L2 ∼ κτ, F0 ∼ gβ
T L3

τ
. (2.14)

By rearranging these scaling relationships, the following scales for length, time,

and temperature are derived

L =

(
κ3

F0

)1/2

, τ =
κ2

F0

, T =
1

βg

(
F 3
0

κ5

)1/2

, (2.15)

respectively. The model in (2.1) is subsequently non-dimensionalised by defin-

ing the dimensionless variables, denoted by hats,

x = Lx̂, t = τ t̂, u =
L

τ
û, p = ρ0

(
L

τ

)2

p̂, T = T T̂ , (2.16)
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and substituting. On dropping hats, (2.1) becomes

Du

Dt
= −∇p+ Pr∇2u + T ẑ, (2.17a)

∇ · u = 0, (2.17b)

DT

Dt
= ∇2T, (2.17c)

where the single controlling dimensionless parameter, defined by Pr = ν/κ,

is the Prandtl number. The no-slip and far-field conditions, (2.2) and (2.3),

remain unchanged in form, namely,

u(x, y, 0, t) = 0,
∂T

∂n
(x, y, 0, t) = 0, (2.18)

and

lim
R→∞

u = 0, lim
R→∞

T = 0, (2.19)

respectively. The source condition (2.4), after substitution of (2.16), becomes

lim
ε→0

∫
Sε

r

(
−∂T
∂n

)
dS = 1. (2.20)

The fluxes in section 2.1.1 are also non-dimensionalised using the

scales in (2.15). The full description of both the advective and diffusive buoy-

ancy flux in (2.10) becomes

F (z, t) =

2π∫
0

∞∫
0

r

(
Tw − ∂T

∂z

)
dr dϕ ≡ FA(z, t) + FC(z, t), (2.21)

and the dimensionless forms of the advective source fluxes in (2.12) and (2.13)

become

FA(z, t) =

2π∫
0

∞∫
0

rTw dr dϕ, (2.22)

Q(z, t) =

2π∫
0

∞∫
0

rw dr dϕ, (2.23)

M(z, t) =

2π∫
0

∞∫
0

rw2 dr dϕ. (2.24)
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The dimensionless system (2.17)–(2.20) describes the initialisation,

development, and full structure of a plume generated at a sustained point

source of heat in a given unstratified fluid at a given Prandtl number Pr. As

the system is shown to be dependent only on this one dimensionless number,

pure plumes in unstratified environments can therefore be classified entirely in

terms of the Prandtl number alone. As the Prandtl number depends purely

on the material properties of kinematic viscosity ν and thermal diffusivity κ

of the fluid under consideration, the form of the solution to (2.17)–(2.20) is

universal for a given material subject to a scaling by (2.15). For example, all

plumes generated in a quiescent unstratified body of water will be equivalent

up to a multiplication by the relevant scales in (2.15).

Initially, in order to simplify the problem and not study a range of

Prandtl numbers, just a single Prandtl number is studied in this chapter. I

pick the case for Pr = 1, as it simplifies the equations and is of the order of

magnitude for most gases. In chapter 3 the work is extended and the structure

and asymptotic elements of pure plumes generated over a range of Prandtl

numbers is investigated.

2.2.1 Laminar regime

There have been multiple previous studies of the laminar plume regime, as

discussed in the introduction in section 1.1.1. The governing equations (2.17)–

(2.20) can be simplified by using boundary layer theory and by noting the

existence of a similarity solution (Zeldovich, 1937; Yih, 1951). A review of the

derivation of the similarity solution for the dimensional case was performed in

section 1.1.1, for the dimensionless case the process is very similar, resulting

in the same laminar similarity system (1.30)–(1.33)

−f
(
f ′

η

)′
= Pr

(
η

(
f ′

η

)′)′
+ ηh, (2.25a)

h′ = −1

η
fh, (2.25b)

with boundary conditions

lim
η→0

(
−1

η
f ′(η) + f ′′(η)

)
= 0, lim

η→0

(
f(η)− 1

2
ηf ′(η)

)
= 0, (2.26)
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as η → 0 and far field conditions

f ′ = 0, h = 0, as η →∞, (2.27)

with the buoyancy flux condition

2π

∞∫
0

hf ′ dη = 1. (2.28)

To convert from similarity variables f and h back into dimensionless

vertical velocity w, temperature T , and radial velocity u, the dimensional

stream function and temperature (1.26) can be substituted into the definition

of the stream function (1.23) and nondimensionalised using the relationships

in (2.16) to result in

w =
1

η
f ′(η), T = z−1h(η) u = z−1/2

(
1

2
f ′(η)− 1

η
f(η)

)
, (2.29)

which can then be used, after solving the laminar similarity equations (2.25)–

(2.28) to make comparisons to the solutions to the DNS of (2.17)–(2.20).

The dimensionless laminar similarity equations (2.25)–(2.28) are solved

using a shooting method. A shooting method involves reducing a boundary

value problem to an initial value problem, then trying different ‘initial con-

ditions’, using an iteration procedure, until the original boundary conditions

are satisfied. The shooting parameters sf = f ′(0) and sh = h(0) are iterated

through two bisection methods, using (2.27) and (2.28) as success conditions.

To solve this system numerically, the system is reframed as a set of four ODEs

by defining F0 := f , F1 := f ′, F2 = f ′′, and H0 := h and substituting into

(2.25b) and an expanded version of (2.25a), resulting in the system

dF0

dη
= F1, (2.30a)

dF1

dη
= F2, (2.30b)

dF2

dη
= Pr

(
1

η2
F0F1 −

1

η
F0F2 − ηH0

)
− 1

η2
F1 +

1

η
F2, (2.30c)

dH0

dη
= −1

η
F0H0, (2.30d)
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with two of the shooting initial conditions derived by rewriting sf = f ′(η0) and

sh = h(η0) in F and H form, and two by substituting sf and sh into (2.26) for

some η0 close to zero

F0(η0) =
η0sf

2
, F1(η0) = sf , F2(η0) =

sf
η0
, H0(η0) = sh. (2.31)

The far field (2.27) and buoyancy flux (2.28) conditions are used as success

conditions for the shooting methods, requiring that they be satisfied to a tol-

erance of

|F1(ηmax)| < 10−5, |H0(ηmax)| < 10−5, (2.32)

and ∣∣∣∣∣∣2π
∞∫
0

H0F1 dη − 1

∣∣∣∣∣∣ < 10−5, (2.33)

respectively. The shooting values s and t are iterated through a bisection search

using the integration of (2.30)–(2.31) which is computed using the integrator

ode15s (Shampine & Reichelt, 1997) in MATLAB subject to the far field

conditions (2.32) and the buoyancy flux condition (2.33).

The solutions of w, zT , and z1/2u, derived from the solutions to the

laminar similarity equations using (2.29), are plotted in figure 2.2. These

solutions inform the profiles of velocity and temperature at a given height,

z. This solution can be compared to higher-level numerical simulations for

verification, and is used to initialise the plume at a given height above the point

source rather than resolving the diffusive heat source condition (discussed later

in section 2.3.3).

2.3 Direct numerical simulation of a full laminar-

turbulent plume

The system (2.17)–(2.20) is now solved for Pr = 1 using direct numerical

simulations (DNS) using the open source, spectral element method (SEM)

code Nek5000 (Fischer et al., 2008). This code has been demonstrated to

have an excellent scalability to a large number of computational nodes and
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Figure 2.2: Solutions of the model described in (2.30) and (2.31). (Top) Solu-
tion for the vertical velocity f ′/η (= w). (Middle) Solution for the similarity
form of the temperature h (= zT ). (Bottom) Solution for the similarity form
of the radial velocity 1

2
f ′−f/η (= z−1/2u). The equations are solved using two

iterative bisection methods to ensure that s and t are chosen such that the far
field condition (2.32) and buoyancy flux condition (2.33) are satisfied.
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has been validated in a wide range of turbulent flows (Peplinski et al., 2014;

Fabregat Tomàs et al., 2016; Offermans et al., 2016; Ezhova et al., 2017). The

SEM allows for high-order solutions in complex geometries by making use of

the advantages of both finite element methods and spectral methods. An

overview of the SEM and a description of the solver Nek5000 is included in

section 1.2.

This section details the modelling of a plume in Nek5000. A descrip-

tion of the domain and boundary conditions is included in section 2.3.1 and

a mesh sensitivity study is included in section 2.3.2. A short investigation

into verifying that the solution to the similarity equations (2.25)–(2.28) can

be used to initialise a laminar plume is undertaken in section 2.3.3, followed

by the relevant source conditions with which to initialise a laminar plume in

section 2.3.4. Finally, a description of the plume evolution and structure is

presented in section 2.3.5, describing the results of the DNS. An illustration

of the process required to run a direct numerical simulation of a plume in

Nek5000 is presented in appendix A.

2.3.1 Simulation set-up

The computational domain is specified as a cylinder with the source located in

the centre of the lower circular base. Given the nondimensionalisation based

on intrinsic scales, it might be expected that the domain size should be of

order unity. Initial tests indicated, however, that the height over which the

instability and transition to turbulence occurred was much larger. Therefore,

the radius of the domain is chosen to be re = 1.6×105 and the height is chosen

to be ze = 8 × 105. As per the SEM, the domain is spatially discretised into

a mesh of Nel elements. The elements of the mesh are clustered towards the

centre of the domain and towards the source using a geometric progression.

The elements are then fanned outwards from the centre and subsequently re-

positioned to reduce aspect ratios of the elements. A schematic illustrating the

mesh is included in figure 2.3. By virtue of the SEM, the elements are further

sub-divided using Legendre polynomials up to the pth order.

At the top and sides of the simulation domain, the Neumann bound-
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Figure 2.3: An illustration of an example element mesh (without spectral,
higher order basis functions included), clustered near the source and in the
centre. The wall boundary conditions at the base are given by (2.18), the zero
Neumann boundary conditions at the sides are given by (2.34), and the greyed
out area represents the sponge region, given by (2.35) and illustrated in more
detail in figure 2.4.

ary conditions

∂u

∂n
= 0,

∂T

∂n
= 0, (2.34)

are applied, representing an insulating, smooth boundary. Numerical instabil-

ities at these outflow boundary conditions, caused by turbulent eddies moving

through the boundary, are suppressed by implementing a numerical ‘sponge’

in which the viscosity in the far-field regions is artificially increased nearer

the domain edge to dampen any turbulent eddies that may pass through the

domain boundaries and cause numerical instabilities. Following Jiang & Luo

(2000) and Pant & Bhattacharya (2016), a sponge layer is implemented by

prescribing a spatially variable Re∗(r, z) in the equations used in the Nek5000
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solver (1.54) according to

Re∗(r, z) = Re∗

[
1 + γs

(
2 + erfc

(
βz(z − ze)
ze − zmin

)
+ erfc

(
βr(r − re)
re − rmin

))]−1
,

(2.35)

where Re∗ is the specified Reynolds number in the majority of the simula-

tion domain, erfc(x) = 2/
√
π
∫∞
x

exp(−t2) dt is the error function, βz and βr

represent the characteristic thickness of the sponge layers, and ze, zmin, and

re, rmin are the maximum and minimum values of the z and r coordinates

within the simulation domain, respectively. In all simulations in this thesis,

zmin = rmin = 0. The above specifies that the Reynolds number of the fluid

decreases (and hence the damping increases) in a narrow band along the ex-

terior of the domain from the bulk value by a factor of γs to the wall of the

domain. The value of Re∗(r, z) for fixed z = 4× 105, halfway up the domain,

is plotted in figure 2.4. A sponge thickness of βz = βr = 20 and a viscosity

factor of γs = 10 were found to be sufficient to suppress instabilities, with the

region zs < z < 7.5 × 105 and r < 1.4 × 104 deemed to be unaffected by the

presence of the sponge layer. The location of the sponge layer is illustrated

with grey shading in figure 2.3. All plots in this chapter are hence cut off at

these levels by default.

Figure 2.4: A plot of the spatially variable Reynolds number (2.35) in the
r-direction (at fixed z = 4× 105) used to produce the sponge layer. The value
of Re∗ varies from the bulk value Re∗ to the value of the Reynolds number in
the furthest extent of the sponge region Res as shown.
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2.3.2 Mesh sensitivity

To attempt to establish the degree of convergence of the DNS to the size of the

computational grid, a mesh sensitivity study was performed on the plume flow.

A series of simulations of (2.17)–(2.20) for the case Pr = 1 were conducted

to test the sensitivity of the final height of instability z∗ to the resolution of

the computational mesh. In order to test the contribution of numerical errors

to the seeding of noise in the simulation domain, we allow for a numerical

forcing applied to the Navier-Stokes equations (2.17)–(2.20) such that (2.17a)

becomes

Du

Dt
= −∇p+ Pr∇2u + f , (2.36)

where the forcing term

f = A

sin(kxx+ ωt) sin(kyy + ωt) sin(kzz + ωt)

sin(kxx+ ωt) sin(kyy + ωt) sin(kzz + ωt)

T

 , (2.37)

where A is the amplitude of disturbance, kx, ky, kz, and ω are wave numbers

in x, y, z, and time t, respectively.

ID Np (×106) p Nel (×104) z∗ (×105) A kx = ky = kz ω

A0 6.75 5 5.4 4.0 0.0 1.0 0.5
A1 6.75 5 5.4 3.9 1.0 1.0 0.5
B0 10.3 5 8.4 5.1 0.0 1.0 0.5
B1 10.3 5 8.4 5.2 1.0 1.0 0.5
C0 18.5 7 5.4 5.2 0.0 1.0 0.5

Table 2.1: Meshes used in the mesh sensitivity study of the DNS solving
(2.17)–(2.20) for Pr = 1, where the parameter Np = p3Nel represents the
number of degrees of freedom (the number of elements multiplied by the order
of the polynomials cubed), and z∗ is the height to instability reported in each
simulation. For all simulations, the radius of the domain is re = 1.6× 105 and
the height is ze = 8× 105. For the application of the disturbance in (2.37), A
is the amplitude of the disturbance, and kx, ky, kz, and ω are wave numbers in
x, y, z, and time t, respectively. The value of the vertical velocity calculated
from the laminar similarity solution (2.25)–(2.28) is w0 = 0.40.

A list of simulations performed is included in table 2.1, each set up as

detailed in section 2.3.1. The ‘size’ of the mesh Np, representing the number
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of degrees of freedom, is defined by Np = p3Nel, where Nel is the number

of elements in the mesh and p is the order of the polynomials across each

element. For every simulation detailed in table 2.1 the radius of the domain is

re = 1.6 × 105 and the height of the domain is ze = 8 × 105. In applying the

disturbance (2.37) for both simulations A1 and B1, the amplitude A = 1.0 the

wave numbers kx = ky = kz = 1.0, and ω = 0.5. In simulations A0, B0, and

C0 the amplitude of the disturbance A = 0.

For the simulation of each mesh in table 2.1, the height at which the

centreline vertical velocity of the plume drops below w0/2 (where w0 = 0.40

is the value of vertical velocity calculated in the laminar similarity solution

of (2.25)–(2.28) for Pr = 1 in section 2.2.1) is used as a proxy for height to

instability. In figure 2.5, a showcase from simulation A0 is presented, com-

paring centreline vertical velocity with a contour plot of vertical velocity. The

vertical dashed line in plot (b) indicates w0/2, while the horizontal dashed

lines indicate the height at which the centreline vertical velocity drops below

w0/2. As there is a significant drop off of the centreline vertical velocity as

the plume transitions from laminar to turbulent flow, using the w0/2 condition

results in an accurate prediction of the height to instability, illustrated by the

horizontal dashed line in the contour plot. The value of height to instability

is then plotted against time in figure 2.6 for each simulation in table 2.1. By

averaging the height to instability for each simulation after the curve has been

determined to have stopped increasing, the quasi-steady height to instability

z∗ is extracted and plotted in solid black over each curve, hence determining

the value of z∗ in table 2.1.

The values of z∗ between simulations A0 and A1, and B0 and B1

respectively, differ by < 2.5% in each case, hence revealing that the value of

z∗ does not vary significantly with an application of disturbance to the plume

flow. Figure 2.6 shows that the increase in rise height from simulations A to

B (increasing mesh resolution) is not due to numerical noise produced by the

discretization of the mesh. By introducing a small, but significant, quantity of

noise to the forcing term (2.37) in the governing equations (2.17)–(2.20), and

therefore seeding the plume with small disturbances, the minimal change in

z∗ shows that the height to instability is not significantly sensitive to a lack

of noise. In other words, the laminar plume regime will not continue to rise

indefinitely with increasing resolution as any symmetry realised in the mesh is

broken by the implementation of noise.
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Figure 2.5: Comparison of a contour plot through a vertical slice (a) with the
centreline vertical velocity (b), both at time t = 2×107 for the DNS of (2.25)–
(2.28) for simulation A0 (see table 2.1). The vertical dashed line in plot (b) is
located at w0/2 (where w0 = 0.40 is the value of vertical velocity calculated in
the laminar similarity solution of (2.25)–(2.28)) and the horizontal dashed line
spanning both plots indicates the height at which the centreline vertical velo-
city drops below w0/2. These plots indicate that the w0/2 condition accurately
predicts the height to instability.

Figure 2.6 also illustrates that mesh A, of size N = 6.75×106, predicts

a 25% change in the value of height to instability z∗ from mesh A to B, whereas

there is minimal change in z∗ between meshes B and C, confirming numerical

convergence of the solution and meaning that mesh B, of size N = 10.3× 106,

is sufficient for using DNS to predict z∗ for a plume in the current domain

configuration with radius re = 1.6× 105 and height ze = 8× 105.

The results used for further analysis in this chapter, particularly of

the turbulent region, are those on mesh A. In figure 2.6 the curve for mesh B

has a value of z∗ = 5.2 × 105, meaning that between the height to instability

and the sponge layer beginning at a height of z = 7.5×105, there is not enough

height to sufficiently analyse the turbulent plume region. The current results

on mesh A are qualitatively accurate, and as can be seen in figure 2.6, only

vary by about 25% from the value for mesh B, hence resulting in results for
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Figure 2.6: Mesh sensitivity study using height at which the centreline vertical
velocity of the plume drops below w0/2 (where w0 = 0.40 is the value of
vertical velocity calculated in the laminar similarity solution of (2.25)–(2.28))
for the DNS of (2.17)–(2.20) for each mesh in table 2.1. See figure 2.5 for
an illustration of this condition. The legend refers to simulations detailed
in table 2.1 and solid black lines represent the time window over which each
simulation has been averaged and the average value.

the turbulent region in the rest of the chapter subject to a margin of error.

2.3.3 Plume formation from a point source of heat

In order to investigate the height to instability of a laminar plume and the

subsequent turbulent region, the transitional scale on which the initial point

source of heat becomes a laminar flow needs to be resolved, i.e. research

question 3. In answering this question, it can be shown that the flow can be

initialised directly in the laminar plume regime at some height z = zs ≥ zH ,

where zH > 0 is the height above which there is negligible loss of information

when initialising the flow in the laminar plume regime.

For a dimensionless plume in an unstratified environment the buoy-

ancy flux is equal to one at the point source (2.20), yet the velocity is equal

to zero. In other words, temperature is transmitted by conduction only, and

not convection. After this initial diffusive regime, just above the point source

(represented by the elongation of hemispheres in figure 2.1), convection begins

to occur. Because both advection and diffusion are present here, the definition
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of the dimensionless buoyancy flux (2.21) must include both

F (z, t) =

2π∫
0

∞∫
0

r

(
Tw − ∂T

∂z

)
dr dϕ ≡ FA(z, t) + FC(z, t). (2.38)

As discussed earlier, previous theoretical studies of both laminar and turbu-

lent plumes have typically imposed that the buoyancy flux is purely advective

uniformly for the full height of the plume, namely that F ≡ FA. In a near

source region, diffusion dominates the flow, velocity is negligible and hence FA

is also negligible, leaving the buoyancy flux condition at the point source at

z = 0 as F (0, t) = FC = 1. In the region further away from the source, as

the velocity of the plume increases, advection dominates the flow and FC be-

comes negligible, leaving F (z, t) = FA for z > zH for some (as yet undefined)

characteristic height zH .

The switch from conductive to convective regimes is evidenced in the

results of DNS of (2.17)–(2.19) with the buoyancy flux condition

∂T

∂z
= lim

rs→0

1

πr2s
, (2.39)

where rs is the radius of the hemisphere Sε satisfying the point source condition

(2.20). The radius of the simulation domain is chosen to be re = 300 and

the height is chosen as ze = 350. As a point source cannot be resolved by

a discrete simulation mesh, the radius of the hemisphere Sε for the DNS of

(2.17)–(2.20) is chosen to be the small and non-zero rs = 1.6 in order to

demonstrate the evolution from conductive to convective regimes. The domain

is spatially discretised into a mesh with Nel = 7560 elements with a polynomial

order of 7, the elements are clustered towards the centre of the domain in

order to sufficiently resolve the source. Boundary conditions at the edges of

the domain are the same as in section 2.3.1 and the simulation was run until

the flow reached a steady state.

Results of this simulation are presented in figure 2.7, where panels (b)

and (c) are half-domain contour plots of vertical velocity and log temperature

to illustrate the flow. Figure 2.7(a) combines plots of the advective FA, con-

ductive FC , and full F buoyancy fluxes in (2.38). The full buoyancy flux F (z, t)

remains approximately equal to one for the full height of the domain (within

2%). Initially, the dominant contribution to F is the conductive buoyancy flux
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Figure 2.7: DNS of (2.17)–(2.20) to illustrate the initial development of the
steady flow of a plume from the purely conductive source condition (2.20).
In (a) the advective FA, convective FC , and full F buoyancy fluxes are cal-
culated from the DNS solution, using (2.38), and compared. In (b) and (c)
contour plots of vertical velocity and log temperature are plotted to illustrate
the flow. The total buoyancy flux F (z, t) remains approximately equal to
the specified buoyancy flux (within 2%) at the source, non-dimensionalised to
unity. Initially, the dominant contribution is the conductive buoyancy flux,
but within just 40 dimensionless height units, FC has dropped to ∼ 10% of the
full buoyancy flux and the flow can be said to approximate a plume defined by
dominantly advective transport, as described by the laminar similarity theory
(section 2.4).

FC , but within only about 100 dimensionless height units, the contribution of

the advective buoyancy flux FA has become completely dominant. The small

discrepancy in F (z, t) near the source is expected to be due to a step in the

definition of the source, which is defined for r < rs = 1.6 using a top-hat

condition. After only approximately 25 dimensionless height units, the full

buoyancy flux F (z, t) is within 0.5% of F0 = 1. Despite this small discrepancy

near the source, the argument can still be made that the advective buoyancy

flux FA takes over after only about 100 dimensionless height units and hence

a plume can be imposed with only an advective heat source, using the lam-

inar similarity solution (2.25)–(2.28), with negligible loss of information at a

dimensionless height of zs > zH ≈ 100.

The work in this section constitutes a description of the evolution of

a point source of heat into a laminar plume. This hence results in an answer

to research question 3, namely that flow generated by a point source of heat
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can be approximated by the solution to the laminar similarity equation (2.25)–

(2.28) after only approximately 100 dimensionless spatial units for rs = 1.6 and

Pr = 1. This result will be used to initialise the simulations in the laminar

regime for the rest of chapters 2 to 4.

2.3.4 Source conditions at the displaced origin

The condition given in (2.20) defines the buoyancy flux through a hemisphere

as ε → 0, representing a point source condition. As a numerical simulation

involves calculating the solution to the governing equations on a discrete grid,

a point source cannot be represented in a numerical simulation. Indeed, even

in the previous section it was approximated as a small hemisphere. One way of

solving this is to make use of the solution to the laminar similarity equations

(2.25)–(2.28). The details of the numerical solver are provided in section 2.2.1.

The similarity solution, illustrated in figure 2.8, informs the profile of the

solution at a given height above the point source, thereby facilitating the spe-

cification of the boundary conditions at a new, displaced origin at z = zs in the

boundary layer regime. The height of the displaced origin zs must be chosen

to be sufficiently smaller than the height to instability to allow the transient

head region at the front of the plume to develop. These new conditions will

also play the role of replacing the diffusive flux condition (2.20) with the con-

vective flux condition FA(0, t) = 1 from (2.21). This assumption was justified

in section 2.3.3.

Many previous studies suggest that Gaussian profiles are good ap-

proximations of vertical velocity and temperature in turbulent plumes (Nak-

agome & Hirata, 1977; George Jr et al., 1977; Papanicolaou & List, 1988; Shab-

bir & George, 1994; Devenish et al., 2010; Plourde et al., 2008; Van Reeuwijk

et al., 2016). It is important to note that all of these studies were of turbu-

lent plumes. Nonetheless, it might be expected that a Gaussian profile would

be a sufficient approximation to the vertical velocity and temperature profiles

in laminar plumes. This assumption looks fairly good on inspection of the

solution to the similarity equations (2.25)–(2.28) in figure 2.8 (solid curves).

However, when compared against fitted Gaussians

wG(η) = 0.39e−0.049η
2

, TG(η) = 0.10e−0.081η
2

, (2.40)
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found using MATLAB’s Fit function, in figure 2.8 (dashed lines), there is a

significant difference between the curves for 2 . η . 15, where η = rz−1/2 is

the similarity parameter, after non-dimensionalisation using the scales (2.15),

first defined in (1.22).

By contrast, using a fitted spline to represent the solution to the

laminar similarity equations (2.25)–(2.28), plotted in figure 2.8 as crosses, gives

a much better agreement with the similarity solution (2.25)–(2.28) than the

Gaussian (2.40). The splines are a set of k third-order piecewise continuous

polynomials mapping values from an interval to the set of real numbers, namely

S(w), S(z1/2u), S(zT ) : [0, ηmax]→ R, they are defined by

S(w)(η) =


P1(η) = a1η

3 + b1η
2 + c1η + d1, 0 ≤ η < η2,

Pi(η) = aiη
3 + biη

2 + ciη + di, ηi ≤ η < ηi+1 for i = 2, ..., k − 1,

Pk(η) = akη
3 + bkη

2 + ckη + dk, ηk ≤ η < ηmax,

(2.41)

and similarly for S(z1/2u) and S(zT ). The coefficients ai, bi, ci, di are determ-

ined using MATLAB’s splinefit function to fit k polynomials to the similarity

solution (2.25)–(2.28) for w, u, and T . Writing η = rz
−1/2
s and using the di-

mensionless form of the similarity variables (2.29) allows w, u, and T to be

written in terms of the splines at the displaced origin

ws(r) = S(w)(rz
−1/2
s ), (2.42a)

us(r) = z−1/2s S(z1/2u)(rz
−1/2
s ), (2.42b)

Ts(r) = z−1s S(zT )(rz
−1/2
s ). (2.42c)

The fit (2.42) is then used in all future simulations to define the profile of

the vertical velocity, horizontal velocity, and temperature at the plume source.

As a result, all modelled plumes are initialised directly in the laminar regime,

without need for a transition to the laminar similarity solution.

Time displacement

By applying the displaced source condition, it is assumed that the region 0 <

z < zs is given virtually by the laminar similarity solution (2.25)–(2.28) (with

zs chosen small compared to the height of instability). As a result, the domain
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Figure 2.8: Solutions of the similarity equations (2.25)–(2.28), compared with
a fitted Gaussian (2.40) (dashed) and a fitted spline (2.41) (crosses) to illus-
trate that the similarity solution differs from a Gaussian significantly in the
tail region of the plume. From top to bottom, the curves are of the similarity
form of the vertical velocity, temperature, and horizontal velocity. The fitted
spline fits the similarity solution so well that the difference between the nu-
merical solution to the similarity solution and the spline is not visible on these
plots. In the bottom plot, a Gaussian is not fitted to the data as the curve is
fundamentally the wrong shape.
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already contains a small quantity of total buoyancy at the time at which the

simulation is initiated ts. To derive the total buoyancy, firstly the advective

buoyancy flux F (2.22) is integrated with respect to time. As the buoyancy

flux is equal to one at the source, the integration yields that the integral is

linear with t

t∫
0

2π∫
0

∞∫
0

rTw dr dϕ dt = t. (2.43)

Changing the order of integration and making a substitution of variables using

that w = ∂z/∂t results in

2π∫
0

∞∫
0

z(t)∫
0

rT dz dr dϕ = t. (2.44)

By defining the total buoyancy B(t) in the domain up to a height of z(t) to

be the left hand side of (2.44) at time t, it holds that

B(t) ≡
z(t)∫
0

2π∫
0

∞∫
0

Tr dr dϕ dz = t. (2.45)

In order for the total buoyancy to be zero at t = 0, as required if the

simulation is initiated at the displaced origin z = zs at some time t = ts, the

time origin is shifted to account for the existing buoyancy B(ts) already in the

domain at the initiation of the simulation. Substituting the similarity variables

(2.29) into (2.45) and conducting the z integral results in the displaced time

ts at the displaced origin zs

ts = zs

2π

∞∫
0

h(η)η dη

 = zsE(Pr), (2.46)

where E(Pr) is defined to be the term in the parentheses. Solving the similarity

equations (2.25)–(2.28) and evaluating the function E(Pr) for Pr = 1 results

in E(1) ≈ 5.01.

The height of the displaced origin for simulations in this chapter is

chosen to be zs = 104. The corresponding time shift is ts ≈ 5× 104, calculated

using (2.46). The data in all plots (excluding figure 2.7) are given by the
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simulations for times t > ts and heights z > zs. The period 0 < t < ts and

region 0 < z < zs are represented virtually by the laminar prediction, denoted

by dashed lines in figures 2.9 and 2.10 and left implicit in subsequent figures.

2.3.5 Illustration of plume evolution and structure

As a preliminary illustration of the evolution of a plume, the numerical solu-

tion to the system (2.17)–(2.20) is considered for the case Pr = 1. Figure 2.9

illustrates the initial transient evolution of a plume in an unstratified environ-

ment from a laminar source, through laminar flow to turbulent flow. Initially,

the plume exhibits a slender laminar stem that grows with time, this will be

shown to be consistent with the laminar similarity solution to (2.25)–(2.28)

in section 2.4. At the top, the plume has a growing spherical head, evident

in figure 2.9(a). This head then undergoes an instability at a dimensionless

height of z ≈ 1.2× 105 in figure 2.9(b) and the laminar region extends further

in height in figure 2.9(c,d), approaching a steady position of instability above

which the plume becomes fully turbulent (evidenced in figure 2.10).

Figure 2.10 illustrates the initial transience and the final statistically

steady-state behaviour of the plume. In the top panel, the figure shows a

sequence of contour plots of the vertical velocity w in the rz cross-section over

a progression of increasing times, like in figure 2.9. Figure 2.10(a,b) illustrate

the same behaviour as in figure 2.9. After the initial instability, the speed of

the head decreases and a transition region connecting laminar to turbulent flow

develops. The plume above this transition region is turbulent, yet the laminar

region extends through the initial instability at zt (fig. 2.9(c,d)) and settles

at a height of z∗ ≈ 3.9 × 105 (fig. 2.10(d)), thus addressing research question

1. The height to instability z∗ is determined as described in section 2.3.2, by

finding the height at which the vertical velocity along the vertical centreline

drops below w0/2, where w0 = 0.40 is the centreline vertical velocity predicted

by the solution to the laminar similarity equations (2.25)–(2.28) for Pr = 1.

After this height to instability, the lower part of the plume can be said to be

in a statistically steady state.



CHAPTER 2. A UNIFIED LAMINAR-TURBULENT THEORY 67

Figure 2.9: Evolution of a plume generated by a point source of heat, as
predicted by the DNS of (2.17)–(2.20) for Pr = 1 in the early time stages
to illustrate the initial instability (simulation A in table 2.1). In panel (a),
at dimensionless time t = 5.0 × 105, the plume is fully laminar, exhibiting a
slender main section connected to an ovular head. In plot (b), at t = 7.5×105,
instability has taken place locally at the plume head, causing the ovular head
to transition into a more complex, yet still axisymmetric, form. In plot (c),
at t = 1.6 × 106, the instability has moved higher and is exhibiting signs of
asymmetry. Plot (d), at t = 3.4×106, shows the continued development of the
unstable head and remnants of the instability accumulating to the sides of the
plume stem. In all plots the solution to the similarity equations (2.25)–(2.28)
has been added for the region z < zs = 104, represented by the dashed line in
panel (a).
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Figure 2.10: Evolution of a plume, as predicted by the DNS of (2.17)–(2.20)
for Pr = 1 (simulation A in table 2.1). The plots (a-d) show the vertical
velocity field w in the rz cross-section, the similarity solution (2.25)–(2.28) for
the vertical region z < zs = 104 has been added to each plot. In panel (a),
at dimensionless time t = 8.1 × 105, the first signs of instability have started
to occur. In plot (b), at t = 4.1 × 106, the instability has translated higher
and the laminar region has increased in height. In plot (c), at t = 1.28× 107,
the location of the instability has settled at a height of z ≈ 3.9 × 105 and
the turbulent region has begun to develop. In plot (d), at t = 2.08 × 107,
the plume has reached a quasi-steady state. In the lower half of the figure
the vertical velocity along the vertical centreline is plotted against time, the
solution to (2.17)–(2.20) prior to the spatial and temporal virtual origins have
been added using the similarity solution (2.25)–(2.28) for z < zs = 104 and
t < ts ≈ 5×104, respectively, indicated by the dashed lines in the left-hand plot.
The arrows above indicate the time of each plot (a-d). The left-hand plot is a
zoomed in region to better illustrate early time behaviour, the laminar plume
rises linearly in this region, represented by the dashed line with a gradient of
ḣp ≈ 0.2. The position where this line departs from the contour indicates the
head instability, at a height of zt ≈ 1.2×105. The steady instability is indicated
with a horizontal dashed line located at a height of z = z∗ ≈ 3.9× 105, which
is determined by finding the height at which the centreline vertical velocity
drops below w0/2, where w0 = 0.40 is the centreline vertical velocity predicted
by the solution to the laminar similarity equations (2.25)–(2.28) for Pr = 1.
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Interestingly, in undertaking a short study to attempt to shortcut

to the steady flow (like in figure 2.10(d)), it was discovered that the time-

dependent height to instability z∗(t) rises in response to an accumulation of

fluid in the head-like structure ahead of it. The simulation performed involved

initialising the domain with the full laminar similarity solution (2.25)–(2.28) at

time t = 0, figure 2.11(a) shows a contour just a short time after initialisation.

What resulted was the majority of the laminar plume structure exhibiting in-

stability down to a height much lower than the predicted steady z∗ = 3.9×105,

evident in figure 2.11(c). The time-dependent height to instability then contin-

ues to rise as previously, as can be seen in the progression of figure 2.11(d,e,f)

and the build up of a new time-dependent head. This indicates that the time

dependent evolution has a dependence on the flow ahead of it. In other words,

the location of the long-term height to instability z∗ is strongly dependent on

the accumulation of buoyant, mixed fluid directly above it, which is dependent

on the long-term nonlinear evolution. Hence, a linear stability analysis would

not produce accurate predictions of the height to instability z∗. The need to

accumulate buoyant, mixed fluid in order for the plume to progress explains

the protracted growth of the height to instability z∗(t) shown in figure 2.10 as

it grows towards its final value.

The results presented here demonstrate both a temporal and spatial

regime transition from a laminar to turbulent plume. In the laminar region,

boundary layer and similarity theory (Zeldovich, 1937; Yih, 1951), presented in

(2.25)–(2.28), can be used to simplify the equations, make scaling arguments,

and verify the numerics. This simplified theory also facilitates the specific-

ation of boundary conditions immediately in the laminar region rather than

resolving the point source, as discussed in section 2.3.3. In the turbulent re-

gion, similarity theory (Zeldovich, 1937; Schmidt, 1941) can be used to make

scaling arguments to make flow predictions and validate the numerics.
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Figure 2.11: Evolution of a plume, as predicted by the DNS of (2.17)–(2.20) for
Pr = 1, initialised with the laminar similarity solution (2.25)–(2.28) through
the full height of the domain at times (a) t = 2.0 × 102, (b) t = 2.0 × 105,
(b) t = 3.0 × 105, (d) t = 4.0 × 105, (e) t = 6.0 × 105, and (f) t = 8.7 × 105.
Initial instabilities are present through the majority of the height of the plume
in panel (a), growing larger in panels (b) and (c). By panel (d) it can be seen
that the steady laminar region is maintained to a height of z ≈ 105, after
which, in panels (e) and (f), the laminar region appears to push through the
instability, building a turbulent head like in the conventional study.

2.4 Laminar regime

As illustrated by the DNS of (2.17)–(2.20) in section 2.3.5, a plume emanat-

ing from a point source in an unstratified environment exhibits first a fully

laminar starting plume, that subsequently develops a turbulent head, followed

by a steady laminar plume up to an instability to the turbulent regime. In

this section, laminar similarity theory is used to validate the DNS and make

predictions about the flow.

The solution to the similarity equations (2.25)–(2.28) in the (r, z)

coordinate system (1.26) is compared to the DNS in figure 2.12. As a check on

the accuracy of the DNS, and to examine the conditions for the emergence of

a region in which the boundary-layer approximation applies both during the
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Figure 2.12: Temporally and azimuthally averaged vertical velocity (a), tem-
perature (c), and horizontal velocity (e) from the DNS of (2.17)–(2.20) for
Pr = 1 at five dimensionless heights from z = 2×104 (blue) to 2.3×105 (red).
The centreline vertical velocity is equal at all heights in the laminar regime,
according to the scaling in (2.29). The vertical velocity (b), height-multiplied
temperature (d), and square root of height multiplied by horizontal velocity
(f) are scaled with respect to the similarity variable η and compared to f ′/η,
h, and f/2−f/η, respectively (black, dashed), from the solution to the system
(2.25)–(2.28). A collapse of the DNS onto the similarity solution for all heights
for vertical velocity and temperature in the laminar regime is evident. In plot
(f), it is interesting to see the horizontal velocity starting to differ from the
laminar similarity solution as the plume begins to transition to turbulence.
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initial ascent and final state below the height of instability z∗, a selection of

cross-sections at various heights of the vertical velocity w and temperature T

fields are plotted in figure 2.12. The left-hand plots show profiles of the raw

values and the right-hand plots show the values mapped into the similarity

variables. Figure 2.12(b) shows the collapse of w at different heights, beneath

the transition height

z∗ ≈ 3.9× 105, (2.47)

onto the similarity solution, and figure 2.12(d) does the same for zT . The

independent prediction of the similarity solution determined from the solution

to (2.25)–(2.28) is shown as a dashed black curve. The result shows an excellent

collapse onto the laminar solution. It is evident from this that the laminar

portion of the numerics agree with the similarity solution, and that the centre-

line values of w and zT are constant with height in the steady, laminar regime.

It is interesting to note, in figure 2.12(f), that the horizontal velocity begins

to differ from the laminar similarity solution hence indicating that the plume

is beginning to transition to turbulence.

To illustrate the change in centreline values from the laminar to tur-

bulent regime at the height to instability, along with time averaged contours of

velocity and logarithm of temperature, figure 2.13 plots the centreline values

of vertical velocity

w0 = lim
η→∞

f ′(η)/η = 0.40, (2.48)

and similarity temperature

h0 = h(0) = 0.11, (2.49)

next to the similarity solution, illustrating the change from laminar regime

where w and zT are approximately constant with height up to z ≈ z∗ =

3.9× 105, to the transitional and turbulent regimes which will be discussed in

later sections. The standard deviation for vertical velocity is defined by

σw =

(
1

N

N∑
i=1

(wi − w)2

)1/2

, (2.50)

and similarly for temperature T , where wi represents centreline vertical velocity



CHAPTER 2. A UNIFIED LAMINAR-TURBULENT THEORY 73

at a given time-step i out of N total time-steps and w represents the mean

vertical velocity. The near-zero value of standard deviation in the laminar

regime for both vertical velocity and temperature shows how little variability

there is in vertical velocity and temperature in the laminar plume.

The source fluxes, described in (2.22)–(2.24), can also be expressed

in similarity form. By substituting (2.29) into (2.23) and (2.24), it holds that

Q and M are both linear in z, and F is constant, given by

Q =

(
2π lim

η→∞
f

)
z, (2.51a)

M =

2π

∞∫
0

f ′2

η
dη

 z, (2.51b)

F = 1. (2.51c)

As a further check on the agreement of the DNS with the similarity solution,

the volume, momentum and buoyancy fluxes calculated using the DNS results

of (2.17)–(2.20) for Pr = 1 (2.22)–(2.24) are compared to those calculated from

the solution to the similarity equations (2.51), in figure 2.14. The fluxes from

the DNS (2.22)–(2.24) are calculated by extracting two vertical planes (XZ

and Y Z planes, each bisecting the full height of the plume), calculating the

fluxes at each height using Simpson’s Rule (Atkinson, 1991) to approximate

the integrals (2.22)–(2.24) for every time-step for t > 1.6 × 107, and then

subsequently averaging in time. Standard deviation for buoyancy flux at each

height z is calculated using

σF (z) =

(
1

N

N∑
i=0

(
Fi(z)− F (z)

)2)1/2

, (2.52)

where N is the number of time samples from t ∈ [1.6, 2.7] × 107, Fi(z) is the

buoyancy flux at each time-step i and F (z) is the average buoyancy flux, both

at height z. The standard deviations for volume and momentum flux, σQ(z)

and σM(z), are calculated analogously. The standard deviation for each flux is

plotted in figure 2.14 as the respective shaded area, illustrating the near-zero

fluctuation in the laminar regime in each flux over time, and the beginning of

the transition to turbulence at the top of each plot.

Figure 2.14 shows excellent agreement with the laminar similarity
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Figure 2.13: In panel (a) centreline vertical velocity is compared with both lam-
inar (2.29) and turbulent (2.57) similarity solutions. Plot (b) shows temporally
and azimuthally averaged vertical velocity from the DNS of (2.17)–(2.20). In
plot (c) height-multiplied, centreline temperature is compared with both lam-
inar (2.29) and turbulent (2.57) similarity solutions, as in plot (a). Plot (d)
shows temporally and azimuthally averaged temperature from the solution to
(2.17)–(2.20), as in plot (b). There is a good fit for both the laminar and turbu-
lent similarity solutions with the DNS either side of a transition zone spanning
3.9 × 105 . z . 4.8 × 105. Black asterisks indicate the height of instability
z = z∗ ≈ 3.9×105, and black circles indicate the height z = z0 = 2.9×105, rep-
resenting the virtual origin for the turbulent regime and the departure from
the laminar regime. The shaded region in panels (a) and (c) represent the
standard deviation in the vertical velocity and temperature, respectively and
illustrate the variability in the turbulent flow and lack-thereof in the laminar
flow.
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Figure 2.14: Volume Q, momentum M and buoyancy F advective fluxes
(2.22)–(2.24) calculated from the DNS of (2.17)–(2.20), compared with equi-
valent similarity fluxes (2.51) calculated using the solution to the similarity
equations (2.25)–(2.28). The DNS solution (solid curves) shows excellent agree-
ment with the predictions of the laminar similarity solution (dashed curves),
providing a further check on the DNS. Standard deviations for each flux are
calculated using (2.52) and represented as the shaded areas in each plot.

solution. It is also clear where the DNS begins to diverge from the laminar

similarity solution as the flow transitions to turbulence at a height of z ≈
2.5× 105, which, interestingly is lower than the height to instability extracted

from the values of the vertical velocity at z∗ = 3.9× 105.

2.4.1 Growth of the plume head

The initial transience of the plume results in an oval-shaped head region at the

front of the developing laminar regime, as illustrated in figure 2.9. In contrast

to the stem, the head exhibits a comparable size in each dimension, indicating

a local breakdown of the boundary-layer approximation. The size of the head

increases with time from its initiation. In figure 2.15, the horizontal radius

of the plume head rH and the plume stem rs from the results of the DNS

of (2.17)–(2.20) for Pr = 1, are plotted as a function of time. The radius is

defined as the location where the velocity has decreased to 20% of the maximal

value in the centre of the head. The plot shows that the head grows in size as

t2/3, a power-law that is faster than the growth of the radius of the plume stem
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Figure 2.15: Radius of the plume head rH and stem at the widest point below
the head rs against time, as predicted by the DNS of (2.17)–(2.20) for Pr = 1.
Dashed curves represent predictions of the form rH = 0.37 t2/3 for the head,
given by (2.53), and rs = 2.0 t1/2 for the stem.

at its widest point just below the head, which grows in size as t1/2 (Batchelor,

1954). Predictions for the radius of the plume head rH and the radius of the

plume stem rs are plotted as functions of time in figure 2.15 with the radius

of the plume head predicted to grow as

rH = ζHt
2/3, (2.53)

where ζH is a constant prefactor. Fitting the value ζH = 0.37 ± 0.003 and

plotting in figure 2.15, the prediction (2.53) shows excellent agreement with

the DNS. The corresponding stem radius increases as rs = ζs t
1/2, where ζs =

2.0± 0.007, also showing good agreement with the DNS. The error ranges are

found using the 95% confidence interval in the least squares fit of rH and rs. It

is interesting to note that the predictions of Moses et al. (1993) are different to

those suggested here, as they assumed the head radius would increase at the

same rate as the stem radius and hence fitted a t1/2 power law to the expansion

of the head radius.

The work in this section describes the evolution of the time-dependent

front of a plume, equivalent to addressing research question 4. The radius of

the plume head has been shown to expand with time as t2/3, differing from the

prediction of the expansion of the stem radius of t1/2 (Batchelor, 1954; Moses

et al., 1993).
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2.5 Instability and transition to turbulence

Figures 2.9 and 2.10 illustrate two types of instability, firstly, the head in-

stability whereby the spherical region on top of the laminar plume becomes

unstable at a height of z ≈ 1.2 × 105 and a time of t ≈ 7.0 × 105. Secondly,

the instability where the laminar region goes unstable and transitions to a

turbulent plume at a height of z = z∗ ≈ 3.9 × 105, henceforth referred to as

the ‘steady’ instability. As the location of the head instability rises with time

z = z∗(t) and eventually settles at the steady height to instability, the flow

develops into a turbulent plume for z > z∗(t). As can be seen in figure 2.10(d),

the plume begins to widen laterally from an effective point source localised at

some z0. In this regime, the boundary-layer assumption ∂/∂r � ∂/∂z made

in section 2.4 can no longer be applied due to the development of turbulent

eddies with an order-unity aspect ratio, in effect radius scales like height r ∼ z.

It is proposed, however, that the leading-order dynamics of the flow no longer

depend explicitly on the viscosity nor the thermal diffusivity of the fluid, in

accordance with previous models of turbulent plumes (e.g. Zeldovich, 1937;

Morton et al., 1956) and vigorous (high Rayleigh number) convection (Bejan,

2013). The viscous stresses and diffusive transport associated with these para-

meters still play a role in generating and sustaining turbulence, but the size of

the coefficients themselves no longer have an impact on the flow.

A scaling analysis of the full equations (2.17)–(2.20), results in the

following scaling relationships

r ∼ z,
Dw

Dt
∼ T, 2π

∫ ∞
0

rTw dr ∼ 1. (2.54)

The second and third scalings are similar to those in the laminar regime (1.21),

the difference being that the scaling between inertia and viscosity has been

replaced with the scaling r ∼ z, that horizontal and vertical lengths scale

together. Using these scalings the three scaling relationships

r ∼ z, w2 ∼ zT, r2Tw ∼ 1, (2.55)

are obtained. Resolving these scales illustrates that it is impossible to form

a length scale in the problem that does not depend on the independent vari-

able z, indicating the existence of a similarity solution (Zeldovich, 1937). By
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rearranging the relationships (2.55) for w and T results in the scalings

w ∼ z−1/3, T ∼ z−5/3. (2.56)

In the following, the fact that the origin of instability and the ef-

fective origin of the similarity solution conforming to these scalings are offset

from the source origin is taken into account. Hence, it is specified that the

turbulent regime initiates from an effective virtual origin at a height z0, to be

determined by comparing the self-similar predictions with the results of the

DNS of (2.17)–(2.20). It is interesting to note that z0 does not coincide with

the position of instability z∗, which is consistent with a spatially extended

transition zone between z∗ and the fully developed turbulent regime evident

in figure 2.13. Allowing for the displacement in origin of the turbulent regime,

the relevant similarity variables describing the statistically averaged final state

of the turbulent regime take the form

w = (z − z0)−1/3φ(ξ), T = (z − z0)−5/3ϑ(ξ), (2.57)

where ξ = r/(z− z0) is the similarity variable, and φ(ξ) and ϑ(ξ) are structure

functions. In light of these scalings, the turbulent regime is predicted to main-

tain a consistent angle of expansion, forming a cone from a virtual origin z0.

The conic shape is evidenced clearly in the temporally and azimuthally aver-

aged contour plots in figure 2.13. The centreline velocity decays with height

as w ∼ (z − z0)−1/3, instead of remaining constant with height in the laminar

regime, and the temperature decreases as (z − z0)
−5/3, which is faster than

the laminar decay of z−1, attributable to the vigorous mixing of the turbulent

plume. Using the scaling relationships in (2.55) a local Reynolds number of

the flow is shown to scale like

ReT (z) =
wr

Pr
∼ (z − z0)2/3. (2.58)

Thus, despite the decrease in the flow rate w ∼ (z − z0)−1/3, the larger length

scale caused by the relatively faster lateral expansion of the plume, r ∼ z,

allows the local Reynolds number ReT to continue to increase in the turbulent

regime, consistent with maintaining a turbulent regime at ever greater heights.

Prior experimental and numerical studies focusing on turbulent plumes

have obtained predictions for the velocity and temperature structure functions
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Figure 2.16: Collapse of the temporally and azimuthally averaged (a) ver-
tical velocity and (b) temperature profiles determined from the DNS for
Pr = 1 in the turbulent region of the plume, sampled from five equally spaced
heights across the region z ∈ [5.6, 7.1] × 105, forming the turbulent analogue
of figure 2.12. The time window over which the solution is averaged for is
t ∈ [1.6, 2.1]× 107. The profiles are plotted in terms of the similarity forms of
the vertical velocity and temperature, defined by (z−z0)1/3w and (z−z0)5/3T ,
respectively. Consistent collapses of the data to the Gaussians (2.59) are
observed for z0 = (2.9 ± 0.23) × 105, with prefactors φ0 = 3.3 ± 0.1 and
ϑ0 = 7.7 ± 1.3 and spread coefficients of αw = 43.2 ± 7.2 and αT = 54.2 ± 8.3
(dashed black curves).

φ(ξ) and ϑ(ξ). These papers all conclude that the transverse profiles for the

time-averaged statistically steady state of a developed turbulent plume both

closely follow Gaussian profiles,

φ(ξ) = φ0e
−αwξ2 , ϑ(ξ) = ϑ0e

−αT ξ2 , (2.59)

where φ0 and ϑ0 are constants representing the centreline vertical velocity

and temperature, respectively, and αw and αT are constants representing the

profile widths. These studies reported values of αw ranging from 55 to 96, and

αT from 60 to 80 (Rouse et al., 1952; George Jr et al., 1977; Zimin & Frik,

1977; Devenish et al., 2010). Different studies report conflicting conclusions,

some predicting that the vertical velocity profile is wider then the temperature

profile (αw < αT ), while others conclude that it is narrower (αw > αT ).

In figure 2.16 the collapse of the DNS solutions of (2.17)–(2.20) onto

a consistent self-similar solution (as in figure 2.12 for the laminar solution) is

plotted. It illustrates the temporally (for t ∈ [1.6, 2.1]× 107) and azimuthally

averaged solution to (2.17)–(2.20) at five equally spaced heights across the
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region z ∈ [5.6, 7.1] × 105, rescaled in terms of the similarity coordinate ξ.

These curves clearly resemble Gaussian profiles, as discussed above. In order

to determine the values of φ0, ϑ0, αw, αT , and z0 from the solution to the DNS

of (2.17)–(2.20), a non-linear regression using a genetic algorithm (Mitchell,

1996) is performed. This consists of assuming the form of the solution to be

(2.57) and (2.59) and using the least-squares approach to minimise the sum

n∑
i=1

[
1

wN

(
wi − (zi − z0)−1/3φ(ξ)

)2
+

1

TN

(
T i − (zi − z0)−5/3ϑ(ξ)

)2 ]
(2.60)

for i = 1, . . . , n data points for time (over the range t ∈ [1.6, 2.7] × 107)

and azimuthally averaged vertical velocity wi = w(ri, zi) and temperature

T i = T (ri, zi) for zi ∈ [5.6, 7.1] × 105 from the DNS, with respect to the

parameters φ0, ϑ0, αw, αT , and z0.

A genetic algorithm is the method used to minimise the sum (2.60),

it consists of setting a population size and then iterating through a pre-

determined number of generations to statistically approach the minimum val-

ues for each of the five parameters. Minimising a sum for five parameters is

a difficult task as there can be many local minima that attract the minimisa-

tion function. A genetic algorithm is a good choice for this problem as it is

randomly initialised, meaning that running the genetic algorithm many times

is likely to find the true minimum value. In this problem, a population size of

200 is run through 100 generations, 25 different times, until a minimum value

of 1.83 × 10−4 is found. Errors are found by finding the standard deviation

in each parameter φ0, ϑ0, αw, αT , and z0 over the number of minimisations

conducted.

Performing the minimisation of (2.60) results in fitting Gaussians of

the form (2.59) with values of φ0 = 3.3 ± 0.1, ϑ0 = 7.7 ± 1.3, αw = 43.2 ± 7.2,

αT = 54.2 ± 8.3, and z0 = (2.9 ± 0.23)× 105. As discussed, previous studies

have found values of the Gaussian profile width constants of αw ranging from

55 to 96, and αT from 60 to 80 (Rouse et al., 1952; George Jr et al., 1977; Zimin

& Frik, 1977; Devenish et al., 2010). Interestingly, using the genetic algorithm

of (2.60) from the DNS of (2.17)–(2.20) slightly underpredicts the values of

αw and αT compared to those in the literature. This could be because our

measurements are taken too close to the initialisation of the turbulent regime,

as suggested by Papanicolaou & List (1988). Further simulations in a larger

domain, currently underway, will inform whether this is true. The results also
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show, however, that for a turbulent plume in an unstratified environment it

can be appropriate to assume an approximately point-like source of buoyancy

feeding a turbulent regime at a height of z0.

Comparison of the centreline similarity predictions for velocity and

temperature in (2.57) at ξ = 0 with the DNS in figure 2.13 show good agree-

ment for the turbulent regime, with standard deviation (2.50) in lighter shading

illustrating the variability in the turbulent flow (and lack-thereof in the lam-

inar flow). The change from laminar regime (discussed earlier) to a transition

zone covering an approximate region [3.9, 5.0]× 105 is illustrated, as well as a

turbulent region for z & 5.0×105 where w ∼ (z−z0)−1/3 and T ∼ (z−z0)−5/3.

The fluxes of volume Q, momentum M , and buoyancy F are calcu-

lated from the solution to the DNS (2.17)–(2.20) by extracting two vertical

planes (XZ and Y Z planes, each bisecting the full height of the plume),

calculating the fluxes at each height using Simpson’s Rule (Atkinson, 1991)

to approximate the integrals (2.22)–(2.24) for every time-step, and then sub-

sequently averaging in time. The fluxes from the DNS are plotted in figure 2.17

as solid curves. Standard deviation for volume, momentum, and buoyancy flux

is calculated as in (2.52) for the range t ∈ [1.6, 2.7]× 107 and is plotted in fig-

ure 2.17 as the respective shaded area, illustrating the high levels of variability

in the turbulent regime in each flux over time.

The theoretical volume, momentum, and buoyancy fluxes described

in (2.22)–(2.24), can be expressed in turbulent similarity form. By substituting

(2.57) into (2.24), F remains constant, and Q and M are of the form

Q = c(z − z0)5/3, (2.61a)

M = d(z − z0)4/3, (2.61b)

F = 1, (2.61c)

where c and d are constants. The turbulent similarity volume, momentum and

buoyancy fluxes are fitted to the fluxes from the DNS using MATLAB and

the coefficients are found to be c = 0.22 and d = 0.45 (where z0 = 2.9× 105).

They are compared to those from the DNS (2.22)–(2.24), calculated from the

solution to the DNS of (2.17)–(2.20), in figure 2.17. The DNS shows excellent

agreement with the volume, momentum, and buoyancy in the laminar (2.51)

regime and good agreement in the turbulent (2.61) regime where the curves
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Figure 2.17: Volume Q (a), momentum M (b), and buoyancy F (c) advective
fluxes (2.22)–(2.24) calculated from the DNS of (2.17)–(2.20), compared with
equivalent similarity fluxes (2.61) calculated using the solution to the laminar
similarity equations (2.25)–(2.28). The DNS solution (solid curves) shows good
agreement with the predictions of the turbulent similarity solution (dot-dashed
curves). The laminar similarity solutions from figure 2.14 is plotted as well for
comparison. Standard deviations for each flux are calculated using (2.52) and
represented as the shaded areas in each plot.

from the DNS vary slightly from the similarity predictions but are well captured

by the standard deviation (shaded areas).

The work in this chapter results in a full unified theory of a laminar

to transitional to turbulent plume, equivalent to addressing research question

2. By describing the transition from point source of heat to laminar plume

in section 2.3.3, introducing the height to instability z∗ in section 2.3.5, and

quantifying the turbulent virtual origin z0 in this section, a steady plume in an

unstratified environment can be fully described using the laminar (Zeldovich,

1937; Yih, 1951) and turbulent (Zeldovich, 1937; Schmidt, 1941) similarity

solutions, the height to instability z∗, and the turbulent virtual origin z0.

2.6 Summary of final structure

As a full summary, an overview of the structural components of the hybrid

plume in terms of dimensional variables is provided here. From the develop-
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ment of a heat source to a laminar plume, discussed in section 2.3.3, to the

laminar regime in which the similarity solution (Zeldovich, 1937; Yih, 1951)

described the flow, discussed in section 2.4, through the transition zone in the

region around z ≈ z∗, and finally to the turbulent regime, whereby the flow

is described by the turbulent similarity solution (Zeldovich, 1937; Schmidt,

1941) in section 2.5. Reinstating dimensions using (2.16), with hats to denote

dimensionless variables, the full structure is as follows.

Regime type (and Equations Height over which

reference in text) (if any) regime occurs

Heat source (2.20): 0 ≤ z

L
< ẑH

w ≈ 0,

∂T

∂z
= lim

rs→0

(
1

πr2s

)
.

Laminar (self-similar) (2.25)–(2.28): ẑH ≤
z

L
< ẑ0

w =

(
F0

κ

)1/2

ŵ

((
F0

κ3

)1/4

rz−1/2

)
,

T =
1

gβ

(
F0

κ

)
z−1ĥ

((
F0

κ3

)1/4

rz−1/2

)
.

Transitional ẑ0 ≤
z

L
. ẑ∗ + 104
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Turbulent (self-similar) (2.57): ẑ∗ + 104 .
z

L

w = F
1/3
0

φ0

(z − z0)1/3
exp

(
−αw

(
r

z − z0

)2
)
,

T =
1

gβ
F

2/3
0

ϑ0

(z − z0)5/3
exp

(
−αT

(
r

z − z0

)2
)
.

The length scale L = (κ3/F0)
1/2

was defined in the scaling analysis in

(2.15). For Pr = 1, ẑH ≈ 100 is the height above which the laminar similarity

solution applies with negligible loss of information, z0 = (2.9 ± 0.23) × 105

is the dimensionless virtual origin for the turbulent regime, ẑ∗ = 3.9 × 105 is

the dimensionless height of instability, ŵ and ĥ are solutions to the laminar

similarity equations (2.25)–(2.28), and the constants for the turbulent regime

are given by φ0 = 3.3 ± 0.1, ϑ0 = 7.7 ± 1.3, αw = 43.2 ± 7.2, and αT =

54.2 ± 8.3.

2.7 Conclusions

In this chapter, I have produced the first theoretical description of the full

structure of a plume in an unstratified environment undergoing transition from

laminar to turbulent self-similar regimes. A description of dimensionless height

to instability ẑ∗ was found for Pr = 1, addressing research question 1. Using

the length-scale L = (κ3/F0)
1/2

, defined in the scaling analysis in (2.15), the

dimensionless height to instability ẑ∗ ≈ 5.1 × 105 (2.47) is re-dimensionalised

to find that the dimensional height to instability for a plume rising from a

point source of heat in an unstratified environment for Pr = 1 is

z∗ = ẑ∗

(
κ3

F0

)1/2

, (2.62)

in a domain with radius re = 1.6 (κ3/F0)
1/2×105 and height ze = 8.0 (κ3/F0)

1/2×
105. For a given fluid, with thermal diffusivity κ (and equal viscosity ν as

Pr = 1), the height to instability can be predicted using z∗ for any initial

buoyancy flux F0.
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The summary in section 2.6 describes the full structure of a plume

emanating from a point source in an unstratified environment for Pr = 1,

addressing research question 2. This was achieved by describing the transition

from a point source of heat to a laminar plume in section 2.3.3, illustrat-

ing the laminar similarity solution (2.25)–(2.28) (Zeldovich, 1937; Yih, 1951),

subsequently introducing the height to instability ẑ∗ in section 2.3.5, quanti-

fying the turbulent virtual origin ẑ0 ≈ 2.9× 105 in section 2.5 along with the

turbulent similarity solution (2.57) (Zeldovich, 1937; Schmidt, 1941), and fi-

nally re-introducing the dimensional variables from section 2.2. The height to

instability ẑ∗ was shown to differ from the effective virtual origin for the tur-

bulent regime ẑ0. This is an interesting result, suggesting that the transition

to turbulence exists over a large spatial region and that there is some lazy-

like plume behaviour in the transition region with the actual origin turbulent

plume higher than the effective virtual origin.

The evolution of a point source of heat into a laminar plume was

described in section 2.3.3. This addressed research question 3 by finding that

flow from a point source of heat, for Pr = 1, can be approximated by the solu-

tion to the laminar similarity solution (2.25)–(2.28) after only approximately

100 dimensionless spatial units.

Comparing the head instability to the stem instability in section 2.4.1,

it was shown that the radius of the head region evolves with time as t2/3. As

the radius of the stem evolves at t1/2 (Batchelor, 1954), the head must go

unstable before the stem, resulting in a turbulent head followed by a laminar

stem flow, hence addressing research question 4.

In an attempt to short-cut to a quasi-steady state, a simulation of

a plume initialised with the laminar similarity solution (2.25)–(2.28) through

the full height of the simulation domain was performed. A drop in height

to instability to far less than the predicted steady value was found, therefore

implying the time-dependent height to instability is dependent on the accu-

mulation of fluid in the head region that occurs at the front of the growing

laminar plume regime.

The work in this chapter forms a basis for all of my subsequent work

which will be to generalise the description of the full structure of a plume

for independently varying viscosity and thermal diffusivity in chapter 3, to

investigate the evolution and structure of plumes in a stratification in chapter 4,
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and to apply the prediction of height to instability to aerosol transport in

chapter 5.

2.7.1 Limitations and further work

The value of height to instability ẑ∗ found using DNS of (2.17)–(2.20) in this

chapter was found to be insensitive to a changing mesh. The work on the

turbulent regime, however, was not possible on this mesh due to the height to

instability being too near to the top of the domain. Further work could apply

all the methods and practices developed in this chapter to further simulations

in a larger domain to result in a robust, full description of a plume in an

unstratified environment.
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Chapter 3

The effect of Prandtl number on

plumes in an unstratified

environment
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The non-dimensional system (2.17)–(2.20) discussed in chapter 2, de-

scribing the full evolution of a plume emanating from a point source in an un-

stratified environment, was shown to depend on just one dimensionless number,

the Prandtl number. Pure plumes in unstratified environments can therefore

be classified entirely in the terms of the Prandtl number alone. That is, the de-

velopment, evolution and structure of a plume in an unstratified environment

for a given ratio of the viscosity ν to thermal diffusivity κ is universal up to

a scaling. Across both natural and industrial contexts, Prandtl numbers can

vary by orders of magnitude. For example, Pr ∼ 10−6 for stellar and planetary
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dynamics, Pr ∼ 10−3 for molten metals, Pr ∼ 1 for air, Pr ∼ 10 for water,

and Pr & 1020 for the Earth’s mantle, with plumes a common occurrence in

each application. In this chapter, the structure and asymptotic elements of

pure plumes generated at a point source of heat and the dependence of the

resulting structure on the viscosity and diffusivity of the fluid is investigated

and analysed using a combination of direct numerical simulations (DNS) and

scaling analyses.

Initially, a recap of the governing equations and non-dimensionalisation

from chapter 2 is given in section 3.1. Following this is a description of the

DNS used to model the plumes in section 3.2. A recap of the laminar theory

from chapter 2 and an investigation into the asymptotic behaviours of the lam-

inar regime of plumes generated from a point source of heat in an unstratified

environment is considered in section 3.3, addressing research question 6. In

section 3.4 the height to instability for each Prandtl number is investigated

and extracted from the results of the DNS, along with a discussion of the tur-

bulent regime, addressing research question 5. Finally, conclusions are drawn

in section 3.5.

3.1 Modelling a plume for a range of Prandtl

numbers

As in chapter 2, a plume emanating from a point source of heat at x = (0, 0, 0)

is modelled in an unstratified environment. A plume of this form is dependent

only on a single parameter, namely the Prandtl number. As a result, any pure

plume, after a scaling by the length, time, and temperature scales

L =

(
κ3

F0

)1/2

, τ =
κ2

F0

, T =
1

βg

(
F 3
0

κ5

)1/2

, (3.1)
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can be modelled by the governing equations, first given in (1.1)–(1.4). They

are non-dimensionalised, as in section 2.2, to result in the dimensionless

Du

Dt
= −∇p+ Pr∇2u + T ẑ, (3.2a)

∇ · u = 0, (3.2b)

DT

Dt
= ∇2T, (3.2c)

where x = (x, y, z) is the spatial coordinate vector, t is time, u(x, t) = (u, v, w)

is the fluid velocity, p is the fluid pressure, T (x, t) is the temperature, and the

single controlling parameter, defined by Pr = ν/κ, is the Prandtl number.

The no-slip and far-field conditions are as before

u(x, y, 0, t) = 0,
∂T

∂n
(x, y, 0, t) = 0, (3.3)

and

lim
R→∞

u = 0, lim
R→∞

T = 0, (3.4)

respectively. The source condition is

lim
ε→0

∫
Sε

(
−∂T
∂n

)
dS = 1. (3.5)

The system (3.2)–(3.5) describes the initialisation and development of a plume

in an unstratified environment for any Prandtl number Pr. In this chapter,

predictions for the critical heights of instability ranging from Pr = 0.1 to 2

are investigated using DNS and scaling arguments.

The dimensionless system (3.2)–(3.5) depends on only one dimen-

sionless number, the Prandtl number Pr. As discussed in chapter 2, pure

plumes in unstratified environments can therefore be classified entirely in the

terms of the Pr alone. This means that by conducting a study of plumes

for a wide range of Pr, a complete description of a plume for any ratio of

kinematic viscosity ν and thermal diffusivity κ can be established. This can

have implications for heat generated flows in air, water, molten metals, the

Earth’s mantle, and other applications. A number of plumes described by the

governing equations (3.2)–(3.5) are modelled at various Pr by generalising the

use of DNS introduced in chapter 2.
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3.2 Direct numerical simulation of plumes at

various Prandtl numbers

As in chapter 2, the system (3.2)–(3.5) is solved using direct numerical sim-

ulations (DNS) using the open source, spectral element method (SEM) code

Nek5000 (Fischer et al., 2008). Rather than modelling the diffusive source

explicitly, the source conditions are again replaced by third-order piecewise

continuous polynomials (splines, see section 2.3.4 for a description) represent-

ing the solution to the laminar similarity equations (2.25)–(2.28). Since the

solution to the similarity equations is dependent on Prandtl number, the form

of each spline, and hence the source specification, is different for each Pr.

In this section the details of modelling a plume at a variety of Prandtl

numbers are discussed. Firstly, as in chapter 2, a description of the domain

and boundary conditions is included in section 3.2.1, followed by the source

conditions in section 3.2.2. Finally, an overview of the plume evolution for the

Prandtl numbers studied is presented in section 3.2.3, describing the results

of the DNS. An illustration of the process required to run a direct numerical

simulation of a plume in Nek5000 is presented in appendix A.

3.2.1 Simulation set-up

The respective computational domains for each simulation are similar to that

described in section 2.3.1. They are specified as cylinders with a variety of

domain radii and heights, a description of each simulation included in table 3.1.

As per the SEM, each domain is spatially discretised into Nel elements with

polynomial order p, resulting in Np = p3Nel computational grid points.

The zero Neumann boundary conditions (2.34) are applied at the

edges of the domain and turbulent eddies are suppressed from moving through

these edges by applying a numerical sponge layer given by (2.35). The bound-

ary conditions and sponge layer are illustrated in figure 2.3.



CHAPTER 3. EFFECT OF PR ON PLUMES 91

Pr Re∗ Pe∗ re (×104) ze (×105) Nel p Np (×106)

0.1 1000 100 3.0 3.5 20,400 7 7.0
0.5 200 100 3.0 5.0 20,400 7 7.0
1.0 100 100 16.0 8.0 82,044 5 10.3
2.0 50 100 6.0 8.0 82,044 5 10.3

Table 3.1: Details of parameters used for direct numerical simulations of (3.2)–
(3.5) for each Prandtl number given in column one. The simulation Reynolds
Re∗ and Péclet Pe∗ numbers are used to specify the Prandtl number in the
equations solved by Nek5000 (1.54). Domain parameters are domain radius
re and domain height ze. Mesh parameters are number of elements Nel, order
of the basis polynomials for the spectral element method p, and number of
degrees of freedom Np = Nel · p3.

3.2.2 Source conditions at the displaced origin

As in section 2.3.4, the source is initialised in the laminar regime omitting the

point source to laminar transition, justified in section 2.3.3, and using fitted

splines gives good agreement with the similarity solution (2.25)–(2.28). The

splines are a set of k third-order piecewise continuous polynomials mapping

values from an interval to the set of real numbers, namely S(w), S(z1/2u), S(zT ) :

[0, ηmax]→ R, they are defined by

S(w)(η) =


P1(η) = a1η

3 + b1η
2 + c1η + d1, 0 ≤ η < η2,

Pi(η) = aiη
3 + biη

2 + ciη + di, ηi ≤ η < ηi+1 for i = 2, ..., k − 1,

Pk(η) = akη
3 + bkη

2 + ckη + dk, ηk ≤ η < ηmax,

(3.6)

and similarly for S(z1/2u) and S(zT ). The coefficients ai, bi, ci, di are determined

using MATLAB’s splinefit function to fit k polynomials to the similarity solu-

tions for w, u, and T . Writing η = rz
−1/2
s and using (2.29) allows w, u, and T

to be written in terms of the splines at the displaced origin

ws(r) = S(w)(rz
−1/2
s ), (3.7a)

us(r) = z−1/2s S(z1/2u)(rz
−1/2
s ), (3.7b)

Ts(r) = z−1s S(zT )(rz
−1/2
s ). (3.7c)
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As in chapter 2, the height of the displaced origin for simulations in this

chapter is chosen to be zs = 104, which is shown to be larger than the diffusive

region .

3.2.3 Illustration of plume behaviour for varying Prandtl

number

As an illustrative overview of the evolution of plumes over a variety of Prandtl

numbers, the numerical solution to the system (3.2)–(3.5) is considered for the

cases Pr = 0.1 , 0.5, 1.0, and 2.0. As in chapter 2, the transition from heat

source to laminar plume, laminar plume to transition, and turbulent plume

are all present for each of the plumes, but changing Pr results in changing the

height at which these key features occur. Figure 3.1 illustrates the near-final

state for each of the Prandtl numbers, an image is selected from each simulation

either after the height to instability has stopped rising or the furthest time

extent reached. As the Prandtl number increases, so does the length of the

laminar regime and hence the height to instability z∗, and the vertical velocity

of the plume decreases. For lower Pr, the turbulent regime appears to have

a much finer structure and the laminar regime is thinner. For Pr = 2.0, the

full height of the simulation domain is presented with the height to instability

occurring close to the top of the domain. As a result, this simulation may not

be reliable as the flow may be impacted by the sponge layer and the edge of the

domain. It is included, however, for demonstrative purposes and to illustrate

where the work could be improved.

The turbulent regime is theoretically infinite in height for every Pr.

However, due to time limitations of the project and the computational cost

involved in performing DNS, the simulation for the Pr = 2 case could not be

run out to the full limits of the domain. The turbulent regime and virtual origin

z0 is therefore not a region of focus in this chapter, however, the approximate

behaviour for the height to instability z∗ for each of the Prandtl numbers

considered is presented and should be updated on publication of these results.
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Figure 3.1: Snapshots of a number of different plumes, as predicted by the
numerical solution of (3.2)–(3.5) for (a) Pr = 0.1, (b) Pr = 0.5, (c) Pr = 1.0,
and (d) Pr = 2.0. The time at which each snapshot is taken is either after
the height to instability has stopped rising or the furthest time extent reached,
namely (a) 1.50×107, (b) 1.47×107, (c) 2.80×107, and (d) 1.63×107. The plots
show the vertical velocity field w in the (x, z) cross-section for each Prandtl
number, the similarity solution (3.9)–(3.12) for the vertical region z < 104 has
been added to each plot to include the solution to the equations from the point
source. The height to instability clearly increases as Pr increases. The width
of the laminar regime grows wider with Pr and the size of the turbulent eddies
decreases. While the height of the domain in each simulation differs, each plot
is cut off at a radius of 3 × 104 to keep lengths and the aspect ratio constant
between each plot to allow for visual comparisons.
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3.3 Laminar regime

As shown in chapter 2 and by the DNS of (3.2)–(3.5) in section 3.2.3, a plume

emanating from a point source in an unstratified environment exhibits beha-

viour that can be described by the laminar similarity equations (1.30)–(1.33).

By considering the steady, axisymmetric plume equations, using boundary

layer assumptions (∂/∂r � ∂/∂z) and scaling to find similarity variables to

simplify the dimensionless system (3.2)–(3.5), as in sections 1.1.1 and 2.4, res-

ults in the same similarity coordinate η = rz−1/2 and variables f(η) and h(η),

such that the vertical velocity w, temperature T , and radial velocity u are

given by

w =
1

η
f ′(η), T = z−1h(η) u = z−1/2

(
1

2
f ′(η)− 1

η
f(η)

)
, (3.8)

satisfying the equations

−f
(
f ′

η

)′
= Pr

(
η

(
f ′

η

)′)′
+ ηh, (3.9a)

h′ = −1

η
fh, (3.9b)

with the boundary conditions

lim
η→0

(
−1

η
f ′(η) + f ′′(η)

)
= 0, lim

η→0

(
f(η)− 1

2
ηf ′(η)

)
= 0, (3.10)

and far field conditions

f ′ = 0, h = 0, as η →∞, (3.11)

with the buoyancy flux condition

2π

∞∫
0

hf ′ dη = 1. (3.12)

The system (3.9)–(3.12) is solved, in the same way as in section 2.2.1,

by using two bisection methods to find the values of the shooting parameters

sf = f ′(η0) and sh = h(η0), to find a set of solutions illustrating the variation

in form of the vertical velocity and temperature profiles of laminar plumes
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Figure 3.2: Solution to the laminar similarity equations (3.9)–(3.12) for Pr =
0.1, 1, 10 and the solution to the inviscid equations (3.13)–(3.14) (equivalent
to Pr = 0). The top row shows the profile of the similarity vertical velocity,
w = f ′/η, while the bottom row shows the profile of the similarity temperature
field, h = zT . The solutions illustrate a transition between two forms of
solution. At small Pr the solution is characterised by profiles in which both
the thermal and velocity fields occupy a comparable horizontal scale, with the
velocity field exhibiting a sharp singularity at the plume centre for inviscid
plumes. At large Pr, the velocity field extends further from the plume centre
than the temperature field, with both retaining a smooth profile.

across Pr = 0.1, 1, and 10. These solutions are plotted in the three right-

hand columns in figure 3.2. As Pr increases the peak vertical velocity and

temperature both increase and the width of the profiles widen, with a more

drastic effect for the velocity profiles. The centreline values of f and h from

the solution to (3.9)–(3.12) for over forty values of the Pr ∈ [10−3, 102] are

plotted in figure 3.3 to illustrate the trends in the behaviour across Prandtl

numbers. In the following two sections, asymptotes are derived by conducting

asymptotic analyses for both low and high Pr.

3.3.1 Low-Prandtl number laminar regime

As the Pr becomes small, asymptotic analysis can be used to simplify the

laminar similarity system (3.9)–(3.12) and make predictions in the asymptotic

limit of Pr → 0. In this limit, the viscous terms in the laminar similarity

solution (3.9)–(3.12) can be neglected, leaving the equations describing an
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Figure 3.3: The centreline vertical velocity w0, in panel (a), and similarity
temperature h0 = zT0, in panel (b), for laminar plumes as a function of Pr, as
determined from the numerical solution of (3.9)–(3.12) for Pr ∈ [10−3, 102].
The asymptotic prediction h→ 0.13 as Pr → 0 is shown as a dashed blue line
in panel (b). The high-Pr asymptotes (3.21) (Worster, 1986) are plotted as
red dashed curves, confirming the limiting trends of our numerical solutions.
For both w0 and h0, errors resulting from the solution method described in
section 2.2.1 are < 10−4 which are too small to be visible on the plot for all
values of Pr and hence error bars are omitted.

inviscid plume

−f
(
f ′

η

)′
= ηh, fh = −ηh′, (3.13)

to leading order, with the boundary conditions

lim
η→0

(f/η) = 0, lim
η→∞

f ′(η) = 0, 2π

∫ ∞
0

hf ′ dη = 1. (3.14)

Compared to the full system (3.9)–(3.12), the stress continuity condition at the

centre of the plume in (3.10) has been dropped, since velocity (and its spatial

gradient) need not be continuous in the idealised limit of inviscid flow. The

removal of this boundary condition is consistent with the reduction in order of

the momentum conservation equation on neglecting the viscous term.

The system (3.13)–(3.14) is free of parameters, implying that its solu-

tion provides a universal asymptotic description of laminar plumes in the limit

Pr → 0. It is solved using a shooting method in a similar way to the full

system (3.9)–(3.12), by reframing the equations as a set of three ODEs by

defining F0 := f , F1 := f ′, and H0 := h and substituting into (3.13), to define
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the system

dF0

dη
= F1, (3.15a)

dF1

dη
=
F1

η
− H0η

2

F0

, (3.15b)

dH0

dη
= −1

η
F0H0, (3.15c)

with the shooting initial conditions

F0(η0) =
η0s

2
, F1(η0) = s, H0(η0) = t, (3.16)

for some η0 close to zero, where s and t are shooting parameters. The far field

and buoyancy flux conditions (3.14) become

|F1(ηmax)| < 10−5, |H0(ηmax)| < 10−5, (3.17)

and ∣∣∣∣∣∣2π
∞∫
0

H0F1 dη − 1

∣∣∣∣∣∣ < 10−5, (3.18)

respectively. The shooting values s and t are iterated through a bisection search

using the integration of (3.15)–(3.16) making use of the integrator ode15s

(Shampine & Reichelt, 1997) in MATLAB until the far field conditions (3.17)

and the buoyancy flux condition (3.18) are satisfied.

The resulting solution for Pr = 0 in figure 3.2 (left) exhibits a qual-

itatively Gaussian similarity temperature field zT = h(η), similar to larger

Pr, but a vertical velocity w = f ′(η)/η that exhibits a sharp transition to a

maximum velocity at the centre of the plume. The sharp increase of the ver-

tical velocity near the plume centre contrasts with the smooth profiles arising

for Pr > 0, where the requirement that the shear of the flow is continuous

(dropped for Pr = 0) ensures the curve is smooth. In particular, the centreline

values of the velocity and temperature are determined as

lim
η→0

(f ′/η) =∞, h(0) = 0.13. (3.19)

As illustrated in figure 3.3, a finite Pr indeed regularises the singu-
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larity, with an asymptotic trend well represented by

w(0) ∼ 0.50 (log(Pr−1))1/2, (3.20)

in the range Pr ∈ [10−3, 10−2], shown as a dashed blue curve. This expression

was obtained by trial and error, taking inspiration from similar expressions in

the literature Worster (1986); Kaminski & Jaupart (2003). The solution to

(3.13) and (3.14) predicts the centreline value of the similarity temperature

h(0) ≈ 0.13, providing the asymptotic value of the centreline temperature as

Pr → 0. As shown in figure 3.3, this value successfully provides the asymptote

of the centre-line temperature as Pr → 0.

The work in this section contributes to a description of the behaviour

of laminar plumes in the low-Pr limit. This addresses research question 6, hav-

ing solved the inviscid laminar similarity system (3.13)–(3.14) and introducing

a logarithmic trend that well matches the solution to the regular similarity

system (3.9)–(3.12) in the low-Pr regime.

3.3.2 High-Prandtl number laminar regime

Asymptotic predictions in the high-Pr limit (Pr → ∞) have been determ-

ined previously by Worster (1986). In this limit, the temperature profile is

concentrated at the centre of a much broader velocity field. By conducting

an asymptotic analysis based on coupling a central viscous region to an outer

region dominated by a balance between buoyancy and inertia, Worster (1986)

determined the asymptotes for centreline values to be

w0 ∼ 0.40 ε2 log(ε−2), h0 ∼ 0.076, (3.21)

as Pr → ∞, where ε is a small parameter defined implicitly by ε4 log(ε−2) =

Pr−1. The high-Pr asymptote is plotted in red in figure 3.3, showing good

agreement with the Pr →∞ trends of the numerical solution of the similarity

equations (3.9)–(3.12).

It is interesting to note that the centreline similarity temperature

zT0 = h0 of a laminar plume is thus universally constrained to lie within the

range 0.076 < h(0) < 0.13.
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3.3.3 Initial rise speed

In this subsection, a prediction is developed for the rate at which the top of the

plume rises in the unsteady regime. Let hp(t) denote the leading-order position

of top of the plume head. It should be noted that, since the velocity field

predicted by the laminar plume theory varies across the width of the plume,

the height evolution hp(t) cannot be directly determined from the velocity

profile. To determine a prediction for hp(t), a global integral constraint on

the total buoyancy in the plume system is utilised, in the same way as in

section 2.3.4, given by

B(t) =

hp(t)∫
0

2π∫
0

∞∫
0

T (r, t) r dr dϕ dz = t. (3.22)

Recasting this expression in terms of the similarity variables (3.8) and con-

ducting the z and ϕ integrals results in

B(t) = hp(t)

2π

∞∫
0

h(η)η dη

 ≡ hp(t)E(Pr) = t, (3.23)

which predicts that the height of the plume front hp(t) rises linearly with time

t. The Pr-dependent term in parentheses, denoted E(Pr), is the similarity

representation of the total buoyancy per unit height of the plume across a

horizontal cross-section. The rise rate of the plume during the initial transient

can then be predicted from (3.23) by taking the derivative with respect to t

and rearranging to find

ḣp = 1/E(Pr). (3.24)

The function E(Pr) can be evaluated as a universal function of Pr from the

numerical solutions to the similarity equations (3.9)–(3.12), yielding the gen-

eral relationship for ḣp(Pr) shown in figure 3.4.

Kaminski & Jaupart (2003) investigate high-Pr laminar plumes and

suggest that the initial rise speed is proportional to the bulk flow velocity given

in (3.21) (Worster, 1986). Scaling and plotting 0.93Pr−1/4w0 in figure 3.4

results in very good agreement with the initial rise speed (3.24) for high-Pr

predictions of the solution to the similarity equations (3.9)–(3.12). In the

low-Pr regime the initial rise speed of the plume asymptotes to a predicted
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Figure 3.4: The initial rise speed of a laminar plume ḣp as predicted by the
result of (3.24) based on energy conservation. The rise speed approaches an
asymptote equal to 0.199 as Pr → 0, attains a global maximum of 0.202 at
Pr ≈ 0.4 (indicated by the filled circle), and decreases proportionally to the
bulk flow velocity described in (3.21) as 0.93w0.

ḣp ≈ 0.20Pr−1/4 to two significant figures, and agrees with the predictions of

initial rise speed (3.24) from the similarity theory for low-Pr in figure 3.4.

The rise speed in the laminar regime is compared to the DNS of

(3.2)–(3.5) in figures 3.4 and 3.5. The height of the front of the plume is

extracted from the DNS of (3.2)–(3.5) at early times by testing when the

velocity of the plume first drops below w0(Pr)/2 (as in section 2.3.2), which is

then compared to the prediction of the rise speed from the similarity solution

ḣp(Pr) from (3.24) by plotting hp(t) = ḣp t in figure 3.5 where ḣp(Pr) ≈ 0.36,

0.24, 0.20, and 0.16 to two significant figures, for Pr = 0.1, 0.5, 1.0, and

2.0, respectively. There is excellent agreement for Pr = 0.5, 1.0, and 2.0,

however for Pr = 0.1 only the first data point matches the curve predicted

by the laminar similarity solution. This discrepancy is because the Pr = 0.1

plume undergoes a transition to turbulence at just before t = 5× 104, and the

similarity theory is valid only for the laminar regime.

Curves of the form hp(t) = ḣp t are fitted to the DNS of (3.2)–(3.5)

for t < 3 × 105 for Pr = 0.5 and for t < 4 × 105 for Pr = 1.0 and 2.0

and values of ḣp(Pr) are plotted as filled dots in figure 3.4, with error bars

that are smaller than the size of each dot. There is excellent agreement with
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Figure 3.5: The initial rise speed of a laminar plume extracted from the DNS
of (3.2)–(3.5) and compared to the predictions from the laminar similarity
solution (3.9)–(3.12). The curves hp(t) = ḣpt for Pr = 0.1, 0.5, 1.0, and 2.0
with ḣp(Pr) = 0.36, 0.24, 0.20, and 0.16, respectively, are plotted as black
dashed curves.

the position of the top of the plume during the initial laminar stage, before

instability occurs. This prediction also demonstrates good agreement with the

work of Moses et al. (1993) for Pr = 1.0, who found that the dimensionless

head ascent velocity was ḣp = 0.23± 0.05 for Pr = 1.

The work in this section has involved developing a new theory for

the time-dependent plume head velocity based on a total buoyancy constraint

within the plume covering the full spectrum of Prandtl numbers, addressing

research question 4. Comparisons have been made to the work of Moses et al.

(1993), and Kaminski & Jaupart (2003) in the high-Pr regime, showing excel-

lent agreement with their results.

3.4 Instability and transition to turbulence

The plume becomes turbulent after the transition to instability at z > z∗. In

this region the turbulent similarity solution (Zeldovich, 1937; Schmidt, 1941),

discussed in section 1.1.2, describes the behaviour of the plume, as discussed for

the case with Pr = 1 in section 2.5. The vertical velocity w and temperature



102 3.4. INSTABILITY AND TRANSITION TO TURBULENCE

T in this region are given by

w = (z − z0)−1/3φ0e
−αwξ2 , T = (z − z0)−5/3ϑ0e

−αT ξ2 , (3.25)

where the virtual origin for the turbulent regime z0(Pr) is included in the

definition of the similarity variable ξ = r/(z−z0), φ0(Pr), ϑ0(Pr) are constants

representing the centreline values of vertical velocity and temperature, and

αw(Pr) and αT (Pr) are constants representing the profile widths.

The work in chapter 2 illustrated that after initial instability, the

height of instability z∗(t) rises until it reaches the steady height to instability

of z∗ (see fig. 2.10). To investigate the dependence of z∗ on Prandtl number,

DNS of the system (3.2)–(3.5) is performed for Pr = 0.1, 0.5, 1.0, and 2.0.

Contour plots illustrating the plumes at various Prandtl numbers are included

in figure 3.1.

In figure 3.6, the transient height to instability z∗(t) is plotted against

time for Pr = 0.1, 0.5, 1.0, and 2.0. The value of z∗(t) is found by marking

the height at which the vertical velocity first drops beneath half of the vertical

velocity at the displaced origin, i.e. w0/2, along the centreline at each time

step. By comparing the w0/2 criterion with videos of the plume, I verified that

this criterion was appropriate to find z∗. The height to instability z∗(t) is then

identified at t = 1.4× 107 and plotted as filled circles in figure 3.6. Error bars

are found by tracking the maximum and minimum values of the oscillation in

z∗(t) for t ∈ [1.3, 1.5]× 107.

In figure 3.7 the height of instability z∗(t) at t = 1.4 × 107 is plot-

ted against Prandtl number for Pr = 0.1, 0.5, 1.0, and 2.0. The height to

instability rises sub-linearly with Prandtl number over the range of Prandtl

numbers studied. A quadratic polynomial, to be used for interpolation, is

plotted through the points and plotted as a red, dashed line. The quadratic is

determined using the Polyfit function in MATLAB and is found to be

z∗ ≈ (−0.66Pr2 + 3.09Pr + 2.04)× 105. (3.26)

This approximate formula allows for the prediction of z∗(t) at t = 1.4×107 for

any plume with Prandtl number in the range Pr ∈ [0.1, 2.0] and could also be

calculated using the same procedure for any t < 1.4 × 107. The work in this

chapter goes some way to addressing research question 5, namely describing
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Figure 3.6: Dimensionless height to instability z∗(t) from the DNS of (3.2)–
(3.5) for Pr = 0.1, 0.5, 1 and 2, illustrating the transient approach to the
height to instability. Curves are plotted by finding the lowest height at which
the vertical velocity drops beneath half the value at the source w0/2. The
value of the height to instability z∗(t) at t = 1.4 × 107 is plotted as a black
dot for each Pr. Error bars are found by tracking the oscillation in z∗(t) for
t ∈ [1.3, 1.5]× 107.

Figure 3.7: Dimensionless height of instability, z∗(t) at t = 1.4× 107, for DNS
of (3.2)–(3.5) for Pr = 0.1, 0.5, 1.0 and 2.0, illustrating an increasing sub-linear
trend. An approximate formula z∗ ≈ (−0.66Pr2 + 3.09Pr+ 2.04)× 105, which
could be used for interpolation over this range is indicated by a dashed curve.
Error bars are plotted using the maximum and minimum values of z∗(t) over
the range t ∈ [1.3, 1.5]× 107 as in figure 3.6.
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the height to instability z∗ for a range of Prantl numbers. While a full theory of

a laminar to transitional to turbulent plume is not fully complete for general

Prandtl number (as for Pr = 1 in section 2.5), a prediction for height to

instability z∗(t) in (3.26) for Pr ∈ [0.1, 2.0] at t = 1.4×107 was found. Further

work could involve running the simulations for a longer time and determining

a formula for z∗(t) as the plume reaches an instability at a quasi-steady height

as in chapter 2. The DNS could also be performed for a wider range of Prandtl

numbers so the prediction of height to instability could be improved using a

larger data set. Specific values of Pr = 0.7 for air and Pr = 10 for water

would be especially useful.

3.5 Conclusions

In this chapter, the work from chapter 2 was extended to investigate plumes

generated from a point source of heat for a number of different Prandtl num-

bers. A new theory for initial rise speed of a plume in the laminar regime based

on the total buoyancy of the plume, covering the full spectrum of Prandtl num-

bers, was developed in section 3.3.3, further addressing research question 4.

Rise speed was found to become proportional to Pr−1/4 as Pr → 0 and de-

crease according to the results of Kaminski & Jaupart (2003) as Pr → ∞.

This new theory was compared to results from the DNS, and excellent agree-

ment for the cases Pr = 0.5, 1.0, and 2.0 was found, with the transition to

instability occurring too soon to make a comparison for Pr = 0.1.

Using the length-scale L = (κ3/F0)
1/2

and the time scale τ = κ2/F0,

defined in the scaling analysis in (3.1), and re-introducing hat notation for di-

mensionless variables, the results from this chapter can be re-dimensionalised.

An increasing sub-linear relationship between height to instability and Prandtl

number at time t = 1.4 (κ2/F0) × 107 was found using DNS and is described,

to good approximation, by the quadratic polynomial

z∗ ≈
(
κ3

F0

)1/2

(−0.66Pr2 + 3.09Pr + 2.04)× 105, (3.27)

for Pr ∈ [0.1, 2.0]. This curve can be used to predict the height to instability

for a plume and goes some way towards answering research question 5.
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The low- and high-Pr asymptotes were confirmed using DNS of (3.2)–

(3.5) in the range Pr ∈ [0.1, 2.0] and the centreline vertical velocity and tem-

perature in the laminar regime for the full spectrum of Prandtl numbers was

described. Section 3.3.1 contributes to a description of the behaviour of lam-

inar plumes in the low-Pr limit, thereby addressing research question 6, by

finding a solution to the inviscid laminar similarity system (3.13)–(3.14) and

introducing a logarithmic trend (3.20) that matches the solution to the regular

similarity system (3.9)–(3.12) in the low-Pr regime, for Pr ∈ [10−3, 102].

3.5.1 Limitations and further work

The work in this chapter lays the groundwork for a fundamental theory de-

scribing any plume in an unstratified environment emanating from a point

source. With some further DNS at Pr = 0.1 and 0.5 to check mesh sensitivity

and run over a larger time window, and a larger domain for Pr = 2.0, the

interpolation formula could be extended to capture the quasi-steady height to

instability as in chapter 2. Also, with just a few more DNS at different Prandtl

numbers, a wider data set would allow for more accurate interpolation, and

over a wider range. Another important parameter, the virtual origin of the

turbulent regime z0 (given in section 2.5), would be an ideal candidate for in-

terpolation. This would require more simulations with much larger domains to

capture the turbulent region, however, but would result in a complete descrip-

tion of all plumes emanating from a point source in a quiescent, unstratified

environment.
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Chapter 4

The effect of Reynolds number
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The case of a plume in an unstratified environment was the focus of

study in the previous two chapters. Plumes in the physical world commonly

occur in a stratified environment, one in which the density of the background

varies with height. In this chapter, a plume emanating from a point source

and flowing into a linearly stratified environment is investigated. As discussed
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in section 1.1.4, many previous studies of plume rise in a stratification have

often focused on turbulent plumes (Morton et al., 1956; Plourde et al., 2008;

Devenish et al., 2010; Rooney & Devenish, 2014; Fabregat Tomàs et al., 2016),

using scaling and numerical simulations to develop theories and predictions of

a plume in a stratification. Some studies have investigated the rise of laminar

plumes (Lombardi et al., 2011; Xue et al., 2019). However, I could not find

any studies that have investigated the rise height of plumes across a wide

range of Reynolds numbers, encompassing both laminar and turbulent plumes

(pertaining to research questions 7 and 8).

In this chapter, a theoretical analysis of the fundamental flow of a

pure plume generated by a localised buoyancy source in a stratification is

presented. Using direct numerical simulations (DNS), universal properties of

pure plumes fixing Prandtl number Pr = 1 are investigated, addressing the

Reynolds number dependent maximum rise height and the impact of stratific-

ation on the transition to instability of a plume generated by a point source of

heat.

Initially, in section 4.1, the governing equations of a plume in a

linear stratification are presented, followed by a scaling analysis and a non-

dimensionalisation in section 4.2. The details of modelling a plume using DNS

are discussed in section 4.3 along with a description of numerical results for a

range of Reynolds numbers. This is followed by a discussion of the maximum

rise height of a plume in section 4.4, addressing research question 7. Sub-

sequently, a comparison between the height to instability and maximum rise

height is undertaken in section 4.5, addressing research question 8. Scaling ana-

lysis and simplified models are presented for the laminar regime in section 4.6,

addressing research question 7 in more detail. Section 4.7 uses scaling analysis

for the turbulent regime to comment on the maximum rise height of turbulent

plumes in a stratification, and on an appropriate numerical Reynolds number

for modelling extremely large Reynolds number plumes, thereby addressing

research questions 7 and 9, respectively. Finally, concluding remarks are made

and further work discussed in section 4.8.
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4.1 Modelling a plume emanating from a point

source in a stratified environment

A background fluid is said to be stratified if the density varies with height.

When first initiated, a plume in a stratified environment will rise under a

force of buoyancy, as in an unstratified environment, with the stratification

exhibiting a negligible impact on the flow. As the plume rises, the buoyancy

of the plume fluid decreases until it reaches a neutral buoyancy level (NBL)

where the buoyancy is zero. Momentum carries the plume fluid above the

NBL and the buoyancy becomes negative. The plume then oscillates about

the NBL while moving laterally outwards away from the plume centre and

forms a neutrally buoyant gravity current, often referred to as an umbrella

region in volcanology.

In chapter 2, a plume in an unstratified environment was shown to

depend on only a single dimensionless parameter, the Prandtl number. In

this chapter, a plume in a linearly stratified ambient will be shown to depend

on two parameters, the Reynolds number and the Péclet number. A plume

in a stratified environment, emanating from a point source, is modelled us-

ing the incompressible Navier-Stokes equations and temperature conservation

equation (1.1) under the Boussinesq approximation, which implies that density

variation only plays a significant role in the buoyancy term. The system reads

ρ0
Du

Dt
= −∇p+ ρ0ν∇2u + ρgẑ, (4.1a)

∇ · u = 0, (4.1b)

DT

Dt
= κ∇2T, (4.1c)

where x = (x, y, z) is the spatial coordinate vector, t is time,∇ is the gradient

operator, u(x, t) = (u, v, w) is the fluid velocity, p is fluid pressure, ρ = ρ(x, t)

is the fluid density, ρ0 is a reference density, ν is the kinematic viscosity, T (x, t)

is the temperature, κ is the thermal diffusivity, and g is the acceleration due to

gravity. The background is assumed to be linearly stratified and the equation

of state, relating the density to the temperature, is given by

ρ(x, t) = ρ0(1− β(T (x, t)− T0)), (4.2)
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where β is the constant coefficient of thermal expansion and T0 is a refer-

ence value of temperature, related to ρ0, usually chosen as the value of the

environment at the ground level. The temperature is then decomposed into

T (x, t) = ϑ(x, t) + T0 + ζz, (4.3)

where ζz represents the linear profile for constant ζ and ϑ(x, t) is the tem-

perature difference from the background which has linear temperature profile

Te(x) = T0 + ζz and density profile

ρe = ρr(1− β(Te − T0)) = ρr(1− βζz). (4.4)

The value of ϑ for any point outside of the plume is ϑ = 0, corresponding to no

perturbation of the temperature field. The Brunt-Väisälä frequency N , given

by

N2 = − g

ρr

dρe
dz

= gβζ, (4.5)

represents the strength of the stratification of the background.

The equations (4.1) are rewritten in terms of temperature difference ϑ

by substituting the equation of state (4.2) and the temperature decomposition

(4.3) into the governing equations (4.1), resulting in the Navier-Stokes and

temperature difference conservation equations

Du

Dt
= −∇p̃

ρ0
+ ν∇2u + gβϑẑ, (4.6a)

∇ · u = 0, (4.6b)

Dϑ

Dt
= κ∇2ϑ− ζw, (4.6c)

where the pressure has been redefined to incorporate background terms from

the buoyancy term p̃ = p+ ρ0g(1− βζz/2)z. From here on this tilde-notation

for the pressure is dropped. As in the unstratified case, the solution to the

equations above is considered in the semi-infinite region z ≥ 0 subject to no-

slip and insulation conditions at z = 0 (1.2), given by

u(x, y, 0, t) = 0,
∂ϑ

∂n
(x, y, 0, t) = 0, (4.7)

respectively. In the far-field of the domain it is assumed that the fluid is
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stationary and the temperature difference from the ambient is zero (1.3), as

specified by

lim
R→∞

u = 0, lim
R→∞

ϑ = 0, (4.8)

where R =
√
x2 + y2 + z2 is the spherical radial coordinate. To prescribe the

source of buoyancy, a point-source condition of constant thermal flux (1.4),

lim
ε→0

∫
Sε

(
−κ∂ϑ

∂n

)
dS = F0, (4.9)

is imposed, where Sε is the hemisphere of radius R = ε in the region z ≥ 0,

and F0 is the prescribed buoyancy source flux.

4.1.1 Plume fluxes

As in chapters 2 and 3, it is assumed that the contribution of the convective

buoyancy flux to the total buoyancy flux is negligible at a sufficient height

above the point source, namely at the displaced origin z = zs > 0. The

buoyancy flux of the plume in an unstratified regime is derived in section 2.1.1.

For the stratified regime, the process for deriving the buoyancy flux is similar,

resulting in the equation for the buoyancy flux of a plume in a stratification

F (z, t) = 2π

∞∫
0

gβrϑw dr. (4.10)

Notably, this is no longer constant with height as it was in the unstratified

plume, as shown in the solution to the model given by Morton et al. (1956),

reviewed earlier in figure 1.4.

As in chapters 2 and 3, it is useful to consider the volume Q and

momentum M fluxes. Both Q and M are not explicitly changed by the intro-

duction of stratification, and hence are given by

Q(z, t) = 2π

∞∫
0

rw dr, M(z, t) = 2π

∞∫
0

rw2 dr. (4.11)

While Q and M do not appear explicitly in the model definition, they can be

used for comparison between theory and simulations.
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4.2 Intrinsic scales and non-dimensionalisation

The system (4.6)–(4.9) is dependent on a total of six parameters: ρ0, ν, κ, (gβ),

N , and F0 (where ζ = N2/gβ). Performing a scaling analysis to determine

the intrinsic scales and subsequently using them to non-dimensionalise, this

six-way dependence can be reduced to a dependence on two parameters. In

the previous two chapters, the various scalings between terms were chosen

such that the height to instability was fixed by the non-dimensionalisation. In

this chapter, the rise height of plumes in a stratification is the main quantity

of interest and so the non-dimensionalisation is chosen to fix this value. By

comparing the advection and forcing terms in the momentum equation (4.6a),

the advection and source terms in the temperature equation (4.6c), and the

terms in buoyancy flux condition (4.10), the following scaling relationships

between length x ∼ L, time t ∼ τ , and temperature difference ϑ ∼ Θ are

uncovered

L ∼ gβΘτ 2, Θ ∼ N2

gβ
L, F0 ∼ gβ

ΘL3

τ
. (4.12)

Rearranging results in the intrinsic scalings for length, time, and temperature

in terms of the stratification frequency and initial buoyancy flux

L ∼
(
F0

N3

)1/4

, τ ∼ 1

N
, Θ ∼ 1

gβ

(
F0N

5
)1/4

. (4.13)

The model in (4.6) is subsequently non-dimensionalised by defining

the dimensionless variables, denoted by hats,

x = Lx̂, t = τ t̂, u =
L

τ
û, p = ρ0

(
L

τ

)2

p̂, ϑ = Θϑ̂, (4.14)

and substituting. On dropping hats, (4.6) becomes

Du

Dt
= −∇p+

1

Re
∇2u + ϑẑ, (4.15a)

∇ · u = 0, (4.15b)

Dϑ

Dt
=

1

Pe
∇2ϑ− w, (4.15c)
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where the Reynolds and the Péclet number are given by

Re =

(
F0

Nν2

)1/2

, P e =

(
F0

Nκ2

)1/2

. (4.16)

Interestingly, in this non-dimensionalisation, the parameter controlling the

strength of the stratification ζ is removed from the equations implying that the

solution is independent of stratification strength, subject to scaling by (4.13).

The no-slip and far-field conditions, (4.7) and (4.8), remain unchanged in form,

namely,

u(x, y, 0, t) = 0,
∂ϑ

∂n
(x, y, 0, t) = 0, (4.17)

and

lim
R→∞

u = 0, lim
R→∞

ϑ = 0, (4.18)

respectively. The source condition (4.9), after substitution of (4.14), becomes

lim
ε→0

∫
Sε

r

(
−∂ϑ
∂n

)
dS = 1. (4.19)

The dimensionless system (4.15)–(4.19) describes the initialisation and devel-

opment of a plume in a stratification at given Reynolds and Péclet numbers,

depending on the initial buoyancy flux F0, stratification frequency N , and the

material properties of kinematic viscosity ν and thermal diffusivity κ. As the

Prandtl number Pr = Pe/Re, adding a linear stratification to the problem of

a plume emanating from a point source of heat results in the addition of one

more dimensionless variable.

The advective buoyancy flux (4.10) is also non-dimensionalised by

substituting (4.14) and subsequently dropping hats, resulting in

F (z, t) = 2π

∞∫
0

rϑw dr. (4.20)

Similarly, the volume Q and momentum M fluxes can be non-dimensionalised

and hats dropped to find

Q(z, t) = 2π

∞∫
0

rw dr, M(z, t) = 2π

∞∫
0

rw2 dr. (4.21)
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4.2.1 Scaling between unstratified and stratified regimes

It is useful to be able to apply some of the results obtained in chapters 2 and 3,

such as the height to instability z∗, to the work in this chapter. To do this, a

scaling between the two different non-dimensionalisations is required. This is

facilitated by defining the length L∗, time τ ∗, and temperature T ∗ scales

L∗ ∼ Pe3/2∗ , τ ∗ ∼ Pe2∗, T ∗ ∼ Pe−5/2∗ . (4.22)

The dimensionless model describing plume flow in an unstratified environment

(2.17) is rescaled by defining the new variables, using bars to denote variables

in the unstratified non-dimensionalisation,

x = L∗x, u =
L∗

τ ∗
u, p =

(
L∗

τ ∗

)2

p, T = T ∗T, t = τ ∗t. (4.23)

On substituting (4.23) into the governing equation for a plume in an unstrat-

ified environment (2.17), the equations become

Du

Dt
= −∇p+

1

Re
∇2u + T ẑ, (4.24a)

∇ · u = 0, (4.24b)

DT

Dt
=

1

Pe
∇2T, (4.24c)

which recover those used for describing plumes in a stratification (4.15), once

the equation of state (4.2) and temperature perturbation (4.3) are substituted.

In effect, this means that the theory of height to instability z∗ for unstratified

plumes can be compared to the results from the DNS of stratified plumes, if

we assume that the stratification does not have a large impact on the value of

z∗ (which may not be the case, however this scaling enables easy comparison).

The height to instability z∗ is scaled into the non-dimensionalisation for plumes

in a stratification, described in section 4.2, by using the length scale in (4.22)

to define the scaled height to instability

z∗ = Pe−3/2z∗. (4.25)

It is important here to note that all the plumes considered in this chapter are

chosen to have Pr = 1. Since Pr = Pe/Re it hence holds that the Péclet

number is equal to the Reynolds number Pe = Re in this chapter.
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In a stratification, a steady plume consists of a number of flow re-

gimes. Initially, there exists a laminar region in which the flow approximates

the plume in an unstratified environment, discussed in chapters 2 and 3. Sub-

sequently, the scaling (4.25) indicates an inverse relationship between height to

instability and Reynolds number, therefore predicting the existence of a crit-

ical Reynolds number at which the height to instability will occur beneath the

neutral buoyancy level (NBL). Depending on the Reynolds number, the flow

will either transition to instability before the NBL (high-Reynolds number), ar-

riving at the NBL turbulent, or will not transition to instability (low-Reynolds

number). In both cases, the buoyancy of the plume becomes negative on over-

shooting and forms a laterally spreading, neutrally buoyant gravity current

around the NBL.

4.3 Direct numerical simulations of plumes in

a stratification

The system (4.15)–(4.19) is solved using direct numerical simulations (DNS)

using the open source, spectral element (SEM) code, Nek5000 (Fischer et al.,

2008), as in chapters 2 and 3. A description of the solver and the SEM was

included in section 1.2.

4.3.1 Source conditions

In section 2.3.4, using the advective source condition (4.10) and the laminar

similarity solution for a plume in an unstratified environment (1.30)–(1.33) was

shown to be a reasonable assumption to initialise the unstratified plume at a

displaced origin. This removes the need to resolve a point source in the DNS.

Despite the introduction of a stratification, this assumption is again made by

assuming that in the region between the point source and the displaced origin

z < zs the effect of the stratification on the development of the plume flow is

negligible, i.e. ϑ� z in (4.20).

As in chapters 2 and 3, a set of splines representing the laminar sim-

ilarity solution (1.30)–(1.33) is used to represent the conditions at the source

at the displaced origin z = zs. The splines are a set of k third-order piece-
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wise continuous polynomials mapping values from an interval to the set of

real numbers such that S(w), S(z1/2u), S(zT ) : [0, ηmax] → R, first defined in sec-

tion 2.3.4. They define the spline for vertical velocity w, radial velocity u, and

temperature T , respectively, by

S(w)(η) =


P1(η) = a1η

3 + b1η
2 + c1η + d1, 0 ≤ η < η2,

Pi(η) = aiη
3 + biη

2 + ciη + di, ηi ≤ η < ηi+1 for i = 2, ..., k − 1,

Pk(η) = akη
3 + bkη

2 + ckη + dk, ηk ≤ η < ηmax,

(4.26)

ans similarly for S(z1/2u) and S(zT ), where η = rz−1/2. The coefficients ai, bi, ci, di

are determined using MATLAB’s splinefit function to fit k polynomials to the

similarity solutions for w, u, and T . The similarity scalings (1.26) are then

used to write w, u, and T at the displaced origin in terms of the splines

ws(r) = S(w)(rz
−1/2
s ), (4.27a)

us(r) = z−1/2s S(z1/2u)(rz
−1/2
s ), (4.27b)

ϑs(r) = z−1s S(zT )(rz
−1/2
s ). (4.27c)

4.3.2 Simulation set-up

The computational domain is a cylinder with the source located in the centre

of the lower base. The radius and height of the domain is variable for each

simulation with details given in table 4.1. As discussed in previous sections,

the simulation is initialised at a displaced origin so as not to explicitly model

the point source. The height of the displaced origin is heuristically given by

zs = min(0.2, Re−3/2 × 104). (4.28)

This choice of zs ensures that the displaced origin is not located above, or in

fact close to, the height to instability z∗ or the neutral buoyancy level (NBL)

for any values of Reynolds number Re. If zs was chosen to be a fixed value of

0.2, then, using the scaling in (4.25), the height of the displaced origin zs and

the height to instability z∗ become of a similar size at Re ≈ 15, 000. Therefore

a decreasing value of zs is chosen for Re→∞ such that there is enough height
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for the laminar flow to develop after leaving the displaced origin. At the other

end of the Re spectrum, if the value of zs was chosen to vary as Re−3/2 × 104,

this would result in zs → ∞ as Re → 0. Later, the NBL will be shown to

decrease as Re→ 0, requiring a cut-off value of zs for lower Reynolds numbers,

chosen to be 0.2, to ensure that the displaced source height zs is less than the

NBL. This condition ensures that the displaced origin is located at a height of

zs = 0.2 for Re . 1360 and is illustrated in figure 4.1.

As in chapter 2, the time displacement is calculated using a formula

for total buoyancy in the plume, given by (2.46) as ts = E(Pr)zs where E ≈
5.01 for Pr = 1. As previously, the data in all plots are given by the simulations

for times t > ts and heights z > zs.

Re re ze Nel p Np (×106) Np/V NBL RH

10 2.0 8.0 7560 5 0.95 9400 1.12 1.28
20 - - - - - - 1.51 1.93
50 - - - - - - 2.28 3.40

100 - - - 7 2.59 25,794 3.18 5.19
200 - - - - - - 4.66 7.15
400 - 15.0 17,700 - 6.07 32,708 6.41 9.82
500 - - - - - - 7.09 11.20
700 - 19.0 21,168 - 7.26 30,410 8.40 13.17

1000 - - - - - 30,410 10.02 15.51
1500 - 21.0 - 9 15.4 58,476 12.31 18.18
2000 - 21.0 24,948 - 18.2 68,918 13.56 15.76
2500 - 21.0 - - - - 11.18 12.84
3000 - 17.0 - - - 85,134 7.20 8.84

Table 4.1: Details of parameters used for DNS of (4.15)–(4.19) for each Reyn-
olds number given in column one. Domain parameters are domain radius re
and domain height ze. Mesh parameters are number of elements Nel, order
of the basis polynomials p for the SEM, and number of degrees of freedom
Np = Nel · p3 and Np/V is the number of computational points in each mesh
Np divided by the volume V = πr2e ze, to illustrate that the density of com-
putational points increases with increasing Re. A dashed entry indicates that
values are equal to those given above. Finally, results of neutral buoyancy
level (NBL) and rise height (RH) from each simulation are included, accurate
to two decimal places.

As per the SEM, the domain is spatially discretised into a mesh of

Nel elements. A mesh in which the elements are clustered towards the centre of

the domain and towards the source is specified using a geometric progression.

The elements are then fanned outwards from the centre and subsequently re-
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Figure 4.1: Height of the displaced origin zs, as described by (4.28), with
Reynolds number Re. The value is chosen to be constant for Re . 1360 and
is decreasing thereafter according to zs = min(0.2, Re−3/2 × 104).

positioned to reduce aspect ratios of the elements. By virtue of the SEM, the

elements are further sub-divided using Legendre polynomials up to pth order.

Details can be found in table 4.1. The source condition is specified using the

splines for the laminar similarity solution in (4.27).

As in chapters 2 and 3, the zero Neumann boundary conditions (2.34)

are applied at the edges of the domain and turbulent eddies are suppressed

from moving through these edges by using an adapted Reynolds number (i.e.

a numerical sponge layer) at the edge of the domain, given by (2.35).

4.3.3 Mesh sensitivity

Due to the number of simulations required for this study (see table 4.1), it

was infeasible to perform a mesh sensitivity study for all Reynolds numbers.

It is therefore possible that the results included here do indeed have some de-

pendence on the grid. Nonetheless, however, the qualitative trends uncovered

are still interesting and can be verified by further simulations. Checks with

scaling analysis and theoretical models later in the chapter also go some way

to verifying the DNS, particularly for low Reynolds numbers in the laminar

regime.
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4.3.4 Illustration of plume evolution and structure

As an illustration of the behaviour of a plume in a stratification, the nu-

merical solutions to the system (4.15)–(4.19) are considered for the cases

Re ∈ [10, 3000] and Pr = 1, which by definition means Pe = Re.

The time dependent flow behaviour of the solution to (4.15)–(4.19)

is illustrated in figures 4.2 to 4.4 for three different Reynolds numbers. In the

top rows of each figure snapshots of vertical velocity w, radial velocity u, and

temperature T , respectively in each figure, are displayed for Re = 100. In this

case, the flow is laminar at all heights and quickly reaches its maximum rise

height at z ≈ 5.2 before spreading along the NBL at z ≈ 3.2. In the middle

rows, snapshots for Re = 500 are included. Initially, the flow is laminar

and travels quickly, but the head undergoes an instability before reaching the

maximum rise height. The flow then progresses more slowly while the front

of the transient plume is turbulent. The laminar stem pushes through the

turbulent head and while the steady plume stem is fully laminar, the maximum

rise height fluctuates, averaging out to a value of z ≈ 11.2, exhibiting turbulent

behaviour as the buoyancy reverses while the flow begins to spread laterally

along the NBL at z ≈ 7.1. Finally, in the bottom rows, snapshots are presented

for Re = 3000. In this case the steady height to instability occurs at z ≈ 6.0

and there exists a turbulent stem before reaching the NBL at z ≈ 7.2 and

maximum rise height at z ≈ 8.8.

Images of the flow after the plume has reached its maximum rise

height and begun spreading along the NBL (evidenced later in figure 4.8) for

vertical velocity w, horizontal velocity u, and temperature T are compared for

a variety of Reynolds numbers in figures 4.5 to 4.7, respectively. In each figure

the solution to the unstratified laminar similarity solution (2.25)–(2.28) has

been added to the region z < zs (defined for each Re in (4.28)). Remarkably,

the global maximum rise height increases up to a Reynolds number of Re =

1500 and subsequently decreases thereafter. The overshoot region is larger for

simulations that reach the maximum rise height with laminar stem intact. The

cone-like spread of the turbulent regime predicted by the turbulent similarity

solution (1.35) is evident for high Re plumes.
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Figure 4.2: Showcase of rz-plane snapshots of vertical velocity w from the
DNS of (4.15)–(4.19) at Re = 100, 500, 3000 (from top to bottom), with
Pr = 1, at times t = 0.01, 1.0, 2.0, 30.0 (from left to right). In each case the
similarity solution (2.25)–(2.28) has been added to the region z < zs, defined in
(4.28) for each Re. The final panels are the representation of the statistically
steady state of the plume, the neutrally buoyant gravity current regions are
indistinguishable from the background because the vertical velocity is close to
zero in these regions.
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Figure 4.3: Showcase of rz-plane snapshots of radial velocity u from the DNS
of (4.15)–(4.19) at Re = 100, 500, 3000 (from top to bottom), with Pr = 1,
at times t = 0.01, 1.0, 2.0, 30.0 (from left to right). In each case the similarity
solution (2.25)–(2.28) has been added to the region z < zs, defined in (4.28)
for each Re. The final panels are the representation of the statistically steady
state of the plume.
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Figure 4.4: Showcase of rz-plane snapshots of temperature T from the DNS
of (4.15)–(4.19) at Re = 100, 500, 3000 (from top to bottom), with Pr = 1,
at times t = 0.01, 1.0, 2.0, 30.0 (from left to right). In each case the similarity
solution (2.25)–(2.28) has been added to the region z < zs, defined in (4.28)
for each Re. The final panels are the representation of the statistically steady
state of the plume, the gravity current regions are indistinguishable from the
background because they are neutrally buoyant.
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Figure 4.5: Showcase of rz-plane snapshots of vertical velocity w taken from
DNS of (4.15)–(4.19) at various Reynolds numbers, all with Pr = 1, and all at
time t ≈ 30, after the plume has reached its maximum rise height. The global
maximum rise height increases to a maximum at Re ≈ 1500 and then begins
to decrease as Re→∞. In each case the similarity solution (2.25)–(2.28) has
been added to the region z < zs, defined in (4.28) for each Re.

Figure 4.6: Showcase of rz-plane snapshots of radial velocity u taken from
DNS of (4.15)–(4.19) at various Reynolds numbers, all with Pr = 1, and all
at time t ≈ 30, after the plume has reached its maximum rise height. In each
case the similarity solution (2.25)–(2.28) has been added to the region z < zs,
defined in (4.28) for each Re.
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Figure 4.7: Showcase of rz-plane snapshots of temperature T taken from DNS
of (4.15)–(4.19) at various Reynolds numbers, all with Pr = 1, and all at time
t ≈ 30, after the plume has reached its maximum rise height. In each case the
similarity solution (2.25)–(2.28) has been added to the region z < zs, defined
in (4.28) for each Re.

The following sections consist of an investigation into the behaviour

of plumes in a stratification using scaling analysis. The maximum rise height

is investigated in section 4.4, followed by a comparison between the maximum

rise height and height to instability in section 4.5, addressing research questions

7 and 8. The behaviour in the low and high Reynolds number regimes is then

considered in section 4.6 and section 4.7 and compared to the results of the

DNS.

4.4 Rise height

The maximum rise height of plumes modelled using DNS of (4.15)–(4.19) is

determined by finding the maximum height at which the vertical velocity of

the plume drops below 10% of its value at the displaced origin. A Python

script iterates vertically through the azimuthally averaged data at every time

step, looking only at the values of vertical velocity along the centreline until

it reaches the 10% threshold. These values are then plotted on top of contour

plots (like those in figure 4.5) to verify by eye that the correct height was found.

The rise height is plotted against time in figure 4.8 for each Re. This value is
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subsequently used to find the steady maximum rise height by averaging this

height after the curve has been determined to have levelled off, for t > 15. In

the upper plot of figure 4.8 values of rise height are plotted for Re ≤ 1500, and

in the lower plot for Re > 1500. This is to prevent overlapping curves from

obscuring the data. The neutral buoyancy level (NBL) of plumes modelled

using DNS of (4.15)–(4.19) is determined by calculating the buoyancy flux

(4.10) at each height in the domain and finding the height at which it becomes

zero.

The values determined by averaging the rise heights, and the time

period over which they are averaged, are denoted in figure 4.8 by solid black

lines. The values of rise height (white dots) and NBL (black dots) are then

plotted in figure 4.9 on log-scale axes of Reynolds number and rise height.

The rise height increases for Re < 1500, and attains a global maximum at

Re ≈ 1500, after which it begins to decrease. Interestingly, the NBL follows a

similar trend but attains a global maximum at Re ≈ 2000. This description

goes part of the way to answering research question 7. The results in the

low-Re regime indicate a power law trend. Predictions for the asymptotes of

both low and high Reynolds number have been included on this plot, and are

developed and discussed in the subsequent sections.

4.5 Comparison of rise height with height to

instability

For laminar plumes, the height to instability z∗ can clearly be seen to occur

higher than the neutral buoyancy level (NBL), as illustrated by the DNS in

figures 4.5 to 4.7 for Re ≤ 100 as the instability does not occur before the

plume reaches its NBL. For plumes with 100 < Re ≤ 1500, the plume appears

to undergo some form of instability but this would appear to be due to the

effect of the stratification. As Re > 1500, it is evident from figures 4.5 to 4.7

that the location of the height to instability z∗ occurs lower than the NBL,

evidenced by the turbulent plume regime occurring in the region beneath the

NBL of each plume.

In figure 4.10, the dimensionless plume rise height versus Reynolds

number is plotted (as in figure 4.9, but this time on linear axes). Included
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Figure 4.8: Dimensionless plume rise height versus simulation time for DNS of
(4.15)–(4.19) for Reynolds numbers Re ≤ 1500 in the top plot and Re > 1500
in the bottom plot. Solid black lines represent the time window over which each
simulation has been averaged and the average value. Each curve is labelled
with its Reynolds number on the right. There is a monotonic increase in rise
height for simulations with Re ≤ 1500, and a subsequent decrease thereafter.
As Reynolds number increases above Re = 200 the fluctuations in maximum
rise height become more evident, illustrating the introduction of turbulent
behaviour.
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Figure 4.9: Dimensionless plume rise height versus Reynolds number for Re ∈
[10, 3000], determined from DNS of (4.15)–(4.19). The increase in rise height
and neutral buoyancy level (NBL), and subsequent decrease, for simulations
across the full range of Reynolds numbers, first illustrated in figure 4.8, is more
evident here. A global maximum rise height is attained at Re ≈ 1500, after
which the rise height begins to decrease. Interestingly, a global maximum NBL
is attained at Re ≈ 2000. Lines represent fitted curves, predicting the location
of intermediate points. The blue dashed and solid line (on the left) indicate
the laminar asymptote for rise height and NBL, calculated using the numerical
solution to (4.36), given by 0.52Re1/2 and 0.34Re1/2, respectively. The red
dashed and solid line (on the right) indicate the turbulent asymptote for rise
height and NBL, given by the solution of the Morton et al. (1956) model, at a
height of 4.32 and 3.28, respectively.

on this plot, however, is the scaled height to instability z∗ predicted by the

unstratified laminar similarity solution (4.25) (thin black dashed curve), and

the height to instability predicted by the solution the DNS of (4.15)–(4.19)

(crosses). The heights are only plotted for the DNS if they fall below the NBL

and are determined using the same process as for the DNS of plumes in an

unstratified environment, by the height at which the centreline vertical velocity

of the plume drops below w0/2 (see section 2.3.2 for more detail).

There is a clear discrepancy between the height to instability pre-

dicted by the unstratified laminar similarity solution and the DNS. The values

from the DNS are much higher than those for the unstratified laminar simil-

arity solution, indicating that the stratification delays the onset of instability
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Figure 4.10: Dimensionless plume rise height and NBL versus Reynolds num-
ber for Re ∈ [10, 3000], determined from DNS of (4.15)–(4.19), compared to
the scaled height to instability z∗ (4.25) predicted by the unstratified laminar
similarity solution (2.25)–(2.28) (illustrated by the black dashed curve) and
the height to instability extracted from the DNS for values for which it exists.
The blue and red curves represent predictions for the laminar and turbulent
regimes, respectively, as discussed for figure 4.9. There is a clear discrepancy
between the height to instability predicted by the unstratified similarity solu-
tion and the DNS, suggesting that the stratification has a big impact on the
height to instability.

in the laminar plume regime. It would appear, however, that the height to

instability from the DNS is approaching the similarity prediction as the Re

increases and further simulations at higher Reynolds numbers would verify

this.

The work in this section addresses the relationship between the max-

imum rise height and height to instability for a plume in a stratification, namely

research question 8. The height to instability z∗ lies above the NBL for plumes

with Re ≤ 1500 and is lower beneath for Re > 1500. It is interesting to note

that the unstratified laminar similarity solution cannot be used to predict the

height to instability in a stratification.
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4.6 Laminar theory

A theory of maximum rise height for a plume in a stratification is developed for

the first time using the laminar similarity solution for plumes in an unstratified

environment (2.25)–(2.28) (Zeldovich, 1937; Yih, 1951) and adapting it by

introducing a stratification. The resulting equations can be solved using a

finite differencing method to predict the maximum rise height for laminar

plumes in a stratification.

In the low Reynolds number regime, the flow can be approximated

as a boundary layer in the slender stem regime prior to the lateral spreading

regime at the neutral buoyancy level (NBL). The boundary layer assumptions

are applied to the system (4.15)–(4.19), like in section 1.1.1, to simplify the

governing equations and result in the system

u
∂w

∂r
+ w

∂w

∂z
=

1

Re

(
1

r

∂

∂r

(
r
∂w

∂r

))
+ ϑ, (4.29a)

1

r

∂(ru)

∂r
+
∂w

∂z
= 0, (4.29b)

u
∂ϑ

∂r
+ w

∂ϑ

∂z
=

1

Pe

(
1

r

∂

∂r

(
r
∂ϑ

∂r

))
− w. (4.29c)

At the centre of plume, the same symmetry conditions (1.18) are

∂w

∂r
= 0,

∂T

∂r
= 0, u = 0, at r = 0. (4.30)

The far-field conditions (1.19) are

w → 0, T → 0, as r, z →∞, (4.31)

and the buoyancy flux condition at the point source (1.20) is

2π

∞∫
0

r(ϑ+ z)w dr = 1. (4.32)

4.6.1 Scaling Analysis

A dependence of the low-Re rise height on Re can be established by performing

a scaling analysis to determine the relationships between terms in the governing
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equations (4.29). By comparing the the advective, diffusive, and forcing terms

in the momentum equation (4.29a), the advective and forcing terms in the

temperature difference equation (4.29c), and the terms in the source condition

(4.32), the following scaling relationships are found

w2

z
∼ 1

Re

w

r2
∼ ϑ,

wϑ

z
∼ w, r2ϑw ∼ 1. (4.33)

By rearranging these scaling relationships, scales for height, radius, velocity,

and temperature difference are found to be

z ∼ Re1/2, r ∼ Re−1/2, w ∼ Re1/2, ϑ ∼ Re1/2, (4.34)

illustrating that in the low-Re regime, the vertical height scale, and hence the

maximum rise height, admits a scaling given by z ∼ Re1/2. Using the scales

from the equation for conservation of mass (4.29b), u/r ∼ w/z, the scaling for

horizontal velocity is found to be u ∼ Re−1/2. Using the scales in (4.34), a

new set of variables, denoted by hats, are formed

z =Re1/2ẑ, r = Re−1/2ẑ, w = Re1/2ŵ,

ϑ = Re1/2ϑ̂, u = Re−1/2û,
(4.35)

and substituting into the boundary layer equations (4.29) reveals a system de-

pendent only on the Prandtl number Pr. As a result, the equations describing

the laminar regime, for a given Pr, are given by

û
∂ŵ

∂r̂
+ ŵ

∂ŵ

∂ẑ
=

1

r̂

∂

∂r̂

(
r̂
∂ŵ

∂r̂

)
+ ϑ̂, (4.36a)

∂(r̂û)

∂r̂
+
∂r̂ŵ

∂ẑ
= 0, (4.36b)
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+ ŵ

∂ϑ̂

∂ẑ
=

1

Pr

(
1

r̂

∂

∂r̂

(
r̂
∂ϑ̂

∂r̂

))
− ŵ, (4.36c)

with the same boundary, far-field and source conditions as (4.30), (4.31), and

(4.32), respectively. All the plumes considered in this chapter have Pr = 1,

meaning that a solution to these equations for Pr = 1 can be scaled using

(4.35) to inform the solution at any Re in the laminar regime.
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4.6.2 Solving the laminar plume equations with a finite-

differencing method

The height scale in (4.34) illustrates that the maximum rise height of a lam-

inar plumes increases as Re1/2. This could be fitted to the data from the

DNS of (4.15)–(4.19) in figure 4.9, however, in this section the boundary layer

equations (4.36) can be solved directly to determine the prefactor.

The boundary layer equations (4.36) with Pr = 1 are hence solved

using a finite difference marching procedure, treating the vertical coordinate

like progressing through time. A theta-scheme is employed to improve sta-

bility. Solver details and a description of finite differencing are included in

appendix B. The finite differencing solver was verified by solving similar equa-

tions using MATLAB’s PDEPE solver (Skeel & Berzins, 1990).

Solving (4.36) and terminating as the momentum flux becomes zero

results in the solution shown in figure 4.11, where the solution is terminated at

z ≈ 0.52 to two significant figures. Qualitatively similar results are obtained

to those from the solutions to the DNS of (4.15)–(4.19) with Re = 10. The

maximum rise height is found to be ∼ 0.52Re1/2 for values of Re in the laminar

plume regime. The neutral buoyancy level (NBL) is determined by calculating

the buoyancy flux (4.10) at each height in the domain and finding the height at

which it becomes zero, which is z ≈ 0.34 to two significant figures, and using

the height scaling in (4.35) the NBL is found to be ∼ 0.34Re1/2 for values of

Re in the laminar plume regime.

Plotting this equation for the maximum rise height of plumes in the

laminar regime, z ≈ 0.52Re1/2, in figure 4.9 as a blue dashed curve illustrates

an excellent fit for Re ∈ [50, 1000], thereby addressing research question 7 by

developing a theory for maximum rise height of laminar plumes in a stratific-

ation. For Re < 50, the values of rise height are over-predicted by the laminar

theory. Similarly, plotting the equation for the NBL in the laminar regime

z ≈ 0.34Re1/2 in figure 4.9 as a blue solid curve, also illustrating a good fit

for Re ∈ [50, 1000]. In chapters 2 and 3 the plume was in an unstratified

environment and hence the assumptions made in the boundary layer regime

became stronger as height increased due to the parabolic nature of the flow

scalings. With the introduction of a stratification, however, the boundary layer

assumptions may not apply, and in the (very) low-Re regime the height over
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Figure 4.11: Results from the numerical solution to (4.36), solved using a fi-
nite differencing scheme described in appendix B. The neutral buoyancy level
is found as the buoyancy flux (4.20) becomes zero at z ≈ 0.34 to two signific-
ant figures and the simulation is terminated when the momentum flux (4.21)
becomes zero, hence ending just as the plume reaches its maximum rise height
at z ≈ 0.52 to two significant figures.

which the assumptions apply could be minimal or non-existent. It is hence

suggested that for Re < 50 the boundary layer assumptions may not hold and

hence the prediction is inaccurate over this range.

4.7 Turbulent theory

As described in section 1.1.2, Morton et al. (1956) developed a model to

describe an axisymmetric, turbulent plume rising from a point source using

volume Q, momentum M , and buoyancy F fluxes. After non-dimensionalising
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the system of equations (1.37) using (4.14) one finds the system

dQ

dz
= 2αM1/2, (4.37a)

dM

dz
=
FQ

M
, (4.37b)

dF

dz
= −Q, (4.37c)

with Q0 = 0, M0 = 0, and F0 = 1. The value of the entrainment coefficient is

chosen to be α = 0.1, as is suggested by a multitude of studies in the literature,

a number of which are detailed in Carazzo et al. (2006). Solving (4.37) and

terminating when momentum flux M becomes zero results in the dimensionless

rise height for a plume emanating from a point source in a stratification to be

a constant, namely 4.32. Similarly, the height at which the buoyancy flux

becomes zeros results in the dimensionless neutral buoyancy level (NBL) at

3.28.

The fact that the NBL and the maximum rise height become constant

as Re → ∞ can also be predicted using a scaling analysis. The value can be

found by comparing to values found from DNS of (4.15)–(4.19) at high Re.

This process involves comparing the scalings between advective and buoyancy

terms in the momentum equation (4.15a), the advective and forcing terms

in the temperature difference equation (4.15c), the terms in the advective

buoyancy flux (4.20), and using that in turbulent flow r ∼ z due to turbulent

eddies with order-unity aspect ratio. This results in the scaling relationships

w2 ∼ ϑz, ϑ ∼ z, r2ϑw ∼ 1, and r ∼ z. Resolving these scales results in

z ∼ r ∼ w ∼ ϑ ∼ 1, (4.38)

meaning that in the stratified plume regime, the height, radius, vertical velo-

city, and temperature difference are all of order 1 in the dimensionless system

(4.15)–(4.19). This suggests that as the Reynolds number Re → ∞ the NBL

and the maximum rise height tend to constant values, agreeing with the pre-

diction of Morton et al. (1956).

The results from the DNS of (4.15)–(4.19) for values of Re ≥ 1500

show that the NBL and the maximum rise height are decreasing towards the

value of 3.28 and 4.32, respectively, predicted by the model of Morton et al.

(1956). Research question 7 is addressed by confirming the result of Morton
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et al. (1956) using scaling analysis, with further simulations at higher Reynolds

numbers required to independently verify the values of 3.28 and 4.32. The

results in figure 4.9 indicate a trend towards the asymptotes for Re > 3000.

Performing DNS at Re > 3000 could result in predictions for the NBL and

maximum rise height independent of the entrainment coefficient (Morton et al.,

1956).

Further simulations to determine this trend towards constant values

of NBL and maximum rise height would also enable the answer to research

question 9. Say, for example, that the NBL and the maximum rise height

level off at a value of Re∗. Then, to determine the NBL and the rise height

in future simulations of plumes in a stratification, for any application, such

as a volcanic eruption with Re = 106, no further information about the NBL

and the maximum rise height could be garnered from an increase in Reynolds

number beyond Re∗, and hence the simulation should be run at Re∗ to conserve

computational resources.

4.8 Conclusions

In this chapter, a scaling analysis and direct numerical simulations (DNS) of

the governing equations (4.15)–(4.19) of a plume generated by a point source

of heat in a stratification were undertaken. Using scaling, the full system

was found to be dependent on two dimensionless parameters, the Reynolds

number and the Péclet number, formed by grouping the initial buoyancy flux

F0, stratification frequency N , and kinematic viscosity ν or thermal diffusivity

κ (Fabregat Tomàs et al., 2016; Rooney & Devenish, 2014) in the following

way

Re =

(
F0

Nν2

)1/2

, P e =

(
F0

Nκ2

)1/2

. (4.39)

DNS of plumes arising from a point source in a stratification were performed

and the rise height was found to exhibit non-monotonic behaviour with increas-

ing Re, with a global maximum at Re ≈ 1500, thereby addressing research

question 7.

The relationship between the maximum rise height and height to in-
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stability for a plume in a stratification was described in section 4.5, addressing

research question 8. The height to instability z∗ was shown to lie above the

maximum rise height for plumes with Re ≤ 1500 and below for Re > 1500.

An interesting comparison between the prediction of height to instability from

the unstratified laminar similarity solution (2.25)–(2.28) and the DNS revealed

that the laminar similarity solution cannot be used to predict the height to

instability in a stratification.

Using boundary layer assumptions and scaling arguments, low-Re

plumes in a stratification were shown to admit a universal solution for a given

Prandtl number up to a scaling by Reynolds number. This solution was calcu-

lated using finite differencing and a neutral buoyancy level (NBL) of z ≈ 0.34

and a maximum rise height of z ≈ 0.52 were found, both to two significant

figures. Using that height scales like Re1/2 in the low-Re regime, the curves

z ≈ 0.34Re1/2 and z ≈ 0.52Re1/2 were compared to DNS of plumes in a

stratification and excellent agreements between the simple scaling theory and

DNS for 50 < Re < 1000 were found, further addressing research question 7

for laminar plumes. There was some discrepancy in NBL and rise height for

Re < 50, however this is suggested to be due to a failure of the boundary layer

assumptions when the aspect ratio of the flow is close to one. The NBL and

rise height of a laminar plume can be multiplied with the dimensional length

scale in (4.13) to find that the dimensional NBL and rise height for a plume

for 50 . Re . 1000 are

NBLL ≈ 0.34
(
F0N

−3)1/4Re1/2, (4.40)

HL ≈ 0.52
(
F0N

−3)1/4Re1/2. (4.41)

Using scaling arguments, the NBL and maximum rise height of a tur-

bulent plume were both found to be a constant, with the theory of Morton et al.

(1956) suggesting a value of 3.28 and 4.32, respectively. The DNS at higher

Reynolds numbers are approaching these values, however further simulations

at higher Reynolds numbers are required for verification.
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4.8.1 Further work and limitations

The DNS for Re ∈ [50, 1000] were verified by matching the low-Re theory

closely, and the trends captured for Re ≥ 1500 behave as expected. A mesh

sensitivity study on the meshes used for the high-Re simulations will be per-

formed for further work, as well as simulations at higher Reynolds numbers to

attempt to capture the turbulent asymptote.

Further simulations of plumes in a stratification at Reynolds numbers

Re > 3000, aiding in the determination of the trends in NBL and maximum

rise height towards constant values, would also address research question 9.

It would do this by finding a value of the Reynolds number for which fur-

ther increases induce no significant change in the NBL and the maximum rise

height.
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Chapter 5

Implications of laminar,

turbulent, and hybrid plume

theory to aerosol transport
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The field of natural ventilation has been of particular interest in re-

cent years, with a focus on air quality in offices, classrooms, and hospital wards

(Tang et al., 2006). Previous studies that have investigated particle transport

in plumes have often focused on particle fallout from the stem and neutrally

buoyant gravity current stage of a turbulent plume (Sparks et al., 1991; John-

son et al., 2015; Sutherland & Hong, 2016). Few studies, however, have in-

vestigated the transport of particles in laminar and hybrid laminar-turbulent

plumes (pertaining to research question 10).

The theory of height to instability, discussed in chapters 2 and 3,

can be applied to the transport of heat and aerosols within rooms and indoor

spaces. In the laminar region before instability, heat (and any particles that

may be in the flow) is transported much faster than after instability, as shown

by the rapid decrease in vertical velocity as a plume transitions from laminar

to turbulent flow in figure 2.13. In this chapter, I will show that this drop



138 5.1. CHARACTERISTIC VALUES

in velocity can have consequences in the field of natural ventilation. If, for

example, the height to instability of a plume generated by a source of heat in

a room is higher than the height of the ceiling, the vast majority of material

in that flow will be transported rapidly to the ceiling in the laminar regime,

as opposed to the slower moving turbulent regime, before being dispersed in

an axisymmetric gravity current along the ceiling.

Examples of heat sources which have the potential to sustain a low

source of heat conducive to forming a laminar regime include a human in

a hospital bed, a candle, a computer, or other electrical equipment. The

theoretical results in chapters 2 and 3 provide a basis both for assessing the

most relevant regime for a given heat flux, as well for determining the rise rate

in situations where the flow undergoes a transition from laminar to turbulent

flow.

In section 5.1, values of height to instability are calculated for typical

household objects. In section 5.2, laminar, turbulent, and hybrid laminar-

turbulent plume models for the time taken to reach instability are developed.

By applying this hybrid model to particle transport, an answer to research

question 10 is provided. Finally, conclusions are drawn in section 5.3.

In the non-dimensionalisation in section 2.2, a hat notation was used,

and subsequently dropped to improve readability of the equations when everything

was in dimensionless form. In this chapter, hat notation is re-instated for di-

mensionless variables, leaving dimensional variables without hats.

5.1 Characteristic values

To explore the implications of the height to instability on indoor ventilation,

the dimensional initial buoyancy flux F0 is calculated for a given heat flux q

using

F0 =
βg

ρ0cp
q, (5.1)

where g is the acceleration due to gravity, β is the coefficient of thermal expan-

sion, ρ0 is the density, cp is specific heat capacity, and q is heat flux (measured

in watts) (Gill, 1982).
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q (W) F0 (10−2 m4 s−3) z∗ (cm)

Toaster 1200 3 20
Human 100 0.3 80
Candle 80 0.2 90
LED TV 50 0.1 110
LED lamp 10 0.03 250

Table 5.1: Heat flux q, initial buoyancy flux F0, and height to instability z∗
for a number of household items. Calculated using (5.2).

The dimensionless height to instability was calculated for a number

of Prandtl numbers in chapters 2 and 3 using direct numerical simulations

(DNS) of (3.2)–(3.5). The Prandtl number of air at room temperature is

Pr ≈ 0.7. However, complete results, including the value of the virtual ori-

gin for the turbulent regime, are only available for Pr = 1.0. Ideally, the

interpolation formula (3.26) would be used to find an approximate value for

the dimensionless height to instability, and similarly for the virtual origin ẑ0

(used in section 5.2). However, for the work in this chapter, the results from

chapter 2 are used to illustrate the theory and the value of dimensionless height

to instability for Pr = 1.0 is taken to be ẑ∗ = 3.9× 105.

By combining the length scale in (2.15) and the dimensionless height

to instability ẑ∗, the dimensional height to instability can be determined using

z∗ = ẑ∗

(
κ3

F0

)1/2

. (5.2)

The following material and physical properties are used for the fol-

lowing calculations: g = 9.8 m s−2, ρ0 = 1.2 kg m−3, β = 3.4 × 10−3 K−1,

cp = 1.01×103 m2 K−1 s−2, and κ = 2.2×10−5 m2 s−1. For Pr = 1.0, for which

the prediction for ẑ∗ ≈ 3.9 × 105, the height to instability is calculated and

values of heat flux typical for a variety of household objects (table 5.1).

Typical values of the height to instability are of the order of 0.1 - 1 m,

resulting in the location of instability for many household objects being within

the height of a room. This relationship is also plotted in figure 5.1, for values of

buoyancy flux up to that of a typical volcanic eruption with F0 = 5.4× 104 m4

s−3 (Pyle, 1995). It is interesting to note that for values of F0 > 1 m4 s−3,

the height to instability is small, from z∗ = 4 cm for F0 = 1 m4 s−3 to the

virtually negligible z∗ = 0.2 mm for F0 = 5.4× 104 m4 s−3. In the next section,
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Figure 5.1: Height to instability z∗ for a range of initial buoyancy fluxes and
κ = 2.2× 10−5 m2 s−1, given by (5.2). The value of z∗ decreases as F

−1/2
0 and

is virtually negligible for large F0.

theoretical predictions for the time taken for a plume to reach the ceiling of a

standard room are developed.

5.2 Vertical transport of aerosols

In the previous section, the height to instability was calculated for a range of

buoyancy fluxes. This calculation is now extended to consider the time taken

for a particulate in a plume to reach the ceiling, where it would subsequently

be transported laterally in a gravity current and dispersed into the room. The

vertical transport of aerosols begins by considering the two end-member cases

of fully laminar and fully turbulent flows. This is followed up by combining

the two in a hybrid laminar-turbulent theory of aerosol transport.

5.2.1 Laminar prediction

The time to reach the ceiling at a height H is calculated by making the initial

assumption that the full plume is laminar and ignoring any instability effects.

The location of a particle in the centre of the plume z(t) at a given time t is

described by

dz

dt
= w0 = ŵ0

(
F0

κ

)1/2

, (5.3)
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where w0 is the constant dimensional velocity at the plume centre predicted

by the laminar similarity solution (3.9)–(3.12), and ŵ0 is the dimensionless

prefactor ŵ0 ≈ 0.40 for Pr = 1.0. Integrating (5.3), the height z = w0t is

obtained and, on rearranging for t, the prediction for the minimum time to

reach the ceiling is found to be

tc =
H

w0

= ŵ−10

(
κ

F0

)1/2

H, (5.4)

for ceiling height H. The prediction for the time of a particle to reach the

ceiling tc above is plotted as a function of source strength F0 in figure 5.2 (as a

black dot-dashed curve), showing that the time to reach the ceiling for a fully

laminar plume decreases as F
−1/2
0 . This is an intuitive result, as the initial

buoyancy flux grows larger, both the temperature and velocity of a plume will

increase, and hence the time taken to transport material will decrease.

5.2.2 Turbulent prediction

In the alternative limit of a fully turbulent plume, the plume is assumed to

be fully turbulent for the full height of a room. Similarly to the previous

section, a differential equation for the velocity of the particle, using the solution

to the turbulent similarity equations (2.25)–(2.28), is considered, while the

assumption that the turbulent regime initiates at the source (z0 = 0) must

be made. In section 2.5 it was shown that vertical velocity is proportional to

z−1/3 (2.56). Therefore, the rise rate of the particle is given by

dz

dt
= φ0F

1/3
0 z−1/3, (5.5)

where φ0 ≈ 3.3 is the dimensionless prefactor from the turbulent similarity

solution in (2.59) and it is assumed that the particle travels along the centreline

of the plume. Integrating this equation subject to the constraint z(0) = 0

results in the position of the particle

z(t) =

(
4φ0

3
F

1/3
0 t

)3/4

. (5.6)
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On setting z(tc) = H, the time for the particle to reach the ceiling is given by

tc =
3

4φ0

F
−1/3
0 H4/3. (5.7)

The prediction for the time of a particle to reach the ceiling tc in the turbulent

plume regime is plotted as a function of source strength F0 in figure 5.2 (as

a red dashed curve) alongside the prediction for the laminar regime, showing

that the time to reach the ceiling decreases as F
−1/2
0 for the laminar regime

and as F
−1/3
0 for the turbulent regime. The time taken for a particle to reach

the ceiling becomes quicker for the turbulent regime than the laminar regime

for F0 . 5× 10−9 m4 s−3, which is a virtually negligible buoyancy flux for any

relevant application of a heat source in a room. For typical values of initial

buoyancy flux F0, the time to reach the ceiling is approximately an order

of magnitude greater for the fully turbulent plume compared with the fully

laminar plume.

5.2.3 Hybrid laminar-turbulent prediction

Both (5.4) and (5.7) represent different end-member cases of particle transport

in a fully laminar and fully turbulent plume. In general, a particle carried by

a plume can experience both laminar and turbulent flow (given F0 is large

enough to produce a transition within the height of the room), and travel

through the transition between the two. The hybrid laminar-turbulent de-

scription of a plume allows for a unifying, consistent bridge connecting these

two limiting end-member situations, as well as the conditions under which the

switch between them occurs. In that case, the velocity of a particle in the

hybrid plume is given by a combination of (5.3) and (5.5), resulting in

dz

dt
=

{
w0, for z < z∗,

φ0F
1/3
0 (z − z0)−1/3, for z ≥ z∗,

(5.8)

where z0 is the location of the turbulent virtual origin given by

z0 = ẑ0

(
κ3

F0

)1/2

, (5.9)

with ẑ0 = 2.9 × 105 and the height of instability is given by (5.2), with ẑ∗ ≈
3.9 × 105 for Pr = 1.0. For z < z∗ the velocity (5.8) is integrated up to z∗
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Figure 5.2: Time for a passive tracer (e.g. airborne pathogen) to reach a
ceiling tc of height H = 2.4 m in a unified (5.11) plume for a range of initial
buoyancy fluxes F0. The fully laminar (5.4) case (black, dot-dashed) and
the fully turbulent (5.7) case (red, dashed) show the approach of the unified
theory to each end case. Schematics illustrating the shape of the plume for
each regime are included above for laminar (a), unified (b), and turbulent (c)
plumes. Filled dots represent the local turning points at the laminar to unified
transition and at the maximum time for a tracer to reach the ceiling in the
unified regime.

as in the laminar case (5.4). For z ≥ z∗ the velocity (5.8) is integrated using

separation of variables, the constant of integration is evaluated by applying

continuity on z at t = t∗ to obtain the location of a particle

z(t) =


w0t, for t < t∗,

z0 +

(
(z∗ − z0)4/3 +

4φ0

3
F

1/3
0 (t− t∗)

)3/4

, for t ≥ t∗,
(5.10)

where t∗ = z∗/w0 is the time at which the transition to instability occurs.

Thus, on setting z = H, the general expression for the time to reach the
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ceiling is given by

tc =


H

w0

, for H < z∗,

t∗ +
3F
−1/3
0

4φ0

(
(H − z0)4/3 − (z∗ − z0)4/3

)
, for H > z∗.

(5.11)

Assuming a typical ceiling height of H = 2.4 m, the time taken for a particle

to reach the ceiling tc (blue solid curve), and the laminar (5.4) and turbulent

(5.7) edge cases, are plotted in figure 5.2 for a range of initial buoyancy fluxes

F0 ∈ [10−6, 102] m4 s−3. For values of F0 . 2.1×10−4 m4 s−3, the time to reach

the ceiling is dependent purely on the laminar regime, as the time to instability

is greater than the time taken to reach the ceiling. For the turbulent regime,

for values of F0 & 0.48 m4 s−3, the tranisiton to instability occurs almost at

the point source of heat, meaning the plume is fully turbulent effectively for

the fully height of the room.

As the height to instability decreases below the height of the ceiling,

the time to reach the ceiling sharply increases due to the decay in vertical

velocity in the turbulent plume. Remarkably, this results in two local turning

points. There is a local minimum at F0 = 2.1×10−4 m4 s−3 where the turbulent

regime is first realised in the flow. As the buoyancy flux increases, the time

to reach the ceiling increases as the slower moving turbulent regime increases

in size. There is a local maximum at F0 = 1.3 × 10−3 m4 s−3 beyond which

the increasing buoyancy flux results in a larger vertical velocity despite the

turbulence, and the time to reach the ceiling begins to decrease again. The

model in (5.11) predicts that for an aerosol being transported by a hybrid

laminar-turbulent plume in an unstratified environment, the time taken to

reach the ceiling varies non-monotonically with initial buoyancy flux, thereby

providing an answer to research question 10.

An important caveat is that the above theory assumes that a plume

starts from a point source and in reality, all sources of heat will have a finite

area. This could result in either an increase or a decrease to the height of

instability, dependent on whether the plume is lazy or forced (Morton, 1959;

Hunt & Kaye, 2005). Another assumption is a still environment. Draughts or

other air disturbances would potentially induce an earlier transition to turbu-

lence (Linden, 1999). It was also assumed that a particle in a turbulent plume

takes the fastest velocity at the centreline. Reducing the velocity of a particle
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in this regime, however, would increase the time taken for a particle to reach

the ceiling height and therefore increase the sharpness of the non-monotonic

region. Despite these assumptions, these calculations can still be used to make

reasonable predictions of height to instability in an indoor environment.

5.3 Conclusions

In this chapter, an application of plume theory to the field of natural vent-

ilation was investigated. It has been shown that the height to instability z∗,

calculated using direct numerical simulations (DNS) of a plume emanating

from a point source in an unstratified environment (2.17)–(2.20), plays a role

in the transport and dispersal of aerosols within in a room. Using scaling, the

height to instability has been shown to be of a height that is within a typical

room, illustrating that both laminar and turbulent plume flow is likely to occur

for plumes generated by everyday objects.

Further to the location of instability, the time taken for a weightless

particle to reach the ceiling was calculated using laminar (2.29) (Zeldovich,

1937; Yih, 1951) and turbulent (2.57) (Zeldovich, 1937; Schmidt, 1941) similar-

ity theory. A remarkable non-monotonic relationship between initial buoyancy

flux and particle transport in plumes was discovered using a hybrid theory of

laminar and turbulent plumes, thereby addressing research question 10. Two

turning points in the relationship were uncovered, with the first occurring when

the height to instability becomes less than the ceiling height, and the second

when the increasing buoyancy flux induces a larger vertical velocity in the

turbulent regime, both are illustrated in figure 5.2. This work also highlights

the importance of the laminar regime in particle transport, predicting that a

turbulent plume requires an initial buoyancy flux over two orders of magnitude

larger than a laminar plume to transport a particle to the ceiling in the same

amount of time.

5.3.1 Further work

Further work on this could involve performing DNS of the governing equations

(3.2)–(3.5) at Pr = 0.7 to ensure that more accurate values of ẑ∗ and ẑ0 are
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found. Currently, the modelling assumes that transported aerosols take on

the highest velocity in the plume, namely that at the plume centre, whereas

in reality they would not travel this fast, especially in the turbulent regime.

Some would likely settle out of the plume stem and others would take longer

to reach the ceiling. The modelling of aerosol transport in plumes could be

improved by taking this into account, as well as considering other aspects such

as introducing areal sources to the model or advection due to air currents.
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Chapter 6

Conclusions

Contents

6.1 Further work . . . . . . . . . . . . . . . . . . . . . . . . . 151

The main aim of the work in this thesis was to investigate the fun-

damental behaviour and structure of plumes emanating from a point source.

Previous studies have often explored simplified models or specifics. The nov-

elty in this work has broadly been to apply the relatively recent development

of direct numerical simulations (DNS) to fundamental plume behaviour.

In chapter 2, I performed DNS of the incompressible Boussinesq equa-

tions (2.17)–(2.20) of a plume generated at a point source of heat in an un-

stratified environment for the case of Pr = 1 and found a value for the dimen-

sionless height to instability ẑ∗. I also described the full structure of a plume,

including the turbulent regime and its dimensionless virtual origin ẑ0. Using

the length scale L = (κ3/F0)
1/2

(2.15), the dimensional height to instability z∗

for a plume rising from a point source of heat in an unstratified environment

with any initial buoyancy flux F0 and thermal diffusivity κ for Pr = 1, thereby

addressing research question 1, is given by

z∗ = ẑ∗

(
κ3

F0

)1/2

, (6.1)

for dimensionless height to instability ẑ∗ ≈ 5.1 × 105 (as determined by the

DNS), in a domain with radius re = 1.6 × 105 (κ3/F0)
1/2 and height ze =

8 × 105 (κ3/F0)
1/2, subject to the anticipated error bound described in the

mesh sensitivity analysis in section 2.3.2.

Secondly, I described the full structure and location of a plume eman-

ating from a point source for Pr = 1, addressing research question 2. This was

achieved by describing the transition from a point source of heat to a laminar

plume with the laminar similarity solution (1.30)–(1.33) (Zeldovich, 1937; Yih,
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1951), subsequently finding the value for the dimensionless height to instability

ẑ∗, and quantifying the dimensionless turbulent virtual origin ẑ0 = 2.9 × 105,

along with the turbulent similarity solution (1.35) (Zeldovich, 1937; Schmidt,

1941). The height to instability ẑ∗ was shown to differ from the virtual origin

for the turbulent regime ẑ0 6= ẑ∗, indicating the existence of a spatial range

over which the plume transitions from laminar to turbulent flow.

Two further sub-conclusions were drawn from the work in chapter 2.

The first was that a laminar plume can be initialised at a displaced origin with

the laminar similarity solution (1.30)–(1.33), by emulating a point source. This

was undertaken using a DNS study, presented in section 2.3.3, which showed

the flow approaching the laminar similarity solution, addressing research ques-

tion 3. The second was to uncover a new scaling of head width in the initial

transient flow, showing that the head grows as time t2/3, while the stem grows

with time as t1/2 (Batchelor, 1954; Moses et al., 1993), therefore illustrating

that the head region must go unstable before the stem and hence addressing

research question 4.

The work in chapter 2 was extended to a range of Prandtl numbers in

chapter 3. I performed DNS of plume rise from a point source in an unstratified

environment, solving the similarity system (3.9)–(3.12), over a range of Prandtl

numbers and found an interpolation formula for height to instability in the

studied Pr range at time t = 1.4× 107(κ2/F0). This formula is given by

z∗ ≈
(
κ3

F0

)1/2

(−0.66Pr2 + 3.09Pr + 2.04)× 105, (6.2)

addressing research question 5. This forms the first prediction of height to

instability of plumes generated at a point source in an unstratified environment

over a range of Prandtl numbers Pr ∈ [0.1, 2.0]. As the Prandtl number is a

description of material properties only, this result significantly generalises the

result for Pr = 1 to predict the height to instability of plumes for a range of

Prandtl numbers covering almost all gases.

Using a constraint on the total buoyancy in the plume, a new the-

ory for the time-dependent initial rise speed of a laminar plume, covering the

full spectrum of Prandtl numbers, was developed in section 3.3.3, further ad-

dressing research question 4. The head ascent velocity was found to become

proportional to Pr−0.25 as Pr → 0 and predictions were compared to previous



CHAPTER 6. CONCLUSIONS 149

studies (Kaminski & Jaupart, 2003), showing excellent agreement in the high

Pr limit. The results from the DNS were compared to this new theory of

initial rise speed in a laminar plume and excellent agreement was found for

Pr = 0.5, 1.0, and 2.0. For the case Pr = 0.1, however, the transition to in-

stability occurred too early to capture almost any laminar plume rise. Finally,

the low and high (Worster, 1986) Prandtl number regimes were reviewed and

compared to a numerical study of the laminar similarity system (3.9)–(3.12)

for Pr ∈ [10−3, 102], thereby addressing research question 6.

Extending the plume modelling further in chapter 4, with the in-

troduction of a linearly stratified environment, led to the introduction of an-

other length scale alongside the height to instability, namely the maximum

rise height. DNS of plumes generated at a point source in a stratification for

Re ∈ [10, 3000] were performed and, interestingly, a non-monotonic relation-

ship between Reynolds number and rise height was discovered, with a global

maximum at Re ≈ 1500. This result addresses research question 7.

The relative behaviour of the maximum rise height compared to the

height to instability z∗ for a plume in a stratification was described in sec-

tion 4.5, addressing research question 8. Using the results of the DNS, the

height to instability was shown to be greater than the maximum rise height for

plumes with Re ≤ 1500 and less than the maximum rise height for Re > 1500.

Comparing the height to instability derived from solving the unstratified lam-

inar similarity system (2.25)–(2.28) with that predicted by the DNS revealed

that the laminar similarity solution significantly under-predicts the height to

instability in a stratification.

In the low-Re regime, using scaling analysis and boundary layer the-

ory to develop a theory of plume rise in a stratification resulted in a system

dependent only on the Prandtl number. Solving this system using a finite dif-

ferencing scheme for Pr = 1 resulted in a prediction for the neutral buoyancy

level (NBL) and the rise height, up to a scaling with Re, in low-Re plumes

given by

NBLL ≈ 0.34
(
F0N

−3)1/4Re1/2, (6.3)

HL ≈ 0.52
(
F0N

−3)1/4Re1/2, (6.4)

for stratification frequency N , further addressing research question 7 for the
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laminar regime. Making a comparison of this theory with the results of the

DNS indicated an excellent agreement for 50 ≤ Re ≤ 1000, with a divergence

from the prediction for Re < 50 which is likely caused by a failure of the

boundary layer assumptions in the near aspect ratio one flow.

In the high-Re regime, scaling analysis was used to show that the NBL

and the maximum rise height of a turbulent plume as Re → ∞ are constant.

This analysis checks the result of Morton et al. (1956), namely that for fully

turbulent plumes the NBL is given by and NBLT = 3.28 (F0/N
3)1/4 and the

rise height is given by HT = 4.32 (F0/N
3)1/4. DNS of plumes at Re > 1500

illustrate both the NBL and the maximum rise height approaching the values

predicted by Morton et al. (1956). Further simulations at higher Reynolds

numbers would enable the independent determination of maximum rise height

without using the assumption of a parametrisation on the entrainment at the

edges of the plume, addressing research question 9.

Finally, in chapter 5, the unstratified theory of height to instability

in chapters 2 and 3 was used in an application to aerosol transport in a room.

Typical values of height to instability for a number of household objects was

shown to be of a significant size within the height of a room. A hybrid laminar-

turbulent theory of particle transport was developed using the laminar (1.30)–

(1.33) and turbulent (1.35) similarity solutions. Remarkably, a non-monotonic

relationship between the time for a particle to reach the ceiling tH and initial

buoyancy flux with two turning points was discovered, providing an answer to

research question 10. The first turning point occurs when the plume undergoes

instability within the height of the room, thereby introducing turbulent flow

and increasing the time to transport a particle to the ceiling. The second

occurs when the increasing buoyancy flux causes the vertical velocity in the

turbulent regime to become large enough to start decreasing the time taken

in transport to the ceiling. The theory also highlights the importance of the

laminar regime in particle transport in plumes at low source buoyancy fluxes,

predicting that the initial buoyancy flux of a turbulent plume needs to be

over two orders of magnitude larger than that of a laminar plume in order to

transport a particle to the ceiling in the same amount of time.
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6.1 Further work

The work presented in this thesis has provided several interesting insights

into the fundamental behaviours of plumes. There still remain a number of

unanswered questions, however. In chapter 2, it was found that the height

to instability ẑ∗ from the DNS of (2.17)–(2.20) was insensitive to a changing

mesh. In comparison, the investigation into the turbulent plume regime was

not feasible on this mesh as the height to instability was too near to the top of

the domain. Further work could apply all the methods and practices developed

in chapter 2 to further simulations in a larger domain to result in a robust,

full description of a plume in an unstratified environment.

DNS of plumes in unstratified environments for a wider range of

Prandtl numbers, especially for critical values for air Pr = 0.7 and water

Pr = 10, would provide complete descriptions of plume flow from a point

source in a wide range of materials and would allow the improvement of the

interpolation formula defined in chapter 3. Eventually, this could lead to a

complete description of any plume emanating from a point source in any ma-

terial. Although not a focus of this study, there have been plenty of studies

of varied source conditions, combining the results from those studies with the

fundamental description of plumes developed here would further increase the

applicability of this work to real-world scenarios.

Furthering the DNS of plumes in a stratification across the full spec-

trum of Reynolds numbers could be another fruitful avenue of study. Beyond

this, the work could be extended into the second dimensionless parameter space

to study the effect of Prandtl number on plume rise height in a stratification.

As before, this would be very useful for the Prandtl numbers of air and water.

All of these studies were performed with a quiescent ambient. How-

ever, there are few applications where this assumption is completely true.

The study of height to instability could also be undertaken with a low-level

background field of vortices to represent background air disturbances, or with

a background wind profile. These adjustments may improve predictions of

height to instability for applications such as the straightforward aerosol trans-

port model in chapter 5. This model could also be improved by introducing

finite areal sources, as few objects approximate a point source, for example

a television would more likely approximate a line plume. Other improve-
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ments could include removing the assumption that particles travel along the

centreline (Ernst et al., 1996) or introducing a stratification to the model,

which could lead to aerosols being transported along a neutral buoyancy level

within the room rather than reaching the ceiling.
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Nomenclature

In this thesis, non-dimensionalisations are performed introducing variables

with hats or bars to denote dimensionless variables. Often, these identify-

ing marks are subsequently dropped when the vast majority of the rest of the

chapter is in dimensionless form. Unless otherwise stated, the variables in the

majority of the text are dimensionless (excluding chapter 5). As a consequence,

no distinction is made between dimensional and dimensionless variables in the

following.

Variables

ψ Stokes stream function, page 12.

ϑ Temperature difference from the environment (dis-

tinct from turbulent similarity variable in chapters 2

and 3), page 110.

q Heat flux, page 45.

u(x, t) = (u, v, w) Vector of velocity, in particular w is vertical ve-

locity used frequently in similarity theory, page

6.

x = (x, y, z) Position vector, can also be given in terms of cyl-

indrical coordinates (r, ϕ, z), page 6.

F Buoyancy flux, subscripts A and C relate to ad-

vective and convective terms, respectively, page

46.

F0 Initial buoyancy flux, page 7.

M Momentum flux, page 47.

p Pressure, page 6.

Q Volume flux, page 47.

R =
√
x2 + y2 + z2 Spherical radial coordinate, page 7.
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r =
√
x2 + y2 Cylindrical radial coordinate, page 7.

t Time, page 6.

T (x, t) Temperature, page 6.

Material properties and physical constants

β Coefficient of thermal expansion, page 6.

κ Thermal diffusivity, page 6.

ν Kinematic viscosity, page 6.

ρ0 Reference density, page 6.

cp Specific heat capacity, page 45.

g Acceleration due to gravity, page 6.

N Brunt-Väisälä frequency, page 110.

Plume specifc parameters

ḣp Rise rate of the plume head, page 99.

B(t) Total buoyancy in the plume, page 99.

z∗ Height to instability, page 72.

z0 Virtual origin for the turbulent plume regime,

page 78.

Scales

T Intrinsic temperature scale (unstratified), page

47.

τ Intrinsic time scale (unstratified, with a different

value for the stratified theory), page 47.

Θ Intrinsic temperature difference scale (stratified),

page 112.

L Intrinsic length scale (unstratified, with a differ-

ent value for the stratified theory), page 47.
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Dimensionless parameters

Pe Péclet number, page 113.

Pr Prandtl number, page 48.

Re Reynolds number, page 113.

Similarity variables

αT Constant representing temperature Gaussian pro-

file width in the turbulent similarity solution, page

79.

αw Constant representing vertical velocity Gaussian

profile width in the turbulent similarity solution,

page 79.

η = rz−1/2 Laminar similarity variable, page 12.

φ Turbulent similarity variable for vertical velocity

w, page 78.

φ0 Constant representing centreline vertical velocity

in the turbulent similarity solution, page 79.

ϑ Turbulent similarity variable for temperature T

(distinct from temperature difference in chapter 4),

page 78.

ϑ0 Constant representing centreline temperature in

the turbulent similarity solution, page 79.

ξ = r/(z − z0) Turbulent similarity variable, page 78.

f Laminar similarity variable for vertical velocity

w, page 13.

h Laminar similarity variable for temperature T ,

page 13.

h0 Constant representing centreline temperature in

the laminar similarity solution, page 72.



158 NOMENCLATURE

w0 Constant representing centreline velocity in the

laminar similarity solution, page 72.

Simulation specific parameters

Nel Number of elements in numerical grid, page 56.

Np Total number of computational points in numer-

ical grid, page 56.

p Order of polynomials for spectral element method

(SEM), page 56.

ws, us, Ts Source values of velocity and temperature, page

63.

Particle transport

H Ceiling height, page 144.

tc Time for a particle to reach the ceiling in a hybrid

laminar-turbulent plume, page 144.
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Appendix A

Running a simulation in

Nek5000

To run a simulation using Nek5000, the source code must first be downloaded

from the code repository (Fischer et al., 2008). Once installed, there are three

main files of importance used to solve the governing equations (2.17)–(2.20) in

this thesis, the .rea file, the .usr file, and the SIZE file. This appendix serves

as a brief tutorial for running a simulation of a plume in Nek5000.

A.1 The .rea file

The .rea file is used to house certain simulation parameters, the mesh and

boundary data, and a link to a restart file for continuing a simulation from a

previous time-step. At the top of the .rea file is some simulation parameters

such as Reynolds number, Péclet number, time-step, write-step, and Courant

number, as well as user-defined parameters. In the code snippet provided, the

value of the density is chosen to be 1, and the Reynolds number is defined as

100 (viscosity defines the Reynolds number if the value is negative).

****** PARAMETERS *****

2.60999990 NEKTON VERSION

3 DIMENSIONAL RUN

145 PARAMETERS FOLLOW

1.00000 p001 DENSITY

-100.000 p002 VISCOS

Directly after the parameters section we find the element data, followed by the

boundary data (below). It is here that all the information about the mesh and

in-built boundary conditions is stored. The element data section can be used,

however, to double check the number of elements in the mesh. In the example
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case below, there are 54,000 elements in the mesh, given by NEL. The mesh

data are created separately using an alternative script which will be discussed

later.

**MESH DATA** 6 lines are X,Y,Z;X,Y,Z. Columns corners 1-4;5-8

54000 3 54000 NEL ,ldim ,NELV

ELEMENT 1 [ 1a] GROUP 0

1.000000 4.474500 4.322040 0.9659260

0.6069408E-10 0.1957846E-09 1.206275 0.5193350

0.000000 0.000000 0.000000 0.000000

2.075376 4.743275 4.582087 2.006779

Finally, after the mesh data at the end of the .rea file, there is some further

information. It is here that a restart file can be included. This ability to restart

enables the simulation to be started from a previous time step (of the same

mesh), rather than starting from zero. This is important for many researchers

using high performance computing (HPC), as simulations are often limited to

a certain time to ensure that all users have equal access to the machine. A

typical DNS run of a plume in this thesis can take up to ten restarts, requiring

multiple submissions to the HPC. This simulation is restarted from the file

plume0.restart which is saved in the case directory.

1 PRESOLVE/RESTART OPTIONS *****

plume0.restart

A.2 The SIZE file

The SIZE file contains runtime parameters integral to the running of the sim-

ulation. It is here that the polynomial order of the spectral element mesh, the

dimension, and the decomposition onto separate cores (for running in parallel,

critical for use in HPC) is set. In this example, the simulation is three dimen-

sional, the polynomial order of the simulation is set to 7 (given by lx1 - 1), the

number of elements is set to 54,000, and the simulation will be decomposed to

run as 480 processes.

integer ldim ,lx1 ,lxd ,lx2 ,lx1m ,lelg ,lelt ,lpmin ,lpmax ,ldimt

! BASIC

parameter (ldim =3) ! domain dimension (2 or 3)

parameter (lx1=8)
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parameter (lxd =12) ! p-order for over -integration

parameter (lx2=lx1 -2) ! p-order for pressure

parameter (lelg =54000) ! max total number of elements

parameter (lpmin =480) ! min MPI ranks

parameter (lpmax =480) ! max MPI ranks

parameter (ldimt =2) ! max auxiliary fields

! INTERNALS

include 'SIZE.inc'

A.3 The .usr file

The .usr file is used to specify material dependent properties, set source and

forcing terms, set initial and boundary conditions, set any operations that

may run each time-step, and modify the spectral element mesh. It is in this

file that splines representing the source (2.42) and the sponge layer condition

(2.35) are set. It consists of a number of different subroutines, each performing

a different task. User-defined parameters from the .rea file can be read into

this file by defining param(i), where i is the index of the parameter. The

uservp subroutine is used to specify solution dependent material properties,

in the code snippet included the Reynolds number is artificially modified to

damp turbulent eddies that leave the domain and cause instabilities at the

boundaries.

subroutine uservp (ix,iy,iz,eg)

include 'SIZE'
include 'TOTAL '
include 'NEKUSE '

real r_min ,r_max ,z_min ,z_max

common /domsizes/ r_min ,r_max ,z_min ,z_max

c..... Reynolds number in the Sponge region

responge = param (3)

c..... Fluid density

utrans = 1.0

scoefr_z = 10/( z_max -z_min)

scoefr_r = 20/( r_max -r_min)
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radial = (x**2 + y**2) **0.5

c..... Viscosity (ifield = 1 specifies velocity)

if(ifield.eq.1) then

udiff = param (2)

$ +(1./ responge)*(1.+ derf(scoefr_z *(z - z_max)))

$ +(1./ responge)*(1.+ derf(scoefr_r *( radial - r_max)))

c..... Conductivity (ifield > 1: temperature or passive scalar)

else if(ifield.gt.1) then

udiff = param (8)

$ +(1./ responge)*(1.+ derf(scoefr_z *(z - z_max)))

$ +(1./ responge)*(1.+ derf(scoefr_r *( radial - r_max)))

endif

return

end

The userf and userq subroutines are used to set the source terms for the

momentum and temperature equations, respectively. In the code in userq the

commented lines represent the case for the stratified simulations.

subroutine userf (ix,iy,iz,eg)

include 'SIZE'
include 'TOTAL '
include 'NEKUSE '

ffx = 0.0

ffy = 0.0

ffz = temp

return

end

subroutine userq (ix,iy,iz,eg)

include 'SIZE'
include 'TOTAL '
include 'NEKUSE '

c real verVel

c integer e,eg

c e = gllel(eg)
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qvol = 0.0

c vertical_velocity = vz(ix,iy,iz,e)

c if(ifield.eq.2) then

c qvol = -verVel

c endif

return

end

The userchk subroutine is used by the user to specify any operations that

are required every time-step. For example, some initial research (that did not

make it into this thesis) included running a Lagrangian particle tracking code

to track the spread and dispersal of passive-tracers in the flow. The example

shown in the following code-snippet calls an azimuthal averaging routine on

each write-step.

subroutine userchk

include 'SIZE'
include 'TOTAL '
include 'NEKUSE '

c..... Do azimuthal averages.

if (mod(istep ,iostep).eq.0) then

if (nid.eq.0) write (6,*) 'Get azimuthal average ...'
call azimuthal_average(istep/iostep)

if (nid.eq.0) write (6,*) 'Done.'
endif

return

end

In the userbc and useric subroutines the user-defined boundary and initial

conditions are set. It is in userbc that the splines representing the source

(2.42) are read in and specified. As the code for that is fairly long, however,

included is a simple top-hat profile for the source. In the useric subroutine

shown, the initial state is set to zero (this is overwritten if a restart file is

included in the .rea file).

subroutine userbc (ix,iy,iz,iside ,eg)

include 'SIZE'
include 'TOTAL '
include 'NEKUSE '
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ux=0.0

uy=0.0

uz=0.0

temp =0.0

r = (x**2 + y**2) ** 0.5

radius = param (105)

c..... Source condition

if ( z.eq.z_min ) then

if ( R.lt.radius ) then

uz=1.0

temp =1.0

endif

endif

return

end

subroutine useric (ix,iy,iz,ieg)

include 'SIZE'
include 'TOTAL '
include 'NEKUSE '

ux=0.0

uy=0.0

uz=0.0

temp =0.0

return

end

Finally, the usrdat subroutines are used to modify the spectral element mesh

or initialise case or user specific data. Further subroutines such as those for

azimuthal averaging or Lagrangian particle tracking are included on the end

of this file, to be called from userchk.
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A.4 Meshing

Meshing in Nek5000 can be done using a tool called genbox which takes a

.box file as input which describes simple regions and the boundary conditions

applied at the edge of those regions. This is a useful tool if modelling certain

simple shapes such as a box or a pipe.

In this project, an alternative tool called pretex (combined with

genbox) is used to build the mesh. This tool is used to generate a cylindrical

domain by connecting circular outer rings onto an interior square-shaped mesh.

This technique is beneficial as it removes degenerate cells at the very centre of

the mesh, which otherwise would consist of triangles (degenerate squares) all

pointing into the centre of the cylinder.

The output of pretex is an .rea file in which relevant parameters

should be filled in the above sections. Following the generation of the mesh

using pretex, the mesh is modified by making use of a script that fans the

mesh into a cone-shape and subsequently ‘smooths’ the spectral elements to

reduce the aspect ratios of each element.

A.5 Compiling and running

Once the simulation files have been set up correctly, the environment must

first be compiled before it can be run. Initially the spectral element mesh is

decomposed onto each processor using genmap. Subsequently, to compile the

case, the command makenek plume is used, where plume is the name given to

each of the files in the case directory (e.g. plume.rea and plume.usr (SIZE is

a complete file name and has no prefix)).

Finally, to run the simulation the command nekmpi plume 480 is

used, where 480 is the number of cores on which to run the simulation in

parallel (this command will often be in a submission script for use in HPC).
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A.6 Post-processing

As the simulation runs, files of the form plume0.f00001 are generated and

numbered incrementally at each write-step. After the simulation data is pro-

duced, it can be read into other programs in order to interpret the results -

this is called post-processing. For example, to generate figure 2.9, each data

file is read into Python and subsequently reformatted from element data to co-

ordinate data, a vertical slice in the xz-plane is extracted and a filled contour

plot is produced. To generate the lower plots in figure 2.10, the azimuthally

averaged data is read into MATLAB and the vertical line in the z-direction at

the centre of the domain is extracted and plotted against time. To generate

figure 2.13 the azimuthally averaged data files are again read into MATLAB

and time averaged to compute the standard deviation over that period of time.

A.7 Data management

It is important to monitor the size of each data file and the frequency of the

write-step. By the nature of DNS, each data file can sizeable. If the write-step

is too low this can result in generating quite a serious amount of data in a

short space of time. A single Nek5000 simulation, at 54,000 elements with a

polynomial order of 7, on 480 cores could quite easily produce 80 terabytes of

data in 48 hours. When running multiple simulations for parameter or mesh

sensitivity studies, it is therefore important to be aware of the storage space

available and to only write data at the frequency required.
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Appendix B

Finite differencing scheme for

solving partial differential

equations

In this appendix, the method used for modelling the axisymmetric boundary

layer equations for plume flow in a stratification (4.29)–(4.32) is described.

Firstly, the process is introduced by considering a simple differential equation

such as the diffusion equation in section B.1, and subsequently the case fo the

axisymmetric boundary layer equations is considered in section B.2.

B.1 The Crank-Nicolson method for solving

the heat equation

The Crank-Nicolson method is a finite difference method used for numerically

solving partial differential equations. It involves making the approximation of

both first and second order derivatives in the following way:

du

dt
≈ un+1 − un

∆t
,

d2u

dx2
≈ uj+1 − 2uj + uj−1

(∆x)2
, (B.1)

where n and j represent discrete steps in time and space, respectively. A

simple linear diffusion problem in one spatial dimension, often called the heat

equation, for u(x, t) with x ∈ [x0, xL] and t ≥ 0, has the form

du

dt
= c

d2u

dx2
, (B.2)
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for some constant c, with Dirichlet and symmetry boundary conditions

du(xL, t)

dx
= 0, and u(xR, t) = uR, (B.3)

at the left and right boundaries, respectively.

To solve this numerically, the approximations in (B.1) are substituted

into the governing equations (B.2). The discretised equations can be solved

either explicitly or implicitly, the former involves representing the second order

derivative at time n, the latter at n+ 1. These two methods are also known as

the forward Euler (explicit), or backward Euler (implicit) method. The Crank-

Nicolson method takes both of these methods and averages them. Then (B.2)

becomes

un+1
j − unj

∆t
=
c

2

(
un+1
j+1 − 2un+1

j + un+1
j−1

(∆x)2
+
unj+1 − 2unj + unj−1

(∆x)2

)
. (B.4)

Grouping terms with time equal to n + 1 on the left hand side, and n on the

right, while letting α = c∆t/(∆x)2, results in,

− αun+1
j+1 + (2 + 2α)un+1

j − αun+1
j−1 = αunj+1 + (2− 2α)unj + αunj−1. (B.5)

This system can then be solved using the matrix equation,

Aun+1 = Bun, (B.6)
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for

A =



1 0 0 0 0 · · · 0 0 0 0

−α 2 + 2α −α 0 0 · · · 0 0 0 0

0 −α 2 + 2α −α 0 · · · 0 0 0 0

0 0 −α 2 + 2α −α · · · 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...

0 0 0 0 0 · · · −α 2 + 2α −α 0

0 0 0 0 0 · · · 0 −α 2 + 2α −α
0 0 0 0 0 · · · 0 0 0 1


,

B =



0 1 0 0 0 · · · 0 0 0 0

α 2− 2α α 0 0 · · · 0 0 0 0

0 α 2− 2α α 0 · · · 0 0 0 0

0 0 α 2− 2α α · · · 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...

0 0 0 0 0 · · · α 2− 2α α 0

0 0 0 0 0 · · · 0 α 2− 2α α

0 0 0 0 0 · · · 0 0 0 1


,

un =
(
un0 un1 un2 un3 · · · unm−1 unm unm+1

)T
,

for m points in space, where un0 and unm+1 represent the value of u at each

boundary. The first line of A,B represents the symmetry boundary condition

un+1
0 = un1 , and the last line represents the Dirichlet condition un+1

m+1 = unR.

B.2 Solving the axisymmetric boundary layer

equations using a theta-scheme

The axisymmetric boundary layer equations for a plume generated from a

point source (4.29)–(4.32) are given by

u
∂w

∂r
+ w

∂w

∂z
=

1

Re

(
1

r

∂

∂r

(
r
∂w

∂r

))
+ ϑ, (B.7a)

1

r

∂(ru)

∂r
+
∂w

∂z
= 0, (B.7b)

u
∂ϑ

∂r
+ w

∂ϑ

∂z
=

1

Pe

(
1

r

∂

∂r

(
r
∂ϑ

∂r

))
− w, (B.7c)
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with symmetry conditions

∂w

∂r
= 0,

∂T

∂r
= 0, u = 0, at r = 0, (B.8)

far-field conditions

w → 0, T → 0, as r, z →∞, (B.9)

and source buoyancy flux condition

2π

∞∫
0

r(ϑ+ z)w dr = 1. (B.10)

It can be seen that these equations are in a similar form to the heat

equation, thus a similar solution method can be used to find their solution.

By treating height z as the time variable from section B.1, the system can be

solved in a similar way. Firstly, discretisations of the relevant derivatives are

chosen to be

∂w

∂z
≈
wkj − wk−1j

∆z
, (B.11a)

∂w

∂r
≈ φ

wkj+1 − wkj−1
2∆r

+ (1− φ)
wk−1j+1 − wk−1j−1

2∆r
, (B.11b)

∂2w

∂r2
≈ φ

wkj+1 − 2wkj + wkj−1
∆r2

+ (1− φ)
wk−1j+1 − 2wk−1j + wk−1j−1

∆r2
, (B.11c)

where replacing ϑ for w produces the same discretisations for temperature

difference. The parameter φ (often given by ϑ but chosen here as φ so as not

to confuse with temperature difference) is the theta-scheme parameter which

controls how explicit or implicit the equations are. This is a generalisation

from the previous section where the Crank-Nicolson method was used, which

is equivalent to φ = 0.5. Focusing on the momentum equation (B.7a) for now

(as the process is almost identical for the temperature difference equation),

the equation is rearranged by expanding the bracket in the diffusion term to

write (
u− 1

Re

1

r

)
∂w

∂r
+ w

∂w

∂z
=

1

Re

∂2w

∂r2
+ ϑ. (B.12)

Values of u and w outside of derivatives also need to be discretised, and are
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chosen to be

w ≈ φwkj + (1− φ)wk−1j , (B.13a)

u ≈ φukj + (1− φ)uk−1j , (B.13b)

ϑ ≈ φϑkj + (1− φ)ϑk−1j . (B.13c)

In order to prevent too much over-cluttering of the equations, parameters

α =
1

Re

∆z

∆r
, (B.14)

α =
∆z

2∆r

(
φukj + (1− φ)uk−1j − 1

Re

1

ri

)
, (B.15)

α∗ = φwkj + (1− φ)wk−1j , (B.16)

are introduced. The discretisations (B.11) and (B.13) are substituted into

(B.12) to find

α
(
φ
(
wkj+1 − wkj−1

)
+ (1− φ)

(
wk−1j+1 − wk−1j−1

))
+ α∗

(
wkj − wk−1j

)
= α

(
φ
(
wkj+1 − 2wkj + wkj−1

)
+ (1− φ)

(
wk−1j+1 − 2wk−1j + wk−1j−1

))
+ ∆z

(
φϑkj + (1− φ)ϑk−1j

)
.

(B.17)

Then, rearranging so that k terms are on the left-hand side and k − 1 terms

on the right, and collating j terms on each side, the equation in (B.12) can be

written in matrix form (like in section B.1). The tri-diagonal slice of A and B

are hence given by

A =
(
φ(−α− α) α∗ + 2φα φ(α− α)

)
,

B =
(

(1− φ)(α + α) α∗ − 2(1− φ)α (1− φ)(−α + α)
)
.

The entries of A and B at the zero Neumann boundaries are found by noting

that the approximation of the derivative at the boundary is given by (B.11b)

and that setting this to zero (ignoring the theta-scheme) results in wk2 = wk0

(and similarly for the right-hand side). Substituting this into (B.17) results in

the diagonal and triangular entry, given by

A1,1 = α∗ + 2φα, A1,2 = −2φα, (B.18)

B1,1 = α∗ − 2(1− φ)α B1,2 = −2(1− φ)α, (B.19)
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for the left-hand boundary and

An,n = α∗ + 2φα, An,n−1 = −2φα, (B.20)

Bn,n = α∗ − 2(1− φ)α Bn,n−1 = −2(1− φ)α, (B.21)

for the right-hand boundary. The values of vertical velocity and temperature

difference at time-step k are computed by solving the matrix inversion problem

wk = A−1
(
Bwk−1 + ∆z

(
φϑk + (1− φ)ϑk−1

))
, (B.22a)

ϑk = A−1
(
Bϑk−1 −∆z

(
φwk + (1− φ)wk−1)) . (B.22b)

Before this equation can be solved, an approximation for the hori-

zontal velocity u must be found. This is done by discretising the mass conser-

vation equation

∂(ru)

∂r
+
∂(rw)

∂z
= 0, (B.23)

with similar approximations to (B.11a) and (B.11b), such that

ukj =
1

rj

(
rj−1u

k
j−1 −

1

φ

(
αu

(
φ
(
rjw

k
j − rj−1wkj−1

)
+ (1− φ)

(
rjw

k−1
j − rj−1wk−1j−1

) )))
,

(B.24)

where αu = ∆r/∆z. The system (B.22) and (B.24) is then solved for height

step k, given previous knowledge of height step k − 1. The initial conditions

for w, u, and ϑ are set using the splines (4.27) to represent the unstratified

similarity solution (2.25)–(2.28), such that the source buoyancy flux condition

(B.10) is satisfied.
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