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0.1 Abstract

The purpose of this work is to explore the validity of using smoothed particle methods for future
applications within nuclear fuel modelling. The particle nature of the method makes it attractive
for modelling the complex multi-physics environment of nuclear fuel. This work however focuses
on the fundamental accuracy of the method within the bounds of current simple fuel performance
models.

The thesis is separated into four main sections: examination of simple heat flow models, the effect
of particle arrangement, complex heat flow within thermal models of nuclear fuel and finally simple
mechanical models.

The examination of heat flow by smoothed particle methods begins with simple 1D models. Three
approaches to modelling heat flow identified in the literature are tested and the results compared
using errors calculated from the complimentary analytical models. One method is selected for
further use within this work due to achieving the lowest error in results. Particular attention
is given to the effect of boundary conditions on the models. Two main methods for handling
boundaries are explored: the use of fixed boundary particle values against the use of dynamically
assigned values. Dynamic boundaries are shown to offer reduced error compared to the fixed case.
The effect of these boundaries are further explored for 2D models under both transient and steady
state conditions. Dynamic boundaries are shown to suffer for discontinuous boundaries and more
complex boundary shapes. A method is proposed for handling these issues and is shown to offer
reduced error in the analytical model compared with the fixed boundary case.

The effect of particle arrangement is explored for the more complex circular geometry which is
applicable to models of nuclear fuel used within licensing codes. Three main particle arrangements
are tested: square lattice, triangular lattice and concentric particle rings. The effect of relaxing
these particle structures under density-dependent forces is also explored. Each of these particle
arrangements are tested using the smoothed particle equation for heat flow identified in the earlier
section. The model used is steady state heat flow in a 2D annulus and is considered due to the
existence of a well-defined analytical model. This model is considered as a good simplified model for
internally heated cladding around nuclear fuel. The triangular lattice is identified as the superior
choice for particle arrangement for further use within this work due to the low errors demonstrated
coupled with the fast construction and applicability to other geometries.

These findings are then applied to a simple 2D model of nuclear fuel, equivalent to those found
within current codes used for fuel licensing. This model is built up using simple 1D models for the
purposes of validation. Each model presented has a well-defined analytical solution and introduces
a new aspect of complexity in isolation of the others for the purposes of validation. A method
for including heat generation is proposed by modification of methods given in the literature. This
method is shown to be successful with boundary conditions being the largest contributing factor
to the error. A modification to the heat equation to handle thermal interfaces is tested. The
results although successful show room for further improvement by consideration of the boundary
position between particle pairs. Multiple equations to handle a convective boundary condition
within smoothed particle methods are proposed. One of these methods is shown to give acceptable
results however future improvements are discussed. These complexities are then combined into the
2D fuel model and the results are shown to converge. This chapter findings support the notion
that smoothed particle methods are capable of reproducing models currently in use within fuel
licensing codes and is therefore worthy of further exploration by the National Nuclear Laboratory
(NNL).
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Finally the work is extended to examine mechanical behaviours within simple nuclear fuel models.
The equations for handling thermally induced strains within smoothed particle methods are intro-
duced. The validity of these equations are first tested within 1D simple simulations using various
corrective factors: velocity smoothing, density evolution and artificial viscosity. Velocity smoothing
is found to make little impact on the simulation results, however the other two methods are shown
to be required, particularly under the use of dynamic boundaries. These findings are then applied
to a simplified cladding model with thermally induced strains in 2D. The model results are shown
to converge with the analytical results. The future scope of the implementation of mechanical be-
haviour is outlined and a path toward future implementation of smoothed particle methods within
nuclear fuel licensing codes is discussed.
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Nomenclature

α Thermal expansively

∆P Particle spacing

q̇ Heat generation per unit length

ϵ Strain

κ Thermal conductivity

λ Signal wavelength

ν Poisson’s ratio

Π Artificial dissipation term

ρ Density

σ Stress tensor

A Signal amplitude

c0 Speed of sound in the medium at density ρ0

Cp Specific heat

DT Thermal diffusivity

dt Time step

E Young’s modulus

EK Kinetic energy

EP Potential energy

H Weight function cut off length

h Coefficient of convection

i, j Particle indexes

L Length

M Total mass

mi Mass of particle i

N Number of particles
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P Pressure

Q Heat flux

ri Position of particle i

T Temperature

t time

U Residual Error

V Volume

v velocity

W Weight function

x x co-ordinate

y y co-ordinate
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The top image portion shows the cladding, the lower portion the fuel. Copyright
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1.6 An outline of the internal structure of a fuel rod. This structure will be simplified
for the conceptual model. Copyright National Nuclear Laboratory. . . . . . . . . . . 39

1.7 A diagram of the simplified fuel and cladding model . . . . . . . . . . . . . . . . . . 40

2.1 An outline the difference in domain division for finite elements vs smoothed particles.
Two examples of elements and particle points are marked i, j. As shown the domain
divisions may be non symmetric and disordered. A few examples of the overlapping
weight function support are shown in red. . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 Outlines of function shapes which satisfy the weight function criteria layed out in
Eq.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3 Left: Lucy’s weight function given by Eq.2.3. Right: the more common choice of
Monaghan’s weight function given by Eq.2.4. Both weight functions are given with
their first and second derivatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4 Left: 1D regular chain of 10 particles. Right: 2D regular lattice of 100 particles.
Both have unit mass particles in unit grid spacing. . . . . . . . . . . . . . . . . . . . 47

2.5 The estimated density given by the smoothed particle weighted sum. The expected
lattice density is ρ0 = 1g/mm3. The lattices are 1D and 2D uniform spaced lattices
with unit mass shown in Fig.2.4. The estimation is shown for Lucy’s and Monaghan’s
weight function, Eq.2.3 and Eq.2.4 respectively. . . . . . . . . . . . . . . . . . . . . 48

2.6 The SPAM interpolated temperature vs the expected temperature for λ = 100mm,
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2.7 The SPAM interpolated temperature vs the expected temperature for λ = 10mm,
A = 1K, with N = 10 particles and a smoothing length H = 3mm . . . . . . . . . . 50

2.8 The SPAM interpolated temperature vs the expected temperature for λ = 10, A = 1.
Left with N = 100 particles and a smoothing length H = 3. Right with N = 10
particles and a smoothing length H = 1. . . . . . . . . . . . . . . . . . . . . . . . . . 51
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2.9 The SPAM interpolated temperature vs the expected temperature for λ = 10mm,
A = 1K. Left with N = 10 particles. Right with N = 100 particles. Both shown for
a range of smoothing length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.10 The SPAM interpolated temperature reduced error vs the smoothing length per
wavelength of the underlying function to be interpolated. The colouring highlights
the relative smoothing length (per particle spacing), set to highlight points within the
range 1 < H/∆P < 1.5 left and 1.5 < H/∆P < 2.5 right where all point 1.5 > H/∆P

are removed. Values less than this are shown in dark blue, values more in dark red.
The test is completed for Lucy’s weight function. . . . . . . . . . . . . . . . . . . . . 53

2.11 The SPAM interpolated temperature reduced error (shown left) and temperature
gradient reduced error (shown right) vs the smoothing length per wavelength of
the underlying function to be interpolated. Left is restricted to only show values
of 3.0 < H/∆P . Right the colouring highlights the relative smoothing length (per
particle spacing), set to highlight points within the range 1.5 < H/∆P < 2.5. Values
more than this are shown in dark red. The test is completed for Lucy’s weight function. 54

2.12 The SPAM interpolated temperature reduced error vs the smoothing length per
wavelength of the underlying function to be interpolated. The colouring highlights
the relative smoothing length (per particle spacing), set to highlight points within
a reduced range range. Values more than this are shown in dark red, less in dark
blue. The tests are completed for Monaghan’s weight function. Bottom right shows
the error for the gradient of temperature. . . . . . . . . . . . . . . . . . . . . . . . . 56

2.13 An illustration of the deficient number of particle points within a rangeH of particles
approaching the boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.14 The interpolated density profile for an SPAM material with no boundary conditions
enforced. The system is composed of N = 100 particles with unit mass and grid
spacing such that the expected density is ρ0 = 1g/mm3 . . . . . . . . . . . . . . . . 65

2.15 A discontinuous piece wise temperature profile given by T = x : −50 < x < 0
and T = −50 : 0 < x < 50 is interpolated at 100 points with Eq.2.13, shown left.
The negative of the interpolated temperature gradient calculated with Eq.2.16 is
shown right. The interpolated values are shown in red, the expected profile in blue.
N = 100 SPAM particle points and periodic boundary conditions are used. . . . . . 67

2.16 An example of the ‘tile like’ nature of periodic boundary conditions. Only one
square is simulated however this small subsection acts as if in the bulk of a much
larger system through the use of periodicity. . . . . . . . . . . . . . . . . . . . . . . . 70

2.17 Visualisation of fixed boundary conditions. The fixed particle method has multiple
different methods of assigning particle locations; for all methods values assigned to
velocity and temperature are fixed and determined by the boundary associated with
each particle. Particle positions may be assigned relative to system particles close
to the boundary (Left) or in a regular lattice (Right). . . . . . . . . . . . . . . . . . 71

2.18 Visualisation of mirror boundary conditions. The mirror particle positions are de-
fined by system particles close to the boundary and their properties by relations that
define exact values on the system boundary. . . . . . . . . . . . . . . . . . . . . . . . 72

2.19 Visualisation placement of mirror boundary particles. Extra care and consideration
is required when dealing with system corners to achieve the desired properties on
the boundaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
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2.20 An example of a simple harmonic oscillator is the pendulum shown here. The accel-
eration experience by the pendulum is proportional to its distance from the centre
line x and always acts towards the centre line. It is assumed no drag forces act on
the pendulum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.21 Euler’s time integration scheme for the example of a simple harmonic oscillator run
for approximately 3 periods of motion. HereQ is the space coordinate, P momentum.
The system energy (Left) and phase space (right). . . . . . . . . . . . . . . . . . . . 76

2.22 Heun’s time integration scheme for the example of a simple harmonic oscillator run
for approximately 3 periods of motion. Here Q is coordinate, P momentum. The
system energy (Left) and phase space (right). . . . . . . . . . . . . . . . . . . . . . . 77

2.23 Runge-Kutta time integration scheme for the example of a simple harmonic oscillator
run for approximately 3 periods of motion. Here Q is coordinate, P momentum. The
system energy (Left) and the phase space (right) . . . . . . . . . . . . . . . . . . . . 78

2.24 Illustration of how the cell division code splits the domain into cells of length and
width H to allow for faster computation of pairs within range H. . . . . . . . . . . . 79

3.1 Fourier’s ring model. The radius R is fixed and the temperature around the circum-
ference of the system is only a function of the angle T (θ), thus the system can be
modelled as 1D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2 A chain of 1D system particles with unit spacing ∆xp = 1mm and thus ρ0 = 1g/mm3,
used to initialise the SPAM solution to the Fourier ring model. The chain of particles
is length L with periodic boundaries enforced at x = ±L

2 . . . . . . . . . . . . . . . . 85
3.3 SPAM results vs analytical results for the Fourier ring model. Left shows temper-

ature plot, right shows heat flux. Top shows thermal conductivity κ = 1gmm/s3K,
bottom κ = 10gmm/s3K. All SPAM values shown are calculated as the smoothed
interpolated values. Each is shown for a decay time of 0, 1 and 10 half lives. All
times are given in seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4 SPAM temperature results vs analytical results for the Fourier ring model for thermal
conductivity κ = 10gmm/s3K. The ‘odd-even’ instability is shown by the initial and
final particle temperatures for which the small perturbation never decays. All SPAM
curves shown are calculated as the smoothed interpolated values. Each is shown for
a decay time of 0, 1 and 10 half lives. These curves show the smoothed observation
by SPAM interpolation of the non-smoothed particle values. . . . . . . . . . . . . . . 88

3.5 An outline of how fixed and mirror system boundaries can be enforced in a 1D
smoothed particle simulation. The simplified 1D material is represented as a chain
of N particle points with initial temperatures Ti. Each end of the system is placed
in contact with an effectively infinite heat bath. In the fixed case this is modelled
as constant particle temperatures, shown as TC . For mirror conditions we enforce
temperature at the boundary by calculating the boundary particle temperature Ti′ =
2TH −Ti at each time step. For our model we take the simplified case TC = TH = 0K. 90

3.6 SPAM results vs analytical results for 1D fixed boundaries for thermal conductivity
κ = 10gmm/s3K. The initial function used is T = 1K. The temperature is shown
here. All SPAM curves shown are calculated as the smoothed interpolated values.
Each is shown for a decay time of 0, 1 and 10 half lives. The residual error between
the curves is maximally ≈ 4%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
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3.7 SPAM results vs analytical results for 1D fixed boundaries for thermal conductivity
κ = 10gmm/s3K. The initial function used is T = 1K. The heat flux is shown here.
All SPAM curves shown are calculated as the smoothed interpolated values. Each
is shown for a decay time of 0, 1 and 10 half lives. The residual error between the
curves is maximally ≈ 4%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.8 SPAM results vs analytical results for 1D mirror boundaries for thermal conductivity
κ = 10gmm/s3K. The initial function used is {Ti} = 1K. Temperature plot shown
here. All SPAM curves shown are calculated as the smoothed interpolated values.
Each is shown for a decay time of 0, 1 and 10 half lives. The residual error between
the curves is maximally < 1%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.9 SPAM heat flux results vs analytical results for 1D mirror boundaries for thermal
conductivity κ = 10gmm/s3K. The initial function used is {Ti} = 1K. All SPAM
curves shown are calculated as the smoothed interpolated values. Each is shown
for a decay time of 0, 1 and 10 half lives. The residual error between the curves is
maximally < 1%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.10 Temperature distributions for the model set out in Sec.3.3 with initial temperatures
{Ti} = 1K, thermal conductivity κ = 10gmm/s3K. The residual error between the
curves is maximally < 2.4%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.11 Heat flux distributions for the model set out in Sec.3.3 with initial temperatures
{Ti} = 1K, thermal conductivity κ = 10gmm/s3K. The residual error between the
curves is maximally < 2.4%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.12 SPAM results vs analytical results for 1D fixed boundaries for thermal conductivity
κ = 10gmm/s3K. First order 1D kernel corrections have been included in the SPAM
simulation. The initial function used is T = 1K. Temperature plot shown here.
All SPAM curves shown are calculated as the smoothed interpolated values. Each
is shown for a decay time of 0, 1 and 10 half lives. The residual error between the
curves is large, however the steady state solution converges with reduced errors. . . . 98

3.13 SPAM results vs analytical results for 1D fixed boundaries for thermal conductivity
κ = 10gmm/s3K. First order 1D kernel corrections have been included in the SPAM
simulation. The initial function used is T = 1K. Heat flux plot shown here. All
SPAM curves shown are calculated as the smoothed interpolated values. Each is
shown for a decay time of 0, 1 and 10 half lives. The residual error between the
curves is large, however the steady state solution converges with reduced errors . . . 99

3.14 SPAM temperature results vs analytical results for 1D fixed boundaries for ther-
mal conductivity κ = 10gmm/s3K. The SPAM simulation is run with Monaghan’s
alternative description of temperature evolution 3.48. The initial function used is
T = 1K. All SPAM curves shown are calculated as the smoothed interpolated values.
Each is shown for a decay time of 0, 1 and 10 half lives. . . . . . . . . . . . . . . . . 100

3.15 SPAM results vs analytical results for 1D fixed boundaries for thermal conductivity
κ = 10gmm/s3K. The SPAM simulation is run with Hoover’s alternative description
of temperature evolution Eq.3.60. The initial function used is T = 1K. Temperature
plot shown here. All SPAM curves shown are calculated as the smoothed interpolated
values. Each is shown for a decay time of 0, 1 and 10 half lives. . . . . . . . . . . . 102

3.16 The spatial distribution of the error for SPAM results vs analytical results for 1D
fixed boundaries for thermal conductivity κ = 10gmm/s3K. The SPAM simulation
is run with Hoover’s alternative description of temperature evolution Eq.3.60. The
results are shown for both temperature and heat flux and are calculated for a decay
time of 10 half lives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
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3.17 SPAM results vs analytical results for 1D corrective methods for thermal conductivity
κ = 10gmm/s3K. The SPAM simulation is run for fixed and mirror boundaries.
In each case the simulation is also run with artificial conductivity as well as each
alternative description of temperature evolution Eq.3.48 and Eq.3.60. The initial
function used is T = 1K. Above shows the residual errors in the temperature plot.
All SPAM values are calculated as the smoothed interpolated values. Each is shown
for a decay time of 0, 1 and 10 half lives. . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.18 SPAM results vs analytical results for 1D corrective methods for thermal conductivity
κ = 10gmm/s3K. The SPAM simulation is run for fixed and mirror boundaries.
In each case the simulation is also run with artificial conductivity as well as each
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SPAM values are calculated as the smoothed interpolated values. Each is shown for
a decay time of 0, 1 and 10 half lives. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
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temperature Tc = 0K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.20 The analytical solution for the transient heat flow in a slab as shown in Fig.3.19 is
plotted for the slice y = 0 as given by Eq.3.63. Time steps are given in powers of 10. 107

3.21 The 2D particle arrangement used for SPAM simulations of transient heat flow. The
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diamonds are the fixed boundary particles, restricted from evolving in time. . . . . . 109

3.22 Analytical solution to 2D transient heat flow given by Eq.3.63 is compared with
SPAM solution. Top left given by Eq.3.92. Top right given by Eq.3.48. Both
have artificial terms included. Bottom given by Hoover’s evolution Eq.3.66. Two
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results. Bottom Left is calculated with Eq.3.70, right with Eq.3.69. Artificial terms
are NOT included. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
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are shown for t = 100s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
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the 4 time steps shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
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perature TC , the other side at TH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.26 The solutions of Eq.3.90 for temperature as well as its counterpart heat flux equations
in both the x and y directions for the 1D slice through the system at y = 0mm. The
solutions were generated using the first n ≤ 100 frequencies to create a smoothed map.116
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3.28 The SPAM solutions of the 2D heat tile problem shown in Fig.3.25 for temperature
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3.29 The SPAM solutions of the 2D heat tile problem shown in Fig.3.25 for temperature
shown left and heat flux both the x and y directions shown right for the 1D slice
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conditions with Hoover’s evolution given by Eq.3.66 with factor Eq.3.70 . . . . . . . 120
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3.38 Fourier-Tchebichef moments for the ANSYS solution plotted in the x-axis vs the
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3.40 Fourier-Tchebichef moments for the SPAM solution with mirror boundaries com-
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4.5 Two examples of uniform density lattices which can be infinitely tiled. Top the
square lattice, bottom the triangular lattice . . . . . . . . . . . . . . . . . . . . . . . 141

4.6 The unit cell for the triangular lattice. Each particle included is on a vertex between
4 cells and thus the cell is occupied by only one particle in total. . . . . . . . . . . . 142
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4.8 The total set of interpolated temperatures for the SPAM solution to the radial heat
flow problem in Fig.4.1 with fixed boundaries. Left shows the square lattice results,
right shows the relaxed square lattice results. . . . . . . . . . . . . . . . . . . . . . . 146
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4.27 SPAM interpolated temperature profile for N > 10, 000 particle in a triangular
particle arrangement formation with mirror boundaries. . . . . . . . . . . . . . . . . 161

5.1 An outline of the simple 1D convection model being used. One end of the material
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Chapter 1

Motivation &
Review of Fuel Performance
Modelling

1.1 Motivation

Significant change has taken place since the first commercial-scale nuclear reactors were proposed
in the UK in 1955 [1, 2]. Now with the fourth generation phase of nuclear reactors on the horizon
both in the UK and worldwide there is widespread interest in new fuel compositions and reactor
designs. The novel nature of these proposals means that robust testing must take place before any
new fuel composition or reactor design can be accepted for commercial use. Proposals have already
been made within the UK for advanced modular reactors [3]. For these designs to be put into
use after development, safety cases must be created. Of particular note is the Rolls Royce Small
Modular Reactor (SMR) development program which is ‘forecast to create 40,000 regional UK jobs
by 2050 and generate £52bn in economic benefit’ [4]. This SMR program will require creation of
new licensing codes to satisfy the regulator, an issue on which the National Nuclear Laboratory
(NNL) will undoubtedly need to consult.

The nuclear safety technical assessment guide [5] states that ‘computer code analysis of plant
design and operation forms an important part of a modern safety case’. Computer based modelling
will therefore play an integral part in the licensing of GEN IV reactors. It is therefore an oppor-
tunity for current fuel performance codes (FPCs) to be reviewed and new methodologies proposed
and explored.

The codes currently used within British nuclear fuel licensing are primarily 1D codes such as
ENIGMA [6]. These codes primarily track the material temperature, stress and strain. The mod-
els assume axial symmetry which allows the circular fuel rod geometry to be represented as 1D.
This assumption disregards a large amount of the complex multi-physics phenomenon which occurs
within nuclear fuel. This means that there is a great amount of improvement which can be made
to the predictions of the next generation of fuel licensing codes if some or all of these more complex
behaviours are added.
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Nuclear fuel operating within a reactor represents an extremely complex environment [7]. The fuel
assembly usually consists of many fuel pins within an outer sleeve as shown in Fig.1.1 and Fig.1.2.
Each fuel pin contains many fuel pellets stacked on top of each other with an outer cladding tube.
The process of nuclear fission which occurs within the fuel elements causes fission products to be
produced. These can be heavy elements such as plutonium and caesium or light elements such as
hydrogen gas. The process of fission generates heat. This heat causes the thermal and mechanical
properties of the fuel material to change, however this is accompanied by the change in properties
due to the conversion of the fissile elements to fission products. This conversion also affects the
micro structure as grain densification can take place as well as micro bubbles and micro cracks
forming due to the fission gas. These can then form into cracks due to pore migration and a build
up of gas. The conversion of the fissile elements is measured as ‘burn up’. Refuelling occurs on
a time scale of years which mean burn up varies very slowly compared to the time scales of the
mechanical issues of the fuel element. This complexity is taken further as the fuel distorts outward
into an ‘hourglass’ shape and therefore applies an uneven distribution of pressure on the cladding.
The metal of the cladding is also effected by the cycles of ramping up and down the power output
of the reactor which causes the heat to vary. This can cause strain softening and creep. The final
result is that if not monitored and correctly predicted, then this behaviour can cause cracking of
the fuel cladding and the release of active material.

This complexity of nuclear fuel means that there are benefits and opportunities for the production
of more complex modelling methods within the licensing codes. Many modern nuclear fuel perfor-
mance codes (FPCs) have already been developed to examine one or multiple of the behaviours
discussed. Unfortunately however many modern nuclear fuel performance codes are poorly adapted
to fast modelling of multi-physics phenomena. This is due mainly to the Finite Element Method
(FEM) mathematical framework onto which they are constructed. FEM, although a well estab-
lished and reliable modelling method, requires re-meshing of the system to be completed when
modelling phenomena such as crack propagation and bubble formation, both of which are impor-
tant for initial fuel evaluation by FPCs. FEM also requires large amounts of computation when
dealing with material interfaces, also essential to full fuel pin modelling.

One potential alternative method to be explored in this work is Smoothed Particle Applied Me-
chanics (SPAM) also referred to as Smoothed Particle Hydrodynamics (SPH). SPAM offers the
potential for a significant reduction in computational time due to the reduction of the governing
Partial Differential Equations (PDEs) to Ordinary Differential Equations (ODEs) in its formula-
tion. The scope of this reduction was recently demonstrated with the SWIFT code, a massively
parallel code, with task based parallelism, created primarily for Astrophysical modelling [9] as well
as the fast Graphics Processing Unit (GPU) based codes of the DualSPHysics [8] program capable
of running on a basic office workstation. This work aims to explore the agreement of a variety of
SPAM models with increasing complexity with both analytical solutions and models created using
FEM, such as those currently used within FPCs or for the validation of current FPCs.
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Figure 1.1: Two different fuel assemblies designed for different nuclear reactors. Magnox (left) and
PWR (right). Copyright National Nuclear Laboratory.

SPAM has the potential to bring more efficient modelling methods in the cases of crack propagation
and interactions across material interfaces. In the case of nuclear fuel these phenomena can be seen
at every length scale of interest. Under the FRA-ANP specification for European RG MOX the
mean grain size is limited to 50µm [10]. Molecular dynamics studies of micro-crack initiation from
Helium bubbles in UO2 fuel have already been carried out by CEA researchers at sub-grain scales
for bubbles up to a diameter of 10µm [11]. At the far end of the spectrum, a typical AGR fuel
rod assembly (Fig.1.2) is approximately 1m in length with each pellet 14.5mm in diameter and
approximately the same length [12]. At this scale an example of work that has already been carried
out is the examination of crack formation under cyclic loading in individual pellets using peridy-
namics [13]. Similarly some work has been done examining crack formation due to Pellet Cladding
Mechanical Interactions (PCMI) [14]. Within all of these studies the main challenges presented are
the material interfaces: grain boundaries, gas bubble grain interfaces, cladding pellet interface with
gas, new surface interface generation in crack formation. The particulate nature of SPAM offers
the potential for more robust simulation of these interfaces, however such simulations will require
multi-physics phenomena which will present certain challenges as yet unexplored within SPAM.

Unfortunately before SPAM can be applied at the level of modern FPCs, more simple valida-
tion cases must be considered. As already discussed the current standard of licensing codes does
not exceed 1D. ENIGMA has seen some further developments to include whole core simulations [15]
however this is still achieved with a single dimension and simplified physics used to represent each
individual element within the core. It is therefore important that if SPAM is to be seriously consid-
ered for further development within FPCs its accuracy at reproducing simple models such as those
demonstrated by the licensing standards of ENIGMA must be examined and these simple models
validated.
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Figure 1.2: A look inside a typical fuel assembly. Copyright National Nuclear Laboratory.

1.2 Fuel Performance Codes

Nuclear Fuel rod Performance Codes (FPCs) are produced and used by academic institutions,
government nuclear bodies and nuclear fuel vendors amongst others. The primary function of
FPCs is to predict the behaviour of fuel rods under either normal operating conditions or accident
conditions. Examples of codes used for simulating accident conditions are FRAPTRAN (USA),
TRANSURANUS (Germany) and SCANAIR (France). On the other hand codes used for simulating
normal operation conditions are BISON (USA), COMETHE (Belgium) and ENIGMA (UK) [16].
Due to the nature of the research being carried out, the methods of continuum mechanics being
developed may have future applicability to both these fields of FPCs however only those designed
for normal operating conditions will be examined and referred to from here onward. The reason
for this is that data surrounding the normal operation of reactors is more prevalent and useful data
within the same regimes can be produced with the tools available within the academic environment.

To understand the problems faced by these FPCs, and thus the scope for improvement that is
the purpose of this research, it is first helpful to examine the general basis of current fuel perfor-
mance codes and the various features and capabilities that have already been successfully imple-
mented.

1.2.1 Basis of Current FPCs: Continuum Mechanics

The vast majority of FPCs are continuum mechanics based such as BISON, FALCON and ENIGMA
[17–19]. Continuum mechanics models a material as continuous matter, ignoring the true particle-
like nature of the atoms which make up the material. The material being modelled must therefore
be above an appropriate length scale, usually defined as the scale at which there is no density
variation between microscopic volumes being considered. For solids this is roughly on the order
of 1µm [20]. From here the continuum description models variables such as density, velocity and
energy density as fields, requiring them to be continuous everywhere within the medium. These
fields are then converted into the fields of interest such as the stress, or heat flux, by means of
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the constitutive relations [21]. The simplest example of these constitutive relations is the ideal
gas law, but many exist. From here the fields generated by the constitutive relations coupled with
the equations of motion allows the evolution of the original field variables to be determined. This
means the system evolution in continuum mechanics is dependant on partial differential equations
(PDEs) unlike the ordinary differential equations (ODEs) found in Molecular Dynamics (MD).
The methods employed to solve these PDEs take two forms: Finite Element Modelling (FEM)
and Finite Difference Modelling (FDM). The principle difference is that FEM uses weighted resid-
uals and shape functions, where as FDM approximates derivatives as finite difference quotients. [20].

One of the most advanced continuum based FPCs currently in use is the BISON fuel performance
code developed by Idaho National Laboratory (INL). The code is FEM based, object oriented (us-
ing the MOOSE framework), massively parallel and has been under development since 2009. The
capabilities of this code represent some of the most advanced and robust currently available to
the industry, however it is not accepted as a licensing code for safety cases of nuclear fuel. This
is important to note as the multi-physics phenomena demonstrated by this code make validation
difficult. The focus of this work will therefore be mainly towards rigorous validation of smoothed
particle methods and demonstration of the inherent errors within the method. The full technical
details of the BISON code are laid out in [17], however a more accessible description of the capa-
bilities with example cases is given in [22] and will be referred to extensively throughout this section.

1.2.2 Thermodynamic Modelling

Accurate prediction of the thermodynamic behaviour of fuel pellets has always been one of the
primary concerns for FPCs. Standard UO2 fuel (as well as other oxide fuels) has a poor ability to
conduct heat causing very high temperature gradients when considering the entire reactor system.
The FPCs are used as a tool to help ensure that no fuel melting occurs and that the internal fuel
rod pressure is kept below safe limits [16].
The thermal conductivity of UO2 below ∼ 1200K has long been known and is dominated by
contributions from lattice conduction (phonons) with the general form [23]:

κph(T ) =
1

a+ bT
(1.1)

Here a corresponds to phonon scattering by lattice imperfections and b corresponds to phonon-
phonon scattering. Experimental data for higher temperatures has long been studied [24], and is
attributed to electronic contributions of the form:

κel(T ) =
C

T 2
e
− W

kBT (1.2)

where C and W are related to the formation energy and migration enthalpy of semiconducting
carriers. These ideas are included within this report simply to demonstrate the complicated tem-
perature dependence of thermal conductivity within nuclear fuel. It is heavily dependant on the
amounts, types and distributions of lattice impurities. Impurities and imperfections in the UO2

matrix caused by irradiation include but are not limited to production of fission products such as
caesium, generation of fission gasses such as helium, bubble formation by pore migration (Fig.1.3),
crack formation and propagation and not forgetting any initial imperfections due to manufacturing.
This means the thermal conductivity changes over time and depends on a large number of variables
which is problematic for FPCs.
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Figure 1.3: A photo of material defects forming in a fuel pellet after irradiation. Copyright National
Nuclear Laboratory.

Some extensive theoretical work has been done accounting for fuel burn up and very high temper-
ature schemes as well as for the addition of plutonium into the lattice to create so called MOX
(Mixed OXide) fuel [25–28]. Alternatively thermal conductivity can be calculated through sim-
ulations by considering models on the scales of the pore structures seen within irradiated UO2.
Different simulation techniques applied to this include molecular dynamics [29], Monte Carlo Potts
model [30,31] and phase field models [32]. The Potts and phase field models do not directly calcu-
late thermal conductivity but rather the grain structure of the fuel for given initial structure and
irradiation. This structure can then be used with further simulation techniques to give a value of
thermal conductivity across the test structure.

The BISON code uses one of these more recently developed methods to simulate thermal con-
ductivity in-situ, namely the phase field model. The phase field model was originally developed
to simulate the evolution of microstructures, with a wide range of applications including solidifica-
tion, grain growth and coarsening, crack propagation, surface pattern formation and electromigra-
tion [33]. This was later adapted specifically to model grain growth and pore migration in irradiated
materials [32]. The Potts model shows equal success in this task [34] however it is reasonable to
assume that the phase field model was chosen due to it being continuum based allowing adaptation
of the MOOSE framework for its implementation in BISON.

The structure produced by the phase field model can be used as an effective test sample for the
thermal conductivity of the fuel pellet. The general idea is that each phase in the model (for a
simple model the phases of the pellet would simply be UO2 and fission gas) is assigned a thermal
conductivity based on the complex functions derived in the theory. A new continuum simulation
is then run with each side of the sample held at two different constant temperatures. This allows
an effective thermal conductivity for the whole sample to be calculated based on the steady state
conductivity relation [35]:

∇ ·
(
κ′(r)∇T

)
= 0 (1.3)
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The thermal conductivity that arises from this is then fit using a dynamic curve fitting method to
account for the randomness of the structure predicted by the phase field model. This process can
be completed for each time step within the FPC, accounting for the changing burnup, with the
result informing the next step in the model. A full methodology for multiscale modelling of this
kind has been developed [36], and has been implemented in the BISON code using the MARMOT
framework [37]. This allows BISON to capture physics taking place from the scale of micro seconds
to years through the coupling of the two models.

All of this demonstrates the same fundamental idea. Accurate thermodynamic modelling of nuclear
fuel requires the use of multi-physics modelling. This is well beyond the scope of the current
licensing codes used for FPCs. As outlined work has been done to implement these concepts
in various fuel models in isolated cases. The case for smoothed particle modelling within FPCs is
therefore strengthened as the decoupling of PDEs to ODEs achieved by the method allows for easier
implementation of multi-physics phenomena. The thermodynamic modelling used within this work
will widely assume constant thermal conductivities in order to validate the models against existing
analytical ones however the full thermodynamic modelling described here has the potential to be
implemented in future models, making the method sufficiently robust to future improvements.

1.2.3 Mechanics Modelling

Correctly modelling the mechanical behaviour within nuclear fuel rods is of equal importance to
the thermodynamics. The pellet is prone to cracking both mid-height and radially (Fig.1.4) which
places additional strain on the cladding as does any manufacturing defect within the pellet. The
Pellet Cladding Mechanical Interaction (PCMI) can place large amounts of stress on small areas
of the cladding that can result in fracture (Fig.1.5). If the cladding fractures, the fuel rod is said
to have failed and the result is the dispersion of radioactive material into the reactor core. For the
best case this still makes the process of changing the fuel rods more expensive, time consuming
and risky. For this reason there has been much interest recently in developing the ability of FPCs
to model explicit crack formation.
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Figure 1.4: A photo of cracks formed in a UO2 fuel pellet after irradiation. Copyright National
Nuclear Laboratory.

The BISON code can be used in spherically symmetric (1D), axisymmetric (2D) or full 3D geom-
etry modes. BISON fuel pellet models for UO2 already include swelling due to solid and gaseous
fission products, densification, thermal and irradiation creep and fission gas generation and release.
BISON also contains models for fracture via relocation or smeared cracking [38].

Smeared cracking analysis (SCA) was originally developed for analysis of concrete pressure ves-
sels [39]. SCA is FEM based and uses the calculated stress and strain values at each time step
for each element to define crack formation and propagation within the model. A criterion on the
stress and strain values is derived to define the values for which the material fails. The original
model considers both yielding and cracking criteria. For each cracked and yielding element new
stiffness and loads are calculated using equilibrium equations derived for each state. This then
allows the FEM model to deform each element relative to whether or not it has failed. The method
is known as smeared cracking as it does not directly show elements breaking apart but instead
allows elements to deform to a far greater extent to mirror that of a cracking element.

Despite its success, the original formulation of SCA has many flaws. Over time more advanced
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models have been produced with smeared cracking to address these. In its basic state SCA does
not account for the orientation of crack formation which leads the model to deform equally in all di-
rections from the cracked element. Several methods have been implemented to overcome this. One
such model created in the software ALCYONE (developed by CEA in France) calculates the yield
stresses for elements in 3 principal directions, the unit vectors of the chosen co-ordinate system,
so that the element stiffness may only be modified in the directions for which the yield strength is
reached, thus giving orientation to the crack formation within the element [14].

The same study implemented a crack closure criterion. Due to cyclic thermal loading of fuel
pellets in reactors, crack closure can occur. The implementation allows for cracks to close as the
strain on them reduces. However, a memory of the crack remains within the lower tensile strength
of the element. The model only allows crack closure in the absence of stress normal to the plane of
the crack - a limitation that is not present in reality but allows for easier implementation.

Figure 1.5: A photo of damage within the micro structure due to PCMI as well as irradiation.
The top image portion shows the cladding, the lower portion the fuel. Copyright National Nuclear
Laboratory.

The method of smeared cracking has seen many developments and wide ranging success, including
within FPCs such as BISON. The core problem of smeared cracking is one which effects all cracking
models within FEM - the mesh. In FEM, a mesh is the separation of the overall material geometry
into tessellating elements on which the PDEs are evaluated. To properly evaluate areas of high
stress and strain within FEM it is necessary to refine the mesh within the effected area. However,
as is discussed in the study within ALCYONE [14], the material laws for softening required for SCA
are mesh size dependent which restricts the model mesh size and variation. This also means that
knowledge of crack locations ideally should be known ahead of time within the models - to allow for
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proper evaluation of the elements in question. The amount the mesh deforms is also limited. This
is due to the fact that the evaluation of the PDEs requires that the mesh not be discontinuous,
thus limiting how far it can deform before the calculations begin to diverge.

The complex mechanical modelling described here is beyond the scope of the smoothed particle
models produced for this work, however the deep discussion is included to again highlight the true
complexity of the problem of nuclear fuel modelling. It is believed these complexities can be suc-
cessfully implemented into advanced smoothed particle models within future research which makes
the smoothed particle method an appealing avenue to explore ahead of GEN IV reactors.

1.2.4 Scope of Thermodynamic and Mechanical Modelling

The above review highlights not only the complexity but also the importance of both thermody-
namic and mechanical modelling of nuclear fuel. The focus of the models created within this work
will be the validation of thermodynamic and mechanical modelling. For any new methodology to
be accepted as a licensing code within the safety case for new reactor technology it must first be
validated for simple and well-defined models. The method must be shown to accurately predict the
temperature and stress profiles occurring within materials with any sources of error explored and
taken into account. Material and thermal properties are assumed to be independent of the state
variables T, P as well as any stress and strain rates in all validation work reported here.

1.3 Alternative Modelling Methods

A large amount of the problems found in current FPCs are due to the choice of modelling method
used. The problems discussed in the previous section are fundamentally absent, either in part or
entirely, from alternative modelling methods. Some success has already been achieved in showing
fuel pellet crack patterns with continuum based peridynamics. Monte Carlo methods have already
been discussed as an alternative to phase field models for the evaluation of pore structure and grain
growth. Molecular Dynamics (MD) has been successfully applied to model neutron flux and thermal
conductivity and Smoothed Particle Applied Mechanics (SPAM) has been demonstrated to have
inherent failure. Here these methods are discussed in order to justify the chosen exploration and
application of smoothed particle methods for the simulations presented within this thesis.

1.3.1 Peridynamics

The original reformulation of elastic theory known as peridynamics by Silling was created with the
aim of dealing with discontinuities arising from solid mechanics such as crack formation [40]. The
issue with discontinuities in continuum methods such as FEM arises from the PDEs which need to
be evaluated to evolve the system. To circumvent this issue peridynamics uses integral formula-
tions to calculate the forces which evolve the system rather than the standard differentiation. This
method allows many types of discontinuities to be modelled without the use of special techniques
such as those detailed in SCA.

Peridynamics has already been applied to the case of fuel pellet fracture with good initial results.
It has been shown with a model created in LAMMPS [41] that peridynamics can give reasonable
estimates of crack distributions when only parameterised by the fracture strain of UO2 [13]. The
same study showed however that the correlation of crack count with that of Post Irradiation Data
(PID) were less reliable as the damaged volume of the pellet overtook that of the undamaged volume.
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A more recent study developed the more advanced Thermo-Mechanical Bond-Based PeriDynamics
model (TM-BB-PD) [42]. This model involves multi-rate time integration to account for the differ-
ent time scales on which thermal and mechanical behaviours can effect deformation and fracturing
within the fuel pellets. The study produced data with good agreement to PID. It was shown that
radial cracking occurs during power ramps as opposed to circumferential cracking which occurs
during power drops. The model, although more advanced, operated only in 2D. The complexity of
the equations used make the run time of a fully 3D realised version potentially problematic.

1.3.2 Molecular Dynamics

MD follows the basic principles of Newtonian mechanics. A potential function is defined, along with
initial and boundary conditions for the system, and from this the motions of all particles within the
system can be calculated. The particulate nature of MD gives rise to inbuilt failure mechanics; as
the particles of the system are pulled apart by thermal and mechanical physics within the system,
the forces acting on the particles decrease allowing crack formation. MD simulations offer faster
computations of each time step due to the system being defined by ODEs rather than the PDEs
of continuum FEM. MD simulations however are limited by scale. The particulate nature of MD
is used for atomistic simulations and although systems of 1 billion particles are achievable with
current computing technology, if we assume 2D simulations of solids with atomic spacing on the
order of 1Å, this means we are limited to material squares on the order of 1µm at the limit of
feasible simulation times. Similarly the time steps represent those on the order of atomistic events.
This is problematic for simulating nuclear reactors which can be operated for multiple years before
refuelling.

One appealing element of MD simulations is however that the transport properties are emergent
and can thus be calculated from the simulation. To this effect MD has been used to calculate
the thermal conductivity of UO2 from a more theoretical standpoint [43] as well as with consid-
eration of the impurities due to manufacturing and irradiation [44]. Similar studies have been
completed to calculate other transport coefficients from MD through the use of the Green-Kubo
theory and nonequilibrium simulations. For instance the SLLOD equations of motion are used
to create non-equilibrium shear flow from which shear viscosity and bulk viscosity can be cal-
culated [45]. Such properties can be used to construct stress tensors, for example in smoothed
particle simulations, which are important to the study of fracture among other things. A similar
examination of transport coefficients has been studied within smoothed particle methods due to
its particulate nature, however the difference in scale means that these transport coefficients are
artificial, thus the true transport coefficients are still required to inform the evolution of smoothed
particle simulations [46].

MD has already seen successful applications to nuclear fuel [47]. It has been proposed as an essential
part of multi-scale modelling for nuclear fuel with material and thermodynamic properties obtained
from MD modelling and used in higher level continuum modelling similar to the idea of phase field
models presented earlier. These MD models have already been applied to the problem of GEN IV
reactors [48]. It is believed that the development in this area with respect to nuclear fuel modelling
is already demonstrating the potential of MD models for nuclear fuel applications. Therefore it
may be considered a valid extension of this work to attempt to couple MD and SPAM simulations
of nuclear fuel with SPAM providing the continuum scale modelling. SPAM has seen little to no
development specific to the area of FPCs however and thus the demonstration of the application
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of this method to nuclear fuel is deemed to be more beneficial.

1.3.3 Smoothed Particle Methods

Smoothed Particle Hydrodynamics (SPH) was first developed in 1977 by three researchers for ap-
plications to astrophysics problems [49, 50]. Throughout this work we refer instead to the name
SPAM. Hoover coined the term SPAM (Smoothed Particle Applied Mechanics) to refer to the ap-
plicability to solids as well as fluids. The method uses a set of particles as interpolation points for
the usual continuum field variables found in FEM methods. The properties defined at each particle
can then be evaluated anywhere within the system through the use of a weight function (kernel)
estimation technique. This is based on the idea of estimating probability densities from sample
values, but more physically can be seen as a method of smoothing the effect of each particle across
space, thus maintaining a material continuum. Despite the use of probability functions within the
evolution, one advantage of SPAM is its exact treatment of the flow of heat and matter (advection)
that makes it effective at modelling fluids [51].

There are several other features of SPAM that make it potentially very well suited to the ap-
plication of nuclear fuel modelling. The particle nature of SPAM allows for fracture mechanics to
be demonstrated within the continuum in a more natural way. Simulations of impact and frac-
ture within SPAM were first proposed in the 1990s by the inclusion of a strength model and von
Mises yielding relation [52]. The same group then demonstrated full realisation of solids within
SPAM by showing the 3D fracture of a solid rod under tension [53]. The fracture demonstrated
is independent of the particle resolution size used, and has the natural inclusion of the effects of
friction and bulking between the fragments produced without the inclusion of specific descriptions
of these physical effects. The results produced only considered tensile failure and not failure due
to shear, however it is reasonable to assume a modified version of the model could demonstrate both.

More recent work by Hoover has looked at the isomorphisms between SPAM and MD [54]. Hoover
explored the meaning of the inherent transport coefficients within SPAM simulations with respect
to isomorphic MD simulations [55]. From his work models of solid fracture have been produced,
parameterised though MD simulations [56]. It has been found however, that for high strength mod-
els the data produced is not in line with that predicted by MD simulations. It is speculated that
this is due to the absence of certain energy inclusions in the model, such as thermal and rotational
energy [56].

Beyond failure mechanics, SPAM has seen over the years the derivation, inclusion and testing
of suitable models for a wide variety of physical phenomena. Heat conduction has long been imple-
mented and studied in SPAM and found to give good agreement with analytical examples where
possible [57]. Solidification and melting within systems has been implemented in a variety of ways.
One of the first proposed methods was through the transfer of liquid particle mass to a static grid
for particles undergoing solidification, however the use of extra particles causes unnecessary com-
putation [58]. More recently an alternative method has been outlined which more directly includes
latent heat within the heat capacity and then introduces a new method within the SPAM in which
the superposition of two kernels is used. The work suggests the new method is both fast and easy
to implement [59].

In addition, multiple studies of various potential instabilities within SPAM codes have been con-
ducted [54,60]. These studies suggest that although instabilities within the method can occur they
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are usually restricted to specific regimes such as perfectly regular structures (odd-even instability)
or specific sound speeds (problems in the interaction between kernel and constitutive relations).
These instabilities can therefore be removed with rigorous formulation and testing. Finally the
recent production of the SWIFT code at Durham University by the joint efforts of the School of
Engineering and Computer Science and the Institute for Computational Cosmology is an exciting
prospect for the potential run-times of SPAM codes [9]. Task based, massively parallel codes could
allow FPCs to run in a fraction of the time they currently do, allowing simulations to take prece-
dence over experimental work as the first step in evaluation of new fuel types and designs. For these
reasons, the development of the SPAM method of continuum modelling with respect to modelling
nuclear fuel will be attempted with the specific goal of examining its validity for the case of fuel
rod failure.

1.4 Aims of This Work

The above review highlights the importance of both thermodynamic and mechanical behaviour of
nuclear fuel. All safety cases are built primarily around demonstrating safe operating conditions
specifically defined by the maximum temperature and stress values which occur within the nuclear
fuel model. Within this work the relatively new method of smoothed particle modelling will be
applied to nuclear fuel. For smoothed particle methods to be attempted for the licensing codes
of any nuclear fuel it is essential that first the accuracy of both thermodynamic and mechanical
modelling within SPAM is quantified and validated to a high degree of confidence.

This work aims to begin this process by creating basic models of nuclear fuel containing both
stress and temperature behaviour within SPAM. These model will be constructed as a series of
smaller models each with well-defined analytical solutions in order to exactly show the deviation
of the SPAM results from the expected. The main focus of this report is highlight the sources of
error within basic SPAM models of nuclear fuel and to explore many of the proposed mitigation
methods and their effect on the validity of the results.

This work is supported by the National Nuclear Laboratory and thus is designed to provide a
detailed analysis of SPAM modelling so that the merits of the method can be properly assessed
and further advanced projects may be put forward.

1.5 Conceptual Fuel Model

To allow for in-depth validation at each stage, the conceptual fuel model presented within this work
is deliberately simplified. The simplifications are as follows:

• All material properties are assumed to remain constant. This removes the thermal effects on
properties as well as the effects of burn up of the fuel. It also removes the complex nature of
the thermal conductivity of the UO2.

• Material boundaries are assumed to be static, this is selected to allow for validation against
analytical solutions, all of which have boundary conditions which do not move in space. This
means that the effect of fuel swelling as well as the deeper complexity of PCMI is removed
from the model.

• The materials are assumed to be homogeneous. This removes the effect of micro crack initi-
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ation as well as bubble formation from the fuel.

• The mechanical behaviour is assumed to be elastic-plastic for all materials. This removes
complex stress-strain behaviour such as strain hardening and creep.

• The model is assumed to be at steady state. This removes the time dependent failure of
nuclear fuel due to ramping up and down the fuel temperature in cycles.

• The height of a fuel pellet is assumed to be much larger than its width. This allows for
mechanical behaviour to be modelled as plane strain and the model reduced to 2D. This
removes the hourglass effect of deforming fuel pellets.

Figure 1.6: An outline of the internal structure of a fuel rod. This structure will be simplified for
the conceptual model. Copyright National Nuclear Laboratory.

With these assumptions the conceptual model is described. The structure is simplified to 2D thus
ignoring the more complex fuel rod geometry such as the stacking of pellets and springs shown in
Fig.1.6. The model is divided into 3 sections: fuel, cladding and coolant. These are modelled as
concentric annular rings as shown in Fig.1.7. The fuel is assumed to have constant radius RF and
the cladding RC . The fuel and cladding are assumed to have constant thermal conductivities κF , κC
respectively. The thermodynamic behaviour is assumed to follow the heat diffusion equation:

∂T

∂t
= DT∇2T − q̇ (1.4)

Here DT is the thermal diffusivity of the material. The coolant is assumed to remove heat from the
cladding via convection with a coefficient of convection h. The fuel element is assumed to produce
heat at a rate q̇ per unit time, per unit volume due to the nuclear reaction.
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Figure 1.7: A diagram of the simplified fuel and cladding model

The materials are assumed to be homogeneous with a constant initial density ρ0. The mechanical
behaviour is assumed to follow Hooke’s law with Young’s modulus E and Poisson’s ratio ν. The
materials are assumed to undergo thermal expansion with linear expansion coefficient α. This gives
the stress strain relationship for the materials as:

ϵx + ϵy + ϵz =
1− 2ν

E
[σx + σy + σz] (1.5)

where ϵ represents the strains and σ the stresses. The material is assumed to have plasticity defined
by the von Mises stress and yield criteria with tensile strength σT and yield strength σY .

To achieve this model within SPAM the thesis is broken down into 5 chapters. The first is a
review of smoothed particle methods with simple interpolation tests completed. The second deals
with heat flow in both the transient and steady state conditions with particular emphasis on the
effect of boundary conditions. The third chapter explores the effects of particle arrangement on
SPAM accuracy. The fourth is dedicated to more complex heat flow problems, dealing with heat
generation and convection within SPAM. The final chapter introduces mechanical behaviour. The
final model is restricted in the mechanical behaviour shown.
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Chapter 2

Smoothed Particle Methods

2.1 Smoothed Particle Modelling

Smoothed particle methods are widely referred to through the literature as Smoothed Particle
Hydrodynamics (SPH) [51], however the alternative name: Smoothed Particle Applied Mechanics
or SPAM for short, was popularised by Hoover [54]. The rationale for this based on the fact that
there is nothing intrinsic in the method which restricts it to the study of fluid flow.

Smoothed particle refers to the method of breaking a continuous problem domain into a set of
discrete points, referred to as particles, and using a modified set of continuum equations to calculate
how the properties of the domain evolve over time at these points. These values can then be
interpreted anywhere within the domain to return the continuous nature of the original properties.
This can be considered analogous to the finite element method in which the domain is broken into a
set of spatial pieces, called elements, and then properties are evolved and evaluated on the vertices
of these elements. The key difference between the two methods is that the volume occupied by
each point in smoothed particle methods is not defined unlike the highly structured finite element
meshes, The weight function support areas for each of the particles overlap. An illustration of this
idea is given in Fig.2.1. For finite element methods two elements need not be the same size and
shape, as demonstrated by the elements marked i, j. It does however simplify the computation in
most cases. The same is true of smoothed particles. Regular distributions of points are not required
but often simplify the problem.
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Figure 2.1: An outline the difference in domain division for finite elements vs smoothed particles.
Two examples of elements and particle points are marked i, j. As shown the domain divisions may
be non symmetric and disordered. A few examples of the overlapping weight function support are
shown in red.

Once a domain is divided into particle points each particle i is then assigned individual properties
such as mass, velocity and temperature denoted mi, vi, Ti respectively. The ‘smoothed’ nature of
smoothed particle methods arises from the use of weight functions (kernels). For example the value
of density can be evaluated anywhere within the material at some arbitrary position r at which
there is no particle point. This is done by a sum over all particles points which lie in the support
of the kernel. Each particle mass mi then contributes toward the density ρr, however the strength
of each particle mass contribution is given a weight w within the sum based on the distance away
|r − ri|. For the example of density this gives a sum of the form:

ρ(r) = ρr =
∑
i

miw(r − ri) (2.1)

A more rigorous derivation of the smoothed particle equations, including Eq.2.1 is given in sec.2.3,
however it is useful to first examine the conditions on the function w, and understand its effect on
the properties calculated by smoothed particle methods as it is fundamental to successful imple-
mentation.

2.2 Weight Functions

The weight function is also often referred to as the smoothing function or the kernel function
throughout the literature. The weight function must be Gaussian-like in order to spread the
particles influence within space with the correct distribution This idea is highlighted further within
the discretisation in Sec.2.3. Every weight function domain is however chosen to be finite to reduce
computation. A ‘cut off’ or ‘smoothing’ length H is chosen such that the function is zero for all
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values of particle distance greater w(r) = 0 : r > H. This definition is inline with that used by
Hoover [54]. Five properties are defined [54] which restrict the possible choices for function w:

1. Normalisation:
∫ H
0 w(r)dr = 1

2. w′(0) = 0

3. w(H) = 0

4. w′(H) = 0

5. w′′(H) = 0

(2.2)

The deviation also assumes that W → δ as H → 0. Some authors also require that W is n times
differentiable, where n is based on the required uses of the weight function and its derivatives.
Many functions have been proposed as possible candidates for weight functions, a comprehensive
analysis of the error for each is given in Quinlan et al. [61]. A representation of the weight function
shapes explored are shown in Fig.2.2. Here only two examples of bell shaped functions are explored
for illustration purposes.
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Figure 2.2: Outlines of function shapes which satisfy the weight function criteria layed out in Eq.2.2

2.2.1 Example Weight Functions

One example of a bell-shaped weight function which satisfies the criterion was proposed by Lucy
[49]:

wn
Lucy (r < H) = c

[
1 + 3

r

H

] [
1− r

H

]3
(2.3)

The constant c is determined by the condition of normalisation, it can be normalised for any number
of dimensions n. A more widely used alternative function, based on cubic splines, was proposed by
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Monaghan [51]:

wn
Monaghan =

{
c
(
1
2 − 3 r2

H2 + 3 r3

H3

)
if

(
0 < r

H < 1
2

)
c
(
1− r

H

)3
if

(
1
2 < r

H < 1
) (2.4)

The constant c can be calculated for n = 1 as follows:∫ H

0
2w1D(r)dr = 1 (2.5)

For the Lucy weight function this gives:∫ H

0
2c
[
1 + 3

r

H

] [
1− r

H

]3
dr = 1 (2.6)

Integrating to:

2c

[
− 3r5

5H4
+

2r4

H3
− 2r3

H2
+ r

]H
0

dr = 1 (2.7)

This gives the constant of normalisation for this weight function in one dimension:

c1D =
5

4H
(2.8)

The normalisation functions for 2D and 3D are respectively:∫ H

0
2πrw2D(r)dr = 1 (2.9)

∫ H

0
4πr2w3D(r)dr = 1 (2.10)

For Lucy’s weight function this gives respective normalisation factors of:

c2D =
5

πH2
c3D =

105

16πH3
(2.11)

Similarly for Monaghan’s weight function the normalisation constants are:

c1D =
8

3H
c2D =

80

7πH2
c3D =

16

πH3
(2.12)

Each of these example weight functions along with their first and second derivatives are shown
for 1D normalisation and a smoothing length H = 3mm in Fig.2.3. It is seen immediately that
the second derivative of Monaghan’s weight function is not smoothed. This is due to the piece
wise nature of the function. Smoothness within the second derivative is not required by the weight
function criteria and the use of the second derivative is far more uncommon than the first.
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Figure 2.3: Left: Lucy’s weight function given by Eq.2.3. Right: the more common choice of
Monaghan’s weight function given by Eq.2.4. Both weight functions are given with their first and
second derivatives.

The smoothing length H has a significant effect on the interpolation of values within the SPAM
through the weighted sum such as Eq.2.1. Herein, the smoothing length is defined as the radius
of the compact support, but in the majority of SPH literature, the radius of the kernel compact
support is a coefficient times the initial particle spacing. To find the most appropriate length H we
test the lattice density for both weight functions in 1D and 2D. The particle arrangements used
consist of unit mass particles mi = 1g with a regular structure and unit spacing. Such a structure
has an expected density of ρ0 = 1g/mm3, these arrangements are shown in Fig.2.4.
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Figure 2.4: Left: 1D regular chain of 10 particles. Right: 2D regular lattice of 100 particles. Both
have unit mass particles in unit grid spacing.

The smoothed particle density is computed with Eq.2.1. To ensure the interpolated density is the
same everywhere we use periodic boundary conditions. The reasons for this are discussed in Sec.2.4
and a more in-depth description of periodic boundary conditions is given later in this chapter. The
results for a range of smoothing length H are given in Fig.2.5
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Figure 2.5: The estimated density given by the smoothed particle weighted sum. The expected
lattice density is ρ0 = 1g/mm3. The lattices are 1D and 2D uniform spaced lattices with unit mass
shown in Fig.2.4. The estimation is shown for Lucy’s and Monaghan’s weight function, Eq.2.3 and
Eq.2.4 respectively.

The error is seen to quickly decrease for both weight functions as the size of H increases. For higher
values of H ≈ 3mm Lucy’s function has the least error, however Monaghans’s does better at lower
values of H ≈ 2mm. It is important to consider the number of particles within range of H. We
require that sufficient neighbouring particles are included such that gradients within the SPAM can
be accurately calculated. It is therefore more ideal to use values of at least H > 2∆P where the
average particle separation for this test is ∆P = 1mm. This allows two neighbouring particles in
each direction to be included.

For the simulations completed in this work Lucy’s weight function will be used due to its smoothed
second derivative with relatively small difference in density error when compared with Monaghan’s.

2.2.2 Interpolation Error

Interpolation errors in SPAM have been studied and it has been found to depend directly on the
smoothing length and particle spacing [62]. The error is demonstrated to be driven by two separate
mechanisms and these are referred to as the smoothing error and the discretisation error. A simple
study is given here to highlight these important ideas for the simulations completed within this
work.
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The interpolated density for each weight function shown in Fig.2.5 gives a general idea of ‘interpo-
lation errors’ within SPAM algorithms. However this is a simple case of constant density material.
This work will examine non-equilibrium heat flow within SPAM extensively. It is therefore benefi-
cial to examine how smoothing lengths and particle number densities affect the SPAM interpolation
of more complex underlying functions. Fourier transforms of heat conduction solutions suggest that
all heat flow problems can be broken into a sum of sinusoidal functions. For the interpolation tests
in this section we therefore examine the SPAM algorithms ability to interpolate a temperature
distribution of the form T = Asin(2πxλ ).

The simplest case of this test is demonstrated in Fig.2.6. Here λ = 100mm, A = 1K. As before unit
mass mi = 1g particles with unit spacing ∆P = 1 are used. The number of particle is N = 100.
Each particle is assigned a temperature Ti = Asin(2πxi

λ ). The interpolated temperature anywhere
within the material at position xr is then given (in kelvin) by:

T (xr) =
∑
i

Ti
mi

ρi
w(xr − xi) (2.13)

Figure 2.6: The SPAM interpolated temperature vs the expected temperature for λ = 100mm,
A = 1K, with N = 100 particles and a smoothing length H = 3mm

Fig.2.6 shows the ability of the interpolation to reproduce the underlying temperature distribution
given to the particles. The error for this interpolation in negligible. However if we instead look at
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the same unit spaced particles but with a small wavelength temperature distribution λ = 10, this
time acting across only N = 10 particles it becomes quickly apparent that the interpolation error
is not guaranteed to be zero.

Figure 2.7: The SPAM interpolated temperature vs the expected temperature for λ = 10mm,
A = 1K, with N = 10 particles and a smoothing length H = 3mm

Fig.2.7 shows a significant interpolation error in the peak values of the temperature distribution.
Again here H = 3mm. Fig.2.8 shows that adapting the particle density to a greater N = 100 or
adapting the smoothing length to a smaller value H = 0.5mm are insufficient to solve the interpo-
lation error in isolation. The reduced smoothing length improves interpolation at the peak value
but the loss of nearest neighbour particles creates clear oscillations in the interpolated value.
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Figure 2.8: The SPAM interpolated temperature vs the expected temperature for λ = 10, A = 1.
Left with N = 100 particles and a smoothing length H = 3. Right with N = 10 particles and a
smoothing length H = 1.

Figure 2.9: The SPAM interpolated temperature vs the expected temperature for λ = 10mm,
A = 1K. Left with N = 10 particles. Right with N = 100 particles. Both shown for a range of
smoothing length.

A more comprehensive view of how smoothing lengths effect the interpolation curves for N = 10
and N = 100 particles is presented in Fig.2.9. It can be seen that the error appears proportional
to the smoothing length H. It has already been noted that the error is significantly reduced for
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the longer wavelength λ = 100mm. It has been shown that insufficient particles included in the
smoothing length H < 2∆P causes poor interpolation. It is therefore beneficial to seek a simulation
constraint from the relation between H,λ,∆P and the interpolation error.

The interpolation test is run for a range of values H = 0.1 → 3mm, λ = 10 → 100mm, ∆P =
0.1 → 1mm and A = 1, 10, 100, 1000, 10000K. The error in the peak value is insufficient to properly
quantify this test due to the oscillations seen at low H in Fig.2.7. The results for this test are
therefore quantified using the residual error in temperature UT calculated here as:

U2
T =

1

Nri

Nri∑
i

(
Asin(

2πxri
λ

)− T (xri)

)2

(2.14)

It is important to note that Nri here defines the number of interpolation values defined by positions
ri, not the particle points used N . For every test Nri = 100 is used but the number of particle
points is dependent on spacing and wave length N = λ/∆P . The full final data for this test is
contained in Fig.2.10. The data consists of 15, 000 results where the reduced error is shown by
normalising by the signal amplitude A. This confirms that the error in calculation is simply scaled
by amplitude A which is to be expected. The error is plotted against the smoothing length per
wavelength H/λ which can be considered the ‘sample space’ as it is proportional to the percentage
of the entire function sampled by each interpolation point. The relative smoothing length defined
as the smoothing length per particle spacing H/∆P is used to colour the data points.

The significance of Fig.2.10 is several fold. It suggests that the interpolation error scales with signal
amplitude A. It can be inferred that the relative error depends directly on the sample space H/λ,
with smaller sample spaces giving better interpolation of the underlying function. This is often
referred to as the smoothing error. However it is very clear that there is a limit to this improvement
in interpolation. Once the relative smoothing length is reduced beyond H/∆P < 1, that is to say it
includes less than an average of 1.5 nearest neighbour particles in each direction, the error diverges.
This divergence is referred to as the discretisation error. The discretisation error gives rise to the
first restraint on all SPAM simulations completed within this work. It is required at minimum
that: (

H

∆P

)
Min

≥ 1.5 (2.15)

It is therefore beneficial to remove all the data where Eq.2.15 is not met and examine the remaining
data. These results are shown in Fig.2.10. It can be seen through the now shifted colour grading
that the error reduction diverges from the clear underlying relation for relative smoothing lengths
of approximately H/∆P < 3 even though the relative error is still reduced within the range 1.5 <
H/∆P < 3.
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Figure 2.10: The SPAM interpolated temperature reduced error vs the smoothing length per wave-
length of the underlying function to be interpolated. The colouring highlights the relative smoothing
length (per particle spacing), set to highlight points within the range 1 < H/∆P < 1.5 left and
1.5 < H/∆P < 2.5 right where all point 1.5 > H/∆P are removed. Values less than this are shown
in dark blue, values more in dark red. The test is completed for Lucy’s weight function.

Further exploration of these ideas are given in Fig.2.11. Once all values H/∆P < 3.0 are removed
it becomes clear that the smoothing error is given by the sample space H/λ. A simple fit for terms
of up to second order in sample space is shown to demonstrate this, however it suggests that higher
order terms are necessary to fully describe the error relation.

To further understand restrictions on the particle spacing and smoothing length the SPAM in-
terpolated derivative is examined. The temperature gradient in one dimension within SPAM is
calculated as follows:

∇T =
dT

dx
=
∑
j

mij [Tj − Ti]∇xwij/ρij (2.16)

The expected derivative for the sine wave temperature is easily calculated as:

dT

dx
=

2πA

λ
cos(

2πx

λ
) (2.17)

The error in the temperature gradient can then be calculated as:

U2
∇T =

1

Nri

Nri∑
i

(
2πA

λ
cos(

2πx

λ
)−∇Tri

)2

(2.18)
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Figure 2.11: The SPAM interpolated temperature reduced error (shown left) and temperature
gradient reduced error (shown right) vs the smoothing length per wavelength of the underlying
function to be interpolated. Left is restricted to only show values of 3.0 < H/∆P . Right the
colouring highlights the relative smoothing length (per particle spacing), set to highlight points
within the range 1.5 < H/∆P < 2.5. Values more than this are shown in dark red. The test is
completed for Lucy’s weight function.

The results for the error in the SPAM temperature gradient are shown in Fig.2.11 for a restricted
relative smoothing length of 1.5 < H/∆P such that most of the discretisation error is removed.
The smoothing error this time is found to be a function of H/λ2. The data suggests that the
discretisation error occurs for higher values of relative smoothing length. This is because the
gradient requires pairs of particle points to be calculated. A more strict condition is therefore
adhered to within this work:

(
H

∆P

)
Min

≥ 2.7 (2.19)

This is a minimum limit. Throughout this work however the value of H will usually determined by
the condition:

H = 3∆P (2.20)

It is common practice in many SPAM simulations to employ the use of a variable smoothing
length [63]. This is beneficial for systems which undergo large-scale deformations causing the dis-
tance between neighbouring particles to shift significantly during simulations. This is not required
for the simulations presented within this thesis, however may become important within micro-
structural simulations within future work. For now a constant smoothing length is sufficient. With
this condition chosen, the value of H must be minimised by minimising the particle spacing (equiv-
alent to maximising the number of particle points N used to construct the simulation). This must
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be balanced with computational cost. SPAM uses sums over particle pairs therefore without opti-
misation SPAM computational time grow proportional to the square of the particle number (shown
in big O notation):

Computation time ∝ O(N2) (2.21)

In fact the convergence of SPAM codes under these conditions was studied more extensively within
the work of Lind and Stansby [64]. The convergence was shown to improve with the use of higher
order weight functions which allow for a faster reduction in the discretisation error. Convergence
studies have been applied to SPAM equation requiring the Laplace operator due to the effect on the
smoothing and discretisation errors [65]. This particular study demonstrated the convergence of the
heat equation among others for again careful choices of weight function with regard to minimising
the discretisation error. The most recent work within SPAM has achieved an increase in the order of
convergence of simulations form an expected theoretical optimal convergence of 2nd order up to 4th

order [66]. The work presented in this thesis achieves between 1st order and 2nd order convergence
however a full review of techniques for improving convergence can be found [67]

All these tests were completed on Lucy’s weight function. For completeness we include the results
for Monaghan’s weight function in Fig.2.12. It is seen that the same behaviour is exhibited with
respect to the relative smoothing length and sample space.
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Figure 2.12: The SPAM interpolated temperature reduced error vs the smoothing length per wave-
length of the underlying function to be interpolated. The colouring highlights the relative smoothing
length (per particle spacing), set to highlight points within a reduced range range. Values more
than this are shown in dark red, less in dark blue. The tests are completed for Monaghan’s weight
function. Bottom right shows the error for the gradient of temperature.

2.3 Smoothed Particle Discretisation

Smoothed particle methods discritise the domain of interest into a set of points. To understand
this idea it is best to first consider the Dirac delta function δ(x − xi), acting on some smoothed
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continuous function f(x): ∫ ∞

−∞
f(x)δ(x− xj)dx = f(xi) (2.22)

where xi is some arbitrary position. This is a well established definition. It is noted that the Dirac
delta function is considered a special case of a Gaussian function for which the width, lets call this
width 2H, is minimal. Let us denote some arbitrary Gaussian function as w, it can then be said
that our continuous function f at a point xj can be described as:

lim
2H→0

∫ ∞

−∞
f(x)w(x− xj , H)dx = f(xi) (2.23)

Now suppose instead of a complete function f(x) we have instead a discrete set of N sample points
along the function which we denote fi. We can use the Riemann sum to approximate the integral.
This requires the function f(x) be split into a set of discrete rectangles of width ∆xi and a mid
point fi. This gives the discrete approximation:

lim
2H→0

N∑
i

fi∆xiw(xi − xj , H) ≈ f(xj) (2.24)

There exists a problem with this expression. In the limit that 2H → 0 the function w will not
sample enough space to include any discrete points fj . The approximation must therefore have a
finite width H ̸= 0:

f(xj) ≈
N∑
j

fi∆xiw(xi − xj , H) (2.25)

A more rigorous argument can be found in Monaghans review of SPAM [51] and alternatively
Violeau’s book [68]. It is important to note here however that a key assumption has been made.
The function f is assumed to be continuous. The implications of this will be explored, however
it is beneficial to examine the nature of the continuum equations with the SPAM approximation
applied.

2.3.1 Derivation of Smoothed Particle Density

The idea of discretisation by a Gaussian like function given by Eq.2.25 is insufficient. To arrive at
the fundamental density equation of SPAM we must consider a continuous function f operating in
three dimensional space with position described by r. To the segment length ∆xi then becomes a
volume Vi. The subscript j is no longer necessary as r describes an arbitrary point, and although
not specifically noted the weight function still depends on the smoothing length. This gives:

f(r) ≈
N∑
i

fiViw(r− ri) (2.26)

The volume occupied by each particle point in our SPAM particle arrangement has an undefined
volume unlike for the case of finite elements. Each point is however assigned a mass mi such that
the total system M is defined:

M =

N∑
i

mi (2.27)
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If it is assumed that each particle point has some density value ρi, it must therefore be true that
the total system volume is given by:

V =

N∑
i

mi

ρi
=

N∑
i

Vi (2.28)

With these assumptions the particle volume Vi can be substituted with the mass per density mi
ρi
.

From here the final step to retrieve the SPAM density equation is to substitute in the function
for the density anywhere within the material by assuming it is continuous f(r) = ρ(r). This
gives:

ρ(r) ≈
N∑
i

ρi
mi

ρi
w(r− ri) (2.29)

This gives the smoothed particle approximation of density which is used as a definition within the
formulation of SPAM and is thus quoted as exact as in Eq.2.1. This also gives the interpolation
function for any continuous function f(r):

f(r) =
N∑
i

fi
mi

ρi
w(r− ri) (2.30)

This interpolation is used to give the temperature for Eq.2.13. A clear distinction must be made.
The continuum function does not return the particle values T (r) ̸= Ti under these assumptions.
However for the case of density we define it such that ρ(r) = ρi by Eq.2.1.

2.3.2 Derivatives from the Smoothed Particle Approximation

Considering the derivative of some continuous field variable f(r) within SPAM shows one major
advantage over alternative modelling methods. The derivative operator now only acts on the weight
function. Using Eq.2.30 the derivative becomes:

∇f(r) =
N∑
i

fi
mi

ρi
∇rw(r− ri) (2.31)

As already shown in Fig.2.3, the derivative of the weight function is calculated before hand and so
calculations of derivatives within SPAM are extremely efficient. It is noted however by Hoover [54]
that by substituting the identity f(r) ≡ g(r)ρn(r), where n can take any integer value, it is possible
to arrive at any number of minor variations of the derivative. Two important examples are:

∇(f(r)ρ(r)) =

N∑
i

fimi∇rw(r− ri) (2.32)

∇
(
f(r)

ρ(r)

)
=

N∑
i

fimi

ρ2i
∇rw(r− ri) (2.33)

The same substitutions give different forms of the smoothed particle interpolation function as:

f(r)ρ(r) =

N∑
i

fimiw(r− ri) (2.34)

f(r)

ρ(r)
=

N∑
i

fimi

ρ2i
w(r− ri) (2.35)

With these algorithms defined it is now possible to derive the SPAM continuum equations.
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2.3.3 Derivation of SPAM Continuity Equation

The continuity equation states that the rate of change of density and at any point is given by the
rate at which the material diverges at that point:

ρ̇ = −ρ∇ · v (2.36)

Consider the right-hand side of the equation. The following identity can be used:

∇ · (ρv) = ρ∇ · v + v · ∇ρ (2.37)

This allows the continuum equation to be written as:

ρ̇ = v · ∇ρ−∇ · (ρv) (2.38)

The smoothed particle approximation to the first term on the right hand side using Eq.2.31 is
now:

vi · (∇ρ)i = vi ·
N∑
j

mj∇iw(ri − rj) (2.39)

Similarly using Eq.2.34 the second term can be approximated as:

[∇ · (ρv)]i = ∇i ·
N∑
j

vjmjw(rj − ri) (2.40)

Combining these gives the smoothed particle continuum equation of motion:

ρ̇i =

N∑
j

(vi − vj)mj · ∇iw(ri − rj) (2.41)

This equation offers an alternative calculation of density within SPAM simulations. Rather than
sum the density at every time step using Eq.2.1 the density can be evolved through each time
step.

It should be noted here that the weight function only actually depends on the magnitude of the
distance w(|ri − rj |). The gradient of the weight function can thus be calculated as:

∇iw =
∂w(|ri − rj |)
∂|ri − rj |

∂|ri − rj |
∂ri

r̂ij = w′r̂ij (2.42)

Here w′ is the first derivative of the weight function and r̂ij is the unit vector in the direction
rij .

2.3.4 Derivation of SPAM Equation of Motion

In the absence of any body forces continuum equation of motion states that the acceleration at a
point is given by diverging pressure at that point per unit density:

ρr̈ = ρv̇ = −∇ · P (2.43)

again we can use an identity for the right hand side:

∇ ·
(
P

ρ

)
=

1

ρ
∇ · P −

(
P

ρ2

)
· ∇ρ (2.44)
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This gives the acceleration as:

v̇ = −
(
P

ρ2

)
· ∇ρ−∇ ·

(
P

ρ

)
(2.45)

Considering the first term of the right hand side, the smoothed particle approximation is given by
Eq.2.31 as: (

P

ρ2

)
i

· ∇iρi =

(
P

ρ2

)
i

·
N∑
j

mj∇iw(ri − rj) (2.46)

Similarly using Eq.2.35 the second term is given by:

∇i ·
(
P

ρ

)
i

=
N∑
j

mj

(
P

ρ2

)
j

· ∇iw(ri − rj) (2.47)

Combining these gives the smoothed particle approximation of the acceleration:

v̇i =

N∑
j

mj

[(
P

ρ2

)
i

+

(
P

ρ2

)
j

]
· ∇iw(ri − rj) (2.48)

This equation allows the particle positions to be updated in time.

2.3.5 Derivation of SPAM Equation of Energy

The continuum equation of energy describes how the addition of work done at a point as well as
the heat flowing into that point describe its internal energy e. Here Q denotes the heat flux. In
the absence of heat sources and sinks:

ρė = −P : ∇v −∇ ·Q (2.49)

The second term in this equation is analogous to Eq.2.43. It follows that the smoothed particle
approximation for the diverging heat flux must be calculated as:

−
(
1

ρ

)
i

∇ ·Qi =
N∑
j

mj

[(
Q

ρ2

)
i

+

(
Q

ρ2

)
j

]
· ∇iw(ri − rj) (2.50)

Considering the first term we can use the identity:

∇(vρ) = ρ∇v + v∇ρ (2.51)

Using the same methods as previously combined with the approximations of Eq.2.32 and Eq.2.31,
it can be shown:

ρi∇vi =
N∑
j

(vi − vj)mj∇w(ri − rj) (2.52)

This expression is used to evaluate the temperature gradient in Eq.2.16. For its use here, it should
be noted that the expression for internal energy can be re-written as:

ėi = −
[
P

ρ2
: ρ∇v

]
i

−
(
1

ρ

)
i

∇ ·Qi (2.53)
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The operator : acts as P : ∇v =
∑

α,β Pαβ∇βvα across dimensions α, β. The symmetric pressure
Pij is used to ensure conservation of energy [54]:(

P

ρ

)
ij

=
1

2

[(
P

ρ

)
i

+

(
P

ρ

)
j

]
(2.54)

This gives the SPAM energy equation as:

ėi = −
N∑
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mj
1

2
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−
N∑
j

mj

[(
Q
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)
i
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Q
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)
j

]
· ∇iw(ri − rj)

(2.55)

The SPAM approximation is not limited to the continuum equations presented within this work.
The standard procedure of discretization shown here can be applied to any equation which describes
the time evolution of continuous quantities within the system, such as those describing magnetism
[69]. This may present an opportunity to attempt a SPAM description of the phase field equations
(which present material phases as a continuum) within future work.

2.3.6 Conservation of Energy and Linear Momentum

The total momentum Mv for the SPAM system can be calculated as:

Mv =
N∑
i

mivi (2.56)

It is required that the equations conserve momentum to be able to simulate problems with SPAM
without significant error introduced, therefore it is must be confirmed that:

d(Mv)

dt
=

N∑
i

miv̇i = 0 (2.57)

The acceleration v̇i is given by Eq.2.48. This gives the rate of change of the total system momentum
as:

M
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dt
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+
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j

]
· ∇iw(ri − rj) (2.58)

The simplest way to demonstrate conservation here is to consider contributions from pairs of par-
ticles i, j. The contribution from particle i due to j, denoted ∆j(mvi), is:

∆j(mvi) = mimj

[(
P

ρ2

)
i

+

(
P

ρ2

)
j

]
· ∇iw(ri − rj) (2.59)

Observing the opposite contribution, particle j due to i, it can be seen that:

∆i(mvj) = mimj

[(
P

ρ2

)
i

+

(
P

ρ2

)
j

]
· ∇jw(ri − rj) (2.60)
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The gradient term for the ∆j(mvi) contribution is given by Eq.2.61. For the opposite contribu-
tion:

∇jw =
∂w(|ri − rj |)
∂|ri − rj |

∂|ri − rj |
∂rj

r̂ij = −w′r̂ij (2.61)

For each pair of particles (i, j) the contributions are therefore equal and opposite and thus mo-
mentum is conserved. The same principle follows to show that the heat flux contributions to the
energy equation cancel. This shows the total thermal energy ET is conserved:

dET

dt
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N∑
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mimj
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)
i

+

(
Q
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)
j

]
· ∇iw(ri − rj) = 0 (2.62)

To show the conservation of total energy E it is necessary to consider the change in linear momentum
in the direction of motion (the rate of change in the total kinetic energy EK):
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This can be written as:
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Now consider the rate of change of the total potential energy EP given by the first term in
Eq.2.55:

ĖP = −
N∑
i

N∑
j

mimj
1

2

[(
P

ρ

)
i

+

(
P

ρ

)
j

]
: (vi − vj)w

′r̂ij (2.65)

Again considering pairs of particles i, j the kinetic energy will have terms:

ĖK(ij+ji)
= mimj
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)
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] (
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(2.66)

Similarly for the potential energy:
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= −mimj
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(2.67)

Considering the sum of these two rates of change of energy it becomes clear that:

ĖK + ĖP = 0 (2.68)

Therefore energy is conserved through the SPAM approximations as given here.
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2.4 Limitations of Smoothed Particle Methods

There are many limitations of the SPAM interpolation scheme described above. There have been five
‘grand challenges’ identified that require significant research to overcome some of these limitations
[70], these are: convergence, consistency and stability; boundary conditions; adaptivity; coupling
to other methods and applicability to industry. It is hoped that this thesis will contribute towards
this final challenge. Within these challenges the main issues and methods impacting upon this work
are outlined and discussed below. Each issue will be discussed within the relevant simulations in
the following chapters.

2.4.1 Conservation of Angular Momentum and Density

Angular momentum is not conserved within the formulation given. The notation for the stress
tensor is used in the place of the pressure P = −σ. It is shown by Hoover [54] that the contribution
to the rate of change of angular momentum L̇ for a pair of particles in 2D i, j is non zero:
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σxy
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)
j

]
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(2.69)

The off-diagonal terms of the stress tensor cause a non-zero rate of change for a rotating body.
The work by Bonet and Lok [71] alternatively uses the variational principle to explore conservation
within SPAM. It is found that through the use of velocity smoothing, outlined in Sec.2.4.4 and
kernel correction explored in Sec.2.4.2 that these effects can be mitigated.

A more important key finding of Bonet and Lok is that for simulations which use the alternative
route of density evolution (Eq.2.41) instead of the more traditional sum density (Eq.2.1) to update
the simulations, an alternative equation of motion is proposed to ensure the equations used are
variationally consistent:

Fi = miv̇i =
N∑
j

ViVj [Pi + Pj ] · ∇iw(ri − rj) (2.70)

2.4.2 Boundary Deficiency and Kernel Corrections

The weight function (or kernel) used is normalised so that integration over the kernel support gives
1. The SPAM method is however discretised, therefore it is not guaranteed that the sum over all
particles that lie within range H is 1. For there to be no error introduced it is required that the
following hold true everywhere within the SPAM system of domain space Ω:

N∑
i

w(r− ri) = 1 ∀r ∈ Ω (2.71)

At simulation boundaries the issue of kernel consistency becomes most evident. At the physical
boundary of an SPAM simulation the smoothing function begins to encounter empty space if no
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boundary particles are provided. This causes the function to incorrectly estimate the smoothed con-
tinuum values and thus cause boundary deficiencies. This is due to the definition and normalisation
of the kernel function [73], for example in 1D:

lim
H→0

∫ B

0
w(x− x′, H)dx′ = 1 (2.72)

Here 0, B represent the boundaries of the simulation. The normalisation of the weight function
(kernel) W is chosen to be 1. This always holds true in the limit where H → 0. However in
practice the smoothing length H is finite due to the compact support of the kernel of the simulation.
Therefore it is true that:

lim
x→B

[
lim
H→0

∫ B

0
w(x− x′, H)dx′

]
=

1

2
(2.73)

This means that for calculations done on positions at the boundary B, half of the kernel lies out side
of the simulation and thus the normalisation condition causes the estimate to be half of the volume
expected. Fig.2.13 illustrates how insufficient particles are included within the smoothing length
for points which approach the system boundary. This causes deficiencies in the values calculated
at the boundaries if untreated. An example is given in Fig.2.14 which shows interpolated densities
within a 1D system with as much as a 30% error approaching the system boundary.

Figure 2.13: An illustration of the deficient number of particle points within a range H of particles
approaching the boundary

One method to mitigate against this issue is to introduce boundary particles. By adding additional
particles outside of the domain of interest it can be ensured that the sum of the weight function
within the domain approaches unity. Boundary conditions are one of the main foci of the next
chapter, and so will be discussed in more depth then. However more advanced boundary conditions
have been proposed [74] and in-depth analysis of the accuracy and stability completed [75]. In
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addition to this, methods of using corrective factors for the kernels specific to the boundaries
have been proposed [76], as well as more advanced corrections accounting for material interfaces
[77].

Figure 2.14: The interpolated density profile for an SPAM material with no boundary conditions
enforced. The system is composed of N = 100 particles with unit mass and grid spacing such that
the expected density is ρ0 = 1g/mm3

Research has also been completed which suggests that the chosen kernels used within SPAM sim-
ulations have a direct effect on the convergence of the simulations [78]. More importantly, as first
noted, the kernels can suffer from inconsistency across the simulation. If the particle configuration
is disordered the kernel estimate will vary across the simulation due to inconsistency in the number
of evaluated neighbour particles (just as at the boundary). Methods exist which combat this issue
with a variable smoothing length [79]. These are calculated such that the smoothing length always
includes the required number of particles. An alternative method, which will be briefly explored in
this work, involve kernel corrections and kernel gradient corrections.

The Corrective Smoothed-Particle Method (CSPM) was first proposed to help mitigate the tensile
instability [80]. The correction is based around the idea of truncated Taylor expansions of the kernel
estimated functions within the SPAM simulation. In standard 1D SPAM, any arbitrary function f
is said to be given (before discretization where xi simply notes an arbitrary position) by:

f(xi) =

∫
f(x)w(xi − x)dx (2.74)
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The integral is calculated across the whole domain defined by the smoothing length H. By exam-
ining a Taylor expansion of the function f on the right hand side of this equation, the proposed
corrective factor can be derived:∫

f(x)w(xi − x)dx = f(xi)

∫
w(xi − x)dx+ f ′(xi)

∫
(x− xi)w(xi − x)dx+ ... (2.75)

By truncating all the derivatives and rearranging we obtain the approximation:

f(xi) ≈
∫
f(x)w(xi − x)dx∫
w(xi − x)dx

(2.76)

This is the simplest form or correction. The physical interpretation of this equation is that if the
value of the kernel (the denominator) differs from the expected normalisation of 1, then the value
of the function is re-scaled accordingly by this factor. It is evident that higher order corrections
may be included by truncating the Taylor series at a higher order. Similarly gradients of functions
maybe corrected in the same way by first taking the gradient of the above SPAM approximation
of a function. For 1D this is:

f(xi) =

∫
f(x)w′(xi − x)dx (2.77)

Then the Taylor expansion has the form:∫
f(x)w′(xi − x)dx = f(xi)

∫
w′(xi − x)dx+ f ′(xi)

∫
(x− xi)w

′(xi − x)dx+ ... (2.78)

Discarding all terms higher than those given here gives the approximation:

f ′(xi) ≈
∫
[f(x)− f(xi)]w

′(xi − x)dx∫
(x− xi)w′(xi − x)dx

(2.79)

This corrective method is one of many which have since been derived [78]. There are far more
studies and reformulations of SPAM to deal with deficiencies close to the system boundaries which
are not explored in this work, these include enhancements to the Laplace approximation [81] and
the δ-SPH formulation [82].

2.4.3 Discontinuities

There are many cases where discontinuities occur naturally such as across phase boundaries, during
formation of cracks within materials or when shock waves are formed. SPAM is however poorly
suited to handle these discontinuities as derived here. This is because the functions are assumed
to be continuous. Fig.2.15 shows the SPAM interpolated temperature and temperature gradient
for a discontinuous piecewise temperature profile. It shows that the SPAM calculated temperature
gradient diverges around the discontinuity. This is to be expected as the gradient of a function at
a discontinuous point is by its very definition not well-defined.
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Figure 2.15: A discontinuous piece wise temperature profile given by T = x : −50 < x < 0 and
T = −50 : 0 < x < 50 is interpolated at 100 points with Eq.2.13, shown left. The negative of
the interpolated temperature gradient calculated with Eq.2.16 is shown right. The interpolated
values are shown in red, the expected profile in blue. N = 100 SPAM particle points and periodic
boundary conditions are used.

The often used method to deal with this in the literature is with ‘artificial’ (dissipative) terms.
These terms can be considered discontinuity smoothing. They calculate diverging points within
the properties they are assigned to and add terms to the calculation to reduce the divergence.
These terms will be explored in full in the following chapter. This method is acceptable for shocks
or single point discontinuities however far more complex cases can arise from the mixing of material
phases or wide spread cracking.

Alternative formulations such as those of of Parshikov [83, 84] deal with this issue by introducing
contact algorithms between the particles based on Riemann solvers. Parshikov demonstrates that
this removes the need for artificial terms entirely, however this adds to the complexity of the
computation and implementation of the method.

More studies not explored within this report, will be important to future SPAM nuclear fuel models.
One feature explored in the literature is multi-phase simulations [85]. SPAM has been applied to
problems of phase change [58], liquid solid interfaces [86] and solid particles moving within fluid
flows [87,88] to name just a few. Within nuclear fuel pellets we see fission gas produced which causes
bubble formation and pellet swelling. Multi-phase simulations will be important to account for these
processes. However, the large density gradients between solid gas interfaces can cause problems
with the kernel estimates of the continuum values. A methodology involving more advanced kernel
gradient corrections has already been proposed to deal with this issue [89].

Bubble formation within nuclear fuel pellets is responsible for micro crack initiation. Again many
varied approaches toward damage modelling within SPAM exist. For simplicity within the simula-
tions presented in this report damage is controlled by the tensile and yield strengths, as in Hoover’s
tension tests [54] (explored in a later chapter). More advanced damage models have been proposed
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however. A two scale damage concept [90] developed for continuum descriptions was applied with
great success within SPAM simulations of fracturing metal rings [91]. The main challenge with
this more complex description of damage is that more precise knowledge of neighbouring particles
is required so that damage between nearest neighbour particles can affect the forces between next
nearest neighbours. The method used to achieve this is referred to as ‘Total Lagrangian’ SPAM,
which consists of storing a neighbour list for each particle from initialisation with the appropriate
form to calculate how damage should effect each neighbour list. Although effective, this method-
ology is computationally expensive and limits the ability of a material to flow, therefore it has not
been used within simulations presented within this report.

SPAM is built on the underlying assumption that all functions are continuous [92]. However more
complex formulations of SPAM have been proposed which address this are able to directly deal
with discontinuous function [93]. This method uses the kernel corrections of CSPM but divides the
domains by the material interface. The whole domain is then considered as normal in CSPM but
a corrective factor is added considering just one of the sub-domains to adjust for the influence of
discontinuity. This method is particularly appealing as it treats the system as a whole, thus the
SPAM code has the same basic form, however the interface is still treated using the idea of corrective
factors, making the method relatively easy to implement. The disadvantage of this method is that
it requires two domains to be defined for the discontinuity, therefore it cannot replace artificial
terms in dissipating discontinuities that arise within the simulation.

2.4.4 The Tensile Instability

The tensile instability refers to the tendency of SPAM particles to clump together in an un-physical
way when under tension. Tension is characterised by a negative pressure state −P for the particles.
Consider Eq.2.48, if P is assumed to varies slowly in time and space, the particle accelerations will
become:

v̇i ∝ −
∑

∇w(r) (2.80)

This takes the same form as a molecular dynamics potential. It can be seen that in the near field
the derivative of the weight function is negative. This means that the closest particle pair will
accelerate towards each other in a purely tensile regime.

A large amount of research has already been dedicated to attempts to mitigate this issue. Solid
mechanics modelling with SPAM was explored early on by Hoover [54]. Hoover successfully imple-
mented test simulations of the tension test and ball and plate penetration for arbitrary materials
and compared these with SPAM-like molecular dynamics simulations of the same nature. The
methods used to overcome challenges are far simpler when compared with recent research devel-
opments, and show successful results in mitigating instabilities. Two examples of these methods
to mitigate instability in solids under tension are core potentials and velocity averaging. Core
potentials take the form:

Φcore = 100
∑
i<j

[1− (r2ij/σ
2)]4; r2ij < σ2 (2.81)

Here i and j are particle indices and r the distance between them. For a given ‘core size’ σ, the
potential acts to force particles to separate when their ‘cores’ overlap. This prevents particles from
clumping together under tension and thus mitigates the instability. In SPAM there is a danger
however that such parameters will simply be fitted to obtain the desired results which does little
to validate the underlying physical equations.

68



The method of velocity averaging was originally proposed by Monaghan [94]. Often called XSPH,
the method was developed to prevent particle penetration at material interfaces but has been shown
to reduce the tensile instability [95]. The idea is to average velocities locally with equations of the
form:

⟨v⟩i = vi +
∑
j

(vj − vi)wij/ρij (2.82)

Here v are particle velocities, ρ density and w represents the smoothing function of SPAM. The
concept aims to modify local velocities to be nearly identical which reduces random variations
in movement which are only applicable at the molecular scale. Velocity averaging also becomes
very important for modelling material interfaces. The weight function of SPAM acts to spread the
influence of particles in space. At material interfaces this has the effect of causing inter particle pen-
etration of the surfaces beyond that expected from molecular diffusion or force driven penetration.
Unfortunately Hoover notes (without explicit detail) that combining velocity averaging with the
viscous damping forces used can result in instability and so is not favourable. This report will aim
to confirm this among other methods. The damping forces used by Hoover are of the form:

Fdrag = −v/τ (2.83)

Here τ is an arbitrary value chosen by Hoover to allow dissipation which would normally take place
at the atomic length scales. An alternative to this method of dissipation is the more commonly used
artificial viscosity first proposed by Lucy [96]. This is an example of the discontinuity capturing
terms mentioned in Sec.2.4.3. To implement artificial viscosity, an extra term is added to the
equation of motion:

Πab = −αhc/ρab

(
vabṙab

r2ab + ϵh2

)
(2.84)

Here c is the sound speed, ϵ ≈ 0.001 a factor to prevent singularities, and alpha an adjustable
parameter. This form of viscosity, although artificial, can be likened to true viscosity, however
the difference is the scale considered. True viscosity would be ineffective as the particle size rep-
resents a section of continuous matter and not true particles, which would be at a much smaller
scale. The artificial terms aim to compound the true viscosity into a force which can act as ex-
pected to slow particle motion. The effectiveness of this method has been demonstrated [97], and
more advanced descriptions of artificial viscosity based on the ideas of Riemann solvers have been
developed [98].

2.5 Boundary Conditions

Boundary conditions are important in simulations, not only for correcting calculations (such as
that for the weight function deficiency close to the boundary), but also for the implementation of
non-equilibrium thermodynamics and mechanics. For example by prescribing different temperature
profiles at opposing boundaries, a flow of heat can be generated across the system which allows for
the study of more complex physical systems such as that of a nuclear fuel rod.

2.5.1 Periodic Boundary Conditions

There are three widely used methods which form the basis the implementation of of most boundary
conditions. The first and most easily implemented of these is known as periodic boundary condi-
tions. Periodic boundaries are implemented by effectively tiling the simulated system in infinite
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space. That is to say that the left-most side of the system is allowed to see and interact with the
right-most side and the same between the upper and lower boundaries. Fig.2.16 illustrates this.

Figure 2.16: An example of the ‘tile like’ nature of periodic boundary conditions. Only one square
is simulated however this small subsection acts as if in the bulk of a much larger system through
the use of periodicity.

Periodic boundaries, although easily implemented, are very restrictive on the simulation. Interac-
tion lengths of particles (characterised by the cut off length H for SPAM simulations) are restricted
to be the minimum of half the length or width of the simulation size so that no particle may re-
interact with itself. It is very difficult (but not impossible) to implement non-equilibrium conditions
for the case of periodic boundary conditions as the boundary properties are predefined by the oppos-
ing system side so non-equilibrium situations cause nonphysical discontinuities within the system
if not carefully implemented. Despite this periodic boundaries have seen wide spread use. Hoover
demonstrated their use in a non-equilibrium simulation of Rayleigh-Bernard flow, in which periodic
boundaries where implemented across the x-axis of a 2D simulation, while the y-axis is examined
under both fixed and mirror boundaries.
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2.5.2 Fixed Boundary Conditions

Figure 2.17: Visualisation of fixed boundary conditions. The fixed particle method has multiple
different methods of assigning particle locations; for all methods values assigned to velocity and
temperature are fixed and determined by the boundary associated with each particle. Particle
positions may be assigned relative to system particles close to the boundary (Left) or in a regular
lattice (Right).

Fixed boundary methods can be used to create non-equilibrium simulations. The particle locations
may be assigned by methods such as mirroring particle locations across the boundary, as shown in
Fig.2.17, by methods used to initialise the particle system (e.g regular lattices, random distribu-
tions, or relaxation methods) or by more complex algorithms designed to optimise particle density
along more complex boundaries [68]. The important factor in the method is that quantities such
as velocities, temperatures, heat fluxes etc., are predefined before the simulation as fixed values
appropriate to the system being modelled. The main issue with this method is that the values
of these fixed properties calculated on the system boundaries are not equal to the fixed values.
Furthermore, the boundaries in no way react to the system evolution and thus small errors are
introduced into the system for properties calculated close to the boundaries. Despite this fixed
boundary methods are widely used and very robust, being able to be applied to more complex
boundary shapes than periodic and mirror boundaries.
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2.5.3 Mirror Boundary Conditions

Figure 2.18: Visualisation of mirror boundary conditions. The mirror particle positions are defined
by system particles close to the boundary and their properties by relations that define exact values
on the system boundary.

Mirror (or dynamical) boundary conditions assign boundary particle locations based on the loca-
tions of system particles close to the boundary. As can be seen in Fig.2.18 the boundary particle
properties are assigned relative to their mirror particles in such a way as to create exact values of
properties on the system boundary. For example, as shown in the figure, if it is desirable to have no
particles pass the system boundary, then mirrored particles are prescribed negative velocity, such
that the net velocity on the boundary is zero vi+ vi′ = 0. This minimises the error introduced into
system properties calculated on the boundary.
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Figure 2.19: Visualisation placement of mirror boundary particles. Extra care and consideration is
required when dealing with system corners to achieve the desired properties on the boundaries.

Mirror boundary conditions suffer however with the geometry of the boundary used. For a simple
square case such as the one shown in Fig.2.19 it can be seen that special consideration must be
given to the system corners. This will be discussed in more detail in the 2D example case. As
well as this property calculations over curved system boundaries suffer from density issues. The
nature of a curved boundary causes a greater number of particles to be required on the outside of
the curve than the inside [72]. This means that for simple mirror boundaries too few particles are
mirrored on the outside of the curve which causes the value of density and other properties to be
in accurately interpolated.

2.5.4 Alternative Boundary Conditions

The boundary conditions so far presented are by no means exhaustive. Here we include a few
alternative methods for implementation of boundary conditions. The first of these is through the
use of potential boundaries. The particle behaviour at the simulation edges does not need to be
constrained by the inclusion of more particles and can instead simply be constrained numerically
[73]. A similar method calculates numerical adjustments based on line segments for a wall boundary
[99]. This formulation can be difficult to generalise and therefore attempts have been made to
introduce potentials through the use of particles [100]. This methodology was further complicated
to include calculations of the exact correction factors for the boundary deficiency. The particles are
used to calculate the sum of the weight function at the simulation surface which is then equated
to the gradient by use of Gauss’s theorem. This value is then used as a more accurate numerical
factor to adjust the values calculated near the boundary [101]. Methods have also been proposed
which create repulsive forces to emulate virtual particle boundaries for use with complex geometry
[102]

More complex variations based on the idea of particle mirroring have also been proposed. Dynamic
boundaries can be generated per particle at each time step based on a set of boundary points [103].
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These particles can be considered ‘ghost’ or virtual particles as they are never truly stored and
do not interact with all system particles. The virtual particle method (VPM) has been extended
and shown to handle fluid flows with reasonable effectiveness [104]. More recently a method for
the dynamical update of fixed boundary particles was created under the name modified dynamic
boundary conditions (mDBC) [105]. This has also shown improvements in reducing the non-physical
behaviour of particles at the boundaries. Full exploration of these methods are left to future work
on this project. For now, the effect of the boundary implementation is best described when using
boundaries for which the introduced error is more easily understood. These more complicated
methods introduce more complicated distributions of error into the boundaries which although
improve the simulations make the demonstration of the boundary effects more complicated than
was desired for this work.

2.6 Time Integration Algorithms

The governing equations of motion for SPAM, such as Eq.2.48, Eq.2.55, give a value for the rate of
change of particle properties. To use this value to update particle properties to the next time step,
a time integration algorithm is required. Many different time integration schemes exist, each with
its own advantages and disadvantages. The two important measures of these schemes however are
the speed of the calculation within the code and the order of the errors introduced by the algorithm.
To show this, three different schemes are demonstrated. These schemes are tested using a simple
methodology shown by Hoover [106]. These are Euler’s method, the Euler modified method (also
known as Heun’s method) and the Runge-Kutta method. In all cases the differential equation to
be solved is noted as:

ẋ = f(x(t), t) (2.85)

The Taylor expansion of this equation is the basis of all three schemes. Truncation to first order
gives the Euler’s method of time integration, with errors of order dt2:

xn+1 = xn + ẋdt = xn + dtf(xn, tn) (2.86)

Here the subscript n refers to discretization in time where the nth time step is at time t0 + ndt.
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Figure 2.20: An example of a simple harmonic oscillator is the pendulum shown here. The acceler-
ation experience by the pendulum is proportional to its distance from the centre line x and always
acts towards the centre line. It is assumed no drag forces act on the pendulum.

To visualise the error introduced by each time integration scheme, each of the algorithms discussed
in this section will be run for a simple differential equation, the simple harmonic oscillator. It is
assumed that no drag forces act on the system therefore if the time integration algorithm introduces
no error then the system should oscillate back and forth forever. A visualisation of this model would
be a pendulum for small displacements is shown in Fig.2.20. The acceleration for this simple case
is given by:

ẍ = −ksx

m
(2.87)

where ks is the spring constant. The model has no resistive forces, therefore the total energy of the
system is constant with perfect exchange of kinetic and potential energy. It is also expected that
the coordinate and momenta of the system should form a perfect elliptical plot, as the imagined
pendulum returns to the same extreme positions with each cycle. To clearly demonstrate the error
of each method a large time step dt = 1s is used.
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Figure 2.21: Euler’s time integration scheme for the example of a simple harmonic oscillator run
for approximately 3 periods of motion. Here Q is the space coordinate, P momentum. The system
energy (Left) and phase space (right).

Fig.2.21 shows that the integration scheme does not conserve energy over extended periods of time
for the chosen time step. Clearly the system energy is not conserved and the phase space is thus
unstable. This makes it insufficient for use in SPAM simulations as a significantly reduced time
step is required, resulting in far longer computation times. The simplest improvement on the Euler
method is called the Heun (Euler modified) method, based on second order Taylor truncation. This
involves a modification of the form:

x̃n+1 = xn + ẋdt (2.88)

xn+1 = xn +
dt

2
(f(xn, tn) + f(x̃n+1, tn+1)) (2.89)

This two step modification uses an average of the rate of change of the variable evaluated at two
positions. This gives accurate time integration to second order in the time step, giving errors of
dt3. The effect of this can be seen in Fig.2.22. The system energy is still not conserved and the
phase space unstable however the final estimated system energy is on the same order of magnitude
as the true system energy, being over 1020 orders of magnitude closer than the Euler estimate. It is
important to note that this increased accuracy comes at a cost. The equations of motion (denoted
by function f) must be evaluated twice for each time-step of this algorithm, thus the computational
run time of SPAM simulations would be doubled by its use over the Euler scheme, this is offset by
the reduced time steps required.
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Figure 2.22: Heun’s time integration scheme for the example of a simple harmonic oscillator run
for approximately 3 periods of motion. Here Q is coordinate, P momentum. The system energy
(Left) and phase space (right).

The same two-step modification shown in the Heun method may be extended to an arbitrary
number of steps, each achieving an order of magnitude of error reduction in the time-step. The 4th
order Runge-Kutta algorithm uses a four-step modification represented by:

c1 = f (xn, tn)

c2 = f

(
xn +

dt

2
c1, tn +

dt

2

)
c3 = f

(
xn +

dt

2
c2, tn +

dt

2

)
c4 = f (xn + dtc4, tn + dt)

(2.90)

xn+1 = xn +
dt

6
(c1 + 2c2 + 2c3 + c4) (2.91)

The averaging applied by the Runge-Kutta method when visualised is effectively the famous
‘Trapezium rule’ for approximating integrals. The modification ensures the algorithm has errors on
the order of dt5 The benefits of which can be seem in comparison to the Euler and Euler modified
scheme in Fig.2.23. The system energy shows a minor decrease and the phase space thus approxi-
mately stable for the time period shown. This is due to the Runge-Kutta method being accurate
to the order of dt4 .
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Figure 2.23: Runge-Kutta time integration scheme for the example of a simple harmonic oscillator
run for approximately 3 periods of motion. Here Q is coordinate, P momentum. The system energy
(Left) and the phase space (right)

Clearly a comparison of Fig.2.21,2.22,2.23 identifies that the Runge-Kutta time integration scheme
offers a significant reduction in error with calculations than its counter parts, allowing far larger
time steps to be taken. The computational cost of the Runge-Kutta method must however be con-
sidered. As discussed with the Heun method, the Runge-Kutta algorithm requires the equations of
motion be evaluated 4 times at 4 separate locations for each time-step in the simulation. As stated
higher orders of Taylor truncation can be achieved however more function evaluations are required
at each time step. As we will see within the investigative sections to follow the time step must
be restricted by other factors such as sound speed propagation within the material. It is therefore
sufficient to dedicate greater computational time through the restriction of smaller time-steps than
by the inclusion of higher order accuracy within the time integration scheme.

Other algorithms exist such as the Verlet and Gear predictor corrector [107]. Again each has
drawbacks. For example the Verlet algorithm is not self starting. Balancing all these factors
the Runge-Kutta 4th order algorithm has been deemed the most appropriate. The algorithm has
therefore be used for all the following simulations.

2.7 Cell Division of Particles

As seen throughout the derivations given in sec.2.3, the SPAM equations call for algorithms which
loop over particle pairs. This means without optimisation, for a system with N particles, the
algorithm must check the distance between N2/2 particle pairs. A method of cell division is
therefore implemented for 2D simulations shown within this work.

The system domain is divided into smaller cells each of dimension H so that the full N2/2 list is
replaced by a smaller sum over particles within each cell plus particles in nearest neighbour cells
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provided rij < H. Clearly no less than 3 cells can be employed along each edge to achieve this,
therefore if H becomes too large relative to the system size this method is no longer useful.

Figure 2.24: Illustration of how the cell division code splits the domain into cells of length and
width H to allow for faster computation of pairs within range H.

Using the example shown in Fig.2.24 the point of interest is displayed within the blue cell. To find
all its pairs, first the distance is checked between all particle within the blue (hatch marked) cell.
Then all particles within the red (solid colour) cells are looped over. The red cells make up exactly
half of all the 8 neighbouring cells of the blue cell. It is only necessary to check half the neighbouring
cells within this repeating pattern as this prevents pairs from being counted twice.

This method allows a complete list of particle pairs within range H to be stored where each pair is
included once. This can then be looped over with contributions included for both particles within
the pair. If the particles are in motion the cell division can be repeated between time steps to
recalculate the pairs list. This algorithm roughly scales as O(NlogN) which allows larger systems
of particles to be simulated within reasonable time scales.

2.8 Conclusion

This chapter has derived the basic equations of motion for SPAM and has demonstrated how the
discretisation and smoothing errors can affect these calculations. An algorithm for time integration
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has been selected as well as a suitable algorithm to generate the pair list. The boundary conditions
to be explored within this work have also been outlined. This sets the stage for simulations to be
carried out exploring further the effect of boundary conditions and choice of evolution equations
within SPAM simulations of heat flow.

This chapter also highlights a great deal more work which has been completed within the field
of smoothed particle modelling. Most of this research is beyond the scope of this PhD however
the scope of the literature included gives great confidence that many of the limitations for the
simulation of nuclear fuel carried out within this work can be overcome with future research.
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Chapter 3

Heat flow within SPAM

3.1 Introduction

In this chapter only problems involving heat flow are considered. Mechanical deformation will be
explored in later chapters. Boundary conditions will be a particular focus in this chapter as physical
boundaries are required to drive non-equilibrium heat flow, as occurs in the case of a fuel rod.
Boundary conditions are still considered one of the ‘grand challenges’ within SPAM [70]. Research
has been done to establish the various disadvantages of the currently proposed boundary methods,
however no general consensus of the best method has yet been reached. In this chapter results from
heat flow with various boundary methods will be compared using well-defined analytical solutions
to quantify their accuracy and their usefulness to SPAM and the fuel pin conceptual model.

The models presented here are well established test models which have been used in previous SPAM
studies of heat conduction [108–110]. This work aims to compare different methods of implemen-
tation of the governing temperature equation as well and demonstrate the effect of boundary con-
ditions on the simulations. From this work a widely unused methodology proposed by Hoover [54]
is the simplest implementation and achieves the best accuracy against analytical results for both
the transient and steady state cases.

3.2 Heat flow in a 1D periodic chain

The examination of SPAM begins with a computationally simple and physically intuitive model:
Fourier’s ring model [111]. The physical interpretation of this model would be a circular wire of
uniform and negligible thickness, given some initial and non-uniform temperature distribution. A
diagram of the model is shown in Fig.3.1.
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Figure 3.1: Fourier’s ring model. The radius R is fixed and the temperature around the circumfer-
ence of the system is only a function of the angle T (θ), thus the system can be modelled as 1D.

The temperature anywhere along the Fourier ring is described by the heat diffusion equation con-
sidered in polar co-ordinates:

∂T (r, θ)

∂t
= DT∇2T (r, θ) (3.1)

where r is the radial position and θ is the angular position in polar co-ordinates. Here DT represents
the thermal diffusivity. Consider the assumption that temperature does not vary with radius
(equivalent to the system having constant radius R). We then have:

∂T (r, θ)

∂r
= 0 (3.2)

This means temperature is only a function of angle T (r, θ) = T (θ) and reduces to the Lapla-
cian:

∇2T (r, θ) =
∂2T

∂r2
+

1

r

∂T

∂r
+

1

r2
∂2T

∂θ2
=

1

R2

∂2T

∂θ2
(3.3)

For a simplified case where we choose to substitute variable (Rθ) = x :

∇2T (r, θ)|r=R =
1

R2

∂2T

∂θ2
=

∂2T

∂(Rθ)2
=

∂2T

∂x2
(3.4)
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This demonstrates that the Fourier ring model can be considered a 1D heat flow problem. Before
the analytical solution can be derived we need to consider the initial and boundary conditions.
The ring can be considered periodic. This means it loops back round, and thus if we describe the
circumference of the ring as length L we must have T (x, t) be periodic in x as:

T

(
−L

2
, t

)
= T

(
L

2
, t

)
∂T
(
−L

2 , t
)

∂x
=

∂T
(
L
2 , t
)

∂x

(3.5)

Here we assume −L
2 < x < L

2 . We can assume the initial condition as a general function of the
distance around the ring T (x, 0) = f(x) where only the boundary condition need be satisfied by
f(x).

3.2.1 Fourier’s ring analytical solution

As shown, the analytical solution to the Fourier ring model requires we solve:

∂T (x, t)

∂t
= DT

∂2T (x, t)

∂x2
(3.6)

We first assume a separable solution of the form T (x, t) = X(x)E(t). This leads to the separation
of the heat conduction equation as:

X ′′(x)

X(x)
=

Ė(t)

DTE(t)
= −λ2 (3.7)

where λ is the separation constant, which we know must exist as the functions E(t) and X(x) are
assumed independent. Consider first the time dependent function. The general solution for E(t)
must take the form:

E(t) = Ce−λ2DT t (3.8)

Here C is some constant of integration. To find the nontrivial values of λ the position dependant
solution is examined:

X ′′(x) + λ2X(x) = 0 (3.9)

The general solution of this 2nd-order ODE is:

X(x) = Asin(λx) +Bcos(λx) (3.10)

Again A,B represent constants of integration. Substituting the boundary conditions into X(x)
constrains the value λ:

X(−L/2) = Asin(−λL/2) +Bcos(−λL/2) = Asin(λL/2) +Bcos(λL/2) = X(L/2) (3.11)

We use the symmetry of the trig functions cos(x) = cos(−x) and sin(x) = −sin(−x) to show:

2Asin(λL/2) = 0 (3.12)

Similarly, if we consider the derivative X ′(x), we get the constraint:

2Bλsin(λL/2) = 0 (3.13)

83



Therefore the non-trivial solution is defined by the set of λn:

λnL

2
= (nπ) where n ϵ N (3.14)

The full solution can then be shown to be:

T (x) =
∞∑
n=0

[Ansin(2nπx/L) +Bncos(2nπx/L)] (3.15)

We choose one of the simplest initial temperature distributions to explore:

T (x, 0) = Asin(2nπx/L) (3.16)

This gives the analytical solution for the temperature decay as:

T (x, t) = Asin(2nπx/L)e−(
2nπ
L )

2
Dtt (3.17)

Then using Fourier’s law for the heat flux Q = −κ∇T , we can describe the time dependence:

Q(x, t) = −κ
∂T

∂x
= −κ2πA

L
cos(2nπx/L)e−(

2nπ
L )

2
Dtt (3.18)

3.2.2 Fourier’s ring SPAM Solution

The 1D periodic system (analogue to the Fourier ring model) is a logical starting point to explore
heat flow via SPAM. For this we consider a set of point masses (particles) with unit spacing along
the x axis and ρ0 = 1g/mm3, see Fig.3.2. The particle positions are fixed throughout this chapter.
This means the mass dependence in the SPAM equations can effectively be ignored as they are all
unity.
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Figure 3.2: A chain of 1D system particles with unit spacing ∆xp = 1mm and thus ρ0 = 1g/mm3,
used to initialise the SPAM solution to the Fourier ring model. The chain of particles is length L
with periodic boundaries enforced at x = ±L

2

The static particle arrangement means only the SPAM approximation of the heat diffusion equation,
Eq.3.6 needs to be considered. As shown in chapter 2, the evolution energy equation can be
considered in two stages in terms of the heat fluxes. Ignoring the the momentum dependence, we
recognise that the evolution of the temperature at a point depends on the energy evolution through
the specific heat at constant volume as ė = cvṪ . The energy evolution therefore reduces to:

Ṫi =
−1

cv

∑
j

[Qi +Qj ]
xij
|xij |

w′(|xij |) (3.19)

where the heat flux at particle positions can be calculated from the smoothed particle sum of
temperature differences via:

Qi = −κ
∑
j

[Tj − Ti]
xij
|xij |

w′(|xij |) (3.20)

where κ is the thermal conductivity. The SPAM simulation of heat flow proceeds by assigning
initial temperatures to each particle and then evolving them over time. Each time step dt consists
of evaluating the set of values {Qi} from Eq.3.20. {Qi} is then used to evaluate the right-hand
side of Eq.3.19. The first order ODE for temperature evolution is then solved using the 4th-order
Runge-Kutta algorithm.

The rate of propagation of heat is finite and constant [112]. We therefore constrain the time step by
considering the continuum decay time τ within the exponential of the temperature solution given
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in Eq.3.17. The largest contribution n = 1 gives:

e−(
2nπ
L )

2
DT t = e−

t
τ (3.21)

This gives:
1

τ
=

4π2DT

L2
(3.22)

We therefore constrain the size of the time step as:

dt <
1

τ
=

4π2DT

L2
(3.23)

We can also consider the particle spacing. It is expected that the characteristic diffusion length ∆x
of a temperature perturbation over time dt is given by:

∆x ≈
√
Dtdt (3.24)

We can therefore ensure that the thermal energy diffuses no more than a single particle spacing
every time step by enforcing:

dt <
∆x2p
DT

(3.25)

By choosing dt to satisfy both equations we ensure that the SPAM algorithm will have an appro-
priate step size over which to approximate the derivatives. For the weight function we use Lucy’s
choice, which with normalisation for 1D is given by:

w(z) =
5

4h
(1− z)3(1 + 3z) where z = x/H (3.26)

The first derivative is:

w′(z) =
−60

4H2
z(1− z)2 (3.27)

Finally we enforce the initial condition given by Eq.3.28 on the system particles as:

Ti(xi) = Asin(2πxi/L) (3.28)

As stated this condition is compatible with the periodic boundary conditions with the system centre
at x = 0 and the temperature vanishing at x = ±L/2. We choose the case A = 1.

3.2.3 1D Periodic Results

For each SPAM simulation, interpolated values are calculated for 0, 1 and 10 half lives. The
first simulation was run for a thermal conductivity of unity κ = 1gmm/s3K1, an initial density
of ρ0 = 1g/mm3 and specific heat of unity Cp = 1mm2/s2K. This gives the thermal diffusivity
as:

DT =
κ

ρCp
= 1mm2/s (3.29)

This gives the expected time to m half lives as:

tm =
mL2ln(2)

4π2DT
(3.30)
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We would therefore expect t0 = 0s, t1 ≈ 175.576s and t1 ≈ 1755.762s. The results for the SPAM
simulation for κ = 1gmm/s3K are shown in Fig.3.3. The results give good agreement to the
analytical solution with an error deviation of less than 1%.

Since tm ∝ D−1
T , it is advantageous to use a larger thermal conductivity. Fig.3.3 shows the results

from an SPAM simulation using κ = 10gmm/s3K. Since the discrepancy is still low, the shorter
simulation time mean henceforth, the remaining simulations will use κ = 10.

Figure 3.3: SPAM results vs analytical results for the Fourier ring model. Left shows temper-
ature plot, right shows heat flux. Top shows thermal conductivity κ = 1gmm/s3K, bottom
κ = 10gmm/s3K. All SPAM values shown are calculated as the smoothed interpolated values.
Each is shown for a decay time of 0, 1 and 10 half lives. All times are given in seconds.
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Although these results appear promising, it is necessary that we must examine a hidden weakness
of the temperature evolution given in Eq.3.19. The evolution calculates differences in particles
temperature for the heat flux and then differences of heat flux for the rate of change of the tem-
perature. This gives rise to an even-odd instability between the nodes which causes each particle
to only be effected by its second nearest neighbour and become decoupled from its nearest. This is
easily demonstrated if we add a small perturbation to each particle temperature of the form:

Todd = T + dT

Teven = T − dT
(3.31)

where odd represents the 1st, 3rd, 5th, ... particles from the counting from the left simulation bound-
ary and even represents particles 2, 4, 6, .... Here we take dt = 0.01s, which gives an initial temper-
ature profile shown by the particle values in Fig.3.4. It is immediately obvious that calculation of
the heat flux given by Eq.3.20 means that the perturbations cancel out, giving rise to a smoothed
heat flux across the system shown in the lower half of Fig.3.4.

Figure 3.4: SPAM temperature results vs analytical results for the Fourier ring model for thermal
conductivity κ = 10gmm/s3K. The ‘odd-even’ instability is shown by the initial and final particle
temperatures for which the small perturbation never decays. All SPAM curves shown are calculated
as the smoothed interpolated values. Each is shown for a decay time of 0, 1 and 10 half lives. These
curves show the smoothed observation by SPAM interpolation of the non-smoothed particle values.

This means such perturbations cannot be removed and will persist indefinitely. In the fully periodic
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system, this is of no consequence and indeed we do not observe any such spike of oscillation in
our simulations. However once physical boundaries are used it can become a problem as we will
show.

3.3 1D Boundary Driven Heat Flow

There are many possibilities to model physical boundaries including fixed particles, mirrors and
potential barriers. Each has advantages and disadvantages. The method used depends on whether
matter and/or energy is required to flow through the boundary, as well as the computational
efficiency, simplicity and accuracy of the method.

For our present purposes we require boundaries that permit transfer of heat and give agreement
with analytical solutions of the heat conduction equation. We will explore several options and
critically appraise them. We retain some aspects of the previous model but now consider a more
challenging set of initial and boundary conditions. If we begin with T (x, 0) = T0, some non-zero
constant, but we require the ends to be at constant zero temperature, then our system begins with
a discontinuity.

The constant initial function can be written in terms of an infinite sum of sine functions to satisfy
the conditions on the diffusion equation. This means the analytical solution takes the form:

T (x, t) =
4T0

π

∞∑
m=1

(−1)(m−1)

2m− 1
cos

(
(2m− 1)πx

L

)
exp

[
−(2m− 1)2π2κt

L2

]
(3.32)

With the heat flux derived as:

Q(x, t) = −4T0κ

L

∞∑
m=1

(−1)msin

(
(2m− 1)πx

L

)
exp

[
−(2m− 1)2π2κt

L2

]
(3.33)

The full derivation of these solutions can be found in the work by Carslaw and Jaeger [114].
This model has already been used by Monaghan to demonstrate the effectiveness of his form
of temperature evolution in isolation [108]. We aim to show through comparison of the various
proposed forms of evolution here that a superior alternative exists for this work.

3.3.1 Smoothed Particle Boundary Enforcement

Fixed boundary methods are the simplest to implement within non-equilibrium simulations. One
drawback is that fixed properties calculated on the system boundaries are not equal to the fixed
values. Furthermore the boundaries in no way react to the system evolution and thus small errors
are introduced into the system for properties calculated close to the boundaries due to discontinu-
ities.

We can enforce our 1D fixed boundary conditions by populating the space outside of L with the
same evenly spaced particles but prevent the particle values in this region from evolving. This
however causes discontinuous field variables and will thus drive spurious oscillations within the
SPAM solution Eq.(3.19) and thus introduce errors. Here we test the fixed boundary method and
quantify this error before exploring the proposed adaptations.
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Figure 3.5: An outline of how fixed and mirror system boundaries can be enforced in a 1D smoothed
particle simulation. The simplified 1D material is represented as a chain of N particle points
with initial temperatures Ti. Each end of the system is placed in contact with an effectively
infinite heat bath. In the fixed case this is modelled as constant particle temperatures, shown as
TC . For mirror conditions we enforce temperature at the boundary by calculating the boundary
particle temperature Ti′ = 2TH − Ti at each time step. For our model we take the simplified case
TC = TH = 0K.

3.3.2 1D Fixed Boundary Results

The results for SPAM simulations with initial temperature distribution T0 = 1s and fixed boundary
temperatures Ti = 0s are shown in Fig.3.6. It is immediately evident that there is a significant
error introduced into the simulation. We can calculate the residual error U between the analytical
and SPAM temperature distributions:

U2 =
1

n

n∑
i

(TAnalytic(i)− TSPAM (i))2 (3.34)

where i represents each of the n = 100 interpolation points. The analytical temperature is calculated
with frequencies up tom = 100 included. This number is chosen asm = 100 still exhibits significant
deviations at x = ±L

2 . Using this residual error calculation we obtain the results u0 ≈ 0.0032K,
u1 ≈ 0.0035K and u10 ≈ 0.0033K. Therefore the fixed boundaries used in this simulation ensure
the average error in predicted temperature exceeds 3%.
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Figure 3.6: SPAM results vs analytical results for 1D fixed boundaries for thermal conductivity
κ = 10gmm/s3K. The initial function used is T = 1K. The temperature is shown here. All SPAM
curves shown are calculated as the smoothed interpolated values. Each is shown for a decay time
of 0, 1 and 10 half lives. The residual error between the curves is maximally ≈ 4%.

Similar results are obtained for the heat flux curves shown in Fig.3.7. The error is due to fixed
boundary temperatures. This is because there is a rate of change for the boundary particles exerted
by the system. This boundary evolution is discarded and thus the system energy has a small error
introduced. There are several proposed methods within the literature to address this, the most
obvious of these is to allow the boundary particle temperatures to evolve in a restricted way. We
will explore one such method next, mirror boundaries.
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Figure 3.7: SPAM results vs analytical results for 1D fixed boundaries for thermal conductivity
κ = 10gmm/s3K. The initial function used is T = 1K. The heat flux is shown here. All SPAM
curves shown are calculated as the smoothed interpolated values. Each is shown for a decay time
of 0, 1 and 10 half lives. The residual error between the curves is maximally ≈ 4%.

3.3.3 Mirror Boundaries

We will examine the effectiveness of dynamic boundaries in creating continuous system boundaries
and thus mitigating the errors so far demonstrated. For the 1D case dynamic boundary conditions
are specified with a set of more complex conditions than that of fixed. Let r denote the particle
positions. For a particle within range of the boundary rB − ri < h, a mirror particle is calculated
at location:

ri′ = 2rB − ri (3.35)

The temperature assigned to the mirror is given by two factors, the required boundary temperature
TB (this is either TH or TC for the 1D case) and the temperature of the particle it is a mirror of
Ti:

Ti′ = 2TB − Ti (3.36)

This relation for dynamically assigned temperatures ensures that the value of T on the system
boundary is always given by TB. This is clearly not the case for the fixed boundary conditions.
For the fixed boundary simulations the heat flux Q is actually calculated within the SPAM similar
to the system particles. For the mirror case however the heat fluxes are assigned to be the same
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as the particle which they are a reflection of, this ensures the heat flow is continuous across the
boundary:

Qi′ = Qi (3.37)

3.3.4 1D Mirror Boundary Results

Here the SPAM simulation was run with n = 100, L = 100mm, κ = 10gmm/s3K. The results
obtained are shown in Fig.3.8 and Fig.3.9. The residual error between the analytical results and
those obtained with the SPAM mirror boundaries is maximal for the curves of t10 half lives. This
error is calculated as:

UMirror,t10 = 0.0087K (3.38)

This suggests that mirror boundaries are significantly better at handling the discontinuous driving
boundary conditions required to simulate transient heat flow than fixed boundaries. However, as
previously discussed dynamic boundaries quickly become complex in nature as spatial dimensions
and geometric complexity increases.

Figure 3.8: SPAM results vs analytical results for 1D mirror boundaries for thermal conductivity
κ = 10gmm/s3K. The initial function used is {Ti} = 1K. Temperature plot shown here. All SPAM
curves shown are calculated as the smoothed interpolated values. Each is shown for a decay time
of 0, 1 and 10 half lives. The residual error between the curves is maximally < 1%.

One way to increase the accuracy of simulations under fixed boundary conditions is to introduce
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corrective factors into the SPAM algorithm. We will therefore quantify the effectiveness of some of
the more widely used methods proposed in the literature against the use of mirror boundaries as
well as testing if they further increase the accuracy of mirror boundaries.

Figure 3.9: SPAM heat flux results vs analytical results for 1D mirror boundaries for thermal
conductivity κ = 10gmm/s3K. The initial function used is {Ti} = 1K. All SPAM curves shown are
calculated as the smoothed interpolated values. Each is shown for a decay time of 0, 1 and 10 half
lives. The residual error between the curves is maximally < 1%.

3.3.5 Corrective methods

There are several commonly used corrective methods given throughout the SPAM literature. This
includes the use of artificial terms such as conductivity and viscosity; first order and higher cor-
rection terms to the kernel and kernel gradient; velocity smoothing (irrelevant for systems without
motion but will later be explored) and alternative formulation of the evolution SPAM equations.
An outline of one method of implementation of each of these follows, then the results are explored
for the non-equilibrium temperature simulation, giving direct comparison of the residual errors
from the analytical equations.

Artificial Terms

One common method to overcome these unstable build ups of matter and energy within the sim-
ulation is to add artificial dissipation to the method for each conserved quantity. Within the
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simulations in this chapter the only conserved quantity of interest is the energy leading to the
need for artificial terms in the thermal conductivity, although these method were first derived with
respect to matter and artificial viscosity [115] which will be explore later.

Artificial conductivity is added as an extra term to the energy evolution equation as:

Ṫi =
−1

cv

∑
j

[Qi +Qj +ΠT,ij ]
xij
|xij |

w′(|xij |) (3.39)

Several different formulations for the extra term ΠT,ij are in use in the literature. One of the most
promising forms for artificial terms is derived based on Riemann solvers [98] as:

ΠT,ij =
βvsig,ij
ρ̄ij

(Ti − Tj) (3.40)

Here β is the coefficient of dissipation which is evolved per particle through time. vsig represents
the signal velocity and is commonly given as:

vsig,ij =
1

2
[ci + cj − 2vij · rij ] (3.41)

where c represents the respective particle sound speeds. However Price [116] offers a more general
derivation of artificial dissipation terms for any conserved quantity f as:(

dfi
dt

)
diss

=
∑
j

mj

βfv
f
sig,ij

ρ̄ij
(fi − fj)

rij
|rij |

w′(|rij |) (3.42)

This is identical to the previous description, however the generalisation points out that an indepen-
dent signal velocity vsig should be considered for each conserved quantity f . The signal velocity
given by Eq.3.41, is constructed by considering shock waves. In the case of the 1D thermal non-
equilibrium simulations presented here, no shocks are expected. Instead the discontinuities which
the artificial terms are designed to capture arise from discontinuities at the system boundary, these
are fundamentally the same however in practice they are without significant velocity differences.
With this in mind, an alternative form for signal velocity based on pressure differences has been
proposed by Price:

vTsig =

√
Pi − Pj

ρ̄ij
(3.43)

Since current simulations do not involve pressure we propose an alternative signal velocity based
on differences of local heat fluxes:

vTsig =

√
Qi −Qj

DT m̄ij
(3.44)

The motivation for such a choice is based on the fact that we expect all heat fluxes to be equal at
steady state and thus the signal velocity would then vanish. The vanishing nature of dissipative
artificial terms is further ensured by the time evolution of the coefficient of dissipation βf as:

dβf
i

dt
= −

βf
i − βf

min

τi
+ Si (3.45)

Here τi represents the timescale of decay and Price suggests this value as τi = 10H/vsig where vsig
is the maximum signal velocity calculated for particle i. The final term is the source term and
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again this should be selected based on the conserved quantity f . For the case of thermal energy
the source term is suggested by Price to be:

ST
i =

H|∇2T |i√
Ti + ϵ

(3.46)

where ϵ is some small number to prevent singularities within the calculation. Initial results for
the fixed boundary case simulations with artificial conductivity are shown in Fig.3.10. The heat
flux results are shown in Fig.3.11. All residual errors are less than those of the fixed boundary
case alone, however the residual error can be seen to increase with time and therefore the use
of artificial terms may effect the rate of decay and thus introduce errors into the exploration of
transient heat-flow results.

Figure 3.10: Temperature distributions for the model set out in Sec.3.3 with initial temperatures
{Ti} = 1K, thermal conductivity κ = 10gmm/s3K. The residual error between the curves is maxi-
mally < 2.4%.
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Figure 3.11: Heat flux distributions for the model set out in Sec.3.3 with initial temperatures {Ti} =
1K, thermal conductivity κ = 10gmm/s3K. The residual error between the curves is maximally
< 2.4%.

Kernel and Gradient Corrections

Corrections to the kernel and its gradient are found by considering the Taylor expansion of the
weight function with some function f(x) about x, this is shown in full detail in Sec.2.4.2. The
result for the kernel correction is given as:

fi ≃
∑

j mjfjW (xij)/ρj∑
j mjW (xij)/ρj

(3.47)

Results for simulations with 1D kernel corrections are shown in Fig.3.12 with the accompanying
heat flux given in Fig.3.13. It is immediately obvious that the use of corrections introduced large
errors into the time dependence of the simulation. This result was not supported in the literature
so it should be assumed that there is likely an undiscovered error or that more testing is required to
validate this. For now it is sufficient that corrective methods are omitted from the simulations that
follow within this chapter. The same results are found for the case of kernel gradient corrections,
due to the clear indication that there is an error in the implementation these are not included. The
corrections were not found to have any significant effect on the steady state solutions.
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Figure 3.12: SPAM results vs analytical results for 1D fixed boundaries for thermal conductivity
κ = 10gmm/s3K. First order 1D kernel corrections have been included in the SPAM simulation.
The initial function used is T = 1K. Temperature plot shown here. All SPAM curves shown are
calculated as the smoothed interpolated values. Each is shown for a decay time of 0, 1 and 10 half
lives. The residual error between the curves is large, however the steady state solution converges
with reduced errors.
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Figure 3.13: SPAM results vs analytical results for 1D fixed boundaries for thermal conductivity
κ = 10gmm/s3K. First order 1D kernel corrections have been included in the SPAM simulation.
The initial function used is T = 1K. Heat flux plot shown here. All SPAM curves shown are
calculated as the smoothed interpolated values. Each is shown for a decay time of 0, 1 and 10 half
lives. The residual error between the curves is large, however the steady state solution converges
with reduced errors

Alternate Forms of Temperature Evolution

It is desirable to remove problems such as the instability outlined in Fig.3.4 more directly by
reformulating the temperature evolution equations. Monaghan suggested an alternative tempera-
ture evolution based on the first derivative of the weight function and particle temperature differ-
ences [108]:

cp,i
dTi

dt
=
∑
j

mj

ρiρj

4κiκj
(κi + κj)

(Ti − Tj)
dWi,j

drij

1

|rij |
(3.48)

This formulation allows for particles to have different thermal conductivities κi, κj . The more
complex form of the thermal conductivity ensures that the heat flux remains continuous across
large jumps in material properties. This will become important when considering fissile materials
undergoing damage due to irradiation. Results for this alternative evolution are shown in Fig.3.14.
The results for this method are far more promising, with a clear reduction in the error for the fixed
boundary case.
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Figure 3.14: SPAM temperature results vs analytical results for 1D fixed boundaries for thermal
conductivity κ = 10gmm/s3K. The SPAM simulation is run with Monaghan’s alternative descrip-
tion of temperature evolution 3.48. The initial function used is T = 1K. All SPAM curves shown
are calculated as the smoothed interpolated values. Each is shown for a decay time of 0, 1 and 10
half lives.

An alternative method of evolving temperature was proposed by Hoover [54]. This avoids the need
to compute kernel gradient or heat fluxes:

dTi

dt
= C

∑
j

(Tj − Ti)W (rij) (3.49)

where C is a constant of proportionality which can be chosen to match the macroscopic heat
equation:

C =
DT∑ x2w(x)

2

(3.50)

The explanation given by Hoover depends on substituting an approximation of the temperature as
a cosine function. Instead here a full derivation of this temperature dependence is attempted. The
derivation begins from the 1D heat equation:

Ṫ (x) = DTT
′′(x) (3.51)
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If an expression for Ṫ (x) = f(x) can be derived then the smoothed particle approximation Eq.3.52
can used to give:

Ṫ (x) =
N∑
i

Ṫ (xi)
mi

ρi
w(x− xi) (3.52)

The second derivative can be approximated by the derivative definition:

T ′′(x) = lim
a→0

−T (x+ a) + 2T (x)− T (x− a)

a2
(3.53)

Considering the SPAM approximation, the smallest possible range a = x−xi where xi is the closest
possible point. This consideration reduces the second derivative to:

T ′′(x) = lim
x→xi

2(T (x)− T (xi))

(xi − x)2
(3.54)

The limit used in this definition means that the smoothed particle approximation can be considered
as the limit of the function (x− xi)

2/2:

lim
x→xi

(xi − x)2

2
= lim

x→xi

lim
H→0

∫ ∞

−∞

(xi − x)2

2
w(H)dx (3.55)

This can be converted to summation form:

lim
x→xi

(xi − x)2

2
= lim

x→xi

lim
H→0

N∑
i

(xi − x)2

2

mi

ρi
w(H) (3.56)

At this point it is noted that due to the smoothed particle approximation the limit is unobtainable,
instead all particles xi within the finite range H are considered:

lim
x→xi

(xi − x)2

2
≈

N∑
i

(xi − x)2

2

mi

ρi
w (3.57)

This is used to approximate Eq.3.54. For convenience of notation the index is changed i → j:

T ′′(x) =
T (x)− T (xj)∑N
j

(xj−x)2

2
mj

ρj
w

(3.58)

Now using the heat Eq.3.51 the desired function for Ṫ (x) is obtained:

Ṫ (x) = DT
T (x)− T (xj)∑N
j

(xj−x)2

2
mj

ρj
w

(3.59)

Using the SPAM approximation given in Eq.3.52 the final SPAM interpolation of the rate of change
of temperature, as originally given by Hoover, becomes:

Ṫ (x) = DT

∑
i

(Ti − Tj)
mj

ρj
w∑N

j
(xj−xi)2

2
mj

ρj
w

(3.60)

Of interest is that the final form for this evolution is similar to the extension of the kernel correction
method derived by Sibilla [117] which is also based on Taylor series expansions. This suggests that
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the methodology used here may be expanded to estimate derivatives of functions as is achieved for
the corrections outlined by Sibilla. It is also interesting to note that Hoover’s evolution eliminates
the use of the gradient of the weight function. The total elimination of this was achieved by
the Kernel Gradient Free (KGF) methodology [118] which all showed a dramatic increase in the
accuracy of the SPAM algorithm.

The reason for the full derivation given here becomes obvious when examining the 2D form later
in this chapter. Results for this evolution are given in Fig.3.15. The error is significantly less than
the standard evolution for the fixed case with no requirement for artificial terms or calculation of
the kernel gradient. Full comparison of these errors follows in the next section however the spatial
distribution of error is given for this case in Fig.3.16. It can be seen that the error is greatest for
the heat flux calculated at the simulation boundaries which is expected due to the fixed boundary
conditions failing to provide a smooth heat flux. Conversely, the calculated error in temperatures
is greatest at the centre of the simulation where the temperature peaks. This is likely due to the
centre of the simulation being furthest from the driving conditions at the boundary and thus having
the most significant time delay for the boundary effects.

Figure 3.15: SPAM results vs analytical results for 1D fixed boundaries for thermal conductivity
κ = 10gmm/s3K. The SPAM simulation is run with Hoover’s alternative description of temperature
evolution Eq.3.60. The initial function used is T = 1K. Temperature plot shown here. All SPAM
curves shown are calculated as the smoothed interpolated values. Each is shown for a decay time
of 0, 1 and 10 half lives.
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Figure 3.16: The spatial distribution of the error for SPAM results vs analytical results for 1D
fixed boundaries for thermal conductivity κ = 10gmm/s3K. The SPAM simulation is run with
Hoover’s alternative description of temperature evolution Eq.3.60. The results are shown for both
temperature and heat flux and are calculated for a decay time of 10 half lives.

Results for Various Corrections in 1D

As stated before all the corrective methods outline above have been examined for fixed boundary
cases. Their effect on the mirror boundary case has also been quantified through the use of residual
errors calculated as in Eq.3.101. A direct comparison of the residual errors is given in Fig.3.17 with
the error in heat flux in Fig.3.18. The error in the method of kernel correction is removed here as
it allows for better comparison of the remaining methods which have significantly less error. The
residual error for each result is calculated within the bounds −45mm< x < 45mm to remove the
contribution of the boundary error.

Clearly the least useful method tested here is the standard evolution proposed given by Eq.3.19.
The use of artificial terms improves these results as well as combating the discontinuous heat flux.
Examining all forms of evolution it is clear that the use of mirror boundaries is still superior for its
natural smoothing of discontinuities at the boundary.
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Figure 3.17: SPAM results vs analytical results for 1D corrective methods for thermal conductivity
κ = 10gmm/s3K. The SPAM simulation is run for fixed and mirror boundaries. In each case
the simulation is also run with artificial conductivity as well as each alternative description of
temperature evolution Eq.3.48 and Eq.3.60. The initial function used is T = 1K. Above shows
the residual errors in the temperature plot. All SPAM values are calculated as the smoothed
interpolated values. Each is shown for a decay time of 0, 1 and 10 half lives.

The most promising result is that given by Hoover’s temperature formulation Eq.3.60. The error
for the fixed case in the absence of artificial conductivity is the lowest of all choices. Although not
included here, no improvement was found for the addition of artificial terms to Hoover’s formulation.
The best results are produced by Hoover’s evolution with mirror boundaries. The error calculated
for t = 175s is UT ≈ 1× 10−5K.
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Figure 3.18: SPAM results vs analytical results for 1D corrective methods for thermal conductivity
κ = 10gmm/s3K. The SPAM simulation is run for fixed and mirror boundaries. In each case
the simulation is also run with artificial conductivity as well as each alternative description of
temperature evolution Eq.3.48 and Eq.3.60. The initial function used is T = 1K. Above shows the
residual errors in the heat flux plot. All SPAM values are calculated as the smoothed interpolated
values. Each is shown for a decay time of 0, 1 and 10 half lives.

3.4 Transient 2D Heat Flow

The generalisation of the three SPAM temperature evolution equations given to higher dimensions
is non trivial. In particular Eq.3.60 is only offered briefly in the literature and only in one dimension.
It is therefore important to confirm that the correct decay times are maintained in two dimensions.
This is achieved using the derivation of Eq.3.60 provided in the previous section. A model is
therefore selected for 2D heat flow with analytical solutions for the transient case. This model is
used by various other studies [108–110] which demonstrate the effectiveness of SPAM to model heat
conduction. Here we use the model to compare the methods for temperature evolution and show
that there is a difference in accuracy for each method.
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Figure 3.19: A visualisation of the transient 2D heat flow model. A square of length L is released
from an initial temperature T0 = 1K. All system boundaries are held at a constant temperature
Tc = 0K

The PDE used is well established and can be found detailed in Carslaw & Jaeger [114]. Transient
solutions are complex to derive in 2D, therefore the model is restricted to a simplified case. A 2D
square of length L is considered. If all boundaries are assumed to be at temperature Tc = 0K and
the system initial state assumed to be T0 = 1K then the solution is a product of the transient
solution in each dimension separately:

T (x, y, t) = ϕ(x, t)ϕ(y, t) (3.61)

The solution ϕ is given by Eq.3.32:

ϕ(x, t) =
4

π

∞∑
m=1

(−1)m−1

2m− 1
cos

(
(2m− 1)πx

L

)
exp

(
−(2m− 1)2π2DT t

L2

)
(3.62)

3.4.1 Restricted Solution

To allow for direct comparison of the results as in the 1D heat flow models, the solution is restricted
to a single slice of the 2D model. This is obtained by arbitrarily selecting y = 0. This gives the
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expected temperature profile within the region as:

T (x, y = 0, t) =
16

π2

[ ∞∑
n=1

∞∑
m=1

(−1)m−1

2m− 1
cos

(
(2m− 1)πx

L

)
exp

(
−(2m− 1)2π2DT t

L2

)
·(−1)n−1

2n− 1
exp

(
−(2n− 1)2π2DT t

L2

)] (3.63)

Eq.3.63 is plotted in Fig.3.20 for a system length of L = 50 where −L/2 < x < L/2. Several times
are shown in powers of 10.

Figure 3.20: The analytical solution for the transient heat flow in a slab as shown in Fig.3.19 is
plotted for the slice y = 0 as given by Eq.3.63. Time steps are given in powers of 10.

3.4.2 2D SPAM Temperature Evolution

The standard temperature evolution depends on the dot product of particle heat flux sums with
the gradient of the weight function. This is well documented and takes the form:

Ṫi =
−1

ρcp

∑
j

[(
Q

ρ2

)
i

+

(
Q

ρ2

)
j

]
· ∇iw (rij) (3.64)

where the heat flux is now calculated as:

Qi = −κ
∑
j

mj

ρj
[Tj − Ti] · ∇iw (rij) (3.65)
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Monaghan’s temperature evolution is already noted in a form for implementation in 2D by Eq.3.48.
The case of Hoover’s evolution is not as clear. The temperature evolution can be expressed as:

Ṫi = C
∑
i

(Ti − Tj)
mj

ρj
w (3.66)

The value C can then be obtained by considering the 2 separate spatial dimensions x, y of the
vector r. From the earlier derivation, it can be seen that in two dimensions the factor T ′′(y) must
be considered:

T ′′(y) =
T (y)− T (yj)∑N
j

(yj−y)2

2
mj

ρj
w

(3.67)

The summation of the two factors can be considered as:

∇2T (x, y) = [T (x, y)− T (xj , yj)]

(
2∑N

j (xj − x)2
mj

ρj
w

+
2∑N

j (yj − y)2
mj

ρj
w

)
(3.68)

This gives a new constant C in 2D as:

C2D = 2DT

(
1∑N

j (xj − x)2
mj

ρj
w

+
1∑N

j (yj − y)2
mj

ρj
w

)
(3.69)

Derivation using a test function as Hoover does for the 1D case [54] suggests that a factor of 2 is
all that is required when simply using inter particle distances, therefore excellent results can be
obtained from:

C2D =
4DT∑N

j r2ij
mj

ρj
w

(3.70)

where Rij is the scalar distance between particles i, j. It is believed this holds due to the symmetric
nature of the particle arrangement in the x, y directions and that the factor of 2 can be found by
considering the two summations over x, y to be equal. The effectiveness of each of these methods
is demonstrated in the following section.

3.4.3 SPAM Results

For all SPAM simulations of 2D transient heat flow the simplest boundary enforcement of fixed
particles is used. The particle arrangement is shown in Fig.3.21. Boundary particles are included
to within the range H to ensure no errors in interpolation.
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Figure 3.21: The 2D particle arrangement used for SPAM simulations of transient heat flow. The
particles shown as red circles are system particles. The particles shown as blue diamonds are the
fixed boundary particles, restricted from evolving in time.

The SPAM is run with a time step of dt = 0.05s and the particle arrangement uses unit grid spaced
unit mass particles with ρ0 = 1g/mm3. The results for the standard temperature evolution given
by Eq.3.92 can be seen in Fig.3.22. For this test the artificial terms were included as they presented
a slight improvement on the standard method in the 1D case.

The SPAM temperature distribution is systematically higher at all times and becomes worse as
time progresses. The error for the T = 100K curve is ≈ 8% at the peak value.

The results for Monaghan’s alternative temperature evolution (Eq.3.48) are shown in Fig.3.22.
Again artificial terms are included as they were found to reduce the error in the 1D case. The
evolution given by Monaghan again shows improvement over the error of the standard evolution.
Its ability to handle discontinuities makes it seem appealing and steady state conditions have been
shown to be reproducible with the method.

Finally the results for the two presented methods of Hoover’s temperature evolution in 2D are
given in Fig.3.22. Artificial terms were not included. Both calculations of C with either Eq.3.70
or Eq.3.69 are seen to give identical results. Considering the error improvement given in Table.3.1
this method of temperature evolution appears therefore to be the superior choice. To fully confirm
this, a final 2D test will be explored with more complex boundary conditions.
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Figure 3.22: Analytical solution to 2D transient heat flow given by Eq.3.63 is compared with SPAM
solution. Top left given by Eq.3.92. Top right given by Eq.3.48. Both have artificial terms included.
Bottom given by Hoover’s evolution Eq.3.66. Two variations on the calculation of C are presented
here and are found to give identical results. Bottom Left is calculated with Eq.3.70, right with
Eq.3.69. Artificial terms are NOT included.
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Method Residual Error for t=100s (2D)

Standard 0.0722
Monaghan’s 0.0283
Hoover’s 0.0260

Table 3.1: Residual error calculated for each method of SPAM evolution tested on the 2D transient
heat flow problem for time T = 100K

The spatial distribution of the error for both the case of Monaghan’s and Hoover’s evolution equa-
tions are highlighted within Fig.3.23 for t = 100s. The distribution of error for each method is
shown to follow the same general shape, being maximal close to but not on the boundary. A clear
deviation occurs at the system boundary and the minimum error occurs at the peak of the tem-
perature value within the slice y = 0. Most importantly the error is seen to be less at all points
within the distribution for Hoover’s formulation, again supporting it as the superior choice.

Figure 3.23: The a comparison for the spatial distribution of error between the SPAM and analytical
is given for the 2D transient heat flow problem. Errors are shown for the formulation given by
Hoover’s evolution Eq.3.66 and Monaghan’s Eq.3.48. Results are shown for t = 100s.
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Figure 3.24: The residual error is given for each of the 3 methods of time evolution in SPAM for
the 4 time steps shown.

3.5 More Challenging Boundary Conditions - 2D Heated Tile

Any method of temperature evolution by an SPAM model must not only be consistent in time but
be robust in its ability to handle complex boundary value problems. A more complex 2D model will
therefore be explored with full discussion of the advantages and disadvantages surrounding various
methods of boundary modelling within SPAM.

Consider a square of side lengths L, centred on the origin. Boundary conditions are enforced to
drive the system toward a steady state as:

T =

{
TH : y = L/2,−L/2 < x < L/2
TC : y < −L/2, x < −L/2, x > L/2

(3.71)

Both TH and TC are constant temperatures. A visualisation of the model is given in Fig.3.25. The
model is chosen with the knowledge that a steady state analytical solution exists.

112



Figure 3.25: A visual representation of the 2D problem being studied. 3 sides are kept at temper-
ature TC , the other side at TH .

3.5.1 Analytical Solution

Again we choose a model which permits an analytical solution; the steady state flow of heat on
a rectangular region of space is well documented [119]. For the condition of steady state in two
dimensions with no source terms and constant thermal conductivity the heat diffusion equation
becomes:

0 =
∂T

∂t
= DT

(
∂2T

∂x2
+

∂2T

∂y2

)
(3.72)

By substituting the variables with the following the derivation of the solution becomes simpli-
fied:

T ∗ = T − TC (3.73)

x∗ = x+
L

2
(3.74)
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y∗ = y +
L

2
(3.75)

This gives the modified boundary problem as:

T ∗ =

{
TH − TC : y∗ = L, 0 < x∗ < L

0 : y < 0, x < 0, x > L
(3.76)

Now it can be assumed that the solution is separable:

T ∗(x∗, y∗) = X(x∗)Y (y∗) (3.77)

Then through separation it can be shown that:

d2X

dx∗2
+ λ2X = 0 (3.78)

d2Y

dy∗2
− λ2Y = 0 (3.79)

where λ2 is the separation constant. The constant value on the upper boundary can be written as
an infinite sum of sine functions:

TH − TC =
∞∑
n=1

ansin

(
nπx∗

L

)
(3.80)

For this reason it is ideal to examine solutions in the range λ2 > 0 which take the general form:

T∗ = (C1cos(λx
∗) + C2sin(λx

∗))
(
C3e

−λy∗ + C4e
λy∗
)

(3.81)

Now the boundary conditions given by Eq.3.76 can be applied to give the conditions:

C1 = 0

C3 = −C4

C2C3sin(λL)
(
e−λy∗ + eλy

∗
)
= 0

(3.82)

This final condition given above implies that sin(λL) = 0 . The root of this non-linear equation
are given by:

λn =
nπ

L
(3.83)

The temperature solution then becomes a sum of these infinite solutions:

T ∗ =

∞∑
n

Cnsin(
nπx∗

L
)
(
e

−nπy∗
L − e

nπy∗
L

)
(3.84)

This contains the hyperbolic function. The upper boundary condition now gives:

TH − TC =

∞∑
n

Cnsin(
nπx∗

L
)sinh(nπ) (3.85)

This is a variation of the condition assumed in Eq.3.80 and thus can be used to obtain the values
of Cn:

Cn =
2

π
(TH − TC)

1

sinh(nπ)

(−1)n+1 + 1

n
(3.86)
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This gives the full expression for the temperature as:

T ∗ = (TH − TC)
2

π

∞∑
n

(−1)n+1 + 1

n
sin(

nπx∗

L
)
sinh(nπy∗/L)

sinh(nπ)
(3.87)

This equation can then be transposed back to T, x, y to give the desired co-ordinate system for the
model:

T = (TH − TC)
2

π

∞∑
n

(−1)n+1 + 1

n
sin

(
nπ(x+ L/2)

L

)
sinh(nπ(y/L+ 1/2))

sinh(nπ)
+ TC (3.88)

This allows the steady state temperature to be calculated anywhere on the square. The heat flux
follows from Fourier’s law:

Qx = (TH − TC)
2

L

∞∑
n

[(−1)n+1 + 1]cos

(
nπ(x+ L/2)

L

)
sinh(nπ(y/L+ 1/2))

sinh(nπ)

Qy = (TH − TC)
2

L

∞∑
n

[(−1)n+1 + 1]sin

(
nπ(x+ L/2)

L

)
cosh(nπ(y/L+ 1/2))

sinh(nπ)

(3.89)

Finally by considering y = 0 the equation of a single slice through the centre of this model can be
calculated as:

T = (TH − TC)
2

π

∞∑
n

(−1)n+1 + 1

n
sin

(
nπ(x+ L/2)

L

)
sinh(nπ/2)

sinh(nπ)
+ TC (3.90)

3.5.2 Analytical results

For the case studied here we set L = 50mm, TC = 1K and TH = 2K. The analytical solutions
were calculated including frequencies up to n = 100 to give smoothed temperature and heat flux
profiles as seen in Fig.3.27. It is important to note that this solution is actually discontinuous at
the corners of the system despite the well-defined analytical solutions. This makes it a good further
case study for the stability of the SPAM algorithms with complex boundaries. The 1D dimensional
slice through the system at y = 0mm is given in Fig.3.26.
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Figure 3.26: The solutions of Eq.3.90 for temperature as well as its counterpart heat flux equations
in both the x and y directions for the 1D slice through the system at y = 0mm. The solutions were
generated using the first n ≤ 100 frequencies to create a smoothed map.
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Figure 3.27: The solutions of Eq.3.88 for temperature as well as its counterpart heat flux equations
in both the x and y directions. The solutions were generated using the first n ≤ 100 frequencies to
create a smoothed map

3.5.3 SPAM Solution with Fixed Boundaries

The fixed boundary solution to the 2D heat tile problem with SPAM is the simplest of those pre-
sented here, however it has the potential to introduce the most error. The particle arrangement
used for these simulations is identical to Fig.3.21. The only difference is in the assignment of tem-
peratures to the boundary particles. All fixed boundary particles are given one of two temperature
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values based on:

Ti = 2 : xi > 25

Ti = 1 : xi < 25
(3.91)

The boundary particle values are then restricted from being updated, however values such as heat
fluxes are still calculated at each time step. The discontinuity exists clearly within the fixed bound-
ary particles and so it is expected that the heat flux will diverge. The heat flux is calculated using
Eq.3.65. The temperature evolution is shown here calculated with two of the explored methods.
The first is using standard evolution with artificial terms expressed as:

Ṫi =
−1

ρcp

∑
j

[(
Q

ρ2

)
i

+

(
Q

ρ2

)
j

+ΠT,ij

]
· ∇iw (rij) (3.92)

where the artificial conductivity is given by Eq.3.40. This is used in an attempt to tame the
diverging heat flux effects on the steady state results. The other method used will be Hoover’s
evolution given by Eq.3.66 with C given by Eq.3.70. This does not depend on the heat flux and so
should be able to handle the the discontinuities without modification.

3.5.4 SPAM Fixed Boundary Results

The SPAM simulations are run in 2D with the smoothed interpolated profiles given for y = 0mm.
A time step of dt = 0.05s is used. The smoothing length is H = 3mm. Results for the standard
evolution with artificial terms is presented is Fig.3.28. Errors introduced by the fixed boundary
conditions can clearly be seen. The heat flux is reduced at the boundaries due to the incorrect
boundary temperature enforced by the fixed particles. Furthermore the temperature figure clearly
shows the boundary temperature is interpolated as greater than the desired TC = 1K. For standard
evolution to work with fixed boundary conditions it is noted that the particle heat flux must be
calculated for the fixed boundary particles.
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Figure 3.28: The SPAM solutions of the 2D heat tile problem shown in Fig.3.25 for temperature
shown left and heat flux both the x and y directions shown right for the 1D slice through the
system at y = 0mm. The solutions were generated using fixed boundary conditions with standard
evolution with artificial terms given by Eq.3.92

The same boundary error is evident in the case of Hoover’s evolution given in Fig.3.29, however the
overall error is significantly reduced compared to the case of standard evolution. This error can be
reduced further by considering dynamic boundary conditions instead.
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Figure 3.29: The SPAM solutions of the 2D heat tile problem shown in Fig.3.25 for temperature
shown left and heat flux both the x and y directions shown right for the 1D slice through the
system at y = 0mm. The solutions were generated using fixed boundary conditions with Hoover’s
evolution given by Eq.3.66 with factor Eq.3.70

3.5.5 SPAM Solution with Dynamic Mirror Boundaries

Before examining the results for dynamic boundaries we first need to examine the issue of assigning
mirror or ‘ghost’ particles across the system corners. For this problem the upper corners of the
tile represent a discontinuous temperature distribution, with the instantaneous jump from the hot
to cold boundary. This may not seem problematic at a point but the area beyond the corner
is not trivially a point and the assignment of dynamic particles within this area from their own
discontinuity if the point from which they are assigned is discontinuous. This idea is represented
in Fig.3.30.
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Figure 3.30: A visualisation of the way in which mirror particles across the SPAM simulation
corners are assigned their position. As is demonstrated by the colour profile of the particles, such
a reflection preserves the expected temperature profile of the physically real case. The reflection is
adapted to be in the line y = −x for the alternative corners.

Mirror particle positions are assigned as before but again a more complex relation is required to
assign particle positions at the system corners:

xi′ = −yi + xB + yB

yi′ = −xi + xB + yB
(3.93)

To understand the geometry of such a relation Fig.3.30 shows how such a reflection appears. These
equations demonstrate a reflection in the line y = x or y = −x dependent upon the simulation
corner. Such a reflection is chosen to maintain an appropriate temperature profile in the mirror
particles. The normal boundary reflections of particle 1 are represented by 1′. The corner reflected
particle is 1′′. As can be seen from the figure, a reflection of the form y = x preserves the
expected temperature profile in the corner as it progresses from hot to cold. It does however form
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a discontinuity with the mirrored sections given by 1′. To combat this, restrictions on the mirrored
particle heat flux are created so that heat may only ever flow perpendicular to the boundary. For
the corner case heat flux is restricted to flow only perpendicular to the line of reflection, as can be
seen in the below figure. Such a restrictions for a y = x reflection take the form:

Qx′ = −Qy

Qy′ = −Qx
(3.94)

For a y = −x reflection take the form:

Qx′ = Qy

Qy′ = Qx
(3.95)

With reflections perpendicular to the x-axis controlled by:

Qx′ = −Qx

Qy′ = Qy
(3.96)

Reflections perpendicular to the y-axis:

Qx′ = Qx

Qy′ = −Qy
(3.97)

It already becomes clear that generalising such algorithms to three dimensions with arbitrary
boundary shapes is complex and inefficient. Fig.3.31 shows the particle temperatures and heat
fluxes for standard SPAM evolution with artificial terms evolved using these boundary conditions.
It is evident immediately that (as shown by Fig.3.30) the enforced boundary temperatures are still
discontinuous and so generate an unstable solution.
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Figure 3.31: The SPAM solution Eq.3.48 for the 2D heated tile problem under mirror boundary
conditions as defined above. Particle final temperatures as well as particle heat flux in both the x
and y directions for T = 100K.

Without a generalised boundary algorithm to over come this, dynamic boundary conditions appear
unsuitable for further simulations. A generalised method based on particle positions instead of
direct geometric calculations is therefore proposed.
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3.5.6 Generalised Geometry for the Mirror Algorithm

For mirror boundary conditions to be general to all geometry and easily implemented within SPAM
algorithms it is beneficial that they be based on particle points instead of geometry, as with the
main SPAM algorithm. The method given here therefore uses a particle arrangement of boundary
points as can be seen within Fig.3.32. The boundary is populated by particle of zero mass mB = 0
with particle spacing equivalent to the system. These particles define the shape of the boundary
but are not included within the evolution algorithms by design as they have no mass.

Figure 3.32: The particle distribution for the generalised mirror algorithm is shown above. The
system particles are represented in red. The ‘ghost’ particles created by the algorithm are shown
as white crosses. The boundary particles are given unit spacing along the boundary with no mass
mB = 0 and are shown in 8 different colours and symbols to represent the 8 different boundary
sections.

The boundary particles are separated into separate groups for each distinct piece of the boundary
over which particles will be mirrored, in this case there are 8, shown by the different colours and
symbols. The 4 sides are considered independently as well as the 4 corners. An array of the closest
boundary particle to each system particle is then created by looping though all system pairs. A
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distinct array is created for each boundary piece. Therefore information for any system particle i
is known such that the the closest 8 boundary particles, one from each distinct section, is stored
and retrievable. For a moving boundary this can simply be recalculated as often as needed.

From here the final stage is the creation of mirror particles. The boundary particles are assigned
temperatures as well as positions. For each closest pair within range H a particle is created at
position:

ri′ = 2rB − ri (3.98)

Again the temperature and heat flux are simply assigned as:

Ti′ = 2TB − Ti

Qi′ = Qi
(3.99)

Although not used here, it is noted that for curved boundaries the radius of curvature of the
boundary can be used to adjust the mirrored particle mass to ensure the density is maintained.
Similarly for fast moving system particles such as in a fluid the boundary particle spacing can
be decreased so that particle reflections approach the boundary normal. The boundary method
outlined within this section is similar in nature to the method proposed by Ferrari et al [103]. The
key difference between these methods is that for this method all system particles can see all mirror
particles generated by the method. The method proposed by Ferrari instead generates a reduced
set of mirror particles in isolation for each system particle. This may cause system particles close
to the boundary to react to non-symmetric forces however the results shown by their method are
still promising.

3.5.7 SPAM Mirror Boundary Results

The results of the generalised mirror boundary simulation are presented here again for standard
evolution with artificial terms as well as Hoover’s evolution. The simulation is run in full 2D, with
the smoothed interpolation calculated for the slice y = 0mm. The time step used is dt = 0.05s
for 20000 steps. The smoothing length used is H = 3mm. The results for the standard evolution
are presented in Fig.3.33. Similarly the results for Hoover’s evolution are shown in Fig.3.34. Both
results show excellent agreement and stability. A small error is evident in both temperature profiles
however the analysis of interpolation given in the previous chapter suggests that this error is reduced
with particle number. This along with other features of the particle arrangement will be explored
in greater detail in the next chapter.
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Figure 3.33: The SPAM solutions of the 2D heat tile problem shown in Fig.3.25 for temperature
shown left and heat flux both the x and y directions shown right for the 1D slice through the
system at y = 0. The solutions were generated using generalised mirror boundary conditions with
standard evolution with artificial terms given by Eq.3.92

Figure 3.34: The SPAM solutions of the 2D heat tile problem shown in Fig.3.25 for temperature
shown left and heat flux both the x and y directions shown right for the 1D slice through the
system at y = 0. The solutions were generated using generalised mirror boundary conditions with
Hoover’s evolution given by Eq.3.66 with factor Eq.3.70
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3.5.8 FEM Solution

It is important when examining novel modelling methods to compare results not only with well-
defined analytical solutions but also with the industry standards for currently available modelling
software. ANSYS represents a standard and widely-used software within corporations and univer-
sity research and so its results will be used as an error benchmark for the acceptable error of the
model from the analytical solution.

FEM is the standard method used within Fuel Performance Codes (FPCs) however they are inde-
pendently created models and software that is purpose built. ANSYS is instead widely used for
thermal and stress analysis in fields such as structural engineering and aviation. The underlying
FEM methods are of the same standards however and so it provides a good comparison.

The ANSYS output was corrected to the required co-ordinate system and the slice at y = 0
is presented for comparison with the analytical solution in Fig.3.35. Clearly the error in the
FEM results is significantly less than the SPAM. The methodology of smoothing length refinement
through decreased particle spacing and increased particle numbers should reduce this discrepancy.
This idea will be explored in greater detail in the following chapter.

Figure 3.35: Temperature profile of the ANSYS result for the system slice y = 0mm. FEM solution
to the 2D heated tile problem represented in Fig.3.25
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3.5.9 Error Comparison

All of the results given for the 2D heat tile simulations are compared here along with those for
the alternative temperature evolutions explored in earlier sections but not shown for the 2D heat
tile. The error is calculated with the residual temperature error with the FEM result included for
completeness.

Figure 3.36: Comparison of the various residual errors in approaches to the solution of the 2D
heated tile problem represented in Fig.3.25. The ‘artificial’ simulations are run with the standard
evolution formulation.

The results are shown in Fig.3.36. All SPAM results are for N = 2500 particles therefore improve-
ment toward the error given by the FEM result may still be achievable with a larger number of
particles. Interestingly the standard temperature evolution both with and without artificial terms
performs better in the mirror case by a margin despite being worse for fixed boundary particle
conditions. The artificial terms also provide no improvement in the steady state solution.
These results suggest that for steady state solutions the choice of evolution used is less important
than the choice of boundary conditions however this will likely be application dependant. One final
piece of analysis will be shown to demonstrate how the full field data can be used to measure the
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accuracy of future simulations. This will be particularly useful for any validation experiments that
could be created.

3.5.10 Comparison via Shape Descriptors

The complex computational models discussed in this report are capable of producing a rich amount
of data with full field maps of properties such as temperature, strain, heat flux, pressure, etc. In
the past validation of simulations of this kind have been completed by comparison of maximum and
minimum values or by comparisons of values at specific locations as for the 1D case. Experimental
rigs can also be engineered to record specific values such as those used by Miaoa et al. in validating
models of the stress peen forming process [120].

Recent developments in experimental techniques however now allow for full field data to be recorded
by technology such as thermal imaging cameras, and Digital Image Correlation (DIC). These tech-
niques were initially employed with much the same validation criteria as before but with an extended
amount of data. This makes numerical confidence in the model difficult to establish as seen in the
validation of welding simulations for thermal stresses [121].

Over the last few years there has been research done on the application of shape descriptors, such
as those used in target recognition [122] and finger print recognition [123], to reduce the full field
data and thus aid in the validation of solid mechanics models [124]. A full methodology for validat-
ing simulations through full field data analysis has been proposed using both Fourier-Tchebichef
moments and Fourier-Zernike moments as shape descriptors [125]. This methodology, as detailed in
full in the appendix, is applied throughout in this chapter as a measure of the agreement of SPAM
results with those of FEM models created in ANSYS and with full field analytical results. This is
done as an example of how more complex nuclear fuel models can be validated against experimental
results in future work.

The method used here is based on the Fourier transform which is a mathematical formula for the
decomposition of a signal into a sum of oscillating functions (sine waves). This idea of decomposing
signals is not limited to sums of oscillating functions or to one dimensional signals and in fact can
be extended to any number of dimensions and used with any infinite sum of orthogonal functions
which appropriately describe the space. For each data set the Tchebichef moments are calculated
with a given truncation p, q of the order of Tchebichef polynomials included:

[Tp,q] (3.100)

These moments represent a reduction of the initial data field to data of dimensions p, q. Suppose we
have two data sets A,B. For two identical data sets we would expect that for a given p, q that the
related moment TAp,q = TBp,q is equal. We can then measure the deviation of the actual moments
of the two data sets from the line TAp,q = TBp,q . If all values lie within a predetermined error of
this line then we can say the two data sets are within error of each other. To better demonstrate
this, let us first examine the finite element method solution to the 2D heated tile problem and see
how the moments compare with the analytical solution.

The output thermal profile for the system is shown on the left of Fig.3.37. On the right of this
figure is the reconstructed image from the shape descriptors (Tchebichef moments). It is important
to reconstruct the image in this way to compare with the original data set to ensure that the error
in the shape description is not significant. It is immediately obvious that moments up to order
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p, q = 20 are sufficient to describe the data. The error is estimated as:

u2 =
1

N2

N2∑
i,j

(
f̂(i, j)− f(i, j)

)2
(3.101)

Here f represents the original data set, f̂ the reconstructed data, N the original number of data
points. This error is combined with any other error calculated for the simulations and then used
to estimate the error bounds for direct moment comparison.

Figure 3.37: Original and reconstructed temperature data taken from the FEM solution to the 2D
thermal model at steady state, produced using ANSYS. Data has been decomposed into Fourier-
Tchebichef moments up to order 20, and the reconstructed data, shown right, used to estimate the
residual error in the moments description of shape.

Analysis of moments between the analytical solution and the ANSYS solution shown in Fig.3.38,
demonstrates the desired result for validation. The moments display a tight correlation, demon-
strating the agreement of the two independently obtained results. The error for reconstruction is
too small to give reasonable error bounds for validation, therefore other sources of error would be
required for validation of this (such as the error produced by the ANSYS simulation).

130



Figure 3.38: Fourier-Tchebichef moments for the ANSYS solution plotted in the x-axis vs the
analytical solution’s moments in the y-axis. Red dotted lines show the error tolerance for validation
given by EQ.3.101 however the error is too small to be seen clearly. The solid black line represents
the desired relation of moments for 2 data set with exactly the same shape.

Similar analysis is completed for both the fixed and mirror boundary SPAM solutions. The results
for the fixed case simulated with Hoover’s temperature evolution are shown in Fig.3.39. These
moments show good agreement with little deviation from the centre line however they are not as
tightly packed as the FEM moments. This therefore gives a simple visual indicator that the full
2D data result for the FEM simulations are closer to the analytical solution than the full data for
the fixed SPAM simulation. The mirror boundary results with Hoover’s temperature evolution are
also analysed and shown in Fig.3.40. The results are far more similar to those of the fixed results
however it can be seen that some of the moments lie closer to the centre line, demonstrating better
agreement of the data.
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Figure 3.39: Fourier-Tchebichef moments for the SPAM solution with fixed boundaries completed
with Hoover’s temperature evolution plotted in the x-axis vs the analytical solution’s moments in
the y-axis. Red dotted lines show the error tolerance for validation given by EQ.3.101 however the
error is too small to be seen clearly. The solid black line represents the desired relation of moments
for 2 data set with exactly the same shape.

It is important to note here the restrictions of validation by this methodology. Firstly a rejection
from this result does not guarantee that acceptance cannot be achieved for the same data with the
inclusion of higher order terms. Similarly acceptance by this result does not guarantee the similarity
two pieces of data to within the given error bounds, only the shape of that data described up to
the given order. The inclusion of higher order terms allows for the description of finer detail within
the data but greatly increases computational cost. Questions should also be raised about the use
of residuals (calculated in the data space), used as errors in the moment space.
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Figure 3.40: Fourier-Tchebichef moments for the SPAM solution with mirror boundaries completed
with Hoover’s temperature evolution plotted in the x-axis vs the analytical solution’s moments in
the y-axis. Red dotted lines show the error tolerance for validation given by EQ.3.101 however the
error is too small to be seen clearly. The solid black line represents the desired relation of moments
for 2 data set with exactly the same shape.

3.5.11 Conclusions

The work presented within this chapter established a few important issues of consideration for any
SPAM simulation of nuclear fuel. The first of these is boundary conditions. Mirror boundaries,
although more complex are shown by far to be superior to fixed particle boundaries. The second
important consideration must be given to the formulation of the SPAM thermal evolution. It
is shown that with proper consideration of both corrective methods such as artificial terms and
correction factors become less important or beneficial.

Despite this, the results of this chapter suggest that further improvements to the SPAM results are
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required for them to reach the accuracy of FEM modelling, the current standard of FPCs. The
next chapter will explore therefore if the underlying particle arrangement structure can reduce the
remaining errors in thermal simulations with SPAM. Particle structure becomes more important
with the circular geometry of fuel pins. With the errors currently demonstrated, any SPAM sim-
ulation used for fuel licensing codes would have to show a worthy benefit in model complexity to
justify the use of SPAM over FEM.

The results given here demonstrate that there is a difference in accuracy between the various meth-
ods of temperature evolution proposed in the literature. Not explored here are more complicated
corrective methods such as the use of ‘symmetric’ SPAM [126] which has been applied to graded
structures. Further testing is needed to confirm the superiority of Hoover’s evolution for these
more complex methods however initial tests are promising and indicate no direct need for further
corrections in order to converge.
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Chapter 4

Analysis of Annular Particle
Arrangements for
Solid SPAM

4.1 Introduction

Smoothed particle methods are often referred to as ‘mesh-free’ methods. It is perfectly reasonable
however to consider the particle point configuration within SPAM as a form of Lagrangian mesh.
Work has also been done to study SPAM with Eulerian Particle arrangements [113]. Within this
work we will adopt the conventional terminology of particle arrangement and these arrangements
throughout this chapter and the following are fixed and can therefore be considered Eulerian in
nature. Smoothed particle methods are widely used within fluid applications, where greater defor-
mation of particle arrangement is expected and thus the initial configuration has a less measurable
effect on the final system configuration. In this work solids are considered therefore the final values
calculated within each simulation become far more sensitive to the initial configuration, due to the
expected smaller deformations from the initial state.

Straight edge geometry models are considered in the previous chapter, however when considering
potential models of a fuel rod cylindrical geometry is required, particularly when considering el-
ements within a fuel assembly such as the cladding which has annular geometry. The previous
methods of using grids of particle points as the initial particle arrangement therefore become poor
definitions for the desired shape. Considering this and the sensitivity of SPAM results on particle
arrangements, this chapter is dedicated to investigating methods of particle structure generation
for an annular problem and quantifying the effect on thermodynamic simulation results.

4.2 Radial Heat Flow Model

Consider the cladding on a nuclear fuel rod. The cladding material has an annular cross section.
A simplified model of the cladding is presented in this chapter, a 2D slice through the cladding
is therefore considered. The heat generated by the nuclear fuel pellet is simplified to a constant
internal temperature Ti acting on the 2D annulus. Similarly the convection by the coolant is
simplified to a lower constant outer temperature To. The internal radius of the considered annulus is
noted A, the external radius as B. A visualisation of the model to be used is shown in Fig.4.1.
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The model presented to complete the analysis in this section is chosen such that an analytical
solution exists. For simplification, only the steady state solution is considered. The ‘cladding’
material is assumed to be asymmetric and infinite in the z axis such that only radial heat flow
occurs.

Figure 4.1: Visual representation of the analytical non-equilibrium test model being used. We
assume a constant inner and outer temperature Ti, To and inner and outer radius A,B respectively

4.3 Analytical Solution

A starting point for determining the exact temperature distribution resulting from heat flow across
an annulus, in the absence of heat sources, with inner and outer boundaries maintained at fixed T
is the heat conduction equation in cylindrical co-ordinates:

1

r

∂

∂r

(
r
∂T

∂r

)
+

1

r2
∂2T

∂θ2
+

∂2T

∂z2
=

1

DT

∂T

∂t
(4.1)

A full derivation can be found in standard textbooks [114], but included here for completeness.
The boundary conditions for this problem are given as:

T (A) = Ti

T (B) = To
(4.2)

As stated the steady state solution is assumed, this gives:

∂T

∂t
= 0 (4.3)

If the fuel rod is long compared to its diameter, we can treat it as infinite in z and hence:

∂2T

∂z2
= 0 (4.4)
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Similarly the cladding is assumed to be axisymmetric which gives the simplification:

∂2T

∂θ2
= 0 (4.5)

With these simplifications the heat equation to be solved becomes:

1

r

∂

∂r

(
r
∂T

∂r

)
= 0 (4.6)

Integrating this equation twice gives the general solution:

T (r) = C2 + C1ln(r) (4.7)

The constants of integration here are C1, C2. These can be determined from the boundary conditions
Eq.4.2 giving:

C1 =
To − Ti

ln (B/A)
(4.8)

C2 =
TilnB − TolnA

ln (B/A)
(4.9)

The final steady state temperature distribution through an annulus is therefore:

T (r) =
Tiln(B/r) + Toln(r/A)

ln(B/A)
(4.10)

For the model explored in this work the internal temperature is set to Ti = 2K and the external
temperature at To = 1K. This is a simplification which ensures that the internal (fuel) temperature
exceeds the external (coolant) temperature Ti > To. The internal and external radius are set to
A = 8mm and B = 20mm.

4.4 SPAM Solution

All SPAM solutions to the model outlined in Fig.4.1 that are given throughout this chapter are
completed with a time step of dt = 0.05s. Simulations are run for 20000 time steps with a target ar-
rangement density of unity ρ0 = 1g/mm3, unit mass system particles mi = 1g and thus a smoothing
length of H = 3mm according to H = 3∆P as outlined within the methodology chapter.

Although the solution to this problem is assumed to be axisymetric, the particle arrangement used
can cause variation in the angular co-ordinate (θ̂) direction. Two measures will therefore be used
throughout this chapter. The first is simply the temperature interpolated along the slice θ = 0.
The second is the temperature interpolated along 12 different evenly spaced values of θ This set
of interpolation points is shown in Fig.4.2. This increased number of points is used to show the
spread of error across the SPAM system due to the particle arrangement.
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Figure 4.2: SPAM interpolation points used. 20 divisions are used in the radial co-ordinate r, 12
in the angle θ. The co-ordinates here extend out from zero in order to monitor how the density of
particles is effected toward the centre however these points are truncated to 8mm< r < 20mm for
analysis.

All SPAM simulations are run with Hoover’s temperature evolution given by Eq.3.66 with C given
by Eq.3.70. This is chosen due to its demonstrated success within the last chapter. Simulations are
run for both fixed and mirror boundary formulations however the generalised mirror boundaries
require further conditions to deal adequately with curves. All particle points are static, only the
temperature evolves not the position.

4.4.1 Curved General Shape Mirror Boundaries

As discussed in the previous chapter, the generalised mirror boundary conditions constructed for
the simulations given within this work are based on sets of boundary points. System particles
are reflected based on the closest boundary particle. Therefore in order to approach the limit of
particles being reflected over boundary normals the number of boundary points must be increased.
This becomes more important for a curved geometry where the system particles are not at common
distances from the boundary. For this reason a large total number of NB = 879 particles was used
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to describe the boundaries. These are shown in Fig.4.3

Figure 4.3: The boundary points used for mirror boundary simulations of constant temperature
through an annulus. These points are only used for particle reflections.

There are two further important considerations for mirror boundaries to work within curved ge-
ometry. Both of these consideration are linked to corrections to the mirror particle masses. As
particles are mirrored further away from the boundary they will occupy less space than the original
particle from which they are reflected. This idea is illustrated by particles j and j′ in Fig.4.4. The
average spacing beyond the curved boundary becomes greater than the average system particle
spacing of ∆P . Methods have been proposed to deal with this problem based on using repulsive
forces instead of virtual mirror particles [76]. Instead of this, a simple method of mass correction is
proposed here. A corrective factor is calculated based on the curvature of the boundary and used
to correct the mirrored particles mass to preserve the desired density ρ0 beyond the boundary. For
this consider a boundary with radius of curvature denoted rc. The ratio of particle mass mj to
mirrored mass Mj′ is then given by the ratio of particle areas, which is given by the ratio of the
circumference at each particle point:

mj

mj′
=

2π(rc −R)

2π(rc +R)
(4.11)
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where R denotes the distance between the system and boundary particle. Considering this relation
leads to the mass curvature correction Mcurv:

Mcurv =
rc +R

rc −R
(4.12)

The final modification is that the curvature for the inner boundary is given as negative, this leads to
Mcurv < 1 which reduces the mass for reflection over the opposite direction of curvature. Although
not completed within this work for extremely complex boundary shapes it may be possible to
estimate the local boundary curvature simple from the boundary particles provided without needing
to prescribe it initially as with these simulations.

Figure 4.4: Interior particles (shaded) and their mirror image reflections (open circles) across a
circular boundary. The effect on particle spacing is shown.

The second mass correction is due to a particle within the range R < ∆P /2 of the boundary
particles. This case is illustrated by particles i and i′ in Fig.4.4. As can be seen this leads to too
little space being provided for the occupying mass of particles. To correct for this we consider the
new space occupied by the two reflected particles in the direction of the boundary normal. On
the opposite side of the particle to the boundary (the interior) the spacing ∆P is preserved. On
the boundary side (the exterior) a spacing 2R exists. This is compared to standard particle mass
spacing for two particles:

2mi

mi +mi′
=

2∆P

∆P + 2R
(4.13)

This rearranges to give the mass closeness correction Mclose:

Mclose =
2R

∆P
(4.14)

Therefore we have the mirror particle mass given by:

mi′ =

{
miMcurvMclose if R < ∆P /2

miMcurv otherwise
(4.15)
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4.5 Construction of Particle Arrangement

The simplest methods for initial construction used so far in this work have been regular geometric
arrangements. Two examples of this can be seen in Fig.4.5. Both the square and triangular lattices
can be used to infinitely tile 2D space with perfect uniform particle density and spacing and given
a starting point the algorithms for generating such lattices are trivial. The use of such lattices to
fit irregular boundary shapes such as curves can be insufficient and cause drops in density due to
gaps in the particles along the boundary. However by using a finer particle arrangement you can
reduce such errors at the expense of increased CPU and memory requirements.

Figure 4.5: Two examples of uniform density lattices which can be infinitely tiled. Top the square
lattice, bottom the triangular lattice

Special consideration has to be given to the density in the case of the triangular particle arrangement
however. The particle spacing may be assumed as ∆P = 1mm for both lattices. However this causes
the density of the triangular lattice to be higher than desired at ρ0 ≈ 1.15g/mm3 as shown. This
can be corrected by modifying the particle spacing.

The unit density particle spacing can be calculated from the unit cell shown in Fig.4.6. The density
for this lattice is calculated as:

ρ =
2√

3∆x2p
(4.16)

The correct spacing for unit density is therefore ∆xp =
√
2/ 4

√
3. This produces ρ0 = 1g/mm3

however this larger particle spacing may cause effects on the accuracy of the SPAM temperature
algorithms as will be shown in the next section.
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Figure 4.6: The unit cell for the triangular lattice. Each particle included is on a vertex between 4
cells and thus the cell is occupied by only one particle in total.

One final construction technique that is used is concentric rings of particles. The rings are spaced
evenly along the radial axis in divisions of the desired particle spacing ∆P = 1mm. The number
of particles Nr placed on each equal radius r ring is calculated based on the area of the annulus it
creates:

Nr = 2πr∆P (4.17)

4.6 Particle Arrangement Relaxation

For complex geometries such as curved geometry the use of square and triangular lattices may be
insufficient to evenly tile the space. One method of particle arrangement creation for such shapes
is to use relaxation. This begins from some initial construction, which can be ordered such as
those depicted in Fig.4.5, however they can also be some random particle distribution. Relaxation
of these particle arrangements is then achieved by solving the SPAM equation of motion often in
conjunction with special forces designed to steer the system to the desired particle arrangement.
Such a method was outlined by Hoover [54] to create a variety of particle arrangements including
a 2D tapered bar geometry for tensile test simulations. Since then alternative methods have been
proposed which have improved results, key among these is the particle packing algorithm [127].
For the case of Lagrangian meshes the method of particle shifting has been proposed [128] which
actively shifts particle positions during the simulation to obtain a more optimal structure. For this
work we have chosen to further explore the methods proposed by Hoover in order to demonstrate
the effects of particle disorder. The optimal solution reached within this work agrees with those
derived through the use of the particle packing algorithm. Hoover’s method is therefore sufficient
to study the required particle arrangements needed for the study of nuclear fuel rods.
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4.6.1 Density Dependence

The key feature of the produced particle arrangement is the particle density. To achieve some
desired density ρ0 within a complex geometry the starting particle configuration can be evolved
with density-dependent forces which accelerate each particle toward the desired ρ0. For this work
we use the simple density-dependent forces derived from the embedded atom potential suggested
by Hoover [54]:

Φdensity =
miB0

2ρ0

∑
i

[(
ρi
ρ0

)
− 1

]2
(4.18)

where B0 is the bulk modulus derived from the equation of state at ρ0. This gives the particle
acceleration as:

r̈i =
miB0

ρ20

∑
j

(
2− ρi

ρ0
− ρj

ρ0

)
∇iWij (4.19)

4.6.2 Elastic Boundaries

In order to enforce the required geometry on the particles boundary conditions must be employed.
The simplest choice, used in this work, is elastic boundaries. These is defined by the reversal of
particle velocities acting at a normal to the boundary as the particle contacts the boundary.

To implement elastic boundaries within the SPAM code it helps to first consider the effect of the
time step. After each time step the particle positions are incremented by some unknown amount
defined for each particle by:

∆ri = dt · vi (4.20)

Considering this we know that the chance of the particle intersecting the boundary exactly at
any time step is effectively zero. Instead we therefore employ a check for particles exceeding the
boundary after each time step and simply revert them to their previous position before reversing
the particle velocity which acts normal to the boundary. This means momentum is not perfectly
conserved and can cause particle overlapping, to reduce these effects a small enough time step must
chosen. The effect of overlapping is also mitigated by the short range core potential employed.

4.6.3 Damped Particle Motion

For relaxation of the particle arrangement to occur the particle motion must be damped in order to
remove the kinetic energy. The damping force used is based on simple Brownian motion, in which
the deceleration of the particle is proportional to the particle velocity:

Fi,damp = −mivi
τ

(4.21)

Here τ controls the magnitude of the damping force with the particle deceleration increasing with
decreasing τ .

4.6.4 Core Forces

Uniform particle density interpolated at the particles does not guarantee uniform density at all
possible interpolation points within the sample space. To ensure this we not only need uniform
particle density but also uniform particle spacing. This ensures a smoothed continuum uniform
density throughout the sample.
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The method employed in this work to achieve this is the addition of another potential, called the
core potential, again used by Hoover [54]. This takes the general form:

Φcore =
∑
j

ϵ

[
1−

(
r2ij
σ2

)]4
; |rij | < σ (4.22)

Here ϵ represents the energy at zero separation, σ the distance from which the force begins to act
between two particles. This gives a force acting on particle i as:

mir̈i =
8ϵ

σ2

∑
j

rij

[
1−

(
r2ij
σ2

)]3
(4.23)

4.6.5 Boundary Density Correction

The use of elastic boundaries means that calculation of density near to the boundary is deficient
in particles beyond the boundary and therefore the density calculated here is significantly lower
than ρ for the desired final particle configuration. To combat this issue we simply employ 0th order
corrections to the density calculation as outlined by [71]:

ρi =

∑
j mjWij∑
j
mj

ρj
Wij

(4.24)

4.6.6 Equilibriated Particle Arrangement

For each of the starting types of particle arrangement given in the results below both ‘static’
(meaning the initial configuration) and relaxed configurations will be be explored. All particle
arrangement relaxation is completed with a damping force defined by:

τ =
ttotal
10t

: (4.25)

where t is the simulation time-step. We also artificially restrict the initial damping force from being
too small by requiring τ > 0.5. This means that the damping force increases with time and thus
the particle motion is slowly reduced allowing a local equilibrium position to be found.

The core force used is restricted to act only at a distance less than σ = 0.7mm with a prefactor of
ϵ = 1. This is chosen to prevent particle overlaps at short distances whilst having a minimal effect on
the relaxation for particles at or approaching the desired spacing. The density-dependent forces are
chosen to achieve uniform density with ρ0 = 1g/mm3 and a bulk modulus B0 = 1gmm−1s−2.

4.7 Square Particle Arrangement

The configuration of the fixed particle arrangement created from the square lattice and relaxed
square lattice can be seen in Fig.4.7. As discussed the boundary is poorly defined by the square
shape however the values used for relaxation create a large amount of particle disorder and spaces
which leads to a lack of consistency in the density profile, although the boundary has better defini-
tion. A range of values was attempted to achieve desirable relaxation, however it is speculated that
an improvement on the elastic boundary condition may be able to help this in future tests.
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Figure 4.7: Annular particle arrangement geometry from square lattice. The image on the right
was created by relaxing an initial system of particles towards a uniform density. The inner and
outer fixed particles are shown up to range 2H

The final steady state temperature profile for these two particle arrangements is shown in Fig.4.8.
Immediately it is apparent that the static square lattice gives more consistency than the relaxed
square lattice due to the consistent density. Neither case agrees with the analytical solution but the
the regular lattice is a better approximation than the relaxed case. The values are seen to spread
out for the relaxed case. This is caused by the disorder of the particle positions which causes the
density to vary more.
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Figure 4.8: The total set of interpolated temperatures for the SPAM solution to the radial heat
flow problem in Fig.4.1 with fixed boundaries. Left shows the square lattice results, right shows
the relaxed square lattice results.

4.7.1 Square with Mirror Boundaries

Figure 4.9: Mirror particles created from the square lattice. The right lattice was created by
relaxing the square lattice towards a uniform density. The system particles are shown in black
and solid and the mirror particles white and outlined. The boundary particles can be seen marked
between these layers.
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The system particle arrangements are the same for the mirror cases as for the fixed. The config-
uration of the mirrored ghost particles are shown in Fig.4.9. The spreading of particles as well as
those too close to the boundary line can clearly be seen. The creation of mirror particles gives a
better representation of the boundary than for the fixed boundary particle case.

The steady state temperature profiles for the mirror case are shown in Fig.4.10. Due to the loss of
the regular lattice across the boundary for the static case, the spreading of temperatures occurs.
Interestingly, despite the wider spread of results for the relaxed case, the average profile is in better
agreement with the spread of error achieving the analytical values at both boundaries.

Figure 4.10: The total set of interpolated temperatures for the SPAM solution to the radial heat
flow problem in Fig.4.1 with mirror boundaries. Left shows the square lattice results, right shows
the relaxed square lattice results.

4.7.2 Square Particle Arrangement Results

The slice at θ = 0 for each of the square particle arrangement simulations are presented in Fig.4.11.
The density profile can be seen to oscillate around the desired value to a greater extent for the
relaxed particle arrangements. This translates to the temperature values at these points along the
slice deviating more from the analytical temperature profile. For this particle arrangement, the
error improvements given by the mirror boundaries are not as evident as they were for the square
particle arrangements presented in the previous chapter.
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Figure 4.11: Results of the square lattice tests for the slice θ = 0. Left shows comparison of the
density profiles, right shows comparison of the temperature profiles.

4.8 Triangular Particle Arrangement

Figure 4.12: Annular particle arrangement geometry from triangular lattice. The right setup is
created by relaxing an initial system of particles towards a uniform density. The inner and outer
fixed particles are shown up to range 2H
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The fixed triangular particle arrangement, both static and relaxed are shown in Fig.4.12. The
triangular particle arrangement is better able to represent the circular boundary. Again the for-
mation of gaps in the relaxed particle arrangement can be seen as well as general particle disorder.
It is likely that improvements on the elastic boundaries used, as well as a refinement of the control
variables can reduce these gaps.

Figure 4.13: The total set of interpolated temperatures for the SPAM solution to the radial heat
flow problem in Fig.4.1 with fixed boundaries. Left shows the triangular lattice results, right shows
the relaxed triangular lattice results.

The results of these particle arrangements for the constant temperature boundary test are shown in
Fig.4.13. The static case shows the same low spread as for the square case due to the well-defined
density profile produced by the triangular lattice. The temperature close to the system boundaries
diverges from the expected analytical profile. This is due to the boundary temperatures being
interpolated differently than the values prescribed to the fixed particle at the boundary.

For the relaxed particle arrangement it is observed that very little spreading of interpolated tem-
peratures occurs. This is due to the relaxed particle arrangement achieving a more consistent
density. More spreading occurs close to the system boundary however. The interpolated values
close to the boundary also suffer from error introduced by the use of fixed boundaries as for the
static case.

4.8.1 Triangular with Mirror Boundaries

For an ideal particle arrangement the error introduced by the fixed boundaries should be reduced by
the use of mirror boundaries. The resultant ghost particles produced by each particle configuration
are shown in Fig.4.14. Both configurations are widely the same. It becomes clear that the greatest
effect for relaxation for the triangular particle arrangement is concentrated on the boundary particle
sets, leaving the system particles in very similar configurations.
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Figure 4.14: Mirror particles created from the triangular lattice. The right lattice was created by
relaxing the triangular lattice towards a uniform density. The system particles are shown in black
and solid and the mirror particles white and outlined. The boundary particles can be seen marked
between these layers.

Figure 4.15: The total set of interpolated temperatures for the SPAM solution to the radial heat
flow problem in Fig.4.1 with mirror boundaries. Left shows the triangular lattice results, right
shows the relaxed triangular lattice results.

The temperature profiles for the resulting mirror test with the triangular particle arrangements is
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shown in Fig.4.15. Again the spread of interpolated temperatures is small for both profiles, however
it is noticeably larger than for the fixed case alone. This suggest more disorder in particle density
is introduced by the mirror boundaries. Reinforcing this idea is the far greater interpolation spread
close to the boundaries. This is most pronounced for the relaxed case which again shows that
relaxation occurs more towards the outer edges of the particle arrangement.

The temperature deviation toward the boundary of the system that is seen for the fixed case
is however removed for the mirror case, instead replaced by interpolation spreading around the
analytical value. This reinforces the ideas given in the previous chapter showing the superiority of
mirror particles for enforcing boundary values whilst highlighting the complex problem of curved
geometry.

4.8.2 Triangular Particle Arrangement Results

Full comparison of the interpolated density and temperature profiles along the slice θ = 0 are
presented in Fig.4.16 for the triangular particle arrangements. The profiles suggest that the mirror
boundaries are far superior at reducing boundary error in the temperature profile, even in the
presence of density errors at the boundary .

Figure 4.16: Results of the triangular lattice tests for the slice θ = 0. Left shows comparison of the
density profiles, right shows comparison of the temperature profiles.

4.9 Alternative Particle Arrangement Configurations

Considering the issues of the above particle arrangements two alternative particle arrangements are
explored which seek to address the inefficiencies. Firstly a concentric particle arrangement is used
in order to offer better boundary definition. As well as this, a configuration of random particles
is relaxed to unit density ρ0 = 1gmm−3. The random particle arrangement is given a 5% lager
number of particles to try and address the gaps seen forming in the relaxed square and triangular
lattices due to boundary deficiencies with the elastic boundaries in relaxation.

151



Figure 4.17: Annular particle arrangement geometry from: concentric rings of particles shown left,
The right setup is created by relaxing an initial system of particles towards a uniform density. The
inner and outer fixed particles are shown up to range 2H

The alternative particle arrangements to be explored for the fixed case are shown in Fig.4.17. Both
show excellent definition of the system boundaries when compared to the square and triangular case.
The interpolated temperature profiles produced by each particle arrangement for fixed boundaries
is shown in Fig.4.18. It can be seen that the concentric particle arrangement shows no spreading
of interpolated values due to its excellent consistency for particle configuration. Still the effects of
the error introduced by fixed boundaries shows the discrepancy of the temperature profile from the
analytical solution.

Again the random particle arrangement reinforces this offset of interpolated temperatures at the
system boundary due to the fixed particles. The profile shows more spreading of interpolated
values and disorder due to the configuration of the particles, however this is not as extreme as
in the previous cases for relaxed particle arrangements. The ease of construction by relaxation
of random particles means that this option, if refined, may therefore still be a promising way of
producing SPAM particle arrangements.

152



Figure 4.18: The total set of interpolated temperatures for the SPAM solution to the radial heat
flow problem in Fig.4.1 with fixed boundaries. Left shows the concentric lattice results, right shows
the relaxed random lattice results.

4.9.1 Alternatives with Mirror Boundaries

Figure 4.19: Mirror particles created from the concentric lattice shown left. Mirrors for the lattice
which was created by relaxing the random lattice towards a uniform density shown right. The
system particles are shown in black and solid and the mirror particles white and outlined. The
boundary particles can be seen marked between these layers.
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The configuration of ghost particles for the concentric and relaxed random particle arrangements
are shown in Fig.4.19. The final temperature profiles produced by these alternative particle ar-
rangements is shown in Fig.4.20. It can be seen that the concentric particle arrangement produces
excellent agreement with the analytical results with the interpolated temperature values close to the
boundary reproducing the expected result with minimal error due to spread for the outer boundary
when compared with the other results.

The interpolated temperatures close to the boundary for the relaxed random case show significantly
more spread of error, however the underlying analytical profile is reproduced. This suggests with
better relaxation the random creation of particle arrangements could be a powerful tool.

Figure 4.20: The total set of interpolated temperatures for the SPAM solution to the radial heat
flow problem in Fig.4.1 with mirror boundaries. Left shows the concentric lattice results, right
shows the relaxed random lattice results.

4.9.2 Random Mesh Results

The results for the interpolated slice at θ = 0 through the system are given for the random particle
arrangement construction. The static and relaxed particle arrangement results are included for
the random configuration for completeness. The random results are given in Fig.4.21. Clearly the
density profile for the static case shows that random particle placements are insufficient without
relaxation. Interestingly the relaxed density is seen to deviate significantly from the desired profile
however the temperature profile does not. This suggests it is consistency and disorder, not simply
density that produces the errors seen throughout this section. That is to say uniform density with
a systematically incurred error is still capable of reproducing the correct temperature profile.
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Figure 4.21: Results of the random lattice tests for the slice θ = 0. Left shows comparison of the
density profiles, right shows comparison of the temperature profiles.

4.9.3 Concentric Particle Arrangement Results

Figure 4.22: Results of the concentric lattice tests for the slice θ = 0. Left shows comparison of
the density profiles, right shows comparison of the temperature profiles.

Finally the results for the interpolated slice at θ = 0 through the system are given for the concentric
particle construction. The static and relaxed particle arrangement results are included again for
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completeness. The concentric results are given in Fig.4.21. The relaxation for the concentric case
is seen to incur more error than for the static particle construction. This reinforces the idea that
particle order is of high importance for SPAM solid thermal simulation of this kind.

4.10 Particle Arrangement Error Comparison

The total errors for all the particle arrangements presented in this chapter are calculated using the
residual error between the SPAM and analytical solutions given as:

u2T =
1

N

N∑
i

(TAnalytical − TSPAM )2 (4.26)

The results of this error calculation are shown against the residual density error from ρ0 = 1g/mm3

in Fig.4.23. The error in the static random particle arrangement results are seen to clearly exceed
those of any other particle arrangement a result that is not surprising, however the inclusion
highlights that although disorder rather than density may be a better measure of error introduced,
a clear effect can be seen for larger values.
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Figure 4.23: Comparison of the residual errors in the steady state temperature profile produced by
each variation of particle arrangement configuration compared with the residual error in interpo-
lated density

The results of the residual error calculation are given in Fig.4.24. The static random particle
arrangement results are included, however they exceed the error bounds given on the graph. This
comparison shows that the superiority of mirror boundary conditions is greatly diminished by the
use of a poorly defined set of particle arrangement points. The static concentric and triangular
particle arrangements are seen to be the superior choice for radial geometry.
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Figure 4.24: Comparison of the residual errors in the steady state temperature profile produced by
each variation of particle arrangement configuration

4.11 Refinement of Particle Arrangement

The relations between smoothing length and interpolation error was explored in Sec.2.2.2. It can
therefore be assumed that reduction of the smoothing length H will cause the simulation error
to reduce. This should cause the simulation, if well formulated, to converge on the analytical
solution.

To reduce the smoothing length, as noted in the methodology chapter, the relation H = 3∆P must
be maintained to avoid a diverging error. This process can be considered as refinement of particle
arrangement. To achieve this, each particle must be replaced by multiple particles which total the
same mass. A very basic example of this idea is illustrated in Fig.4.25
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Figure 4.25: Illustration of basic particle arrangement refinement where 4 particles of mi = 0.25
replace one particle of mass mi = 1.

This allows refinement to be carried out on the fly within SPAM, an option that has been explored in
other research [129]. For this work however the construction of particle arrangement will simply be
altered to adjust the inter-particle ∆P spacing accordingly. For 2D and unit density ρ0 = 1g/mm3

the particle spacing for the desired particle mass mi is given by:

∆P =
√
mi (4.27)

4.11.1 Convergence Test

A convergence test is carried out on triangular particle arrangements presented to identify the scope
for further error reduction. This helps identify the optimal methods and particle arrangements, with
an indication of optimal error reduction achievable in the model presented in this chapter.
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Figure 4.26: Error convergence for increasing particle number within the triangular particle ar-
rangement for both the fixed and mirror boundary simulations.

The results in Fig.4.26 suggest that the particle spacing can cause errors to increase in the curved
mirror boundary case if chosen poorly. This is assumed to be due to an increase in particles within
range ∆P /2 of the boundary, causing an increase in particle arrangement disorder. This effect
is over taken by the reduction in error achieved for higher particle numbers. For both the fixed
and mirror case the error approaches ≈ 0.01 for N > 10, 000 particles. This suggests that for
large systems, acceptable thermodynamic results can be achieved by either boundary conditions in
curved geometry. The temperature profile for the N > 10, 000 mirror simulation with triangular
boundaries is presented in Fig.4.27
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Figure 4.27: SPAM interpolated temperature profile for N > 10, 000 particle in a triangular particle
arrangement formation with mirror boundaries.

4.12 Conclusions

The work presented in this chapter has shown that SPAM thermal simulation within a cylindrical
geometry can be constructed with acceptable error bounds, by careful consideration of the chosen
particle configuration and number, as well as modification of the mirror boundaries.

The mass modifications to the mirror boundaries, although primitive, show effectiveness in the
calculation of material properties close to the boundary. Further improvements could be made to
help reduce particle spreading due to a loss of particle symmetry.

The relaxation explored in this chapter shows little benefit for its added complexity. The use of
relaxed random particles may still hold future use for simulation exploring very complex geometry
such as in initially damaged or grain structural simulations of nuclear fuel. A better methodology
such as the particle packing algorithm [127] would overcome the requirement for the determination
of the relaxation values however.

The optimal particle arrangement for mirror boundaries was found to be the concentric particle
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arrangement, and the optimal for fixed was found to be the square particle arrangement. However
the triangular particle arrangement was found to have good consistency for reasonable values across
both fixed and mirror boundaries. Work with particle shifting algorithms has demonstrated a
tendency to move toward triangular structures [128] which supports their continued use as the
structure must minimise density errors to a high degree.

Through refinement of particle arrangement the triangular particle arrangement was shown to be
able to produce residual errors on the order of ≈ 0.01 for the temperature profile which considering
the constant temperature gap used is an error of 1%. This suggests that SPAM is capable of
producing accurate thermal information if used within complex damage simulations for nuclear
fuel pellets.
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Chapter 5

Dealing with Heat Sources and
Convective
Boundary Conditions within SPAM

5.1 Introduction

Within a nuclear fuel rod energy is released in the form of heat within the fuel pellet, often UO2.
This heat is usually removed by convection at the cladding surface through the coolant flowing
through the fuel assembly. Any FPC developed through SPAM must therefore be able to handle
these types of boundary conditions. In this section we explore the simple 1D models for heat
source and convective boundary conditions with well-defined analytical solutions. The conditions
are implemented within SPAM and direct comparison of results made with analysis of the SPAM
error.

Many complex thermal phenomena important to nuclear fuel have already been demonstrated
within SPH such as radiation [130], convective current flows [131] and melting and solidification [58].
These will not be explored for the model constructed here but will become important in future
work. There are also implementations of heat sources [51], convective boundaries [132] and material
interfaces within SPH [108]. These models will be explored and suitable modification to the current
problem will be given. In particular for the case of convective boundary conditions an entirely new
approach is proposed.

5.2 1D Convection Model

The simplest model for treating a convective boundary condition employs Newton’s law of cooling.
Equating the heat fluxes at the boundary leads to:

κ
∂T (xB, t)

∂x
= −h[T (xB, t)− T∞] (5.1)

Here xB is the position of the convective boundary. T∞ represents the coolant temperature. The
coefficient of convection h controls how much heat is transmitted into the convective boundary at
each time step.
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To explore the SPAM application of this condition a simple 1D convection model is used. This
model has an analytical solution and a visual representation is given in Fig.5.1. Consider an
axisymmetric rod, length L, of material with thermal conductivity κ. One end of the material,
x = 0, is in contact with a constant temperature surface held at Tc as in the previous thermal
models. The other end, x = L, is in contact with the convective fluid at temperature T∞. Lateral
heat flow can be assumed to be negligible such that the problem is reduced to 1D.

Figure 5.1: An outline of the simple 1D convection model being used. One end of the material
(of length L) is held at a constant temperature Tc. The other end is in contact with a fluid at
T∞ and thus undergoes cooling according to Newton’s law. The system is given an initial linear
temperature profile.

We assume temperature at any point in space and time follows the heat equation:

∂T (x, t)

∂t
= DT

∂2T (x, t)

∂x2
(5.2)
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For the analytical solution to this equation we chose the initial condition:

T (x, 0) = x 0 ≤ x ≤ L (5.3)

To simplify the solutions we chose constant temperature boundary at x = 0, with TC = 0 such
that:

T (0, t) = 0 (5.4)

A convective boundary at x = L, with T∞ = 0 such that:

κ
∂T (L, t)

∂x
+ hT (L, t) = 0 (5.5)

Finally we choose L = 100mm and set the specific heat and density to unity ρ = 1g/mm3,Cp =
1mm2/s2K such that the thermal conductivity is given by the thermal diffusivity DT = κ. With
these values the solution to the heat equation can be calculated for direct comparison with the
SPAM solution.

5.2.1 Analytical Solution

The analytical solution to Eq.5.2 maybe obtained by using the method of separation of variables.
This is detailed by Farlow [133] among others. The first step involves writing the temperatures
as:

T (x, t) = X(x)E(t) (5.6)

which converts the partial differential equation into two ordinary differential equations:

E′ + λ2DTE = 0 (5.7)

X ′′ + λ2X = 0 (5.8)

where −λ2 is chosen as the separation constant. These equations have the general solution:

E(t) = C1exp(−λ2κt) (5.9)

X(x) = C2sin(λx) + C3cos(λx) (5.10)

where C represents the constants of integration which combine to give the general temperature
solution:

T (x, t) = exp(−λ2κt)[Asin(λx) +Bcos(λx)] (5.11)

Using the boundary condition Eq.5.4 it can be shown that B = 0. Application of boundary
condition Eq.5.5 shows that λ must satisfy:

tan(λL) = −κλ

h
(5.12)

There are an infinite number of roots to this transcendental equation, the first three are shown
in Fig.5.2. The roots are all real and evenly spaced in intervals of 2π. A numerical scheme can
therefore be constructed to find as many roots as required.
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Figure 5.2: The first 3 intersections for the functions tan(λL) and −λ/h. Shown here with h = 10,
L = 1, κ = 1. The solutions for the intersection of the functions λn can be calculated up to n = ∞.
The solutions tend toward λn = (2n−1)π/2L due to the asymptotic nature of the tangent function

Due to the linearity of the heat conduction PDE, the general solution is a superposition of all
solutions for each λn. Thus this suggests that the temperature solution is an infinite sum of
solutions to the heat equation based on λn. For each value of n a new coefficient A, noted an, must
be calculated suggesting the complete solution takes the general form:

T (x, t) =
∞∑
n=1

anexp(−λ2
nκt)sin(λnx) (5.13)

Finally to calculate the coefficients an a decomposition of the initial condition (Eq.5.3) must be
calculated as a sum of sin functions:

T (x, 0) = x =

∞∑
n=1

ansin(λnx) (5.14)

It can therefore be shown that:

an =
2[sin(λnL)− λnLcos(λnL)]

λn[λnL− sin(λnL)cos(λnL)]
(5.15)
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5.2.2 Roots via Newton’s Method

Calculation of the constants λn is done using Newton’s method with the first guess for each root
being selected as λn = (2n− 1)π/2L. Newton’s method is given here as:

xm+1 = xm − f(xm)

f ′(xm)
(5.16)

where the function f is defined as:

f(x) = 0 = tan(xL) + κx/h (5.17)

which gives the iterative equation:

xm+1 = xm − tan(xmL) + κxm/h

L/cos2(xmL) + κ/h
(5.18)

We know each solution λn must lie within the asymptotes of tan(λn). We therefore increment the
initial guess away from the asympote (2n − 1)π/2L and restart Newton’s method every time the
guess xm+1 lies outside the predicted root bounds:

(2n− 1)π

2L
+ ϵ < λn <

(2n+ 1)π

2L
− ϵ (5.19)

Here ϵ = 10−8 is a very small quantity included to avoid the infinite values of the tangent func-
tion and possible errors introduced. The first 10 values calculated for h = 1g/s3K are given in
Table.5.1

n λn an
1 0.0311 64.2679
2 0.0622 -32.0881
3 0.0933 21.3414
4 0.1244 -15.0881
5 0.1555 12.7089
6 0.1867 -10.5368
7 0.2178 8.9778
8 0.2489 -7.8024
9 0.2800 6.8829
10 0.3111 -6.1431

Table 5.1: Calculated values for λn by Newton’s method up to n = 10 all given to 4dp. The
corresponding values for an are given calculated by Eq.5.15. All calculated for h = 1g/s3K, L =
100mm, κ = 1

5.2.3 Analytical Results

The analytical solutions are shown here for several decades of time. Up to n = 100 frequencies are
included in the calculated solution. The thermal conductivity is set to κ = 1gmm/s3K, and the
results here are shown for the case of convection coefficient, h = 1g/s3K. The analytical result for
the heat flux is also shown.
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Figure 5.3: Analytical solutions for the 1D convection model shown in Fig.5.1. Up to n = 100
frequencies included. Shown here for the value of convection coefficient h = 1g/s3K. Left shows the
expected temperature profiles, right shows the expected heat flux.

The analytical results show that higher values of convection coefficient h result in faster cooling of
the 1D material. We will vary the value h within the SPAM simulations to confirm they follow this
behaviour precisely.

5.2.4 Convective BCs within SPAM

Convection has been studied within fluids in SPAM [131], [134]. This work aims instead to inves-
tigate convection as a boundary condition. At least one method has been proposed for this within
SPAM [132], however this requires the surface area of the particle for which convection occurs. It
also requires no external boundary particles be present in order to calculate the surface normal’s
from the deficiency in the weight function, this is less than ideal as it restricts the model from hav-
ing further particle driven boundary phenomena enforced such as stresses. In this work a method
based only on particle pairs is proposed. The temperature evolution used for these simulations is
the Hoover formulation:

dTi

dt
= C

∑
j

(Tj − Ti)W (rij) (5.20)

where the constant C is calculated by considering the temperature evolution of the long wavelength
perturbation dt ∝ cos(2πx/λ) ≈ 1− (πx/2λ)2:

C =
DT∑ x2w(x)

2

(5.21)

This formulation means that temperature evolution is based directly on particle temperatures.
The method for convective boundaries proposed is based on static fixed particle boundaries. The
convective boundary condition must therefore assign the boundary particle temperatures at each
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time step in a dynamic way such that the temperature evolution reflects the required condition.
We require that:

∂T (xB, t)

∂x
= −h

κ
[T (xB, t)− T∞] (5.22)

To calculate the temperature at the boundary we approximate this function with particle values,
starting with the derivative:

∂T (xB, t)

∂x
=

Tj − Ti

xj − xi
(5.23)

Let us assume that particle i is one of the boundary particles in question. We then require particle j
to lie on the system side of the boundary in question such that the approximation is the temperature
gradient across the boundary. We store the closest system particle to i and choose this to be
j = Bi. The visual interpretation to this within the 1D SPAM is shown in Fig.5.4. In 1D any
choice of boundary particle is assigned the same single system particle TBi which lies closest to the
boundary.

Figure 5.4: Visual interpretation of the chosen system particle Bi for any choice of boundary particle
i. In 1D all boundary particles have the same single system particle pair. The use of the closest
system particle ensures that the method is easily generalised to 2D and that the used particle Bi

is next to the system boundary.

Next the particle Ti is used as the boundary temperature TB. Newton’s law of cooling can then be
approximated by the expression:

TBi − Ti

xBi − xi
= −h

κ
[Ti − T∞] (5.24)

We can now rearrange this to create an expression for the temperature of any boundary particle Ti

such that Newton’s law of cooling is obeyed:

Ti =
TBi − T∞Fh

1− Fh
(5.25)
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where the function of convection Fh is defined as:

Fh =
h

κ
(xBi − xi) (5.26)

To demonstrate the validity of this expression for calculating boundary temperatures we examine
the limits of this equation. We expect that as the distance from the boundary R = |xBi −xi| grows
the temperature should approach T∞:

lim
R→∞

Fh = ∞ (5.27)

Thus we have:

Ti =
TBi/Fh − T∞
1/Fh − 1

→ T∞ (5.28)

Similarly we expect that for h = 0 there should be no heat flux across the boundary:

lim
h→0

Fh = 0 (5.29)

Thus we have:
Ti = TBi (5.30)

This implies that temperature across the boundary is constant and therefore no heat is transferred.
For illustration purposes the boundary temperatures have been calculated within the SPAM simu-
lation beyond the the smoothing length so the the profile can be seen in Fig.5.5.

5.2.5 SPAM Results

Herein, the SPAM simulation was run with Hoover’s temperature formulation Eq.5.20. The con-
stant temperature boundary was assigned fixed particles with T = 0K and the convective boundary
has particles with the convective temperatures according to Eq.5.25 calculated between each time
step. The time step is dt = 0.01s. The convective boundary is given the initial temperature of
T = 100K, to better calculate the initial system temperature profile, and the material temperature
of T∞ = 0K. A system of length L = 100mm is used with 100 unit density particle making up
the system. A smoothing length of H = 3mm is used. The simulation is run for 100000 time-steps
and for 4 values of convection coefficient h = 0.1, 0.5, 1, 10g/s3K all with unit thermal conductivity
κ = 1gmm/s3K. We show only two values for h = 1, 10g/s3K here, and the others are included
within the error analysis.

The results are shown in Fig.5.5. The final temperature profiles for the SPAM simulation are shown
for 0 < x < 120 so that the convective boundary temperature profile can be shown. Interpolation
errors due to reduced particle numbers are apparent around x ≈ 120. It can be seen that all profiles
match the expected shape shown in the analytical model with faster loss of heat for higher values
of the convection coefficient h.
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Figure 5.5: SPAM results for the 1D convection model shown in Fig.5.1. The calculated boundary
temperatures beyond the convective boundary L = 100mm are shown up to L = 120mm for
illustration purposes. Shown here for 2 values of convection coefficient. Top left temperature
profile for h = 1g/s3K, top right heat flux for h = 1g/s3K. Bottom h = 10g/s3K.
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5.2.6 Behaviour of Residual Error

A direct comparison between the SPAM results and the analytical results for selected times in
shown in Fig.5.6-5.7. It is immediately seen that the error in results for the methods used are
minimal. Fig.5.8 shows that the SPAM algorithm is capable of reproducing temperature profiles
for a range of values of convection coefficient h, with no apparent increase in error.

Figure 5.6: Direct comparison of the SPAM results with the analytical solutions for the 1D con-
vection model. Temperature results are shown for h = 1g/s3K.
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Figure 5.7: Direct comparison of the SPAM results with the analytical solutions for the 1D con-
vection model. Heat flux results are shown for h = 1g/s3K.
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Figure 5.8: Direct comparison of the SPAM results with the analytical solutions for the 1D con-
vection model. Top left h = 0.1g/s3K, top right h = 0.5g/s3K. Bottom h = 10g/s3K.

Discrepancies between the SPAM results and the analytical results have been quantified using the
residual error approach described by Eq.4.26. Fig.5.9 shows these residual errors as a function
of time for 4 different values of the convection coefficient. The temperature scale for the initial
conditions is dt = 100K therefore the residual shows that the SPAM result errors represent ≈ 1%
of this range. It is interesting to note also that the errors appear to converge in the long time limit
across all values of h.
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Figure 5.9: Residual error in the SPAM results calculated for the 1D convection model. Calculated
for n = 100 frequencies of the analytical function. Shown for four values of convection coefficient h
(g/s3K) against a logarithmic time scale t

Further testing showed that no extra constraint was required on the time step beyond Eq.3.23, and
that using smaller time steps than this had no benefit. Finally, use of boundary particle is required
up to within a smoothing length of the boundary H = 3mm. Beyond this they have no effect, as
expected, but below this threshold interpolation errors are introduced.

5.2.7 Alternative SPAM Convection

Several alternative formulations of the convection boundary conditions were tested for this model
and found to have an increased error. This is surprising as both methods are constructed as a
refinement of the approximation given in Eq.5.25.
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Figure 5.10: Visual interpretation of the inter-particle distances for an improved convective bound-
ary approximation. The use of the closest system particle ensures that the method is easily gener-
alised to 3D and that the used particle Bi is next to the system boundary.

The first refinement is given by accounting for the distance of the boundary particle i from the
system boundary B. For this the average particle spacing is required ∆P . The system boundary
temperature is then approximated by the weighted average of the distance of the nearest system
particle and the boundary particle. Fig.5.10 is included to illustrate this idea. The system boundary
temperature TB is then approximated as:

TB ≈ ∆P

2R
Ti +

(
1− ∆P

2R

)
TBi (5.31)

With this approximation the boundary particle temperature Ti is then approximated, using the
earlier method, as:

Ti =
TN

(
1− h

κ

(
R− ∆P

2

))
+ T∞

h
κR

1 + h
κ
∆P
2

(5.32)

With this approximation made the SPAM simulation is run as before for h = 10g/s3K as this
shows the largest visible error. The results are shown in Fig.5.11. Clearly the alternative method
introduces an increased amount of error.
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Figure 5.11: Direct comparison of the SPAM results with the analytical solutions for the 1D
convection model. Shown here with the alternative convective boundary approximation Eq.5.32.
Temperature results are shown for h = 10g/s3K.

Another method attempted which is given here is the convective boundary approximation with
dynamic (mirror) boundary conditions. Mirror boundary particles are created in pairs about the
boundary with each boundary temperature assigned based on a particle now with an equal and
opposite distance from the boundary. This idea is shown for one such pair in Fig.5.12. The system
particles are now denoted by index i and the mirrors of these particles by i′.
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Figure 5.12: Visual interpretation of the inter-particle distances for the mirror convective boundary
approximation. Particle pairs for assignment of mirror boundary values are by design equidistant
from the system boundary.

For mirror boundary particles the boundary temperature is given by:

TB =
Ti + Ti′

2
(5.33)

This time the boundary temperature of interest is noted as Ti′ and using the same approximations
as before to Newton’s law of cooling it can be shown that:

Ti′ =
Ti

(
1 + h

2κR
)
− T∞

h
κR

1− h
2κR

(5.34)
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Figure 5.13: Direct comparison of the SPAM results with the analytical solutions for the 1D convec-
tion model. Shown here with the mirror convective boundary approximation Eq.5.34. Temperature
results are shown for h = 10g/s3K.

The results for the mirror convective boundary conditions are shown in Fig.5.13. Again it can be
seen that the boundary conditions give an increased error over the standard approximation given
first. These result will become important for the 2D problem however so are included here.

5.3 1D Heat Source Model

Any simulation of nuclear fuel material must have some form of heat generation. The heat gener-
ated within the nuclear fuel pellet must be removed through the cladding by convection. Having
demonstrated the ability of SPAM to deal with convection we now present a simple model for heat
generation with well-defined analytical solutions. Heat sources can be included within the heat
equation such that a material generating heat at rate q̇, per unit volume per unit time, must have
a temperature that obeys:

∂2T

∂x2
− 1

DT

∂T

∂t
= − q̇

DT
(5.35)
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We assume material of length L with each end held at temperature TC . The material generates
heat across its entire length at q̇. Again we use κ = DT = 1mm2/s. We expect the heat generation
to reach a steady state temperature profile where the temperature gradient at either side of the
system causes heat to be lost out of the material at the same rate at which it generates heat.

5.3.1 Analytical Solution

To derive the analytical solution to Eq.5.35 we first consider the steady state solution [114]. Let
∂T/∂t = 0. Then through integration:

Tss(x) = − q̇x2

2κ
+ C1x+ C2 (5.36)

where C1, C2 are constants of integration. We have the boundary conditions:

T (L/2, t) = T (−L/2, t) = Tc (5.37)

The initial condition:
T (x, 0) = Tc (5.38)

We take Tc = 0K. This gives C1 = 0 and C2 = q̇L2/8κ. We therefore have the steady state
solution:

Tss =
q̇((L/2)2 − x2)

2κ
(5.39)

To derive the full solution let:
T (x, t) = Tss +W (x, t) (5.40)

Then W (x, t) must obey the heat equation:

∂2W (x, t)

∂x2
− 1

DT

∂W (x, t)

∂t
= 0 (5.41)

The initial condition gives:

W (x, 0) = − q̇((L/2)2 − x2)

2κ
(5.42)

The use of separation of variable as well as the boundary condition Eq.5.37 gives a solution of the
general form:

W (x, t) =

∞∑
n=1

ane
−λ2

nDT tcos(λnx) (5.43)

where n is odd and λn = nπ/L. We can use the initial condition Eq.5.42 to calculate the values of
an. Only the odd terms are non-zero therefore n is denoted by 2n− 1, thus:

an =
4q̇L2

κπ3(2n− 1)3
(−1)n (5.44)

This gives the final temperature solution:

T (x, t) =
q̇

κ

[
L2

8
− x2

2
+

∞∑
n=1

4L2(−1)n

π3(2n− 1)3
e
−
(

(2n−1)π
L

)2
DT t

cos

(
(2n− 1)πx

L

)]
(5.45)

The heat flux solution is:

Q(x, t) = q̇

[
x+

∞∑
n=1

4L(−1)n

π2(2n− 1)2
e
−
(

(2n−1)π
L

)2
DT t

sin

(
(2n− 1)πx

L

)]
(5.46)
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5.3.2 Analytical Results

The solutions to Eq.5.46 are displayed in Fig.5.14. We set L = 100mm. The value of q̇ = 1
shown.

As expected the results show an increase toward the steady state solution at which time the maxi-
mum temperature value is given by:

TMax =
q̇L2

8κ
= 1250K (5.47)

The heat flux at the material centre remains zero with heat travelling out from the centre point
with a linear profile at steady state.

Figure 5.14: Analytical solutions for the 1D heat source model shown in Fig.5.15. Up to n = 100
frequencies included. Shown here for heat generation q̇ = 1gmm2/s3. Left the temperature profile,
right the heat flux.

5.3.3 Heat Sources within SPAM

The model outline is shown schematically in Fig.5.15. Monaghan offers a method for dealing with
heat sources at a point within SPAM [51]. Here a simple method for dealing with heat generation
across a material is proposed. We can rearrange the expression for heat generation within the
heat equation (Eq.5.35) to give the rate of change of temperature over time. We already have a
smoothed particle approximation for the second spatial derivative of the temperature so we simply
need to add the heat generation term. Using Eq.5.20 the rate of change of particle temperature Ti

becomes:
dTi

dt
= C

∑
j

(Tj − Ti)W (rij) +
q̇imi

ρi
(5.48)

Here we use the particle volume approximation Vi = mi/ρi, and as before C is given by Eq.5.21.
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We use fixed boundary condition at x = −L/2 and x = L/2 to keep the system ends at zero
temperature as shown in Fig.5.15.

Figure 5.15: Visualisation of the 1D heat generation model. The system produces heat at rate
q̇. Both ends are held at fixed temperature TC . A visual representation of the SPAM particle
formulation for the model is also shown, with fixed boundary particles at each end. We use centre
x = 0 such that −L/2 < x < L/2.

5.3.4 SPAM Results

For the simulation results shown here we use a smoothing length H = 3mm and time step dt = 0.1s.
The system length is L = 100mm. The simulation results are shown in Fig.5.16. The temperature
distribution evolves towards a steady state and is stable from t >≈ 2000. The final steady state
peak temperature has a visible error. The expected steady state peak temperature is TSPH

ss ≈ 1275.
Note that the boundary error for the heat flux is due to the fixed particles having Q = 0. This has
no effect on the temperature evolution but causes the heat flux to have interpolation errors at the
boundary.
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Figure 5.16: SPAM results for the 1D heat source model shown in Fig.5.15. Shown here for heat
generation q̇ = 1gmm2/s3. Left temperature profile, right heat flux.

The spatial distribution of the error in the final temperature profile for these results is given in
Fig.5.17. The effect of the boundary conditions can be observed by the ‘jump’ in error at the
simulation edges shown by the lack of smoothness in the distribution at the edges. Once again it
can be observed that the error is minimal at the centre of the simulation.
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Figure 5.17: Spatial distribution of error for the SPAM results vs the analytical results given by
the 1D heat source model shown in Fig.5.15. Shown here for heat generation q̇ = 1gmm2/s3 at
t = 10, 000s.

5.3.5 Behaviour of Residual Error

A direct comparison of the SPAM and analytical results for the 1D heat source model is given in
Fig.5.18. The error increases with time for both values of q̇. There are several probable reasons
for this error. The error is most likely some form of interpolation error. By this it is meant that
the values given for the problem are not the expected values once the smoothing function is taken
into account. For example one possible error is introduced by the fixed boundaries. The use of
boundary particles all with Ti = 0K gives a slightly higher boundary interpolation temperature as
it is a weighted sum of both boundary and system particles close to the boundary.
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Figure 5.18: SPAM results vs analytical for the 1D heat source model shown in Fig.5.15. Shown
here for 2 values of heat generation. Left q̇ = 1gmm2/s3, right q̇ = 0.1gmm2/s3. Bottom shows a
comparison of the heat flux error for q̇ = 1gmm2/s3 case.

The residual error in the SPAM is calculated using Eq.3.101. The results are shown in Fig.5.19 with
logarithmic scaling. This shows that the error in the simulation grows exponentially with time.
This suggests that the error factor is some constant interpolation error as described and that its
contribution grows with time integration. It therefore would suggest that the boundary particles
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are still credible sources of error.
To better determine the source of error we therefore calculate the interpolated temperature at the
boundary x = 50mm. The temperature is calculated for the case q̇ = 1gmm2/s3 at time steps with
orders of magnitude 10n. These calculated temperatures are shown against the calculated residual
errors in Fig.5.20.

Figure 5.19: Residual error in the SPAM simulation of heat generation compared with the analytical
model. Shown here for 2 values of heat generation q̇ = 0.1, 1gmm2/s3

It can be seen from Fig.5.20 that at steady state for q̇ = 1gmm2/s3 the boundary temperatures
for the fixed boundary case are T ≈ 35K. This is a significant error compared to the desired
temperature of T = 0K enforced by the fixed boundary particles. This supports the hypothesis
that the SPAM error is boundary driven. To finally demonstrate this we run the SPAM code for
mirror boundaries as described in Sec.3.3.3. Mirror boundaries guarantee a boundary temperature
of T = 0K. The results can be seen in Fig.5.21. Clearly the error is almost entirely eliminated by
proper boundary temperatures. As previously discussed mirror boundaries offer complications for
complex geometries. However their use here validates the use of Eq.5.48 to accurately model heat
sources within SPAM.
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Figure 5.20: Residual error in the SPAM simulation of heat generation compared with the analytical
model. Shown against the interpolated value of the boundary temperature for each time step t = 10n

for n = −1 to 4. Shown here for a value of heat generation q̇ = 1gmm2/s3
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Figure 5.21: Analytical results vs SPAM results for the heat source model done with mirror bound-
ary conditions to enforce a boundary temperature of T = 0K. Shown here for a value of heat
generation q̇ = 1gmm2/s3

5.4 1D Thermal Interface Model

Within a nuclear fuel rod heat will be transferred between materials of different thermal properties.
In particular the fuel element and the cladding have different thermal conductivities. It is essen-
tial therefore that the SPAM model be able to accurately model the transfer of heat at material
interfaces with different conductivities. To test this the simple 1D model outlined in Fig.5.22 is
presented. The materials will also have varying densities and specific heats however they have been
assumed to be the same across both materials within the model presented here. We also assume
negligible contact resistance.

We model two materials of individual length L/2 with conductivites κ1 extending−L/2 < x < 0 and
κ2 extending 0 < x < L/2. We assume constant boundary temperatures such that T (−L/2) = Tc

and T (L/2) = Th. We then arbitrarily choose Tc = 0K and Th = 1K. With total system length
L = 100mm. We set κ1 = 1gmm/s3K but explore a range of four values for κ2 = 1, 2, 5, 10gmm/s3K.
This allows for verification that the modified SPAM still reduces to the standard linear profile
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expected for the κ1 = κ2 = 1gmm/s3K case.

Figure 5.22: Visualisation of the 1D thermal interface model. The system is split into two material
sections with two individual thermal conductivities κ1, κ2 which we assume to be constant. Both
ends are held at fixed temperatures Tc, Th. A visual representation of the SPAM particle formulation
for the model is also shown, with fixed boundary particles at each end. We use centre x = 0 such
that the left material extends −L/2 < x < 0 and the right material extends 0 < x < L/2.

This model has already been studied by Monaghan [108] in order to demonstrate the ability of his
proposed temperature evolution algorithm to handle multiple thermal conductivities. It is ideal
to reuse this model in order to test a similar implementation of multiple thermal conductivities
through their harmonic mean on the Hoover evolution. It is found that this kind of implementation
can cause issues on the material boundary which introduces in accuracy into the method.

5.4.1 Steady State Solution

The transient solution for this case is complex and therefore avoided here. However demonstration
of the steady state solution to this problem is sufficient to test the modification to the SPAM and
show its validity at dealing with thermal interfaces. Let the x < 0 region be defined as region 1,
and x > 0 region 2 for materiel in the region −50 < x < 50. We can therefore say that both regions
must obey the heat equation in the steady state (∂T/∂t = 0) as:

∂2T1

∂x2
= 0 (5.49)

∂2T2

∂x2
= 0, (5.50)

with the previously given boundary conditions:

T1(−L/2) = 0 (5.51)

T2(L/2) = 1 (5.52)
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It is assumed that at the interface the temperature and heat flux are continuous:

T1(0) = T2(0) (5.53)

− κ1
∂T1

∂x

∣∣∣∣
x=0

= −κ2
∂T2

∂x

∣∣∣∣
x=0

(5.54)

From here it is a simple matter to integrate the heat equations for both materials as:

T1 =
C1x

κ1
+ C2 (5.55)

T2 =
C3x

κ2
+ C4 (5.56)

Here Cn represents the constants of integration. Th first of which can be determined by the use of
Eq.5.51 as:

C2 =
C1L

2κ1
(5.57)

Similarly use of Eq.5.52 gives:

C4 = 1− C3L

2κ2
(5.58)

Then use of the continuity boundary conditions Eq.5.53 and Eq.5.54 give the two relations:

C3 = C1 (5.59)

C3 =
2κ2
L

− C1
κ2
κ1

(5.60)

Combining these we arrive at:

C1 =
2κ2κ1

L(κ1 + κ2)
(5.61)

This gives the final steady state solutions as:

T1(x) =
2κ2

(
x+ L

2

)
L(κ1 + κ2)

(5.62)

T2(x) = 1 +
2κ1

(
x− L

2

)
L(κ1 + κ2)

(5.63)

The heat flux is given by:

Q1(x) = Q2(x) =
−2κ1κ2

L(κ1 + κ2)
(5.64)

5.4.2 Steady State Results

The steady state solutions are shown in Fig.5.23 for vales of κ2 = 1, 2, 5, 10gmm/s3K. As expected
we see the linear profile appear for the case κ1 = κ2 = 1gmm/s3K. Each material section in isolation
creates a linear profile which is also expected as all individual material thermal conductivity are
constant.
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Figure 5.23: Analytical solutions for the steady state 1D thermal interface model shown in Fig.5.22.
All curves have κ1 = 1gmm/s3K for −50mm< x < 0mm. The material extending 0mm< x < 50mm
is given four different thermal conductivity values κ2 = 1, 2, 5, 10gmm/s3K. The x = −50mm surface
is constant at Tc = 0K the x = 50mm most surface Th = 1K.

The heat flux is shown in Fig.5.24. It can be seen that the heat flux should be constant through
the whole system. The magnitude of Q is only dependant on the system length L and the two
material thermal conductivities κ1, κ2 as demonstrated by Eq.5.64.
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Figure 5.24: Heat flux solutions for the steady state 1D thermal interface model shown in Fig.5.22.
All curves have material with constant thermal conductivity of κ1 = 1gmm/s3K for −50mm< x <
0mm. The material extending 0mm< x < 50mm is given four different thermal conductivity values
represented by κ2 = 1, 2, 5, 10gmm/s3K.

5.4.3 Thermal Interfaces within SPAM

The current formulation of Hoover’s temperature evolution is given by Eq.5.20. However this
formulation cannot be correct for different particle thermal conductivities κi, κj . The SPAM equa-
tions must act symmetrically on particle pairs i, j due to the conservation of energy. In its cur-
rent form the addition to particle i due to particle j assuming unit density and specific heat
ρ = 1g/mm3,Cp = 1mm2/s2K is:

∆j

(
dTi

dt

)
=

κi∑ x2w(x)
2

(Tj − Ti)W (rij) (5.65)

Here ∆j denotes the difference due to particle j. The change however in rate of change of temper-
ature of particle j due to i is given by:

∆i

(
dTj

dt

)
=

κj∑ x2w(x)
2

(Ti − Tj)W (rji) (5.66)
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These expressions can be shown to be identical if and only if κi = κj . The thermal conductivity
must therefore be replaced by some average κ̄ in order to maintain symmetry. The simplest choices
for this would be the arithmetic or the geometric means. Conductivity is however a rate of thermal
transmission. As such, a better choice for averaging rates of change is the harmonic mean. The
harmonic mean is calculated as:

κ̄ij =

( 1
κi

+ 1
κj

2

)−1

(5.67)

This reduces to:

κ̄ij =
2κiκj
κi + κj

(5.68)

This expression reduces to κi for κi = κj as desired. The factor C in Hoover’s temperature evolution
for unit density and specific heat ρ = 1g/mm3,Cp = 1mm2/s2K then becomes:

C =
2κiκj

(κi + κj)
∑ x2w(x)

2

(5.69)

To correctly calculate the SPAM heat flux we must also modify the previously given equation with
the new symmetrised thermal conductivity as:

Qi = −κ̄ij
∑
j

mij [Tj − Ti]∇iwij/ρij (5.70)

5.4.4 SPAM Results

The modification to Hoover’s temperature evolution given by Eq.5.69 is tested for the model with
particle formulation shown by Fig.5.22. We use 6 fixed particles for each boundary with prescribed
temperatures Tc = 0K and Th = 1K. This ensures the particle densities are properly calculated
for all boundary particles within weight function range H = 3mm of the boundary points. We
use dt = 0.1s with an initial system state of T (t = 0) = 0. The system is run for 100000 time
steps. The results given in Fig.5.25 are therefore given for t = 10, 000s well after the system has
reached a stable state. The SPAM results exhibit the desired behaviour with two linear regions
with gradient defined by the independent thermal conductivities. One linear region is recovered for
the case κ1 = κ2. Each region is length L/2 = 50 made up of N/2 = 50 particles of unit density
ρi = 1 such that each material is unit density.
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Figure 5.25: SPAM results for the steady state 1D thermal interface model shown in Fig.5.22. All
curves have material with constant thermal conductivity of κ1 = 1gmm/s3K for −50mm< x <
0mm. The material extending 0mm< x < 50mm is given four different thermal conductivity values
κ2 = 1, 2, 5, 10gmm/s3K. The x = −50mm surface is constant at Tc = 0K, the x = 50mm surface
Th = 1K.

The heat flux within the SPAM model was calculated using Eq.5.70 for each value of κ2 and shown
in Fig.5.26. The interpolation error at the boundaries is due to the use of fixed particles with Q = 0.
It can be seen that the interpolated heat flux is not smoothed across the material at x = 0. It
was found that use of κ̄ reduced the discontinuity in the heat flux significantly, however a constant
profile is not achieved. A better estimate for κ̄ which accounts for the distance between the particle
pairs and weighs the thermal conductivity accordingly may reduce these errors. This may take the
form:

κ̄i =

(
1− f

κi
+

f

κj

)
(5.71)

where f = ∆P /Rij. This idea is based on interface treatment in fluids [135]. Implementation of
this correction was not tested within the time frame of this work.
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Figure 5.26: SPAM heat flux results for the steady state 1D thermal interface model shown in
Fig.5.22. All results have material with constant thermal conductivity of κ1 = 1gmm/s3K for
−50mm< x < 0mm. The material extending 0mm< x < 50mm is given four different thermal
conductivity values κ2 = 1, 2, 5, 10gmm/s3K. The x = −50mm surface is constant at Tc = 0K, the
x = 50mm surface Th = 1K.

5.4.5 Behaviour of Residual Error

Direct comparison of the steady state analytical results and the SPAM results is made in Fig.5.27.
It is immediately apparent that there is a small error in the SPAM results, in the region 0mm< x <
50mm, which appears to increase with increasing value of κ2. Again as with the heat source case
it is hypothesised that this error is likely due to incorrect calculation of the boundary temperature
through the use of fixed particles. Higher values of κ2 cause increased particle temperatures near
the right boundary with fixed values Th = 1K. This means that any error in the boundary particle
temperature is more pronounced in the second material as the temperature gap it covers is lower,
therefore an error in boundary interpolation is a far greater percentage error compared with the
material temperature gap.
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Figure 5.27: SPAM results vs analytical for the 1D heat source model shown in Fig.5.15. All curves
have material with constant thermal conductivity of κ1 = 1gmm/s3K for −50mm< x < 0mm.
The material extending 0mm< x < 50mm is given four different thermal conductivity values
κ2 = 1, 2, 5, 10gmm/s3K. The x = −50mm surface is constant at Tc = 0K, the x = 50mm surface
Th = 1K.

A similar error can be seen in the SPAM calculated heat flux shown in Fig.5.28. The discontinuous
nature of the SPAM at x = 0 can be seen more pronounced with the plotted interpolation points.
This is accompanied by an error in the predicted constant value of the heat flux which increases
with the value of κ2. It is again possible that this error is driven by error in the enforced boundary
temperatures due to the fixed particle boundaries.
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Figure 5.28: SPAM heat flux results vs analytical for the 1D heat source model shown in Fig.5.15.
All curves have material with constant thermal conductivity of κ1 = 1gmm/s3K for −50mm< x <
0mm. The material extending 0mm< x < 50mm is given four different thermal conductivity values
κ2 = 1, 2, 5, 10gmm/s3K. The x = −50mm surface is constant at Tc = 0K, the x = 50mm surface
Th = 1K.

The spatial distribution of the error for the simulation with κ2 = 10 is shown in Fig.5.29. It is
clear that the boundary conditions have an impact on the error incurred by the simulation from the
non-smooth nature of the error distribution approaching the boundary. Of a greater significance
however is the error distribution around x = 0. The error at this point appears discontinuous and
is the highest deviation form the analytical results for the whole material. This supports the notion
that improvements to the handling of thermal conductivity at the interface would greatly improve
the results.
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Figure 5.29: The spatial distribution of error for the SPAM results vs analytical in the 1D heat
source model shown in Fig.5.15. The right most material extending 0mm< x < 50mm is given
thermal conductivity value κ2 = 10.

The residual error in the SPAM is calculated using Eq.3.101. The results are shown in Fig.5.30.
This shows that the error in the simulation grows logarithmically with the value of κ2. This suggests
that the magnitude of the error is directly affected by the final temperature profile of the right most
material. This supports the hypothesis of interpolation errors within the boundary values being
introduced into the system. To better investigate this, the SPAM results are computed for mirror
boundary conditions which enforce the boundary temperature and shown in Fig.5.31. It can be
seen that the error for the fixed case is almost entirely eliminated.
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Figure 5.30: Residual error in the SPAM simulation of thermal interfaces compared with the
analytical model. Shown here for four different thermal conductivity values κ2 = 1, 2, 5, 10gmm/s3K
for the right material.
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Figure 5.31: SPAM results vs analytical for the 1D heat source model done with mirror boundary
conditions. All curves have material with constant thermal conductivity of κ1 = 1gmm/s3K for
−50mm< x < 0mm. The material extending 0mm< x < 50mm is given four different thermal
conductivity values κ2 = 1, 2, 5, 10gmm/s3K. The x = −50mm surface is constant at Tc = 0K the
x = 50mm surface Th = 1K.

Use of mirror boundary particles reduces the errors in the heat flux profiles shown in Fig.5.32,
including at the interface x = 0 but does not entirely remove them. This suggests the error is not
due to the boundary temperatures alone. Future work should focus on testing of Eq.5.71 but may
also benefit from a treatment of the SPAM heat flux calculation based on the weight function W
instead of the first derivative ∇W as for the temperature evolution in Eq.5.20.
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Figure 5.32: SPAM heat flux results vs analytical for the 1D heat source model done with
mirror boundary conditions. All curves have material with constant thermal conductivity of
κ1 = 1gmm/s3K for −50mm< x < 0mm. The material extending 0mm< x < 50mm is given
four different thermal conductivity values κ2 = 1, 2, 5, 10gmm/s3K. The x = −50mm surface is
constant at Tc = 0K the x = 50mm surface Th = 1K.

5.5 1D Composite Fuel and Cladding Model

The implementation of heat sources, thermal interfaces and convective boundary conditions allows
for the first simple thermal model of a fuel rod. These features have been successfully tested in
isolation and will now be tested together in 1D. Consider the case of a composite material slab with
no lateral heat flow. This case is then pure 1D with the heat equation obeyed only with regards to
the x co-ordinate as in the previous examples.
This model assumes a layout of a 1D slice taken from the centre of radius of a fuel rod out to
the coolant as outlined in Fig.5.33. The position x = 0 represents the centre of the fuel rod and
therefore must have zero heat flux to maintain the symmetry of the problem. The right most end
is assumed to undergo pure convection due to the coolant as described by Newton’s law of cooling.
The coolant is assumed to be at ambient temperature T∞ and undergo convection with coefficient
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h.
We assume negligible contact resistance, therefore the transfer of heat from the fuel to the cladding
is defined only by the material conductivity κF and κC respectively. We assume heat generation
within the fuel element at rate q̇. To simplify the notation we assume the density and specific heat
of the materials to be unity ρ = 1g/mm3,Cp = 1mm2/s2K therefore DT = κ.
We assume that the thermal conductivity of each material is independent of temperature and thus
constant throughout the simulations and solutions, not just in the steady state. We assume total
fuel and cladding length of LC with fuel length LF . Finally to simplify the analytical solutions
obtained we assume that a steady state is reached with dT

dt = 0 throughout the fuel pin. The left
system boundary is assumed to be at x = 0.

Figure 5.33: Visualisation of the 1D composite fuel and cladding model. The system is split into
two material sections with two individual thermal conductivity’s κF , κC which we assume to be
constant. We assume heat flux Q = 0 at x = 0. We assume convection with h at x = LC . A
visual representation of the SPAM particle formulation for the model is also shown, with convection
boundary particles at each end. Heat is produced at a rate q̇ within the fuel component.

5.5.1 Steady State Solution

The steady state solution is derived in much the same way as for the interface model, but now with
more complicated boundary conditions and an added heat source. We assume that the temperature
in the fuel TF and the temperature in the cladding TC obey the heat equation in one dimension
as:

∂2TF

∂x2
= − q̇

κF
(5.72)

∂2TC

∂x2
= 0 (5.73)

The external boundary conditions are given by:

− κF
∂TF

∂x

∣∣∣∣
x=0

= 0 (5.74)
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− κC
∂TC

∂x

∣∣∣∣
x=LC

= h [TC(LC)− T∞] (5.75)

The interface boundary condition states that temperature and heat flux are continuous:

TF (LF ) = TC(LF ) (5.76)

− κF
∂TF

∂x

∣∣∣∣
x=LF

= −κC
∂TC

∂x

∣∣∣∣
x=LF

(5.77)

From here it is simple to integrate the heat equations for both the fuel and cladding as:

TF = − q̇x

κF
+

C1x

κF
+ C2 (5.78)

TC =
C3x

κC
+ C4 (5.79)

Here Cn represents the constants of integration. Th first of which can be determined by the use of
Eq.5.74 as:

C1 = 0 (5.80)

Similarly use of Eq.5.77 gives:

C3 = − q̇LF

κc
(5.81)

Then use of the continuity boundary condition Eq.5.76 gives the relation:

C2 = q̇L2
F

[
1

2κF
− 1

κC

]
+ C4 (5.82)

Finally the convection condition Eq.5.75 gives:

C4 = q̇LF

[
1

h
+

LC

κC

]
+ T∞ (5.83)

This gives the final steady state solutions as:

TF (x) = q̇

[
LF

h
+

LCLF − L2
F

κC
+

L2
F − x2

2κF

]
+ T∞ (5.84)

TC(x) = q̇LF

[
1

h
+

LC − x

κC

]
+ T∞ (5.85)

The heat fluxes are calculated to be:
QF (x) = q̇x (5.86)

QC(x) = q̇LF (5.87)
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5.5.2 Steady State Results

The steady state solutions for the 1D nuclear fuel problem are presented in Fig.5.34. We assume a
conductivity of the cladding ten times that of the fuel which are usually metal and ceramic materials
respectively. Thus κF = 1gmm/s3K and κC = 10gmm/s3K. We choose the arbitrarily long lengths
LF = 50mm and LC = 100mm so that there are 50 unit density smoothed particles able to represent
each material. The heat generation of the fuel is set to q̇ = 0.1 and the coolant temperature to
T∞ = 300K. Finally we examine a range of coefficients of convection h = 0.1, 0.2, 0.5, 1g/s3K.

We see the expected fuel pin behaviour with the characteristic curve of temperature generated
within the fuel due to the heat production and the linear temperature profile generated within the
cladding. The effect of convection on the fuel element can clearly be seen with a faster convection
current, represented by a higher value h, more effectively removing the fuel element heat and
allowing a lower temperature operating state.

Figure 5.34: Analytical solutions for the steady state 1D composite fuel and cladding model shown
in Fig.5.33. The region 0mm< x < 50mm shows the fuel element temperature. The region
50mm< x < 100mm shows the cladding temperature. The boundary x = 100mm undergoes
convection with a range of values h = 0.1, 0.2, 0.5, 1g/s3K
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Figure 5.35: Analytical solutions the heat flux for the steady state 1D composite fuel and cladding
model shown in Fig.5.33. The region 0mm< x < 50mm shows the fuel element heat flux. The
region 50mm< x < 100mm shows the cladding heat flux. The boundary x = 100mm undergoes
convection with a range of values h = 0.1, 0.2, 0.5, 1g/s3K which all have the same heat flux profile
shown here.

5.5.3 1D Composite Fuel and Cladding Model within SPAM

The 1D composite fuel and cladding was modelled in SPAM using convective boundary conditions
set out in Eq.5.25 for both system boundaries. Using convection coefficient h = 0g/s3K at x ≤ 0
ensures that the heat flux is zero by definition. The particles on each boundary are given the same
thermal conductivity as the system which they are next to. 6 particles are used for each boundary
as in previous cases with a smoothing length H = 3mm. Each material, fuel and cladding, are
represented by N/2 = 50 particles all with ρi = 1g/mm−3.
The SPAM equations were integrated using RK4 with a constant time step dt = 0.1s. Simulations
were run for 100000 time steps. Each particle was given an initial value of Ti = 0K. As with
the analytical model κF = 1gmm/s3K and κC = 10gmm/s3K with the interface accounted for by
the use of Eq.5.69. The heat generated in the fuel is given by q̇ = 0.1gmm2s−3 and the coolant
temperature was T∞ = 300K. The problem is again explored for four values of coolant convection
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coefficient h = 0.1, 0.2, 0.5, 1g/s3K.

5.5.4 SPAM Results

The results of the SPAM are shown in Fig.5.36. The result again show the desired behaviour as
in the analytical, with smoothed continuous profiles, linear within the cladding region, quadratic
within the fuel region. Heat does not appear to be crossing the internal boundary with the tem-
perature maximal at the centre point x = 0mm. The results are given for t = 10, 000s well after
the system has reached a stable state.

Figure 5.36: SPAM solutions for the steady state 1D composite fuel and cladding model shown
in Fig.5.33. The region 0mm< x < 50mm shows the predicted fuel element temperature. The
region 50mm< x < 100mm shows the predicted cladding temperature. The boundary x = 100mm
undergoes convection with a range of values h = 0.1, 0.2, 0.5, 1g/s3K

5.5.5 Behaviour of Residual Error

Direct comparison of the steady state analytical results and the SPAM results is made in Fig.5.37. It
is immediately apparent that there is a small error in the SPAM results which appears to increase
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with decreasing values of h. This may be due to errors introduced by the convective boundary
temperature estimations.

Figure 5.37: SPAM results vs analytical for the steady state 1D composite fuel and cladding model
shown in Fig.5.33. The region 0mm< x < 50mm shows the predicted fuel element temperature. The
region 50mm< x < 100mm shows the predicted cladding temperature. The boundary x = 100mm
undergoes convection with a range of values h = 0.1, 0.2, 0.5, 1g/s3K

The comparison of the SPAM heat flux results is shown in Fig.5.38. It can be seen that the flux
through the fuel segment (left) has minimal error. The error increases toward and through the
cladding section. Larger error can be seen for higher values of h. This suggests that the error is
being directly introduced by the right most convective boundary representing the cladding.
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Figure 5.38: SPAM heat flux results vs analytical for the steady state 1D composite fuel and
cladding model shown in Fig.5.33. The region 0mm< x < 50mm shows the predicted fuel element
temperature. The region 50mm< x < 100mm shows the predicted cladding temperature. The
boundary x = 100mm undergoes convection with a range of values h = 0.1, 0.2, 0.5, 1g/s3K

The spatial distribution of error for the 1D composite fuel and cladding model is shown in Fig.5.39
for coefficient of convection h = 1g/s3K. The most significant result highlighted by the error
distribution is the discontinuous nature of the error at the material interface. This effect was
highlighted for the 1D model and clearly has a significant result on the overall accuracy of these more
complex simulations and those going forward. It is again therefore highlighted that reformulation
of the handling of conductivity on the material boundary is required to improve results.
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Figure 5.39: Spatial distribution of error for SPAM results vs analytical for the steady state 1D
composite fuel and cladding model shown in Fig.5.33. The results are shown for boundary convec-
tion with a value h = 1g/s3K

The residual error in the SPAM is calculated again using Eq.3.101. The results are shown in
Fig.5.40. This shows that the error in the simulation grows with the reciprocal value of h. This
suggests that the error factor is directly effected by the convection conditions at the surface furthest
from the error. This is supported as the approximation given by Eq.5.25 will give errors that grow
with the reciprocal of h. It can therefore be concluded that improvements to the convection
approximation boundary condition given by Eq.5.25 will produce decreased error within these
SPAM simulations.
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Figure 5.40: Residual error in the SPAM simulation of a 1D fuel element and cladding com-
pared with the analytical model. Shown here for four different coefficients of convection h =
0.1, 0.2, 0.5, 1g/s3K.

5.5.6 Rate of 1D Convergence

The rate of convergence is estimated for the 1D fuel and cladding model. A range of simulations are
completed for increased and decreased numbers of particles. The simulations are characterised by
the spacing between particles. The largest simulation contains N = 1000 particles with a spacing
of ∆P = 0.1mm. The smallest simulation tested contains N = 10 particles with a spacing of
∆P = 10mm. A plot of the logarithm of the calculated residual error against the particle spacing
is constructed in Fig.5.41. A line of best fit is calculated for the data points and the gradient of
this line is used to estimate the nature of the dependence. Two lines for quadratic dependence and
for linear dependence are shown as well. This dependence is referred to as the rate (or order) of
convergence. As shown the line of best fit suggests an order of 1.3. This lies within the expected
regime for SPAM with the ideal convergence theoretically approaching 2ndorder but the practical
application often demonstrating closer to 1storder [67].
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Figure 5.41: The logarithm of residual error in the SPAM simulation of a 1D fuel element and
cladding is plotted against the logarithm of the particle spacing for a range of 7 simulations.
Shown here for a coefficient of convection h = 1g/s3K.
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5.6 2D Fuel Pin Model

Figure 5.42: A schematic diagram showing a cross-section of a nuclear fuel pin. The fuel, cladding
and coolant are represented as if from above. The slice of interest for the 1D model is highlighted.

The annular geometry of a nuclear fuel pin allows for an increased amount of heat to be transferred
from the fuel element to the cladding above the 1D composite fuel and cladding representation.
This means it is insufficient for any fuel simulation used with fuel performance codes to assume
1D simplified geometry. To illustrate this the analytical 2D and 1D solutions are shown along side
each other for the values used within the 1D composite fuel and cladding model shown above in
Fig.5.43. It can be seen that for the value h = 0.1g/s3K the peak fuel element temperature reaches
≈ 1.3 times higher for the 1D case than the 2D case.
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Figure 5.43: Analytical solutions for the steady state 1D composite fuel and cladding model shown
in Fig.5.33 vs the 2 fuel pin model shown in Fig.5.42. The region 0mm< x < 50mm shows the
predicted fuel element temperature. The region 50mm< x < 100mm shows the predicted cladding
temperature. The boundary x = 100mm undergoes convection with two values h = 0.1, 1g/s3K

5.6.1 Analytical Solutions

The length of the fuel is assumed to be effectively infinite and the cross-section is assumed ax-
isymetric. These assumptions allow for a temperature solution which depends only on the radial
co-ordinate. The steady state 2D solutions are derived as in the case of the 1D composite case.
For the 2D case the heat equation is described in radial co-ordinates for the fuel and cladding
respectively as:

1

r

∂

∂r

(
r
∂TF

∂r

)
= − q̇

κF
(5.88)

1

r

∂

∂r

(
r
∂TC

∂r

)
= 0 (5.89)
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The two PDEs in Eq.5.88 and Eq.5.89 are easily solved [136] and the solutions are given below:

TF =
q̇R2

F

2

[
ln(RC/RF )

κC
+

1

hRC

]
+ T∞ +

q̇(R2
F − r)

4κF
(5.90)

TC =
q̇R2

F

2

[
ln(RC/r)

κC
+

1

hRC

]
+ T∞ (5.91)

The heat flux is then given by:

QF =
q̇r

2
(5.92)

QC =
q̇R2

F

2r
(5.93)

The temperature distribution is shown in Fig.5.44. We select reasonable values for representing
a fuel rod within this model. The radii used are RF = 10mm, RC = 15mm, with conductivities
κF = 2W/mK, κC = 25W/mK. The heat generation is given as q̇ = 2 · 108W/m3 and a range of
values of coefficient of convection are shown h = 1000, 2000, 5000, 10000W/m2K. All these numbers
a chosen based off the simple fuel model given in [136].

The heat flux is shown in Fig.5.45. The heat flux is identical for different values of convection h
therefore only one profile is visible. Eq.5.92-5.93 show that the heat flux should only be affected
by the heat generation and radius of the fuel element.
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Figure 5.44: Analytical solutions for the steady state 1D composite fuel and cladding model shown
in Fig.5.42. The region 0mm< r < 10mm shows the predicted fuel element temperature. The
region 10mm< r < 15mm shows the predicted cladding temperature. The boundary r = 15mm
undergoes convection with a range of values h
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Figure 5.45: Analytical solutions of the heat flux for the steady state 1D composite fuel and
cladding model shown in Fig.5.42. The region 0mm< r < 10mm shows the predicted fuel element
temperature. The region 10mm< r < 15mm shows the predicted cladding temperature. The
boundary r = 15mm undergoes convection with a range of values h which all have the same heat
flux profile shown here.

5.6.2 SPAM Solutions

For the 2D case the convection approximation must be generalised to higher dimensions. We still
require Newton’s law of cooling be satisfied, however we define the boundary unit normal r̂ for a
description in higher dimensions:

∂T

∂r
|B = −h

κ
[TB − T∞] (5.94)

We therefore follow the previous approximations but we replace:

∂T

∂r
|B ≈ TBi − Ti

−R
(5.95)
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where R is the distance between particles i and Bi. This gives the convection approximation as
before with Eq.5.25, with the simple modification to the function of convection:

Fh = −h

κ
R (5.96)

The SPAM particle arrangement used for the simulations are based on a triangular lattice split into
three particle zones which are the fuel, cladding and convective boundary particles which represent
the coolant. The particle arrangement is shown in Fig.5.46

Figure 5.46: Particle arrangement used for the 2D SPAM fuel pin model. The boundary region
representing the coolant is given a thickness of 5mm so that it exceeds the smoothing length. The
particle arrangement contains N = 1261 particles in total.

The simulations were completed with a time-step dt = 1s for 100000 steps. A smoothing length
of H = 3mm is used. The final interpolated temperatures are plotted in Fig.5.47 together with
the analytical profiles. It can be seen that for smaller magnitudes of convection coefficient h
there is a significant increase in the error in SPAM predicted temperature. This suggests that the
approximation given by Eq.5.95 may be insufficient for smaller magnitudes of h.
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Figure 5.47: Analytical solutions for the steady state 2D fuel and cladding model shown in
Fig.5.42. The region 0mm< r < 10mm shows the predicted fuel element temperature. The re-
gion 10mm< r < 15mm shows the predicted cladding temperature. The boundary r = 15mm
undergoes convection with a range of values h.

This idea is supported by the heat flux results shown in Fig.5.48 as we see the SPAM predicted
heat flux toward the boundary r = 15mm shows a significant spread of interpolated values. The
peak heat flux is also not well represented by the SPAM results therefore another issue may be that
the SPAM has too few particles to properly define the problem. A convergence test was therefore
run on these results to determine if the error was reduced for an increase in number of particles
above N = 1261 which is shown here.
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Figure 5.48: Analytical solutions of the heat flux for the steady state 2D fuel and cladding model
shown in Fig.5.42. The region 0mm< r < 10mm shows the predicted fuel element temperature.
The region 10mm< r < 15mm shows the predicted cladding temperature. The boundary r = 15mm
undergoes convection with a range of values h which all have the same heat flux profile shown here.

5.6.3 The Rate of 2D Convergence

For this convergence test we test we use h = 0.001W/mm2K as this demonstrates the largest visible
error for the results shown in Fig.5.47. There are hardware limitations to this test, we therefore
restrict the largest test to approximately 10 times the number of particles.

The convergence results are as expected. The predicted temperature profiles for a selection of
SPAM particle spacings are displayed in Fig.5.49. It can be seen that for N > 10, 000 values near
to r = 0mm are close to the expected. Slight smoothing of the transition profile at r = 10mm
can however be seen which causes an error in values predicted along the interface of the two
materials.
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Figure 5.49: SPAM interpolated temperature profiles vs analytical solution for the steady state 2D
fuel and cladding model shown in Fig.5.42. The region 0mm< r < 10mm shows the predicted fuel
element temperature. The region 10mm< r < 15mm shows the predicted cladding temperature.
The boundary r = 15mm undergoes convection with a range of values h. A range of particle
spacing’s are shown given by particle number N

The same can be seen in the heat flux profile shown in Fig.5.50. Good agreement is seen close to
r = 0mm with a drift to higher values toward the system edge r = 15mm. The residual error for
these simulations is calculated and the convergence shown in Fig.5.51
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Figure 5.50: SPAM interpolated heat flux profiles vs analytical solution for the steady state 2D
fuel and cladding model shown in Fig.5.42. The region 0mm< r < 10mm shows the predicted fuel
element temperature. The region 10mm< r < 15mm shows the predicted cladding temperature.
The boundary r = 15mm undergoes convection with a range of values h. A range of particle
spacing’s are shown given by particle number N

The simulations completed for the convergence test are defined by constructing particle arrange-
ments with particle masses between mi = 1 → 0.1g in steps of 0.1. The average particle spacing
∆P can then be calculated for 2D as ∆P =

√
mi. From this the appropriate smoothing length is

calculated as:
H = 3

√
mi (5.97)

The smoothing lengths used for the 10 simulations are given in Table.5.2.

The error in the simulations is not the expected smoothed curve but actually increases for N > 3000
before having a final decreased error for N > 10, 000. This effect is due to the error seen at the
interface between the fuel and cladding. The final interface temperatures have a larger error for
higher values of N than these preceding values and this causes the error behaviour displayed.
Examination of the heat flux error toward the outside boundary suggests that the convection
condition used may be causing convergence toward incorrect boundary heat flux which is giving

221



N mi /g ∆P /mm H /mm

1261 1 1 3
1386 0.9 0.95 2.85
1586 0.8 0.89 2.67
1754 0.7 0.84 2.52
2056 0.6 0.77 2.31
2469 0.5 0.71 2.13
3016 0.4 0.63 1.89
4089 0.3 0.55 1.65
6194 0.2 0.45 1.35
12065 0.1 0.32 0.96

Table 5.2: The parameters used for the 10 simulations completed for the convergence test of the
2D fuel rod model.

rise to the errors seen. It is, however, encouraging the large reduction shown by the convergence
test.
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Figure 5.51: The convergence of the residual error shown for SPAM simulations of the 2D fuel
model, shown in Fig.5.42, are given for h = 0.001W/mm2K across a range of number of particle
points N .

The rate of convergence is estimated for the 2D fuel and cladding model. The range of simulations
completed are for increased numbers of particles shown in 5.2. The simulations are characterised
by the spacing between particles, all simulations are constructed from regular triangular lattices.
A plot of the logarithm of the calculated residual error against the particle spacing is constructed
in Fig.5.52. A line of best fit is calculated for the data points and the gradient of this line is used
to estimate the rate of convergence. Two lines for quadratic dependence and for linear dependence
are shown as well. As shown the line of best fit suggests an order of 0.62.
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Figure 5.52: The logarithm of residual error in the SPAM simulation of a 2D fuel element and
cladding is plotted against the logarithm of the particle spacing for a range of 10 simulations.
Shown here for a coefficient of convection h = 0.01.

This rate of convergence is unexpectedly low and is more than likely affected by the interface issue
with the model which is discussed above or, it is due to the increasing presence of the discretisation
error identified in Chapter 2. With this in mind the convergence rate is estimated for the first 6
simulations in Fig.5.53. This reduced number of simulations supports a convergence rate of 1.2. This
is as expected as the convergence of the smoothing error should at least exceed linear dependence
and is expected to approach 2nd order for this form of SPAM and with future improvements this
simulation could approach 4th order convergence [66].
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Figure 5.53: The logarithm of residual error in the SPAM simulation of a 2D fuel element and
cladding is plotted against the logarithm of the particle spacing for reduced range of 6 simulations
up to N = 2469. Shown here for a coefficient of convection h = 0.01W/mm2K.

5.7 Conclusions

This chapter aimed to model heat flow through a simplified model of a fuel rod. This was com-
pleted by systematically simulating smaller 1D models to determine the best SPAM approach to
handle each of these conditions. New or modified algorithms for handling boundary convection,
heat generation and material thermal interfaces were proposed and shown to be successful.
The work shown in this chapter suggests that SPAM simulations are capable of modelling the ther-
mal effects within nuclear fuel. These simulations are not, however, free from error with important
consideration needing to be given to the formulation of convective boundary conditions and the
number of particles used.
Of note, the simplified convective boundary condition shows a promising novel and simplified ap-
proach to modelling convection within SPAM through Eq.5.95. Future refinement of this condition
with a higher order approximation of the temperature derivative or improved implementation within
dynamic boundaries may give further error reductions for the method.
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Overall there is promise that SPAM models used for damage modelling of nuclear fuel could be
created with acceptable error within the thermal modelling to justify the use of SPAM. The mod-
els shown here cannot compete with those given by FEM models however the scope for increased
complexity means full multi-physics SPAM nuclear fuel models could be a useful compliment.
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Chapter 6

Thermal-Induced Strains

6.1 Introduction

Within a reactor under operation heat is generated by nuclear fission from within the pellets
which causes swelling of the pellet and thus mechanical deformation of both pellet and cladding
through PCMI. The conceptual fuel pin model presented within this work requires the coupling of
mechanical deformations to the thermodynamics already presented in the previous chapters. SPAM
has already been applied to field of thermo-elasticity. One of the most advanced of these studies
examined large scale 3D deformations of solid bodies using a formulation of SPAM with governing
equations based on the linear momentum of the body and the deformation gradient, co-factor,
Jacobian and energy density with momentum correction and energy dissipation [137]. Although
the simulations presented are impressive the models used lack experimental or analytical results
with which to asses the accuracy. The problem of nuclear fuel approached in this work will begin
with the basic formulations such as those presented by Monaghan [138] to better establish the error
effects associated with the SPAM formulation.

To explore this we first present a basic elastic model for the stress. Thermal-induced stress is
created through the use of a thermal expansion coefficient. The mechanical deformation will be
explored for arbitrary material properties against analytical solutions for one and two dimensional
problems.

The SPAM tensile instability exhibits itself for purely tensile system forces. Corrective methods
for this instability will be explored, including velocity smoothing, artificial viscosity and artificial
stress.

6.2 Thermal Stress in a 1D system

We begin our examination of thermal stress in SPAM with a computationally simple and physically
intuitive model: A 1D system heated with a linear temperature profile and restricted at each end.
The physical analogue of this model would be a uniform length of material wrapped with heated
wire of negligible thickness, given some initial, uniform constant temperature TC . The material
can be considered restricted in movement at both ends by a static boundary wall. The heated coil
delivers a linear temperature profile such that the final temperature distribution is defined by a
raise in temperature to TH on one boundary. A diagram of the model is shown in Fig. 6.1
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Figure 6.1: Visual representation of the 1D analytical thermal stress model presented in this section.
A length L of material with uniform cross-section A and linear temperature profile provided by a
heating coil. The material is suspended between fixed boundary walls which exert pressure PA and
PB respectively.

The material is assumed to have a uniform cross-sectional area A such that the model can be
considered to be one dimensional. To consider the analytical stress solution to this problem we first
consider the boundary pressure acting on the material. If the material is at equilibrium the sum
of forces acting on it must be equal to zero. We can therefore use Newton’s third law to consider
the normal reactions per cross-sectional area at both ends of the system, which we will refer to
as the pressure. The pressure exerted at the boundary PA must therefore be equal and opposite
to the pressure at the boundary PB = −PA. Considering any smaller sub section of the material
under the same logic suggests that that the pressure at any point x must also be constant and
oppose the pressure at the boundary when at equilibrium [139]. Force is defined as the negative of
pressure:

F (x) = −PA (6.1)

We assume that the thermal expansion of the material is linear and therefore can be described by
a thermal expansion coefficient α as:

∆L = L0 · αdt (6.2)

where dt is the change above some reference temperature T0. Total material strain (i.e engineering
strain) is defined by the proportion of extension of length ∆L to original material length L0:

ϵ =
∆L

L0
(6.3)

Thus we define the thermal strain as:
ϵT = α∆t (6.4)
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Material stress is defined as the force F per unit area A:

σ =
F

A
(6.5)

We assume the material is a linear elastic material, and thus define the elastic constant Young’s
modulus E as:

E =
σ

ϵσ
(6.6)

The material strain ϵσ can then be expressed in terms of the elastic constant as:

ϵσ =
F

AE
(6.7)

Taking into account all of these assumptions, the total material strain (ϵ = ϵT + ϵσ) defined on the
domain −L

2 to L
2 is derived as:

ϵ =

∫ L
2

−L
2

(
F (x)

AE
+ α(T (x)− T0)

)
dx (6.8)

If we assume a linear final temperature distribution TC to TH , with T0 = TC , then the temperature
profile T (x) can be defined as:

T (x) = (TH − TC)
x

L
+

TC + TH

2
(6.9)

As stated we expect the force to be constant at equilibrium F (x) = F . By integration we have the
following expression for the material strain:

ϵ =

[
Fx

AE
+ α(TH − TC)

x2

2L
+ α

(TH − TC)x

2

]L
2

−L
2

(6.10)

which gives:

ϵ =
FL

AE
+ α

(TH − TC)L

2
(6.11)

Finally the constricted wall boundaries require that the total material strain be zero ϵ = 0. This
gives the following analytical expression for the force:

F = −αEA
(TH − TC)

2
(6.12)

The expected stress throughout the material is therefore:

σ = −αE
(TH − TC)

2
(6.13)

6.2.1 1D Thermal Stress SPAM Solution

A visual interpretation of the set up for the SPAM algorithm is given in Fig.6.2. The boundary
particles are shown here to be fixed however the effect of dynamic boundary particles will also be
explored and outlined later in this section. The key difference from the thermal models presented
in the previous section is that the particles are now free to move and thus the SPAM equation of
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motion must be integrated.

Figure 6.2: Visual outline of the 1D thermal stress SPAM model. A constant linear temperature
profile is achieved through boundary temperature enforcement. The system particle positions are
allowed to evolve. Boundary particle movement is restricted and pressure enforce at the boundary
to restrict the total material strain to zero.

Throughout this section the SPAM solutions given all use Hoover’s form for thermal evolution
dependent directly on the weight function [54], not its derivatives, due to the success shown in the
previous chapters. In 1D the SPAM equation of motion with respect to the stress tensor takes the
form:

dvi
dt

=
∑
j

mj

(
σi
ρ2i

+
σj
ρ2j

+ΠP,ij

)
xij
|xij |

w′(|xij |) (6.14)

Artificial viscosity will be required to stabilise the tensile instability, (which will be discussed in
detail later in this chapter) and is added through the ΠP,ij term.

Equation of state for a simple elastic material

The stress tensor is defined by the equation of state for the equilibrium pressure combined with the
chosen material model, which in this case is a simple linear elastic model. The stress tensor can
be separated into two parts, the equilibrium pressure P and what we will refer to as the deviatoric
stress tensor, denoted as S:

σi = −Pi + S (6.15)

We define the deviatoric stress as the stress due to the material strain in terms of the elastic
constants. For the 1D case represented by Eq.6.6, the change in stress in terms of the material
strain is simply:

dS = Edϵ (6.16)

To directly calculate the strain at a particle both the change in length and original length of the
particle ‘element’ must be known. Due to the smoothed nature of SPAM this is not known and
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therefore direct strain cannot be calculated. Instead the strain rates are obtained from the particle
velocities:

ϵ̇x =
∂

∂t

∂ux
∂x

=
∂vx
∂x

(6.17)

where ux represents the particle displacement. The total change in particle strain is then obtained
through time integration. Considering the smoothed particle algorithm for the gradient of the
velocity, we can more directly consider the rate of change of the deviatoric stress due to strain
as:

Ṡi = Eϵ̇i = E
∂v

∂x i
= E

∑
j

mij [vj − vi]
xij
|xij |

w′(|xij |) (6.18)

The thermal strains are often, by convention, included within the above part of the description
of the total stress due to the consideration of the strain produced. However thermal strains only
contribute to the diagonal elements of the stress tensor therefore it reduces the notation to include
these contributions within the equilibrium pressure. To do this the definition of the bulk modulus
B for a solid is considered:

B = −V
dP

dV
(6.19)

Consider again some constant cross-sectional area A for the reduction to 1D and this gives:

B1D = −(AL)
dP

d(AL)
= −L

dP

dL
= E (6.20)

Considering a small temperature deviation for the linear thermal expansion defined in Eq.6.2 and
combining with the above equation this gives for 1D:

B1D = E = −L
dP

(LαdT )
= − 1

α

dP

dT
(6.21)

This gives an expression for how the equilibrium pressure changes with temperature:

dP

dT
= −Eα (6.22)

As well as the temperature dependence of pressure, we must also consider the density dependence.
The SPAM formulation used here is considered weakly compressible as the particle mass m0 is fixed
however the volume occupied by each particle is not. As stated, the exact volume element for each
particle is unknown, therefore we use the smoothed density estimate to define the change in volume
and thus the change in pressure:

ρ =
m0

V
(6.23)

Combining with Eq.6.19 we expect the pressure to vary with density as:

B = ρ
dP

dρ
(6.24)

This is in agreement with the commonly used equation of state [51]:

P = c20(ρ− ρ0) (6.25)

where the sound speed is estimated as c20 =
B
ρ̄ . Herein, we use the geometric mean ρ̄ =

√
ρiρj . One

final consideration before presenting the full equation of state is the continuity equation, which
gives the time evolution of density in terms of the divergence of the velocity field:

ρ̇ = −ρ∇ · v (6.26)
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It follows therefore that the pressure evolves as:

Ṗ = −B∇ · v (6.27)

We therefore propose two variations for the equation of state, the first based on the sum density
using some initial reference point ρ0, T0 to directly estimate the equilibrium pressure:

P eq
i =

B

ρ̄
(ρi − ρ0) + Eα(Ti − T0) (6.28)

Alternatively, for the density evolution description of SPAM, it is desirable to use the rate of
change of density and by extension the rate of change of temperature to define the rate of change
of equilibrium pressure and integrate along with the other variables:

Ṗi =
B

ρi
ρ̇i + EαṪi (6.29)

which takes the SPAM form:

Ṗi = B
∑
j

mj

ρj
(vj − vi)

xij
|xij |

w′(|xij |)

+EαC
∑
j

(Tj − Ti)W (rij)
(6.30)

where C is the constant for temperature evolution defined by Hoover [54] as:

C =
DT∑ x2w(x)

2

(6.31)

Artificial Viscosity

In the absence of boundary conditions we expect a heated elastic material to expand. This expansion
force can be equated to placing a sample under tensile load and thus it is expected that the
simulation would exhibit instability in the form of the tensile instability. This exhibits itself in the
form of particle clumping and initial tests with the SPAM simulations show that at a minimum
artificial viscosity must be included to help stabilise this instability. The use of artificial viscosity
also helps to smoothed contact discontinuities as in the case of the artificial conductivity discussed
in the previous section. The form for artificial viscosity used within this work is based on Reimann
solvers [98] and is given as:

ΠP,ij =
αP vsig,ij

ρ̄ij

vij · xij
|xij |

(6.32)

The signal velocity is calculated in the more standard method:

vsig,ij =
1

2
[ci + cj − 2vij · rij ] (6.33)

Here c is the particle sound speed. For solids we use the approximation ci =
√

E
ρi
. Instead of

the dependence on temperature difference between particles the viscosity term is dependent on the
magnitude of the particle velocities acting along their respective line of sight. This means it only
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affects particle movement toward and away from each other. The coefficient of dissipation takes
the same general from as for the conductivity:

dαP
i

dt
= −αP

i − αP
min

τi
+ Si (6.34)

Again with τi = 10H/vsig. For the viscosity we use a source term defined by particle divergence
being negative, so as to avoid particle clumping:

Si = Max (−∇ · v, 0) (2− αP ) (6.35)

Boundary Enforcement

The thermal boundary conditions for these simulations are enforced as in the previous chapter for
both fixed and dynamic conditions respectively. We require that no particle be allowed to pass
through the boundary and we therefore require further conditions on particle motion. For the fixed
case the obvious choice is to restrict particle velocities vi′ = 0. For this to work effectively we
must assign the pressure at the fixed boundary to oppose the system particle stress, otherwise the
forces acting on the system boundaries will constantly be out of equilibrium. The easy choice is to
simply assign the fixed boundary pressure as the expected final pressure however this is difficult
to generalise. We therefore must either allow the fixed boundary pressure to be evolved at each
time step as with the system heat flux, or alternatively we can simply employ ‘hybrid’ boundaries
by assigning the fixed boundary particle pressure at each time step equal and opposite to the local
system pressure. We will explore each of these methods.

Pi′ = −Pi (6.36)

Figure 6.3: Visual representation of the no-flow wall boundary condition in 1D

For the case of dynamic (mirror) boundary conditions we use the commonly used no-flow boundary
condition outlined by Hoover [54]. We require that the resultant boundary velocity be zero such
that the total material strain is zero:

vB = 0 (6.37)
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To achieve this we assign the mirror particle velocities equal and opposite to the system particles
which they reflect:

vi′ = −vi (6.38)

The mirror particle position is calculated as:

xi′ = 2xB − xi (6.39)

A visual interpretation of this is shown in Fig.6.3. One final consideration is the use of velocity
smoothing (also referred to as XSPH). Monaghan outlines [94] the benefits of velocity smoothing in
reducing particle penetration of the boundary over the no flow condition alone. Velocity smoothing
takes the general form:

v̂i = vi + ϵ
∑
j

mj
vj − vi
ρ̄ij

wij (6.40)

where ϵ = 0.5 is the commonly suggested value used within this work. It is common for the
smoothing at each step to be calculated taking into account the smoothing at the last step such
that:

v̂i = vi + ϵ
∑
j

mj
v̂j − v̂i
ρ̄ij

wij (6.41)

6.2.2 1D Thermal Stress Results

All the SPAM simulation results presented within this section were run with a Young’s modulus
E = 1000N/mm2, a thermal expansion coefficient α = 0.01mm/K and a temperature increase at
the hot boundary of TH = TC + 0.1. We therefore expect the final system stress state to be:

σFinal = −αE
TC + TH

2
= −0.5N/mm2 (6.42)

It is important to note that due to the allowance of motion within the SPAM simulation and the
decisions made within the boundary enforcement, the final stress state of the SPAM system will
have small expected variations at the boundary. This would also be expected for experimental
validation as a completely static boundary is non-physical and small variations in strain by the
constraining material would be expected.

The thermal conditions are as for the previous simulations with thermal conductivity κ = 10gmm/s3K
and specific heat Cp = 1mm2/s2K. The time step is again chosen as dt = 0.01s.

An analytical solution for the time dependent case of the pressure is not easily derived. However,
as shown in the previous section, the time dependence of the temperature evolution from the initial
state T0 = 1K can be calculated. As before this gives us a half life decay time toward steady state
as:

tm = −L2ln(0.5m)

4π2DT
(6.43)

Here m denotes the number of half lives. From here we can use the general estimate of sound
speed within a solid used in this work to estimate the time taken for the pressure to reach equilib-
rium:

c0 =

√
E

ρ0
(6.44)
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It is important to check however that this is not impeded by the smoothing length which is taken
to be H = 3mm for these simulations. For each time step this means that the effect of the pressure
can only propagate a maximum of the smoothing distance. A maximum estimate for the signal
propagation speed is therefore:

cMax =
H

dt
(6.45)

This equation can be used to create a criteria for the simulation time step. We require that
c0 < cMax. The time step criteria is thus:

dt <
1

H

√
ρ0
E

(6.46)

For the chosen values this criteria hold. We can then estimate the time taken for the signal to
propagate the length of the simulation domain and back as:

tc = 2L

√
ρ0
E

≈ 6.32s (6.47)

We can therefore estimate that the simulation error for σFinal < 0.1% after an elapsed period of
t10+c = t10 + tc. The following values are therefore calculated for error analysis:

t1+c ≈ 23.8776s

t10+c ≈ 181.8962s

t50+c ≈ 884.2012s

(6.48)

It becomes clear that the dominant factor in the equilibrium time calculated here is still the thermal
propagation for these simulations.

All the results which follow have been run with artificial viscosity. Simulations for all boundary
conditions were found to be unstable in the absence of artificial viscosity. The results for the
fixed boundary case with Hoover’s temperature evolution and artificial terms included is shown
in Fig.6.4. It becomes immediately obvious from the density profile that some level of instability
induced by constant fixed boundary pressure PH = PC = −0.5N/mm2. Once equilibrium is reached
this dies away however the time to equilibrium is accelerated by the already enforced pressure. As
discussed the use of fixed boundaries is also limiting in the case where the final boundary pressure
is not known. Despite this, the final residual error obtained is significantly less than the desired
range with U = 0.00031N/mm2 calculated from:

U2 =
1

n

n∑
i

(σAnalytic(i)− σSPAM (i))2 (6.49)

The results for hybrid boundary conditions given by Eq.6.36 are shown in Fig.6.5. The propagation
of the stress can clearly be seen for the t1+c and t10+c times as predicted. Furthermore the den-
sity and stress profile remains smoothed throughout the simulation. As predicted the final stress
profile is not at equilibrium for t10+c, unlike for the fixed case, where the boundary enforcement
drives a faster approach to equilibrium. The residual error for the t50+c time step is calculated
as u = 0.00036N/mm2 which although worse than the fixed case is within the expected bounds of
error.

Finally, we examine the use of mirror boundaries with the no flow enforcement. As discussed this is
expected to help with boundary penetration and reduce the material strain at the boundary. The
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results are shown in Fig.6.6. The no flow condition can be seen to cause density problems at the
boundary. As previously discussed the use of velocity smoothing helps mitigate this issue. This
will be demonstrated in the following section. The miscalculation of boundary values is also greatly
affected by the choice of the sum density used here. Use of the density evolution formulation of
SPAM helps mitigate the discontinuities at the boundary which can clearly be seen in the mirror
results.

Figure 6.4: 1D thermal-induced stress SPAM results for fixed boundaries with Hoover’s form of
temperature evolution and artificial terms included. The given profiles are the initial profile as well
as the 3 times given by Eq.6.48. Top left the temperature profile, top right the stress profile, bottom
left the density profile and bottom right the pressure profile. All profiles are SPAM-interpolated
results.
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Figure 6.5: 1D thermal-induced stress SPAM results for hybrid boundaries with Hoover’s form of
temperature evolution and artificial terms included. The given profiles are the initial profile as well
as the 3 times given by Eq.6.48. Top left the temperature profile, Top right the stress profile, bottom
left the density profile and bottom right the pressure profile. All profiles are SPAM-interpolated
results.
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Figure 6.6: 1D thermal-induced stress SPAM results for mirror boundaries with Hoover’s form of
temperature evolution and artificial terms included. The given profiles are the initial profile as well
as the 3 times given by Eq.6.48. Top left the temperature profile, top right the stress profile, bottom
left the density profile and bottom right the pressure profile. All profiles are SPAM-interpolated
results.

6.2.3 Corrective Results

As discussed for particle motion within SPAM the particle velocities and densities can introduce
discontinuities into the simulation. We therefore examine the effect of velocity smoothing and the
density evolution formulation of SPAM discussed earlier. The simulation profiles presented in this
section are for the mirror boundary conditions, however, these methods have been tested for all
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three boundary conditions and the residual errors given in Fig.6.9.

The use of velocity smoothing can be seen in Fig.6.7. Although not apparent from the profiles,
there is a reduction in the residual error calculated. However, the instability present in the simu-
lation profiles at the boundary has not been mitigated and therefore velocity smoothing alone is
insufficient.

Figure 6.7: 1D thermal-induced stress SPAM results for mirror boundaries with Hoover’s form of
temperature evolution, artificial terms included and velocity smoothing. The given profiles are the
initial profile as well as the 3 times given by Eq.6.48. Top left the temperature profile, top right
the stress profile, bottom left the density profile and bottom right the pressure profile. All profiles
are SPAM-interpolated results.
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Figure 6.8: 1D thermal-induced stress SPAM results for mirror boundaries with Hoover’s form
of temperature evolution and artificial terms included. For this simulation the density evolution
formulation of SPAM is used. The given profiles are the initial profile as well as the 3 times given
by Eq.6.48. Top left the temperature profile, Top right the stress profile, bottom left the density
profile and bottom right the pressure profile. All profiles are SPAM-interpolated results.

Alternatively the use of the density evolution formulation combined with the pressure and deviatoric
stress evolution outlined by Eq.6.18 can be seen to completely solve the boundary issues introduced
in the mirror case. These results can be seen in Fig.6.8. The smoothed profiles are as seen for the
hybrid case but with the increased computational time for the dynamically calculated boundaries.
It is therefore apparent that the use of hybrid boundaries provides the best possible accuracy with
the most computational efficiency.
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The final residual errors for all two of the three boundaries under the corrective methods discussed
are shown in Fig.6.9. It is interesting to note that the use of velocity smoothing rarely causes a
reduction in the residual error. Hoover [54] notes that the use of velocity smoothing with viscous
force can be unstable and thus this may contribute to the increased error. The final calculated error
is greatly reduced however by the use of the density evolution formulation (Eq.2.41) therefore this
will be employed in future simulations. The corrective methods presented here are by no means
exhaustive. Artificial terms may be added to the stress tensor [138] and more advanced implementa-
tions have used dissipation within the stress tensor in order to remove spurious stress profiles [140].
Such implementations have been used to model high deformation found in geotechnical problems
and their applications here are an alternative to the artificial terms used.

Figure 6.9: Residual error calculated for the SPAM results vs analytical results for 1D thermal
stress simulations. Various corrective methods are compared for the two boundary conditions,
fixed and mirror. The error is calculated using Eq.6.49 with σAnalytic = −0.5N/mm2 in both cases.
The error is calculated for two time steps, above t10+c and Fig.6.10 gives t50+c.
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Figure 6.10: The same results as given in Fig.6.9 however the error is calculated for t50+c. The case
of the mirror boundary with just artificial terms is truncated from the graph to allow for clearer
comparison of the other results.

6.3 Thermal Stresses in a 2D Annulus

For the 2D model, the problem of radial heat flow in an annulus is revisited. A diagram of the
model is shown in Fig.6.11. An annulus of inner radius A, outer radius B is assumed to have
constant inner and outer temperatures Ti and To respectively. The solution for the temperature
profile of this model has already been calculated and is given by Eq.4.10. It is now assumed that
the material experiences thermal expansion with coefficient α. Again the material is assumed to be
infinite in the z direction. This now allows for the assumption that the material undergoes plane
strain.
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Figure 6.11: Diagram of the radial heat flow model for an annulus undergoing thermal expansion.
The stresses produced on infinitesimal element due to the expansion are shown enlarged.

As with the 1D model the material is assumed to undergo purely elastic deformation with Young’s
modulus E. To account for the 2D nature of the model the Poisson’s ratio ν must also be specified
to account for the material expansion in the orthogonal axis to those under stress. We consider
the temperature distribution symmetric about the axis again. However, this axial heat flow sets up
non-uniform expansion of the annulus element. It is therefore expected that the model will produce
both radial and tangential stresses from radial heating alone.

6.3.1 Analytical Solution

The solution is considered for the steady state temperature of the system when the material is
at equilibrium. The radial and tangential strains for this model can be defined due to radial
displacement:

ϵr =
dur
dr

ϵθ =
ur
r

ϵz = w

(6.50)

Here w is some constant due to the assumed plane strain. Again the thermal expansion is considered
above some reference temperature T0. The total deformation can be written in terms of the stresses
σ and thermal expansion α as:

ϵr =
σr
E

− ν

E
(σθ + σz) + α(T − T0) (6.51)

ϵθ =
σθ
E

− ν

E
(σr + σz) + α(T − T0) (6.52)
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The construction of these relations as well as all the derivations given for this model can be found
in more detail in [141]. Rearranging these equations gives the stresses as:

σr =
E

1 + ν

(
ϵr +

ν

1− 2ν
[ϵr + ϵθ + ϵz]

)
− αE(T − T0)

1− 2ν
(6.53)

σθ =
E

1 + ν

(
ϵθ +

ν

1− 2ν
[ϵr + ϵθ + ϵz]

)
− αE(T − T0)

1− 2ν
(6.54)

Substituting for the displacements gives:

σr =
E

1 + ν

(
dur
dr

+
ν

1− 2ν
[
dur
dr

+
ur
r

+ w]

)
− αE(T − T0)

1− 2ν
(6.55)

σr =
E

1 + ν

(
ur
r

+
ν

1− 2ν
[
dur
dr

+
ur
r

+ w]

)
− αE(T − T0)

1− 2ν
(6.56)

The material is assumed to be at equilibrium. Therefore, considering a single material element as
shown in Fig.6.11, the forces must cancel. This gives the following relation at equilibrium:

dσr
dr

+
σr − σθ

r
= 0 (6.57)

Substituting for the deformation expressions of stress gives:

d

dr

[
1

r

d

dr
(rur)

]
= α

1 + ν

1− ν

dT

dr
(6.58)

This equation can then be integrated to obtain the solution for the displacement due to the tem-
perature. The first integration gives:

d

dr
(rur) =

1 + ν

1− ν
αTr + 2C1r (6.59)

Integrating again gives:

ur =
1

r

(1 + ν)

(1− ν)

∫ r

A
αTrdr + C1r + C2

1

r
(6.60)

The integration constants C1, C2 are found by considering the boundary conditions on the stress.
It is therefore easiest to consider the stress instead of the displacement:

σr =
E

1 + ν

(
−1 + ν

1− ν

1

r2

∫ r

A
αTrdr +

C1

1− 2ν
− C2

r2
+

νw

1− 2ν

)
(6.61)

The radial stress is assumed to be zero at the boundaries of the annulus:

σr(A) = 0 (6.62)

σr(B) = 0 (6.63)

With these boundary conditions the values of C1 and C2 are calculated and thus the radial stress
is given by:

σr =
E

1 + ν

(
− 1

r2

∫ r

A
αTrdr +

r2 −A2

r2(B2 −A2)

∫ B

A
αTrdr

)
(6.64)
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As expected the dependence on the strain in the z axis has been completely eliminated from the
solution by the constant C1. Now by rearranging the equilibrium Eq.6.57, the tangential stress is
obtained from the radial stress:

σθ =
E

1 + ν

(
1

r2

∫ r

A
αTrdr +

r2 +A2

r2(B2 −A2)

∫ B

A
αTrdr − αT

)
(6.65)

From here the temperature solution must be substituted. This was derived in a previous chapter
and given by Eq.4.10. The integral can then be derived as:∫ r

A
αTrdr =
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] (6.66)

Using this the final radial and tangential stress are obtained as:
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6.3.2 Analytical Results

The analytical solution for the radial and tangential stress are shown in Fig.6.12. The inner and
outer radii are chosen as for the previous annular model explored in Sec.4. These values are
A = 8mm, B = 20mm. The outer temperature is again chosen as To = 1K however the inner
temperature is reduced, compared to the purely thermodynamic model, to Ti = 1.1K. This is done
to reduce the stresses produced. As will be discussed in the following section the SPAM simulations
have problems with higher values of stress.
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Figure 6.12: Analytical stress solution for an annulus with constant inner and outer temperatures
Ti = 1.1K, To = 1.0K respectively. Young’s modulus E = 1000N/mm2, Poisson’s ratio ν = 0.3 and
thermal expansion α = 0.001mm/K

6.3.3 Stress in an Annulus via SPAM

For the 2D SPAM simulations of thermal expansion, the artificial viscosity is included within the
SPAM equation of motion:

dvαi
dt

=
∑
j

mj

(
σαβ
i

ρ2i
+

σαβ
j

ρ2j
+ΠP,ij

)
· ∇iw (rij) (6.69)

Here α, β denote the dimensional indices of the tensor entries for the stress. the rate of change of
velocity is found for each dimension α by the summation over the indices α, β and the particles are
defined by the indices i, j as usual. The artificial viscosity is calculated as for the 1D case. The
stress tensor requires the inclusion of Poisson’s ratio as well as strains from multiple directions for
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the 2D model to work. The strain rates are calculated as before from the velocity gradients:

ϵ̇xx =
∂vx
∂x

ϵ̇yy =
∂vy
∂y

ϵ̇xy = ϵ̇yx =
1

2

(
∂vx
∂y

+
∂vy
∂x

) (6.70)

The velocity gradient is required to calculate the stress tensor and is calculated as:

dvαi
dx

=
∑
j

mij

ρij

[
vα
j − vα

i

]
∇α

i w (rij) (6.71)

Here the symmetrised mass and density are used such that mij =
√
mimj and ρij =

√
ρiρj . As

in the 1D case the stress is separated into the equilibrium pressure and the deviatoric stress. The
rate of change of the deviatoric stress for particle i when derived for plane strain can be written in
the form:

Ṡαβ
i =

E

1 + ν

 δαβ

1− 2ν

(1− ν)ϵ̇αβi +
∑
γ ̸=α

νϵ̇γγi

+ (1− δαβ)ϵ̇αβi

 (6.72)

Here the sum γ is over the remaining spatial dimensions for each tensor dimension denoted by α, β.
The delta function is noted as δαβ which takes the value 0 unless α = β then it takes the value 1.
The stress tensor in 2D is given by:

σαβ
i = −Piδ

αβ + Sαβ (6.73)

It was found that the use of a bulk pressure added by the equation of state given in Eq.6.25 caused
the introduction of errors, therefore the pressure term is formulated with only the thermal expansion
in both the standard and rate of change variations for the two methods of density calculation:

P eq
i =

E

1− 2ν
α(Ti − T0) = 3Bα(Ti − T0) (6.74)

Ṗi =
E

1− 2ν
αṪi = 3BαṪi (6.75)

As before the use of density evolution is given by Eq.2.41 and the velocity smoothing terms given
by Eq.6.41. Finally the SPAM simulation are run in Cartesian co-ordinates therefore the conversion
of the stress tensor between Cartesian and cylindrical polar co-ordinates is required. For this, the
rotation matrix Mx→r is used:

Mx→r =

 cosθ sinθ 0
−sinθ cosθ 0

0 0 1

 (6.76)

With the conversion then given by:

σr,θ,z = Mx→r · σx,y,z ·MT
x→r (6.77)
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6.3.4 Fixed Boundary Annulus

The simplest implementation of this problem within SPAM uses fixed boundary conditions. The
initial particle distribution used is the triangular particle arrangement shown in Fig.6.13. The fixed
particle temperatures are assigned as Tinner = 1.1K and Touter = 1K. The boundary particles are
also assigned fixed pressures and stresses equal to zero σr = σθ = P = 0N/mm2.

Figure 6.13: Triangular fixed particle arrangement with near unit particle spacing ∆P and unit
density ρ0. The particle arrangement is used for simulating thermal-induced strains in an annulus.

6.3.5 Fixed Boundary Results

SPAM simulations are run with a time step of dt = 0.05s for 20000 time steps. The values of
thermal expansion, Young’s modulus and Poisson’s ratio are given as:

α = 0.001/K

E = 1000N/mm2

ν = 0.3

(6.78)

The results for the unit spacing particle arrangement under both density evolution and sum density
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are shown within Fig.6.14. There appears to be no visible benefit from the use of density evolution
over the sum density for the case of fixed boundaries in 2D. Similarly, although not shown here, no
visible difference was found for the case of velocity smoothing.

Figure 6.14: Radial and tangential stress profiles for the annulus with constant inner and outer
temperature. SPAM simulation completed with fixed boundaries. Left shows the simulation with
sum density, right with density evolution.

Figure 6.15: Temperature profile for the annulus with constant inner and outer temperature and
thermal expansion. SPAM simulation completed with fixed boundaries. Left shows the simulation
with N ≈ 1000 particles, right with N ≈ 2000.
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Unfortunately the stress profiles are seen to deviate significantly from the analytical stress profiles.
There are two main causes of this. Firstly, the discrepancy from the expected profile seen at the
boundaries for the tangential stress is due to the fixed boundary enforcement of σθ = 0N/mm2

being included in the interpolated profiles. This causes the magnitude of the values interpolated
at the boundary to be reduced as the tangential stress is not continuous across the boundary for
the particle values.

The second cause of error, which gives rise to the shift in both stress profiles, is due to the underlying
temperature profile. As shown for the radial heat flow problem in Sec.4.8, the use of fixed boundary
temperatures causes the temperature at the boundary to incur an error away from the desired result.
The underlying temperature profile is shown in Fig.6.15. Clearly the deviation from the expected
profile can be seen.

To improve the stress profile it is therefore beneficial to improve the temperature profile. This was
achieved for the particle arrangement test on radial heat flow by increasing the particle number
and decreasing the particle mass. Fig.6.15 demonstrates this by showing the improved temperature
simulation from simulation with N ≈ 2000 with mi = 0.5g. This temperature improvement is
seen to also reduce the error in the stress profiles as expected. The improved results are given in
Fig.6.16.
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Figure 6.16: Radial and tangential stress profiles for the annulus with constant inner and outer
temperature. SPAM simulation completed with fixed boundaries now with N ≈ 2000 particles with
mass mi = 0.5g .

Further improvement can be made by the use of greater particle numbers, however the simulation
boundary conditions are still responsible for issues with the tangential stress close to the boundary.
It is therefore beneficial to revisit the hybrid boundaries proposed within this chapter.

6.3.6 2D Hybrid Boundary Implementation

To remove the error incurred at the simulation boundary for the fixed simulation results it is
possible to implement the hybrid boundaries described for the 1D simulations. To achieve this,
each boundary particle stores information of its closest neighbouring system particle across the
boundary. A diagram to demonstrate these particle pairs is shown in Fig.6.17.

For the analytical model described for these simulations the radial stress on the boundary is assumed
zero, therefore this is still enforce as with the fixed particle case σB

r = 0. However to better preserve
the interpolation of the tangential stress profile the hybrid condition of σB

θ = σS
θ where the system

and boundary particles are noted S,B respectively.
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Figure 6.17: A diagram to show how closest system particles are assigned to boundary particles.
Boundary particles are shown in white, system particles in black.

Hybrid boundary conditions provide the useful property of dynamic values based on the system
(as in the mirror case) without the added complication of moving boundary particles. This makes
hybrid boundary particles a simple yet effective alternative.

6.3.7 Hybrid Boundary Results

As with the fixed case the hybrid boundaries show no visible difference in stress profiles for the
use of sum density, density evolution or velocity smoothing. To demonstrate this for the density
formulations the results are presented in Fig.6.18. The boundary error in the tangential stress
result has however been reduced by the used of hybrid conditions.
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Figure 6.18: Radial and tangential stress profiles for the annulus with constant inner and outer
temperature. SPAM simulation completed with hybrid boundaries. Left shows the simulation with
sum density, right with density evolution.

Figure 6.19: Temperature profile for the annulus with constant inner and outer temperature and
thermal expansion. SPAM simulation completed with hybrid boundaries. Left shows the simulation
with N ≈ 1000 particles, right with N ≈ 2000.

The error due to the underlying temperature is still present however and the boundary error has
not completely been eliminated. This can again be achieved by increasing the particle number
used. The improvement in temperature profile for the use of N ≈ 1000 and N ≈ 2000 particles is
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shown in Fig.6.19.

The final improved stress profile is given in Fig.6.20. Both the error due to the boundaries and the
deviation from the analytical profile can be seen to be reduced. The limitation of the improvement
due to increased particle number will be explored for the hybrid simulations, however, it is first
beneficial to discuss the mirror boundary case.

Figure 6.20: Radial and tangential stress profiles for the annulus with constant inner and outer
temperature. SPAM simulation completed with hybrid boundaries now with N ≈ 2000 particles
with mass mi = 0.5g.

6.3.8 Limitations of Mirror Boundaries

Unfortunately all attempts to implement these simulations with mirror boundaries were unsuccess-
ful. It is believed the main cause of this is due to mass issues. The corrective mass described in
Sec.4.4.1 breaks the symmetry relied upon for the non-slip boundary condition. It has been ob-
served that for all simulation attempts made the internal boundary in particular (where the mass
correction is the greatest) causes the simulation to become unstable with system particles escaping
across the boundary.
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This highlights the particular added complexity of mirror boundaries in systems with motion.
Multiple attempts were made to overcome these issues with both sum density and density evolution
as well as with velocity smoothing. The removal of the mass correction was also unsuccessful with
a dramatic increase in the instability due to the large density gradient created.

Attempts were also made with increasing the boundary particles to approach the limit of bound-
ary normals with system particles along the curve. Up to a boundary spacing of ∆P = 0.1mm
was attempted. As well as this, multiple variations of the boundary conditions were applied, with
mirroring of only the radial component of velocity vr,i′ = −vr,i, as well as the full no flow condi-
tion.

It is left to future work to create a formulation of the general shape mirror boundary condition which
removes the issues of boundary penetration and successfully stabilise the simulations. Particle
shifting algorithms have been used within hydrodynamic simulations [142] to deal with particle
clumping and disorder at the free surface and a form of shifting algorithm could be applied to this
general shape mirror algorithm in order to over come the inter particle penetration and escape at
the boundary.

Another alternative would be to implement these models using the Eulerain formulation for SPAM
instead of the Lagrangian formulation. This would mean that the system particles where static by
design and the mass of the particles allowed to vary to allow for the flow of material. This form of
SPAM had been demonstrated to be successful in simulating fluid structure interactions [113,143]
where there is a large amount of material movement and so should be more than capable of handling
the deformations expected within nuclear fuel.

6.3.9 Convergence of Results

The convergence of the hybrid simulation to the analytical result was attempted for increasing par-
ticle numbers. The methodology was as previously described with particle spacing and smoothing
length being reduced while mass values were reassigned to maintain the desired ρ0 = 1g/mm3. The
previous results were completed with a time step of dt = 0.05s for 20, 000 steps. This satisfies the
time step condition of Eq.6.46 for higher values of H = 3mm however as the value of smoothing
length decreases with particle separation the time step must decrease accordingly.

The simulations run for this section were therefore run for a time step of dt = 0.01s for 100, 000 time
steps. This gives the same total time however the computational time is dramatically increased by
a factor of 5. This is coupled with the increase in computational time due to the increasing particle
numbers. The largest simulation run for this result required a computation of ≈ 12 hours in real
time. It is therefore important that future work improve the code speed with modifications such
as the implementation on GPUs achieved with the DualSPHysics code [8].

The particle arrangement values used for the attempted convergence test are presented in Table.6.1.
Unfortunately higher particle number tests N > 1000 were unsuccessful at showing the convergence
of results, this can be seen in Fig.6.21 with the increasing particle number giving stress profiles
which deviate further from the analytical. The source of this error is unknown however as discussed
in Sec.6.2.2 the sound speed within the simulation is limited by the smoothing length. It is also
likely that there is an error introduced into the code of these simulations related to the particle
masses, however attempts to find this have been unsuccessful.
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N mi ∆P H

1046 1 1 3
2018 0.5 0.71 2.13
5146 0.2 0.45 1.35
10472 0.1 0.32 0.96

Table 6.1: The parameters used for the initial unsuccessful tests for convergence of the 2D annulus
with thermal expansion.

Figure 6.21: SPAM simulation of the heated annulus with thermal expansion are completed for
successively larger particle numbers. The hybrid simulations are shown here for left:N ≈ 5000 and
right:N ≈ 10000

N mi ∆P H

820 1.3 1.14 3.42
896 1.2 1.1 3.3
972 1.1 1.05 3.15

Table 6.2: The parameters used for the 3 simulations completed for the convergence test of the 2D
annulus with thermal expansion.

Despite the deviation for higher particle numbers the convergence rate for the lower particle number
simulations is estimated in Fig.6.22. The new values used are given in Table.6.2. The rate of
convergence is estimated for these lower particle numbers as less than linear ≈ 0.6. Again there
is a clear error introduced into these simulations as the expected convergence should lie within 1st

and 2nd order.
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Figure 6.22: Rate of convergence estimated for 3 simulations of lower particle numbers given by
Table.6.2. The residual error in the radial stress profile is used to estimate the rate of convergence
at ≈ 0.6. The line for linear and second order convergence are also present.

6.4 Basic Damage Implementation

SPAM holds particular promise within nuclear fuel modelling for its ability to handle damage
within simulations. This is due to the nonrestrictive nature of the particle arrangement. Complex
methods of damage implementation have been proposed such as the Lagrangian description [91].
Unfortunatley a full thermo-mechanical model of nuclear fuel with damage implementation has
not been achieved within the scope of this work, however the unfinished attempts are included in
Appendix B as an indication of how such a model may be constructed.

6.4.1 Conclusions

Simulations of thermal strain were carried out in 1D and 2D using SPAM. In 1D it was found that
the fixed boundary case required implementation of pressures to give the correct results. Hybrid
boundaries were therefore proposed to allow for the dynamic assignment of fixed particle properties
without the need for dynamic creation and position assignment.
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All three boundary conditions were shown to be successful however the mirror boundaries required
the use of density evolution instead of sum density to stabilise the result. Velocity smoothing
was shown to have varied effectiveness. In general its benefit seems hard to predict with small
improvements made in some cases and increases in error for others.

Of all 1D simulations presented the most promising solution appeared to be the use of hybrid
boundary conditions with only the artificial terms included. This result was reinforced for sim-
ulations of thermal expansion in a 2D annulus with constant inner and outer temperature. For
the 2D curved geometry the mirror case was found to be unstable for all simulation variations
attempted.

The particle number and time step were found to be important factors for simulations with N ≈
5000 particles and above required to be stabilised. It was found that simulations of higher particle
numbers suffered with problems for the evolution of the mechanical behaviour in testing. The source
of this problem, although clearly mass related remains unidentified. Convergence rate estimates for
lower particle numbers supports the existence of some error but does suggest convergence.

The final simulations presented show promise that SPAM simulations are capable of reproducing
stress and strain behaviour accurately under the right initialisation condition and thus that the
application of SPAM to damage and micro-structure simulations of nuclear fuel are worth purs-
ing.

Further development is required to incorporate a damage model into the model presented at the
end of Chapter 5. More complex equations of state must also be included. The literature includes
examples of state equations for uranium and plutonium [144], as well as state equations for the
effect of creep within metals for application to the cladding [145]. This work does however show
the potential for future development and validation of SPAM nuclear fuel models. Emphasis must
be placed on the handling of material to material boundaries in order to improve this work.
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Chapter 7

Closing Remarks

7.1 Conclusions of this Research

Thermodynamic models of SPAM were created with 3 main methods of temperature evolution.
Of these Hoover’s method Eq.3.60 was found to have the smallest errors while dealing well with
discontinuities within the simulations. Artificial terms and kernel corrections were found to be
unnecessary within the thermal simulation. Fixed boundaries were demonstrated to introduce
error into the simulation results. Mirror boundaries were shown to fix this issue however their use
was found to be complicated for curved boundaries.

Exploration of various methods for constructing particle arrangements demonstrated that relaxation
is not required to achieve good results in cylindrical geometry. The disorder of particles within the
arrangement was shown to be a significant source of error. Refinement was found to have the most
significant and successful reduction in error for thermal simulations.

A new approach to convective boundaries within SPAM was proposed and shown to be successful
in both 1D and 2D simulations. The use of the harmonic mean for varied particle thermal con-
ductivities was shown to be a successful modification to Hoover’s temperature evolution. However,
further modifications were suggested to improve the heat flux calculations. A simple implementa-
tion of heat generation for materials within SPAM was proposed and shown to be successful. All of
these features were combined into a basic thermal fuel and cladding model with coolant modelled
as a convective boundary. The results of the model were shown to converge toward the expected
analytical solutions.

Finally, basic mechanical behaviour was implemented with thermal-induced strains. Good agree-
ment was shown for the 1D case, however despite promising results convergence toward the an-
alytical solution for the 2D annular model could not be demonstrated. This is assumed due to
errors within the code formulation however this remains unconfirmed. Simple failure mechanics
were shown as a proof of concept for future SPAM work. This mechanical behaviour was added to
the 2D fuel and cladding model to demonstrate basic failure of fuel and cladding due to thermal
effects. More work is required to refine these models and properly validate as was achieved for the
thermal models.

The major contributions of this thesis come together within the 2D thermal model of nuclear
fuel presented in Sec.5.6. A novel method for convection at the boundary within SPAM is con-
structed. This method represents an alternative to the current proposed method implemented in
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LS-DYNA [132] which allows for multiple particle based boundary conditions to be applied simulta-
neously due to its nature of prescribing temperatures on boundary particles. An improved method
for temperature evolution is rediscovered [54] and found to have higher accuracy than the current
standard of thermal evolution equation widely used within the smoothed particle community [108].
The improved method is expanded to two dimensions and found to be effective without any re-
quirement for corrective or artificial terms. The current standard for thermal interface modelling
based on harmonic means of thermal conductivities [108] is applied to this evolution with reason-
able results achieved. The interface errors however highlight a significant need for improvement
of this interface handling in order to improve accuracy and convergence of the fuel and cladding
model.

The most significant contribution of this work lies within the 5th grand challenge highlighted
for the area of smoothed particle methods [70]. The key review work states that ‘applicability
to industry’ is a key challenge that must be addressed for the near term development of these
methods and importantly for there transferal and use towards real world problems faced in the
industrial sector. This work has achieved the first step in raising the confidence of the nuclear
industry by demonstrating a basic thermal model which is a direct example of the kind of basic
model already implemented within the UK FPC ENIGMA. The demonstration of this model with
quantification of its accuracy and limitations allows for assessment of the method by the nuclear
industry, in particular NNL for whom this work has been completed, with direct comparison to
the current industry standard. The potential future benefits of the method, although attractive,
cannot out weigh the importance of the simple model validations carried out within this work. The
early indication given by NNL that the analysis presented here has encouraged further funding and
exploration of the method by the nuclear industry.

Unfortunately this work has not been without limitations. The key limiting factor throughout this
research and the implementation of these models has been boundary conditions. The implementa-
tions given here may be considered simplistic compared with recent methods such as mDBC [105].
All models presented within this work were created from codes written by the author using some
imported algorithms written by Dr Karl Travis. This means that new and complex boundary
implementations proved beyond the scope of this work. With improved collaboration, travel and
communication, which was unfortunately limited by the COVID-19 pandemic, implementation of
these models may have been achieved on package software such as LS-DYNA or DualSPHysics.
Although this may have generated improved results it is believed that the exploration of the sim-
plistic boundary conditions presented within this work aids to better demonstrate the limitations
of SPAM which is particularly useful for the industrial focus.

The mechanical implementation presented within this work also requires greater attention in order
to properly demonstrate the model convergence as well as remove any instabilities due to boundary
conditions and implement multiple materials. The success shown with the temperature evolution
model in dealing with the discontinuous material boundary must be translated to the mechanical
case in order to give the same confidence to industry for the thermo-mechanical model. The stress
evolution chosen does not seem well suited to this and further reformulation to mirror that of
the temperature evolution, based solely on the weight function without derivatives using Taylor
expansions may be required.

Over all the conceptual models demonstrated within this thesis suggest that smoothed particle
methods if properly implemented are capable of reproducing analytical solutions used within the
validation of licensing FPCs. It is demonstrated that SPAM applications to nuclear fuel for GEN
IV reactors is worthy of more exploration.
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7.2 Future Work

There are many avenues of suggested future work for these models. An extensive list is included
here:

• For the thermal models temperature dependent thermal conductivities can be implemented.

• Coupling to molecular dynamics codes for determination of the appropriate thermal conduc-
tivities and mechanical properties can be attempted.

• Models for fuel burn up should also be investigated with their effect on the thermal properties
of the simulations over time explored.

• A more advanced determination of the interface thermal conductivity should be explored.
As suggested in this work, a weighting of conductivities based on the distance from a known
boundary may be effective at this.

• More test simulations in 1D should be explored for material interfaces for different elastic and
plastic properties.

• Convergence of the 2D stress results must also be demonstrated

• The mirror boundary case or a more complex boundary such as mDBC must be successfully
implemented for the annular stress model to allow full error comparisons.

• New boundary methods which allow the deformation of boundaries while enforcing properties
such as convection must be derived to allow for proper deformation of the cladding and fuel
within the model.

• Temperature and burn up dependant models for material properties must also be explored.

• More complex mechanical behaviour such as strain hardening and creep should also be tested
and implemented within the simulations.

• A new equation for acceleration due to stress should be derived based on the ideas presented
in the derivation of Hoover’s temperature evolution.

• Models exploring multiple phases must be constructed. Attempts may be made to convert the
continuum equations of phase field models to SPAM forms. This will allow smooth mapping
of grain and pore structure in materials.

• Alternative multi-phase models will need to look at particles in different phases. In particular
the gap conductance should be modelled using multiple phase particles for the pellet to
cladding interaction.

• Damage models should be properly implemented showing material failure. This should be
expanded to show crack initiation particularly due to thermal loading. A model like this may
require a modified form of total Lagrangian SPAM [91].

• Micro-structural models should be created, in particular aiming to capture micro crack initi-
ation and micro bubbles within Fuel.

• The thermo-mechanical models need to be extended to 3D to allow for demonstration of
effects such as the hourglass pellet shape.
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• Defect studies should be carried out. Randomised structural and material defects can be
introduced into any of the above outlined models as well as the thermal fuel and cladding
model presented within this work. Thousands of these randomised models can then be run
to allow for statistical assessment of the uncertainty bounds that the defects introduce on the
model performance and results.

• Solidification and melting need to be added to the model. This will potentially allow for basic
modelling of accident conditions but will also be essential for accurate thermal modelling even
within normal operating windows.

• Within the work on multi-phase there is the scope for the addition of fluid surrounding the
cladding to be directly modelled, allowing for the convection currents to be studied and more
directly effect the thermal modelling of the fuel.

• Chemical reactions can be implemented within the code to allow for further changes in ma-
terial properties.

• Full tracking of nuclear species could be implemented to allow for a fully dynamic material
dependence on burn up.

• The micro structure models should be modified for examination of plutonium and MOX fuel
due to the large UK stock pile.

• Full 3D models for pellet fragment migration should be constructed

• SPAM models should also be created to examine the recent nuclear industry’s interest in
co-generation of hydrogen. Issues such as hydrogen embrittlement would benefit greatly from
the advantages of the SPAM method, particularly at the micro structure level.

• More code couplings should be attempted such as directly with the ENIGMA code to inform
micro-structure models.

These are only a few of the ideas possible for SPAM investigations of nuclear fuel. The potential
for SPAM in this field is enormous due to its ability to deal with many different differential equa-
tions simultaneously allowing for multi-physics phenomena to be explored and their interactions
studied.
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Appendix A

Comparison by Shape Descriptors

The method of image decomposition as outlined by Sebastian et al [124] is outlined here with
examples to demonstrate how the plots of Fourier-Tchebichef moments shown in this work were
created.

A.0.1 Method of Image Decomposition

The famous Fourier transform is a mathematical formula for the decomposition of a signal into
a sum of oscillating functions (Sine waves). This idea of decomposing signals is not limited to
sums of oscillating functions or to one dimensional signals. Decomposition can be achieved with
respect to any infinite sum of orthogonal functions in any number of dimensions however the order
of dimensions as well as the functions chosen have a high impact on the computation time to
decompose. Special care must be taken when choosing the orthogonal functions to ensure that
they appropriately sample the signal space. It has been found the Zernike polynomial functions
can be used effectively to describe 2D images with spherical symmetry and the full capability of
these shape decriptors has been shown with respect to decomposing strain fields [146]. Alternatively
for images with good ‘square symmetry’ Tchebichef polynomials have been proposed [147].

The first step in the calculation of the Fourier-Tchebichef moments is to complete a discrete 2D
Fourier transform on the data. For an NxN full field intensity map I(x, y) a transform of the
following form is performed:

DF (n,m) =
1

N2

N−1∑
x=0

N−1∑
y=0

e−i2π(nx+my
N )I(x, y) (A.1)

The Fourier transform is performed to help with the description of any discontinuities within the
intensity map, the transform is exact by the inclusion of terms n,m = 0, 1, 2..., N however this
means the transform does not reduce the domain of the data.

To ensure that the final calculated moments into which the data is decomposed are of an ap-
propriate range for comparison purposes, it is suggested by Patki et al. [146] that the Tchebichef
moments be calculated from the natural logarithm of the magnitude of the Fourier transform. The
phase information is not need in the calculation of the Tchebichef moments. The phase informa-
tion is required for reconstruction of the original full field data for error estimations in the moments.
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It has been established that faster computation of the Tchebichef moments can be achieved by
considering the odd, even symmetry of the Tchebichef polynomials [147]. The symmetry allows
for the Tchebichef polynomials to only be calculated for one quarter of the full field data. This
symmetry is described as:

t̃n(N − 1− x) = (−1)nt̃n(x) (A.2)

where t̃n is the nth order scaled Tchebichef polynomial which can be calculated through multiple
methods, including often favoured recursive methods. For this work however the scaled Tchebichef
polynomials where calculated using the expansion:

t̃n(x) =
1

Nn

n∑
k=0

(−1)n−kn!

k!

(
N − 1− k

n− k

)(
n+ k

n

) k∑
i=0

(
k

i

)
xi (A.3)

With this in mind the Tchebichef moments are calculated as:

Tpq =
1

ρ̃(p,N)ρ̃(q,N)

(N/2)−1∑
x=0

(N/2)−1∑
y=0

t̃p(x)t̃q(y)

[
f(x, y) + (−1)pf(N − 1− x, y)

+(−1)qf(x,N − 1− y) + (−1)p+qf(N − 1− x,N − 1− y)

] (A.4)

With the factor ρ given by:

ρ̃(n,N) =
N
(
1− 1

N2

) (
1− 22

N2

)
...
(
1− n2

N2

)
2n+ 1

(A.5)

The values of p, q in Eq.A.4 describe the order of the Tchebichef polynomials to be included in the
summation. We are free to truncate the order of polynomials included and this has the effect of
reducing the domain of the data. It is suggested in reference [125] that the inclusion of moments up
to the order of no more than 20 is sufficient to uniquely describe the shape of the original full field
data. This suggests that any two 2D full field data sets can be compared effectively through the use
of no more that 202 moments to describe the shape of the data. An example of the reconstructed
ANSYS temperature profile from only 20 moments is shown below.

264



Figure A.1: Original and reconstructed temperature data taken from the FEM solution to the 2D
Thermal model at steady state, produced using ANSYS. Data has been decomposed into Fourier-
Tchebichef moments up to order 20, and the reconstructed data, shown right, used to estimate the
residual error in the moments description of shape.
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Appendix B

Damage Modelling with SPAM

Here is included the unfinished attempt to incorporate a full damage model into the thermal fuel
and cladding model presented at the end of Chapter 5. This is included an a starting point and
framework from which further research can construct a model for damage within nuclear fuel in
operation using SPAM.

B.1 Basic Damage Implementation

SPAM holds particular promise within nuclear fuel modelling for its ability to handle damage within
simulations. This is due to the nonrestrictive nature of the particle arrangement. Complex methods
of damage implementation have been proposed such as the Lagrangian description [91]. For the
final simulations of this project however a far simpler implementation will be explored based on
the von Mises stress.

B.1.1 Tension Model

To test the basic SPAM implementation of material failure, a simple 2D tension test is proposed.
A rectangular strip of material of length L0, width A0 is centred such that −L0/2 < x < L0/2. A
force F is applied to the material in the x direction such that the material begins to stretch and
then separate at the central point. The same elastic behaviour is assumed below the yield stress
σY with the material following plastic deformation thereafter until the ultimate tensile stress σT is
reached, at which point material failure occurs. This formulation of tensile test should reproduce
material necking followed by fracture. This behaviour is shown in Fig.B.1.
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Figure B.1: Diagram of the material tension test. The material first begins to neck and then
fracture as shown.

B.1.2 Plastic Modelling

As stated the plastic model implemented is the von Mises stress and yield criterion. This assumes
that material yielding begins when the yield stress σY is exceeded by the second invariant quantity
of the deviatoric stress S. For 2D this invariant quantity used is the shear stress [54] given by:

σShear =

√
Sxy2 +

1

4
(Sxx − Syy)2 (B.1)

Once the yield stress is exceeded plastic behaviour is achieved by restricting the stress values to
the yield surface with the correction factor γ given by:

γ =
σY√

Sxy2 + 1
4(S

xx − Syy)2
(B.2)

The stress values are then corrected as:

Sxx =
1

2
(Sxx + Syy) +

γ

2
(Sxx − Syy) (B.3)

Sxy = γSxy (B.4)

Syx = γSyx (B.5)

Syy =
1

2
(Sxx + Syy)− γ

2
(Sxx − Syy) (B.6)
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This gives the plastic material behaviour required for deformation. From here fracture is added
when the principle stress exceeds the tensile strength σT :

1

2
(Sxx + Syy) > σT (B.7)

Once this condition is met the stress tensor is simple reset to zero. This allows the material to
physically break apart.

B.1.3 Plastic SPAM Implementation

The above methodology is implemented as a set of checks and correction run on the particles
between time steps. To test the behaviour an SPAM tensile test is formulated. A square particle
arrangement of unit mass particles is used. No boundary particles are used for this simulation
therefore the particle densities are corrected using zeroth order corrections to account for the
boundary deficiency:

ρi ≃
∑

j mjW (xij)∑
j mjW (xij)/ρj

(B.8)

The tensile forces are achieved by adding the body force term to the equation of motion as:

dvαi
dt

=
∑
j

mj

(
σαβ
i

ρ2i
+

σαβ
j

ρ2j
+ΠP,ij

)
· ∇iw (rij) + Fα (B.9)

Here α, β represent the dimensional indices. Artificial viscosity ΠP,ij is used throughout these
simulations. The body force is added through the F term. For this simulation force is only added
in the x direction, for |x| > L0/4. The force increases linearly in time such that:

F x
i = F0

t

tFinal
(B.10)

Here F0 is constant. The engineering stress and engineering strain are used to calculated the stress
strain curve for the simulation to check the correct elastic-plastic behaviour is reproduced. The
engineering strain ϵE is calculated as:

ϵE =
∆L

L0
(B.11)

This is calculated by tracking the highest and lowest particle positions in the x direction of the
simulation. The engineering stress is calculated as the force per unit area applied to the material.
In 2D the cross-sectional area is simply given as the initial system width A0. The engineering stress
σE is calculated as:

σE =
F

A0
=
∑
i

|F x
i |

A0
(B.12)

For the SPAM simulations a square particle arrangement of unit grid spaced particles is used, with
ρ0 = 1g/mm3.

B.1.4 Tensile Instability and Artificial Stress

The tensile instability occurs when the acceleration acting on particles forces them towards each
other at close range. This causes particles to clump together and is outline in Sec.2.4.4. This
can occur in SPAM simulations under tension. It is suggested by Monaghan [138] that artificial

268



viscosity alone is insufficient to prevent the tensile instability from occurring. This was confirmed
in initial tests with an example shown in Fig.B.2

Figure B.2: SPAM tensile test with artificial viscosity showing the tensile instability with particles
clumping together.

To solve this problem Monaghan suggests the use of an artificial stress term added to the equation
of motion:

dvαi
dt

=
∑
j

mj

(
σαβ
i

ρ2i
+

σαβ
j

ρ2j
+ΠP,ij + (Παβ

σ,i +Παβ
σ,j)

(
w(rij)

w(∆P )

)4
)

· ∇iw (rij) + gα (B.13)

where the the particle spacing ∆P is used to reduce the impact of the artificial terms to nearest
neighbour particles. The artificial terms are created from the particle stress tensor when it is in
tension. To discover this the stress tensor must be in the principle axis. To achieve this the stress
tensor is diagonalised. The diagonal stress tensor is denoted σ̄. Now for each diagonal element of
the diagonal stress tensor, if the element is greater than zero ( σ̄αα

i > 0 ) then the particle is under
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tension in that x axis. The diagonal artificial contribution is then calculated as:

Π̄αα
σ,i = −Cσ

σ̄αα
i

ρ2i
(B.14)

where Cσ is the strength of the correction. For this work the suggested value of Cσ = 0.4 is used.
From here the final step is to return the calculated artificial stress tensor back to the system axis.
This is done by storing the matrices used for diagonalisation of the stress tensor and preforming
the inverse rotation on Π̄. The artificial stress was found to be successful for mitigating the tensile
instability arising in the tension test.

B.1.5 Tension Test Results

The tension test results presented here are a proof of concept however further work is needed. The
simulation was run for a grid of unit spaced particles with unit density ρ0 = 1g/mm3 and unit
mass mi = 1g. The initial system dimensions are L0 = 80mm, A0 = 20mm2. Young’s modulus
is arbitrarily chosen as E = 100N/mm2 with ν = 0.3. The yield and tensile strength are set to
σY = 12g/mms2, σT = 2g/mms2 respectively. A small time step is required to ensure gradual
loading of the sample. For this simulation the time step used is dt = 0.001s for 200000 time
steps.

The resulting stress strain curve is shown in Fig.B.3. The material can be seen to fail at approxi-
mately the expected tensile stress. The yield behaviour is less clear however. All behaviour ahead
of the point of failure appears to follow elastic behaviour. This test suffers from a poor definition
of the applied force F on the system. As the particle arrangement changes with the deformation,
which particles are within the last quarter of the material, a range defined L/4 < |x|, changes and
thus the total applied force changes. This behaviour can be seen in the oscillations of the stress
strain curve.
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Figure B.3: Stress-strain curve produced by the SPAM tensile test of N = 1600 particles with
artificial stress and viscosity terms included.

The qualitative behaviour of the sample is very promising however. The sample is seen to begin
necking as shown in Fig.B.4. Failure of the sample occurs with total separation of the system. It
is clear further testing and quantification of these results is required to validate the SPAM to the
level required for nuclear fuel modelling. The results demonstrate the methodology is valid however
and that damage within SPAM is possible. Although more rigorous validation was not achieved
within this work a qualitative analysis of the final fuel and cladding model is given to demonstrate
the future work necessary.
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Figure B.4: SPAM tension test performed with corrective measures. The tensile instability is
removed and the particles no longer clump together.

B.2 Final Fuel and Cladding Model

The preliminary results for the fuel and cladding model with mechanical behaviour are presented
here. Sufficient work has been achieved to give a qualitative analysis. The model used in the fuel
and cladding model from Sec.5.6. The heat flow derived by this problem simulated for a system
with added elastic-plastic behaviour. The geometry of the model is shown in Fig.B.5. The outer
coolant boundary is assumed to be fixed however the rest of the system including the fuel cladding
boundary is allowed to move. For this model, as before the fuel and cladding thermal conductivities
are assumed to be κF and κC respectively. The coolant is assumed to have coefficient of convection
h and ambient temperature T∞. Here the fuel is assumed to produce heat at rate q̇.
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Figure B.5: Geometry of the 2D conceptual fuel and cladding model

The mechanical behaviour of the fuel and cladding are simplified in an attempt to offer analytical
validation of the model. An analytical solution is attempted below. The simplification assumes
that both the fuels and cladding material behave according to the same material properties E, ν
and α.

B.2.1 Analytical Solution

The solution for the stress in an annulus with inner an outer radius A,B for some arbitrary
temperature profile T (r) was derived in Sec.6.3.1. This can be modified to the solution for a
cylinder by considering A = 0. The outer is redefined as B = RC . The value of Young’s modulus
for the fuel and cladding are assumed to be the same to allow for this solution. Then the radial
stress becomes:

σr =
Eα

1 + ν

(
− 1

r2

∫ r

0
Trdr +

1

R2
C

∫ RC

0
Trdr

)
(B.15)

The temperature solution was derived in the previous chapter as:

TF =
q̇R2

F

2

[
ln(RC/RF )

κC
+

1

hRC

]
+ T∞ +

q̇(R2
F − r)

4κF
(B.16)

TC =
q̇R2

F

2

[
ln(RC/r)

κC
+

1

hRC

]
+ T∞ (B.17)

Consider first the temperature integration for r < RF :∫ r

0
TF rdr = r2

(
q̇R2

F

4

(
ln(RC/RF )

κC
+

1

hRC
+

1

2κF

)
+

T∞
2

)
− q̇r3

12κF
(B.18)
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For r > RF the integral can be split into two parts:∫ r

0
Trdr =

∫ RF

0
TF rdr +

∫ r

RF

TCrdr (B.19)

The first integral can be easily calculated from Eq.B.20 simply as:∫ RF

0
TF rdr = R2

F

(
q̇R2

F

4

(
ln(RC/RF )

κC
+

1

hRC
+

1

2κF

)
+

T∞
2

)
−

q̇R3
F

12κF
(B.20)

The second integral is calculated as:∫ r

RF

TCrdr =

[
r2
(
q̇R2

F

4

(
ln(RC/r)

κC
+

1

2κC
+

1

hRC

)
+

T∞
2

)]r
RF

(B.21)

Examining the limits gives:∫ r

RF

TCrdr =

[
r2
(
q̇R2

F

4

(
ln(RC/r)

κC
+

1

2κC
+

1

hRC

)
+

T∞
2

)]
−
[
R2

F

(
q̇R2

F

4

(
ln(RC/RF )

κC
+

1

2κC
+

1

hRC

)
+

T∞
2

)] (B.22)

Combining these gives the temperature integral for r > RF as:∫ r

0
Trdr =

q̇R4
F

4

(
1

2κF
− 1

2κC
− 1

3RFκF

)
+r2

(
q̇R2

F

4

(
ln(RC/r)

κC
+

1

2κC
+

1

hRC

)
+

T∞
2

) (B.23)

This now allows calculation of the limit as:

1

R2
C

∫ RC

0
Trdr =

q̇R4
F

4R2
C

(
1

2κF
− 1

2κC
− 1

3RFκF

)
+

(
q̇R2

F

4

(
1

2κC
+

1

hRC

)
+

T∞
2

) (B.24)

Now the stress can be calculated in two parts. Firstly for the region r < RF :

σr =
Eα

1 + ν

[
q̇R2

F

4

(
ln(RC/RF )

κC
+

1

2κF
− 1

2κC

)
+

q̇r

12κF
+

q̇R4
F

4R2
C

(
1

2κF
− 1

2κC
− 1

3RFκF

)]
(B.25)

The stress for the region r > RF is given by:

σr =
Eα

1 + ν

[
−
q̇R4

F

4

((
1

r2
− 1

R2
C

)(
1

2κF
− 1

2κC
− 1

3RFκF

)
− ln(RC/r)

R2
FκC

)]
(B.26)

These analytical solutions are not in agreement with the results as will be shown in the final section.
This may be because the boundary condition of σr=0 = 0 used to derive Eq.B.15 is not met by the
solution, however the SPAM simulations support the boundary value derived.
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B.2.2 SPAM Results

The SPAM simulation was run with dt = 0.05s for 100000 time steps. The thermal values used were
chosen to be a factor of 10 bigger than for the purely thermal effects shown in the previous chapter
as κC = 0.25gmm/s3K, κF = 0.02gmm/s3K, q̇ = 1gmm2/s3 and h = 0.1g/s3K. This modification
was made so that the simulation time could be reduced as the thermal effects are then on a similar
time scale to the mechanical effects. The mechanical properties chosen were E = 1000N/mm2,
ν = 0.3, α = 0.000001. The selection of these values is some what arbitrary in order to produce
stable simulation results within a reasonable simulation time frame. True validation and property
selection to better mirror a problem of nuclear fuel is required as well as separation of the fuel and
cladding material properties.

The convective temperature profile achieved in the previous section is shown to be achieved again
for the inclusion of thermal strains in Fig.B.6. The stress profiles for this case are shown in
Fig.B.7. The analytical solution is not met, however the extreme values for the radial profile tend
to the predicted ones. This implies that further testing and validation of the material interface is
required.

Figure B.6: Final temperature profile for the fuel and cladding model with added thermal strains.
The final profile to the plastic case as damage begins to occur is shown as well marked in blue.
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Figure B.7: Final stress profile for the fuel and cladding model with added thermal strains. The
piece-wise radial analytical stress solution is included. The boundary stress is enforced by fixed
particles as σr = σθ = 0.

To examine the plastic and failure behaviour of this model qualitatively the simulation is re-run
with the plastic behaviour now included with the tensile and yield strength deliberately chosen to
give cause failure before the final steady state is achieved. The values used are σY = 1N/mm2

and σT = 2N/mm2. Failure was seen to occur at time step 35000. The temperature profile at this
time is shown on Fig.B.6. Visual data maps at this time step are shown in Fig.B.8. For these
maps red represent high values, blue low. The damage pattern can be seen to extend out from
the centre in a 6-pointed radial shape. This could show the radial nature of cracks however may
also simply be an underlying artefact of the triangular particle arrangement used. The radial and
tangential stresses are seen to be concentrated in opposite directions as the material fails. This
behaviour supports the expected cracking due to PCMI as the stress in concentrated in points
of the cladding however more analysis is clearly necessary. All of this data is purely presented
as an example of the capabilities of SPAM. Further refinement and validation of this model is
necessary. More complex implementations of cracking within SPAM already exist such as the total
Lagrangian formulation [91]. Any future work should seek to improve upon the simplistic damage
model outlined here.
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Figure B.8: Interpolated smoothed particle data maps for the fuel and cladding model as failure
occurs. Top shows thermal maps with the right map including the damage pattern with the
intensity of the damage marked by the darkness of the region. Bottom shows the tangential (right)
and radial (left) stress maps as failure occurs.

B.2.3 Conclusions

The final simulations presented show promise that SPAM simulations are capable of reproducing
stress and strain behaviour under the right initialisation condition and thus that the application of
SPAM to damage and micro-structure simulations of nuclear fuel are worth pursing.

Qualitative analysis of a simplified damage model for nuclear fuel is presented. The damage be-
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haviour is outlined through the use of a simple tension test and then applied the the 2D fuel and
cladding model with heat generation and convection. This model shows the potential for further
development and validation of SPAM nuclear fuel models. Emphasis must be placed on the han-
dling of material to material boundaries in order to improve this work as well as on appropriate
boundary conditions and more representative damage modelling.
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