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Abstract

Secondary lymphoid organs have a key role in the initiation of adaptive immune re-

sponses to infection. Organogenesis occurs in foetal development, and the use of ge-

netic tools, imaging technologies, and ex vivo culture systems has provided significant

insights into the cellular components and associated signalling pathways that are in-

volved. However such approaches tend to be reductionist and descriptive, focusing

on the contribution of individual components, and cannot fully explain how lymphoid

organs develop through interaction between biological components.

In this study, a set of simulation and statistical tools have been developed that pro-

vide further insights into the molecular and biophysical mechanisms of lymphoid tissue

organogenesis. Specifically, the formation of Peyer’s Patches, gut-associated secondary

lymphoid organs, is examined. In collaboration with experimental immunologists, a

structured process in the design and calibration of a computer simulation of the bio-

logical process has been conducted, leading to the development of a publicly accessible

scientific tool where cell behaviour emerges that is statistically similar to that observed

in ex vivo culture. Robust biological hypotheses can be generated through use of the

tool to perform in silico experimentation that simulates different physiological condi-

tions. A lack of available statistical tools to analyse in silico simulation results has

been addressed through the development and release of the spartan toolkit, a set of

techniques that can suggest the influence that pathways and components have on sim-

ulation behaviour, offering valuable biological insight into the system being explored.

An analysis of simulation results using spartan suggests the influence of biological

pathways on tissue formation changes during development, in contrast to hypotheses in

the literature that suggest the process is chemokine driven. Data presented suggests the

development period is biphasic, with cell adhesion the key factor early in development,

and chemokine expression influential at later point. Through novel application of

the statistical tools in spartan to perform a time-lapse analysis of cell behaviour, it

is suggested this change in phase occurs between hours 24 and 36. Novel in silico

experimentation performed has suggested the key biological factors in causing cell

aggregation, and suggested a role for LTin cells in limiting size and number of Peyer’s

Patches. A range of potential laboratory investigations have been suggested that could

validate whether these simulation derived hypotheses are valid.
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Chapter 1

Introduction

1.1 Overview of the Immune System

The immune system is comprised of white blood cells or leukocytes that protect the

organism from disease-causing pathogens. Protective immune responses are dependent

on innate immune cells, including macrophages and dendritic cells, that present anti-

gens from pathogens to the adaptive immune system, generating protective cellular

and humoral responses. Unlike the innate immune system, adaptive immune cells, or

lymphocytes, can differentiate into memory cells that provide long term protection

from pathogens, ensuring a more rapid and stronger immune response upon future

encounters with the same antigen.

T and B lymphocytes develop in the bone marrow, and undergo a process of mat-

uration in the thymus and spleen respectively. Upon maturation lymphocytes enter

circulation and migrate to secondary lymphoid tissue including lymph nodes, Peyer’s

Patches, tonsils and the spleen. These organs are strategically located at drainage

points in lymphatic vessels to initiate protective immune responses to antigens from

peripheral tissues (Randall et al., 2008). Although each secondary lymphoid organ dif-

fers in their architecture, there are some common features, including distinct B and T

cell zones (Fu and Chaplin, 1999). The structural organisation of these tissues permits

efficient interactions between antigen-presenting cells and lymphocytes, subsequently

aiding rapid removal of the pathogen at the site of infection (Goodnow, 1997). This

process is initiated in part by antigen-bearing dendritic cells that transport antigens

from surrounding tissues into the lymphoid organ, either through lymphatic vessels (in

the case of lymph nodes), or through the epithelium (in the case of Peyer’s Patches)

(Cyster, 1999). Mature lymphocytes continuously circulate through these organs via

the blood stream, constantly surveying each organ for the presence of their specific

antigen. If that lymphocyte fails to interact with antigen, the lymphocyte can remain

within the B or T cell region for up to 4 days before returning to circulation (Fu

and Chaplin, 1999; Goodnow, 1997). T cells are activated if their specific antigen is

encountered, and specialised T helper cells recruited to B cell areas by chemokines,

9



10 CHAPTER 1. INTRODUCTION

bringing together antigen specific B and T cells to provide the signals required for an

efficient adaptive immune response. This response has two distinct phases: the clonal

expansion of antigen specific B cells to secrete an antibody specific for the pathogen,

followed by the development of immune memory that permits an accelerated, higher

affinity immune response in the case of re-infection (Goodnow, 1997).

Secondary lymphoid organogenesis occurs in foetal development, but formation can

also be caused by chronic infection, cancer and autoimmune disease (Randall et al.,

2008). A range of experimental studies has provided insight into the key factors re-

quired for lymph node, spleen and Peyers Patch development (Mebius, 2003; van de

Pavert and Mebius, 2010; Randall et al., 2008; Veiga-Fernandes et al., 2007). There

may be key differences between the mechanisms driving secondary lymphoid organo-

genesis in different tissues, yet many similarities. Thus developing new insights into

the molecular and biophysical mechanisms that contribute to the formation of one set

of secondary lymphoid organs, Peyer’s Patches, will provide a platform to understand

how lymphoid tissues develop.

1.2 Intestinal Immune Responses

The intestinal mucosa is the largest area that is in contact with the exterior environ-

ment, and is constantly exposed to bacteria and other pathogens (Reis and Mucida,

2012). The potential for infection caused by bacteria, viruses, parasites, and fungi is

thus significant. Although 100 times the area of the skin, which is protected by a phys-

ical barrier of several layers, the intestine is comprised of a single layer of absorptive

epithelial cells that create a barrier between the interior lamina propria and the exter-

nal lumen (Reis and Mucida, 2012). This may explain why up to 70% of the body’s

lymphocytes are found to reside within gut-associated lymphoid tissue (GALT) (Jung

et al., 2010).

GALT consists of Peyer’s Patches (PP), isolated lymphoid follicles, intraepithelial

lymphocytes, lamina propria leukocytes, and mesenteric lymph nodes that together

have an essential role in the generation of protective antibody responses to infection

within the gastrointestinal tract. PP are secondary lymphoid organs that were initially

described by Severino in 1645, but later named following Peyer’s investigations in

1677 (Jung et al., 2010). PP are domed structures that consist of 1-5 B cell follicles

containing follicular dendritic cells (FDC), a T cell zone and associated fibroblastic

reticular cell (FRC) network (Jung et al., 2010). A schematic representation of a PP

can be seen in Figure 1.1. Lymphocytes migrate into the PP via high endothelial

venules, and continue their circulation via efferent lymphatic vessels that connect to

mesenteric lymph nodes (Jung et al., 2010). Unlike lymph nodes, there is no lymphatic

input to PP; instead antigen uptake occurs via specialised epithelial cells, Microfold

or M-cells, in the follicle-associated epithelium (red in Figure 1.1). This antigen is
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transferred to local dendritic cells in the FRC (orange area in Figure 1.1), (Owen and

Bhalla, 1974) and these dendritic cells then migrate into the T-cell zone for antigen

presentation to lymphocytes. Pre-natal studies show that an average of sixty PP

develop in the human foetal gut (Cornes, 1965), and seven to eleven in the mouse

(Figure 1.2), distributed along the length of the small intestine, with a large variation

in the location, number, and size of PP between different genetically identical mice.

Figure 1.1: Schematic representation of Peyer’s Patch in the small intestine. (a) Anti-
gen enters the Peyer’s Patch through the Microfold, or M-Cells in the follicle-associated
epithelium. The antigen is transferred to local dendritic cells in the subepithelial dome
(the orange area); (b) The antigen is then presented by the dendritic cell to T-Cells
(green cells) in the T-Cell zone (blue), triggering an adaptive immune response. Al-
ternatively, the antigen-loaded dendritic cell may migrate to mesenteric lymph nodes
via draining lymph, and a response triggered in the lymph node. Image adapted from
Figure 3 in Mowat (2003).

1.3 Peyer’s Patch Development

1.3.1 Basic Model of Development in Mice

The use of genetic tools, imaging technologies and ex vivo culture systems has provided

significant insights into the cellular components and associated signalling pathways

that are involved in the formation of gut-associated secondary lymphoid tissue in mice

(Mebius, 2003; van de Pavert and Mebius, 2010; Randall et al., 2008; Veiga-Fernandes

et al., 2007). One example of such an investigation is demonstrated in Figure 1.3,

showing the use of imaging of both adult and foetal mice intestines to determine the

location of PP in the small intestine and the behaviour of cells that lead to organ
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Figure 1.2: Peyer’s Patch size, location, and number in six adult human-CD2-GFP
mice. Position on the length of the small intestine has been normalised to a percentage
to counter variance in small intestine length between mice. These data indicate that the
development process is highly stochastic. Graph taken from Alden et al (2012b).

development. The combination of a number of experimental studies has led to the

generation of an accepted model of pre-natal secondary lymphoid tissue development.

The understanding of the mechanisms involved in human PP development is limited,

mainly due to the difficulty of performing research using human foetal organs, and thus

studies attempt to align observations made in humans with data from murine studies

(Hoorweg and Cupedo, 2008). This section details the current understanding gleamed

from explorations using mouse models, summarised diagrammatically in Figure 1.4.

In the mouse, the migration of hematopoietic cells from the foetal liver into the

small intestine has been detected from Embryonic Day 14.5 (E14.5) (Mebius et al.,

2001). These hematopoietic cells can be divided into two populations, CD4−CD3−IL-

7Rα−c-kit+CD11b+CD11c+ cells termed Lymphoid Tissue Initiator Cells (LTin), and

CD4+CD3−IL-7Rα+c-kit+ termed Lymphoid Tissue Inducer Cells (LTi) (Fukuyama

and Kiyono, 2007; Veiga-Fernandes et al., 2007). Aggregations of these hematopoietic

cells in the small intestine can be observed by E17.5, with the completion of the first

processes in compartmentalising the organ and formation of follicles detectable via

whole-mount immunostaining at E18.5 (Hashi et al., 2001). It is thought that the

process of organ formation between E14.5 and E18.5 occurs in three distinct phases

(Adachi et al., 1997). The first is the appearance on the epithelium of VCAM-1+

stromal cells, termed Lymphoid Tissue Organiser Cells (LTo) (Adachi et al., 1997;

Fukuyama and Kiyono, 2007). This is followed by the identification of clusters of

hematopoietic cells around VCAM-1+ expressing stromal cells from E14.5. As previous

imaging investigations have shown that hematopoietic cells (LTin and LTi) are evenly

distributed across the gut by E15.5 (Randall et al., 2008), it is assumed that this cell

aggregation phase must occur after this point, yet before E18.5, deemed to be the
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final phase of development where lymphocytes are recruited and the follicle structure

developed.

The basic model of PP development in Figure 1.4 captures the current understand-

ing of the second of Adachi et al’s (1997) phases of PP development, the aggrega-

tion of hematopoietic cells. LTin cells express the tyrosine kinase receptor RET and

initiate the process of PP induction upon surface contact with an LTo cell express-

ing Artemin (ARTN), a known ligand for RET, leading to LTo cell differentiation

(Fukuyama and Kiyono, 2007; Patel et al., 2012; Veiga-Fernandes et al., 2007). This

differentiation leads to the upregulation of adhesion factors Vascular Cell Adhesion

Molecule (VCAM), Intercellular Adhesion Molecule (ICAM) and Mucosal Addressin

Cellular Adhesion Molecule (MAdCAM). LTi cells interact with VCAM-positive LTo

cells through the expression of LTαβ, that stimulates the LTβ receptor expressed on

the LTo cell. This induces the production of IL-7, and chemokines CXCL13, CCL19,

and CCL21 by the LTo cell (Adachi et al., 1997; Honda et al., 2001; Luther et al.,

2003). These in turn stimulate the IL-7R and chemokine receptors CXCR5 and CCR7

expressed by the LTi cell, thus a self-sustaining process is created where each cell type

has the ability to mutually stimulate its corresponding component (Nishikawa et al.,

2003). This attracts LTi cells to a forming aggregation through chemotaxis, and ad-

hesion factor expression retains them within the primordial patch. Cell aggregation

continues through to E18.5 where, for reasons not currently understood, further aggre-

gation of hematopoietic cells ceases to occur (Randall et al., 2008).

Figure 1.3: Peyer’s Patches in the mouse small intestine. Left: Diagram representing
a cross section of the intestine tract, large green patch represents where Peyer’s Patches
can be found in the small intestine. Source: Mark Coles, University of York, unpub-
lished; Centre: GFP Stain of Peyer’s Patches from a human-CD2-GFP adult mouse.
Source: Mark Coles, University of York, unpublished; Right: in vivo confocal image of
LTi cells at E17.5 in a human-CD2-GFP mouse foetal intestine. Source: Veiga-Fernandes
et al (2007).
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Figure 1.4: Steps involved in Peyer’s Patch development, adapted from Figure 3 in
van de Pavert et al (2010). 1: LTin and LTi cells migrate from the foetal liver into
the gut; 2: LTin cells express RET, the receptor for ARTN, which is expressed by the
LTo cell. RET/ARTN binding upregulates LTαβ expression on LTin cells; 3: LTαβ
on LTin cells binds to LTβR expressed by LTo cells, causing LTo cell differentiation; 4:
LTαβ expressed by LTi cells binds to LTβR expressed by LTo cells, causing further LTo
cell differentiation and expression of chemokines and adhesion factors; 5: Expression of
chemokines causes LTi cell chemotaxis, and adhesion factors retain these cells around
a primordial patch. This process continues until E18.5 where no further aggregation
occurs.
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1.3.2 Key Factors in Development

A number of studies have taken a reductionist approach and focused solely on the

influence of individual biological components in PP organogenesis (such as particular

chemokines and adhesion factors) to attempt to give some insight into the role each

has in this process.

RET

Experimental work by Veiga-Fernandes et al (2007) suggests that the tyrosine kinase

receptor RET, expressed by LTin cells, has a key role in PP organogenesis. LTo cells

are thought to express ARTN, a known ligand for RET (Randall et al., 2008; Veiga-

Fernandes et al., 2007). Flow cytometry reveals that genetic mutants that lack RET

have a full repertoire of hematopoietic cells (LTin/LTi), yet these fail to aggregate,

resulting in a lack of PP. This suggests that the RET/ARTN signalling pathway is

vital in orchestrating secondary lymphoid organ development. Stimulation of RET has

been suggested as the factor that then upregulates LTαβ expression on LTin cells.

IL-7R and Lymphotoxin

LTαβ expressing LTin and LTi cells bind to the LTβR expressed on the surface of LTo

cells, leading to LTo cell differentiation and the expresion of chemokines and adhesion

factors (described in the following sections). Mice that are deficient for either LTαβ or

LTβR do not form PP, suggesting this interaction is key in PP development (Banks

et al., 1995; De Togni et al., 1994; Futterer et al., 1998; Honda et al., 2001; Pasparakis

et al., 1997).

LTαβ is expressed by LTin cells through stimulation of RET (Veiga-Fernandes

et al., 2007). It is thought that stimulation of Interleukin 7 receptor α (IL-7Rα)

induces the expression of LTαβ on LTi cells. Initially it was shown that mice deficient

for IL-7Rα fail to form PP (Adachi et al., 1997, 1998). A further study that utilised

a monoclonal antibody to block IL-7Rα signal at different time-points supported this

result, showing that no PP formed when IL-7R was blocked before E16.5 (Yoshida

et al., 1999). However, where IL-7R signalling was blocked after E16.5, the authors

still detected PP formation, suggesting that the influence of IL-7R is time-dependent,

and is involved in the initiation of tissue development. The stimulant for IL-7Rα

triggering remains an open question, with some suggesting this occurs through IL-7

expression by an LTo cell (Yoshida et al., 2002), yet others have to date failed to detect

IL-7 in the embryonic intestine (Honda et al., 2001), and detected normal PP anlagen

in IL-7 deficient mice (Nishikawa et al., 2003). An experimental overexpression of

IL-7 leads to an abnormal number of LTi cells and thus a higher number of patches,

suggesting a potential role if present, although this is unlikely (Meier et al., 2007).

Whereas RANKL signalling triggers IL-7Rα expression in developing lymph nodes and
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was thus suggested as a potential regulator of IL-7Rα, PP organogenesis still occurs in

RANKL deficient mice (Yoshida et al., 2002).

Chemokines

Stimulation of the LTβ receptor on LTo cells upregulates the expression of chemokines

CXCL13, CCL19, and CCL21 into the localised environment around a site of patch gen-

esis (Cupedo et al., 2004; Dejardin et al., 2002). These chemokines bind to chemokine

receptors CXCR5 and CCR7 expressed on the surface of LTi cells, the first stimulated

by CXCR13 and the latter by CCL19 and CCL21 (Luther et al., 2003; Ohl et al., 2003).

Expression of homeostatic chemokines by an LTo cell causes LTi cell chemotaxis to-

wards sites of patch genesis through CXCR5 and CCR7 signalling, which are retained

by adhesion factors expressed in the primordial patch (expanded in next subsection).

The attraction of cells to a site of patch genesis through chemotaxis promotes cellular

interactions through LTαβ/LTβR signalling, and a further upregulation in chemokine

expression, thus expanding the area around a primordial patch that is affected by

chemokine expression.

PP and lymph node formation has been found to be significantly reduced in CXCR5-

deficient mice, and where PP do form, these are typically smaller and lack the structural

characteristics observed in wild-type mice (Ansel et al., 2000). The existence of a second

chemokine pathway, through CCR7 signalling, may explain why some hematopoietic

cells still aggregate. Interestingly, studies suggest there is no significant difference in

lymph node formation for CCR7 deficient mice, suggesting that the CXCL13 pathway

could have a more dominant role in the recruitment and clustering of LTi cells (Luther

et al., 2003).

Adhesion Factors

The above details the interactions that promote LTo cell differentiation, cause the ex-

pression of chemokines and adhesion molecules, and ensure LTi cell chemotaxis towards

a site of PP organogenesis. However none of the above would result in the formation

of a PP if the aggregation was not held together by adhesion factors. LTin and LTi

cells are retained by LTo expression of adhesion molecules VCAM-1 and MAdCAM,

which bind to α4β1 and α4β7 receptors expressed on the surface of LTin and LTi cells

(Yoshida et al., 2001) respectively. A blockage in VCAM-1 expression has been found

to show a profound reduction in cell aggregation (Finke et al., 2002; Patel et al., 2012)

yet some aggregations do still form. This result could suggest that adhesion remains

possible through the MAdCAM pathway, yet VCAM-1 is a more dominant factor.
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1.3.3 Role and Dynamics of Hematopoietic Cells

Previous investigations have found that an absence of LTi cells results in a failure

to form PP (Sun, 2000; Yokota et al., 1999). The role and behaviour of the second

population of hematopoietic cells, LTin cells, is not fully understood, although it has

been suggested that this population is involved in an early phase of PP development

(Fukuyama and Kiyono, 2007; Veiga-Fernandes et al., 2007).

Early events in PP organogenesis have been explored through use of an ex vivo

culture system (Patel et al., 2012), in an attempt to further understand the role of LTin

cells. In this study, explant cultures of developing intestines from human-CD2-GFP

transgenic mice were incubated with beads soaked with ARTN, a known ligand for RET

expressed by LTin cells (Figure 1.5). Immuno-staining after a 12 hour period revealed

an accumulation of LTin cells in the vicinity of the bead and a strong upregulation of

adhesion factor VCAM-1 in the vicinity of the bead. The detection of LTi cells in the

vicinity of a bead however was rare. The same aggregation was also found to occur in

LTi deficient mice , suggesting no role for LTi cells at an early stage of development.

This finding supports the role of RET and RET ligand signalling as the initiator in PP

development (Veiga-Fernandes et al., 2007).

As LTin and LTi cells in CD2-GFP mice both express green fluorescent protein

(GFP), it was possible to capture images of cell movement over the period of one

hour at this early time-point in development. These images were processed using the

Volocity software tool (PerkinElmer) that provides the capability of creating a sequence

from time-lapse images and tracking cell motility over time, producing a distribution

of cell behaviour statistics. The tracked cells were categorised into two groups, those

<50µm from the ARTN-soaked bead and those further away (Patel et al., 2012). A

statistical analysis of cell track length, velocity, and displacement using the Volocity

software tool reveals that there is a statistically significant difference between each

behaviour response between cells close to the bead and cells further away (Figure 1.5).

This alteration in cell motility is suggested to be mediated by the expression of adhesion

factors, supported by the finding that VCAM-1 expression is strongly upregulated.

1.3.4 Open Questions

Section 1.3.2 above details how several reductionist studies have been used to determine

the role of each factor in PP organogenesis. However, such an approach leaves inter-

esting questions that cannot be addressed using this technique. This section suggests

a few such explorations that have yet to be performed.

Figure 1.2 demonstrates that the formation of PP in mice is highly stochastic, in

terms of location, size, and number of PP that form. Indeed Cornes (1965) suggests

that no two observations will be identical. What causes such variance is yet to be

understood. One could suggest that this is caused by a variation in the availability
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Figure 1.5: Use of an ex vivo culture system to explore cell behaviour. Left: Repre-
sentative image of confocal microscopic analysis of an explant culture of a developing
intestine from a human-CD2-GFP transgenic mouse incubated with an ARTN soaked
bead. Immunofluorescence staining: green - LTin/LTi cells; red - VCAM-1 cells. Scale:
100 µm. Top right: 60-minute time-lapse cell tracks at the twelve hour time-point, pro-
duced using Volocity. Green - cells <50µm from the bead; Yellow - cells >50µm from
the bead. Scale: 100 µm. Bottom right: Cell behaviour analysis of the cell tracks shown
top-right. White - cells >50µm from the bead (n=27 cells); Grey - cells <50µm from the
bead (n=17 cells). Length is the distance covered by the cell in that hour. Displacement
is the distance between the cell location at the start of the hour and the cell position
when tracking was ceased. P-Values calculated using Mann-Whitney U-Test. Image
adapted from Figures 1 and 2 published in Patel et al (2012)

of key cell types and factors between each observation, by the physical geometry of

the intestine, or simply that the process relies on the location and timing of contact

between an LTin and LTo cell, and thus is inherently stochastic in nature. However

current approaches do little to support any such conclusions.

The role of chemokines and adhesion factors has been elucidated from both gene

knockout experiments and ex vivo culture systems as detailed previously. However, it

has not yet been possible to quantify the expression of chemokine and adhesion factors

during development. The existence of such data may go some way towards explaining

the variance detailed above, while also suggesting if there is a limitation in the ex-

pression of these factors, and thus a limitation on the size of PP. Though techniques

exist that could make this possible (ELISA, bioassys, RNA extraction (Mahajan et al.,

2003)), it is currently believed that no such quantitative data exists.

Finally, the majority of the investigations detailed in Section 1.3.2 all examine the

end result: the formation of PP at E17.5. As noted previously in Section 1.3.1, studies

have suggested that PP development does occur in three distinct phases (Adachi et al.,

1997). However, the authors do not fully specify the time-points these phases occur

in the seventy-two hour period. The more recent ex vivo study does go some way to
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addressing this by examining the initial period of development (Patel et al., 2012), but

does not identify changes in system dynamics after that point. If such distinct phases

exist, different biological factors may be more influential at different time-points; an

interesting result that cannot be elucidated using gene-knockout experiments.

1.4 Advancing Biological Understanding Through Modelling
and Simulation

The use of models in advancing the understanding of biological systems is common

place and has been used for generations, the famous example being Watson and Crick’s

model that defined the structure of DNA (Watson and Crick, 1953). Modelling provides

a means of exploring a concept or available biological data with the aim of generat-

ing hypotheses in advance or in place of further experimental investigation. Such an

approach has provided some of our fundamental understanding of immunology, an ex-

ample being the Nobel Prize shared by Burnet and Medawar for their combination of

modelling and experimentation to explore how the immune system discriminates be-

tween self and non-self (Chakraborty et al., 2003). The use of computational modelling

and simulation is a continuation of this approach. An underlying biological system is

examined with the intent of generating a model that details the current understanding

of the system, or an abstraction of it. This may then be instantiated as a simulation

that can be executed on a computer. (Polack et al., 2008; Read, 2011).

The integration of computational modelling with current experimental techniques

is an important step in moving biological explorations from a reductionist, descrip-

tive state to one that is predictive (Kumar et al., 2006). Section 1.3.2 described how

previously published investigations have determined the role of each factor in PP anal-

ysis by examining each factor individually. The adoption of computational modelling

shifts the focus from an examination of each individual component part to that of the

higher order behaviour, and how this emerges from components that lack the capabil-

ity to do this alone (Germain et al., 2011). This is known as the particular system’s

emergent property. The application of this approach has previously permitted the ex-

ploration of a range of complex biological systems, including T-cell signalling cascades

(Chakraborty and Das, 2010), autoimmune disease pathology (Read et al., 2009), in-

vestigating cell migration within germinal centers (Figge et al., 2008), emergence of

immune memory (Jacob et al., 2004; Lagreca et al., 2001), and system dynamics under

HIV-1 infection (Sieburg et al., 1990; Stafford et al., 2000). However, the approach has

yet to be adopted in exploring the formation of the immune system, and could have

the potential to examine the open questions detailed above in Section 1.3.4.

As the use of computational modelling becomes more prevalent, the potential bene-

fits of adopting the approach in immunology are becoming increasingly apparent. Sig-

nificant advances in laboratory experimental techniques has coincided with advances in
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and availability of computational power, making it possible to generate models and sim-

ulations that can explain large datasets generated using high throughput techniques.

Such datasets may be derived locally through experimentation, or be a consolidation

of datasets gathered from a variety of laboratories and techniques (Chakraborty et al.,

2003; Kirschner and Linderman, 2009). Computer simulations of a biological pro-

cess may also be more amenable to experimentation than that of the natural system

(Forrest and Beauchemin, 2007; Guo and Tay, 2005). Investigations that can be con-

ducted on a computer do not have the physical or ethical constraints that may apply

to investigations in the wet-lab. Such computer experimentation can aid the forma-

tion of hypotheses that explain the derived biological data and be used to evaluate

these hypotheses by comparing simulation results to those in the established litera-

ture (Chakraborty and Das, 2010; Chakraborty et al., 2003; Kirschner and Linderman,

2009). However, alongside its use as a tool supporting such analysis of biological data,

a robust simulator can be used as a predictive tool for informing future wet-lab inves-

tigations, through performing novel in silico experimentation prior to or in place of

laboratory work. Such investigations may reveal areas of the system where the current

understanding is incomplete and areas where further wet-lab experimentation is not

required. A focus on the higher-order behaviour and interactions between factors in

the captured system also makes it possible to understand how quantitative alterations

in individual components affects overall system behaviour.

This thesis continues by examining this technique and how it is applied in the

modelling of biological systems. This includes a summary of methodologies, tools and

frameworks that have found application in the creation of such simulations.

1.4.1 Modelling Methodologies

There are broadly two categories of modelling approaches, although some hybrid ver-

sions combining elements of the two are beginning to emerge. These are introduced

below.

Mathematical Approaches

Mathematical models that summarise a biological system as a set of Ordinary Differ-

ential Equations (ODE) have frequently been used to provide biological insight. These

capture populations of factors rather than individual instances, with each assigned a

real-number variable. A set of equations is compiled that specify the impact each factor

has on the size of the population of its complementary factors. Using these equations,

system behaviour that emerges from interations between large populations of factors

can be explored. Use of this approach has found application in explorations of innate

immune responses (Hu et al., 2007), immune system memory (Antia et al., 2005), pan-

creatic cancer treatments (Haeno et al., 2012), and in furthering the understanding
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of influenza A infection (Baccam et al., 2006; Beauchemin et al., 2008; Sidorenko and

Reichl, 2004; Smith et al., 2011; Smith and Perelson, 2012).

A substantial amount of ODE modelling work has also been undertaken to explore

the dynamics of human immunodeficiency virus 1, or HIV-1. (Perelson, 2002; Perelson

et al., 1996; Vaidya et al., 2010), and is thus a good example to use in exploring this

technique. The basic model of infection by Perelson and colleagues (2002) maintains

counts of three populations: host cells free of infection (T ), host cells that are infected

(I ), and circulating virions in the blood (V ). The model describes the change in the

sizes of these populations over a period of time (dt). The number of target cells in

the model is dependent on parameters that specify the rate at which new cells are

generated (λ), the death rate per cell (δ), and the rate at which cells become infected.

The latter occurs when target cells upon interact with viral particles at a rate stated

by κVT, with κ representing an infection rate constant. The population of infected

cells changes at the rate stated by κVT and the rate at which infected cells die, set by

parameter µ. The final population, the virions, changes at a rate at which the infected

cells generate new virus particles, set by parameter p, and the rate at which virions

are cleared from the blood, captured by parameter c. All of this behaviour is captured

in equations 1.1-1.3 below:

dT

dt
= λ− δT − κV T (1.1)

dI

dt
= κV T − µI (1.2)

dV

dt
= pI − cV (1.3)

These equations capture the basics of HIV-1 dynamics. This model can be extended

to include potential interventions that change these dynamics: the work of Perelson

and colleagues (1996) and Vaidya and colleagues (2010) that capture the inhibition of

the virus replication by a anti-retroviral drug and the resistance to such drugs being

good examples. Once the model is generated, a parameter fitting stage is conducted

where output from the calculation is set to match data that has been derived through

wet-lab experimentation, often through use of least sum of squares regression analysis

to minimise the squared difference between the laboratory data and that from the

model (Read, 2011). With this assured, a wide variety of analytical techniques can be

used to explore the captured process. The use of ODE’s lends itself to such analyses as

they are computationally efficient, and thus a large parameter space can be explored

(Bauer et al., 2009).
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As may have been apparent in the above description, there is no mention of spatial

considerations in the HIV-1 model. Space is assumed to be one continuous compart-

ment, assuming a well-mixed space of elements. Thus traditional ODE’s do not have

the capability to represent the effect an environment may have on the populations: the

focus is purely on examining the parameter values that capture interactions between

the populations. This can be countered through the use of Partial Differential Equa-

tions (PDE’s) that can capture changes in time and space, yet increase the complexity

of a model such that the advantages of using an ODE-based approach are mitigated

(Bauer et al., 2009).

Agent-Based Approaches

The above technique examines how interactions between biological factors influence a

population, such as how the level of viral production affects the population of target

cells in HIV-1 infection. The assumption is made that each entity within the population

is identical. An agent-based modelling (ABM) approach differs as each biological entity,

such as a cell, is represented explicitly, and can thus maintain its own attributes and

cell state (An, 2006; Bauer et al., 2009). Agent behaviour is specified as rules that

determine the set of states an agent, such as a cell, may exist within, and the event that

must occur for an agent to change state. This event could be an interaction between

another agent or the environment. Taking the HIV-1 study above as an example, if an

ABM approach was taken, each target cell would thus be its own individual entity, and

rules specified on how the cell would change into an infected state upon interaction

with a ’viral’ agent.

Modelling at an individual level rather than population level opens up an array of

investigations that are not possible with ODE modelling (Bauer et al., 2009). With the

increased use of two-photon imaging it has become possible to visualise the interactions

between individual cells and their environment: one example of this being an obser-

vation of the primary immune response for fifty hours after an antigen is encountered

(Catron et al., 2004). The ex vivo culture system described in section 1.3.3 has also

utilised this technique to observe individual cells rather than a population (Patel et al.,

2012). Studies such as these reveal that it may not be correct to model all cells as one

population, and inherent stochasticity in the biological system may be an important

part of the system dynamics. As each cell would be represented explicitly using ABM,

such stochasticity can be captured, making this a suitable approach if this is an im-

portant consideration (Germain, 2001; Milanesi et al., 2009). This methodology has

found application in modelling cancer vaccination (Motta et al., 2005), experimental

autoimmune encephalomyelitis (Read, 2011), vaccine design (Kohler et al., 2000), and

tumour growth (Alarcon et al., 2005; Jiang et al., 2005). It has also been applied in

simulating clinical trials, linking explorations through modelling with ongoing work in

the clinic (An, 2001, 2006).
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The other significant difference between an ABM and traditional ODE approach

is the ability to explicitly represent the environment in which the cellular interactions

are taking place. This is a vital consideration for biological systems such as those

taking place in foetal development where the environment has an influence over cell

behaviour yet is also constantly developing, or those where cell behaviour is constrained

by the environment. Efroni and colleagues’ (2007) model of the cell structure within a

lymphoid organ is a good example of the latter.

Choosing the Correct Approach

The choice of modelling approach is dependent on the scope of the problem being

investigated, and thus there is no correct or incorrect choice of strategy. The following

considerations tend to guide the decision of which approach should be adopted.

One of the advantages of using an ODE is that these tend to be more simplistic

than applying an ABM (Bauer et al., 2009). The equation or set of equations that

are generated tend to be formulated from a lower number of parameters than required

using an ABM approach, capturing less but recreating patterns observed in the domain

of interest. In both cases these parameters can be set through a process of calibration,

to ensure that the model correctly captures expected behaviour. Where an ABM

implementation may lead to a large number of parameters, an ODE approach may

be more viable (Bauer et al., 2009). The set of equations generated using an ODE

approach may be complicated but are unambiguous: it is these which capture the

system being modelled. With an ABM approach however, the implementation of the

model is much more complex, and the detail hidden within the implementation can

affect the overall result. However, there are frameworks that are being utilised to

make the design of ABMs more transparent and easier to interact with, which will be

examined later in this chapter.

A modeller needs to consider whether the scope of the problem is to investigate

organism wide cell population dynamics or whether each individual in the system

needs to be examined as its own distinct entity (Germain et al., 2011). As described

previously in the HIV-1 model, ODE’s lend themselves well to a study of host-pathogen

interactions within a population, yet make the assumption that each entity within the

population is identical. However if characteristics of each individual target cell were to

be examined, an ABM approach is required.

The inclusion of spatial aspects is difficult to achieve with an ODE model. Where

this is an important consideration, an agent-based model can be more appropriate

(Germain et al., 2011), and in some cases can contribute to the accuracy and meaning

of the result. Strain et al (2002) compared their ABM of HIV infection with that

developed using an ODE approach (Perelson et al., 1997) and found that the viral

infectiousness was overestimated by more than an order of magnitude in the ODEmodel

(Bauer et al., 2009), suggesting a consideration of space is important. Beauchemin and
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colleagues (2006) have also utilised an ABM model to capture HIV-1 dynamics, and

determined that representation of space is indeed an issue, reporting more reliable

results from an ABM when compared to real-world experimental data. For studies

that focus on the formation of cellular structures or tissue rather than host-pathogen

interactions, for instance the formation of germinal centres (Figge et al., 2008), the

modelling of space, and how this affects the formation could be a key consideration.

Where choice is not constrained by either of the above, it may be necessary to

consider the availability of computing resources when determining whether to use an

ODE or ABM. In an ABM implementation, each individual entity is captured as an

agent, with each possessing a set of properties. In the majority of computational imple-

mentations this will require each individual entity to be represented as an individual

process. For systems with a large number of agents this will require a substantial

computational resource. However as the availability of powerful computing resources

such as computer clusters and cloud computing services increase, this drawback could

be negated. Additionally, it could be possible to consider a combination of aspects

from both ODE and ABM techniques, and implement a stage-structured model. This

approach has been demonstrated in a model of the cytotoxic T lymphocyte response to

antigen (Chao et al., 2003). In this implementation, each agent’s life cycle was divided

into stages and deemed to be identical to all other agents currently in that stage. As

this is the case, an integer value can be used to represent the population of agents in

that stage, removing the need to represent each agent explicitly, thus improving the

efficiency of the model by a number of orders of magnitude. Where the purpose of a

model is to capture an emergent population-level phenomenon while considering the

global behaviour of each agent involved in producing that phenomenon, this case study

is a good example of a methodology to adopt where it is necessary to capture a very

large number of agents.

1.4.2 Modelling Tools and Frameworks

As the integration of modelling and simulation with conventional wet-lab research has

become more popular and prevalent, a number of frameworks and toolkits have been

made available to aid simulation creation. This section summarises currently available

techniques and tools that are available and that have previously been used in the

modelling of biological systems, after which a brief evaluation is provided on the tool

suitability.

The CoSMoS Process

Although not designed specifically for biological systems, the Complex Systems Mod-

elling and Simulation Infrastructure (CoSMoS) Project was an EPSRC funded study

that established generic tools and techniques to support the modelling, simulation,

and analysis of complex systems (Andrews et al., 2010), and has found application in
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modelling biological systems (Garnett et al., 2008; Read, 2011) as well as ecological

and sociological systems (Polack et al., 2010). Collaboration between an investigator

constructing the model and an expert(s) in the system being modelled is encouraged,

and processes developed that aid interaction between the two. A set of rigorous activ-

ities is proposed that leads to the generation of a series of models, a process that is

detailed in Figure 1.6. These models underpin the understanding of the system that is

to be simulated, providing a level of transparency in the manner in which a simulation

has been implemented, an agreed specification of the scope of the work, and a means

in which results can be interpreted in relation to the captured real-world system. This

section examines each of these models generated by utilising this process.

Figure 1.6: The CoSMoS Process for modelling complex systems, detailing the stages
of the process and flow of information. This image of the process was taken from Read
et al (2011)

The system of interest that is being modelled, for example the foetal development

of PP, is termed as the Domain. The current scientific understanding of the system

dynamics, such as that detailed in section 1.3.1 for PP development, is captured in a

Domain Model. This process sets the scope of the exploration in collaboration with an

expert in that system, and can reveal areas to be captured where current understanding

is incomplete. Where this occurs, suitable assumptions are made and justified for sake

of scientific transparency. All the entities that have a role in system dynamics, and

the behaviours that produce an observed phenomenon, are included within the domain

model. At this point no consideration is given into how this will be implemented as a

simulation.

With this specification agreed, a Platform Model is generated that specifies how the

domain model can be implemented as a simulation platform. This specifically details

how each entity and its relevant behaviour described in the domain model will be imple-

mented in a computer simulation. Critical to the process, emergent behaviour specified

in the domain model, such as a statistically significant change in a cells behaviour, is

removed. Such observed behaviour must emerge through interactions between entities

and not be directly encoded into the model, as this invalidates the simulator as a pre-
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dictive experimental tool. If this behaviour does not emerge through interactions, the

platform model does not capture the domain model appropriately, or the specification

of the system under study in the domain model is incorrect. In the process of gen-

erating this model, further simplifications and assumptions may be necessary and are

documented accordingly for scrutiny alongside simulation results. Alongside the detail

of the system being captured, this model also specifies user interfaces and data capture

mechanisms that are required in order to interact with the simulator.

The specification that comprises the platform model is then implemented as a

Simulation Platform, adopting one of the modelling approaches described in detail

in section 1.4.1. The process places no constraints on modelling methodology or choice

of programming language. Completion of this phase leads to the generation of an in

silico tool through which experimentation can be performed.

The Results Model summarises the understanding generated from experimentation

conducted using the simulator. At this point, results from the simulator can be con-

trasted with real-world results in the domain model to determine a level of confidence in

the simulator as a suitable representation of the system being captured. Such compar-

isons under different simulation conditions may also generate predictions that inform

future investigations.

It can be noted from Figure 1.6 that the process has no defined end point. A

comparison between results generated by the simulator and those with the domain

model may lead to a refinement of the domain model, upon which the process starts

again. This is a process that will continue until the domain has been adequately

captured. Where this is the case, further iterations could also occur if the model is

extended further.

Immune System Simulation Platforms

Whereas the above provides a toolkit to aid the specification of a model, it does not

specify how that model is implemented. A number of platforms have been developed

that enable an investigator to specify the events that occur on an interaction between

cells, to simulate a response. The objective behind their creation was to enable biol-

ogists who may lack the mathematical and computer coding skills to construct either

ODE or ABM simulations (Meier-Schellersheim et al., 2006). This section considers two

such tools, IMMSIM (Puzone et al., 2002) and Simmune (Meier-Schellersheim et al.,

2006), although it is noted that similar packages (Reactive Animation (Efroni et al.,

2005), SIS (Mata and Cohn, 2007)) are available.

IMMSIM is based on use of a cellular automator approach (Celada and Selden,

1992), and was constructed to examine discrete interactions within a set lattice grid

environment (Puzone et al., 2002). The platform has found application in exploring

the generation of immunological memory (Celada and Selden, 1992), hypermutation

(Celada and Seiden, 1996), and autoimmune responses (Celada and Seiden, 1998). The
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modeller specifies the entities that have a role in the interaction, and the events that

should occur on interaction. Each individual entity in the system being captured is

represented as a data structure to store relevant properties, thus following an ABM

implementation as described previously. Each entity is then associated with a receptor,

with interactions between entities modelled as an interaction between these receptors.

Simulation execution is performed in steps, with an event triggered if an interaction is

detected in that time-step. This allows for a representation of time in the simulation.

Results are generated that detail the impact that interactions during a simulation run

has had on particular measures, which could include number of cells in a particular

state, or antibody maturation.

Simmune has been developed to allow the modelling of molecular interactions with-

out involvement in any underlying mathematics (Meier-Schellersheim et al., 2006).

These reactions are defined using a graphical representation where the molecules in

the system are detailed and the complexes that comprise their respective binding sites

stated. The modeller connects binding sites via arrows, and specifies conditions that

must be met for the interaction to occur. These interactions may affect molecules both

within a cell and on the membrane, and Simmune allows for the inclusion of both,

thus making it possible to model the effect of that interaction on the underlying cell

chemistry. Once population sizes are specified, Simmune calculates the time-course in

which changes occur to the molecular makeup of the model once an event is applied,

producing a quantitative measure of the binding states of all molecular mechanisms

in the model. The use of the platform has been exemplified in examining the role of

chemosensing in Dictyostelium (Meier-Schellersheim et al., 2006).

Both packages are publicly available and in a process of ongoing development. Ex-

ploration of the reactions that are captured are performed by changing the interaction

rules that are specified in the design of the model.

Simulation Toolkits

Platforms such as Simmune and IMMSIM have been constructed to aid the modelling

of biological interactions that lead to an immune response. For applications that are

not host-pathogen based, the platforms may not provide the required functionality. In

these cases, it may be more appropriate to implement the simulation using one of many

simulation toolkits that are available.

Two examples of publicly available simulation toolkits are MASON (Luke, 2005)

and BREVE (Klein, 2002). Both provide a suite of background functionality upon

which a simulation can be built, including tools to create an environment, create agents,

perform collision detection between agents, and tools for visualising and capturing the

simulated environment. The modeller specifies the agent types, the states the agents

could reside within, and the actions that agent performs both in that state and on

interaction with another agent. Simulations are then executed in discrete time-steps
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where each agents performs the respective behaviour dictated by its current state.

This allows for the inclusion of both space and time in the simulation, important for

scenarios such as Peyer’s Patch development where tissue formation is occurring in a set

environment for a set time-period. MASON is open source and has been implemented in

the Java programming language, whereas BREVE simulations are written in a bespoke

programming language, steve. The former focuses on the modelling of multi-agent

simulations, and has thus been optimised to ensure it can effectively handle a large

number of agents. The latter focuses more on the environment that the interactions

take place, and captures this as a continuous 3D space. The appeal of both is that

these are open source and extendable, and can thus be more flexible than the immune

simulators in the previous section. MASON has recently found application in the

modelling of experimental autoimmune encephalomyelitis (Read, 2011), a model for

multiple sclerosis, and BREVE in the modelling of global immune responses to primary

and secondary exposure to antigen (Jacob et al., 2004).

Toolkits and Frameworks: A Discussion

The objective behind the creation of the IMMSIM and Simmune packages is under-

standable: construct a package that makes simulation creation accessible to biologists

who may not have the skills to implement a simulator using other methods. Using in-

tuitive graphical interfaces, the process is straightforward, and quickly leads to results

that could be used to back an hypothesis or inform future work. Although this is ap-

pealing, there are aspects that need to be taken into consideration with this approach.

It is unlikely that a simulation will be created where all the underlying biologi-

cal detail is understood. This can be countered by making suitable assumptions and

abstractions, although it may not be known as to the effect these have on system

dynamics and behaviour. One drawback in the use of immune system simulation pack-

ages is that these do not allow for the documentation of assumptions and abstractions

that have been made. It is noted that for Meier-Schellersheim et al’s (2006) model of

chemosensing that exemplifies the use of Simmune, these assumptions were released

as supplementary material that accompanies their results. However it has to be ques-

tioned as to whether all investigators will do this with packages being promoted as

drag-and-drop simulation creation tools. A lack of transparency on what has been in-

cluded in the model, and what has been left out, will lead to some justifiable scepticism

when judging results.

This could however be countered by using such packages alongside the CoSMoS

Process (Andrews et al., 2010). This could address any lack of transparency that us-

ing the platforms alone may create, through the creation of a model that specifically

details the underlying biology that has been captured and any assumptions and ab-

stractions made, and a further model that acts as a specification of how this could be

implemented in IMMSIM or Simmune. This implementation would then take the role
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of the Simulation Platform within the CoSMoS Process.

If this were to be the case, the modeller would have to decide whether IMMSIM

and Simmune have the functionality to capture the biological system being studied.

Both IMMSIM and Simmune have been constructed with the aim of examining re-

sponses to interactions, and can detail how the response affects system dynamics. For

applications that examine host-pathogen or cell receptor binding affinity, such as the

many examples where IMMSIM and Simmune have been applied, this is sufficient, and

where the specification is robust, significant biological insight can be gained. However

if the emergent behaviour under examination is not based on how these interactions

affect cell chemistry or properties, the use of IMMSIM and Simmune may not be ap-

propriate. These may also not be suitable for modelling biological systems where the

environment these interactions take place within influences the behaviour that is ob-

served. Tissue development could be an example of both, where aggregations of cells

emerge from interactions between cells in the system, mediated through interactions

with the environment. Where this is the case, it may be more appropriate to use one

of the simulation packages available to implement the simulation. Again, for the sake

of transparency, this could be paired with use of the CoSMoS process, with simulation

packages acting as an aid in the creation of the simulation platform.

Whereas IMMSIM and Simmune have sought to develop tools for biologists that

may lack the mathematical and computing skills to implement a simulation, the CoS-

MoS process takes a different stance, suggesting that simulation creation is aided by

a collaboration between an expert in the field being simulated and those creating the

model (Andrews et al., 2010). A successful collaboration can raise important questions

that the field expert may not have yet considered, while ensuring that all involved un-

derstand the strengths and limitations of the tool that has been created (Polack et al.,

2010). This is an important step in understanding what the results mean in terms of

the system being modelled.

1.5 Confidence in Simulation as a Representation of the Bio-
logical System

Any exploration of a biological system, whether this uses current laboratory or com-

putational techniques, can be treated with a degree of scepticism as the understanding

of each underlying aspect is incomplete. In both types of exploration, this is addressed

through the making of well justified assumptions. Thus the exploration is examining

an abstraction of the real system rather than the full detail. Implementing a computer

simulation of a biological system adds a further level of abstraction, as it is intractable

to capture all aspects of the biological system in the model. However as the aim is to

understand how interactions between factors lead to an observed, emergent behaviour,

the simulator does not need to be a complete representation of the system (Germain
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et al., 2011). For example, an interaction between two cells may lead to a higher-order

effect on system dynamics and trigger pathways within each cell. With the interest

being on the former and not the latter, an assumption can be made that the particular

pathway is always triggered. It is critical that the assumptions and abstractions that

are made are taken into consideration when scrutinising simulation results to determine

their relevance to the biological system being explored.

Computational methods are finding increased application in the investigation of

a variety of biological systems, and explorations using a computational immunology

approach are increasingly being applied alongside current experimental techniques (Co-

hen, 2007; Germain et al., 2011; Kleinstein, 2008). In Section 1.3.4 above, it was noted

that although a reductionist approach to immune system development has provided

some key insight, questions do remain that such methods cannot address. Computa-

tional methods are not introduced to replace such investigations, rather to complement

them. For confidence to be retained in the use of simulation as a tool for understanding

biological systems, it is important that the relationship between the simulation and the

system it captures is appreciated. However, it has been noted that there are few cases

where the adequacy of a simulation, in terms of representing the system it captures, is

discussed alongside results generated from it (Read, 2011).

This section examines a number of methods that aim to establish confidence that

a result from a simulation developed using one of the techniques described in previ-

ous sections is representative of the biological system it captures. This issue has been

the topic of a recent study by Read (2011) that has examined current practices in

generating confidence in simulation, alongside the development of a simulation of Ex-

perimental Autoimmune Encephalomyelitis (EAE). Read’s work is discussed alongside

other methods that were not included in his study. For this examination, the same def-

inition of confidence is used as that proposed by Read: that confidence is not absolute,

yet related to the simulation purpose and scope of experimentation, and established

through ensuring simulation results are representative of the abstraction of the system

it captures (Read, 2011).

1.5.1 Simulator Calibration

As was noted previously in this chapter, it is highly unlikely that a model will be

generated where values can be assigned to all parameters identified in its creation.

This may be as the underlying biological understanding is incomplete, or the method

of implementing that factor does not translate back to laboratory derived values (for

example the use of a probability function to capture binding affinity). Calibration is

a process by which values are assigned to parameters such that simulation responses

are generated that are representative of those in the system being modelled. Through

this process the simulation is deemed an adequate representation of the higher-order

behaviour observed in the real-system, although a number of assumptions and abstrac-
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tions will have been made. Although such a process is therefore a vital stage in the

parameterisation of a model, it is rare to find the process of calibration documented

alongside simulation results (Read, 2011). A limited number of studies do mention that

a procedure has been performed (Ray et al (2009) being one example) but not noted

how this was performed or the data that was used in the process. However, procedures

to fit simulation results to biologically-derived responses have been described in simu-

lations of lymphocyte migration (Figge et al., 2008) and the life cycle of Mycoplasma

genitalium (Karr et al., 2012).

It may however be difficult to access a suitable set of biological results upon which a

simulation can be calibrated. Even where one exists, there may be significant variance

both in the result set and in comparison to results generated elsewhere, using identical

or other techniques, and it is thus questionable as to whether this is a representation

of the system being captured. It is cases such as this where a collaboration between

an expert in that biological system and a modeller is advantageous, as encouraged

by the CoSMoS Process (Andrews et al., 2010) detailed previously (Section 1.4.2). A

good example of this is the calibration process applied to Read et al’s (2012) model

of Experimental Autoimmune Encephalomyelitis (EAE). Initial parameter values were

established using a set of parameter values arrived at through informed estimation, and

simulation responses generated. An iterative process was then conducted where the

biological system expert, in this case a collaborator with expertise in EAE, examined

the simulation dynamics and identified areas that did not fit with their understanding

and experience of the biological system. This led to further parameter alterations and

further discussions. Through a combination of the collaborators expertise and the mod-

ellers understanding of how the simulator captures system dynamics, a set of parameter

values were identified that adequately captures the collaborators understanding of the

system dynamics.

Calibration is an important process as it establishes the behaviour of the simulation

under circumstances deemed as normal. This acts as the baseline, to which the results

of future in silico investigations are compared. Without this link from the start, it is

not possible to use the simulator in experimentation that aims to provide biological

insight.

1.5.2 Validation Tools

Calibration may establish behaviour that produces an expected result, but producing

evidence that shows a simulator generates a result representative of the biological

system is not alone enough to provide confidence in the use of the simulator as an

experimental tool. Simulations have previously been criticised as being opaque tools

(Di Paulo et al., 2000), where a result is generated yet it is not obvious why this is

the case. Full transparency in the implementation is key in understanding why such a

result is produced and verifying that there are no errors within the implementation that
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have affected that result. A process of validation can be used to determine how fit a

simulation is for its purpose (Polack et al., 2011). Such a process exposes the decisions

made in its design and implementation for scientific scrutiny. Where simulation is to be

used as a scientific instrument for furthering the understanding of a captured system,

this is critical, as these decisions and the evidence behind them may impact the result

generated.

Previous studies concerning the validation of simulations of complex systems have

taken inspiration from that used in the field of safety critical systems (Ghetiu et al.,

2009, 2010; Polack et al., 2011). Computational tools used in this field are subjected

to a stringent analysis of their compliance to a set of requirements before being in-

troduced, as an error within or failure of the implementation could lead to potentially

life-threatening circumstances (for example where this software was used in an aircraft).

Such an analysis utilises an Argument-Based Validation (ABV) technique where the re-

quirement is matched to evidence detailing how it has been met in the implementation,

and where applicable, how relevant parameters where derived. Visual notations such

as Goal-Structuring Notation (Kelly, 1999) have been developed to provide a method

of structuring such an analysis, ensuring each step in the implementation is validated,

the reasoning behind the inclusion or exclusion of a feature or assumption is provided,

and evidence given as to why this conclusion has been drawn (Ghetiu et al., 2010).

For GSN, this process is conducted through the production of a flowchart, comprised

of the notation in Figure 1.7a. A basic example of the structure of a Goal Structuring

Notation (GSN) argument can be seen in Figure 1.7b.

It is proposed that ABV techniques can be used prior to, during, and after the

design and implementation of a computer simulation (Ghetiu et al., 2010). A set of

requirements, or goals, are identified. The strategy used to ensure this requirement is

met is clearly stated. Evidence that supports a claim that this requirement is met is

specifically noted alongside that goal, with any assumptions that were required. The

use of the technique was recently exemplified by Polack et al (2011) to explore the suit-

ability of a simulation of cell division and differentiation in the prostate. The authors

detail how the process revealed important biological areas that had been overlooked or

inadequately addressed in the simulation and areas that could act as a starting point

for future experimental or simulation work (Polack et al., 2011). The former is an

important consideration in scrutinising results produced by the simulator. For cases

in some applications, there may not be the evidence to support a particular require-

ment. This may be due to incomplete biological knowledge. However, it is in these

such cases where the use of this technique is advantageous, as a structure is provided

that highlights these areas, showing where assumptions have had to be made, where

further biological exploration is necessary, and where results could be affected by these

factors. Thus, not only is a tool for providing a structured assessment of an ongoing

simulation development, but it may potentially feed future explorations that verify a
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simulation result.

Excluding the work cited previously (Ghetiu et al., 2009; Polack et al., 2011), the

use and release of an argumentation strategy to support both a simulation and results

from it, to build confidence in the simulation as a scientific instrument, is rare. The

justification of each part of the simulator opens the design and parameterisation deci-

sions up for scientific scrutiny and should be encouraged. However it should be noted

that there is not currently a tool available to support such systematic documentation

of simulation-based research (Polack et al., 2011).

1.5.3 Ensuring a Simulation Result is Representative

For simulations that are implemented using an agent-based approach, the effect inher-

ent stochasticity introduced by the implementation has on simulation response must be

appreciated. Agent-based approaches are suitable for capturing inherent stochasticity

in the biological system as each agent is its own entity, possessing a state and charac-

teristics (Forrest and Beauchemin, 2007), as would a biological factor such as a cell.

Behaviour of simulated biological factors may be dictated by the use of pseudo-random

number generation. For example, the simulator may randomly choose a probability that

a stable bind occurs when two cells come into contact. As behaviour is implemented in

this manner, the simulation will generate different sets of responses for the same input

parameter set. This implementation issue introduces uncertainty, termed aleatory un-

certainty, that must be considered when establishing confidence in simulation response

(Helton, 2008). If the simulation is to be used to perform in silico experimentation,

it is critical to ensure that the result is representative of the condition on which the

simulation was run, and not an effect of stochasticity in the implementation.

Previously published studies that utilise an agent-based approach have addressed

this by performing a number of replicate simulation executions and taking a mean or

median of the set of results produced. A recent model of lymphocyte priming in the

lymph node utilised 10 executions (Linderman et al., 2011), while conclusions have been

drawn from a simulation of tuberculosis by performing either 4, 10, or 15 executions

dependent on the analysis being performed (Ray et al., 2009). However no statistical

measure is provided that suggests this number of runs provides a sufficient level of

accuracy.

Recent studies have established a statistical technique that can be used to miti-

gate the effect of aleatory uncertainty on simulation results (Read et al., 2012). This

establishes the number of simulation executions required to achieve a desired level of

experimental accuracy while considering the computational resources available. The

analysis operates by contrasting distributions of simulation responses, all generated us-

ing one fixed set of parameter values and containing an identical number of simulation

samples. The number of samples required to obtain statistically consistent distribu-

tions is established by varying the number of samples within each distribution. As
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(a) Goal-Structuring Notation. Figure taken from Ghetiu
et al (2010)

(b) A basic example of the construction of an ABV flowchart, taken from Polack
et al’s (2011) study on validating a model of prostate cancer cell behaviour.

Figure 1.7: Use of argument-based validation techniques to evidence how a requirement
of a system has been met. Top: Goal Structuring notation used to develop the flowchart.
Bottom: A basic example of the use of ABV from Polack et al (2011). Note that filled
diamonds denote that the argument has been continued on a further diagram.

the sample size increases, the likelihood of producing identical distributions increases,

reducing the effect of implementation specific stochasticity.

This technique was developed alongside and exemplified with the authors agent-

based simulation of EAE (Read, 2011). In their case study that exemplifies the tech-
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nique, 20 such distributions are generated, and the effect of stochasticity on sample sizes

of 5, 10, 50, 100, 200, 350, 500, and 1000 simulation runs examined. The contrast be-

tween distributions is assessed using the Vargha-Delaney A-Test (Vargha and Delaney,

2000), a non-parametric effect magnitude test that establishes scientific significance

by examining the probability that a randomly selected sample from one distribution

will be larger than a randomly selected sample from the other. A result above 0.71 or

below 0.29 indicates a scientifically significant difference between the populations, with

0.5 indicating no difference (Vargha and Delaney, 2000). The objective is to establish

the number of samples required to reduce the effect to that deemed less than small by

the Vargha-Delaney A-Test. In the case of the stated case study, this was achieved for

a sample size of 500, and thus 500 simulation executions were performed for each in

silico exploration that was performed.

The contrast between the number of executions performed in the lymphocyte prim-

ing and tuberculosis studies (Linderman et al., 2011; Ray et al., 2009) with that in the

EAE simulation (Read, 2011) is huge, and goes someway to showing why this technique

is necessary. The implementation of this technique reduces the inherent stochasticity

in the simulation to a level near that observed in the biological system. Possessing a

statistical measure detailing why a particular number of samples was chosen provides

a strong argument that the measure generated from the distribution of results (mean

or median, dependent on application) is a representation of the condition on which the

simulation was run.

1.5.4 Sensitivity Analysis Techniques

A sensitivity analysis (SA) is the application of statistical techniques to examine how a

system responds to an alteration in input parameter values. Through varying param-

eter values and analysing the resultant effect on simulation response, the parameters

that have an influential effect on the simulations high-level behaviour can be identified

and, for some techniques, quantified. Application of SA techniques provides a powerful

tool for understanding simulation behaviour and how this affects results, aiding the

scrutiny of results that are produced. Possessing this understanding helps establish

the relationship between the simulation and the real-world system, to determine if a

result is an affect of simulation parameterisation or a true reflection of the underlying

biology.

One of the attractions of using simulation is to produce results that can further the

understanding of a biological system. Sensitivity analysis techniques provide a means

of performing this exploration: where a parameter is found to be highly influential,

this could suggest that the biological mechanism(s) it captures are important in the

behaviour of that system. Such results could then be verified using current laboratory

techniques where possible.

However to retain confidence in such conclusions, uncertainty in the value of simu-
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lation parameters, termed epistemic uncertainty (Helton, 2008), must be appreciated.

Section 1.5.1 detailed how a process of calibration can be used to determine a set of

parameters for which the simulation produces the expected result, but gives no measure

of how the value assigned to each parameter influences simulation result. This measure

can be provided through use of SA techniques. Where SA reveals a parameter value

alteration has no influential effect on simulation response, the accuracy of the simula-

tion is not impacted by the value set to that parameter (Read et al., 2012). However

if the analysis reveals that the parameter is influential, where changes in parameter

value do cause a significant change in simulation response, the analysis is highlighting

both the influence of and uncertainty in the value of that parameter, which must be

taken into account when results are scrutinised. If uncertainty in these values were to

be addressed, the simulation would produce much stronger predictions (Marino et al.,

2008; Read, 2011).

This section continues by examining two types of sensitivity analysis technique

that provide an understanding of simulation behaviour, in the context of establishing

confidence in simulation results. The first examines how robust the simulation is to

a perturbation of an individual input, and are termed one-at-a-time SA techniques,

whereas the second set of techniques perturb the values of two or more parameters

simultaneously, to identify any compound effects between parameters.

Simulation Robustness to Parameter Perturbation

A simulators robustness to a perturbation in parameter value can be determined using

a one-at-a-time approach (Read et al., 2012). This technique alters the value of a single

parameter at a time, with the complementary parameter set remaining at their baseline

values. The simulation response under that condition is contrasted with responses

generated using baseline parameter values. Where a simulation response is found to

be sensitive to that parameter value, caution should be exercised when results are

interpreted, as these may be artefacts of parametrisation rather than representations

of the biology (Helton, 2008). Where no effect is observed, the analysis suggests that

the parameter value change has little impact on simulation response. Studies that

examine T-cell motility in lymphoid tissue have applied this technique with that in

mind: to suggest that the simulation is robust to changes in parameter value (Zheng

et al., 2008). However, studies of influenza utilise the technique for the opposite effect,

to examine parameter values either side of baseline values and suggest the influential

parameters (Beauchemin et al., 2005).

Neither of the examples stated follow a formal procedure for quantifying the effect

a change in parameter value has had on simulation response. This has been addressed

through the development of a technique that determines if changing a parameter value

leads to a scientifically significant behavioural alteration in contrast to the baseline

simulation (Read et al., 2012). For each simulation parameter being explored, a range
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of potential values it could take is established, and simulations performed where that

parameter is assigned a value within that range. Simulation responses under those

conditions are contrasted with results generated under baseline conditions using the

Vargha-Delaney A-Test (Vargha and Delaney, 2000) described in the previous section.

This provides a statistical measure of the effect that the change in parameter value has

caused, and identifies the points in the range of values explored at which the parameter

perturbation results in significant changes in simulation behaviour. Where sufficient

data is available, confidence in the validity of these results can be gauged by contrasting

this information with biologically accepted ranges of values. Where this is not the case,

the sensitive parameters are identified, aiding the understanding of the behaviour of

the simulator and potentially the underlying biological system (Read et al., 2012).

Gaining Insight using Global Sensitivity Analysis Techniques

Although robustness analysis suggests the effect of perturbing single parameters, it

cannot reveal compound effects that occur when two or more are adjusted simultane-

ously. The effect one parameter has may rely on the value assigned to another. Global

sensitivity analyses perturb all parameters of interest simultaneously, to reveal whether

there is a correlation between simulation response and the value assigned to a particu-

lar parameter (Saltelli et al., 2000). Where this is the case, parameters that could be

coupled and that have the greatest influence on simulation responses are highlighted.

If the relationship between the simulation results and underlying biological foundation

is strong, such conclusions can then be used to suggest the influential biological factors.

Such an analysis has been applied to determine the contribution of cytokine TNF-α

to an immune response against tuberculosis (Ray et al., 2009), where the influential

biological mechanisms have been suggested by establishing the simulation parameters

which reverse the immune response.

The aforementioned tuberculosis study varies the value of a range of parameters

of interest and calculates a Partial Rank Correlation Coefficient (PRCC), a statistical

measure of correlation between parameter input value and response (Ray et al., 2009).

The result produced therefore has some link to the parameter value sampling procedure

used. Recent work has taken this a stage further and considered the importance of

parameter value sampling in the application of global sensitivity analysis methods

(Read et al., 2012). The authors technique utilises a latin-hypercube design (McKay

et al., 1979) that aims to select sets of parameter values that cover the entire parameter

space, while ensuring no correlation is formed between the value sets that are generated

(Saltelli et al., 2000). This rigid approach to the selection of parameter values ensures

that there is no sampling bias that could affect the PRCC that is calculated from

simulation results generated from the parameter sets.

Additional studies have also examined the use of a different sampling and analy-

sis technique, the extended Fourier Amplitude Sampling Test (eFAST) (Marino et al.,
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2008; Saltelli, 2004; Saltelli and Bollardo, 1998), which uses fourier frequencies to gener-

ate parameter value samples. For each parameter of interest, values are chosen through

use of a sinusoidal curve of a particular frequency through the parameter space, with a

number of values chosen from points on the curve. The chosen frequency can then be

utilised in calculation of a statistical measure revealing the proportion of variance that

can be explained by perturbing the value of each factor, which suggests how sensitive

the simulation and biological system is to that parameter. This technique has been

applied for a number of ODE based models (King and Perera, 2007; Marino et al., 2008;

Zhao and Tiede, 2011), yet has not found application in statistical analysis of agent-

based implementations. The combination between the inherent stochasticity of such

models and the complexity of this technique may make such an analysis intractable,

as the analysis requires a large number of parameter value sets. For stochastic sys-

tems, where uncertainty is addressed by performing replicate runs, this may lead to an

intractable number of simulation runs, especially if the number of parameters is high

(Tarantola et al., 2006). There is a balance between the insight this technique provides

and the computational resources available. Where the number of parameters is high,

the latin-hypercube technique described in the previous paragraph is more appropriate

(Read et al., 2012).

Application of Sensitivity Analysis Techniques

The use of sensitivity analysis techniques may be well established in other fields (Saltelli

et al., 2000) but it is only recently that these techniques have found application in

simulations of biological systems (Marino et al., 2008; Ray et al., 2009; Read, 2011;

Read et al., 2012). Where examples do exist, these tend to detail an application

of the techniques to ODE rather than stochastic agent-based models (Read et al.,

2012). Although the added complexity of agent-based models means any analysis

would require considerable computational resources (for reasons discussed in section

1.5.3), the insight that can be gained using the techniques, in terms of confidence in

simulation result, makes the analysis worthwhile.

It was noted in section 1.4.2 that an increase in the potential and use of computa-

tional models has coincided with the development of a number of packages that aim

to assist with simulation development. Although a number of sensitivity analysis tech-

niques have been described, there currently exists no generic package for determining

how representative a simulation is of its biological system and understanding how in

silico results can be interpreted in the context of the biological domain. It could be sug-

gested that if a package incorporating a number of techniques such as those described

above was developed, a full sensitivity analysis of a simulation would be eased and thus

encouraged. Increased use and exposure may then make this analysis an essential part

of any study that uses simulation, for both ODE and agent-based implementations.
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1.5.5 Verifying in silico Experimentation Results

It could be suggested that a straightforward comparison between a simulation result

and a result from published literature or laboratory experiment provides a strong in-

dication of the simulators reliability as an experimental tool. It is understandable to

think that if the simulator replicates the expected result, the system dynamics have

been captured. In his analysis, Read (2011) has a negative opinion of this technique,

applied in work by Linderman (2011) among others, suggesting that such comparisons

are open to accusations of being ’cherry-picked’ to support the intended result, unless

such experimentation was detailed prior to the simulators implementation. However,

this is open to interpretation. For example, in a model that captures cell behaviour

leading to an observed physical property, such as an aggregation of cells, the focus is on

correctly capturing cell behaviour rather than the emergent property. Thus it would

be sensible to compare this emergent behaviour to a number of previously observed

examples. The argument is also dependent on whether the comparison is quantitative

or qualitative, especially in cases where the comparison is visual rather than statistical.

It is therefore difficult to rule this out as a method of verification: it is dependent on

the model and the type of results being used in the comparison.

Instead Read (2011) supports a stronger approach noted as best practice, where sim-

ulation predictions are verified in the laboratory (Bauer et al., 2009). Although this is

definitely a strong method and one which closes the loop in terms of simulation-derived

laboratory experimentation, it requires a high level of confidence in that simulation re-

sult. However the author does note that this has drawbacks: laboratory investigations

are expensive, time-consuming, require specialist staff, and may require the use of

animals and thus ethical certification, and thus should be performed as a final step

once confidence in the simulation result is assured. However, there are successful ex-

amples where simulation predictions have been supported by laboratory investigations

(Efroni et al (2007) being one), suggesting there is scope if computational modelling is

integrated with laboratory experimentation from the initial design stages.

1.5.6 Simulation Availability

Performing all the steps above may make a convincing argument that a good level

of confidence in the simulator as a representative tool is established. However, one

additional and elementary step may aid the development of confidence in simulation

as an experimental tool. Although the use of modelling and simulation is becom-

ing increasingly popular, and results published alongside biological experimentation in

high-impact journals (Kleinstein, 2008), it is rare to have access to the simulators that

have been generated. Granting access to the field would provide experimental immu-

nologists with the opportunity to examine the tool themselves, to both provide input

into future iterations of the simulator and use the simulator to inform their future



40 CHAPTER 1. INTRODUCTION

investigations. This is an important consideration if this approach is to become widely

accepted and confidence grow in the use of computational modelling as a technique.

1.6 Thesis Overview

This thesis details the development and use of statistical and simulation tools that

enable a computational exploration of lymphoid organ development. This is driven by

the following aims:

1. Development of a robust computational model that replicates emergent behaviour

observed ex vivo and in vivo.

2. Development of a statistical toolkit to help determine the relationship between

simulation results and the biological system.

3. An exploration of the biological factors influencing behaviours that emerge through

interactions between biological factors.

4. Application of the simulation and statistical toolkit to perform novel in silico

experimentation.

Aim 1: Development of a robust computational model that replicates emer-

gent behaviour observed ex vivo and in vivo

Previously described examples demonstrate that computational models can provide

useful insight in the continued exploration of biological systems. To date, this tech-

nique has not been utilised in furthering the understanding of immune system develop-

ment. Previously published investigations have led to the generation of a basic model

of secondary lymphoid formation (Section 1.3.2). This model will be used in the devel-

opment on a computer simulation of Peyer’s Patch development. Available biological

data and published results will then be utilised to ascertain if the simulation is an

adequate representation of the development of these lymphoid organs. Transparency

in the design and implementation of this simulation will be a key aspect of this study,

ensuring that the strengths and limitations of the simulator are understood.

Aim 2: Development of a statistical toolkit to help determine the relation-

ship between simulation results and the biological system

This chapter has detailed the availability of a number of simulation tools and frame-

works that can aid simulation development. However the simulation is developed, it

is important to establish the link between the results and the real world system, to

indicate whether the result is providing biological insight. Although a number of un-

certainty and sensitivity analysis techniques that can help establish this link have been
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described (Read et al., 2012; Saltelli et al., 2000), a comprehensive statistical package

for the analysis of simulation results does not yet exist. This may explain why some

investigators make little attempt to elucidate how representative a simulation result is

(Read et al., 2012). The development of a package of statistical techniques that can be

applied to any simulation has the potential to address this, and thus increase overall

confidence in the use of simulation as an exploratory tool.

Aim 3: An exploration of the biological factors influencing behaviours that

emerge through interactions between biological factors

Using the developed simulation and statistical toolkit, a quantitative analysis of the

influence of each biological factor in the behaviour that is observed can be undertaken.

This provides insight that can not currently be revealed using current laboratory ap-

proaches. This analysis focuses on two emergent aspects of the system: the formation

of aggregations of cells that become Peyer’s Patches and hematopoietic cell behaviour

observed ex vivo (Patel et al., 2012). This furthers the understanding of the role of

each biological factor in influencing that emergent behaviour.

Aim 4: Application of the simulation and statistical toolkit to perform novel

in silico experimentation

Whereas the above aims to explore the contribution of biological factors in behaviours

that are observed, computer simulation can be used to perform in silico experimenta-

tion. Such experimentation may be used to either support or inform current laboratory

investigations where possible, or to support the generation of hypotheses which are dif-

ficult to examine in a laboratory. Two sets of in silico experiments are conducted:

an in silico replication of previously published laboratory investigations, and novel in

silico investigations that aim to address areas of biological understanding that remain

incomplete.

1.6.1 Thesis Structure

This thesis addresses these aims in six chapters, organised as follows:

Chapter 2 describes the methodologies used and the creation of the tools required

to perform an in silico analysis of lymphoid tissue formation. The chapter describes

the creation of a simulation of lymphoid tissue formation, including how confidence is

gained in the use of simulation as an experimental tool through calibration and val-

idation. Next, a package of statistical tools created to analyse simulation results, to

establish their relationship to the biological system, is described. Methods used to

generate in silico experimentation results from the simulator are also detailed.
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Chapter 3 utilises the simulation and statistical tools developed in Chapter 2 to

examine key factors that influence hematopoietic cell behaviour during hour 12 and 72

of PP development, in conjunction with on-going ex vivo culture system investigations.

Chapter 4 examines the use of simulation as a tool for performing in silico experi-

mentation, replicating previously performed laboratory experimentation and perform-

ing novel investigations. The latter half of the chapter utilises the statistical toolkit

created in Chapter 2 to suggest the key factors that influence Peyer’s Patch character-

istics (e.g. size).

Chapter 5 utilises the simulator to perform a time-lapse analysis of the develop-

ment process, identifying the stages of development when different biological factors

may be influential. This aims to determine if PP development occurs in distinct phases.

Chapter 6 provides a critical review of the work that has been conducted in rela-

tion to the project aims identified above.



Chapter 2

Methods and Tool Development

2.1 Introduction

This chapter details the methods used in addressing the thesis objectives specified

in the previous chapter. For the thesis objectives to be met, suitable tools needed

to be developed. This chapter not only describes the methods that have been used

in the explorations of lymphoid tissue formation that follow, but also describe the

development of the tools needed to perform these explorations.

The chapter begins by describing the development of a model and simulation that

replicates Peyer’s Patch development. In some respects this can be thought of as an

application of the CoSMoS process (Andrews et al., 2010) that was described in Chap-

ter 1. A series of models were created that describe gut-associated lymphoid tissue

development in the mouse. Developed in close collaboration with experimental immu-

nologists, these models detail the biological information that has been encapsulated, a

justification on any abstractions and assumptions that were made, and a specification

of how this information was encoded within a computer implementation. From these

models, a simulation of the process has been implemented that captures the abstrac-

tion of the biological system specified, creating a tool through which the explorations

in the following chapters can be performed. This chapter details the techniques used

to develop, calibrate, and validate this tool, ensuring it is fit for the purpose of this

study.

One of the motivations for implementing a computer simulation of a biological pro-

cess is that is enables in silico experimentation to be performed. Using a well designed

simulator, this has the potential to explain any underlying data on which a simulation

has been constructed (Guo and Tay, 2005) and provide novel biological insight by fa-

cilitating experimentation that is impractical or impossible to perform using current

laboratory methods (Andrews et al., 2010; Efroni et al., 2003). Many statistical meth-

ods to aid analysis of simulation results have been described (Marino et al., 2008; Read

et al., 2012; Saltelli, 2004; Saltelli et al., 2000), yet there is currently no comprehensive

statistical package available that aids the analysis of simulation results. Thus a statis-

43
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tical toolkit, spartan, has been developed to provide a comprehensive set of tools for

understanding both uncertainty in simulation results and the relationship between the

simulation and the real-world system. Each technique included within this toolkit is

detailed in this chapter. The analysis tool developed has been utilised in explorations

of lymphoid tissue formation in the chapters that follow.

With these tools in place, explorations that address the objectives in this thesis can

be performed. The final sections of this chapter detail the methods used to perform

the investigations in the following chapters.

2.2 Pairing Current Experimental Techniques with Modelling
and Simulation

2.2.1 Methodology

The methodology involved in modelling and simulating lymphoid tissue development

utilised the principled approach specified in the CoSMoS Framework (Andrews et al.,

2010), described in section 1.4.2. In this process, the biological system being explored

is termed the domain of interest. Understanding of the functional process is captured

in a series of models: domain, platform, simulation, and results. Each of these models

is considered in turn below:

2.2.2 Domain Model

Overview

The initial stage is the creation of a domain model that encapsulates the current

scientific understanding of the biological system, scoping both what is to be modelled

and the research question the model is to address. This is a model of the biological

model, one completely isolated from any thoughts on how the biological system could

be translated into computer code (a simulation). This is important as at this point

the details of how the simulation is to be implemented are not of concern, and may

distract from the specific modelling of the biological system. The domain model may be

a diagrammatic representation, detailing biological factors including cell types, factors

that influence cell behaviour (e.g. chemokines, adhesion factors) and a description of

the environment in which interactions between these factors take place (e.g. the foetal

intestinal tract). The model will also detail any emergent properties that are observed

through interactions between biological factors. Such behaviours could include the

formation of cell aggregations or changes in cell behaviour.

The CoSMoS Framework (Andrews et al., 2010) stresses the importance of collab-

oration with an expert in that biological system when generating the domain model.

This aids interpreting results in the literature, with a view to including these in the
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model, and potentially permits the inclusion of results from any ongoing laboratory

investigations the collaborator may be involved in. In the scoping of the biological

features that are to be included, many areas will be revealed where the current bio-

logical understanding is incomplete. Collaboration in domain model generation allows

for suitable assumptions and abstractions to be made that have biological justification.

These are documented for sake of scientific transparency.

This section presents a domain model of Peyer’s Patch development that has been

developed based on the literature described in Chapter 1 and in collaboration with

experimental immunologists, a first stage in the development of a tool for exploring

lymphoid tissue development. Through undertaking this process, a full exploration of

the domain (foetal PP development) has been performed and captured using a number

of diagrammatical techniques. Areas where the underlying biological understanding is

incomplete have been identified and suitable assumptions made and documented where

necessary.

A System-Level Overview

Figure 2.1 captures a delineation of both cell behaviour observed in ex vivo culture

results described in section 1.3.3 and results from published literature, using a dia-

grammatical technique exemplified by Read et al (2009). Although this diagram has

no formal schematic, it is useful in identifying the factors in the biological domain that

are to be included in the domain model, the behaviours that become apparent upon

interaction between them, and how these behaviours lead to the system behaviour

observed.

The top of Figure 2.1 details the high level phenomena that has been observed in the

system, either experimentally or detailed in the literature. The dotted line separates

the observed phenomena from hypotheses that are believed to be responsible for their

occurrence. It is these behaviours that will be captured in the series of models that

follow. Where these hypotheses could explain an observed phenomenon, a connection

is made between the two. Where there is still uncertainty in what causes the observed

phenomenon, no hypothesis is included on the diagram. Connected to these hypotheses

are the entities in the biological domain that are believed to be responsible for the

behaviour that emerges, and are thus included in the domain model. Each is in turn

connected to other entities that it may interact with to produce that hypothesis.

Observations from the ex vivo culture system and experimental results in the litera-

ture has led to the formation of three high level observable phenomena that are detailed

on the top of Figure 2.1. The first, a small clustering of hematopoietic cells around a

stromal cell after thirteen hours, can be observed in cell tracking images taken in the

preceding hour, as seen in Figure 1.3.3. There is no expected behaviour linked to this

observation due to the uncertainty in the factors causing this to occur. The second, an

alteration in cell velocity and displacement, has become apparent through a statistical
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analysis of the cell tracking data over that hour, presented by Patel et al (2012). The

authors suggest that this is caused by interactions between the cells leading to an ex-

pression of adhesion factors. Thus this hypothesis is linked to LTin and LTi cells. The

final observable phenomenon are the large clusters of hematopoietic cells around LTo

cells that are visible along the length of the foetal mouse gut at E17.5. It is widely

accepted in the literature that this emerges through LTi cell response to chemokine

expression (Cyster, 1999; Luther et al., 2003; van de Pavert and Mebius, 2010; Randall

et al., 2008). This hypothesis is in turn linked to the LTi cell, which both triggers

LTo cell differentiation that upregulates expression of chemokines and expresses the

receptors to respond to this expression (Luther et al., 2003; Randall et al., 2008).

Through a process of delineating the system, it is possible to make simplifications

to make the generation of a model tractable, while ensuring the expected behaviours

are reproduced. It is intractable to represent all aspects of the biological system in a

model, and thus a subset are included that are sufficient to produce the phenomenon

that is observed (Read, 2011). In this instance, Figure 2.1 denotes the involvement

of three chemokines (CXCL13, CCL19, CCL21) and three adhesion factors (VCAM-1,

ICAM-1, MAdCAM). A full quantification of the expression levels of each of these

molecules has not yet been possible. As this is the case, a simplification has been

made in the initial model where these are considered as one adhesion factor and one

chemoattractant factor respectively. It can also be noted that IL-7R signalling is not

included on the diagram. It was noted in section 1.3.2 that IL-7R signalling is thought

to be responsible for causing the expression of LTαβ by LTi cells, through a process

that is not currently understood. The abstraction in Figure 2.1 makes the assumption

that IL-7R triggering occurs and hematopoietic cells express LTαβ, and thus have the

capability to interact with stromal cells as observed ex vivo and in vivo . The focus is on

capturing the interactions that lead to the higher-order behaviour, and thus explicitly

modelling the upregulation of LTαβ is not necessary. The documentation of cell level

assumptions and abstractions such as this is detailed in the following section.

Capturing Cell-Level Dynamics

Each of the key cell types identified in the domain is represented explicitly in the domain

model. For each cell type, states (observed behaviours or gene expression profile) that

the cell might exist in and the interaction(s) that must take place for that cell to

change state are examined. Such descriptions are documented through the use of State

Diagrams, a documentation method closely related to that included within Unified

Modelling Language (UML) (Rumbaugh et al., 2005). UML is a notation widely used

in software engineering that has also found application in the specification of models of

biological systems (Bersini and Carneiro, 2006; Read et al., 2009). Through creating

the domain model, biological parameters are identified and recorded. Some of these

parameters have known values that have been determined experimentally or noted in
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the literature, whereas the values of others are currently unknown. Where this is the

case, suitable assumptions have to be made and clearly justified. This section details

the dynamics for each cell type identified in the system delineation step and in the

literature at an individual level.

1. Hematopoietic Cells (LTin/LTi Cells)

Figure 2.2 depicts the domain model state machine diagrams for the hematopoi-

etic cell populations CD4−CD3−IL-7Rα−CD11b+CD11c+, or LTin cells, and

CD4+CD3−IL-7Rα+c-kit+, or LTi cells, involved in Peyer’s Patch development.

Although two distinct populations, both cell types are believed to migrate from

the foetal liver and can be detected in the foetal mouse intestine from E14.5

(Mebius et al., 2001). Experimental work by Veiga-Fernandes et al (2007) has

revealed that cell movement initially follows that of a random walk. Thus after

migration, cells exist within the first state, moving randomly across the intestinal

tract. This movement is at a speed within a range also determined by the authors.

Transition out of this state differs dependent on cell type:

(a) Lymphoid Tissue Initiator (LTin) Cells

Investigations by Veiga-Fernandes et al (2007) also revealed the importance

of RET in triggering lymphoid tissue formation, a receptor expressed by

LTin cells. Upon contact with an LTo cell, RET binds to an appropriate

ligand expressed by the LTo cell, thought to be ARTN, stimulating LTαβ

expression on the LTin cell. Cell contact has led to changes in the cell char-

acteristics, thus the change in state as noted in Figure 2.2a. Cell movement

from this point is then influenced by the level of localised expression of ad-

hesion factors. Should the level of expression of these factors be sufficient,

it is assumed that LTin cell movement is localised around the LTo cell, as

revealed in ex vivo observations by Patel et al (2012) described in section

1.3.3. Where the level is insufficient, the cell moves away, returning to a

state where its movement is random.

(b) Lymphoid Tissue Inducer (LTi) Cells

In contrast, LTi cells are thought to express receptors for chemoattractants

expressed by differentiated LTo cells. An LTi cell will reside in a state mim-

icking a random walk until chemotaxis is triggered through localised levels

of chemoattractant expression. Where this occurs, LTαβ receptor expres-

sion is upregulated and the cell begins to move towards a primordial patch,

thus a change in state is noted in Figure 2.2b. With chemotaxis mediating

LTi recruitment, contact between an LTo and LTi cell is promoted. Such
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contact leads to LTo cell differentiation through lymphotoxin receptor sig-

nalling, and the upregulation of chemokine and adhesion factor expression

as detailed in section 1.3.1. A third state has been noted on Figure 2.2b to

denote that this contact has occurred. Similarly to LTin cell motility after

contact with an LTo cell, cell movement from this point is then influenced

by the level of localised expression of adhesion factors. Should the level

of expression of these factors be sufficient, cell movement remains localised

around an LTo cell. Where the level is in sufficient, an LTi cell may migrate

away from a a primordial patch, either returning to a state where the move-

ment is random or being influenced by expression level of chemoattractants

in its vicinity.

Through collaboration with experimental immunologists, hypotheses can

also be included in the model that have yet to be published or widely ac-

cepted, with the aim of judging the affect that hypothesis has on observed

emergent behaviour. In this case, collaborators assisting with the design of

the model have added such a hypothesis: that LTi cells could potentially

cause the differentiation of non-RET ligand expressing LTo cells within the

gut surface. Such differentiation occurs through a number of contacts be-

tween these cells, deemed immature LTo cells, and LTi cells. Thus an addi-

tional state is added to the LTi state diagram in Figure 2.2b, where the LTi

cell is in contact with an immature LTo. This contact is assumed to be for

a brief period, after which the LTi cell returns to a state where movement

is either random or being influenced by chemoattractant expression.

A series of assumptions have been made concerning LTin and LTi cell behaviour,

listed in Tables 2.1 and 2.2. For LTin/LTi contact with an LTo cell, the assump-

tion has been made that a stable contact which leads to LTo cell differentiation

does not definitely occur when two cells come into contact. This introduces the

need to capture binding affinity within the model. It is also assumed that the

response to adhesion factor receptor signalling increases as adhesion factor ex-

pression in the vicinity is increased, thus making the LTin/LTi cell more likely to

remain within a forming PP. However, some stochasticity in cell behaviour must

remain, and thus there is a chance that a cell may not respond to adhesion factor

expression. With regards to chemokine expression, it has not yet been possible

to quantify expression level over development time. The assumption has thus

been made that chemokine expression diffuses over distance, getting stronger as

distance from the LTo decreases. It is also assumed that the expression does not

decrease.

The process of creating a domain model of LTin and LTi cell states and interac-

tions has led to the identification of a number of parameters that capture aspects
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of these described characteristics. These parameters, and the value determined

from the literature, are detailed in Figure 2.2.

2. Lymphoid Tissue Organiser (LTo) Cells

As detailed in section 1.3.1, LTin and LTi cells aggregate around non-hematopoietic

VCAM-1+ICAM-1+ stromal cells, termed LTo cells. An analysis of foetal mice

intestines taken at E15.5, using flow cytometry, determined that 20% of cells were

stromal. The way these cells are distributed in the epithelium remains unknown.

With the agreement of the collaborating immunologists, a normal distribution

has been assumed, and initial explorations will assume that 20% of the epithe-

lium is comprised of stromal cells. This observation raised interesting questions

prior to creation of the domain model, concerning how the number of aggrega-

tions (patches) that form is limited if this were the case. If this is correct, and

there were no limiting factor, it would be expected that a large number of PP

would form, rather than the 8-12 previously observed (Figure 1.2). Thus a further

assumption is made that only a subset of these stromal cells have the capability

to differentiate into VCAM-1+ LTo cells that have the capability to mediate PP

development.

Figure 2.4 depicts the domain model state machine diagram for this cell type.

In contrast to the hematopoietic cells in the previous section, it can be noted

that there are four potential initial states (black circles). Working from left to

right, the first two are states that LTo cells may exist within at E14.5, when PP

development is thought to commence (Mebius et al., 2001): the first for stromal

LTo cells that have the capability to mediate PP development and the second

for stromal LTo cells that do not. LTo cells that do have the capability express

a ligand for RET. Ligation of the RET ligand upregulates LTαβ expression on

LTin cells and causes LTo cell differentiation, thought to trigger the process of

PP development (Veiga-Fernandes et al., 2007). As the RET pathway has this

key role in development, it has been assumed that LTo cells that do not have the

capability to mediate PP development do not express RET ligand. At present

the ratio between the two subsets of LTo cells remains unknown, yet could be

established through experimentation using the simulator at a later stage. Should

the cell be in the second initial state, where RET ligand is not expressed, there

is a theory that these cells could also differentiate under certain environmental

conditions, namely a large number of contacts with LTi cells and being located

within a set distance from another differentiated LTo cell. The second initial state

on the diagram is included to allow this theory to be considered if necessary. The

third and fourth initial states in Figure 2.4 are triggered upon LTo cell mitosis.

The assumption has been made that LTo cells divide every 12 hours, and the

resulting cells have the same attributes as the parent cell. Thus these initial

states are required to capture that process.
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Once LTo cell differentiation has occurred through the RET signalling pathway,

further differentiation and thus a change in state occurs on stable contact with

an LTi cell, upregulating the expression of chemokines CXCL13, CCL19, and

CCL21. In this state, the cell will also continue to upregulate the expression of

adhesion factors on each stable contact with an LTin or LTi cell. The assump-

tion has been made that this continues up to a point where expression of both

chemokine and adhesion factors is saturated, at which point the cell enters a final

state that has been deemed as mature.

Biological parameters that have been identified in the generation of this model

are documented in Figure 2.4, and again assigned values from the literature

where possible. Similarly to the LTin and LTi domain models, a number of

assumptions have been made concerning LTo cell behaviour and documented in

Table 2.3. These mainly concern chemokine and adhesion factor expression by an

LTo cell, both of which have yet to be quantified experimentally and thus need

to be assumed.

Capturing Cell-Level Interactions

Within the domain model a further UML diagram, an Activity Diagram, is utilised

to specify how the cells detailed in the state diagrams interact. It is through these

interactions that the observed system dynamics are expected to emerge. This dia-

gram documents the order in which cellular events and interactions take place for this

emergent behaviour to be observed. Boxes represent an event that the cell may be un-

dertaking during the process, with arrows representing a flow of actions after the event,

that become possible if the condition on the arrow is met. Diamonds represent two or

more actions that may be possible, with the resultant flow dependent on meeting the

condition on one of the arrows.

Behaviour that has been observed both in in vivo imaging (Veiga-Fernandes et al.,

2007) and ex vivo culture systems (Patel et al., 2012) emerges through interactions

between three cell types specified in the state machine diagrams, mediated by the

expression of adhesion and chemoattractant factors. The Activity Diagram for this

model can be seen in Figure 2.5. This activity diagram captures two forms of emergent

behaviour that is observed. The first of these is the statistically significant change in

cell motility around a forming patch, as observed in the ex vivo culture system (Patel

et al., 2012) described in section 1.3.3. The second is the aggregation of cells that is

characterised at the end of hour 72 as an primordial Peyer’s Patch. Whereas current

experimental techniques have provided a quantification of a change in cell behaviour,

no current investigations have provided quantitative data on what should be considered

as a Peyer’s Patch at the end of hour 72, in terms of number of cells or area occupied

by such an aggregation. Although this is problematic, the development of such a model

can be used to help address this prior to such data becoming available.
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Development Period and Spatial Dynamics

This section of the domain model is a specification of the environment in which the

interactions described above are taking place, and the time-period over which this

occurs. This ensures that the model considers any restrictions that are imposed by

environmental effects. Having this specification aids the decision on which modelling

methodology to adopt (i.e. ODE or agent-based) when this is considered in the platform

model.

From the activity diagram in Figure 2.5, two forms of emergent behaviour were

noted: an alteration in cellular behaviour when in the vicinity of an LTo cell and

the identification of aggregations of hematopoietic cells along the gut. The process

is known to commence at E14.5 with the migration of hematopoietic cells into the

intestine (Mebius et al., 2001), with aggregations of hematopoietic cells being visible

at E17.5 (Randall et al., 2008). Thus this model captures this 72 hour period. The

maturation of LTin and LTi cells that occurs prior to E14.5 (van de Pavert and Mebius,

2010), and PP compartmentalisation that occurs after E17.5 (Hashi et al., 2001) is

outside of the scope of this model.

The emergent behaviour has been observed in one of two settings: either in vivo

imaging of the developing gut (Veiga-Fernandes et al., 2007) or in ex vivo culture (Patel

et al., 2012). The domain model generated here will focus on capturing the emergent

behaviour as it would occur in the developing gut. To accurately represent the foetal

intestine in which the cells interact, and capture the dynamic nature of the developing

tract, images were taken of the developing mid-gut from twelve mouse embryos, six at

E14.5 and six at E15.5, using stereomicroscopy (Zeiss). Measurements of the length

and circumference of each were taken using ImageJ (Fiji). Flow cytometry has been

used to determine the percentage of cells that are LTin, LTi, and LTo cells, at E15.5.

These figures can be used to calculate a representative number of cells present in the

gut at that time-point.

A representative size for each cell type has been gathered from the literature (Veiga-

Fernandes et al., 2007). A value range within which a cells velocity will exist has been

determined by examining the behaviour characteristics of cells in Patel et al’s (2012) ex

vivo culture system that are further than 50µm from a ligand, and thus are less likely

to be influenced by adhesion and chemoattractant expression. The velocities of these

individual cells can be seen in Figure 2.3, revealing cell velocities can be considered to

be normally distributed.
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Figure 2.1: Expected Behaviours diagram, detailing the phenomena observed in the
domain being modelled, and the behaviours which emerge from interactions thought to
be responsible for them
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LTin
(Domain)

Contact with RET Ligand expressing Cell

Contact Cell is a RET Ligand
Expressing LTo Cell
AND
Bind between cells is sufficient
AND
LTo maturation level
sufficient to prolong contact

Distance
between cell
and RET Ligand
Expressing Cell
< σ/2 + τ/2

Entry to tract between start of simulation
and endpoint set by ε

LTo adhesion levels
insufficient to prolong contact

Random movement on tract surface

Localised movement around LTo mediated by adhesion

Contact Cell is a RET Ligand
Expressing LTo Cell
AND
Bind between cells is sufficient
AND
LTo maturation level
insufficient to prolong contact

Contact Cell is not a
RET Ligand Expressing LTo
OR
Bind between cell & LTo
cell is insufficient

(a) LTin Cell State Diagram: Domain Model

Entry to tract between timepoints
set by γ and η

Receptors bind to chemokine
expressed in the vicinity of the cell

No expression of chemokines
in cell vicinity

Random movement on tract surface

Response to Chemokine Level in Local EnvironmentContact with Immature LTo Cell

Contact with Cell Expressing RET Ligand

Prolonged Surface Contact (Adhesion Effect)
Distance between
cell and RET
Ligand Expressing Cell
< σ/2 + τ/2

Contact Cell is not
a RET Ligand
Expressing LTo
OR
Bind between cell
& LTo cell is
insufficient

Contact Cell is a RET Ligand
Expressing LTo Cell
AND
Bind between cells is sufficient
AND
LTo adhesion level sufficient
to prolong contact

LTo adhesion level
insufficient to
further prolong
contact

Distance between
cell and inactive stromal
cell < σ/2 + τ/2
(cell is in contact)

Distance between
cell and inactive stromal
cell > σ/2 + τ/2

LTi
(Domain)

(b) LTi Cell State Diagram: Domain Model

Parameter Name in Model Domain Value
τ LTin/LTi Cell Size HCellDiameter 8µm
σ LTo Cell Size LToDiameter 24µm
ω LTin/LTi Cell Speed Lower Bound cellSpeedLowBound 3.8µm/min
ξ LTin/LTi Cell Speed Upper Bound cellSpeedUpBound 8.8µm/min
� LTin Input Time lTinInputTime 72 Hours
γ LTi Input Delay Time lTiInputDelayTime 0 Hours
η LTi Input Time lTiInputTime 72 Hours

Figure 2.2: Domain Model UML State Machine diagrams for hematopoietic LTin and
LTi cells, and biological parameters identified in the creation of the model. All parameter
values have been derived from laboratory explorations detailed in Veiga-Fernandes et al
(2007) and Patel et al (2012).
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Distribution of Cell Velocities Observed in ex vivo Culture System
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Figure 2.3: A breakdown of the cell velocities that were observed for cells in the ex vivo
culture system. This has been calculated from tracking cells > 50µm from the ARTN-
soaked bead (see Section 1.3.3), where no chemokine or attractants are influencing cell
behaviour. Such individual variation is an important aspect to capture in the domain
model.
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If cell within percentage θ of LTo
cells that express RET Ligand

Adhesion Molecule Levels at peak
AND
Chemokine Expression at peak

If distance to LTin Cell σ/2 + τ/2 (cell in contact)
AND
Bind between cells is sufficient

If distance to LTi Cell σ/2 + τ/2 (cell in contact)
AND
Bind between cells is sufficient

Expression of RET-Ligand

Upregulation of Adhesion Molecules

Upregulation of Chemokines

Mature LTo

LTo
(Domain) Immature LTo cell

within vicinity of RET ligand
expressing LTo cell
AND
sufficient contacts with LTi
cells have occurred

OR
Cell exists as a result
of cell division

Cell exists as a
result of cell
division

Cell exists as a
result of cell
division

*

*

*
Where a cell is in a state denoted by a star, this cell will divide after a set period of time. The two resultant cells will be in the same state as the cell prior to division

Parameter Name in Model Domain Value
θ Percentage of LTo cells expressing RET

Ligand
percentStromaRETLigands Unknown

D Cell Division Time lToDivisionTime 12 Hours
τ LTin/LTi Cell Size HCellDiameter 8µm
σ LTo Cell Size LToDiameter 24µm

Figure 2.4: Domain Model UML State Machine diagrams for stromal LTo cell, and
biological parameters identified in the creation of this model. All parameter values have
been derived from laboratory explorations detailed in Veiga-Fernandes et al (2007) and
Patel et al (2012).
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Figure 2.5: Domain Model Activity Diagram detailing the order in which interactions
are thought to occur to produce the the emergent behaviour observed. Where parameters
are noted on the interactions, these can be found in the parameter tables in Figures 2.2
and 2.4
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2.2.3 Platform Model

Overview

The platform model acts as a specification of how the domain model could be encoded

as a computer simulation. Individual cells, the environment, and interactions that

lead to biological state changes are examined and translated into a form that can be

captured in computer code. For example, capturing cell receptor binding affinity could

be achieved through use of a probability function. Such translation therefore leads to

the identification of platform specific parameters, of which the numerical value may

again be unknown. Thus further assumptions are made, based on known biology or

collaborator insight where possible, and documented for scrutiny alongside simulation

results. Critical to the modelling process, emergent behaviour specified in the domain

model is entirely removed from the platform model. Biologically observed behaviour

must emerge through interactions between components and not be encoded into the

model, as this invalidates the simulator as a predictive experimental tool.

Section 1.4.1 detailed a number of potential techniques available that can be applied

in modelling a biological system, including use of ODE’s or agent-based approaches.

The detail in the domain model can now be utilised to determine which methodology

is best suited to addressing the research problem identified. This section details the

generation of the platform model specifying how the domain model described in section

2.2.2 could be encoded as a computer simulation.

Choosing the Modelling Methodology

Potential methodologies that can be applied in the modelling of biological systems were

discussed in detail in section 1.4.1. In the Peyer’s Patch domain model, one of the key

emergent behaviours under examination is the change in individual cell behaviour on

interaction with other cells or biological factors in the environment. Thus the scope is

an individual rather than population level, focusing on the importance of interactions

in mediating this change in behaviour. As this is the case, the application of an

agent-based model is appropriate. Each cell type (LTin/LTi/LTo in this case) will

be created as an agent within the system, with each agent possessing its own state

and characteristics. This ensures it is possible to explore how quantitative changes in

biological factors affect the behaviour of each cell individually.

Capturing Cell-Level Dynamics

This section details how the dynamics for each cell type identified in the domain model

has been translated into a platform model description. Aspects of the detail already

covered in the domain model has not been repeated here, rather this is a detail of how

the aspects in the domain model will be implemented.
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1. Hematopoietic Cells (LTin/LTi Cells)

Although two different cell types, thus two different agent types, the implemen-

tation of the LTin and LTi cell shares some common features. The first of these

is the assignment of speed at which the cell moves. Experimental work by Veiga-

Fernandes et al (2007) has established a range within which LTin/LTi cell speed

resides, as was noted in Figure 2.2. Further to this work, an analysis of the cells

that were tracked in the ex vivo culture system described in section 1.3.3 suggests

cell velocities can be considered to be normally distributed (Figure 2.3). In this

model, cells are assigned a random set speed within the established range using a

Gaussian random number generator, and it is assumed that the cell always moves

at this velocity unless affected by the adhesion or chemoattractant expression.

The second common attribute is the calculation of a respective cell input rate.

The domain model contains the results of flow cytometry analyses that suggests

the percentage of cells that are LTin and LTi cells at E15.5. Similarly to the

assumptions made for LTo cell number (section 2.2.2), the assumption is made

that these cells are normally distributed in the gut at E15.5. Using gut dimensions

measured from stereomicroscopy images and these percentages, an estimation of

the number of LTin and LTi cells in the gut at E15.5 has been calculated (Figure

2.10). As the model captures the time from initial migration of LTin/LTi cells

into the gut, respective input rates can be calculated such that a set number

of cells enter the simulated gut per time-step, ensuring the correct number is

reached at the time-point that represents E15.5. In this model, it is assumed

that this input rate is linear. As no cell counts have been determined at time-

points after E15.5, the assumption has been made that cell input remains at that

rate through to E17.5, the time-point at which this model ends.

Finally, both cells express LTαβ on the cell surface, that binds to LTβR expressed

on the surface of LTo cells. Section 1.3.2 detailed how lymphotoxin signalling has

a key role in LTo cell differentiation, and thus the upregulation of adhesion and

chemoattractant expression. For the purposes of this model, the assumption is

made that lymphotoxin signalling always occurs if a stable bind is formed between

an LTo cell and hematopoietic (LTin/LTi) cell. The occurrence of a stable bind is

controlled through use of a probability function to mimic binding affinity. To date

the value of this parameter is unknown, and thus needs to be established through

a process of model calibration. For LTin cells, RET signalling is modelled the

same way, with RET binding to an LTo cell expressing the required ligand if a

stable bind is formed.

Similarly to the domain model, cell level behaviours are expressed as UML state

machine diagrams that form a specification to be implemented in the simulation

platform. Figures 2.6a and 2.6b detail LTin and LTi cell level behaviour at the
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platform model level respectively. In the majority of cases, a change in LTin and

LTi state is mediated through interaction with adhesion or chemoattractant fac-

tors. As the implementation of these factors is covered in detail in the latter part

of this section, this has not been covered here. Additional cell level parameters

that have been identified in the generation of the platform model, and will thus

be included in the simulation platform, are listed in the table at the bottom of

Figure 2.6. Any further assumptions that have been made are also documented

in Tables 2.1 and 2.2 respectively.

2. Lymphoid Tissue Organiser (LTo) Cells

Figure 2.7 depicts the platform model UML state machine diagram for the LTo

cell, capturing an implementation of the LTo domain model in Figure 2.4. Simi-

larly to the domain model diagram, there are a number of potential initial states.

Again the first two (reading from left to right) captures the hypothesis that LTo

cells detected in the early stages of development may be in one of two subsets:

one where cells express RET ligand and can mediate PP development, and one

where RET ligand is not expressed. Where RET-ligand is expressed, a change in

state is triggered through stable contact with a RET expressing LTin cell agent.

A stable contact is determined through the use of a probability function. For the

alternative subset, the hypothesis generated by the collaborating experimental

immunologists, that the cell could differentiate after sufficient contacts with LTi

cells, has also been captured. Once in this differentiated state, adhesion factors

are expressed, implemented as detailed in Figure 2.9 and described later in this

section.

The remaining three initial states all capture the process of LTo cell mitosis. In

this model, LTo cell division occurs once the cell has been active for 12 hours.

Rather than divide, a new LTo cell agent is added to the model, inheriting the

same attributes as the dividing cell. These three initial states capture that in-

heritance.

Further change in LTo state is triggered through stable contact between the cell

and an LTi cell. In this state, the cell will also express chemoattractant molecules,

as well as adhesion factors. A specification of how chemokine expression can

be implemented is detailed in Figure 2.8. As chemokine and adhesion factor

expression increase, the number of stable contacts between the LTo cell and LTi

cell increases, further upregulating chemokine and adhesion factor expression.

This continues to a point where expression is deemed to be saturated, controlled

by two parameters. Where this occurs, the cell changes into a further state where

it is deemed to be mature.

It can be noted that it is possible to transition from differentiated LTo states to a

state where RET-ligand is down-regulated. This is an experimental feature that



60 CHAPTER 2. METHODS AND TOOL DEVELOPMENT

has been included in the model in consultation with the experimental immunol-

ogists, which has the potential to investigate the effect on patch development if

RET-ligands were inhibited at certain time-points in development.

Capturing Spatial Dynamics

Figure 2.10 specifies how the environmental measurements captured from stereomi-

croscopy images of the developing gut have been translated into measures that can

be used to create a representative in silico environment. Parameters identified in the

creation of this specification are listed in the table at the bottom of Figure 2.10. A

scale has been set such that 1 pixel represents 4µm. The platform model makes the

additional assumption that the emergent behaviour dynamics can be recreated using

a 2D environment, where all interactions and cell movement is occurring on the gut

surface. This 2D plain will be considered semi-toroidal in that the top and bottom are

connected, forming a continuous plain across the intestine width. In reality, Peyer’s

Patches are 3D structures and cell aggregations form on a 3D scaffold. However, form-

ing the aggregation on a 2D plain is a suitable abstraction in this case due to the lack

of quantitative data to define a Peyer’s Patch. Later results in this chapter will detail

a calibration process that will form a measure of what a ’patch’ is in terms of the

simulation, and it is this measure that can be used as a baseline when performing in

silico experimentation to explore the process of cell aggregation.

With a scale set that translates the biological measurements to pixels, cell sizes

and speeds have also be translated accordingly, ensuring a direct mapping between the

real and simulated system. To capture the cell velocity distribution observed in Figure

2.3, a cell speed will be derived using a Gaussian random number generator. With

this being the case, a continuous coordinate grid is preferable, allowing for greater

accuracy in capturing cell movement dynamics. Thus there will be no set grid-space

in the simulation.

However a grid is used to manage LTo cell location in the model. The grid over-

lays the 2D environment, with each grid square the size of an LTo cell agent. Section

2.2.2 noted how calculations from flow cytometry data have been used to estimate the

number of stromal cells present at E15.5. This is used to calculate the number of LTo

cells that should be placed in the grid at start of any simulation. A percentage of these

are then set to express RET ligand, with the remaining LTo cell agents remaining in

the second subset where no ligand is expressed. The value of this percentage param-

eter remains unknown. For LTo cell division, assumed to occur every twelve hours, a

replicate of the ’dividing’ LTo cell agent is created in the nearest free location on the

grid.

As noted previously, cellular interactions are occurring while the intestine environ-

ment is still developing. As such, the environment starts at pixel dimensions translated

from measurements taken from stereomicroscopy images taken at E14.5, and expands
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at the same rate each simulation time-step until it reaches the dimensions observed

from imaging at E15.5. With no further measurements available, the assumption is

made that the gut continues to grow at the same rate for the remaining 24 hours of

development.

Although it would be preferable, available computational resources may make it

intractable to model the entire length of the intestine. Such an implementation would

capture a representative number of LTin, LTi, and LTo cells. With the implementation

being agent-based, and each of these existing as an individual process, this would

be computationally expensive. The need to perform a replicate number of such runs

(as detailed in section 1.5.3) to reduce aleatory uncertainty inherent in agent-based

simulations does not make this viable. Instead, a 10% section of the length will be

captured, with the number of patches that would be expected to emerge scaled down

respectively.

Modelling Chemokine Expression

The domain model specifies the existence of three chemokines expressed by the LTo

cell: CXCL13, CCL19 and CCL21, that in turn bind to receptors CXCR5 and CCR7

expressed by LTi cells. Expression of chemokines by an LTo cell causes LTi cell chemo-

taxis towards sites of patch genesis, promoting cellular interactions and further upreg-

ulation in chemokine expression, thus expanding the area around a primordial patch

where LTi motility is affected. It was noted in the domain model description that a

full quantitative analysis of chemokine expression levels in the mid-gut during foetal

development has yet to be performed, thus it is difficult to assign a set role to each of

the three chemokines involved. However, PP formation in CXCR5-deficient mice, the

receptor for CXCL13, is significantly reduced (Ansel et al., 2000). Although not exam-

ined in PP formation, mice deficient for CCR7, the receptor for CCL19 and CCL21,

did form a normal number of lymph nodes (Luther et al., 2003). This generates the

hypothesis that CXCL13 expression could have a dominant role in the clustering of

LTi cells.

Taking this into consideration, a simplification has been introduced in the platform

model where CXCL13, CCL19, and CCL21 will be modelled as a single chemokine,

that binds to one single receptor on LTi cells. This will be modelled as an attractant

where level of expression by an LTo cell is directly related to the number of stable

contacts that occur between the LTo cell and LTi cells. As expression increases, the

distance over which this chemoattractant influences cell motility also increases, with

level of expression getting greater as distance to the LTo cell reduces.

This diffusion pattern can be modelled using an inverse sigmoidal curve, as de-

scribed in Figure 2.8. On initial LTo cell differentiation, chemokine expression is low,

and thus only affects a relatively short area around an LTo cell. Thus the equation

of the curve can be set such that the curve is tight. As cellular contacts increase,
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expression increases and the curve can be relaxed by changing the respective input

variable, modelling an increase in the distance that the chemokine is being diffused.

Figure 2.8 then describes how this function is used to calculate chemoattractant level

in the vicinity of an LTi cell, to determine if chemotaxis is induced. This calculation

produces a result between 0 (no expression) and 1 (strong expression). It can be noted

from the description that a threshold is used within this calculation to ensure that a

sufficient level of chemokine expression is in the vicinity of an LTi cell for chemotaxis

to occur. The value for this threshold is currently unknown.

This method of chemokine expression modelling introduces the parameters listed

in the table at the bottom of Figure 2.8. With the current biological understand-

ing incomplete, values for these parameters need to be determined using a process of

calibration once the model is implemented as a simulation.

Modelling Adhesion Factor Expression

A study of the literature reveals the involvement of three adhesion factors in PP devel-

opment: VCAM-1, ICAM-1, and MAdCAM (Yoshida et al., 2001). However as noted

in the domain model description, there is no quantitative data detailing the expression

levels of these three factors. As this is the case, a simplification has been introduced

where the effect of these three adhesion factors will be modelled as just one factor. This

section details the method that will be used to encapsulate adhesion factor expression

and response in the model.

Adhesion factors are expressed upon stable interaction between a hematopoietic

cell and an LTo cell. This model makes the assumption that the increase in expression

is identical with each cell contact, thus the level of expression is directly related to

the number of cellular interactions. Figure 2.9 details this relationship and LTin/LTi

response to expression. An increase in the level of adhesion factor expression influences

the probability that an LTin or LTi cell will remain in the vicinity of the LTo cell

for a prolonged period. This probability increases linearly up to a threshold, set to

ensure some stochasticity remains in cell behaviour, capturing the small likelihood

that adhesion factors may not bind to receptors and thus not influence cell motility.

This model of adhesion identifies two parameters for which a value remains un-

known. These are the slope of the linear equation that captures the relationship

between probability of prolonged adhesion and number of cellular contacts, and the

maximum probability that an LTin/LTi cell responds to adhesion factor expression

(see image in Figure 2.9). Values for these parameters would therefore need to be

established through a process of calibration once this model is implemented.

User Interaction and Data Collection

Within the platform model, consideration is also given into how user interaction and

data collection will be added to the simulator. Table 2.4 specifies the considerations
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that have been given to user interaction and data collection in the case of the lymphoid

tissue development tool being developed here. This acts as a specification of the tooling

that is necessary to include in implementation.

An implementation of the Platform Model will have two interfaces. The first is a

graphical user interface that provides a visual representation of the simulated intestine

tract. This aids the use of any simulator as a visual experimental tool. The second

captures this behaviour without any graphical interface, with the aim of generating

datasets that can be used in statistical analyses. This aids the performance of in silico

experimentation where a high number of replicate runs may be necessary. In both

cases, parameter values are specified prior to simulation run in an Extensible Markup

Language (XML) file. This ensures that the parameters can be adjusted without the

need to access the simulation implementation.

A specification of simulation results and how these should be output is also stated

in Table 2.4. These are discussed in more detail in the Results Model section of this

chapter (Section 2.2.5).
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If contact cell is an LTo Cell AND
Probability of escape <
Probability adhesion factors
prolong contact 2

If contact cell
is not a RET Ligand
Expressing LTo Cell
OR

If distance between cell
and stromal cell < σ/2 + τ/2
(cell is in contact)

AND
Strength of LTi/LTo
bind sufficient 3

Entry to tract between start of simulation
and endpoint set by ε 1

Probability of escape >
Probability adhesion factors
prolong contact 2

Random movement on tract surface

LTin
(Platform)

1: Each cell is assigned a speed using a gaussian random number generator. The cell speed limits in the domain model
(parameters ω and ξ ) are translated into platform model values (1 pixel = 4 microns, see Figure 2.10). This creates limits
for the random number generation that are in pixels/min. As each timestep may not necessarily represent one minute
(number of seconds per time-step is set in parameter Λ ), the lower and upper bounds are recalculated based on the
number of seconds represented per time-step, and stored as parameters Π and Θ respectively
2: Probability adhesion prolongs contact is calculated as described in Figure 2.9
3: Strength of Bind: Result of Probability Calculation where bind occurs if generated random number (0-1) < χ

Localised movement around LTo mediated by adhesion

Stable Contact with RET Ligand expressing Cell

Probability of escape <
Probability adhesion
factors prolong
contact 2

*

Cells that are in a state denoted by a star are deemed to take no further part in the simulation if they leave the right or left
side of the simulated environment

(a) LTin Cell State Diagram: Platform Model

Entry to tract between timepoints
set by γ and η 1

Local Chemokine Level < Φ 4

Random movement on tract surface

Response to Chemokine Level in Local EnvironmentContact with Immature LTo Cell

Contact with Cell Expressing RET Ligand

Prolonged Surface Contact (Adhesion Effect)

Distance between
cell and inactive stromal
cell > σ/2 + τ/2

LTi
(Platform)

If distance between cell
and stromal cell < σ/2 + τ/2
(cell is in contact)

AND
Strength of LTi/LTo
bind sufficient 3

Probability of escape >
Probability adhesion factors
prolong contact 2

If distance between cell
and stromal cell < σ/2 + τ/2
(cell is in contact)

If contact cell is an LTo Cell
AND
Probability of escape <
Probability adhesion
factors prolong contact 2

1: Each cell is assigned a speed using the gaussian random number generator, as described for LTin cells above
2: Probability adhesion prolongs contact is calculated as described in Figure 2.9
3: Strength of Bind: Result of Probability Calculation where bind occurs if generated random number (0-1) < χ
4: Response to chemokine in the vicinity is calculated as described in Figure 2.8
Cells that are in a state denoted by a star are deemed to take no further part in the simulation if they leave the right or left
side of the simulated environment

Local Chemokine Level > Φ 4

*

*

(b) LTi Cell State Diagram: Platform Model

Parameter Name in Model Platform Value
τ LTin / LTi cell size HCellDiameter 2 pixels
σ LTo cell size lToDiameter 6 pixels
Λ Seconds per simulation step secondsPerStep 60 seconds
Π Simulation run cell speed lower bound cellSpeedSimLowBound Calculated
Θ Simulation Run Cell Speed Upper Bound cellSpeedSimUpBound Calculated
χ Probability stable bind occurs on contact stableBindProbability Calibrated
φ Threshold Value that triggers chemotaxis chemoThreshold Calibrated

Figure 2.6: Platform Model UML State Machine diagrams for hematopoietic LTin
and LTi cells, and additional LTin/LTi cell parameters identified in the creation of the
Platform Model
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If cell within percentage θ of
cells that express RET Ligand
and within Υ circumference range

Expression of RET-Ligand

If cell not within percentage θ of
cells that express RET Ligand

No Expression of RET-Ligand

Upregulation of Adhesion Molecules

Upregulation of Chemokines 2

Mature LTo

RET Ligand Down-Regulated

Inactive LToContact Count =β

If Distance to LTi Cell < σ/2 + τ/2
AND
Strength of LTi/LTo bind sufficient 1

If Adhesion Probability (Calculated) = ν 3

AND κ = Z

if time elapsed >ρ

if time elapsed >ρ

if time elapsed >ρ

If distance to LTin Cell < σ/2 + τ/2
(cell in contact) AND
Strength of bind with LTin/LTi sufficient 1

1: Strength of Bind: Result of Probability Calculation where bind occurs if generated random number (0-1) < χ
2: Chemokine Expression Calculation is detailed in Figure 2.8
3: The limit of adhesion factor expression is calculated as detailed in Figure 2.9
Where a cell is in a state denoted by a star, this cell will divide after a set period of time. The two resultant cells will be in the same state as the cell prior to division

LTo
(Platform)

Cell exists as a
result of cell
division

Cell exists as a
result of cell
division Cell exists as a

result of cell
division

*

*

*

Parameter Name in Model Platform
Value

I Initial Chemokine Curve Value initialChemokineExpressionValue Calibrated
Z Maximum Chemokine Curve

Value
maxChemokineExpressionValue Calibrated

κ Chemokine Expression Level chemoExpressionLevel Calculated
A Adhesion Factor Expression Level adhesionExpression 0
π Hours immature LTo cell remains

active
imLToActiveTime Unknown

ρ Hours RET Ligand Expressed numHoursRETLigandActive 72 Hours
χ Probability stable bind occurs on

contact
stableBindProbability Calibrated

β Number of Stable Contacts
required to activate immature cell

immatureContacts Unknown

Figure 2.7: Platform Model UML State Machine diagrams for stromal LTo cell, and
parameters identified in the creation of this model. It can be noted that there are
five starting points on this diagram, and only four on the LTo Domain Model diagram
(Figure 2.4). This captures the abstraction made in the Platform Model that only a
percentage of LTo cells in the simulator will express a ligand for RET (expressed by
the LTin cell). Reasons behind the need for an abstraction are detailed in the domain
model, section 2.2.2.

.
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Modelling Chemokine Expression and Response
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Initial slope set by parameter
 initialChemokineExpressionLevel

Curve continues to relax until at level set by 
 parameter maxChemokineExpressionLevel

Blue − Threshold level at which chemokine expression
 level enough to induce chemotaxis, set

 by parameter chemokineExpressionThreshold

The chemokine expression effect has been mod-
elled using an inverse sigmoid curve, adjusted
such that the top of the curve meets the top of
the y axis (at 1), by setting a constant within
the sigmoid function to 3.

The initial curve is tight, calculated through
using the initial chemokine expression level as-
signed to parameter initialChemokineExpres-
sionLevel. This models expression over a limited
distance, but one which strengthens as distance
to the LTo reduces. With each stable contact be-
tween an LTo and LTi cell, the curve is relaxed
by adjusting the parameter increaseChemoEx-
pression, representing an increase in expression.
With this increase, diffusion affects LTi cells
over a greater distance. This expression in-
creases until a maximum level of expression is
reached, set by parameter maxChemokineEx-
pressionLevel.

With each time-step, an LTi cell performs a move. To determine whether chemotaxis is triggered
during this move, a virtual grid is drawn around the cell, with the centre of each grid space being
placed at the distance the cell is to move (denoted by that particular cells speed). The simulator
then evaluates the chemokine level in each square using the formula:

1

1 + e−(−LToChemokineExpressionLevel+distanceToLTo+sigmoidCurveAdjust)
(2.1)

where the sigmoid curve adjustment is 3, the constant used to make the curve meet the y
axis. Should the level be over a threshold level at which chemotaxis is induced (parameter
chemokineExpressionThreshold), the chemokine level has an effect on that cells behaviour.

The calculated level of expression becomes the probability that the cell will move in
that direction. Therefore it is most likely the cell will follow the level of chemokine expression as
it gets closer to the LTo cell, but there remains some possibility that the cell may not respond
to the level of expression at a greater distance.

Parameter Name in Model Simulator Value
φ Chemokine Expression

Threshold
chemoExpressionThreshold Range: 0-1, Calibrated

B Sigmoid Curve Adjustment chemoCurveAdjust 3
I Initial Curve Value initialChemokineExpressionValue Calibrated
Z Maximum Curve Value maxChemokineExpressionValue Calibrated
ι Increase in expression on

contact
increaseChemoExpression Calibrated

Figure 2.8: Description of how the chemokine factors are included in the Platform
Model. This details how the LTo cell increases chemokine expression with each stable
contact and how the probability that LTi chemotaxis is induced is calculated. The table
details the simulation parameters that have been identified in this process. This figure
has been adapted from that included in Alden et al (2012b)
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Modelling Adhesion Factor Expression and Response
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Slope set by parameter
 adhesionFactorExpressionSlope

Probability threshold set by parameter
 maxProbabilityOfAdhesion

The probability of prolonged cellular contact
mediated by adhesion factors is modelled using
a linear equation, with a slope parameter value
set through a process of calibration (parameter:
adhesionSlope)

Each LTo cell has the same initial adhesion fac-
tor expression level (set by parameter initialAd-
hesion). With each stable contact, the level of
adhesion factor expression increases (parameter:
adhesionIncrement). This increases the proba-
bility that a cell remains in the vicinity of the
LTo cell for a prolonged period. This probability
increases until a threshold is reached (parame-
ter: maxProbabilityOfAdheison). This thresh-
old exists to ensure some stochasticity remains,
and although adhesion factor expression may be
high, there is a chance that an LTin/LTi cell
may move away from the forming primordial
patch

Upon stable contact between an LTo and LTin/LTi cell, the probability of prolonged adhesion is
calculated using the formula:

adhesionSlope ∗ LToAdhesionExpressionLevel (2.2)

where adhesion slope is set during a process of calibration. Should this probability be higher
than the maximum probability threshold (also set during calibration), the probability is set to
the threshold value.

Parameter Name in Model Simulator Value
M Initial Expression of

Adhesion Factors
initialAdhesion 0

Ξ Linear Equation Slope adhesionSlope Calibrated
E Increase in Expression on

Contact
adhesionIncrement Calibrated

ν Maximum Probability of LTi
Response

maxProbabilityOfAdhesion Range 0-1

Figure 2.9: Description of how the adhesion factors are included in the Platform
Model. This details how the LTo cell increases adhesion factor expression with each
stable contact and how the probability that an LTin or LTi cell remains in the vicinity
of an LTo cell is calculated. The table details the simulation parameters that have been
identified in this process. This figure has been adapted from that included in Alden et
al (2012b)
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Modelling the Intestine Environment

Biology: Stereomicroscopy (Zeiss) and ImageJ (Fiji) used to measure length and
circumference of small intestines from twelve mice, six at E14.5 and six at E15.5. Top:
One mouse intestine sample at E15.5. Average intestine length and circumference at
E14.5 and E15.5 were calculated from these measurements. Intestine dimensions at
E17.5 were estimated from the difference in these values.

Simulation: The biological measures inform the generation of the simulation
environment: a 2D representation of the small intestine (represented by the graph
above). 1 pixel = 4µm. X axis: small intestine length; Y axis: small intestine
circumference. Dots represent LTin and LTi cells. Cells that leave the top/bottom
appear on opposite side. Cells that leave right/ left are removed from the simulation

Cell Counts: Estimations of LTin and LTi numbers at E15.5 have been deter-
mined using flow cytometry. To ensure the correct number of cells are created, a linear
input rate is used to create the required number of cells per time-step. This cell input
rate that continues through until the end of the simulation run.

ς = (((Γ/τ) ∗ (Δ/τ))/100) ∗ δ
Υ = (((Γ/τ) ∗ (Δ/τ))/100) ∗ ψ (2.3)

Parameter Name in Model Domain Value Simulator Value
Γ Initial Circumference initialGridHeight 0.966mm 244 pixels
Δ Initial Length initialGridLength 28.80mm 7203 pixels
K Maximum Circumference upperGridHeight 1.016mm 254 pixels
P Maximum Length upperGridLength 29.22mm 7303 pixels
ζ LTo Cell Density stromalCellDensity 20% 20%
Υ Intestine Growth Time growthTime 72 Hours 72 Hours
δ Percentage of cells that are

LTin at E15.5
percentLTinfromFC 0.45% 0.45%

ψ Percentage of cells that are
LTi at E15.5

percentLTifromFC 0.37% 0.37%

ς LTin Input Rate lTinInputRate Calculated
λ LTin Input Rate Function lTinInputRateFunction linear
Ξ LTin Input Rate Constant lTinInputRateConstant Not Used
Ψ LTi Input Rate lTiInputRate Calculated
Υ LTi Input Rate Function lTiInputRateFunction linear
Σ LTi Input Rate Constant lTiInputRateConstant Not Used

Figure 2.10: A description of how the simulation environment relates back to the
developing mid gut, and parameters identified in the creation of this representation
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State Model Assumption

Random Movement
on Tract Surface

Domain There is no attractive influence on an LTin cell any contact
with RET ligand-expressing cells will occur randomly.

Platform Each cell is assigned a speed between the lower limit set by
parameter Π and upper limit set by parameter Θ. This is
chosen randomly from a Gaussian random number genera-
tor.

Contact with RET
ligand-expressing
cell

Domain For lymphotoxin signalling to occur, the bind between the
two cells must be of sufficient strength. If the bind affinity
is sufficient, we assume that cell signalling always occurs.
If contact is with a cell expressing RET ligand yet not an
LTo, and a stable bind occurs, the cells will bind briefly but
no signalling occurs.

Platform Whether LTin and LTo cells bind will be determined by a
probability function. If a chosen probability is > parameter
χ then a stable bind is formed.

Localised
movement around
LTo mediated by
adhesion

Domain An LTin cell will remain in contact with an LTo cell if there
is a sufficient expression level of adhesion factors.

As expression level increases, the LTin cell is more likely to
remain in contact
Though there may be sufficient expression level of adhesion
factors, there is still a possibility that the LTin cell may
move away from the LTo.
Though the cell remains in contact with the LTo, LT
signalling and up-regulation of adhesion factors and
chemokines only occurs on initial contact.

Platform LTin cell will remain in close contact with the LTo cell
making small movements around it.
Prolonged adhesion is decided through use of a probability
function, detailed in Figure 2.9.

Other Assumptions Domain LTin cells migrate into the tract throughout the whole pe-
riod being modelled. All LTin cells are the same size, 8
µm.

Platform Flow cytometry has helped estimate the number of LTin
cells that should be present at E15.5 in development. A
linear input rate is used to ensure this is reached. This rate
remains constant throughout the simulated period.
The environment is modelled as a 2D plane on which all
movement and interactions occur (Figure 2.10). Should an
LTin leave the left/right of the screen, this cell is removed
from the simulation.

Table 2.1: List of assumptions made at both domain and platform model level con-
cerning the behaviour of and interactions with an LTin cell.



70 CHAPTER 2. METHODS AND TOOL DEVELOPMENT

State Model Assumption

Random Movement
on Tract Surface

Domain Cells move randomly until the level of chemokine expression
in the vicinity is above a threshold.

Platform To ascertain chemokine level, the expression level in each
gridsquare around the LTi is calculated (Figure 2.8). If
none of these values is above φ, the cell moves randomly.

Response to
chemokine level in
local environment

Domain Three chemokines are known to play a part in the process
CXCL13, CCL19, and CCL21. However as an abstraction
we will assume these can be modelled as a single chemokine.
IL-7, which could stimulate IL-7 receptor signalling and
regulate chemokine receptor expression levels of LTi cells,
has not been included in the model. The assumption will
be made that there is always sufficient IL-7 present for
chemokine receptor expression to be upregulated.
There is always a small chance that the cell may not re-
spond to the level of chemokine.

Platform Chemokine expression is modelled using an inverse sigmoid
curve (see Figure 2.8). As some stochasticity must remain,
the chance that the cell will move in the direction of the
strongest level is determined by probability function.

Contact with RET
ligand-expressing
cell

Domain For lymphotoxin signalling to occur, the bind between the
two cells must be of sufficient strength. If the bind affinity
is sufficient, we assume that cell signalling always occurs.

Platform Whether LTi and LTo cells bind will be determined by a
probability function. If a chosen probability is > parameter
χ then a stable bind is formed.

Prolonged surface
contact (adhesion
effect)

Domain An LTi cell will remain in contact with an LTo cell if there
is a sufficient expression level of adhesion factors.

As expression level increases, the LTi cell is more likely to
remain in contact. Although there may be sufficient ex-
pression level of adhesion factors, there is still a possibility
that the LTi cell may move away from the LTo
Although the cell remains in contact with the LTo,
LT signalling and upregulation of adhesion factors and
chemokines only occurs on initial contact.

Platform The LTi cell would remain in close contact with the LTo
cell making movements around it. Prolonged adhesion is
decided through use of a probability function (Figure 2.9)

Other assumptions Domain LTi cells migrate into the tract throughout the whole sim-
ulated period. All LTi cells are the same size 8 µm.

Platform Flow cytometry has helped estimate the number of LTi cells
that should be present at E15.5. A linear input rate is
used to ensure this is reached. This rate remains constant
throughout the simulated period. The environment is a
2D plane where all movement and interactions occur (see
Figure 2.10). A cell is removed should it leave the left/right
of the screen.

Table 2.2: List of assumptions made at both domain and platform model level con-
cerning the behaviour of and interactions with an LTi cell.
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State Model Assumption

No expression of
RET ligand

Domain Although we are aware that 20% of the intestine tract con-
tains stromal cells, we assume only a percentage of these
have the potential to become patches.

Platform Where only a percentage of LTo cells are active, all are still
placed on the intestine tract, but interactions only occur
with LTo cells which have the potential to become patches
(that express RET ligand).

Expression of RET
Ligand

Domain Cell will remain active throughout the time period, irre-
spective of whether the cell changes state or not.

Platform All LTo cells which express RET ligand have the poten-
tial to express adhesion factors and chemokines (thus form
patches).

Upregulation of
adhesion molecules

Domain Adhesion molecules are upregulated with every contact
where the strength of the bind is sufficient (Figure 2.9).
Upregulation only occurs on initial contact with the cell;
prolonged contact due to adhesion does not lead to further
upregulation.
Cells in this state will divide after a set number of hours.

Platform Expression of adhesion factors does not degrade over time.
With each stable contact, a counter representing adhesion
factor expression is increased. This determines the strength
of adhesion and probability the cell will remain in contact
(see Figure 2.9).

Upregulation of
chemokines

Domain Chemokines are up-regulated with each LTi/LTo contact
where the strength of the bind is sufficient (see Figure 2.8).
Upregulation only occurs on initial contact with the cell;
prolonged contact due to adhesion does not lead to further
upregulation.
Cells in this state will divide after a set number of hours.

Platform Chemokine expression does not degrade over time.
With each stable contact, a constant that is used to calcu-
late chemokine expression in the sigmoidal curve function
is adjusted (Figure 2.8). This determines the distance over
which the chemokine has an effect.

Mature LTo Domain

Platform Both adhesion molecules and chemokines must have
reached their peak of expression to reach this state.

Other Assumptions Domain LTo cells in all bar the top two states will divide after 12
hours. On division, the cells will possess the same attributes
as the original cell prior to division. It is assumed that
other pathways, such as the NF-κB pathway, are always
activated.

Table 2.3: List of assumptions made at both domain and platform model level con-
cerning the behaviour of and interactions with an LTo cell.
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Consideration Platform Specification
Simulation
Interface

Graphical User Interface:

• Enabled with use of MASON Toolkit

• Environment and cell movement displayed in MASON window,
settings can be varied on simulation control console

Non-GUI Simulator:

• Interaction via XML parameter file read by simulator when
started

Instrumentation Simulation results output as CSV files:

• Tracking results: cells in vicinity of LTo cell between two stated
time-points

• Tracking results: cells >50µm from LTo cell between two stated
time-points

• Cell Positions: X and Y positions of all LTin and LTi cells at a
stated time-point

• LTo Statistics: Value of Chemokine and Adhesion Factor expres-
sion parameters for all LTo cells, at a stated time-point

Images:

• Screenshots every timestep during tracking (for time-lapse movie
generation)

• Screenshots at every 12 hour time-point

• Screenshot at end of simulation

Quantifying Data Stored by Simulation:

• Cell Position (x,y)

• Position when cell tracking commenced

• Position when cell tracking period elapsed

• Distance covered by cell in tracking period

Calculated by simulation:

• Cell track length covered in tracking period

• Cell velocity in tracking period

• Cell displacement in tracking period

Calculated from simulation CSV file output:

• Number of aggregations of LTin/LTi cells formed (patches)

• 2D area of the patches that form

Table 2.4: List of simulation design considerations included within the platform model.
These detail how interaction with the simulation will occur, the instrumentation that is
required, and the quantifying data that will be produced, detailed further in the Results
Model. Whereas the previous figures detail how the biological system is captured, this
is the first time the use of the simulation as a software tool is considered
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2.2.4 Simulator

A computer simulation is created from the specification in the platform model. In this

case, the platform model has been implemented as a computer simulation using the

Java programming language and MASON simulation environment, a cross-platform

toolkit for the creation of multi-agent simulations (Luke, 2005). Each of the cell types

detailed in section 2.2.2 have been implemented as a Java class and methods created

that match the transition events detailed in the state machine diagrams. Expression

of chemoattractants and adhesion factors has been captured as specified in Figures

2.8 and 2.9. A virtual environment has been created that matches the specification

in Figure 2.10. As MASON simulations are executed in steps where each active agent

performs a behaviour set by its current state, developmental time is incorporated by

setting each timestep to represent one minute. This however is a default figure and can

be changed if an exploration requires it. Where an alteration is made, the simulator

adjusts relevant parameters, such as cell speeds accordingly.

2.2.5 Results Model

The results model provides a structure to interpret the results that arise from in silico

experiments performed using the simulator. Having a structure with which to contrast

simulation results with the domain model provides a level of confidence that the sim-

ulator is a fair representation of the system being modelled. A specification is created

that documents the output obtained from the simulation, what domain knowledge this

is compared to, and the statistical methods used to generate this result. Simulator

output is in the form of simulation responses that are deemed to be of biological in-

terest. They may include cell movement properties, factor expression levels, or space

measurements.

For the PP simulation platform, output captured falls into three categories:

Cell Behaviour Responses

The domain model specifies two forms of emergent behaviour, the first of these con-

cerning a change in cell behaviour around the site of a forming Peyer’s Patch. For a

judgement to be made on whether the simulation correctly captures this behaviour,

cell responses need to be captured and contrasted with cell distributions observed ex

vivo (Patel et al., 2012), where cell behaviour was tracked for a period of one hour,

and three responses calculated: path length, velocity, displacement. In the platform

model, a scale was set such that environmental measurements and cell speeds can be

translated back into a form that can be directly compared with the biological mea-

sures. Thus, the simulation platform contains the functionality to track cells for a set

period and produce these three statistical responses for each cell tracked (Figure 2.11).

These responses are output as a comma separated value (CSV) file at the end of the
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tracking period. This produces a distribution of cell behaviour responses that can then

be directly compared to those captured ex vivo .

Although the ex vivo investigation only considered one time-point, for a length of

one hour, functionality has been included in the results model for cell tracking to be

completed at multiple time-points in simulation, for any length of time required.

Patch Characteristic Responses

As has been noted previously in this chapter, characterisation of a PP in simulation is

difficult for two reasons. Firstly, little biological data exists that can be used to classify

what a patch is, in terms of size or area, and the existence of patches tends to be noted

visually rather than through use of any statistical measure. Secondly, PP can form as

3D cell aggregations rather than the 2D aggregations that this model generates. Thus,

even if quantitative data did exist, the two structures are not directly comparable.

However, though these form in 2D, conclusions can still be drawn on how biological

factors are influencing the formation of these aggregations.

The simulator produces four responses that are deemed ’Patch Characteristics’ in

future experimentation in this thesis. The first two are the 2D area of the aggregation of

LTin/LTi cells, and the number of such aggregations that form. These are calculated

using the R statistical package once the simulation run is complete, using X and Y

coordinates of LTin and LTi cells that are output from the simulator as a CSV file.

Potential patches are identified and counted using k-means hierarchical clustering, and

agents that are a greater distance than double the diameter of an LTi cell away from

another cell removed. Cluster size is generated by calculating the area within eight

coordinates selected from the perimeter of the cluster, as detailed in Figure 2.12. Being

in possession of these measures makes it possible to determine the effect quantitative

changes in simulated biological factors has on cell aggregation. The other two measures

detail the level of adhesion and chemoattractant factors expressed by the LTo cell at

the end of the simulation. As these measures are directly related to cell interactions,

this gives an indication of how such quantitative changes in parameter value affected

interactions between the LTo and LTin/LTi cells.

Similarly to the cell behaviour characteristics, cell X and Y coordinates can be

output from the simulation at any time-point, making it possible to examine influences

on cell aggregation over time.

Simulation Snapshots

Alongside the statistical measures generated above, conclusions can also be drawn

from visual simulation output. The simulation platform includes the functionality to

automatically produce snapshots of the simulated gut environment, either at twelve

hour intervals and at the end of simulation, or for each simulation time-step. The

latter enables movies to be generated from simulation runs, or cell tracking analysis to
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be performed using the Volocity software package that is used for the performing the

same analysis for ex vivo and in vivo images.
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in silico Cell Tracking

Agents (LTin and LTi cells) can be tracked at any time-point in the simulation, for any duration of
simulation time-steps. In the ex vivo work, (Patel et al., 2012), three cell responses were calculated
using the software Volocity package and cell tracking images. These responses, cell path length,
displacement, and velocity, are also calculated for the simulator, using the equations below.

Agent position at the start of the tracking period is recorded in agent variable trackingStart-
Position. At the end of the period, the end position is recorded in agent variable trackingEndPosition.

Distance Between Two Coordinates:

The distance between two points, used in these calculations, would be calculated as follows:

diffX = new X location− original X location

diffY = new Y location− original Y location

distance =
�
diffX2 + diffY 2

(2.4)

However, using this formula does not allow for the fact that a cell may roll around the top and
bottom of the screen. To take this into account, an adjuster is introduced. Initially the calculation is
performed with an adjustment of 0. Should a distance be returned that is greater than half the width
of the simulated tract, a roll-around is detected. If the end Y coordinate is less than the original Y,
the calculation is performed again, with the height of the tract used as the adjuster in the calculation.
If the end Y coordinate is more than the original Y, the calculation is performed with the height of
the tract as the adjuster, but this time the adjustment is negative.

distance =
�
diffX2 + (diffY + adjuster)2 (2.5)

Cell Path Length:
Cell path length is calculated during each time-step that tracking is performed. This starts as 0, and
is incremented with each time-step as follows:

pathLength = pathLength + distance from old to new coordinates (2.6)

Cell Displacement:
Cell displacement is simply the distance between the start and end coordinates:

diffX = trackingEndPosition X − trackingStartPosition X

diffY = trackingEndPosition Y − trackingStartPosition Y

displacement =
�
diffX2 + (diffY + adjuster)2

(2.7)

Cell Velocity:
Cell Velocity is calculated at the end of the tracking period:

cellV elocity = pathLength/tracking time steps completed (2.8)

Figure 2.11: Equations detailing how the simulated cell behaviour characteristics are
calculated in the Platform Model

.
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(a) Individual patches

(b) Approximating patch size

Figure 2.12: Identifying Peyer’s Patches and approximating the size. In (a), patches
are identified using k-means hierarchical clustering. Any patches that roll around the
top and bottom of the screen, as on the left hand side, are deemed one patch. In (b),
patch size is approximated by choosing eight points on the perimeter of the cluster.
The value returned for the patch size is the area of the shape formed by joining these
eight points (as shown by the red line in (b)). For patches that roll around the top and
bottom, the coordinates are normalised to join the patch as one, and the area calculated.



78 CHAPTER 2. METHODS AND TOOL DEVELOPMENT

2.2.6 Calibration to Establish Baseline Behaviours

The simulation platform is an implementation of the platform model specification,

that is in turn a specification of the biological system captured in the domain model.

However, the domain model does not capture every detail of the biological system,

rather it captures an abstracted view of it. There is no guarantee that the simulation

platform will produce the cell behaviours observed in in vivo imaging and ex vivo

culture. As can be seen in the domain and platform model descriptions above, there are

a number of parameters for which a biological value remains unknown, and parameters

introduced in the platform model which capture a biological process (and thus do not

translate back to the biological system) for which values are also unknown.

Calibration is the process by which values are obtained for any parameters for

which a numerical value is unknown, with the objective to ensure that the simula-

tor produces behaviour responses observed in previously published studies or ongoing

experimentation where available. Where biological data is available, a comparison be-

tween a simulation result and available data can be made using statistical tests such

as the Mann-Whitney U-Test, which will indicate statistical similarity between two

sets. Using a structured trial and error approach, values are assigned to parameters for

which a value is unknown, and altered until no statistical difference exists between the

available data being used for comparison and simulation result distributions. Where

there is more than one emergent behaviour observed, the simulation should be cali-

brated to ensure each emergent behaviour is reproduced. This section examines the

calibration of the Peyer’s Patch simulation developed in this chapter.

Cell Behaviour Baseline Simulation

Analysis of ex vivo cell tracking images (Patel et al., 2012) has provided distributions of

cell behaviour responses upon which simulation results can be compared. As described

in section 1.3.3, cell behaviour was tracked for an hour at the twelve hour time-point,

with results capturing two distributions: cells within 50µm of a RET ligand expressing

cell, and cells further away. With this data available, the simulation can be run and

cell responses for hour twelve of development captured, and the respective distributions

compared in order to judge how suitable the simulator has captured this behaviour.

In this case, there are six parameters for which a value remains uncertain:

(a) Probability at which an LTin/LTi cell will form a stable bind with an LTo cell upon

contact. A stable bind is defined as contact that leads to LTo cell differentiation

and an increase in expression of adhesion and chemoattractant factors.

(b) Initial level of chemokine expression upon LTo differentiation.

(c) Saturation limit of chemokine diffusion.
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(d) Level of chemokine required in a cells local environment to induce LTi cell chemo-

taxis.

(e) Level at which surface adhesion factors are expressed with each stable contact

between an LTin/LTi and LTo cell.

(f) Probability that the level of adhesion factors expressed on the surface of an LTo

cell will restrict LTin/LTi cell movement.

The goal of the calibration process is to find a potential set of values for these six

parameters where the simulation produces cell behaviour responses that are statistically

similar to those observed in the ex vivo culture system. The simulation has been run

and cell velocity and displacement responses captured for hour twelve of development.

With no guarantee the data is normally distributed, the Mann-Whitney U-Test has

been used to compare the in silico and ex vivo distributions, and dot-plots produced

to aid visual comparison of cell behaviour responses. This has been performed using

a structured trial and error approach, tweaking parameter values until behaviour is

produced that is statistically similar to that observed ex vivo. A selection of the dot-

plots produced in this process are included in Figure 2.13.

Figure 2.14, produced at the end of this process, is a visual comparison of cell

behaviour responses ex vivo against those from the calibrated simulator. It can be noted

that there is no statistical difference between the two sets of results. This provides a

level of confidence in the simulators use in exploring the cell behaviour it has captures.

Cell Aggregation Baseline Simulation

Calibrating the simulator with respect to the second emergent behaviour, the forma-

tion of cell aggregations after 72 hours that mature to form PP, is however more com-

plex for two reasons previously noted in this chapter: the unavailability of biological

measurements, and relating the 2D abstraction used in simulation to the real-life 3D

structures. Explorations in Chapter 4 of this thesis seek to examine the influence that

the six parameters listed in the previous section have on patch characteristics, thus a

baseline result needs to be established. In this instance, a baseline behaviour has been

found using the simulation parameter values established above. This establishes the

patch characteristic responses of aggregations that form under parameter conditions

that replicate emergent cell behaviour observed ex vivo . This baseline can then be

used to examine the effect an alteration in these parameters has on these simulation

patch characteristics.

Key factors in patch formation can be determined by examining the formation of

one patch. To do this, one RET-ligand expressing LTo cell agent is placed at the centre

coordinate of the simulation environment. The analysis is examining the parameters

influence on a patch rather than the effect of LTo cell position, and thus this is not

important in the analysis. Restricting its position ensures there is no variability in
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result caused by the simulators choice of LTo cell position. The simulation can then

be run to produce the patch characteristic responses detailed in Section 2.2.5. A rep-

resentative baseline result can then be established by generating a number of replicate

results. The method by which this number is established is discussed later in this

chapter. This forms a distribution of responses under normal conditions for use as a

comparator when conditions are changed.

Calibration based on Number of Patches

It was shown in Figure 1.2 that between eight and twelve PP develop along the length

of the mouse intestine, variability that cannot currently be explained. Flow cytometry

results have been used to estimate the number of LTo cells to include in the model

(Section 2.2.2). However if patches formed around each of these cells, the number of

patches would be in three figures. Thus the assumption was made in the domain model

that only a certain number of these cells would have the capability to form PP.

As was noted in Section 2.2.3, the simulation captures 10% of the length of the

mouse intestine. Thus one would expect no more than 2-3 patches form in this short

section. The simulation randomly fills 20% of the environment with stromal cells. A

set percentage of these are then chosen at random to have the capability to form PP.

Calibration here has thus focused on establishing the percentage of cells that have the

capability to differentiate into LTo cells, and thus form PP.

A range of percentage values was set and 100 simulation runs performed for a set of

values in that range. Using a snapshot taken at the end of the simulation run, number

of patches that form was determined visually, by experts in the field manually counting

what they determine to be a patch. Averages were then taken for each percentage used,

as shown in Figure 2.15. It was determined that the correct number of patches form

where only 0.25% of the 20% of cells express RET-ligand, having the potential to

mediate PP development. Thus, this is used as the value for that parameter in the

relevant analyses in the chapters that follow.

2.2.7 Argument-Driven Validation

Argument-Driven Validation is a technique that can be used to structure an assessment

of the model in such a way that each step in the construction process was validated, the

reasoning behind the inclusion or exclusion of a feature or assumption provided, and

evidence given as to why this conclusion has been drawn (Ghetiu et al., 2010; Polack

et al., 2011). Thus, in this case, features included from the domain and platform

models are both assessed and scrutinised. The overall objective is to go through the

model in steps, linked together by the available evidence to support that step, leading

to increased confidence that certain parts of the model are correct, while identifying

areas open to further examination. This may identify features where assumptions have

been made which need further investigation, or identify clarifications needed from the
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biological experts. The latter may then feed into wet-lab experimentation in order to

assess a feature, or lead to an assessment of the reliability of biological results gathered

from external sources such as published literature.

This process is captured in diagrammatical form using Goal-Structuring Notation

(Ghetiu et al., 2010; Kelly, 1999), the results of which can be seen in Figures 2.16-2.19.

The argumentation has been split into three figures for ease of reading. The first,

Figure 2.16, is the top level of the argument. This states the main claim being argued,

in this case that the simulation is an adequate representation of the biology. This in

turn is broken down into four sub-claims which, if solved, provide a argument that

supports the main claim. This section considers each of these subclaims in turn.

For ease of comparison, claim 1.1.3 is considered first, as this is detailed on the

same diagram as the main claim (Figure 2.16). The claim is made that the simulation

produces cell behaviour statistically similar to that observed ex vivo. The previous

section of this chapter examined the use of calibration to ensure that this is the case,

and these results are noted on the diagram as evidence that the claim can be verified.

Claim 1.1.1 is more complex, and examines whether there is adequate biological data

included in the model. The argument is detailed in Figure 2.17. In this case, the claim is

examined using four strategies, each of which concerning a subset of the parameters that

have been derived from biological data. The first considers the representation of LTin

and LTi cells, in terms of number, size, and cell velocity; the second the representation

of stromal LTo cells; the third the representation of the biological environment; and

the final strategy data related to Peyer’s Patch characteristics. Where relevant, sources

of the biological data are noted, and where necessary any assumptions that have been

made based on this data documented. This gives an overview of how the data has

been obtained and how this has then be utilised in the creation of the simulation.

This helps improve confidence in the design of the model as parameter generation

from biological data is more transparent. One claim, under strategy 1.1.1.4, is noted

with a blank diamond. This concerns biological data that can be used to compare

PP generated in silico to that ex vivo. As has been noted previously in this chapter,

such quantitative data is not currently available, making it difficult to support a claim

that PP are generated that are of a representative size. Thus the claim needs to be

developed further, noted by the presence of the diamond. This however should not be

viewed negatively: one of the objectives in performing ABV is to identify such areas

where current understanding is lacking.

The second claim made examines the abstractions made, and how these are justi-

fied. This argument is detailed in Figure 2.18. It is vital that the use of abstraction

is transparent, as these may affect the meaning of the results generated, thus in turn

affecting any hypotheses developed from them. Again this claim is examined in four

strategies: the first considers the implementation of chemokines, justifying why the

implementation of one chemokine rather than three is a suitable abstraction; the sec-
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ond the implementation of adhesion factors; the third the 2D implementation of a 3D

environment; and the final strategy abstractions linked to cell signalling. In the ma-

jority of cases, subclaims generated from these strategies are supported by available

evidence or the insight provided by collaborating experimental immunologists. There

are three claims however that need to be developed further. The first two claim that

simulation chemokine and adhesion factor expression levels are representative of that

in the biological system. No previous laboratory studies have generated quantitative

data on which simulation expression levels can be compared, and thus this is an area

where further experimental work is required. The third claim is that the physical shape

of the gut (e.g. the bends) has no impact on PP formation. As no previous study has

examined the role that the physical geometry of the environment, the assumption has

been made that this has no affect on the process, mainly due to the difference in scales

between the individual cells and the environment.

Claim 1.1.3 examined the first of the emergent behaviours observed, the change

in cellular behaviour in the vicinity of a forming PP. Claim 1.1.4 (Figure 2.19) ex-

amines the second, the development of aggregations of cells after 72 hours, that later

become PP. The claim is made that the simulation adequately captures this emergent

behaviour. This is justified using three strategies: determining whether a represen-

tative number of PP are formed along the intestine length; that previously published

experimental results that examine PP formation in different physiological conditions

are replicated; and that the simulation correctly captures the characteristics of a PP

observed in vivo. The first strategy uses evidence from the calibration process in sec-

tion 2.2.6, and results in Figure 2.15, to demonstrate that a representative number of

patches do form. It is noted that this is based on the assumption that only a certain

percentage of LTo cells can express RET ligand and thus mediate PP development.

The second strategy, replicating previously published results, is noted as needing to

be developed further. Experimentation using the simulator to examine this claim is

addressed in Chapter 4 of this thesis. Finally, the last strategy examines the size of

these emergent aggregations. As noted previously, there is no biological data on which

simulation PP size response can be contrasted. However, the method by which PP are

identified is justified alongside the claim.

When considered together, these diagrams provide a detailed flow of the decisions

that have been made in the course of simulation development. In this case, the process

may come across as static: claims have been made and supported and areas of further

development identified, and a final document produced. In practice however, the de-

velopment of these arguments would not end here, yet would continue as simulation

results are analysed and the simulation developed further.
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2.3 Making the Simulation Tool Publicly Accessible

Making the simulator freely available enables immunologists to engage with the tool

for their own research and provide critical feedback on any future iterations of the

simulator. The simulator and its underlying source code are freely available to run

online and for download (http://www.cs.york.ac.uk/immunesims/frontiers).

Figure 2.13: Two example dot-plots produced during the process of calibration. In
both cases, the right hand side of the plot shows the average cell velocity for a particular
simulation run, for cells tracked in during hour twelve of development. The left hand
side is the cell velocity distribution that was observed ex vivo . The statistical result
produced by the Mann-Whitney U-Test when the two distributions are compared is
noted in the graph header. For the scenario on the left, cell velocity is too fast, and thus
the parameters chosen have not correctly captured cell behaviour. For that on the right,
the parameters are much more suitable, and there is no statistical difference between
the two distributions.

Figure 2.14: A comparison of the behaviour of the calibrated simulation platform with
cell behaviour responses observed ex vivo . Top row: ex vivo cell responses; Bottom row:
in silico cell responses. The first column contains cell tracking images for hour twelve
of development. Both were produced using Volocity (PerkinElmer), the ex vivo image
by producing an sequence from images captured each minute, and the in silico image
by producing a sequence from screenshots captured at each time-point representing one
minute. This figure has been adapted from that published in Patel et al (2012).
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Figure 2.15: Average number of PP that form where the percentage of LTo cells that
express RET ligand, and thus have the capability to form PP, is adjusted. Averages are
taken from 100 runs of the simulation under each condition. Average number of patches
that form in the simulated 10% of the gut length is noted above each bar. Patches are
determined visually in conjunction with experts in lymphoid tissue development. As
10% of the gut has been captured, between 2-3 patches would be expected.
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CLAIM 1:
Model is an adequate

representation of the biology

Purpose:
- Recreate emergent observed in vivo and ex vivo

- creation of tool for exploration of hypotheses

Definition: 'Adequate'
Experimental work using model 

produces statistically comparable results 
to those seen biologically

STRATEGY 1.1
Argue over scientific content, the adequacy
of the abstraction, and experimental results

CLAIM 1.1.1:
Underlying biological data

is adequate/accurate

CLAIM 1.1.2:
The abstraction (platform model)

is adequate representation

CLAIM 1.1.3:
Simulated cell behaviour between

12 and 13 hours matches that
observed in ex vivo culture

CLAIM 1.1.4:
Simulation captures cell aggregation

emergent behaviour at 72 hours

STRATEGY 1.1.3.1:
Argue that simulated cell behaviour is

statistically similar to that ex vivo at 12 hours

CLAIM 1.1.3.1.1:
Simulated cells <50μm from a forming

patch behave as observed ex vivo

Justifications:
1. Mann-Whitney U-Test used as no
guarantee that the data is normally 

distributed

Mann-
Whitney test

reveals no statistical
difference

(Figure 2.15 )

CLAIM 1.1.3.1.2:
Simulated cells >50μm from a forming

patch behave as observed ex vivo

Mann-
Whitney test

reveals no statistical
difference

(Figure 2.15 )

J

Figure 2.16: Argument-Based Validation for the development of the Peyer’s Patch
Simulation. This is the top level. A claim is made that the simulation is an adequate
representation of the biology, and arguments put forward to support this where possible.
This is broken down into four subclaims. A black diamond shows that the claim has
been developed in another figure due to limitations on space. These follow on the next
pages. Claim 1.1.3 has been developed in this figure, noting the evidence that simulated
cell behaviour at the twelve hour time-point is statistically similar to that observed ex
vivo, and where this result can be found.
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Figure 2.17: Argument-Based Validation for the development of the Peyer’s Patch
Simulation - Claim 1.1.1. This claim argues that the biological data included within
the model and on which the simulation is judged is adequate. In the majority of cases
evidence is provided for subclaims of the main claim. Where data is unavailable, the
claim cannot be met and needs more development, and is noted with a blank diamond.
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Figure 2.18: Argument-Based Validation for the development of the Peyer’s Patch
Simulation - Claim 1.1.2. This claim examines the abstractions that have been made,
and whether these are suitable. Thus in this case the implementation of chemokines,
adhesion factors, the environment, and cell signalling is explored. In the majority of
cases evidence is provided for subclaims of the main claim. Where data is unavailable,
such as chemokine and adhesion factor expression levels, the claim cannot be met and
needs more development, and is noted with a blank diamond.
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Figure 2.19: Argument-Based Validation for the development of the Peyer’s Patch
Simulation - Claim 1.1.4. This claim states that the simulator correctly replicates the
second observed emergent behaviour, cell aggregations that become PP. It is noted that
one of the claims, that previously published results are replicated, will be examined
in this thesis. Where data is unavailable, the claim cannot be met and needs more
development, and is noted with a blank diamond.
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2.4 Developing the spartan Statistical Analysis Toolkit

Results generated through simulation may be affected by uncertainty caused by as-

pects of the biological system that are currently unknown and need to be assumed,

and by uncertainty introduced in the implementation of the simulator (Helton, 2008).

Such uncertainty may be present in two forms: aleatory uncertainty that arises through

stochasticity inherent in both the biological and simulated system, and epistemic uncer-

tainty arising as the values of some simulation parameters cannot currently be defined

(Helton, 2008). Although integrating computer simulation with current experimental

techniques has become a popular approach in furthering the understanding of biologi-

cal systems (Germain et al., 2011), in many cases where this approach is applied little

attempt is made to reveal how representative the simulation result is in terms of the

biological system it has captured (Read et al., 2012).

The increase in popularity of computer simulation as an tool for exploring the dy-

namics of biological systems has led to the development of a number of packages that

aid simulation development, as detailed in section 1.4.2. However there is no compre-

hensive statistical analysis package available to help determine how representative a

simulation is of the biological system it has been constructed to represent and under-

stand how results generated from the simulation can be interpreted in the context of

that biological system. Uncertainty and sensitivity analysis techniques have recently

found application in exploring results from biological simulations in order to appreciate

these factors and the effect of uncertainty on simulation results (Marino et al., 2008;

Ray et al., 2009; Read et al., 2012). An application of these techniques provides the

means to understand the relationship between the simulation and the real system and

to provide some biological insight.

This section details the creation of a package of statistical techniques to aid the

understanding and analysis of results generated through simulation. This package

has been called spartan (Simulation Parameter Analysis R Toolkit ApplicatioN) and

provides implementations of previously described uncertainty and sensitivity analysis

techniques (Marino et al., 2008; Read et al., 2012; Saltelli et al., 2000) that when com-

piled as one package provide a comprehensive toolkit to explore the effect of uncertainty

on simulation results. Spartan has been developed in the open-source R statistical en-

vironment and is freely available from the R package repository or for download from

http://www.cs.york.ac.uk/spartan. This should help encourage simulation developers

to perform such analyses to reveal how representative a simulation result is in terms

of the biological system being captured, results that can then be published alongside

their results for full scrutiny.

The spartan toolkit is utilised in conjunction with the simulator developed above in

the chapters that follow to further understand the development of secondary lymphoid

organs in the gut. The package contains four techniques, all of which are utilised in

this thesis, each providing a different method of analysing results from the simulation
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with the aim to understand the effect of uncertainty on results and provide some novel

biological insight. The remaining part of this section examines each of the techniques

that has been included.

2.4.1 Mitigating Aleatory Uncertainty

In agent-based simulations such as the lymphoid tissue formation simulation developed

in this chapter, agent behaviour is affected by use of pseudo-random number generation.

Thus, different results are produced, although input parameter values remain constant.

Prior to the simulators use as a predictive tool, it is critical that the effect inherent

stochasticity has on results is understood (Helton, 2008). To mitigate the effect of

this aleatory uncertainty and achieve a representative result, replicate simulation runs

are necessary. To determine the number of replicates required (n) that reduces the

uncertainty to level at which the result can be considered representative of the condition

on which the simulator is being run, while considering computational resources, the

technique described by Read et al (2012) has been included within spartan .

To establish n, a number of replicate run sizes (sample sizes) are chosen. Taking a

sample size of five as an example, twenty simulation result sets are obtained, with each

of the twenty sets containing the results from five simulation runs. From the results of

each simulation run, medians are calculated for each of the simulation responses. These

are collated to form a set of median responses for each of the twenty subsets. Thus, in

this case we have 20 sets of median responses, each of which contains the medians of

each response of five simulation runs. The effect of uncertainty between the 20 sets of

results is quantified using the Vargha-Delaney A-Test (2000), a non-parametric effect

magnitude test that establishes scientific significance by contrasting two populations

of samples and returning the probability that a randomly selected sample from one

population will be larger than a randomly selected sample from the other. Results

above 0.71 or below 0.29 indicate a scientifically significant difference between the

populations, and 0.5 indicates no difference (Table 2.5) (Vargha and Delaney, 2000).

The responses from the first set are compared with the remaining response sets in turn.

Repeating this procedure for different sample sizes determines how many simulation

samples should be compiled in generating averaged results to reduce the scientific effect

of stochasticity to an acceptable level. To achieve a representative result, there should

be no statistical difference in all twenty comparisons. The spartan package produces a

plot for each sample size, detailing the A-Test result for each of the twenty comparisons.

A summary plot is then produced revealing the maximum A-Test result for each sample

size, helping determine the number of simulation runs required to mitigate aleatory

uncertainty.
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Effect Size Large Medium Small None
A-Test Score <0.29 & >0.71 <0.36 & >0.64 <0.44 & >0.56 0.5

Table 2.5: A-Test magnitude effect sizes as specified by Vargha and Delaney (2000).
An A-Test score is between 0 and 1, with 0.5 representing no difference between two
distributions. As this is a magnitude the result has a direction, and thus there are small,
medium, and large boundaries either side of 0.5

2.4.2 Parameter Robustness Analysis

The simulation features parameters for which values are unknown or cannot currently

be determined. This may be as currently available techniques cannot determine the

biological value, or caused through the translation of biological information into a

format that can be implemented within a simulation. Robustness analysis examines

the implications of biological uncertainty or parameter estimation on simulation results.

Where a simulation is found highly sensitive to the value of these parameters, caution

must be exercised in interpretation of results; they may be artefacts of parametrisation

rather than representations of the biology (Helton, 2008).

Robustness to parameter perturbation can be explored using a one at a time ap-

proach (Read et al., 2012). A set of simulation parameters of interest is determined.

Taking each in turn, the value of that parameter is adjusted, with all other parameters

remaining at their calibrated value. The Vargha-Delaney A-Test described previously

(Vargha and Delaney, 2000) is employed to determine if changing the parameter value

has led to scientifically significant behavioural alteration in contrast to the baseline

simulation. This indicates how robust the simulator is to an alteration in the value

of each parameter, and can indicate the validity of results produced by the simulator

when considering results over a biologically accepted range of values.

For an agent-based implementation such as the simulator developed here, replicate

runs are required to mitigate the effect of aleatory uncertainty. Spartan takes this into

account where this is the case and compares the distribution of simulation responses

from a number of replicate runs with that from the number of replicate runs of the

baseline simulation. The robustness to parameter change is thus being judged on a

result that is representative of the condition on which the simulator was run. For

each parameter examined, spartan produces a plot detailing the A-Test score for each

parameter value, in comparison to a result from the baseline. The plot thus reveals

the statistical change in simulation response caused by a change in parameter value,

and any statistical affect that becomes apparent as the parameter value is increased or

decreased.

2.4.3 Global Sensitivity Analysis: Sampling-Based Approach

Though robustness analysis elucidates any affects of perturbing single parameters, it

cannot reveal compound effects that become apparent when two or more are adjusted
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simultaneously. Global sensitivity analyses reveal such effects, and can indicate the

parameters that have the greatest influence on simulation response. To identify such

parameters, a sampling-based technique that perturbs the values of all parameters of

interest simultaneously has been included within spartan (Read et al., 2012; Saltelli

et al., 2000). A set of simulation parameters of interest is determined, and for each,

a range of parameter values to explore. A number of simulation parameter value sets

are then created through use of a latin-hypercube sampling approach (McKay et al.,

1979). This selects values for each parameter from the parameter space, aiming to

reduce any possible correlations while ensuring efficient coverage of the space over a

minimal number of samples (demonstrated in Figure 2.20).

Simulations are then performed for each set of parameter values generated. Where

the simulation is agent-based, a number of replicate runs are performed for each set to

mitigate the effect of aleatory uncertainty as described in section 2.4.1. The spartan

package includes functionality to process these replicates and calculate the median of

simulation responses observed for simulations run under the conditions specified by

that parameter set.

Each parameter is then taken in turn, and simulation responses ordered by the value

assigned to that parameter. A plot is produced for each simulation response detailing

the value of the response observed against the parameter value. This eases the iden-

tification of any relationship between the value of that parameter and the simulation

response, although a number of parameters are being perturbed simultaneously. For

example, the trend of points on the graph may suggest that a simulation response, such

as velocity, decreases as the value of a particular parameter increases. The plot may

also reveal if such a trend only becomes apparent when that parameter is in a specific

value range. A statistical measure is also provided through calculation of a Partial

Rank Correlation Coefficient (PRCC), a robust measure for quantifying non-linear re-

lationships between an input and output (Marino et al., 2008), and the calculated value

stated in the plot header. Correlations that become apparent can be attributed to the

value of the parameter, and the parameters that have significant impact on simulation

behaviour determined by the size of the effect identified.

2.4.4 Global Sensitivity Analysis: Variance-Based Approach

In this approach, simulation parameters are varied, and resultant variation in simula-

tion response partitioned between those parameters. The extended Fourier Amplitude

Sampling Test (eFAST), developed by Saltelli et al (Saltelli, 2004; Saltelli and Bol-

lardo, 1998) is also a global sensitivity analysis technique, and has proven one of the

most reliable methods among variance-based techniques (Marino et al., 2008). This

has been included in spartan to provide an alternative global analysis technique that

can be contrasted to results generated by the technique above. A set of simulation

parameters of interest is determined, and for each, a parameter value range to explore.
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Figure 2.20: Image taken from Read et al (2012), exemplifying use of a latin-hypercube
sampling approach for two parameters. The parameter space is split into subdomains,
indicated by dotted lines. Ten samples have been taken, with one coming from each
subdomain to ensure the parameter space is fully explored

Taking each in turn, values are chosen for all parameters through the use of sinusoidal

functions of a particular frequency through the parameter space, with the frequency

of the parameter of interest being much different to that used for its complementary

set. This is demonstrated in Figure 2.21. A number of parameter values are selected

from points along each of these curves. This creates a set of simulation parameters for

each parameter of interest. Due to the symmetrical properties of sinusoidal functions,

it is probable that the same parameter value sets could be selected. To address this, a

resampling scheme is encouraged where a phase shift is introduced into each frequency,

and sampling repeated (Marino et al., 2008; Saltelli et al., 2000). Thus, a number of

parameter value sets are created for each parameter of interest. This process is re-

peated for an extra parameter, the dummy, which has an arbitrary value range but

no impact on simulation behaviour. This enables a comparison between the impact of

each parameter and one known to have no effect on simulation response. As an exam-

ple of sampling using this approach, for 7 parameters, plus a dummy, three resample

curves, and 65 parameter values from points along the curves, 1,560 sets of parameters

would be produced. For analyses where a large number of parameters are explored,

this technique could be computationally expensive (Ratto et al., 2007; Tarantola et al.,

2006).

Simulations are performed for each set of parameter values generated. As described

with the latin-hypercube technique above, spartan includes functionality to process

replicate runs required to mitigate aleatory uncertainty in agent-based simulations,

through the calculation of medians for each simulation response under the conditions

set by that parameter set.

Results generated are analysed taking into account the frequencies that were used

to generate that parameter set. Through Fourier analysis using these frequencies,

variation in output can be partitioned between the parameters, giving an indication of
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the impact each has on simulation response. Using the equations given in Marino et

al (2008), two sensitivity indexes are calculated for each parameter: an eFAST First-

Order Sensitivity Index (Si) and eFAST Total-Order Sensitivity Index (STi). The first

indicates the fraction of output variance that can be explained by the value assigned

to that parameter. The latter indicates the variance caused by higher-order non-linear

effects between that parameter and the others explored. The spartan package produces

plots of these measures for each simulation response. To determine whether a parameter

has a significant impact on simulation response, these sensitivity indexes are compared

to those calculated for the Dummy using a two-sample t-test.

Figure 2.21: Parameter sampling and analysis using the extended Fourier Amplitude
Sampling Test (eFAST). Left: Input parameter sampling - each parameter is varied
through use of a sinusoidal curve of a particular frequency, and values chosen from
points along the curve. The image shows sampling for two parameters. The parameter
of interest is assigned a significantly different frequency. Right: Chart detailing the
sensitivity indexes for each parameter. The first-order sensitivity index Si, or the fraction
of output variance that can be explained by the value assigned to that parameter, is in
white; the higher order effects between parameters STi is in grey; the remaining variance
SCi is explained as variance accounted for by the parameters complementary set. Image
taken from panels A and D from Figure 3 of Marino et al Marino et al. (2008).



2.5. USE OF THE SIMULATOR AND SPARTAN TO EXPLORE LYMPHOID
TISSUE DEVELOPMENT 95

2.5 Use of the Simulator and spartan to Explore Lymphoid
Tissue Development

The simulation and spartan package provide the tools necessary to perform an in silico

exploration of lymphoid tissue development. The following chapters make use of these

tools to explore how changing the conditions under which the simulator is run can

provide additional biological insight that could inform future laboratory experimenta-

tion. This section details the methods that are used in producing these results and

hypotheses.

2.5.1 Analysing Changes in Cell Behaviour

Section 2.2.6 described how the simulation has been calibrated such that emergent cell

behaviour replicates that observed ex vivo (Patel et al., 2012). The simulation provides

the functionality to perform this analysis through tracking simulated cells for a period

of one hour at the twelve hour time-point, to produce output files that can be processed

by statistical tools. Thus it is possible to run the simulation under different parameter

value conditions and utilise spartan to assess the impact this has on cell behaviour

responses. Additionally, the simulator provides functionality to produce this output

for any time point in the simulated 72 hour period. This makes it possible to examine

if cell behaviour at the end of the simulated period differs from that at the twelve-hour

time-point, and note if the influence of simulated biological factors changes over time.

This is the focus of Chapter 3.

Chapter 5 takes this a stage further, and utilises a combination of the simulator

and spartan package as a tool to perform a time-lapse analysis of cell behaviour re-

sponses. This involves running the simulation under different conditions and capturing

cell behaviour responses at twelve-hour intervals. Techniques in the spartan package

can then be utilised to determine if and when the influence of simulated biological

factors changes, providing biological insight difficult to obtain in the laboratory.

2.5.2 Contrasting Simulator With Published Results

With regard to the second emergent behaviour captured by the simulation, the forma-

tion of PP, comparisons between a simulator result and published experimental results

have been made visually. It was noted in section 2.2.5 that X and Y coordinates of all

LTin and LTi cells are output from the simulation at the end of the run. These cell co-

ordinate files are processed in the R statistical environment to produce a plot showing

the formation of PP across the simulated gut length. In Chapter 4, these visual images

are contrasted with phenotypes in the relevant publications observed through use of

antibody staining of LTi and LTo cells, with the help of collaborating experimental

immunologists.
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2.5.3 Simulating Gene-Deficient Mice Experiments

To simulate gene-knockout experiments, with the aim to replicate previously pub-

lished results in silico, boolean parameters have been included in the simulator. A

gene knockout is indicated by setting the relevant knockout parameter to true. Three

boolean parameters have been included that model a knockout of RET, chemokines,

and adhesion factors respectively.

2.5.4 Simulating Experiments that have Examined Reduced

and Over Expression of Biological Factors

To simulate changes to level of expression or cell numbers, values for relevant pa-

rameters in the platform model can be adjusted as required prior to simulation run.

Simulation parameter values are specified in an XML file, that is read by the simulator

when the run starts. A reduced or overexpression is modelled by changing the values

within that file. For example, experimentation in Chapter 4 examines the impact of

a change in LTin cell number on PP formation. This study is performed by simply

running the simulation with different values for that parameter.



Chapter 3

Factors Influencing Hematopoietic

Cell Behaviour in Peyer’s Patch

Development

Laboratory explorations of hour 12 of Peyer’s Patch development have suggested there

is a statistically significant difference between hematopoietic cell behaviour near a

forming Peyer’s Patch and cell behaviour further away. The previous chapter detailed

how a computer simulation has been implemented that replicates this emergent

behaviour, producing results that are statistically similar to cell behaviour observed ex

vivo. This chapter applies the techniques in the spartan toolkit developed in the course

of this study to analyse simulation results and suggest the biological factors that could

be causing this change in cell behaviour during hour 12. Furthermore, the same

analysis techniques are applied to examine simulated cell behaviour during the final

hour of organ formation, to determine if the influence of biological factors changes

over the course of development.

97
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CHAPTER 3. FACTORS INFLUENCING HEMATOPOIETIC CELL

BEHAVIOUR IN PEYER’S PATCH DEVELOPMENT

3.1 Introduction

The previous chapter describes the development of a set of tools that can be used

to perform an in silico exploration of lymphoid tissue formation. This detailed how,

through a process of calibration, it has been ensured cell behaviours that emerge at

an early time-point in simulation are statistically similar to that seen in ex vivo obser-

vations at the same time-point (Patel et al., 2012). The ex vivo cell tracking analysis

reveals a statistically significant change in hematopoietic cell velocity and displacement

(LTin/LTi cells) when in the vicinity of an ARTN-soaked bead, placed to model cellu-

lar behaviour around a stromal (LTo) cell. Such behavioural alterations are thought to

occur through interactions between the cells, mediated by adhesion and chemoattrac-

tant factors expressed by LTo cells (van de Pavert and Mebius, 2010; Randall et al.,

2008; Veiga-Fernandes et al., 2007). As calibration and validation results have provided

confidence that the simulator is a suitable representation of the development process,

explorations in this chapter use the simulator as a tool to suggest the factors that could

be influencing this change in cellular behaviour at the twelve hour time point.

The simulation is however an abstraction of the biological system that it captures,

and this separation must be appreciated when interpreting in silico explorations with

respect to the biological system under study. Such simulation results may be affected

by uncertainty arising from aspects of the biological system that are currently unknown

and thus needed to be assumed, and by uncertainty introduced in the implementation

of the simulator (Helton, 2008). In Chapter 2, a set of statistical techniques to appre-

ciate the effect of uncertainty in simulation results was described. In this chapter the

Simulation Parameter Analysis R Toolkit Application (spartan) package of statistical

techniques compiled in completion of this thesis (Alden et al., 2012a) is utilised to

appreciate the effect of uncertainty on results generated from this simulation and to

explore the factors influencing cell behaviour in the vicinity of an LTo cell. Techniques

available within spartan can be used to determine how representative the simulation

is of its biological system and understand how in silico results can be interpreted in

the context of the biological domain. When brought together, these techniques provide

a comprehensive set of tools that work towards establishing the relationship between

the simulation and the biological system, enabling the use of the simulator as a tool

for providing such novel biological insights. Using spartan, the number of simulation

samples required to mitigate stochastic effects and attain a desired level of experimen-

tal accuracy is determined, confidence is built that results are representative of biology

as opposed to parameterisation artefacts resulting from epistemic uncertainty, and

valuable biological insight is gained through rigorous statistical analysis of simulation

results.

This chapter begins by examining the effect of aleatory uncertainty on simulated

cell behaviour at the twelve hour time-point (Section 3.3). As the model has been

implemented using an agent-based approach, each cell is represented as an individual
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entity, and thus may behave differently to other agents of the same cell type. This

captures the stochasticity in cell velocity and displacement that was observed in the

ex vivo culture system (Patel et al., 2012) described in section 1.3.3, which tracked cell

behaviour for an hour at the twelve-hour time-point, data on which this simulator has

been calibrated (Section 2.2.6). It was noted in section 2.4.1 that such stochasticity does

however imply that different simulation runs under the same parameter conditions will

produce differing results. In that section a method by which this uncertainty, termed

aleatory uncertainty, could be mitigated was described. This is utilised in this chapter

to ensure results are produced that are representative of the condition on which the

simulation was run.

With the above technique ensuring the effect of aleatory uncertainty is mitigated,

the parameters of the simulation can now be perturbed to examine the effect each has

on simulated cell behaviour. As noted previously, the simulation is comprised of a

number of parameters for which a value is not yet known. Although suitable values

have been obtained through a process of calibration, there remains some uncertainty

in the true value of these parameters, termed epistemic uncertainty (Helton, 2008).

This chapter continues by using techniques within the spartan package to explore how

robust simulated cell behaviour during hour 12 is to an alteration in the values of

these unknown parameters (Section 3.5.1). Where cell behaviour at this time-point is

found to be highly sensitive to parameter value, it must be considered whether this

sensitivity is caused by parameterisation or whether this is a true representation of the

biology. Such parameters have been identified using a technique that perturbs their

value independently of all other parameters over a set range (Read et al., 2012), an

approach described in detail in section 2.4.2.

However, the effect one parameter has may rely on the value that is assigned to

another. Further statistical techniques included within spartan and described in section

2.4 have been utilised to examine the effect on simulated cell behaviour of changing

the value of all unknown parameters simultaneously (Sections 3.5.2 and 3.5.3). Such

statistical approaches are called global sensitivity analysis techniques, and can be used

to identify compound effects that occur although the values of all parameters in a subset

are being perturbed. The identification of compound effects can indicate parameters

that are highly influential in affecting simulated cell behaviour at this time-point, and

in identifying such relationships, this analysis can offer unique biological insight.

Considering the results gained from each statistical technique together provides

a means of suggesting the biological factors influencing the change in cell behaviour

during hour twelve of development observed ex vivo (Patel et al., 2012). However, the

process of lymphoid tissue formation in the gut is known to continue for another 60

hours after that time-point (Mebius, 2003; Randall et al., 2008). Thus, it would be

interesting to reveal if the same conclusions concerning the impact of each factor are

to be drawn at hour 72 as drawn for hour 12, or whether different biological factors
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become influential at different time-points of development. The latter conclusion could

potentially extend Adachi et al’s (1997) hypothesis that PP formation can be split into

distinct phases. The authors determine these phases to be the appearance of VCAM-

1+ stromal cells in the gut, the identification of clusters of LTi cells around VCAM-1+

expressing stromal cells, and the recruitment of lymphocytes from E18.5. However, an

exploration of the period between the appearance of LTo cells and clustering of LTi

cells up to E17.5 where this simulation stops, through an analysis of cell behaviour,

may suggest additional phases between Adachi et al’s first and second phase, with

different biological factors becoming influential at different time-points.

This chapter continues by exploring this hypothesis, and examining simulated cell

behaviour after 72 hours of PP development, or E17.5. To do this, the simulation was

run, and as performed previously, cells that are within 50µm of a primordial PP tracked

for a period representing one hour, but this time during the 72nd hour of development.

The factors that influence simulated cell behaviour were then determined using the

same statistical techniques as those described above for the twelve hour time-point.

Conclusions from these results can be contrasted with those produced after twelve

hours of development, to determine if different factors are influential at the end of the

PP development period. Should this be the case, the hypothesis that there could be

different development phases within the 72 hour development window will hold.

3.2 Aims

Explorations in this chapter utilise the developed simulator and statistical techniques

within the spartan package to achieve the following aims:

1. To determine the number of simulation runs required per run condition that

attains a desired level of experimental accuracy, mitigating aleatory uncertainty.

2. To examine the implications of biological uncertainty or parameter estimation

on simulation results at both hour 12 and 72 of development, ensuring a result

is representative of the biology rather than parameterisation artefacts, and thus

biological insights can be drawn.

3. To identify any compound effects present between two or more simulated bio-

logical factors at both hour 12 and 72 of development, indicating the pathways

and components that have a substantial effect on simulation behaviour at that

particular time-point.

4. To partition the variance in results caused by perturbing the values of each factor,

and thus establish how sensitive the simulation and biological system is to the

value of each factor at both the 12 and 72 hour time-point.
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5. To contrast the results gathered in achieving the above aims, to determine whether

the impact of a biological factor changes over time.

3.3 Mitigating the effect of Aleatory Uncertainty

The effect of aleatory uncertainty can be mitigated by performing a number of sim-

ulation runs under identical conditions. To determine the number of simulation runs

required to obtain a representative result, sample sizes of 1, 5, 50, 100, 300, 500, and

800 simulation runs were analysed using the technique described by Read et al (2012)

detailed in section 2.4.1. The objective is to reduce the variance in simulation output

response measures, in this case the cell behaviour measures of Velocity and Displace-

ment between hours twelve and thirteen. Figures 3.1a, 3.1b, 3.1c show the A-Test

scores for these simulation output responses in each of the 20 result sets, for 5, 100,

and 500 samples respectively. Figure 3.1d shows the maximum A Test score for each

simulation response over the 20 result sets, for all sample sizes analysed. The latter

indicates that reducing the effect magnitude of aleatory uncertainty on simulation re-

sults to less than small (the desired level, as defined by Vargha-Delaney (2000) and

listed in Table 2.5) requires 500 simulation runs. Thus, 500 runs should be performed

for each investigation conducted using this simulator, where the focus is on examining

changes in cellular behaviour.

3.4 Investigating the Impact of Factors for Which No Value
is Currently Known

In this simulation there are six parameters for which the value is uncertain:

(a) Probability at which an LTin/LTi cell will form a stable bind with an LTo cell upon

contact. A stable bind is defined as contact that leads to LTo cell differentiation

and an increase in expression of adhesion and chemoattractant factors.

(b) Initial level of chemokine expression upon LTo differentiation.

(c) Saturation limit of chemokine diffusion.

(d) Level of chemokine required in a cell’s local environment to induce LTi cell chemo-

taxis.

(e) Level at which surface adhesion factors are expressed with each stable contact

between an LTin/LTi and LTo cell.

(f) Probability that the level of adhesion factors expressed on the surface of an LTo

cell will restrict LTin/LTi cell movement.
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The remaining analyses in this chapter explore the effect uncertainty in the value

of these parameters has on simulation response. A change in response is measured by

examining alterations in two simulation output responses: velocity and displacement

of cells within a 50µm distance of an LTo cell. These responses are captured for each

cell within that distance over a period representing one hour, at both the simulated 12

and 72 hour time-points. The range of values explored for each of these parameters is

specified in Table 3.1.

Parameter Baseline Value Lower Limit Upper Limit
stableBindProbability* 0.5 0.0 1.0

chemokineExpressionThreshold* 0.3 0.0 1.0
initialChemokineExpressionValue 0.20 0.10 0.50
maxChemokineExpressionValue 0.04 0.015 0.08
adhesionFactorExpressionSlope 1 0.25 5.0
maxProbabilityOfAdhesion* 0.65 0.1 1.0

Table 3.1: The six simulator parameters for which a value is not currently known,
the value each has been set in calibration, and the ranges explored using sensitivity
and uncertainty analysis techniques. * denotes the parameters for which a full range of
potential values has been explored.

3.5 Examining Hematopoietic Cell Behaviour During Hour
12 of Development

With the number of replicate runs required per condition established, the statistical

techniques available within the spartan package can be used to explore the impact

of each parameter in Table 3.1 on simulated cell behaviour during hour twelve of

development. This hour is considered first as this is the time-point at which the

simulator has been calibrated, using ex vivo data from the same hour of development.

3.5.1 Simulation Robustness to Parameter Perturbation

One-a-time analysis (Read et al., 2012) was used to determine how sensitive the sim-

ulation behaviour during hour twelve is to the value of each parameter in Section 3.4.

Each parameter was examined in turn, and its values perturbed over the range of values

specified in Table 3.1. Five-hundred simulation executions were performed for each pa-

rameter value in accordance with the aleatory analysis in Section 3.3. The distribution

of response values obtained for each parameter value is contrasted with a distribution

obtained using baseline parameter values using the Vargha-Delaney A-Test (2000), as

detailed in section 2.4.1.

(i) Chemokine Related Parameters
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Figures 3.2a and 3.2b show the effect of adjusting the initial level of chemokine

expression upon LTo cell differentiation and the saturation limit of chemokine

diffusion respectively. Ranges of values were chosen such that the sigmoidal curve

used to model the distance at which the chemokine is diffused (explained in

Figure 2.8) explores a significant range either side of the calibrated value. For

both parameters, this analysis indicates that perturbing the expression level of

chemokines at this early time point has no statistical effect on the behaviour of

cells in the vicinity of a forming patch.

Figure 3.2c shows the effect of adjusting the probability that an LTi cell will not

respond to chemokine expression in its locality. All potential values for this pa-

rameter have been explored, and a similar conclusion to that above is drawn, that

altering this parameter has no statistical effect on cell velocity at this time-point.

However there is a small effect on cell displacement when set to the parameters

extreme upper value, where the cell will never respond to chemokine expression.

Thus early in PP formation the model predicts that chemokines are unlikely to

be the key force driving tissue formation and causing the statistically significant

change in cellular behaviour.

(ii) Cell Binding Probability Parameters

Figure 3.2d reveals an alteration in the probability that a stable interaction occurs

when an LTin/LTi cell is in contact with an LTo cell has no effect on cell behaviour

for all values except when set to the lower extreme. Again all possible values have

been explored for this parameter. As the lower extreme value is a probability of

zero, no stable binding would occur, meaning no LTo differentiation, and thus no

expression of adhesion or chemoattractant factors that influence cell behaviour.

As such this effect is an expected result.

(iii) Adhesion Factor Related Parameters

In contrast to Figures 3.2a-d, Figure 3.2e reveals a trend in cell velocity A-Test

response when the maximum probability that adhesion factor expression affects

cell motility is perturbed. This suggests that simulated cell behaviour is sensitive

to the value of this parameter, and its value may only lie in a small range either

side of its calibrated value, after which the simulation would produce results that

are, on the basis of data seen in calibration, biologically implausible. A change

in parameter value does however have no significant effect on displacement unless

set to the extreme upper value, where adhesion factors will always retain a cell

within a primordial patch.

An alteration in the level of adhesion factors expressed by an LTo cell upon

stable contact also reveals a significant change in cell velocity response (Figure

3.2f). Although not classified as a large difference by the A-Test bounds set by
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Vargha and Delaney (2000), results either side of parameter values 0.5 and 2.25

do fall outside the category that the authors deem as a ’small’ difference and into

that deemed a ’medium’ difference. Again these results suggest that the value of

this parameter is restricted within a certain window of values, between 0.5 and

2. Surprisingly, there is little statistical difference between adhesion expression

values that are two, three, and four times the calibrated value, suggesting that

once an initial overexpression has occurred, increasing this further has no impact

on simulated cell behaviour. In contrast, the value of adhesion factor expression

parameters seems to have no statistically significant effect on cell displacement

at this time-point.

3.5.2 Identifying Compound Effects at 12 Hours Through Si-

multaneously Perturbing all Unknown Parameter Val-

ues

Using the latin-hypercube sampling approach described in section 2.4.3, 500 sets of

simulation parameter values were generated, with each parameter being assigned a

value within the ranges specified in Table 3.1. For each set of values, 500 simulation

runs were performed to mitigate the effect of aleatory uncertainty. Median cell velocity

and displacement measures were calculated for each run, thus generating a distribution

of 500 median cell behaviour responses at hour 12 for each parameter set. In contrast

to the above, where distributions of results were being compared using the A-Test,

in this case the median of this set of medians is calculated for both cell behaviour

measures, and assigned as the simulation behaviour response under the conditions

specified in that parameter set. Taking each of the six parameters specified in Table 3.1

in turn, simulation responses were ordered by the value assigned to that parameter, and

plots generated for each output response (Figures 3.3 and 3.4), detailing the responses

observed for all values assigned to that parameter. Compound effects are noted by

the identification of any trends on the plot, and value of the Partial Rank Correlation

Coefficient (PRCC) specified in the plot header. Both the generated plot and the PRCC

value can be used to suggest the parameters that are highly influential on simulation

behaviour, and provided unique biological insight into the factors that are important

at this stage of tissue development.

(i) Chemoattractant Related Parameters

Both the plots in Figures 3.3a and 3.3b and the respective PRCC values reveal

no trend between simulation cell velocity responses and the value assigned to the

parameters that capture expression of chemoattractant molecules. For the cell

displacement measure, the same result is found for the initial level of chemokine

expression (Figure 3.4a), but a small trend does become apparent when altering

the parameter that limits chemoattractant expression (Figure 3.4b)
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Similarly, an alteration in the probability that an LTi cell does not respond to

chemokine expression in the environment (Figure 3.3c) reveals no compound ef-

fects when examining cell velocity. The same can be said for the cell displacement

measure, unless the parameter is assigned a value near the upper extreme. At

this point a trend does emerge, suggesting a significant effect on cell behaviour

although all other parameter values are also being perturbed. This supports the

previous finding in one-a-time analysis, where changing the same parameter inde-

pendently produced no significant effect on displacement unless set to its extreme

value, where the cell never enters a phase of chemotaxis towards a forming patch

(Figure 3.2c).

(ii) Cell Binding Probability Parameters

For both cell velocity and cell displacement measures (Figures 3.3d and 3.4d),

there is no trend between results obtained for the 500 parameter sets and the

value assigned to the probability that a stable bind occurs between two cells that

are in contact.

(iii) Adhesion Factor Related Parameters

Figure 3.3e reveals a very strong trend between the simulation cell velocity re-

sponses and the maximum probability that an LTin/LTi cell remains in prolonged

contact with an LTo cell. There is a marked reduction in velocity as this proba-

bility increases, although the values of the other five unknown parameters (Table

3.1) are also being perturbed. Such a strong correlation suggests that cell re-

sponse to adhesion factor expression is a key factor in affecting cell velocity. For

the related parameter, that captures level of adhesion factor expressed with each

stable LTin/LTi cell contact with an LTo cell (Figure 3.3f), a visual effect is ap-

parent, but no significant correlation between the level of expression and velocity.

At this early time-point of development, few stable contacts may have occurred,

and combining this with a low level of expression with each contact means that

not enough adhesion factors are expressed to impact cell velocity. An increase in

the parameter value however does begin to reveal the retention affect. However,

the absence of a clear trend between parameter value and velocity does suggest

that there is a large amount of uncertainty in the value of this parameter. This

conclusion is drawn as similar affects on cell velocity can be observed for both

high and low parameter values.

For the cell displacement responses, there is no trend between simulation response

and the level of adhesion factor expression with each stable contact (Figure 3.4f).

Similar to the displacement results described in the chemoattractant section, a

trend does become apparent for extreme values assigned to the parameter that

captures the maximum probability that an LTin/LTi cell remains in prolonged

contact with an LTo cell (Figure 3.4e).



106
CHAPTER 3. FACTORS INFLUENCING HEMATOPOIETIC CELL

BEHAVIOUR IN PEYER’S PATCH DEVELOPMENT

3.5.3 Partitioning Variance in Simulation Response Between

Parameters

This analysis examined the six parameters specified in section 3.4, to determine the

proportion of variation in simulation response during hour 12 of development that can

be explained by perturbing the value of each parameter. Through use of the eFAST

approach (Marino et al., 2008; Saltelli, 2004) the sensitivity of the simulation to each

parameter is determined and quantified, and thus suggests the impact of each biological

factor on tissue development.

Using the sinusoidal curve sampling approach, 500 parameter value sets were gen-

erated, with each parameter being assigned a value within the ranges specified in Table

3.1. To determine the parameters that have a significant influence on simulation out-

put, the eFAST analysis technique requires an additional ’dummy’ parameter that has

no effect on simulation result. This ’dummy’ parameter was assigned a value range

of 1 to 10. Although the ’dummy’ has no influence on simulation output, the algo-

rithm will determine that a small proportion of variation in simulation response can be

accounted for by the ’dummy’. This proportion is used for statistical comparison pur-

poses, with the variance accounted for by each of the six parameters of interest being

compared with that assigned to the dummy, to determine if a simulation parameter

is more influential than one known to have no effect. With the ’dummy’ added, there

are seven parameters (six plus the dummy), with 65 parameter values taken from each

curve, and three re-sampling curves employed, producing 1,365 parameter value sets,

or 195 per parameter, using the sampling procedure detailed in Section 2.4.4. For each

parameter value set, 500 runs were performed to mitigate aleatory uncertainty and

median simulation response values calculated.

Simulation responses were analysed using the Fourier frequency approach described

in section 2.4.4 (Marino et al., 2008; Saltelli, 2004). Plots are created for each simulation

output response (velocity and displacement), detailing the median First-Order (Si) and

Total-Order (STi) sensitivity indexes calculated for each parameter of interest (Figures

3.5a and 3.5b), generated from the Si and STi values calculated for each re-sample

curve. Sensitivity indexes and measures of significance in comparison to the ’dummy’

parameter are detailed in Table 3.2.

Cell Velocity

Contrasting the first-order sensitivity indexes (Si) for each parameter with those of the

dummy reveal that five of the parameters account for a statistically significant portion

of simulation variance (p < 0.05 ). Of these, the probability that stable contact oc-

curs between an LTin/LTi cell can be discounted as, due to the effect at the extreme

value (as seen in Figure 3.2d and explained in 3.5.1) this is an expected result. A

similar percentage of the variance is also explained by the chemoattractant expression
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parameters, a result contrasting those in analyses performed previously that revealed

chemoattractant expression has no appreciable effect on cell behaviour. Of the re-

maining two, which both capture adhesion factor effect and expression, the maximum

probability that adhesion factors prolong cell contact is significant at the 1% level,

supporting the inference in the analyses above that adhesion factors have a key role in

affecting cellular velocity.

When using the total-order sensitivity indexes (STi) to identify any non-linear ef-

fects between the parameter and its complementary set, all STi values are deemed to be

statistically significant. As each includes the significant variance caused by adjusting

the maximum probability adhesion factors prolong contact, a value that the ’dummy’

STi value does not include, this is to be expected.

Cell Displacement

When contrasted to the first-order sensitivity index of the ’Dummy’ parameter, only

two of the six parameters are found to have a statistically significant effect (p < 0.05 )

on cell displacement (Figure 3.5b). The first of these is the probability that stable

contact occurs between an LTin/LTi and LTo cell on contact (stableBindProbability).

For the reasons specified above in 3.5.3, this result is expected and thus can be over-

looked. The second is the initial level of chemoattractant expressed on LTo cell differ-

entiation (initialChemokineExpressionValue), further supporting the small compound

effect identified in latin-hypercube analysis (3.4b).

T-Test results contrasting each parameter total-order sensitivity index (STi) with

that of the dummy parameter reveals that none of the STi values are statistically

significant. This suggests that there are no significant compound effects occurring

between the parameters, in terms of influencing cell displacement. This supports the

majority of the findings revealed in latin hypercube analysis (Section 3.5.2), with the

exception of a small trend that occurs when two of the parameters are at extreme

values (chemokineExpressionThreshold and maxProbabilityOfAdhesion).

3.6 Examining Hematopoietic Cell Behaviour During the Fi-
nal Hour of Development

The analysis in the previous section suggests a key role for adhesion factor expres-

sion during hour 12, with chemokine expression having no appreciable effect on cell

behaviour. This section repeats this analysis but for a simulation time period that

represents hour 72, the final hour of PP development. The same techniques as used

above are applied, and the same parameters examined (as specified in Table 3.1). This

analysis has been performed to reveal if the conclusions drawn above hold for a later

time-point of development, or whether the influence of each simulated biological factor

changes over time.
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Parameter Si P-Value STi P-Value
stableBindProbability 0.125 0.048* 0.217 0.029*

chemokineExpressionThreshold 0.124 0.063 0.269 0.010*
initialChemokineExpressionValue 0.123 0.048* 0.268 0.009**
maxChemokineExpressionValue 0.118 0.027* 0.271 0.049*
adhesionFactorExpressionSlope 0.342 0.048* 0.551 0.012*
maxProbabilityOfAdhesion 0.163 0.009** 0.310 0.008**

dummy 0.007 0.057

(a) Cell Velocity Response

Parameter Si P-Value STi P-Value
stableBindProbability 0.148 0.022* 0.322 0.268

chemokineExpressionThreshold 0.122 0.061 0.313 0.288
initialChemokineExpressionValue 0.107 0.019* 0.331 0.246
maxChemokineExpressionValue 0.134 0.084 0.376 0.198
adhesionFactorExpressionSlope 0.039 0.212 0.362 0.197
maxProbabilityOfAdhesion 0.100 0.087 0.434 0.097

dummy 0.023 0.256

(b) Cell Displacement Response

Table 3.2: Median sensitivity indexes and measures of statistical significance for each
parameter examined using the eFAST technique, for both simulation cell behaviour
responses during hour 12. Si: First-Order Sensitivity Index; STi: Total-Order Sensitivity
Index. Both are calculated for each re-sample curve and the median value taken. P-
Value calculated using two-sample t-test to the distributions comprised of the results
from each re-sample curve. * indicates statistical significance at 0.05 level, ** indicates
statistical significance at 0.01 level.

3.6.1 Robustness to Parameter Perturbation

Each parameter in Table 3.1 has been considered independently, and assigned a value

within its set range prior to the simulation run. To mitigate aleatory uncertainty, 500

runs were performed for each value assigned to the parameter. The analysis uses the

same one-a-time analysis technique (Read et al., 2012) included within the spartan

package as used to explore hour twelve of development in the previous section.

(i) Chemokine Related Parameters

Figures 3.6a and 3.6b show the effect of adjusting the initial level of chemokine

expression upon LTo cell differentiation and the saturation limit of chemokine

diffusion respectively. The analysis indicates that the value which captures the

initial level of chemokine expression, through use of the sigmoidal curve function

as described in Figure 2.8, has no impact on either cell behaviour measure at this

time-point. However, a change in the maximum level of chemokine expression

has a significant effect on both cell behaviour measures. A small change in this

parameter value produces behaviour that is statistically significantly different, or

to use the terminology in the A-Test, a ’large’ difference (Vargha and Delaney,

2000). The calibrated value for this parameter is 0.04, and these results suggest
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that there is only a small window +/- this figure before there is a change in cell

behaviour that Vargha and Delaney classify as ’medium difference.’ Thus unlike

the twelve hour timepoint, the level of expression of chemoattractants, and thus

the distance over which this diffuses, is highly influential at this time-point.

An alteration in the probability that an LTi cell does not respond to chemokine

in the vicinity also significantly effects both cell behaviour measures. In terms

of displacement, a change in the probability of just 0.2 produces cell behaviour

that is significantly different to that observed ex vivo. The results suggest that

the range of values that this probability can take can only fall within the range of

0.2-0.4. Thus the simulation is suggesting in this case that there is only a small

possibility that an LTi cell may not respond to chemokine expression.

(ii) Cell Binding Probability Parameters

A stable bind between an LTo and LTi cell upregulates expression of chemokines

and adhesion factors through lymphotoxin signalling. At the twelve hour time-

point, the simulation was not sensitive to this parameter (bar the case where set

to its extreme value of zero), however this is not the case during the last hour

of development (Figure 3.6d). Similarly to the chemokine parameters above, cell

behaviour at this time-point is highly sensitive to the value of this parameter.

Again if the Vargha-Delaney ’medium difference’ figures were to be taken as a

guide, significantly different cell behaviour emerges outside a window +/-0.2 of the

parameters calibrated value, and further increases outside this window produce

significantly different cellular behaviour.

(iii) Adhesion Factor Related Parameters

Figure 3.6f reveals that an increase in adhesion factor expressed on stable con-

tact between an LTo and LTin/LTi cell has no significant difference on either cell

velocity or displacement. The value can also be halved with no impact on cell

behaviour, however a reduction of more than half reduces the amount of adhe-

sion factor in the environment to a level at which cell behaviour is significantly

different.

3.6.2 Identifying Compound Effects on Cell Behaviour at E17.5

Through Simultaneously Perturbing all Unknown Pa-

rameter Values

The same 500 simulation parameter value sets that were generated for analysis at hour

twelve were used in this analysis to ensure the two sets of results could be compared.

Five-hundred simulation runs were performed for each parameter set to mitigate the ef-

fect of aleatory uncertainty on cell behaviour results, a figure established from analyses

in section 3.3. Median cell velocity and displacement results were calculated for each
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run at the 72 hour time-point, generating a distribution of 500 median cell behaviour

responses, for which the medians were again calculated and considered representative

simulator behaviour under the conditions specified in that parameter set. Taking each

parameter in turn, simulation responses were ordered by the value assigned to that

parameter, easing the identification of compound effects on cell behaviour and thus

the identification of parameters that highly influence cell behaviour in the final hour

of development.

(i) Chemokine Related Parameters

The analysis reveals there is no correlation between the value assigned to the

initial level of chemokine expressed by an LTo cell upon differentiation and either

cell velocity or displacement responses (Figures 3.7a and 3.8a). An alteration

in the maximum level of chemokine expression (Figure 3.8b) does reveal a trend

between the value of this parameter and cell displacement, although the other

five parameters are also being perturbed simultaneously. This supports the re-

sult observed in one-a-time analysis, where a change in this parameter alone

significantly affected cell displacement (section 3.5.1). Interestingly, although a

significant affect on cell velocity was observed when this parameter was adjusted

independently, no correlation is revealed between this parameter and cell velocity

when all are adjusted simultaneously (Figure 3.7b). This suggests that, in terms

of influencing cell velocity, the affect of this parameter is very dependent on the

value of others.

A similar conclusion can also be drawn for the parameter that captures the prob-

ability that an LTi cell will not respond to localised chemokine expression. An

independent alteration of this parameter significantly affects cell velocity (Figure

3.7c), yet no trend becomes apparent when the value is adjusted at the same

time as the other five under examination. For the cell displacement measure, a

trend is apparent close to the extreme upper value, where an LTi cell will never

respond to chemokine expression, yet this is not continued through the lower 90%

of the value range, again suggesting that the affect this parameter has may be

dependent on others in the simulation.

(ii) Cell Binding Probability Parameters

When examining both cell behaviour measures at this time-point, no correlation

is found between either measure and the probability an LTo and hematopoietic

cell bind upon contact (Figures 3.7d and 3.8d). A similar conclusion is again

drawn as detailed in the chemokine parameter analysis above: an alteration in

the value of this parameter alone causes a significant alteration in cell behaviour,

yet as no effect is apparent when a subset of parameters are all being perturbed

simultaneously, this effect must be dependent on the value of other parameters.
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(iii) Adhesion Factor Related Parameters

The results of this analysis for both cell behaviour measures closely match those

revealed by tracking cells during hour twelve of development (Hour 12: Figures

3.3 and 3.4, Hour 72: Figures 3.7 and 3.8). There is a very strong correlation

between cell response to adhesion factors and cell velocity at both time-points.

The analysis reveals that this is the only compound effect on cell velocity at during

hour 72 of development, suggesting that response to adhesion factors is the key

factor in affecting cell velocity. This is in contrast to adhesion factor expression,

where no correlation between parameter value and velocity is observed. In the

previous section, for hour 12, it was noted that an effect becomes apparent for the

latter parameter, where there are no results in the bottom left-hand corner of the

graph (Figure 3.3f), and it was noted that this was expected due to the nature

of the time-point being observed. In this case, no such effect is apparent, as a

larger number of stable contacts will have occurred, mediated by chemokine levels

that are greatly higher than that at twelve hours. Thus the level of expression

is deemed to not have a significant effect on cell velocity response, as no trend is

observed.

For the cell displacement response, a correlation is apparent between the maxi-

mum probability that a cell is retained in a forming patch and displacement in

the final hour of development, with displacement decreasing steadily as the prob-

ability increases (Figure 3.7e). This trend becomes stronger close to the extreme

value, where a cell would constantly be retained within a forming patch. The

same effect was apparent during hour twelve (Figure 3.4e). No correlation was

found between the level of adhesion factor expressed with each stable contact and

cell displacement (Figure 3.8f), again matching the result seen in analysis of hour

12.

3.6.3 Partitioning Variance in Simulation Responses Between

Parameters

The eFAST approach (Marino et al., 2008; Saltelli, 2004) has again been used to parti-

tion variance in simulation results to quantify the sensitivity of the simulation to each

parameter at hour 72, and thus suggest the impact each has on cell behaviour. Similarly

to the latin-hypercube analysis above, the same 500 parameter sets that were generated

for analysis at the twelve hour time-point were used here, to ensure that results being

compared have been generated from the same parameter conditions. For each set of

parameter values generated, 500 simulation runs were performed to mitigate aleatory

uncertainty in cell behaviour responses as established in section 3.3. Simulation re-

sponses were analysed using the Fourier frequency approach described in Section 2.4.4.

Plots are created for each simulation output response (velocity and displacement) for
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hour 72, detailing the median First-Order (Si) and Total-Order sensitivity indexes cal-

culated for each parameter of interest (Figures 3.9a and 3.9b). Sensitivity indexes and

measures of significance in comparison to the dummy parameter are detailed in Table

3.3.

Cell Velocity

A statistical comparison of the variance caused by each parameter of interest with

that of the dummy reveals that one parameter is statistically significant, the maximum

probability that a cell responds to adhesion factor expression. As can be noted from

Figure 3.9a and Table 3.3, the technique reveals that a perturbation in this probability

accounts for 81% of the total variance. This supports latin-hypercube sampling findings

presented above, where it was revealed that this was the only parameter where a

correlation in value and cell velocity became apparent.

Cell Displacement

Four of the six parameters are identified as accounting for a statistically significant

amount of variance in comparison to that of the dummy. The probability that two

cells form a stable bind is a result that becomes apparent due to the effect the lower

extreme value has in inhibiting LTo cell differentiation, and will thus be disregarded.

The analysis suggests that significant variance in cell displacement is influenced by

the probability an LTi cell responds to chemokine expression and the maximum level

of chemokine that can be expressed by an LTo cell. This further supports the role

of chemokine expression and response during hour 72, a factor deemed to have little

influence during hour twelve. Also, the maximum probability an LTi cell is affected

by adhesion factors is shown to have a significant impact, accounting for 40% of the

variance when taken as the parameter of interest. Analyses for hour twelve in section

3.5 suggested adhesion to be the key biological factor at the twelve hour time-point, and

this result suggests this still has a significant role in the later stages of development.

The total-order, or STi results, reveal that these three parameters also have significant

interactions with their complementary set. This may suggest that cell displacement

may influenced by a combination of these factors working together, rather than one or

two that are highly influential.

3.7 Discussion

3.7.1 A Representative Simulation Result

It has recently been noted that in many cases where modelling and simulation is applied

in the exploration of biological systems, little attempt is made to show how representa-

tive that simulation is of the biological system it captures (Read et al., 2012), and this
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Parameter Si P-Value STi P-Value
stableBindProbability 0.071 0.059 0.150 0.119

chemokineExpressionThreshold 0.013 0.085 0.086 0.272
initialChemokineExpressionValue 0.003 0.569 0.051 0.486
maxChemokineExpressionValue 0.022 0.106 0.056 0.472
adhesionFactorExpressionSlope 0.012 0.173 0.047 0.546
maxProbabilityOfAdhesion 0.818 0.004* 0.896 0.001**

dummy 0.004 0.051

(a) Cell Velocity Response

Parameter Si P-Value STi P-Value
stableBindProbability 0.078 0.01* 0.255 0.019*

chemokineExpressionThreshold 0.099 0.020* 0.199 0.038*
initialChemokineExpressionValue 0.005 0.302 0.059 0.297
maxChemokineExpressionValue 0.308 0.042* 0.414 0.031*
adhesionFactorExpressionSlope 0.018 0.179 0.108 0.197
maxProbabilityOfAdhesion 0.397 0.038* 0.471 0.036*

dummy 0.023 0.256

(b) Cell Displacement Response

Table 3.3: Median sensitivity indexes and measures of statistical significance for each
parameter examined using the eFAST technique, for both simulation cell behaviour
responses obtained during hour 72. Si: First-Order Sensitivity Index; STi: Total-Order
Sensitivity Index. Both are calculated for each re-sample curve and the median value
taken. P-Value calculated using two-sample t-test to the distributions comprised of the
results from each re-sample curve. * indicates statistical significance at 0.05 level, **
indicates statistical significance at 0.01 level.

was one of the motivations behind the development of spartan (Section 2.4). This chap-

ter utilises spartan to provide a level of confidence in the simulator as a representative

tool and suggest the degree of confidence in the values assigned to parameters. Pre-

senting these alongside statistical analyses that have aimed to provide some biological

insight reveals a full picture of simulation dynamics, aiding the drawing of conclusions

as to what a simulation result actually means in terms of the real system.

In Chapter 1 it was noted that the process of Peyer’s Patch development is highly

stochastic (Figure 1.2) and differs significantly from mouse to mouse. Simulating this

process does therefore involve capturing this biological uncertainty. However, as noted

in the introduction of this chapter, an agent-based simulation of the process adds

a further level of uncertainty that must be considered when simulation results are

scrutinised in terms of the biological system captured. The objective is to produce a

simulation where uncertainty caused by implementation is mitigated (Helton, 2008),

and that inherently within the biological system matched. Through the use of the

aleatory analysis technique developed by Read et al (2012), it has been shown that

500 simulation runs are necessary to meet this requirement, and thus this number of

runs has been performed for all experiments in this chapter. With the exception of

analyses presented here and studies of Experimental Autoimmune Encephalomyelitis
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(EAE) by Read et al (2012), the presentation of such an analysis is rare, although

this is important in judging the relationship between the simulator and the real world

system. The development of these techniques and tools should hopefully encourage

more simulation developers to consider presenting such results alongside the biological

insight they claim the simulation provides.

The remaining sections of this discussion examine how the tools developed in this

completion of this thesis have been used to provide some biological insight into the

development of secondary lymphoid organs in the gut.

3.7.2 Simulated Cell Behaviour at the Twelve Hour Time

Point is Highly Influenced by Adhesion Factor Expres-

sion

A minute-by-minute time-lapse analysis of cell behaviour during hour 12 of PP devel-

opment, explored using an ex vivo culture system, reveals that there is a statistically

significant difference in behaviour of cells that are within 50µm of their respective lig-

and and those that are further away (Patel et al., 2012). The initial sections of this

chapter have sought to use the simulator as a tool to explain the biological factors that

could be causing this change in behaviour.

The data presented here have shown that a statistically significant change in cell

velocity is observed when the parameters that model the expression of adhesion factors

are adjusted. This is apparent both when the value of adhesion factor expression is

adjusted independently of all other parameters (Figures 3.2e and 3.2f), and when the

values of all unknown parameters are adjusted simultaneously (Figure 3.3e). Analysis

using an eFAST approach (Marino et al., 2008; Saltelli et al., 2000) also infers that a

large percentage of variation in simulation output can be accounted for by a change

in cell response to adhesion factors. In contrast, a change in the expression level of

chemoattractant molecules by an LTo cell has no significant effect on cell velocity using

either analysis technique.

The robustness to a change in expression value suggests that, at this early stage of

development, chemoattractants have no role in affecting cell velocity. In contrast, the

simulation is less robust to a change in adhesion factor expression, implying that these

factors have a key role in influencing cell behaviour at this phase of development, and

that there is a higher degree of uncertainty in the value of adhesion factor expression

as these directly influence simulation output.

Previously published observations have suggested that a blockage of VCAM-1 ex-

pression leads to a profound reduction in PP formation (Finke et al., 2002), with the

assumption made that the remaining patches that do form are mediated by ICAM-1

and MAdCAM expression. If this was the case, it would be safe to assume that no

PP would form in the absence of adhesion factors. With data here suggesting no role
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for chemokine expression in the early stages of PP development, this provides evidence

that there is a phase in development where adhesion expression is the major factor.

This suggested phase would commence when the process is triggered by RET+ LTin

cells interacting with RET ligand expressing LTo cells (Veiga-Fernandes et al., 2007).

Such a phase would have been very difficult to determine in a laboratory. As

noted in Chapter 2, it has not yet been possible to quantify the expression of adhesion

factors VCAM, ICAM, and MAdCAM by an LTo cell. Instead the simulator has been

used as a tool to explore the effect of changing adhesion factor expression, producing

the results that has led to this hypothesis. This shows the strength and potential of

simulation as an experimental tool. Future immunofluorescence staining investigations

could potentially examine this hypothesis and detect adhesion expression levels in an

ex vivo culture system, to both confirm or deny this hypothesis, while informing future

development of the tool.

3.7.3 A High Level of Chemoattractant Expression Would Be

Required to Influence Cell Displacement at the Twelve

Hour Time-Point

The data presented in this chapter suggests that a change in chemoattractant expres-

sion parameters has no significant effect on cell displacement during hour twelve unless

set to, or near to, the upper extreme value. This result becomes apparent when the val-

ues of all six unknown parameters (Section 3.4) are altered sequentially (Figure 3.4b),

suggesting the emergence of an effect at and near to chemokine expression saturation.

If this extreme value effect had not been elucidated, it would be reasonable to draw

the conclusion that chemoattractant expression has no significant influence on cell

displacement at this time-point in development. As this is not the case, it is important

to consider what this result means in terms of the biological system that has been

captured.

As the process of calibration in section 2.2.6 has established values that produce

cellular behaviour statistically similar to that seen ex vivo, assigning the chemokine

parameters values at which this effect becomes apparent represents the simulation of

an over-expression of chemoattractant factors. Although the expression of chemoat-

tractant factors has yet to be quantified experimentally, the setting of these parameters

to such extreme values can be deemed as not biologically plausible. This hypothesis

is based on the statistics that cells further than 50µm from a primordial patch behave

statistically differently, a statistical difference that would not be apparent if chemoat-

tractant expression was this high. One would also expect to see more cells within a

primordial patch if this was the case. However, this result suggests that an over ex-

pression of chemoattractant molecules at this early time point of development could

be influential, and is a result that would be very difficult to establish biologically.
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3.7.4 Chemokine Expression and Response a Key Factor Dur-

ing Hour 72

The chemokine result at twelve hours is interesting as previously published studies

suggest a key role for chemokine expression in PP development (Cyster, 1999; Luther

et al., 2003; Ohl et al., 2003). For this reason, it made sense to examine the factors

affecting cell behaviour during hour 72. Should the same result be repeated, this would

call into question whether the simulator correctly captures the emergent behaviour that

was specified in the domain model.

Performing the same analyses for the final hour of development does reveal a key

role for chemokines in influencing cell displacement. An individual alteration in any of

the three parameters that capture chemokine expression and response has a significant

impact on cell behaviour, suggesting that at this time-point, simulation behaviour is

no longer robust to a change in these parameter values. Statistical responses generated

through use of the eFAST technique (Marino et al., 2008; Saltelli et al., 2000) reveal that

the maximum level of chemokine expression and the probability an LTi cell responds

to chemokine expression are two of three parameters that account for a statistically

significant proportion of variance in results. Analysis using a latin-hypercube approach

(Read et al., 2012) also suggests there is a clear trend between cell displacement and

the level of chemokine expressed by the LTo cell at this time-point. Considering the

results of all these analysis together concludes that chemokine expression is influenc-

ing simulated cell behaviour at this time-point, in agreement with published studies

(Cyster, 1999; Luther et al., 2003; Ohl et al., 2003). The contrast in results between

twelve and 72 hours suggests there could be a point in the 72 hour period where the

main biological factor that influences cell behaviour changes. The next section of the

discussion examines that hypothesis in more detail.

Results from both the eFAST and latin-hypercube analysis techniques suggest that

a change in adhesion factor response remains the key factor in affecting cell velocity, as

found at the twelve-hour time-point. Statistical responses from the eFAST technique

suggest that a large proportion of variation in displacement can be accounted for by

a change in the value of the parameter that captures adhesion response, with this

parameter being the only one to have a statistically significant contribution. This

suggests that adhesion factor response is key throughout the whole time-period rather

than just at 12 hours. The same parameter is also found to explain a significant

proportion of the variance for the cell velocity response (being the third of the three that

were noted as significant in the previous paragraph). Thus, in contrast to suggestions

in the previous paragraph, there may not be a phase where the biological factor that

affects cell behaviour changes from adhesion to chemokine, rather a time-point where

chemokine expression becomes influential.
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3.7.5 The Potential for Phases of Development Between E14.5

and E17.5

This chapter set out to suggest the key biological factors influencing cell behaviour

during hours 12 and 72 of development, and examine whether conclusions drawn at

hour 12 differed from hour 72. The simulation captures the period between phases one

and two of Adachi et al’s (1997) three phases of Peyer’s Patch development, the first

being the appearance of VCAM-1+ stromal cells, and the second the identification of

clusters of hematopoietic cells. Data presented here does show that the influence of

simulated biological factors does change between hour 12 and 72.

These data could be used to suggest further phases of PP development, occurring

after the appearance of VCAM-1+ stromal cells. The first of these is a period where

hematopoietic (LTin/LTi) cell behaviour is influenced by adhesion factor expression.

Statistical analysis results show that this is the case at the twelve hour time-point.

This could be deemed a ’triggering’ phase, where LTo cell differentiation has occurred

through RET signalling (Veiga-Fernandes et al., 2007) and adhesion factor expression

is upregulated, affecting the behaviour of cells around a forming PP. Use of the same

statistical techniques reveals that by the final hour, chemokine expression and response

has become influential. This influences cell displacement, mediating recruitment of LTi

cells towards a forming patch (Cyster, 1999; Luther et al., 2003). Thus this could be

referred to as a ’clustering’ or ’aggregation’ phase, after which Adachi’s second phase

occurs: the visual identification of hematopoietic cell clusters (Adachi et al., 1997).

The ex vivo studies produced cell behaviour results that informed the calibration of

the simulated cell behaviour at hour 12 (Patel et al., 2012). The resultant simulation

has now produced cell behaviour statistics that could be verified in further ex vivo

work that examines hour 72. This would verify whether cell behaviour during the final

hour of development has been captured correctly, and thus go some way to supporting

the phases hypothesis generated above. Experimentation using the simulator can take

this further. It is much easier to examine cell behaviour at a number of time-points in

simulation than it would be in the laboratory. Performing the same analyses under-

taken in this chapter at a number of time-points in development would reveal where

the suggested ’triggering’ phase ends and the ’clustering’ phase starts, providing fur-

ther insight into each phase. Use of simulation as a time-lapse tool to perform such

investigations is examined in a later chapter of this thesis.
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Figure 3.1: Examining the effect of aleatory uncertainty on the results of the simulation
for a variety of sample sizes. For each sample size, twenty runs are performed, with no
parameters changed each time. Difference between the distributions is determined using
the Vargha-Delaney A-Test (2000), with difference categorised by the limits set in Table
2.5. Using this technique, the number of runs necessary to produce a robust result can
be ascertained. As can be seen in Figure 3.1d, there is little reduction from 500 runs
onwards, making this a representative sample size to use
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Figure 3.2: Determining the robustness of simulated cell behaviour responses during
hour 12 of development. The six parameters for which a value is unknown were examined
in turn, and the value of each perturbed within a specified range. Simulation results
were compared to those generated during calibration, using the Vargha-Delaney A-Test,
to determine if a significant change in cell behaviour has occurred
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Figure 3.3: Identifying any compound effects on cell velocity at hour 12 through
latin-hypercube sampling, a technique that perturbs the value of all parameters simul-
taneously. Influential parameters can be identified through trends of points within each
plot and through the value of the Partial Rank Correlation Coefficient specified in the
graph header, as described in section 2.4.3.
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Figure 3.4: Identifying any compound effects on cell displacement at hour 12 through
latin-hypercube sampling, a technique that perturbs the value of all parameters simul-
taneously. Influential parameters can be identified through trends of points within each
plot and through the value of the Partial Rank Correlation Coefficient specified in the
graph header, as described in section 2.4.3.
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(a) eFAST Sensitivity Indexes for Cell Velocity Response

(b) eFAST Sensitivity Indexes for Cell Displacement Response

Figure 3.5: Hour 12 sensitivity indexes for each parameter where a value is unknown,
calculated using the Extended Fourier Amplitude Sampling Test (eFAST). Black: the
fraction of model output variance accounted for by a variation in the value of that
parameter; Grey: remaining variance accounted for by higher-order interactions between
this parameter and its complementary set.
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Figure 3.6: Determining the robustness of simulated cell behaviour response at the
end of the development period. The six parameters for which a value is unknown were
examined in turn, and the value of each perturbed within a specified range. Simulation
results were compared to those generated during calibration, using the Vargha-Delaney
A-Test, to determine if a significant change in cell behaviour has occurred.
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Figure 3.7: Identifying any compound effects on cell velocity at hour 72 through
latin-hypercube sampling, a technique that perturbs the value of all parameters simul-
taneously. Influential parameters are identified by trends that emerge in the simulation
results, and through the Partial Rank Correlation Coefficient specified in the graph
header.
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Figure 3.8: Identifying any compound effects on cell displacement at hour 72 through
latin-hypercube sampling, a technique that perturbs the value of all parameters simul-
taneously. Influential parameters are identified by trends that emerge in the simulation
results, and through the Partial Rank Correlation Coefficient specified in the graph
header.
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(a) eFAST Sensitivity Indexes for Cell Velocity Response

(b) eFAST Sensitivity Indexes for Cell Displacement Response

Figure 3.9: Hour 72 Sensitivity indexes for each parameter where a value is unknown,
calculated using the Extended Fourier Amplitude Sampling Test (eFAST). Black: the
fraction of model output variance accounted for by a variation in the value of that
parameter; Grey: remaining variance accounted for by higher-order interactions between
this parameter and its complementary set.



Chapter 4

Exploring Factors Affecting Peyer’s

Patch Characteristics Through

Simulation

A combination of a number of previously published laboratory studies has led to the

formation of a basic model describing Peyer’s Patch development. However these

investigations have left a number of interesting questions that are difficult to address.

Simulating the process makes it possible to perform in silico experimentation that can

attempt to address these open questions. In this chapter, the simulator is utilised as a

tool for replicating previously published explorations and performing novel explorations

that cannot be performed in a laboratory. Furthermore, the techniques in the spartan

statistical toolkit developed in the course of this study have been utilised to analyse

simulation results and attempt to quantify the role of each biological factor in

influencing Peyer’s Patch physical characteristics. The results of these explorations

may then inform future laboratory studies that attempt to further understand

lymphoid organogenesis.
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4.1 Introduction

The analyses performed in the previous chapter examined the first of the emergent

behaviours identified in the domain model (Figure 2.1), the change in cell behaviour

in the location of PP genesis. This chapter examines the second, the formation of

aggregations of LTin and LTi cells in the vicinity of LTo cells by the end of hour 72

(E17.5), aggregations that mature from E18.5 into secondary lymphoid organs.

The calibration of the simulator and conclusions drawn from analyses in the previous

chapter are aided greatly by the availability of cell behaviour responses, obtained from

the ex vivo culture system explorations (Patel et al., 2012). Statistical techniques have

been used to ensure that there is no statistically significant difference between cell

behaviour produced by the simulator and the measures observed ex vivo. However,

there is currently little biological data available that provides a quantification of what

a ’patch’ is at this time-point of development, for example in terms of size or number

of cells in the aggregation. The existence of PP at this time-point has, to date, been

noted visually rather than through use of any statistical measure. What is known is

that the aggregations can form in 3D, protruding away from the mucosal epithelium

(Jung et al., 2010; van de Pavert and Mebius, 2010). This is in contrast to the simulator

developed in Chapter 2, where aggregations of LTin and LTi cells form on a 2D plane.

It could be suggested therefore that it would be difficult to compare the result from the

simulator to any biological data that was available. However, the emergent behaviour

of interest here is the aggregation of cells, with the aim to understand how this is

affected by other biological factors, rather than replicating the real characteristics of

a developing PP. Thus a 2D plane is a suitable abstraction. With this in mind, the

simulator produces three responses deemed to be patch characteristics: area of the

aggregation that is formed, the level of chemokine expressed, and the level of adhesion

factor expressed. The first gives an indication of the ability of the patch to recruit LTi

cells through chemotaxis (Cyster, 1999; Luther et al., 2003), whereas the latter two

give an indication of the number of cellular interactions that have occurred, resulting

in the upregulation of adhesion and chemokine expression (van de Pavert and Mebius,

2010; Randall et al., 2008). Also, similar to the traditional method of identifying PP

at this development phase, the simulator produces a visual representation of the gut

tract, showing the location of any cell aggregations that are formed by hour 72. These

simulation responses and output snapshots can thus be used as a basis for analysing

aggregation development, to understand how this is affected by each biological factor

captured in the simulation. Baseline behaviour, to which the simulation results under

differing conditions is compared, has been set using the calibration methods detailed in

section 2.2.6. A comparison between the baseline and a simulation run under different

parameter conditions can be used to suggest the factors influencing the number of

patches that form and the three patch characteristic responses noted previously.

The first section of this chapter utilises the visual output to judge how successfully
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the simulator replicates previously published in vivo and in vitro experiments. The

key factors in the development of PP, detailed in section 1.3.2, have been established

using current laboratory techniques. The objective of the initial section of this chapter

is to ensure that the simulator produces results that match phenotypes in the rele-

vant publications that were observed through use of antibody staining of LTi and LTo

cells. These include replicating the gut of developing mice deficient for certain genes

(Eberl et al., 2004; Luther et al., 2003; Veiga-Fernandes et al., 2007) and replicating an

over-expression of key factors (Meier et al., 2007). The results of these investigations

were taken into consideration when the domain model was constructed. Replicating

previously published results provides a further degree of confidence that the simulator

correctly captures this domain model upon which it is based.

With this assured, the simulator can act as a tool through which novel in silico ex-

perimentation can be performed. Such investigations can help generate new hypotheses

on open questions that have yet to be explored (a range of which were discussed in

section 1.3.4), potentially feeding future laboratory investigation (Andrews et al., 2010;

Germain et al., 2011). This chapter details three such investigations. The first of these

explores the role of the LTin cell population in PP development. It was noted in the

section 1.3.3 that the role of LTin cells has largely remained unknown, although the ex

vivo work by Patel et al (2012) has suggested a role in early stages of development. In-

vestigations in this chapter use the simulator to examine if patch characteristics change

when the LTin cell population is increased and decreased. This change is simulated

by changing the parameter that specifies the number of LTin cells at E15.5, a figure

that has been estimated from flow cytometry results gathered at this time-point. With

data from other time-points unavailable, a linear input rate has been implemented

where a certain number of cells migrate into the gut at each time-step, ensuring the

correct number of cells are present at the time-point representing E15.5. The second

investigation in this chapter uses the simulator to examine this input rate, changing

this from a straight line rate to an exponential and square root function that passes

through the same cell number point at E15.5, to determine if a change in the migra-

tion rate of LTin cells has an impact on PP characteristics. Performing these two in

silico investigations may provide further hypotheses on the role of LTin cells in PP

development. Additionally, the simulator has been used to investigate the geography

of PP development. In the current model, LTo cells can be expressed anywhere on

the gut surface, and a percentage of these express the ligand for RET, and have the

potential to form PP (Veiga-Fernandes et al., 2007). However, some studies suggest

that PP tend to form on the intestines antimesenteric border (Hoorweg and Cupedo,

2008; Randall et al., 2008), suggesting this is the area where LTo cells that have the

potential to form PP reside. In simulation terms, the anti-mesenteric border would

represent a small band across the length of the simulated gut. This has been simulated

by restricting RET ligand expressing LTo cell placement to a small band across the
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centre, then comparing the number of PP that are formed under this condition with

that of the current calibrated simulator.

Finally, the chapter returns to a theme examined in the previous chapter, the effect

of parameters in the simulation for which a value is currently unknown (Table 3.1).

In the previous chapter, the spartan statistical toolkit developed during the course of

this study was used to examine how changes in the values of these parameters affected

cell behaviour in the vicinity of a forming PP. This chapter uses the same techniques,

examines the same parameters, but this time examines the effect a change in these

parameters has on the formation of cell aggregations that mature to become PP. In

section 2.2.6, it was detailed how a baseline behaviour for the formation of one patch has

been established using an experimental set up that restricted LTo cell placement such

that the simulator forms one patch, always in the same location. With this in place,

the six parameters for which a value is unknown are perturbed using the techniques

available in the spartan package, to examine how a change in these factors affects

the three characteristics of that patch described earlier in this section (patch area,

level of chemokine expressed, and level of adhesion factors expressed). This statistical

investigation provides an overall picture of the role of each parameter in the producing

the two emergent behaviours observed.

4.2 Aims

The examinations in this chapter use the simulation platform as an experimental tool

to achieve the following aims:

1. To perform previously published experiments on the simulator and determine if

the same result is replicated.

2. To perform in silico experimentation that could provide novel insights into lym-

phoid tissue development.

3. To determine the key biological factors that influence the size and characteristics

of a primordial Peyer’s Patch.

4.3 Replicating Previously Published Experimental Results

The simulation has been run under the following conditions from the established liter-

ature: Figure 4.1a - Normal parameter setting (control wild type mice); Figure 4.1b -

RET deficiency (RET−/− mice, (Veiga-Fernandes et al., 2007)); Figure 4.1c - chemokine

knockout (CXCL13−/− , CCL19/21−/− mice, (Luther et al., 2003)); Figure 4.1d - no

LTin cells (ROR−/− mice, (Eberl et al., 2004)); Figure 4.1e - doubling number of LTi

cells (IL-7Tg mice, (Meier et al., 2007)).
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Consistent with established results, no PP are observed in either RET, chemokine

or LTi deficient mice. In mice with increased numbers of LTi cells in the simulation,

more, larger PPs were observed to develop consistent with published results.

4.4 Novel in silico Experimentation

4.4.1 Producing a Representative Result that Minimises Aleatory

Uncertainty

As examinations in this chapter explore patch characteristic simulation responses and

not the same cell behaviour responses conducted previously, the aleatory analysis tech-

nique by Read et al (2012) described in section 2.4.1 has been repeated. To determine

the number of replicate runs required to reduce aleatory uncertainty in patch charac-

teristic measures, the same sample sizes were examined as previously (1, 5, 50, 100,

300, 500, 800). Figure 4.2 details the maximum A-Test response for each sample size

examined. This indicates that for analyses where the focus is on patch characteristics,

300 runs is sufficient to reduce the effect of aleatory uncertainty, in contrast to the 500

required for cell behaviour measures. Thus 300 simulation runs were performed for

each investigation conducted using the simulator in this chapter.

4.4.2 Investigating the Impact of LTin Cell Number on PP

Formation

LTin cell numbers have been estimated using results from flow cytometry experiments,

as explained in Chapter 2. The estimate of cell number at E15.5 has been used to

establish a cell migration rate, and thus is directly linked to the number of LTin cells

in the simulation. It has been suggested that this cell population has a role in the early

initiation of PP development (Patel et al., 2012; Veiga-Fernandes et al., 2007), with LTi

cells having the main role in cell aggregation (van de Pavert and Mebius, 2010; Randall

et al., 2008). As yet the effect of a reduction or increase in LTin cell numbers on PP

formation has not been established. This section examines the use of the simulator to

suggest the effect on PP formation when the cell population is decreased and increased.

To examine the effect of a decrease in LTin cell numbers, simulations have been

run for gut surface area percentages of 0.05% to 0.45%, with an increment of 0.05.

From this percentage, the simulator calculates how many cells should be present at

the twenty-four hour time-point. For each value examined, 300 simulation runs were

performed to mitigate the effect of aleatory uncertainty. Median values for patch area

and patch number were calculated for each of the 300 runs, producing a distribution

of 300 results for each LTin percentage value examined. Figure 4.3a is a plot of the

median calculated from the 300 median patch areas for each value, revealing a decrease
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in patch area at 72 hours as LTin cell number decreases. To gain a statistical measure

of the effect the decrease has had, the distribution of 300 patch characteristic responses

was compared to a distribution generated from 300 runs of the simulator at baseline

values, using the Vargha-Delaney A-Test (Vargha and Delaney, 2000). A-Test scores

for each LTin percentage value have been plotted in Figure 4.3b. This reveals that the

percentage of area occupied by LTin cells at E15.5 can be reduced by 0.15% (0.20%)

before a change in response is observed that Vargha-Delaney classify as ’small’. In terms

of patch area, a reduction in cell number approaches the statistical effect classified as

’medium’ when the percentage is reduced further than 0.20%, however never meets that

classification. For patch number however, a trend emerges between the distribution of

number of patches formed and the number of LTin cells in the simulation, with the

difference between distributions becoming more statistically significant as LTin cell

numbers decrease. Thus it could be concluded that LTin cell number could have a role

in controlling the number of PP that form.

To examine the effect of an increase in LTin cell number, simulations have been

run that model a 2, 3, 4 and 5 fold increase in cell number. For each percentage

examined, 300 simulation runs have again been performed and the medians taken for

each patch characteristic for each run. The median patch area for each percentage

is plotted in Figure 4.3c. Patch area increases as cell number increases, however this

begins to stabilise after a 3 fold increase in LTin cell number. The distributions for

each patch characteristic response have again been compared using the Vargha-Delaney

A-Test (Vargha and Delaney, 2000) (Figure 4.3d). This reveals a statistically ’small’

difference by Vargha-Delaney’s criteria when the cell population is doubled, an effect

that increases to ’medium’ for a 3 fold increase. However, the statistical difference

stabilises after this point, suggesting that a further increase in LTin cell numbers has

no effect on the patch characteristics observed.

4.4.3 Investigating LTin Cell Migration Rate

It was noted in the previous section that flow cytometry has been used to establish

an estimate of the number of LTin cells present in the gut at the 24 hour time-point.

In the current simulation, a linear input rate is used to create the number of LTin

cells at each time-point such that the required number are present at 24 hours, using

equation 2.3 specified in Figure 2.10. This is exemplified by the red line on the plot

in Figure 4.4a. However, the assumption that cells migrate into the gut in such an

orderly manner is questionable. With no further biological data available, the simu-

lator has been used to examine the effect on PP characteristics if this migration rate

was changed. Two alternative rates have been investigated that replace equation 2.3:

an exponential rate where cell migration is initially slow and increases rapidly (green

line in Figure 4.4a), and a square root function rate that models the opposite effect

(Black line in Figure 4.4a). The replacement equations calculate the number of LTin
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cells that should be present at the current simulation time-step. The number of cells

currently within the simulation is subtracted from this to generate the input rate per

step. In these calculations, constants have been calculated to ensure that the function

creates the correct number of LTin cells at E15.5.

Square Root:

Required LTin Cells In This Time-Step = (27.8∗Number of Time-Steps Elapsed)0.5

(4.1)

Exponential:

Required LTin Cells In This Time-Step = 1.00368Number of Time-Steps Elapsed (4.2)

For each migration rate function, 300 simulation runs have been performed to mit-

igate any aleatory uncertainty in patch characteristic results. For each run, median

patch number and patch area at the 72 hour time-point have been calculated and

plotted in Figures 4.4b and 4.4c respectively. To gain a statistical measure of the im-

pact this change has had, the distribution of patch characteristic medians calculated

for the exponential and square root functions has been compared to results from the

calibrated simulation using the Vargha-Delaney A-Test (Vargha and Delaney, 2000).

Results from this comparison are noted above the respective bar within the plot.

Simulation responses reveal that a change in LTin migration rate to that of a square

root function has no statistically significant effect on the area of PP generated. An

effect classified by the test as ’small’ is observed when contrasting number of patches

generated for the same migration rate function, with a square root input function

producing slightly fewer patches. When modelling cell input through use of an ex-

ponential function, larger statistical differences are observed for both patch area and

number, with the Vargha-Delaney test resulting in a ’medium’ difference for both patch

characteristics, and fewer and smaller PP. This could suggest that LTin cell migration

could potentially have a role in restricting the number and size of aggregations of cells

that form by hour 72.

4.4.4 Investigating the Geography of PP Formation

In the current model, LTo cells that have the potential to form PP can be placed at any

coordinate in the simulated tract. With some studies suggesting PP formation is lo-

calised to the anti-mesenteric border (Hoorweg and Cupedo, 2008; Randall et al., 2008),

LTo cell placement was restricted to a 15% band across the centre of the simulated gut,

a band which has been used to represent that region. This percentage represents a best

estimate as no biological measure was available. The calibrated simulation was run 300
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times for both a restriction of 15% and no restriction. Under position restriction, the

model predicts that few PP would develop in contrast to normal conditions (For 100%

of the gut length - 15% restriction: 3.8+/−0.75 patches; No restriction: 11.4+/−0.8
patches; Mann-Whitney test p=7x10−9).

The current calibrated simulator produces a representative number of patches when

only 0.25% of the available LTo cells are set to have the potential to form PP (revealed

in calibration in section 2.2.6). As the above result suggests that fewer patches are

formed when cell placement is restricted to the anti-mesenteric border, simulation runs

were performed to determine the number of patches produced if this percentage was

increased. Results from this analysis have been plotted in Figure 4.5, which details

number of patches along the whole intestine length rather than 10% as examined

previously. When considering the whole length, experimental results suggest 8-12 PP

are formed (Figure 1.2). The results in Figure 4.5 suggest that under a restricted

condition, a greater number of LTo cells could have the potential to form PP, with the

potential for this value to be near 2%.

At the current stage of biological understanding, it is not possible to conclude

which theory is correct, either that there is a large restriction on the LTo cells that

can potentially form patches, or there is a restriction in the geographic area where PP

formation can occur. However, the simulation has suggested that both methods do

form potential biological methods by which patch number is controlled.

4.5 Determining the Role of Simulation Parameters in Aggre-
gation Size and Formation

The analyses in the previous chapter explored the impact that uncertainty in the value

of six simulation parameters (Table 3.1) has on simulated cell behaviour during hour

twelve and seventy-two of development . The remaining part of this chapter explores

the impact that uncertainty in the value of these parameters has in the aggregation of

hematopoietic cells, or the formation of a PP.

This analysis has been conducted by fixing one LTo cell at the centre of the simu-

lated intestine tract at the beginning of the simulation. This restriction is in place to

ensure that the analysis results reflect a change in parameter value, and are not a re-

flection of any effect caused by a change in location of the LTo cell. These experiments

can be recreated in the publicly available simulator by setting the relevant simulation

parameter controlling LTo cell positioning accordingly. Statistical methods within the

spartan toolkit compiled in the completion of this study have been used to perturb

the value of six parameters of interest and assess the impact on the cell aggregation

that forms. The statistical techniques examine three patch characteristics that are

output as simulation responses: the 2D area of the aggregation (calculated as detailed

in Section 2.2.5) and the final expression levels of chemokine and adhesion factors.
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4.5.1 Parameter Robustness

One-a-time analysis (Read et al., 2012) was used to determine how sensitive the for-

mation of PP is to the value of the six parameters detailed in section 3.4. Each was

examined in turn, over the same values used in previous analyses and described in

Table 3.1. Three-hundred simulation runs were performed for each parameter value

to mitigate the effect of aleatory uncertainty. The distribution of patch characteristics

obtained for that parameter value were then contrasted with a distribution of patch

characteristics obtained from the simulator at baseline values using the Vargha-Delaney

A-Test (Vargha and Delaney, 2000).

(i) Chemokine Related Parameters

Chemokine expression level is modelled by a use of a sigmoidal function as detailed

in Figure 2.8, where two constants are used to set the initial level of expression on

LTo cell differentiation and a maximum level of expression. An alteration in the

constant that captures initial level of chemoattractant expression (Figure 4.6a)

upon LTo cell differentiation has no significant effect on the size of the patch that

is formed or the level of adhesion factor expression at the end of the development

period. In contrast, an alteration in the initial chemokine expression level signifi-

cantly effects the level of chemoattractants expressed by the LTo cell at the end of

the 72 hour period. As the final expression level is dependent on both this initial

level and cellular interactions that upregulate the expression of chemoattractants,

changing the curve, this result could suggest that the patch characteristics ob-

served in the baseline simulation occur through a restricted number of cellular

interactions. A restricted number of interactions could make it impossible to

recreate the baseline final chemokine level, thus explaining why there is a signif-

icant difference if the initial value is changed. In terms of assessing the current

value assigned to this parameter, it becomes apparent that there is a large degree

of uncertainty in what this value should be.

When examining Figure 4.6b, it should be noted that one of the patch character-

istic cell responses, chemokine expression value at the end of the 72 hour period,

is directly affected by a change in this parameter. For this reason, a trend is

revealed where there is a significant difference in chemokine expression level at

the end of the development period for any value other than the calibrated base-

line. This suggests that for the baseline simulation, the maximum chemokine

expression level is always reached, through the increase in chemokine expression

brought about by stable cellular contacts. Thus if this threshold is changed, the

new threshold is also reached, and thus the A-Test reports a significant change

in result. This would suggest that determining a value for the maximum level

of chemokine expression using the simulator would be difficult. Unsurprisingly,

an increase in the maximum level of chemoattractant that can be expressed does
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cause an effect on both patch area and adhesion factor expression that Vargha and

Delaney deem a ’medium effect’. An increase in this parameter affects LTi cells

over a greater distance from the LTo cell, thus promoting LTi cell chemotaxis and

more cellular contacts, further upregulating adhesion factor expression and thus

the number of cells retained in a forming patch. For this parameter, the whole

range has not been analysed, as this represents a constant that is used in the

sigmoidal curve calculation that captures the distance over which the chemokine

is diffused. It would be assumed that a further increase in this parameter, and

thus range of chemokine expression, would lead to a continuation of the trend

seen for both these output responses, and a significant difference between the

baseline patch characteristics.

Figure 4.6c is the same analysis for the parameter that captures the probability

an LTi cell will not respond to chemokine level in its vicinity. An increase in this

probability thus has a significant effect on all patch characteristic measures, as

impairing LTi cell chemotaxis results in less cellular contacts and therefore less

upregulation of adhesion and chemoattractant factors.

(ii) Cell Binding Probability Parameters

Figure 4.6d details the affect of changing the probability that a stable bind occurs

when an LTo is in contact with an LTin/LTi cell. Such stable binds promote

further upregulation of chemokines and adhesion factors. The results suggest

that an alteration in the value of this probability has no significant effect on the

formation of the PP. A significant effect is noticed when the parameter is assigned

a value of zero but, as noted in analyses in the previous chapter that examine this

parameter, this is an expected result, as a probability of zero would mean that a

stable bind never occurs, and thus the LTo will never differentiate and produce

the adhesion factors and chemokines required for PP formation.

(iii) Adhesion Factor Related Parameters

This analysis reveals that a change in adhesion factor expression by an LTo cell

(Figure 4.6e) or the maximum probability an LTin/LTi cell will remain in pro-

longed contact with an LTo cell (Figure 4.6f) has no effect on any of the three

patch characteristic simulation responses. This suggests that other biological fac-

tors are key to the formation of the aggregation, as a reduced or over expression

still results in the same patch characteristics. This is in contrast to previous

analyses that reveal adhesion factors play a key role in simulated cell behaviour

(Section 3.7.2).
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4.5.2 Compound Effects between Parameters

Using the latin-hypercube sampling approach described in section 2.4.3, 500 sets of

simulation parameter values were generated, with values for each of the six parameters

of interest (detailed in Section 3.4) chosen from within the ranges specified in Table

3.1 such that any potential correlations are negated. For each parameter set, 300

simulation runs were performed to mitigate the effect of aleatory uncertainty. Each

run produces a set of output responses that describe the patch formed. Thus for each set

of parameters, a distribution of 300 patch characteristics is generated. For each patch

characteristic simulation measure, the median is taken of this distribution, and assigned

as the simulation result under the conditions set by that parameter set. Each of the

parameters was taken in turn and plots generated for each patch characteristic response,

detailing the median responses observed for all values assigned to that parameter. With

this resulting in eighteen separate plots, many of which reveal no compound effect, only

a selection of these have been included in this thesis within Figure 4.7, but each result

is detailed in the section below.

(i) Chemokine Related Parameters

No correlation is apparent between the initial level of chemokine expression on

LTo cell differentiation and the resultant patch area (plot not shown). The same

conclusion can also be drawn for the chemokine and adhesion factor expression

level measures.

However a significant trend does emerge when the parameter that captures max-

imum chemokine expression is adjusted (Figure 4.7a), supporting evidence in

one-a-time analysis that this is a key parameter in controlling patch area, and

further supporting concerns in the uncertainty of this parameter value. A small

trend is also apparent between this parameter and the level of adhesion factor

expression reached by the LTo cell (Figure 4.7b). As an increase in maximum

chemokine expression increases the distance over which LTi cell behaviour is af-

fected, more cells would be recruited and more stable cellular contacts should take

place, explaining the increase in adhesion factor expression. Finally, a large trend

was observed for the chemokine expression level patch characteristic response. As

a change in this parameter directly effects this simulation response, as discussed

in one-a-time analysis (Section 4.5.1), this is an expected result of this analysis,

and can thus be discounted (plot not shown).

When ordering results by the probability that an LTi cell does not respond to

chemoattractant expression in its vicinity, a correlation between the parameter

value and patch area does become apparent (Figure 4.7c), and becomes stronger

as this probability is increased. When examining the effect of perturbing this

parameter on adhesion factor expression (not shown), a similar effect is observed,

with a correlation appearing at upper extreme values. As this probability affects
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the recruitment of LTi cells towards an aggregating patch, this suggests the prob-

ability is an important factor in the size of the patch generated. The result also

suggests that as the correlation is stronger towards extreme values, there could

potentially be a large window of values beneath this extreme range that the true

value for this parameter could fall within. No correlation is apparent between the

value assigned to this parameter and the level of chemokine expression at the end

of the development period.

(ii) Cell Binding Probability Parameters

This analysis reveals no trend between the probability that a stable bind oc-

curs between an LTo and an LTin/LTi cell and the resultant patch area (not

shown). The same conclusion was also drawn for chemokine expression response

(not shown). When considering the level of adhesion factor expression, a small

trend is apparent for probabilities between 0 and 0.1 (Figure 4.7d). As noted

when this parameter was examined previously, this small trend can be explained

by the fact that setting this parameter to zero results in no cell binding and no

upregulation of the factors that cause patch aggregation, and thus such a small

trend is expected.

(iii) Adhesion Factor Related Parameters

Figures 4.7e and 4.7f support the conclusion drawn in one-a-time analysis above;

that the value of adhesion factor expression does not have a key role in the

formation of a PP. No trend becomes apparent for either parameter. This is also

the case for both the adhesion and chemokine expression responses (not shown).

4.5.3 Partitioning of Variance

The extended Fourier Amplitude Sampling Test (eFAST) (Marino et al., 2008; Saltelli

et al., 2000), detailed in section 2.4.4, has been used to determine the proportion of

variance in patch characteristic responses that can be explained by each of the pa-

rameters investigated. Five-hundred sets of parameter values were generated, with

each parameter being assigned a value within the ranges specified in Table 3.1. The

’dummy’ parameter used for statistical comparison was again set a value range of 1 to

10 and included in the sampling procedure. For each parameter value set, 300 runs

were performed to mitigate aleatory uncertainty that could affect patch characteristic

results. Simulation responses are analysed using the Fourier Frequency approach de-

scribed in 2.4.4 (Marino et al., 2008; Saltelli, 2004), and plots produced detailing the

median First-Order (Si) and Total-Order (STi) sensitivity indexes for each parame-

ter. The sensitivity indexes and measures of significance in comparison to the dummy

parameter are detailed in Table 4.1.

(i) Patch Area
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Contrasting the first-order sensitivity indexes (Si) for each of the six parameters

with those of the dummy (Figure 4.8a) reveal that three parameters account for

a statistically significant proportion of the variance (where p < 0.05 ) . Similar

to the previous analyses performed using this approach, one of these parame-

ters is the probability that a stable bind is formed on contact with an LTo and

hematopoietic (LTin/LTi) cell, a result that will become apparent due to the ef-

fect the lower extreme value has on both cell behaviour and patch formation. The

remaining parameters are chemokine related; the probability an LTi cell responds

to chemokine in the vicinity and the maximum level of chemokine expression.

This supports the trends observed in the latin-hypercube sampling analysis per-

formed previously, that the key pathway in patch size is the expression of and

response to chemokines.

When examining the total-order sensitivity indexes (STi) in Figure 4.8a, that

identify compound effects between the parameter and its complementary set, the

probability that an LTi cell responds to chemokine is again revealed as being

significant. This result suggests that the response to chemokine expression by an

LTi cell is key to the aggregation of patches, rather than the amount of adhesion

factor expression that is retaining these cells in the vicinity of the LTo.

(ii) Adhesion Factor Expression Level

This analysis technique determines that three of the six parameters examined ac-

count for a significant proportion of variance in adhesion factor expression caused

by parameter perturbation (Figure 4.8b). Two are the same chemokine param-

eters that account for a significant proportion in patch area as described above.

The third is an alteration in the expression level of adhesion factors on each sta-

ble contact. As this is directly linked to the response being measured (the final

level of adhesion factor expression), this is a result that is to be expected. How-

ever the analysis has given further support to the identification of the chemokine

expression and response pathway as the key reason for variance in simulation

results.

Significant compound effects (STi values) are revealed for four of the parame-

ters, the three that capture the chemokine expression and response pathway and

the expression level of adhesion factors. As noted above, one would expect a

change in the expression level of adhesion factors to influence the final level of

adhesion factor expression within a forming patch, and thus it is no surprise this

is revealed as a parameter that strongly interacts with the complementary set.

Again chemokine expression and response parameters are revealed as key to vari-

ance in adhesion levels, although the values of all parameters are being perturbed

simultaneously.

(iii) Chemokine Expression Level
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An initial examination of the graph in Figure 4.8c reveals that a large percentage

of the variance in final chemokine expression level can be explained by compound

effects between each parameter and its complementary set (the STi measure).

In this case, as observed in the latin-hypercube analysis above, the final level of

chemokine expression achieved is directly influenced by changing the value of the

maximum chemokine expression parameter. As this is the case, this analysis is

affected by this link, and no further meaningful result has been produced. Thus

these results can be disregarded.

Parameter Si P-Value STi P-Value
stableBindProbability 0.043 0.049* 0.226 0.097

chemokineExpressionThreshold 0.278 0.003** 0.501 0.015*
initialChemokineExpressionValue 0.043 0.074 0.311 0.068
maxChemokineExpressionValue 0.422 0.033* 0.311 0.068
adhesionFactorExpressionSlope 0.031 0.133 0.246 0.142
maxProbabilityOfAdhesion 0.025 0.117 0.142 0.288

dummy 0.011 0.099

(a) Patch Area Response

Parameter Si P-Value STi P-Value
stableBindProbability 0.144 0.101 0.216 0.135

chemokineExpressionThreshold 0.403 0.002* 0.568 0.003**
initialChemokineExpressionValue 0.033 0.120 0.167 0.006**
maxChemokineExpressionValue 0.274 0.028* 0.441 0.018*
adhesionFactorExpressionSlope 0.025 0.001** 0.185 0.013*
maxProbabilityOfAdhesion 0.077 0.087 0.288 0.099

dummy 0.006 0.058

(b) Adhesion Factor Expression Level Response

Parameter Si P-Value STi P-Value
stableBindProbability 0.108 0.120 0.750 0.130

chemokineExpressionThreshold 0.105 0.088 0.762 0.088
initialChemokineExpressionValue 0.108 0.082 0.766 0.084
maxChemokineExpressionValue 0.336 0.070 0.906 0.048*
adhesionFactorExpressionSlope 0.096 0.247 0.667 0.266
maxProbabilityOfAdhesion 0.093 0.266 0.661 0.269

dummy 0.072 0.518

(c) Chemokine Expression Level Response

Table 4.1: Median sensitivity indexes and measures of statistical significance for each
parameter examined using the eFAST technique, for all patch characteristic responses.
Si: First-Order Sensitivity Index; STi: Total-Order Sensitivity Index. Both are calcu-
lated for each re-sample curve and the median value taken. P-Value calculated using
two-sample t-test to the distributions comprised of the results from each re-sample curve.
* indicates statistical significance at 0.05 level, ** indicates statistical significance at 0.01
level.
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4.6 Discussion

4.6.1 Simulation as a tool for hypothesis generation

The pairing of computer simulation with current laboratory approaches is becoming

increasingly prevalent as it provides a means to perform investigations that either

cannot currently be performed by other means, or that can inform future laboratory

investigations (Andrews et al., 2008; Germain et al., 2011). Investigations that apply

this technique can be termed in silico experimentation. This approach has yet to be

utilised to explore secondary lymphoid organ development. However the simulation

platform developed as described in Chapter 2 makes such explorations possible.

Three novel in silico explorations have been detailed in this chapter. Although much

of the underlying detail of PP development is now well understood (van de Pavert

and Mebius, 2010; Randall et al., 2008; Veiga-Fernandes et al., 2007), there remain

interesting questions that have yet to be addressed. The variation in patch number,

size, and location between the different intestine observations in Figure 1.2 for mice

and in studies by Cornes (1965) is one example. The three explorations conducted in

this chapter suggest hypotheses that could explain some of this variability, as well as

addressing further uncertainty surrounding the role of LTin cells (Patel et al., 2012).

Firstly the impact of changing the LTin cell population size was examined (Figure

4.3). Data presented here suggests that the number of PP that form by the end

of hour 72 is related to the number of LTin cells in the gut. A reduction in cell

number leads to a statistically significant change in the number of patches, although

not a significant reduction in patch area. The opposite effect on patch number is

observed when the number of LTin cells is increased by 2 and 3 fold, however no

further increase in patch area or number occurs when LTin cell population is increased

by 4 and 5 times. Previous experimental work has shown that LTin cells express RET,

which binds to an LTo cell expressing ARTN, initiating LTo cell differentiation and the

process of PP formation (Patel et al., 2012; Veiga-Fernandes et al., 2007). Explorations

using the simulator suggest that not only do LTin cells trigger the process, they could

potentially control PP number. Small variations in LTin cell number between samples

may then explain the variation seen in Figure 1.2. However, the trend between patch

number and LTin cell number does not continue for a vast overexpression of LTin

cells. This is potentially explained by limited RET ligand availability, and thus a

continued overexpression has no impact, especially as LTin cells are not thought to

express receptors for chemoattractants and are rarely recruited into PP (Randall et al.,

2008). This is in contrast to an overexpression of LTi cells, which has been done

experimentally and does lead to a significant difference in PP size (Meier et al., 2007).

Results that help form the above hypothesis are based on the assumption that

LTin cells migrate into the gut at a set rate that does not change through the course

of the simulation. Whereas flow cytometry results have been used to estimate LTin
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cell count at E15.5, no further time-point data was available, explaining the need to

make this assumption. The second in silico exploration examined the effect on PP

characteristics if LTin migration rate was not constant, but either high initially and

tails off (a square root function), or low initially and increases rapidly (an exponential

function). These input functions were both investigated and results presented in Figure

4.5. Input rate functions were generated such that each method of setting the rate led

to the creation of the number of cells estimated using flow cytometry results at E15.5.

Changing the migration rate to a use a square root function had no significant impact

on the number and area of patches observed (Figures 4.4b and 4.4c). However it

can be observed in the same figures that patch number and area did reduce if cell

migration is modelled using an exponential curve, where migration is initially slow

and rapidly increases. This could suggest that it is not only LTin cell number that is

controlling patch number, but the rate of LTin migration into the gut could also be

influential. Future laboratory investigations should test this hypothesis, by performing

flow cytometry on guts taken from human-CD2-GFP transgenic mice at different time-

points, through which estimations of cell counts can be made and used to set a realistic

LTin input curve. If this data was made available, the simulator could have a key role

in furthering the understanding of the role of LTin cells, providing more weight to the

hypotheses generated.

The final in silico exploration performed in this chapter considered an alternative

method of controlling the number of PP that develop over the 72 hour period. The

current model makes the assumption that LTo cells that express RET ligand could

be present at any point on the gut surface. Flow cytometry results were used to es-

timate that 20% of the surface area of the gut contains cells that have the potential

to form PP, but simulation calibration results suggested that the correct number of

PP are formed if only 0.25% of this 20% express RET ligand (Section 2.2.6). How-

ever, it has been observed that PP tend to form opposite the mesentery, known as the

anti-mesenteric border (van de Pavert and Mebius, 2010; Randall et al., 2008). The

mesentery attaches the small intestine to the abdominal cavity, and contains vessels

through which hematopoietic cells migrate into the intestine (Eberl et al., 2004). One

theory concerning why PP form in this particular region could be that the expres-

sion of RET ligand is restricted to LTo cells opposite the mesentery. A restriction

was implemented such that only LTo cells placed within a set region could express

RET ligand. Unsurprisingly when run under these conditions, the number of patches

formed by the calibrated simulator fell sharply (Figure 4.5). With this result taken

into consideration, the simulator was used to investigate how much the percentage of

active LTo cells in the simulation could be increased with this restriction in place. A

representative number of patches (8-12 in the mouse, Figure 1.2) were observed when

increasing this percentage to 2%. The exploration does suggest RET ligand expression

restriction could be a further method by which patch formation is controlled. As RET
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is known to be a key initiator in the development process (Veiga-Fernandes et al., 2007)

this hypothesis could hold. However, there is still little biological evidence to suggest

that such a geographic restriction occurs, and some patches do form that are not on the

anti-mesenteric border. It is not known how plausible it is as to whether only 0.25%,

or indeed 2%, of the large number of LTo cells on the gut surface possess the ability to

form PP. If this is plausible, this itself could be the factor controlling PP number, and

it would be assumed that there is some unknown factor causing an early differentiation

of this selected set of LTo cells. If these percentages were implausible, this suggests

patch number is being controlled another way, potentially by the physical geometry of

the intestine or environmental changes as the gut develops. The simulator can produce

hypotheses but there is currently little geographic data on which these can be based

and thus supported.

4.6.2 Statistical Analysis Reveals Chemokine Expression Dom-

inant Factor in Patch Aggregation

It has previously been suggested that the process of PP development is chemokine

driven (Luther et al., 2003; Randall et al., 2008). This conclusion has been drawn

from studies of mice deficient for genes encoding a particular function (Eberl et al.,

2004; Luther et al., 2003; Meier et al., 2007; Veiga-Fernandes et al., 2007). However

no study has yet been undertaken to quantify the effect of changing the levels of

each biological factor involved in organogenesis. The statistical techniques compiled

within the spartan package have been utilised to reveal the key factors in causing cell

aggregation throughout the simulated time. This has been achieved by examining the

six biological factors for which a value remains unknown (Table 3.1), and exploring the

effect on cell behaviour when the value of these parameters is perturbed.

Application of latin-hypercube (Read et al., 2012) and eFAST (Marino et al., 2008;

Saltelli et al., 2000) techniques provides an indication of the influence of a particular

factor. Analyses using these approaches has revealed a significant role for chemokine

expression and response, suggested by Partial Rank Correlation Coefficients calculated

from latin-hypercube simulation results (Figure 4.7) and by eFAST sensitivity indexes

(Table 4.1). Previous analyses in this thesis have suggested that adhesion factors have

a key role in influencing cell behaviour, however a change in the value of adhesion factor

expression has no impact on the three patch characteristics the simulation produces.

Thus the simulation agrees with the hypotheses in the literature, that the process is

chemokine dependent.

Previous studies by Meier et al (2007) examined the role of LTi cells in tissue de-

velopment using IL-7 transgenic mice. This revealed that an overexpression of IL-7

led to a larger number of LTi cells in the gut and larger Peyer’s Patches. In contrast,

mice deficient for LTi cells do not have the ability to form PP (Sun, 2000; Yokota

et al., 1999). A number of studies have revealed that LTi cells express receptors for
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chemokines CXCL13, CCL19 and CCL21 expressed by the LTo cell (Luther et al.,

2003; Ohl et al., 2003). In the study in this thesis, an assumption was made in the

domain model that an LTi cell may not always respond to chemokine in its vicinity. In

the platform model, this is captured as a probability that the cell may not respond to

chemokine expression. Statistical analyses of a change in this probability reveals it is

influential in affecting patch area and chemokine expression when perturbed individu-

ally (Figure 4.6c), and is an influential pathway in affecting both these measures when

the six parameters of interest are being perturbed simultaneously (Figure 4.7c). This

suggests it is not sufficient to state that the process of PP development is dependent

on chemokine expression: the result is dependent on both the expression of and LTi

response to chemokines. During calibration, this probability was determined to be a

low value (0.3%), suggesting it is unlikely an LTi cell will not respond to chemokine

expression in the vicinity. It is unknown as to whether this is biologically plausible,

or whether the affinity between the receptor and chemokine expressed needs to be

stronger. If this was the case, this would also imply that LTi cells have a role in

controlling Peyer’s Patch size, through limiting response to environmental factors.

4.6.3 An Interaction Focused Rather Than Reductionist Ap-

proach

The use of simulation to study cellular interactions shifts the focus from an examination

of each individual component part to that of the higher order behaviour and how this

emerges from components that lack the capability to create this phenomena alone

(Germain et al., 2011). A large number of published studies exist that examine the

role of particular biological components involved in PP development (Eberl et al., 2004;

Luther et al., 2003; Meier et al., 2007; Veiga-Fernandes et al., 2007). However, the patch

characteristic analyses in this chapter provides good examples of why taking such a

reductionist approach does not reveal the full picture concerning the system dynamics.

This section discusses one such example.

One-a-time analysis was performed for each parameter using the technique de-

scribed by Read et al (2012), and revealed that a significant change in the level of

chemokine expression reached by the LTo cell when the initial level of expression on

cell differentiation was altered (Figure 4.6a). In some respects this mimics a reduc-

tionist approach that considers the effect of each component individually, and draws

conclusions concerning how the component affects system dynamics just from this

examination. Thus in this example, it would be assumed that the initial level of

chemokine expression is an important factor. However, perturbing the value of initial

chemokine expression level with the other five parameters being examined simultane-

ously, using both latin-hypercube sampling (Read et al., 2012) and eFAST techniques

(Marino et al., 2008; Saltelli et al., 2000) reveals no trend in simulation response. The

parameter may be influential when examined on its own, but this influence is largely
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dependent on the value assigned to other parameters in the model.

It is examples like this that highlight reasons for integrating modelling, simulation

and statistical analysis techniques with current laboratory techniques. The quantitative

analyses that have been performed on six simulated biological components in this and

the previous chapter cannot be performed in a lab, and have the potential to offer

biological insight that cannot be revealed in other methods (Germain et al., 2011).

The development of structured methods in the creation of models and simulations,

such as that of the CoSMoS process (Andrews et al., 2010), and the availability of

statistical toolkits such as spartan, is making it possible to generate models where

although some detail is abstracted from system dynamics, the level of confidence in

the simulator as a representative tool can be established (Andrews et al., 2008; Polack

et al., 2010; Read et al., 2012). Establishing a level of confidence is vital if meaningful

results are to be produced that shift the field towards utilising an interaction based

approach.

4.6.4 A Simulation Approach Can Have Limitations

This discussion has raised the prospect of studies being conducted where a robust

model and simulation is produced, statistical analyses used that establish the confi-

dence in results generated, and in silico experimentation performed to reveal additional

biological insight. Previous sections of this discussion detail areas of the biological un-

derstanding where taking this approach in examining PP development has produced

some hypotheses that could address some unanswered questions concerning system dy-

namics. However, it must be noted that this should not be considered the end of the

process, and explorations using simulation can raise additional questions.

Previously published studies have detailed a role for chemokine expression and

response in the development of PP (Ansel et al., 2000; Luther et al., 2003). This

chapter has taken this forward and provided a quantitative examination of the effect

of changing chemokine expression levels, a feature that has been determined to be a

key pathway in the simulation. However it has been difficult to set an exact value for

the maximum level of chemokine expression by an LTo cell, and there is a large degree

of uncertainty in the value of this parameter. It has been demonstrated that a change

in the maximum level of expression always changes the level of chemokine expressed

reached by the LTo cell, suggesting this threshold is always met (Figure 4.6b).

This does not detract from the identification of this as a key pathway, more em-

phasises the fact that simulation can provide some key insight, but does have some

limitations. In this case, it has not proved possible to reveal the maximum level of

chemokine expressed by an LTo. However this could be achieved with more biological

information, which could come in one of three forms. The first is a quantitative study

of chemokine expression at different time-points in development, although this is very

difficult to achieve in the lab. This data could then inform the setting of the constants
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controlling the sigmoid curve that models chemokine expression. Secondly, and much

more tractable, is a study of LTi cell behaviour at different time-points in development.

This could be done in a similar way to the ex vivo work produced by Patel et al (2012),

and cells tracked in an explant culture system during a variety of hours of development.

Changes in LTi cell behaviour over time, and at certain distances from an LTo cell,

would provide a means of calculating how chemokines are diffused over time, and thus

the simulator could be recalibrated based on cell behaviour. Finally, reevaluating the

measures that define a patch could also be beneficial. If it was possible to determine

the number of LTi cells within an aggregation at certain time-points, chemokine ex-

pression could be modelled in such a way that aims to recruit LTi cells in such a way

that recreates that dynamic.

The approach to simulation construction in this thesis has followed the framework

in the CoSMoS process (Andrews et al., 2010), which defines the generation of a series

of models, from which a simulation is implemented. One of the key points in this

framework is that the process has no end point: results from simulation may then

feed further work in developing the model, either by examining the abstractions and

assumptions that were made or through performing work in the lab that then feeds a

further iteration of the model. In some respects, work in this thesis is the end of one

iteration. Experiments have been suggested that could improve the model, and if these

were completed, the process would then begin again, and potentially the limitation

identified above could be addressed.
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(a) Control: Wild-Type Mice (Simulation
under baseline conditions)
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(b) RET Deficient Mice (Veiga-Fernandes
et al., 2007)
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(c) Chemokine deficient mice (Luther et al.,
2003)

0
50

10
0

15
0

20
0

25
0

Simulated Gut Length (Pixels − 1pixel = 4microns)

S
im

ul
at

ed
 G

ut
 H

ei
gh

t (
P

ix
el

s)

0 100 200 300 400 500 600 700

(d) RORγ deficient mice (Eberl et al., 2004)
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(e) IL-7Tg mice (Meier et al., 2007)

Figure 4.1: Use of the simulator to reproduce previously published results. Graph
represents 10% of the foetal intestine length. Circles represent the locations of LTin and
LTi cells. This figure has been adapted from that included within Alden et al (2012b)
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Figure 4.2: Examining the effect of aleatory uncertainty on the results of the simulation
for a variety of sample sizes. This summarises the maximum A test score for patch
characteristic measures when the sample size is varied. Where the maximum score was
less than 0.5, the corresponding value above 0.5 has been assigned. This has been done
as the magnitude of the effect is of more interest than the direction. For each sample
size, twenty runs are performed, with no parameters changed each time. Using this
technique, the number of runs necessary to produce a robust result can be ascertained.
In this case, there is little reduction from 300 runs or greater.
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Figure 4.3: Use of the simulator to investigate the impact of LTin cell number to
simulation result. Top: investigating a decrease in LTin cell number; Bottom: investi-
gating a 2,3,4, and 5 fold increase in the number of LTin cells. Simulations were run
300 times for each LTin cell parameter value and medians taken for both Patch Area
and Patch Number. The left column contains a boxplot of the patch area for each value
the parameter has been assigned. The right column contains the result of a comparison
between patch characteristics observed at baseline values and those observed when the
parameter is perturbed, using the Vargha-Delaney Test (Vargha and Delaney, 2000).
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Figure 4.4: Investigating LTin cell migration rate by changing the input rate function
within the simulator. (a): Flow cytometry data has been used to estimate the number of
LTin cells present in the simulator at E15.5 (blue line). With cell counts at other time-
points unavailable, the simulator assumes a linear input rate, that meets the number
of LTin cells observed at E15.5, and continues at the same trajectory until E17.5 (red
line). However this may not be the case. To investigate the effect that cell input
rate has on results, two alternative input rates have been investigated, an exponential
(green line) and square root (black line) function. These three lines converge at E15.5,
matching the number of cells observed by flow cytometry. Three hundred simulation
runs have been performed for each input rate function and median patch characteristics
calculated. (b): A comparison of the median patch area observed for each input rate
function. (c): A comparison of the median number of patches for each function. Results
for the exponential and square root functions have been contrasted to the linear input
rate using the Vargha-Delaney A-Test (Vargha and Delaney, 2000), the result of which
is noted on the plot. Error bars are s.e.m.



4.6. DISCUSSION 151

0.25% 0.5% 2.5% 5% 10%

Comparing PP formation where RET Ligand position is restricted
 against results with no position restriction

% LTo cells expressing RET Ligand

A
ve

ra
ge

 N
um

be
r o

f P
at

ch
es

0
20

40
60

80
10

0

15% Restriction
No Restriction

Figure 4.5: An investigation into how geographic restriction of RET ligand expression
affects PP formation. Simulations were run with active RET ligand expressing LTo cell
position restricted to a 15% band across the centre of the tract, and the number of
patches formed compared with the case where there is no restriction. The percentage
of LTo cells capable of forming PP was also investigated for both conditions. 300 runs
performed for each condition. Black: 15% position band restriction; Grey: no restriction.
Error bar: s.e.m.
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Figure 4.6: Determining the robustness of patch characteristic responses at the early
time-point in development. The six parameters for which a value is unknown were
examined in turn, and the value of each perturbed within a specified range. Simulation
results were compared to those generated during calibration, using the Vargha-Delaney
A-Test, to determine if a significant change in cell behaviour has occurred
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Figure 4.7: Identifying any compound effects on patch characteristics through latin-
hypercube sampling, a technique that perturbs the value of all parameters simultane-
ously. Influential parameters are identified by trends that emerge in simulation results,
and through Partial Rank Correlation Coefficients specified in the graph header.
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(a) Initial level of chemoattractant expression at LTo differenti-
ation

(b) Saturation limit of chemoattractant expression

(c) Chemokine Level at which LTi chemotaxis occurs

Figure 4.8: Using the Extended Fourier Amplitude Sampling Test (eFAST) to explore
the influence each parameter for which a value is unknown has on PP formation. Black:
the fraction of model output variance accounted for by a variation in the value of that
parameter (Si); Grey: remaining variance accounted for by higher-order interactions
between this parameter and its complementary set (STi).



Chapter 5

Time-Lapse Analysis through

Simulation

Data presented in this thesis suggests that Peyer’s Patch development may be

biphasic, the first phase mediated by adhesion factor expression and the second by

chemokine expression and response. This hypothesis is drawn from a statistical

analysis of simulated cell behaviour during two distinct time-points, hour 12 and hour

72. This chapter demonstrates a novel use of simulation and statistical techniques to

perform a time-lapse analysis of cell behaviour, to suggest the point in the

development period where a change in phase occurs.
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5.1 Introduction

The analyses in the previous chapters of this thesis have utilised statistical tools to

suggest which biological parameters are influencing cell behaviour during hour twelve

and seventy-two of development. It has been determined that, in simulation, adhesion

factors are influential in causing the emergent cellular behaviour observed at the twelve

hour timepoint, and that chemoattractant factor expression has no role in influencing

cell behaviour. However, performing the same analyses for cell behaviour during hour

72 of development reveal that chemoattractant expression is influential at the end of

the process, as suggested in the literature (Adachi et al., 1997; Eberl et al., 2004). This

could suggest the existence of two distinct phases of Peyer’s Patch development within

the 72 hour period; the first mediated by adhesion and the latter mediated by chemoat-

tractant expression, and raises the important question of when a biological factor such

as an adhesion factor or chemokine becomes influential in tissue development.

Current confocal microscopy techniques allow for the behaviour of cells to be tracked

over a set time period, a technique utilised to generate the cell behaviour results on

which this simulator was calibrated (Patel et al., 2012). Although such time-lapse

analysis has proven useful in examining cell behaviour and how this changes, it does

not further the understanding of the role each biological factor has in the behaviour

that is observed. Although it is possible to use the technique to examine cell behaviour

under different conditions, for example within an ex vivo culture system, such an

experimental set up can be time consuming and expensive, especially when examining

the system under a number of conditions.

Although the integration of computer simulation with current experimental results

is becoming a popular approach in furthering the understanding of biological systems,

the application of simulation as a tool to perform time-lapse experimentation has been

limited. The only example of such an application to date is in studies of granuloma

performance for controlling Mycobacterium tuberculosis infection (Ray et al., 2009),

where agents within the system have been tracked constantly through the simulation

time period and sensitivity analysis techniques used to examine behaviour at regular

time intervals. Utilising such an approach has the potential to not only suggest the

biological factors that are highly influential, but suggest the time-points where sys-

tem dynamics are influenced by particular parameters, potentially revealing that the

behaviour that emerges through these system dynamics occurs in distinct phases.

This chapter examines the use of computer simulation as a tool to perform a time-

lapse analysis of cell behaviour responses in PP development. The simulator has been

configured such that cell behaviour responses are recorded at twelve hour intervals, thus

it is possible to examine changes in cell behaviour over time. This can be achieved us-

ing the same sensitivity analysis techniques that were utilised in the previous chapters

and included within the spartan package. Firstly, simulation robustness to parame-

ter perturbation is examined using the one-at-a-time technique (Read et al., 2012).
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Each of a set of parameters of interest is examined in turn, and its value perturbed

individually within a set range. This technique has been used in previous chapters to

determine the effect that this parameter value change has on cell behaviour. A time-

lapse analysis will reveal if and when such a parameter change becomes influential.

Secondly, the latin-hypercube sampling (Read et al., 2012; Saltelli et al., 2000) and

eFAST global sensitivity analysis techniques (Marino et al., 2008; Saltelli, 2004) have

been used to perturb the values of a subset of parameters simultaneously and exam-

ine any compound effects that become apparent. Both of these techniques produce a

statistical measure that determines how influential a particular parameter is, a Partial

Rank Correlation Coefficient for latin-hypercube and a First-Order Sensitivity Index

for eFAST. Examining how these statistical values change over time gives an indication

of the time-points where each parameter becomes influential.

This chapter concludes by examining a set of cell responses that have yet to be con-

sidered within this thesis. All analyses to date have considered responses of simulated

cells that are near to a forming patch, as these behave statistically differently to those

that are further away. This statistical difference was observed at twelve hours, and cell

behaviour calibrated accordingly. The calibrated simulator has been run for the full

seventy-two hour period and behaviour of cells away from a forming patch captured at

twelve hour intervals and compared with behaviour at twelve hours observed ex vivo .

This indicates the time-point when the interactions of cells within a forming patch af-

fect the behaviour of cells further away, through the upregulation of chemoattractants

expressed on interactions with LTo cells.

5.2 Aims

Explorations in this chapter utilise the simulator and statistical tools within the spartan

toolkit to perform a time-lapse analysis that addresses the following aims:

1. Determine whether there are set time-points in development where a biological

factor becomes influential, by examining changes in cellular behaviour over time.

2. Determine if and when the behaviour of cells over a distance of 50µm is affected

by cellular interactions within a primordial patch

5.3 Parameter Value Robustness over Simulation Time

Sections 3.5.1 and 3.6.1 examine how robust simulation behaviour is to a perturba-

tion in the value of each parameter detailed in Table 3.1, with analyses focusing on

hours twelve and seventy-two of development respectively. This reveals the impact that

each parameter has individually on cellular behaviour, while also further supporting
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the identification of parameters for which there is a high level of uncertainty in their

true value. In this section the same analysis is performed, but for twelve hour intervals

throughout the seventy-two hour run. Each parameter was perturbed individually, and

assigned a value within the range set in Table 3.1. For each value the parameter was

assigned, 500 simulation runs were performed to mitigate the effect of aleatory uncer-

tainty. Medians of the cell velocity and displacement responses were then compiled

for the 500 runs, creating a result distribution where the simulation was run under

that criteria. This was contrasted to a distribution generated from 500 runs of the

simulation at calibrated values using the Vargha-Delaney A-Test.

(i) Chemoattractant Related Parameters

A change in the initial level of chemokine expression on LTo cell differentiation

has previously been seen to have no effect on cell behaviour at either hour twelve

and seventy-two of development. It is thus of little surprise that performing the

same analysis at twelve hour intervals reveals the same result. This could suggest

that there is an large degree of uncertainty in the actual value of this parameter.

In contrast, previous analyses revealed that although changing the maximum

level of chemokine adhesion had no impact on cell behaviour at twelve hours

(Figure 3.3b), there was a significant effect observed on cell behaviour during

hour seventy-two (Figure 4.6b). Performing the same analysis for data captured

at twelve hour intervals reveals that a perturbation in parameter value causes a

significant alteration in cell behaviour from hour 36 onwards, with a large dif-

ference between both cell displacement and velocity responses between hour 24

and hour 36 (Figures 5.1b and 5.2b). The same effect is seen for the parameter

that captures LTi response to chemokine (Figures 5.1c and 5.2c). As this param-

eter is perturbed individually, the analysis reveals that there is a large degree of

uncertainty in the true value of chemokine expression and response parameters,

and this has to be taken into account when understanding cell behaviour after 36

hours.

(ii) Cell Binding Probability Parameters

It has been discussed in previous analyses that cell binding probability is a difficult

parameter to assess due to the effect observed when assigned a value of zero: no

LTo cell differentiation and thus no chemokine and adhesion factor expression.

A significant difference in cell behaviour would therefore be expected where this

parameter is zero, and this is observed for all time-points examined (Figures 5.1d

and 5.2d). Other than this effect, the same observation is made as that drawn with

the chemokine parameters above, that increasing just the value of this parameter

has a significant effect on cell behaviour after the 36 hour time-point. Increasing

this probability alone should lead to more stable contacts between hematopoietic

cells and LTo cells, thus an increase in chemokine and adhesion factor expression,
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influencing the behaviour of cells close to a patch. This further supports a growing

conclusion that chemokine expression and response is important after the 36 hour

time-point, and uncertainty in parameter values that are related to this pathway

are an important consideration in analysing behaviour from that point onwards.

(iii) Adhesion Factor Related Parameters

One-a time analysis in Chapter 3 suggests that LTin/LTi cell response to adhesion

factors has a key role in influencing cell velocity at the twelve hour time point.

An examination of the robustness of simulation behaviour to this parameter over

time reveals that this effect increases as simulation time elapses (Figure 5.1e),

suggesting a strong relationship between the value of this parameter and cell

velocity. For displacement, previous analysis revealed that a perturbation in

parameter value had no effect on cell displacement during hour twelve, and thus

there was a larger degree of uncertainty in the true value of this parameter.

However a time-lapse analysis reveals a perturbation in expression would have a

significant effect from hour 36 onwards (Figure 5.2e). It can be suggested that

this affect becomes apparent due to the influence of chemoattractants later in the

process. It has been revealed in previous analyses that chemoattractants have no

role early on in development, but do become influential throughout the process.

As this happens, more cells will be brought towards a forming patch, resulting

in more contacts and a further upregulation of chemoattractants and adhesion

factors. As the level of adhesion factors expressed increases, the probability an

individual cell responds to this expression increases until the threshold set by this

parameter is hit. From 36 hours onwards, a larger number of cellular contacts

will have occurred, resulting in a high level of adhesion factor expression. Thus a

change in this parameter has a direct impact on cell displacement when adhesion

factor expression is high.

In contrast, for the parameter that captures expression level of adhesion fac-

tors with each stable contact, no significant change in cell behaviour is observed

throughout the simulation time period for each parameter value studied (Fig-

ures 5.1f and 5.2f). As noted in previous discussions concerning this parameter,

a small effect is seen for a low level of adhesion factor expression, yet a large

increase after that point yields no difference, suggesting that too low a level of

adhesion is influential, yet an overexpression has no significant effect.

5.4 Identifying the time-point at which a parameter becomes
influential

Analyses in Chapter 3 used two global sensitivity analysis techniques (latin-hypercube

sampling and eFAST (Read et al., 2012; Saltelli et al., 2000)) to identify parameters
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that have a highly influential effect on simulated cell behaviour, thus suggesting the

key biological pathways in the development process. Here, these two analyses have

been performed for cell responses captured at twelve hour intervals for each of the

runs described in Chapter 3, making it possible to determine if and when statistical

measures generated by the technique change over time.

5.4.1 Parameter Value Sampling using Latin-Hypercube Ap-

proach

Time-lapse results have been generated using the same 500 parameter value sets that

were created using a latin-hypercube approach (detailed in Figure 2.20) to examine

behaviour at hours twelve and seventy-two (sections 3.5.2 and 3.6.2). For each value

set the simulation was run 500 times to mitigate the effect of aleatory uncertainty,

and behaviour measures for cells within 50µm of a forming PP captured at twelve

hour intervals. For each time-point in each run, the median of each cell behaviour

response was calculated, producing a distribution of 500 medians for each response. The

median was again taken for this distribution, producing cell behaviour responses that

summarise the behaviour of the simulation under a particular parameter value set at a

particular time-point. Taking each parameter in turn, and each time-point, a Partial

Rank Correlation Coefficient (PRCC) was generated that gives a statistical measure of

any compound effects between the parameter being examined and simulation result at

that time-point. For each parameter, the PRCC values calculated for each time-point

were plotted, making it easier to visualise changes in PRCC value over time, and thus

any emergence in compound effects between parameters over simulation time (Figure

5.3).

For the cell velocity response, no increase in correlation value appears over simula-

tion time for the parameters that capture the initial and maximum levels of chemokine

expression by an LTo cell (Figures 5.3a and 5.3b). The same conclusion can be

drawn for the parameter that captures the probability an LTi cell does not respond to

chemokine expression in its locality (Figure 5.3c). This supports previous conclusions

put forward in this thesis that chemokine expression has no significant effect on cell

velocity. When considering Figure 5.3d, the probability two cells form a stable bind

upon contact, it can be noted that the PRCC values are higher than those for the

chemokine parameters, but no trend in correlation value over time is observed. The

higher PRCC values are expected due to the effect that setting this parameter to its

extreme value of zero has on simulation response (that LTo cells cannot differentiate

and express adhesion factors and chemokines). Thus this effect has been discounted

throughout this study. In contrast, there is a strong correlation between the value

assigned to the parameter that captures the probability that an LTin or LTi cell is

retained by adhesion factor expression and cell velocity, and this remains the case for

each time-point, suggesting this is the key factor in influencing cell velocity (Figure
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5.3e). Any correlation between the level of adhesion factor expressed with each stable

cellular contact and cell velocity does decrease between 12 and 36 hours (Figure 5.3f),

potentially suggesting that adhesion factor expression is influential in early stages of

development but not through the whole time period.

When considering cell displacement, the response to and expression of chemoat-

tractants is identified as a key pathway in affecting cellular behaviour. Although no

correlation between maximum level of chemokine expression and cell displacement was

identified at hour twelve, a stronger correlation does become apparent in the following

24 hours, after which there is a clear trend between the value of this parameter and

cell behaviour (Figure 5.3b). An LTi cell response to chemokine expression follows a

similar pattern (Figure 5.3c). A combination of this and analyses in previous chapters

provides further support to the hypothesis that the development period may be split

into two phases, and now provides an indication of when these phases may change.

However whereas the influence of the chemokine pathway increases as the simulation

time elapses, the correlation between a cells response to adhesion factor expression and

cell displacement is initially stronger and steadily increases (Figure 5.2e), suggesting

an influence on cell displacement throughout the whole development period. Although

this is the case, interestingly no correlation becomes apparent between the level of

adhesion factor expression and cell displacement, at any time-point in development.

5.4.2 Parameter Value Sampling using eFAST Approach

Time-lapse responses were generated using the same eFAST parameter value sets gen-

erated to explore cell behaviour at 12 and 72 hours (sections 3.5.3 and 3.6.3). For

each parameter value set, 500 simulation runs were performed to mitigate the effect

of aleatory uncertainty. Median cell response measures were calculated for each time-

point in each run, producing sets of 500 median cell behaviour responses. The medians

of these distributions was calculated to give a median cell response for the simulator un-

der those conditions, at that time-point. The eFAST approach was utilised to analyse

these results for each time-point, producing first-order (Si) and total-order (STi) sen-

sitivity indexes that determine the proportion of variance in simulation response that

can be accounted for by that parameter, at that time-point. For each cell response,

the first-order sensitivity indexes for each parameter, and each time-point, have been

plotted (Figure 5.4.2) to reveal if the proportion of variance that can be accounted for

by each parameter changes over simulation time.

For cell velocity responses, the analysis supports the conclusions drawn in the sec-

tion above (Figure 5.4a). The expression level of adhesion factors accounts for a sig-

nificant amount of the variance in simulation results at twelve hours, yet this impact

reduces in a similar way to that observed in latin-hypercube analysis, again suggesting

an influence in early PP development but one that does not continue throughout the

development period. In contrast the proportion of variance explained by the probabil-
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ity an LTi cell responds to adhesion factor expression quickly increases after 12 hours,

and from 24 becomes the only significant parameter that influences cell velocity. There

is no significant change in Si value for all other parameters of interest.

The cell displacement responses again support results observed in latin-hypercube

analysis above, revealing a significant change in LTi adhesion response and maximum

level of chemokine expression between 12 and 36 hours, after which the value stabilises

(Figure 5.4a). In contrast to the results in the previous section, no significant increase

is observed in the Si value for LTi response to chemokine, a value that remains close to

constant throughout. For all time-points the proportion of variance accounted for by

that parameter is statistically significant in comparison to the dummy parameter, sug-

gesting the parameter has an effect but is not the major influence on cell displacement.

Again there is no significant change in Si value for all other parameters.

5.5 Time-Lapse Analysis of Cells Away From a Developing
Peyer’s Patch

Statistical analyses throughout this thesis have focused on the behaviour of cells close

to a forming patch, to understand how each biological factor influences these cells such

that they behave differently to those further away (> 50 µm). However, the behaviour

of simulated cells both close to and far from a forming patch has been calibrated from

ex vivo data captured in the twelfth hour of development (Patel et al., 2012). Previous

studies in the literature suggest that chemoattractant expression has a key role in the

recruitment of LTi cells to a forming patch (Cyster, 1999; Luther et al., 2003), and

thus there may be a point in the simulation at which the interactions close to a patch

begin to affect the behaviour of those further away. To examine this, the simulator

was run 500 times, and the behaviour of cells that are further than 50µm from an

LTo cell tracked at four hour intervals. The distribution of cell behaviour responses for

each time-point >=24 hours were then compared with those generated at the calibrated

twelve hour time-point using the Vargha-Delaney A-Test, to determine if cell behaviour

does become statistically significantly different to that at 12 hours.

The results of this analysis can be seen in Figure 5.5. Cell displacement remains

statistically similar to that seen at the 12 hour time-point until hour 36, after which

point there is a significant change in cell behaviour. In fact by hour 48, the two

distributions are statistically completely different (A-Test score = 1.0). Such a result

would suggest that under conditions created in calibration, chemokine expression does

not begin to affect cells further than 50µm from a forming patch until hour 36. As

expression increases, the distance over which chemokines become influential increases,

and thus displacement becomes significantly different. However it is difficult to draw

a firm biological conclusion based on this as the level of chemokine expression remains

unknown, and thus such an effect may have become apparent through parameterisation.
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5.6 Discussion

5.6.1 Implementing a Time-Lapse Approach Through Simu-

lation and Sensitivity Analysis

This chapter has shown how a combination of a computer simulation and the range of

sensitivity analysis techniques in the spartan package (Marino et al., 2008; Read et al.,

2012; Saltelli et al., 2000) can reveal alterations in agent behaviour over time, and

suggest the biological factors that may be causing this change in behaviour. Although

biological explorations are increasingly being paired with computational modelling and

simulation, the application of the resultant simulator as a tool for performing a time-

lapse analysis of the captured process has not been widely utilised. Such an analysis

can then be used to target particular time-points to explore in the future laboratory

experiments.

The one-a-time parameter robustness technique (Read et al., 2012) has been ex-

tended in this chapter such that parameter robustness throughout the simulated time-

course can be examined. Currently the use of this technique in determining a level

of confidence in parameter value over time is novel, and aids establishing a degree of

confidence in the value assigned to that parameter over time. This is an important

consideration when assessing the effect of parameter value uncertainty on results. For

example, Figure 5.2b reveals that there is a large degree of uncertainty in the value of

the parameter that captures maximum chemokine expression by an LTo cell at 12 and

24 hours. However 12 hours later in the simulation, this changes completely, and results

suggest that just a small change in just this parameter value has a significant effect on

simulation result. What the results in this chapter mean biologically is detailed in the

next section of this discussion, but from a technique point of view, one could now try

to establish what has caused this effect to become apparent at that time-point. If cell

behaviour statistics were available from other time-points in the development process,

a robustness analysis could be used to ensure each simulation parameter is capturing

the correct biological dynamics at that time-point.

When considering use of global sensitivity analysis techniques over time, an explo-

ration of changes in Partial Rank Correlation Coefficients is not novel, and has been

demonstrated in determining correlations between simulated biological factors and ex-

tracelluar bacterial load over a simulated time period in a model of TNF in controlling

tuberculosis in a granuloma (Ray et al., 2009). However no study has yet examined

the first-order sensitivity indexes, generated using the eFAST technique (Saltelli, 2004;

Saltelli et al., 2000), over simulation time in the manner that has been presented here.

The remaining sections of this discussion examine the biological insight that results

using this approach suggest in relation to the formation of Peyer’s Patches through use

of the simulator as a time-lapse tool.
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5.6.2 Phases of Peyer’s Patch Development

Experimental work has generated the generally accepted hypothesis that there are

three phases of patch development (Adachi et al., 1997): the appearance of VCAM-1

stromal cells in the gut, the appearance of clusters of LTi cells around stromal cells,

and the recruitment of lymphocytes from E18.5. The simulation developed in this

thesis captures the first two phases. Cell behaviour analysis in Chapter 3 suggest that

different biological factors influence cell behaviour responses at different time-points.

Thus, through use of simulation, it could be suggested that there may be additional

development phases inside the first of the two generally accepted phases.

Analyses in Chapter 3, to determine the factors that cause the statistically sig-

nificant change in cell behaviour observed ex vivo when a cell is in the vicinity of a

forming patch (Patel et al., 2012), determined that cell velocity during hour twelve of

development is influenced by the level of adhesion factor expression per stable contact

between hematopoietic and stromal cells. However analyses of behaviour responses

at hour 72 suggest no influential role for adhesion factors. Use of global sensitivity

analysis techniques at twelve hour intervals suggests that the influence at twelve hours

becomes statistically insignificant by hour 36 (Figure 5.3). This could suggest that an

initial phase could exist, mediated by cell adhesion factors, covering the first 36 hours

of development, after which point the effect of a change in adhesion factor expression

level reduces amid a growing influence of other factors.

In contrast, previous analyses revealed no role for chemokine expression at twelve

hours, and a significant role at seventy-two as suggested in the literature (Cyster, 1999;

Luther et al., 2003; Ohl et al., 2003). Performing a sensitivity analysis over time has

been useful in determining the time-point in development when chemokine expression

and response becomes significant. Each of the analyses performed, whether perturbing

expression parameters individually (Figures 5.1 and 5.2) or with other parameters

simultaneously (Figures 5.3 and 5.4), reveals a statistically significant change in cell

displacement between hours 24 and 36, an effect that then stabilises through until hour

72. The parameter that captures LTi response to chemokine also becomes influential on

cell behaviour after hour 24. As chemoattractant expression promotes cell migration

towards a forming patch (Cyster, 1999), it could be suggested that a new phase of

development begins between this time-point, one that moves from the triggering of

adhesion and chemoattractant expression to the aggregation of cells that comprise the

primordial PP observed at hour 72, mediated by chemokine expression and response.

Although the level of adhesion factor expression has been determined to only have a

significant influence on cell behaviour for the first 36 hours, the parameter that captures

LTin/LTi cell response to adhesion factors has been shown to be highly influential

throughout the time period. When the parameter is perturbed individually to the

set examined, a clear trend emerges between the simulation time and an alteration

in cell behaviour (Figures 5.1c and 5.2c). Thus the system dynamics captured within
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the simulation are highly sensitive to LTi cell response to adhesion, a sensitivity that

increases over time. Global sensitivity analysis results support the emergence of this

trend although all parameters are being perturbed sequentially. This result suggests

that although there may be two distinct phases apparent in development, LTi response

to adhesion does have an influential role in both phases.

5.6.3 Uncertainty in Maximum Chemokine Expression Af-

fects Interpretation of Cells Far From Forming Patch

Tracking of cells ex vivo at the twelve hour time-point has produced results that deter-

mine how cells behave both close to and away from a forming PP (Patel et al., 2012),

and thus cell behaviour in the simulation has been calibrated based on those results.

A time-lapse analysis of the behaviour of cells that are 50µm or further from a forming

patch reveals a significant change in cell displacement after hour 36. This result could

be used to suggest that chemoattractant expression becomes sufficient after that time-

point to induce chemotaxis across a large distance from a forming patch. However, this

effect is determined by the value assigned to the parameter that captures the maximum

level of chemoattractant expression. The current simulator has been calibrated against

behaviour of these cells at twelve hours, and with no further experimental data avail-

able, there is a great deal of uncertainty in the true value of this parameter. Thus it is

difficult to accept this result as representative of the biological system, rather it is an

artefact of parameterisation. For the simulator to be useful in determining the influ-

ence of chemoattractant expression on these cells, further biological experimentation is

required, by performing either the same cell tracking experiment performed ex vivo but

at further time points and then calibrating chemoattractant parameters to replicate

the behaviour observed, or by obtaining a quantification of chemokine expression over

time.
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Figure 5.1: An examination of parameter robustness over simulation time: Cell ve-
locity. The parameter values were perturbed independently as detailed in section 2.4.2,
and cell behaviour results captured at twelve hour intervals. These results were then
compared to the baseline simulation using the Vargha-Delaney A-Test to determine the
effect a change in parameter value has had on cell velocity. Performing this analysis at
twelve hour intervals reveals if the change in parameter value has an effect at a certain
timepoint.



5.6. DISCUSSION 167

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

One−A−Time Parameter Analysis Over Simulation Time
Parameter: initialChemokineExpressionValue, Measure: Displacement

Parameter Value

A
 T

es
t S

co
re

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Timepoints

12
24
36
48
60
72

no difference

large difference

large difference

(a) Initial level of chemoattractant
expression at LTo differentiation

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

One−A−Time Parameter Analysis Over Simulation Time
Parameter: maxChemokineExpressionValue, Measure: Displacement

Parameter Value

A
 T

es
t S

co
re

0.015 0.025 0.035 0.045 0.055 0.065 0.075

Timepoints

12
24
36
48
60
72

no difference

large difference

large difference

(b) Saturation limit of chemoat-
tractant expression

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

One−A−Time Parameter Analysis Over Simulation Time
Parameter: chemokineExpressionThreshold, Measure: Displacement

Parameter Value

A
 T

es
t S

co
re

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Timepoints

12
24
36
48
60
72

no difference

large difference

large difference

(c) Chemokine Level at which LTi
chemotaxis occurs

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

One−A−Time Parameter Analysis Over Simulation Time
Parameter: stableBindProbability, Measure: Displacement

Parameter Value

A
 T

es
t S

co
re

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Timepoints

12
24
36
48
60
72

no difference

large difference

large difference

(d) Probability a LTin/LTi and
LTo cell form stable bind on con-
tact

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

One−A−Time Parameter Analysis Over Simulation Time
Parameter: maxProbabilityOfAdhesion, Measure: Displacement

Parameter Value

A
 T

es
t S

co
re

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Timepoints

12
24
36
48
60
72

no difference

large difference

large difference

(e) Maximum probability adhesion
factors prolong cell contact

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

One−A−Time Parameter Analysis Over Simulation Time
Parameter: adhesionFactorExpressionSlope, Measure: Displacement

Parameter Value

A
 T

es
t S

co
re

0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75

Timepoints

12
24
36
48
60
72

no difference

large difference

large difference

(f) Level of adhesion factor expres-
sion per stable contact

Figure 5.2: An examination of parameter robustness over simulation time: Cell dis-
placement. The parameter values were perturbed independently as detailed in section
2.4.2, and cell behaviour results captured at twelve hour intervals. These results were
then compared to the baseline simulation using the Vargha-Delaney A-Test to determine
the effect a change in parameter value has had on cell displacement. Performing this
analysis at twelve hour intervals reveals if the change in parameter value has an effect
at a certain timepoint.
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Figure 5.3: Partial Rank Correlation Coefficients (PRCC) for each parameter under
examination, calculated at twelve hour intervals using the latin-hypercube analysis ap-
proach. Examining how the PRCC changes over time gives an indication of when a
parameter begins to become influential in affecting cell velocity and displacement.



5.6. DISCUSSION 169

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

eFAST First Order Sensitivity Indexes Over Simulation Time
Cell Response Measure: Velocity

Hour of Development

eF
A

S
T 

Fi
rs

t−
O

rd
er

 S
en

si
tiv

ity
 In

de
x 

(S
i)

12 24 36 48 60 72

Parameter

stableBindProbability
chemokineExpressionThreshold
initialChemokineExpressionValue
maxChemokineExpressionValue
maxProbabilityOfAdhesion
adhesionFactorExpressionSlope

(a) Si measures for each parameter for the cell velocity
response

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

eFAST First Order Sensitivity Indexes Over Simulation Time
Cell Response Measure: Displacement

Hour of Development

eF
A

S
T 

Fi
rs

t−
O

rd
er

 S
en

si
tiv

ity
 In

de
x 

(S
i)

12 24 36 48 60 72

Parameter

stableBindProbability
chemokineExpressionThreshold
initialChemokineExpressionValue
maxChemokineExpressionValue
maxProbabilityOfAdhesion
adhesionFactorExpressionSlope

(b) Si measures for each parameter for the cell displace-
ment response

Figure 5.4: eFAST First-Order Sensitivity Index (Si) for each parameter of interest,
calculated at twelve hour intervals. This shows the percentage of variance in simulation
result at that time-point can be explained by a particular parameter.
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Figure 5.5: An analysis of the behaviour of LTin and LTi cells away from a forming
Peyer’s Patch. The simulator has been calibrated such that the behaviour of the sim-
ulated cells at 12 hours matches that observed for the same time-point ex vivo. This
analysis reveals how the behaviour of these cells changes over time, a statistical com-
parison drawn using the Vargha-Delaney test (Vargha and Delaney, 2000).



Chapter 6

Discussion

The aims behind the work presented in this thesis were to construct and utilise com-

puter simulation and statistical tools to further understand lymphoid tissue organo-

genesis. This chapter provides a reflection of how this study addresses these aims.

However, the contribution of this study extends beyond furthering biological under-

standing, to a contribution to the field of computational modelling and simulation,

with no discrimination towards the discipline in which modelling is being utilised.

6.1 Simulation as a Tool for Exploring Lymphoid Tissue Organo-
genesis

Chapter 2 of this thesis details the development of a simulation of Peyer’s Patch for-

mation, for use as a scientific instrument to explore lymphoid tissue organogenesis.

Through use of the CoSMoS framework reviewed in section 1.4.2 (Andrews et al.,

2010), a principled approach has been adopted in the design and implementation of

the simulation, in collaboration with experimental immunologists with expertise in

lymphoid tissue formation. This collaboration has proven to be a vital aspect in a

project to model a system where the biological understanding is incomplete and where

it is not viable to include every aspect of the biological system that is understood.

Constructing the domain and platform models with the insight of experimental immu-

nologists can be considered as the first method by which confidence in the simulators

representation of the domain can be judged.

The domain and platform modelling work in Chapter 2 is the end result of de-

tailed discussions with collaborating immunologists. It may not have been possible

to document this fully in that chapter, but this is the final model of a large number

that were generated, and this is a time-consuming process. However, the modelling

process should be seen as time well spent, as the process highlighted areas where the

biological understanding was ambiguous or incomplete, and areas where simplifications

could be made. For example, an initial model included a cell response to two different

chemokines expressed by an LTo cell, until it was decided that modelling one was suf-
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ficient. This conclusion was drawn based on experimental results that suggest PP do

not form correctly in mice deficient for CXCR5, the receptor for CXCL13, although

chemokines CCL19 and CCL21 are still present (Ansel et al., 2000). The specification

of the biological system in the domain model, and the platform model specification

of how that will be encoded as a computer simulation, has been verified by the do-

main experts and deemed to appropriately capture the biological system under study.

Thus, where assumptions and abstractions have been made, these have the support

and justification from people with expertise in the field.

The simulation has been constructed from the specification in the platform model

(section 2.2.3), and through a process of calibration (section 2.2.6), parameter values

set such that cell behaviours emerge that are statistically similar to those observed

in Patel et al’s (2012) ex vivo investigations detailed in section 1.3.3. With these

results having a direct mapping back to the biological system, there is a greater level of

confidence that the simulation is an adequate representation of the biology. The second

emergent behaviour captured in the model, the development of aggregations of cells

that mature to become PP, has been more difficult to calibrate due to the environmental

representation used in the model (2D rather than 3D, see Figure 2.10) and the lack

of biological data that can be used to determine PP characteristics. Although there

is no direct link to the biology in this case, the simulation can still be used as a tool

for drawing qualitative conclusions on what influences patch formation, by examining

how aggregations that are formed by the simulation calibrated based on cell behaviour

alter when run under different conditions.

The end result of the process of modelling, simulation implementation, and cali-

bration, is a tool that can be used to perform in silico experimentation. This can be

performed by altering the values that have been assigned to particular parameters, or

by setting boolean flags that simulate a knock-out of a particular factor. The simula-

tion platform implemented in this thesis, described in Chapter 2, attempts to create a

visual look and feel that experimental immunologists are comfortable with using, in a

format that those performing the in silico experiment can relate to. Current laboratory

explorations utilise real-time imaging techniques to take snapshots or movies of a bio-

logical system under investigation, which can then be processed using specialised image

analysis software such as Volocity (PerkinElmer). This software has the capability of

identifying individual cells in each image and tracking cell behaviour across a number

of images from different time-points, producing statistics that describe the behaviour of

that cell. The ex vivo data upon which this simulation is calibrated (Patel et al., 2012)

was generated in this way. To relate this simulation to such techniques, it is possible to

perform the same analysis, by specifying time-points in the simulation when snapshots

of the simulated gut should be taken: images that can then be processed by Volocity.

The in silico cell tracking image in Figure 2.14 was generated using that technique.

The results of in silico experimentation to replicate previously published laboratory
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investigations, seen in Figure 4.1, is a further example of the use of simulation snap-

shots to analyse results. For each of the investigations being replicated, the result of

the laboratory investigation was determined visually, and thus the same visual method

was applied to determine whether the simulation replicates that result.

For a more detailed, statistical analysis of the biological system captured in the

simulation, a variety of cell behaviour and patch characteristic responses are output

from the simulation as comma-separated value (CSV) files, that can be processed using

a variety of statistical techniques. The use of such techniques to provide biological

insight is examined later in this chapter.

Chapter 1 detailed numerous examples of the use of simulation as a tool to provide

insight into a particular biological system under study. However, it is unusual that the

tool developed is then released to the academic community for full scientific scrutiny.

The simulation developed in this thesis, and the domain and platform models associated

with it, are available on the internet at

http://www.cs.york.ac.uk/immunesims/frontiers, enabling the use of the tool to inform

laboratory investigations of others and allowing the community to critically comment

on the design and implementation. Thus, this thesis is not simply an exercise in

implementation and use of simulation as a tool for drawing conclusions on a biological

system, rather it is hoped that the tool developed contributes to ongoing investigations

of others in the field.

6.2 Spartan : Statistical Techniques to Analyse Simulation
Behaviour

It has been noted in this thesis that no generic comprehensive toolkit exists to aid the

understanding of simulation results, in an attempt to ground a result in the domain

that it captures and thus inform future laboratory investigation. This may explain

why in a large number of cases in the literature, little attempt is made to reveal how

representative a simulation result is in terms of the captured biological system (Read

et al., 2012). The spartan toolkit developed in the course of study aims to fill the void

in the availability of ready to use statistical analysis techniques, providing a mechanism

to aid the integration of simulation into wet-lab research, with the aim of ensuring in

silico results are interpreted with rigour. Although spartan was constructed alongside

the development of an agent-based simulation, the statistical techniques can also be

applied to simulation results generated using an ODE approach.

Figure 6.1 is a schematic of a generic simulation process. A domain of interest is

identified, in this case the development of secondary lymphoid organs. From this, a

process of modelling is adopted (such as the CoSMoS Process) resulting in the gen-

eration of a computer simulation that captures an abstraction of that domain. This

computer simulation provides the capacity to produce responses under a variety of pa-
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rameter value conditions, results that are analysed by the techniques included within

spartan. These analyses help determine the number of simulation runs required per

condition to generate a representative result, how robust the simulation is to a change

in individual parameter values, and can identify the biological pathways and compo-

nents that have a statistically significant effect on simulation behaviour by identifying

highly influential parameters. The conclusions drawn from these analysis may then in-

form future laboratory investigations, and thus the next iteration of the model. Section

1.4.2 noted that there are modelling frameworks and simulation packages available to

aid performing the first two stages. The release of spartan provides a tool to perform

the final stage, thus ensuring there are tools available for each component part of this

generic modelling schematic.

Spartan is open-source, has been developed and runs within the platform-independent

R statistical environment, and can be freely downloaded from the Comprehensive R

Archive Network (CRAN); thus, no restrictions have been placed on allowing others

to utilise or extend the functionality of the package. Utilising sample Peyer’s Patch

simulation data gathered in the course of this study, comprehensive tutorials have

been developed that exemplify how the techniques included within spartan can be ad-

vantageous in exploring the operation of a developed simulation. With all this taken

together, it is hoped that this provides a comprehensive set of tools that encourage

simulation developers to publish a full statistical analysis alongside any hypotheses

generated through simulation. Spartan remains in a state of ongoing development and

further analysis methods will be added when appropriate. It was noted in Section 1.4.2

that a number of software packages have been developed that ease simulation devel-

opment through use of drag and drop interfaces that remove some of the complexity

involved in simulation development. Similarly, a wizard interface for the spartan pack-

age is under development, a feature that will remove the complexity of running the

analysis in R, thus widening the potential usage of the package further.

6.3 Biological Hypotheses Generated Through Simulation

Through a process of calibration (section 2.2.6), it has been ensured that the simulator

produced responses that were statistically similar to that observed in the laboratory.

Explorations in preceding chapters utilised the simulator and the spartan statistical

toolkit to generate biological hypotheses. This section reflects on two predictions that

have been generated.
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SPARTAN
Simulation Parameter Analysis R ToolkitApplicatioN

Simulation Platform
(Bespoke / IMMSIM/ Simmune/ etc)

Simulation ResponsesDomain under study

Process of Modelling undertaken
(i.e. In CoSMoS, domain captured in

Domain and Platform Models)  Simulation Runs Performed

Simulation Responses AnalysedAnalysis Informs Future
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Figure 6.1: Placing spartan in Simulation Development. The domain being captured
in the simulation is on the left. In this case, this is cell behaviour around a primordial
Peyer’s Patch (Image taken from Patel et al (2012)). A simulation is implemented,
potentially through a process of modelling (such as the CoSMoS Framework (Andrews
et al., 2010) adopted in this thesis), using either available simulation platforms or a
bespoke implementation. This produces simulation results that can be analysed using
the statistical techniques available within spartan . Results of this analysis can then
potentially inform future laboratory investigations that focus on the captured domain.

6.3.1 PP Development From E14.5 to E17.5 Could Be Bipha-

sic

The preceding chapters highlighted the currently accepted view that PP development

occurs in three distinct phases (Adachi et al., 1997). Chapter 3 utilised the simulation

and spartan statistical toolkit to examine cell behaviour during hours 12 (E15.0) (Sec-

tion 3.5) and 72 (E17.5) (Section 3.6), and suggested that different biological factors

are influential at these two different stages of development. Use of simulation as a

time-lapse tool in Chapter 5 took this a stage further, examining cell behaviour at 12

hour intervals, in an attempt to identify the time-point where a change in the influence

of simulation parameters occurs. Through a combination of both analyses, this thesis

has proposed that the 72 hour period between the accepted first and second phases

of PP development could in turn be split in to two phases, a first influenced by adhe-

sion factor expression and response, and a second mediated by chemokine expression

and response, which becomes influential between hours 24 and 36. This prediction is
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counter to the accepted claim that the 72 hour period is chemokine dependent (Cyster,

1999; Luther et al., 2003; Ohl et al., 2003).

This result demonstrates the advantages of pairing simulation and ongoing labora-

tory investigations. The ex vivo culture system study was conducted to examine cell

behaviour in the early stages of PP development (Patel et al., 2012), and has developed

biological hypotheses concerning the RET signalling pathway. The data produced has

directly informed the development of the simulator, resulting in a tool which replicates

cell behaviour that emerges ex vivo. From this, a range of in silico experimentation

has been performed to explore cell behaviour at a number of other time-points in de-

velopment, generating additional hypotheses to those formed in the laboratory. Thus,

through simulation, the original biological study has had a wider impact than that orig-

inally intended, with the potential to counter established views in the literature. In

turn, these predictions can inform future laboratory investigations that verify whether

the hypotheses generated hold. Methods to verify the hypothesis that PP development

is biphasic are examined later in this chapter.

6.3.2 Variation in Peyer’s Patch Development

Data presented in Figure 1.2 suggests there is a large variation in location, number,

and size of PP in genetically identical mice, reasons for which remains unknown. Inves-

tigations in Chapter 4 utilised the simulator to perform novel in silico experimentation

to examine factors that could be causing this variation.

It was noted in Chapter 4 that although it has been suggested that LTin cells have

a role in early initiation of PP development (Patel et al., 2012; Veiga-Fernandes et al.,

2007), the role of LTin cells in PP formation and physical characteristics is not fully

understood. Simulation results have suggested that a change in the number of LTin

cells and the rate of LTin cell migration could limit the number of PP that develop and

influence the size of the aggregations that do form (sections 4.4.2 and 4.4.3). Thus it

could be suggested that variation observed between different mice is caused by variation

in the number of LTin cells produced in the foetal liver.

As LTin cells are known to express RET (Veiga-Fernandes et al., 2007) and LTo

cells express RET ligand, the initial interaction between an LTin and LTo cell has

previously been suggested as the trigger of PP development (Patel et al., 2012; Veiga-

Fernandes et al., 2007). However, flow cytometry results have been used to estimate

that at E15.5 (24 hour time-point in development), 20% of the gut surface could be

occupied by LTo cells, thus there must be a factor that is limiting the triggering event.

The findings noted in the previous paragraph suggest that LTin cell migration rate

and cell number could be the limiting factor, as an alteration in cell number has been

shown to affect patch size and number. Yet it is also unclear as to whether each of the

LTo cells in the gut has the capability to differentiate and interact with LTin and LTi

cells. For example, a restriction in expression of the ligand for RET could also be the
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limiting factor. Such a restriction was examined in silico in section 4.4.4. It has been

suggested that PP tend to form on or near the anti-mesenteric border (van de Pavert

and Mebius, 2010; Randall et al., 2008), leading to the hypothesis that an LTo cell

could receive a signal, potentially from the blood stream, that causes an upregulation

of RET ligand expression, limiting where PP form and thus the number that do form.

Laboratory work would have to be undertaken to verify whether this was the case.

Potentially variation in PP development could be explained by a combination of

these two hypotheses. A restriction of RET ligand expression by a yet unknown mecha-

nism could control PP number, while variation in the number of LTin cells that migrate

from the foetal liver could then influence the size of the PP that develops.

6.4 Factors Affecting These Hypotheses

In his study of confidence in simulation results, Read (2011) notes that confidence is

not boolean but established to varying degrees. Confidence in the biological hypotheses

that have been generated through simulation, detailed in the previous section, could

be affected by a number of factors.

As noted in the first section of this discussion, the model on which the simulation is

based is an abstraction of the real system, and this must be considered when analysing

what the result means in terms of the system being explored. In this study, the

assumptions made in the creation of the simulation are documented in Tables 2.1-2.3.

As these assumptions include the methods by which chemokines and adhesion factors

are expressed, the results of statistical analyses that suggest these are the two influential

factors in development may be subject to a degree of scepticism. In the case of the

model presented in this thesis, the domain and platform models have been verified

by two experimental immunologists with expertise in lymphoid organ development.

Thus the assumptions made to model chemokine and adhesion factor expression could

potentially impact the conclusions that are drawn, but these have been justified by

those with domain specific expertise.

However scepticism in the assumptions that have been made should not necessarily

be seen as a negative, but the start of a conversation that could improve the simula-

tion further in the next iteration. Full transparency in the design of the simulation

allows those in the field to assess the model and contribute their opinions and findings,

potentially informing their own investigations as well as informing the development of

the simulator. In the case of the Peyer’s Patch simulation, the full simulation design

(Domain and Platform Models), assumption tables, and the implemented simulator

are available online at http://www.cs.york.ac.uk/immunesims/frontiers for this rea-

son, opening this work to full scientific scrutiny.

Prior to any further iteration that seeks to add complexity to the current model and

simulation and increase confidence in results generated, an evaluation should be per-
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formed that details whether such an addition would provide any extra insight. Whereas

biologists traditionally take a reductionist approach that focuses on the role of each

factor in the system, the focus of models such as the one developed in this thesis is

on the observable high-level behaviour, and how this emerges through interactions be-

tween individual biological factors (Germain et al., 2011). Although the interaction

may trigger a number of events that are both observable and implicit (such as inter-

cellular pathways), the observable result is the focus, and thus implicit pathways can

be assumed and abstracted from the model, as their inclusion would have no impact

on the result. This needs to be taken into consideration when additions are suggested.

The implementation of chemokine expression and response in this model is a good

example, where three chemokines and two receptors have been captured as one. An

obvious extension could be to add an additional chemokine and determine the effect

this has on simulation result. However, previous laboratory studies have suggested

that one chemokine, CXCL13, has a dominant role in the recruitment of LTi cells, and

blocking CXCL13 response has a significant impact on patch formation (Luther et al.,

2003). The authors note that PP do form where CXCL13 response is inhibited, but

these lack the structural characteristics of wild-type PP. Thus, it would be difficult to

justify adding further chemokine complexity when the end result cannot be classified

as a PP.

The implementation of the simulation using an agent-based approach introduces

uncertainty that could also have an affect on the meaning of results generated (Helton,

2008), and thus these predictions. Agent-based simulations are inherently stochastic,

and different results can be generated for the same parameter conditions (Read et al.,

2012). Through use of the consistency analysis technique developed by Read et al

(2012), it has been assured that predictions made have been developed from simulation

results that are representative of the condition on which the simulation has been run.

This increases confidence that the results presented are robust, and the effect of inherent

stochasticity is mitigated. With the exclusion of this study and Read’s simulation of

EAE (Read, 2011), evidence that such an analysis has been performed for other agent-

based simulations in the literature is not apparent. This is not to say that a similar

analysis technique has not been performed, but if this is the case results from such

analyses have not been published. The examples in this thesis, Read’s study (2011),

and the release of the spartan toolkit constructed in the course of this study, could

encourage more simulation developers to perform this analysis and ensure that results

being presented are a robust representation of the exploration that was performed.
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6.5 Simulating Peyer’s Patch Formation Could Provide In-
sight on Lymphoid Organ Development

The accepted biological model of Peyer’s Patch development has much in common

with the formation of other lymphoid organs (Randall et al., 2008). Thus it could

be suggested that the predictions generated for Peyer’s Patch development could also

be applicable to the development of other secondary lymphoid organs such as lymph

nodes and the spleen, and tertiary lymphoid organs that form during chronic infection

(van de Pavert and Mebius, 2010).

Although the formation of lymph nodes does differ as development is encapsulated

within the lymphatic epithelium (Randall et al., 2008), primitive lymph nodes are

aggregations of LTi cells around VCAM-1+ LTo cells (Yoshida et al., 2002) analogous

to Peyer’s Patch formation. Similarly to the PP model, ligation of LTβR on the LTo

cell by LTαβ on the LTi cell leads to the upregulation of chemokines CXCL13, CCL19,

and CCL21 and adhesion factors VCAM-1, ICAM-1 and MAdCAM (Mebius, 2003). A

clustering of LTi cells around VCAM-1 cells has also been detected in the developing

spleen from E13, in the same lymphotoxin dependent manner (Withers et al., 2007).

With this similarity, it could be suggested that, if expression patterns were identical, the

predictions generated through LTi and LTo cell interaction in the PP model could hold

for lymphoid organ development in general, including the prediction that formation

could be biphasic.

Such a hypothesis does not take the difference in physical environments into ac-

count. Yet a future iteration of the simulation could examine the effect the environ-

ment has on lymphoid tissue development. The simulation that has been implemented

examines system behaviour at an interaction focused, higher-level, therefore certain

pathways can be abstracted. Although there are differences between signalling path-

ways involved in PP, lymph node, and spleen development (the activation of LTαβ by

IL-7 in PP and TRANCE in lymph nodes being one (Cupedo et al., 2004; Yoshida

et al., 2002)), such differences are lower level and are thus abstracted, leaving the be-

haviour that is similar between the three biological models of development. Predictions

on the environmental effect on the formation of different secondary lymphoid organs

could thus be drawn by altering just the simulation environment.

6.6 Novel use of Statistical Analysis Tools

The development of the spartan package, and the contribution this makes to the field

of computer modelling and simulation, was noted in a previous section of this chapter.

This section notes that this thesis has presented two novel applications of techniques

within the spartan package.

The first of these is the application of the Extended Fourier Amplitude Sampling
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Test (eFAST) (Saltelli, 2004; Saltelli and Bollardo, 1998) to results generated from an

agent-based model. There are a number of examples in the literature of the eFAST

technique, or its predecessor FAST (Cukier, 1973; McRae et al., 1982) upon which

eFAST is based, providing insight into results generated through simulation (King and

Perera, 2007; Lu and Mohanty, 2001; Marino et al., 2008). However none of the pub-

lished examples applied the technique alongside an agent-based implementation. As

was noted in the description of eFAST in section 2.4.4, this technique can be com-

putationally expensive, especially for simulations with a large number of parameters

(Ratto et al., 2007; Tarantola et al., 2006). In the case of the cell behaviour analysis in

Chapter 3, eFAST produced 1,365 parameter value sets on which simulations needed

to be run. As it was determined that each simulation needed to be run 500 times

to mitigate aleatory uncertainty (section 3.3), the analysis required 682,500 simulation

runs. Fortunately, simulation work conducted in this study could be run on a computer

cluster, but if this was not available this analysis may not have been viable. Thus, the

application of the technique is novel, but does come with a heavy resource cost.

The techniques in the spartan package have also been used to analyse simulated

cell tracking data from a number of different time-points (Chapter 5), to understand

whether the influence of certain parameters changes over the course of simulation time.

The only example of such an analysis being performed previously is by Ray et al

(2009), who examined how a calculated Partial Rank Correlation Coefficient changes

over the course of simulation time in their model of TNF in controlling tuberculosis in

a granuloma. The application of both the one-at-a-time robustness technique (Read

et al., 2012) and eFAST (Saltelli, 2004; Saltelli and Bollardo, 1998) over simulation

time in this thesis is however novel. Functionality has been provided within the spartan

toolkit to analyse simulation results captured at different time-points, thus the adoption

of the package by the simulation developers may make such time-lapse analyses more

common.

6.7 Future Directions

6.7.1 Investigating Cellular Mechanisms

In this study a variety of techniques, such as argument-based validation, calibration,

and sensitivity analysis techniques, have been utilised to build confidence in the sim-

ulation as a tool representative of the biological domain that it captures. In their

respective studies on confidence in simulation, both Bauer et al (2009) and Read et

al (2011) note that the best practice in building confidence in predictions generated

through simulation is to verify that prediction in the laboratory. Such an approach

is also encouraged in the CoSMoS Framework (Andrews et al., 2010) that has been

adopted in this study. For the predictions that have been generated in the preceding
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chapters, the loop is yet to be closed, as these have yet to be verified experimentally.

The prediction that the 72 hour period of PP formation may be biphasic has been

generated by examining simulated cell behaviour at different time-points in the devel-

opment period. The first time-point examined, 12 hours, is an in silico replication of

an ex vivo investigation (Patel et al., 2012). A similar culture system could be used

to examine cell behaviour at a number of points from 12 hours onwards, producing

responses that can be compared to those generated from the simulator. A statisti-

cal similarity between the simulation predictions and ex vivo data from a number of

time-points would suggest the simulation parameters have been calibrated such that

the emerging cell behaviour is correctly captured. A statistical difference may lead

to some concern in the viability of the predictions that have been generated, yet it

is important to recall that these predictions were formed based on the data available

upon simulation construction. Data from numerous time-points could inform a new

iteration of the modelling process, and if replicated by the simulator lead to stronger

predictions in the long run. Although the prediction may not have proven correct, the

simulation result has been used to inform biological exploration.

The above prediction could also be examined through performing experiments that

block adhesion factor VCAM-1. Data presented in this thesis has suggested an im-

portant role for adhesion factor response and expression in the early stages, but this

influence decreases as chemokines become influential between hours 24 and 36. It would

be interesting to study the effect of inhibiting VCAM-1 at different time-points in the

development period. To support the data presented in preceding chapters, one would

expect to see no aggregations of hematopoietic cells if VCAM-1 is blocked in the early

stages of development. However, if this factor was inhibited from hour 36 onwards,

aggregations may still form, as the phase influenced by adhesion factors has elapsed.

Such a result would strengthen both the hypothesis and confidence in the simulation

as an adequate representation of the biological system.

Other predictions generated within this thesis, such as the role of LTin cells and

the biological factors affecting the size of 2D cell aggregations that are formed, have a

link to the number of hematopoietic (LTin/LTi) cells that are present in the gut. The

current simulation bases cell number on estimates informed by flow cytometry results.

A linear input rate is calculated such that the simulation creates the required number

of cells with each time-step to meet this estimated number at E15.5. With no further

data available, this rate has been continued through until E17.5, the end of the 72 hour

development period. If flow cytometry could be performed on foetal intestines from

more time-points, further estimates could be made such that the migration rate of LTin

and LTi cells could be set more accurately. A more accurate number of cells would in

turn lead to a more accurate number of cells in each aggregation, affecting predictions

made on both number and 2D area of aggregations formed in simulation. It would then

be possible to explore whether it is cell number that is a factor in limiting the number
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of PP that are formed. The effect of altering LTin cell migration rate was investigated

in silico in Chapter 4, by exploring two alternative migration rate functions, both set

such that the required number of simulated cells were present at E15.5 (Figure 4.4a).

Although this proved useful in suggesting that LTin migration rate could potentially

have a role in limiting PP formation, this result is still based on the assumption that

cell migration is constant throughout the period. A flow cytometry analysis would help

reveal if this indeed is the case.

6.7.2 Statistical Analysis

The statistical analyses in the preceding chapters have examined the influence of sim-

ulation parameters for which a value is unknown (Table 3.1). These are parameters

where the value cannot be directly translated from the biological system. For example,

two of these are constants used in the sigmoid curve that captures chemokine expres-

sion (as detailed in Figure 2.8). The analyses have revealed how robust the simulation

is to alterations in the value of these parameters, and determined the parameters in

this subset that influence emergent behaviours. Future work could consider extending

the application of sensitivity analysis techniques to a wider number of parameters in

the simulation.

In his study of building confidence in a simulation of EAE, Read (2011) explores

how robust the simulation is to an alteration in all parameter values, including those

for which a biological value can be derived. Such an analysis could potentially reveal

further insight into how robust PP formation is to changes in biological as well as the

implementation specific parameters. Including parameters such as the LTin and LTi

number estimates in a full global sensitivity analysis could give a statistical indication of

how influential cell number is in both cell behaviour and patch characteristic simulation

responses, in comparison to all other factors. However, with this simulation being

agent-based, and thus requiring a large number of replicate result sets for each condition

on which it is run, one would have to deduce whether such results are worthy of a time

and resource heavy analysis. For example, altering the parameters that capture the

range in which an LTin and LTi cell speed exists would potentially have an impact

on the result, as this change would directly influence the cell displacement response.

Performing thousands of simulation runs would verify that hypothesis yet not generate

a result that offers any insight. It may be more beneficial to ascertain the level of

uncertainty in the biological parameter first, and include this in any future analysis if

deemed to be high.

6.7.3 Extending the Simulation

The simulation presented in this thesis captures an abstraction of the current under-

standing of PP development gathered both from the literature and through collabora-
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tion with experimental immunologists. Through use of statistical techniques included

in the spartan toolkit, the simulator has been used to generate predictions on the fac-

tors that influence cell behaviours and aggregation characteristics that emerge during

the 72 hour period. There may however be scope to extend the simulations predictive

capabilities further. One such example is detailed below.

Secondary lymphoid organogenesis occurs during foetal development, alongside the

development of other biological systems. In this instance, PP formation may be oc-

curring alongside the development of the enteric nervous system (ENS) within the gut,

a process dependent on interactions between RET expressing neural crest cells and

stromal cells on the intestine wall (Patel et al., 2012). As both these neural crest cells

and LTin cells express RET (Patel et al., 2012; Veiga-Fernandes et al., 2007), there

could be potential for neural crest cells to influence the development of PP. Although

there is little biological evidence to support such a hypothesis, a new iteration of the

model could include the addition of additional non-LTin RET ligand expressing cells, to

determine the effect the existence of such cells could potentially have on PP formation.
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Glossary

antimesenteric Area of small intestine opposite the mesentery (that attaches the

small intestine to the abdomen).

agent-based modelling A modelling approach where each individual entity, such as

a cell, is represented explicitly, and can thus maintain its own

attributes and cell state. Agent behaviour is specified as rules that

determine the set of states an agent may exist within, and the event

that must occur for an agent to change state.

domain The system of interest that is being modelled, for example the foetal

development of a PP.

domain model The current scientific understanding of the dynamics of the system to

be modelled.

ex vivo A procedure in which an organ, cells, or tissue are taken out of a living

body for an experimental procedure. The experiment utilises the tissue

rather than artificial medias, as performed in vitro.

Goal-Structuring Notation A visual notation for performing Argument-Based

Validation, providing a method of structuring such an analysis to

ensure each step in an implementation is validated, the reasoning

behind the inclusion or exclusion of a feature or assumption is

provided, and evidence given as to why this conclusion has been drawn.

in silico Method of performing an exploration on a computer via a simulation

tool rather than in the laboratory.

in vitro An experimental procedure performed outside of a living organism,

such as in a test tube or laboratory dish.

in vivo An experimental procedure performed within a living organism.

latin-hypercube Parameter sampling approach that selects values for each parameter

from the value space, aiming to reduce any possible correlations while

ensuring efficient coverage of the space over a minimal number of

samples.
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LTi Lymphoid Tissue Inducer Cell. Hematopoietic cell that migrates from

the fetal liver into the small intestine. Believed to be responsible for

initiating PP development.

LTin Lymphoid Tissue Initiator Cells. Hematopoietic cell that migrates from

the fetal liver into the small intestine. Can respond to chemokine

expression and thus form most of the aggregation of cells within a

forming PP.

LTo Lymphoid Tissue Organiser Cells. Non-hematopoietic cell that is

expressed on the epithelium of the small intestine. Differentiates on

stable bind with an LTin and LTi cell

Mann-Whitney U-Test Non-parametric statistical test for comparing two

distributions. Null hypothesis is that the two distributions could have

been taken from the same sample.

organogenesis The process of organ development, in this case secondary lymphoid

organs

ODE Ordinary Differential Equations. Used to explore the dynamics of a

population of biological factors (such as target and infected cells in

influenza) using a series of differential equations. An equation is

compiled that specifies the impact each factor has on the size of the

population of its complementary factors.

PP Peyer’s Patches. Secondary lymphoid organs located in the small

intestine that trigger adaptive immune responses to antigen.

platform model Model that describes how the information in the domain model will

be encoded as a computer simulation.

PRCC Partial Rank Correlation Coefficient. A robust measure for quantifying

non-linear relationships between an input and output.

secondary lymphoid organ Organs located at drainage points in lymphatic vessels

that initiate protective immune responses to antigens from peripheral

tissues.

sensitivity analysis The application of statistical techniques to examine how a

system responds to an alteration in input parameter values.

Si eFAST First-Order Sensitivity Index. Indicates the fraction of output

variance that can be explained by the value assigned to a parameter.
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STi eFAST Total-Order Sensitivity Index. Indicates the variance caused by

higher-order non-linear effects between that parameter and the others

explored.

UML Unified Modelling Language. A diagram notation widely used in

software engineering, that has also found application in the

specification of models of biological systems.

Vargha-Delaney A-Test An effect magnitude test used to examine and quantify the

difference between two distributions.
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