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Abstract

infectious bacteria can be a major threat to humans, animals, and
the environment, especially due to increasing levels of antimicrobial
resistance (AMR), where certain bacteria are no longer significantly
damaged by the antibiotic drug treatment. One example of AMR
is through bacteria with a ‘bet-hedging’ strategy, where bacteria
may perform well in one environment by sacrificing fitness in an-
other. In this research, we investigated the dynamics of bacterial
populations in a varying environment using mathematical models.
One strain of bacteria can ‘switch’ to specialize in each environ-
ment, while the other grows at the same rate in both. The death
rates of the strain, and the antibiotic drug treatment which is held
constant (fixed value) are also included in the model. The aim is to
study the dynamical behaviors of these strains and the antibiotic
drug administered at both constant and fluctuating rates, to find
when each strain may be expected to dominate. We analyze the
model using both mathematical analysis and computational simu-
lations. We found a particularly interesting behavior by one strain
at early time points when there is a high density of the antibiotic
drug concentration. Instead of the strain crashing out early, as
would be seen in standard models, an initially high density of the
antibiotic drug can allow this strain to stay at the equilibrium state
for considerable time. These strain(s) can stay long past the time
when the drug density has reduced, before finally being replaced
by the ultimately stronger strain(s).
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CHAPTER 1

Introduction

1.1 Background of the Study

Bacterial resistance to anti-microbial treatment has become a major threat

to public health, and is a worldwide problem for many decades in both hos-

pital settings, within-host, and communal environments. With the advent of

antibiotic drugs for the treatment of different infections caused by bacteria, sci-

entists/pharmacologists hoped they had overcome this lingering problem, but

bacteria started evolving and mutating to acquire resistance to those antibiotic

drugs (Austin et al., 1999; Makrythanasis et al., 2014).

The constant mutating of the bacteria from one form to another does render

an efficient/effective antibiotic drug being used at a particular time ineffective,

thereby necessitating the introduction of a new antibiotic drug to address the

new infection caused by the bacteria, which in turn is time-consuming and

costly.

Since the inception of antibiotic drugs for the treatment of infections caused

by bacteria, medical personnel recognize the emergence of resistance to those

antibiotic drugs by bacteria, with the most frustrating frequency of the resis-

tance strain emerging within the last two (2) decades, causing great concern

to public health. Because of this increasing evolution of bacterial resistance

frequency to the antibiotic drugs, some have started pointing out the possibili-

ties of having a post-antibiotic period, which may cause a serious death threat

1



as it was during the pre-antibiotic drug time (Appelbaum, 2012; Fair Richard

and Yitzhak, 2014).

In order to address the problem of this resistance to antibiotic drugs caused

by the bacterial infections, several measures were put in place with the most

efficient/effective method of keeping the patients in the hospital, to ensure

strict compliance to the laid down rules and regulations of administering the

antibiotic drugs treatment were adhered to, with the aim of curtailing the

problem of antibiotic drugs abuse, which yield a significant result in addressing

the antibiotic drugs resistance problem caused by the bacterial infections.

When the bacteria realized a significant measure of addressing the resis-

tance problem is widely accepted, the bacteria was left with no option than

to device another method or strategy in ensuring this resistance problem is

not overcome, and suddenly it (bacteria) adopted a new strategy called Bet-

hedging.

The term "Bet-hedging" is defined as the ability of an organisms or species

to sacrifice some part of their physical fitness, with the hope of an increased

gain when in a devastating or harmful situation. In other words, it simply

means Insurance (Ripa et al., 2010). In the bet-hedging strategy, some frac-

tional part of the bacteria will not take part in the bacterial reproduction by

deactivating their metabolism, which causes them (bacteria) not to divide and

can not be killed by the antibiotic drugs. When the antibiotic drug treatment

is finished or removed, some resistant bacteria can "wake up" and continue

growing to form some nucleus for their reappearances (Balaban et al., 2004;

Müller et al., 2013). For the purpose of explaining the biological context of bet-

hedging strategy, we will discuss some experimental results that are relevant

to it.

Bigger et al. (1944) explained how certain experiments were conducted

and the result best described bet-hedging strategy in related to bacterial
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(Staphylococcal) resistance to antibiotic treatment. A very important group

of bacterial pathogens that require a serious clinical attention are the genus

Staphylococcus with a serious threat to human life, which acquire (MRSA)

Methicillin-resistant Staphylococcus aureus, also known as (super-bug). In

the paper, the authors mentioned that penicillin was used to cure gonorrhoeal

infection completely, but when used for the treatment of Staphylococcal infec-

tion, it could only cure some part of the bacteria, and no matter the concen-

tration of penicillin used or how long the treatment is extended, it leaves some

cocci of the bacteria (Staphylococcus) untreated. This causes serious argu-

ments among scientists as to either penicillin is Bactericidal or Bacteriostatic

antibiotic in the treatment of Staphylococcal infection. They (authors) fur-

ther mentioned that, many scientists argued about the inability of penicillin to

treat Staphylococcal infection completely, which they believed is caused either

due to an insufficient supply of blood to the main focus of infection, or because

of tissue barriers. They (authors) confirmed it in their experiment that 1 unit

of penicillin per c.cm killed 99.96% of 250, 000 cocci within 6 weeks, and when

in extension up to 3 and 11 days, the remaining 0.04% of the cocci could not

be eradicated, and they (bacteria) are termed those with the highest natural

resistance to penicillin.

Based on the aforementioned resistance of bacteria to the antibiotic treat-

ment by (Bigger et al., 1944), they (authors) believed the bacterial resistance

to the antibiotic drugs fall on either of the following theories;

• The bacteria which possess highest natural resistance to the antibiotic

drug treatment.

• The bacteria which acquired resistance to the antibiotic drugs when ex-

posed to the treatment.

• The bacteria which have lower level of resistance to the antibiotic drug
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treatment, but acquired it (resistance) when exposed to the environment

where the antibiotic drug cannot act (Temporary Phase).

Constantly administering high concentration of the antibiotic drugs to the

bacteria with no growing time, it make some of the bacteria to become used to

those antibiotic drugs, and they (bacteria) acquire resistance to such antibiotic

drugs. From the study of the above experiment, the authors described those

bacteria who moved to temporary phase to hide, and wait for the antibiotic

drugs to finish acting on the available bacteria are acting as bet-hedgers, and

once the antibiotic drugs become ineffective, or whenever treatment is removed

they (bacteria) start reproducing without any difficulty and later become dan-

gerous to human life (Bigger et al., 1944).

There have been several investigations also in the causes of Staphylococcus

aureus resistance to antibiotic drugs (Luria and Delbrück, 1943; Demerec,

1945a,b; Meads et al., 1945; North et al., 1945; Oakberg and Luria, 1947; De-

merec, 1948; Hiramatsu, 2001; Wu et al., 2003; Gardete et al., 2006; Tuchscherr

et al., 2016; Kuok et al., 2017; Kebriaei et al., 2020) and others too numerous

not mentioned here.

In 1943, (Luria and Delbrück, 1943) pointed out some of the ways in which

Staphylococcus acquired resistance to streptomycin and penicillin in their ex-

periment. The resistance was inspired through the interactions of the bacteria

and the antibiotic drugs. It also arises through mutation of sensitive bacteria,

which is contrary to the actions of the antibiotic drugs being a destructive

agents to the sensitive bacteria.

The experimental realisation of the genesis/causes of Staphylococcus aureus

resistance to streptomycin and penicillin by (Demerec, 1945b, 1948) discovered

that, the resistance of the bacteria to those antibiotic drugs treatment is not

only inspired by the presence of these two compounds, but also through the

genetic evolution similar to the natural gene mutations. Before the adminis-
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tration of the antibiotic drugs (streptomycin and penicillin) reaches a certain

threshold concentration level, some of the bacteria persist with low admin-

istration of the antibiotic drugs concentration in both cases. But when the

administration of the antibiotic drugs concentration were increased above the

threshold level, there was a massive decrease in numbers among the existing

bacteria, indicating the presence of both sensitive and resisting bacteria within

the entire population of the bacteria.

A very important aspect that was observed during the conduct of the ex-

periment was the individualistic resistance of the bacteria from one antibiotic

drug to the other. Those strain with an escalating resistance to streptomycin

were sensitive to penicillin and vice versa.

Because of the prevailing nature of resistance, Pharmacologists keeps chang-

ing the families of antibiotic drugs from one form to another with the aim of

defeating resistance, and bacteria itself kept on metabolising from one form

to another, as it is a too way battle, while human are trying to eliminate it

(bacteria) by all means, it want to survive like any other living organisms.

The concept of bet-hedging has been discussed extensively in some disci-

plines apart from the mathematical discipline, which in some paragraphs below

I picked some few to mention how the concept is been describe or explained in

those disciplines.

Randomly switching of population cells from one phenotype to another can

benefit from an environmental changes, but there is a tremendous challenge

in identifying the exact link between environmental changes and switching

rates. A simple model was developed which study a finite population of phe-

notype switching evolution caused by stochastic environmental shocks. Differ-

ent switching rates successes among the competing genotypes were compared

and examined in detailed how the most favourable switching rates due to en-

vironmental changes largely depend on its frequency (Fudenberg and Imhof,
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2012).

In the paper of (Friedman et al., 2014) they realized that multiplicity of

phenotypes was typically linked to two different observations of bet-hedging

and hysteresis in biological systems. Hysteresis is usually viewed as a sys-

tem which normally continue to reflect on environmental previous condition,

whereas bet-hedging does not necessarily associated it action with any memory,

but increases the population growth when there is a phenotype changes due to

environmental inputs. A simple model was used in a population growth which

consider phenotype switching and lag-phase that occurred after phenotype

switching, which show both memory and hysteresis are linked to bet-hedging

when the species attempt to make the best use of their population growth rate.

They (authors) further show that hysteresis switching strategy does not be-

stow any additional advantage in the population growth once the environment

varies periodically in a deterministic situation which bet-hedging does.

Environmental fluctuation causes a serious problems to bacterial popu-

lations. It is evident that individual cells randomly change phenotype in

rapidly changing environment for the pathogen population to survive, and

bet-hedging generally adapt this random switching strategy. Traditional de-

terministic models can not describe the random switching of phenotype with

relation to bet-hedging. A non-linear stochastic model of multi-stable bacte-

rial system was introduced which clearly provides an insight understanding

of multidimensional analysis from an experimental data. They (authors) also

provide a quantitative technique of driven data from the multi-stable bacterial

system without using any specific mathematical models (Jia et al., 2014).

Takahashi et al. (2015) pointed out the relevance of bet-hedging which was

extensively discussed in a cell population heterogeneity of an environment,

where zinc was used as a nutrient (medium) of cells growth. A stochastic model

simulation was used to hypothesize that, to maintain population heterogeneity
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is just like a bet-hedging response which normally allow the population of cells

to exist in a varied and fluctuating environment.

Diauxic growth was related to bet-hedging in cells that are grown in a

defined medium with two sugars (mainly; glucose and lactose) where there was

a lengthy period of arrested growth, which is termed as ”lag-phase”. Stochastic

simulation model was used to predict how the lag-phase will evolve subject to

distribution of condition (Chu and Barnes, 2016).

The concept of population heterogeneity become widely present in almost

all bio-processes including homogeneous environment, and can be well under-

stood through bet-hedging process, which can be obtained from experimen-

tal studies by producing a computer model of dynamics in industrial scale

bio-processes. The distinct parts of single cell studies in the processes was

summarized (Heins and Weuster-Botz, 2018).

1.2 Statement of the Problem

Despite various research works by different authors and the different measures

that were put in place by those concerned in order to curtail the increas-

ing frequency of this resistant to antimicrobial treatments, bacterial resistant

to antimicrobial treatment is increasingly growing at a very high frequency.

Instead of seen the resistant to the antimicrobial treatment by the bacteria de-

creasing or even been eradicated completely as a results of keeping the patients

in the hospitals with the sole aim of ensuring strict compliance in taken up the

treatments administered by the doctors, bacteria developed a new strategy of

resisting the antimicrobial treatment called bet-hedging. This necessitated a

new research work to critically look in to the problems caused by the bacte-

ria as a result of adopting the new strategy (bet-hedging), in order to know

the parameters that are sensitive in causing the bacterial resistance to antimi-
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crobial treatment, with the hope of coming up with the best feasible way of

minimizing or even eradicating the resistance to the antimicrobial treatment

by the bacteria.

1.3 Aims and Objectives of the Study

The aim of this research is to study the dynamics of the various models in order

to observe the behaviors of the different strains, within the non-fluctuating and

the fluctuating environments without/with the death rates of the strains, and

also together with the antimicrobial treatment which is held at a constant

(fixed) value and its dynamics as well, to find out which among the switching

(s1, s2) strain can perform better or worse in any of the environments with

different conditions, or if possible which between the non-switching (s0) and

the switching (s1, s2) strains can be eliminated.

The objectives of the study include but not limited to:

• Finding the equilibrium points of the various models for the non-fluctuating

environments with different conditions.

• Finding the eigenvalues of each model mentioned above by using the

characteristic equation
∣∣∣∣J − λI

∣∣∣∣ = 0

• Use the eigenvalues obtained from the characteristic equation above in

order to determine the stability state of each model in question.

• Use the fluctuating resources to observe the behaviors of the different

strains with different conditions.

• To observe if the presence of a particular strain(s) can cause an elimina-

tion of the other strain(s).

• To find out which among the switching (s1, s2) strain perform better or

worse at different environments with different conditions.
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• To find out how the non-switching (s0) strain grow at a constant rate in

any environment with different conditions.

• To observe the effects of the antimicrobial treatment in the behaviors

of the strains administered at a constant (fixed) value, and also at its

dynamics.

1.4 Literature Review

For over three and a half decades, several mathematical models were designed

by different researchers, in order to address the problems caused by bacterial

resistance to antimicrobial treatment (AMR) based on population dynamics in

different settings, which causes a lot of harm, and even loss of lives to different

communities.

Increases in the prevalence of infections due to antibiotic-resistant by the

bacteria have often been traced back to the antibiotic use. Garber (1987) de-

veloped simple models of resistance development in order to clarify the effects

of antibiotic exposure on bacterial antibiotic-resistance. The model assumes

logistic growth, equal inhibition by resource limitation effects or crowding and

a deterministic behavior. The growth of competing bacterial strains whose

antibiotic sensitivities differ were described in the model. The effects of an-

tibiotic exposure on the rate of growth of the isolated bacterial population,

its resistance characteristics, the equilibrium population size and characteris-

tics, as well as the approach to equilibrium were all elucidated in the models.

The author emphasized that the models extend beyond the growth of bacterial

population only. The models can be used to analyze populations of competing

species such as insecticide-resistance and insecticide-susceptible agricultural

pests, drug-resistant malarial parasites, or cancer cells whose resistance to

chemotherapeutic drugs varies. Analysis were carried on multiple strains in
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the presence of several antibiotics as well as on changes in the resistance of

mixed bacterial populations. The results reveal that;

• Antibiotics decrease the equilibrium population size.

• Resistance to any other antibiotic or even to the same antibiotic might

not increase due to application of one antibiotic.

The analysis further reveals that to reduce the population size below the

minimum attainable under a single antibiotic combination, two sequences of

antibiotic combinations will be optimal.

Castillo-Chavez and Feng (1997) observed that despite tuberculosis’ soci-

ological and historical importance, research on the transmission dynamics of

the disease using statistical and mathematical models has not received enough

attention. The authors developed one-strain and two-strain tuberculosis (TB)

models. The one-strain model studied the effects of basic epidemiological fac-

tors such as the latent and infectious periods on the dynamics of tuberculosis

on a homogeneously mixing population. The two-strain TB model studied the

possible mechanisms that may allow for the survival and spread of naturally

resistant strains of TB as well as the antibiotic-genetic resistant strains of TB.

The basic reproductive numbers for both the one-strain and two-strain models

were obtained (computed) and hence, conditions for stability or otherwise of

the equilibrium states were proved. The authors determined the role that lack

of drug treatment compliance by TB patients plays on the prevalence of an-

tibiotic resistant strains. They first consider a special case of the two-strains

model with two competing strains of TB which are the typical strain and a

resistant strain that was not as the result of antibiotic resistance. The results

show that non-antibiotic co-existence is possible but rare for the naturally re-

sistant strains. They also consider a special case of a typical strain and a

resistant strain that was as a result of the antibiotic resistance. In this case
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they noticed that co-existence is almost certain.

At the end of the twentieth century, (Austin and Anderson, 1999) devel-

oped a mathematical model, which focuses on the emanation and escalation

of bacterial resistance to antimicrobial treatment in communities, within pa-

tients, and in hospitals settings. The concepts of pharmacodynamics, and

pharmacokinetics were initially combined to develop their model in patients

already treated, in a structure that reflects the relationship between the antibi-

otic drug treatment, the population growth of the bacteria, and immunological

responses aimed at the pathogen. The model also determined the area needing

exact information, especially within the circumstances surrounding the rates

of birth and death of the pathogens, being influenced by the antibiotic drug

treatment (pharmacodynamics). They further addressed the issue of multi-

plied bacterial escalation to antibiotic drug treatment resistance in hospital

settings. In order to provide the standard for control and elimination of the

multiplied escalation, the model for the pathogens transmission dynamics was

used to provide a basis for rating different intervention measures, applied in

an intensive care settings for controlling the escalation of vacomycin-resistant

enterococci.

Bhunu (2011) observed that despite the development of a number of ef-

fective treatments over the past half century, tuberculosis remain one of the

most destructive bacterial infections in humans. Though various mathematical

models on the spread of TB drug resistance have been considered by Castillo-

Chavez and Feng (1997), Blower and Gerberding (1998), Rodrigues et al.

(2007), Gumel and Song (2008), and Zhou et al. (2008). However, Bhunu

(2011) noted that factors contributing to the emergence of multi-drug resis-

tant TB, its spread and containment are not well defined. Improving on the

works of the authors named above, Bhunu (2011) considered a three (3) strain

TB model incorporating drug sensitive, multidrug-resistant (MDR-TB), ex-
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tensively drug-resistant strains (XDR-TB), as well as the likely benefits of

quarantining individuals detected to have extensively drug resistant (XDR-

TB). The total human population N(t) were divided into 9 mutually exclusive

compartment of: Susceptible S(t); Latently Infected Ei(t); Infectives Ii(t);

the Recovered R(t) and the Quarantined Q(t), for i = 1, 2, 3 denote the

drug-sensitive strain, multidrug-resistant strain and extensively drug-resistant

strain of Mycobacterium Tuberculosis (Mtb) respectively.

Thus:

N(t) = S(t) + E1(t) + E2(t) + E3(t) + I1(t) + I2(t) + I3(t) + R(t) + Q(t)

Following Van den Driessche and Watmough (2002), the reproduction num-

bers Ri(i = 1, 2, 3) of the model were obtained and used to establish the

local asymptotical stability of the disease-free equilibrium of the model. Four

(4) different cases of possible scenarios for the model endemic equilibrium were

analysed with respect to the reproduction numbers. The following three (3)

findings were concluded by the author:

• Treatment of drug sensitive Mycobacterium Tuberculosis (Mtb) strains

will help reduce the spread of drug sensitive TB, and if not properly used

results in the increase of multi-drug resistant (MDR-TB) cases.

• Treatment of multi-drug-resistant strain (MDR-TB) will help reduce the

spread of the MDR-TB, and if not properly used results in an increase

of extensively drug-resistant (XDR-TB) strain cases.

• Quarantining of extensively drug-resistant (XDR-TB) strain has a posi-

tive impact in the control of the XDR-TB, as it reduces the rate at which

individuals having that form of TB interact with other non-infected peo-

ple in the community.

Presented in the work of (Cooper and Julius, 2011) is a hybrid system model

for the dynamics of the populations of normal and persister bacterial cells in
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favorable growth conditions under antibiotic attacks. The model captures

a long-term persistent health problem that is common for some infections,

such as tuberculosis. The model posed the problem of designing an optimal

infection treatment strategy so as to minimize the number of persister cells

that go into long-term dormancy. After which, the model characterized the

optimal treatment strategy, which turns out to be non-unique and it can be

expressed as a feedback law using the information about the population sizes

of normal and persister cells. The theoretical lower bound on the number

of persister cells that transition into long-term dormancy under the optimal

treatment scheduling was then computed.

Due to the increasing bacterial resistance to antibiotics in hospital settings,

a new movement to re-examine the need for the development of new antibiotics

was carried out by Joyner et al. (2012). The authors discussed four different

mathematical models. To begin with they modified (Chow et al., 2011) model

to have the Base and the Isolation models that described the spread of both

single and dual resistant in a hospital setting with no drug available to aid in

treating patients colonized with dual resistant bacterial strain. In addition, the

Random Drug and the Targeted Drug models were also developed to introduce

a new drug into hospital settings. The Random Drug model was used to treat

all patients with the new drug, while the Targeted Drug model was used to

treat those patients with identified dual resistant bacteria. In their model

emphasis was given to the introduction of an entirely new antibiotics, and not

simply an upgrade of an existing antibiotics within the same class. This was so,

as the use of upgrade antibiotics on patients already colonized with bacterial

resistant to the older antibiotics could lead to a new high-level resistant strain.

The complete equilibrium analyses on the Random Drug model were carried

out. At first, they used the next generation approach to establish the local

stability of the resistant-free equilibrium for the Random Drug model. In
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addition, sensitivity analysis was carried out in order to determine the effects of

introducing a new drug in combating resistance within a hospital setting. The

researchers find out that introducing a new drug into the hospital resulted in

a significant reduction of the average patients carrying dual resistant bacteria,

a reduction from approximately 65 − 72% of the hospital down to between

28 − 36% of the hospital. The authors also find out from their sensitivity

analysis that introduction of a new antibiotic aids in the fight against the

spread of antibiotic resistance in a hospital setting, however decreasing the

rate of transmission, the per capita treatment rate of drugs, the overall per

capita treatment rate and increasing the turnover rate in the hospital, and

the portion of patients identified with dual resistant bacteria and treated will

result in the greatest decrease in the overall resistance.

In an attempt to predict the effects of pollution on the persistence of resis-

tant bacteria in a river, (Mostefaoui, 2014) studied the qualitative properties of

the model of (Lawrence et al., 2010). The model considered both river and land

bacteria, and each is subdivided into resistant and non-resistant, thus we have:

River non-resistant bacteria, River resistant bacteria, Land non-resistant bac-

teria, and Land resistant bacteria. So that at any arbitrary equilibrium we have

E∗ = (Rs, RI , LS, LI). Mostefaoui (2014) established the non-negativity

and boundedness of the model solutions, and obtained three equilibria of the

model: E0(0, 0, 0, 0), E1(K, 0, 0, 0) and E2

(
β
α
, K − β

α
, 0, 0

)
, where K is

the carrying capacity of the river, α is the transmission rate of the antibiotic

resistance gene, and β is the loss rate of the antibiotic resistance gene. As bac-

teria are always present, the analysis of E0 is not of any important. For the

extinction of the resistant bacteria in both river and land, using the Jacobian

stability technique the author established that E1 is locally asymptotically sta-

ble, if and only if αK < β . Using an appropriate Lyapunov function, E1

was proven to be globally asymptotically stable, if αK + r < β. Where r is
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the birth-death rate due to K. Furthermore, the author established that the

global stability of E2 holds if αK > β + α. Thus, if there is a large enough

loss rate of gene of resistance between bacteria then there will be a reduction

of resistance against antibiotic in the river. And on the other hand, a large

enough transmission gene of resistance between bacteria when the river is not

diluted will result in persistence of the resistant bacteria in the river. And

finally, (Mostefaoui, 2014) find out that the pollutants are not eliminated by

the stream of the water if the pollutant enter the river periodically from the

shore as the system has at least one positive periodic solution.

Discovery of antibiotics and their widespread introduction did not bring an

end to the war against infectious diseases as expected. The overuse of antibiotic

drugs has resulted in the prevalence of antibiotic resistant bacteria and thus,

an unfolding catastrophe has resulted due to antimicrobial resistance (Godlee,

2013). As the long-term competitive ending between susceptible strains and

resistant strains of bacteria within the host under different concentrations of

antibiotic remains unknown, (Huang and Fan, 2014) proposed a competitive

population dynamical model in order to explore the competitive interactions

between the susceptible strain and the resistant strain with antibiotic exposure.

The authors focused on the relationship between antibiotics resistance and

the concentration of antibiotics. The model has two variables, namely: the

number of susceptible and the number of resistant strains at time t, denoted

by x(t) and y(t) respectively. Both qualitative and quantitative analysis were

carried out, and by following the concept of Dulac criterion (McCluskey and

Muldowney, 1998; Osuna and Villaseñor, 2011), the results indicated that the

resistant strain will ultimately survive along with the long-term high strength

antibiotic treatment and prevention. This agrees with the literature on many

recurrent and chronic diseases (Lewis, 2007; LaFleur et al., 2010; Allison et al.,

2011). Thus, the authors emphasized on the needs to be more evidence based,
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and more efficiently targeted in the prescription of antibiotic drugs so as to

impede or slow resistance to antibiotics.

Reported in the work of (Ibargüen-Mondragón et al., 2014) is a math-

ematical modeling on bacterial resistance to multiple antibiotics caused by

spontaneous mutations. The model described population dynamics of bac-

teria exposed to multiple antibiotics simultaneously on the assumption that

the acquisition of resistance is through mutations due to antibiotics exposure.

The results of the model qualitative analysis show the existences of a bacteria

free equilibrium state, a resistant bacteria equilibrium state, and an endemic

bacteria equilibrium state as well, and in the later there are co-existence of

all the bacteria. The results of the model suggest that if bacteria can infect

but do not produce sufficient progeny then they can be removed. Also when

resistant bacteria persist, the model predicts two possible scenarios: sensitive

bacteria are eliminated totally by antibiotics or had acquired resistance, or the

bactericidal action is not enough to eliminate them, and therefore both types

of bacteria coexist. Furthermore, the results also suggest that it would be

more appropriate to use treatments combining bactericidal and bacteriostatic

drugs, thus the bactericidal antibiotics would eliminate sensitive bacteria and

bacteriostatic antibiotics would control bacterial reproduction. The sensitivity

analysis of the model established that bacterial reproduction and antibiotics

uptake, are the most significant factors on the population dynamics of bacteria

followed by antibiotics treatment action.

The economic and social impacts of Methicillin-resistant Staphylococcus

aureus (MRSA) can not be over-emphasized. It causes substantial morbidity

and mortality globally and it is endemic in hospital and nursing homes (Agusto

et al., 2015). Both health-care associated MRSA (HA-MRSA) and community-

associated MRSA (CA-MRSA) models have been studied by many authors in

order to quantify the possible effect of the disease burden. Agusto (2016)
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improved on the existing mathematical models of CA-MRSA and HA-MRSA

in hospital settings by incorporating health-care workers interactions with pa-

tients and contamination of the environment, the isolation of infected patients,

time dependent optimal control strategies associated with the decolonization

of healthcare workers, as well as environmental contamination rates. Thus, he

addressed some problems such as: knowing the parameter that has the great-

est impact on MRSA transmission in a hospital setting; the optimal control

strategy required to reduce disease transmission, as well as the implication of

increased control cost combination. The authors model contains 9 mutually

exclusive compartments. The qualitative analyses of the model equations were

carried out beginning with the positivity and boundedness of the solutions,

and then the condition for local stability of the disease-free equilibrium using

the next generation approach was established. In order to asses the impacts of

uncertainty as well as the sensitivity on the outcomes of the numerical simula-

tion of the model, the author carried out global sensitivity analysis using Latin

hypercube sampling (LHS) and partial rank correlation coefficients (PRCCs).

The numerical simulations revealed that applying time-dependent controls on

the decontamination rate for health-care workers, and on the environment con-

tamination rate reduces MRSA in both patients and health-care workers.

Daşbaşı and Öztürk (2016) formulated a mathematical model of bacterial

resistance to immune system response and multiple antibiotics simultaneously.

The qualitative analysis found out infection-free equilibrium point, and other

equilibrium points where resistant bacteria and immune system cells exists,

only resistant bacteria exists, and the point where the sensitive bacteria, re-

sistant bacteria and immune system cells exist. The model also highlights the

fact that when an individual’s immune system weakens, he/she suffers more

from the bacterial infections which are believed to have been confined or ter-

minated. To evaluate the effectiveness of antibiotic treatments with respect
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to specific changes in bacterial DNA sequence as the only mechanism of bac-

terial resistance acquisition, the model suggests that if sensitive bacteria can

infect but do not produce sufficient progeny, they can be removed and resistant

bacteria continue to survive in balance with the immune cells in the host.

Beams et al. (2016) developed a mathematical model using ordinary dif-

ferential equations in which hosts can have dual-stain infections with different

strains, but cannot be doubly infected by the same strain. They considered

hosts mixing homogenously and transmission occurs freely according to mass

action. The total population is divided into uninfected susceptible individuals;

infected individuals with antibiotic-vulnerable strain and who are susceptible

to infection by the antibiotic resistance type; individuals infected with the

antibiotic-resistant strain and who are susceptible to infection by the antibi-

otic vulnerable type; and the individuals who are infected by both types (dual-

strain infections). Using the next-generation matrix approach their analysis

reveals how the competition within hosts and the costs of resistance determine

whether vulnerable and resistance strains persists, coexist, or drive each other

to extinction. They found out that if vulnerable strains competitively suppress

resistant strains inside dually infected host, using strong antibiotics could com-

petitively release a resistance strain and allow it to invade and establish itself.

Their analysis also reveals that screening patients to determine whether they

are dually infected may limit the potential of resistance to spread provided the

antibiotic effect is not too powerful, otherwise, treating dual infections or not

becomes irrelevant and resistance proliferates.

Zilonora and Bratus (2016) extended on the work of De Leenbeer and Co-

gan (2009) by formulating a mathematical model for optimal strategies in

antibiotic treatment of microbial populations. Two microbial populations of

susceptible and persister cells were described in their model. The theory of

optimal control of Pontryagins maximum principle was used to find the best
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treatment strategies. Three different methods were used to solve the model

numerically, which yielded good allowable controls. They found out that the

most effective treatment option is gradually reducing the initial dose of an an-

tibiotic during the treatment process (upon condition that initial dose exceeds

a certain value), and the periodic treatment with constant antibiotic does not

provide any positive result.

Merden et al. (2017) observed that many of the numerical values of the

parameters used in modelling studies, especially for newly emerging diseases

are determined from the statistical investigation of the limited number of data

available on the event and thus, neglected the uncertainty of the parameters

in deterministic models. In order to model the uncertainty in the equation

system, they implement random components into the deterministic equation

system and analyzes the statistical properties of the results. Their work ex-

tends previous works by developing a deterministic model of immune system

and bacterial resistance with antibiotic therapy to form random and stochas-

tic models of the event. The random analysis for the dynamics of their model

shows that even under small random effects, some of the components produce

very unlikely results. Their analysis also revealed that the non- negligible devi-

ation and volatility in the random and stochastic models shows the incapability

of the deterministic analysis of bacterial resistance of modelling the real-life

randomness of the event.

As a continuation of previous works given in [15-20], Esteva and Ibargüen-

Mondragon (2018) introduce the concentrations of bactericidal and bacterio-

static drugs as a dynamical variable. They studied the interaction between

Mtb resistant to antibiotics, macrophages and T cells within the granuloma

formation, considering bacterial resistance to multiple bactericidal and bacte-

riostatic antibiotics simultaneously. Both qualitative and quantitative analysis

were carried out by the authors. The results of their model reveal that in the
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presence of TB, control measures should be focus on the reduction of fitness

cost and elimination of resistant bacteria by improving the immune system

and with appropriate multi-drugs treatment.

Ibargüen-Mondragón et al. (2019) formulated and analysed a deterministic

model for the population dynamics of susceptible and resistant bacteria to

antibiotics, they assumed that drug resistance is acquired through mutations

and plasmid transmission. The qualitative analysis revealed the following:

the existence of a bacteria-free equilibrium, a resistant bacteria equilibrium, a

coexistence equilibrium and a limit cycle arising from Hopf bifurcation. The

stability of the equilibria were given in terms of the growth rate of bacteria,

the acquisition of resistance, as well as the elimination of bacteria due to

the immune system and the action of antibiotics. The numerical simulations

corroborated their analytical results, which illustrated the temporal dynamics

of the susceptible and resistant bacteria.

Das et al. (2020) have developed and analysed a delayed model of hospital

acquired infection of multidrug-resistant bacteria Acinatobactor baumannii

(MRAB) using three separate patient states, two healthcare worker states and

environmental bacterial load. The study has enabled the researchers to assess

the effect of delay in diagnostic process as well as decontamination process on

prevalence of MRAB infection. The bacteria was characterized by longevity in

hospital environment, and the effect of delay in decontamination was then in-

vestigated in detail. Another delay was considered in diagnostic procedure for

treatment of multidrug-resistant bacteria. The researchers observed that, the

increment in delay values initiate periodic dynamics of endemic state, which

was demonstrated both analytically and numerically. An optimal control tech-

nique was used to estimate the effectiveness of various controls in reducing

infection, while minimizing the associated cost. The sensitivity analysis car-

ried out indicated that antibiotic stewardship program has stronger impact
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on delayed antibiotic-resistant infection dynamics, compared to hand hygiene

compliance of healthcare workers.

Presented in the work of (Pirommas and Farida, 2021) is a mathemati-

cal model that takes into account bacterial conjugation and drug effects, to

investigate the presence of sensitive and resistant bacteria in a human host.

The researchers considered two types of drugs: antibiotic M that kills only

sensitive bacteria and antibiotic N that kills both bacteria. Their results high-

lighted that, larger doses and longer dosing interval of antibiotic M might

result in the higher prevalence of resistant bacteria, while they do the oppo-

site for the antibiotic N . When delays in administering initial and second

doses were incorporated, they found that the delays might led to the higher

prevalence of resistant bacteria when antibiotic M or N is administered, with

the longer time of bacteria remaining at the lower prevalence of the latter.

They also found that, switching antibiotic agents during a treatment course

with different bacterial strain characteristics, result in a significant impact on

the prevalence of resistant bacteria, and that treatment was more effective

for bacteria with the higher probability of losing a plasmid, and the higher

conjugation rate. They concluded that their results are in agreement with

some preceding studies, that highlighted the importance of interval between

treatments to plasmid-borne antibiotic resistance, and that their study would

help gain a better understanding into the population dynamics of sensitive

and resistant bacteria under a therapeutic treatment, and the effects involving

bacterial mechanisms such as drug regimens, drug efficacy, delays in adminis-

trations, antibiotic switching, and characteristics of the bacterial strains.

Considering the studies of the aforementioned authors and others too nu-

merous to mention, we developed a mathematical model which investigates

the work of (Müller et al., 2013), focusing on the population dynamics of bet-

hedging and constant strains under different scenarios using the deterministic
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model approach, instead of the adaptive dynamics approach used by the au-

thors. The new model incorporates the death rates of the various strains with

the antibiotic drug treatment which is held constant (fixed value), and later

includes the dynamics of the antibiotic drug treatment with it administration

rate, and the rate at which the antibiotic drug decay (degradation rate). The

various death rates of the strains and the antibiotic drug treatment used, are

very important elements towards reducing or eradicating the densities of the

bacterial strains in all situations.
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CHAPTER 2

A Model for the Dynamics of the Bet-hedging
Bacteria in the Absence of a Constant Strain

2.1 Introduction

Bacterial pathogens are a major source of human and animal diseases world-
wide. A particular challenge is caused by bacterial resistance to anti-microbial
treatment. In this context, we will look at some particular forms of bacterial
resistance to anti-microbial treatment (AMR) by a bet-hedging strategy.

A bet-hedging strategy is the ability of organisms or species to sacrifice
some part of their physical fitness, with the hope of an increased gain when in
a devastating or harmful situation. In other words, it simply means Insurance
(Ripa et al., 2010).

One of the particular form of bacterial resistance to anti-microbial treat-
ment, that require a serious clinical attention are the genus Staphylococcus

with a serious threat to human life, which acquire Methicillin-resistant staphy−
lococcus aureus (MRSA), also known as (super-bug). Penicillin was used to
cure gonorrhoea completely, but when used for the treatment of Staphylococcal
infection, it could only eradicate some parts of the bacterial symptoms, and
no matter the amount of the penicillin concentration used, or how long the
treatment is extended, it leaves some cocci of the bacteria untreated Bigger
et al. (1944).

Bacillus Mycobacterium is another example of bacteria with a strong re-
sistance to anti-microbial treatment, which causes an infectious disease called
"Tuberculosis", generally known as TB. Pulmonary TB typically affects the
lungs, and sometimes can affect other parts of the body. Rifampicin became
the earliest effective drug for the treatment of TB in 1960s, but adversely
didn’t eradicate it completely, and because of TB resistance to Rifampicin,
there was the need for multidrug treatment to the bacteria. Currently, the
bacteria are being treated with a combination of a quadruple antibiotic drugs,
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for a minimum period of 6-months, and in some cases up to a year and half
(11

2
year), but still only about 85% success of the bacterial infection treatment

was recorded (Stewart et al., 2003).
Mathematical modelling has been used by different researchers to inves-

tigate the concept of anti-microbial resistant (AMR) treatment. Balaban
et al. (2004) developed a mathematical model which focused on the growth
rates of the normal and resistant cells and the transition rates between them.
The model usually address many problems that discussed bacterial growth
and AMR. Ibargüen-Mondragón et al. (2014) also developed a mathematical
model that looked at the population dynamics of bacteria which is introduced
to simultaneous multiple antibiotics, with the expectations that resistance is
acquired through mutations when exposed to antibiotics.

Müller et al. (2013) used an adaptive dynamics model technique, to explore
the evolution of bet-hedging within a population that experiences a stochas-
tic changing environment. To learn more about the adaptive dynamics ap-
proach refer to (Geritz et al., 1998). The aim of that biological paper, was
to deepen the understanding of the outcomes obtained in their research as
at then to the present situation, and also to extend the understanding of its
scope for the legitimacy of the outcomes obtained. In the outcomes of their
research, three different forms of evolutionary stable strategies (ESS’s) were
found, depending on the frequencyicity at which the environment switches. A
monomorphic phenotype familiarized to the instant environment, caused by a
gradually switching environment, a bimorphic bet-hedging phenotype, caused
by a central point of a dimension, and a monomorphic phenotype which is
also familiarized to the average environment. From the findings of their re-
search, the last two outcomes were based on the study of Lyapunov exponents
for stochastically changing environment, while the earlier outcome was only
attained by means of examining (heuristic) arguments and simulations. The
research in that article looked at the evolution aspect of the mathematical
model.

In this chapter 2, we will look at the model dynamics of the switching
(s1, s2) strains, from the paper of Müller et al. (2013) mentioned above for
the bet-hedging strains in isolation, which will form a basis for the later full
models in the next chapter. In their paper, the authors didn’t obtain the basic
stability analysis of the full model, which we explicitly obtained in this research
work.
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2.2 The Model of the Bet-hedging Bacteria

The model equations for the bet-hedging strain which can ‘switch’ their phe-
notype to specialize in each environment, by performing better or worse in any
environment Müller et al. (2013), based on the bacterial growth rates (βi), the
amount or concentration of enzymes (ri) for the bacteria, their interactions
with the environment (αi), and the transition rates (ϵi) between each other is
given by;

s′1 = s1 [β1 (r1 , α1) − ϵ1 − S] + ϵ2s2

s′2 = s2 [β2 (r2 , α2) − ϵ2 − S] + ϵ1s1
(2.1)

where; S = s1 + s2

β1 and β2 are the growth rates of the bacteria that depends on the respective
number or concentration of enzymes concentrations r1 and r2 the bacteria
needed, to utilize the nutrient contents in the respective environmental states
α1 and α2. ϵ1 and ϵ2 are the transition rates from one type to the opposite
one, where as (s1, s2) are the switching strains which can perform better or
worse in any environment.

The bacterial rate of growth (βi) is defined as;

βi (ri , αi) = 1 + ri e
−ri
αi (2.2)

with all parameters defined as above.
Considering the bacterial rate of growth in the environments, we sometimes

considered the number or the amount of enzymes concentration (ri) to be the
same values (equal), or different values (not equal) at some conditions, and
also that of the environment (αi) to be either the same, or different too. This
means, the growth of each population depends on the parameters ri and αi.
We later assumed the environments (αi) to fluctuate as well.

For a given environment (αi), the growth rate (βi) will attain a maximum
value, when ri = αi. That is;

∂βi

∂ri
=

(
1 − ri

αi

)
e

−ri
αi = 0 (2.3)

Stability analysis were performed on the model equations by considering
different conditions, to check the behavior of the strains, by finding the equi-
librium points of the system, stability of the model, and the eigenvalues of the
system from the characteristic equation below;
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∣∣J − λI
∣∣ = 0 (2.4)

where; J is the Jacobian matrix of the system, I as the identity matrix, and
λ are the eigenvalues of the system, which helped to find the state of the
equilibrium points of the system as either stable, unstable or a saddle point
(Murray, 2002) and references therein.

2.3 Constant Growth Rates (βi) Value of the
Bacteria

The research began by investigating the system of equation (2.1) when r1 =

r2 = 0, meaning the growth rates of the bacteria has a constant value
(i. e. β1 = β2 = β = 1).

By solving the above equation (2.1) with the stated condition, the system
produced two equilibrium points, which are the zero and the non-zero points
as:

(s∗1 , s∗2) = (0 , 0)

(s∗1 , s∗2) =

(
βϵ2
ϵT

,
βϵ1
ϵT

)
(2.5)

With the stated condition at the beginning of this section 2.3, we obtained the
Jacobian matrix of the model from equation (2.1) above as;

J =

(
β − ϵ1 − 2s∗1 − s∗2 −s∗1 + ϵ2

−s∗2 + ϵ1 β − ϵ2 − s∗1 − 2s∗2

)
(2.6)

After substituting the zero equilibrium point (s∗1 , s∗2) = (0 , 0) obtained
from equation (2.5) in equation (2.6), the Jacobian matrix now becomes;

J =

(
β − ϵ1 ϵ2

ϵ1 β − ϵ2

)
(2.7)

To find the eigenvalues, an identity matrix, together with the Jacobian ma-
trix obtained in equation (2.7) were substituted in the characteristic equation
(2.4) above, which resulted to;∣∣∣∣β − ϵ1 − λ ϵ2

ϵ1 β − ϵ2 − λ

∣∣∣∣ = 0 (2.8)
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After evaluating the above expression in equation (2.8) by hand, the two
eigenvalues were obtained as;

λ1 = β

λ2 = β − ϵT
(2.9)

where; ϵT = ϵ1 + ϵ2

By carefully looking at the above equation (2.9), one of the eigenvalues is
positive (i. e. λ1 > 0), and it implies the point being locally and asymptoti-
cally unstable, which means the bacteria will not settle at the (0, 0) equilibrium
point.

After the investigation and found the zero equilibrium point to be unsta-
ble, we continued the research by substituting the non-zero equilibrium point
(s∗1 , s∗2) =

(
βϵ2
ϵT

, βϵ1
ϵT

)
from equation (2.5), in the Jacobian matrix obtained

in equation (2.6) above, which gives the new Jacobian matrix as;

J =

(
β − ϵ1 − 2βϵ2

ϵT
− βϵ1

ϵT
−βϵ2

ϵT
+ ϵ2

−βϵ1
ϵT

+ ϵ1 β − ϵ2 − βϵ2
ϵT

− 2βϵ1
ϵT

)
(2.10)

The Jacobian matrix in equation (2.10), together with it corresponding identity
matrix were again substituted in the characteristic equation (2.4) above, and
the result from that expression produced;∣∣∣∣∣β − ϵ1 − 2βϵ2

ϵT
− βϵ1

ϵT
− λ −βϵ2

ϵT
+ ϵ2

−βϵ1
ϵT

+ ϵ1 β − ϵ2 − βϵ2
ϵT

− 2βϵ1
ϵT

− λ

∣∣∣∣∣ = 0 (2.11)

After evaluating the above expression obtained in equation (2.11) by hand,
the two eigenvalues were found as;

λ1 = −β

λ2 = −ϵT
(2.12)

where; ϵT = ϵ1 + ϵ2

Based on the results obtained in equation (2.12) above, it confirmed the
two eigenvalues to be negative (i. e. λi < 0), as (i = 1, 2), which means the
system is locally and asymptotically stable at the non-zero equilibrium point.

Since the parameter values used are r1 = r2 = 0, it means the equilibrium
point (s∗1 , s∗2) = (0 , 0) is never stable, and the strain (bacteria) will always
reach an equilibrium point where S∗ = s∗1 + s∗2 = β = 1, as shown in
Figure 2.1 below.
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(a) ϵ1 < ϵ2 (b) ϵ1 = ϵ2 (c) ϵ1 > ϵ2

Figure 2.1: The Numerical graphs for the intrinsic dynamics of the 2D bet-
hedging model, with a constant growth rates of the bacterial strain: β1 =
β2 = β, both strains having the same initial values: s1(0) = s2(0) = 0.2,
with different amount of nutrients contents in the environments to be utilized
by the bacterial strain: α1 = 5 and α2 = 1, the same range of time for
each of the plots t = 0 : 0.001 : 200, with the transition rates values of:
ϵ1 = 0.01, ϵ2 = 0.02, and the whole plots show the two strains in each case
become stable at s1 + s2 = β = 1.

2.4 Different Growth Rate (βi) Values of the Bac-
teria

Having considered the situation when the strains have a constant growth rate
value (β1 = β2 = β = 1), it is important to look at what happen when the
strains have different growth rate values (β1 ̸= β2).

In this situation we are to consider two cases, either the strains has the
same/equal (r1 = r2 ̸= 0), or different/unequal (r1 ̸= r2) number/amount
of enzymes, and in either case, the growth rates of the bacteria are different
to each other (i. e. β1 ̸= β2), because of the differences in the environmental
nutrient contents (α1 ̸= α2).

The model equation based on the above mentioned condition is now defined
as;

s′1 = s1 [β1 (r1 , α1) − ϵ1 − S] + ϵ2s2

s′2 = s2 [β2 (r2 , α2) − ϵ2 − S] + ϵ1s1
(2.13)

where; S = s1 + s2, with all other parameters, and the bacterial growth
rate defined as in equations (2.1), and (2.2) respectively.

Solving the above equation (2.13), the system produced two equilibrium
points, a zero and non-zero points as;
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(s∗1, s∗2) = (0, 0)

(s∗1, s∗2) = (S − β2)(β1 − ϵ1 − ϵ2 − S) + (β1 − β2)ϵ2
(2.14)

The Jacobian matrix of the system from equation (2.13) above was found as;

J =

(
β1 − ϵ1 − 2s∗1 − s∗2 − s∗1 + ϵ2

− s∗2 + ϵ1 β2 − ϵ2 − s∗1 − 2s∗2

)
(2.15)

When the zero equilibrium point (s∗1, s∗2) = (0, 0) from equation (2.14)
was substituted in equation (2.15) above, the Jacobian matrix became;

J =

(
β1 − ϵ1 ϵ2

ϵ1 β2 − ϵ2

)
(2.16)

The Jacobian matrix obtained in equation (2.16), together with it corre-
sponding identity matrix were then substituted in the characteristic equation
(2.4) above, and the characteristic equation became;∣∣∣∣β1 − ϵ1 − λ ϵ2

ϵ1 β2 − ϵ2 − λ

∣∣∣∣ = 0 (2.17)

Having followed the same procedure as before, for solving the above ex-
pression in equation (2.17) by hand, the zero equilibrium point for β1 ̸= β2

produced the two eigenvalues as;

λ1 =
1

2

[
(βT − ϵT ) −

√
(∆β )2 − 2∆β∆ϵ + (ϵT )

2

]
λ2 =

1

2

[
(βT − ϵT ) +

√
(∆β )2 − 2∆β∆ϵ + (ϵT )

2

] (2.18)

where; βT = β1 + β2, ϵT = ϵ1 + ϵ2, ∆β = β1 − β2 and ∆ϵ = ϵ1 − ϵ2

From the eigenvalues obtained in equation (2.18) we can confirm whenever
βT > ϵT , one of the eigenvalues is positive (λi > 0, i = 2), which means the
point is locally and asymptotically unstable, and the system will not settle to
the equilibrium point of (0, 0). But when ϵT > βT , we can’t find an analytic
proof that is obeyed, but numerical simulation found no examples of (0, 0)

equilibrium point being stable.
After the analysis and found the zero equilibrium point to be unstable,

we continued by considering and re-arranging the non-zero equilibrium point
(S − β2)(β1 − ϵ1 − ϵ2 − S) + (β1 − β2)ϵ2 obtained from equation (2.14) above,
which gives;

S2 − (βT − ϵT )S + (β1β2 − β1ϵ2 − β2ϵ1) (2.19)
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Solving the above quadratic equation obtained in equation (2.19) for the
values of S, we obtained;

S =
1

2

[
(βT − ϵT ) −

√
(∆β)2 − 2∆β∆ϵ + (ϵT )

2

]
S =

1

2

[
(βT − ϵT ) +

√
(∆β)2 − 2∆β∆ϵ + (ϵT )

2

] (2.20)

To identify the real solution of equation (2.19), we substituted the expres-
sion β1 = β2 = β in the two values obtained in equation (2.20) above, which
gives;

S = β − ϵT

S = β
(2.21)

and the second value obtained in equation (2.21) is the same with the value ob-
tained for the non-zero equilibrium point for constant growth rate in equation
(2.5) above.

Since the second value of S obtained in equation (2.21) is the same with
the value of the non-zero equilibrium point obtained in equation (2.5) above
when β1 = β2 = β, we then used it to obtain the non-zero equilibrium point
in this case as well.

To obtain the non-zero equilibrium points (s∗1, s∗2) we refer back to equation
(2.13), where we eliminate s2 in the first equation by using (s2 = S − s1),
and later eliminate s1 in the second equation by using (s1 = S − s2), and
we respectively obtained; s∗1 = ϵ2S

S + ϵT − β1
and s∗2 = ϵ1S

S + ϵT − β2

where: S = 1
2

[
(βT − ϵT ) +

√
(∆β)2 − 2∆β∆ϵ + (ϵT )

2

]
from equation

(2.20) above.
Therefore, the non-zero equilibrium points for different growth rate values

(β1 ̸= β2) were obtained as;

(s∗1 , s∗2) =

( ϵ2
2
A

1
2
A + ϵT − β1

,
ϵ1
2
A

1
2
A + ϵT − β2

)
(2.22)

where; A = (βT − ϵT ) +
√

(∆β )2 − 2∆β∆ϵ + (ϵT )
2

Substituting the equilibrium points from equation (2.22) in the Jacobian
matrix obtained in equation (2.15) above, the Jacobian matrix is then trans-
formed to;

J =

(
β1 − ϵ1 − 2ϵ2A

A+2ϵT−2β1
− ϵ1A

A+2ϵT−2β2
− ϵ2A

A+2ϵT−2β1
+ ϵ2

− ϵ1A
A+2ϵT−2β2

+ ϵ1 β2 − ϵ2 − ϵ2A
A+2ϵT−2β1

− 2ϵ1A
A+2ϵT−2β2

)
(2.23)
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To find the eigenvalues, the Jacobian matrix obtained in equation (2.23),
and it corresponding identity matrix were substituted in the characteristic
equation (2.4) above, which yielded;∣∣∣∣∣β1 − ϵ1 − 2ϵ2A

A+2ϵT−2β1
− ϵ1A

A+2ϵT−2β2
− λ − ϵ2A

A+2ϵT−2β1
+ ϵ2

− ϵ1A
A+2ϵT−2β2

+ ϵ1 β2 − ϵ2 − ϵ2A
A+2ϵT−2β1

− 2ϵ1A
A+2ϵT−2β2

− λ

∣∣∣∣∣ = 0

(2.24)
After undergoing a series of computations by hand, and making some rep-

resentations as well, the eigenvalues for the non-zero equilibrium point when
β1 ̸= β2 were obtained as;

λ1 =
1

2

[
(βT − ϵT − 3m)−

√
(∆β)2 − 2∆β (∆ϵ+ n) + (ϵT −m)2

]
λ2 =

1

2

[
(βT − ϵT − 3m) +

√
(∆β)2 − 2∆β (∆ϵ+ n) + (ϵT −m)2

] (2.25)

where;
βT = β1 + β2, ∆β = β1 − β2,

ϵT = ϵ1 + ϵ2, ∆ϵ = ϵ1 − ϵ2,

m = p + q, n = p − q,

p =
ϵ2 A

F
, q =

ϵ1 A

G
,

F = A + 2ϵT − 2β1, G = A + 2ϵT − 2β2,

A = (βT − ϵT ) +

√
(∆β )2 − 2∆β∆ϵ + (ϵT )

2

The eigenvalues obtained in equation (2.25) above are too complex to be
analysed algebraically. Instead, their behaviours were investigated numerically
by plotting them against different parameter values. As the eigenvalues were
plotted against these parameters, their results show they were always negatives
(i. e. λi < 0, i = 1, 2) as shown in Figure 2.2 below.

In Figure 2.2, plots (a) to (e) show the two eigenvalues are always negative
for any parameter values used. Plot (b) show an odd behaviour near β2 = 1,
and it was investigated further in plot (e) which clarifies it to be negative as
well, and by that we found the non-zero equilibrium point for β1 ̸= β2 to be
a stable one.
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(a) Eigenvalues against β1 (b) Eigenvalues against β2 (c) Eigenvalues against ϵ1

(d) Eigenvalues against ϵ2 (e) Eigenvalues against β2

Figure 2.2: The numerical graphs for the eigenvalues of the non-zero equilib-
rium point for 2D bet-hedging model, with different values of the strains growth
rates (β1 ̸= β2), against some parameters β1, β2, ϵ1, and ϵ2 respectively, which
show the two eigenvalues are always negative (i.e. λi < 0, i = 1, 2). In plot
(a), β2 = 80, ϵ1 = 15, and ϵ2 = 50. In plot (b) as well, β1 = 1, ϵ1 = 0.01,
and ϵ2 = 0.02, Also in plot (c), β1 = 11, β2 = 25, and ϵ2 = 30. And
lastly in plot (d), β1 = 15, β2 = 33, and ϵ1 = 0.01 respectively. The plot
obtained in panel (e) is a zoom of the result obtained in the plot of panel (b),
which clearly show the result is negative.

In Figure 2.3, plots (a) to (c) show the dynamics of the bet-hedging model
when the strains amount or concentration of enzymes for their growth rates
are different (i. e. r1 ̸= r2), while plots (d) to (f) show the dynamics when the
strains amount or concentration of enzymes for their growth rates are equal
but not zero (i. e. r1 = r2 ̸= 0). In either case, the growth rates of the
bacteria are different (i. e. β1 ̸= β2), which show both strains will not settle
at (0, 0) equilibrium point, and will always become stable at the non-zero
equilibrium point.
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(a) r1 < r2, and ϵ1 < ϵ2 (b) r1 < r2, and ϵ1 = ϵ2 (c) r1 < r2, and ϵ1 > ϵ2

(d) r1 = r2, and ϵ1 < ϵ2 (e) r1 = r2, and ϵ1 = ϵ2 (f) r1 = r2, and ϵ1 > ϵ2

Figure 2.3: The Numerical graphs for the dynamics of the 2D bet-hedging
model, with different values of the strains growth rates (β1 ̸= β2), with both
strains having the same initial values (s1(0) = s2(0) = 0.2), and different
amount of nutrient contents in the environments (α1 = 5 and α2 = 1), with
the same range of time for each of the plots t = 0 : 0.001 : 200, with plots
(a), (b) and (c) having different amount or concentration of enzymes r1 = 0.5,
and r2 = 0.7, with plot (a) having ϵ1 = 0.01, and ϵ2 = 0.02, plot (b) having
the same transition rate values between the strains ϵ1 = ϵ2 = 0.02, and
plot (c) having ϵ1 = 0.02, and ϵ2 = 0.01. Also, plots (d), (e) and (f) have
the same amount or concentration of enzymes r1 = r2 = 0.7, with plot (d)
having ϵ1 = 0.01, and ϵ2 = 0.02, plot (e) having the same transition rate
values between the strains ϵ1 = ϵ2 = 0.02, and plot (f) having ϵ1 = 0.02
and ϵ2 = 0.01, which show all the strains become stable at their respective
equilibrium points.

Comparing the plots for the intrinsic dynamics of the bet-hedging model,
when the strains have constant growth rates values (β1 = β2 = β = 1)

obtained in Figure 2.1, and those obtained in Figure 2.3 with different values
of the strains growth rates (β1 ̸= β2), we noticed the densities of the strains
at the steady state are a bit higher in Figure 2.3, which means there are
respective increase in the densities of the strains in all the plots, which are
usually determined by the growth rates (βi) values together with the transition
rates (ϵi) of the strains from one type to the other.
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2.5 Fluctuating Resources within the Growth
Rates (βi) of the Bacteria

Having considered the two situations in sections 2.3 and 2.4 above, when the
strains respectively have equal and constant growth rate values (β1 = β2 =

β = 1), and when they (strains) have different growth rate values (β1 ̸= β2),
we now want to consider a situation when the nature of the environment fluc-
tuates. We know there are lot of factors which could cause the environmental
fluctuation, and as a result of those factors the environment fluctuates, which
also causes a fluctuation in the strains growth rates.

Based on the aforementioned, the environmental state (αi) in the intrinsic
growth rate of the model will be replace by fluctuating resources, which is
defined as: αi = δisin(ωt) + 1.
where; δi is the amplitude, and ω is the frequency of the fluctuating resources.

In this scenario, the rate of the bacterial growth (βi) with respect to time
(t) becomes;

βi (ri , αi) = 1 + ri e
−ri

δi sin(ωt) + 1 (2.26)

meaning that, the growth rates of the bacteria will have a sinusoidal behavior,
determined by the amplitude (δi), or frequency (ω) of the fluctuations with
respect to time (t).

Plots (a) to (f) in Figure 2.4 below show the dynamics of the bacte-
rial density, with the sinusoidal function when (r1 ̸= r2), and also when
(r1 = r2 ̸= 0), with all of these two conditions confirming that (β1 ̸= β2)

respectively.
Plots (a) to (c) described a situation, when the strains have different/unequal

amount of enzymes (r1 ̸= r2) with different transition rate (ϵi) values.
Whereas, plots (d) to (f) described the strains with the same/equal amount
of enzymes (r1 = r2 ̸= 0), and different transition rate (ϵi) values as well.
And by looking at the whole plots in Figure 2.4 below, one can notice both
strains show the same behavior in their fluctuations, and the same densities
for the amplitude of their oscillations in plot (e), because in that plot (e) both
strains have the same concentration or amount of enzymes (ri), and the same
transition rates (ϵi) values as well.
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(a) r1 < r2 and ϵ1 < ϵ2 (b) r1 < r2 and ϵ1 = ϵ2 (c) r1 < r2 and ϵ1 > ϵ2

(d) r1 = r2 and ϵ1 < ϵ2 (e) r1 = r2 and ϵ1 = ϵ2 (f) r1 = r2 and ϵ1 > ϵ2

Figure 2.4: The Numerical graphs for the fluctuating dynamics of the bet-
hedging model, with all of the plots having the same initial values (s1(0) =
s2(0) = 0.2), with plot (a), (b) and (c) having different values of enzymes
(r1 = 0.5 and r2 = 0.7), with plot (a) having ϵ1 = 0.01 and ϵ2 = 0.02 plot
(b) having the same values of the transition rates ϵ1 = ϵ2 = 0.02, and plot (c)
having ϵ1 = 0.02 and ϵ2 = 0.01. Also, plots (d) to (f) have the same values
of enzymes (r1 = r2 = 0.7), with plot (d) having ϵ1 = 0.01 and ϵ2 = 0.02,
plot (e) having the same values of the transition rates ϵ1 = ϵ2 = 0.02,
and plot (f) having ϵ1 = 0.02 and ϵ2 = 0.01, with the amplitude value
δ = 0.25, the frequency of oscillation ω = 1, and it is more evident that one
strain dominates at some point.

Also, the density of each strain in the fluctuating environment depends on
their growth rates (βi), and their transition rates (ϵi) values as we observed
in the non-fluctuating environment. If the two strains have the same or equal
amounts of enzymes (r1 = r2 ̸= 0), with one of the strain having a lower
transition rate (ϵi) value, the density of that particular strain will be higher
than its counterpart strain, as shown in plots (d) and (f) respectively.

These defined the environmental state (αi) as a non-autonomous function,
and their stability can not easily be found directly. Instead, the functions have
to be studied numerically at various points of fluctuations.
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2.6 Time Courses and Densities of Strains with
Varying Values of some Parameters for the
Fluctuating Environment

In this section 2.6, we focused on how these parameters amplitude (δi), and the
frequency (ω) parameters for the fluctuating resources can affect the behavior
of each strain. Time courses for the strains with varied values of the param-
eters (amplitude and frequency) were carefully studied, and in the end their
maximum and minimum densities of strains were generated, against the var-
ied values of each parameter in question, with different values of the transition
rates (ϵi) in order to observe their behaviors.

2.6.1 Time Courses of Strains for Some Varying Values
of the Amplitude (δi)

A few out of the many plots for the time courses, with different values of the
amplitude (δi) were shown here, which gives an insight of how the behavior
of those strains looked like, and can be compared with the results obtained
in the intrinsic model for the fluctuating resources (with equal/constant or
different values of the strains growth rates) in section 2.5 above, to observe if
their behaviors are the same, or if there is any differences in their behaviors.

The plots in Figure 2.5 below show, there is always an increase in the
densities of strains for the amplitude of oscillations, once the value of the
amplitude (δi) is increased. But the behavior of the plots (fluctuations within
the strains densities) in Figure 2.5 are the same with what were observed with
the intrinsic model for the fluctuating environment in Figure 2.4 above.

This means that both the two strains can ’switch’ to specialize in any envi-
ronment as mentioned earlier, but the strain with low transition rate (ϵi), and
a high value of the amplitude (δi), always has a higher density of oscillations
at the steady state than the other.

36



(a) r1 < r2, and ϵ1 < ϵ2 (b) r1 < r2, and ϵ1 < ϵ2 (c) r1 < r2, and ϵ1 < ϵ2

(d) r1 < r2, and ϵ1 < ϵ2 (e) r1 < r2, and ϵ1 < ϵ2 (f) r1 < r2, and ϵ1 < ϵ2

Figure 2.5: Time courses of strains for the 2D bet-hedging model with the
fluctuating environment, and the varying amplitude (δi) values of oscillation,
with the parameters: r1 = 0.5 and r2 = 0.7, different values of the transition
rates ϵ1 = 0.01 and ϵ2 = 0.02 respectively, with the frequency value of
oscillations ω = 1, and the initial values of the strains densities (s1(0) =
s2(0) = 0.2).

2.6.2 Densities of Strains against the Varying Values of
the Amplitude (δi)

The maximum and minimum densities of the strains, against the varying values
of the amplitude (δi) of oscillations, with different values of the transition rates
(ϵi), were taken in to consideration in this section 2.6.2, to see exactly the
behavior of all the strains, with different values of the amplitude (δi) in a
single plot.

An interesting pattern observed in it is, the minimum densities are showing
the bigger changes than the maximum densities, and generally a reasonable
amount of the amplitude (δi) value is needed before changes occur.
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(a) r1 < r2, and ϵ1 < ϵ2 (b) r1 < r2, and ϵ1 = ϵ2 (c) r1 < r2, and ϵ1 > ϵ2

(d) r1 < r2, and ϵ1 < ϵ2 (e) r1 < r2, and ϵ1 = ϵ2 (f) r1 < r2, and ϵ1 > ϵ2

Figure 2.6: Maximum and minimum densities of strains for the 2D bet-hedging
model, with the fluctuating environment and the same range of the amplitude
(δi) values, with the parameters: r1 = 0.5 and r2 = 0.7, plots (a) and (d)
having different transition rate values ϵ1 = 0.01 and ϵ2 = 0.02, plots (b) and
(e) having the same transition rate values ϵ1 = ϵ2 = 0.01, also plots (c) and
(f) having different transition rate values ϵ1 = 0.02 and ϵ2 = 0.01 as well,
with the frequency of oscillations ω = 1, and the initial values of the strain
densities (s1(0) = s2(0) = 0.2).

2.6.3 Time Courses of Strains for Some Varying Values
of the frequency (ω)

Like what was done in section 2.6.1 above, some plots for the time courses
of strains with different values of the frequency (ω) of oscillations were shown
here too, which give an awareness/insight for the behavior of those strains, and
can be compared with the results obtained in Figures 2.4 and 2.5 above, for
the intrinsic model of the fluctuating resources, and the time courses for the
varied amplitude (δi) values respectively, with different values of the strains
enzymes (r1 ̸= r2), to distinguish if there exist any differences in the behavior
of the strains in those cases, or if their behaviors are the same.
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(a) r1 < r2, and ϵ1 < ϵ2 (b) r1 < r2, and ϵ1 < ϵ2 (c) r1 < r2, and ϵ1 < ϵ2

(d) r1 < r2, and ϵ1 < ϵ2 (e) r1 < r2, and ϵ1 < ϵ2 (f) r1 < r2, and ϵ1 < ϵ2

Figure 2.7: Time courses of strains for the 2D bet-hedging model with the
fluctuating environment, and the varying frequency (ω) values of oscillations,
with the parameters: r1 = 0.5 and r2 = 0.7, different values of the transition
rates ϵ1 = 0.01 and ϵ2 = 0.02 respectively, with the amplitude value of
oscillations δ = 0.25, and the initial values of the strains densities (s1(0) =
s2(0) = 0.2).

In Figure 2.7 above, we could notice a rapid increase in the strains densities,
at the initial values for the frequency (ω) of oscillations, between ω = 0 to
ω = 0.1 in plots (a) and (b), and a rapid decrease in the strains densities as
well in plot (b) and (c), but the latter (rapid decrease) wasn’t as much rapid
as the former (rapid increase), and also not much difference could be spotted
in the pattern of the strains densities in plots (d) to (f), but we could spot an
increases in the number of oscillations completed per unit-time interval, when
a frequency (ω) value is increased.

This means, the effect of the frequency (ω) in the fluctuating environment
is much higher at the beginning than in the long run. Also, the strains (s1, s2)
experienced a rapid increase in their densities at the initial values for the
frequency (ω) of oscillations, then a sudden decreased in it as well, before a
gradual densities of the strains is maintained later.
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2.6.4 Densities of Strains against the Varying Values of
the frequency (ω)

(a) r1 < r2, and ϵ1 < ϵ2 (b) r1 < r2, and ϵ1 = ϵ2 (c) r1 < r2, and ϵ1 > ϵ2

(d) r1 < r2, and ϵ1 < ϵ2 (e) r1 < r2, and ϵ1 = ϵ2 (f) r1 < r2, and ϵ1 > ϵ2

Figure 2.8: Maximum and minimum densities of strains for the 2D bet-hedging
model, with the fluctuating environment (δ ∗sin(ωt) + 1) and the same range
of the frequency (ω) values, with the parameters: r1 = 0.5 and r2 = 0.7, plots
(a) and (d) having different transition rate values ϵ1 = 0.01 and ϵ2 = 0.02,
plots (b) and (e) having the same transition rate values ϵ1 = ϵ2 = 0.01,
also plots (c) and (f) having different transition rate values ϵ1 = 0.02 and
ϵ2 = 0.01 as well, with the amplitude value of oscillations δ = 0.25, and the
initial values of the strain densities (s1(0) = s2(0) = 0.2).

Plots (a) to (f) in Figure 2.8 above show the maximum and minimum densi-
ties of strains, against the varying frequency (ω) values, with some interesting
results showing some jumps (up and down) in both the maximums and mini-
mums, at the initial values of the frequency (ω) between ω = 0 and ω = 0.1,
with the maximums showing greater changes in the s1 strain, and the mini-
mums showing greater changes in the s2 strain, which are quite different from
the results obtained in Figure 2.6 above for the densities of the strains against
the varied amplitude (δi) values.

To further clarify what the jumps (up and down) in the above Figure 2.8
means, we looked at the behaviors of the strains densities, with a short varying
values of the frequency (ω) of oscillations, usually around ω = 0 to ω = 0.1.
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The results obtained in Figure 2.9 below show a rapid increases and de-
creases within the strains densities at the initial values for the frequency (ω)

of oscillations.

(a) r1 < r2, and ϵ1 < ϵ2 (b) r1 < r2, and ϵ1 = ϵ2 (c) r1 < r2, and ϵ1 > ϵ2

(d) r1 < r2, and ϵ1 < ϵ2 (e) r1 < r2, and ϵ1 = ϵ2 (f) r1 < r2, and ϵ1 > ϵ2

Figure 2.9: The maximum and minimum densities of strains for the 2D bet-
hedging model, with the fluctuating environment (δ∗sin(ωt) + 1) and the same
range of the frequency (ω) values of oscillations, with the parameters: r1 = 0.5
and r2 = 0.7, different values of the transition rates ϵ1 = 0.01, ϵ2 = 0.02,
and ϵ1 = ϵ2 = 0.01 respectively, with the amplitude value of oscillations
δ = 0.25, and the initial values of the strain densities (s1(0) = s2(0) = 0.2).

This show the strains respond more quickly to the effect of the frequency
(ω) in the fluctuating environment at the early time, than they responds to
the amplitude (δi) in their densities. It also means the frequency (ω) in the
fluctuating resources affects the densities of each strain almost in the same
way with a very minor difference, unlike the amplitude (δi) of the fluctuating
environment which affect their densities, based on the respective amplitude
(δi) values.

2.7 Conclusion

In this chapter 2, we studied the behavior of the two switching (s1, s2) strains,
which can ‘switch’ their phenotype to specialize in each environment, by per-
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forming better or worse in any environments (Müller et al., 2013). The results
produced two equilibrium points, a zero (s∗1, s∗2) = (0, 0), and non-zero
(s∗1, s

∗
2) =

(
βϵ2
ϵT

, βϵ1
ϵT

)
equilibrium points in the non-fluctuating environment,

which indicates the strains can not settle at the zero equilibrium point, mean-
ing the bacteria always persist at this point, but they (strains) become stable at
the non-zero equilibrium point. In the fluctuating environment, we noticed the
behavior for the densities of the strains are the same with what were obtained
in the non-fluctuating situation, but the only differences is the oscillations in
the strains densities for the fluctuating environment, which isn’t there in the
non-fluctuating situation.

The results in this chapter 2 show, the transition rates (ϵi) appear to have
a bigger effect, or a greater impact on the strains densities, than the growth
rates (βi) of the strains in both the non-fluctuating and the fluctuating situa-
tions, as seen in the whole plots of Figures 2.1, 2.3, and 2.4 respectively. We
also noticed in Figures 2.5 and 2.6 respectively that, once the values of the
amplitude (δi) are increased in the time courses, the densities of oscillations
in the strains are increased too, with the minimum showing a greater changes
than the maximum. Meaning, the amplitude (δi) makes surprisingly little dif-
ference to the maximum/minimum densities, suggesting some strong intrinsic
regulation.

Also in Figures 2.7, 2.8 and 2.9, a rapid increase in the strains densities
at the early time between ω = 0 and ω = 0.1 at the steady state were
observed, and a rapid decrease in their densities as well between ω = 0.1

and ω = 0.2 at the steady state, but the rapid decrease is not as high as
the rapid increase, when the frequency (ω) value of the fluctuating resources is
increased. Meaning that, the frequency (ω) makes a bigger differences at the
early time, with the amplitudes (δi) peaking at very low frequencys.

In the next chapter we will introduce a non-switching (s0) strain, which
does not ’switch’ its phenotype and can grow at a constant rate in any envi-
ronment, which is quite different with the phenotype of the switching (s1, s2)

strains discussed in this chapter. The aim is to study the dynamics of the non-
switching (s0) and the switching (s1, s2) strains in the same environmental
states, and under the same conditions as we did in this chapter, to observe if
there is any changes in their behaviors, or if the behaviors of the strains will
be the same. Müller et al. (2013) used stochastic switching in their work, and
my work happened to be the first that used deterministic fluctuations toward
extending their work.
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CHAPTER 3

Modelling the Bet-hedging of Bacterial Dynamics
with the Presence of a Constant Strain

3.1 Introduction

After studying and analyzing the results obtained from the dynamics of the
two bet-hedging (s1, s2) strains, that can ‘switch’ their phenotype to specialize
and perform better or worse in any environments, with different conditions in
the previous chapter (Müller et al., 2013), we found the solutions of the model
equations to have two equilibrium points in both situations. The equilibrium
points consist of the zero’s and non-zero’s points in the non-fluctuating en-
vironment for both the constant and different growth rate (βi) values of the
strains, which show in all the two cases the strains can’t settle at the zero
equilibrium point, but they become stable at the non-zero equilibrium point.
In the fluctuating environment, we noticed the strains are more sensitive to
the frequency (ω) at relatively lower values than the amplitude (δi), and the
strains are also more sensitive to the amplitude (δi) at relatively intermediate
values than the frequency (ω). In this chapter a new strain (s0) which does
not ’switch’ its phenotype like the other strains, and can grow at a constant
rate in any environment is introduced in the model equations (Müller et al.,
2013).

This is the model structure we were interested in studying, to understand
the benefits of bet-hedging between the strains. Müller et al. (2013) used an
adaptive dynamics model technique to explore the evolution of bet-hedging
within a population that experiences a stochastic changing environment. In
the outcomes of their research, three different forms of evolutionary stable
strategies (ESS’s) were found, depending on the frequencyicity at which the
environment switches. A monomorphic phenotype familiarized to the instant
environment caused by a gradually switching environment, a bimorphic bet-
hedging phenotype caused by a central point of a dimension, and a monomor-
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phic phenotype which is also familiarized to the average environment. In this
chapter we will explore, study and analyze the underlying population dynamics
model using a deterministic model approach in detail, which is quite different
from the method used by the authors to study and analyze the behavior of
the model, which is the first research that used the deterministic approach to
analyze this particular model.

The aim is to investigate the dynamics of the three strains, the non-
switching (s0) and the switching (s1, s2) strains surviving together in the
same environmental states with the same conditions, as we did in chapter 2
with the ’switching’ (s1, s2) strains alone, to ascertain if the behavior of the
strains will be the same with what were obtained in chapter 2, or if there is
any differences in their behavior. Also to check if any among the strains, the
non-switching (s0) and the switching (s1, s2) can be eliminated by the others,
or if there will be competition for survival between them.

3.2 The Model of the Bet-hedging Bacteria with
a Constant Strain

After investigating and analysing the results for the bet-hedging (s1, s2) strains,
that can switch and perform better or worse in any environment in chapter
2, a non-switching (s0) strain is introduced which grows at a constant rate in
any environment (Müller et al., 2013). In this chapter we studied the survival
of the non-switching (s0) strain between the switching (s1, s2) ones in the
non-fluctuating environment, and also when the environment fluctuates.

Based on the model equations in chapter 2 and what is introduced in this
chapter 3, the new model equations were defined as;

s′0 = s0 [β0 (r0 , α0) − S]

s′1 = s1 [β1 (r1 , α1) − ϵ1 − S] + ϵ2s2

s′2 = s2 [β2 (r2 , α2) − ϵ2 − S] + ϵ1s1

(3.1)

where; S = s0 + s1 + s2

β0, β1, and β2 are the growth rates of the bacteria, which depends on the
respective amount or concentration of enzymes r0, r1, and r2 to utilize the
nutrient content in the environmental states α0, α1, and α2 respectively. ϵ1,
and ϵ2 are the transition rates from one type to the opposite one, s0 is the non-
switching strain which grow at a constant rate in any environments, where as
(s1, s2) are the switching strains that can perform better or worse in any of
the environmental states.

44



The bacterial rate of growth (βi) for the strain(s) in this chapter is defined,
as it was defined in equation (2.2) in the previous chapter.

In this research, we wanted to find out how the non-switching (s0) strain
will be growing at a constant rate in any of the environmental states, which
among the switching (s1, s2) strains will perform better or worse in those
environmental states, and also the level of competition among these strains.

As we did in chapter 2, stability analysis was performed on the model by
considering different conditions, in order to check the behavior of the strains
through finding the equilibrium points of the system, stability of the model,
and the eigenvalues of the system from the characteristic equation (2.4), in
which the same procedures were followed in this chapter 3 as well.

3.3 Constant Growth Rates (βi) of the Bacteria

As we did in chapter 2, we began the research by considering the system of
equation (3.1) above with the assumption that (r0 = r1 = r2 = 0), which
implies the growth rates of the bacteria are equal to one another (i.e. β0 =

β1 = β2 = β).
Solving the above equation (3.1), the system produced two equilibrium

points, a zero and non-zero points as;

(s∗0, s∗1, s∗2) = (0, 0, 0)

(s∗0, s∗1, s∗2) =

(
s0,

(β − s0)ϵ2
ϵT

,
(β − s0)ϵ1

ϵT

)
(3.2)

where; s0 in the second equilibrium in equation (3.2) is a continuum of equi-
libria, and it is not specified because it can take any value.

The Jacobian matrix of equation (3.1) was obtained as;
J =β − 2s∗0 − s∗1 − s∗2 −s∗0 −s∗0

−s∗1 β − ϵ1 − s∗0 − 2s∗1 − s∗2 −s∗1 + ϵ2
−s∗2 −s∗2 + ϵ1 β − ϵ2 − s∗0 − s∗1 − 2s∗2

 (3.3)

The zero equilibrium point (s∗0, s∗1, s∗2) = (0, 0, 0) obtained from equation
(3.2) was first substituted in equation (3.3), and the Jacobian matrix becomes;

J =

β 0 0
0 β − ϵ1 ϵ2
0 ϵ1 β − ϵ2

 (3.4)
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The corresponding identity matrix together with the Jacobian matrix ob-
tained in equation (3.4), were substituted in the characteristic equation (2.4),
and the below expression was obtained as;∣∣∣∣∣∣

β − λ 0 0
0 β − ϵ1 − λ ϵ2
0 ϵ1 β − ϵ2 − λ

∣∣∣∣∣∣ = 0 (3.5)

Evaluating the above expression in equation (3.5) by hand, the three eigen-
values were obtained as;

λ1, 2 = β

λ3 = β − ϵT
(3.6)

where; ϵT = ϵ1 + ϵ2

Since two of the eigenvalues obtained in equation (3.6) above are greater
than zero (i. e. λi > 0, i = 1 and 2), it indicates the zero equilibrium point
to be locally, and asymptotically unstable, and the bacteria will not settle at
the (0, 0, 0) equilibrium point.

We then move ahead to consider the non-zero equilibrium point (s∗0, s∗1, s∗2) =(
s0,

(β−s0)ϵ2
ϵT

, (β−s0)ϵ1
ϵT

)
obtained in equation (3.2), and after substituting it in

the Jacobian matrix obtained in equation (3.3), we were left with;

J =

 − s0 − s0 − s0
(s0 − β)ϵ2

ϵT

(s0 − β)ϵ2 − ϵ1ϵT
ϵT

(s0 − β)ϵ2 + ϵ2ϵT
ϵT

(s0 − β)ϵ1
ϵT

(s0 − β)ϵ1 + ϵ1ϵT
ϵT

(s0 − β)ϵ1 − ϵ2ϵT
ϵT

 (3.7)

Substituting the above Jacobian matrix from equation (3.7), together with
it corresponding identity matrix in the characteristic equation (2.4), we ob-
tained the below expression as;∣∣∣∣∣∣∣

− s0 − λ − s0 − s0
(s0 − β)ϵ2

ϵT

(s0 − β)ϵ2 − ϵ1ϵT
ϵT

− λ (s0 − β)ϵ2 + ϵ2ϵT
ϵT

(s0 − β)ϵ1
ϵT

(s0 − β)ϵ1 + ϵ1ϵT
ϵT

(s0 − β)ϵ1 − ϵ2ϵT
ϵT

− λ

∣∣∣∣∣∣∣ = 0 (3.8)

After the rigorous evaluation of the above expression in equation (3.8) by
hand, it produces the three eigenvalues as;

λ1 = 0

λ2 = −β

λ3 = −ϵT

(3.9)

where; ϵT = ϵ1 + ϵ2
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Since one of the eigenvalues obtained here is zero (0), it does not imply
stability. It is also evident that a zero (0) eigenvalue is expected, since there
is a line of steady states. In the simulation of this kind, the final steady state
will definitely depend on the initial conditions of the strains.

(a) ϵ1 < ϵ2 (b) ϵ1 = ϵ2 (c) ϵ1 > ϵ2

Figure 3.1: The Numerical graphs for the intrinsic dynamics of the 3D bet-
hedging model, with a constant growth rates of the bacterial strain (β0 =
β1 = β2 = β = 1), both strains having the same initial values (s0(0) =
s1(0) = s2(0) = 0.2), with different amount of nutrients to be utilized by the
bacterial strain α0 = 3, α1 = 5 and α2 = 1, the same range of time
for each of the plots t = 0 : 0.001 : 300, with (a) having different transition
rate values ϵ1 = 0.01 and ϵ2 = 0.02, (b) having the same values of the
transition rates ϵ1 = ϵ2 = 0.02, whereas (c) has different transition rates
values as well ϵ1 = 0.02 and ϵ2 = 0.01.

The results obtained in figure 3.1 show the same behavior with what were
obtained in figure 2.1 in the previous chapter, where the transition rate (ϵi)

values determines which among the bet-hedging (s1, s2) strain perform better
or worse in any situation. The results also show how the non-switching (s0)

strain grow at a constant rate in any situation too.

3.4 Different Growth Rates (βi) Values of the
Bacteria

After carefully studying the situation when (r0 = r1 = r2 = 0), meaning the
three strains collectively has a constant growth rates value (i. e. β0 = β1 =

β2 = β = 1), the research continued by considering what happened when
(r0 = r1 = r2 ̸= 0), or when (r0 ̸= r1 ̸= r2). In either of these mentioned
cases, the growth rates of the strains are not the same (i. e. β0 ̸= β1 ̸= β2).
The growth rates of the bacterial strain for these conditions are not the same,
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because the nutrient contents of the environments under study were not the
same as well (i. e. α0 ̸= α1 ̸= α2).

The model equations for the non-switching (s0) strain, and the switching
(s1. s2) strains based on the aforementioned conditions are governed by;

s′0 = s0 [β0 (r0 , α0) − S]

s′1 = s1 [β1 (r1 , α1) − ϵ1 − S] + ϵ2s2

s′2 = s2 [β2 (r2 , α2) − ϵ2 − S] + ϵ1s1

(3.10)

where; S = s0 + s1 + s2, with all other parameters as defined in equation
(3.1), and the bacterial growth rate (βi) of the strains as defined in equation
(2.2).

Solving the above equation (3.10), the system produced four equilibrium
points, a zero and three non-zero points as;

(s∗0 , s∗1 , s∗2) = (0 , 0 , 0),

(s∗0 , s∗1 , s∗2) = (β0 , 0 , 0),

(s∗0 , s∗1 , s∗2) = (0 , AA , BB),

(s∗0 , s∗1 , s∗2) = (0 , CC , DD)

(3.11)

where;

AA =
(β2 − 2β1 + 2ϵ2)ϵ1 − (β1 + ϵ2)β2 + (β2

1 + ϵ21 + ϵ22)

2(β1 − β2)

−
(β1 − ϵ1 − ϵ2)

√
(β1 − β2)2 − 2(β1 − β2)∆ϵ+ ϵ2T

2(β1 − β2)

BB =
(β2 + ϵ1)β1 − (β1 − 2β2 + 2ϵ1)ϵ2 − (β2

2 + ϵ21 + ϵ22)

2(β1 − β2)

+
(β2 − ϵ1 − ϵ2)

√
(β1 − β2)2 − 2(β1 − β2)∆ϵ+ ϵ2T

2(β1 − β2)

CC =
(β2 − 2β1 + 2ϵ2)ϵ1 − (β1 + ϵ2)β2 + (β2

1 + ϵ21 + ϵ22)

2(β1 − β2)

+
(β1 − ϵ1 − ϵ2)

√
(β1 − β2)2 − 2(β1 − β2)∆ϵ+ ϵ2T

2(β1 − β2)

DD =
(β2 + ϵ1)β1 − (β1 − 2β2 + 2ϵ1)ϵ2 − (β2

2 + ϵ21 + ϵ22)

2(β1 − β2)

−
(β2 − ϵ1 − ϵ2)

√
(β1 − β2)2 − 2(β1 − β2)∆ϵ+ ϵ2T

2(β1 − β2)

ϵT = ϵ1 + ϵ2, and ∆ϵ = ϵ1 − ϵ2
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From the equilibrium points obtained above, it show there is no co-existence
of the equilibrium states. Meaning that each strain is characterized by its
equilibrium point.

The Jacobian matrix of equation (3.10) was obtained as;

J =

β0 − 2s∗0 − s∗1 − s∗2 −s∗0 −s∗0
−s∗1 β1 − ϵ1 − s∗0 − 2s∗1 − s∗2 −s∗1 + ϵ2
−s∗2 −s∗2 + ϵ1 β2 − ϵ2 − s∗0 − s∗1 − 2s∗2


(3.12)

Starting with the zero equilibrium point (s∗0 , s∗1 , s∗2) = (0 , 0 , 0) from
equation (3.11), and after it was substituted in equation (3.12), the Jacobian
matrix becomes;

J =

β0 0 0
0 β1 − ϵ1 ϵ2
0 ϵ1 β2 − ϵ2

 (3.13)

After substituting the Jacobian matrix obtained in equation (3.13), to-
gether with it corresponding identity matrix in the characteristic equation
(2.4), we obtained;∣∣∣∣∣∣

β0 − λ 0 0
0 β1 − ϵ1 − λ ϵ2
0 ϵ1 β2 − ϵ2 − λ

∣∣∣∣∣∣ = 0 (3.14)

Evaluating the above expression obtained in equation (3.14) by hand, and
after some calculations, the three eigenvalues were obtained as;

λ1 = β0

λ2 =
1

2

[
{(β1 + β2)− ϵT}+

√
(β1 − β2)2 − 2(β1 − β2)∆ϵ+ ϵ2T

]
λ3 =

1

2

[
{(β1 + β2)− ϵT} −

√
(β1 − β2)2 − 2(β1 − β2)∆ϵ+ ϵ2T

] (3.15)

Since one of the eigenvalues obtained in equation (3.15) above is positive
(i. e. λi > 0 as i = 1), it confirmed the point to be locally, and asymptot-
ically unstable. And it means the strain (bacteria) will not settle at the zero
(0, 0, 0) equilibrium point.

After finishing with the zero equilibrium point and found it to be unstable,
we then considered the first non-zero equilibrium point (s∗0, s∗1, s∗2) = (β0, 0, 0)

obtained in equation (3.11) and substitute the values in the Jacobian matrix
obtained in equation (3.12), and the result obtained is;

J =

−β0 −β0 −β0

0 β1 − β0 − ϵ1 ϵ2
0 ϵ1 β2 − β0 − ϵ2

 (3.16)
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The Jacobian matrix obtained in equation (3.16), together with it corre-
sponding identity matrix were both substituted in the characteristic equation
(2.4), and we obtained;∣∣∣∣∣∣

−β0 − λ −β0 −β0

0 β1 − β0 − ϵ1 − λ ϵ2
0 ϵ1 β2 − β0 − ϵ2 − λ

∣∣∣∣∣∣ = 0 (3.17)

The above expression obtained in equation (3.17) was evaluated by hand,
and after a series of rigorous computations, it produced the three eigenvalues
as;

λ1 = −β0

λ2 =
1

2

[
{β1 + β2 − 2β0 − ϵT} −

√
(β1 − β2)2 − 2(β1 − β2)∆ϵ+ ϵ2T

]
λ3 =

1

2

[
{β1 + β2 − 2β0 − ϵT}+

√
(β1 − β2)2 − 2(β1 − β2)∆ϵ+ ϵ2T

] (3.18)

Analysis of equation (3.18) above show, whenever the value of β0 is greater
than the average value of β1 and β2

[
i. e. β0 > β1 + β2

2

]
, and the value ob-

tained from the square root is very small (less than the obtained value of β0),
the strain (bacteria) will become stable at the first non-zero equilibrium point
obtained in equation (3.11) which is β0. Else, if the average value of β1 and
β2 is greater than the value of β0

[
i. e. β1 + β2

2
> β0

]
, and the value obtained

from the square root is very small (less than the obtained average value of β1

and β2), the bacteria will become stable at one of the remaining non-zero equi-
librium point (the last one) obtained in equation (3.11) above, in which the
analytical investigations of their steady states were algebraically unfeasible.
In Figure 3.2 we can noticed the effects of the transition rates (ϵi) values on
the existing strain(s) in plots (d) to (i), which does not show on the existing
strain(s) in plots (a) to (c).

Plots (a) to (c) in Figure 3.2 when the value of β0 is greater than the
average value of β1 and β2 show no matter the values of the transition rates
(ϵi) in those plots, it will not affect the equilibrium density of the existing
non-switching (s0) strain. This was mentioned earlier that s0 strain grow at
a constant rate in any environment, and that can easily be understood in the
model equation, since there is not any transition rate (ϵi) associated to it in
the equation, but the differences in the transition rates (ϵi) values affects the
densities of the existing switching (s1, s2) strains at the steady state which
are seen in plots (d) to (i), and also on the extincting strains on plots (a) to
(c) respectively.
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(a) β0 > 1
2 (β1 + β2), ϵ1 < ϵ2 (b) β0 > 1

2 (β1 + β2), ϵ1 = ϵ2 (c) β0 > 1
2 (β1 + β2), ϵ1 > ϵ2

(d) β0 < 1
2 (β1 + β2), ϵ1 < ϵ2 (e) β0 < 1

2 (β1 + β2), ϵ1 = ϵ2 (f) β0 < 1
2 (β1 + β2), ϵ1 > ϵ2

(g) β0 = 1
2 (β1 + β2), ϵ1 < ϵ2 (h) β0 = 1

2 (β1 + β2), ϵ1 = ϵ2 (i) β0 = 1
2 (β1 + β2), ϵ1 > ϵ2

Figure 3.2: The Numerical graphs for the intrinsic dynamics of the 3D bet-
hedging model when there is a presence of enzyme(s) to utilize the nutrients
available (β0 ̸= β1 ̸= β2), both strains having the same initial values
(s0(0) = s1(0) = s2(0) = 1), with different values of β0 as; 8, 3 and 6
respectively, where as β1 = 5, and β2 = 7 all through, with plots (a, d)
and (g) having different transition rate values ϵ1 = 1 and ϵ2 = 10, plots
(b, e) and (h) having the same values of the transition rates ϵ1 = ϵ2 = 1,
whereas plots (c, f) and (i) has different transition rate values as well ϵ1 = 10
and ϵ2 = 1, and both plots show all the strains become stable at some
points.

Also in plots (d) to (f) when the value of β0 is less than the average value
of β1 and β2, we could noticed the effects of the transition rates (ϵi) values
within the existing switching (s1, s2) strains. It is clear that the values of
the transition rates (ϵi) does affect the strains densities in those plots at the
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steady state. In plot (d), despite the s1 strain respectively posses lower values
for both it growth rate (β1) and the transition rate (ϵ1) than the s2 strain,
at the steady state the s1 strain maintain a high density than the s2 strain,
which was due to its lower transition rate (ϵi) value. But in plots (e) and (f),
when the transition rate (ϵ1) values of the s1 strain are respectively equal (the
same), and greater than the s2 strain transition rate (ϵ2) values, the s2 strain
respectively maintains a high densities at the steady state in those plots than
the s1 strain.

There are some interesting results in Figure 3.2 that were spotted in plots
(g) to (i), when the value of β0 is equal to the average value of β1 and β2. In
plot (g), despite the value of β0 is not greater than the average value of β1

and β2, the non-switching (s0) strain wins the competition, because it has a
high growth rate (β0) value that can compete and win the competition. But in
plots (h) and (i), the switching (s1, s2) strains wins the competition, with the
s2 strain having a high density because of it growth rate (β2) and transition
rate (ϵ2) values.

Overall the results obtained in Figure 3.2 above show, despite following the
concept of β0 value being respectively greater than, or less than, or even equal
to the average value of β1 and β2, the transition rates (ϵi) values play a vital
role in determining which among the strains (switching and non-switching)
wins the competition in some circumstances. This means if a part of a strain
moves from one type to the other, definitely the density of that strain will be
affected negatively at the steady state, and also it will have a positive effect
on the density of the strain it moved to at the steady state as well.

We further investigated what happened under this condition, when the
growth rates (βi) values of the different strains are equal but not zero (i.e. β0 =

β1 = β2 ̸= 1). In this scenario, the three strains both the non-switching
(s0), and the switching (s1, s2) strains co-exists as a special case, which is the
stability swapping point between (s∗0, 0, 0) and (0, s∗1, s

∗
2) equilibrium points.

At this point stability is lost, which produced a non-isolated fixed point as
shown in the Figure 3.3 below.
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(a) ϵ1 < ϵ2 (b) ϵ1 = ϵ2 (c) ϵ1 > ϵ2

Figure 3.3: The Numerical graphs for the intrinsic dynamics of the 3D bet-
hedging model when there is a presence of enzyme(s) to utilize the nutrients
available (β0 = β1 = β2 ̸= 1), both strains having the same initial values
(s0(0) = s1(0) = s2(0) = 1), the same growth rate values for the strains
β0 = β1 = β2 = 5, with plot (a) having different transition rates values
ϵ1 = 1 and ϵ2 = 10, plot (b) having the same values of the transition
rates ϵ1 = ϵ2 = 1, whereas plot (c) has different transition rates values as
well ϵ1 = 10 and ϵ2 = 1, and both plots show all the three strains
co-exists as a special case.

Plots (a) to (c) obtained in Figure 3.3 above show a special cases for the
co-existence of the three strains despite using different values of the transition
rates (ϵi), which show a complete lost of stability when changing an equilibrium
state between (s∗0, 0, 0) and (0, s∗1, s

∗
2) in any situation. In the same figure one

can notice the strain with the lowest value of the transition rate (ϵi) has a high
density at the steady state, and the one with the high value of the transition
rate (ϵi) has a lower density at the steady state as well, as seen in plots (a) and
(c) respectively. The switching (s1, s2) strains co-exists at the steady state
with the non-switching (s0) strain, when the switching (s1, s2) strains have the
same transition rates (ϵi) values, as seen in plot (b). These definitely show how
importance are the transition rates (ϵi) values in determining which among the
switching (s1, s2) strain(s) perform better or worse in those situations.

3.5 Fluctuating Resources within the Growth
Rates (βi) of the Bacteria

Since we are done with our investigations in the situations mentioned above,
when the strains have constant growth rates values (β0 = β1 = β2 = β),
different growth rates values of the strains (β0 ̸= β1 ̸= β2), and the same
(equal) growth rate values (β0 = β1 = β2 ̸= 1) as well, we now want to
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consider an environmental state (αi) with a fluctuating resources, which also
caused the growth of the strains to fluctuate as well.

The rate of the bacterial growth (βi) in this situation, based on the intrinsic
model equations with respect to time (t) is defined as in equation (2.26).

In this situation, we will analyze the behavior of the plots, by considering
either their amplitude (δi), or frequency (ω) of oscillations, for the existing
strain(s) with respect to the time (t), since the existing strain(s) at the steady
state have a sinusoidal behavior.

The whole plots obtained in Figure 3.4 show the same pattern of behav-
ior, with the results obtained in Figure 3.2 for the non-fluctuating resources,
except for plot (h). The plots displays the same behavior with the result
obtained, when the value of β0 is greater than the average value of β1 and
β2

[
β0 > 1

2
(β1 + β2)

]
, the non-switching (s0) strain exists (wins), and the

switching (s1, s2) strains are extinct. It also show the same pattern, when
the reverse is the case

[
i. e. β0 < 1

2
(β1 + β2)

]
, the switching (s1, s2) strains

co-exists (wins), and the non-switching (s0) strain is extinct.
Plot (h) in the fluctuating resources below confirms a switch of strain(s)

at the steady state, when its result is compared with the results obtained in
the non-fluctuating situation in Figure 3.2, where we realized the existence
of the non-switching (s0) strain at the steady state, instead of the switching
(s1, s2) strains that were obtained in the non-fluctuating situation, when the
value of β0 is equal the average value of β1 and β2

[
i. e. β0 = 1

2
(β1 + β2)

]
,

with the same transition rate values (ϵ1 = ϵ2). This show the environmental
fluctuation on the growth rate (βi) value on its own might cause the switch of
the existing strain(s).

From the results obtained in both the non-fluctuating and the fluctuating
environments, they showed the effect of the transition rates (ϵi) values in each
case. These show the strains densities at the steady state usually depends on
both the strain growth rate (βi), and its transition rate (ϵi) values.
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(a) β0 > 1
2 (β1 + β2), ϵ1 < ϵ2 (b) β0 > 1

2 (β1 + β2), ϵ1 = ϵ2 (c) β0 > 1
2 (β1 + β2), ϵ1 > ϵ2

(d) β0 < 1
2 (β1 + β2), ϵ1 < ϵ2 (e) β0 < 1

2 (β1 + β2), ϵ1 = ϵ2 (f) β0 < 1
2 (β1 + β2), ϵ1 > ϵ2

(g) β0 = 1
2 (β1 + β2), ϵ1 < ϵ2 (h) β0 = 1

2 (β1 + β2), ϵ1 = ϵ2 (i) β0 = 1
2 (β1 + β2), ϵ1 > ϵ2

Figure 3.4: The Numerical graphs for the intrinsic dynamics of the fluctuating
3D bet-hedging model for (β0 ̸= β1 ̸= β2), with both strains having the
same initial values (s0(0) = s1(0) = s2(0) = 0.2), with different values of
r0 as; 0.8, 0.3 and 0.6 respectively, where as r1 = 0.5, and r2 = 0.7 all
through, with (a, d) and (g) having different transition rates values ϵ1 = 1
and ϵ2 = 10, (b, e) and (h) having the same values of the transition rates
ϵ1 = ϵ2 = 1, whereas (c, f) and (i) has different transition rates values
as well ϵ1 = 10 and ϵ2 = 1, with the amplitude value of fluctuation
δ = 0.25, and the frequencyic value of oscillation ω = 1, and both plots
show all the strains become stable at some points.

One important thing we observed in Figures 3.2 and 3.3, is the time (t)

at which the strains reached a steady state in both the non-fluctuating and
the fluctuating environments. In the non-fluctuating environment, we noticed
the strain reached the steady state in a shorter time (t), unlike in the fluctu-
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ating resources where it takes longer time (t) to reach the steady state. This
means, the fluctuating environment might slow down the eventual steady state
behavior.

After all that has been investigated in this section (fluctuating environ-
ment), we also looked at what happened when both the non-switching (s0), and
the switching (s1, s2) strains have the same growth rates (βi) values, but not
equal to the constant value in the strains growth rate (i. e. β0 = β1 = β2 ̸= 1),
with different values of the transition rates (ϵi) as well, and in the results we
found the co-existence of all the three strains in each situation, which are ex-
actly what were obtained in the non-fluctuating situation. As we mentioned in
the non-fluctuating situation, we noticed that stability is lost at that point, and
it is also a stability swapping point between the equilibrium points (s∗0 , 0 , 0)

and (0 , s∗1 , s∗2), as shown in Figure 3.5.

(a) ϵ1 < ϵ2 (b) ϵ1 = ϵ2 (c) ϵ1 > ϵ2

Figure 3.5: The Numerical graphs for the intrinsic dynamics of the 3D bet-
hedging model for the fluctuating environment, when the growth rate (βi) of
the strains are the same, but not equal to the constant value in their growth
rates (i. e. β0 = β1 = β2 ̸= 1), both strains having the same initial values
[s0(0) = s1(0) = s2(0) = 1], the same growth rate values β0 = β1 = β2 = 5,
with (a) having different transition rates ϵ1 = 1 and ϵ2 = 10, (b) having
the same values of the transition rates ϵ1 = ϵ2 = 1, whereas (c) has different
transition rates as well ϵ1 = 10 and ϵ2 = 1, and both plots show the
co-existence of all the strains, which is a special case.

This show even when the resources of the environment fluctuate, there is
a loss of stability between the non-switching (s0) strain, and the switching
(s1, s2) strains. From the plots in Figure 3.5, we observed the stability is lost
at that point, and the strain with the lower value of transition rate (ϵi) among
the switching (s1, s2) strains, has a high density at the steady state than the
other, with both having the same (equal) growth rates (βi) values, which also
strengthen the effect of the transition rate (ϵi) in the model.
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3.6 Time Courses and Densities of Strains for
Varying Values of the Parameters in the Fluc-
tuating Environment

As we investigated in chapter 2, how the amplitude (δi) and the frequencyic
(ω) parameters affects the behaviors of the switching (s1, s2) strains in the
fluctuating environment, we want to look at how they can affect them as well
in this chapter 3, when the non-switching (s0) strain is introduced.

The same techniques (looking at the time courses of the strains against the
varying values of the parameters) were applied here as well, to investigate the
maximum and minimum densities of the strains, in order to identify if there
is any change with the results obtained in chapter 2, before the non-switching
(s0) strain is introduced, or if the results obtained are the same.

3.6.1 Time Courses and Densities of Strains for Varying
Values of the Amplitude (δi)

Not every plots of the time courses, for varying values of the amplitude (δi)

in this section were displayed here, but some plots were displayed in order to
show an insight of how the densities of either the maximum, or the minimum
of the strains behaved.

3.6.1.1 When the Value of β0 is Less than the Average Value of β1

and β2, [β0 < 1
2
(β1 + β2)]

In this section 3.6.1.1, we looked at some plots of the time courses for the
densities of strains, which investigates the behavior of the strains against some
varied values of the amplitude (δi), when the growth rate (βi) value of the non-
switching (s0) strain is less than the average value of the switching (s1, s2)

strains as analyzed in equation (3.18).
The aim is to find out if the behavior of the strains will be like that of

the non-fluctuating and the fluctuating situations as obtained in their intrinsic
models in Figures 3.2 and 3.4 respectively, or if anything different exist.
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(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2 (c) ϵ1 < ϵ2

(d) ϵ1 < ϵ2 (e) ϵ1 < ϵ2 (f) ϵ1 < ϵ2

Figure 3.6: Time courses of strains for the 3D bet-hedging model with the
fluctuating environment against the varying amplitude (δi) values with pa-
rameters; r0 = 0.3 , r1 = 0.5 , r2 = 0.7, different transition rates values
ϵ1 = 1 and ϵ2 = 10, frequencyic value of fluctuation ω = 1, and the initial
values of the bacterial densities s0(0) = s1(0) = s2(0) = 0.2, which show
the non-switching strain (s0) can never invade.

Figure 3.6 show some plots for the time courses of strains, with some vary-
ing values of the amplitude (δi). Plots (a) to (f) in Figure 3.6 show exactly
the same behavior with those obtained in the intrinsic models for the non-
fluctuating and the fluctuating situations as well. The plots also showed the
non-switching (s0) strain can never invade in this section no matter its initial
value, but one of the switching (s1, s2) strains will have a high density at
the steady state than the other, depending on their growth rate (βi) and the
transition rate (ϵi) values as stated in the analysis of equation (3.18).

One interesting thing we noticed in the whole plots in Figure 3.6 is the
ability of the existing strains to gain an increase in their densities once the
value of the amplitude (δi) for the model under investigation is changed. But
the growth is showing the bigger changes towards the minimum value of the
density than its maximum value, which indicates the maximum density as
being a threshold point that can’t be exceeded by the growth of the existing
strains.
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(a) ϵ1 < ϵ2 (b) ϵ1 = ϵ2 (c) ϵ1 > ϵ2

(d) ϵ1 < ϵ2 (e) ϵ1 = ϵ2 (f) ϵ1 > ϵ2

Figure 3.7: The maximum and minimum densities of strains for the 3D bet-
hedging model with the fluctuating environment, against the varying ampli-
tude (δi) values with parameters; r0 = 0.3 , r1 = 0.5 , r2 = 0.7, plots (a)
and (d) having different transition rate values ϵ1 = 1, and ϵ2 = 10, plots (b)
and (e) having the same transition rate values ϵ1 = ϵ2 = 1, also plots (c)
and (f) having different transition rate values as well ϵ1 = 10 and ϵ2 = 1,
with the frequencyic value of oscillation ω = 1, and the initial values of the
bacterial densities s0(0) = s1(0) = s2(0) = 0.2, which show in the whole
plots the non-switching (s0) strain can never invade.

The behaviors of the whole plots in Figure 3.6, which indicates the densities
of the existing strains showing bigger changes towards the minimum than its
maximum values were summarized in figure (7), where the densities (maximum
and minimum) of the strains, with different values of the transition rates (ϵi)

were plotted against the varied values of the amplitude (δi), to clearly figure
out what was explained earlier in Figure 3.6.

In Figure 3.7, plots (a) to (f) show both the maximum and minimum den-
sities of strains for the fluctuating model with varying values of the amplitude
(δi), and with three different conditions of the transition rate (ϵi) values as
well. Plots (a) and (d) show the maximum and minimum densities of the
strains when ϵ1 < ϵ2, plots (b) and (e) also when ϵ1 = ϵ2, and finally plots
(c) and (f) when ϵ1 > ϵ2.

The results of the whole plots obtained in Figure 3.7 show the minimums
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were showing bigger changes than the maximum, and generally only a reason-
able amount of amplitude (δi) is needed before changes occur. This means
by changing the value of the amplitude (δi), the bacteria could keep growth
from dropping off, but were unable to really boost it past a threshold, which
also means the competition between the strains could probably prevent growth
from getting too high.

3.6.1.2 When the Value of β0 is Greater than the Average Value of
β1 and β2, [β0 > 1

2
(β1 + β2)]

In the above section 3.6.1.1, we looked at some plots of the time courses, with
some varying values of the amplitude (δi) based on some conditions extracted
from equation (3.18), which are the eigenvalues obtained from the non-zero
equilibrium points (s∗0, 0, 0) and (0, s∗1, s∗2). In this section 3.6.1.2, we did
exactly like what was done in section 3.6.1.1, but with the reverse or opposite
condition of the equation (3.18) that was investigated in section 3.6.1.1.

(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2 (c) ϵ1 < ϵ2

(d) ϵ1 < ϵ2 (e) ϵ1 < ϵ2 (f) ϵ1 < ϵ2

Figure 3.8: Time courses of strains for the 3D bet-hedging model with the
fluctuating environment against the varying amplitude (δi) values with pa-
rameters; r0 = 0.8 , r1 = 0.5 , r2 = 0.7, different values of the transition
rates ϵi, as i = 1 and 10 respectively, ω = 1 and the initial values of the bac-
terial densities s0(0) = s1(0) = s2(0) = 0.2, which show s0 can never be
invaded.
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In Figure 3.8 which is shown above, the whole plots produced the same re-
sults as those obtained with the intrinsic models, for both the non-fluctuating
and the fluctuating situations. In the whole results we realized the non-
switching (s0) strain can never be invaded no matter its initial value, or the
values of the transition rates (ϵi) for the switching (s1, s2) strains, which sim-
ply means the cycling does not change the behavior of the strains under this
condition too.

As we noticed in section 3.6.1.1, there is always an increase in the density
for the existing strains at the steady state if the value of the amplitude (δi)

is changed. Likewise in this section 3.6.1.2, the increase is showing a bigger
change in the minimum too as in section 3.6.1.1, even though the increase of
the maximum density under this condition is slightly different than it appeared
to be in section 3.6.1.1, (when the value β0 is less than the average value of β1

and β2).
Plots (a) to (f) in Figure 3.9 which are the plots for the densities of strains,

against the varying values of the amplitude (δi), show the same pattern of be-
havior with the plots obtained in Figure 3.7, with the same values of the
transition rates (ϵ1 < ϵ2, ϵ1 = ϵ2 and ϵ1 > ϵ2). This is because in the
intrinsic model equations, the s0 strain does not have any transition rate (ϵi)

value associated to it, which makes the s0 strain to be the non-switching bac-
teria, and it indicates the bacteria could show a bigger change in its maximum
density since the competition is within the non-switching (s0) strain itself, as
we discovered in its time courses plots in Figure 3.8.

We can also conclude by saying, the whole plots obtained in Figure 3.9 were
showing the minimum densities are having bigger changes than the maximum
densities, and only a reasonable amount of the amplitude (δi) were needed
before changes could occur as noticed in section 3.6.1.1, and also the cycling
does not change the behavior of the strain in this condition too.
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(a) ϵ1 < ϵ2 (b) ϵ1 = ϵ2 (c) ϵ1 > ϵ2

(d) ϵ1 < ϵ2 (e) ϵ1 = ϵ2 (f) ϵ1 > ϵ2

Figure 3.9: The maximum and minimum densities of strains for the 3D bet-
hedging model with the fluctuating environment against the varying amplitude
(δi) values with parameters; r0 = 0.8 , r1 = 0.5 , r2 = 0.7, different
conditions of transition rates (ϵi) as i = 1 and 10 respectively, ω = 1 and the
initial values of the bacterial densities s0(0) = s1(0) = s2(0) = 0.2, which
show s0 can never be invaded.

As mentioned earlier in this section, the maximums are showing bigger
changes than it show in section 3.6.1.1, and this happened because the compe-
tition is only between the non-switching (s0) strain, and not with the switching
(s1, s2) strains, which makes the competition less intense than when the other
strain were involved. This also means the bacteria could as well keep growth of
the strains from dropping off, and were able to also really boost it much better
than it does in section 3.6.1.1, but unfortunately couldn’t boost it to a much
more reasonable growth, which simply indicates the presence of competition
within the non-switching strain alone has helped the s0 strain in improving its
growth above what was noticed in section 3.6.1.1 but with not much difference.

The results obtained in this section 3.6.1.2 showed the effect of the transi-
tion rate (ϵi) value in the growth density for the existing strain is insignificant
compared to their respective growth (βi) rate values. We also noticed the
maximum and the minimum densities in Figure 3.9, with different values of
the transition rate (ϵi) produced the same results, unlike what we obtained in
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section 3.6.1.1. This also happened because the presence of the competition is
between the existing strain, and not with the other strains.

3.6.1.3 When the Value of β0 is Equal to the Average Value of β1

and β2, [β0 = 1
2
(β1 + β2)]

Since we investigated what happened in sections 3.6.1.1 and 3.6.1.2 with dif-
ferent conditions, when [β0 < 1

2
(β1 + β2)] and when [β0 > 1

2
(β1 + β2)]

respectively, and found out the results obtained were almost the same with
those obtained in the non-fluctuating and the fluctuating situations, we then
looked at what happened when [β0 = 1

2
(β1 + β2)], to find out if the results also

match those obtained in the non-fluctuating and the fluctuating situations, or
if at all there are some interesting results different from the ones obtained in
the previous sections.

The same pattern/technique that were used previously in the investiga-
tions, by looking at the time courses of the said condition with some varying
values of the amplitude (δi) first, and later on we summarized them with the
idea of plotting the densities of their strains against the varying values of
the amplitude (δi), to observe if there exists any differences with the results
obtained or if there are not any differences were adhered to.

Based on what we observed in Figure 3.10, there is actually no any dif-
ferences in the behavior of the existing strains with those obtained in Figure
3.8, because what we plotted in figure 3.10 only looked at one condition of the
transition rates (ϵ1 < ϵ2), but the results obtained in Figure 3.11 show the
plots of the whole three conditions for the transition rates (ϵi) explicitly.
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(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2 (c) ϵ1 < ϵ2

(d) ϵ1 < ϵ2 (e) ϵ1 < ϵ2 (f) ϵ1 < ϵ2

Figure 3.10: Time courses of strains for the 3D bet-hedging model with the
fluctuating environment against the varying amplitude (δi) values with param-
eters; r0 = 0.6 , r1 = 0.5 , r2 = 0.7, different values of the transition rates
ϵi, as i = 1 and 10 respectively, ω = 1 and the initial values of the bacterial
densities s0(0) = s1(0) = s2(0) = 0.2.

Plots (g), (h) and (i) obtained in Figure 3.2 in this chapter 3, which are
the plots for the non-fluctuating situation, that interprets equation (3.18) with
the same condition in this section 3.6.1.3 show the non-switching (s0) strain
only exists when ϵ1 < ϵ2, whereas in the same plots obtained in Figure 3.4,
which are the plots for the fluctuating resources with the same condition again
in this section show, the non-switching (s0) strain also exists when ϵ1 < ϵ2,
and when ϵ1 = ϵ2. Likewise in this situation with the same conditions, the
non-switching (s0) strain only exists when the transition rates are the same
with those used in the fluctuating environment in Figure 3.4, that is when
ϵ1 < ϵ2 and ϵ1 = ϵ2, whereas the switching (s1, s2) strains only exists when
ϵ1 > ϵ2, which can be seen in Figure 3.11 below.

The interesting results we obtained in Figure 3.11 were on plots (b) and (e),
where both the maximum and the minimum densities were showing decreases
in the densities of their strains, which is completely different from what we
usually obtained, though the minimum were showing the bigger changes than
the maximum, which is the tradition we normally obtained in the previous

64



results.

(a) ϵ1 < ϵ2 (b) ϵ1 = ϵ2 (c) ϵ1 > ϵ2

(d) ϵ1 < ϵ2 (e) ϵ1 = ϵ2 (f) ϵ1 > ϵ2

Figure 3.11: The maximum and minimum densities of strains for the 3D bet-
hedging model in the fluctuating environment against the varying amplitude
(δi) values with parameters; r0 = 0.6 , r1 = 0.5 , r2 = 0.7, different
conditions of transition rates (ϵi) as i = 1 and 10 respectively, ω = 1 and the
initial values of the bacterial densities s0(0) = s1(0) = s2(0) = 0.2.

This simply means the cycling only changed the behavior of the strains in
the fluctuating environment for ϵ1 = ϵ2, but it doesn’t change it for the other
conditions of the transition rates (ϵi) values. It also showed the bacteria only
kept the growth of the strains from dropping off for the mentioned conditions
of the transition rate (ϵi) values. But for the other two different conditions
of the transition rate (ϵi) values, it boosted densities up insignificantly, and
only needs a relatively high degree of fluctuation to change the behavior of the
result substantially.
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3.6.1.4 When the Values of β0, β1 and β2 are Equal but not a Con-
stant Value in the Strains Growth Rate, [β0 = β1 = β2 ̸= 1]

Recall that in sections 3.6.1.1, 3.6.1.2, and 3.6.1.3 above, we investigated the
behaviors of the strains against the varying values of amplitude (δi) parameter,
when the value of β0 is respectively greater than, less than, and even equal to
the average values of β1 and β2. In this section 3.6.1.4, we want to investigate
the behaviors of the strains when they all have the same (equal) values, but not
equal to the constant value in the strains growth rates (β0 = β1 = β2 ̸= 1).

In both the non-fluctuating and the fluctuating situations, we spotted the
existences of all the three strains (s0, s1, s2) at the steady state, which show
at this point there is a lost of stability, and it is a stability swapping point
between the non-zero equilibrium points (s∗0 , 0 , 0) and (0 , s∗1 , s∗2), as they
appeared in the plots of Figure 3.3 and 3.5 respectively.

(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2 (c) ϵ1 < ϵ2

(d) ϵ1 < ϵ2 (e) ϵ1 < ϵ2 (f) ϵ1 < ϵ2

Figure 3.12: Time courses of strains for the 3D bet-hedging model in the fluctu-
ating environment against the varying amplitude (δi) values with parameters;
r0 = r1 = r2 = 0.5, different values of the transition rates ϵi, as i = 1
and 10 respectively, ω = 1 and the initial values of the bacterial densities
s0(0) = s1(0) = s2(0) = 0.2, which show the co-existence of all the strains.

The plots in Figure 3.12 show nothing is different with the results obtained
in the previous sections with the same situations. The only differences noticed
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between the plots obtained in Figures 3.3 and 3.5, and the results obtained in
Figure 3.12, are the same differences that were seen in the previous conditions
for varying values of the amplitude (δi), where the densities of the existing
strains were subject to the different values of the amplitude (δi).

(a) ϵ1 < ϵ2 (b) ϵ1 = ϵ2 (c) ϵ1 > ϵ2

(d) ϵ1 < ϵ2 (e) ϵ1 = ϵ2 (f) ϵ1 > ϵ2

Figure 3.13: The maximum and minimum densities of strains for the 3D bet-
hedging model in the fluctuating environment against the varying amplitude
(δi) values with parameters; r0 = r1 = r2 = 0.5, different conditions of
the transition rates (ϵi), as i = 1 and 10 respectively, ω = 1 and the initial
values of the bacterial densities s0(0) = s1(0) = s2(0) = 0.2, which show
the co-existence of all the strains.

The plots in Figure 3.13 show the maximum and the minimum densities
of strains, when their values of growth rates (βi) are equal, and the results
obtained show nothing much different compared to what were obtained in the
previous sections. If we observe the behavior of the plots, we could notice
the bacteria could only keep the growth densities of the strains from dropping
off, and were unable to boost it up significantly above a certain threshold,
as were seen in the previous plots. This means the cycling does not change
the behavior of the strains in this situation, as it happened in the previous
situation.
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3.6.2 Time Courses and Densities of Strains for Varying
Values of frequency (ω)

Having extensively investigated the behaviors of the strains densities with vary-
ing amplitude (δi) values, we then looked at the behaviors of the strains den-
sities with varying frequency (ω) values as well, to clarify which among the
two parameters can bring any changes in the behaviors of the existing strains
at the steady state, when compared with the results obtained from the non-
fluctuating and the fluctuating resources.

The same procedures which were used in determining the time courses, and
the densities of the strains in section 3.6.1, were also adopted and used in this
section 3.6.2.

3.6.2.1 When the Value of β0 is Less than the Average Value of β1

and β2, [β0 < 1
2
(β1 + β2)]

As mentioned earlier in the section 3.6.1.1, we don’t want to present the whole
plots for the time courses of the strains for ambiguity, but rather choose to
select few of them and present them for clarity, which were later summarized
when plotting the densities of the strains against the varying values of the
respective parameter in concern.

In Figure 3.14, some plots of the time courses with different values of the
frequency (ω) were presented, and the whole plots were showing the non-
switching (s0) strain can never invade in this circumstance, which were the
same pattern of results obtained for both the non-fluctuating and the fluctuat-
ing resources, and also for the densities of the strains with varying amplitude
(δi) values.

We also noticed the plots show no differences in the amplitudes (δi) of
the existing strains at the steady state, when the frequency (ω) values were
changed, but the number of oscillations in any given time frame were doubled.
This means, when the value of the frequency (ω) is increased, the number of
oscillations within a particular given time frame were increased too, unlike
when the value of the amplitude (δi) is increased in section 3.6.1, where the
densities of the existing strains also increases, but the number of oscillations
remain the same as well.
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(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2 (c) ϵ1 < ϵ2

(d) ϵ1 < ϵ2 (e) ϵ1 < ϵ2 (f) ϵ1 < ϵ2

Figure 3.14: Time courses of strains for the 3D bet-hedging model in the fluctu-
ating environment against the varying frequencyic (ω) values with parameters;
r0 = 0.3 , r1 = 0.5 , r2 = 0.7, different values of the transition rates ϵi,
as i = 1 and 10 respectively, δ = 0.25 and the initial values of the bacterial
densities s0(0) = s1(0) = s2(0) = 0.2, which show s0 can never invade.

The plots obtained in Figure 3.14, and those not presented in the figure were
all summarized in Figure 3.15, which plotted the maximum and the minimum
densities of the strains against the varying frequency (ω) value, and the results
obtained show different patterns with the results obtained in the previous
sections in this chapter. The main difference noticed is a slight peak at the
lowest values of the frequency (ω) which is exactly the same result obtained in
chapter 2 for varying values of the frequency (ω), which seems there is a little
interaction between the forcing and the dynamics, which is interesting in itself.
This tell us the frequency (ω) makes more difference when r0 is relatively low.
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(a) ϵ1 < ϵ2 (b) ϵ1 = ϵ2 (c) ϵ1 > ϵ2

(d) ϵ1 < ϵ2 (e) ϵ1 = ϵ2 (f) ϵ1 > ϵ2

Figure 3.15: The maximum and minimum densities of strains for 3D bet-
hedging model in the fluctuating environment against the varying frequencyic
(ω) values with parameters; r0 = 0.3 , r1 = 0.5 , r2 = 0.7, different
conditions of the transition rates (ϵi), as i = 1 and 10 respectively, δ = 0.25
and the initial values of the bacterial densities s0(0) = s1(0) = s2(0) = 0.2,
which show s0 can never invade.

3.6.2.2 When the Value of β0 is Greater than the Average Value of
β1 and β2, [β0 > 1

2
(β1 + β2)]

In this section 3.6.2.2, we looked at the reverse condition for the strains growth
densities with the varying values of the frequency (ω) just discussed in section
3.6.2.1 above, and the results obtained in Figure 3.16 were the same with the
results obtained in Figure 3.8, which show the non-switching (s0) strain can
never be invaded in this circumstance, and the results obtained are the same
with what were obtained in the non-fluctuating and the fluctuating resources
in Figure 3.2 and 3.4 respectively.

We also noticed the same pattern of results were obtained in Figure 3.14
and 3.16, which show once a frequencyic (ω) value is increased, the number
of oscillations at the steady state for the existing strain at a particular time
also increases, but the amplitude (δi) of oscillations at the steady state for the
existing strain does not change at all.
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(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2 (c) ϵ1 < ϵ2

(d) ϵ1 < ϵ2 (e) ϵ1 < ϵ2 (f) ϵ1 < ϵ2

Figure 3.16: Time courses of strains for the 3D bet-hedging model in the fluctu-
ating environment against the varying frequencyic (ω) values with parameters;
r0 = 0.8 , r1 = 0.5 , r2 = 0.7, different values of the transition rates ϵi,
as i = 1 and 10 respectively, δ = 0.25 and the initial values of the bacterial
densities s0(0) = s1(0) = s2(0) = 0.2, which show s0 can never be invaded.

The whole plots in Figures 3.9 and 3.17 show the same pattern of results as
well, meaning the differences in the transition rate (ϵi) values does not change
the behavior of the existing strain at the steady state, since the existing strain
on this condition does not switch (change) at all. This simply means, by
increasing the values of the frequency (ω), the bacteria only boosts it growth at
the early time (relatively lowest value), but subsequently maintains its growth
density uniformly.
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(a) ϵ1 < ϵ2 (b) ϵ1 = ϵ2 (c) ϵ1 > ϵ2

(d) ϵ1 < ϵ2 (e) ϵ1 = ϵ2 (f) ϵ1 > ϵ2

Figure 3.17: The maximum and minimum densities of strains for 3D bet-
hedging model in the fluctuating environment against the varying frequencyic
(ω) values with parameters; r0 = 0.8 , r1 = 0.5 , r2 = 0.7, different
conditions of the transition rates (ϵi), as i = 1 and 10 respectively, δ = 0.25
and the initial values of the bacterial densities s0(0) = s1(0) = s2(0) = 0.2,
which show s0 can never be invaded.

3.6.2.3 When the Value of β0 is Equal to the Average Value of β1

and β2, [β0 = 1
2
(β1 + β2)]

In this section 3.6.2.3, we considered the growth rate of the non-switching (s0)

strain to be equal to the average value of the switching (s1, s2) strains. Thus,
giving us an opportunity to observe the behavior of the existing strains at the
steady state, whether they followed the same pattern of behavior, like what
were observed in the previous sections, or something different can be obtained.

By carefully observing the whole plots in Figure 3.18, the same pattern of
results were obtained with those obtained in Figure 3.16, and this happened
because the plots have the same transition rate (ϵi) values, with slight dif-
ferences in the existing strains densities at the steady state, which is caused
by the differences in the non-switching (s0) strain growth rate values in the
two cases. The densities for the existing strains were uniformly maintained at
the steady state, except at the early time (relatively lower values) where there
is a rapid growth to the peak, which is exactly the same pattern of growth
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obtained in Figure 3.16, with some differences in the results when the values
of the transition rates (ϵi) differ with those used in this section.

(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2 (c) ϵ1 < ϵ2

(d) ϵ1 < ϵ2 (e) ϵ1 < ϵ2 (f) ϵ1 < ϵ2

Figure 3.18: Time courses of strains for the 3D bet-hedging model in the fluctu-
ating environment against the varying frequencyic (ω) values with parameters;
r0 = 0.6 , r1 = 0.5 , r2 = 0.7, different values of the transition rates ϵi,
as i = 1 and 10 respectively, δ = 0.25 and the initial values of the bacterial
densities s0(0) = s1(0) = s2(0) = 0.2.

The whole plots obtained in Figures 3.4, 3.11 and 3.19 show the same
pattern of results, with the non-switching (s0) strain existing when ϵ1 < ϵ2,
and ϵ1 = ϵ2 because of the fluctuations in those environments, but the plots
for the non-fluctuating situation in Figure 3.2 show, the non-switching (s0)

strain only exists when ϵ1 < ϵ2.
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(a) ϵ1 < ϵ2 (b) ϵ1 = ϵ2 (c) ϵ1 > ϵ2

(d) ϵ1 < ϵ2 (e) ϵ1 = ϵ2 (f) ϵ1 > ϵ2

Figure 3.19: The maximum and minimum densities of strains for 3D bet-
hedging model in the fluctuating environment against the varying frequencyic
(ω) values with parameters; r0 = 0.6 , r1 = 0.5 , r2 = 0.7, different
conditions of the transition rates (ϵi), as i = 1 and 10 respectively, δ = 0.25
and the initial values of the bacterial densities s0(0) = s1(0) = s2(0) = 0.2.

There are some interesting results observed with plots (b) and (e) obtained
in Figure 3.20, with a shorter varying frequency (ω) values (0 < ω =

0.1), where the densities for the existing s0 strain do fluctuate at the lowest
frequency (ω) value, which was not observed in the other plots. This creates
an avenue for the bacteria to boost its densities from dropping, but the forcing
and the dynamics makes it drop as well.
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(a) ϵ1 < ϵ2 (b) ϵ1 = ϵ2 (c) ϵ1 > ϵ2

(d) ϵ1 < ϵ2 (e) ϵ1 = ϵ2 (f) ϵ1 > ϵ2

Figure 3.20: The maximum and minimum densities of strains for 3D bet-
hedging model in the fluctuating environment against the varying frequencyic
(ω) values with parameters; r0 = 0.6 , r1 = 0.5 , r2 = 0.7, different
conditions of the transition rates (ϵi), as i = 1 and 10 respectively, δ = 0.25
and the initial values of the bacterial densities s0(0) = s1(0) = s2(0) = 0.2.

3.6.2.4 When the Values of β0, β1 and β2 are Equal but not a Con-
stant Value, [β0 = β1 = β2 ̸= 1]

The last aspect we considered in this chapter 3 is when the growth rate (βi)

values for the non-switching (s0), and the switching (s1, s2) strains are equal,
but not equal to a constant value in the strains growth rates (β0 = β1 =

β2 ̸= 1), with varying frequencyic (ω) values, to also observe if there is
anything interested, which might be different from what were observed in the
previous sections with varying frequency (ω) values, or if the same pattern of
result will be obtained as well.

By carefully observing the whole plots respectively obtained in Figures 3.3,
3.5 and 3.12, we noticed there is no any difference with the results obtained
in Figure 3.21. This clearly show stability is lost at this point, and it is also
a stability swapping point between the equilibrium points (s∗0 , 0 , 0) and
(0 , s∗1 , s∗2).
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(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2 (c) ϵ1 < ϵ2

(d) ϵ1 < ϵ2 (e) ϵ1 < ϵ2 (f) ϵ1 < ϵ2

Figure 3.21: Time courses of strains for 3D bet-hedging model in the fluc-
tuating environment against the varying frequencyic (ω) values with parame-
ters; r0 = r1 = r2 = 0.5, different values of the transition rates ϵi, as i = 1
and 10 respectively, δ = 0.25 and the initial values of the bacterial densities
s0(0) = s1(0) = s2(0) = 0.2, which show the co-existence of all the strains.

Amazingly, the results obtained in Figure 3.13, were having the same pat-
tern of behavior with the results obtained in Figure 3.22. The major differences
between the two figures centered on the earlier figure, showing bigger changes
in the minimum densities, whereas the latter show no much differences between
the maximum and the minimum densities.
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(a) ϵ1 < ϵ2 (b) ϵ1 = ϵ2 (c) ϵ1 > ϵ2

(d) ϵ1 < ϵ2 (e) ϵ1 = ϵ2 (f) ϵ1 > ϵ2

Figure 3.22: The maximum and minimum densities of strains for 3D bet-
hedging model in the fluctuating environment against the varying frequencyic
(ω) values with parameters; r0 = r1 = r2 = 0.5, different conditions of tran-
sition rates (ϵi), as i = 1 and 10 respectively, δ = 0.25 and the initial values
of the bacterial densities s0(0) = s1(0) = s2(0) = 0.2, which show the
co-existence of all the strains.

3.7 Conclusion

In this chapter we have included the constant (s0) strain to the existing switch-
ing (s1, s2) strains in the model studied in chapter 2, and the results obtained
in this chapter after solving the system of the model equations, produced two
equilibrium points in the non-fluctuating environment, a zero (s∗0, s∗1, s∗2) =

(0, 0, 0), and the non-zero (s∗0, s
∗
1, s

∗
2) =

(
s0,

(β−s0)ϵ2
ϵT

, (β−s0)ϵ1
ϵT

)
equilibrium

point. The results indicate the strains can’t settle at the zero equilibrium point,
but they (strains) do always becomes stable at the non-zero equilibrium points
in any situation. This means, the existence strain(s) at the steady state might
be either a non-switching (s0) strain alone, or might be the switching (s1, s2)

strains alone, or might even be the presence of both the non-switching (s0) and
the switching (s1, s2) strains, depending on their growth rates (βi), and the
transition rates (ϵi) values as well. The growth rates (βi) and the transition
rates (ϵi) values, always determines which among the switching (s1, s2) strains
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will have a high density at the steady state than the other in any situation.
Meaning, which among the switching strain performs better or worse in any
environment as mentioned earlier.

There is co-existence of both the constant (s0), and the bet-hedgers (s1, s2)
strains when their growth rate values are equal (i. e. β0 = β1 = β2 = β)

in any environment, which is a special case and for the vast majority of time,
there can be no co-existence. This show stability is lost at that point, and it is
a stability swapping point between the non-zero’s (s∗0 , 0 , 0) and (0 , s∗1 , s

∗
2)

equilibrium points, but more generally only one type of strain can win at a
time, which sometimes depends on its growth (βi) and the transition (ϵi) rates
values as well. This co-existence of the constant (s0) and bet-hedgers (s1, s2)

strains at the same time is very unlikely.
The interesting results noticed in both the non-fluctuating and the fluctuat-

ing situations are the non-switching (s0) strain can never invade when the value
of β0 is less than the average value of β1 and β2, that is [β0 < 1

2
(β1 + β2)], and

it can never be invaded when the value of β0 is greater than the average value
of β1 and β2, that is [β0 > 1

2
(β1 + β2)] in any environment. But, when the

value of β0 is equal to the average value of β1 and β2, that is [β0 = 1
2
(β1 + β2)],

the non-switching (s0) strain only exists when ϵ1 < ϵ2, where as the switching
(s1, s2) strains do exists when ϵ1 = ϵ2, and ϵ1 > ϵ2 in the non-fluctuating
environment. In the fluctuating environment, the non-switching (s0) strain
does exist when ϵ1 < ϵ2 and ϵ1 = ϵ2, while the switching (s1, s2) strains
only exist when ϵ1 > ϵ2, and in either case, the growth rates (βi) and the
transition rates (ϵi) values always determines the strain with the high density
at the steady state.

The densities of the existing strains changed as we varied the amplitude
(δi) values of the fluctuating resources. This means increasing the amplitude
(δi) simply increases the fluctuations, with bigger effects at minimum densities
than its maximum densities. This show by varying the values for the amplitude
(δi) of fluctuations, the bacteria could only keep growth from dropping off and
was unable to really boost it up past a threshold, which might be due to the
competition between the strains. But when the values of the frequency (ω) were
varied there was no clear evidence of resonance, and there was always a rapid
increase (change) at relatively lowest values (early time), and the frequency
seems to show very little difference in the densities of the strains. These mean
there is little interaction between the forcing and the dynamics, and it also
show the frequency (ω) makes more difference when r0 is relatively low.
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The whole results obtained in the fluctuating resources describes the ability
of the amplitude (δi) to affect the behavior of the strains at relatively interme-
diate values, unlike the frequency (ω) which affects it at relatively lower values,
which is almost the same results with the results obtained in chapter 2, when
the dynamics of the switching (s1, s2) strains were investigated separately,
with the absence of the non-switching (s0) strain dynamics, with some slight
differences in their results usually because of the presence of the non-switching
(s0) strain.

In chapter 4 we will introduce the death rates (ki) of the respective strains,
and the antibiotic drug (D) treatment to the model which included the dy-
namics of the constant (s0) and the switching (s1, s2) strains discussed in this
chapter, to study the effects of both the death rates (ki), and the antibiotic
drug (D) treatment on the strains, before we consider the dynamics of the
antibiotic drug administration as well in chapter 5.
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CHAPTER 4

Bacterial Dynamics with Antimicrobial Treatment

4.1 Introduction

In chapter 3, we basically investigated the behaviors of the bet-hedging dy-
namics of the switching (s1, s2) bacterial strains in the presence of the non-
switching (s0) constant strain (one strain of bacteria that can ’switch’ to spe-
cialise in each environment, while the other grows at the same rate in both
environments), which was the model structure we studied to understand the
benefits of bet-hedging (Müller et al., 2013). The results obtained produced
zero S∗ = (s∗0, s∗1, s∗2) = (0, 0, 0), and non-zero S∗ = (s∗0, s∗1, s∗2) =(
s0,

(β−s0)ϵ2
ϵT

, (β−s0)ϵ1
ϵT

)
equilibrium points for the constant growth rates of the

bacteria in the non-fluctuating environment. For different growth rate values
of the bacteria in the non-fluctuating environment, the results also produces a
zero S∗ = (s∗0, s∗1, s∗2) = (0, 0, 0), and three non-zero equilibrium points
S∗ = (s∗0, s∗1, s∗2) = (β0, 0, 0), S∗ = (s∗0, s∗1, s∗2) = (0, AA, BB), and
S∗ = (s∗0, s

∗
1, s

∗
2) = (0, CC, DD), which like in chapter 2 show, the strains

can not be stable at the zero equilibrium point, but they become stable at the
non-zero equilibrium points.

We also noticed the results obtained in the fluctuating environment in
chapter 3 were the same with those obtained in the fluctuating environment in
chapter 2, where the strains are more sensitive to the frequency (ω) at relatively
lower values than the amplitude (δi), and also the strains are more sensitive
to the amplitude (δi) at relatively intermediate values than the frequency (ω).

Overall, we noticed the existence of the non-switching (s0) strain when the
switching (s1, s2) strains are extinct, and also the existence of the switching
(s1, s2) strains when the non-switching (s0) strain is extinct, with one of the
strains having a higher density at the steady state than the other, due to
its growth rate (βi), and transition rate (ϵi) values. We also noticed the co-
existence of all the strains, in the special case when the non-switching (s0),
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and the switching (s1, s2) strains have the same growth rates values (β0 =

β1 = β2 = β) in any environments, which show stability is lost at that
time, and it is a stability swapping point between (s∗0, 0, 0), and (0, s∗1, s∗2)

non-zero equilibrium points.
In this chapter 4 we included the death rates (ki) of the respective strains,

and the antibiotic drug (D) treatment which is held constant (fixed value) to
the model that was investigated in chapter 3, which is one of the main aim of
extending the work of (Müller et al., 2013). By including the death rates (ki)

of the various strains and the antibiotic drug (D) treatment in their work, we
aimed to either curtail the growth of the bacteria, or eliminate them at all.
This is definitely a genuinely new work in terms of applying treatment to this
model, which makes the work a novel on its own (Ibargüen-Mondragón et al.,
2014; Merdan et al., 2017; Ibargüen-Mondragón et al., 2019).

4.2 The Model of the Bacterial Dynamics with
the Antibiotic Drug (D) Treatment

After studying the models of the bet-hedging dynamics for the switching
(s1, s2) strains, with the absence of the non-switching (s0) strain in chapter 2,
and with it presence in chapter 3, the death rates (ki) of the various strains and
the antibiotic drug (D) treatment (which served as the antibiotic treatment to
the strains) were introduced to the existing model (Ibargüen-Mondragón et al.,
2014; Merdan et al., 2017), in order to observe the dynamical behavior of the
strains with their death rates (ki) and the antibiotic drug (D) treatment.

The model equations with the existing strains death rates (ki) and the
antibiotic drug (D) treatment were defined as:

s′0 = s0 [β0 (r0 , α0) − S] − k0Ds0

s′1 = s1 [β1 (r1 , α1) − ϵ1 − S] + ϵ2s2 − k1Ds1

s′2 = s2 [β2 (r2 , α2) − ϵ2 − S] + ϵ1s1 − k2Ds2

(4.1)

where; S = s0 + s1 + s2, ki as (i = 0, 1 and 2) are the respective
death rates for the strains, and D is the antibiotic drug treatment which is
held constant (fixed value), with all other parameters as defined in equation
(3.1), and the rate of the bacterial growth (βi) as defined in equation (2.2) as
well.

As it is the norm throughout this research, stability analysis is performed on
the model by considering different conditions to check whether the introduction
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of the respective strains death rates (ki) and the antibiotic drug (D) treatment
in the model can affect the behavior of the system or not, by finding the
equilibrium point of the system, stability of the model and the eigenvalues of
the system from the characteristic equation (2.4).

4.3 Constant Growth Rates (βi) of the Bacteria

Going by the tradition of this research in chapters 2 and 3, we begin by con-
sidering the values of ri in equation (4.1) to be zero (i. e. r0 = r1 =

r2 = 0), which implies the growth rates (βi) of the whole strains are equal
too (i. e. β0 = β1 = β2 = β).

To solve the equation (4.1) with the condition mentioned here, the system
produced a zero and three non-zero equilibrium points as;

S∗ = (s∗0 , s∗1 , s∗2) = (0 , 0 , 0),

S∗ = (s∗0 , s∗1 , s∗2) = (β −Dk0 , 0 , 0),

S∗ = (s∗0 , s∗1 , s∗2) = (0 , EE , FF ),

S∗ = (s∗0 , s∗1 , s∗2) = (0 , GG , HH)

(4.2)

where;

EE =
−
[
2ϵ1ϵ2 − βϵT − (β − ϵT −Dk1)

√
[D(k1 − k2)]2 + 2Dδϵ(k1 − k2) + ϵ2T

]
2D(k1 − k2)

− [ϵ21 + ϵ22 +D {(Dk1 − β)(k1 − k2)− 2ϵ1k1 + k2δϵ}]
2D(k1 − k2)

FF =

[
2ϵ1ϵ2 − βϵT − (β − ϵT −Dk2)

√
[D(k1 − k2)]2 + 2Dδϵ(k1 − k2) + ϵ2T

]
2D(k1 − k2)

+
[ϵ21 + ϵ22 +D {k2[D(k2 − k1) + 2ϵ2] + β(k1 − k2) + k1δϵ}]

2D(k1 − k2)

GG =
βϵT − 2ϵ1ϵ2 − (β − ϵT −Dk1)

√
[D(k1 − k2)]2 + 2Dδϵ(k1 − k2) + ϵ2T

2D(k1 − k2)

− [ϵ21 + ϵ22 +D {(Dk1 − β)(k1 − k2) + 2ϵ1k1 − k2δϵ}]
2D(k1 − k2)

HH =
−
[
βϵT − 2ϵ1ϵ2 − (β − ϵT −Dk2)

√
[D(k1 − k2)]2 + 2Dδϵ(k1 − k2) + ϵ2T

]
2D(k1 − k2)

+
[ϵ21 + ϵ22 +D {k2[D(k2 − k1) + 2ϵ2] + β(k1 − k2) + k1δϵ}]

2D(k1 − k2)

ϵT = ϵ1 + ϵ2, and δϵ = ϵ1 − ϵ2
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To find the eigenvalues of the system, we have to find the Jacobian matrix
of equation (4.1) first, which was obtained as;

J =

β − 2s∗0 − s∗1 − s∗2 −Dk0 −s∗0 −s∗0
−s∗1 β − ϵ1 − s∗0 − 2s∗1 − s∗2 −Dk1 −s∗1 + ϵ2
−s∗2 −s∗2 + ϵ1 β − ϵ2 − s∗0 − s∗1 − 2s∗2 −Dk2


(4.3)

We then substituted the zero equilibrium point S∗ = (s∗0, s∗1, s∗2) =

(0, 0, 0) from equation (4.2) in the Jacobian matrix obtained in equation
(4.3), which resulted to;

J =

β − Dk0 0 0
0 β − ϵ1 − Dk1 ϵ2
0 ϵ1 β − ϵ2 − Dk2

 (4.4)

An identity matrix, together with the Jacobian matrix obtained in equation
(4.4) were then substituted in the characteristic equation (2.2), which give us;∣∣∣∣∣∣

β − Dk0 − λ 0 0
0 β − ϵ1 − Dk1 − λ ϵ2
0 ϵ1 β − ϵ2 − Dk2 − λ

∣∣∣∣∣∣ = 0 (4.5)

Finally, evaluating the above expression in equation (4.5) by hand, the
three eigenvalues were obtained as;

λ1 = β −Dk0

λ2 =
2β − [ϵT +D(k1 + k2)]−

√
[D(k1 − k2)]

2 + 2Dδϵ(k1 − k2) + ϵ2T

2

λ3 =
2β − [ϵT +D(k1 + k2)] +

√
[D(k1 − k2)]

2 + 2Dδϵ(k1 − k2) + ϵ2T

2

(4.6)

where; ϵT = ϵ1 + ϵ2, and δϵ = ϵ1 − ϵ2

On analysing equation (4.6) we discovered, whenever β > Dk0, or
β > [ϵT + D(k1 + k2)]

2
, the point will be locally and asymptotically unstable,

and the bacteria will not become stable at this equilibrium point of (0, 0, 0).
But when the value of β is low, that is the opposite of the above mentioned
conditions, we realized the zero (0, 0, 0) equilibrium point can be stable at
this stage. Meaning, the extinction of the whole strains can happen, because
of the killings by the antibiotic drug (D) treatment.

We then continued by considering the first non-zero equilibrium point S∗ =

(s∗0, s
∗
1, s

∗
2) = (β −Dk0, 0, 0) obtained in equation (4.2), and substituted it
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in the Jacobian matrix obtained in equation (4.3), which gave;

J =

−β +Dk0 −β +Dk0 −β +Dk0
0 D(k0 − k1)− ϵ1 ϵ2
0 ϵ1 D(k0 − k2)− ϵ2

 (4.7)

The Jacobian matrix obtained in equation (4.7), and its corresponding
identity matrix were then substituted in the characteristic equation (2.4), and
the result gave;∣∣∣∣∣∣

Dk0 − β − λ Dk0 − β Dk0 − β
0 D(k0 − k1)− ϵ1 − λ ϵ2
0 ϵ1 D(k0 − k2)− ϵ2 − λ

∣∣∣∣∣∣ = 0 (4.8)

Evaluating the above expression in equation (4.8) by hand, and after per-
forming some careful calculations, the three eigenvalues were obtained as;

λ1 = Dk0 − β

λ2 =
2Dk0 − [ϵT + D(k1 + k2)] −

√
[D(k1 − k2)]2 + 2Dδϵ(k1 − k2) + ϵ2T

2

λ3 =
2Dk0 − [ϵT + D(k1 + k2)] +

√
[D(k1 − k2)]2 + 2Dδϵ(k1 − k2) + ϵ2T

2
(4.9)

where; ϵT = ϵ1 + ϵ2, and δϵ = ϵ1 − ϵ2

Analysis of the eigenvalues obtained in equation (4.9) show whenever β >

Dk0, and
[
ϵT + D(k1 + k2)

2

]
> Dk0, and the value obtained from the square root

is very small
[
i. e. < ϵT + D(k1 + k2)

2

]
, the point will be locally and asymp-

totically stable, and the bacteria will settle at this point.

In plots (a) to (c) of Figure 4.1 below, we considered the death rates (ki)

of all the strains to be the same (equal), which show the densities of all the
existing strains simultaneously decreased (even though the decrease is very
slight to recognise) based on their growth, as the amount of the antibiotic
drug (D) treatment is increased. This means the effects of the strains death
rates (ki) and the antibiotic drug (D) treatment towards decreasing the exist-
ing strain(s) densities or eliminating them usually depends on the growth of
the strains. If there is a presence of high amount of an antibiotic drug (D)

treatment with the purpose of eliminating the whole strains, we may experi-
ence some unexpected behaviors by the strains. Also, the equilibrium densities
of the switching (s1, s2) strains were driven by the values of their growth rate
(βi) and the transition rates (ϵi) in the model.
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The results obtained in plots (d) to (f) in the same Figure 4.1 vividly show
depending on the density of a particular strain, the strain will definitely extinct
at some point in time when its death rates (ki) value is increased. But for the
switching (s1, s2) strains in particular, their death rates (ki) values coupled
with their transitions rates (ϵi) values from one type to the other, determines
the amount of time the strains will take before they extinct, as we noticed in
plot (f) extinction of the strain takes almost 10 times the unit-time it takes
to extinct in plot (e).

(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2 (c) ϵ1 < ϵ2

(d) ϵ1 < ϵ2 (e) ϵ1 < ϵ2 (f) ϵ1 < ϵ2

Figure 4.1: The Numerical graphs for the intrinsic dynamics of the 3D bet-
hedging model with the antibiotic drug (D) treatment and the death rates (ki)
of the strains, for the constant growth rates of the bacterial strains: β0 =
β1 = β2 = β = 1, the antibiotic drug treatment D = 0.5, the respective
death rates values of the strains: k0 = k1 = k2 = 0.1, with both strains
having the same initial values: s0(0) = s1(0) = s2(0) = 1, and different
transition rate values: ϵ1 = 1, and ϵ2 = 10.

4.4 Different Growth Rates (βi) Values of the
Bacteria

After considering the situation when the values of ri in the strains growth rates
are zero (i. e. β0 = β1 = β2 = β = 1) in section 4.3, we then considered
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a situation when their growth rates are not the same (i. e. β0 ̸= β1 ̸=
β2), which we did always when we modelled the switching (s1, s2) strains in
the absence and presence of a constant (s0) strain in our chapters 2 and 3
respectively.

The model equations for the non-switching (s0) and the switching (s1, s2)

strains, with the strains death rates (ki), and the antibiotic drug (D) treatment
based on the aforementioned conditions are governed by;

s′0 = s0 [β0 (r0 , α0) − S] − k0Ds0

s′1 = s1 [β1 (r1 , α1) − ϵ1 − S] + ϵ2s2 − k1Ds1

s′2 = s2 [β2 (r2 , α2) − ϵ2 − S] + ϵ1s1 − k2Ds2

(4.10)

where; S = s0 + s1 + s2, with all parameters defined as in equation (4.1).
The same procedures which were applied in finding the solution to the

previous situations in equation (4.1) were also applied here. To solve the
above equation (4.10) with it current condition, the system produced four
equilibrium points, a zero and three non-zeros points as well;

S∗ = (s∗0 , s∗1 , s∗2) = (0 , 0 , 0),

S∗ = (s∗0 , s∗1 , s∗2) = (β0 −Dk0 , 0 , 0),

S∗ = (s∗0 , s∗1 , s∗2) = (0 , JJ , KK),

S∗ = (s∗0 , s∗1 , s∗2) = (0 , LL , MM)

(4.11)

where;

JJ =
β2
1 + ϵ21 + ϵ22 +D[k1(Dk1 + β2 + 2ϵ1)− β1(2k1 − k2)− k2(∆ϵ+Dk1)]

2[β1 − β2 −D(k1 − k2)]

+
β2(∆ϵ− β1)− 2ϵ1(β1 − ϵ2)− (β1 − ϵT −Dk1)

√
L

2[β1 − β2 −D(k1 − k2)]

KK =
− (β2

2 + ϵ21 + ϵ22)−D[k2(Dk2 + β1 + 2ϵ2) + β2(k1 − 2k2) + k1(∆ϵ−Dk2)]

2[β1 − β2 −D(k1 − k2)]

+
β1(∆ϵ+ β2) + 2ϵ2(β2 − ϵ1) + (β2 − ϵT −Dk2)

√
L

2[β1 − β2 −D(k1 − k2)]

LL =
β2
1 + ϵ21 + ϵ22 +D[k1(Dk1 + β2 + 2ϵ1)− β1(2k1 − k2)− k2(∆ϵ+Dk1)]

2[β1 − β2 −D(k1 − k2)]

+
β2(∆ϵ− β1)− 2ϵ1(β1 − ϵ2) + (β1 − ϵT −Dk1)

√
L

2[β1 − β2 −D(k1 − k2)]

MM =
− (β2

2 + ϵ21 + ϵ22)−D[k2(Dk2 + β1 + 2ϵ2) + β2(k1 − 2k2) + k1(∆ϵ−Dk2)]

2[β1 − β2 −D(k1 − k2)]

+
β1(∆ϵ+ β2) + 2ϵ2(β2 − ϵ1)− (β2 − ϵT −Dk2)

√
L

2[β1 − β2 −D(k1 − k2)]
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ϵT = ϵ1 + ϵ2, ∆ϵ = ϵ1 − ϵ2, and
L = [D(k1−k2)]

2−2D(k1−k2)[(β1−β2)−∆ϵ]+(β1−β2)
2−2∆ϵ(β1−β2)+ ϵ2T

With the current condition under study, the Jacobian matrix of equation
(4.10) was obtained as;

J =β0 − 2s∗0 − s∗1 − s∗2 −Dk0 −s∗0 −s∗0
−s∗1 β1 − ϵ1 − s∗0 − 2s∗1 − s∗2 −Dk1 −s∗1 + ϵ2
−s∗2 −s∗2 + ϵ1 β2 − ϵ2 − s∗0 − s∗1 − 2s∗2 −Dk2


(4.12)

When we substituted the zero equilibrium point S∗ = (s∗0, s∗1, s∗2) =

(0, 0, 0) obtained from equation (4.11) in equation (4.12), the Jacobian matrix
becomes;

J =

β0 −Dk0 0 0
0 β1 − ϵ1 −Dk1 ϵ2
0 ϵ1 β2 − ϵ2 −Dk2

 (4.13)

To find the eigenvalues, we substituted the Jacobian matrix obtained in
equation (4.13), together with its corresponding identity matrix in the charac-
teristic equation (2.4), which resulted to;∣∣∣∣∣∣

β0 −Dk0 − λ 0 0
0 β1 − ϵ1 −Dk1 − λ ϵ2
0 ϵ1 β2 − ϵ2 −Dk2 − λ

∣∣∣∣∣∣ = 0 (4.14)

Resolving the above expression in equation (4.14) by hand, and after per-
forming some simplifications on the results, the three eigenvalues were obtained
as;

λ1 = β0 − Dk0

λ2 =
(β1 + β2) − [ϵT + D(k1 + k2) ] −

√
B

2

λ3 =
(β1 + β2) − [ϵT + D(k1 + k2) ] +

√
B

2

(4.15)

where;

B = [D(k1 − k2)]
2−2D(β1−β2)(k1−k2)+2D∆ϵ(k1−k2)+(β1−β2)

2−2∆ϵ(β1−β2)+ϵ2T

ϵT = ϵ1 + ϵ2, and ∆ϵ = ϵ1 − ϵ2

On analysing equation (4.15) we discovered, whenever β0 > Dk0, or
(β1 + β2) > [ϵT + D(k1 + k2)], the point will be locally and asymptotically
unstable, and the bacteria will not settle at the zero (0, 0, 0) equilibrium point.
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But if β0, β1, and β2 are not high enough, that is the opposite of the above
mentioned conditions occur, there will be a full extinction of the whole strains
at this zero (0, 0, 0) equilibrium point, because of killings by the antibiotic
drug (D) treatment.

We then considered the first non-zero equilibrium point S∗ = (s∗0, s
∗
1, s

∗
2) =

(β0 −Dk0, 0, 0) obtained in equation (4.11), and substituted it in the Jaco-
bian matrix obtained in equation (4.12), the result gives;

J =

−β0 +Dk0 −β0 +Dk0 −β0 +Dk0
0 β1 − β0 − ϵ1 +D(k0 − k1) ϵ2
0 ϵ1 β2 − β0 − ϵ2 +D(k0 − k2)


(4.16)

Substituting the obtained Jacobian matrix in equation (4.16), and its cor-
responding identity matrix in the characteristic equation (2.4), the expression
became;

∣∣∣∣∣∣
− β0 + Dk0 − λ − β0 + Dk0 − β0 + Dk0

0 AB − λ ϵ2
0 ϵ1 AC − λ

∣∣∣∣∣∣ = 0 (4.17)

where; AB = β1 − β0 − ϵ1 + D(k0 − k1), and
AC = β2 − β0 − ϵ2 + D(k0 − k2)

Resolving the above expression obtained in equation (4.17) by hand, and
after undergoing series of simplifications and collecting like terms, the results
produces the three eigenvalues as;

λ1 = Dk0 − β0

λ2 =
(β1 + β2) − 2β0 − ϵT + 2Dk0 − D(k1 + k2) −

√
E

2

λ3 =
(β1 + β2) − 2β0 − ϵT + 2Dk0 − D(k1 + k2) +

√
E

2

(4.18)

where;

E = [D(k1 − k2)]
2−2D(β1−β2)(k1−k2)+2D∆ϵ(k1−k2)+(β1−β2)

2−2∆ϵ(β1−β2)+ϵ2T

ϵT = ϵ1 + ϵ2, and ∆ϵ = ϵ1 − ϵ2

Analysis of equation (4.18) reads, whenever β0 >
[
Dk0 +

(β1+β2)
2

]
, and the

value obtained from the square root is very small
(
i. e.

√
E < β0

)
, the point

will be locally and asymptotically stable at the non-switching (s0) strain. Else,
if the reverse of the condition holds, it will be stable at the switching (s1, s2)

strains, which will be in one of the remaining non-zero equilibrium points (the
last one) obtained in equation (4.11) above.
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4.4.1 When the Value of β0 is Greater than the Average
Value of β1 and β2,

[
β0 > 1

2(β1 + β2)
]

Plots (a) to (d) in Figure 4.2 have the same (equal) amount of the antibiotic
drug (D) treatment, with different values of both the strains death rates (ki),
and the transition rates (ϵi). In plot (a) we noticed a decrease in the density
of the existing (s0) strain than what was obtained in plot (a) of Figure 3.2 in
chapter 3 (the equilibrium value was 8), which arises as a result of the strain
death rates (ki) and the antibiotic drug (D) treatment. When the existing
(s0) strain death rate (k0) is increased in plot (b), we notice a decrease in the
strain density than we obtained in plot (a) of this Figure 4.2. Even though the
death rate (k0) value has effectively doubled, the decrease in the existing strain
density is smaller than expected, which indicates both the death rate (ki) and
the antibiotic drug (D) treatment plays the same role towards decreasing the
densities or eradicating the existing strain(s) entirely.

(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2 (c) ϵ1 < ϵ2

(d) ϵ1 < ϵ2 (e) ϵ1 < ϵ2 (f) ϵ1 < ϵ2

Figure 4.2: The Numerical graphs for the dynamics of the 3D bet-hedging
model, with the strains death rates (ki) and the antibiotic drug (D) treatment,
for β0 > 1

2
(β1 + β2), with both strains having the same initial values

(s0(0) = s1(0) = s2(0) = 1), different values of the strains growth rates
(β0 = 8, β1 = 5, β2 = 7), with the antibiotic drug treatment D = 0.5,
and different transition rates values ϵ1 = 1, and ϵ2 = 10.
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When the death rate (ki) values of the switching (s1, s2) strains were
respectively increased in plots (c) and (d), we noticed there were not any
decreases in the existing strain densities, because the switching (s1, s2) strains
were both extinct anyway. We also noticed a respective decrease in the existing
(s0) strain densities in plots (e) and (f) when the death rate (k0) value of the
existing strain and the amount of the antibiotic drug (D) treatment were
respectively increased.

The results obtained in Figure 4.2 above were summarized in Figure 4.3
below, which clearly show if k0 is increased, this leads to a switch from the s0

equilibrium to the (s1, s2) equilibrium as shown in plots (a). But if k1 or k2

were increased in plots (b) and (c), there were not any switches between the
equilibria, and this is because the (s1, s2) strains never grow to invade.

(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2 (c) ϵ1 < ϵ2

Figure 4.3: The Numerical graphs for the maximum densities of strains for the
3D bet-hedging model with the strains death rates (ki), and the antibiotic drug
(D) treatment against the different strains death rates (ki) for β0 > 1

2
(β1 +

β2), with both strains having the same initial values (s0(0) = s1(0) = s2(0) =
0.2), different values of the strains growth rates (β0 = 8, β1 = 5, β2 = 7),
with the antibiotic drug treatment D = 0.5, and different transition rates
values ϵ1 = 1, and ϵ2 = 10.

4.4.2 When the Value of β0 is Less than the Average
Value of β1 and β2,

[
β0 < 1

2(β1 + β2)
]

Plots (a) to (d) in Figure 4.4 below also have the same (equal) amount of the
antibiotic drug (D) treatment, with different values of both the strains death
rates (ki), and the transition rates (ϵi). Plot (a) show there were decreases in
the existing (s1, s2) strains densities when compared to the plot (d) obtained
in Figure 3.2 in the chapter 3 (their equilibrium values were 4.65 and 0.57
respectively), which were caused due to the presence of the antibiotic drug
(D) treatment and the strains death rates (ki) as well. We also noticed in
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plot (b) that increasing the non-switching (s0) strain death rate (k0) does not
decrease the densities of the existing (s1, s2) strains when compared with plot
(a) in the same Figure 4.4.

Plot (c) showed there were decreases in the densities of the existing (s1, s2)

strains when the s1 strain death rate (k1) is increased compared to that of
plot (a), but in plot (d) it seems to show not much difference with the result
obtained in plot (a) when the s2 strain death rate (k2) is increased, and these
happened as a result of the high transition rate of the s2 strain than the s1

strain. But in plots (e) and (f) we respectively noticed a decrease in the
existing (s1, s2) strains densities, when the antibiotic drug (D) treatment was
increased.

(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2 (c) ϵ1 < ϵ2

(d) ϵ1 < ϵ2 (e) ϵ1 < ϵ2 (f) ϵ1 < ϵ2

Figure 4.4: The Numerical graphs for the dynamics of the 3D bet-hedging
model with the strains death rates (ki), and the antibiotic drug (D) treatment
for β0 < 1

2
(β1 + β2), with both strains having the same initial values

(s0(0) = s1(0) = s2(0) = 1), different values of the strains growth rates
(β0 = 3, β1 = 5, β2 = 7), with the antibiotic drug treatment D = 0.5,
and the different transition rates values ϵ1 = 1, and ϵ2 = 10.

We also noticed a higher decrease in the densities of the existing (s1, s2)

strains in plot (e) than (f), which are caused as a result of the high transitions
of the strains from the s2 to the s1 strain, coupled with a high death rate (k1)

value of the s1 strain.
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The results obtained in Figure 4.4 above were also summarized in Figure
4.5 below, which clearly show if k0 is increased this does not lead to any switch
between the equilibria, because the s0 strain never grows fast enough to invade
as shown in plot (a), but if k1 is increased this leads to a switch from the (s1, s2)
equilibrium to the s0 equilibrium as shown in plot (b).

There is an interesting result were we are only ever at the switching (s1, s2)

equilibrium in plots (c), despite seen some changes within the existing (s1, s2)

strains, unlike what we observed in plot (a). This is because for this case
also the non-switching (s0) strain never grows fast enough to invade, and it is
interesting that this is maintained even with very high values of k2 as shown
in plot (c). Even when k2 was extended to 500, the result remain the same.

We also expect to see a change (swap of densities) between the predominant
(s1, s2) strains in plot (c), but couldn’t due to the relative large differences
in their transition rates (ϵi) values. If the differences between their transition
rates (ϵi) values is relatively small, we may have seen some changes between
the predominant (s1, s2) strains in plot (c).

(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2 (c) ϵ1 < ϵ2

Figure 4.5: The Numerical graphs for the maximum densities of strains for
the 3D bet-hedging model with the strains death rates (ki) and the antibiotic
drug (D) treatment, against the different strains death rates (ki), for β0 <
1
2
(β1 + β2), with both strains having the same initial values (s0(0) = s1(0) =

s2(0) = 0.2), different range of values for the strains death rates (ki), different
values of the strains growth rates (β0 = 3, β1 = 5, β2 = 7), with the
antibiotic drug treatment D = 0.5, and the different transition rates values
ϵ1 = 1, and ϵ2 = 10.

4.4.3 When the Value of β0 is Equal to the Average Value
of β1 and β2,

[
β0 = 1

2(β1 + β2)
]

Plots (a) to (d) in Figure 4.6 below also have the same (equal) amount of the
antibiotic drug (D) treatment, with different values of both the strains’ death
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rates (ki), and the transition rates (ϵi), and the results obtained from those
plots were the same with those obtained in Figure 4.2 of this chapter 4. The
main differences from the results obtained in Figures 4.2 and 4.6 were in plots
(e) and (f), where we noticed a switch of existencs from the non-switching
(s0) to the switching (s1, s2) strains when the amount of the antibiotic drug
(D) treatment is increased in Figure 4.6, unlike in the above Figure 4.2 where
we only saw a decreases in the existing s0 strain, which is because of the
non-switching (s0) strain’s higher growth rate (βi) value.

(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2 (c) ϵ1 < ϵ2

(d) ϵ1 < ϵ2 (e) ϵ1 < ϵ2 (f) ϵ1 < ϵ2

Figure 4.6: The Numerical graphs for the dynamics of the 3D bet-hedging
model with the strains death rates (ki) and the antibiotic drug (D) treatment
for β0 = 1

2
(β1 + β2), with both strains having the same initial values

(s0(0) = s1(0) = s2(0) = 1), same range of time for each of the plots
t = 0 : 0.001 : 30, different values of the strains growth rates (β0 =
6, β1 = 5, β2 = 7), with the antibiotic drug treatment D = 0.5, and
different transition rates values ϵ1 = 1, and ϵ2 = 10.

This show the switch of existence between the strains occurred earlier, when
the value of the non-switching (s0) strain’s growth rate is equal to the average
value of the switching (s1, s2) strains’ growth rates, and the antibiotic drug
(D) treatment is relatively increased a bit compared to what were obtained in
Figure 4.2 above. The results of plots (f) in both Figures 4.2 and 4.6 show
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the same behavior with one another, which is a decrease in the densities of the
existing strain(s) from what were obtained in plots (e).

The result obtained in Figure 4.6 above when summarized produced the
same result with what were obtained in Figure 4.3 above. The main differences
is in plot (a), where the switching between the equilibrium occurred earlier
than we noticed in Figure 4.3, and this is because the growth rate (β0) value
of the non-switching (s0) strain used in this situation is lower than what were
used in Figure 4.3.

But when the amount of the antibiotic drug (D) treatment is increased,
the results obtained differed with what were obtained in Figure 4.3, as we
noticed in Figure 4.7 below. The results obtained in Figure 4.7 show when k0

and k1 were respectively increased in plots (a) and (b), we noticed a switch
of the equilibrium between the strains, but the result in plot (c) show we are
only ever at the non-switching (s0) equilibrium no matter how largely k2 is
increased, unless if the default value of k1 is higher than what was used here.

(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2 (c) ϵ1 < ϵ2

Figure 4.7: The Numerical graphs for the maximum densities of strains for
the 3D bet-hedging model with the strains death rates (ki) and the antibiotic
drug (D) treatment, against the different strains death rates (ki) for β0 =
1
2
(β1 + β2), with both strains having the same initial values s0(0) = s1(0) =

s2(0) = 0.2, different range of values for the strains death rates, different
values of the strains growth rates β0 = 6, β1 = 5, β2 = 7, with the
antibiotic drug treatment D = 1, and different transition rates values ϵ1 = 1,
and ϵ2 = 10.

4.4.4 When the Values of β0, β1, and β2 are Equal,
[β0 = β1 = β2 ̸= 1]

The results of the model dynamics obtained in this section 4.4.4 corresponds
to the same results obtained in Figure 4.1 above. The main differences in the
plots will be for the particular values of the strains’ growth rates (βi) values
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used, and in this context we considered the values of the strains growth rates
(βi) to be different with those used in Figure 4.1 above, but in either case the
growth rates (βi) of all the strains are equal to one another.

(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2 (c) ϵ1 < ϵ2

Figure 4.8: The Numerical graphs for the maximum densities of strains for the
3D bet-hedging model with the strains death rates (ki) and the antibiotic drug
(D) treatment, against the different strains death rates (ki) for β0 = β1 =
β2 = ̸= 1, with both strains having the same initial values (s0(0) = s1(0) =
s2(0) = 0.2), the same range of values for the strains death rates, the same
values of the strains growth rates (β0 = β1 = β2 = 5), with the antibiotic
drug treatment D = 0.5, and different transition rates values ϵ1 = 1, and
ϵ2 = 10.

The results obtained in Figure 4.8 above show there is always a switch
between the non-switching (s0) equilibrium and the switching (s1, s2) equilib-
rium, which is a very special result compared to what we normally obtained in
the previous situations. This also happened because of all the strains having
equal values for their growth rates (βi).

Plot (a) in Figure 4.8 show a switching from the s0 equilibrium to the
(s1, s2) equilibrium, with the s1 strain having a higher density than the s2

strain, which is caused as a result of the s2 strain having a higher transition
rate (ϵi) value than the s1 strain. But in plots (b) and (c) there are switching
from the (s1, s2) equilibrium to the s0 equilibrium.

The behaviors of the strains equilibrium in this condition also confirms
the results of the model dynamics of a stability swapping point between the
non-switching (s0, 0, 0) and the switching (0, s1, s2) strains.
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4.5 Fluctuating Resources within the Bacterial
Growth Rates (βi)

In this section 4.5, we considered a situation when the environmental (αi)

resources within the strains growth rate (βi) fluctuates like we did in chapters
2 and 3. The environmental state (αi) resources that fluctuates within the
strains growth rates (βi) will be replaced by: αi = δisin(ωt) + 1. where; δi
is the amplitude, and ω is the frequency of the fluctuating environment.

Based on the aforementioned environmental state resources defined above,
the growth rate (βi) of the fluctuating resources within the strains growth rate
(βi) with respect to time (t) is defined as in equation (2.26).

As we mentioned in chapters 2 and 3 this problem can not be solved an-
alytically, instead we should study the behavior of this fluctuating situation
numerically with respect to time (t).

4.5.1 When the Value of β0 is Greater than the Average
Value of β1 and β2,

[
β0 > 1

2(β1 + β2)
]

Plots (a) to (d) in Figure 4.9 below have the same (equal) amount of the
antibiotic drug (D) treatment, with different values of both the strains death
rates (ki) and the transition rates (ϵi). In plot (a) we noticed the density of
the existing (non-switching) strain decreases compared to what was obtained
in plot (a) of Figure 3.4 in chapter 3, which arises as a result of the strains’
death rates (ki) and the antibiotic drug (D) treatment, and when the existing
(s0) strains death rate (k0) is increased in plot (b) we noticed a switch from
the non-switching (s0) strain to the switching (s1, s2) strains.

Also when the death rate values of the switching (s1, s2) strains were
respectively increased in plots (c) and (d), we noticed there is not any decrease
in the existing (s0) strain density when compared with that of plot (a), but
we realized both the extinction and existence of the non-switching (s0) strain
occurred earlier in plot (b) to (d) than the time it takes to exist in plot (a).
We also noticed a decrease in the existing strains’ densities in plots (e) and
(f), when the amount of the antibiotic drug (D) treatment was respectively
increased in plots (b) and (c).
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(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2 (c) ϵ1 < ϵ2

(d) ϵ1 < ϵ2 (e) ϵ1 < ϵ2 (f) ϵ1 < ϵ2

Figure 4.9: The Numerical graphs for the dynamics of the 3D bet-hedging
model with the fluctuating growth resources, the strains death rates (ki), and
the antibiotic drug (D) treatment for β0 > 1

2
(β1 + β2), with both strains

having the same initial values (s0(0) = s1(0) = s2(0) = 0.2), different
ranges of time for the plots, different amount of enzymes in the strains growth
rates (r0 = 0.8, r1 = 0.5, r2 = 0.7), with the amplitude δ = 0.25, and
the frequency of fluctuating resources ω = 1, the antibiotic drug treatment
D = 0.5, and different transition rates values ϵ1 = 0.05, and ϵ2 = 0.1.

The results obtained in Figure 4.9 above were summarized in Figure 4.10
below, which clearly show if k0 is increased this leads to a switch from the
s0 equilibrium to the (s1, s2) equilibrium as shown in plots (a). Likewise, if
k1 and k2 were respectively increased in plots (b) and (c) they also leads to
a switches from the (s1, s2) equilibrium to the s0 equilibrium, but the strain
with a higher density among the switching (s1, s2) strains usually depends on
it transition rate (ϵi) value.
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(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2 (c) ϵ1 < ϵ2

Figure 4.10: The Numerical graphs for the maximum densities of strains for the
3D bet-hedging model and the fluctuating growth resources, with the strains
death rates (ki) and the antibiotic drug (D) treatment for β0 > 1

2
(β1 + β2),

with both strains having the same initial values (s0(0) = s1(0) = s2(0) =
0.2), same range of values for the strains death rates in each plots (ki =
0 : 0.1 : 2), different amount of enzymes in the strains growth rates
(r0 = 0.8, r1 = 0.5, 2 = 0.7), with the amplitude δ = 0.25, and
the frequency of fluctuating resources ω = 1, the antibiotic drug treatment
D = 0.5, and different transition rates values ϵ1 = 0.05, and ϵ2 = 0.1.

4.5.2 When the Value of β0 is Less than the Average
Value of β1 and β2,

[
β0 < 1

2(β1 + β2)
]

Plots (a) to (d) in Figure 4.11 below have the same (equal) amount of the
antibiotic drug (D) treatment, with different values of both the strains death
rates (ki) and the transition rates (ϵi). In plot (a) we noticed the densities
of the existing (switching) strains decreases compared to what was obtained
in plot (d) of Figure 3.4 in chapter 3, which arises as a result of the strains
death rates (ki) and the antibiotic drug (D) treatment. When the extinct
(non-switching) strain death rate (k0) is increased in plot (b), we noticed the
densities of the existing (switching) strains do not decrease at all, but the non-
switching (s0) strain goes extinct earlier than the time it takes to extinct in
plot (a), and the existing (switching) strains reach a steady state earlier than
the time they took to reach the steady state as well in plot (a).

But when the death rate values of the existing (switching) strains were
respectively increased in plots (c) and (d), we noticed there is not any switching
between the strains but the predominant strains swap their densities, and there
are increases in the predominant strain’s densities which happened as a result
of the strains transition rate (ϵi) values. We finally noticed a decrease in the
predominant strains’ densities in plots (e) and (f), when the amount of the
antibiotic drug (D) treatment were respectively increased in plots (b) and (c).
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(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2 (c) ϵ1 < ϵ2

(d) ϵ1 < ϵ2 (e) ϵ1 < ϵ2 (f) ϵ1 < ϵ2

Figure 4.11: The Numerical graphs for the dynamics of the 3D bet-hedging
model and the fluctuating growth resources, with the strains death rates (ki)
and the antibiotic drug (D) treatment for β0 < 1

2
(β1 + β2), with both strains

having the same initial values (s0(0) = s1(0) = s2(0) = 0.2), different
ranges of time for the plots, different amount of enzymes in the strains growth
rates (r0 = 0.3, r1 = 0.5, r2 = 0.7), with the amplitude δ = 0.25, and
the frequency of fluctuating resources ω = 1, the antibiotic drug treatment
D = 0.5, and different transition rates values ϵ1 = 0.05, and ϵ2 = 0.1.

The results obtained in Figure 4.11 above were summarized in Figure 4.12
below, which clearly show if k0 is increased this leads to a switch from the s0

equilibrium to the s1, s2 equilibrium as shown in plot (a). There are a couple
of interesting cases where the results were only ever at the s1, s2 equilibrium,
but the predominant strains swap their densities in plots (b) and (c). This
is because for these cases r0 is very small, and the s0 strain never grows fast
enough to invade. This also happened because the (s1, s2) strains are the bet-
hedgers. It is interesting that this is maintained even with very high values of
k1 or k2 as shown on plots (b) and (c) in Figure 4.12.
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(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2 (c) ϵ1 < ϵ2

Figure 4.12: The Numerical graphs for the maximum densities of strains for the
3D bet-hedging model and the fluctuating growth resources, with the strains
death rates (ki) and the antibiotic drug (D) treatment for β0 < 1

2
(β1 + β2),

with both strains having the same initial values (s0(0) = s1(0) = s2(0) =
0.2), different ranges of the strains death rates in the plots, different amount
of enzymes in the strains growth rates (r0 = 0.3, r1 = 0.5, r2 = 0.7), with
the amplitude δ = 0.25, and the frequency of fluctuating resources ω = 1,
the antibiotic drug treatment D = 0.5, and different transition rates values
ϵ1 = 0.05, and ϵ2 = 0.1.

4.5.3 When the Value of β0 is Equal to the Average Value
of β1 and β2,

[
β0 = 1

2(β1 + β2)
]

Plots (a) to (d) in Figure 4.13 below have the same (equal) amount of the
antibiotic drug (D) treatment, with different values of both the strains death
rates (ki) and the transition rates (ϵi). In plot (a) we noticed the density of
the existing (non-switching) strain decreases compared to what was obtained
in plot (g) of Figure 3.4 in chapter 3, which arises as a result of the strain
death rates (ki) and the antibiotic drug (D) treatment. But when the existing
(s0) strain death rate (k0) in plot (a) is increased, we noticed in plot (b) there
is a change from the non-switching (s0) strain to the switching (s1, s2) strains.

Also, when the death rates of the switching (s1, s2) strains were respectively
increased in plots (a), we noticed in plots (c) and (d) there were not any change
between the existing strain(s), and the densities of the existing (s0) strain does
not decrease at all. Instead, the switching (s1, s2) strains go extinct earlier
than the time they took to go extinct in plot (a), and the existing (s0) strain
also reaches the steady state earlier than the time it takes to reach the steady
state in plot (a) as well, which occurred as a result of the high death rates
values of the switching (s1, s2) strain used. Finally we noticed a decrease in
the densities of the existing (switching and non-switching) strains in plots (e)
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and (f), when the amount of the antibiotic drug (D) treatment were increased
in plots (b) and (c) respectively.

(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2 (c) ϵ1 < ϵ2

(d) ϵ1 < ϵ2 (e) ϵ1 < ϵ2 (f) ϵ1 < ϵ2

Figure 4.13: The Numerical graphs for the dynamics of the 3D bet-hedging
model and the fluctuating growth resources, with the strains death rates (ki)
and the antibiotic drug (D) treatment for β0 = 1

2
(β1 + β2), with both strains

having the same initial values (s0(0) = s1(0) = s2(0) = 0.2), different
ranges of time for the plots, different amount of enzymes in the strains growth
rates (r0 = 0.6, r1 = 0.5, r2 = 0.7), with the amplitude δ = 0.25, and
the frequency of fluctuating resources ω = 1, the antibiotic drug treatment
D = 0.5, and different transition rates values ϵ1 = 0.05, and ϵ2 = 0.1.

The results obtained in Figure 4.13 were summarized in Figure 4.14, which
clearly show if k0 is increased, this leads to a switch from the s0 equilibrium
to the (s1, s2) equilibrium as shown in plot (a), but the strain with a higher
density between the switching (s1, s2) strains depends on their transition rates
(ϵi) values. Also if k1 and k2 were respectively increased in plots (b) and (c),
they also leads to a switch from the (s1, s2) equilibrium to the s0 equilibrium
in both cases.
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(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2 (c) ϵ1 < ϵ2

Figure 4.14: The Numerical graphs for the maximum densities of strains for the
3D bet-hedging model and the fluctuating growth resources, with the strains
death rates (ki) and the antibiotic drug (D) treatment for β0 = 1

2
(β1 + β2),

with both strains having the same initial values (s0(0) = s1(0) = s2(0) =
0.2), the same ranges of the strains death rates in each plots, different amount
of enzymes in the strains growth rates (r0 = 0.6, r1 = 0.5, r2 = 0.7),
with the amplitude δ = 0.25, and the frequency of the fluctuating resources
ω = 1, the antibiotic drug treatment D = 0.5, and different transition rates
values ϵ1 = 0.05, and ϵ2 = 0.1.

4.5.4 When the Values of β0, β1, and β2 are Equal,
[β0 = β1 = β2 ̸= 1]

Plots (a) to (d) in Figure 4.15 have the same (equal) amount of the antibiotic
drug (D) treatment with different values of both the strains’ death rates (ki)

and the transition rates (ϵi). In plot (a) we noticed a decrease in the densities
of the existing (switching and the non-switching) strains, compared to what
were obtained in plot (a) of Figure 3.5 in chapter 3, which arises as a result of
the strains’ death rates (ki) and the antibiotic drug (D) treatment.

When the death rate (k0) of the non-switching (s0) strain is increased in
plot (b), the non-switching (s0) strain is extinct and the switching (s1, s2)

strains exists. Also, when the death rates (k1, and k2) of the switching (s1, s2)

strains were respectively increased in plots (c) and (d), the switching (s1, s2)

strains go extinct and the non-switching (s0) strain exists, with the existing
(s0) strain attaining a stable state earlier in plot (c) compared to the time it
takes to reach the steady state in plot (d), and the switching (s1, s2) strains
also go extinct earlier in plot (c) compared to the time they took to go extinct
in plot (d), which all happened because of the high transition rate (ϵi) values
of s2 strain than the s1 strain. In plots (e) and (f) we noticed a decrease in
the densities of the existing (switching and the non-switching) strains, when
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the amount of the antibiotic drug (D) treatment were respectively increased
in plots (b) and (c).

(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2 (c) ϵ1 < ϵ2

(d) ϵ1 < ϵ2 (e) ϵ1 < ϵ2 (f) ϵ1 < ϵ2

Figure 4.15: The Numerical graphs for the dynamics of the 3D bet-hedging
model and the fluctuating growth resources, with the strains death rates (ki)
and the antibiotic drug (D) treatment for β0 = β1 = β2 = β, with both
strains having the same initial values (s0(0) = s1(0) = s2(0) = 0.2), the
same ranges of time for the plots, the same amount of enzymes in the strains
growth rates (r0 = r1 = r2 = 0.5), with the amplitude δ = 0.25, and the
frequency of the fluctuating resources ω = 1, the antibiotic drug treatment
D = 0.5, and different transition rates values ϵ1 = 0.05, and ϵ2 = 0.1.

The results obtained in Figure 4.15 were also summarized in Figure 4.16,
which clearly show if k0 is increased, this leads to a switch from the s0 equi-
librium to the (s1, s2) equilibrium as shown in plot (a). Likewise, if k1 and k2

were respectively increased in plots (b) and (c), they also leads to a switches
from the (s1, s2) equilibrium to the s0 equilibrium in both cases, but the strain
with a high density between the switching (s1, s2) strains in plot (a), depends
on the value of their transition rates (ϵi), which also produced the same result
like what were obtained in Figure 4.14.
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(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2 (c) ϵ1 < ϵ2

Figure 4.16: The Numerical graphs for the maximum densities of strains for the
3D bet-hedging model and the fluctuating growth resources, with the strains
death rates (ki) and the antibiotic drug (D) treatment for β0 = β1 = β2 = β,
with both strains having the same initial values (s0(0) = s1(0) = s2(0) =
0.2), the same ranges of the strains death rates for each plots, the same amount
of enzymes in the strains growth rates (r0 = r1 = r2 = 0.5), with the
amplitude δ = 0.25, and the frequency of the fluctuating resources ω = 1,
the antibiotic drug treatment D = 0.5, and different transition rate values
ϵ1 = 0.05, and ϵ2 = 0.1.

4.6 Fluctuating Resources within the Antimi-
crobial Treatment

Throughout our research both in this chapter 4, and in the previous chapters
2 and 3, we always investigated what happened with the fluctuations within
the strains’ growth rates (βi) in the modelling of the bacterial dynamics, with
and without the strains death rates (ki) together with the antibiotic drug (D)

treatment which is held constant (usually at a fixed value).
In this section 4.6, we investigate what happens if it is the antibiotic drug

(D) treatment that fluctuates over time (t), and compared the results obtained
in this section 4.6 with the results obtained in section 4.4 of this chapter 4,
for the non-fluctuating resources within the strains growth rates (βi), with the
strains death rates (ki) and the antibiotic drug (D) treatment, to find out if
both situations produces the same results, or if there is any differences between
their results.

The model of the bacterial dynamics in the presence of a constant strain,
with the strains death rates (ki) and the fluctuations within the antibiotic drug
(D) treatment is given by;
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s′0 = s0 [β0 (r0 , α0) − S] − k0D[δ sin(ωt) + 1]s0

s′1 = s1 [β1 (r1 , α1) − ϵ1 − S] + ϵ2s2 − k1D[δ sin(ωt) + 1]s1

s′2 = s2 [β2 (r2 , α2) − ϵ2 − S] + ϵ1s1 − k2D[δ sin(ωt) + 1]s2

(4.19)

where; S = s0 + s1 + s2, δ and ω are the amplitude and frequency of
fluctuations, with all other parameters remain the same as defined in equations
2.1 at the beginning of chapter 2.

4.6.1 When the Value of β0 is Greater than the Average
Value of β1 and β2,

[
β0 > 1

2(β1 + β2)
]

Plots (a) to (d) in Figure 4.17 when the antibiotic drug (D) treatment fluctu-
ates over time produce the same results like those obtained in plots (a) to (d)

of Figure 4.2 above for the non-fluctuating situation, with a differences of fluc-
tuations in the densities of the existing strain in Figure 4.17, which is caused
as a result of the fluctuating resources in the antibiotic drug (D) treatment,
with all the respective plots in both Figures having the same parameter values,
and they produced the same points of switching between the strains in either
case.

The frequency of oscillations or fluctuations within the densities of the
existing (s0) strain is very interesting when the strain death rate (ki) value is
increased in plot (c) compared to what was obtained in plot (a), but the density
of the existing (s1, s2) strains in plot (c) decreases because of its high death
rate (k0) value, which is expected. This means the frequency of oscillations
is linked to the death rate (ki) of the dominant strain. The higher the death
rate (ki) value of the dominant strain, the more rapid the fluctuations become,
which is due to the rapid turnover causing a high fluctuating competition.
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(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2

(c) ϵ1 < ϵ2 (d) ϵ1 < ϵ2

Figure 4.17: The Numerical graphs for the dynamics of the 3D bet-hedging
model with the strains death rates (ki), and the fluctuations within the antibi-
otic drug (D) treatment for β0 > 1

2
(β1 + β2), with both strains having the

same initial values (s0(0) = s1(0) = s2(0) = 1), with different ranges of time
for the plots, different strains growth rates values (β0 = 8, β1 = 5, β2 = 7),
with the amplitude δ = 0.25, and the frequency of the fluctuation resources
ω = 1, the antibiotic drug treatment D = 0.5, with all other death rate (ki)
values not specified in each plot equal to 1 (i. e. ki = 1, as i = 0, 1, 2), and
different transition rates values ϵ1 = 1, and ϵ2 = 10.

The results obtained in Figure 4.17 were summarized in Figure 4.18, which
clearly show if k0 is increased, this leads to a switch from the s0 equilibrium
to the (s1, s2) equilibrium as shown in plot (a), but the s1 strain exists at
a higher density than the s2 strain, because of higher value of the s2 strain
migrating to the s1 strain. Likewise, if k1 and k2 were respectively increased
in plots (b) and (c), they also leads to switches from the (s1, s2) equilibrium
to the s0 equilibrium, with different death rate (ki) values of the other strains
in each case.
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(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2 (c) ϵ1 < ϵ2

Figure 4.18: The Numerical graphs for the maximum densities of strains for the
3D bet-hedging model, with the strains death rates (ki) and the fluctuations
within the antibiotic drug (D) treatment for β0 > 1

2
(β1 + β2), with both

strains having the same initial values (s0(0) = s1(0) = s2(0) = 0.2),
different ranges of the strains death rates (ki) for the plots, different values of
the strains growth rates (β0 = 8, β1 = 5, β2 = 7), with the amplitude
δ = 0.25, and the frequency of fluctuating resources ω = 1, the antibiotic
drug treatment D = 0.5, and different transition rates values ϵ1 = 1, and
ϵ2 = 10.

4.6.2 When the Value of β0 is Less than the Average
Value of β1 and β2,

[
β0 < 1

2(β1 + β2)
]

In Figure 4.19 below it is discovered that the whole plots were the same as those
obtained in Figure 4.4 for the non-fluctuating environment. The only difference
is the fluctuations within the densities of the existing strains as obtained in
section 4.6.1 above, and the oscillations are caused by the fluctuating resources
within the antibiotic drug (D) treatment.

Like what was observed in section 4.6.1 above, the frequency of oscillations
is linked to the death rate (ki) for the dominant strain in this section too. Also
in plots (b), (c), and (d) they show different values of the strains death rates
(ki) at which switches between the strains occurred.
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(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2

(c) ϵ1 < ϵ2 (d) ϵ1 < ϵ2

Figure 4.19: The Numerical graphs for the dynamics of the 3D bet-hedging
model with the strains death rates (ki), and the fluctuations within the antibi-
otic drug (D) treatment for β0 < 1

2
(β1 + β2), with both strains having the

same initial values (s0(0) = s1(0) = s2(0) = 1), with different ranges of time
for the plots, different strains growth rates values (β0 = 3, β1 = 5, β2 = 7),
with the amplitude δ = 0.25, and the frequency of fluctuation resources
ω = 1, the antibiotic drug treatment D = 0.5, with all other death rate (ki)
values not specified in each plot equal to 1 (i. e. ki = 1, as i = 0, 1, 2), and
different transition rates values ϵ1 = 1, and ϵ2 = 10.

The plots in Figure 4.19 with other plots not shown were summarized in
Figure 4.20 below, which show when the non-switching (s0) strain death rate
(k0) value is increased, with different values of the other strains death rates
(ki), it leads to a switching from the s0 equilibrium to the (s1, s2) equilibrium
as shown in plot (a), and the s1 strain existing with a higher density because
of the higher value of the s2 strain transiting to the s1 strain.
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Also when the switching strains’ death rates (k1) and (k2) values where
increased, they respectively lead to switching from the (s1, s2) equilibrium to
the s0 equilibrium in plots (b) and (c), with different values of the other strains
death rates (ki) as well. And we can easily noticed the switching is at higher
(k1, k2) and lower k0 values in figure 4.20 below, compared to those obtained
in Figure 4.18 where the switching were at higher (k0, k2) and lower k1 values.

(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2 (c) ϵ1 < ϵ2

Figure 4.20: The Numerical graphs for the maximum densities of strains for the
3D bet-hedging model, with the strains death rates (ki) and the fluctuations
within the antibiotic drug (D) treatment for β0 < 1

2
(β1 + β2), with both

strains having the same initial values (s0(0) = s1(0) = s2(0) = 0.2),
different ranges of the strains death rates (ki) for the plots, different values of
the strains growth rates (β0 = 3, β1 = 5, β2 = 7), with the amplitude
δ = 0.25, and the frequency of fluctuating resources ω = 1, the antibiotic
drug treatment D = 0.5, with all other death rate (ki) values not specified
in each plot equal to 1 (i. e. ki = 1, as i = 0, 1, 2), and different transition
rates values ϵ1 = 1, and ϵ2 = 10.

4.6.3 When the Value of β0 is Equal to the Average Value
of β1 and β2,

[
β0 = 1

2(β1 + β2)
]

The plots obtained in Figure 4.21 below show the same behavior with what
were obtained in Figure 4.6 for the non-fluctuating situation in this chapter
4, with only a difference of fluctuations in the densities of the existing strains,
which is quite expected because of the fluctuations within the antibiotic drug
(D) treatment.
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(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2

(c) ϵ1 < ϵ2 (d) ϵ1 < ϵ2

Figure 4.21: The Numerical graphs for the dynamics of the 3D bet-hedging
model with the strains death rates (ki), and the fluctuations within the antibi-
otic drug (D) treatment for β0 = 1

2
(β1 + β2), with both strains having the

same initial values (s0(0) = s1(0) = s2(0) = 1), different ranges of time for
the plots, different strains growth rates values (β0 = 6, β1 = 5, β2 = 7),
with the amplitude δ = 0.25, and the frequency of fluctuating resources
ω = 1, the antibiotic drug treatment D = 0.5, with all other death rate (ki)
values not specified in each plot equal to 1 (i. e. ki = 1, as i = 0, 1, 2), and
different transition rates values ϵ1 = 1, and ϵ2 = 10.

Also, Figure 4.22 like other figures summarizes the whole plots obtained
in Figure 4.21 and those not shown, which show exactly at what value of
the non-switching strain death rates (k0) we obtained a switching from the s0

equilibrium to the (s1, s2) equilibrium as shown in plot (a). They also show
the exact death rates k1 and k2 values when the respective switching occurred
from the (s1, s2) equilibrium to the s0 equilibrium in plots (b) and (c).

In those plots we noticed the switches were at higher (k0, k2) and lower k1
values compared to what were obtained in Figure 4.18, with an earlier point
of switching in plot (a) which was due to the lower growth rate (β0) value of
the non-switching (s0) strain in this section 4.6.3, compared to the growth rate
(β0) value used in section 4.6.1 above when β0 > 1

2
(β1 + β2).

110



(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2 (c) ϵ1 < ϵ2

Figure 4.22: The Numerical graphs for the maximum densities of strains for the
3D bet-hedging model, with the strains death rates (ki) and the fluctuations
within the antibiotic drug (D) treatment for β0 = 1

2
(β1 + β2), with both

strains having the same initial values (s0(0) = s1(0) = s2(0) = 0.2),
different range of strains death rates (ki) for the plots, different values of the
strains growth rates (β0 = 6, β1 = 5, β2 = 7), with the amplitude
δ = 0.25, and the frequency of fluctuating resources ω = 1, the antibiotic
drug treatment D = 0.5, with all other death rate (ki) values not specified
in each plot equal to 1 (i. e. ki = 1, as i = 0, 1, 2), and different transition
rates values ϵ1 = 1, and ϵ2 = 10.

4.6.4 When the Values of β0, β1, and β2 are Equal,
[β0 = β1 = β2 ̸= 1]

An interesting result was obtained in this section 4.6.4 as expected, where the
all strains (the non-switching and the switching) co-exist, as a result of the
strains having equal values of their growth rates (βi), which were usually the
same results obtained in all our previous cases when the strains have equal
values of their growth rates (βi).
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(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2

(c) ϵ1 < ϵ2 (d) ϵ1 < ϵ2

Figure 4.23: The Numerical graphs for the dynamics of the 3D bet-hedging
model with the strains death rates (ki), and the fluctuations within the antibi-
otic drug (D) treatment for β0 = β1 = β2 = β, with both strains having
the same initial values (s0(0) = s1(0) = s2(0) = 1), different ranges of time
for the plots, the same strains growth rates values (β0 = β1 = β2 = 5),
with the amplitude δ = 0.25, and the frequency of fluctuations ω = 1, the
antibiotic drug treatment D = 0.5, with all other death rate (ki) values not
specified in each plot equal to 1 (i. e. ki = 1, as i = 0, 1, 2), and different
transition rates values ϵ1 = 0.05, and ϵ2 = 0.1.

Plots (a) to (c) in Figure 4.24 which summarizes the results obtained in
figure 4.23 show, when the strains death rates (ki, as i = 0, 1, 2) values were
respectively increased, they leads to a switch from the s0 equilibrium to the
(s1, s2) equilibrium and vice versa at the same point, which happened because
of equal values for the strains growth rate (βi).
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(a) ϵ1 < ϵ2 (b) ϵ1 < ϵ2 (c) ϵ1 < ϵ2

Figure 4.24: The Numerical graphs for the maximum densities of strains for the
3D bet-hedging model, with the strains death rates (ki) and the fluctuations
within the antibiotic drug (D) treatment for β0 = β1 = β2 = β, with both
strains having the same initial values (s0(0) = s1(0) = s2(0) = 0.2), the
same ranges of strains death rates (ki) for the plots, the same values of the
strains growth rates (β0 = β1 = β2 = 5), with the amplitude δ = 0.25, and
the frequency of fluctuating resources ω = 1, the antibiotic drug treatment
D = 0.5, with all other death rate (ki) values not specified in each plot equal
to 1 (i. e. ki = 1, as i = 0, 1, 2), and different transition rates values
ϵ1 = 1, and ϵ2 = 10.

4.7 Conclusion

After solving the system of the model equations in this chapter 4, we obtained
three equilibrium points for both the constant and different growth rates (βi)

values of the strains in the non-fluctuating conditions. The overall results
show the bacteria will not be stable at the zero (0, 0, 0) equilibrium point,
when the growth rate (βi) values of the strains are higher than the interaction
between the strains death rates (ki) and the antibiotic drug (D) treatment,
together with the strains transition rates (ϵi) in some situations, and the point
will be stable as well when the growth rate (βi) of the strains are lower than
the conditions mentioned just above (which will be a point of extinction by
the strains), and the strain (bacteria) also becomes stable at the non-zero
equilibrium points.

The whole results obtained in the non-fluctuating situation in this chapter
4 show there is always a decrease in the densities of the existing strains at
the stable point in any conditions when compared with the results obtained in
chapter 3, which is caused by the presence of the strains death rates (ki) and
the antibiotic drug (D) treatment. The level of the decreases in the densities
of the existing strains usually depends on the values of the strains death rates
(ki) and the antibiotic drug (D) treatment.
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We also saw a switching between the existing and extinct strains in dif-
ferent conditions, which are usually caused by the strains’ growth rates (βi),
their transition rates (ϵi), their death rates (ki), and the antibiotic drug (D)

treatment values as well. In the cases where we didn’t see switching, it could
be as a result of either the strains lower growth rate (βi), or high transition
rate (ϵi), or lower death rate (ki) values. The cases we realized in this chapter
4 were mostly caused as a result of either the strains lower death rate (ki), or
high transition rate (ϵi) values.

In the fluctuating resources within the strains’ growth rates (βi), we noticed
the results obtained were qualitatively the same with those obtained in the non-
fluctuating resources situation. We also noticed an interesting result in that
situation, where we are only ever at the switching (s1, s2) equilibrium, but the
densities of the predominant strains swapped. This happened because in this
case r0 is very small, and the non-switching (s0) strain has a lower growth rate
(βi) value, and never grows fast to invade as seen in plots (b) and (c) of Figure
4.12. This also happened because the (s1, s2) strains are the bet-hedgers. It
is also interesting that this is maintained even with very high values of k1 or
k2.

Another important aspect we looked at in this chapter 4 is when the an-
tibiotic drug (D) treatment fluctuates over time, and we noticed an interesting
result in the plots obtained in Figures 4.17, 4.19, 4.21, and 4.23 respectively,
showing the higher the death rate (ki) values of the existing strain at the steady
state, the more rapid the oscillations become. This means the frequency of os-
cillations is linked to the death rates (ki) of the existing strain.

In the next chapter 5 we will introduce the dynamics of the antibiotic
drug (D) treatment in the model, where we will describe the rate at which
the antibiotic drug (D) treatment is administered, and the degradation term
or rate at which the bacteria is being killed, to investigate the behavior and
analyze the outcome of the model result as well.
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CHAPTER 5

Bacterial and the Antimicrobial Treatment Dy-
namics

5.1 Introduction

Unlike what was done in chapter 4 where the antibiotic drug (D) treatment was
held constant or fluctuated over time consistently, in this chapter the dynamics
of the antibiotic drug treatment is considered as a dynamic variable. As such
we include an administration rate (a), and the rate of degrading the drug (c)

up to when it becomes no longer effective, and the fluctuating resources in
this chapter 5 is within the administration rate (a) for the dynamics of the
antibiotic drug (D) treatment. We will investigate whether different results
occur with a dynamic treatment compared to the results obtained in chapter
4.

The aim is to compare the results obtained in all the sections in this chapter
5, and to observe how these bacteria are affected by the antibiotic drug (D)

treatment in each case, and also to investigate if there is any differences in the
results obtained with/without fluctuating resources in the bacterial growth
rates (βi), and also with the results obtained when the fluctuating resources
is in the administration rate (a) for the dynamics of the antibiotic drug (D)

treatment.

5.2 The Model of the Bacterial and the Antimi-
crobial Treatment Dynamics

After investigating and analysing the dynamics of the model for the non-
switching (s0) and the switching (s1, s2) bacteria with the antimicrobial (D)

treatment which is held constant in chapter 4, the research continued by in-
vestigating the same model with the inclusion of a new variable for the antimi-
crobial (D) treatment dynamics in the model, which describes the rate (a) at
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which the antibiotic drug (D) treatment is being administered, and the rate
(c) of degrading the antibiotic drug (D) treatment up to when the antibiotic
drug (D) treatment becomes no longer effective (Ibargüen-Mondragón et al.,
2014).

The model equation with the inclusion of the antimicrobial (D) treatment
dynamics as mentioned earlier is defined as;

s′0 = s0 [β0 (r0 , α0) − S] − k0Ds0

s′1 = s1 [β1 (r1 , α1) − ϵ1 − S] + ϵ2s2 − k1Ds1

s′2 = s2 [β2 (r2 , α2) − ϵ2 − S] + ϵ1s1 − k2Ds2

D′ = a − cD

(5.1)

where; S = s0 + s1 + s2, a is the rate of the antibiotic drug treatment
administration which is a non-fluctuating value here, and c is the rate of decay
of the antibiotic drug (D), with all other parameters the same as defined in
equations (2.1), (2.2) and (4.1) respectively.

The bacterial growth rate (βi), based on the enzymes (ri), and the envi-
ronment (αt) is defined in equation (2.2) as well.

Beginning by the concept of our research in this project, stability analysis
is first performed on the model equations by considering different conditions
to check the behavior of the model with the inclusion of the antibiotic drug
(D) treatment dynamics, through finding the equilibrium point of the system,
stability of the model and the eigenvalues of the system from the characteristic
equation (2.4).

5.3 Constant Growth Rate (βi) Values of the
Bacteria

As we normally start with throughout this project, once the values of the
enzymes (ri) in the bacterial growth rate (βi) of equation (2.2) are zero (0),
meaning the respective enzymes of the bacteria (r0 = r1 = r2 = 0), the
strains maintained a constant growth rate, and it implies the growth rates of
the whole strains are equal (β0 = β1 = β2 = β).

Since (β0 = β1 = β2 = β), the solution to the equation (5.1) yielded
four equilibrium points in the form of;
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S∗ = (s∗0 , s∗1 , s∗2 , D∗) =
(
0 , 0 , 0 ,

a

c

)
S∗ = (s∗0 , s∗1 , s∗2 , D∗) =

(
β − a

c
k0 , 0 , 0 ,

a

c

)
S∗ = (s∗0 , s∗1 , s∗2 , D∗) =

(
0 , P , Q ,

a

c

)
S∗ = (s∗0 , s∗1 , s∗2 , D∗) =

(
0 , R , T ,

a

c

)
(5.2)

where;

P =
βc [cϵT + a(k1 − k2)] − c [2ϵ1(cϵ2 + ak1) − ak2δϵ] − a2k1(k1 − k2)

2ac(k1 − k2)

−

{
c2 (ϵ21 + ϵ22)− (βc− cϵT − ak1)

√
[a(k1 − k2)]

2 + 2acδϵ(k1 − k2) + (cϵT )2
}

2ac(k1 − k2)

Q =
c [2ϵ2(cϵ1 + ak2) + ak1δϵ] − βc [cϵT − a(k1 − k2)] + a2k2(k2 − k1)

2ac(k1 − k2)

+

[
c2 (ϵ21 + ϵ22)− (βc− cϵT − ak2)

√
[a(k1 − k2)]

2 + 2acδϵ(k1 − k2) + (cϵT )2
]

2ac(k1 − k2)

R =
βc [cϵT + a(k1 − k2)] − c [2ϵ1(cϵ2 + ak1) − ak2δϵ] − a2k1(k1 − k2)

2ac(k1 − k2)

−

{
c2 (ϵ21 + ϵ22) + (βc− cϵT − ak1)

√
[a(k1 − k2)]

2 + 2acδϵ(k1 − k2) + (cϵT )2
}

2ac(k1 − k2)

T =
c [2ϵ2(cϵ1 + ak2) + ak1δϵ] − βc [cϵT − a(k1 − k2)] + a2k2(k2 − k1)

2ac(k1 − k2)

+

[
c2 (ϵ21 + ϵ22) + (βc− cϵT − ak2)

√
[a(k1 − k2)]

2 + 2acδϵ(k1 − k2) + (cϵT )2
]

2ac(k1 − k2)

ϵT = ϵ1 + ϵ2, and δϵ = ϵ1 − ϵ2

The Jacobian matrix obtained in equation (5.3) below for the present sys-
tem in equation (5.1), is basically the same with the one obtained in chapter 4
with D = a

c
in this chapter, and that happened because D is decoupled from

the other equations, which makes it different.

J =


AD −s∗0 −s∗0 −k0s

∗
0

−s∗1 AE −s∗1 + ϵ2 −k1s
∗
1

−s∗2 −s∗2 + ϵ1 AF −k2s
∗
2

0 0 0 −c

 (5.3)

where;
AD = β − 2s∗0 − s∗1 − s∗2 − k0D

∗,
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AE = β − ϵ1 − s∗0 − 2s∗1 − s∗2 − k1D
∗,

AF = β − ϵ2 − s∗0 − s∗1 − 2s∗2 − k2D
∗

The first equilibrium point S∗ = (s∗0 , s∗1 , s∗2 , D∗) =
(
0 , 0 , 0 , a

c

)
obtained in equation (5.2) was substituted in the Jacobian matrix in equation
(5.3), and we obtained;

J =


β − a

c
k0 0 0 0

0 β − ϵ1 − a
c
k1 ϵ2 0

0 ϵ1 β − ϵ2 − a
c
k2 0

0 0 0 −c

 (5.4)

An identity matrix together with the Jacobian matrix obtained in equation
(5.4) were substituted in to the characteristic equation (2.4), which gives the
below expression as;∣∣∣∣∣∣∣∣

β − a
c
k0 − λ 0 0 0
0 β − ϵ1 − a

c
k1 − λ ϵ2 0

0 ϵ1 β − ϵ2 − a
c
k2 − λ 0

0 0 0 −c− λ

∣∣∣∣∣∣∣∣ = 0 (5.5)

After evaluating the above expression in equation (5.5) by hand, using the
determinant approach method, the four eigenvalues were respectively obtained
as;

λ1 = − c

λ2 = β − a

c
k0

λ3 = β −
[
ϵ1 +

a

c
k1

]
λ4 = β −

[
ϵ2 +

a

c
k2

] (5.6)

Analysis of equation (5.6) says, if either β > a
c
k0, or β > ϵ1 + a

c
k1, or

β > ϵ2 + a
c
k2, or any two of them, or both three are true, this equilibrium

point of
(
0, 0, 0, a

c

)
will be locally and asymptotically unstable, and the bac-

teria will not settle at this point. But with opposite of the above condition
as, β < a

c
k0, β < ϵ1 + a

c
k1, and β < ϵ2 + a

c
k2, we can get a complete

extinction of the strain(s), because of killing the strains by the antibiotic drug
(D) treatment concentration.

The second equilibrium point S∗ = (s∗0, s
∗
1, s

∗
2, D

∗) =
(
β − a

c
k0, 0, 0, a

c

)
obtained in equation (5.2) was substituted in the Jacobian matrix in equation
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(5.3), and after the usual evaluation of the matrix, we obtained;

J =


a
c
k0 − β a

c
k0 − β a

c
k0 − β k0

(
a
c
k0 − β0

)
0 a

c
(k0 − k1) − ϵ1 ϵ2 0

0 ϵ1
a
c
(k0 − k2) − ϵ2 0

0 0 0 −c


(5.7)

As always, the identity matrix together with the Jacobian matrix obtained
in equation (5.7) were substituted in the characteristic equation (2.4), and the
result obtained gives;∣∣∣∣∣∣∣∣

AG − λ a
c
k0 − β a

c
k0 − β k0

(
a
c
k0 − β

)
0 AH − λ ϵ2 0
0 ϵ1 AI − λ 0
0 0 0 −c − λ

∣∣∣∣∣∣∣∣ = 0 (5.8)

where; AG = a
c
k0 − β, AH = a

c
(k0 − k1)−ϵ1, and AI = a

c
(k0 − k2)−ϵ2

Evaluating the expression obtained in equation (5.8) above, we obtained
the four eigenvalues as;

λ1 = − c

λ2 =
a

c
k0 − β

λ3 =
a

c
(k0 − k1) − ϵ1

λ4 =
a

c
(k0 − k2) − ϵ2

(5.9)

Analysis of the eigenvalues obtained in equation (5.9) says, if β > a
c
k0,(

a
c
k1 + ϵ1

)
> a

c
k0, and

(
a
c
k2 + ϵ2

)
> a

c
k0, this point will be locally

and asymptotically stable at the non-switching (s0) strain. Otherwise, if the
opposite for any of the above mentioned conditions is true, one of the remaining
non-zero equilibrium points (the last one) obtained in equation (5.2) will be
locally and asymptotically stable at the switching (s1, s2) strains.
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(a) k0 = k1 = k2 = 0.1 (b) k0 = k1 = k2 = 0.1 (c) k0 = k1 = k2 = 0.1

Figure 5.1: The Numerical graphs for the intrinsic dynamics of the 4D bet-
hedging model with the dynamics of the antibiotic drug (D) treatment, and
the respective death rates (ki) of the strains, which has a constant growth
rates value for the strain: β0 = β1 = β2 = β = 1, with both the
strains and the antibiotic drug (D) treatment having the same initial values:
s0(0) = s1(0) = s2(0) = D(0) = 1, the rate of the antibiotic drug
administration a = 1, the rate of the antibiotic drug decay c = 2, and
different transition rate values: ϵ1 = 1, and ϵ2 = 10.

Plots (a) to (c) in Figure 5.1 show the dynamics of the strains with different
initial values for the antibiotic drug (D) treatment concentration. In plot (a)

when the antibiotic drug (D) treatment concentration has the same initial
values with all the strains, we noticed how the strains were decaying at the
beginning before reaching their equilibrium points.

Plots (b) and (c) respectively show much further decaying of the strains
at the beginning compared to what was observed in plot (a) when the initial
values of the antibiotic drug (D) treatment concentration were increased, be-
fore both the antibiotic drug and the strains become stable at their respective
equilibrium points.

In general the trend show as the initial values of the antibiotic drug (D)

treatment concentration were increased, the densities of the strains decays
much worse at an early time (the beginning) of each plots, compared to what
were obtained in the previous plot, until when the antibiotic drug (D) treat-
ment reaches it equilibrium point, where all the strains will reach their respec-
tive equilibrium points too.

5.4 Different Growth Rate (βi) Values of the Bac-
teria

In this section 5.4, we are concerned about investigating the behavior of the
strains when their growth rate (βi) values are not equal (β0 ̸= β1 ̸= β2)
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for the strains in the model with the dynamics of the antibiotic drug (D)

treatment concentration in a non-fluctuating environment.
To achieve that, the model equations (5.1) were solved with the idea of

each strain having a different growth rate value (β0 ̸= β1 ̸= β2), and based
on that we obtained four equilibrium points from the system of equations, a
zero and three non-zero’s as;

S∗ = (s∗0 , s∗1 , s∗2 , D∗) =
(
0 , 0 , 0 ,

a

c

)
S∗ = (s∗0 , s∗1 , s∗2 , D∗) =

(
β0 − a

c
k0 , 0 , 0 ,

a

c

)
S∗ = (s∗0 , s∗1 , s∗2 , D∗) =

(
0 , U , V ,

a

c

)
S∗ = (s∗0 , s∗1 , s∗2 , D∗) =

(
0 , W , Z ,

a

c

)
,

(5.10)

where;

U =
c2 [(β2

1 + ϵ21 + ϵ22) − {β1 (β2 + 2ϵ1) − β2∆ϵ − 2ϵ1ϵ2}] + a2 (k2
1 − k1k2)

2c[c(β1 − β2) − a(k1 − k2)]

−
c
{
a [β1(2k1 − k2) − k1(β2 + 2ϵ1) + k2∆ϵ] + [(β1 − ϵT ) − ak1]

√
M
}

2c[c(β1 − β2) − a(k1 − k2)]

V =
−c2 [(β2

2 + ϵ21 + ϵ22) + {β2 (β1 + 2ϵ2) + β1∆ϵ − 2ϵ1ϵ2}] − a2 (k2
2 + k1k2)

2c[c(β1 − β2) − a(k1 − k2)]

+
c
{
a [k2(β1 + 2ϵ2) + β2(k1 − 2k2) + k1∆ϵ] + [(β2 − ϵT ) − ak2]

√
M
}

2c[c(β1 − β2) − a(k1 − k2)]

W =
c2 [(β2

1 + ϵ21 + ϵ22) − {β1 (β2 + 2ϵ1) − β2∆ϵ − 2ϵ1ϵ2}] + a2 (k2
1 − k1k2)

2c[c(β1 − β2) − a(k1 − k2)]

−
c
{
a [β1(2k1 − k2) − k1(β2 + 2ϵ1) + k2∆ϵ] − [(β1 − ϵT ) − ak1]

√
M
}

2c[c(β1 − β2) − a(k1 − k2)]

Z =
−c2 [(β2

2 + ϵ21 + ϵ22) + {β2 (β1 + 2ϵ2) + β1∆ϵ − 2ϵ1ϵ2}] − a2 (k2
2 + k1k2)

2c[c(β1 − β2) − a(k1 − k2)]

+
c
{
a [k2(β1 + 2ϵ2) + β2(k1 − 2k2) + k1∆ϵ] − [(β2 − ϵT ) − ak2]

√
M
}

2c[c(β1 − β2) − a(k1 − k2)]

M = [a(k1 − k2)]
2 − 2ac(k1 − k2) [(β1 − β2)−∆ϵ] + [c(β1 − β2)]

2 − 2c2∆ϵ(β1 − β2) + (cϵT )
2

ϵT = ϵ1 + ϵ2, and ∆ϵT = ϵ1 − ϵ2

Based on the condition focused in the research in this section 5.4 for each
strain having different values of the growth rate (β0 ̸= β1 ̸= β2), the Jacobian
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matrix from the system of equations (5.1) gives;

J =


AJ −s∗0 −s∗0 −k0s

∗
0

−s∗1 AK −s∗1 + ϵ2 −k1s
∗
1

−s∗2 −s∗2 + ϵ1 AL −k2s
∗
2

0 0 0 −c

 (5.11)

where;
AJ = β0 − 2s∗0 − s∗1 − s∗2 −Dk0,

AK = β1 − ϵ1 − s∗0 − 2s∗1 − s∗2 −Dk1,
AL = β2 − ϵ2 − s∗0 − s∗1 − 2s∗2 −Dk2

After substituting the zero equilibrium point S∗ = (s∗0, s∗1, s∗2, D∗) =(
0, 0, 0, a

c

)
obtained in equation (5.10) in the Jacobian matrix in equation

(5.11), the matrix was transformed to;

J =


β0 − a

c
k0 0 0 0

0 β1 − ϵ1 − a
c
k1 ϵ2 0

0 ϵ1 β2 − ϵ2 − a
c
k2 0

0 0 0 −c

 (5.12)

As usual, the identity matrix together with the Jacobian matrix obtained
in equation (5.12), were both substituted in the characteristic equation (2.4),
and the outcome of such gave us the below expression as;∣∣∣∣∣∣∣∣

AM − λ 0 0 0
0 AN − λ ϵ2 0
0 ϵ1 AP − λ 0
0 0 0 −c − λ

∣∣∣∣∣∣∣∣ = 0 (5.13)

where; AM = β0 − a
c
k0, AN = β1 − ϵ1 − a

c
k1, and AP = β2 − ϵ2 − a

c
k2

Evaluating the above expression obtained in equation (5.13) by hand using
the determinant method approach, the four eigenvalues were obtained as;

λ1 = − c

λ2 = β0 − a

c
k0

λ3 = β1 −
[
ϵ1 +

a

c
k1

]
λ4 = β2 −

[
ϵ2 +

a

c
k2

] (5.14)

Analysis of the above eigenvalues obtained in equation (5.14) says, if either
β0 > a

c
k0, or β1 >

[
ϵ1 + a

c
k1
]
, or β2 >

[
ϵ2 + a

c
k2
]
, or any of the two, or

both of them are true, this equilibrium point will be locally and asymptotically
unstable, and the bacteria will not settle at this point. But for the opposites
of the above mentioned conditions, this will allow for complete extinction of
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all the strains

The second equilibrium point S∗ = (s∗0, s
∗
1, s

∗
2, D

∗) =
(
β0 − a

c
k0, 0, 0, a

c

)
obtained in equation (5.10) was substituted in the Jacobian matrix in equation
(5.11), and the result obtained show;

J =


a
c
k0 − β0

a
c
k0 − β0

a
c
k0 − β0 k0

(
a
c
k0 − β0

)
0 β1 − β0 − ϵ1 +

a
c
(k0 − k1) ϵ2 0

0 ϵ1 β2 − β0 − ϵ2 +
a
c
(k0 − k2) 0

0 0 0 −c


(5.15)

The Jacobian matrix obtained in equation (5.15), together with the identity
matrix were both substituted in the characteristic equation (2.4), and the
outcome show;∣∣∣∣∣∣∣∣

a
c
k0 − β0 − λ a

c
k0 − β0

a
c
k0 − β0 k0

(
a
c
k0 − β0

)
0 AQ − λ ϵ2 0
0 ϵ1 AR − λ 0
0 0 0 −c − λ

∣∣∣∣∣∣∣∣ = 0 (5.16)

where; AQ = β1−β0− ϵ1+
a
c
(k0 − k1), and AR = β2−β0− ϵ2+

a
c
(k0 − k2)

After evaluating the above expression in equation (5.16) with hand using
the determinant approach method, the four eigenvalues were obtained as;

λ1 = − c

λ2 =
a

c
k0 − β0

λ3 = β1 − (β0 + ϵ1) +
a

c
(k0 − k1)

λ4 = β2 − (β0 + ϵ2) +
a

c
(k0 − k2)

(5.17)

Analysis of the above eigenvalues obtained in equation (5.17) says, if β0 >
a
c
k0,
[
β0 + ϵ1 + a

c
k1
]
>
[
β1 + a

c
k0
]
, and

[
β0 + ϵ2 + a

c
k2
]
>
[
β2 + a

c
k0
]
,

this point will be locally, and asymptotically stable at the non-switching (s0)

strain. Else, if the reverse (opposite) of the above mentioned conditions are all
true, one of the remaining non-zero equilibrium points (the last one) obtained
in equation (5.10) will be stable at the switching (s1, s2) strains.

5.4.1 When the Value of β0 is Greater than the Average
Value of β1 and β2,

[
β0 > 1

2(β1 + β2)
]

Plots (a) and (d) in Figure 5.2 below show some interesting results, with low
initial densities of the antibiotic drug (D) treatment concentration, where we
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realized the system initially appears to go towards the (s1, s2) equilibrium,
which allowed the (s1, s2) strains to grow quite large in plots (b), (c), (e), and
(f) with relatively high initial densities of the antibiotic drug (D) treatment
concentration, before eventually flipping to the s0 equilibrium.

(a) k0 = 6, k1 = k2 = 1 (b) k0 = 6, k1 = k2 = 1 (c) k0 = 6, k1 = k2 = 1

(d) k0 = 7, k1 = 1, k2 = 6 (e) k0 = 7, k1 = 1, k2 = 6 (f) k0 = 7, k1 = 1, k2 = 6

Figure 5.2: The Numerical graphs for the intrinsic dynamics of the 4D bet-
hedging model with the dynamics of the antibiotic drug (D) treatment for
the non-fluctuating growth rate (βi) of the strains, and their respective death
rates (ki), for β0 > 1

2
(β1 + β2) and ϵ1 < ϵ2, with both strains having the

same initial values: s0(0) = s1(0) = s2(0) = 1, different initial values
for the antibiotic drug (D) treatment, different values for the growth rates of
the strains: β0 = 8, β1 = 5 and β2 = 7, different values for the strains
death rate (ki), the rate of the antibiotic drug administration a = 1, and the
rate of the antibiotic drug decay c = 2, with different transition rate values:
ϵ1 = 1, and ϵ2 = 10.

This show the switching (s1, s2) strains are ultimately unstable in those
plots, but the strains can grow quite large for a long frequency of time, de-
pending on the concentration of the antibiotic drug (D) treatment, and their
death rate (k1, k2) values, before the eventual flipping of the (s1, s2) strains
to where the s0 equilibrium takes over.

The s0 strain initially suffered more than the (s1, s2) strains because of
the high antibiotic drug (D) treatment density, coupled with its high death
rate (k0) in plots (a) to (c), causing a lot of damage to the s0 strain, and
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pushing it very close to zero, before the density of the antibiotic drug (D)

treatment drops, allowing it to slowly recover and take over to become stable
at an equilibrium point. But in plots (d) to (f) we realized the s0 strain
takes longer time before it bounced back to take over, caused due to the high
density of the antibiotic drug (D) treatment together with high death rates of
both strains, causing serious competition between them, before the s0 strain
gradually bounce back and win the competition.

This means, the interactions between the densities of the antibiotic drug
(D) treatment concentration with high death rates (ki) values of any strain(s),
and the transition rates (ϵi) of the switching strains, partly determines the
amount/frequency of unit-time it will take both strains to reach their sta-
ble/unstable states as shown in the whole plots.

The strains in the first three plots reach the stable/unstable equilibrium
within a few time units, because of the antibiotic drug (D) treatment inter-
action with high death rate (ki) value on the non-switching (s0) strain alone.
Unlike in the last three plots, where the amount of time units to reach the
stable/unstable equilibrium is almost 8 − 9 times, because of the antibiotic
drug (D) treatment interaction with high death rates (ki) values on both the
switching (s1, s2) and the non-switching (s0) strains.

In a nutshell, the results show increasing the initial density of the antibiotic
drug (D) treatment concentration does not affect the equilibrium state of the
existing (s0) strain, but it massively delays reaching the equilibrium, which
show spending a long time near the other equilibrium.

5.4.2 When the Value of β0 is Less than the Average
Value of β1 and β2,

[
β0 < 1

2(β1 + β2)
]

In Figure 5.3 below, plots (b), (c), (e), and (f) also show the same behavior
compared to the same plots obtained in Figure 5.2, with the same initial high
densities of the antibiotic drug (D) treatment concentration.

The only difference observed is the switching (s1, s2) equilibrium that
becomes locally stable, instead of the non-switching (s0) equilibrium because
of its low growth rate (βi) value, allowing the s0 strain to grow quite large
before it is eventually killed off. We also noticed that, the density of the
antibiotic drug (D) treatment concentration does not depend on the bacterial
densities as well.

All other reasons for the bacterial resistance to the antibiotic drug (D)

treatment, and the ability of the strains taking longer unit-time than others,
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before reaching the stable/unstable states by the strains remain the same as
mentioned in section 5.4.1 above.

(a) k0 = 1, k1 = 6, k2 = 1 (b) k0 = 1, k1 = 6, k2 = 1 (c) k0 = 1, k1 = 6, k2 = 1

(d) k0 = 1, k1 = 5, k2 = 8 (e) k0 = 1, k1 = 5, k2 = 8 (f) k0 = 1, k1 = 5, k2 = 8

Figure 5.3: The Numerical graphs for the intrinsic dynamics of the 4D bet-
hedging model with the dynamics of the antibiotic drug (D) treatment for
the non-fluctuating growth rate (βi) of the strains, and their respective death
rates (ki), for β0 < 1

2
(β1 + β2) and ϵ1 < ϵ2, with both strains having the

same initial values: s0(0) = s1(0) = s2(0) = 1, different initial values
for the antibiotic drug (D) treatment, different values for the growth rates of
the strains: β0 = 3, β1 = 5 and β2 = 7, different values for the strains
death rates (ki), the rate of drug administration a = 1, and the rate of the
antibiotic drug decay c = 2, with different transition rate values: ϵ1 = 1,
and ϵ2 = 10.

5.4.3 When the Value of β0 is Equal to the Average Value
of β1 and β2,

[
β0 = 1

2(β1 + β2)
]

The results obtained in this section 5.4.3 are similar to the results obtained in
section 5.4.1 above, with the s0 equilibrium becoming locally stable, because
the non-switching (s0) strain growth rate (βi) value in this section 5.4.3 is
equal (=) to the average value of the switching (s1, s2) strains growth rate
(βi), unlike in section 5.4.2 above where the growth rate (βi) value of the non-
switching (s0) strain is less (<) than the average growth rate (βi) value of the
switching (s1, s2) strains.
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(a) k0 = 2, k1 = k2 = 1 (b) k0 = 2, k1 = k2 = 1 (c) k0 = 2, k1 = k2 = 1

(d) k0 = 3, k1 = 1, k2 = 6 (e) k0 = 3, k1 = 1, k2 = 6 (f) k0 = 3, k1 = 1, k2 = 6

Figure 5.4: The Numerical graphs for the intrinsic dynamics of the 4D bet-
hedging model with the dynamics of the antibiotic drug (D) treatment for
the non-fluctuating growth rate (βi) of the strains, and their respective death
rates (ki), for β0 = 1

2
(β1 + β2) and ϵ1 < ϵ2, with both strains having the

same initial values: s0(0) = s1(0) = s2(0) = 1, different initial values
for the antibiotic drug (D) treatment, different values for the growth rates of
the strains: β0 = 6, β1 = 5 and β2 = 7, different values for the strains
death rates (ki), the rate of drug administration a = 1, and the rate of the
antibiotic drug decay c = 2, with different transition rate values: ϵ1 = 1,
and ϵ2 = 10.

The main differences observed in the plots obtained in Figure 5.4 above
with those obtained in Figure 5.2 is the time taken by the (s1, s2) strains
to stay at the equilibrium state, before reaching a swapping point where the
antibiotic drug (D) treatment density drops, and the (s1, s2) strains that were
at the equilibrium states are killed off, allowing the s0 strain to take over and
win the competition.

The plots obtained in Figure 5.2 with high densities of the antibiotic drug
(D) treatment concentration vividly show, the switching (s1, s2) strains takes
longer time before the s0 strain gradually bounces back and takes over, com-
pared to those obtained in Figure 5.4, which is because of the differences in
the respective growth rate (βi) values of the non-switching (s0) strain.
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5.5 Fluctuating Resources within the Strains
Growth Rates (βi)

Having investigated and obtained interesting results in section 5.4 above, with-
out fluctuations in both the strains growth rates (βi) and the antibiotic drug
treatment administration rate (a), we then considered the situation when there
is a fluctuation within the strains’ growth rates (βi).

Since we noticed the weak stability found in section 5.4 above could only
be obtained with high growth rates (βi) values, and reasonably high death
rates (ki) values of the strains as well, we considered the fluctuating resources
within the bacterial growth rates (βi) in this section 5.5 to be;

βi = βc [δisin(ωt) + 1] (5.18)

where; βc is the initial growth rate values used to determined the actual growth
rate (βi) values of the strains, δi is the amplitude, and ω as the frequency of
the fluctuating resources.

The values of the growth rates (βi) obtained from the above function in
equation (5.18), are not exactly the same as the growth rates (βi) values used
in section 5.4 above, but are almost the same. The results obtained by using
those growth rate (βi) values in this section 5.5, are used to compare the results
obtained in sections 5.4 of this chapter 5.

Using the above fluctuating resources function for the growth rate (βi)

values in equation (5.18), together with the exact/same high death rate (ki)

values of the strains used in section 5.4 above, we obtained the same pattern
of result, which produces the weak stability at an early time before it finally
swaps and reached the exact steady state. Unlike the growth rates (βi) values
obtained from the fluctuating resources function used in chapters 2, 3, and 4,
which produces different results without the weak stability.

5.5.1 When the Value of β0 is Greater than the Average
value of β1 and β2,

[
β0 > 1

2(β1 + β2)
]

As we can see, the results of the whole plots obtained in Figure 5.5 below
produces the same pattern of results obtained in Figure 5.2 of this chapter 5, by
using almost the same growth rate (βi) values, the same death rate (ki) values,
the same transition rates (ϵi) values of the strains, the same administration
rate (a) value, and the same killing rate (c) value of the antibiotic drug (D)

treatment concentration.
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The results show the ability of the switching (s1, s2) strains to stay at the
equilibrium state at an early time for a long frequency of time, with initial
high densities of the antibiotic drug (D) treatment concentration in plots (b),
(c), (e), and (f) before the non-switching (s0) strain gradually takes over and
win the competition, which were noticed earlier in section 5.4.1 above, which
is similar to this section 5.5.1.

(a) k0 = 6, k1 = k2 = 1 (b) k0 = 6, k1 = k2 = 1 (c) k0 = 6, k1 = k2 = 1

(d) k0 = 7, k1 = 1, k2 = 6 (e) k0 = 7, k1 = 1, k2 = 6 (f) k0 = 7, k1 = 1, k2 = 6

Figure 5.5: The Numerical graphs for the intrinsic dynamics of the 4D bet-
hedging model with the dynamics of the antibiotic drug (D) treatment for
the fluctuating growth rate (βi) of the strains and their respective death rates
(ki), for β0 > 1

2
(β1 + β2) and ϵ1 < ϵ2, with both strains having the same

initial values: s0(0) = s1(0) = s2(0) = 1, different initial values for
the antibiotic drug (D) treatment, different values for the growth rates of the
strains: β0 = 8, β1 = 5 and β2 = 7, different values for the strains
death rates (ki), the rate of drug administration a = 1, and the rate of the
antibiotic drug decay c = 2, with different transition rate values: ϵ1 = 1,
and ϵ2 = 10.

The only differences with the results obtained in Figure 5.5 and those ob-
tained in Figure 5.2 are the fluctuations in the existing strains densities, with
all other results (the unit-time taking by the switching (s1, s2) strains to stay
at the equilibrium state before the non-switching (s0) strain takes over to win
the competition, and other results obtained) are the same as obtained in sec-
tion 5.4.1 above.
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5.5.2 When the Value of β0 is Less than the Average
Value of β1 and β2,

[
β0 < 1

2(β1 + β2)
]

Interestingly as expected the whole plots obtained in Figure 5.6 below pro-
duces the same results which were obtained in Figure 5.3, by using the same
parameter values used in section 5.4.2 above.

(a) k0 = 1, k1 = 6, k2 = 1 (b) k0 = 1, k1 = 6, k2 = 1 (c) k0 = 1, k1 = 6, k2 = 1

(d) k0 = 1, k1 = 5, k2 = 8 (e) k0 = 1, k1 = 5, k2 = 8 (f) k0 = 1, k1 = 5, k2 = 8

Figure 5.6: The Numerical graphs for the intrinsic dynamics of the 4D bet-
hedging model with the dynamics of the antibiotic drug (D) treatment for
the fluctuating growth rate (βi) of the strains and their respective death rates
(ki), for β0 < 1

2
(β1 + β2) and ϵ1 < ϵ2, with both strains having the same

initial values: s0(0) = s1(0) = s2(0) = 1, different initial values for
the antibiotic drug (D) treatment, different values for the growth rates of the
strains: β0 = 3, β1 = 5 and β2 = 7, different values for the strains
death rates (ki), the rate of drug administration a = 1, and the rate of the
antibiotic drug decay c = 2, with different transition rate values: ϵ1 = 1,
and ϵ2 = 10.

The behavior of the plots obtained in this section 5.5.2, which includes the
ability of the non-switching (s0) strain to stay at the equilibrium state, the
time it takes to stay near the equilibrium state, before the switching (s1, s2)

strains takes over gradually to win the competition, and all other results are
the same (equal) with the results obtained in Figure 5.3.
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5.5.3 When the Value of β0 is Equal to the Average Value
of β1 and β2,

[
β0 = 1

2(β1 + β2)
]

The results obtained in Figure 5.4 and those obtained in Figure 5.7 below are
the same, which produced the same pattern of behavior showing the existence
of the non-switching (s0) strain at the equilibrium state, and the extinction
of the switching (s1, s2) strains after growing quite large and stays at the
equilibrium states in plots (b), (c), (e), and (f) for long frequency of time
before they are eventually killed off.

(a) k0 = 2, k1 = k2 = 1 (b) k0 = 2, k1 = k2 = 1 (c) k0 = 2, k1 = k2 = 1

(d) k0 = 3, k1 = 1, k2 = 6 (e) k0 = 3, k1 = 1, k2 = 6 (f) k0 = 3, k1 = 1, k2 = 6

Figure 5.7: The Numerical graphs for the intrinsic dynamics of the 4D bet-
hedging model with the dynamics of the antibiotic drug (D) treatment for
the fluctuating growth rate (βi) of the strains and their respective death rates
(ki), for β0 = 1

2
(β1 + β2) and ϵ1 < ϵ2, with both strains having the same

initial values: s0(0) = s1(0) = s2(0) = 1, different initial values for
the antibiotic drug (D) treatment, different values for the growth rates of the
strains: β0 = 6, β1 = 5 and β2 = 7, different values for the strains
death rates (ki), the rate of drug administration a = 1, and the rate of the
antibiotic drug decay c = 2, with different transition rate values: ϵ1 = 1,
and ϵ2 = 10.

The overall results obtained in this section 5.5 show, the fluctuations within
the strains growth rates (βi), does not affect the density of the antibiotic drug
(D) treatment.
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5.6 Fluctuating Resources within the Antimi-
crobial Treatment Administration Rate (a)

Our fluctuating resources in this section 5.6 is on the antibiotic drug admin-
istration rate (a), unlike in chapter 4 when the antibiotic drug (D) treatment
fluctuates over time.

The aim is to investigate the results obtained for the behavior of the strains
with fluctuations in the antibiotic drug administration rate (a), and compare
them with the results obtained when there is no fluctuations in both growth
rates (βi) and the antibiotic drug administration rate (a), and also when the
fluctuations is on the strains growth rate (βi) only.

To achieve that, we set our fluctuating resources within the antibiotic drug
administration rate (a) to be;

a = δsin(ωt) + 1 (5.19)

where; δ is the amplitude, and ω as the frequency of the fluctuating resources.
To give room for proper comparison between the results obtained in this

section 5.6, with the other results obtained from sections 5.4, and 5.5 above
in this chapter 5, we used the same high growth rates (βi) and high death
rates (ki) values used in those sections mentioned, and investigate if there is
presence of a weak stability at an early time by the strains before reaching the
equilibrium point, or not.

5.6.1 When the Value of β0 is Greater than the Average
Value of β1 and β2,

[
β0 > 1

2(β1 + β2)
]

The whole plots obtained in Figure 5.8 below, show exactly the same pattern
of behaviors with the results obtained in Figures 5.2 and 5.5, which clearly
show with high density of the antibiotic drug (D) treatment concentration,
the switching (s1, s2) strain stays at the equilibrium state for a long frequency
at an early time in plots (b), (c), (e), and (f), before the non-switching (s0)

strain takes over where the switching (s1, s2) strains are eventually killed off,
which were all expected.

The time it takes the switching (s1, s2) strains in this section 5.6.1 to stay
at the equilibrium state, before the non-switching (s0) strain takes over were
almost the same, compared to the one’s obtained in sections 5.4.1 and 5.5.1
above, since we used the same or almost the same parameter values with those
sections mentioned.
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(a) k0 = 6, k1 = k2 = 1 (b) k0 = 6, k1 = k2 = 1 (c) k0 = 6, k1 = k2 = 1

(d) k0 = 7, k1 = 1, k2 = 6 (e) k0 = 7, k1 = 1, k2 = 6 (f) k0 = 7, k1 = 1, k2 = 6

Figure 5.8: The Numerical graphs for the intrinsic dynamics of the 4D bet-
hedging model with the dynamics of the antibiotic drug (D) treatment for the
fluctuating antibiotic drug administration rate (a), and the respective death
rates (ki) of the strains, for β0 > 1

2
(β1 + β2) and ϵ1 < ϵ2, with both strains

having the same initial values: s0(0) = s1(0) = s2(0) = 1, different initial
values for the antibiotic drug (D) treatment, different values for the growth
rates of the strains: β0 = 8, β1 = 5 and β2 = 7, different values for
the strains death rates (ki), the rate of drug administration a = 1, and the
rate of the antibiotic drug decay c = 2, with different transition rate values:
ϵ1 = 1, and ϵ2 = 10.

5.6.2 When the Value of β0 is Less than the Average
Value of β1 and β2,

[
β0 < 1

2(β1 + β2)
]

Nothing different is expected from the results obtained in Figure 5.9 below,
compared to those obtained in Figures 5.3 and 5.6 above, because they all have
the same growth rates (βi), and the same high death rates (ki) values in each
case.

The behavior of the non-switching (s0) strain of growing quite large to stay
at the equilibrium state in plots (b), (c), (e), and (f) with high densities of
the antibiotic drug (D) treatment concentration in Figure 5.9, and the time
taken by the switching (s1, s2) strains before bouncing back to exists at the
equilibrium points, were all the same with those obtained in the Figures 5.3,
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and 5.6 respectively.

(a) k0 = 1, k1 = 6, k2 = 1 (b) k0 = 1, k1 = 6, k2 = 1 (c) k0 = 1, k1 = 6, k2 = 1

(d) k0 = 1, k1 = 5, k2 = 8 (e) k0 = 1, k1 = 5, k2 = 8 (f) k0 = 1, k1 = 5, k2 = 8

Figure 5.9: The Numerical graphs for the intrinsic dynamics of the 4D bet-
hedging model with the dynamics of the antibiotic drug (D) treatment for the
fluctuating antibiotic drug administration rate (a), and the respective death
rates (ki) of the strains, for β0 < 1

2
(β1 + β2) and ϵ1 < ϵ2, with both strains

having the same initial values: s0(0) = s1(0) = s2(0) = 1, different initial
values for the antibiotic drug (D) treatment, different values for the growth
rates of the strains: β0 = 3, β1 = 5 and β2 = 7, different values for
the strains death rates (ki), the rate of drug administration a = 1, and the
rate of the antibiotic drug decay c = 2, with different transition rate values:
ϵ1 = 1, and ϵ2 = 10.

5.6.3 When the Value of β0 is Equal to the Average Value
of β1 and β2,

[
β0 = 1

2(β1 + β2)
]

Since the whole results obtained in this chapter 5 have the same pattern of
behaviors because of using the same parameter values, we shouldn’t expect a
different results here too.

We noticed the results of plots (b), (c), (e), and (f) in Figure 5.10 below,
coincides with the results obtained in Figures 5.4 and 5.7, with a differences
of fluctuations in the densities of the antibiotic drug (D) treatment, which are
different from what were obtained in Figures 5.4, and 5.7 respectively.
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In the results we observed the switching (s1, s2) strain grows quite large
when the initial density of the antibiotic drug (D) treatment concentration is
high, before they are eventually killed off at the stable equilibrium, where the
non-switching (s0) strain takes over.

(a) k0 = 2, k1 = k2 = 1 (b) k0 = 2, k1 = k2 = 1 (c) k0 = 2, k1 = k2 = 1

(d) k0 = 3, k1 = 1, k2 = 6 (e) k0 = 3, k1 = 1, k2 = 6 (f) k0 = 3, k1 = 1, k2 = 6

Figure 5.10: The Numerical graphs for the intrinsic dynamics of the 4D bet-
hedging model with the dynamics of the antibiotic drug (D) treatment for the
fluctuating antibiotic drug administration rate (a), and the respective death
rates (ki) of the strains, for β0 = 1

2
(β1 + β2) and ϵ1 < ϵ2, with both strains

having the same initial values: s0(0) = s1(0) = s2(0) = 1, different initial
values for the antibiotic drug (D) treatment, different values for the growth
rates of the strains: β0 = 6, β1 = 5 and β2 = 7, different values for
the strains death rates (ki), the rate of drug administration a = 1, and the
rate of the antibiotic drug decay c = 2, with different transition rate values:
ϵ1 = 1, and ϵ2 = 10.

The major differences observed in the whole plots obtained in this section
5.6, compared to those obtained in sections 5.4 and 5.5 above, are the presence
of fluctuations in both the densities of the antibiotic drug (D) treatment and
in the densities of the existing strains, which are driven by the fluctuating
resources in the antibiotic drug administration rate (a). Unlike the results
obtained in section 5.5 above, which show the fluctuating resources in the
strains growth rates (βi), does not cause any fluctuations in the densities of
the antibiotic drug (D) treatment.
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5.7 Conclusion

The results obtained in this chapter 5 show there are unexpected behavior
by the strain(s) at an early time, when there are high density of antibiotic
drug (D) treatment concentration, coupled with the growth rates (βi) and
reasonably high death rates (ki) values of the strains. Instead of the whole
strains to start crashing out at an early time when there is a high density
of the antibiotic drug (D) treatment concentrations as seen in Figure 5.1 of
this chapter 5, we noticed a sudden unexpected growth by some strain(s),
which grow quite large and stay for long frequencys of time near the unstable
equilibrium state in the results, before the other strain(s) takes over to win
the competition.

In Figures 5.2, 5.4, 5.5, 5.7, 5.8, and 5.10, instead of the switching (s1, s2)

strain to start decaying out at an early time in plots (b), (c), (e), and (f),
because of a high densities of the antibiotic drug (D) treatment concentration,
they respectively grow quite large in those plots, thereby staying at the equi-
librium state for long frequency of time, before the non-switching (s0) strain
bounce back and takes over to win the competition. We also noticed the same
behavior of staying for a long frequency of time at the equilibrium state in Fig-
ures 5.3, 5.6, and 5.9 by the non-switching (s0) strain, and growing quite large
at the inceptions in plots (b), (c), (e), and (f) as well, with high densities of
the antibiotic drug (D) treatment concentration, before the switching (s1, s2)

takes over to win the competition.
One very important thing to be cognizant about, is the time taken by the

appearance of the unexpected strain(s) to stay at the equilibrium state in those
plots, before the eventual taken over by the expected strain(s). In those plots
mentioned above we observed that the time taken by the appearance of the
unexpected strain(s) and staying for a long frequency of time at an equilibrium
state, before the expected strain(s) takes over, are derived by the interactions
of high densities of the antibiotic drug (D) treatment concentration, coupled
with the strains’ growth rates (βi) values, high death rates (ki) values of the
strains, and the values of the strains transition rates (ϵi) as well.

The investigations in this chapter 5 also testified that, increasing the initial
densities of the antibiotic drug (D) treatment concentration, does not affect
the steady state of the existing strains in all the plots produced, but it only
affects the densities of the strains at an early stage before reaching the steady
state.
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Another important aspect discovered in the results obtained in Figures
5.8, 5.9, and 5.10, are the presence of fluctuations in both the densities of the
existing strains and the antibiotic drug (D) treatment concentration, which are
caused due to the fluctuations in the antibiotic drug administration rate (a).
Unlike what were obtained in Figures 5.5, 5.6, and 5.7, where the fluctuations
within the strains growth rates (βi) does not cause any fluctuations for the
densities of the antibiotic drug (D) treatment concentration, but it caused the
fluctuations for the existing strain(s) only.
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CHAPTER 6

Conclusions

6.1 Overview of Thesis

In this thesis, I have been studying models relevant to antimicrobial resistant
(AMR) treatment, which focuses on examining a model about bet-hedging.
The model has been looked at in terms of evolution by (Müller et al., 2013) for
the constant (s0) and switching (s1, s2) strains, which explore the evolution
of bet-hedging model within a population that experiences a stochastically
changing environment, but needed a full examination of the underlying model
using a deterministic approach method.

In chapter 2 we looked at the model dynamics for the switching (s1, s2)

strains, which formed a basis of study for this thesis. The research considers
a situation when the growth rates of the strains are equal (β1 = β2 = β),
and when their growth rates are not equal (β1 ̸= β2) in the non-fluctuating
and fluctuating environments. The concept of time courses, and densities of
strains for varying values of the fluctuating resources parameters were looked
into which describes the behavior of the strain(s).

In chapter 3, the constant (s0) strain was included in the dynamics of
the model discussed in chapter 2, which was the full model published in the
paper of (Müller et al., 2013), which looked at the evolution and stochastic
simulation of the model in their work, but ours is different because we looked
at the underlying model using a deterministic approach, in the fluctuating and
non-fluctuating situations. The same methods, approach, and techniques used
in chapter 2 to investigate the behavior of the strains when their growth rates
are equal (β0 = β1 = β2 = β), and when their growth rates are not equal
(β0 ̸= β1 ̸= β2) for both the non-fluctuating and fluctuating situations were
adopted in this chapter. Also, the concept of time courses, and densities of
strains for varying values of the fluctuating resources parameters for the new
model equations was addressed in this chapter, like it was done in chapter 2.

138



The aim is to find out whether the behavior of the strains changes in both
situations, when the constant (s0) strain is included in the underlying model
discussed in chapter 2, or if there are any differences in the behavior of the
strains that occurred as a result of new strain inclusion.

In chapter 4, the death rates (ki), as (i = 0, 1, and 2) for the respective
strains and the antibiotic drug (D) treatment which is held constant (fixed
value) were included in the dynamics of the strains discussed in chapter 3,
which wasn’t discussed in the paper of (Müller et al., 2013) under review by
this research in a different approach. The effect of the death rates (ki) and
the antibiotic drug (D) treatment were noticed in this chapter. The behavior
of the non-switching (s0) strain together with the switching (s1, s2) strain(s),
with/without fluctuating resources within their growth rates (βi), and when
the antibiotic drug (D) treatment fluctuates over time were also looked into.

In chapter 5, the dynamics of the antibiotic drug (D) treatment with it
administration rate (a), and the degradation rate (c) was included in the dy-
namics of the model discussed in chapter 4. Apart from investigating the
behavior of the strains with/without fluctuating resources within their growth
rates (βi), and when the antibiotic drug (D) treatment fluctuates over time in
chapter 4, the behavior of the strains when the fluctuating resources is within
the administration rate (a) of the antibiotic drug (D) treatment was investi-
gated too, and the results obtained in that situation were completely different,
with those obtained in the other situations.

6.2 Discussion of Results

In this section we will discuss the results obtained in various chapters, and
compare the outcome of the results with those obtained in other chapters, in
order to observe the impact of what is added to the existing model.

6.2.1 Chapter 2

The results obtained in chapter 2 for the constant (equal), and different (un-
equal) growth rates (βi) of the strain(s) produced two equilibrium points, a
zero and non-zero equilibrium points in both situations, which in all cases
show the strains become unstable at the zero equilibrium point, and stable
at the non-zero equilibrium point. In the fluctuating environment, we noticed
the behavior for the densities of the strains are the same compared to what
were obtained in the non-fluctuating situation, but the only differences is the
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oscillations in the strains densities for the fluctuating environment, which isn’t
there in the non-fluctuating situation. The results also show the transition
rates (ϵi) appear to have a bigger effect, or a greater impact on the densities
of the strains, than their growth rates (βi) in both the non-fluctuating and the
fluctuating situations.

We also noticed in the results that once the values of the amplitude (δi) are
increased in the time courses, the densities of oscillations in the strains are in-
creased too, with the minimum showing a greater changes than the maximum.
Meaning the amplitude (δi) makes surprisingly little difference to the maxi-
mum/minimum densities, suggesting some strong intrinsic regulation. Also a
rapid increase in the strains densities at the early time between ω = 0 and
ω = 0.1 at the steady state were observed, and a rapid decrease in their den-
sities as well between ω = 0.1 and ω = 0.2 at the steady state, but the rapid
decrease is not as high as the rapid increase, when the frequency (ω) value of
the fluctuating resources is increased. Meaning that, the frequency (ω) makes
a bigger differences at the early time, with amplitudes (δi) peaking at very low
frequency.

6.2.2 Chapter 3

The results obtained in chapter 3 after solving the system of model equations
in the non-fluctuating environment, with the inclusion of the constant (s0)

strain produced two equilibrium points, a zero and non-zero equilibrium (with
a continuum of equilibria) points for the constant (equal) growth rates (βi)

of the strains, which is quite different with what were obtained in chapter 2.
The results indicates the strains can’t settle at the zero equilibrium point, but
they can/can’t becomes stable at the non-zero equilibrium point, depending
on the situation for the continuum equilibria. Any attempt for the continuum
equilibria to move slightly towards the positive value of what was obtained in
equation (3.9), the equilibria will be locally and asymptotically unstable, and
we will notice an extinction of the whole strains.

The result also produced four equilibrium points, a zero and three non-
zero’s (with none co-existence) equilibrium points for the different (unequal)
growth rates (βi) of the strains, which show the behavior of the equilibrium
points are ultimately different compared to what were obtained from the model
equations discussed in chapter 2. This means the existence strain(s) at the
steady state might be either a non-switching (s0) strain alone, or might be
the switching (s1, s2) strains alone, or might even be the presence of both the
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non-switching (s0) and switching (s1, s2) strains, depending on their growth
rates (βi) and transition rates (ϵi) values.

The growth rates (βi) and the transition rates (ϵi) values always determines
which among the switching (s1, s2) strains will have a higher density at the
steady state than the other in any situation. Meaning, which among the
switching strain performs better or worse in any environment as mentioned
earlier.

There is a co-existences of both the constant (s0), and the bet-hedgers
(s1, s2) strains when their growth rate (βi) are equal (i. e. β0 = β1 =

β2 = β) in any environment which is a special case, and for the vast majority
of time there can be no co-existence of the strains. This show stability is
lost at that point, and it is a stability swapping point between the non-zero’s
(s∗0 , 0 , 0) and (0 , s∗1 , s∗2) equilibrium points, but more generally only one
type of strain can win at a time, which sometimes depends on its growth (βi)

and the transition (ϵi) rates as well.
Also, the densities of the existing strains changed as we varied the am-

plitude (δi) values of the fluctuating resources. This means increasing the
amplitude (δi) simply increases the fluctuations of the existing strain(s), with
bigger effects at minimum densities than its maximum densities. This show
by varying the values for the amplitude (δi) of fluctuations, the bacteria could
only keep growth from dropping off and was unable to really boost it up past
a threshold, which might be due to the competition between the strains. But
when the values of the frequency (ω) were varied there was no clear evidence
of resonance, and there was always a rapid increase (change) at relatively low-
est values (early time), and the frequency seems to show very little difference
in the densities of the strains. These mean there is little interaction between
the forcing and the dynamics, and it also show the frequency (ω) makes more
difference when r0 is relatively low.

This means the whole results obtained in the fluctuating resources describes
the ability of the amplitude (δi) to affect the behavior of the strains at relatively
intermediate values, unlike the frequency (ω) which affects it at relatively
lower (early) values, which is almost the same results compared to the results
obtained in chapter 2.

6.2.3 Chapter 4

After solving the system of model equations in chapter 4, we obtained four
equilibrium points as well, a zero and three non-zero’s (with none co-existence)
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equilibrium points for both the constant, and different growth rates (βi) of the
strains in the non-fluctuating environment, which is quite different compared
to what were obtained in chapter 3 for constant growth rates, but the same
type of result compared to what were obtained for different growth rates. As
we obtained in the results of chapter 3, the zero (0) equilibria will be unstable
if the growth rate (β) value is high, and it will be stable if the growth rate (β)

value is very low in both situations in this chapter. Meaning the bacteria will
be extinct at a stable point because of the killings by the antibiotic drug (D)

treatment.
The whole results obtained in the non-fluctuating situation in this chapter

show there is always a decrease in the densities of the existing strains at the
stable point in any conditions when compared with the results obtained in
chapter 3, which is caused by the presence of the strains death rates (ki) and
the antibiotic drug (D) treatment. The level of the decreases in the densities
of the existing strains usually depends on the values of the strains death rates
(ki) and the antibiotic drug (D) treatment.

We also saw a switching between the existing and extinct strains in dif-
ferent conditions, which are usually caused by the strains’ growth rates (βi),
their transition rates (ϵi), their death rates (ki), and the antibiotic drug (D)

treatment values as well. In the cases where we didn’t see a switching, it could
be as a result of either the strains lower growth rate (βi), or high transition
rate (ϵi), or lower death rate (ki) values. The cases we realized in this chapter
were mostly caused as a result of either the strains lower death rate (ki), or
high transition rate (ϵi) values.

In the fluctuating resources within the strains’ growth rates (βi), we noticed
the results obtained were qualitatively the same with those obtained in the
non-fluctuating resources situation. We also noticed an interesting result in
that situation, where we are only ever at the switching (s1, s2) equilibrium,
but the densities of the predominant strains swapped. This happened because
in this case r0 is very small, and the non-switching (s0) strain has a lower
growth rate (βi) value, and never grows fast to invade. This also happened
because the (s1, s2) strains are the bet-hedgers. It is also interesting that this
is maintained even with very high values of k1 or k2.

We also noticed an interesting result when the antibiotic drug (D) treat-
ment fluctuates over time, showing the higher the death rate (ki) values of
the existing strain at the steady state, the more rapid the oscillations become.
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This means the frequency of oscillations is linked to the death rates (ki) of the
existing strain(s).

6.2.4 Chapter 5

The results obtained in this chapter when the dynamics of the antibiotic drug
(D) treatment with it administration rate (a), and it degradation rate (c) were
included in the existing model studied in chapter 4, were the same compared
to the results obtained in that chapter. The only differences between the equi-
librium points obtained is the inclusion of the antibiotic drug (D) treatment
solution as D = a

c
in this chapter.

The results of this chapter indicates that whenever the antibiotic drug (D)

treatment is administered to the bacteria, the strain(s) which suppose to be
extinct unexpectedly/surprisingly happens to have a lesser impact of killing by
the antibiotic drug (D) treatment attack, thereby growing quite large when the
concentration (density) of the antibiotic drug (D) treatment is high and staying
at the equilibrium state for a long frequency of time, while the strain which
supposed to exist(s) at the equilibrium state initially experiences a greater loss
due to the killing by the antibiotic drug (D) treatment attack for the same
frequency of time. By the time the density (concentration) of the antibiotic
drug (D) treatment drops, the strain(s) which supposed to exist(s) at the
equilibrium state gradually start growing, and finally takes over to win the
competition.

One very important thing to be cognizant about, is the time taken by the
appearance of the unexpected strain(s) to stay at the equilibrium state, before
the eventual taken over by the expected strain(s). In the results obtained we
observed that, the time taken by the appearance of the unexpected strain(s)
and staying for a long frequency of time at an equilibrium state, before the
expected strain(s) takes over, are derived by the interactions of high densities
of the antibiotic drug (D) treatment concentration, coupled with the strains
growth rates (βi) values, high death rates (ki) values of the strains, and the
values of the strains transition rates (ϵi) as well.

The investigations in this chapter also testified that, increasing the initial
densities of the antibiotic drug (D) treatment concentration, does not affect
the steady state of the existing strains, but it only affects the densities of the
strains at an early stage before reaching the steady state.

Another important aspect discovered in the results obtained in chapter 5,
are the presence of fluctuations in both the densities of the existing strain(s)
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and the antibiotic drug (D) treatment concentration, which are caused due to
the fluctuations in the antibiotic drug administration rate (a). Unlike what
were obtained when the fluctuations is within the strains growth rates (βi),
when it doesn’t cause any fluctuations for the densities of the antibiotic drug
(D) treatment, but it caused the fluctuations for the existing strain(s) only.

6.3 Future work

In this thesis I have formulated an extensions to the adaptive dynamics model
which was initially developed by (Müller et al., 2013), by including the death
rates (ki) of the respective strains together with the antibiotic drug (D) treat-
ment which was held constant (fixed value), and also by including the dynamics
of the antibiotic drug (D) treatment administration rate (a), and its degrada-
tion rate (c) in the model mentioned.

Categorically, I have investigated the impact of using the deterministic
approach on the strains of (Müller et al., 2013) model and the dynamics of the
antibiotic drug (D) treatment, and have explored the effect of using different
initial densities of the antibiotic drug (D) treatment, and other parameter
values. The models also consider a deterministic fluctuation on the growth
rates (βi) of the strains, the antibiotic drug (D) treatment which fluctuates over
time (t), and the fluctuations on the administration rate (a) of the antibiotic
drug (D) treatment concentration. During the course of this research, I have
not come across any studies that uses a deterministic approach on the (Müller
et al., 2013) model involving the constant (s0) and bet-hedgers (s1, s2) strains,
but have come across so many studies on sensitive and resistant strains, with
antibiotic drug treatment which are held constant and its dynamics. In view
of the aforementioned this thesis seems novel because of its content, and can
be extended for further research.

• An important aspect to be considered relevant for future work is the
dynamic of the antibiotic drug (D) treatment in a quadratic form, like
the works of (Blanchet et al., 2011; Delfour and Garon, 2011).

• Another aspect to consider is the dynamic of the ith antibiotic drug
treatment concentration supplied at a constant rate, and being taken up
at a constant rate too, like what were found in (Ibargüen-Mondragón
et al., 2014; Daşbaşı and Öztürk, 2016).
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• Fluctuation of the antibiotic drug (D) treatment over time (t) for the
dynamics of the strains and the antibiotic drug treatment (4D model).

• Fluctuation within the degradation rate of the antibiotic drug (D) treat-
ment (4D model).

• Adding the death rates (ki) of the strains and the antibiotic drug (D)

treatment which is held constant (fixed) value for the switching (s1, s2)

strains discussed in chapter 2.

• Also to include the dynamics of the antibiotic drug (D) treatment in
chapter 2 with it administration and degradation rates, like it was done
in chapter 5.
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