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2 Abstract

In recent studies, electrical resistance tomography (ERT) has been explored as a non-destructive

testing imaging modality in conjunction with structural health monitoring (SHM). This imag-

ing modality has been shown to be able to locate cracks in cement-based materials as well as

reconstruct strain and stress distributions in nano-composite materials. However, due to the

ill-conditioned nature of the ERT inverse problem, the computational cost of solving such

problems can be high. In order to reduce the overall computational cost of solving the ERT

inverse problem in practical applications, we propose using a deep learning approach to ad-

dress this challenge. The deep-learned ERT frameworks have been successfully implemented

and validated using simulation and experimental data for various materials relevant to SHM.

The results indicate that the deep-learned ERT frameworks are feasible for implementation

in SHM applications.

In my first publication, I successfully used feed-forward (ANN) and convolutional neural

network (CNN) to directly solve the ERT inverse problem to predict the probabilistic spatial

flexural/shear crack distribution on cement-based materials. The feasibility of the deep-

learned framework was confirmed by experimental and simulated patterns, which showed the

potential of using neural networks to reconstruct crack locations with significantly reduced

computational cost.

In my second publication, I explored a deep-learned framework for reconstructing strain/stress

distributions in nano-composites. This research has the potential to obtain the mechanical

state of nano-composites without prior knowledge of forces, boundary conditions, etc. The

feasibility of this framework could directly solve the ERT problem associated with reduced

computational cost based on ERT measurements alone.

In my third research, I focused on using a data-driven approach to super-resolve low-fidelity

data to achieve high-fidelity results without compromising accuracy with limited computa-

tional power. Super-resolution of mechanical finite elements models with lower-order meshes

was used for the simulation study, while reduced ERT measurements were used for the ex-

14



perimental inverse problem. The results indicate that there is potential for using data-driven

super-resolution to achieve meaningful results from low-fidelity data.

The limitations and potential future research are also discussed in this thesis to provide a

more comprehensive view of the deep-learned methodologies.
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3 Introduction

3.1 Background

3.1.1 Strucutral Health Monitoring

Structural health monitoring (SHM) methodologies are widely applied in civil and aerospace

industries to assess structural states. Aiming at predicting and preventing catastrophic struc-

tural failures, SHM approaches should at least provide accurate monitoring/prediction on the

location and severity of potential structural damages. Farrar et al. has referred to the de-

tection, localization, classification, assessment and prediction as hierarchies for SHM (Farrar

& Worden 2012). In this thesis, my research is focusing on the first three hierarchies with

reduced computational cost. Historically speaking, SHM originated from railway tap test-

ing (Stanley & Moore 1995) and has since draw substantial research interests in the past

years aiming to develop methodologies that could monitor the structures qualitatively and

quantitatively.

During this period there are SHM technologies that were developed into commercially avail-

able applications. There are various commercially available non-destructive testing (NDT)

approaches such as ultrasonic, electromagnetic, radiographic, photographic and infrared test-

ings. However, few traditional NDT modalities (e.g. electromagnetic testing) have disad-

vantages such as the following: 1) high energy consumption, 2) high operational cost due

to the transportation and implementation of the equipment and 3) can not be implemented

on a large scale. For example, ultrasonic testing can only monitor structures locally rather

than reflecting the structural health globally, hence the industry is in need of a modality that

could offer accurate and continuous monitoring with lower costs. (Gholizadeh 2016, Mutlib,

Baharom, El-Shafie & Nuawi 2016, Montinaro, Cerniglia & Pitarresi 2018, Kong & Li 2018,

Ma & Li 2018).

3.1.2 Electrical Resistance Tomography and Forward Model

Electrical resistance tomography (ERT) is an NDT technique which reconstructs the internal

conductivity of the domain based on boundary voltage measurements. This technique was

chosen to be the main approach for this thesis due to the following advantages: 1) lower

16



implementation costs, 2) lower energy consumption and 3) faster data collection (Liu, Smyl

& Du 2020).

In a typical ERT experiment, firstly, alternating or direct current is injected on the boundary

electrodes shown in 1. Then potential difference measurements between different electrodes

Figure 1: Voltage Measurment in ERT (Karhunen, Seppänen, Lehikoinen, Monteiro & Kaipio
2010)

will then be taken and recorded. The voltage measurement data will be used to to solve

the ERT ill-posed inverse problem. As a result, the internal conductivity distribution is

reconstructed.

In this paragraph, I briefly introduce the historical development of ERT experimental set up

(Hou & Lynch 2009). Experimental ERT measurement was developed starting from two-point

technique introduced by (Vilhunen, Kaipio, Vauhkonen, Savolainen & Vauhkonen 2002). As

shown in Figure 2 Since direct currents are injected on two boundary electrodes and the

Figure 2: 2-Point and 4-Point Electrical Conductivity Measurement Technique Hou & Lynch
(2009)

17



voltage differences are taken between them. According to Ohm’s law, the conductivity can

be calculated as following.

σ =
I

V

L

wh
(1)

The above testing method was firstly used in rapid chloride penetration protocols (Layssi,

Ghods, Alizadeh & Salehi 2015, Bentz 2007). However two point measurement have two

disadvantages as following: 1) Internal electrochemical reaction induces reduced conductivity

and the electrode-specimen interface. This could potentially damage the accuracy at the

electrode position however this error is negligible since we are not considering data from

damaged electrode and 2) the polarization of the specimen. A possible solution is to switch

from direct current to alternating current which could provides insufficient time for the above

two problems to develop. In addition, another experimental technique known as four point

measurement technique is similar to two point measurement technique with two additional

electrodes which separate the excited electrodes. Nonetheless, the above equations still holds

for this technique and offers more accurate results (Hou & Lynch 2009).

From other studies, Gower and Millard proposed an modified four point measurement tech-

nique (Gowers & Millard 1999) known as Wenner technique. This technique installs four

electrodes at the surface of the specimen with equal spacing. In their research, specimens

were assumed as a infinite half-space, the mathematical expression for this technique is as

following

σ =
I

V

1

2πa
(2)

Experimental setting up can be seen in Figure 3. However this experimental technique is

18



Figure 3: Electrodes set up and current flow of Wenner Technique Hou & Lynch (2009)

limited by the assumption of infinite half-space which is only satisfied when the thickness of

specimen is at least four times of electrode spacing.

Furthermore, researchers discovered that electrical impedance tomography (EIS) with fre-

quency response analyser can be used to measure impedance of the specimen (Gholizadeh

2016, Hou & Lynch 2009). EIS, however, is not capable of including inhomogeneity of con-

crete conductivity hence is not accurate in terms of its spatial distribution.

ERT is similar to EIS however is another typical electrical measurement modality. Typical

modern experimental set up ERT mesuremENT KIT4 is shown in Figure 4. Electrodes

are installed the boundary surface of the specimen, current is injected and taken out in

two electrodes while potential difference is measured in pair of adjacent electrodes. The

injection and measurement protocols varies, for example voltage can be taken as pairs of one

fixed electrode with another electrode following clock-wise order. As explored by Hallai et al.

(Hallaji, Seppänen & Pour-Ghaz 2014) and Smyl et al. (Smyl, Pour-Ghaz & Seppänen 2018),
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Figure 4: Typical ERT experiment set up Hallaji et al. (2014)

sensing skins can be used to provide quantitative reconstruction of cracks hence copper or

silver sensing skins are often implemented in ERT experiments.

With the advantages of ERT mentioned above, ERT still suffers from high computational

costs from solving ill-conditioned ERT inverse problems. The ill conditioning of ERT prob-

lems is mainly due to the following reasons: 1) noisy voltage measurement data, 2) ill-

conditioned Hessian matrices computed while implementing the optimization algorithm, 3)

diffusive nature of the injected currents and 4) numerical modelling errors (Chen, Hassan,

Tallman, Huang & Smyl 2022). Since ERT is an ill conditioned inverse problem, in order to

solve such problem we need to establish a forward model describing the explicit relationship

between boundary voltage measurements and the internal conductivity. Such model is known

as Complete Electrode Model (CEM) (Cheng, Isaacson, Newell & Gisser 1989, Karhunen,

Seppänen, Lehikoinen, Blunt, Kaipio & Monteiro 2010) which consists a partial differential
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equation with boundary conditions shown as following:

∇ · (σ∇u) = 0, x ∈ Ω (3)

∫
el

σ
∂u

∂n
dS = Il, l = 1, ...., L (4)

σ
∂u

∂n
= 0, x ∈ ∂Ω \ ∪L

l=1el (5)

u+ zlσ
∂u

∂n
= Ul, l = 1, ...., L. (6)

Equation (3) is the Laplace equation which describes steady-state diffusion (Tallman & Smyl

2020) in a target domain Ω with a boundary ∂Ω. Further, x represents Cartesian coordi-

nates within the domain while σ(x) and u(x) represents the conductivity distribution and

potential distribution within the target. Equations (4) to (6) provide the necessary bound-

ary conditions to solve equation (3), where el represents the lth electrode hence Ul is the

potential measurement on the corresponding electrode. Il represents the current injection

on lth electrode. dS represents the infinitesimal surface of Ω while zl represents the contact

impedance between the lth electrode and the internal domain. Equations (4) to (6) provide

an accurate forward model solution by taking the shunting effects of electrodes and their

contact impedance into account (Vauhkonen 1997). Lastly, in order to satisfy the current

conservation law and fixed potential reference level which would ensure an unique solution,

the following equations are written to complete the CEM

L∑
l=1

Il = 0 (7)

L∑
l=1

Ul = 0. (8)
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We would like to emphasize that the CEM describes the forward problem where the internal

conductivity is known, from which the electrode potentials can be computed. As such, we

adopt the CEM in generating training data sets which consist of boundary voltage measure-

ments accompanied by corresponding internal conductivity distribution is known. However,

in pragmatic imaging scenarios, the internal conductivity distribution is unknown. There-

fore, conductivity estimates must be obtained using an inverse methodology as described in

the forthcoming sections.

3.1.3 Machine learning and neural network

As mentioned in the previous sections, solving an ill conditioned ERT inverse problem re-

quires high computational cost. Herein, in order to reduce the overall computational costs

of solving ERT inverse problems, this thesis explores the implementation of the Neural Net-

works (NNs) to solve ERT inverse problems directly considering different materials as well

as using NNs to superresolve low-fidelity data. NNs are implemented with deep learning

techniques which in most cases utilize gradient descent algorithms and back-propagation to

minimise the error functions. Training of the NNs aims at reducing the discrepancies between

the predicted values and the ’true’ values. The weight and bias of each neuron are then saved

during training which serves as a fundamental aspect in predicting the next output (Ying

2019). NNs are capable of solving both classification and regression problems, however the

architectures and hyper-parameters of NNs are highly dependent on the patterns of which

NNs are learning. In addition, the architectures and hyper-parameters of NNs are often

adjusted with trial and error aiming at yielding the least prediction error. As a result, the

calibration of architectures and hyper-parameters of NNs are often considered to be an “art”

by machine learning engineers (LeCun, Bengio & Hinton 2015).

The concept and implementation of Neural Network was proposed in mid 20th Kröse et al.

(1993) and research interests grew exponentially since the discovery of back-propagation and

hardware development. Neural Network, in principle, aims to mimic the biological neuron

process where raw data is passed on neurons (units) to produce an output. According to

Papert Papert (1961), Neural Network learning algorithm is capable of learning any linear

function from raw data. However, a multilayer network could offer the possibility of becoming
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a deep learning network which leads to recognizing more complex representation especially

in higher dimensional data. Currently Neural Network is implemented with Deep Learning

aiming to solve difficult science, medical and business problems. For example, image classi-

fication, speech and document recognition, etc. LeCun et al. (2015).

In this project we will be using supervised machine learning where data set contains in-

put and corresponding output are provided for the network to train. An objective function

is formulated to compare the difference between predicted value and actual value which is

called error during each epoch within training. During this training process, the parameters

like the individual weights and bias of neurons will be adjusted leading to the steepest gradi-

ent decent in error space, aiming at approaching the pre-set threshold value for the objective

function. Hence reach the possible minimum point in error space. Mostly, Stochastic Gradi-

ent Descent(SGD) algorithm is implemented during the training process for faster and more

accurate approach.

There are different network architectures available targeting at solving and recognizing dif-

ferent patterns. A simple fully connected Artificial Neural Network (ANN) is effective at

solving shallow classification tasks while Convolutional Neural Network (CNN) by embed-

ding extra convolutional and max pooling layer are more powerful than conventional ANN

hence are used for more complex recognition and classification tasks such as speech, text,

handwriting image classification. Furthermore, Recurrent Neural Network (RNN) has also

be the source of interest in recent years and by incorporating more adjustable parameters

and dimensions this is a extremely powerful architecture that is mostly applied on markets

prediction, society analysis, game playing AI, etc.

The motivation behind implementing NNs in this project is to utilize its capability of recog-

nizing non-linear representation and to be more specific is to achieve direct inversion from

measured voltages to electrical conductivity distribution hence to reconstruct the potential

cracks. Since dependence between V and σ that we aimed to fit in this case is non-linear and

by transforming ERT inverse problem to a binary classification task in NNS, their feasibilities
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can be investigated.

3.1.4 Artificial Neural Network

As shown in Figure 35 and mentioned in clause 2.3.1, we can observe the process of the

Figure 5: A typical ANN architecture with two hidden layers

data being passed on a typical ANN architecture which consists of an input, one or more

hidden and one output layers as all units are connected to the upper and lower layer which

describes a fully-connected network. Within each layer there are multiple neurons with their

own weights and bias. Neuron output will also be passed on a threshold function/activa-

tion function to control the training. According to Lecun et al. LeCun et al. (2015) a two

class classifier is capable of classifying two categorises by separating half-space by a hyper

plane which should be powerful enough for categorising two classes. According to Krose et

al. Kröse et al. (1993), more neurons will enable the network to adjust the weights towards

desired hyperplane while filtering unhelpful information. This was demonstrated in CNN

however should hold for ANN as well. Though this reviewing paper mainly illustrates exam-

ples in CNN, the content still could support the concept of this thesis. Although with the

typical architecture shown in Figure 36, the selection of the number of neurons and hidden

layers remains as ”art” especially with increasing depth of network. However the following

paragraph provides certain tricks of achieving effective network structure.
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Baum Baum (1988) provided the proof of the simplest solution of a one layer neuron network

of recognizing the desired function. It was discovered by Papert et al. Papert (1961) that N-1

number of neurons in one hidden layer are capable of recognizing the arbitrary function of N

points. Furthermore, as indicated by Cover Cover (1965) a net with M weights has 50 percent

probability of implementing a random function with 2(M + 1) vectors while the probability

will infinitely approach 100% with increased weights and less vectors. Based on that Baum

proposed that any net with one hidden layer with N/d neurons should be capable of realizing

arbitrary function with set of N inputs with d dimensions. Discoveries mentioned in this

paragraph should serve well as the lower bound or the least number of neurons and layers

required to recognize the function in this project. If the example of arbitrary dichotomy

of is adapted into our problem Baum (1988), we can treat the positive points as positions

of cracks while negative points be where the specimen is intact. The parallel line segment

will serve the purpose of recognizing the potential function of voltage data and conductivity

vector while separating the crack from the background in a binary manner. Hence the ba-

sic theory can support the aim of this thesis to treat the reconstruction inverse problem as

a classification task in multilayer neural network aiming at finding the correlation between

voltage experimental measurement as input and output which is the conductivity distribution

derived from FEA model. By implementing the theories mentioned above, we can establish

a starting point of constructing the network structure.

Furthermore Lecun LeCun et al. (2012) also offered some insights into achieving more accu-

rate outputs. However before reviewing, note that any tricks mentioned is not a universal

or ideal adjustment for any network, since problems are unique for instance the level of non-

linearity for different patterns.

Firstly, instead of conventional batch learning we could try stochastic learning where a ran-

dom sample is chosen at each epoch. Stochastic learning generally trains faster on large

redundant samples since one batch of small sample is sufficient of descenting the gradient.

However the samples are chosen randomly in stochastic learning hence the learning curve is
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noisy. Though with the obvious time cost advantage it is still extremely hard to quantify

’redundant’ training samples in this case.

Secondly, training samples can be pre-processed to optimize the training process. If ap-

plying stochastic learning, we could shuffle samples to include different classes in excessive

epoch since network learns faster in this way. To be specific, we could offer training samples

which leads to larger errors in objective functions hence deliberately feeds the network with

unexpected samples.

Thirdly, we could also normalize the training samples. By shifting the average of input

to near zero, we could avoid the weights descenting in a zigzag way for instance in a all

positive training samples. Furthermore, training samples can also be scaled to have the same

covariance as shown below which leads to faster convergence due to learning rates of neurons

are more balanced.

Ci =
1

P

P∑
p=1

(mP
i )

2 (9)

P represents the number of training samples, mP
i represent the ith component of the pth

training example. Also, since correlated inputs could keep the gradient on a straight line. If

inputs are linearly correlated results unnecessary extra dimension will be created for network

to learn. Hence decorrelate the input in advance would also speed up the training process.

Lecun et al. LeCun et al. (2012) also mentioned a typical sigmoid activation function to

use which could potentially increase the convergence time however this is in conflict with

Karlik et al. Karlik & Olgac (2011) and Glorot et al. Glorot et al. (2011) results where

rectifier activation function is suggested. This aspect is discussed in detail in chapter 2.3.5.
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3.1.5 Convolutional Neural Network

CNNs are a powerful NN architecture which take integrated information from raw data and

feed them into a ANN mentioned above aiming at recognizing more features of the data hence

solving more complex problems. Typically CNN is applied to image, handwriting recogni-

tion where image inputs are often involved. Images are incorporated to software in a matrix

manner where black and white image as 2D matrix and coloured image as 3D image (RGB).

Each entry within a matrix will be a real number between 0-255 represent the scale of each

pixel where 0 represents black and 255 represents white. An CNN architecture generally

includes five operation which are Convolutional Layer, Relu Activation Layer, Max Pooling,

Flattening and ANN Wu (2017).

In the convolutional layers, a matrix is constructed named Feature Detector of which will be

applied on the initial raw image matrix while moving along the whole space of the matrix.

In each operation, dot product of each entries is taken and recorded to a new matrix which is

called the Feature Map where the information are convolved as shown in Figure 37. Entries

in the feature map represents how close of each mini-matrix from input image is similar to

the feature detector hence larger the number means a certain feature is extracted by the

detector. Edge Detector for example is a common Feature Detector which only outlines the

boundary of contents in the input image. During the training, different weights can be given

to different feature detectors aiming to decide the essential ones hence resulting in group

of feature maps which is called the convolutional layer shown in Figure 38. By doing this

operation we could significantly reduce the size of the problem as can be observed in Figure

37 as well as preserving the most important features.

However by applying the feature detector we risk the potential chance of creating the lin-

earity, hence we need to apply an extra ReLU layer to increase the non-linearity since most

input images has highly non-linear features.

The third operation is Max Pooling. The main aim of max pooling is to introduce the

spacial invariance into the network since in real practice a certain feature that is necessary
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for recognizing might appear in different locations of the input image or be distorted to some

extent, the network should still be able to pick that up. Hence a smaller size of matrix (2×2

in the example below) could be applied onto the convolutional layer where only the maximum

number in the small matrix is extracted and recorded in a new matrix called Pooled Feature

Map. An example of Max Pooling is shown in Figure 39. As we can observe that if number

5 changes its geographic location to top-right of the feature map , it will still be extracted

and recorded in the pooled feature map which is also known as down sampling.

The fourth operation is to simply flatten the pooled feature map to a vector which will

be regarded as the input layer of the following ANN. Hence the next operation will be a

similar ANN architecture mentioned in clause 2.3.2 where the flattened vectors is trained.

One essential difference needs mentioning is that instead of using Mean Squared Error (MSE)

function to calculate error during training, a cross-entropy function is preferred in CNN. A

typical cross-entropy function is listed in equation (32), where p represents the real data

while q is the predicted value. One of the main advantage of using cross-entropy loss func-

tion rather than MSE is that cross-entropy function could be pick up the improvement of

the network if the predicted value is relatively much smaller than the actual value due to the

logarithm operation in the equation.

Figure 6: Feature detection operation of input image in CNN
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Figure 7: Construction of convolutional layer in CNN

Figure 8: Max pooling operation to construct pooled feature map in CNN

R(p, q) = −
∑
x1

p(x1)logq(x1) (10)

3.1.6 Activation Function

As mentioned in previous chapter, activation function serves within each neuron and acts as

a valve which controls the output data which will be fed to the next hidden or output layer.

Activation functions can be categorised to be binary step, linear and non-linear functions.

According to different patterns and layer structures its essential that the most efficient acti-

vation function is chosen and tailored to the pattern.

A typical binary step function is shown as below where the input value is below or above

the threshold value, this function will produce a binary outcome which is suitable for simple

binary classification problems. However this will not be able to learn any non-linear patterns.

Any linear activation function could help recognizing a linear pattern but most likely the

problems needs the implementation of Neural Network is highly non-linear.

Hence non-linear activation functions are the most common ones in NNs. Reviews were

done on few conventional activation functions below with comments. Firstly, sigmoid func-

tion is one of the most popular due to its smoothness in transition while restraining the
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Figure 9: Plot of a typical binary step function giving output of 1 and 0

output value between finite value. This is consistent with Lecun’s suggestion of keep aver-

age of training samples around zero LeCun et al. (2012). Common sigmoid functions are

Unipolar shown in equation (33) and Figure 41 and Bipolar equation (34) and Figure 42.

According to Karlik Karlik & Olgac (2011), these two sigmoid functions is stretched along

x-direction with upper and lower value hence is distinguishable which results in minimizing

the computational cost.

g(t) =
1

1 + e−t
(11)

g(t) =
1− e−t

1 + e−t
(12)

Hyper Tangent Function is a similar function to sigmoid functions mentioned above however

with much steeper gradient around zero whose equation is shown below. Typical plot is

shown in Figure 43
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Figure 10: Plot of unipolar sigmoid function spanning between (0,1)

Figure 11: Plot of bipolar sigmoid function spanning between (-1,1)

g(t) =
et − e−t

et + e−t
(13)

Performance analysis with 10 neurons and 40 neurons both shows Tanh activation function

with minimum error and highest accuracy at 100 , 500 iterations respectively. However the
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Figure 12: Plot of hyperbolic tangent function shows steeper gradient around origin

simulation itself is not well presented in the paper, hence it is impossible to know what kind

of problems the NN was trying to train on Karlik & Olgac (2011).

Another effective activation function is known as rectifier function (ReLU), typical plot is

shown in Figure 44 where the difference is the smoothness of transition. Rectifier function

has the advantage of controlling specific neuron to be active while deactivate other neurons

of which weights are low. Since mentioned in chapter 2.3.1, NN is merely trying to mimic the

biological neuron process, according to Lennie Lennie (2003) only 1-4% of neurons are active

at the same time which indicates the biological neuron process in a sparse way. Hence by

deactivating certain neuron in NN mimics that feature well since certain number of neurons

will not be contributing to the gradient decent during training process. Glorot et al. Glorot

et al. (2011) also indicated that due to the one side nature of ReLU functions, matrices

appearing during training process will be fairly sparse. The advantages of sparse matrices

in neural network is firstly disentangle the information where small change in input value

could be matched to the non-zero features Bengio (2009). Secondly it could also increase the

chances of separating datasets in a linear manner. However too much sparse space could also

lead to insufficient information being fed to NN which makes the training harder, hence this

become a trade-off problem which need detailing implementation during practice.
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There are also other different activation functions that can be chosen from freely hence

Figure 13: Plot of softplus and rectifier function shows their smooth transition difference

for the clarity of this report, review was not done on each one of them and although there is

no solid rule for selecting activation function, the best principle is to simply understand its

aim as a function and tailor to the actual problem. (For example, is the output binary or

can have infinite increasing range?).

3.1.7 Training of Neural Network

As mentioned in chapter 2.3.1, training process of NNs aims at finding the expected function

between input and output. Hence generalization of the network will dominate the training

performance. As described by Lecun et al. LeCun et al. (2012), bias and variance can be the

representation of generalization for a certain network. Bias represents the average error of

output from the desire function while variance is defined as the variance of output between

datasets. Hence at the start of a training, bias should be high while variance remains low

and when reaching the end of a training, bias should be minimal while variance remains

appropriate since a high variance may be the indication that network is over-trained. A lost

function is introduced here to quantify the training process. Though there are choices of such

functions, a MSE function is the most common which is expressed below.
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Ep =
1

2
(dp −M(zp, o))2 (14)

M(zp, w) represents the function while zpstands for the p-th input, o represent all the param-

eter within the network. dp represents the desired output in terms of the p-th function. Hence

Ep represents the MSE of the whole network and aim of our training will be to minimize Ep.

During training, weightings of each neuron will be adjusted through back propagation and

gradient decent which will be discussed in detail in 2.3.6 along with other learning algorithm.

By adjusting the weighting on different neurons network has the possibility to minimize the

loss function until it converges to minimal. If consider data passing from neuron β to γ, we

can describe this process in a mathematical form as below.

yγ = Fγ(wβγ, yβ) (15)

yβ and yγ represents the output value from neuron β and γ, wβγ represents the weighting

of γ from β. Fγ represents the activation function at neuron γ. For future convenience we

could call the weighting matrix at iterative t as Sγ(t) and expressed as below

Sγ(t) =
∑
β

wβγ(t)yβ(t) + θγ(t) (16)

θ(t) represents the bias of the network which can be seen as an extra linear term. Hence

substituting to equation (37) we can have the following expression in terms of the activation

function.
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yγ(t+ 1) = Fγ(
∑
β

wβγ(t)yβ(t) + θγ(t)) (17)

Equation (39) forms the basic mechanism about how information are passed from one neuron

to one another.

3.1.8 Back-propagation

In this section, the mathematical mechanism of back-propagation will be explained along with

the other developments. Main aim of implementing back-propagation is to further minimize

the error function by adjusting corresponding weights following the reversed direction. Hence

it is essential for the algorithm to locate the minimum of the weight space. For example, a

sagging point for a 2D problem. However since the complex dimensionality of this project,

we require more solid expression of how back-propagating works. Explained by Rumelhart,

Hinton and Williams Rumelhart et al. (1986), in order to find the minimal point at weight

space using gradient decent, partial derivative of the error function with respect to each

weights in the network needs to be computed.

Two phases are required before the back-propagation which combined can be seen as the

whole forward propagation process. An simple sigmoid function is chosen an expressed as

below

yγ =
1

1 + e−xγ
(18)

xγ represents the input of neuron γ and training sample is passed on equation (40) to become

the output yγ.

xγ =
∑
η

yηwγη (19)
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wγη represents the weight of neuron η to neuron γ. It is simply a linear summation of

multiplication of each weights. In this case bias of neuron was ignored for convenience of

explanation. Furthermore we can simplify equation (36) by leaving out the mean square

error feature.

E =
1

2

∑
l

∑
γ

(yγ,l − dγ,l)
2 (20)

l represents a certain training sample, while γ is an output neuron. yγ,l represents the training

output of neuron γ from training sample l while dγ,l stands for the desired output. The halved

and squared form is providing mathematical convenience. By computing equation (40-42),

the forward propagating process is finished hence in order to keep gradient descenting in

back-propagation, partial derivative of E with respect to weights needs to be computed. If

only one training sample is considered hence ignore l in equation (42) and take its partial

derivative with respect to yγ, we have

∂E

∂yγ
= yγ − dγ (21)

Then further pushing process backwards, we can compute the form of partial derivative with

respect to the input of neuron γ.

∂E

∂xγ

=
∂E

∂yγ

dyγ
dxγ

(22)

By differentiating equation (40) , we could have
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dyγ
dxγ

= yγ(1− yγ) (23)

By substituting equation (45) to equation (44), we could have

∂E

∂xγ

=
∂E

∂yγ
yγ(1− yγ) (24)

Furthermore the link between weights and error function needs to be computed as following

∂E

∂wγη

=
∂E

∂xγ

∂xγ

∂wγη

(25)

By differentiating equation (41) with respect to wγη we would have yη while substituting to

equation (47) we have following:

∂E

∂wγη

=
∂E

∂xγ

yη (26)

Equation (48) gives the possibility of computing relationship of partial derivative of E and

weight which passes data from neuron η to γ and its previous neuron output. Hence by

differentiating equation (41) with respect to yη we obtain:

∂E

∂xγ

∂xγ

∂yη
=

∂E

∂xγ

wγη (27)
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From equation (49) we have:

∂E

∂yη
=

∂E

∂xγ

wγη (28)

Equation (48) and (49) shows the process of back propagation of the output value of neuron

γ to input and its weighting from previous neuron. By following equation (48) and (49)

, we could properly back propagating and compute ∂E
∂w

along the way. Both Rumelhart

et al. Rumelhart et al. (1986) and Lecun et al. LeCun et al. (2012) have proposed and

explained the ways of updating weights in back propagation with further analysis linked to

practical training tricks. Firstly two ways of updating weights proposed by Rumelhart et al.

Rumelhart et al. (1986) is introduced and followed by Lecun’s LeCun et al. (2012) analysis on

its practical applications. First way to update the weights is to compute ∂E
∂w

for each training

sample which is close to the definition of Lecun’s stochastic learning, and the second way is

to accumulate computation of ∂E
∂w

for all training samples before updating the weights. Lecun

stated that firstly stochastic learning is quicker than batch learning in most case due to its

noisy decent nature and secondly as for the same reason, stochastic learning may lead to

better results since it has more possibility to jump in deep localised minima basin in weight

space. Thirdly, Lecun indicated a faster convergence speed with redundant training sample,

however logic behind this point is solid, it is not a practical finding since all training samples

are made to be as random as possible. A common way of adjusting the weight is as following:

∆w = −ε
∂E

∂w
(29)

where ε is a scalar which determine the learning rate, equation (51) can also be improved by

adding an simple terms such as following:
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∆w(t) = −ε
∂E

∂w(t)
+ ζ∆w(t− 1) (30)

where ζ is a exponential decay factor between 0 and 1, while t represents the number of

epoch Rumelhart et al. (1986). According to Rumelhart, this could more accurately and

quickly adjust the descending speed and direction of the point in weight space rather than

its position only. Although Rumelhart lacks further exploration with the updating factor,

Lecun gave more analysis in terms of the updating of weights.

According to Lecun ε is only considered as a scalar constant in simplest scenario. Im-

plementing more complex updating methods, ε maybe treated as a variable or an estimation

of cost function’s inverse Hessian matrix. Choosing of ε will have great impact on gradient

decent hence the whole training process.

This is a publication based thesis and I firstly introduce the aims of this thesis followed by

the connections between three publications as well as my contribution to these papers. I then

present the contents of these publications and finalize the thesis in the conclusion section.

3.2 Aim of the thesis

The primary aim of this thesis is as following: 1) conduct feasibility studies on solving ERT

inverse problems directly with deep learned ERT frameworks and 2) reduce the computa-

tional costs of obtaining numerical solutions from low-fidelity data. Since SHM methodolo-

gies are widely applied in civil and aerospace industry, I aim to explore the feasibility of

implementing the proposed deep learned ERT frameworks in both fields. As a result, I set

up the secondary aims as following: 1) conduct the feasibility study of the proposed deep

learned ERT frameworks on detecting cracks considering cement-based materials, 2) explore

the feasibility of the proposed deep learned ERT frameworks on monitoring structural status

considering aerospace materials under loadings and finally 3) explore the feasibility of using

NNs to potentially superresolve low-fidelity data. The connections between these aims are

presented in the following section.
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3.3 Connections between the published papers

In this section the research connections behind the three publications are presented. I firstly

utilized the NNs to replace the computational expensive algorithms for solving ERT inverse

problems and secondly validated the deep learned framework using experimental and simu-

lation data considering cement-based material. This research showed the potential of using

NNs to predict the probabilistic location/sizing of the cracks, however this approach did not

offer the reconstruction of the global strain/stress fields in the domain. As a result, this

study can only offer reconstructions when local cracks have already occurred. The work

associated with the above is shown in Section Probabilistic Cracking Prediction via Deep

Learned Electrical Tomography. For SHM purposes, it might be more insightful if the pro-

posed deep learned framework can offer reconstructions of the real-time strain/stress fields.

In the following paper, as a continuation of the prior work, I utilized a function that maps

the internal conductivity distribution to strain/stress field has been developed and studied

on nanocomposites by utilizing their piezoresistive properties. Such a function is known

as a piezoresistivity model, which enables researchers to develop self-sensing frameworks on

nanocomposites (Tallman, Gungor, Wang & Bakis 2015, Thomas, Kim, Tallman & Bakis

2019, Gallo & Thostenson 2016, 2015, Baltopoulos, Polydorides, Pambaguian, Vavouliotis &

Kostopoulos 2015, Tallman & Smyl 2020). Since nanocomposties are applied in aerospace en-

gineering, it is reasonable to conduct further research in applying the proposed deep learned

ERT framework in imaging strain/stress distributions. The detailed work associated with

this is provided in Section Predicting strain and stress fields in self-sensing nanocomposites

using deep learned electrical tomography.

By using NNs to directly solve ERT inverse problems, I can significantly reduce the compu-

tational costs, however, in pragmatic applications, the computational processing power can

occasionally be limited due to various reasons. Herein, one can reduce the computational

cost if numerical solutions can be obtained with low-fidelity data which often have less en-

tries. I proposed to explore the feasibility of data-driven superresolution applications using

NNs and validated them on FEM simulation studies as well as on upsampling experimental

ERT voltage measurements. Work associated with superresolution is presented in Section
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Data-driven superresolution of numerical simulations and experimental measurements. By

following the research logic mentioned above, the first two paper has been published while

the final paper has been submitted subjected to further review.

3.4 Contribution to the publications

In this section, I list out my contribution concisely in terms of the three publications included

in this thesis. It is worth commenting that then literature review has been excluded from

this section. For more detailed literature review conducted for the relevant studies, readers

should refer to the corresponding sections.

Paper One:

1. I integrated the FEM and the complete electric model (CEM) based on the experimental

domain for simulating flexural cracks.

2. A similar integrated model was then established on an discretized domain for simulating

shear cracks;

3. Then, I programmed both models to simulate the progression of the cracks on both

discretized FEM domains.

4. In addition, further programmings were done for the two integrated models to generate

sufficient number of training samples for the NNs.

5. After that, the training samples were reformatted to binary vectors where zeros were

assigned to the background and ones were assigned to the crack locations.

6. Then, a fully connected NN was then constructed to solve the ERT inverse problems

directly aiming at reconstructing the probabilistic of the flexural crack locations. A

convolutional NN was then established aiming at reconstructing the probabilistic of

the shear crack locations.

7. Architectures and hyper-parameters of both networks were repeatably adjusted based

on validation performances against simulation and experimental results.
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8. Finally the results were compiled in the paper along with the discussions.

9. D.S was involved in formulation of overarching research goals and aims, helped with

the overall data analysis as well as the critical review, commentary and revision at

pre-publication stages. D.S also offered oversight and leadership responsibility for the

research activity planning and execution. S.S.H and D.L helped with the analyzing

of the obtained data as well as the revision at pre-publication stages. G.A helped

conceptualization with the revision at pre-publication stages.

Paper Two:

1. I firstly established an integrated model consists of CEM, Piezoresistivity model and

FEM which mapped the boundary voltage measurements to strain/stress fields on

nanocomposites.

2. After that, the integrated model was then programmed to generate sufficient number

of training samples for the NNs.

3. Then, training samples were then pre-processed ahead of training to reduce the mod-

elling error as well as increasing the variance of the training data.

4. In addition, two fully connected NNs were then established aiming at reconstructing

strain and stress fields respectively.

5. Architectures and hyper-parameters of both networks were then adjusted based on

validation performances against simulation and experimental results.

6. In addition, predicted strain and stress fields were then compared with the experimental

digital image correlation (DIC) images.

7. Finally, results were compiled in the paper with the discussions.

8. D.S was involved in formulation of overarching research goals and aims, helped with

the overall data analysis as well as the critical review, commentary and revision at pre-

publication stages. D.S and TN.N also offered oversight and leadership responsibility
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for the research activity planning and execution. TN.N and H.H provided the previous

research output regarding self-sensing nanocomposites. S.S.H helped with the analyzing

of the obtained data as well as the revision at pre-publication stages.
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Paper Three:

1. I firstly established two FEMs meshed with lower and higher order elements respectively

for the mechanical simulations studies.

2. These two FEMs were then programmed to generate numbers of training samples con-

sist of displacement vectors;

3. Then, two fully connected NNs were developed to superresolute the displacement vec-

tors computed from FEM with lower order elements on x and y directions respectively.

Random simulation results were then selected to validate this approach.

4. In addition, I adapted the domain of an experimental ERT inverse problem. An in-

tegrated model with FEM and CEM was then established based on the experimental

domain and then programmed to generate high fidelity boundary voltage measure-

ments based on 16 electrodes which were then down-sampled to measurements based

on 8 electrodes.

5. After that, a fully connected NN was developed to learn the mapping between the

low-fidelity and high-fidelity voltage measurements.

6. After the training, the ERT inverse problem was solved using the conventional Total

Variation (TV) prior regularization algorithm.

7. In the end, the superresolution results were compared with reconstructions from low

and high fidelity data and the paper was finalized by discussions.

8. D.S was involved in formulation of overarching research goals and aims, helped with

the overall data analysis as well as the critical review, commentary and revision at

pre-publication stages. D.S also offered oversight and leadership responsibility for the

research activity planning and execution. S.S.H and D.L helped with the analyzing of

the obtained data as well as the revision at pre-publication stages.
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4 Novelty of the publications

In this section, I will briefly list the novelty of the following three publications. In Paper

One, I utilized neural networks to directly solve the ERT inverse problem to offer probabilistic

binary cracking predictions on cement-based materials. Feed-forward neural networks and

convolutional neural networks were used to study the feasibility of this deep-learning approach

for both flexural and shear cracks. In Paper Two, I developed a deep-learning framework with

neural networks to directly reconstruct the strain and stress distribution on nanocomposites.

This proposed work can significantly reduce the computational time compared to conventional

algorithms, which could reduce lag in data processing when used in practical applications. In

Paper Three, I explored the feasibility of a superresolution approach that could potentially

map low-fidelity data to high-fidelity data. A mechanical simulation study and an ERT

inversion experimental study were used for the feasibility study. These research outputs

could potentially allow for on-site data processing with reduced computational requirements.
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5.1 Abstract

In recent years, Electrical Tomography, namely Electrical Resistance Tomography (ERT), has

emerged as a viable approach to detecting, localizing and reconstructing structural cracking

patterns in concrete structures. High-fidelity ERT reconstructions, however, often require

computationally-expensive optimization regimes and complex constraining and regulariza-

tion schemes, which impedes pragmatic implementation in Structural Health Monitoring

frameworks. To address this challenge, this paper proposes the use of predictive deep Neural

Networks to directly and rapidly solve an analogous ERT inverse problem. Specifically, the

use of cross-entropy loss is used in optimizing networks forming a nonlinear mapping from

ERT voltage measurements to binary probabilistic spatial crack distributions (cracked/not

cracked). In this effort, Artificial Neural Networks and Convolutional Neural Networks are

first trained using simulated electrical data. Following, the feasibility of the predictive net-

works is tested and affirmed using experimental and simulated data considering flexural and

shear cracking patterns observed from reinforced concrete elements.
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5.2 Introduction

5.2.1 Background

Structural health monitoring (SHM), in a broad sense, aims to assess the integrity, condition

and/or damage state of target structures (Balageas, Fritzen & Güemes 2010). Respectively,

SHM frameworks have proposed clear hierarchies including, for example, aspects such as

detection, localization, classification, assessment, and prediction which serve as facets for

monitoring (Farrar & Worden 2012). For such hierarchies to be satisfied, SHM modali-

ties should therefore include systematic, automatic and continuous data acquisition followed

by accurate post-processing and analysis. To address the latter needs, specifically rapid

and accurate damage assessment of structural concrete elements, this work focuses on rapid

probabilistic crack prediction and localization enabled by machine learned models.

Prediction and localization of cracking in concrete elements is well documented in the field of

non-destructive testing (NDT) literature. Various traditional approaches include ultrasonic,

magnetic, electromagnetic, radiographic, photographic, and infrared modalities (Gholizadeh

2016, Mutlib, Baharom, El-Shafie & Nuawi 2016, Montinaro, Cerniglia & Pitarresi 2018, Kong

& Li 2018, Ma & Li 2018). In contrast to these well-established methods, electrical-based

modalities have recently shown promise in non-destructive testing and evaluation of cement-

based materials and structures (Smyl 2020). For example, in their seminal work, Karhunen

et al. (Karhunen, Seppänen, Lehikoinen, Monteiro & Kaipio 2010) demonstrated industrial

applicability of electrical modalities for assessing the degree of cracking, localization of rein-

forcement, corrosion state and depth of the cover in concrete elements. Additionally, previous

studies have shown that electric impedance spectroscopy (EIS) is relatively inexpensive and

can be applied on concrete elements to detect cracks to include their width/depth, reinforce-

ment, and internal moisture (Pour-Ghaz, Niemuth & Weiss 2013, McCarter & Garvin 1989).

On the other hand, Electrical Tomography, more specifically Electrical Resistance Tomog-

raphy (ERT, a specific Electrical Tomography modality), has been recently demonstrated

as an effective modality for detecting simple and complex cracking patterns in concrete ele-

ments (Karhunen, Seppänen, Lehikoinen, Monteiro & Kaipio 2010, Zhou, Bhat, Ouyang &

Yu 2017, Smyl, Pour-Ghaz & Seppänen 2018, Shi, Lu & Guan 2019); meanwhile, ERT has low
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experimental costs, energy consumption, fast data collection, high temporal resolution and

potential of continuous spatial monitoring (Liu, Smyl & Du 2020). However, the potential

disadvantages of ERT include its lower spatial resolution compared with other contemporary

modalities and (traditionally) high computational cost (Smyl, Bossuyt, Ahmad, Vavilov &

Liu 2020).

In assessing the former realizations regarding ERT, relatively low spatial resolution may

be sufficient in terms of localizing cracks – especially in large members (Rashetnia, Alla,

Gonzalez-Berrios, Seppanen & Pour-Ghaz 2018). Furthermore, the high computational cost

that traditionally arises in ERT stems from solving the ill-posed inverse problem. Though

previous research has demonstrated that incorporating non-iterative reconstruction methods

can reduce the computational time at a significant cost to spatial resolution (often overly

smooth), computational demand and interpretability of reconstructions remain factors in-

hibiting implementation of ERT in field applications. As such, a new methodology promoting

rapid and accurate cracking prediction from ERT data sets is needed. To address this issue,

the following paper proposes and investigates the implementation of Neural Networks (NN)

to directly solve an analogous ERT inverse problem affording (a) massive reduction in com-

puting demand and prediction time relative to high-fidelity ERT reconstruction frameworks

and (b) improved interpretability of (predicted) cracking patterns.

5.2.2 Machine learning and damage prediction

The concept of using NNs for pattern recognition and parameter space mapping originated

in mid-20th century (Kröse, Krose, van der Smagt & Smagt 1993) and has drawn large

research interest since the discovery of back-propagation while computational power has

been increasing exponentially. In fact, previous studies have indicated that a well-trained

network with two neurons is sufficient to recognize any linear functions between the input and

output data sets theoretically (Papert 1961). However, realistically, a deeper network with

non-linear activation functions is required to predict more complex representations (Papert

1961). For this reason, we investigate the use of supervised deep learned NNs for mapping

input data to desired output parameters, as detailed in the following.
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Feed-forward Artificial Neural Networks (ANNs) have architectures consisting of at least one

hidden and one output layer. In a pioneering work, Baum (Baum 1988) proved that a simple

one-layer network can recognize a linear pattern. Following, work by Papert et al (Papert

1961) discovered that an ANN network with N − 1 neurons should be sufficient to learn an

arbitrary function withN data points. Subsequent early research also indicated that networks

having M ≪ N − 1 weights has approximately 50% probability of successfully predicting a

random function (Bishop et al. 1995). Later, Lecun et al. (LeCun, Bengio & Hinton 2015)

identified that a well trained binary classifier is capable of linearly separating the error space

by a hyper-plane. This enabling feature is key in the ability of NNs to recognize highly non-

linear patterns. However, despite tremendous research progress in ANN research, tailoring

ANN parameterizations still remains an “art” in practice.

In contrast to ANNs, Convolutional Neural Networks (CNNs) are NN architectures first

trained with back-propagation by Lecun et al. and inspired by human ventral visual stream

(LeCun, Boser, Denker, Henderson, Howard, Hubbard & Jackel 1989, Luo, Roads & Love

2021). CNNs are widely used for handwriting, image, and voice classification – along with

other recognition applications (LeCun, Bengio et al. 1995). A typical CNN’s functionality

depends on four basic layers which are input layer, convolutional layer, pooling layer and

fully-connected layer (O’Shea & Nash 2015). Firstly, in the input layer, CNNs take input

information via an image matrix where (broadly speaking) each entry is either a continuous

entry or assigned a whole number varying from 0 − 255 representing the scale of each pixel

from black to white. Secondly, within the convolutional layers, learnable kernels are glided

through the raw input while the scalar products are calculated for each entries in the kernels,

the output of this convolution operation are referred as feature maps. Each kernel has its

corresponding feature map which is stacked along the depth of the input (Goodfellow, Bengio,

Courville & Bengio 2016). Kernels can help the network to extract more characteristic

information from input data (O’Shea & Nash 2015). The convolution operation is mainly

governed by the following three hyperparameters: 1. depth of the convolutional layer, 2.

stride of the kernels and 3. padding (Albawi, Mohammed & Al-Zawi 2017). Reducing the

depth of the convolutional layers can lead to a significant decrease in network’s recognition
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capability. Meanwhile, stride controls the overlap when kernels are glided through the input

data, by reducing the stride, one can reduce the output volumes however at the risk of missing

potential features. In addition, the use of zero padding ensures that features at the extents

of the image input can be efficiently extracted. Furthermore, parameter sharing can be

used to reduce the number of parameters in the network by constraining the learned feature

maps to have the same weight and bias (O’Shea & Nash 2015). Thirdly, a pooling layer

aims to further down-sample convolved data. For example, a max-pooling layer is applied

on the feature maps and only returns the maximum value within the region. Finally, data

are propagated to a fully-connected layer which has a similar structure to a typical ANN.

Of importance here, the inputs of the (first) fully-connected layer are the outputs of the

last pooling layer which are subsequently propagated through the remaining fully-connected

layers during the training (Goodfellow, Bengio, Courville & Bengio 2016).

Specifically, we are interested in direct classification of spatially-distributed damage (crack-

ing) which is assigned a binary form (0 or 1). As such, the use of probabilistic cross-entropy

classification is most appropriate given the binary nature of the information to be mapped

(i.e. classical regression is not appropriate). Therefore, we select the binary cross-entropy

function as the loss functional to be minimized in the network training, written as follows

L = − 1

N

N∑
t=1

[yt log(pt) + (1− yt) log(1− pt)] . (31)

In Equation (31), L represents the binary cross-entropy loss taking predictions pt and binary

sample labels yt across t ∈ N training samples (Saxe & Berlin 2015). The interpretation of

minimizing Equation (31), in the learning process, may be viewed as gradually improving

the probability P that predictions pt match the true distributions yt. As it pertains to this

work, this corresponds to learning the underlying patterns governing the predictions of cracks

where, using relaxed notation, P = 1 and P = 0 respectively correspond to cracked and not

cracked locally. Pragmatically speaking, however, minimizing Equation (31) may lead to

over-fitting and reduced generalizability. Therefore, L2 regularization is herein utilized to

address the former by writing
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L = − 1

N

N∑
t=1

[yt log(pt) + (1− yt) log(1− pt)] + λ||w||2 (32)

where λ is a scalar regularization hyperparameter and w are the network weights.

Generally speaking (and herein), Equation (32) is minimized by implementing gradient de-

scent and back-propagation via locating the minimum point within the loss space. It is

worth noting that, despite developments of, e.g. the Hopfield Network and Boltzmen Ma-

chine which offer new insight of training networks with statistical mechanics (Hopfield 1982,

Ackley, Hinton & Sejnowski 1985), many modern networks still rely on gradient descent and

back-propagation. Moreover, while local minima can be reached by adjusting the weights

of individual neurons in the network iteratively, there exist studies indicating a global mini-

mum could be attained providing a deep neural network with non-convex objective function

(Du, Lee, Li, Wang & Zhai 2019), although the evidence supporting that is not substantial.

Therefore, for the purposes of this initial work, a local minimum can be assumed to yield

results deemed sufficient for the purposes of damage detection.

It is worth highlighting that, in the context of contemporary SHM research, machine learning

has been successfully used in damage detection applications. For example, Bao et al. (Bao,

Guo & Li 2020) utilized neural networks for optimization considering non-convex sparse

time-frequency analysis and consequently achieved more accurate instantaneous frequency

identification. Moreover, Mousavi et al. (Mousavi, Varahram, Ettefagh, Sadeghi & Razavi

2020) trained deep neural networks to extract damage-sensitive features from vibration data.

In addition, Convolutional Neural Networks were also explored to retrieve missing strain data

due to sensor fault by Oh et al. (Oh, Glisic, Kim & Park 2020) while Mohtasham used CNNs

to detect cracks on gas turbines with filtered figures/paper3 (Mohtasham Khani, Vahidnia,

Ghasemzadeh, Ozturk, Yuvalaklioglu, Akin & Ure 2020). Inspired by such works, in this

paper, neural networks are also utilized for the intended purposes of SHM.

5.2.3 Paper structure

This paper first reviews the historical development and application of ERT as well as a

conventional solution to the ill-posed ERT problem. Then, the deep learned direct inversion
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framework is proposed. Thereafter, the data acquisition and training methodology consisting

of the training data generation, neural network architecture as well as the training process

are detailed. Following, predictive results for experimental and simulated crack patterns are

reported and discussed considering both their advantages and drawbacks. Lastly, conclusions

are provided.

5.3 Electrical Resistance Tomography and Direct Inversion

ERT is a modality which aims to reconstruct internal conductivity distributions from bound-

ary electrode measurement. To achieve this, a prescribed number of electrodes are installed

on the boundary of the specimen, from which electrode potentials are measured and electric

currents are injected into. Resultingly, potential differences are taken between one pair of

electrodes for each injection. As a whole, the measurement protocol should be planned in a

systematic manner to ensure sufficient data can be collected during each injection.

Historically speaking, ERT was initially developed and utilised for medical imaging by clas-

sifying organs based their different conductivities (Henderson & Webster 1978), later consid-

ering capacitive and inductive tomographies (Yang & York 1999). In the recent years, ERT

has been the source of significant research interest in the NDT/SHM community. For this,

ERT has been coupled with sensing skins to detect damage in reinforced concrete (Hallaji,

Seppänen & Pour-Ghaz 2014, Smyl, Pour-Ghaz & Seppänen 2018, Smyl & Liu 2019a) as

well as imaging damage, strain and stress fields in a broad suite of composite materials (Loh,

Kim, Lynch, Kam & Kotov 2007, Loh, Hou, Lynch & Kotov 2009, Loyola, Briggs, Arronche,

Loh, La Saponara, O’Bryan & Skinner 2013, Lestari, Pinto, La Saponara, Yasui & Loh 2016,

Tallman, Gungor, Koo & Bakis 2017, Tallman, Gungor, Wang & Bakis 2014, Tallman &

Smyl 2020, Hassan & Tallman 2020b). Previous related studies also demonstrate that ERT

is capable of imaging internal moisture flow within cement-based material in both 2D and

3D settings (Hallaji, Seppänen & Pour-Ghaz 2015, Smyl 2020).

Until recently, high-fidelity solutions to the ERT reconstruction problem have generally re-

quired solving an optimization problem using conventional iterative regularized computa-

tional methods (readers are referred to (Smyl, Bossuyt, Ahmad, Vavilov & Liu 2020) for a
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comprehensive review of ERT inversion methods used in NDT). However, as earlier alluded

to, such methods can be demanding and pragmatically inhibiting. On the other hand, lin-

earized difference imaging schemes offer much faster solutions at the cost of spatial resolution

(Liu, Smyl, Gu & Du 2020a). As such, we herein take a different approach to the ERT in-

version problem by utilizing direct inversion enabled by trained NNs in order to attain rapid

high fidelity predictions. Related work has, e.g. aimed at using NNs for solving the continu-

ous ERT problem (Fan & Ying 2020). Additional research has shown that CNNs are capable

of reconstructing ERT figures (Tan, Lv, Dong & Takei 2018, Hamilton & Hauptmann 2018)

however not for detecting cracking in structural applications. Recently, researchers in (Smyl

& Liu 2020) also used NNs to optimize the electrode locations in ERT measurement aiming

at achieving more efficient data acquisition. In the following section, written for contextu-

alization, we will first discuss the forward problem underlying ERT physics (and used for

generating training data), then discuss the conventional ERT inverse problem, and finally

propose the analogous ERT direct inversion framework.

5.3.1 The ERT inverse problem

The traditional nonlinear ERT inverse problem can be conceptually characterized by the

following observation model

V = U(σ) (33)

where U is the finite element forward model mapping σ to measured voltages V . Such a

model implies that when the measurements and the forward model match exactly, the inverse

problem is solved (i.e. when the L2 norm of the data fidelity term is minimized: ||V−U(σ)||2 =

0). In reality, however, such a case is an unrealistic idealization as measurement noise e is

always present, resulting in the noise-modified observation model written as

V = U(σ) + e. (34)
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Unfortunately, due to the presence of noise, numerical modelling error, nonlinearity of U(σ),

and ill-conditioning of resulting ERT matrices used in solving the inverse optimization prob-

lem, there are infinite solutions to Equation 75. Thus, we require advanced regularization to

incorporate biasing prior information and, often, physical constraints in optimizing/solving

the nonlinear (absolute imaging) inverse problem. In order to avoid such complexities, the

observation model may be linearized in order to obtain solutions with less up-front compu-

tational demand/complexity (Liu, Smyl & Du 2019).

Linearized ERT, or simply difference imaging as we will herein refer to it, is a framework

which aims to reconstruct the difference of internal conductivity ∆σ based on differences of

boundary voltage measurements ∆V from two different states (subscripts 1 and 2 representing

baseline and damaged states, respectively) expressed in the following

∆V = V2 − V1 (35)

∆σ = σ2 − σ1. (36)

As a consequence, the following linearized observation model can be written

∆V = J∆σ +∆e (37)

where J = ∂U(σ1)
∂σ1

is the Jacobian matrix computed at the linearization point σ1 and ∆e is

the difference in measurement noise between states 1 and 2.

Based on the observation model in Equation 76, the ERT reconstruction problem is generally

facilitated by a one-step least squares solution minimizing the following objective function

∆σ̂ = ||L∆e(∆V − J∆σ)||2 + α||LR∆σ||2 (38)
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where L∆e and LR are Cholesky factorized noise weighting and regularization matrices, re-

spectively. The use of regularization, the magnitude of which is largely controlled by the

hyperparameter α > 0, is required to stabilize solutions and incorporate prior information

into the least squares minimizer described below

∆σ̂ = (JTWJ + αLT
RLR)

−1JTW∆V (39)

where W is a diagonal noise weighting matrix.

The advantages in adopting linearized schemes, such as the difference imaging approach

described previously, are numerous. Firstly, since one-step optimization is used, inverse

solutions are significantly less computationally demanding than nonlinear absolute imaging

solutions. Secondly, and of principal importance to this work, the use of difference data

∆V results in subtraction of systematic errors. Therefore, in cases where measurements are

simulated for use in training data, a significant portion of modelling errors are subtracted

– thereby reducing the influence of modelling error corruption in training. In the following

subsection, we will detail the incorporation of difference data into the learned direct inversion

scheme analogous to the traditional linearized scheme previously described.

5.4 Training Data Acquisition and Training Methodology

5.4.1 Overview

Training data was generated using the CEM equipped with quadratic triangular discretiza-

tions. A set of training samples herein consists of simulated electrode potential differences

generated using sampled conductivity distributions and complimentary binary crack distri-

butions described in the previous subsection. Regarding the potential measurements more

specifically, each simulated difference measurement set results from subtracting baseline (un-

damaged) ERT measurements V1 from ERT measurements V2 generated from a cracked

configuration.

In this work, two cracking phenomena are studied: flexure-induced cracking and shear-

induced cracking. In total, 40,000 sets of training samples were generated for both flexural
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and shear cracks configurations. For validation purposes, geometries of the domains where

flexural and shear cracks developed were chosen considering differing geometries. Domain ge-

ometry and experimental data for flexural cracking were adapted from the experimental ERT

study (Smyl, Pour-Ghaz & Seppänen 2018) while the domain geometry for shear crack was

adapted from (Ma & Li 2018). However, since raw ERT experimental data was not obtained

during the shear testing, the shear cracking investigation uses simulated data generated from

randomized shear crack distributions. Parameters of the domains that are developing both

types of cracking are provided in Tables 14 and 2. We note that the use of simulated data

also facilitates quantitative assessment with respect to true cracking patterns.

Table 1: Geometry and mesh details for the flexural cracking investigation.

Parameter Value

Width 18cm
Height 4.3cm
Horizontal Electrodes (Each Side) 12
Horizontal Spacing 1.5cm, 2cm
Vertical Electrodes (Each Side) 2
Vertical Spacing 2.3cm
Electrode Width 0.23cm
Electrode Depth 0.15cm

Table 2: Geometry and mesh details for the shear cracking investigation.

Parameter Value

Width 1.5m
Height 1m
Horizontal Electrodes (Each Side) 8
Vertical Electrodes(Each Side) 8
Electrode Width 0.055m
Electrode Depth 0.055m

The discretizations for both investigations are shown in Figures 14 and 15. Spacing and

locations of electrodes can be seen in the meshes with reference to Tables 1 and 2. In all

cases, internal conductivity distributions were mapped on the discretizations in order to form

a continuous distribution within the domain. For this, prior Gaussian background conductiv-

ity information was incorporated when generating the samples. In generating homogeneous

backgrounds, conductivities in the range of 8-10 mScm−1 were assumed in order to mimic
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realistic silver sensing skins (following (Seppänen, Hallaji & Pour-Ghaz 2017)) in the flexural

case as well as incorporating isotropic smoothness with a correlating length of 4 cm to in-

corporate spatial inhomogeneity. In the case of shear cracking, homogeneous background of

0.1 mScm−1 was reasonably assumed in all instances to simulate potentially low-conductive

large elements.

Figure 14: Domain discretization for the flexural cracking investigation consisting of 2557
nodes and 4896 elements.

Figure 15: Domain discretization for the shear cracking investigation consisting of 5047 nodes
and 9680 elements.

In order to simulate measurement data with the ERT forward model, we adopt opposite cur-

rent injection patterns while voltage measurements were taken via adjacent electrode pairs.

Each flexural crack training sample consists of 3024 voltage measurements and a correspond-

ing conductivity vector with 5047 (nodal) entries. Downsampled flexural crack training sam-
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ples consist of the same number of measurements, however the size of conductivity vector is

reduced to 915 entries using bi-linear interpolation. Similarly, shear crack training samples

consist of 196 voltage measurements (which are reshaped to the 14× 14 input size for use in

CNNs). Additionally, each shear crack training sample also contains a conductivity vector

having 1148 entries. Lastly, 2% Gaussian noise was added to all voltage and conductivity

training data sets to improve regularization, prevent over fitting and improve network gen-

eralizability (Bishop 1995, Poole, Sohl-Dickstein & Ganguli 2014, Neelakantan, Vilnis, Le,

Sutskever, Kaiser, Kurach & Martens 2015).

5.4.2 Crack pattern generation

In order to train the NNs, artificial cracks need to be generated and incorporated into the

training samples. For the flexural cracking training set generation, cracks were initialised at

the bottom of the domain using prior knowledge of the loading and boundary conditions (i.e.

three-point bending). For this, generators consisting of one or two cracks were initialized

at different starting locations with various progressing directions. Cracks were simulated

by random incremental steps of which the total number is randomized, leading to cracks

that could reach arbitrary length within the boundary, such that a sufficient number of

training samples were available. Meanwhile, shear cracks were initialised within the domain,

while crack progression directions were controlled within a range of 0− 45 degrees resulting

from the experimental shear testing boundary condition information. Representative internal

conductivity distributions for both cracking mechanisms are shown in Figure 16 and Figure

17.

Figure 16: Sample conductivity distribution used in flexural cracking training data.

5.4.3 Data Processing and Training

As indicated previously, the aim of the network training process is to learn the nonlinear

mapping between ERT difference measurements and binary crack distributions. To do this,

58



Figure 17: Sample conductivity distribution used in shear cracking training data.

Keras (Chollet 2015) is implemented in a Python environment for both generating NN ar-

chitectures and training. In training an individual NN, A, we utilize t ∈ N training data

comprising ∆Ṽ and p̃σ where the tilde denotes training data. This process can be holistically

written as

A(∆Ṽ ) → p̃σ. (40)

Based on this information, we may now explicitly write the desired training loss function as

follows

L = − 1

N

N∑
t=1

[p̃σ,t log(pt) + (1− p̃σ,t) log(1− pt)] + λ||w||2. (41)

The preceding loss function minimization is augmented with a dropout rate of 50%, effec-

tively supplementing L2 weight regularization and noise addition to data, to further improve

network generalizability and prevent over fitting (Srivastava, Hinton, Krizhevsky, Sutskever

& Salakhutdinov 2014).
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Regarding the generated training data, the overall dimensionality of both inputs (∆Ṽ ) and

outputs (p̃σ) is immense due to (a) the fine discretizations and (b) the large number of mea-

surements used. Hence a spatially-interpolated downsampling step is additionally considered

in order to map the high fidelity distributions of p̃σ onto a smaller nodal space, thus aiming

to reduce the overall dimensionality of this mapping task for the NN. Such a reduction is

expected to result in a reduced error space during gradient descent process.

Owing to the fact that the dimensionality of ∆Ṽ is significantly smaller than p̃σ (a common

feature in ERT), the training process effectively stretches and amplifies information in ∆Ṽ

via NN throughput of ∆Ṽ → p̃σ. Therefore, given the dimensionality mismatches, the design

of NN architectures is conducted via trial and error. To this end, an ANN is applied for both

flexural and shear cracking applications while the use of a CNN is explored for reconstructing

shear cracking alone. Regarding the latter, the central reason for not utilizing a CNN for

flexural cracking predictions is owed to realizations made during preliminary trial and error

processes – namely, that ANNs of basic architectural complexity were sufficient for flexural

cracking predictions thereby negating the need for computationally-demanding CNN training.

Schematic ANN and CNN architectures are provided in Figures 18 and 19, respectively.

The finalized ANN architecture used for flexural crack predictions is comprised of one input

layer, two hidden layers each consisting of 2000 neurons equipped with ReLU activation

functions, and an output layer consistent with the number of entries in an individual sample

in p̃σ. Additionally, the ANN architecture for shear cracking predictions includes three hidden

layers of each consisting of 900 neurons with ELU activation functions followed by output

layer with the same number of entries in an individual sample in p̃σ. Procedurally, the ANN

training processes are set to stop when the loss function for validation data consisting of 5000

independent samples exceeded a patience of 100 epochs.

Unlike in the straightforward implementation of ANNs where we map a vector to a vector, we

utilize image-based CNNs. As such, we require a rectangular input; consequently, we choose

to reshape the input data ∆Ṽ to a 14×14 matrix form. This information is then fed into one

convolutional layer with 32 filters having a kernel size of 2×2 followed by a 1×1 max pooling
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Table 3: Summary of the ANN architecture used for reconstructing flexural cracks.

Neural Network input ∆Ṽ with size (1,3024)

Layer(type) Output Shape Activation Function

Input Layer (1, 3024) ReLu
Hidden Layer 1 (Dense) (1, 2000) ReLu
Dropout (Dropout Rate: 0.5) (1, 2000)
Hidden Layer 2 (Dense) (1, 2000) ReLu
Dropout (Dropout Rate: 0.5) (1, 2000)
Output Layer (Dense) (1, 915) sigmoid

Neural Network output p̃σ with size (1,915)

Table 4: Summary of ANN architecture used for reconstructing shear cracks.

Neural Network input ∆Ṽ with size (1,3024)

Layer(type) Output Shape Activation Function

Input Layer (1, 3024) eLu
Hidden Layer 1 (Dense) (1, 900) eLu
Dropout (Dropout Rate: 0.5) (1, 900)
Hidden Layer 2 (Dense) (1, 900) eLu
Dropout (Dropout Rate: 0.5) (1, 900)
Output Layer (Dense) (1, 1148) sigmoid

Neural Network output p̃σ with size (1,1148)

layer. Secondly, the same sets of convolutional and max pooling layers were added. Then,

a flatten layer was added before a fully connected ANN structure consisting of three hidden

layers with 4500 neurons each. ReLU activation functions were used in hidden layers while

sigmoid functions were applied in the output layer. In training, 5000 samples were utilized

and found to be sufficient to adequately train the network. However, in previous trial and

error procedures, it was found that significant computational resourced were needed in order

to optimize the CNN parameters. This was owed to the lack of distinguishability in input

voltage data corresponding to conductivity changes central region of the domain (a common

sensitivity issue in ERT).

Based on the former preliminary realizations, we propose and investigate an alternate ap-

proach to CNN predictions where the conductivity vector is segmented to five pieces. As a

result, five different NNs are trained and developed with reduced dimensionality aiming at
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Table 5: Summary of CNN architecture used for reconstructing shear cracks.

Neural Network input ∆Ṽ with size (1,14,14)

Layer(type) Output Shape Activation Function

Input Layer (1, 14, 14)
Convolutional Layer 1 (Conv2D) (7, 7, 32)
Max Pooling Layer 1 (Max Pooling) (7, 7, 32)
Convolutional Layer 2 (Conv2D) (6, 6, 32)
Max Pooling Layer 2 (Max Pooling) (6, 6, 32)
Flatten Layer (Flatten) (1, 1152)
Hidden Layer 1 (Dense) (1, 4500) ReLu
Dropout (Dropout Rate: 0.5) (1, 4500)
Hidden Layer 2 (Dense) (1, 4500) ReLu
Dropout (Dropout Rate: 0.5) (1, 4500)
Hidden Layer 3 (Dense) (1, 4500) ReLu
Dropout (Dropout Rate: 0.5) (1, 4500)
Output Layer (1, 1148) sigmoid

Neural Network output p̃σ with size (1,1148)

∆V(1)

∆V(2)

∆V(3)

Input
layer

Hidden
layer

Hidden
layer

Hidden
layer

pσ(1)

pσ(2)

pσ(3)

pσ(4)

Output
layer

Figure 18: Schematic trained ANN architecture.

improving prediction accuracy for individual segments and overall domain predictions after

the final assembly of segments. Another advantage of this methodology relates to regions

where information is poor – especially the central region – where (a) more training samples

can be added or (b) other parameters could be adjusted to improve the training performance

avoiding the need to retrain a large (entire domain) CNN.
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Figure 19: Schematic trained CNN architecture.

Lastly, to provide more detailed information on network training, figures 20 and 21 show

the training processes for two typical NNs. In these figures, we observe a near immediate

reduction in the loss indicating rapid learning. Following this initial phase, a gradual decrease

in the loss function is observed, characterized by fine-tuning of the network weights and biases.

It is worth noting here that, since different network architectures and training samples are

used in this work, the number of epochs varies needed to reach respective stopping criteria

varies significantly.

Figure 20: Loss function minimization for an ANN used in this work.
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Figure 21: Loss function minimization for an CNN used in this work (non-segmented data).

5.5 Results and Discussion

In this section, we report and discuss cracking predictions from experimental flexural and

simulated shear testing campaigns. Tabulated images showing these cracking predictions are

reported in Figures 22 and 23. In the spatial mappings reported, color bars represent the

probability of cracks existing at a nodal location. For the purpose of quantitative comparison,

the mean square error (MSE) metric, measured between the predictive results and simulated

results, for shear cracks are summarized in Table 6. In the forthcoming subsection, we will

detail results for flexural testing, followed by a subsection detailing shear testing predictions,

and lastly discussion will be provided.

5.6 Flexural Crack Reconstruction

Flexural cracking predictions are shown in Figure 22 alongside experimental photographs

with highlighted crack. Column a shows the experimental photographs, column b shows

the crack predictions based on full conductivity sampling, and column c reports predictions

using based on downsampled conductivity. Generally speaking, NN predictions correctly

localize the initial crack topology (top row) in comparison to the experimental photographs
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as observed in a1, b1 and c1. In addition, crack growth can be observed in b2 and c2 for

both data types while the downsampled data prediction visually outperforms the full data

prediction in terms of the actual length of the growing crack. In b3 and c3, only a single crack

can be observed, which matches the left crack shown in a3. Further, in b4 and c4, both the

full and downsampled predictions accurately capture both cracks.

As a whole, we observe improved predictions when utilizing downsampled data. It is worth

nothing, however, that this qualitative observation comes at a loss of spatial resolution in

predictions pσ. It can also be observed that in predictions b3 and v3, the reconstructions do

not capture the right crack, irrespective of sampling fidelity, this drawback can be potentially

explained by the presence of the left crack, which effectively shields electric fields and leads to

a reduction in measurement information needed in resolving the right crack (Smyl, Pour-Ghaz

& Seppänen 2018). In addition, the inability to accurately predict the right crack in the third

row could also be due to the relatively large width to depth ratio of this domain, where electric

fields flowing horizontally are, in as rough sense, more constrained than in geometries having

aspect ratios approaching 1:1. Moreover, the presence of small artifacts can be observed in

c3 and c4 which result from NN predictive errors (a function of, e.g. measurement noise and

geometrical discretization error), however these errors are small relative to topological crack

prediction errors and do not significantly corrupt the overall assessment of crack predictions.

5.6.1 Shear Crack Reconstruction

ANN and CNN shear cracking predictions based on downsampled data are reported in Fig-

ure 23. Column a shows the true cracking binary representation. Column b reports ANN

predictions for the entire domain. Column c reports CNN predictions results for the entire

domain. Lastly, column d reports segmented CNN predictions. In addition, consolidating

five segmented networks. In total, four differing cracking patterns of increasing complexity

are considered (least complexity in the top row and most complexity in the bottom row).

Generally speaking, for simple crack patterns (i.e. the first and second rows), both the ANNs

and CNNs provide valid predictions in terms of crack lengths and locations. However, when

observed in closer detail, the ANN visually outperforms the CNN predictions slightly as in

b1 and b2 where the length of cracks are more accurately predicted. For more complex crack
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patterns (i.e. the third and fourth rows), all NN cracking predictions are satisfactory near

the domain boundaries. On the other hand, near the center of the domains (the area of

least sensitivity), CNNs appear to localize and separate complex cracks better than ANNs as

observed from c3, d3 c4, and d4. Furthermore, segmented CNN predictions consistently show

improved qualitative results in comparison to the conventional CNN network.

In totality, both the ANNs and CNNs predict less accurately towards the central region of the

domain relative to the boundary. This is likely caused by the diffusive nature of electricity

and is also a common feature of ERT (Hallaji, Seppänen & Pour-Ghaz 2014). However,

despite the generally better qualitative results predicted by CNNs, we require a quantitative

metric to more closely assess predictions. For this, we utilise the MSE metric, effectively

comparing true and predicted images; these metrics are reported in Table 6.

In contrast to visual observations, assessment of MSEs reported in Table 6 (information

in Table 6 can be read in accordance with Figure 23) indicate that ANNs generally per-

form quantitatively slightly better than CNNs – with the noteable exception of one cracking

pattern. This could potentially be due to fact that the CNNs’ architecture and data process-

ing adds additional nonlinearity in the training and prediction process. While this initially

seems counterintuitive, as CNNs are commonly regarded as more powerful predictive tools

than ANNs, additional discussion is required to attain a more full picture of the realizations

made in this subsection. Such discussion will be provided henceforth.

5.6.2 Discussion

The feasibility of NNs for probabilistically predicting cracking patterns was qualitatively

and quantitatively affirmed in the preceding subsections using experimental and simulated

data. Generally speaking, the networks were able to localize binary crack representations

with regional certainty exceeding 50% – with the notable exception of cases where measure-

ment quality was impeded by crack shielding. As alluded to, the use of NNs for predicting

cracks using boundary voltage measurements is analogous to ERT, with the caveat that the

learned methodology proposed herein predicts binary cracking representations rather than

reconstructing continuous conductivity distributions. Interestingly, the proposed NN crack

prediction framework also exhibits similar susceptibilities present in ERT; the primary weak-
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Table 6: Mean square errors for shear crack predictions.

Network Type Crack Pattern MSE

ANN

Complex Pattern 1 0.057

Complex Pattern 2 0.046

Simple Pattern 1 0.019

Simple Pattern 2 0.022

CNN with Complete Figure

Complex Pattern 1 0.097

Complex Pattern 2 0.065

Simple Pattern 1 0.022

Simple Pattern 2 0.015

Segmented CNN

Complex Pattern 1 0.088

Complex Pattern 2 0.067

Simple Pattern 1 0.025

Simple Pattern 2 0.021

nesses include (a) insensitivity to the central region of the prediction domain and (b) low

spatial resolution. Conversely, and again similar to ERT, the NN prediction framework

also has analogous advantages including (i) high sensitivity near the boundaries and high

temporal resolution. In contrast to ERT, however, the NN prediction framework enables

substantial computational speedups and simpler representation of cracking topology relative

to conventional ERT.

Despite the noted advantages, two observations made in the results subsections remain yet

to be explained. Realizations from these observations have key implications on the potential

use of predictive networks for probabilistic crack assessment in future work. Firstly, the use

of spatial downsampling proved highly effective and generally improved prediction quality.

Secondly, the use of CNNs, commonly considered a more powerful classification network,

only outperformed ANNs in one case considered.

In response to the first observation, we need to first investigate the general structure of

input and output data sets used herein. We note that, when binary crack representation

data (output) is not downsampled, the output dimensionality is an order of magnitude larger
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than input measurement data. As such, information stemming from measurements is sig-

nificantly diffused and stretched before reaching the outputs. This is similar to the process

of decoding, i.e. mapping low dimensional information to high dimensional information, as

commonly adopted in autoencoder applications (An & Cho 2015, Lee & Carlberg 2020). A

primary challenge presented in the decoding process lies in the preservation of information

transferred from input to output. Potential for corruption in decoding, however, can be re-

duced by optimizing the NN architecture and decreasing discrepancy between input/output

data size. Regarding the latter, downsampling of the outputs (as used herein) is an effective

method for matching data sizing discrepancies and therefore underscores the effectiveness of

downsampling in crack prediction quality observed.

Responding to the second observation, regarding the reduced effectiveness of CNN cracking

predictions in comparison to those of ANNs, we would like to remark that this was an

unexpected result. Nowadays, applications of CNNs range from image processing to inverse

problems. Recent scholarly work has even investigated the “unreasonable effectiveness of

CNNs” (Hauptmann & Adler 2020). Yet, like many machine learning tools, the use of

specific architectures and data processing techniques should be considered with respect to

the application and underlying data structure(s).

In this work, the input data (potential differences) may have a positive or negative sign and

the magnitude can vary significantly, depending on the cracking pattern, domain geometry,

electrode configuration, and measurement/stimulation protocol. In turn, reshaping such data

into a rectangular “voltage image” unquestionably represents a much more complex data

structure than if it were, for example, a black and white image consisting of positive integer

values ranging from 0 to 255. Therefore, the use of convolutional operations in comparison

to feedforward (ANN) operations may not be ideal in many cases. Such a realization may

contribute to the fact that CNNs performed less favorably than ANNs in predicting all but

one cracking representation.

The former deduction is not a general conclusion of this work, however, as CNNs (and

fully-connected networks) offer opportunities for deeper data representation. For example,
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derivative operations have equivalencies to convolution operations (Simoncelli 1994, Chen &

Pock 2016) meaning that higher order data representations are possible using CNNs. There-

fore, the use of deeper non-fully connected networks highly tailored to data and prediction

may, in eventuality, lead to substantially improved predictions of cracking representations

than those reported herein and this is the source of ongoing research.

5.7 Conclusions

In this paper, fast Neural Network driven direct inversion frameworks were proposed to pre-

dict binary cracking distributions in concrete elements. The aim of the proposed framework

was to map boundary electrical measurements to probabilistic binary crack distributions. The

purpose for choosing a binary cracking representation was to simplify the interpretability of

damage predictions. To test the feasibility of the approach, experimental flexural cracking

representations were successfully predicted with using ANNs. To facilitate quantitative eval-

uation of networks’ efficacy, simulated shear cracking representations were predicted using

ANNs and CNNs. Simulation results generally indicated that ANNs slightly outperformed

CNNs quantitatively, while both architectures showed the potential to accurately reconstruct

simple and complex crack patterns. In summary, the feasibility of the proposed learned

frameworks was affirmed and discussion was provided to offer guidance on the potential for

improving network predictions.
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6.1 Abstract

Conductive nanocomposites, enabled by their piezoresistivity, have emerged as a new instru-

ment in structural health monitoring. To this end, studies have recently found that electrical

resistance tomography (ERT), a non-destructive conductivity imaging technique, can be uti-

lized with piezoresistive nanocomposites to detect and localize damage. Furthermore, by

incorporating complementary optimization protocols, the mechanical state of the nanocom-

posites can also be determined. In many cases, however, such approaches may be associated

with high computational cost. To address this, we develop deep learned frameworks using

neural networks to directly predict strain and stress distributions – thereby bypassing the

need to solve the ERT inverse problem or execute an optimization protocol to assess me-

chanical state. The feasibility of the learned frameworks is validated using simulated and

experimental data considering a carbon nanofiber plate in tension. Results show that the

learned frameworks are capable of directly and reliably predicting strain and stress distribu-

tions based on ERT voltage measurements.

6.2 Introduction

6.2.1 Background and context

Composite materials are widely applied in civil, automotive and aerospace industries due to

their advanced mechanical properties and applicability for bespoke implementation (Man-

galgiri 1999, Hassan & Tallman 2020b). Structural health monitoring (SHM) of composite

structures is, therefore, a subject of increasing importance, owing to their rising prevalence.

In SHM practices, traditional non-destructive testing (NDT) approaches such as magnetic,
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radiographic, acoustic, ultrasonic and photographic testings have already shown promises

in monitoring the structure’s conditions (Gholizadeh 2016, Mutlib, Baharom, El-Shafie &

Nuawi 2016, Montinaro, Cerniglia & Pitarresi 2018, Kong & Li 2018). However, locations

of (potential) damages are often required as a priori for traditional NDT modalities (Farrar

& Worden 2012), since localized methods are often associated with higher sensitivities in

terms of detecting the damage. As a result, their pragmatic applications for large domains

are limited. On the other hand, Electrical Resistance Tomography (ERT) is an imaging

modality, which aims at reconstructing conductivity distributions from boundary voltage

measurements. It has advantages such as low energy cost, rapid data collection and efficacy

to offer spatial monitoring over large areas (Chen, Gallet, Huang, Liu & Smyl 0). To this

point, recent studies have shown ERT’s benefits for monitoring and evaluation of cement-

based materials (Karhunen, Seppänen, Lehikoinen, Monteiro & Kaipio 2010, Smyl 2020),

reconstructing simple and complex crack patterns on concrete elements (Smyl, Pour-Ghaz &

Seppänen 2018).

In addition to cementitious materials, work has also been done to develop self-sensing poly-

meric composite materials by incorporating conductive nano-scale phases, such as carbon

nanofibers (CNFs) and carbon nanotubes (CNTs). In these materials, electrical transport is

a consequence of percolation – electrical current propagates from filler-to-filler through the

material. Deformations that alter the connectivity of this network or damage that severs

the connection between fillers, therefore, manifest as a conductivity change. Thus, the ma-

terial is self-sensing via the piezoresistive effect. Unlike traditional point-based sensors, the

self-sensing nature of these materials could potentially enable a spatially continuous SHM

approach. ERT is, therefore, a natural complement to these materials since it allows for spa-

tially continuous mapping of conductivity changes. The application of ERT to self-sensing

polymers has received considerable attention to date (Tallman, Gungor, Wang & Bakis 2015,

Thomas, Kim, Tallman & Bakis 2019, Gallo & Thostenson 2016, 2015, Baltopoulos, Poly-

dorides, Pambaguian, Vavouliotis & Kostopoulos 2015, Tallman & Smyl 2020).

Despite the seemingly high potential of combining self-sensing materials with ERT, some

limitations of this approach exist. For example, due to the complexities associated with solv-
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ing ERT inverse problems, ERT reconstructions often show lower fidelity results compared

with some traditional NDT modalities (Smyl, Bossuyt, Ahmad, Vavilov & Liu 2020). Efforts

have been made to increase the spatial resolution by incorporating prior structural infor-

mation into the inverse model (Smyl, Pour-Ghaz & Seppänen 2018). Moreover, introducing

non-iterative reconstruction methods could reduce the computational time, but at the risk of

decreasing the spatial resolution (Ferreira & Novotny 2017). In addition to these limitations,

ERT also does not directly show mechanical effects such as stress or strain. That is, ERT

maps electrical conductivity. Even though conductivity is directly dependent on strain in

piezoresistive materials, SHM and NDT practitioners would much rather know the strain

field directly. To address this limitation, Tallman and colleagues introduced the concept of

piezoresistive inversion (Tallman & Wang 2016, Tallman, Gungor, Koo & Bakis 2017). The

goal of piezoresistive inversion is to invert the observed conductivity distribution in order to

recover the underlying displacement field (and in turn the strain field via kinematic relations

and the stress field via elastic constitutive relations). This necessarily requires a suitable

macroscale piezoresistivity model that is amenable to general deformations (as opposed to

simple uni-axial piezoresistivity models) (Tallman & Wang 2013, Koo & Tallman 2020). Ini-

tial work in this area was done using analytical inversion methods (Tallman & Wang 2016,

Tallman, Gungor, Koo & Bakis 2017); however, it was soon found that these methods can

fail to converge to physically meaningful solutions if the strain field is complex. Therefore,

metaheuristic methods such as genetic algorithms (GAs), particle swarm optimization, and

simulated annealing were next explored (Hassan & Tallman 2020b,a). Even though these

methods were successful in recovering the strain field from conductivity data, they are lim-

ited by their computational expense.

In light of the preceding discussion, we can see that there is considerable potential in truly

full-field stress/strain mapping via self-sensing materials plus ERT, but existing frameworks

for solving this inverse problem have important limitations (i.e. convergence to non-physical

solutions and computational cost). We therefore propose to advance the state of the art

by applying machine learning techniques to solve this inverse problem with high accuracy

and substantially reduced computational cost. The novelty of this work is the development
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of deep learned frameworks that directly map boundary voltage measurements to the first

principal strain and stress distributions via neural networks (NNs) with the aim of achieving

continuous and accurate monitoring of self-sensing composites. The proposed frameworks

utilize piezoresistive properties of nanocomposites as well as the mapping capabilities of deep

learned neural networks to predict the first principal strain and stress fields over the entire

domain based on absolute boundary voltage measurements.

6.2.2 Machine learning and neural networks

Machine learning originated as a research subject in the 1950s for pattern and shape recog-

nition tasks (Kröse, Krose, van der Smagt & Smagt 1993, Rosenblatt 1958). The concept of

perceptrons (Binary classifiers) was initially proposed by Frank Rosenblatt which was later

then developed to multi-layer perceptrons (MLP) (Rosenblatt 1958). With the discovery

of back-propagation and the developments of advanced computer infrastructures, machine

learning began to draw larger research interest. By increasing the number of perceptrons

and layers with expanded training data sets, deep neural networks were later developed and

implemented for increasingly complex applications by recognizing non-linear patterns (Good-

fellow, Bengio, Courville & Bengio 2016, LeCun, Bengio & Hinton 2015). In initial studies

about perceptrons, it was found that a single layer perceptron network was sufficient for

recognizing any linear patterns theoretically (Papert 1961, Baum 1988), while the probabil-

ity of recognizing the desired patterns was directly proportional to the increasing number of

perceptrons/neurons (LeCun, Bengio & Hinton 2015, Bishop et al. 1995).

In this paper, we are interested in applying NNs to solve two regression problems aiming

to map boundary voltage measurements (V ) to the first principal strain and stress spatial

distributions (ϵp and σp), respectively. For this purpose, the mean absolute error (MAE)

function with regularization is used as the loss function to train the NNs. The MAE is

formulated as follows:

L = − 1

N

N∑
i=1

|yi − Y (xi)|+ λ||w||2 (42)
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In Equation (42), L represents the loss function which needs to be minimized during the

training process. The average of absolute error between ith desired output (yi) and predicted

output (Y (xi)) is calculated across all training samples. N represents the total number

of training samples. In addition, an extra L2 norm is added on all network weights (w)

with λ representing the regularization parameter used to avoid over-fitting (Ying 2019). In

minimizing Equation (42), the proposed NNs are, in essence, generating functions which

produce the least error between desired and predicted outputs. Namely, after sufficient

training epochs, Y represents the regression mapping from V → ϵp or V → σp.

Minimization of the loss function is generally achieved by applying a gradient descent al-

gorithm and back-propagation during training (LeCun, Boser, Denker, Henderson, Howard,

Hubbard & Jackel 1989). Other machine learning methodologies such as Hopfield Network

and Boltzmen Machine based on statistical mechanics can be implemented to minimize the

loss function, they are however less applied in pragmatic fields (Hopfield 1982, Ackley, Hinton

& Sejnowski 1985). principals of applying machine learning in the SHM field are well laid out

by Farrar and Worden (Farrar & Worden 2012) for the reader’s reference. Furthermore, in

recent studies, Tibaduiz et al. have shown machine learning can serve as a new damage clas-

sification approach (Tibaduiza, Torres-Arredondo, Vitola, Anaya & Pozo 2018). Mousavi et

al. has utilized NNs to denoise vibration data for extracting more damage-sensitive features

(Mousavi, Varahram, Ettefagh, Sadeghi & Razavi 2020). In this work, since the implemen-

tation of the SHM modality often requires big data collection and rapid data processing to

achieve continuous monitoring, it is worth remarking that machine learning as a data driven

methodology may have great potential when implemented with SHM modalities.

6.2.3 Paper structure

This paper firstly reviews the historical SHM applications of ERT. Furthermore, this paper

discusses the traditional solution to an ERT inverse problem. The experimental data acquisi-

tion process for obtaining the absolute voltage measurements on CNF with ERT is introduced

in the subsequent section followed by the proposed machine learning methodology. Moreover,

we present the formulation of a integrated model (consisting of a elastic mechanical model,

complete electrical model and the piezoresistivity model) that is used for generating training
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data as well as the architectures of the proposed NNs. In the following sections, predictive

strain and stress distributions based on simulation and experimental measurements are re-

ported followed by discussions in terms of (a) training data processing, (b) the advantages

and disadvantages of the proposed approach and (c) potential future research interests. This

paper is then finalized by a conclusion section.

6.3 Electrical Resistance Tomography

ERT is a diffusive imaging modality which aims to reconstruct the conductivity distribution

of a domain from boundary voltage measurements. In the context of ERT data collection,

electrodes are installed on the boundary of the domain and then currents are injected into

electrodes while potential differences between two electrodes are recorded. Pioneering ERT

research was initially developed for medical imaging based on differences between organ con-

ductivities and was then applied on capacities and inductive topographies (Henderson &

Webster 1978, Yang & York 1999). During recent research, deep learning methodology has

been implemented with ERT in the field of medical imaging. For example, Seo et al. suc-

cessfully applied a deep learning based method to reconstruct simulated CT scans of lungs

(Seo, Kim, Jargal, Lee & Harrach 2019) and Duan et al. managed to use electrical impedance

tomography (EIT) and deep learning to reconstruct real time touch sensing (Duan, Taurand

& Soleimani 2019). More recently, engineers and scientists have studied ERT as a SHM and

NDT modality. ERT was, in this context, explored to detect damage and visualize strain

fields in composite materials (Hassan & Tallman 2020b, Tallman & Smyl 2020, Tallman, Gun-

gor, Koo & Bakis 2017, Loh, Kim, Lynch, Kam & Kotov 2007, Loh, Hou, Lynch & Kotov

2009, Loyola, Briggs, Arronche, Loh, La Saponara, O’Bryan & Skinner 2013, Lestari, Pinto,

La Saponara, Yasui & Loh 2016, Tallman, Gungor, Wang & Bakis 2014). Previous studies

have also shown that ERT is a valid modality for detecting crack patterns and reconstructing

moisture in cement-based materials (Smyl & Liu 2019a, Hallaji, Seppänen & Pour-Ghaz 2015,

Smyl, Bossuyt, Ahmad, Vavilov & Liu 2020). As alluded to previous sections, high fidelity

solutions for ERT inverse problems are usually computationally demanding. Therefore, for

the aim of achieving condition monitoring systems based on ERT, recent research has imple-

mented machine learning with ERT. For example, Smyl and Liu explored the optimization
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of electrodes’ locations using deep learning to collect more informative measurements (Smyl

& Liu 2020). In addition, Hamilton and Hauptmann used deep neural networks to recon-

struct ERT images (Hamilton & Hauptmann 2018). Chen et al. incorporated NNs to directly

reconstruct crack patterns on concrete materials (Chen, Gallet, Huang, Liu & Smyl 0). In

addition, researchers explored different deep learning schemes to reconstruct images based

on EIT data. For example, Ren et al. utilized a two-stage deep learning method (TSDL) to

reconstruct simulated CT scans with high accuracy (Ren, Sun, Tan & Dong 2019). Wei et

al. used a dominant current deep learning scheme to reconstruct challenging inclusion shapes

with a convolutional neural network (CNN) trained with circle or ellipse training data (Wei,

Liu & Chen 2019). Furthermore, Wang et al. developed the error-constraint deep learning

scheme (Ec-Net) aiming at yielding more robust and accurate reconstruction via mapping

the image and error (Wang, Zhang, Li, Duan, Wang, Zhang, Zhang, Ma, Wang & Jia 2021).

In the following sections, we introduce the ERT forward model and the conventional solution

to ERT inverse problem, followed by the proposed deep learned framework.

6.3.1 Forward model

In order to solve the ERT inverse problem, a forward model which calculates boundary

voltages from conductivity distributions and known measurement/stimulation patterns needs

to be formulated alongside physical boundary conditions. Herein, we ultilize the Complete

Electrical Model (CEM) developed by Cheng et al. (Cheng, Isaacson, Newell & Gisser 1989)

which is written as shown in the following equations:

∇ · (γ∇u) = 0, x ∈ Ω (43)

∫
el

γ
∂u

∂n
dS = Il, l = 1, ...., L (44)

γ
∂u

∂n
= 0, x ∈ ∂Ω \ ∪L

l=1el (45)
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u+ zlγ
∂u

∂n
= Ul, l = 1, ...., L. (46)

Equation (43) describes steady-state diffusion without internal electricity sources where γ

represents the conductivity and u represents the potential distribution within domain Ω. In

the CEM, x represents the Cartesian coordinates within Ω. In order to solve Equation (43)

and formulate a realistic electrical model, boundary conditions need to be applied as expressed

in Equations (44) to (46). Il represents the injected current on electrodes. Meanwhile, L is

the total number of electrodes and el represents the l
th electrode. In addition, n represents the

normal vector on the surface dS on Ω. Equation (46) takes the electrodes’ contact impedance

into account while calculating the voltage measurement Ul on lth electrode for more accurate

modeling. zl represents the contact impedance between the electrodes and the domain.

L∑
l=1

Il = 0 (47)

L∑
l=1

Ul = 0. (48)

By enforcing Equations (47) and (48) on the aforementioned equations, we can force the

model to obey the current conservation law with fixed potential reference level (Tallman &

Smyl 2020, Vauhkonen, Vadasz, Karjalainen, Somersalo & Kaipio 1998). The CEM can be

discretized for FE analysis. However, in pragmatic (inverse) applications, we are interested

in reconstructing the conductivity distributions which are often unknown from boundary

voltage measurements. Herein, a unique solution needs to be obtained for an estimation of

this ill-posed ERT inverse problem. The traditional solution to an ERT inverse problem is

discussed in the following section.
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6.3.2 ERT inverse problem

In this subsection, we discuss the ERT inverse problem to highlight some of the underlying

technical aspects of the modality and associated challenges our proposed methodology aims

to circumvent. However, before addressing the inverse problem, we would like to emphasize

that the ill-posed nature of an ERT inverse problem is mainly resultant from the following

factors: (a) measurement noise from data acquisition, (b) the diffusive nature of electric

current, (c) ill-conditioned derivative matrices used in conventional optimization algorithms

and (d) numerical modeling errors (e.g. discretization errors in FE implementations). There

are two well developed imaging schemes which are absolute and difference imaging. Absolute

imaging estimates the conductivity distribution based on voltage measurement from one state.

On the other hand, difference imaging estimates the conductivity distribution variation based

on voltage measurements from two states. Since we use absolute imaging in this paper, the

conventional solution to such scheme is presented in the following paragraph. A typical ERT

inverse problem is often first formulated as an observation model by writing

V = F (γ) (49)

where F represents the discretized CEM model. However, due to the existence of measure-

ment and modeling errors, the observation model should be modified as following

V = F (γ) + e (50)

where e represents all potential errors within the inverse problem. The process of solving an

ERT inverse problem can then be defined in a least-sqaures (LS) manner
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γ̂ = {||V − F (γ)||2} (51)

where γ̂ represents the conductivity solution. However due to the ill-posed nature of this

inverse problem, an unique solution is not guaranteed (Sarvas 1987) using conventional LS

methods. As an alternative, we can obtain an unique solution (γ̂) by adding a regularization

term to Equation (51) as follows (Smyl, Hallaji, Seppänen & Pour-Ghaz 2016)

γ̂ = {||Le(V − F (γ))||2 + α||Lγγ||2} (52)

where α is a scalar that controls regularization between data fit and smoothness. Le and Lγ

are Cholesky factorized noise weighting and regularization matrices used to weigh uncertainty

due to expected measurement noise. Herein, this LS based inverse problem can therefore be

solved iteratively by incorporating a Gauss-Newton minimizer formulated as follows

δγ̂ = (JTWJ + αLT
γLγ)

−1JTW (V − F (γ)) (53)

where δγ̂ is the LS minimizer. The term JTWJ estimates the Hessian matrix while W rep-

resents the (non-Cholesky factorized) noise model term. The ill condition of J is, as alluded

to earlier, stabilised by the regularization matrix αLT
γLγ. Moreover, studies suggest that

by including the noise model term W , we may obtain more accurate solutions by weigh-

ing based on noise level (Smyl 2020). The above mathematical formulations conclude the

traditional solution for an ERT inverse problem in the absolute imaging scheme. Previous

research indicates that modeling error can be reduced during the subtraction operation by

using difference imaging schemes, hence potentially obtaining more accurate reconstructions
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(Smyl, Pour-Ghaz & Seppänen 2018). However, in this paper, we adapt the absolute imaging

scheme primarily due to the measurement discrepancy between the simulated and experimen-

tal data. In order to compensate this modeling error, only absolute imaging data are valid

for pre-processing before training. This pre-processing is further discussed in section 5.1. Al-

though we can obtain an accurate estimation of γ̂ using conventional optimization regimes,

computational demands for solving such inverse problem can significantly increase with finer

FE meshing and larger domains. Additional computational demands in iterative frameworks

include (a) computation of Jacobian matrices and (b) iterative calculations from Newton-

based algorithms (e.g. linesearch). Herein, we propose a deep learned framework via NNs to

directly predict the first principal strain and stress fields of CNF-based structures without

solving the ERT inverse problem using a conventional optimization framework.

6.4 Experiment Data Acquisition

6.4.1 CNF specimen and experiment set up

A rectangular CNF-modified epoxy specimen with a nanofiller weight fraction of 1.0% was

manufactured for experimental testing. The specimen measured 196 mm × 46.5 mm with

a thickness of 4 mm, and had a central hole of diameter 12.7 mm. Grip tabs were bonded

to the specimen using epoxy adhesive to prevent damage due to the gripping pressure of the

load frame. The gauge section of the specimen measured 81.1 mm × 46.5 mm. Electrodes

were attached to opposite edges of the gauge section by first painting equally spaced colloidal

silver patches and then applying copper tape with extended tabs to the silver patches. Strips

of masking tape were applied on top of the copper tape to ensure good contact between the

electrodes and the specimen. The fully prepared specimen is shown in Figure 24.
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Figure 24: a) Photograph of experimental specimen with electrodes, grip tabs, and gauge
section shown. b) SEM images of the underlying CNF network including a close-up of a
single CNF.

The specimen was then mounted onto an Instron 8801 load frame and the tabbed portions

were fully gripped. The electrodes were connected to a Keithley 6221 current source and

a National Instruments PXIe-6368 DAQ to measure the electrode voltages. An ‘across’

scheme was used for the injections, where current was injected between the first pair of

opposing electrodes and voltage differences were measured between the remaining opposing

electrode pairs. The current injection was then moved to the next opposing electrode pair

and voltage differences between the remaining opposing electrode pairs were again measured.

This was repeated until all opposing electrode pairs on the gauge section had received one

current injection. This scheme was used to collect one set of voltages from the specimen

in its undeformed configuration using a current magnitude of 10 µA. Tensile displacements

of d = 0.25 mm, 0.50 mm, and 0.75 mm were then applied to the specimen and voltages
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were collected in each deformed configuration using the same injection scheme and current

magnitude.

The specimen was then dismounted from the load frame and the electrode connections were

removed. The gauge section was sprayed with white paint and a dotted speckle pattern was

applied using a roller dipped in black ink. The specimen was then mounted onto the load

frame again and the tabbed portions were full gripped. A Correlated Solutions digital image

correlation (DIC) camera system with a 5 MP resolution was set up and the cameras were

focused on the gauge section. DIC data was collected as the specimen was loaded in tension

at a constant rate of 1.5 mm/s until failure occurred in the gauge section.

6.4.2 Piezoresistivity model

As mentioned previously, the piezoresistive inversion process requires a suitable piezoresis-

tivity model. That is, the goal of the inversion process is to find a strain field that, when

supplied to the piezoresistivity model, gives rise to the same boundary voltage-current re-

sponse as observed experimentally. For this, we make use of an analytical piezoresistivity

model that was originally developed by Tallman and Wang (Tallman & Wang 2013). In this

model, the conductivity of a nanocomposite is predicted by Equation (54) as shown below

and based on the model of Takeda et al. (Takeda, Shindo, Kuronuma & Narita 2011).

γc = γm +
4Pvf lf

3πλ2
1d

2
f

(
4lf

πd2fγf
+ h2t

Ae12
√
2mϕ

exp
{

4πt
h

√
2mϕ

}) (54)

Above, γc is the composite conductivity, γm is the matrix conductivity, γf is the nanofiller

conductivity, P is the percolation probability, vf is the nanofiller volume fraction, lf is the

nanofiller length, df is the nanofiller diameter, λ is the nanofiller waviness ratio, h is Planck’s

constant, e is the charge of an electron, m is the mass of an electron, ϕ is the potential barrier

height felt by a tunneling electron, and t is the average inter-nanofiller separation distance.

Conductivity changes are predicted by expressing these model parameters as a function of

the infinitesimal strain tensor which is done via excluded volume theory of percolation. Thus,
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for a given and arbitrary strain state (i.e. given any strain tensor), the new conductivity of

the nanocomposite can be predicted. This model was later modified by Tallman and Wang

(Tallman & Wang 2016) to ensure differentiability.

6.5 Deep learned ERT tomography framework

6.5.1 Overview

In this section, we firstly introduce the formulation of deep learned frameworks utilizing NNs

followed by providing the rationale of selecting NNs for this investigation. These frameworks

aim at directly mapping absolute boundary voltage measurements (V ) to first principal strain

(ϵp) and stress (σp) distributions. We select the first principal strain and stress because

they are good metrics of material failure for the CNF/epoxy material system. To more

clearly distinguish the proposed NN framework from existent genetic algorithm (GA)-based

methods of piezoresistive inversion (Hassan & Tallman 2020b), Figure 45 shows the flowchart

of determining the mechanical states of the structures via solving the inverse ERT problem

and computing GA and figure 26 shows the proposed deep learned framework. The proposed

deep learned framework can therefore be succinctly written as

Nϵ(V ) → ϵp (55)

Nσ(V ) → σp (56)

where Nϵ(V ) and Nσ(V ) represent the learned NN operators used for predicting ϵp and

σp distributions, respectively. In order to train NNs and learn the embedded mechanical

relationships within Equations (55) and (56), an integrated mechanical model needs to be

included to generate appropriate training data. This model is introduced in Section 5.1.
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Figure 25: Flowchart of determining the mechanical states via ERT and a GA.
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Figure 26: Flowchart of the proposed deep learned framework.

6.5.2 Selection of regression based machine learning approaches

In this subsection, we discuss the rationale behind the selection of the proposed (NN) frame-

work. In a machine learning context, the pattern recognition tasks in this paper are cate-

gorized as regression tasks. There are several approaches which are suitable for regression
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tasks such as following: (a) linear regression algorithm, (b) logic-based regression models

such as boosted decision tree (BRT) regression and random forest (RF) regression, (c) sup-

port vector machines (SVMs) and (d) feed-forward artificial neural networks. Linear regres-

sion algorithms primarily aim to recognize linear relationships between inputs and outputs

based on mean value distributions (Maulud & Abdulazeez 2020). However, the patterns in

Equations (55) and (56) are highly non-linear, hence linear regression algorithms are inap-

propriate for this work. In addition, linear regression algorithms have been outperformed

by other regression techniques when evaluated on other regression tasks (Baharvand, Joza-

ghi, Fatahi-Alkouhi, Karimzadeh, Nasiri & Lashkar-Ara 2020, Smoliński & Radtke 2017).

For logic-based approaches such as BRT and RF, the accuracy of such algorithms has been

proven to be affected by the discretization in the input feature (An & Cercone 1999). How-

ever in our proposed framework, discretization of the voltage measurements might not be the

most suitable approach.

Additional studies have shown that SVMs and ANNs can both yield accurate results when

being validated against different datasets while SVMs shows more robust performance than

ANNs (Niu, Feng, Feng, Min, Cheng & Zhou 2019, Shirzad, Tabesh & Farmani 2014). How-

ever, SVM’s computational cost increases quadratically with increasing data sizes due to

solving quadratic programming problems during training (Ertekin & Hopper 2006). This

drawback remains as a factor inhibiting SVMs from pragmatic applications. Furthermore,

implementations can use early stopping, network-reduction and regularization to prevent

over-fitting during NNs’ training to improve their generalisation performance (Ying 2019).

Taken the analysis above together, we select NNs for the regression tasks herein, namely for

attaining Nϵ(V ) and Nσ(V ) due to their overall accuracy, improved generalisation and large

numbers of well-established training tools/toolboxes.

6.6 Training Data Acquisition and Neural Network Methodology

In this section, we first introduce the integration of the mechanical elastic FE model, CEM

and piezoresistivity model used for training data generation. Then, samples of first principal

strain and stress distributions used for training are shown. After that, we present the NNs’

architectures, training hyper-parameters and the training error curves for both trained NNs.
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6.6.1 Integration of the elastic FE model, CEM and piezoresistivity model

In this work, we aim to recognize the pattern between boundary voltage measurements (V )

and first principal strain distributions (ϵp) or stress distributions (σp) using NNs. For this,

we integrated an elastic FE model, CEM and the piezoresistivity model to generate the

training data for NNs. The geometry of the domain was adopted from (Hassan & Tallman

2020b). The elastic FE model discretized the experimental specimen without the top and

bottom tabs with reference to Table 7. Figure 28 shows the flowchart of the training data

generation. Meanwhile, sample first principal strain and stress distributions for training are

shown in Figure 29 and 30. The formulation of the FE model is described as follows:

1. The geometry of the experimental domain was discretized using 1576 triangular el-

ements and 870 nodes. 24 electrodes were positioned on both vertical sides of the

specimen with uniform spacings. The parameters of the domain adopted for discretiza-

tion are shown in Table 7. Figure 27(a) shows the mesh discretization of the adapted

CNF domain where positions of electrodes are highlighted with reference to Table 7.

Table 7: Geometry and mesh details for the adapted CNF specimen domain.

Parameter Value

Width 46.5 mm
Height 81.1 mm
Electrode spacing 6.2 mm
Electrode width 9.3 mm
Electrode height 3.175 mm
Radius of central notch 6.2 mm

2. With FE meshes generated, we adapted CNF material properties from (Hassan & Tall-

man 2020b) with elastic modulus (E) assigned as 2.534 GPa and Poisson ratio (ν) as

0.35. Furthermore, in order to increase the generalisation performance of NNs for pre-

dicting the first principal strain and stress fields on CNF materials, the elastic modulus

was distributed randomly within the domain. The homogeneous (mean) value of the

elastic modulus was assumed to be 2.534 GPa and the elastic modulus was distributed

randomly within the range where 0.6Eh < E < 1.4Eh. The variance coefficients were

selected such that the simulated first principal stress and strain distributions have
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(a) (b)

Figure 27: Discretized domain that is used in the integrated model: a) Domain discretization
of the gauge section of the CNF/epoxy specimen consisting of 1576 elements and 870 nodes;
b) Boundary conditions that are implemented in the elastic FE model. The domain is fixed
in x and y directions at the bottom. Displacements are allowed in y-direction on top layer
nodes.

larger variance while remaining physically realistic. As a result, E data had blob-

like Gaussian randomized spatial distributions, which effectively increased the variance

of voltage measurements and the corresponding strain/stress distributions within the

training sets.

3. In the elastic FE model, nodal forces were increased incrementally and randomly on top

of the domain. The reasons for doing this are as follows: (a) to simulate the plate under

incremental tensile forces corresponding to the experiments and (b) to increase the

variance of stress/strain distributions within the training sets. Corresponding boundary

condition details are shown in Figure 27(b). Forces were applied on the top nodes acting

upwards while constrained in the x-direction. Nodes on the bottom of the mesh were

fixed in the x and y directions. The maximum forces used in generating the training
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data corresponding to the failure displacement in the y-direction adopted from the

experiment which was approximately 0.8 mm (Hassan & Tallman 2020b).

4. Strain and stress distributions were computed assuming elemental strains and stresses

are related using a linear elastic constitutive law. The elemental first principal strains

and stresses were then calculated and recorded. After that, the piezoresistivity model

developed in (Tallman & Wang 2013) and summarized in Equation 54 was used to

calculate the conductivity distributions (γ) based on strain distributions (ϵ). Finally,

the conductivity distributions (γ) were inputted to CEM to compute the corresponding

voltage outputs (V ).
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Figure 28: Flowchart of the training data generation path.
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Figure 29: Sample strain distribution within Nϵ training data.

Figure 30: Sample stress distribution within Nσ training data.
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6.6.2 Neural network architecture and training

In this section, we present the NNs’ architectures and hyperparameters. From the generation

of training data, we obtained two sets of training samples which consist of (a) absolute

boundary voltage measurements (V ) corresponding to first principal strain distributions (ϵp)

and (b) absolute boundary voltage measurements (V ) corresponding to first principal stress

distributions (σp). Input data used in training the NNs consist of vectors of size 132×1 while

the output data are 1576× 1 as shown in Table 8 and 9.

In order to increase the performance of NNs’ training (and the accuracy of predictions), the

training data was pre-processed prior to training. Namely, in order to reduce the modeling

error within the training samples, the following error correction methodology was imple-

mented:

emodel = Vh − V0 (57)

where emodel represents the modeling error, Vh are the CEM voltage simulations from an

assumed homogeneous and unstressed sample, and V0 are the experimental voltage mea-

surements taken from the unstressed reference state. The modeling error was calculated

independently as the difference between each index in Vh and V0, to be more specific, from

the first entry to the 132nd entry of both these measurement vectors. Homogeneous assign-

ment of the domain’s conductivity was made based on prior experimental information where

γ0 is 4.857× 10−4 S/m. Then, we subtracted emodel from voltage simulations in the training

data regardless of the forces perturbations to correct and, correspondingly, reduce the mod-

eling error within the samples. As a result, the training samples were better fitted with the

experimental measurements.

After correcting model errors, we pre-processed the training samples by eliminating superflu-

ous samples consisting of only zero strain/stress entries. In this way, we can prevent the NNs

from being heavily biased towards non-displacement cases. Thirdly, we designed the NNs’

architecture and chose the hyper-parameters which yielded the most accurate predictions on

the validation sets. Summaries of training sets for Nϵ and Nσ, number of training samples,
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architectures and training hyperparameters are shown in Table 8 and 9. The finalized Nϵ was

comprised of one input layer and three fully connected layers with 100 neurons each followed

by three dropout layers, respectively. Hyperbolic tangent (Tanh) activation functions were

applied on all layers to take advantage of their smooth mapping capabilities. Meanwhile, the

finalized Nσ network has the same architecture and activation functions as Nϵ, however with

increased number of neurons to 500 per hidden layer. The reason that Nσ was designed with

more neurons than Nϵ reflects the discrepancy in input to output mapping sizes.

Table 8: Summary of the ANN architecture (Nϵ) for predicting strain distributions.

Input of V with size (132,1)

Total number of training samples: 5000

Layer (Type) Activations Learnable Weights Activation Function

Input layer 132 - -

Fully connected layer 100 13200 Hyperbolic tangent

Dropout (dropout rate : 50%) 100 - -

Fully connected hidden layer 100 13200 Hyperbolic tangent

Dropout (dropout rate : 50%) 100 - -

Fully connected hideen layer 100 13200 Hyperbolic tangent

Dropout (dropout rate : 50%) 100 - -

Output layer 1576 157600 Hyperbolic tangent

Output of ϵ with size (1576,1)

94



Table 9: Summary of the ANN architecture (Nσ) for predicting stress distributions.

Input of V with size (132,1)

Total number of training samples: 10000

Layer (Type) Activations Learnable Weights Activation Function

Input layer 132 - -

Fully connected layer 500 66000 Hyperbolic tangent

Dropout (dropout rate : 50%) 500 - -

Fully connected hidden layer 500 250000 Hyperbolic tangent

Dropout (dropout rate : 50%) 500 - -

Fully connected hidden layer 500 250000 Hyperbolic tangent

Dropout (dropout rate : 50%) 500 - -

Output layer 1576 788000 Hyperbolic tangent

Output of σ with size (1576,1)

To more comprehensively inform on the training process, training was terminated when the

loss function ceased to decrease more than 10% within 500 epochs. The former indicates that

gradient descent algorithm has satisfactorily minimized the loss described in Equation (42).

This selection was made based on the realization that training after this point may result

in over-fitting the data. The minimization of the loss functions for Nϵ and Nσ are shown

in Figures 31 and 32. In these plots, we observe significant loss at the start of the training

followed by sharp reduction and finally reached a steady state. In the following section, we

will provide results and discussion on predictions made by the trained networks.

95



Figure 31: Loss function minimization for the predictor Nϵ .

Figure 32: Loss function minimization for the predictor Nσ .

6.7 Results and Discussion

In this section, we begin by assessing the feasibility of the trained NNs for predicting stress

and strain fields. This is first tested using simulated data followed with experimental data.
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Following, we analyze the results, provide a discussion and lastly consider potential future

research.

6.7.1 Results

The predictive results from Nϵ and Nσ are shown in Figure 33(a) and (c). The corresponding

simulated principal strain and stress distribution are shown in Figure 33(b) and (d). These

two results was chosen randomly from the datasets which was not used to train the corre-

sponding NNs, the force and elastic applied was randomized as explained in section 6.6.1.

We first observe strain and stress concentrations on top of the domains which are caused

by the excess incremental nodal forces during the data generation process. As a whole, the

predicted results show similar strain and stress distributions in comparison to the simulated

data. However, it can be seen that Nϵ overpredicts the strain concentration near the circular

notch while predictions from Nσ underpredicts the stress concentration on the left-top side

of the domain. This can be caused by (a) minimization of the MAE loss function with reg-

ularization is highly unlikely to reach zero, hence the prediction error are always present in

the results and (b) lower elastic modulus values on nodes due to the random generation of

elastic modulus distributions.
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Figure 33: Comparison between the predicted strain and stress distributions and their cor-
responding simulation samples: a) Prediction of the strain field (left) and simulated strain
field from the integrated model (right); b) Prediction of the stress field (left) and simulated
stress field from the integrated model (right).
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We then validate the NNs predictive performances on the experimental data. The NNs’

strain and stress predictions are shown in Figure 34. To corroborate the predictions, Figure

34 also shows the DIC reconstructions from the experiments considering different axial dis-

placements. In this qualitative feasibility study, we observe that the NNs’ predictions exhibit

similar strain and stress distributions compared with DIC reconstructions. Strain and stress

concentrations can also be observed around the notch which are consistent with the DIC

results. In addition, it is worth noting that NNs’ predictions show correct rate of growth of

strain and stress distributions corresponding to different loading stages. Closer inspection of

the predictive results show symmetrical first principal strain and stress distribution patterns

which are expected based on the applied boundary conditions. Quantitatively speaking, the

maximum predictive first principal strain is 17.3% higher than DIC reconstructions while the

maximum predictive first principal stress is 4.5% higher than DIC reconstructions. Discrep-

ancy between the prediction and DIC results can potentially be reduced by optimizing the

NNs’ hyperparameters. Summarily, in taking the results together, we can observe that the

proposed NNs can qualitatively predict the first principal strain and stress distributions di-

rectly without solving the ERT inverse problem. Quantitatively speaking, Nσ yields accurate

predictions within 5% error margin while Nϵ outputs less accurate results. The reasons that

potentially caused this observation are discussed in the following section.

The computational time for predicting the strain/stress distribution via both methods are

recorded in Table 10. We carry out four independent runtime tests via NNs and compare

them with the runtimes via ERTplusGA. Significant computational time reduction can be

observed from Table 10. In order to further compare the results of both methodologies. We

record the average values of the first principal strain (ϵ̄p) and stress (σ̄p) considering different

displacement cases in Table 11. Firstly, results yielded via ERTplusGA are down-sampled

and mapped on the same FEA meshes that are used for NNs’ predictions. Secondly, average

values are then computed based on the interpolated strain and stress vectors. The same

process is followed when computing the L2 norm of first principal strain (∥ϵp∥2) and stress

vectors (∥σp∥2) from both methodologies. Corresponding results are recorded in Table 12.
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Table 10: Computation runtimes for predicting strain and stress distributions using NNs and
ERT plus GA considering different displacement cases.

- Runtimes via NNs (s) Runtimes via ERT plus GA (s)

Displacement Test 1 Test 2 Test 3 Test 4 Test 1 Test 2 Test 3 Test 4

0.25mm 0.073 0.084 0.056 0.030 4440 3480 3300 3300

0.50mm 0.029 0.028 0.031 0.029 4680 3840 3600 3540

0.75mm 0.028 0.031 0.031 0.028 4500 4200 4080 4080

Table 11: The average first principal strain (ϵ̄p) and stress distribution (σ̄p) obtained via NNs
and ERT plus GA considering different displacement cases (d).

- ϵ̄p considering different cases σ̄p considering different cases (MPa)

Methodology 0.25 mm 0.50 mm 0.75 mm 0.25 mm 0.50 mm 0.75 mm

NNs 0.0027 0.0043 0.0064 4.46 9.24 14.63

ERT plus GA 0.0061 0.0043 0.0077 15.82 11.38 21.39

Table 12: The L2 norm of first principal strain (∥ϵp∥2) and stress distribution (∥σp∥2) obtained
via NNs and ERT plus GA considering different displacement cases (d).

- ∥ϵp∥2 considering different cases ∥σp∥2 considering different cases (MPa)

Methodology 0.25 mm 0.50 mm 0.75 mm 0.25 mm 0.50 mm 0.75 mm

NNs 0.0848 0.1357 0.2027 144 297 470

ERT plus GA 0.2664 0.1314 0.2419 712 357 692
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Figure 34: Neural network predictions of experimental data (top two rows) and the DIC
reconstructions (bottom two rows) considering different displacement states (Hassan & Tall-
man 2020b).
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6.7.2 Discussion

This paper conducts the feasibility study of the proposed methodology which is affirmed

qualitatively and quantitatively via simulation and experimental data in the preceding sec-

tions. Indeed, as corroborated in the previous subsection, we can observe the efficacy of using

NNs in directly predicting the first principal strain and stress fields based on ERT voltages

measured from CNF materials. The main advantages of the proposed methodology are as

follows: (a) reduction in computational costs, having applications in continuous monitoring

in pragmatic monitoring frameworks and (b) no prior information such as forces, boundary

conditions of the members are required as inputs for NN prediction. Similar features could

enable this methodology to be applied in complex environmental and operational conditions.

For example, by considering elements that are subjected to varying atmospheric conditions

during simulations. To more closely investigate the feasibility of NNs, we will begin by eval-

uating findings during data processing and network training which improve the accuracy and

generalisation of the proposed NNs followed by the insight for future research.

Firstly, we want to address the error correction methodology used to reduce the modeling

error prior to training. As shown in Figure 35, we can observe discrepancies between the sim-

ulated voltage measurements of homogeneous background estimation and the experimental

measurements of the reference state. These discrepancies mainly result from (a) geometri-

cal electrode modeling errors and (b) the elastic FE modeling errors. It is worth noting,

regarding (a), that the locations of electrodes are assumed to be stationary regardless of

the specimen’s elongation. However, in experimental conditions, the locations of electrodes

change proportional to the CNF plate displacement. As we can observe from Figure 36,

this modeling error correction process mitigates the discrepancies which could increase the

accuracy of NNs’ predictions when validating experimental results.
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Figure 35: Simulated homogeneous voltages and experimental voltage measurements prior
to error correction.

Figure 36: Simulated homogeneous voltages and experimental voltage measurements after
error correction.
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Figure 37: Histogram plot of stress training samples prior to data processing.

Figure 38: Histogram plot of stress training samples posterior to data processing.

Furthermore, as previously noted, we pre-process the training samples prior to the training

process. As shown in Figure 37, training samples are heavily biased towards the ‘zero-

displacement’ cases. This is caused by the generation of training samples originating incre-

mentally from the ‘zero-displacement’ cases where no or minimal forces are applied on the
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model. Hence the entries in strain and stress matrices consist of near-zero entries. Herein,

we pre-process the training samples by decreasing the total number of ‘zero-displacement’

samples with trial and error. Frequency on y-axis represents the number of occurrences of

each number within the whole training data set. As a result, Figure 38 shows the histogram

plot after processing. Although the spike on zero is still present, we can observe the training

samples are now less biased towards ‘zero displacement’ cases compared to Figure 37. This

process proves to be effective during training and yielding more accurate results, however

excess elimination of ‘zero displacement’ samples may result in poor generalization of the

NNs.

However, despite the advantages stated above, the performance of NNs is not always satis-

factory against certain simulation samples and Nσ yields more accurate results than Nϵ when

validating against experimental data. To explain this, we first note that better performance

from Nσ results from the fact that Nσ has more learnable weights than Nϵ. Though theo-

retically by increasing the model complexity of Nϵ, we could obtain a network that yields

more accurate predictions, we are at the risk of over-fitting the data. This trade-off between

the generalisation and accuracy of the corresponding NNs also caused the errors when pre-

dicting on simulated measurements. Hence a rigorous methodology to find the balance point

between the generalisation and accuracy for simulated and experimental data at the same

time could be a point of potential research interests. The predictive results from simulations

show larger error on domain boundaries. This is mainly due to the FEA model used in this

paper to generate training samples has high sensitivity to error at top and corner boundary

locations as shown in Figure 33. In further research, an efficient posterior error estimation

technique can be applied on the FEA model to reduce the error in FEA solutions (Ainsworth

& Oden 1997). As a result, we could have samples with reduced boundary modeling error

which could increase the accuracy of predictive results at the boundaries.

To directly compare the computational cost of proposed and reference methodology, we can

observe the significant reduction of runtimes of predicting the strain and stress distribution

via NNs than ERTplusGA in Table 10. This reduction could enable a well-trained neu-

ral network to potentially provide real time strain/stress reconstructions under the specific
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boundary conditions that is trained on. Furthermore, we could observe that NNs yield lower

average and L2 norm values than the ERTplusGA methodology as shown in Table 11 and

12. In addition, both average and L2 norm values shows larger difference when displace-

ment is at 0.25 mm. This could partially be due to the error produces while interpolating

the GAplusERT results. We want to address that Table 11 and 12 only provide the direct

comparison between two methodologies but not indicate the accuracy of either methods.

In addition, the proposed methodology is application specific. Namely, that the method-

ology, at present, can only be applied on smart materials which have known piezoresistiv-

ity properties since the mapping between conductivity and strain distributions rely on the

piezoresistivity model. Herein, potential research can aim at conducting feasibility studies

on other smart materials following the proposed methodology. In addition, since the same

boundary conditions are applied on all training samples, NNs in this paper can only yield

accurate strain/stress distributions under those specific boundary conditions. In further re-

search, one could either train different NNs based on the expected boundary conditions or

adding training samples with different boundary conditions to utilize the advantages of the

proposed methodology.

Lastly, since the experimental data were collected in a controlled lab environment, the envi-

ronmental and operational conditions of this system are assumed to be stable. As a result,

the changes in the input data are assumed to be directly associated with the changes of the

strain distributions. However, when SHM is applied in field applications, it is imperative for

the proposed framework to incorporate any measurement changes caused by the environmen-

tal and operational conditions. Hence, future research will be focused on handling robust

conditions using advanced data processing approaches (e.g. filtering, cleansing, normalizing,

etc.) for measurements used in training stress/strain predictive networks.

6.8 Conclusion

This paper sets out to assess the feasibility of incorporating neural networks for directly

predicting the first principal strain and stress distributions from ERT voltages measured

from CNF materials. The findings indicate that the proposed framework can qualitatively
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predict the principal strain and stress distribution predictions on various experimental voltage

measurements. More importantly, the proposed framework may be used to significantly

reduce the computational time for the predictions of strain and stress distributions. This

advantage may lead to much lower operational costs in pragmatic applications. However,

the current study is limited by the absence of approaches to rigorously optimize the trade-off

between generalisation and accuracy. Further work needs to be done to research NNs which

could yield more quantitatively accurate results on experimental data. In conclusion, the

feasibility of proposed framework was affirmed qualitatively with simulation and experimental

data. Discussion and future research interests were proposed for further development of the

proposed methodology.
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7.1 Abstract

In situations where time or computing resources are limited, implementation of reduced order

numerical models remains attractive in engineering. Unfortunately, this pursuit is generally

associated with an unavoidable trade-offs in accuracy, resolution, and/or information. Herein,

we address this issue by proposing the use of data-driven fully connected neural networks

for increasing the fidelity of numerical solutions – a process henceforth referred to as learned

superresolution (SR). In the examples tested, the feasibility of using trained fully connected

networks to conduct SR (using reduced order finite element solutions to simulate higher-order

hp solutions) is demonstrated. For this, trained SR networks are first tested computationally

in the context of mechanical simulations and later in the context of (inversion-based) experi-

mental nondestructive evaluation. Results indicate the potential feasibility of using proposed

SR approach to obtain numerical solution with low fidelity data. Potential uses and paths

forward for network-based SR of numerical simulations in engineering and inverse problems

are discussed.

7.2 Introduction

Over the past 30 plus years, significant advances in computational science and engineering

have been realized (Hughes 2012, Simos 2011). Among the numerical approaches used to sim-

ulate physical problems in engineering, the finite element method (FEM) remains pervasive.

This is largely owed to FEM’s ability to, for example, approximate differential equations in

domains of arbitrary geometry (Reddy 2019), handle complex boundary conditions (Surana

& Reddy 2016), and readily incorporate computer aided design (CAD) model topology (Fou-

cault, Cuillière, François, Léon & Maranzana 2008). It is then no surprise that the FEM has

become (and still is) a highly active research area. Among the numerous advances emerging
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from this field, the ability to improve FEM approximations via discretization and/or refine-

ment has proven invaluable from a pragmatic point of view (Zhang, Gain & Norato 2020,

Areias, Reinoso, Camanho, De Sá & Rabczuk 2018, Yu & Bui 2018, Hartmann, Held, Leicht

& Prill 2010, Azócar, Elgueta & Rivara 2010). Especially, the development of discretiza-

tion size (h), order of approximation polynomial (p), and hp refinement has enabled highly

accurate modeling of physical problems (Bagwell, Ledger, Gil, Mallett & Kruip 2017, Bell

& Surana 1994, Paszyński, Kurtz & Demkowicz 2006, Houston, Schwab & Süli 2002, Oden,

Duarte & Zienkiewicz 1998). In a similar vein, the field of (physical model-based) inverse

problems has also benefited from implementations of improved accuracy hp-adaptive FEM

models via the abatement of modeling errors (Yeo, Hwang, Liu & Kalagnanam 2019, Smyl

& Liu 2019b, Hakula, Hyvönen & Tuominen 2012, Ledger 2012).

The crux of adopting increasingly accurate numerical models in engineering and as forward

models in inverse problems is the increased computational expense. This observation is

closely related to the so-called “curse of dimensionality” that has plagued (conventional)

numerical solution approaches to partial differential equations (Grohs, Hornung, Jentzen &

Von Wurstemberger 2018). To complicate matters more, recent works in physical model-

based inverse problems have shown that there may exist a “Goldilocks Zone” whereby the

most suitable forward model is neither overly accurate nor inaccurate (Burger, Korolev &

Rasch 2019, Smyl & Liu 2019b). Practically, a solution to the former issues might be efficiently

addressed using reduced-order numerical models, which are designed to be both fast and

sufficiently accurate for the problem at hand (Nouy 2010, Benner, Gugercin & Willcox 2015,

Amsallem & Farhat 2008). However, in many cases, reduced order models are used when

insufficient computing resources and/or time dictate model accuracy. In such situations,

the unfortunate trade-off is simply to reduce model complexity (e.g. reducing nodes and

elements in a FEM discretization); thus, systematically tailoring model accuracy is infeasible

in these circumstances. FEM analysis which is a common practice for mechanical modelling

also suffers from the “curse of dimensionality”; in an ideal world, a FE model with desired

spatial resolution and accuracy could be selected independent of computational resources and

time. However, in constrained environments where highly accurate FE models are needed,
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avoiding the “curse of dimensionality” using conventional FE approaches may be unavoidable.

As such, a practical solution to this problem is needed.

In this work, we are inspired by recent works utilizing neural networks (NNs) to circumvent

the aforementioned challenges related to numerical computation, complexity, and dimen-

sionality (Jentzen, Salimova & Welti 2018, Grohs, Hornung, Jentzen & Von Wurstemberger

2018). Herein, we address these challenges by proposing the use of data-driven NN map-

pings from reduced order FE solutions to higher order solutions. Owing to similarities in

learned superresolution (SR) frameworks already developed in imaging contexts (e.g. (Jiang,

Wang, Yi & Jiang 2020, Jiang, Wang, Yi, Wang, Lu & Jiang 2019, Molini, Valsesia, Fra-

castoro & Magli 2019)), we also categorize this approach within the family of SR. To this

end, the overall aim of the proposed SR approach is to (a)̀‘seed” NNs using low fidelity, yet

physically-realistic, inputs and map to solutions containing higher resolution and accuracy

and (b) enable ease of pragmatic application in engineering and inverse problems settings.

In recent studies, Electrical Resistance Tomography (ERT) emerged as an imaging modality

for non-destructive testing (NDT). However, high fidelity ERT reconstructions suffers from

“curse of dimensionality” due to solving the ill-posed ERT inverse problem (Chen, Gallet,

Huang, Liu & Smyl 2022). Herein, in this paper we aim to reduce the computational cost of

applying pragmatic ERT applications using the proposed deep learned SR.

The paper is structured as follows. First, we introduce the background of superresolution

along with the description of the mechanical study followed by introduction of the electrical

resistance tomography (ERT) inverse problem, then we propose the learned SR approach as

well as its implementation in the inverse problems, and then we detail the selection of the NN

architectures used. Following, the proposed approach is tested numerically considering SR

of mechanical simulations. Next, we trial the method using experimental data in the context

of nondestructive evaluation. Finally, discussion and conclusions are presented.
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7.3 Data-driven superresolution of reduced order models and im-

plementation in inverse problems

In this section, we propose the data-driven SR approach used to improve the resolution

and accuracy of reduced order numerical models. Following, we describe potential imple-

mentations of the SR approach in improving the FEM results with low fidelity data via a

mechanical simulation study. Then we explore the feasibility of using SR to solve inverse

problems. Lastly, the selection of NN architectures for SR is discussed.

7.3.1 Approach to superresolution of reduced order models

We are herein interested in developing data-driven mapping from reduced order numerical

solutions to solutions with higher resolution and/or accuracy. Due to their pervasiveness

in engineering and inverse problems, we firstly focus on applications of the FEM. In this

contextualization, we first consider the following relationship between complimentary FE

solutions having the same solution dimensionality

uA = uR + ϵ1 (58)

where uA ∈ RN is an accurate FE solution, uR ∈ RN is a reduced order FE solution, N is

the length of the FE solution vectors, and ϵ ∈ RN is a non-random model error term (Smyl,

Tallman, Black, Hauptmann & Liu 2021).

Since a one aim of our SR approach is to increase the fidelity of simulations, however, we

restrict ourselves to mapping solutions where the accurate solution is larger than or equal to

the size of the reduced order solution, i.e. we have uA ∈ RNA and uR ∈ RNR where NA ≥ NR.

Given these, the aim of our data-driven SR approach is to learn the following mapping

S(uR) → uA (59)

where the learned function S is generally considered to be nonlinear – via the nonlinear-

ity of the differential equation under consideration and/or the relation between potentially
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inhomogeneous FE model parameters and solution. In recent studies, researchers have suc-

cessfully utilized different types of NNs to achieve the aforementioned aim by learning through

multi-fidelity data (Meng & Karniadakis 2020, Liu & Wang 2019, Chakraborty 2021, Raissi,

Perdikaris & Karniadakis 2017, Chi, Zhang, Tang, Mirabella, Dalloro, Song & Paulino 2021).

Black and Najafi specifically used Multi Fidelity Graph Neural Network (MFGNN) to learn

FEM convergence behavior which improved the generalizability over traditional GNNs (?).

In this paper, we propose to explore the feasibility of using fully connected neural networks

to conduct SR on the 1) displacement data on lower order elements of an mechanical FEM,

and 2) up-sample the voltage measurements based on reduced number of electrodes of an

experimental ERT inversion problem.

7.3.2 Mechanical simulation study

In this section, we introduce the simulation set up of the discretized mechanical scenario

with FEM to explore the feasibility of the proposed SR approach. Firstly, a square domain

of 1m × 1m with a quarter circle notch on the bottom left with radius equal to 0.2m was

created with the boundary conditions shown in Figure 39. The 2D plate was fixed on the

left boundary in both directions. A roller pinned connection was applied on the bottom right

node to fix the displacement on y-direction.

Nodal forces were applied on the right side of the domain as shown in Figure 39 to introduce

the displacements in both directions. Possion ratio (ν) of 0.28 was assigned to the domain

with elastic modulus as 200 GPa. Then, the domain was firstly discretized with 231 lower

order of approximation polynomial (p = 1) elements. After that, the same domain was

discretized with 2521 higher order of approximation polynomial (p = 2) elements. Analogous

to Equation 59, the SR approach is herein learning to map the following relationship:

Sx(xsim,p=1) → xsim,p=2 (60)

Sy(ysim,p=1) → ysim,p=2 (61)
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Figure 39: Boundary and loading condition of the domain used for the mechanical simulation
study. The domain is fixed in x and y direction at the left boundary. Displacement in
X direction are allowed on the right bottom node. Nodal forces are applied on the right
boundary.

where Sx and Sy represent the NNs operators aiming to learn the mapping between displace-

ments vectors computed from lower and higher order meshes on both directions. The aim of

this proposed SR approach is to obtain more accurate results without computing on higher

order elements which could lead to reduced computational cost. In order to train the NNs, a

framework to generate sufficient training samples was necessary. Firstly, in order to increase

the variance of the training data for the NNs, we randomized the total sum of the nodal forces

using uniform distribution between 1 Newton to 50000 Newtons and secondly the mean value

of the elastic modulus (Eh) was set to be 200GPa while the elastic modulus (E) were dis-

tributed randomly between 0.1Eh < E < 1.5Eh within the domain. Then, we established

FEMs with aforementioned parameters to obtain two displacement fields modelled on lower

and higher order elements. After that, we decomposed the displacements vectors to x and

y directions. The reason for decomposing the displacement matrix to two directions was to

have reduced number of trainable parameters of each NN. This could potentially enable the
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leanring process to more easily satisfy the Equation 60 and 61 with reduced architectures.

The flowchart of the proposed methodology are shown in Figure 40, 41 and 42.

FEM with lower order mesh (p = 1)

Displacement
field from lower
order mesh

Displacement
fields on the
x-direction
modelled on
lower order

mesh (xsim,p=1)

Displacement
fields on the
x-direction
modelled on
lower order

mesh (ysim,p=1)

Figure 40: Flowchart of decomposing the displacement vectors modelled on lower order mesh
(p = 1).

FEM with higher order mesh (p = 2)

Displacement
fields modelled

on higher
order mesh

Displacement
fields on the
x-direction
modelled on
higher order

mesh (xsim,p=2)

Displacement
fields on the
y-direction
modelled on
higher order

mesh (ysim,p=2)

Figure 41: Flowchart of decomposing the displacement vectors modelled on lower order mesh
(p = 2).
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Displacement
fields on the

x-direction from
lower order

mesh (xsim,p=1)

Displacement
fields on the
y-direction
modelled on
lower order

mesh (ysim,p=1)

Sx Sy

Displacement
fields on the
x-direction
modelled on
higher order

mesh (xpre,p=2)

Displacement
fields on the
y-direction
modelled on
higher order

mesh (ypre,p=2)

Figure 42: Flowchart of the training process of NNs Sx and Sy for the mechanical simulation
study .

In order to demonstrate the feasibility of SR quantitatively, we utilized the following error

functions1 to quantify the accuracy of the proposed SR approach:

e1 = (xsim,p=2 − xpre,p=2)
2 (62)

e2 = (xsim,p=2 − xsim,p=1)
2 (63)

e3 = ∥(xsim,p=2 − xpre,p=2)∥ (64)

e4 = ∥(xsim,p=2 − xsim,p=1)∥ (65)

where xsim,p=2 represents the simulated displacement fields of the x-direction modelled from

p = 2 elements which were then interpolated on the p = 1 elements, xpre,p=2 represents the

predicted displacement fields of the x-direction by the NNs on the p = 2 elements which were

1Note that the same error metrics are utilized for y-directional fields.
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then interpolated on the p = 1 elements, while xsim,p=1 represents the simulated displacement

fields of the x-direction modelled on the p = 1 elements. Equation 62 and 63 expresses the

mean squared error function (MSE) between those displacement vectors while Equation 64

and 65 describes the norm error function. Since we could assume more accurate results

modelled from higher order approximation polynomial elements in FEMs, we could conclude

that SR achieves better accuracy in the aforementioned mechanical simulation studies if it

satisfies the following two equations:

e2 − e1 > 0 (66)

e3 − e4 > 0 (67)

The proposed SR approach was then validated against a random simulation sample using

the criteria developed above. More detailed results are recorded in section 4.

7.4 Electrical Resistance Tomography Inversion

There are various NDT methodologies that could assess the structures condition locally and

globally such as ultrasonic, electromagnetic, photographic, radiographic techniques (Gholizadeh

2016, Mutlib, Baharom, El-Shafie & Nuawi 2016, Montinaro, Cerniglia & Pitarresi 2018, Kong

& Li 2018). However they often suffer from 1) high operational cost, 2) prior information

of the potential damage location needed. Compared with traditional NDT approcahes, ERT

has the advantages such as rapid data collection,lower energy cost and can offer spatial mon-

itoring on large areas (Chen, Hassan, Tallman, Huang & Smyl 2022). Furthermore, ERT

is an imaging modality which can reconstruct 1) absolute internal conductivity distribution

from boundary voltage measurements (Liu, Gu, Smyl, Khambampati, Deng & Du 2020) or

2) differences of internal conductivity distribution between the two different states from dif-

ferences of the boundary voltage measurements (Liu, Smyl, Gu & Du 2020b). These two

schemes are known as the absolute imaging and difference imaging, respectively. In most

ERT experiments, in order to take the voltage measurements, we firstly attach numbers of

electrodes on the boundary of the domain. Then currents are injected into the electrodes
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in pairs, while the voltage measurements are taken from those injected electrodes. Different

injection and measurement protocols can be implemented depend on the shape/dimensions

of the domains aiming at obtaining the most sufficient measurement data.

ERT was initially implemented as an medical imaging technique to reconstruct organs ow-

ing to their different conductivity (Henderson & Webster 1978). Then, ERT was developed

further in capacities and inductive topographies field (Yang & York 1999). In late studies, en-

gineers successfully utilised ERT in structural health monitoring (SHM) as a non-destructive

testing (NDT) modality. ERT was developed to detect damage in cement-based materi-

als (Smyl, Pour-Ghaz & Seppänen 2018, Hallaji, Seppänen & Pour-Ghaz 2014, Smyl & Liu

2019a) as well as reconstructing stress and strain distribution on composite materials (Tall-

man, Gungor, Wang & Bakis 2014, Tallman, Gungor, Koo & Bakis 2017, Lestari, Pinto,

La Saponara, Yasui & Loh 2016, Loyola, Briggs, Arronche, Loh, La Saponara, O’Bryan &

Skinner 2013, Loh, Kim, Lynch, Kam & Kotov 2007, Loh, Hou, Lynch & Kotov 2009, Chen,

Hassan, Tallman, Huang & Smyl 2022). Furthermore, researchers also used ERT to recon-

struct internal moisture flow in cement materials (Hallaji, Seppänen & Pour-Ghaz 2015, Smyl

2020).

7.5 The ERT Forward Model

In order to solve the ERT inverse problem, we firstly need a forward model to map between the

internal conductivity and voltage measurements. We herein adopt The Complete Electrical

Model (CEM) which is utilized with FEM by discretizing the following equations:

∇ · (σ∇u) = 0, x ∈ Ω (68)

∫
el

σ
∂u

∂n
dS = Il, l = 1, ...., L (69)

σ
∂u

∂n
= 0, x ∈ ∂Ω \ ∪L

l=1el (70)
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u+ zlσ
∂u

∂n
= Ul, l = 1, ...., L. (71)

Equation 68 is an Laplace equation representing the steady-state current diffusion within

the interested domain (Ω) while x representing the Cartesian coordinates within the domain.

Equation 69 to 71 constrains the boundary conditions needed to solve Equation 68. Il

represents the current injected on the lth electrode where L is the total number of electrodes.

In addition, n represents the normal vector on the infinitesimal surface of Ω which is denoted

as dS. Equation 71 then takes the impedance of the electrodes zl into the CEM for more

accurate modelling.
L∑
l=1

Il = 0 (72)

L∑
l=1

Ul = 0. (73)

By enforcing Equation 72 and 73 on Equation 68, one can compute an unique solution

by physically constraining the CEM to follow the current conservation law with a fixed

potential reference level (Tallman & Smyl 2020). The CEM can be beneficial when it comes

to generating training samples for the NNs, however in pragmatic situations, the internal

conductivity is mostly likely to be the unknown which needs to be reconstructed based on

the voltage measurements. We herein have an ERT inverse problem which needs an estimated

but unique solution.

7.6 ERT Inverse Problem

This section presents the conventional methodology to solve an ERT inverse problem via Total

Variation (TV) regularization . An regularization technique is needed to obtain an unique

solution due to the ill-posed nature of the ERT inverse problem. The ill-condition is mainly

due to 1) diffusive nature of the injected currents, 2) noisy experimental measurements,

and 3) ill-conditioned matrices computed from solving the optimization problem. The ERT

inverse problem can often be formulated as an observation model as follows:

V = U(σ) (74)

118



where U represents the discretized CEM which maps σ to V . However, due to the existence

of noise in measurements data, Equation 74 can be further modified as follows:

V = U(σ) + e (75)

where e represents the sum of modelling and measurement error. Due to the aforementioned

reasons, Equation 75 does not guarantee an unique solution. In order to estimate an unique

solution and reduce the computational cost of the optimization algorithm, we can linearize

the non-linear observation model as follows:

∆V = J∆σ +∆e (76)

where ∆e represents the difference in error between state 1 and 2, J represents the Jacobian

matrix of one state. Detailed mathematical expressions of the terms in Equation 76 is shown

in the following:

∆V = V2 − V1 (77)

∆σ = σ2 − σ1. (78)

J =
∂U(σ1)

∂σ1

(79)

where ∆V and ∆σ represents the difference of voltage measurements and conductivity be-

tween two states. This linearized ERT observation model is the mathematical expression of

the aforementioned difference imaging scheme. From Equation 76, a solution can be esti-

mated by minimizing the following objective function:

∆σ̂ = ||L∆e(∆V − J∆σ)||2 + α||LR∆σ||2 (80)
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where L∆e and LR represents the Cholesky factorized noise weighting and the regularization

matrices respectively. In this paper, we adopt TV regularization which is known to improve

the accuracy of the damage location (Tallman & Hernandez 2017, Smyl, Bossuyt, Ahmad,

Vavilov & Liu 2020). Hence the one estimated solution can be formulated as follows:

∆σ̂ = (JTWJ + Γ−1
TV )

−1(JTW∆V − gTV ) (81)

where ΓTV is the Hessian matrix of the isotropic TV function while gTV is the gradient

vector. In this way, we can estimate a stable, relatively accurate and unique solution for

the ERT inverse problem via TV prior regularization. In pragmatic applications, despite

of showing promising results in the SHM fields, ERT still suffers from high computational

cost from computing the Hessian matrices (Chen, Hassan, Tallman, Huang & Smyl 2022).

In addition, with more electrodes, we can easily obtain larger voltage measurements data

which could significantly increase the computational cost. As a result, we face a trade-off

problem between the spatial resolution of the reconstruction and the computational cost. The

proposed SR approach could potentially reduce the computational cost by reconstructing the

internal conductivity from up-sampled low fidelity data.

7.6.1 Experimental Inversion Study

In this section, the ERT experimental set up which was used to take the voltage measurements

is introduced at first. Then, we propose the SR approach of up-sampling the voltage measure-

ments taken from 8 electrodes to 16 electrodes using NNs. The experimental ERT voltage

measurements used for validating the SR approach in this paper were taken by the KIT4

(Kuopio Impedance Tomography) measurement system. KIT4 system consists of 1) a cur-

rent injection module with 16 connected electrodes, 2) voltage measurements module which

transfers voltage signals, and 3) a controller module (Kourunen, Savolainen, Lehikoinen,

Vauhkonen & Heikkinen 2008). The current injections module consists of a water tank which

were filled with water while plastic inclusions were placed in the tank as shown in 43.
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Figure 43: Experimental set up of a KIT4 current injection module which consists of a water
tank with a plastic inclusion (Hauptmann, Kolehmainen, Mach, Savolainen, Seppänen &
Siltanen 2017).

During the experiments, opposite injection and adjacent measurements protocols were applied

on 16 electrodes to take the homogeneous measurements where there was no inclusion in

the water tank. Secondly, same protocols were adapted to record the voltage measurements

with rectangular and circular inclusions with different locations. Thirdly, since we were using

different imaging scheme, the homogeneous voltage measurements were then subtracted from

all other voltage measurements. By following the methodology described above, we obtained

sets of difference voltage measurement vectors consist of 864 entries based on 16 electrodes.

After this, the difference of internal conductivity were then reconstructed using TV prior

regularization. These sets of data and reconstructed images were then used to validate the

proposed SR approach.

The proposed SR approach utilizes NNs to up-sample the voltage measurements taken from

8 electrodes to 16 electrodes. This SR approach is expressed mathematically as follows:

SV (V8) → V16 (82)
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where SV represents the NNs operator for up-sampling the boundary measurements, while

V8 represents the difference voltage measurements from 8 electrodes while V16 represents

the difference voltage measurements from 16 electrodes. In order to further distinguish

the differences between a conventional difference imaging inversion and the proposed SR

approach, we provide Figure 45 which shows the flowchart of the difference imaging scheme

based on voltage measurements taken from 16 electrodes and Figure 46 which demonstrates

the flowchart of the proposed SR approach.

In contemplation of sufficiently training NNs, we need a model which could simulate large

amount of training samples. Herein, we firstly developed the 2D CEM of the water tank

which consists of circular inclusions associated with randomized locations on each training

samples. Parameters for the simulated CEM of the ERT experiments is shown in Table 13.

Table 13: Geometry and mesh details for the water tank.

Parameter Value

Radius 14cm
Number of Electrodes 16
Electrode Width 2.5cm
Number of Elements 2144
Number of Nodes 1145

This CEM was then discretized with 2144 triangular elements and 1145 nodes. The dis-

cretized domain is shown in Figure 44. The discretized CEM was then used to generate dif-

ference voltage measurement vectors based on 16 electrodes which was later down-sampled to

measurements based on 8 electrodes with the same protocols used in the ERT experiments.

In this way, each training samples consists of an input vector which has 176 entries and an

output vector which has 864 entries. The well-trained NNs was then able to up-sample the

measurements that was later used for reconstructing the difference of internal conductivity.

Both simulation and experimental reconstructions was used to validate the proposed SR

approach.
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Figure 44: Water tank discretization consisting of with 1145 Nodes and 2144 Elements.

Low fidelity dif-
ference voltage
Measurements
based on 16
electrodes

Difference inversion with TV Prior Regularization

Reconstructed
difference
of internal
conductivity

Figure 45: Flowchart of reconstructing the difference of the internal conductivity via solving
the conventional ERT inverse problem based on high fidelity measurements with TV prior
regularization.
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Low fidelity dif-
ference voltage
Measurements
based on 8
electrodes

Neural Network Up-sampling

Up-sampled
high fidelity
difference

voltage Mea-
surements based

on 16 elec-
trodes by NN

Difference inversion with TV Prior Regularization

Reconstructed
difference
of internal
conductivity

Figure 46: Flowchart of reconstructing difference of the internal conductivity via proposed
SR approach based on low fidelity measurements with TV prior regularization.

7.7 Selection of the architecture of NN

7.7.1 Rationale of selecting NN

In this section, we firstly cover the rationale behind selecting NN as the technique for the

propose SR approach and then the architectures of NNs used in both mechanical simulation

and experimental inversion studies are provided. For the proposed SR approach, we are

essentially mapping from an input vector with fewer entries to an output vector with more

entries. Herein, the NNs implemented for the SR approach is learning to solve regression

problems. We selected NN as the deep learning technique for the proposed methodology

due to the following reasons: 1) learning tasks are highly non-linear, 2) presence of the
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continuous traning data (displacement field for the mechanical study and boundary voltage

measurements for the ERT inversion study), 3) potential of pragmatic applications over large

area and 4) controllable training process (An & Cercone 1999, Ying 2019, Ertekin & Hopper

2006).

7.7.2 Architecture of selected NNs

In this section, we firstly introduce the detailed architectures of selected NNs followed by

presenting the training curves of the NNs for both studies. We want to address that the

architectures of NNs were selected by adjusting NNs’ hyperparameters aiming at 1) satisfying

Equation 66 and 67 and 2) minimizing the error function.

For the mechanical simulations study, the same NN architectures were used to train the

displacement fields in both directions which are denoted as XD and YD. Each NN consists

of 1) an input layer which has 231 neurons, 2) an fully connected layer with 462 neurons

followed by a dropout layer, and then 3) an output layer with 2521 neurons. LeakyRelu

functions were used as the activation function for all layers. More detailed architecture with

learnables weights are shown in Table 14. Training curves for XD and YD are shown in Figure

47 and 48. The training processes were terminated when the error ceased to decrease more

than 10% within 500 epochs. We used this early-stopping to prevent the NNs from over-

fitting the training data. Sharp reduction of the error can be observed at the early epochs

which indicates the improved learning performance of the NNs. A steady plateau error loss

indicates the gradient descent algorithm has reached at least a local minimum within the

error space.

Table 14: Summary of the NN architecture Sx and Sy for up-sampling displacement fields
modelled on lower order mesh.

Input of xp=1 or yp=1 with size (231,1)

Total number of training samples: 4900

Layer (Type) Activations Learnables Weights Activation Function

Input layer 231 - -
Fully connected layer 462 107, 184 LeakyReLU
Dropout (dropout rate : 20%) 462 - -
Output layer 2521 1, 167, 223 LeakyReLU

Output of xp=2 or yp=2 with size (2521,1)
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Figure 47: Loss function minimization of SR operator Sx.

Figure 48: Loss function minimization of SR operator Sy.

For the experimental inversion study, owing to the ill-posed nature of the ERT inverse prob-

lem, small prediction error can lead to large differences on the reconstructed internal con-

ductivity. As a result, we implemented a much deeper network than Sx and Sy. SV consists

of 1) an input layer with 176 neurons, 2) a symmetrical architecture with 4 layers consist-

ing 100, 200, 800 and 1300 neurons respectively, and 3) an output layer with 864 neurons.

LeakyReLU activation functions were applied on all layers. More detailed architecture with

learnable weights are shown in Table 15. Same early-stopping protocols were implanted here
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to potentially prevent the NN from over-fitting the training data. The loss function mini-

mization curve for SV is shown in Figure 49 and similar observations from Figure 47 and 48

can be seen here as the gradient descent algorithm was computed to minimise the MSE loss.

Table 15: Summary of the NN architecture SV for up-sampling low fidelity voltage measure-
ments based on 8 electrodes.

Input of V8 with size (176,1)

Total number of training samples: 10, 000

Layer (Type) Activations Learnables Weights Activation Function

Input layer 176 - -
Fully connected layer 100 17, 700 LeakyReLU
Fully connected layer 200 20, 200 LeakyReLU
Fully connected layer 800 160, 200 LeakyReLU
Fully connected layer 1300 1, 691, 300 LeakyReLU
Fully connected layer 1300 1, 691, 300 LeakyReLU
Fully connected layer 1300 1, 691, 300 LeakyReLU
Fully connected layer 800 160, 200 LeakyReLU
Fully connected layer 200 20, 200 LeakyReLU
Fully connected layer 100 17, 700 LeakyReLU
Output layer 864 87, 264 LeakyReLU

Output of V16 with size (864,1)

7.8 Results

7.8.1 Mechanical simulation study evaluation

In this section we firstly report the quantitative and qualitative evaluations of the mechanical

simulation study followed by the experimental inversion validation of the SR approach. MSE

and Norm error for e1 and e2 in both directions from the simulation mechanical study are

shown in Table 16. We can observe that Equation 66 and 67 are satisfied in both directions

in terms of both error criteria. This quantitative results indicate that the proposed SR ap-

proach can potentially offer more accurate results on this mechanical simulation case without

constructing FEMs on higher order meshes.

In Figure 50, we report the displacement fields results modelled on higher and lower order

meshes. All displacement results are interpolated on the lower order (p = 1) elements for

the convenience of comparison. Firstly, we can conclude intuitively that SR approach yields
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Figure 49: Loss function minimization of SR operator SV .

similar displacement fields results qualitatively. In addition, we can observe more detailed

displacement fields appearing on the right top and bottom regions of the domain in both

directions. This observation is consistent with the error analysis presented in Table 16 where

the predicted displacement fields based on SR approach offers generally more accurate results.

Discussion in term of the mechanical study will be provided henceforth.

Table 16: MSE and norm error analysis of the mechanical simulations study.

x-direction y-direction

Error Type e1 e2 e1 e2
Norm error 2.997× 10−4 0.0262 1.109× 10−4 0.0077
MSE error 3.884× 10−10 5.0183× 10−8 0.3279× 10−11 3.3449× 10−9

7.8.2 Experimental inversion study validation

For the experimental inverse study validation, we firstly use the simulation samples to evalu-

ate qualitatively of the SR approach. As shown in Figure 51, column (a) shows the simulated

reconstruction of the difference internal conductivity reconstruction with a circular inclusion

while column (b) shows the reconstruction results from the proposed SR approach. Results

from SR approach generally captures the correct location and sizing of the inclusion as well
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Figure 50: Comparison between the displacement field yielded from the SR approach and
the simulation results: a) Predicted displacement field modelled on p = 2 mesh which is then
interpolated on p = 1 mesh; b) Simulated displacement field modelled on p = 2 mesh which
is then interpolated on p = 1 mesh; c) Simulated displacement field modelled on p = 1 mesh.

as the homogeneous background. However, there are also imperfections in the SR recon-

structed results, for example: 1) From the colorbar we notice the magnitude of the difference

conductivity value is smaller than the true value, and 2) We observe there are over-predicted

values around the inclusions across all validated samples. The reasons causing these error are

explained in detail in the discussing section. Secondly, we validated the SR approach with

experimental ERT voltage measurements. In Figure 52, column (a) shows the ’true’ locations

and sizing of the inclusions during the experiments. Column (b) shows the reconstruction of

the difference conductivity based on the experimental measurements taken from 16 electrodes

while column(c) shows the reconstruction based on the up-sampled measurements via the SR

approach. We can firstly observe that both results have similar absolute values with correct

localization of the inclusions. These observations indicate the SR approach is potentially

capable of up-sampling the low fidelity data to reconstruct the difference conductivity with

reduced number of implemented electrodes. However, we can also observe some error such

as 1) The SR based reconstruction does not show the rectangular shape of the inclusion, 2)
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locations of the SR based reconstruction are not aligned with the actually position of the

inclusion, and 3) reconstruction inhomogeneity of case 2 at the boundary locations. The

potential reasons causing these error are provided in the following discussion section.

Figure 51: Comparison between the conventional reconstruction of ∆σ based on simulated
high fidelity measurements and the reconstruction via proposed SR approach: a) TV prior
reconstruction of ∆σ based on high fidelity, simulated measurements based on 16 electrodes;
b) TV prior reconstruction of ∆σ based on up-sampled voltage measurements via SR ap-
proach.

Taken all the results mentioned together, we can safely conclude that the proposed SR ap-

proach successfully improves displacement fields results on this simulation mechanical study

by using trained NNs to predict the displacements from lower fidelity data. In addition,

the SR approach can also qualitatively up-sample the low fidelity experimental ERT data to
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high fidelity data without sacrificing too much accuracy while computing the ERT inverse

problem.

Figure 52: Comparison between the experimental images of the inclusions, the conventional
reconstructions of ∆σ and the reconstructions of ∆σ via the SR approach considering two
different experimental inclusion cases: a) Experimental positioning images of circular and
rectangular inclusions in the water tank; b) TV prior reconstruction of ∆σ based on low
fidelity experimental measurements (8 electrodes); c) TV prior reconstruction of ∆σ based
on high fidelity experimental measurements (16 electrodes); d) TV prior reconstruction of
∆σ based on up-sampled low fidelity experimental measurements (8 electrodes).

7.9 Discussion

In this section, we first discuss the feasibility of the proposed superresolution (SR) approach

in general and then compare its performance in both studies. We then delve into the potential

reasons for the imperfections or errors in the results, and propose methods to improve them.

In general, the feasibility of the proposed SR approach has been validated through a mechan-

ical simulation study and an experimental electrical resistance tomography (ERT) inversion

study. The results presented above show that the proposed SR approach is capable of 1)

improving displacement field results by using trained neural networks (NNs) to predict dis-
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placements from lower-fidelity data and 2) up-sampling voltage measurement data for ERT

inversion problems with high accuracy.

By comparing the results from both studies, we notice that the proposed SR approach yields

relatively more accurate results with the mechanical simulation study, both quantitatively

and qualitatively. This is likely due to several factors, such as the similarity in the distribu-

tion of inputs and outputs used to train the NNs, the well-posed nature of the mechanical

simulation, and the use of simulated data as inputs for the NNs, which leads to perfectly

denoised training data.

In contrast, when validating against experimental measurements in the ERT inversion study,

we notice inaccuracies in the localization of inclusions. This can be attributed to several rea-

sons, such as the limitation of implementing the SR approach on an ERT inversion problem

due to its highly non-linear and ill-posed nature, the difficulty of the gradient descent algo-

rithm in locating the global minimum within the error space, and the discrepancy between

the simulated training samples and the experimental measurements, which can increase the

bias of the NNs and produce errors during up-sampling.

To potentially improve the results of up-sampling the ERT voltage measurement data via

the SR approach, we propose the following methods: increasing the number of training

data and the depth of the NNs, which could enable the NNs to recognize more complicated

non-linear relationships but at the cost of increased computational cost, and reducing the

discrepancy between simulated and experimental measurements by subtracting the differences

of simulation and experimental measurements at the reference state. However, it is worth

noting that this may require implementing an absolute imaging scheme, as the ill-posed nature

of the ERT can lead to minimal differences in absolute voltage measurements associated with

inclusions at different locations, which could lead to reduced variance within the training data

of the NNs, and thus may require a deeper NN architecture.

Finally, we want to address the fact that the ERT inversion reconstruction does not show

the rectangular shape of the inclusion. This can be attributed to several reasons, such as the

fineness of the mesh not being sufficient to present the boundary of a rectangular shape, and
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the exclusion of measurements simulated with a rectangular inclusion from the training data,

in order to simplify the training process of the NNs and test the generalization capability of

the trained NNs.

7.10 Conclusions

This paper aims to explore the feasibility of using SR approach by validating it against me-

chanical simulation study and an experimental inversion problem. The results show that the

SR approach can achieve the following objectives: 1) Offer more accurate numerical FEM

solutions on discretized mechanical simulations and 2) up-sample the ERT voltage measure-

ments taken from reduced number of electrodes. In addition, Further research should be

conducted following the aforementioned proposals to improve the quantitative performance

of the SR approach in terms of both studies. Providing with improved overall accuracy,

the proposed SR approach can potentially herein reduce the computational requirement/cost

needed to compute FEMs and solve ERT inversion problems. Taken the results and discus-

sions together, we can conclude that the SR approach is feasible of increasing the fidelity of

the numerical solutions by using data-driven NNs and can be used in ERT inversion once

the data-driven NNs can 1) predict more accurate spacial reconstruction and 2) differentiate

results on various inclusion shapes.
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8 Conclusion

In this section, the summaries of the three publications are provided and then we offer the

potential future researches that could be conducted further. In the first paper, we used the

proposed deep learned ERT framework to offer probabilistic flexural crack reconstructions

using experimental ERT measurements from concrete specimens. CNNs were also utilized to

reconstruct probabilistic shear cracks with simulated samples. Results show that both NNs

can directly “solve” the ERT inverse problems by mapping the boundary voltage measure-

ments to binary distributions as well as predicting the location/sizing of the potential cracks.

Future research on this topic can be conducted in terms of the following aspects: 1) explore

different NN architectures (e.g. recurrent neural network (RNN)) to predict the progression

of future potential cracks based on temporal data, then 2) more complex cracks patterns can

be incorporated into the training samples to improve the NNs performance on more realistic

crack patterns, and furthermore, 3) it is also beneficial to develop one generalized NN which

is trained by both flexural and shear cracks to reconstruct both crack patterns in one NN.

In the second paper, the feasibility of using NNs to directly reconstruct strain and stress

fields based on ERT boundary measurements considering nanomaterials was explored. By

increasing the variance of the training sample via randomized force distributions, the training

performance was improved. The results show 1) the proposed framework can yield valid re-

constructions of strain and stress fields under different loading conditions and 2) significantly

reduce the computational cost by solving the ERT inverse problem directly. However, the

proposed deep learned frameworks suffer from the trade-off problem between the general-

ization of the NNs and the output accuracy. Hence, we propose the following approaches

that could potentially improve the overall generalization and reconstruction performance: 1)

future researchers could conduct experiments on nanomaterials with different loading combi-

nations to mimic realistic and complex loading conditions. By including training sets under

those conditions, NNs could potentially predict the strain/stress fields under various loading

combinations and 2) one could test the proposed deep learned framework on other piezore-

sistive material by conducting sensitivity studies of their responses to the deep learned ERT

framework.
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The third paper sets to explore the feasibility of using learned superresolution to obtain nu-

merical solutions using low-fidelity data. The results have shown that learned superresolution

can 1) yield more accurate displacement solutions from mechanical simulation studies and 2)

potentially up-sample ERT voltage measurements if the model’s prediction accuracy can be

improved. More importantly, this learned superesolution approach can be beneficial when

the computational power is limited in pragmatic applications. Future researchers can couple

superresolution with other SHM data such as dynamic response measurements to reduce the

computational costs.

Generally speaking, future researcher could potentially develop continuous, accurate and au-

tomatic SHM technique targeting at detect, identify and assess both local and global struc-

tural damages. NNs can be utilized to analyse sensor data and mapping patterns between

sensor data and structural damage with reduced computational cost. One could also take

account of the temporal data of different types of monitoring data to digitalis and potentially

predict the structural damages. In addition, reinforcement learning can also be research on

optimizing the layout of sensors.

In summary, we have proposed deep learned ERT frameworks to solve ERT inverse problems

directly with significantly reducing computational costs. The proposed frameworks were af-

firmed by simulation and experimental data and has shown their potential as novel SHM

frameworks considering cement-based and nanocomposite materials. More importantly, with

improved generalization and overall accuracy performance, the proposed deep learned ap-

proaches can potentially be applied to other SHM modalities as well to develop integrated

SHM systems which are capable of offering accurate and continuous monitoring of the struc-

tural states.
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10 Appendix

In this appendix I offer more insight regarding 1) constructing training data for NN training

and 2) tuning of hyperparameters during NN training. I have also summarised my research

experience based on the work done related to this thesis to offer suggestions to future re-

searcher who are keen to continue the work but has faced difficulties with the two mentioned

problems above.

10.1 Hyperparameter Tuning in Neural Network Training

Aiming at minimizing the cost function of NN training, one needs to constantly adjust the

hyperparameters of the NNs to improve their performance. According to recent studies, the

following techniques are used to achieve this goal: 1) Bayesian Optimization, which utilizes

probabilistic models to compare the NNs’ performances with various hyperparameter settings.

This technique is often seen as efficient but difficult to implement (Snoek, Larochelle & Adams

2012). 2) Grid Search, a technique that tests different combinations of hyperparameters with

predefined ranges and finally chooses the parameters that yield the least error. This technique

can therefore require high computation cost. 3) Random Search, a similar technique to Grid

Search, but potentially more efficient since it randomly samples the hyperparameters from

the defined range rather than testing all possible combinations (Bergstra & Bengio 2012). 4)

In addition, one can take a hybrid approach by combining the techniques mentioned above

with potential optimization algorithms to localize the optimized hyperparameters (Domhan,

Springenberg & Hutter 2015, Agrawal 2021, Feurer & Hutter 2019, Yang & Shami 2020).

In my research mentioned in this thesis, the criteria of selecting the hyperparameter is choos-

ing the combination that yield the least error. I took a hybrid approach with Grid and

Random Search. The main reasons are as follows: 1) With all available and proven working

techniques mentioned above, the selection and tuning of hyperparameters are still highly

independent of NNs’ architecture and the training tasks, hence with limited previous re-

search related to these fields, it is hard, for example, to establish a Bayesian probabilistic

model. 2) In addition, with limited computational power and limited research program time,

154



the trade-off problem of computation cost and output performance needs to be carefully

balanced.

10.2 Generating and Pre-Process of training data for Neural Net-

works

Aiming to reduce overall training time and improve performance, when generating train-

ing data, one should: 1)Ensure the simulated data distribution and accuracy are close to

real-time data. 2)Carefully consider and treat the quantity of data as an essential hyperpa-

rameter to provide sufficient information for the training task and avoid overfitting in neural

networks. 3)Ensure the variance of the training data is sufficient to reach required general-

ization performance, and that the proportion of different data classes is equal. 4)Use relevant

augmentation techniques to increase the dataset size. (Goodfellow, Bengio, Courville & Ben-

gio 2016, Géron 2022, Garćıa, Ramı́rez-Gallego, Luengo, Beńıtez & Herrera 2016, Brownlee

2020).

In my thesis, I regularly use different techniques to ensure the nosiness in our training data

are reduced and the data quality are satisfying sufficient for network trainings. For example,

the mesh sizing in our FEA modelling was chosen to provide sufficient data but also with-

out reaching high dimensional training space. In addition, in our second research project,

simulated elastic modulus distribution and the applied force distribution were randomized

to ensure the variance of the training for better generalization performance. More detailed

methodologies implemented can be found in Chapter 5.6.2 and 6.7.2.
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