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0Abstract

In this thesis we leverage domain knowledge, speci�cally of road scenes, to provide a

self-supervision signal, reduce the labelling requirements, improve the convergence

of training and introduce interpretable parameters based on vastly simpli�ed models.

Speci�cally, we chose to research the value of applying domain knowledge to the

popular tasks of semantic segmentation and relative pose estimation towards better

understanding road scenes. In particular we leverage semantic and geometric scene

understanding separately in the �rst two contributions and then seek to combine

them in the third contribution.

Firstly, we show that hierarchical structure in class labels for training networks

for tasks such as semantic segmentation can be useful for boosting performance

and accelerating training. Moreover, we present a hierarchical loss implementation

which di�erentiates between minor and serious errors, and evaluate our method

on the Vistas road scene dataset.

Secondly, for the task of self-supervised monocular relative pose estimation, we

propose a ground-relative formulation for network output which roots our problem

in a locally planar geometry. Current self-supervised methods generally require

over-parameterised training of both a pose and depth network, and our method

entirely replaces the need for depth estimation, while obtaining competitive results

on the KITTI visual odometry dataset, dramatically simplifying the problem.

Thirdly, we combine semantics with our geometric formulation by extracting the

road plane with semantic segmentation and robustly �tting homographies to �ne-

scale correspondences between coarsely aligned image pairs. We show that with aid

from our geometric knowledge and a known analytical method, we can decompose

these homographies into camera-relative pose, providing a self-supervision signal

that signi�cantly improves our visual odometry performance at both training and

test time. In particular, we form a non-di�erentiable module which computes

real-time pseudo-labels, avoiding training complexity, and additionally allowing

for test-time performance boosting, helping tackle bias present with deep learning

methods.
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1 Introduction

Road scene images are an incredibly important part of the future of visual pattern

recognition with clearly compelling applications. Largely due to autonomous

driving, there is now a focus on machine learning for road scenes but there are many

more applications ranging from road surveying [60], mapping [169], orthomosaicing

[120], property valuations [208], town and utility planning [157], to the more

futuristic potentials of shared augmented reality, and tra�c-routing optimisation

[131, 168]. Furthermore, the road scene analysis �eld has grown to the extent that

there are now well established conference workshops solely devoted to computer

vision for road scenes [239].

Currently publications focus on analysing data for tasks such as lane and pedes-

trian detection [242], 3D reconstruction [36, 104, 177], semantic segmentation

[19, 64, 285], visual odometry [40, 121, 231, 250, 287], depth estimation [263] or

completion [127], 3D object detection [242], multiple-object tracking [241], image

dehazing [2], optical or scene �ow estimation [128, 248], correspondence estimation

[238] and view synthesis [220]. The KITTI Vision Benchmark [66] is popular in

the �eld and is used for road scene analysis in tasks such as these (see Fig. 1.1 for

an idea of what these tasks entail). Speci�cally, we note tasks relating to the rich

and consistent semantics present within road scenes, with many classes spanning

man made and natural objects, to generally static to dynamic objects such as signs,

vehicles and even birds. Furthermore, we note that imagery from vehicular scene

variation is constrained approximately to planar motion.

The current literature for these techniques do not explicitly exploit the regulari-

ties and constraints of road scenes versus what we see in generic scenes [66, 169].

For example, road surfaces tend to be approximately planar and scene contents

are limited to a consistent number of classes such as vehicles, pedestrians, road

signs and so on [38]. Moreover, from the vehicle perspective, the road surface

dominates the view and tends to be centred, with the same classes (e.g. pavements,

buildings) clustering the image boundaries. We see the same classes repeatedly

appearing in semantic segmentation of road scenes. These classes can be semanti-

cally related (e.g. a fence is a type of barrier which itself is a type of construction,

and road-markings are also types of construction, but not a type of barrier) which

could potentially be used to better train deep learning estimators. Geometric and

semantic constraints like these are almost always learnt implicitly from scratch on

1



Chapter 1 Introduction

Figure 1.1: Many tasks can be performed with road-scenes such as depth estimation,

various levels of semantic segmentation, visual odometry, and saliency or object detection

(source: [44, 57, 66, 68, 210, 230]).

data with deep learning systems [13, 68, 250, 287]. For example, the top-left image

of Fig. 1.1 shows a result from Monodepth2 [68] depth estimation on road scenes

and the right-side shows semantic segmentation of scenes. Here we can see that

the planarity of the road creates a regular constraint and yet this is being learnt

implicitly, making the task signi�cantly harder to solve.

This thesis asks the question of whether we can explicitly integrate domain

knowledge, what we already know about the task being solved, into road scene

analysis as applied with deep learning. Can we improve deep learning methods

on road scene understanding by integrating prior knowledge into the machine

learning process? This improvement could be in terms of performance, speed of

training, amount of data required, complexity of network architecture, memory

requirements, robustness of network outputs and so on.

In order to investigate this question we focused on two speci�c sub-tasks: road-

scene semantic segmentation and relative pose estimation. We use the de�nition of

semantic segmentation as the classi�cation of each individual pixel in an image

into a discrete number of classes. For relative pose estimation, we are predicting

the relative translation and rotation between two cameras associated with their

given images. We mentioned previously that domain knowledge for road scenes

could be geometric constraints or it could be semantic in nature as relating to the

classes commonly found in road scenes. For this thesis, we have focused on

2



Contributions Section 1.1

1. The hierarchical structure present in road scene classes for semantic segmen-

tation.

2. The planar geometry of the road present in all road scenes for relative pose

estimation.

1.1 Contributions
In this thesis, we make the following contributions:

• Chapter 3:

– Show that we can di�erentiate between serious and minor errors by

exploiting semantic knowledge of class hierarchies.

– Provide an implementation for a novel hierarchical loss as applied to

semantic segmentation (see Section 2.1.4 for related literature).

– Demonstrate that this hierarchical method can provide training ben-

e�ts over non-hierarchical supervision (see Section 2.1.5 for related

literature).

• Chapter 4:

– Put forward a novel ground-relative parameterisation for the pose of

two cameras in a locally planar geometry.

– Show how this parameterisation allows for a homography to cross-

project the road scene contents between image pairs for the purposes

of an appearance loss, replacing the need for dense depth estimation.

– Illustrate the e�ectiveness for motion estimation of a perceptual appear-

ance loss using a pre-trained VGG network [202] for a wide-basin of

convergence (see Section 2.2.6 for related literature).

– Show that a geometric matching network [190] can be used for the

task of regressing relative pose e�ectively (see Section 2.2.5 for related

literature).

– Demonstrate that our local ground-relative pose formulation in com-

bination with the geometric matching network allows for a degree

of �exibility towards arbitrary pose estimations, not present in other

self-supervised methods (see Section 2.2.2 for related literature).

3



Chapter 1 Introduction

• Chapter 5:

– Illustrate a method to re�ne our relative pose estimates (see Section

2.2.2 for related literature) where a pre-trained optical �ow estimator

can be used in conjunction with RANSAC to estimate homographies

for the planar regions extracted by a semantic segmentation network.

– Show that we can use a known analytical method for decomposing

homographies with our knowledge of the geometry for our motion to

provide camera-relative pseudo-labels for training our network (see

Section 2.2.4 for related literature).

– Explain how this non-di�erentiable modeling-�tting based method can

be further utilised at inference time to re�ne relative pose estimation for

tasks such as visual odometry (see Section 2.2.7 for related literature).

1.2 Publications
The research in this thesis has resulted in the following papers, corresponding to

Chapters 3, 4 and 5 respectively:

• Muller, B. R. and Smith, W. A. P. (2020). A Hierarchical Loss for Semantic

Segmentation. In VISIGRAPP (4: VISAPP) (pp. 260-267) [159].

• Muller, B. R. and Smith, W. A. P. (2022). Self-Supervised Ground-Relative

Pose Estimation. In ICPR (pp. 3507-3513) [160].

• Muller, B. R. and Smith, W. A. P. (2023). Self-supervised Relative Pose with

Homography Model-�tting in the Loop. In WACV (pp. 5705-5714) [161].

4



2 Related Work

A decade ago, the famous AlexNet [108] neural network implementation unex-

pectedly won the image classi�cation competition (ImageNet) with signi�cant

performance gain compared to the second best method [195]. Since then, there

have been many variations on neural architectures which have brought ImageNet

accuracy to within human level performance [78, 202, 213, 268]. In the follow-

ing years the annual competition e�ectively became a proving ground for neural

network implementations, with researchers globally pursuing the next big deep

learning techniques. Since then deep learning has since proven itself in numerous

�elds from image recognition [53, 176, 188, 259] to natural language processing

[49, 185, 201, 223] in providing state-of-the-art performance. Whilst the recent

revolution in deep learning has seen real performance gains, it has developed a

reputation as a one tool �ts all technique, often ignoring the principled research

and models which many researchers have worked hard to develop [87, 174, 207].

The initial wave of very successful deep learning techniques were essentially

black-box methodologies where data is fed into a network which outputs a relevant

result for the application at hand [78, 108, 202]. For example, images were input

into the neural network which outputs a general classi�cation or pixel-wise seg-

mentation [7, 108]. Many methods were purely black-box and entirely supervised

with little real physically rooted modelling under the hood [179].

More recently we have seen a second wave of more principled approaches

where better understood models have been re-introduced into learning pipelines.

Some of these methods do this by engineering accepted principles directly into

the neural architectures. For example, Rocco et al. [190] take the well known

classical pipeline stages for feature matching represented as sequential layers in the

network pipeline for geometric matching. Other works such as NeRF [152] have

introduced understanding of geometry and physics of light into the deep learning

pipeline through exploiting image formation knowledge as 3D volumes and using

view dependence radiance. Further, inverse rendering methods have integrated

knowledge about re�ectance and lighting into the deep learning process [198, 261].

In this thesis we research some ways of combining what we already know into

the learning process for neural networks as applied to road scenes. Speci�cally we

break it down into two overarching themes: scene understanding and 3D geometry.

In Section 2.1 we overview methods which attempt to integrate knowledge
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Chapter 2 Related Work

of scene elements. In particular, we investigate the angle of using hierarchical

knowledge present in how we perceive classes present in imagery. Secondly we

overview related work for the task of semantic segmentation - setting the scene for

our hierarchical loss for semantic segmentation.

In Section 2.2 we review literature which uses geometric understanding to enrich

the learning process. We start by looking at methods in generic geometric terms

and then hone in on literature which focuses on geometry for synthesising views

for supervision signals, and methods which use geometry to aid the pose estimation

pipelines, speci�cally in relation to visual odometry, and brie�y overview sources

relevant for our optical �ow with RANSAC approach.

2.1 Scene Understanding Meets Deep Learning
There are many ways of interpreting what we mean by scene understanding. In this

section we isolate and brie�y overview some more general examples of what we

could mean, before discussing the hierarchical and semantic scene understanding

relevant for our work in Chapter 3.

2.1.1 Scene Understanding with Physics
Zheng et al. [278] illustrate an ambitious attempt to understand 3D scenes. From a

point cloud they generate cubic models of a scene, group together unstable parts,

and attempt to reason about stability using physical mechanics. The novelty in their

approach comes from use of disturbance �elds and disconnectivity graphs (a way

of modelling the scene energy landscape) to reason about the stability of objects.

The strengths of this kind of scene understanding are clear in that it provides a

way of assessing scenes for potential hazards, but the complexity of their method

leaves room for error in cluttered or dynamic scenes where their assumption of

static and gravitationally stable objects may break down.

More recently, Mezghanni et al. [150] propose a physical simulation layer for

3D trajectories of objects, taking gravity into account. Hong et al. [83] propose

a deep pipeline integrating physical dynamics and simulation for state-of-the-art

performance for �xing malformed 3D objects. Christen et al. [37] use reinforce-

ment learning with physical simulation towards physically realistic hand-object

interaction. Mezghanni et al. [151] propose an approach of training generative

networks such that information about the physical practicality (e.g. connectivity of

chair joints) of 3D models are improved and achieve competitive results for shape

modelling on the PartNet 3D object understanding dataset [155]. We note that
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Scene Understanding Meets Deep Learning Section 2.1

work remains to model material properties of objects, for example, glass objects

compared to wooden ones, within a deep learning setting, particularly with respect

to road scenes [54, 91].

2.1.2 Scene Understanding with Aerial Imagery
It is worth noting that scene understanding could also be perceived from an aerial

perspective where the coverage is much greater and can di�er signi�cantly in

nature versus a ground perspective [11]. State-of-the-art methods vary from ex-

ploring vision transformers for object detection or semantic segmentation [229], a

Convolutional Neural Network (CNN) feature fusion method for scene classi�cation

[5] and a path aggregation CNN method for instance segmentation [23, 129, 234].

In terms of combining domain knowledge with road segmentation, Mattyus

et al. [145] use a CNN to initially segment roads from aerial images, and then

graph theoretic shortest path reasoning to help �ll in the gaps. Their approach

achieves highly accurate results on complicated road networks. One downside of

their work is that it can fail to �ll in road paths correctly from the gaps left by

the deep learning segmentation, for example suggesting a route which passes over

a building. A residual U-Net [191] (see Section 2.1.4) architecture is utilized by

Zhang et al. [275] to extract roads from aerial images. In contrast with Mattyus

et al. [145], their work uses only three convolutional residual blocks, compared to

�fty-�ve. They also use a Mean Square Error (MSE) loss instead of an Intersection

over Union (IoU). Their results show promise in comparison to other attempts but

they do not compare to Mattyus et al. [145], and, in contrast, make no attempt to

solve for discontinuities in the road segmentation.

Incorporating information of building location could help improve accuracy in

cases such as these, perhaps using details of buildings, shadows and other content

as priors to the deep learning segmentation pipeline could help improve the initial

road segmentation, avoiding the use of error prone shortest path estimates [11,

97, 145]. It is this sort of knowledge incorporation into the deep learning process

which is of signi�cant interest to our research.

2.1.3 Scene Understanding with Objects and Events
We could interpret scene understanding in the context of recognizing objects or even

events within a scene. For example, Wei et al. [236] construct an algorithm which

takes depth video and segments it in a way which simultaneously extract events

and objects. Similar to previous approaches, they use a hierarchical tree structure

to represent relationships between events and objects. This form of representation
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Chapter 2 Related Work

has the strength of being well understood and algorithmically implemented, but

could show weakness in the ambiguity between associating an event with the

correct object(s). Their approach has clear strength in overcoming problems such

as localizing objects under occlusion, by utilizing contextual information of human

interaction, but it seems unclear of whether a graph hierarchical representation

is su�cient to capture the complexities of temporal variations between scenes.

Recently, Singh et al. [203] provide a dataset for recognising events for road scenes

towards autonomous driving, extending the Oxford RobotCar Dataset [140]. We

observe that state-of-the-art methods [63, 260] utilising deep networks for road

scene event recognition tasks tend to lack a training regime which explicitly leverage

inter-event class relationships [246].

In terms of integrating deep learning in the object detection �eld, work such

as that by Li et al. [118] use a CNN for salient object detection. With the aim

of producing a saliency map of a scene, they highlight that most deep learning

methods use a CNN which has too coarse a level of extraction, resulting in blurred

saliency maps and boundaries. They aim to remedy this by using two parallel

networks to capture coarse and �ne details, with sharing between them. Using

the convolutional part of a VGG [202] architecture they also attempt to capture

multiple scales of the input to produce the desired saliency map. Object detection

is a richly populated �eld spanning many domains [125, 176]. For road scenes the

KITTI dataset [66] is the most popular benchmark with state-of-the-art methods

[73] including a graph CNN [249], depth completion [242], patch re�nement [115],

feature-voting convolutional layers [55] and a cascade attention network [240]. We

note there there may be a gap in the literature around leveraging training losses

which integrate knowledge for pre-existing relationships between object classes

[73, 91, 176].

2.1.4 Scene Understanding with Semantic Segmentation

The state-of-the-art in semantic segmentation has advanced rapidly thanks to end-

to-end learning with fully convolutional networks [30, 71, 132, 172, 191]. The �eld is

large, so we provide only a brief summary here. The well known U-Net architecture

from Ronneberger et al. [191], originally devised for the application of biological

cell segmentation, is commonly utilised for many general segmentation domains [8,

122]. The U-Net [191] architecture is characterised by a hourglass shape where we

have convolutional layers followed by deconvolutional layers with additional direct

data links between symmetric layers in the convolution-deconvolution network

[191]. Deconvolutional layers generally aim to upsample the �nal feature map
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Scene Understanding Meets Deep Learning Section 2.1

from the convolutional layers such that we reform the original resolution of input

imagery. In Chapter 3 we utilise a basic U-Net [191] for its simplicity and popularity.

In Chapter 3 we apply semantic segmentation to the Helen facial dataset [112]

as a toy example before using it for road scene segmentation. In addition, we argue

that segmenting faces could be a not insigni�cant part of road scene understanding

with pedestrians being a common and important class [153]. The state-of-the-

art on the Helen dataset [112] is currently achieved by Zheng et al. [279] with

their method of concurrently learning edge detection tasks with a graph CNN. A

signi�cant facial segmentation method by Lin et al. [124] use a spatial focusing

transform and a Mask R-CNN/Resnet-18-FPN [77, 125] region-of-interest network

for segmenting facial sub-components into a whole. Güçlü et al. [71] perform facial

semantic segmentation by augmenting a CNN with Conditional Random Fields

(CRF) and an adversarial loss, while Ning et al. [172] achieve very fast performance

using hierarchical dilation units and feature re�nement.

The encoder-decoder style of U-Net [191] architectures have been applied ex-

tensively to the segmentation of road scenes [74, 91, 179, 275]. Kendall et al. [7]

present SegNet, a fully convolutional network in semantic segmentation, for its

accurate, fast and practical engineering to semantically label every pixel in an image.

They use an enconder-decoder architecture (similar to U-Net [191] but without

skip connections transferring entire feature maps). The main novelty with SegNet

[7] is using the pooling indices from the enconder pipeline in the corresponding

upsample phase in the successive decoder pipeline, which reduces the requirement

to learn upsampling. Wu et al. [243] more recently explore extensions of the SegNet

[7] architecture.

Most recently, transformer based approaches have become prominent and achieve

state-of-the-art performance in semantic segmentation on datasets such as ADE20K

[281], but these approaches are generally computationally expensive [9, 33, 35, 117,

237]. Fully convolutional approaches such as Rota Bulò et al. [192] and Verelyst et

al. [224] achieve competitive road scene semantic segmentation performance whilst

saving on compute resources. Rota Bulò et al. [192] combine a DeepLabv3 [28]

head with a wideResNExt [265] body and propose a special form of activated batch

normalisation which saves memory and allowing for a larger network throughput.

Verelyst et al. [224] uses reinforcement learning to decide on the complexity of

image regions in order to process them at higher or lower resolution to save on

computation. Chen et al. [29] achieve state-of-the-art for panoptic segmentation

(combining semantic and instance segmentation) on the Mapillary Vistas dataset

[169] by investigating variants of the Wide-ResNet architecture. Furthermore, Nag

et al. [167] achieve impressive night-time segmentation results on the Mapillary

Vistas dataset [169]. Ganeshan et al. [64] and Borse et al. [16] achieve state-of-
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the-art on the Kitti [66] and Cityscapes [38] datasets respectively with methods

utilising convolutional networks, but we note again that there exist transformer

methods which are close contenders [33, 264].

Tao et al. [215] achieve highly competitive segmentation performance on the

Mapillary Vistas [169] and Cityscapes [38] road scene datasets. They use a hierar-

chical attention approach towards leveraging multiple scales of images input into

deep pipelines to show that some scales are favourable for tackling fail cases [215].

A hierarchical approach for motion segmentation by Bideau et al. [14] combines

ridged motion constraints with optical �ow and object proposals to group related

objects, but do not explicitly utilise the inherent structure in class labels themselves.

As we noted in Section 2.1.3, we similarly observe a lack of literature in semantic

segmentation for road scenes which leverage known relationships between classes

[91, 98, 110].

2.1.5 Scene Understanding with Hierarchical Knowledge

Another rich source of domain knowledge comes in the form of training labels

themselves, often encapsulated within the labelling structure [218]. Two obvious

ways of utilising hierarchy is by hierarchical structuring of network architecture

and leveraging the hierarchical relationship between training labels.

Hierarchical Architectures

Many existing hierarchy-based methods have focused on hierarchical architectures,
i.e. methods that speci�cally adapt the architecture of the network to the speci�c

hierarchy for a particular task. This is typi�ed by Branch-CNN [284] and Hierarchi-

cal Deep CNN [247] in which a network architecture is constructed to re�ect the

classi�cation hierarchy. Deng et al. [45] encode class relationships in a Hierarchy

and Exclusion (HEX) graph, which enables them to reason probabilistically about

label relations using a CRF. While very powerful, this also makes inference on their

model more expensive and de�ning a HEX graph requires rich information.

Yan et al. [247] recognize that little prior work explored utilising the hierarchical

structure of categories within a CNN. They take a two-level hierarchy and use

coarse predictions (learned from initial layers) to learn �ne predictions with the later

layers, on a per category basis, which are then combined probabilistically to produce

a �nal prediction. Their work shows encouraging performance on the CIFAR100

[107] and ImageNet [195] datasets, but lacks more theoretical underpinning, and

only operates on a two-level categorical hierarchy.
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Fan et al. [58] take this idea further by extracting feature maps from various

network depths and constructing the hierarchy itself into groups based on visual

similarity. This appears to extract a decision tree based classi�er from the convolu-

tional layers, which is used to replace the �nal softmax-layer. Murdock et al. [164]

choose to simultaneously learn the model architecture depending on the hierarchy

of object categories present within the data. Hu et al. [85] use networks containing

multiple levels of activation functions towards brain segmentation.

Popular research by Yang et al. [253] leverages the hierarchical structuring of

text documents for document classi�cation. They illustrate that mirroring the

hierarchical data structure by the architectural network structure in combination

with attention layers helps to learn more informative features for the task. Their

insight is that the structure of the document data (e.g. the interaction of di�erent

words) is important towards the text meaning, and also to focus on more meaningful

parts of the text. The dual idea of attention and data structure seems important

when we talk about context: meaning of a string of words could change when

implanted into another element of text structure. Perhaps a similar idea could

apply to computer vision towards identifying contextual information which helps

to split classes of similar appearance. A leading hierarchical classi�cation approach

by Wehrmann et al. [235] outputs multiple classi�cations at varying levels of

neural architecture. These methods while quite powerful and potentially useful for

imbalanced datasets [95], are somewhat complex and di�cult to implement widely

for di�ering tasks [218].

Hierarchical Priors

We brie�y note a few works which have attempted to capture relative ordering

within machine learning. Examples include ordering regional image brightness by

Chai et al [25], metrics within pairs of points in an image by Zoran et al. [286], and

age estimation by Niu et al. [173]. The advantages of using losses which capture

such ordinality seems to be robustness to noise. Conversely, Chen et al. [31] suggest

a better way of capturing ordinal relations using a “ranking CNN”.

Various works leverage hierarchy of classes within images. Luo et al. [136] use

hierarchical structuring of faces to constrain face segmentation. Srivastava and

Salakhutdinov [206] take a probabilistic approach and attempt to learn a hierarchy

as part of the training process. Meletis et al. [149] use a restricted set of classi�ers

in a hierarchical fashion on the output of a standard deep learning architecture to

harness di�ering levels of semantic description. Roy et al. [193] propose a way of

hierarchical learning, and their novelty lies in retaining previously learned classes

when integrating new classes (termed “lifelong learning”). Methods of learning
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hierarchy or growing the neural architecture with prior information is promising

but seems potentially unrealistic.

Motivated by the observation that traditional CNN image classi�ers treat all

classes on an equal footing, Zhu et al. [284] learn to predict multiple levels of

the hierarchical categorization (given as prior knowledge) through sections of the

standard CNN pipeline. They combine coarse to �ne predictions to form a �nal

classi�cation. The strength of their method is evident in using a novel training

scheme where the prior structure is integrated and where a separate loss is aligned

with the di�erent levels of the hierarchy. This form of adjusting your losses to be in

line with the knowledge you want to capture (in this case hierarchical structuring

of the data, given as a prior) seems promising to building e�ective systems which

better mine expert domain knowledge.

Furthermore, Redmon et al. [189] use the YOLO model [188] for classifying objects

hierarchically. Graham et al. [70] use uncertainty maps at di�ering hierarchical

levels of brain regions towards brain segmentation. Mehdipour et al. [146] use

hierarchical soft-max and fusion for 3D segmentation of the human brain.

Much of the literature in deep classi�cation approach training a network with

only a �at hierarchy [70, 146, 166] where all classi�cation errors are treated equally.

As pointed out by Graham et al. [70], it is important to penalise di�erently between

classifying di�erent brain regions as this could have diagnostic or medical conse-

quences. Similarly for the road scene domain, we want to di�erentiate training

signals between major errors (e.g. mistaking a person for a truck) and minor errors

(e.g. mistaking a bus for a truck). In particular we observe that hierarchical infor-

mation between classes is under-utilised for semantic segmentation for road scenes

[1, 3, 91, 98, 156] and in Chapter 3 we propose a method for training with a hierar-

chical loss which penalises more severe training errors according to a pre-de�ned

hierarchy on the Mapillary Vistas road scene dataset [159, 169].

2.2 Geometry Meets Deep Learning
While semantic understanding of classes is conceptually simpler, geometric under-

standing can be a more complex but obvious knowledge form to integrate within

deep learning methodologies. Tasks such as semantic segmentation are generally

solved within the two dimensional domain of images, whereas geometric tasks are

often framed in the context of three dimensional space, increasing the variability of

the estimation parameters and the amount of data required to train models [106].

Moreover, whereas in semantics we are often classifying for a discrete number

of classes, in geometric understanding we usually are concerned with estimating
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continuous parameters like pose, which signi�cantly increases the complexity of

the task as generally we need to learn more complex features in order to ascertain

from data an entire spectrum of solution parameters [196]. Further, due to the

increase in solution space complexity, constraints are generally required to achieve

a reasonable solution, further challenging geometric learning [13, 67, 282].

It is interesting to note the work being done by Hauser et al. [76] in terms of

understanding deep learning with �nite di�erences and dynamical systems. This

kind of research focuses on the internal geometric transformation of the underlying

data manifold in a theoretical sense, which is present within all neural networks.

An advantage of this approach is that we may represent each layer in terms of

a high-level class of di�erentiable �nite di�erence relations, which can then be

used to help form architectures manually. Furthermore, they reveal residual type

networks in particular to be �nite di�erence versions of Ordinary Di�erential

Equations (ODE) representing dynamical systems.

In this context, the term geometry can be used to mean di�erent concepts: the

shape or dimensionality of the underlying data (e.g. graphs and geodesics [17]),

spatial volumes associated with parts of the neural architecture, or the physical

geometry of objects and surfaces occupying the space captured by images. In this

thesis we are concerned about the latter and we want to explore how knowledge

of the environmental geometry can be used to help inform the training of deep

models.

Firstly, we investigate works around relative pose estimation for its relevance

to road scenes and geometry. Secondly, we explore self-supervised relative pose

estimation. Thirdly, we explore works around the topic of view-synthesis which

can be useful for the purpose of forming a training signal. Fourthly, we focus

on literature for deep learning with homographies as a homography is key for

plane-to-plane transformations for our planar road geometry. Fifthly, we brie�y

overview some work relevant to choice of neural architecture and network input.

Sixthly, we review works around perceptual loss for training these architectures.

Lastly, we discuss the idea of leveraging classical methods within the deep learning

pipeline.

2.2.1 Geometry as Relative Pose Estimation
The primary form of geometric deep learning which we explore in this thesis comes

in the way of estimating camera poses. In this section we review some early more

general approaches, and then in the next section overview more recent literature

towards self-supervised relative pose estimation.

A major step forwards towards incorporating geometric understanding into the
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deep learning framework came with PoseNet by Kendall et al. [99]. PoseNet directly

regresses pose from an image and is trained in an end-to-end manner. Strengths

of PoseNet included illustrating viability of simple pose regression from scene

imagery, and the ability to generalize to unseen scenes with a little extra training. It

is interesting to note that PoseNet seems to learn pose relevant information from an

initial phase of pre-training on the pose-invariant task of ImageNet classi�cation.

Although their system performs remarkably well to various occlusions and weather,

it exhibits signi�cant weakness with motion blurred input.

Vijayanarasimhan et al. [225] propose SfM-Net where they use video to learn

Structure from Motion (SfM). Their system is said to be “geometry-aware” in

that they take a consecutive pair of frames into a CNN and output depth, motion

segmentation and camera/object motions. Subsequently these are combined to

generate an optical �ow �eld and a form of view synthesis is used between frames

to allow back-propagation. Their network architecture uses a U-Net [191] format

and some fully-connected layers are used to extract camera and object motions.

This architecture seems somewhat hand-made but results show value in segmenting

moving objects. Elements of geometry in this method seems to be output of pose-

change, transformation of point clouds and the options of supervising by either

depth or camera motion.

Taking inspiration from multi-view geometry to inform the architectural design,

Kendall et al. [100] take key steps in classical stereo regression and replaces each

step with a distinct di�erentiable layer in the network. This form of integration of

traditional geometric modelling, while somewhat arti�cial, allows for accurate and

fast results on the Scene Flow and KITTI datasets without the need for additional

post-processing. The paper claims to leverage the task geometry and context but

potential weakness exists in terms of a lack of explicitly spatial geometric ideas.

Classical methods for estimating camera-relative pose often involves �nding

correspondences between two images, and often this fails where, for example,

there are large viewpoint changes between the two images, or textureless regions.

Melekhov et al. [148] use a Siamese CNN to regress relative pose from a stereo pair.

Their method has the advantage over traditional methods of not requiring camera

intrinsics but it does not always improve accuracy.

In data where there is a strong sequential structure (e.g. in natural language

processing), it is common for recurrent networks to be employed in the learning

process. With this in mind, Wang et al. [231] have used a recurrent CNN to

learn pose end-to-end from video. They highlight that traditional visual odometry

pipelines need to be manually tuned to work accurately in di�erent environments.

The value in their method is bringing recurrent networks, which model sequential

dynamics, into the CNN end-to-end pipeline without the need to manually tune to
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di�ering environments. It seems that in some ways it bears trademarks with Kendall

et al. [100] where distinct conventional modules are replaced by a di�erentiable

layer in the network. Potential weaknesses of the system is the absence of explicit

attention mechanisms within the network. Additionally, they lose camera intrinsics

information, which is present within the conventional pipeline. The authors express

its usefulness as complementing the traditional pipeline, which better captures

geometry; this softly suggests the need for a fuller integration between traditional

geometric and deep learning paradigms.

We observe a lack of work around explicitly integrating the geometry of road

scenes with the relative pose parameterisation output from deep pipelines [1, 91].

Deep networks generally estimate a 6 DoF (Degrees of Freedom) camera-to-camera

pose [68, 287] and do not attempt to model pose relative to surrounding geometry

within this parameterisation [3, 73, 98, 179]. In particular, we suggest this may be

of speci�c interest to the self-supervised relative pose community for the purpose

of forming a training signal.

2.2.2 Self-supervised Relative Pose Estimation

Many early deep learning pose estimation works focus on directly supervised

methods. We now overview related work within the self-supervised arena, with a

focus on the evaluation domain of visual odometry. State-of-the-art visual odometry

solutions tend to rely on many cameras or expensive sensors such as laser scanners

[36, 40, 104]. Others rely heavily on training using manually collected ground truth

labels with GPS and inertial sensors [91]. For example, a real-time SLAM system

by Min et al. [154] use optical �ow residuals with a multi-task probabilistic model

but rely on ground truth labels to solve for scale ambiguity.

Methods which combine neural networks with classical pipelines [133, 219, 250,

251, 256, 271], leverage techniques such as photometric bundle adjustment or loop

closure for optimisation and various SLAM pipelines. For example, D3VO [250] is

the most competitive purely monocular method on the KITTI odometry benchmark

[66] which utilises pose-depth networks with illumination transformation with

uncertainty maps. Furthermore, they rely on a combination of front-end tracking

and back-end non-linear optimisation. The front-end tracking takes estimates from

the depth and pose networks towards a constant motion model. The back-end

non-linear optimisation takes estimates of depth, pose and uncertainty for use in a

photometric bundle adjdustment. Additionally, while D3VO [250] uses an improved

self-supervised training loss similar to Monodepth2 [68], they utilise full dense

depth network training along side a pose network. In our work we choose to focus
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on end-to-end learning for ease of use and compare our results to such methods in

Chapters 4 and 5.

Although training labels are valuable it is worth highlighting that much work in

the past few years has focused on learning visual representations without the need

for millions of labelled images for training [73, 179]. For example, Wang et al. [232]

show that we can obtain comparable performance using unsupervised learning of

video sequences to supervised methods. Their key contribution is showing we can

use visual tracking of objects within a video as the basis for training.

For the purposes of forming an appearance loss, most self-supervised visual

odometry methods will parameterise two network outputs as dense depth and 6

DoF camera-relative pose respectively [13, 24, 59, 68, 69, 121, 270, 282], (some of

which rely on stereo training [59, 121]). In particular we note that the leading end-

to-end self-supervised relative pose estimation methods on the KITTI benchmark

[66] are all reliant on training a pose network jointly with dense depth [13, 68, 282,

287] or additionally optical �ow [187, 257, 276] networks.

LTMVO [287] achieves one of the best visual odometry results for self-supervised

methods by using a recurrent CNN to temporally constrain the trajectory but

also rely on a pose-depth network with a 6 DoF camera relative pose. Further,

LTMVO’s LSTM modules are easy to over�t, sensitive to weight initialisation,

memory intensive, and take longer to train [262].

Various works are also highly competitive self-supervised approaches but again

are reliant on dense depth estimation [59, 69, 219, 228]. Another competitive method

is Towards Better Generalisation (TBG) by Zhao et al. [276] which shows that many

methods lack performance when frame separation is too high for relative poses.

They replace the pose network, in standard dual pose-depth network approaches,

with dense optical �ow and then recover relative pose with projection constraints.

While this combination of geometric constraining with deep learning is in line

with our thesis of modeling what we already know, they still require to train for

thousands of depth and optical �ow parameters, and in our work we instead propose

to replace multiple dense map networks with a ground-relative parameterisation

for a single pose network.

Recently methods use optical �ow networks with camera-relative pose estimation

to form a self-supervised signal [135, 187, 257, 276, 288]. In particular, Ranjan et

al. [187] perform competitively as a self-supervised method on the KITTI visual

odometry dataset [66] but rely heavily on training jointly various dense estimation

networks. Yin et al. [257] is also a well known approach combining optical �ow

with pose-depth networks but performs poorly [287] on the KITTI visual odometry

dataset [66] relative to other self-supervised methods such as LTMVO [287] and

TBG [276]. Notably Bian et al. [13] try using a depth warping loss and masking
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of dynamic objects but also performs less favourably than other self-supervised

methods. Most of these approaches rely heavily on frame-to-frame predictions, and

many set pose estimation as a secondary objective [68, 69].

Parameterising as a camera relative pose and dense depth or optical �ow esti-

mation task tends to limit estimation to adjacent or temporally close video frames

[276]. Further, estimating many thousands of parameters for depth or �ow is a

demanding and ill-posed task which is tricky to train [68, 187]. Moreover, we see

from the Monodepth2 [68] experimental results that it performs very well with

depth estimation, but signi�cantly less so with pose estimation. This implies that

methods using both a pose and depth network are prone to the issue of one net-

work in�uencing the accuracy of the other. Work by Tiwari et al. [219] attempt

remedying this issue by arguing their complementary nature but rely on classical

SLAM and potentially expensive optimisation routines such as bundle adjustment

and loop closure.

We note there is a lack of work in self-supervised relative pose approaches where

the geometry itself could be leveraged towards a self-supervised training signal

[1, 91], rather than relying on over-parameterising training with expensive dense

depth and optical �ow networks. Instead, in Chapter 4 we propose a deep pipeline

which estimates camera pose relative to the local planarity of the road surface and

form a self-supervised training signal with view synthesis via this geometry.

2.2.3 View Synthesis
One technique which understanding the geometry of a scene a�ords us is that of

view synthesis. In the context of the work in this thesis view synthesis is where we

may transform an image captured from one camera pose into the perspective of

another pose by leveraging some geometric knowledge of the scene with the relative

pose of the cameras. For example, Zhou et al. [68] and Godard et al. [282] use dense

depth estimation in conjunction with relative camera pose to warp imagery into

the perspective of target images in order to form a self-supervision signal. In this

thesis we will utilise a similar method but instead of attempting to estimate depth

we assume a planar geometry for perspective warping ground-plane pixels (see

Chapter 4).

A key development related to view synthesis is that of Spatial Transformer

Networks (STNs) by Jaderberg et al. [90]. In their work they propose a sub-network

which can be inserted between any layers of a network �ow. Their sub-network is

composed of a localiser network which explicitly learns a spatial transformation of

the input to reduce the overall loss. Using this transformation with a grid-sampler

of lower resolution than the input data, we are able to learn a spatial transform
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which focuses in (and transforms) on the part of the input which helps minimize

the loss. This is valuable because we can automatically focus network attention

on elements of the image which is most relevant to our task, as well as their

spatial transformation. For our work this is relevant as we are also outputting a

transformation (in our case a homography) from a deep network to transform a

grid of regular points for sampling input imagery to synthesise views.

Intersecting work from Zhou et al. [283] frames view synthesis from the per-

spective of consecutive views of a scene or object as being highly dependent on

each other. They propose a learning scheme that directly predicts vectors which

outline which pixels in the input view count towards reconstructing the target

view, with their focus being on synthesizing accurate views rather than accurate

depth or ego-motion. They argue that this “appearance �ow” perspective improves

performance but has weaknesses such as di�culty in handling pixel gaps in the

input images, di�culty with correlating far apart images, and prior knowledge of

object category.

View synthesis was incorporated into a deep learning setting by Garg et al. [65].

Motivated by the value of not requiring to manually label a vast quantity of data,

they propose a CNN which takes a stereo pair (of known pose shift) and outputs a

depth map. The idea of view synthesis is often to use the depth and pose to warp

one of the stereo input images unto its partner to synthesize what the view should

be. At this stage generally a photometric loss is calculated between the target and

synthesized view for training (see Section 2.2.6). An early self-supervised relative

pose approach by Zhou et al. [282] take this idea further by not requiring the pose

to be known. They use two separate CNN to predict depth from a target image

and pose from nearby source images, and achieve comparable results to supervised

methods but with an entirely unlabelled video sequence. One down side is that

intrinsics of the camera need to be known and, as previously discussed, estimating

many thousands more parameters for dense depth adds signi�cant complexity.

Mahjourian et al. [141] go further by combining a 3D-based loss with the 2D

based view synthesis loss. Taking up on suggestions by Zhou et al. [282] to

learn a 3D representation (as opposed to solely 2D depth maps), they develop a

system which now has the strength of using uncalibrated monocular video (without

knowing intrinsics) to predict depth and ego-motion. Rather than following a voxel

representation they take the estimated 2D depth maps to generate 3D point clouds

of both views and use a registration technique, Iterative Closest Point (ICP), to build

a loss function which forces consistency between two consecutive frames. The idea

is to use ICP loss to generate gradients which better align the depth and relative pose

(ego-motion) estimates. The novel ICP loss developed here helps align 3D structures

across consecutive frames. Furthermore, Mahjourian et al. [141] highlight that
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their method has the strength of not requiring a calibrated camera, recti�cation,

and is strong against lens distortion, and so widely available internet videos can

be used. Additionally, they highlight that they do not explicitly model dynamic

scenes or objects. Again, a downside here is that the estimation of depth requires

many more parameters to be estimated and for standard geometric constraints to

be learnt implicitly from data.

In many cases, issues with view synthesis supervision is that it often relies upon

a number of assumptions: a static scene, absence of occlusion between views, and

Lambertian surfaces [257, 282]. Moreover, these methods fail to model dynamics of

the 3D scene, and Zhou et al. [282] suggest using motion segmentation (as illustrated

previously by Ranftl et al. [186] and Vijayanarasimhan et al. [225]). Furthermore,

camera intrinsics are sometimes assumed but Mahjourian et al. [141] overcome

this. Finally in cases where 2D depth maps are predicted, Zhou et al. [283] suggest

this is too simplistic and that learning a voxel based representation (as by Tulsiani

et al. [222]) could be worth researching further.

Most of the leading road scene self-supervised relative pose approaches (see

Section 2.2.2) utilise view synthesis to form a training signal but fail to leverage

regularity in the planar road geometry to do so, instead choosing to train addition-

ally for dense depth estimation, which signi�cantly increases task complexity [68].

Recently, Zhao et al. [277] explicitly utilise plane based pose priors as input to their

network for depth estimation to show that camera pose is highly signi�cant for this

task. This suggests that we could explore leveraging similar prior understanding

towards the task of relative pose estimation itself, which is the focus of our work

in Chapter 4.

Moreover, Zhao et al. [277] utilise their planar model for homographic transfor-

mation for view synthesis towards data augmentation, though their approach is

limited to rotational view synthesis. We see a lack of literature which models a

similar kind of explicit model based learning within the setting of self-supervised

relative pose estimation [98]. In particular, there is an opportunity to leverage

the local planarity around cameras overlooking the same scene towards forming

homographies for view synthesis and ultimately to form a training signal, without

requiring dense depth estimation networks. This brings us to the related �eld of

deep homography estimation, which we discuss next.

2.2.4 Homography Estimation
One way of encoding geometry is with regards to planar geometry between a camera

pair and the homography which describes the transformation of pixels belonging to

a plane between both images [181]. In this thesis, we are concerned primarily with
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imagery of road scenes which are largely planar due to the planar nature of the road

and surrounding elements such as walkways. Homography estimation is relevant

to our work because it is the transformation which describes the mapping between

these planar points as viewed from varying camera perspectives. Furthermore, we

will use an estimated homography to transform one image into the perspective of

another for the purposes of forming a supervision signal to train a CNN. In addition,

we note that the task of homography estimation is tightly coupled with relative

pose estimation between cameras capturing the same planar surface [75, 142, 181].

Traditionally homography estimation is generally approached by estimating hand

crafted features and robustly �tting a homographic transformation [75]. Related

learnt methods include SuperPoint [48], SOSNet [217] and LIFT [255]. However, we

will focus our attention on the more recent and relevant deep learning approaches

which estimate homographies explicitly.

The �rst prominent deep learning approach by DeTone et al. [47] uses a VGG-like

[202] CNN to directly regress homography from an image pair using Euclidean loss

image warping in an end-to-end manner. Results show deeply learned homogra-

phy estimation is viable and sometimes improves upon traditional methods based

upon ORB [194] and RANSAC [61]. Nowruzi et al. [56] show that accuracy can be

further improved by using a hierarchy of Siamese networks upon the input pair to

sequentially improve the estimate. We note in particular that Nowruzi et al. [56]

highlight the potential use of a similar approach towards the task of odometry

estimation. Nguyen et al. [170] propose self-supervised homography estimation via

a photometric loss on a perspective warped input pair, although this could be better

served with a perceptual loss (see Section 2.2.6) and a Siamese architecture (see

Section 2.2.5). Le et al. [111] propose a multi-scale deep homography estimation

method to handle moving objects by jointly estimating dynamic masks. Similarly,

Zhang et al. [272] propose a novel CNN architecture where masks are learnt in

parallel to the feature extractors for the purpose of tackling content such as moving

objects. Nie et al. [171] propose a multi-scale iterative deep pipeline for learning ho-

mography estimation between two images and subsequently an edge-preservation

deep network for learning to accurately stitch these images.

Currently, Yoon et al. [258] achieve state-of-the-art performance for homogra-

phy estimation on the Oxford and Paris dataset [184] by improving contextual

description of line features with transformer networks. Zeng et al. [269] achieve

state-of-the-art performance on the Synthetic COCO [47] dataset by framing homo-

graphies as perspective �elds output from a fully convolutional network, avoiding

the need for parameter heavy fully connected layers. Koguciuk et al. [103] achieve

state-of-the-art performance on the Photometrically Distorted Synthetic COCO

dataset [103] by using a perceptual loss to improve illumination robustness and to
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allow for larger view point variations. In their work they propose extensions on

details surrounding how to formulate the loss for homography estimation when

warping source and target images, leveraging the invertibility of homographies for

additional constraints. Cao et al. [22] leverage an iterative homography estimation

method which uses a two-scale cascaded pipeline (with a Siamese style architecture

and correlation volume as discussed in Section 2.2.5) to achieve state-of-the-art

performance on the MSCOCO dataset [126].

Recently, Ye et al. [254] formulate unsupervised deep homography estimation as

a weighted sum of prede�ned optical �ow bases. These weights are output from

a Siamese style CNN, in similar style to Rocco et al. [190] and Zhang et al. [272],

with a novel layer to aid extraction of features for dominant motions. We note

that they concatenate feature maps from the feature extractor and that they could

bene�t instead by fusing them with a correlation volume (see Section 2.2.5). Hong

et al. [82] build on their work by replacing the homography regression component

of the Siamese architecture with a multi-scale transformer pipeline and leverage a

Generative Adversarial Network (GAN) to focus training on the dominant plane

in the scene to achieve state-of-the-art performance on the natural image dataset

from Zhang et al. [272].

Most of these methods focus on the architecture and loss formulation surrounding

deep homography estimation between a pair of images overlooking scenes of

widely varying types, from aerial images [22] to rich outdoor scenes [272]. Each

individual scene could contain various planar surfaces, each modelled by a di�erent

homography [181]. For road scenes in particular we have scenes which all contain

the same dominant and consistent planar surface, namely the road itself. The

current literature lacks an obvious factor: linking homography estimation with

relative pose for cameras capturing planar road geometry. Speci�cally, for two

cameras overlooking the same dominant planar road, there lacks work around

parameterising network output as a ground-relative translation and rotation, which

can subsequently be transformed into a homography mapping road plane points

between both images (useful for self-supervision and potentially other tasks such

as orthomosaicing [214]), which we explore in Chapter 4. Furthermore, we �nd

that there is a lack of work around decomposing homographies [142] into camera-

relative translation and rotation for the purpose of visual odometry and for aiding

the training of deep networks, which we explore in Chapter 5. Moreover, we note

that much of the deep homography literature focus on architecture and particularly

on using Siamese networks for input, which seems lacking in the self-supervised

relative pose estimation literature (see Section 2.2.2).
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2.2.5 Architecture and Input

In this section we brie�y review works around architecture and network input for

tasks such as stereo matching, homography estimation and visual odometry.

Zbontar & LeCun [266] successfully train a CNN for stereo matching with errors

generally within 5% on the road scene KITTI dataset [66]. Their method takes

a stereo pair of image patches and outputs a similarity measure, which is then

used in producing the disparity map using well accepted stereo algorithms. The

architecture takes both left and right input patches through a series of convolutional

layers (with the same parameters - sometimes referred to as a Siamese network),

concatenates the resulting feature maps, which then proceeds through a series

of fully connected layers before outputting the desired similarity measure. The

strength of this method is that they show accurate results, but with the weakness

of having slow inference, which is a problem for responsiveness required in appli-

cations such as autonomous driving. Further, concatenating feature maps assumes

input pair features are similarly localised, whereas perhaps a correlation volume

(as used by Rocco et al. [190]) could be more �exible.

Building on their work, Luo et al. [138] propose removing the time expensive

fully connected layers in favour of a single inner product layer and brings inference

time down from a minute to under a second. Zbontar & LeCun [267] concurrently

publish a paper illustrating a similarly fast network using a similar inner-product

layer method as Luo et al. [138] but without training using probability distributions.

The probability distribution training used by Luo et al. [138] potentially achieves

more accurate results than the simple output of a similarity score alone as they

attempt to capture disparities between all combinations of pixels.

Many relative pose estimation approaches will concatenate input images to a pose

network [187, 190, 282]. A problem with this approach is that if the variation in pose

between both views is su�ciently large, the receptive �eld of the convolutional

layers could be insu�cient to capture matching features in both concatenated

images [137, 200]. Concatenating both input images therefore constrains pose

variation between both cameras, which limits the �exibility of the estimated relative

pose [56, 101, 276]. Most self-supervised relative pose estimation approaches limit

themselves to temporally constrained and adjacent images [67, 68, 187, 287]. Work

by Zhao et al. [276] shows that when many of the leading visual odometry methods

are tested on image-pairs with a much larger pose separation, their performance

degrades very signi�cantly. Moverover, most self-supervised relative pose methods

further constrain pose between image frames to be small due to the necessity of a

2D smoothness prior on depth or optical �ow network estimates [68, 187, 257, 276,
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282, 287]. Recently, Jia et al. [93] propose to use a smoothness prior instead on a

3D point cloud to predict more natural depth maps.

Rocco et al. [190] use a geometric matching architecture for directly estimating

a geometric transformation to synthetically warp object instances into a similar

perspective. Inspired by traditional feature matching pipelines, their architecture

consists of separate feature extraction branches with shared weights, and a novel

matching layer, essentially allowing regression based on putative feature matches

between both images. In Chapter 4 and 5 of this thesis, we chose the Rocco et

al. [190] architecture �rstly due to the e�ectiveness of their results in capturing

features and correspondences which accurately convey geometric perspective,

which is relevant for our task of pose estimation. Secondly the separate feature

extraction branches avoids the use of concatenating the input and so aligns with

our thesis of allowing arbitrary pose estimates.

In addition, Rocco et al. [190] fuse the feature maps output from the Siamese

feature extractors in a novel network correlation layer operation. This serves to

create a correlation volume which captures tentative feature matches between

one point in feature space and every other spatial feature point (see Section 4.2.4).

Rocco et al. [190] show that this correlation operation outperforms the alternative of

simply concatenating feature maps. Because there is a lack of Siamese architectures

within the visual odometry literature [1, 3, 98], this correlation volume has never

been used within motion estimation directly, although we note that Cao et al. [22]

use it for deep homography estimation to obtain state-of-the-art performance on

the MSCOCO dataset [126].

Work by Dong et al. [52] uses the geometric matching network by Rocco et

al. [190] to estimate a thin plate spline directly for their human-pose system for

trying on clothing. To the best of our knowledge, we are the �rst to use the Rocco et

al. [190] geometric matching architecture for the task of 3D relative pose estimation,

as opposed to 2D warping based direct transformation functions. Furthermore, our

ground-relative output parameterisation of this network allows for an essential part

of our work, which is the formation of homographies relevant for ground-plane

cross-projection.

Furthermore, we note that many of the various deep homography estimation

methods in Section 2.2.4 use a Siamese architecture to independently extract features

from an image pair [22, 56, 82, 171, 254, 272]. Homographies are tightly related to

relative camera pose [75, 142, 181], and yet there is less obvious deep relative pose

literature using Siamese architectures [1, 3, 98]. Our method in this thesis is to

allow for estimation of arbitrary poses and therefore we favour a network pipeline

which extracts features independently of each image in a paired input [52, 56, 101,

113, 190].

23



Chapter 2 Related Work

In this section we have discussed literature around the input and architecture

of deep approaches towards tasks related to scene geometry. In Chapter 4 we

propose utilising a Siamese network to estimate camera pose around a local planar

geometry of the road scene towards view synthesis and to form an appearance

based self-supervised training signal. In the next section we discuss work around

such an appearance loss, and speci�cally for perceptual loss.

2.2.6 Perceptual Loss
Many methods for self-supervised tasks involving synthesised views will form an

appearance loss as a photometric error between two images where a euclidean

di�erence is computed at the pixel-level, usually with a Structured Similarity (SSIM)

term to compute image similarity [68, 170, 233, 276, 282, 287]. The loss used for

training self-supervised relative pose or depth estimation is most often formed by

a summation of appearance loss and a smoothness regularisation term for depth

estimation [68, 282, 287]. Nguyun et al. [170] use a L1 photometric loss for the task

of self-supervised homography estimation.

Popularised by work in style transfer and image denoising [94, 252], alternatively

a perceptual loss can be used instead of a per-pixel loss for the image di�erence,

where both images are passed through a pre-trained feature extractor and a eu-

clidean error is computed between the resulting feature maps, and which provides

a wider basin of convergence [183, 199]. Wang et al. [227] use perceptual loss with

another network (in addition to pose and depth networks) to estimate a mask to

overcome vanishing-gradient issues caused by dynamic objects and non-Lambertian

surfaces, but this requires an additional regularisation term, further complicating

the training process. Additionally, their focus is on depth estimation and they do

not evaluate for visual odometry.

Perceptual loss robustness to illumination issues is leveraged for various works

including homography [103] or depth [130, 227] estimation, multispectral image

classi�cation [199], cleaning document imagery [50], low light reconstruction [46],

dynamic background removal [209], person identi�cation [86], and super-resolution

[183]. However, while perceptual loss is used to achieve leading performance for

homography estimation [103], there is a lack of work utilising it for the related task

of relative pose estimation with a primary focus on visual odometry evaluation

[98]. In Chapter 4 we propose to leverage perceptual loss for our self-supervised

deep pipeline which integrates both relative pose estimation and homographies.

While perceptual loss has been used successfully as a training signal, we note

its reliance on taking a di�erence within feature space, which may still limit per-

formance �ne grained training of deep pipelines [94, 103]. In the next section we
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explore literature around the idea of integrating traditional model-�tting into the

training loop.

2.2.7 Geometry and Model-fi�ing In-the-loop
In this section we discuss a few works around the idea of applying traditional model-

�tting within the training process of a neural network. Previous works leveraging

the idea of combining various classical optimisations with neural networks range

from using a CRF with semantic segmentation networks [27], a graphical model

with human pose estimation [221], and Markov Random Fields (MRF) with 3D

reconstruction [178]. Furthermore, Kolotouros et al. [105] use a classical model-

�tting in-the-loop approach for the task of human pose reconstruction. They

recognise that coarse initialisation from a deep model can be a good initialisation

for model-�tting optimisation methods, which in turn can help supervise the

network for re�ned performance.

Recently, Henning et al. [80] recently leverage the Kolotouros et al. [105] human

mesh regressor for jointly optimising a human mesh with the motion of a camera.

While various literature for reconstruction and human pose estimation [15, 39,

123, 244] lead on from the work by Kolotouros et al. [105], it appears that this

traditional model-�tting in-the-loop idea is not generally used within the self-

supervised relative pose estimation literature (see Section 2.2.2) and could apply

well to work with our concept of leveraging a planar geometric model for road

scenes. In Chapter 5 our approach is to estimate homographies from optical �ow

generated point-correspondences to help further re�ne our perceptual loss trained

model and allow for inference time re�nement. As far as we know, we are the �rst

to apply the concept to the motion estimation setting with homographies [98].

2.3 Conclusions
There is a gap in the literaturewhere the hierarchical relationship between
class training labels is used to construct a neural network training loss to
explicitly di�erentiate between serious and minor errors for road scene
semantic segmentation: In Section 2.1.5 we discussed literature relating to hier-

archical relationships around classes, with varying approaches from constructing

hierarchy within the neural architecture, capturing order or learning the hierarchy

itself [25, 31, 45, 58, 136, 149, 164, 173, 193, 206, 247, 253, 284, 286]. In Section 2.1.4

we discussed literature around scene understanding with semantic segmentation.

In particular, road scenes are rich and regular with semantic information [19, 98,
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149] and as far as we know, none of the related literature use the prior knowledge

of class hierarchy labels to assist training a deep network for road scene semantic

segmentation [1, 3, 91, 153, 218]. In Chapter 3, we propose a loss function which

captures di�erences intuitively when thinking in terms of hierarchical structuring

of the input labels, particularly to the task of semantic segmentation for road scenes.

Our idea is that by di�erentiating in the loss function between less and more serious

classi�cation errors we can obtain improved performance.

Relative pose estimation literature focus on camera-relative motion: In

Section 2.2.1 we discuss camera pose estimation within the deep learning domain.

Deep pose approaches generally focus on outputting a 6 DoF camera-relative pose

[13, 67, 68, 99, 121, 148, 187, 225, 231, 257, 276, 282, 287]. We propose in Chapter 4

to estimate camera pose relative to the local physical geometry and investigate the

viability of utilising this more general parameterisation.

Self-supervised relative pose methods choose to learn scene geometry
implicitly with dense depth or optical �ow networks: In Section 2.2.2 we

discussed leading self-supervised visual odometry approaches [13, 68, 187, 257, 276,

282, 287]. Self-supervisory signals are generally implemented via view synthesis

with a photometric error [67, 68, 287]. Some approaches additionally use dense

optical �ow or motion segmentation networks [187, 257, 276]. Attempting to

simultaneously learn robust features for depth or optical �ow with pose to estimate

tens of thousands of parameters is a challenging task, and potentially liable to

over�t known scene regularity [51, 68, 277].

Self-supervised relative posemethods donot explicitly leverage theknown
planarity of road scenes: Particularly, none of the leading visual odometry ap-

proaches [13, 68, 187, 257, 276, 282, 287] utilise the basic known geometry in road

scenes: the ground is approximately planar. In Chapter 4 we propose to param-

eterise with respect to the ground plane, and cross projecting via that known

geometry to form the training loss, avoiding the requirement of estimating dense

depth with a second network all together.

A majority of relative pose deep learning pipelines limit the extent of
camera-relative pose by concatenating network input: In Section 2.2.5 we

reviewed types of neural architectures used for the task of relative pose estimation

[52, 93, 101, 113, 137, 187, 190, 200, 257, 282, 287]. For tasks like relative pose

estimation which often take pairs of images as input [13, 68, 276], concatenation of

input assumes that motion is small between each image due to the limited receptive

�eld of convolution layers [101, 276]. We note that more consideration should be

given to network input and towards using a Siamese architecture [101, 113, 190], as

it could allow for more arbitrary relative poses. Furthermore, this �exibility could
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be useful for opening up the relative pose estimation �eld into applications which

may utilise a wider perspective [20, 81, 180].

Perceptual loss has yet to be applied to training neural networks towards
visual odometry evaluation: In Section 2.2.6 we discussed literature around

using perceptual loss for training a neural network [46, 50, 68, 86, 94, 103, 130, 199,

209, 227, 233, 252, 276, 282, 287]. We note that deep self-supervised relative pose

estimation methods tend to always use pixel level losses with strong and restricting

regularization terms [68, 233, 276, 282, 287]. It makes sense to operate losses on the

feature level as we are less reliant on these terms and additionally convergence and

issues of illumination should be less of a concern [46, 50, 86, 103, 130, 199, 209, 227].

While perceptual loss has been applied to depth and homgography estimation [103,

130, 227], to the best of our knowledge we are the �rst to use a perceptual loss

with a primary focus on visual odometry evaluation (see Chapter 4).

Deep homography estimation literature lacks a direct link to relative
pose estimation for cameras capturing planar road geometry: In Section

2.2.4 we discussed approaches for deep homography estimation [22, 47, 56, 82, 103,

111, 170, 171, 254, 258, 272]. We note that while there exist various works around

the issue of dynamic content [82, 111, 254, 272], architecture re�nement [22, 56, 82,

171] and loss formulation [82, 103, 170], there is a lack of application directly to

relative pose estimation rooted in the surrounding planar geometry of two or more

cameras. We explore the potential of such a parameterisation in Chapters 4 and 5.

There is a lack of work utilising classical model-�tting for in-the-loop
supervision of motion estimation networks: In Section 2.2.7 we discussed

literature around the idea of utilising traditional model-�tting within the training

of a neural network, an approach leveraged most prominently by Kolotouros et

al. [105] for �tting human pose models. While other methods for body modelling

[15, 39, 123, 244] have followed from Kolotouros et al. [105], as far as we know, we

are the �rst to apply the concept to motion estimation setting with homographies.

In Chapter 5 we choose to use a model-�tting in-the-loop approach to help further

re�ne our learned homographic model and allow for inference time re�nement.

2.3.1 Summary

Road scenes are rich with semantic information and yet most deep semantic segmen-

tation methods for road scenes do not train with a loss which explicitly captures

hierarchical relationships between classes [1, 3, 91, 153, 218]. In Chapter 3 we

propose a hierarchical loss which can be utilised with any standard classi�cation

pipeline, and which di�erentiates between minor and major classi�cation errors,
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something surprisingly overlooked within the autonomous driving literature [1, 3,

20, 91, 153, 180].

Self-supervised deep pose estimators for road scenes choose to implicitly learn

road geometry jointly with either dense depth or optical �ow estimation [13, 187,

276, 287]. Dijk et al. [51] show that common road scene depth networks [68]

often trivially learn depth of objects by simply using their vertical position in

the image, and Zhao et al. [277] show that road plane pose priors as network

input have a signi�cant contribution towards road scene depth estimation. Given

this and our review of the related literature (see Sections 2.2.1 and 2.2.2), we feel

there is a lack of work explicitly modelling planar road geometry towards solving

deep motion estimation with only a single pose network, avoiding the gross over-

parameterisation from dense depth or optical �ow estimation [3, 98].

Network input and training also stood out as potential areas of improvement

(see Sections 2.2.5 and 2.2.6 respectively). In particular, while deep homography

estimation approaches have leveraged the Siamese architecture to independently

extract image features [22, 56, 171, 254], deep pose estimators tend to concatenate

input [13, 68, 276], potentially limiting the physical range of relative pose estimators

[101]. In addition, while perceptual loss has been applied to deep homography

estimation [103] to achieve state-of-the-art performance, and to depth estimation

[130, 227], it has yet to be applied to motion estimation with a primary focus on

visual odometry evaluation.

Moreover, relative pose literature focuses heavily on camera-relative pose [187,

257, 276, 287], and there is lack of work exploring estimating pose relative to the

geometry of the 3D environment itself [98]. Furthermore, relative pose estimation

between cameras overlooking the same planar surface is highly related to homogra-

phy estimation [142]. We see a lack of literature which directly links relative camera

pose estimation within approximately planar geometries (such as that captured in

road scenes) to homographies in a deep learning pipeline [56, 98].

In Chapter 4 we address these gaps by using a perceptual loss to train a single

Siamese CNN to estimate a ground-relative pose parameterisation which can be

transformed to compute homographies capturing planar road scene motion. We

do this in an entirely self-supervised manner, avoiding any reliance on collecting

ground-truth and leveraging the road geometry for homographic planar cross-

projection for self-supervision.

In Section 2.1.4 and 2.2.2 we reviewed key literature towards semantic segmenta-

tion and self-supervised relative pose estimation respectively. We observe a lack

of literature towards combining pre-trained semantic segmentation models with

self-supervised visual odometry pipelines for the purpose of �ltering out scene
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content which does not belong to the geometry used to form a self-supervision

signal, which in our case, is the planarity of the local road geometry.

Furthermore, we recognise that �tting a geometric model in a traditional ap-

proach has bene�ted the training or inference of deep pipelines [15, 105, 123], and

that there is a lack of application of this technique towards deep pose estimation,

speci�cally with respect to homographic model-�tting [42]. In addition, we note

that given homography estimation between two images overlooking the same pla-

nar surface is highly related to relative pose [142], there is a lack of work exploring

the analytical decomposition of such a homography into relative pose within a deep

learning setting [179]. In Chapter 5 we seek to rectify these gaps by combining

them into a homography re�nement module to further improve our performance

from Chapter 4.
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3 A Hierarchical Loss for
Semantic Segmentation

The visual world is full of structure, from relationships between objects to scenes

and objects composed of hierarchical parts. For example, at the most abstract level,

a road scene could be segmented into three parts: ground plane, objects on the

ground plane and the sky. The next �ner level of abstraction might di�erentiate

the ground plane into road and pavement, then the road into lanes, white lines

and so on. Human perception exploits this structure in order to reason abstractly

without having to cope with the deluge of information when all features and parts

are considered simultaneously [226]. Moreover, it is quite easy for a human to

describe this structure in a consistent way and to re�ect it in annotations or labels

[38, 66].

It is therefore surprising that the vast majority of work on learning-based object

recognition, object detection, semantic segmentation and many other tasks com-

pletely ignores this structure [7, 68, 99, 156, 176]. Classi�cation tasks are usually

solved with a �at class hierarchy, but in this thesis we seek to utilise hierarchical

class structure for direct supervision [72, 156].

Another motivation is that there is often inhomogeneity between datasets in

terms of labelling. For example, the LFW parts label database [96] segments face

images into background, hair and skin, while the segment annotations for the

Helen [112, 205] dataset de�ne 11 segments. Utilising both datasets to train a single

network, while retaining the richness of the labels in the latter one, is not straight-

forward. With our method of training with a hierarchy, we could enable training

with both datasets simultaneously, regardless of the di�ering classes, boosting the

amount of data available or allowing more �exible annotating. Depending on the

application, we may also wish to be able to vary the granularity of labels provided

by the same network, and a hierarchical relationship between classes could allow

this.

We tackle the problem of semantic segmentation and introduce the idea of

hierarchical classi�cation losses. The idea is straightforward. For any existing

semantic segmentation architecture that outputs one logit per class per pixel, we

can compute a loss at each level of abstraction within a provided class hierarchy,

and sum these to form an overall loss. The bene�t is to di�erentiate serious errors

from less serious. In the toy example shown in Fig. 3.1, a face/hair error would

be penalised less severely than a background/face error since both face and hair
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Figure 3.1: Overview of our idea. Given the output of any semantic segmentation archi-

tecture and a class hierarchy, we compute losses for each level of abstraction within the

hierarchy, inferring probabilities of superclasses from their children.

belong to the superclass head and so !1 would not penalise the error. The network

is encouraged to learn visual features that are shared between classes belonging to

the same superclass, i.e. the knowledge conveyed by the class hierarchy allows the

network to exploit regularity in appearance. Since coarser classi�cation into fewer

abstract classes is presumably simpler than �nescale classi�cation, it also means

that the learning process can naturally proceed in a coarse to �ne manner, learning

the more abstract classes earlier.

Our contributions for this chapter are:

1. Exploiting semantic knowledge of class hierarchies, we can separate training

between serious and minor errors.

2. A novel formulation for a general hierarchical loss for classi�cation tasks,

which we evaluate on semantic segmentation.

3. Illustration of the potential training bene�ts over classi�cation methods

which use a �at hierarchy.

4. A formulation for approaching numerical instability challenges during our

implementation.

In Section 3.1 we emphasise the hierarchical design and simplicity of the prior

knowledge we are proposing to use. In Section 3.2 we detail the mathematics behind
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Figure 3.2: Our hierarchy for the Helen [112] segment classes. Note that the classes in the

original dataset [205] are the leaves in our hierarchy.

our speci�c approach for our hierarchical loss. In Section 3.4 we provide details on

experiments and results for our two evaluation datasets. We use the Helen [112]

facial dataset as a toy example which involves only a few classes with a simple

hierarchy, and the Mapillary Vistas [169] road scene dataset as our primary focus

for road scene understanding.

3.1 Hierarchy Design
Our approach requires a prede�ned hierarchy, which we assume is designed based

on expert human knowledge. In the case of objects composed of parts, this is

straightforward since the parts can naturally be described hierarchically. For more

general scenes this may require speci�c domain knowledge in order to be able to

group related objects together into the same superclass. We emphasise two points.

First, the practical e�ort of doing this is extremely low. We do not require any

new annotation of the training images, there is simply a one o� task to design

a hierarchy for the classes already used in the labelling. Second, many existing

datasets were annotated with a hierarchical class structure in mind (even if this

is rarely used). For example, the COCO-stu� dataset [30] clusters each of the 172

classes into 11 abstract groups, providing a shallow hierarchy.

For the experiments in this thesis we use two datasets that represent each of

the cases above. Our goal is to focus our research on how we can use the label

hierarchy of road scenes speci�cally towards improving semantic segmentation

in that domain, and in Chapter 5 we will explain our work towards combining

semantics with geometric understanding.

In order to experiment with our idea of a hierarchical loss we chose to �rstly

to use a toy dataset where the number of classes is much lower than road scene

datasets [38, 66, 169] and where the hierarchy is simple. For this purpose we use

the Helen [112] facial dataset. The segment annotations [205] for the Helen [112]
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Figure 3.3: Our hierarchy for the Mapillary Vistas [169] segment classes.
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dataset are not provided with any hierarchy. However, there is an obvious parts-

based partitioning such that the classes used in the dataset correspond to the leaves

of a hierarchy tree (see Fig. 3.2). To emphasise again: we do not need to relabel the

Helen [112] annotations. We simply use the original annotations in conjunction

with the hierarchy.

Our primary focus is on the the second dataset, the Mapillary Vistas [169] road

scene dataset. This was originally designed with a hierarchical class structure (see

Neuhold et al. [169] for details and Fig. 3.3 for the hierarchy) for which some super-

classes are based on clustering related objects (for example, the vehicle superclass).

3.2 Hierarchical loss
Our method is based on computing a sum of classi�cation losses over each level

of abstraction within a classi�cation hierarchy. In order to use the approach, one

simply needs a class hierarchy de�ned by a tree and a segmentation architecture

that outputs a classi�cation for each of the classes corresponding to leaf nodes in

the tree. In this section we describe our representation and the hierarchical losses.

3.2.1 Tree-based representation
We represent our class hierarchy using a tree (+ ,�), where:

+ = {{1, . . . , {=} (3.1)

is the set of vertices and � ⊂ + ×+ the set of ordered edges such that ({8, { 9 ) ∈ �
encodes that {8 is a parent of { 9 . We assume that the �rst< nodes correspond to

leaves in the tree:

� { 9 ∈+ , ({8, { 9 ) ∈ �⇒ 1 ≤ 8 ≤<. (3.2)

These nodes correspond to the �nest scale classes. If ({8, { 9 ) ∈ � then {8 is a more

general, more abstract, superclass of { 9 . The label for a pixel, 2 , should be at the

�nest level of classi�cation, i.e. 2 ∈ {1, . . . ,<}.
We de�ne depth({8) to mean the number of edges between vertex {8 and the root

node. Hence, the depth of the tree is given by:

�max =max

8
depth({8). (3.3)

We de�ne ancestor({8, { 9 ) to be true if {8 is an ancestor of { 9 , i.e. that {8 is a superclass

of { 9 and false otherwise.
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3.2.2 Inferring coarse classes from fine
We assume that the segmentation CNN outputs one logit, G8 , per pixel per leaf

node, i.e. the output of the network is of size � ×, ×<, where< is the number of

�ne-scale classes corresponding to the leaf nodes in the hierarchical tree. In our

notation, G represents a single pixel and 8 represents the logit for class 8 . Hence, the

probability, ?8 , associated with class node 8 is computed by applying the softmax()
function to G8 :

f (G8) =
exp(G8)∑<
9=1 exp(G 9 )

(3.4)

The probability associated with non-leaf nodes is de�ned recursively by summing

the probabilities of its children until leaf nodes are reached:

?8 =


f (G8) if 1 ≤ 8 ≤<∑
({8 ,{ 9 )∈�

? 9 otherwise
(3.5)

Note that any summation is over a subset of leaf-nodes whose total sum is one so

any ?8 is ≤ 1.

3.2.3 Depth dependent losses
We de�ne our loss with respect to multiple discrete abstraction levels within our

hierarchy tree as depicted in Fig. 3.1 for the simpli�ed example. Our method is

to compute a loss for each abstraction level in terms of the deepest branch in the

hierarchy of classes. For example, given the hierarchy in Fig. 3.2, !�max
considers

all classes equally. For !3, we consider background and hair as individual probabili-

ties, but probabilities from the other leaf classes are summed and applied to their

immediate parent classes. For !2, we again retain probabilities for background and

hair, but only further consider the the abstract face class by inferring probabilities

from its children. Finally, for !1, we retain the probability for background but infer

the probability for foreground by summing all of the probabilities associated with

its children.

The total hierarchical loss is then a summation over all of these abstraction levels

3 ∈ {1, . . . ,�max} in the tree (where !1 and !�max
represent the highest and lowest

level of abstraction respectively):

! =

�max∑
3=1

!3 . (3.6)
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The classi�cation loss at abstraction level 3 is computed using the negative log loss:

!3 = − log(?23 ). (3.7)

where ?23 is the probability which our network estimates for the correct class node

23 for the given abstraction level 3 , as given by Eqn. (3.5). The appropriate class

node 23 varies depending on the abstraction level 3 that we are computing. We

de�ne the correct class node (either a leaf or abstract class) for abstraction level 3

to be:

23 =

{
{2 if 3 = �<0G

{: : anc({: , {2) ∧depth({:) = 3 otherwise

(3.8)

where {2 is the correct leaf vertex class label given by the relevant ground truth

for the non-abstract classes, anc({: , {2) requires {: to be a superclass of {2 and

depth({:) = 3 picks a speci�c superclass given the abstraction level 3 .

3.3 Numerical stability
In this section we explain how to ensure numerical stability in the computation of

the abstraction level losses.

Evaluating cross entropy (log) loss of a probability computed using softmax()
is numerically unstable and can easily lead to over�ow or under�ow. In most

implementations, this is circumvented using the “log-sum-exp trick” [165] derived

from the identity:

exp(G) = exp(G −1 +1) = exp(G −1) exp(1)

as:

! = − log?8 = − log
(

exp(G8)∑<
9=1 exp(G 9 )

)
= −G8 + 1 + log

<∑
9=1

exp(G 9 − 1), (3.9)

where:

1 = max

8∈{1,...,<}
G8

is chosen so that the maximum exponential has value one and thus avoids over�ow,

while at least one summand will avoid under�ow and hence avoid taking a logarithm

of zero.

Our hierarchical classi�cation losses involve computing log losses on internal
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nodes in the class hierarchy tree. The probabilities in these nodes are in turn formed

by summing probabilities computed by applying softmax() to CNN outputs. This

leads to evaluation of losses of the form:

− log(
∑
8∈C

?8)

where C is the set of leaf nodes contributing to the superclass. This can be made

numerically stable by double application of the log-sum-exp trick:

! = − log
∑
8∈C

?8 = − log
∑
8∈C exp(G8)∑=
9=1 exp(G 9 )

= 1 + log
=∑
9=1

exp(G 9 −1) −1C − log
∑
8∈C

exp(G8 −1C), (3.10)

where 1 is de�ned as before while:

1C =max

8∈C
G8 .

The use of two di�erent shifts for the two logarithm terms is required to avoid

under�ow when 1C � 1.

3.4 Experiments

We seek to investigate the relative performance gain in using the hierarchical loss

versus training simply on a �at hierarchy. To this end, in our experiments we train

two networks for each task. One is a “vanilla” U-net [191], the other is exactly the

same U-net architecture but trained with hierarchical loss (referred to as U-net+HL).

We train U-Net/U-Net+HL models simultaneously such that they receive identical

data input at each iteration. Note that we do not seek nor achieve state-of-the-

art performance. A more complex architecture, problem-speci�c tuning and so

on would lead to improved performance but our goal here is to assess relative

performance gain using a simple baseline architecture. Networks use Kaiming

uniform initialisation [79] with the same random seed (to equally initialise vanilla

and hierarchically trained networks). Pre-training is not utilised. We use Stochastic

Gradient Decent with a learning rate of 0.01 and a batch size of 5 (due to memory

constraints). During training, images/labels were randomly square-cropped using
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Figure 3.4: Training behaviour versus epoch on the Helen [112] dataset. Left: Mean IOU.

In both cases we show results trained with vanilla (U-Net) and hierarchical (U-Net+HL)

losses. Right: Classi�cation loss for each depth � = 1..4.

the shortest dimension and re-sized to 256
2
. The only further data augmentation

used was random �ipping (p = 0.5).

3.4.1 Datasets

For experimenting with hierarchical losses on segmentation we chose two very

di�erent datasets: the Helen [112] facial dataset and the Mapillary Vistas [169]

road scene dataset. As a toy example, we chose to use the facial Helen [112]

dataset to experiment with our method where the number of classes is low and the

hierarchy very simple. The Helen [112] dataset covers a wide variety of facial types

(age, ethnicity, colour/grayscale, expression, facial pose), originally built for facial

feature localisation [112]. We use an augmented Helen [205] dataset with semantic

segmentation labels. Helen [112] contains 2000, 230 and 100 images/annotations

for training, validation and testing respectively, for only 11 classes (10 facial and

background, see Tab. 3.1(left)). It should be noted that the ground truth annotations

are occasionally inaccurate, particularly for hair which makes it challenging to

learn.

Our primary focus is on the road scene Mapillary Vistas [169] dataset which

is composed of 25000 images/annotations (18000 training, 2000 validation, 5000

testing), with 66 classes. We have chosen a representative subset of Mapillary

Vistas [169] classes in Tab. 3.1 (right) which show the most signi�cant di�erences

in performance and have given the mean over all classes. Further, our intention is

to indicate the performance improvement by using hierarchical learning, rather
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Helen [112] Dataset Mapillary Vistas [169] Dataset

Class U-Net U-Net+HL Class U-Net U-Net+HL
Background 92.0 92.7 Car 80.4 80.9
Face skin 86.5 87.0 Terrain 54.2 56.1
Left eyebrow 63.1 62.7 Lane Marking 49.1 51.7
Right eyebrow 63.7 64.3 Building 77.3 79.7
Left eye 64.0 67.8 Road 82.3 82.7
Right eye 64.9 72.7 Trash Can 5.4 18.6
Nose 84.1 82.6 Manhole 2.3 17.0
Upper lip 52.9 56.5 Catch Basin 1.6 13.6
Inner mouth 62.2 67.9 Snow 57.0 71.5
Lower lip 65.6 67.9 Person 39.2 48.3
Hair 65.4 66.1 Water 29.9 16.1

Mean 69.49 71.65 Mean 24.74 26.51
Table 3.1: Mean and class IOU (%) on the Helen [112] and Mapillary Vistas [169] (subset

selected) datasets at training convergence.

than to compare between datasets. The Mapillary Vistas [169] hierarchy is three

levels deep, contains 66 leaf nodes, and 11 internal nodes.

3.4.2 Results

Fig. 3.4 (right) shows losses for each abstraction depth of the class hierarchy for the

Helen [112] experiment. Note that the deeper loss is always larger than a shallower

one, suggesting that our hierarchically trained method signi�cantly bene�ts from

the hierarchical structure in the class labels, particularly in the early phase of

training, learning much faster than the vanilla model. Fig. 3.4 (left) illustrates the

mean Intersection over Union (IOU) during training. Performance gain is most

signi�cant post epoch 35 and can be observed in the qualitative results from Fig. 3.6.

At performance convergence we observe some qualitative di�erences between the

hierarchically trained network and the vanilla. For example, in Fig. 3.6 U-net+HL

predictions at epoch 200 have somewhat less hair artefacts, while the 1st example

shows improvement over a di�cult angled facial pose. Epoch 50 results clearly

show faster convergence.

For Mapillary Vistas [169], the IOU performance gain is less notable than on

Helen [112], but we show the hierarchically trained model outperforming the

vanilla model in both level losses and mean IOU (Fig. 3.5 and Tab. 3.1 (right)). The

qualitative results in Fig. 3.7 illustrate predictions for both methods at epoch 1 and
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Figure 3.5: Training behaviour on Mapillary Vistas [169]. Left: mean IOU versus epoch.

Right: classi�cation loss for each abstraction depth � = 1..3 versus epoch. We show results

trained with vanilla (U-Net) and hierarchical (U-Net+HL) loss.

80. Most interestingly, after 1 epoch the hierarchically trained model is able to

classify correctly a signi�cant proportion of lane-markings whereas the vanilla

trained model cannot, showing how quickly our hierarchical model is learning.

Relative to the vanilla model, our hierarchically trained model achieves a 3% and

7% relative improvement for Helen [112] and Mapillary Vistas [169] respectively

(see Tab. 3.1).

3.5 Conclusions
Our results in this chapter illustrate the potential of using losses that encourage

semantically similar classes within a hierarchy to be classi�ed close together, where

the model parameters are guided towards a solution not only better quantitatively,

but faster in training than using a standard loss implementation.

Training with a semantic hierarchy prior improves performance and ac-
celerates training: Taking advantage of the hierarchical cues readily apparent

to us can help train a deep network faster and with greater accuracy. We suggest

that the hierarchically trained models perform better due to learning more robust

features from visually similar classes which are close within the tree structure. The

hierarchy is providing the network with more information (e.g. a pixel belongs to

an eye-brow, which belongs to a face and so on), which can be exploited to learn

shared and more robust features. Rather than positive and negative class labels, we

are provided with classes that can be more or less similar within a hierarchy.

We also contribute a numerically stable formulation for computing log and
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Input Ground Truth 30 Epochs 50 Epochs 200 Epochs

U-net U-net+HL U-net U-net+HL U-net U-net+HL

Figure 3.6: Prediction comparisons on the Helen [112] dataset. From left to right: raw input

image, ground truth annotation, vanilla trained U-Net prediction at 30 epochs, hierarchically

trained U-Net prediction at 30 epochs, vanilla trained U-Net prediction at 50 epochs,

hierarchically trained U-Net prediction at 50 epochs, vanilla trained U-Net prediction at

200 epochs, and the hierarchically trained U-Net prediction at 200 epochs.
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Input Ground truth 1 epoch 80 epochs

U-net U-net+HL U-net U-net+HL

Figure 3.7: Qualitative comparisons on the Mapillary Vistas [169]. From left to right:

raw input image, ground truth annotation, vanilla trained U-Net prediction at 1 epoch,

hierarchically trained U-Net prediction at 1 epoch, vanilla trained U-Net prediction at 80

epochs, and the hierarchically trained U-Net prediction at 80 epochs.

softmax() of a network output separately, a necessity for summing probabilities

according to a hierarchical structure.

Hierarchies can be applied generally: A particular advantage of our method

is its generality and self-contained nature allows the possibility of plugging this

hierarchical loss on the end of any deep learning architecture. Moreover any

hierarchical structure can be provided to help train your model.

Semantic structure is useful. What about geometric regularity? We have

shown that we can inform the training of a CNN using a basic understanding of

the structural semantics present within images. Speci�cally we show examples for

43



Chapter 3 A Hierarchical Loss for Semantic Segmentation

road scenes where semantics of classes is always consistent and focused around

the road plane itself.

Looking at the imagery present in Fig. 3.7 an obvious question arises of whether

we can use the planarity of the road plane itself to help inform training of neural

networks or to assist development of methodology for motion related tasks. In

Chapter 4 we will show that indeed it is possible to do so, particularly in terms of

self-supervised training and focusing on the task of relative pose estimation.
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4 Geometry and Pose Estima-
tion with Appearance Loss

Road scenes are highly regular. In the previous chapter we showed that structure

within semantic labels is useful for boosting performance for semantic segmentation

of road scenes. In this chapter we ask whether geometric domain understanding

for road scenes can be used similarly but for the task of motion estimation. Relative

pose estimation is important for computer vision applications such as SfM, image

stitching and alignment, change detection, visual odometry, augmented and virtual

reality, and many others. Particularly, visual odometry is increasingly important

for the development of autonomous vehicles.

Many deep learning based visual odometry methods rely on ground truth labels

for supervising relative pose models, generally collected by inertial and GPS sys-

tems. However, the accuracy is limited, and it su�ers from inconsistent coverage.

Further, signi�cant e�ort is required to collect labels and correctly synchronise

and geometrically calibrate them relative to camera images. Alternatively, vast

amounts of unlabelled driving video is available. Moreover, ground truth labels

are noisy and self-supervised methods can potentially achieve higher accuracy. So,

there is strong motivation for developing methods that use only image data to learn

relative pose in a self-supervised manner.

Self-supervised relative pose methods often use a combination of depth and

pose estimation to form a self-supervised signal through cross-projection between

source and target images [68, 287]. Other approaches train an optical �ow network

in addition to depth [187, 276]. While a complete, dense depth model is useful,

estimating many thousands of depth values per image is an ill-posed problem,

with models liable to over�t to scene contents and adjacent frame-to-frame views

with little variation in pose between images in a pair. Furthermore, errors in one

task may in�uence accuracy of the other as, for example, a depth estimator could

learn to compensate for the pose estimation being inaccurate. Additionally, many

approaches merely use relative pose estimation as a step towards a primary goal of

estimating depth.

Moreover, the pose network architecture is less often considered (see Section

2.2.5). Most deep learning based methods tend to concatenate image pairs channel-

wise for input to the pose estimation network, which only makes sense when pose

changes are small as in that case the receptive �eld of convolutional layers can

observe corresponding points in both images. If the relative pose between these
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Figure 4.1: Ground-relative pose estimation. We propose to estimate ground-relative

pose using a geometric matching network (See Fig. 4.4 for details). Assuming a locally

planar environment, we can cross-project one image into the perspective of the other (see

Fig. 4.3) using only our 9D ground-relative pose parameterisation (without estimating dense

depth). This enables self-supervision via an appearance loss for which we use a perceptual

loss based on deep features provided by a pre-trained VGG [202] network. See Section 4.3

and Fig. 4.5 regarding the method for transforming these relative poses into absolute poses.

images is large, the receptive �eld may not capture matching features, and hence

relative motion between both cameras may fail to activate neurons to accurately

estimate relative pose [101, 137, 200, 276]. Our approach is to allow for greater

�exibility between cameras by separately extracting features from both images in

a Siamese style architecture [101, 113] and performing putative feature matching

and regression via a Siamese network originally proposed by Rocco et al. [190].

We propose a self-supervised method to learn relative pose estimation without
the need to estimate depth. Instead, we exploit that road scenes are predominantly

planar, which allows for image cross-projection and self-supervision in a similar

manner to depth estimation methods but without the need for a depth map. While

the planar nature of road scenes might be learnt implicitly by depth estimation

networks, here we enforce it. This dramatically simpli�es the network task, while

retaining the bene�ts of self-supervision. A bene�t of our simpli�ed method is that

we can train a single CNN with only 9 parameters for output, versus multiple CNNs

with thousands of parameters for output - this is a much easier and faster model

to train successfully in practical road odometry. Harnessing the known planarity

of road scenes allows us to move away from explicitly modelling the complex and

dynamic geometry of buildings, people, cars, signs, and so on. Speci�cally, we

make the following contributions:

1. A physically interpretable and novel 9D ground-relative pose parameterisation

for network output, from which scene contents on the ground plane can be

cross-projected between images to form a self-supervision signal, without any

requirement for a depth network.
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2. Using a known geometric matching Siamese network for the purpose of pose

regression which can handle arbitrary pose changes on overlapping image-pairs.

3. Application of perceptual loss in the context of motion estimation, which allows

for a wide basin of convergence.

Further, we achieve trajectory estimation from relative poses via transformation

synchronisation.

In Section 2.2.2 we discussed leading work towards end-to-end self-supervised

relative pose estimation as applied to road scenes for the KITTI benchmark [66].

These methods all rely heavily on implicitly learning planar motion from road

geometry with dense estimation of depth [13, 68, 282, 287] or additionally include

dense optical �ow estimation [187, 257, 276]. To the best of our knowledge we are the

�rst self-supervised relative-pose estimation method to use geometric knowledge

of road scenes (in our case, that our local road geometry is approximately planar)

to facilitate cross-projection for a self-supervision training signal. On the KITTI

dataset we show supervising with our simple geometric model achieves competitive

performance versus state-of-the-art self-supervised methods that rely on dense

depth estimation [13, 68, 187, 276, 287].

In Section 4.1 we detail our ground-relative pose parameterisation, how it allows

for camera-relative pose and cross-projection, then discuss scale ambiguity. In

Section 4.2 we detail a Siamese network architecture and explain how we train

with appearance loss. In Section 4.3 we provide an overview on the method from

Arrigoni et al. [6] which optimises a collection of camera-relative poses for absolute

pose useful for our visual odometry evaluation. Finally, in Section 4.4 we illustrate

our experimental results on the KITTI road scene dataset.

4.1 Two View Ground-Relative Geometry

We propose to predict relative pose between a pair of views and also the positioning
of the two views relative to the local ground plane. See Fig. 4.2 for an illustration of

our novel ground-relative pose parameterisation, which has 9 degrees of freedom:

6 for relative pose and 3 to de�ne the plane relative to one of the cameras. In this

section, we describe how we parameterise ground-relative pose, how we extract

camera-relative pose from this formulation, how to perform planar cross-projection

between views and �nally the scale ambiguity inherent in planar cross-projection.

47



Chapter 4 Geometry and Pose Estimation with Appearance Loss

Figure 4.2: Our proposed ground-relative coordinate system. Our Siamese network outputs

a 9D representation (shown in red). Speci�cally, for the input-pair we propose to predict

the two camera heights, roll and pitch for camera 8 , planar position for camera 9 , and �nally

roll, pitch and yaw for camera 9 , all of them relative to an origin de�ned to be on the road

plane directly under camera 8 .

4.1.1 Parameterisation

We parameterise the 9D ground-relative pose \ ∈ ℝ9
(see Fig. 4.2) of cameras 8 and

9 as:

\ = (2 (I)
8
,W8, V8,2

(G)
9
,2
(~)
9
,2
(I)
9
,W 9 , V 9 ,U 9 ) . (4.1)

De�ning a local coordinate system in which the ground plane coincides with I = 0,

camera 8 is centred above the origin and the projection of its optical axis onto the

ground plane is aligned with the y-axis. Hence, the DoF of camera 8 is three: its

height above the ground plane (2
(I)
8

), and its roll (W8 ) and pitch (V8 ) relative to the

local ground plane orientation. Camera 9 is speci�ed by its absolute orientation

in the local ground plane coordinate system, i.e. a position c 9 = [2 (G)9 ,2
(~)
9
,2
(I)
9
] and

rotation parameterised by roll, pitch and yaw (W 9 , V 9 and U 9 ).

We use an angular parameterisation for rotation (speci�cally Tait–Bryan angles)
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as it is a natural representation for vehicle motion and leads to simple priors on

each parameter. For example, a forward facing camera mounted with its optical

axis parallel to the ground has zero mean pitch and roll and they will be normally

distributed over unbiased motion sequences. Note: our parameterisation describes

the position of the two cameras relative to the local ground plane. It does not

mean that the local ground plane coincides with the global I = 0 plane, i.e. the

gravity direction is not necessarily aligned with the I axis. Hence, we can describe

non-planar motion sequences under the assumption that small motions can be

approximated by planar motion.

4.1.2 Relative Pose from Parameterisation
We can extract conventional 6 DoF camera-relative pose from our ground-relative

pose. This is important later for computing the optimisation for absolute pose

trajectories. World-to-camera rotation and translation are formed from camera

angles and centres as:

R(W, V,U) = RI (W)RG (V)R~ (U)RG (90◦)
t(c,W, V,U) = −R(W, V,U)c (4.2)

where, the �xed rotation converts from conventional world coordinates (I up)

to conventional camera coordinates (I aligned with the optical axis). Combining

Eqns. (4.1) with (4.2) we obtain world-to-camera transformations for the two views:

R8 = R(W8, V8,0), t8 = t( [0,0,2 (I)
8
]>,W8, V8,0) (4.3)

R 9 = R(W 9 , V 9 ,U 9 ), t 9 = t( [2 (G)
9
,2
(~)
9
,2
(I)
9
]>,W 9 , V 9 ,U 9 )

where we have utilised the fact that we de�ne camera 8 to be forward facing (U8 = 0)

and directly above the local coordinate system (2
(G,~)
8

= 0), as depicted in Fig. 4.2.

Finally, the camera-relative pose to transform from the coordinate system of camera

8 to camera 9 is given by:

R8→ 9 = R 9R>8 , t8→ 9 = t 9 −R8→ 9 t8 (4.4)

4.1.3 Planar Cross-Projection
For self-supervision via an appearance consistency loss, we require to cross-project

one image into the perspective of the other. Due to our assumption of a locally

planar world, this is particularly simple. The planar components of the scene can
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be accurately cross-projected via a homography derived from our ground-relative

parameterisation. First, we write the homography that transforms a point on the

local I = 0 ground-plane to a given camera : as:

H: (K: ,R: , t:) = K: [R:S> t:], S =
[
1 0 0

0 1 0

]
(4.5)

where K: are the given camera intrinsics and R: , t: are computed from Eqn. (4.3).

Combining ground-plane to camera homographies, we write the homography that

directly transforms a location in image 8 corresponding to a point on the ground

plane to the corresponding position in image 9 as:

H8→ 9 = H 9H−18 . (4.6)

4.1.4 Scale Ambiguity
Points lying on the local ground-plane are related by an 8 DoF homography between

two views. Our ground-relative pose in Eqn. (4.1) has a 9 DoF form. The additional

dimension is explained via a scale ambiguity: scaling the ground-relative transla-

tions (or equivalently camera centres) does not change the homography between

views. Therefore, from the planar correspondences alone, we cannot estimate the

ground-relative camera poses at world scale. However, datasets usually include

calibration details for average camera height, which we use as a prior to softly

constrain scale to the calibrated value on average, thereby resolving the unknown

scale ambiguity. This allows our Siamese network to handle small variations in

height above the local ground-plane due to accelerating, cornering, bumps in the

road etc.

4.2 Learning Ground-Relative Geometry
We use the geometric matching Siamese network by Rocco et al. [190] outlined in

Fig. 4.1 to estimate the ground-relative pose between two cameras overlooking the

same scene (see Fig. 4.2). In this section we describe our supervision losses and

training details.

4.2.1 Priors
We assume that the calibrated height of the camera above the ground plane, 2

(I)
calib

,

is known. We assume that variation around these values are normally distributed
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and encode these priors via the following loss function:

!priors = (2 (I)8 −2
(I)
calib
)2 + (2 (I)

9
−2 (I)

calib
)2 +W28 +W29 + V28 + V29 (4.7)

where 2
(I)
8, 9

, W8, 9 and V8, 9 are the estimated camera height, roll and pitch respectively

for each camera pair (8, 9). Our motion model assumes that the camera height (2
(I)
8, 9

)

has a mean of 2
(I)
calib

(1.65m for KITTI [66]) and that the camera pitch and roll (V8, 9
and W8, 9 ) have a mean of zero, respectively. These are soft priors introduced to help

constrain our model to the correct scale and solution space. Our Siamese network

will tolerate deviation from these priors in order to reduce our perceptual loss.

4.2.2 Perceptual Loss

At training-time, essentially we re-estimate the road plane for every image pair,

rather than maintaining an estimate of ground plane location throughout an en-

tire odometry sequence. When computing our appearance loss, for each pair we

assume approximately the road surface is locally planar. Assuming local planarity

means we can still handle scenes with changes in gradient, and e�ectively we are

approximating a curved surface by a series of planar patches.

Perceptual loss as originally proposed by Johnson et al. [94] uses both a feature

and style loss to penalise di�erences between two images in feature space as

opposed to pixel space (see Section 2.2.6). In our approach, we measure appearance

loss between one image in an overlapping pair and a cross-projected version of the

other input image using only the feature side of the perceptual loss [94].

To form the cross-projected image, we follow the same approach for perform-

ing di�erentiable cross-projection as in Spatial Transformer Networks [90] (see

Fig. 4.3). Speci�cally, we use their method of performing backwards warping via

di�erentiable bilinear sampling as follows. To warp image I8 from camera 8 into

the perspective of camera 9 to form an image I8→ 9 , we �rst compute the reverse

homography H 9→8 using Eqns. (4.5) and (4.6) from the pose parameters of Eqn. (4.1)

estimated by the Siamese network. We apply this to every coordinate in a regular

grid of size � ×, whose homogeneous coordinates are stacked to form matrix

X ∈ R3×�,
. Finally, we sample image I8 at the warped coordinates using di�eren-

tiable bilinear sampling as I8→ 9 = sample(I8,H 9→8X), where sample(I,X) performs

di�erentiable bilinear sampling of image I at locations X.

To compute the perceptual loss we take the symmetric L2 loss between one

input image and the cross-projection of the second input image. For improved
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Figure 4.3: Di�erentiable cross-projection via homography-based backwards warping is

made possible by the planar geometry of the local road plane. Ground-relative pose output

by our Siamese network \ is used to compute a homography for transforming a regular

grid of points, which is used to sample input. Red boundaries indicate the input to the warp

function in Fig 4.1

convergence, we sum over 2 scales :

!pe =

2∑
B=1




VGG(ds(I 9 ,B)) −VGG(ds(I8→ 9 ,B))




2

1

"B
9

+



VGG(ds(I8,B)) −VGG(ds(I 9→8,B))




2

1

"B
8

(4.8)

where VGG denotes extraction of the �rst seven convolutional layers of an ImageNet

[195] pre-trained VGG-16 [202], ds(I,B) denotes di�erentiable downsampling of I
by a factor B and "B

8, 9 is the number of pixels present in the cross-projected image

(for scale B) that are within warped coordinates (e.g. the non-black region of I8→ 9

in Fig. 4.3).

4.2.3 Training Details

We train on the weighted sum of the perceptual and prior losses:

!total =|1!?4 +|2!priors, (4.9)
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Figure 4.4: Detailed view of the Rocco et al. [190] architecture from Fig. 4.1. Feature maps

are extracted separately from images �1 and �2. A matching layer combines these to form a

correlation volume representing potential matches between both images. A sequence of

convolutions and fully connected layers learn to regress our ground-relative pose from the

correlation volume. See Section 4.2.4 for a detailed description.

where |1 = 1 and |2 = 287000. These weights were de�ned as such in order to

match the scale of !priors with that of !?4 on average. By increasing the scale of the

prior term !priors to be in proportion with !?4 , we found that the Siamese network

would learn the prior values for camera height, roll and pitch more readily than

without any weighting. Freezing weights of the pre-trained VGG-16 [202] CNN, we

use default SGD with a learning rate of 10
−4

and use a batch size of 16. The feature

extraction and regression network components are initialised with ImageNet and

default weights respectively. In Eqn. 4.8 we use 120
2,2402 for B = 1,2 image scale

respectively and 240
2

for Siamese network input. Note that each image in a pair

is fed individually to the Siamese feature extraction backbone and fusion only

happens in the correlation volume. We do not concatenate image channel-wise as

in most pose estimators.

4.2.4 Network Architecture

To estimate ground-relative pose from a pair of images both overlooking the same

scene, we use a geometric matching architecture by Rocco et al. [190] that mimics

the classical steps of feature extraction, matching, pruning and model-�tting. To

the best of our knowledge, we are the �rst to use this architecture for the task

of 3D relative pose estimation, as opposed to 2D warping based transformation

estimation (see Section 2.2.5). We illustrate the high level and detailed structure of

this architecture in Figs. 4.1 and 4.4 respectively. The architecture is composed of

three parts: feature extraction, feature matching and regression.

For the Siamese feature extraction component (see the left part of Fig. 4.4) we

chose to use ResNet101 [78] (without the �nal residual block, average pooling and

linear layers) to compute a feature map for each of the two input images individually.
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This di�ers from the original Rocco et al. [190] model which uses VGG-16 [202]

cropped at the ?>>;4 layer. We note that this is a Siamese architecture where both

images are fed separately into the same feature extractor which allows us to learn

shared features across both input images, and where fusion only occurs in the

subsequent matching component [101, 113, 190]. Finally, Siamese feature extraction

is followed by L2 normalisation over the feature channels, in preparation for input

to the matching layer.

The matching component of the architecture (see the middle part of Fig. 4.4)

involves a correlation operation between both feature maps from the preceding

Siamese feature extraction component and contains no trainable weights. Speci�-

cally, as described by Rocco et al. [190], this layer computes a correlation volume

2�� as:

2�� (8, 9,:) = fA(8, 9) · fB(8: , 9:) (4.10)

where fA and fB are individual feature vectors in the two input feature maps, (8, 9)
and (8: , 9:) are positional indices for the|×ℎ×3 feature maps, and : =ℎ( 9: −1) +8:
[190]. Each spatially reduced feature vector of the correlation volume represents a

vector of similarity scores (the purple vector of the correlation volume in Fig. 4.4),

which is a measure of how similar a spatial neighbourhood of the �rst input image

(in feature space) is to every other spatial neighbourhood for the second input image.

The resulting correlation volume represents a spatial mapping of potential feature

matches between both of the input images [190], from which we can learn to regress

relative pose. The correlation volume is followed by ReLU and L2 normalisation

(depicted in Fig. 4.4 by the turquoise and blue blocks respectively), which has the

e�ect of highlighting potential matches and softening ambiguous ones [190].

The purpose of the subsequent regression component (see the right part of Fig. 4.4)

is to regress pose based on the tentative similarity scores of the correlation volume.

As illustrated in Fig. 4.4, the initial regression stage is composed of two sequential

2D convolutional layers, both followed with batch normalisation and ReLU layers

(illustrated in Fig. 4.4 by the yellow, green and turquoise blocks respectively). As

with the archtitecture in Rocco et al. [190], we note that the convolutional layers

are without padding and have a stride of one. Similarly, the �rst and second

convolutional layers have 128 and 64 kernels with a size of 7 and 5 respectively.

Rocco et al. [190] only use one fully connected layer to regress a �nal transformation,

but we chose to use three fully connected layers (with ReLU activation for the

�rst two) with a size of 5000 for the internal input/output feature dimensions

to compute our 9 dimensional ground-relative pose. The general idea for the

regression component of the architecture is to emulate traditional approaches of
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Pose 
Chaining

Transformation 
Syncronisation

Compounding Error

Global Absolute Pose
Estimated Relative Pose

Pose Error

Outlying Pose Error

Camera
Origin

Figure 4.5: Estimating absolute poses from camera-relative poses. Top: Chaining poses

results in compounding error (red). Bottom: Transformation syncronisation can optimise a

set of camera-relative poses such that the absolute pose error is minimised. Further, the

method we use [6] is robust to outliers in our relative pose estimates (green).

pruning potential feature correspondences in a local neighbourhood [190, 197, 204]

and robustly �tting a geometric transformation (e.g. RANSAC [61]).

4.3 Transformation Synchronisation for Visual
Odometry

So far we have shown how we train for estimating relative pose between image pairs.

In order to perform visual odometry, we must compute the absolute poses for each

sequence of cameras in order to compute a trajectory in world coordinates. In Fig. 4.5

we illustrate the general idea behind two methods for computing these absolute

poses from a collection of relative poses. The most obvious way to convert relative

pose estimates to a world-space trajectory is to apply relative pose estimation
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between consecutive frames and chain together the relative poses (see Fig. 4.5 (top)).

However, this is susceptible to compounding error and is not robust to individual

estimates with high error, thus it will lead to highly inaccurate results.

Instead, we exploit the fact that our Siamese network can compute relative pose

between arbitrary pairs (see the relative pose output of our Siamese network in

Fig. 4.1) and apply it to pairs with multiple di�erent frame o�sets. Speci�cally, each

image in a sequence is compared with the following �ve images temporally. This

provides redundancy in that we have multiple ways of combining transformations

in order to estimate the relative pose between image pairs. The task of �nding the

absolute poses that best �t these redundant sets of poses is known as transformation

synchronisation which is far more accurate than chaining, and can be adapted to

handle large outlying errors in our relative pose estimates (see Fig. 4.5 (bottom)).

Note the pairwise planarity assumption we use for training no longer applies here

for estimating a global trajectory, hence we can handle non-planar trajectories.

In our context, transformation synchronisation is the optimisation of a collection

of camera-relative poses into a single frame of reference, or absolute pose. Speci�-

cally we use the method by Arrigoni et al. [6] for spectral motion synchronisation,

which we only summarise brie�y here. From a high-level perspective we take our

Siamese network output to form camera-relative poses for = cameras as:

X =

©­­­«
I4 M12 ... M1=

M21 I4 ... M2=

... ... ... ...

M=1 M=2 ... I4

ª®®®¬, where M8 9 =

(
R8 9 t8 9
0 1

)
(4.11)

where"8 9 is the camera relative pose between frames 8 and 9 in a video sequence of

length =. For our toy example in Fig. 4.5 (bottom) we have 4 cameras and therefore

X would consist of a 16 by 16 matrix of camera-relative poses. In the case of our

training regime where we are inputting pairs of images into the CNN, we have

chosen to separate both images by one to �ve frames. This was chosen so that there

would always be scene-overlap even on video with faster motion, while providing

a spread of relative pose variations in the image pairs. As a result of this choice,

we can populate the matrix X with one to �ve blocks of "8 9 above and below the

main diagonal. As we do not estimate camera relative poses for frames beyond this

range, the rest of the entries in X are missing and de�ned to be zero. In the case

where we have missing relative poses in X we have that:

L = ((D−A) ⊗ 14×4) ◦X (4.12)
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where A and D is the degree and adjacency matrix of X, 14×4 is a matrix composed

of ones, and ⊗ and ◦ denote the Kronecker and Hadamard products respectively

[6]. Furthermore U is de�ned as a basis for null-space =D;; (L) [6].

Optimal absolute poses are found by solving:

min

U)U==I4




L̂U


2
�
, (4.13)

where � refers to the Frobenius norm and< are the eigenvalues for corresponding

eigenvectors of X. This amounts to solving L̂U = 0 in least-squares and furthermore

an Iteratively Reweighted Least Squares method is utilised to deal with outliers as

described by Arrigoni et al. [6]. We write the resulting absolute poses as:

R̂8 = [R̂1, R̂2, ..., R̂=] (4.14)

t̂8 = [̂t)1 ,̂ t)2 , ...,̂ t)= ] . (4.15)

4.4 Experiments
In this section we present our experimental evaluation. Firstly, we provide some

experimental details relating to the data and training process. Secondly, we convey

our quantitative and qualitative results. Finally, we illustrate results for our visual

odometry trajectories and path length.

4.4.1 Experimental Details

We evaluate our pipeline using the KITTI visual odometry dataset [66]. In general

we chose to train on the raw dataset but omitting visual odometry sequences 09

and 10 which are used for testing. Note sequence 03 is not in the raw dataset. For

trajectories 11, 12 and 14 in Fig. 4.10 we trained with sequences 09 and 10.

Training pairs are shu�ed over all sequences. For each sequence, our training

and testing pairs consisted of target IC and source IB images which are separated by

zero to four adjacent frames. Using the self-supervised loss and priors outlined in

Section 4.2 we trained models consisting of approximately 65 million parameters

to estimate camera-relative pose. Having obtained relative poses on test sequences

we use the transformation syncronisation outlined in Section 4.3 to obtain absolute

poses R̂8 and t̂8 for visual odometry evaluation. As our proposed method does not

rely on any direct supervision we focus our comparison on leading methods which

are fully self-supervised and only rely on a single camera.
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Figure 4.6: Appearance loss versus training epoch for training and validation data.

Convergence In Fig. 4.6 we show a typical loss curve (speci�cally the left-hand

side appearance loss) with the training and validation datasets to illustrate that our

model converged. We observe that the validation set loss values are signi�cantly

less smooth relative to the training set loss. We suspect this is because the validation

set is much smaller than the training set, which introduces noise into the training

convergence. It is clear that most of the gain occurs over the �rst 40 epochs and

hence we stopped training at approximately 100 epochs, where generalisation error

converges.

4.4.2 �antitative Results

In Table 4.1 we provide visual odometry scores on sequences 09 and 10 of the KITTI

visual odometry dataset [66]. It is standard practice to focus evaluation on these two

sequences within the visual odometry community [13, 68, 187, 257, 276, 282, 287].

We use the KITTI benchmark translation and rotation error as metrics, which is

measured as an average positional or rotational error over all possible subsequences

of length (100, 200, ..., 800 metres) in units of % and
◦/< respectively (see Geiger et

al. [66]). Using these metrics is standard practice in the visual odometry community

and they originate from the KITTI benchmark paper by Geiger et al. [66], where

they are de�ned formally as:

A4AA (F ) =
1

F
∑
(8, 9)∈F

∠[(?̂ 9 	 ?̂8) 	 (? 9 	 ?8)] (4.16)
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Method C4AA A4AA ATE C4AA A4AA ATE

LTMVO [287] 3 3 3 3 3 3.49 0.010 11.30 5.81 0.018 11.80

TBG [276] 3 3 7 3 3 6.93 0.004 - 4.66 0.006 -

CC [187] 3 3 3 3 7 6.92 0.018 29.0 7.97 0.031 13.77

GeoNet [257] 3 3 3 3 7 28.72 0.098 158.4 23.90 0.090 43.04

SfM [282] 3 3 3 3 7 8.28 0.031 24.31 12.20 0.030 20.87

SC-SfM [13] 3 3 7 7 7 11.20 0.034 - 10.10 0.050 -

Mono2 [68] 3 3 7 7 7 11.47 0.032 55.47 7.73 0.034 20.46

Ours (PLoss �xed priors) 7 7 7 7 7 10.42 0.033 29.45 9.55 0.048 13.73

Ours (PLoss mono2-net) 7 7 7 7 7 16.69 0.058 58.88 16.72 0.071 32.0

Ours (PLoss) 7 7 7 7 7 11.30 0.043 28.68 11.66 0.060 16.48

Table 4.1: Visual odometry results on KITTI for our perceptual loss (PLoss). Metrics C4AA
(%), A4AA (deg/m) and ATE (m) are translation, rotation error over a set of subsequences, and

the absolute trajectory RMSE respectively.

C4AA (F ) =
1

F
∑
(8, 9)∈F

| | (?̂ 9 	 ?̂8) 	 (? 9 	 ?8) | |2 (4.17)

where 	 is the inverse compositional operator as given by Kuemmerle et al. [109],

∠ represents angle, ? and ?̂ are the ground truth and estimated camera poses

respectively, and F is a set of camera frames (8, 9). Additionally, we provide

Absolute Trajectory Error (ATE) in units of metres. The ATE measures the standard

deviation between the ground truth and estimated trajectory aligned to the ground

truth [287].

We show key di�erences between leading methods which encapsulate various

levels of constraint and complexity. From left to right, methods are split between:

usage of a dense depth network, estimating only a 6 DoF camera-relative pose,

requiring adjacent or sequential input for inference or training, using additional

network(s) for dense estimation (e.g. optical �ow, explainability mask), and requir-

ing a staged training process. Drawbacks of training for dense networks include

requiring to capture features relevant for thousands of output parameters, versus

our 9 geometry aware parameters, increasing complexity drastically, and requiring

to learn complex scene contents. A drawback of only using 6 DoF pose is that we

lose the richer information given by our 9D ground-relative pose, with which we
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may calculate 6 DoF pose (see Eqn. 4.4). Requiring adjacent or sequential input

constrains the network to learning limited relative poses, whereas our method can

handle more arbitrary poses due to the �exibility of the homographic transforma-

tion. Lastly, a staged training process increases the complexity of acquiring an

accurate solution in practical applications, whereas our method is easy to train.

While LTMVO [287] and TBG [276] perform most accurately, they are more

restrictive and complex in their approach , as discussed in Sections 2.2.2 and 2.3.

Both of these methods concatenate sequential frames of input images into the

feature extractor parts of their deep pipelines and, as discussed in Section 2.2.5,

this can restrict the range of relative pose between images, whereas we choose to

use a Siamese network for independently extracting features from both images.

Furthermore, these methods estimate only a 6 DoF camera-relative pose, whereas we

estimate a 9 DoF ground-relative pose, which allows for the �exibility of estimating

both the 6 DoF camera-relative pose and inter-image planar homographies. Further

still, LTMVO [287] and TBG [276] use a staged training process and our method

in Chapter 4 is simply a single stage of training, reducing the complexity of our

approach. Moreover, we only train a single neural network with a 9D output

whereas all of the competing approaches in Tab. 4.1 train a dense depth network

outputting tens of thousands of parameters, increasing the complexity of their

approach. Additionally, TBG [276], CC [187], GeoNet [257] train for dense optical

�ow estimation on top of dense depth estimation, greatly increasing the number

of network and output parameters. Lastly, we note that LTMVO [287] use LSTM

modules which can be memory and time intensive, easy to over�t and sensitive to

various weight initialisations [262].

Our method is competitive with leading self-supervised approaches, while re-

maining the most �exible and unconstrained. Crucially, our method does not rely

on training networks for estimating thousands of parameters for dense maps, sim-

plifying relative pose estimation with a CNN signi�cantly. Additionally, we show

our method with the Monodepth2 [68] pose network is notably worse than the

matching Siamese network we use. Further, we obtain boosted performance by

�xing at test-time the camera heights, pitches, and rolls to their prior values.

4.4.3 �alitative Results
Visual Perspective Warps We show qualitative results in Figs. 4.7 and 4.8. The

�rst example in Fig. 4.7 shows a case where our model learns a pose which aligns

features such as road lines (green ellipse) but fails to align more localised features

like the manhole covers (red ellipse); likely due to cases where our method converges

to a local minimum. Moreover, ground truth does not perform very well, likely as

60



Experiments Section 4.4

Pseudo ground truth Ours

Figure 4.7: KITTI qualitative results where images are a composition of one Siamese

network input with its warped counterpart. Left: Pseudo ground truth where we assume

�xed prior values for the ground plane. Right: our ground-relative pose result.

61



Chapter 4 Geometry and Pose Estimation with Appearance Loss

Pseudo ground truth Ours

Figure 4.8: Further KITTI qualitative results: images are a composition of one Siamese

network input with its warped counterpart. Left: Pseudo ground truth where we assume

�xed prior values for the ground plane. Right: our ground-relative pose result.
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we are using camera-relative ground truth and transforming it to ground-relative

using assumed �xed priors for camera height and rotations (which we call pseudo

ground truth). The fourth example shows accurate performance in the presence of

multiple challenging elements: cornering, gradient change, an oncoming vehicle,

shadows and glare. Examples two and three show partial failure modes where the

road bends more sharply than usual in the vertical dimension, challenging our

planarity assumption.

In the �fth example performance is likely hampered by a reversing vehicle.

We attempted �ltering out non-road pixels for input to the Siamese network or

appearance loss with semantic segmentation, but had di�culty with successful

convergence. We suggest that this be investigated further for future work. Sub-

sequent examples show our method outperforming the assumed ground-relative

positioning with highly accurate alignment.

To further highlight weaknesses and strengths of our method we provide per-

spective warps in Fig. 4.9 for test sequences 13, 15 and 16 where absolute ground

truth is unavailable. For these we provide predicted perspective warp compositions

at two di�erent times where C= and C=+G denotes image-pair = and then temporally

subsequent pair =+G in the motion sequence. The �rst example shows a case where

little road is present in one of the images going around a corner, and yet our method

is able to estimate gross relative pose accurately (In Fig. 4.11 this is the second

right-hand corner from the top-left, for sequence 13). Second and third examples

show where our planarity assumption is challenged by sudden changes in the road

gradient. Speci�cally, the second row example error may be due to the vehicle front

and back spanning a slight change in road height, while the third example shows

an outlying case where the vehicle transitions between planes sharply. Our method

performs well for pairs at either side of these outliers and the overall trajectories

appear grossly robust in these regions.

The fourth example shows a fail case perhaps due to three factors: mismatching

from very similar repetitive features such as lines, dynamic shadows from trees, and

faster speeds. For the last point here we note that our model sometimes performs

less well on faster sections of road. Most of the training data is captured for slower

urban speeds and thus dataset bias could be an issue. However, visual separation

of matching features is likely greater at higher speeds, hence the risk of �nding

local minima, as described previously, is more pronounced. Subsequent examples

show robust pose estimation with cornering, cluttered scenes with narrow roads

and dynamic vehicles.
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C= C=+G

Figure 4.9: Strengths and weaknesses: images are a composition of one Siamese network

input with its warped counterpart at for temporally close image pairs = and = +G .
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Figure 4.10: Top: Trajectories for sequences 09, 10, 11, 12 and 14 of the KITTI visual

odometry dataset. For sequences 11, 12 and 14 we compare against leading fully self-

supervised methods. Bottom: We evaluate trajectories along sub-sections of sequences 10,

09 and 03 where the gradients change more rapidl.

4.4.4 Trajectories and Path Length

Fig. 4.10 (top) displays trajectories for visual odometry sequences 09, 10, 11, 12 and

14. For sequences 11, 12 and 14 we compare with leading methods from Table 4.1.

While LTMVO [287] generally achieves the best result, our trajectories are visually

close to competing methods, with a less complex approach (see Section 4.4.2).

Fig. 4.10 (bottom) shows trajectories for vertical cross-sections where gradient

change is sharper except for the last plot where we show good performance on

a constant uphill gradient. The �rst two plots relate to the partial failure modes

shown in the second and third example of Fig. 4.7. Our planarity assumption is

challenged in these sections and while error is higher, we still achieve trajectories

close to ground truth. In Fig. 4.7 and 4.10 we see a signi�cant change in gradient

does negatively impact results. In practice, guidance
1

for safe construction of

roads with adequate camber for drainage seem to be for the most part a road will

slope smoothly, without exceeding a maximum gradient of 1 in 12. So, these rapid

gradient related errors should usually occur as outliers due to the outlying nature

of sharply curving road sub-sections. The SE(3) method in Section 4.3 is robust

to outliers in Eqn. 4.11, which should reduce the overall impact of these errors on

visual odometry. Note we use unequal axes on the bottom row to help visualise the

vertical variation.

We note that the trajectories provided in Fig. 4.10 are computed over entire

sequences. The error or drift from visual odometry can accumulate signi�cantly

over long sequences, even with techniques such as transformation syncronisation

(see Section 4.3). Therefore, in Fig. 4.11 we evaluate over smaller sub-sections

of length approximately 200 frames each, to observe how our method performs

1 https://www.hse.gov.uk/comah/sragtech/techmeastra�c.htm
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more locally. We evaluate over test sequences 03, 09, 10, 11, 12, 13, 14 and 15

respectively. The full 3D ground truth poses in Fig. 4.11 for sequences 03, 09 and

10 are provided by the KITTI dataset [66]. We note that the full 3D ground truth

poses for sequences 11, 12, 13, 14 and 15 are not provided directly as a part of the

KITTI dataset [66] as these are o�cial test set sequences where ground truth is

withheld. As a compromise, in Fig. 4.11 we used the 2D ground truth poses (i.e. the

aerial view trajectory) from the KITTI visual odometry benchmark results page

[102], which lacks the vertical component, and hence is somewhat pseudo ground

truth. For the results in Fig. 4.11 we align our estimated trajectories to the ground

truth using a Procrustes �tting function [144]. For the 2D pseudo ground truth the

trajectories are essentially a projection of the real 3D ground truth unto a plane,

and therefore aligning our estimated 3D trajectories unto these pseudo ground

truth trajectories is an approximation. However, as the vertical versus horizontal

variation in trajectory is generally small, the trajectories of small sub-sections as

illustrated in Fig. 4.11 for sequences 11, 12, 13, 14 and 15 will appear similar to

those with full ground truth as seen for sequences 03, 09 and 10. Aside from errors

present with sequence 12, we note that our method performs visually very well on

smaller sub-sections of these sequences.

In Fig. 4.12 we show how translation and rotation errors vary with trajectory

path length on sequences 09 and 10, with and without �xing priors at test-time

for parameters with priors. Interestingly we observe that the translation error on

sequence 10 departs from the trend while �xing priors.

4.5 Conclusions
road scene visual odometry can be at least approximately solved by self-supervising

a single pose network via modelling the road surface as a series of planar patches.

Parameterising network output as two cameras posed around a locally
planar patch is a useful representation: We proposed learning a novel ground-

relative parameterisation for relative pose where local planarity is leveraged to

allow cross-projection via a homography to form a self-supervisory training signal.

It is shown to be entirely possible to leverage known geometry to train a neural

network to perform at least coarsely with the KITTI road scene dataset.

At this stage it should be clear that we now have a method which can replace

the usual solution of training for 10s of thousands of parameters for dense depth

(dramatically simplifying training), removing the need to implicitly learn complex

scenes by explicitly providing a known geometric model.
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An architecture useful for generic geometric transformationswas found
to be signi�cantly helpful: We showed that the geometric matching network by

Rocco et al. [190] can be applied to the task of 3D pose estimation. We found this

architecture to be particularly useful compared to more generic architectures such

as that used by Monodepth2 [68].

Perceptual loss can be leveraged for successfully training a self-supervised
relative pose network: The perceptual loss, as popularised by Johnson et al. [94]

for Style Transfer, proved very e�ective for converging our network training to

a viable solution. As far as we know, all other self-supervised relative pose ap-

proaches use pixel-level appearance losses (see Section 2.2.2). These generally

require regularization, such as a smoothing term, to allow for successful training

convergence [68, 287]. In our case we �nd that a two-scale symmetric perceptual

loss was able to train a Siamese network (see Fig. 4.4), only initialised with simple

ImageNet [195] weights, to comparable performance with leading approaches (see

Tab. 4.1).

A ground-relative parameterisation is useful : We have demonstrated a

parameterisation which is more powerful than most 6 DoF camera-relative pose

formulations, as our ground-relative pose is more general. From our ground-relative

formulation we may compute 6 DoF camera-relative poses, for tasks such as visual

odometry and we will see in Chapter 5 it is useful for further training to gain

a more accurate model. Further we may use ground-relative pose to compute

homographies between image and ground planes, for supervision purposes, or for

other tasks, such as mosaicing for mapping applications.

Limitations: In many places along the KITTI driving sequences we observe a

lack of performance, perhaps where we become stuck in local minima due to features

such as road lines. In our approach towards using transformation syncronisation

for visual odometry, trajectory accuracy can be severely hampered if a particular

stretch of road is particularly lacking in relative pose accuracy. This can especially

be the case in places where we have illumination issues or more unusual motion

which is not commonly observed in the rest of the training data.

In Chapter 3, the utility of semantic knowledge was shown to be useful for

the task of semantic segmentation. To help address some of the performance

issues we observe with our appearance loss for relative pose estimation, we now

propose to combine semantics with a new re�nement-stage training and inference

step. In particular, we take inspiration from Kolotouros et al. [105] to use model-
�tting in-the-loop for a more direct and classical approach with the estimation of

homographies, and use a semantic segmentation model to help �lter out noisy

scene content and isolate the geometry most relevant for our geometric model

representation.
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Figure 4.11: Localised trajectory evaluation for testing sequences 03, 09, 10, 11, 12, 13,

14 and 15 respectively on the KITTI visual odometry dataset [66]. Each sub-sequence is

roughly 200 frames in length.
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Figure 4.12: Translation and rotation errors by path length on sequences 09 and 10. We

compare errors with and without �xing parameters with known priors.
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5 Geometry and Pose Estimation
with Homographic Model-fi�ing

While a classical problem in vision, those visual odometry methods based on local

feature extraction and matching can be fragile (e.g. failing for larger ego-motion or

purely rotational motion), fail for textureless scenes and slow [18, 162, 163, 276].

Deep learning methods have proven themselves to be robust and to provide fast

inference, however, these methods are only trained to be optimal in aggregate

over a training set, and therefore do not necessarily provide the optimal solution

for a given image pair [78, 87, 202, 207, 213]. Further, as we have illustrated in

Chapter 4, appearance losses can be prone to local minima where, for example, road

features such as lane markings could be misaligned along the direction of motion.

In contrast, a classical method could exactly align features which are correctly

matched, which raises the question of whether we can combine more classically

orientated techniques with deep learning approaches.

In Chapter 3 we showed that domain understanding for semantics can be used

to improve the accuracy of a semantic segmentation network. In Chapter 4 we

switched to the task of motion estimation and, by explicitly enforcing the planar

nature of road scenes, we dramatically simplify the task that a CNN must solve,

while retaining the bene�ts of self-supervision.

road scenes are highly regular with much of the motion proceeding in a locally

planar fashion. Further, a problem with the appearance loss of Chapter 4 was that

much of the scene did not relate to our planar model (e.g. cars, lamposts, sky etc.).

Therefore, it was natural to ask whether semantics could be helpful to �lter out
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Figure 5.1: We train in two phases: 1. using a perceptual loss based on deep features as

described in Chapter 4, 2. via our Homography Estimation Module (HEM) that �ts a re�ned

homography, which we decompose to camera-relative pose for supervision and visual

odometry.
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scene content which did not relate to the base geometry we were using as a prior.

In this chapter we combine semantic and geometric scene understanding by using

it to isolate the planar geometry of the road. In particular, we propose a method for

improving the relative pose estimation of Chapter 4, by �tting and decomposing

re�ned homographies for the camera-to-camera motion model shown in Fig. 4.2.

As illustrated in Fig. 5.1 we use a pre-training phase as described in Chapter 4

with appearance loss. Subsequently in Chapter 5, we describe our Homography

Estimation Module (HEM) which is a post-training and inference time re�nement

model-�tting approach. In contrast to the appearance loss, the re�nement loss

(HEM-Loss) is a non-di�erentiable pseudo-label generation technique where we �t

a homographic model to road plane correspondences.

Speci�cally, we make the following contributions:

1. We compute a re�nement of the regressed homography from Chapter 4 by ap-

plying a non-di�erentiable optical �ow plus RANSAC [61] procedure to regions

of the image labelled as ground plane by a semantic segmentation network.

2. Subsequently we show this homography can be decomposed using a known

analytical method, and how with knowledge of our motion geometry problem,

camera-relative poses can be approximately obtained. We provide a module that

generates pseudo-labels and, hence, another source of self-supervision which

improves visual odometry performance.

3. At inference time, the model-�tting re�nement module and homography decom-

position method can be applied on top of network output for improved accuracy

for tasks such as visual odometry.

As shown with our appearance loss in the previous chapter, the estimated rel-

ative poses from our method can be used for trajectory estimation by applying

transformation synchronisation from Section 4.3. Self-supervision provided by our

simple geometric model and model-�tting based re�nement is highly competitive

with state-of-the-art self-supervised methods that require dense depth estimation.

To the best of our knowledge we are the �rst to apply this model-�tting in-the-loop

idea to the application of motion estimation and visual odometry speci�cally.

In Section 5.1 we explain the details behind how we re�ne the homography from

the Siamese network in Chapter 4 by using our Homography Estimation Module.

In Section 5.2 we explain how this homography is decomposed into approximate

camera-relative pose. In Section 5.3 we explain how these poses are used to re�ne

the training of our pose Siamese network and boost visual odometry performance

at inference time. In Section 5.4 we describe our experimental results.
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Figure 5.2: Non-Di�erentiable Homography Estimation Module (see Fig. 5.1): we use a

pre-trained optical �ow network to estimate point correspondences between one network

input and the corresponding input transformed via the ground-relative pose output. A

pre-trained semantic segmentation network isolates the road plane points so that RANSAC

[61] can be used to robustly estimate the road plane homography.

5.1 Homography Estimation Module
In Section 4.1 we explained our 9D ground-relative parameterisation, and in Section

4.2 we detailed how we use it to form an appearance loss to train our Siamese

network. Speci�cally, we relied on the Siamese network to learn an image to

homography function based on a perceptual loss where backward gradients must

pass coherently through a bilinear sampler. In Fig. 5.1 this is shown as our pre-

training phase in the blue-dashed box. In this section we show that we can extract

a homography directly from an image-pair (green-dashed box in Fig. 5.1) and in

Section 5.2 we will show how to decompose this to form relative poses useful for

training (see HEM-Loss in Fig. 5.1).

5.1.1 Optical Flow
Fig. 5.2 illustrates our approach where we use a direct matching method in a non-

di�erentiable module for estimating a homography between I8→ 9 and I 9 . To compute

I8→ 9 we form a homography H\ from the Siamese network output \ by using Eqn.

4.6, which is used to warp a source image for camera 8 into the perspective of its

corresponding target image for camera 9 .

Therefore, given our initial training from Chapter 4, I8→ 9 and I 9 are aligned

su�ciently for our re�nement step to perform accurately, and additionally con-

catenation of these images for input into a convolutional network for optical �ow

is sensible. For simplicity we chose to use a pre-trained optical �ow network

(FlowNet2 [89]) to estimate the �ow between I 9 and I8→ 9 , but it is worth noting

that other methods for feature matching could be employed. We compute pixel
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destination points P3 from a regular grid of source points PB as:

P3 = PB +$� (I8→ 9 , I 9 ), (5.1)

where $� denotes inference with FlowNet2 [89].

Optical Flow Performance In Figs. 5.3, 5.4 and 5.5 we show the performance

of FlowNet2 [89] on the output of our Siamese network. On the left column we

illustrate the input (I8→ 9 , I 9 ) and on the right column we show the optical �ow

results for the road plane region. We note that the �ow in this region is largely

coherent. In Fig. 5.3 the �nal three examples show potential issues where the optical

�ow is focused on regions with dynamic shadows. Shadows from moving vehicles

will not be correctly cross-projected and represents a limitation in our modelling.

However, our Siamese network is still able to produce close alignments in the

presence of such noise and we suggest that automatic identi�cation of features

such as dynamic shadows could be a useful side-a�ect of our method. Additionally,

we note that we generally see more misalignment in the background road plane,

which is re�ected in many of the optical �ow visualisations.

5.1.2 Semantic Segmentation

Many parts of road scenes could contain planar surfaces, for example, sides of

structures, billboards, and sides of trucks. For dynamic planes such as sides of

trucks, our homography model assumes a static scene between images in a pair,

therefore we do not want to consider these points. More generally, as demonstrated

in Chapter 4, the road plane itself is the consistent geometric feature with which we

want our deep learning model to generalise relative pose, and as such, we do not

propose to use other planar surfaces to form training signals. More importantly, we

aim to re�ne H\ , which is relevant for the road plane parameterisation utilised in

Chapter 4 (see Fig. 4.2). Building on our thesis from Chapter 3 of utilising semantics

for scene understanding, we explicitly isolate the road plane by �ltering non-road

pixels using a pre-trained semantic segmentation network [285]:

P(A>03)B =<0B:A>03 (PB), P(A>03)
3

=<0B:A>03 (P3) (5.2)

where<0B:A>03 denotes �ltering out non-road pixels. By doing so, we have now

isolated estimated point correspondences between I 9 and I8→ 9 for the road plane,

and our goal is to use these to compute a transformation between these images (i.e.
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Predicted Composition Segmented Optical Flow

Figure 5.3: Qualitative performance of pre-trained optical �ow and segmentation networks.

Left: Composition of target image with perspective-warped source image. Right: Optical

�ow result of stacked target and perspective-warped source images, segmented for road

pixels. Note that in the last three examples dynamic shadows are misaligned due to our

homographic model being limited to static features on the road surface, which causes

optical �ow visuals to focus mostly on these features. Bottom: Optical �ow key.
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Predicted Composition Segmented Optical Flow

Figure 5.4: Qualitative performance of pre-trained optical �ow and segmentation networks.

Left: Composition of target image with perspective-warped source image. Right: Optical

�ow result of stacked target and perspective-warped source images, segmented for road

pixels. Bottom: Optical �ow key.
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Predicted Composition Segmented Optical Flow

Figure 5.5: Qualitative performance of pre-trained optical �ow and segmentation networks.

Left: Composition of target image with perspective-warped source image. Right: Optical

�ow result of stacked target and perspective-warped source images, segmented for road

pixels. Bottom: Optical �ow key.
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a homography in this case), which can be used to update H\ into a more accurate

transformation.

Road Segmentation Performance In Figs. 5.3, 5.4 and 5.5, in addition to optical

�ow, we illustrate the performance of the pre-trained segmentation network for our

scenes. These were computed o�ine for the source and target images and combined

with the warped source to obtain the visualised results. The road segmentation is

of a high quality, though we occasionally observe some errors. For example, for

the second example in Fig. 5.3 we see much of the train tracks have been classed as

road, and the last example show a grassy area also mis-classi�ed. However, these

regions are generally still mostly planar and hence can still be harnessed positively

by our method.

5.1.3 Homography Fi�ing with RANSAC

Optical �ow with road plane semantic segmentation allows for estimating dense

correspondences across the whole road plane region. Our goal is to use these

correspondences to improve the accuracy of the current parameter estimates by

�tting a homography. However, these correspondences may be noisy or may include

regions that were incorrectly segmented as belonging to the ground plane. For this

reason, we require a robust means to �t a homography to the road plane pixelwise

correspondences estimated by optical �ow. For this purpose we use RANSAC [61].

A homographic transformation between source points (G ′
:
,~
′

:
) of P(A>03)B and

destination points (G: ,~:) of P(A>03)
3

in homogeneous coordinates can be written as

[175]:

B:


G
′

:

~
′

:

1

 ∼ H

G:
~:
1

 =

ℎ11 ℎ12 ℎ13
ℎ21 ℎ22 ℎ23
ℎ31 ℎ32 ℎ33



G:
~:
1

 (5.3)

where : denotes each point correspondence and B: are scale factors. We use an

OpenCV [175] RANSAC [61] implementation to robustly �t a homographic model

to the corresponding road plane points in a pair of coarsely aligned training or test

images. Speci�cally, this implementation functions in two steps. Firstly, it estimates

an initial homography H where a simple least-squares method is used to minimise

the reprojection error in homogeneous coordinates as:∑
:

(
G
′

:
− ℎ11G: +ℎ12~: +ℎ13
ℎ31G: +ℎ32~: +ℎ33

)
2

+
(
~
′

:
− ℎ21G: +ℎ22~: +ℎ23
ℎ31G: +ℎ32~: +ℎ33

)
2

(5.4)
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However, as we have outliers present within our point correspondences we use

RANSAC [61] to robustly �t a homography to our set of points : as:

H$�,'�#(�� = '�#(�� (P(A>03)B ,P(A>03)
3

). (5.5)

and the reprojection error in Eqn. (5.4) is used within each randomly sampled

subset of correspondences in a standard least-squares routine. Secondly, this ho-

mography is re�ned with only the chosen inliers from RANSAC [61] using the

Levenberg-Marquardt method [116, 143] to further decrease the reprojection error

of H$�,'�#(�� to �nally form H$� [175].

We represent the homography computed from the estimated ground-relative

pose via Eqns. (4.3), (4.5) and (4.6) (and as illustrated in Fig. 5.1) by H\ . We update

the homography H\ computed from our network output for ground-relative pose

as:

H($� )
8→ 9

= H\H$� . (5.6)

While the homography itself could be useful for tasks such as mosaicing or image

stitching [214], having obtained a re�ned homography H($� )
8→ 9

, we ask the question

of whether we can decompose it back into camera-relative pose for the purpose of

training our Siamese network and as input to transformation synchronisation (see

Section 4.3) for visual odometry.

5.2 Homographic Decomposition

Our re�ned homography H($� )
8→ 9

is a transformation which encapsulates information

relevant to the relative motion between two cameras overlooking a planar surface

[142]. In this section we explain how we decompose this homography into camera-

relative pose and subsequently use it.

5.2.1 Choosing Between Four Solutions

While it would be possible to compute a loss between H\ and H($� )
8→ 9

in order to

provide a self-supervision signal to the Siamese network, our experience is that it

is ine�ective. Speci�cally, we found that the loss function given by:

LH = ‖H\ −H($� )8→ 9
‖2 (5.7)

failed to converge while training. As the scale of each homography is arbitrary, we

suspect that this could be part of the reason of why training with this loss function
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fails to consistently reduce the loss. Instead, we �nd that we achieve improved

performance by decomposing H($� )
8→ 9

into ground-relative pose parameters that can

be used to directly supervise the Siamese network output.

In general, any homography can be decomposed into four possible plane-relative

poses via a closed form solution using the analytical method of Malis & Vargas

[142] as:

H($� )
8→ 9
→ {R($� )

8→ 9
, t($� )
8→ 9

,n}: where : = 0,1,2,3 (5.8)

where we have camera-relative rotation and translation R8→ 9 and t8→ 9 respectively,

plane normals n relevant for the homography H($� )
8→ 9

, and : which denotes the

possible solutions. In practice, we obtain these four possible solutions using the

OpenCV [43] implementation of this procedure [142].

We need to use knowledge about our problem to discount three of these four

possibilities. We know that our cameras in the KITTI dataset are always travelling

approximately perpendicular to the road surface. Therefore, the normal nwe require

should be close to (0,1,0)) . We �nd that generally two of these normals tend to

be negative for the y-component, a physical impossibility. To choose between the

remaining two normals we simply select the normal closest to (0,1,0)) , and take

the associated camera-relative poses as our solution.

5.2.2 Scale Ambiguity

Another challenge with this method is that relative translations are only de�ned

up to an unknown scale, and so the scale for the chosen relative translation in

Eqn. 5.8 is ambiguous. A problem we highlighted with the appearance loss method

outlined in Chapter 4 is that of scale ambiguity (see Section 4.1.4). In that approach

we simply introduced soft priors to let the Siamese network learn the scaling such

that the camera height matched the known calibration on average. In contrast,

our method in this case is to enforce the correct scaling from the known camera

calibration in the KITTI dataset as a hard constraint. Speci�cally, we know that

the cameras in KITTI are 1.65 metres from the ground, discounting the e�ects

of vehicle motion. Therefore, we simply enforce this constraint by multiplying

the camera-relative translation by 1.65 (the closed form solution [142] handles

unknown scale by normalising the height of the camera above the plane). Malis &

Vargas [142] provide the analytical method for decomposing a homography into the

possible relative translation, rotation and planar normals. In their work, the relative

translation between both cameras is normalised with respect to the distance from

the desired camera to the object plane. Note that in our re�nement post-training
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stage we continue the soft enforcement of priors as in Section 4.2.1 but only for the

height for camera 8 to help constrain our solution to the correct scale.

5.3 Model-fi�ing in-the-loop with HEM-Loss
We take inspiration from Kolotourous et al. [105] who use model-�tting in the

training loop to reconstruct human pose and shape. In their work they recognise

the bene�t of using an approximate estimate from the deep network as a good

initialisation for �tting a parametric body model to a collection of data points, and

additionally that the resulting �tted solution, provides a good training signal to the

network.

This type of thinking where we can combine more classical model �tting paradigms

with deep learning approaches is part of the underlying thesis for our research and

works well with our focus on semantic and geometric scene understanding. We

�nd that without semantically isolating the road plane, model-�tting is much more

challenging and lacking in performance. As far as we know, we are the �rst to

apply this model-�tting in-the-loop idea to the application of motion estimation

(see Sections 2.2.1, 2.2.2 and 2.2.7 for related work).

The application of this idea to our problem is implemented as follows and illus-

trated in Figs. 5.1 and 5.2. We treat the regressed Siamese network parameters from

Chapter 4 as a coarse estimate which we use for warping one input image into the

perspective of the other. These two images are stacked and fed into the optical

�ow network in order to estimate �ne-scale disparities. Semantic segmentation and

model-�tting is used as described in Section 5.1 to compute a re�ned homography

between network input images. Subsequently, we decompose this homography

into camera-relative pose using the method in Section 5.2.

This re�ned set of camera-relative pose parameters R($� )
8→ 9

, t($� )
8→ 9

are used as

pseudo-labels to supervise those camera-relative poses from the Siamese network

R\,8→ 9 , t\,8→ 9 (see Eqn. 4.4) to form the HEM-loss as:

!��" = ‖R($� )
8→ 9

R)
\,8→ 9
− I‖2 + ‖t($� )8→ 9

− t\,8→ 9 ‖2 (5.9)

Crucially, we note that in contrast to our appearance loss given in Chapter 4, we are

not back propagating gradients through our homography estimation module. We

are using our model-�tting approach with pre-trained optical �ow and semantic seg-

mentation networks to re�ne our Siamese network homography, and decomposing

that to generate more accurate relative poses to supervise those poses previously

output from our Siamese network.
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This is a non-di�erentiable approach. As such, we can use the camera-relative

pose labels themselves not only for supervision, but at inference time, to help boost

accuracy. In our case, we use these relative poses as input to the transformation

synchronisation overviewed in Section 4.3 for visual odometry evaluation. It is

worth emphasising the bene�t of this approach of utilising a re�nement module

such as this at inference time as it is uncommonly found in the literature. Often

neural network pipelines fully rely on the generalisation power of the network,

which is largely limited by data quality and quantity. Hence, we note the bene�t our

non-di�erentiable approach for avoiding total reliance on network generalisation,

and boosting experimental performance.

5.4 Experiments
We evaluate our method quantitatively and qualitatively, and we compare the

perceptual loss method outlined in Chapter 4 with our homographic model-�tting

approach.

5.4.1 Experimental Details
As outlined in Fig. 5.1, we train a geometric matching Siamese network in two

sequential stages. Firstly, we pre-train using the perceptual loss outlined in Section

4.2 and refer to that model in results as PLoss. Secondly, we re�ne the PLoss model

with the Homography Estimation Module (HEM) loss described in Section 5.3 which

we refer to as HEM-Train. Thirdly, we apply the HEM to the PLoss model at test

time (HEM-Test). Lastly, we also evaluate by applying the HEM to the HEM-Train

model at test time (HEM-Train+Test).

Similarly to Chapter 4, we use the transformation syncronisation method by

Arrigoni et al. [6] (see Section 4.3) to compute absolute poses from the camera-

relative poses derived from our Siamese network output estimation. Speci�cally, we

compute camera-relative poses from Eqn. (4.4) to form the matrix X in Eqn. (4.11),

which is then used to compute absolute poses with the optimisation process outlined

in Section 4.3. As previously described in Section 4.4, these absolute poses are used

to evaluate quantitatively and to generate visual odometry trajectory visualisations.

Again, as our proposed method does not rely on any direct supervision we focus

our comparison on leading methods which are fully self-supervised and only rely

on a single camera (see Section 2.2.2).

In Fig. 5.6 we show the rotation label loss for the training and validation datasets

to illustrate that our model converged. It is clear that most of the gain occurs over
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Figure 5.6: Rotation label loss versus training epoch for training and validation data.

the �rst 5 epochs and hence we stopped training at 30 epochs, where generalisation

error diverges.

5.4.2 �antitative Results

In Table 5.1 we provide visual odometry scores on sequences 09 and 10 of the KITTI

benchmark [66], expanding on Tab. 4.1 for our initial stage of training. The �rst

three rows for our results are the same results from Tab. 4.1 which we use here as a

baseline. As described in Section 4.4.2, we use the KITTI benchmark translation (%),

rotation error (deg/m) and absolute trajectory RMSE (m) for metrics (as in LTMVO

[287]).

We use the same table split with di�ering levels of complexity as described

previously in Section 4.4.2. Leading self-supervised monocular methods tend to

evaluate quantitatively by using sequences 9 and 10 of the KITTI visual odometry

dataset [68, 276, 287]. Most of these values for comparing to other methods are

referenced from the LTMVO results [287]. Note that while we do use pre-trained

networks for optical �ow [89] and road plane semantic segmentation [285], these

are only for inference and are not trained.

Results indicate that training with our Homography Estimation Module can

signi�cantly improve performance of our Siamese network from Chapter 4. In

particular, we note that �ne-tuning with our HEM (HEM-Train) provides a state-

of-the-art score for ATE on sequence 10. However, performance of HEM-Train is

comparable to that for HEM-Test and HEM-Train+Test. Given that inference time

will be faster without the additional computation of the HEM, we suggest utilising
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Seq. 9 Seq. 10

Method C4AA A4AA ATE C4AA A4AA ATE

LTMVO [287] 3 3 3 3 3 3.49 0.010 11.30 5.81 0.018 11.80

TBG [276] 3 3 7 3 3 6.93 0.004 - 4.66 0.006 -

CC [187] 3 3 3 3 7 6.92 0.018 29.0 7.97 0.031 13.77

GeoNet [257] 3 3 3 3 7 28.72 0.098 158.4 23.90 0.090 43.04

SfM [282] 3 3 3 3 7 8.28 0.031 24.31 12.20 0.030 20.87

SC-SfM [13] 3 3 7 7 7 11.20 0.034 - 10.10 0.050 -

Mono2 [68] 3 3 7 7 7 11.47 0.032 55.47 7.73 0.034 20.46

Ours (PLoss �xed priors) 7 7 7 7 7 10.42 0.033 29.45 9.55 0.048 13.73

Ours (PLoss mono2-net) 7 7 7 7 7 16.69 0.058 58.88 16.72 0.071 32.0

Ours (PLoss) 7 7 7 7 7 11.30 0.043 28.68 11.66 0.060 16.48

Ours (HEM-Test) 7 3 7 7 7 6.13 0.017 15.73 7.38 0.033 11.80

Ours (HEM-Train) 7 7 7 7 3 7.14 0.023 16.27 8.58 0.031 11.72

Ours (HEM-Train+Test) 7 3 7 7 3 6.53 0.018 19.65 7.19 0.037 12.77

Table 5.1: Extending Tab. 4.1 visual odometry results on KITTI for our perceptual loss

(PLoss), HEM-Loss post-training and HEM-Loss post-training with test-time re�nement.

Metrics C4AA (%), A4AA (deg/m) and ATE are translation, rotation error over a set of subse-

quences, and the absolute trajectory RMSE (m) respectively.

the HEM-Train model for applications where inference speed is of signi�cance.

Nevertheless, our performance is re�ned with HEM application at inference time

on PLoss (HEM-Test), which helps to remove reliance on the generalisation power

of the Siamese network.

The competing methods always involve training an additional network for a

dense map (depth [13, 282, 287] and optical �ow [187, 257, 276]). While they are able

to obtain similar performance without the need of a scene assumption, their reliance

on estimating thousands of additional parameters can make them harder to train.

Using our ground-relative modelling and model-�tting in-the-loop methods, our

results are highly competitive with leading self-supervised approaches (see Section

2.2.2), while remaining �exible and unconstrained, as we discussed in Section 4.4.2.
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Pseudo ground truth PLoss HEM-Train+Test

Figure 5.7: KITTI qualitative results, best viewed zoomed in for alignment detail. Im-

ages are a composition of one Siamese network input with its warped counterpart input.

Left: Ground truth where we assume �xed prior values for ground plane cross-projection.

Middle: Our full ground-relative pose result with perceptual loss pre-training. Right: Our

Homography Estimation Module (HEM) applied at training and test time.

5.4.3 �alitative Results

Qualitative results are shown in Fig. 5.7. As described in Section 4.4, we use pseudo

ground truth. In the �rst example the ground truth performs poorly (perhaps due

to the unknown roll relative to the ground) and in our PLoss version, features

such as road lines (green) align but other features misalign globally (red), though

our HEM method signi�cantly corrects these errors. Examples display increasing

re�nement, particularly in the penultimate example where though our PLoss has

found a suitable rotation and failed with estimating an accurate translation, our

HEM is able to correctly recover an accurate transformation. The last example

shows a fail case where our HEM method is unable to achieve alignment (see

85



Chapter 5 Geometry and Pose Estimation with Homographic Model-fi�ing

-200 -100 0 100 200 300 400

x (m)

0

100

200

300

400

500

z 
(m

)

Ground Truth
PLoss
HEM-Train
HEM-Train+Test

0 100 200 300 400 500 600

x (m)

-200

-150

-100

-50

0

50

100

150

200

250

300

z 
(m

)

Ground Truth
PLoss
HEM-Train
HEM-Train+Test

-200 -100 0 100 200 300 400

x (m)

-200

-100

0

100

200

300

z 
(m

)

Ground Truth
SfMLearner
Monodepth2
LTMVO
CC
Ours HEM-Train+Test

-100 -50 0 50 100 150 200 250 300 350

x (m)

-150

-100

-50

0

50

100

150

z 
(m

)

Ground Truth
SfMLearner
Monodepth2
LTMVO
CC
Ours HEM-Train+Test

Figure 5.8: KITTI visual odometry trajectories for seqs. 9, 10, 13 and 15 respectively. For

seq. 9 and 10 we compare between our training methods: pre-trained perceptual loss alone

(PLoss), and post-training with our HEM at training and test time.

manhole cover), possibly due to excessive glare in the road plane, resulting in high

translational error. In summary, the PLoss model performs visually very well but

is inclined to misaligning features in one direction, which is likely due to cases

where it converges to a local minimum. The HEM re�nement is able to correct

these errors but can be prone to illumination issues.

5.4.4 Trajectories and Path Length

In Fig. 5.8 and 5.9 we show predictions for trajectories on sequences 09 and 10

and also four trajectories on the benchmark test set. For the benchmark sequences

we compare with leading self-supervised methods. While LTMVO [287] generally

achieves the best trajectories, we can see that our method remains competitive,
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Figure 5.9: KITTI visual odometry trajectories for seq. 11 and 14 respectively. We compare

with leading self-supervised methods with applying our HEM at training and test time

(HEM-Train+Test).

again noting the e�ectiveness particularly on Sequence 14 which contains imagery

very di�erent to the rest of the test sequences. For sequences 09 and 10 we observe

signi�cant improvement in visual trajectory from training only with perceptual

loss to using the homography estimation and decomposition approach. Similarly, in

Fig. 5.9 comparing with Fig. 4.10 we observe signi�cant improvement in accuracy

on sequences 11 and 14 with our HEM applied at training and test time.

For sequences 13 and 15 perceptual loss performed badly and we only show our

improved result with competing methods. We note that for sequence 15 HEM-

Train+Test we achieve visually comparable results to competing methods. Similarly,

for sequence 13 we found an overall trajectory using appearance loss alone failed to

achieve a comparable result, but with our HEM-Train+Test method we are able to
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Figure 5.10: Translation and rotation errors by path length on sequences 09 and 10. We

compare errors with pre-training with perceptual loss (PLoss), post-training with our

homography estimation module (HEM-Train) and additionally applied at test-time (HEM-

Train+Test).

recover error and improve results to be visually comparable to competing methods

on this sequence.

In Fig. 5.10 we show how translation and rotation errors vary with trajectory path

length on sequences 09 and 10 and compare with our previous results from Fig. 4.12.

Generally errors are re�ned with each method but interestingly we observe that

the rotation error on sequence 10 is higher after applying the HEM at test-time.
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5.5 Conclusions
In this chapter we have illustrated a method of combining geometric and semantic

scene understanding with classical model-�tting to re�ne the accuracy of a geo-

metric neural network for relative pose estimation at both training and inference

time. In Section 2.2.7 we discussed work that explicitly leverages traditional model-

�tting within deep pipelines. We observed a lack of literature applying this idea to

relative pose estimation and in this chapter we show it be useful in bringing our

approximate solution from Chapter 4 to be highly competitive with the leading

self-supervised relative pose estimators discussed in Section 2.2.2.

Camera-to-camera ground-relative homographies can be re�ned by ro-
bustly �tting a homographic model to correspondences: In Section 5.1.1 we

show that correspondences can be computed between image pairs which are already

nearly aligned. The exact method which is used to compute these correspondences

could vary, but we chose to use an optical �ow network for its accuracy and fast-

inference. These correspondences contain information which is directly helpful to

our goal of improving relative pose accuracy. We have shown that classical homo-

grapic model-�tting [175] to hundreds of these correspondences with RANSAC [61]

provides signi�cant performance boost to our self-supervised model from Chapter

4. Furthermore, with this boost in accuracy, our method is highly competitive

with state-of-the-art [13, 68, 187, 257, 276, 282, 287] end-to-end self-supervised

monocular visual odometry approaches (see Section 2.2.2), with a leading score in

ATE on Sequence 10 (see Tab. 5.1).

Pseudo-labels are useful for improving accuracy at both training or in-
ference time: Our re�ned camera-relative poses from the HEM are more accurate

than those obtainable from the appearance loss method of Chapter 4 alone, and

bring our performance to be comparable to state-of-the-art self-supervised deep

visual odometry approaches (see Section 2.2.2). The utility of these poses are two-

fold: 1. we use them to train the network further to increase its generalisation

performance. 2. they are useful in themselves at inference time, because they can

be input directly into the transformation syncronisation routine (see Section 4.3) for

signi�cant performance boost to our original model from Chapter 4 (see Tab. 5.1).

This inference time application allows us to be less restricted to generalisation

errors inherent with training on biased datasets with neural networks [87].

Semantic scene understanding can be combined with ground-relative
pose estimation in road scenes via non-road plane scene �ltering: The cor-

respondences we use to �t a homographic model to are only relevant for those scene

points which lie on the road plane. By leveraging semantic scene understanding in

the form of a state-of-the-art semantic segmentation network [285], we can �lter
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noisy correspondences to make model-�tting a viable tool within deep relative pose

estimation.

We �nd that semantic scene understanding can be helpful within the context of

geometric scene understanding as a way of �ltering out parts of the scene which

do not apply to the geometric regularity we are attempting to utilise and capture

within the learnt features of the network. Furthermore, we note that applying

thoroughly understood model-�tting methods such as RANSAC [61] and state-of-

the-art models in optical �ow [89] and semantic segmentation [285] can have a

place within deep learning pipelines for tasks such as visual odometry.

Homographic decomposition can be used within a deep pipeline to ob-
tain camera poses for visual odometry: In Chapter 4 we utilise a ground-relative

parameterisation of two cameras to form a homography between both cameras

for the purposes of forming a self-supervision signal. In Section 2.2.4 we noted a

lack of literature explicitly linking relative pose estimation with homographies in a

deep pipeline, particularly within the road scene domain. Yet within planar scenes

such as these, homographies are highly related with camera motion [75, 142, 181].

In Section 2.2.4 we go further and noted a particular gap where there is a lack of

work exploring the use of the method by Malis & Vargas [142], an approach for

analytically decomposing a homography to camera-relative motion, within deep

pipelines. In Chapter 5 we show how we can utilise this method in such a pipeline

by decomposing our re�ned homographies back into relative pose. While this de-

composition allows us to achieve highly competitive visual odometry performance

with leading self-supervised methods, we suggest that homography decomposi-

tion could be further researched within current state-of-the-art deep homography

estimation literature (see Section 2.2.4) as a potential bene�t to relative pose or

homography estimation applications and to help further bridge these two �elds of

research.
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Road scene images are rich with semantic and geometric information which the

human mind models and understands intuitively. It seems likely that our perception

of the world and how we move through it is informed by our basic understanding of

the structure of scenes. In this thesis we have sought to move away from black-box

deep learning methodology and to better inform networks with what we already

know about the scene contents. Speci�cally we have chosen to focus research on

harnessing two sources of structure: semantics and geometry.

We emphasise that other self-supervised monocular visual-odometry techniques

on the KITTI dataset use a combination of two networks: a dense depth or optical

�ow estimator, and a 6 DoF camera-relative pose estimator. Firstly, this attempts

to implicitly learn the geometry of entire complex 3D scenes simultaneously with

relative-pose, training for thousands of parameters, which is a very challenging

proposition. Secondly, most works estimate only 6 DoF relative pose and we show

that by re-framing the output into a geometry aware context we obtain a more

generally powerful representation of relative pose.

6.1 Summary of contributions

In Chapter 3 we focused on exploiting structure within class hierarchies for distin-

guishing between minor and serious errors for the task of semantic segmentation.

In contrast to segmenting without prior knowledge, we discovered that it is promis-

ing to train a network using a pre-formulated hierarchy of classes in a way which

boosts performance or reduces the amount of training required to achieve a desired

level of performance. Speci�cally we provided a novel implementation for a hierar-

chical loss which we evaluated on two very di�erent types of dataset - a facial [112,

205] and road scene [169] dataset. For both datsets we found an improvement in

segmentation accuracy overall, while requiring less training epochs.

In Section 2.1.5 we discussed literature around leveraging hierarchical knowledge

for scene understanding, particularly with respect to deep pipelines, and in Section

2.1.4 we discussed literature around semantic segmentation. We observed a lack of

work where class hierarchies are used to construct training losses for di�erentiating

between the severity of the class errors in the training process for road scene
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semantic segmentation [3, 45, 58, 91, 164, 253]. Ideally we would implement leading

architectures for semantic segmentation (see Section 2.1.4) to place our work into a

greater context as, for example, achieved by Koguciuk et al. [103] for their perceptual

loss applied to deep homography estimation. However, as the architectures for

leading semantic segmentation approaches vary widely from transformers [9, 35]

to CNN [16, 29, 64], we chose to keep the core architecture simple with a popular

U-Net [191] such that we could focus purely on comparison between training with

a vanilla cross-entropy loss and our hierarchical loss.

In Chapter 4 we explored how we can leverage geometric understanding of

road scenes into training a Siamese network for estimating motion. The obvious

geometry of road scenes is that vehicles move approximately around a planar

�eld, at least locally where two images capture the same section of road, and it is

within this setting we explored relative pose estimation. We provide a novel 9D

parameterisation of network output which is physically interpretable and rooted

within a locally planar model of the scene.

In Section 2.2.2 we identi�ed leading approaches for end-to-end self-supervised

relative pose estimation on the KITTI benchmark [66]. We observed that these

approaches generally have three limitations: 1. reliance on training for tens of

thousands of parameters with dense depth, optical �ow or additional networks

in conjunction with a pose network and 2. limiting relative pose magnitude by

concatenating network input, and 3. limiting relative pose to camera-to-camera

translation and rotation.

We discover that it is possible to entirely replace dense depth estimation which

other leading self-supervised approaches take [187, 276, 287], with our ground-

relative parameterisation, to provide a self-supervision signal in the form of an

appearance loss. As a result we greatly reduce the number of parameters we need

to learn towards solving for relative pose. Speci�cally, we discover that perceptual

loss [94] is e�ective in self-supervising a deep network to an approximate solution

for the task of visual odometry. Furthermore, we �nd that the Siamese architecture

proposed by Rocco et al. [190] to be particularly e�ective for our task of relative

pose estimation.

Leading self-supervised visual odometry methods for road scenes phrase relative

pose with respect to 6D camera-to-camera pose [13, 68, 187, 257, 276, 282, 287].

Instead, we �nd that by phrasing relative pose of two cameras with respect to

our novel 9D ground-relative network output, we may include the road geometry

within our estimation process, e�ectively �tting a series of planar patches to visual

odometry sequences. This allows for clear bene�ts: 1. a more general and hence

powerful representation of pose, 2. less restricted relative pose versus leading
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methods which rely on sequential image framing [276], and 3. self-supervision via

ground-plane homographic cross-projection.

In Section 2.2.4 we discussed leading deep homography estimation methods

and observed a lack of literature combining homographies and relative camera

pose with respect to translation and rotation tensors. In Chapter 4 we contribute a

relative pose estimation approach where camera-to-camera homographies relating

to the road plane geometry can be computed in conjunction with camera pose.

While we use these homographies to form a self-supervision signal, they could be

utilised for applications such as orthomosaicing [214].

We have the basis of a method where we can estimate relative poses from

sequences of images through training a single deep pose network without using

any direct supervision with annotations, and where the local planarity of the road

is leveraged and modeled within our parameterisation and training approach. We

obtain competitive performance on the KITTI road scene dataset [66], but found

that our model was liable to errors due to illumination issues, similar features

forcing training into local minima, and issues with strongly non-planar regions

(see Section 4.4).

In Chapter 5, in order to address some of these limitations we further utilise our

homographic integration and additionally combine semantic knowledge into the

learning pipeline while still leveraging the approximate performance of our model

from Chapter 4. In Section 2.2.7 we discussed explicit approaches of using traditional

model-�tting techniques within a deep learning pipeline. We recognised that we

could �ne-tune our performance by taking a model-�tting in-the-loop approach

which so far seems not to have been applied to motion estimation tasks [15, 105].

Leading self-supervised relative pose estimation literature generally rely wholly

on the models �tted from their deep pipelines [13, 187, 257, 276, 287], and we

recognised that traditional model-�tting could be applied at inference time to tackle

the limitation caused by the bias present when utilising neural networks [87].

We combine semantics and geometric understanding with the more classical

methodology of model-�tting to a collection of points. Speci�cally, we discovered

that by isolating the planar geometry of the road plane with a semantic segmenta-

tion network, we can re�ne the homography between an image-pair by �tting a

homographic model to a collection of road plane correspondences generated by an

optical �ow estimator (see Section 5.1.1). While the pre-trained semantic segmenta-

tion [285] and optical �ow [89] networks are highly competitive implementations,

they still produce error and hence we discovered that using RANSAC [61] as our

model-�tting routine to be particularly e�ective.

Subsequently, we discovered that by using knowledge of the motion geometry it

is possible to decompose the re�ned homography into a camera-relative pose for
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the purposes of further training (see Section 5.2). To the best of our knowledge we

are the �rst to apply model-�tting in-the-loop (see Section 2.2.7) and the analytical

decomposition of homographies by Malis & Vargas [142] (see Section 2.2.4) to

the task of monocular self-supervised relative pose. Moreover, we �nd that our

model-�tting method has the added bene�t of boosting performance at inference

time for tasks which require camera-relative pose.

Neural networks are only as good as the data they are trained on, and are prone to

generalisation error and dataset bias issues. Therefore, we emphasise and utilise the

fact that our pseudo-label generation method we propose in Chapter 5 has this dual-

utility. We improve signi�cantly upon our result in Chapter 4 (see Section 5.4), and

achieve competitive visual odometry results versus other leading self-supervised

monocular methods (see Section 2.2.2) on the KITTI dataset [66].

6.2 Overarching Conclusions
We make the following overarching conclusions from our work on integrating

hierarchical semantics and scene geometric relative pose:

• Di�erentiating between classes in a hierarchical structure helps with
training semantic segmentation networks: In Chapter 3 we show that se-

mantic segmentation performance is improved by leveraging the hierarchical

structure of labels for directly supervised training (see Tab. 3.1). Furthermore,

training convergence is improved as fewer epochs are required to achieve the

same level of performance compared to a vanilla training loss where errors

between all classes are treated equally (see Section 3.4.2). In Section 2.1.5 we

discussed literature utilising hierarchical approaches [25, 173, 286] within

deep learning in general and in Section 2.1.4 we reviewed state-of-the-art

semantic segmentation approaches [9, 33, 35, 117, 237, 279], particularly

for road scene evaluation [16, 29, 64]. While we note that replicating these

methods may help to put our hierarchical loss into a greater context, our

approach is speci�cally to show improvement in performance between a

vanilla loss and our hierarchical loss, which is applicable to any semantic

segmentation network in general.

• Choice of network output parameterisation matters for end-to-end
self-supervised relative pose estimation: Road scenes are highly regular,

however, the state-of-the-art for self-supervised pipelines for visual odometry

[13, 68, 187, 257, 276, 287] attempt to explicitly model the depth of every

pixel with a separate neural network. Dijk et al. [51] show that common road
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scene depth networks utilise the vertical image position of objects, rather

than their overall size. Moreover, they show that generalised depth accuracy

can depend on the presence of accompanying features for objects (e.g. shad-

ows). By modelling the regularity of the road plane with our ground-relative

parameterisation, we can keep network output parameter numbers low and

avoid potential errors caused by additional networks, simplify the training

process. Furthermore, keeping a geometric parameterisation general is more

powerful from an application perspective, as we can extract from it multiple

useful transformations such as camera-relative poses or homographies.

• Domainknowledge is useful for decomposinghomographies between
cameras: State-of-the-art deep relative pose methods [13, 250, 276, 282, 287]

for road scenes fail to leverage homographies (see Section 2.2.2) while leading

deep homography estimation methods [22, 103, 258, 269] avoid linking ho-

mographies to relative camera pose altogether (see Section 2.2.4). In our case,

knowledge of our planar road motion aided an analytical method [142] for

decomposing homographies into a camera-relative pose useful for training

our network and boosting performance at inference. However, decomposing

a geometric transformation into camera poses could be more widely useful in

other applications or pipelines where we are transforming between camera

poses and geometric mappings.

• Choice of architecture appears to matter in geometric problems: In

Tab. 4.1 we show that using a geometric matching Siamese network [190]

helped signi�cantly versus a simpler more generic architecture [68] which

concatenates a pair of input images. State-of-the-art deep homography esti-

mation approaches (see Section 2.2.4) use this Siamese style of architecture

[22, 272], which is not leveraged within the self-supervised relative pose

literature for the main focus of visual odometry evaluation (see Section 2.2.2).

As discussed in Section 2.2.5, we suggest that input concatenation should be

avoided in favour of Siamese networks where each image is fed separately

through a feature extractor. Moreover, this allows for more �exibility towards

an arbitrary relative pose between the input image pair.

• Perceptual loss can be used for self-supervised relative pose estima-
tion: In Section 2.2.6 we discussed literature around using perceptual loss

for training neural networks. While a state-of-the-art accuracy has been

achieved with deep homography estimation by simply leveraging a percep-

tual loss [103], we �nd a lack of literature leveraging a perceptual loss with a

focus on estimating relative pose. We found that learning from a perceptual
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loss (as popularised by Johnson et al. [94]) allows for competitive visual

odometry versus other state-of-the-art end-to-end self-supervised relative

pose estimation approaches (see Section 2.2.2).

• Model-�tting is helpful at both training (“in-the-loop”) and inference
time: In Section 2.2.7 we discussed literature explicitly leveraging traditional

model-�tting within the training loop. As far as we know, methods in the lit-

erature for the tasks in this thesis of semantic segmentation (see Section 2.1.4)

and self-supervised relative pose estimation (see Section 2.2.2) do not utilise

model-�tting in-the-loop. Our results in Tab. 5.1 indicate that model-�tting

at training and inference time can be a useful tool. Self-supervised methods

rarely apply model-�tting at inference time, and inherent generalisation error

from deep models limits accuracy of solutions. We �nd it helpful to re�ne

solutions beyond these limitations by applying model-�tting at inference

time. In particular, we note that this can be made possible by letting your

model-�tting process compute pseudo-labels, such that they can be used for

both directly supervised training and as a re�ned solution.

• Semantic scene understanding is useful for �ltering out scene con-
tents which do not conform to your geometric model: In Section 2.1.4

and 2.2.2 we discussed literature including the leading work around the tasks

of semantic segmentation and self-supervised pose estimation respectively.

While certain competing self-supervised relative pose methods utilise motion

segmentation [13, 187], this involves training for a dense map (which we ex-

plicitly avoid), and additionally they do not leverage semantic segmentation

explicitly. In our case, �tting a homographic model to scene correspondences

between planar regions aided the model-�tting solution (see Chapter 5). Gen-

erally, we conclude that semantic scene understanding becomes particularly

useful in combination with geometric scene understanding when it is used to

�lter out scene points which do not readily apply to your geometric regularity.

6.3 Critical Analysis

In this section we provide critique relating to weaknesses and limitations in our

work. We split our analysis by chapter but we note that an overarching limitation

is that we do not test for speed as we do not code for a fast implementation.
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6.3.1 Chapter 3:

Practical Issues We would ideally compare our hierarchical method against

other methods in the literature but this would require reproducing many methods

where often code was unavailable and thus we decided to keep experiments limited

to with and without our hierarchical loss using a popular architecture. Our primary

aim at this stage was not to produce competitive performance but simply to show a

bene�t from leveraging a class hierarchy within labels for supervising on the task

of semantic segmentation.

A further practical limitation is that the class hierarchy which we utilised for

the Vistas dataset is somewhat shallow. While ideally we would have some deeper

branches, we felt that keeping a balanced tree was sensible and an intuitive hierarchy

was already presented from the publication by Neuhold et al. [169] which introduced

the Mapillary Vistas dataset [169].

Theoretical Weaknesses While we chose to use a shallow hierarchy of classes

for the road scene dataset, we recognise that many variations on tree depth per

branch is possible. In particular, if we were to use an unbalanced tree where

one of the branches is signi�cantly deeper than the rest, our loss could be biased

towards classes in that branch. This remains a theoretical weakness where we

could investigate ways of tackling this scenario.

Another weakness is that currently our theory is limited to simple trees and not

those containing cycles or directed edges. Further, we do not account for ordering

in classes and leave this to future work.

Moreover, we note that our approach is somewhat limited as we only exploit

hierarchies within the training signal. While this is bene�cial for the �exibility of

using our loss to train any network, performance could possibly be improved by

integrating a hierarchy into the network itself. For example, coarse classes could

be estimated from earlier network layers, while �ner classes are estimated by later

layers.

6.3.2 Chapter 4:

Practical Issues For evaluating our method for relative pose estimation we only

use the KITTI dataset [66], where we could have also used other road scene datasets

such as Cityscapes (though this dataset lacks ground truth poses). We compare to

other fully self-supervised approaches and note that we could have compared to

more methods.
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Some practical issues exist in the fairness of comparisons. Our results in Ta-

ble. 4.1 are referenced from the LTMVO paper [287] where SfM, GeoNet, CC and

MonoDepth2 results where obtained by running pre-trained models on sequences

9 and 10. We note that we do not know whether some of these might have been

trained with other datasets. For example, CC contains a variation where they have

trained on both KITTI [66] and Cityscapes [38]. While we feel that evaluating

quantitatively on only two sequences is limiting, we note that this is common

practice with the competing approaches.

Another practical limitation is that the VGG [202] network for the perceptual

loss in Section 4.2 only uses ImageNet for pre-trained weights. While this is also

a common practice, our concern would be if another feature space, perhaps one

trained with KITTI, would be more suitable.

A general weakness of appearance loss methods is that of illumination. Speci�-

cally, we commonly see oversaturation of pixels where there is signi�cant glare on

the road surface, which may appear in one or both of the images in a pair. In these

cases it can be very di�cult to perform any kind of feature matching.

Finally, we note that the code we use for Transformation Syncronisation by

Arrigoni et al. [6] is only available as MATLAB code currently, which limits our

ability to investigate speed and e�ciency of our method with regards to estimating

absolute poses.

Theoretical Weaknesses The most obvious theoretical weakness for our ground-

relative cross-projection appearance loss is our assumption that the road-surface

is planar. We note that while we can approximate the road surface globally by a

series of planar patches, this can be a signi�cant issue where the road sometimes

sharply bends (e.g. at the crest of a hill) and is a source of error. We recognise that

more in depth analysis of the impact of the planar assumption could have been

investigated, which we note in future work.

As shown in our results, occasionally we have an image-pair where little road-

surface is observed (e.g. around some corners) and these present a weakness as our

model will not be able to cross-project meaningfully in these outlying cases.

Another weakness presents itself in the form of the construction of the road

surface itself. For example, if an image-pair is captured where the vehicle moves

over a speed bump in one image, then our planar model will be challenged.

Moreover, illumination can cause various weaknesses within our approach. For

example, shadows may be cast on the road surface by dynamic objects (e.g. cars,

people, trees perturbed by wind or time of day) and our modelling does not currently

account for this.
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Furthermore, in Chapter 4 we did not integrate any form of segmentation. It

would make more sense to only use the road-surface in our appearance loss and

we argue that we are relying too heavily on the Siamese network ability to ignore

feature matching of the non-planar scene. In practice, we had some practical

training issues with training with segmented input and we leave this for future

work (although we did successfully utilise segmentation with our method illustrated

in Chapter 5). We note that these issues may be due to the void regions and that

�lling them with appropriate substitutes or avoiding their contribution to losses,

could help, as noted by Zhao et al. [277].

6.3.3 Chapter 5:
Practical Issues Originally we intended to research combining semantic knowl-

edge of Chapter 3 with the geometric parameterisation proposed in Chapter 4 in a

deeper and more direct fashion. For example, we would have preferred to train the

semantic segmentation network outlined in Section 5.1.2 with our hierarchical loss,

but decided that this would limit the performance of our results as our segmentation

results were not state-of-the-art. Therefore, we used a leading pre-trained semantic

segmentation model.

Furthermore, the semantic segmentation model we use is trained using sparse

annotations [285] and therefore we could argue that our method is not entirely

self-supervised as it has bene�ted from this pre-trained model. We also note that

we are limited by the performance of the optical �ow and semantic segmentation

accuracy.

We have chosen to focus primarily on performance and concept, rather than

e�ciency, and we did not make a fast implementation. It is worth noting that the

HEM e�ciency could be limited if requiring inference on large optical �ow and

segmentation architectures. Lowering the input image resolution would help to

resolve this issue but could limit performance of the segmentation and optical �ow

results.

Theoretical Weaknesses Our HEM is somewhat reliant on the pose Siamese

network providing a coarse initialisation so that the warped source and target

images (see Fig. 5.2) are reasonably well aligned to accurately perform optical �ow

inference. Ideally we could like to make our HEM method work from a random

initialisation, which we leave to future work.

We note that RANSAC in Section 5.1.3 requires setting a threshold to deter-

mine inliers from outliers, which presents a minor weakness with determining a

reasonable value.
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In Section 5.2.2 we resolve scale ambiguity for the relative camera translation

obtained from decomposing the re�ned homography. We do this by simply multi-

plying by the known average camera height from the road surface but in reality the

camera height will vary due to road variations and vehicular motions (e.g. due to

the suspension). Therefore the relative camera translations will contain some error

and this will propagate through to our visual odometry results. However, we are

still able to achieve signi�cantly better performance over utilising our appearance

loss method in Chapter 4 alone.

Finally, for the method of computing correspondences, it could be that local

feature points might be bene�cial versus our choice of using dense optical �ow.

6.4 Personal reflections

At the beginning of our research the �eld of deep learning with tasks of scene

understanding was very focused still on the idea of giving the neural networks

complete freedom over learning, with many approaches training additional net-

works, increasing the complexity and challenge greatly. While many high quality

data sources to train deep networks exist, we believe that we can only progress

so far with this type of catch-all methodology because our datasets will never be

perfect and complete, our networks never fully-adept function approximators, and

it is therefore important to focus e�orts on training with prior scene understanding

in mind. In this research we have entirely replaced the need for depth estimation

and re-doubled our e�orts on utilising the most obvious ques for the motion of a

vehicle moving along a road-surface: the road is locally planar in geometry and

consistent in appearance. Over the past few years we now recognise that scene

understanding is progressing towards the idea of integrating knowledge of domains

within a deep learning arena, and combining more of classical modelling, as we

reach limits in black-box deep learning. We recognise that there is still a major

focus on implicit learning across machine learning and related �elds, and a lack

of well understood modelling. Speci�cally, our concern is that there is still an

over reliance on implicit learning towards achieving state-of-the-art results in well

accepted benchmarks. We suggest that the �eld will develop towards datasets and

evaluation methodologies which incentivise competition towards learning more

robust features.
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6.5 Future Work
In this section we highlight areas where there is a potential gap in research which

our work could be expanded into.

Further Semantics

• Utilising Semantic Segmentation: In Chapter 4 we described an appearance

loss based on cross-projecting planar scene points. While there exist recent

works around combining semantic segmentation with appearance losses in

general [12, 32, 182, 183, 245], we would like to investigate the bene�t of

utilising semantics to speci�cally �ltering out non-planar points of either the

input of our Siamese network or the input to the VGG [202] network of our

perceptual loss.

• There are various contemporary works around the issue of class and data im-

balance for classi�cation tasks [95, 114, 139, 216]. Regarding our hierarchical

semantics research from Chapter 3, we would like to investigate potential

issues of unbalanced trees and the possibility of handling more complex rela-

tionships with other types of trees. Furthermore, we suggest that semantic

hierarchies could be learnt themselves in a way which optimises performance

for tasks such as semantic segmentation.

• Additionally, further work could include the ability to extract segmenta-

tions at multiple levels in a hierarchy describing your data. This would be

quite useful, intuitive and is not something commonly achieved by semantic

segmentation solvers in the current literature [74, 110, 156].

Combining Semantics / Alternate Forms of Supervision

• In Chapter 5 we used leading pre-trained segmentation and optical �ow

models [89, 285], but future work could combine the hierarchical training

from Chapter 3 into this setting. Moreover, we see that an additional loss

could be used to help guide the supervision where we cross-project the road

labels into the corresponding views and operate a classi�cation loss on the

pixel level.

• In our work we have speci�cally avoided training for dense depth or optical

�ow estimation for the task of visual odometry, although we see potential

bene�ts with regards to training for semantic segmentation, speci�cally in
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terms of training networks for pose and semantic segmentation simultane-

ously. Multi-task learning is a popular and multi-faceted �eld with many

di�erent approaches [274]. In our case we might expand our research and

consider learning camera-relative pose estimation with semantic segmen-

tation, in a similar way to Zhang et al. [273], but without the requirement

for depth estimation. If the segmentation network is performing well, then

the same road plane scene points in each view should be given the same

class, and any misalignment here should help the geometric network to learn.

Further, if image-pairs have no semantic labels, the planar cross-projection

helps to constrain the solution of scene points between views which should

be identical. Hence, while we use a pre-trained network, there is possibly

a bene�t of letting pose and segmentation networks learn from each other,

perhaps in helping to reduce supervision by guiding the networks into the

most physically sensible solution space.

Alternate Architectures

• For the optical �ow and semantic segmentation networks [89, 285] of Chap-

ter 5 we suggest experimenting with di�erent architectures and competing

models to see whether there is a signi�cant improvement utilising another

perhaps more accurate pre-trained model [19, 64, 92, 128, 211].

Planarity and Beyond

• While we use homographies for modeling the local road geometry, there

are more complex geometric modeling possibilities. For example, Rocco et

al. [190] include thin-plate splines as a transformation output from their

geometric CNN, Friji et al. [62] use non-ridged transforms for human action

recognition, and Chen et al. [26] propose predicting more arbitrary transforms

for image registration. Our planarity assumption is the primary theoretical

weakness in our work and we suggest investigating possibilities of modelling

non-linear road geometries.

• While we attempted to analyse how the planarity assumption impacts results

by looking at sections of sequences with signi�cant vertical variation, we

recognise that more in depth analysis of the impact of assuming planarity

could be researched. For instance, we could potentially apply aerial imagery

unto a ground-plane, and generate a pair of images from virtual camera

positions. Gradually �exing the ground plane towards a quadratic curve in

this virtual setting could help analyse cross-projection errors as we move
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further away from a planar surface. Though there are a great many recent

works around aerial imagery [11, 23, 97], as far as we know this kind of

analysis for cross-projecting aerial images into new views with a perturbed

plane would be novel.

• Currently, there appears to be little research with regards to learning unusual

camera-relative poses from images captured at signi�cantly varied translation

and pose [1, 3, 91, 98]. We would like to explore in detail how our local-

camera parameterisation and planarity assumptions can help with estimating

arbitrary poses with much greater pose displacement. For example, we

could cross-project images taken by vehicles at opposite ends of a junction

with our planarity model, to learn relative pose between di�erent vehicles

overlooking the same scene. Such work could contribute towards solving for

tasks which could become more relevant as autonomous vehicles become

more prevalent and accepted (e.g. tra�c optimisation, routing and planning,

or shared augmented reality between vehicles or pedestrians [20, 81, 180]).

Illumination Limitations

• We �nd that the performance of our training signals are still somewhat limited

by visual issues like illumination extremes (e.g. glare) which limit feature

matching. There are various recent works towards illumination-invariant

pipelines for road scenes [4, 34, 88, 119, 280]. For future work we suggest

investigating ways of detecting image pairs where illumination issues within

our visual odometry approach are prevalent and adjusting training regimes

to help tackle this issue.

Further Post-Processing

• In Section 4.3 we described how we utilised transformation synchronisation

to form a collection of relative poses into absolute poses. There are various

contemporary works which use additional optimisation routines (e.g. bundle

adjustment) in order to improve the performance of road scene related tasks

[34, 41, 163, 230, 250]. There may be bene�t of performing a non-linear post-

optimisation step with the absolute pose result, formed using the Arrigoni et

al. [6] transformation syncronisation approach, as an intialisation, which we

leave to future work.
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Data �antity

• Various recent works investigate the impact of data quantity on performance

of deep models in computer vision tasks [10, 21, 84, 134, 147, 158, 212]. For

future work we would like to �rstly research how our hierarchical semantic

segmentation could be applied to multiple datasets, and potentially to reduce

data labelling requirements. For example, if we had two datasets of faces, but

one of them is labelled with less classes, we could potentially still train on

both datasets by forming an appropriate class tree spanning these datasets.

Secondly, for relative pose estimation, we propose to investigate if our method

of removing the requirement of training dedicated depth or optical �ow

estimation networks actually reduces data quantity requirements.
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