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Abstract

Artificial Neural Networks (ANNs) have increased in performance in recent years and
have been successfully used in many computer applications. The growth in ANNs and
machine learning applications has resulted in the state-of-the-art ANNs comprising
hundreds of hidden layers, which require millions of operations to process input data and
gigabytes of memory to store model parameters. The complexity of ANNs limits them
to be implemented on resource-constrained platforms for certain applications, such as
Internet-of-Things (IoT). Therefore, it is obvious to try and optimise ANNs so that the
computational cost and model size of ANNs is reduced, while maintaining high accuracy
in classification. Evolutionary algorithms demonstrate flexible capabilities for solving
optimisation problems with one or more objectives. Hence, applying evolutionary
algorithms to optimise ANNs becomes a potential solution.

In this PhD work, evolutionary techniques are applied to the optimisation of ANNs,
which aims to reduce the computational cost and parameter size while minimising
loss in classification accuracy. The optimisation is divided into two categories, i.e.
computational cost optimisation, and data representation optimisation. For the com-
putational cost optimisation, a multi-objective evolutionary approach is proposed to
reduce the size and number of convolution kernels in each convolutional layer and
generate trade-offs between computational cost and model’s classification accuracy. For
data representation optimisation, an evolutionary-based adaptive integer quantisation
methodology is introduced to quantise the pre-trained models from 32-bit floating
point representation to small bit-width integer representation.

The experimental results for computational cost reduction that multi-objective evo-
lutionary algorithms achieve large improvements in resource consumption with no
significant reduction in a model classification accuracy, compared with the original mod-
els’ architecture. From the experimental results on data representation optimisation,
evolutionary-based adaptive integer quantisation methodology illustrates that weights
and biases in convolutional layers can be quantised to 8-bit integer representation and
4-bit integer representation in fully-connected layers without significant gap in models’
classification accuracy between pre-trained 32-bit floating point representation and
quantised weights and biases.

ii



Table of Contents

Abstract ii

List of Tables vii

List of Figures ix

Acknowledgements xvii

Declaration xviii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Hypotheses and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 8

2.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Introduction to Convolutional Neural Networks . . . . . . . . . 9

2.1.2 Computational and Memory Cost Analysis . . . . . . . . . . . 21

2.1.3 Computational Cost and Memory requirement of CNNs . . . . . 23

2.2 Evolutionary Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Introduction to Evolutionary Algorithms . . . . . . . . . . . . . 26

iii



Table of Contents

2.2.2 Basic Operation in Evolutionary Algorithms . . . . . . . . . . . 26

2.2.3 Evolutionary Strategies . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.4 Multi-objective Evolutionary Algorithms . . . . . . . . . . . . . 31

2.3 Evolutionary Optimisation in Neural Networks . . . . . . . . . . . . . . 34

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Evolutionary Optimisation of Kernel Shapes and Sizes 38

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Optimisation of Network Architecture . . . . . . . . . . . . . . . 42

3.2.2 Unconventional Convolutions . . . . . . . . . . . . . . . . . . . 44

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Computational Resource Consumption . . . . . . . . . . . . . . 46

3.3.2 Mixed Unconventional Kernels . . . . . . . . . . . . . . . . . . . 49

3.3.3 Multi-Objective Evolutionary Optimisation . . . . . . . . . . . . 52

3.4 Experimental Results and Analysis . . . . . . . . . . . . . . . . . . . . 56

3.4.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.3 Convolution Kernels Distribution . . . . . . . . . . . . . . . . . 62

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Evolutionary Optimisation of Convolutional Layer Design 68

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Multi-objective Evolutionary Algorithm . . . . . . . . . . . . . 71

4.2.2 Convolutional Layer Optimisation . . . . . . . . . . . . . . . . . 71

4.3 Experimental Setup and Results . . . . . . . . . . . . . . . . . . . . . . 76

4.3.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 76

iv



Table of Contents

4.3.2 Experimental Results on LeNet . . . . . . . . . . . . . . . . . . 79

4.3.3 Experimental Results on Deeper CNNs . . . . . . . . . . . . . . 88

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 8-bit Integer Quantisation through Evolutionary Optimisation 99

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.1 Vector Quantisation . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.2 Low-precision Representation for Neural Networks . . . . . . . . 103

5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.1 Integer Quantisation . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.2 Evolutionary Approach for Adaptive Integer Quantisation . . . 106

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4.2 Results for Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 112

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6 Adaptive Integer Quantisation for Various Bit-Width Configurations117

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 Configuration of the Evolutionary Algorithm . . . . . . . . . . . . . . . 119

6.2.1 Mixed-Precision between Convolutional Layers and Fully-Connected
Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2.2 Mixed-Precision between Weights and Biases . . . . . . . . . . . 120

6.3 Experimental Setup and Results . . . . . . . . . . . . . . . . . . . . . . 121

6.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 123

6.3.3 Combining with Computational Cost Optimisation . . . . . . . 130

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

v



Table of Contents

7 Conclusions and Future Work 133

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Abbreviations 142

References 144

vi



List of Tables

2.1 Commonly used activation functions in artificial neural networks. . . . 12

3.1 Genetic representation for convolution kernels . . . . . . . . . . . . . . 54

3.2 Approximate runtime of the proposed method on each dataset. . . . . . 58

3.3 Comparison between the benchmark network, i.e. LeNet architecture
shows in Fig. 3.5, and solutions found by the proposed method on MNIST
and Fashion-MNIST datasets. Three reference points are selected from
optimised results for each dataset. . . . . . . . . . . . . . . . . . . . . . 59

3.4 Comparison between the benchmark network and three reference so-
lutions found by the proposed method on CIFAR-10 dataset after re-
training for 100 epochs. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Approximate runtime of the optimisation loop on each dataset. . . . . . 79

4.2 Comparison between the benchmark network and solutions found by
proposed method on three datasets. Three reference points are selected
from optimised results for each dataset. . . . . . . . . . . . . . . . . . . 81

4.3 Comparison between the benchmark network and solutions found by
proposed method on CIFAR-10 dataset with three-objective optimisation. 86

4.4 Experimental results for five-layer CNN and six-layer CNN on CIFAR-10 93

4.5 Comparison between the original VGG-11 and solutions found by pro-
posed method on CIFAR-10 dataset with three-objective optimisation. 95

4.6 Comparison between the proposed method and other evolutionary opti-
misation methods for optimising CNN architecture. . . . . . . . . . . . 96

vii



List of Tables

6.1 Comparison between the original network, 8-bit EA-based adaptive
integer quantisation, linear 8-bit integer quantisation and different bit-
width in fully-connected layers. . . . . . . . . . . . . . . . . . . . . . . 125

6.2 Comparison between the original network, 8-bit EA-based adaptive
integer quantisation, linear 8-bit integer quantisation and different bit-
width in convolutional layers. . . . . . . . . . . . . . . . . . . . . . . . 126

6.3 Comparison between the original network, 8-bit EA-based adaptive
integer quantisation, linear 8-bit integer quantisation and mix-precision
between weights and biases . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.4 Comparison between the EA-based adaptive integer quantisation method
and recent approaches in quantisation of CNN on LeNet with MNIST
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

viii



List of Figures

2.1 A feed-forward Fully-Connected Neural Network . . . . . . . . . . . . . 10

2.2 Data flow of neurons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 (a) An example of shifting 3x3 convolutional kernel across the image.
(b) 3x3 convolutional kernel. (c) Example of the whole CNN process. . 13

2.4 Different configurations of VGGNet. In this table, the “11 weights layers”
means there are 11 layers in total (excluding maxpooling layers). “LRN”
means Local Responds Normalisation. The “conv3-64” means there are
64 3× 3 convolution kernels in current layer, “conv3-128” means there
are 128 3× 3 convolution kernels in current layer and so on. “FC-4096”
means a fully-connected layer that contains 4096 neurons. . . . . . . . . 17

2.5 (a) The initial version of Inception module (b) The dimension reduction
version of Inception module. An Inception module consists of multiple
size of convolution kernels in parallel. There are some 1× 1 kernels in
the Inception module before passing them to the parallel operations,
which are used to reduce the depth of tensors. . . . . . . . . . . . . . . 18

2.6 The figure in the left shows a stacked layer structure, where the weight
layer needs to learn the mapping F (x) directly. The figure in the right
demonstrates the residual structure. In this case, the weight layer needs
to learn the residual mapping F (x) = H(x)− x. . . . . . . . . . . . . . 20

2.7 (a) Classification Accuracy vs Operations vs Model Size of recent CNNs
on ImageNet. (b) Forward time per image vs Operations for a single
input image. In both figures, each CNN is represented by an unique
colour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8 An example of mutation operation. . . . . . . . . . . . . . . . . . . . . 27

ix



List of Figures

2.9 An example of crossover operation. . . . . . . . . . . . . . . . . . . . . 28

2.10 The process of evolutionary algorithms . . . . . . . . . . . . . . . . . . 29

2.11 The Pareto optimal between two objective. Both solution x0 and x1

are lying on the Pareto front, which means these two solutions are not
dominated by any other solutions in the searching space X. The solution
x2 is not in the Pareto front, since it is dominated by x0 and x1. . . . 32

3.1 (a) An example of sliding a 3× 3 convolutional kernel across the input
image. (b) A conventional 3× 3 square kernel that is used to extract fea-
tures from the input image. (c) Example of a conventional convolutional
layer with multiple square kernels. . . . . . . . . . . . . . . . . . . . . . 47

3.2 (a) The set of unconventional kernels. The number of operations required
to compute each of the unconventional kernels can be calculated by
kernel height × width. (b) Format of the genotype: The Red and
Green Lines shows two different individuals which represent different
connections between different size and shape of kernels. . . . . . . . . 50

3.3 Overall design of the convolutional layer which involves multiple sizes of
kernels to produce different feature maps. If the strides of each type of
kernel are the same, using the padding method, the output from each
set of kernels will be the same as other kernels. Therefore, the final
output from this layer can be concatenated into a single tensor with no
additional computation operation required. . . . . . . . . . . . . . . . . 51

3.4 Overview of the multi-objective optimisation loop. The method selects a
set of unconventional kernel shapes replacing the original (conventionally
used) square kernels in a given CNN architecture. Each individual is
trained on a training data set. Then, the fitness is calculated and
assigned based on the classification accuracy on the evaluation data
set (objective 1) and the number of arithmetic operations (objective
2). NSGA-II searches for the Pareto front that trades-off between of
number operations and model classification accuracy. . . . . . . . . . . 53

x



List of Figures

3.5 The benchmark CNN used to test our optimisation method. The bench-
mark CNN has four layers that is built based on the LeNet-5 architecture.
The network involves two 2-D convolutional layers, which contain 32 and
64 kernels respectively. All of the kernels have dimensions of 5× 5 and
the stride is 1. Each convolutional layer is followed by a max pooling
one with dimensions of 2×2 and a stride of 2. There is a fully connected
layer connected to the output of the second max pooling layer that
has 512 nodes. Finally, a classification layer is used to predict the best
classification label applied to the image. . . . . . . . . . . . . . . . . . 57

3.6 (a) Optimised architectures by the proposed method after 100 generations
on MNIST. (b) Optimised architectures by the proposed method after
100 generations on Fashion-MNIST. . . . . . . . . . . . . . . . . . . . 60

3.7 Optimised architectures by the proposed method after 100 generations
on CIFAR-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.8 (a) Kernel distribution of the first convolutional layer of Ref 1 on MNIST
dataset. (b) Kernel dist. of the second conv. layer of Ref 1 on MNIST
dataset. (c) Kernel dist. of the first conv. layer of Ref 2 on MNIST
dataset. (d) Kernel dist. of the second conv. layer of Ref 2 on MNIST
dataset. (e) Kernel dist. of the first conv. layer of Ref 3 on MNIST
dataset. (f) Kernel dist. of the second conv. layer of Ref 3 on MNIST
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.9 (a) Kernel distribution of the first convolutional layer of Ref 1 on Fashion-
MNIST dataset. (b) Kernel dist. of the second conv. layer of Ref 1 on
Fashion-MNIST dataset. (c) Kernel dist. of the first conv. layer of Ref
2 on Fashion-MNIST dataset. (d) Kernel dist. of the second conv. layer
of Ref 2 on Fashion-MNIST dataset. (e) Kernel dist. of the first conv.
layer of Ref 3 on Fashion-MNIST dataset. (f) Kernel dist. of the second
conv. layer of Ref 3 on Fashion-MNIST dataset. . . . . . . . . . . . . . 65

3.10 (a) Kernel distribution of the first convolutional layer of Ref 1 on CIFAR-
10 dataset. (b) Kernel dist. of the second conv. layer of Ref 1 on
CIFAR-10 dataset. (c) Kernel dist. of the first conv. layer of Ref 2 on
CIFAR-10 dataset. (d) Kernel dist. of the second conv. layer of Ref 2
on CIFAR-10 dataset. (e) Kernel dist. of the first conv. layer of Ref 3
on CIFAR-10 dataset. (f) Kernel dist. of the second conv. layer of Ref
3 on CIFAR-10 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

xi



List of Figures

4.1 Convolutional layer optimisation flow. On the left hand side are the
evolutionary algorithm steps. On the right hand side is the CNN
evaluation process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 An example that describes the population and chromosome for the
proposed method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 (a) Optimisation results for proposed method after running 100 genera-
tions on MNIST. (b) Optimisation results for proposed method after
running 100 generations on Fashion-MNIST. . . . . . . . . . . . . . . . 80

4.4 The figure demonstrates the kernels that are built up the CNNs by the
proposed method on MNIST dataset. (a) Kernel distribution of the
first convolutional layer of Ref 1 on MNIST dataset. (b) Kernel dist.
of the second convolutional layer of Ref 1. (c) Kernel dist. of the first
convolutional layer of Ref 2. (d) Kernel dist. of the second convolutional
layer of Ref 2. (e) Kernel dist. of the first convolutional layer of Ref 3.
(f) Kernel dist. of the second convolutional layer of Ref 3. . . . . . . . . 82

4.5 The figure demonstrates the kernels that are built up the CNNs by the
proposed method on Fashion-MNIST dataset. (a) Kernel distribution
of the first convolutional layer of Ref 1 on Fashion-MNIST dataset. (b)
Kernel dist. of the second convolutional layer of Ref 1. (c) Kernel dist.
of the first convolutional layer of Ref 2. (d) Kernel dist. of the second
convolutional layer of Ref 2. (e) Kernel dist. of the first convolutional
layer of Ref 3. (f) Kernel dist. of the second convolutional layer of Ref 3. 83

4.6 Optimised architectures after 100 generations on CIFAR-10 by the
proposed method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.7 The figure demonstrates the kernels that are built up the CNNs by the
proposed method on Fashion-MNIST dataset. (a) Kernel distribution of
the first convolutional layer of Ref 1 on CIFAR-10 dataset. (b) Kernel
dist. of the second convolutional layer of Ref 1. (c) Kernel dist. of
the first convolutional layer of Ref 2. (d) Kernel dist. of the second
convolutional layer of Ref 2. (e) Kernel dist. of the first convolutional
layer of Ref 3. (f) Kernel dist. of the second convolutional layer of Ref 3. 87

4.8 (a) Five-layer CNNs that optimised by the proposed method after 100
generations on CIFAR-10. (b) Six-layer that optimised by the proposed
method after 100 generations on CIFAR-10. . . . . . . . . . . . . . . . 89

xii



List of Figures

4.9 The figure demonstrates the kernels that are built up the five-layer CNNs
by the proposed method on CIFAR-10 dataset. (a) to (c) shows the
kernel distribution of three convolutional layers of Ref 1 from network
optimisation results. (d) to (f) shows the kernel distribution of three
convolutional layers of Ref 2 from network optimisation results. (g) to
(i) shows the kernel distribution of three convolutional layers of Ref 3
from network optimisation results. . . . . . . . . . . . . . . . . . . . . . 91

4.10 The figure demonstrates the kernels that are built up the six-layer CNNs
by the proposed method on CIFAR-10 dataset. (a) to (d) shows the
kernel distribution of four convolutional layers of Ref 1 from network
optimisation results. (e) to (h) shows the kernel distribution of four
convolutional layers of Ref 2 from network optimisation results. (i) to
(l) shows the kernel distribution of four convolutional layers of Ref 3
from network optimisation results. . . . . . . . . . . . . . . . . . . . . 92

4.11 Optimisation results for proposed method after running for 100 genera-
tions on CIFAR-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1 (a) An example of linear quantisation. The blue line shows 1000 evenly
spaced numbers from 0 to 10. The orange line represents that quantise
the red line value to 5 representative values. (b) An example of adaptive
(non-linear) quantisation. The blue line shows 1000 evenly spaced
numbers from 0 to 10. The orange line represents that quantise the red
line value to 5 representative values with different boundaries. . . . . . 105

5.2 Overview of the adaptive integer quantisation loop. The method gen-
erates a set of bins to quantise the original weights and biases. The
classification accuracy of each individual is evaluated on a test dataset,
and represents as fitness to the EA. Then, the classification accuracy of
each individual is ranked by the EA. The individual with the highest
classification accuracy will be used as the parent population to the next
generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

xiii



List of Figures

5.3 The figure shows how to decode 3-bit quantisation bin widths from the
parameters stored in the genome. The genome is encoded in the same
order as the bin from minimum to maximum value (left to right). The
middle gene (G3) between G0 and G6 divides the range from minimum
value (0) to maximum value (1) according to its parameter value. Then,
the middle gene (G1) between minimum value (0) and gene G3 divides
the value from minimum to G1’s parameter value. The middle gene
(G5) between the maximum value (1) and gene G3 cut the value from
G5’s representative value to maximum value and so on. This iterative
bisection method is used to simplify mutation operation and avoid
convergence towards large clusters of small bins. . . . . . . . . . . . . . 108

5.4 The benchmark architecture that is used to test the proposed method.
The network consists of two 2D convolutional layers, which involve 32
and 64 convolution kernels respectively. All of the kernels are sized 5x5
and the stride is 1. Each convolutional layer is followed by a max-pooling
layer which is sized 2x2 and a stride of 2. There is a fully-connected layer
featuring 512 nodes connected at the end of the second max-pooling layer.
Finally, a classification layer is used to predict the best classification
label to best describe the image. . . . . . . . . . . . . . . . . . . . . . . 111

5.5 Classification Accuracy vs. Generation. The blue line shows the best
fitness of each generation. The maximum, minimum and mean classifica-
tion accuracy of quantised model are reported to show the performance
of the proposed method. The read and green lines show the mean
and median of each generation, respectively. The red dot indicates the
classification accuracy of the pre-trained LeNet-5 on CIFAR-10 dataset
using the original 32-bit floating point representation, and the blue star
represents the classification accuracy of LeNet-5 with linear 8-bit integer
quantised weights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xiv



List of Figures

5.6 The comparison between original weights distribution, 8-bit linear integer
quantised weights and 8-bit adaptive integer quantised weights for convo-
lutional layers of test CNN. The y-axes are log10 scale so that the profile
of the distribution becomes more visible. (a) Weights distributions of
pre-trained Float32 weights, linear quantised INT8 and adaptive integer
quantised INT8 for first convolutional layer. (b) Weights distributions of
pre-trained Float32 weights, linear quantised INT8 and adaptive integer
quantised INT8 for second convolutional layer. . . . . . . . . . . . . . . 114

5.7 Comparison between original weight distribution, 8-bit linear integer
quantised weights and 8-bit adaptive integer quantised weights for fully-
connected CNN layers. The y-axes are log10 scale so that the profile
of the distribution becomes more visible. (a) Weights distributions
of pre-trained Float32 weights, linear quantised INT8 and adaptive
integer quantised INT8 for the first fully-connected layer. (b) Weights
distributions of pre-trained Float32 weights, linear quantisaed INT8 and
adaptive integer quantised INT8 for classification layer. . . . . . . . . . 116

6.1 An example of the chromosome that is used for 8-bit integer in convo-
lutional layers and 4-bit integer in fully-connected layers. Each set of
genes are then decoded by the method described in Fig 5.3 in Chapter 5.119

6.2 An example of the chromosome that quantising a pre-trained CNN with
two convolutional layers and two fully-connected layers by 8-bit integer
in weights and 4-bit integer in biases. Then, each set of the genes is
decoded by the method described in Fig 5.3 in Chapter 5. . . . . . . . 121

6.3 The CNN architecture is used to test the EA-based adaptive integer
quantisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.4 Classification Accuracy vs. Generation. In this experiment, the data
precision of convolutional layers is kept as 8-bit integer representation
and the data precision of fully-connected layers are reduced from 7-bit
to 1-bit integer representation. . . . . . . . . . . . . . . . . . . . . . . . 124

6.5 Classification Accuracy vs. Generation. In this experiment, the data
precision of fully-connected layers is kept as 8-bit integer representation
and the data precision of convolutional layers are reduced from 7-bit to
1-bit integer representation. . . . . . . . . . . . . . . . . . . . . . . . . 126

xv



List of Figures

6.6 Classification Accuracy vs. Generation. In this experiment, the data
precision of weights is kept as 8-bit integer representation and the data
precision of biases is reduced from 7-bit to 1-bit integer representation. 127

6.7 Classification Accuracy vs. Generation. In this experiment, the data
precision of biases is kept as 8-bit integer representation and the data
precision of weights is reduced from 7-bit to 5-bit integer representation. 128

6.8 Quantising the three reference points of LeNet which are optimised in
Chapter 4 on CIFAR-10 dataset with 8-bit representation in convolu-
tional layers and 4-bit integer representation in fully-connected layers.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

xvi



Acknowledgements

My most sincere and heartfelt gratitude goes to my supervisors Professor Andy Tyrrell

and Dr. Martin Trefzer. Thanks for all of their tireless guidance and support throughout

my four-year PhD life. It is my honour to be supervised by them.

Secondly, I would like to thank my parents for their love, support and understanding

during my PhD life.

xvii



Declaration

I declare that this thesis is a presentation of original work and I am the sole author. This

work has not previously been presented for an award at this, or any other, University.

All sources are acknowledged as References.

Publications

• Z. Wang, M. A. Trefzer, S. J. Bale, and A. M. Tyrrell, “Approximate multiply-

accumulate array for convolutional neural networks on fpga,” in 2019 14th

International Symposium on Reconfigurable Communication-centric Systems-on-

Chip (ReCoSoC). IEEE, 2019, pp. 35–42

• Z. Wang, M. A. Trefzer, S. Bale, and A. M. Tyrrell, “Adaptive integer quantisation

for convolutional neural networks through evolutionary algorithms,” in 2021 IEEE

Symposium Series on Computational Intelligence (SSCI). IEEE, 2021, pp. 1–7

• Z. Wang, M. A. Trefzer, S. J. Bale, and A. M. Tyrrell, “A multi-objective evolu-

tionary approach for efficient kernel size and shape for cnn,” in 2022 International

Joint Conference on Neural Networks (IJCNN). IEEE, 2022, pp. 1–8

Ziwei Wang

September 2022

xviii



Chapter 1

Introduction
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1.1 Motivation

Deep Neural Networks (DNNs) are biologically-inspired computing systems which

consist of internal connections between artificial neurons. In recent years, DNNs

have increasingly drawn attention in various application domains, such as image

processing, speech recognition and many other challenging computational tasks [4]. In

particular, Convolutional Neural Networks (CNNs) have successfully gained outstanding

performance in image classification and video recognition. However, while state-of-

the-art CNNs have become increasingly accurate, these networks are computationally

expensive involving billions of arithmetic operations and parameters [5–7]. Hence,

the development of CNNs raises big challenges related to apply these techniques

resource-constrained systems.

This thesis explores the design methodologies of CNNs [5–7] with a specific focus on

analysing the computational resource consumption and parameter set size require to

process CNN models. This work will focus on investigating how the computational

resource consumption and parameter size of CNNs models can be optimised by Multi-

objective Evolutionary Algorithms (MOEAs). This work will not only aim to reduce

the costs of processing CNNs, but also to retain the classification accuracy of optimised

CNNs models as much as possible.

1.1 Motivation

In recent years, the state-of-the-art achievements of designing CNN architectures, e.g.

GoogleNet [7], VGG [5] and AlexNet [6], have demonstrated significant improvements

of classification accuracy on various benchmark datasets, such as MNIST [8], CIFAR [9]

and ImageNet [10]. The general methodology for designing highly-accurate CNN

models is making the CNN deeper and wider, i.e models contain increasingly large

numbers of layers, as well as more neurons in each each layer. However, as the depth
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1.1 Motivation

and width of these models grows larger, the computational complexity and parameter

size of the network grows exponentially.

Current trends in edge computing require implementation of CNNs in low-cost em-

bedded devices and resource-constrained platforms. For certain applications, such as

Internet-of-Things (IoT), the CNNs are required to process with limited computational

resources and memory size. However, such applications aiming at resource and memory-

constrained devices suffer from limitations, i.e. computational resources and memory

size, making large CNNs difficult to process with sufficient performance. To deal with

this problem, recent research has shown the potential of providing high-accuracy and

low-cost CNN models [11–13]. The most significant problem that limits the compu-

tational speed is that processing CNNs requires massive computational resources for

multiply-accumulation. In order to achieve high accuracy, state-of-the-art CNN models

consist of many hidden layers. These hidden layers can significantly increase the model

accuracy. However, as the networks become deeper, a huge amount of operations and

processing data are produced. For example, the VGGNet has a total of 16 layers

and consists of 138 million parameters [5] and storage requirement of network and

parameters is up to 552 MB [14]. Therefore, the motivation to optimise existing models

that can achieve high accuracy while keeping computational resource consumption at

a minimum is therefore high.

Evolutionary algorithms (EAs) are today one of the most commonly-used methodologies

for solving hard optimisation problems where one or more conflicting objectives must

be satisfied simultaneously [15–18]. EAs aim to generate a set of possible solutions

(so-called population) in a single run of the algorithm. In recent years, several research

studies have been focusing on optimising neural network typologies and their connection

weights. These approaches have demonstrated that using evolutionary algorithms to

evaluate neural network topology can achieve competitive performance on state-of-the-

art benchmark datasets [19–21].
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1.2 Hypotheses and Objectives

Overall, the proposed research in this PhD thesis is motivated by reducing the computa-

tional and memory costs while retaining high accuracy when CNN models are in place

for specific tasks. The proposed research focuses on applying bio-inspired techniques

to apply multi-objective optimisation methodologies for reducing computational and

memory consumption of existing CNN models, enabling trade-off solutions for applying

CNNs models in different use case scenarios. Multi-objective evolutionary algorithms

are potentially well-suited for optimising complex CNN models, as they can consider

both computational costs and classification accuracy at the same time from a global

viewpoint.

1.2 Hypotheses and Objectives

The research presented in this thesis proposes and evaluates how resource and mem-

ory consumption can be optimised by evolutionary algorithms based on following

hypotheses:

Hypothesis: Applying evolutionary algorithms to optimise structure of trained CNN

models can achieve significant improvements in resource consumption and memory

usage while maintaining the classification accuracy of the original models via reducing

the number of operations required for processing convolutional layers, and applying

low-precision integer data representation for trained CNN models’ parameters, i.e.

weights and biases.

Based on this, the following sub-hypotheses can be formula led:

Sub-hypothesis 1: Unconventional shapes of convolution kernels, e.g. 1× 3 and 3× 1

kernels, can be used to replace some of the commonly-used square convolution kernels

to reduce the computational cost of convolutional layers.
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1.3 Contributions

Sub-hypothesis 2: Multi-objective evolutionary algorithms can be used to optimise

the computational resource consumption by reducing the size, shape and number of

kernels in convolutional layers for specific tasks.

Sub-hypothesis 3: Evolutionary algorithms are capable of quantising CNN weights

and biases from their original 32-bit floating point representation to small bit-width

integer representation while minimising the loss in classification accuracy.

Sub-hypothesis 4: Applying different bit-widths of integer representation for convo-

lutional layers and fully-connected layers can achieve further reduction in parameter

size while minimising the loss in classification accuracy.

In order to test these hypotheses, the following objectives will be met:

Objective 1: Develop an optimisation methodology to reduce computational cost of

processing feed-forward CNNs with combinations of various unconventional convolution

kernel shapes and sizes.

Objective 2: Devise a methodology that allows adaptive quantisation of both weights

and bias from 32-bit floating point representation to lower bit-width integer represen-

tation while retaining model classification accuracy.

1.3 Contributions

This thesis makes several contributions to the field of optimising CNN models. These

contributions can be divided into two main categories, computational cost optimisation

and data size optimisation. Details for contributions in each categories have been

described as follows:

For computational cost optimisation perspective:
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1.3 Contributions

• A framework of multi-objective optimisation is proposed to explore the design

space for convolution kernels and produce the trade-off between neural network

computational consumption and classification accuracy.

• A methodology introducing unconventional (non-square) kernel shapes and com-

bining different sizes of convolution kernels, which automatically generates combi-

nations of these unconventional kernels that are used to replace the set of one-size

square convolution kernels produced by a conventional approach.

• The knowledge of how different shapes and sizes of convolution kernels are

affecting the computational resource consumption and classification accuracy

when implementing CNNs.

For data representation optimisation perspective:

• The creation of an evolutionary algorithm based adaptive integer quantisation

methodology that quantises both weights and biases of pre-trained CNN models

from their original 32-bits floating point representation to smaller bit-width

integer representation, while keeping the classification error at a minimum after

quantisation.

• A methodology that applies evolutionary algorithm to find upper and lower

boundary for each quantisation bin within the low precision integer representation

for a given pre-trained CNN weights and bias.

• The knowledge of how different bit-widths of integer representation affect the

parameter size and classification accuracy, and how the model accuracy is affected

when applying different integer representation for quantising convolutional layers

and fully-connected layers of pre-trained CNN models.
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1.4 Thesis Structure

1.4 Thesis Structure

This thesis consists of seven chapters and is organised as follows:

• Chapter 2 provides a background review of recent developments in CNN designs

and different approaches of optimising CNNs, as well as recent approaches of

applying evolutionary algorithms for searching neural network architectures.

• Chapter 3 presents a computational resource consumption optimisation to trade-

off between the amount of computation and model classification accuracy. A

MOEA is applied together with multiple unconventional (non-square) convolution

kernels.

• Chapter 4 extends the computation consumption optimisation that considers

allowing the computation consumption optimisation to remove some convolution

kernels, if possible, with the aim to further reduce the computational costs in

convolutional layers.

• Chapter 5 demonstrates an adaptive integer quantisation approach for data

representation optimisation that applies a rank-based evolutionary strategy to

reduce the number of bits by quantising pre-trained CNN models from 32-bit

floating point representation to 8-bit integer weights and bias.

• Chapter 6 extends the adaptive integer quantisation to apply different integer

representation in convolutional layers and fully-connected layers for further

reducing the parameter size of CNN models.

• Chapter 7 concludes all frameworks and methodologies for optimising CNN models

that have been proposed in this thesis, make suggestions for improvements, and

further works are discussed to further explore current findings.
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Chapter 2

Background
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2.1 Convolutional Neural Networks

This chapter provides the background knowledge of artificial neural networks and

evolutionary algorithms, as well as a review of recent approaches looking at evolutionary

optimisation techniques that have been developed for optimising artificial neural

networks.

2.1 Convolutional Neural Networks

In this section, the general principle of Convolutional Neural Networks (CNNs) is

introduced. In addition, a review of recent research approaches for CNN architecture

design is provide.

2.1.1 Introduction to Convolutional Neural Networks

Artificial Neural Networks (ANNs) are biologically-inspired computing systems which

consist of inner-connections between artificial neurons. ANN models aim to build a

correspondence between their inputs and outputs by adjusting parameters attached

to neurons. ANN systems aim to perform tasks by training them on data, they are

not initially designed for specific applications. ANN computing systems are learning

to perform tasks by considering training data, generally without being programmed

with any task-specific rules. Therefore, this less-specific feature allows ANNs to be

used in various application areas. Furthermore, due to their non-specific nature, an

ANN model can be adapted to different applications with less effort compared with

conventional mathematical algorithms. These advantages make ANNs an attractive

topic in both academic and industrial research.

An ANN model is often used for Deep Learning (DL) tasks, called Deep Neural

Networks (DNNs). Deep learning is a branch in the wider family of Machine Learning.

It is designed for automatically evaluating the relationship, features or representations,
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2.1 Convolutional Neural Networks

from the training dataset without specific human designs of feature extractions. Bengio

et al. [22] introduced deep architectures composed of multiple levels of non-linear

operations, such as in neural nets with many hidden layers. Accordingly, A DNN

model usually consists multiple hidden layers, a distributed representation between

input data and its outputs, and non-linear activation functions. In recent years, many

DNN models have been developed for adapting them to different applications, such as

Multi-layer Perceptron (MLP) and Convolutional Neural Networks (CNNs).

Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) is also known as Fully-Connected Neural Network

(FCNN). A Fully-Connected Neural Network (FCNN) means that an output neuron

connects to every input neuron in the previous layer, as shown in Fig. 2.1.

…

… …

…

…

…

…

…

…

Input Layer Multiple Hidden Layers Output Layer

Figure 2.1 A feed-forward Fully-Connected Neural Network

Fig. 2.1 shows the general architecture of a feed-forward Fully-Connected Neural

Network. The feed-forward neural network is using pre-trained weights to predict
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2.1 Convolutional Neural Networks

the category of new input data. While processing an artificial neural network, a

vector-matrix-multiply operation is involved to compute outputs for each neuron. This

can be broken down into a series of multiply-accumulate (MAC) operations [23]. A

feed-forward neural network usually contains many layers of neurons (deep nets). Each

layer receives data from the previous layer as its input. There are normally many

neurons in each layer. Every neuron also contains a weight and bias to each of its

inputs. The sum of bias and weighted inputs are subject to an activation function

which is used to limit the output of neurons to a specific range, as described in (2.1)

and Fig. 2.2.

Oi = g

 n∑
j=1

wijxj + bi

 (2.1)

×
×

×
×

…
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Figure 2.2 Data flow of neurons.

As shown in (2.1) and Fig. 2.2, the multiply-accumulate result is then calculated

through a non-linear transformation, known as activation function g(x). Without the

activation function, the value of MAC operation can be anything ranging between

negative infinite and positive infinite and the multi-layer neural network would simply

collapse into a single linear equation. Hence, the non-linear activation function, the

output feature would simply be the linear combination of input features. Therefore, an

activation function with nonlinearity has been added to each layer.
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2.1 Convolutional Neural Networks

In recent years, more and more DNNs tended to use rectified linear units (ReLU) as

activation functions. The ReLU function can be divided into two linear segments: (1)

Outputting zero if the input is negative. (2) The output value is equal to the input

value if the input is positive. The ReLU function makes the network avoid problems

stemming from saturating excitation, and keeps gradients from vanishing for deep

networks [24]. From a hardware perspective, ReLU is also easier to implement, with

less overhead, than other activation functions, such as sigmoid and tanh. The reason

is that a negative input causes the ReLU to output 0, and a positive input gives the

output as f(x) = x. Therefore, it can be simply processed with a sign-detector and

a multiplexer in digital circuit implementation. Table 2.1 lists some commonly used

activation functions in ANNs.

Table 2.1 Commonly used activation functions in artificial neural networks.

Type Function

ReLU f(x) =
{

x x ≥ 0
0 x < 0

Leaky ReLU f(x) =
{

x x ≥ 0
0.01x x < 0

Sigmoid f(x) = 1
1+e−x

Tanh f(x) = ex−e−x

ex+e−x

Softmax f(x) = ex∑J

j=1 ex

Convolutional Neural Networks

Compared with other types of neural networks, a convolutional neural network consists

of different types of layers, including 2-D convolutional layers, pooling layers and

fully-connected layer. The 2-D convolutional layers and pooling layers have several

feature maps. These feature maps are used to detect different features from the input
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2.1 Convolutional Neural Networks

data, and pooling layers are used to summarise the presence of those features from

previous convolutional layers. The detected features then pass through the classification

layer which is used to select appropriate responses for those features. When compared

to a fully-connected neural network, convolutional layers usually contain smaller kernel

sizes. Neurons in the convolutional kernel are shifting over the input data by using

the same set of weights and bias. Then, the sum of weighted inputs will be input to

the activation function and the outputs from the activation function are used as the

inputs of the next layer, as shown in Fig. 2.3.

(a) (b)

…

Inputs Convolutional	Layers	and	Pooling	Layers Classification	
Layer

Outputs

(c)

Figure 2.3 (a) An example of shifting 3x3 convolutional kernel across the image. (b)
3x3 convolutional kernel. (c) Example of the whole CNN process.
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2.1 Convolutional Neural Networks

The convolutional layers and pooling layers in CNNs are sparsely connected. Compared

with fully-connected layer in feed-forward neural networks, neurons in a convolutional

layer are only connected with a few neurons in previous layer, as apposed to all of the

neurons. Specifically, any neuron in the feature map of a convolutional layer is a linear

combination of neurons in the receptive field which is defined by convolutional kernel

in the previous layer [23, 25]. The sparse connectivity of a CNN has a regularisation

effect, which improves the stability and generalisation ability of the network structure

as well as avoiding overfitting. Meanwhile, sparse connection allows networks with

reduced number of weight parameters, which is conductive to the fast learning of a

neural network and reducing memory footprint while processing the network [26].

Since the AlexNet achieved first place in ILSVRC-2012 competition in 2012 [6], many

researchers started to focus on designing more efficient and accurate CNN architectures.

In the remainder of this section, some of the most widely used CNN architectures are

reviewed, including LeNet-5, AlexNet and etcs.

LeNet-5 was proposed by LeCun et al [27]. It has been widely used in the United

States for automatically classifying handwritten digits on bank cheques. Before LeNet-5

was proposed, character recognition was achieved by feature extraction through manual

feature engineering, then, applied machine learning models to learn the extracted

features for object classification. Feature engineering was a big issue, that engineers

had to consider what kind of features were necessary. The LeNet-5 could extract and

learn features by itself. This mean that it was possible for the network model to learn

features by itself, and does not require specific manual design for feature extraction

methods.

LeNet-5 contains an input layer with 32× 32 neurons which are used to handle grey-

scale input images. After the input layer, LeNet-5 contains three convolutional layers

that are built up by 6 and 16 5 × 5 and 120 1 × 1 convolution kernels respectively.

First two convolutional layers are followed by an average pooling operation. There is
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2.1 Convolutional Neural Networks

a fully-connected layer with 84 neurons connected to the last average pooling layer.

Finally, a ten-neuron fully-connected classification layer is connected at the end to

classify 0 to 9 handwritten digits. The LeNet-5 is the pointer of convolutional neural

network that introduced the local receptive field, shared weights and subsampling.

AlexNet is the dividing line between shallow neural networks and deep neural networks

which won the ILSVRC-2012 image recognition competition [6]. The AlexNet contains

five convolutional layers, three pooling layers and three fully-connected layers. AlexNet

has similar architecture to LeNet-5, but it is much deeper and wider than LeNet-5

which involves larger parameter space to fit large-scale datasets. The AlexNet has

five convolutional layers, three maxpooling layers and three fully-connected layers.

Compared with LeNet-5, the AlexNet contains four key components:

1. AlexNet uses ReLu [28] as the activation function, instead of Sigmoid or Tanh

activate functions which were conventionally used in previous CNNs designs.

The reason for applying ReLu as the activation function is that calculating

the derivative of Sigmoid and Tanh is cumbersome, and the gradient of both

Sigmoid and Tanh will disappear when the CNN becomes deeper.

2. AlexNet implements Local Response Normalisation (LRN) into the network. The

LRN creates a competition mechanism for the activity of local neurons, making

the values in which the response is relatively large and suppressing other neurons

with smaller feedback, then, enhancing the generalisation ability of the model.

3. AlexNet applies max pooling operation to the output of convolutional layers.

Previously, average pooling was commonly used in CNNs, AlexNet uses max

pooling in all pooling layers to avoid the blurring effect of average pooling. It is

proposed in AlexNet to let the step length be smaller than the size of the pooling

kernel, so that there will be overlap and coverage between the outputs of pooling

layers, which improves the feature richness.
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2.1 Convolutional Neural Networks

4. Dropout [29] is used when training AlexNet, randomly ignoring some neurons in

order to avoid overfitting the network. It is mainly the last few fully connected

layers in AlexNet that use Dropout.

VGGNet was proposed by K.Simonyan and A.Zisserman in 2014. It won the second

place in ILSVRC-2014 [5]. Until now, VGGNet is still frequently used to extract image

features in various applications. VGGNet explores the relationship between the depth

of a CNN and its performance. By iteratively stacking small convolution kernels, 3× 3,

and max pooling size of 2× 2, VGGNet successfully constructs 11-layers to 19-layers

deep CNNs. Literature suggests that the increased depth of the convolutional neural

network and the use of small convolution kernels in VGGNet play an important role in

the network’s classification and recognition accuracy. The Fig 2.4 [5] shows different

network configurations of VGGNet from 11-layers to 19-layers structures. As is shown

in Fig 2.4, each convolutional layer, such as conv3, contains multiple convolution

kernels of size 3× 3 with stride of 1 and padding 1, so that the height and width of the

feature maps are not changed after the convolution operation. The maxpooling layers

contain pooling kernel size of 2 and a stride of 2. The height and width of the feature

maps are reduced to half of the input size after each pass through the maxpooling

operation. The ReLu activations are applied to the outputs of each layer, except the

last fully-connected, FC-1000, where Softmax is placed.

VGGNet uses the following specifications:

1. The network structure of VGGNet is very simple. It consists of five convolutional

layers, three fully-connected layers and one softmax layer. The layers are con-

nected to each other using maxpooling and the ReLu activation functions used

between all hidden layers.

2. VGGNet uses a convolutional layer that contains multiple small 3× 3 convolution

kernels instead of large kernels like AlexNet [6]. The receptive field of a stack of
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2.1 Convolutional Neural Networks

Figure 2.4 Different configurations of VGGNet. In this table, the “11 weights layers”
means there are 11 layers in total (excluding maxpooling layers). “LRN” means Local
Responds Normalisation. The “conv3-64” means there are 64 3× 3 convolution kernels
in current layer, “conv3-128” means there are 128 3× 3 convolution kernels in current
layer and so on. “FC-4096” means a fully-connected layer that contains 4096 neurons.

two 3× 3 convolution kernels is equivalent to the receptive field of a 5× 5 kernel,

and the receptive field of a stack of three 3× 3 convolutional kernels is equivalent

to the perceptual field of a 7×7 kernel which is used in AlexNet. Thus, the use of

multiple small convolution kernels can not only reduce the number of parameters,

but also enhances the nonlinear mapping of the networks, thus, improving the

expressiveness of the network.
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3. VGGNet has a large number of channels in each layer. The first layer of VGGNet

has 64 channels and each subsequent layer doubles the number of channels to a

maximum of 512 (64-128-256-512-512). Since each channel represents a feature

map, this allows more information to be extracted.

GoogleNet was developed by C. Szegedy et al in 2014, it won the first place in the

Classification Task of ILSVRC-2014 [7]. Unlike previous CNN designs, e.g. AlexNet and

VGGNet, where only a single size of convolution kernels is placed in each convolutional

layer, GoogleNet introduced a new model of convolutional layer which is defined as

‘Inception’. The structure on inception module is shown in Fig 2.5 [7].

(a) (b)

Figure 2.5 (a) The initial version of Inception module (b) The dimension reduction
version of Inception module. An Inception module consists of multiple size of convolu-
tion kernels in parallel. There are some 1× 1 kernels in the Inception module before
passing them to the parallel operations, which are used to reduce the depth of tensors.

The Fig 2.5a demonstrates the initial version of Inception module in GoogleNet. Unlike

the previous CNNs architecture designs, the convolutional layers were connected in

series with each other and with the pooling layers, whereas in GoogleNet, they are

connected in parallel with multiple size and types of convolution kernels. The Inception

module shown in Fig. 2.5b adds three sets of 1× 1 convolution kernels, which reduces

the depth of the feature maps. As a result, these sets of 1 × 1 convolution kernels

are greatly reducing the number of model parameters and, hence, are reducing the

computational costs for processing such networks. Furthermore, GoogleNet drops the
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fully-connected layers in favour of an average pooling layer which significantly reduces

the model parameters.

ResNet was proposed by K. He et al [30] in 2015, it won the first place in the

Classification Tasks in ILSVRC-2014 and first place in target detection and image

segmentation in the COCO 2015 competition [31]. Before the ResNet was proposed, all

CNNs were composed of a combination of convolutional and pooling layers. Previous

research suggested that the more convolutional and pooling layers, the more features can

be extracted from images, thus, the better the learning performance would be. However,

in practical experiments, it was found that, as the number of convolutional and pooling

layers were added, instead of getting better classifications, two problems occurred, i.e.

1) vanishing gradient and exploding gradient and 2) degeneracy. Vanishing gradient

means that, if the error gradient at each layer is less than 1 while processing the back

propagation, the gradient will converge close to 0 when the network goes deeper. The

exploding gradient means that, if the error gradient at each layer is greater than 1 while

processing the back propagation, the gradient will become higher and higher as the

network becomes deeper. Degeneracy means that, as the number of layers increases,

the prediction accuracy of network is getting worse. In order to deal with the vanishing

gradient and exploding gradient, the ResNet introduces Batch Normalisation (BN)

layers in the network to solve the issue. For mitigating the degeneracy problem, ResNet

introduces ‘residual blocks’ to handle the issue.

• The residual structure is a kind of shortcut connection. For a stacked layer

structure, the learned features are noted as H(x) when the input is x, now we

want it to learn the residuals F (x) = H(x) − x, so that the original learned

features are actually F (x) + X. This is because the residual learning is easier

than direct learning of the original features. If the network goes deeper and there

is a degradation problem occurred, then we only need to make the residual map

F(x) equal to 0, that is, the map H(x) to be solved is equal to the feature map

x output by the previous layer, because x is the best solution for the current
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output, so that the network state of the residual block is still the best one.

Fig. 2.6 shows the comparison between the stacked layer and residual structure.

This feature makes that the residual map will generally be small, therefore, the

network requires less learning effort. When the residuals are 0, the stacking layer

is only doing constant mapping at this point, so that the network performance

does not degrade at least. In reality, the residual cannot be 0. This will also

allow the stacking layer to learn new features based on the input feature maps,

thus, achieving better performance.

Weight layer

Activation function

Weight layer

Activation function

Weight layer

Activation function

Weight layer

Activation function

+

𝑥 𝑥

𝐹(𝑥) 𝐹(𝑥)

𝐻 𝑥 = 𝐹 𝑥 + 𝑥

Figure 2.6 The figure in the left shows a stacked layer structure, where the weight layer
needs to learn the mapping F (x) directly. The figure in the right demonstrates the
residual structure. In this case, the weight layer needs to learn the residual mapping
F (x) = H(x)− x.

• Batch Normalisation is the process of taking a feature map of a batch of data

and scaling it with a mean of 0 and a variance of 1. This process will accelerate

the convergence of the network. In the training process, the CNN is trained by

taking data from one batch to another. Therefore, it is required to calculate

the mean and variance of each batch continuously during the training process,

then record the statistical mean and variance using the moving average method.
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So that, the statistical mean and variance can be approximated to be equal to

the mean and variance of the whole training set after each epoch. The mean

and variance of the statistics are then normalised for use in the validation and

prediction process [32]. The (2.2) describes the mathematical approach for the

batch normalisation, where m is the number of inputs in the mini-batch, B refers

to the current batch, µB is the batch mean, σ2
B is the input variance of current

batch, x̂i indicates the normalised layer input with the batch mean and variance,

ϵ is for numerical stability in case the denominator turns to zero and yi is the

output of the layer after scaling and shifting. The scaling and shifting parameters,

γ and β are learned during the training process.

µB = 1
m

m∑
i=1

xi

σ2
B = 1

m

m∑
i=1

(xi − µB)2

x̂i = xi − µB√
σ2

B + ϵ

yi = γx̂i + β

(2.2)

2.1.2 Computational and Memory Cost Analysis

This section provides a review of some classic CNN architectures. From a global point of

views for different CNN architectures, the Fig. 2.7a illustrates the trend between top-1

classification accuracy, number of operations for processing input data for corresponding

CNNs and parameter size of recent developed CNNs on ImageNet [13]. It can be

seen from the figure, as the classification accuracy of CNN goes higher, the network

requires more computational resources to process input data and a larger memory

size to store model’s parameters. In order to achieve high accuracy, state-of-the-art

ANN models consist of many hidden layers. These hidden layers can significantly

increase the model accuracy. However, as the networks goes deeper, a huge amount of
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(a)

(b)

Figure 2.7 (a) Classification Accuracy vs Operations vs Model Size of recent CNNs
on ImageNet. (b) Forward time per image vs Operations for a single input image. In
both figures, each CNN is represented by an unique colour.

operations and processing data are produced. For example, the VGGNet has a total

of 16 layers and consists of 138 million parameters [5] and storage requirement is up
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to 552 MB [14] and the Caffe [33] version of ALexNet takes 106.09ms to process for

single 224× 224 input image when running on Intel Xeon E5-2620 v2 at 2.10 GHz [34].

The large amount of computational resources and memory costs limits its applications

on resource-constrained devices. Therefore, in order to implementing CNNs in such

embedded devices, the CNNs have to optimised to be small and efficient. In this PhD

work, both the computational cost and memory usage of CNNs are considered to be

optimised while minimising the loss in classification accuracy.

Classification Accuracy

When designing a CNN, the first objective would be classification accuracy of the

model. After training a CNN on a specific training dataset, the model are then tested

on the test dataset for evaluating the model’s accuracy. The accuracy is defined as:

Accuracy = Number of correct predictions

Total number of predictions
× 100% (2.3)

In some CNN designs, both Top-1 and Top-5 accuracy are reported as the model’s

accuracy [5, 7, 30]. The Top-1 accuracy is the conventional accuracy which defined as

model’s highest probability prediction must be exactly matched with target label. The

Top-5 accuracy means that if any of the top 5 highest probability predictions matches

the target label. In this PhD work, it considers the exact accuracy of an optimised

CNN. Therefore, the Top-1 accuracy is considered as the classification accuracy.

2.1.3 Computational Cost and Memory requirement of CNNs

When running CNNs on a specific hardware platform, the overall performance is

not only about the models’ accuracy, the computational resource cost and memory
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requirement are also factors to be considered. In this section, the computational

resources cost for processing a CNN is discussed.

The relationship between the top-1 classification accuracy, the number of operations

required to process the input data for the respective CNNs, and the parameter size

of recently constructed CNNs on ImageNet is shown in Fig. 2.7a [13]. In this case,

the number of operations is calculated by the number of Multiply-accumulate (MAC)

operations for processing a CNN. Since they consider the multiplication and addition of

a MAC as two separate operations, the overall number of operations for a convolutional

layer in a conventional CNN is defined as:

NOconv = 2×O2
i ×On ×K2

i ×Kn (2.4)

where Oi is the size of output feature map in convolutional layer i, e.g. for a 100× 100

output feature map, the O2
i is 100 × 100 = 104. The On represents the number of

output feature maps in current convolutional layer. Ki represents the size of the

convolution kernel and Kn is the number of convolution kernels in convolutional layer

i. For example, a VGGNet has 64 3× 3 kernels in the first convolutional layer, the K2
i

will be 3× 3 = 9 and Kn is equal to 64.

For the fully-connected layer i with N neurons, the number of operations for a fully-

connected layer is defined as:

NOfc = 2×Ni−1 ×Ni (2.5)

where the Ni−1 indicates the number of neurons in previous layer and Ni indicates the

number of neurons in current layer.
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Fig. 2.7b demonstrates the trend between the number of operations and the forward

time of single input images for corresponding CNNs on ImageNet [13]. It can be seen

from the Fig. 2.7b, the forward time for processing a single input image on ImageNet is

nearly proportional to the number of operations. Therefore, based on the relationship

between forward time per image and the number of operations of the model, if the

number of operations is reduced, the processing speed of the network will also be

reduced.

In this PhD work, the number of operations for a specific model is counted by the

number of multiplications. Unlike A. Canziani et al [13], where the multiplication

and addition are considered as two separate operations, in this work, the number of

MAC operations is counted as a single operation, which is represented by number of

multiplications. In this case, two equations for counting number of multiplications in a

convolutional layer and a fully-connected layer are:

Operationconv = O2
i ×On ×K2

i ×Kn (2.6)

Operationfc = Ni−1 ×Ni (2.7)

In (2.6), Oi is the size of the output feature maps in convolutional layer i. On is the

number of output feature maps in current convolutional layer. Ki and Kn represent the

size and the number of kernels in convolutional layer i. In (2.7), Ni−1 is the number

neurons in previous layer and Ni is the number of neurons in current fully-connected

layer.

In general, the total amount memory for storing weights and biases is counted as:
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Msize = Nweight ×Bweight + Nbias ×Bbias (2.8)

where Nweight is the number of weights, and Nbias is the number of biases for a given

model. Bweight and Bbias represent the bit-width of weights and biases, respectively.

2.2 Evolutionary Optimisation

2.2.1 Introduction to Evolutionary Algorithms

In order to generate a set of possible solutions for the problem provided, evolutionary

algorithms (EAs) employ several core concepts of biological evolution, such as mutation,

crossover and natural selection. Each of the solutions will be ranked by a function

which shows the performance of the solution for the targeted objective. In this section,

an overview of recent research in evolutionary algorithms is provided.

2.2.2 Basic Operation in Evolutionary Algorithms

For implementing an evolutionary algorithm, there are some basic operation needs to

be considered.

Representation: In evolutionary algorithms, specific data structure needs to be

considered, which is used for representing solutions and variation operators. This

step is also called genetic encoding. Depending on the specific problem, different data

representations are needed to be considered with a feasible range. In this process, the

target problem is described in a set of variables. This set of variables is defined as gene.
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Finally, an individual for the target problem can be represented by the combination of

specific genes.

Initialisation: For running an EA, the initial population needs to be generated first.

The initial population is usually initialised either randomly, or with some specific

configurations. The size of the population is defined as the number of individuals in

the population.

Variation: Since the EA initialises the population or takes individuals which is

survived from the previous population, variation is then placed to modify the genes in

each individual. There are two different types of genetic operator used for varying the

genes, which are mutation and crossover.

The Fig. 2.8 shows an example of how the mutation operation works with binary

representation of genes. Based on mutation rate, there are some genes selected from

the survived individuals. Those genes are then randomly varied to generate new genes

which are within the range of data representation strategy. For instance, the mutation

operation using binary representation is demonstrated in Fig. 2.8 where two genes are

randomly selected from the parent individual to build the offspring. In this case, the

‘1’ in the parent string is changed to ‘0’ and the ‘0’ in the parent string is changed to

‘1’ to generate the offspring.

1 0 1 0 0 1 0 1Parent 1

0 0 1 0 0 1 1 1Offspring 1

Figure 2.8 An example of mutation operation.
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Crossover operation is another type of genetic operation in EAs. The crossover means

that two chromosomes exchange part of their genes to generate two new offspring.

Different from the mutation operation, the crossover operation does not generate new

genes but arranging the existing genes in new combinations. The probability that two

chromosome can recombine some of their genes are defined by the crossover rate, which

is the frequency of crossover for individuals in a population. In this case, only part

of the individuals in offspring population are reproduced by the crossover operations,

others in the offspring population are replicated from parent population. Fig. 2.9

demonstrates how the crossover operation is performed on two crossover point. Recent

research shows that the mutation operation plays a more important role than the

crossover for implementing EAs in some optimisation problem, in some cases, EAs

even can achieve better convergence when applying mutation operations only [35].

1 0 1 0 0 1 0 11

0 1 1 1 0 1 1 01

Parent 1

Parent 2

1 0 1 0 0 1 0 11

0 1 1 1 0 1 1 01

Parent 1

Parent 2

Crossover Points

1 0

1 0 0 1

0 11

0 1

1 1 0 1

1 01

Offspring 1

Crossover Points

Offspring 2 1 0 0 10 1 1 01

1 0 0 10 1 1 01
Selected 
Offspring 

1 0 0 10 1 1 01

Figure 2.9 An example of crossover operation.

Evaluation: The evaluation process means that measure the performance of each

individual in current population. In order to evaluate the performance of the individual,
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fitness function needs to be defined as the objective of EA. Then, a numerical scores

will be given to the individual that represents its performance.

Termination: Termination means when the EA should stop. This step depends how

user wants to terminate the process, e.g. running for a number of iterations or the

results cannot improve over a certain of generations.

Selection: After evaluating each individual and if the EA has not been terminated, the

selection process will rank the individual based on its fitness score which is evaluated

from the evaluation process. The individual with higher fitness score will be passed

to the next generation and the individual with lower fitness score will be removed.

Elitism strategy is frequently employed since it can guarantee the the individual with

the most desirable fitness score are retained unaltered and passed down to the following

generation [36].

Initialisation

Variation

Evaluation

Termination

Selection

Result

Figure 2.10 The process of evolutionary algorithms
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The general implementation of EAs is demonstrated in Fig. 2.10. In the following

sections, a range of EAs has been reviewed and analysed.

2.2.3 Evolutionary Strategies

Evolutionary strategies are population-based optimisation method where genetic op-

erators are placed to improve the fitness score of individuals over many generations.

In comparison to other optimisation methods, such as stochastic gradient descent

for neural networks training which has to build complex optimisation function, the

evolutionary strategy is a black box algorithm that influences the results through

intervention and gradually selects the optimal point through iterations. It is a kind of

black box algorithm that does not consider the intermediate complex functions. The

optimisation goal can be achieved directly by simply defining the reward.

The key distinctions between various evolutionary strategy implementations are how

the parent and offspring populations are handled and what kinds of genetic operators

are utilised to derive the offspring populations. There are some algorithms that only

involves mutation operations and others using both crossover and mutation as genetic

operators to generate the offspring [37–39]. The simplest evolutionary strategy is called

(1+1) Evolutionary Strategy ((1+1)-ES). As the name suggests, the (1+1)-ES is the

optimisation algorithm that one offspring is produced by Gaussian mutation [40] by

one parent [41]. In this method, there is only one parent individual and only producing

one offspring at a time, and then, keeps the individual with better fitness as the parent

to the next generation. Another two methodologies of evolutionary strategies are (µ, λ)

Evolutionary Strategy ((µ, λ)-ES) and (µ + λ) Evolutionary Strategy ((µ + λ)-ES),

where µ is the number of individuals that used to generate offspring, λ is the number

of individuals in offspring population [39]. The main difference between (µ, λ)-ES and

(µ + λ)-ES is that, in (µ, λ)-ES, the offspring population is evaluated and select µ

individuals as the parent to generate the offspring for next iteration. In (µ + λ)-ES
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both the parent and offspring population are evaluated together, then, the number of

µ individual are selected to generate new offspring for next generation by comparing

the best fitness in both parent and offspring.

A self-adaptive evolutionary strategy has been proposed to deal with continuous opti-

misation problems, called Covarience Matrix Adaptation Evolution Strategy (CMA-

ES) [42]. In CMA-ES, for the multi-dimensional vector, the covariance information

is put into the matrix, and the random points are generated based on the multi-

dimensional Gaussian distribution of the covariance matrix. In addition, the historical

step is maintained to adjust the parameters of the multi-dimensional Gaussian dis-

tribution smoothly. In this way, more samples are collected in potential areas while

ignoring less important factors and it can get results more quicker than (µ, λ)-ES and

(µ + λ)-ES.

2.2.4 Multi-objective Evolutionary Algorithms

In CNN design, many scenarios will come up with trading-off between multi-objective.

For instance, researchers are usually required to design a CNN with high classification

accuracy, low memory costs, less power consumption and fast processing speed. Hence,

only focusing on improving CNNs classification accuracy has been no longer meeting

the design requirements and goals. In addition, a good design with multiple greater

performance is necessary for today’s AI applications.

Problems with multiple objectives arise naturally in any real-world issues and solutions

seeking is challenging [17]. Dealing with multi-objective optimisation problems is

impossible for the optimisation of a particular solution only with respect to one single

target leading to unacceptable results in terms of remaining objectives [16]. To define

a multi-objective problem with n decision variable vectors and m objectives , it can be

described as (2.9) [17],
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F (x) = [f1(x), f2(x), ..., fm(x)]T , x = [x1, x2, ..., xn]T ∈ X ⊂ Rn (2.9)

where x is the n-dimensional decision vector and X is the n-dimensional searching

space. The objective F (x) ⊂ Rm is the m-dimensional objective space. The x defines

m functions mapping X to F (x).

It eventually does need to iterate a set of compromised solutions of trade-offs in

regarding to all proposed objectives from which users could select proper solution.

The trade-offs between multiple objective functions, f1(x), f2(x), ..., fm(x) is normally

adopted notion of Pareto optimal [43].

Figure 2.11 The Pareto optimal between two objective. Both solution x0 and x1 are
lying on the Pareto front, which means these two solutions are not dominated by any
other solutions in the searching space X. The solution x2 is not in the Pareto front,
since it is dominated by x0 and x1.
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The Fig 2.11 demonstrates an example of the Pareto optimal for a two objective

minimisation problem. The solution x0 and x1 are identified on the Pareto front and

both solutions outperform the x2, i.e. the trade-offs between objectives. In this case, if

solutions are not dominated by any other solutions, they are defined as Pareto optimal

or trade-offs. The dominate is defined in (2.10), where it aims to find the possible

solutions that can satisfy with one objective without making others worst.

fi(x0) ≤ fi(x2), i = 1, 2, ..., m (2.10)

As the results, multi-objective evolutionary algorithms (MOEAs) are one of today’s

most powerful techniques for solving multi-objective optimisation problems [44, 45].

Vector Evaluated Genetic Algorithm (VEGA) is the first MOEA which propose by D.

Schaffer [46]. Later on, many powerful MOEAs have been proposed, such as Multi-

objective Genetic Algorithm (MOGA) [47], Non-dominated Sorting Genetic Algorithm

(NSGA) [48] and Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [18] which

are widely used in many applications.

In VEGA, there is a number of sub-populations that are selected from the whole

population in every generation, then, each of the sub-population are only assigned

one optimisation objective [46]. For example, if the user aims to solve a problem

with n objectives and the number of individuals in each sub-population is p, hence,

the population size of VEGA will be n × p. In this case, the VEGA is working as

running multiple single-objective evolutionary algorithms simultaneously. However, this

approach gets solutions that excel in one purpose without considering the performance

for other objectives, which is a dilemma that prohibits finding compromise solutions

with respect to tasks which need to be completed.

MOGA proposed non-dominated ranking and selection to make the optimisation result

can converge to all objectives at the same time [47]. In this algorithm, rank 1 would be
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assigned to non-dominated individuals, which will be assigned the highest fitness and

other ranks would be assigned to dominated individuals based on their neighbouring

population density. A similar approach was taken by the NSGA in order to maintain

the population diversity [48]. The niche radius, σshare, is used to measure how crowded

each individual’s region is. In this case, specifying the niche radius appropriately is

critically important to the performance of MOGA, which bring another challenge to

the such algorithm.

The NSGA-II was developed by K. Deb et al in 2002 as an improved version of the

original NSGA [18]. In the NSGA-II, through the implementation of the non-dominated

sorting approach and the diversity preservation strategy, the ability to select solutions

without elitism can be retained and a wide spread of solutions can be explored. In

this algorithm, there are two features for each solution: 1) how many solutions are

dominated by the target solution, 2) how many solutions dominate the target solution.

In this case, if the solution is not dominated by other solutions, this solution will be

placed into first rank. There are multiple levels of ranking depending on the domination

count of the solution. And also, the niche radius, σshare, is no longer used in NSGA-II,

instead, the NSGA-II introduced crowding distance measurement to spread the diversity

of solutions. For example, if two individuals are in the same rank, the individual with

less crowding distance are considered as better solution [44]. These two approaches

perform the NSGA-II can not only converge to all objectives simultaneously, but also

can explore the solution space widely without additional settings of niche radius or

other parameters.

2.3 Evolutionary Optimisation in Neural Networks

In recent years, the recognition accuracy of neural networks increases, the model size

and parameter size are also rising dramatically [13]. As the results, designing and
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optimising neural networks by evolutionary algorithms have also drawn attentions to

researchers [49].

Since designing CNNs requires to define different functional layers and topology,

the EAs are therefore required to configure to represent network topologies. In

general, there are three main categories used for evolving CNNs by EAs, which are

layer-based evolution [50–58], module-based evolution [59–67] and topology-based

evolution [19, 68, 69]. In this section, recent research approaches have been reviewed

from these three perspectives.

Functional layers are the basic unit for designing a neural work, such as convolutional

layers, pooling layers and fully-connected layers. For a well-designed CNN, it usually

contains multiple functional layers and each layer has different parameter settings. For

example, five parameters need to be set up for implementing a single convolutional layer,

which are convolution kernel height and width, number of kernels in the convolutional

layer (convolutional layer depth), stride and padding methodology. For a pooling layer,

the design is required to define what kinds of pooling strategies are necessary, such as

max pooling or average pooling, and also, defining the size and stride are also essential.

Therefore, in layer-based evolution, there are so much parameters encoded in the search

space which results extremely large search space. This makes EA take a lot of time to

converge to a solution through layer-based evolution. Nevertheless, a large search space

means that there is more possibility to find the global optimal for designing CNNs on

target datasets [70].

In the past ten years, different convolutional modules have been introduced for designing

CNNs and each convolutional module normally has multiple types of function layers [7,

5, 30, 71, 72]. On the one hand, those convolutional modules contain typical connections

and size between functional layers which results in improvement in CNNs’ classification

accuracy without vanishing gradient and exploding gradient. On the other hand,

designing CNNs by using these function layers can make the model easily extend to
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deeper connections, and thus, provide high classification accuracy [5, 30]. These special

connections of different convolutional module cannot be found by using layer-based

evolution. Therefore, module-based evolution becomes necessary for optimising these

types of CNNs. Moreover, the connections inside those convolutional modules are

fixed, in order to guarantee the functionality and performance of the convolutional

modules. Therefore, less parameters need to be determined when applying module-

based evolution, compared with layer-based evolution. for example, M.Suganuma

et al [64] applied EAs to encode the CNN architectures based on ResBlock [30] and

customised ConvBlock which leads significant improvement in model’s classification

accuracy than standard VGGNet [5] and ResNet [30].

Different from layer-based evolution and module-based evolution where the size of layer

or modules is parameterised into EAs’ representation, the topology-based evolution only

consider the connection between different layers or modules. For instance, CARS [68]

proposed a topology-based evolutionary optimisation method for maximising the

knowledge that is learned from previous generations. The CARS initialises a large

neural network, called SuperNet, which contains a large amount of different blocks

and cells. Then, a number of subgraphs, i.e. different connection between blocks and

cells, are generated from the SuperNet by EA. These subgraphs are trained on target

dataset and updating the cells in the SuperNet.

2.4 Summary

In summary, this chapter provides an overview of artificial neural networks, typically for

convolutional neural networks which are this thesis focused on, as well as evolutionary

algorithms and its applications in optimising CNNs.

From the study and investigation of CNNs, there are two main challenges in processing

CNNs. Firstly, it is obvious that high performance CNNs require very deep structure,
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as the network goes deeper and wider, it requires more computation resources to process

such networks. Secondly, those deep CNNs contain huge amount of parameters which

requires a large memory size to storage data. The CNNs bring significant challenge for

computational resources and memory size, especially for resource-constrained embedded

devices. Therefore, optimising CNNs to reduce the computational cost and model size

while remaining high classification accuracy is critical.

Evolutionary algorithms demonstrate a good performance in optimisation problems

which can effectively deal with one or more objectives with providing multiple better

solutions for decision makers. Past research show that evolving the CNN architectures

by EA can achieve higher classification accuracy than human-designed CNNs. It is

an opportunity for evolutionary algorithms to optimise the CNNs architectures that

balancing the computational costs, memory consumption and model’s classification

accuracy at the same time.
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Chapter 3

Evolutionary Optimisation of

Kernel Shapes and Sizes
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While state-of-the-art development in Convolutional Neural Networks (CNNs) topology

makes CNNs’ classification accuracy become increasingly accurate, these networks

have became computationally expensive involving billions of arithmetic operations

and parameters. In order to improve the classification accuracy, state-of-the-art

CNNs usually involve large and complex convolutional layers. However, for certain

applications, e.g. Internet of Things (IoT), where such CNNs are to be implemented on

resource-constrained platforms, the CNN architectures have to be small and efficient.

To deal with this problem, reducing the resource consumption in convolutional layers

has become one of the most significant solutions. In this chapter, a multi-objective

optimisation approach is proposed to trade-off between the amount of computation

required and network accuracy, by using a Multi-Objective Evolutionary Algorithm

(MOEA). The number of convolution kernels and the sizes of these kernels, are directly

proportional to computational resource requirements of CNNs. Therefore, this section

considers optimising the computational resource consumption by reducing the sizes of

kernels in convolutional layers. Additionally, the use of unconventional kernel shapes

is investigated, and the results show these clearly outperforming the commonly-used

square convolution kernels.

3.1 Overview

In order to achieve a high classification accuracy, state-of-the-art CNN architectures

have grown extremely complex. For example, AlexNet [6] requires billions of multiply-

accumulation (MAC) operations to process a single image. In general, convolutional

layers are the most computationally expensive, where the resource consumption in each

layer is proportional to the number and sizes of the convolution kernels. For instance,

a 5 × 5 convolution kernel requires more than twice the number of MAC processes

than a 3 × 3 kernel. Therefore, to reduce resource consumption in convolutional

layers, this work aims to reduce the number of MAC processes in these layers by
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using unconventional (non-square) kernel shapes as well as reducing the number of

kernels in each convolutional layer with minimum loss of network accuracy. The

conventional approach to designing the convolutional layer in CNNs is using a set of

square convolution kernels which extract the image features. However, the conventional

kernels are computationally costly where a large number of multiplications is needed

to calculate each feature map. For example, a 5× 5 convolution kernel needs 25 MAC

operations to compute, but a 1× 5 convolution kernel only requires five MAC process.

Therefore, this work aims to find out whether the unconventional convolution kernels

can be to replace the square convolution kernels in CNN designs. In [73] the idea

of separable convolutions is explored, where a set of smaller, one-dimensional (1-D)

convolution kernels is designed to replace the conventional two-dimension (2-D) ones.

For example, a specific n× n matrix can be replaced by the product of a n× 1 matrix

times a 1× n matrix, instead of calculating one convolution with nine MAC processes,

the reformulation calculates two convolutions with three MAC processes each, totally

six MAC processes, to achieve the same performance for specific tasks. The caveat is

that this separation only works within certain constraints, i.e. only a subset of matrices

with specific properties can be replaced. Our proposed design contains a number of

differently-shaped kernels, including 1-D kernels, 2-D rectangle kernels and 2-D square

kernels. Each of these kernels can have a different shape and size which require different

numbers of MAC processes to extract the features from the input images.

Multi-objective evolutionary algorithms (MOEAs) are today one of the most commonly

used methodologies in solving hard optimisation problems where two or more (multiple)

conflicting objectives must be satisfied simultaneously [15]. MOEAs aim to generate a

set of possible solutions (so-called population) in a single run of the algorithm. In recent

years, there have been several research studies focusing on optimising neural network

topology and their connection weights. These approaches have demonstrated that using

evolutionary algorithms to evaluate neural network topology can achieve competitive

performance on state-of-the-art benchmark datasets [19–21]. Fast Non-dominated
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Sorting Genetic Algorithm (NSGA-II) [18] was proposed in 2002. The non-dominate

sorting approach of NSGA-II can make the target problem converge to two or more

objectives simultaneously, and the crowding distance measurement will spread the

diversity of solutions which can provide a large trade-off space between objectives.

Those features of NSGA-II are naturally compatible with the design requirements of

efficient CNNs, which consider both computational cost and the model’s classification

accuracy at the same time.

In order to both minimise the resource consumption and retain the network accuracy

while processing the CNNs on the target hardware platform, NSGA-II [18] is applied

to explore the design space for the feed-forward CNN architecture and produce the

best trade-off between network complexity and classification accuracy. Our proposed

method is focusing on optimising the network width using combinations of various

unconventional shapes and sizes of kernels, while keeping the depth constant.

This chapter is organised as follows: Section 3.2 gives an overview of the current

approaches of optimising feed-forward neural network architecture, as well as recent

approaches for applying unconventional convolutions. Section 3.3 describes the design

methodology that implements NSGA-II to explore the design space of CNN architecture

and explains its features. Section 3.4 shows several test experiments with varying

benchmark datasets and provides a proof-of-concept of the performance of the proposed

method. Finally, Section 3.5 summaries the chapter.
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3.2 Related Works

3.2.1 Optimisation of Network Architecture

Evolutionary Algorithms (EAs) are widely used in optimisation problems with complex

fitness landscapes. When optimising artificial neural networks using EAs, the main

idea is to evolve the synaptic weights and connections of the network [21, 50, 51, 59,

60, 68, 69], where EAs are placed to adjust the networks’ topology by changing the

connections between layers or neurons. In contrast, NEAT [74] is a method that uses

genetic algorithms (GAs) to change both connection weights and network structure

at the same time. Their proposed method encodes each neuron and synaptic weight

in the genotype. For each iteration, the GA can either add additional neurons to

the network or adjust the input/output connections of a neuron. This method allows

the GA to find out the best network topology for the target task. A hypercube-

based NeuroEvolution of Augmenting Typologies (HyperNEAT) method has shown

advantages when optimising weights for CNNs [75, 76]. However, due to the large

search space of CNN topologies, this method requires huge amounts of computational

resources. Therefore, this method is difficult to scale up to state-of-the-art deep neural

network architectures, because of its size. G. Morse and K. Stanley [77] compares

evolutionary algorithms with the stochastic gradient descent (SGD) method for weight

optimisation of ANNs. Their results demonstrate that using an evolutionary algorithm

to optimise weights achieves competitive results, compared with the traditional SGD

method.

Based on previous approaches, it is reasonable to assume that GAs are a suitable method

for optimising network topology. However, for network weight optimisation, GAs show

almost the same performance as SGD through back-propagation. Therefore, in order to

search for efficient neural network architectures and updating network weights at the

same time, a combination of GAs and SGD methods have been investigated in recent
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years. E. Real et al [78] apply GAs to CNN design, where the model is trained by

SGD through back-propagation and the architecture is optimised by simple GA. They

initialise the starting point as a small model which only consists of a single pooling

layer. With each evolutionary step, the model is grown by adding more convolution

layers. Their approach is only focusing on network accuracy, therefore, the result shows

that as the network accuracy is increased, the computational effort required is also

dramatically increased.

CoDeepNEAT [79] is a further extension of NEAT [74] where the population is separated

into two sub-sets: “module” and “blueprint”. The module chromosome is a graph

that represents a small ANN and the blueprint chromosome is a graph where each

node contains a pointer to a particular “module” species. During the evolution, the

two sub-sets are combined together to build a larger network, where each node in the

blueprint is replaced with a module chosen randomly from the species to which that

node points. The results show that the network designed by CoDeepNEAT can achieve

competitive accuracy in image classification problems with faster training speed.

Y. Kim et al [80] use a multi-objective evolutionary algorithm (MOEA) to trade-

off between classification accuracy and run-time. They adopt NSGA-II to explore

the Pareto front of the design space. The network architecture is decoded into two

categories: number of outputs in each layer and the total number of convolution layers.

Their experimental results show that multi-objective optimisation can further reduce

the run-time and achieve better accuracy compared with human expert design. L.

Xie and A. Yuille [19] present a GA solution for searching large-scale CNNs. In their

work, the GA is applied to designing the network structure, where the connectivity

of each layer is encoded by a binary string representation. This method can be easily

modified for different network architectures and includes different types of layers and

connectivity.

43



3.2 Related Works

Apart from using GAs to optimise the CNN architecture by pre-processing the initial

population, such as pre-defining the layer functionalities and connectivity, there have

also been developed some GA-based fully automatic architecture design methods in

recent years, e.g. [81]. Their design methodology contains a building block that acts

as a “skip layer” to replace the convolutional layer. The skip layer contains two

convolutional layers and one skip connection, where the skip connection connects the

input of the first convolutional layer to the output of the second convolutional layer.

Then, a GA is applied to searching suitable connections of skip layers and pooling

layers. Finally, fully-connected layers are added to the tail of the CNN. Similarly,

M.Suganuma et al [20] proposes using Cartesian Genetic Programming (CGP) [82] to

represent deep neural network architectures and to use highly functional modules as

the node functions to reduce the search space. There are six different node functions in

their design, including convolutional blocks, residual blocks, max and average pooling,

etc. CGP encodes CNNs as directed acyclic graphs with a two-dimensional grid of

nodes. Their results demonstrate that the architectures built by CGP outperform

most of the hand-designed modules and provide a good trade-off between classification

accuracy and the number of parameters. Those previous investigations suggest that

applying MOEA for optimising CNNs may potentially provide good trade-off between

the computational resource cost and model’s classification accuracy.

3.2.2 Unconventional Convolutions

Conventional CNN designs use square kernels to detect the image features. This

design method brings significant challenges for computational systems, because the

number of arithmetic operations increases as the network size increases. In order to

reduce computational resource usage and speed up large CNNs, recent research using

unconventional kernel shapes has focused on approximating existing square-kernel

convolutional layers for network compression and acceleration. Recent approaches [73,
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83, 84] have demonstrated that some of the 2-D square convolution kernels can be

factorised into two 1-D kernels. For example, if a convolutional layer contains a

set of n × n 2-D kernels, where n represents the kernel height and width, it can

be factorised as a sequence of two layers with n × 1 and 1 × n kernels, which uses

less computations. Therefore, the 1-D convolution approximation can significantly

accelerate the classification speed as well as reducing the number of network parameters.

Similarly, J. Jin et al [85] introduce this into the training phase by factorising a

conventional three-dimensions (3-D) convolution kernel into three consecutive 1-D

kernels. Their results show that by factorising the 3-D convolution layers, the network

can be accelerated by approximately a factor of two while sustaining similar or better

classification accuracy than using conventional 3-D convolution kernels.

Another approach to design the convolutional layer is to use multiple sizes of kernels

in one layer. GoogleNet [7] is one of the most accurate CNNs capable of processing

ImageNet datasets [86]. In order to increase the network accuracy, their work introduces

an inception module to increase the network depth and width. Firstly, the inception

module contains multiple differently-sized convolution kernels, as well as max pooling

operations. Different types of kernels are computing in parallel and extract features at

multiple scales. After that, feature maps from different kernels are concatenated to

form the input of the next module. In order to reduce the computational effort, a 1× 1

kernel convolution is inserted into the inception module for dimension reduction. Hence,

the network can grow deeper and wider with reasonable increase in computational

resource usage. [87] modify the inception module, where the 7× 7 convolution kernels

are replaced by a sequence of 7× 1 and 1× 7 kernels, so that the overall computing

resources are reduced when compared with the original design. [88] propose Asymmetric

Convolution Blocks (ACBs) to replace the conventional convolution kernels. Typically,

ACBs replace the conventional convolutional layer with three parallel layers, where

these layers contain n× n, n× 1 and 1× n kernels respectively. Finally, the outputs

from each layer are summed up to enrich the feature space.
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3.3 Methodology

The main idea in this work for optimisation of the CNN architecture is to consider

how the classification accuracy can be improved (or kept the same) while reducing the

computational resources required. Previous investigations suggest that using different

shapes of convolution kernels can improve the network performance by detecting

multiple-scale features from input images [88, 87]. In this section, an analysis into

how the size and shape of the convolution kernels are processed regarding to their

computational resource consumption is conducted. Then, a set of different shapes of

convolution kernels is designed to be used in convolutional layers. The MOEA used is

NSGA-II [18] to automatically discover efficient network architecture by finding the

trade-off between the computational complexity and module classification accuracy on

the three benchmark datasets, MNIST [8], Fashion-MNIST [89] and CIFAR-10 [9].

3.3.1 Computational Resource Consumption

For state-of-the-art CNN architectures, the computationally most expensive parts are

the convolutional layers [13]. In a feed-forward CNN, the convolutional layers are used

to extract features from input images. The conventional 2-D convolution process is

illustrated in Fig. 3.1. Mathematically, the formula for calculating a single feature map

by convolution operation can be described as (3.1),

O:,:,oc =
IC∑
i=1

I:,:,i ⊗K:,:,oc (3.1)

where O:,:,oc is an output feature map of the convolutional layer in the oc-th channel, I

is the input image of the convolutional layer with IC channels, K is the set of 2-D

convolution kernels in current layer and ⊗ represents the convolution operation. It can

be seen from the equation, the calculation consists of repeatedly accumulating multiple
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kernels to form a number of feature maps, which represent the different characteristics

of the input image.

(a) (b)

(c)

Figure 3.1 (a) An example of sliding a 3×3 convolutional kernel across the input image.
(b) A conventional 3× 3 square kernel that is used to extract features from the input
image. (c) Example of a conventional convolutional layer with multiple square kernels.

Processing a CNN in hardware requires multiply-accumulation (MAC) operations to

obtain the output feature maps. In order to improve the classification accuracy of

CNNs, state-of-the-art CNN architectures have become increasingly complex, therefore,

it is necessary for CNN designs to consider their computational resource consumption.
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For a convolutional layer, the number of MAC processes is contingent on the size of

the convolution kernels, number of kernels and the size of the output feature maps. It

can be calculated using following equation:

Operationconv = Oh ×Ow ×Oc ×Kh ×Kw ×Kc (3.2)

where Oh and Ow indicate the height and width of the output feature maps and Oc

represents the number of output feature maps, i.e. output channels. Similarly, Kh, Kw

and Kc indicate the height, width and the number of the convolution kernels in the

corresponding layer. In the conventional design methodology of CNNs, feature maps

and convolution kernels are always square, which means the height and width of the

convolution kernels and feature map are the same.

In a CNN, the fully-connected layer takes the output of the previous convolution

processes and predicts the best classification that is labelled to describe the image.

Equivalent to (3.2), the number of operations in the fully-connected layer of a specific

CNN can be calculated as:

Operationfc = Oh ×Ow ×Oc ×Ni (3.3)

where the Oh, Ow and Oc indicate output feature maps from the last convolutional or

pooling layer and Ni is the number of neurons in the fully-connected layer.

As can be seen from (3.2) and (3.3), the convolutional layer requires significantly

more MAC operations than the fully-connected layer. Therefore, reducing the number

of MAC operations can significantly reduce the computational resource consump-

tion overall. This is important to allow state-of-the-art CNNs to be processed on

resource-constrained platforms, such as FPGAs and embedded devices. Apart from

the convolutional layers and fully-connected layers, the CNN architecture also involves

other layers, including average pooling, max pooling or batch normalisation. For
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instance, average pooling is used to calculate the average number of pixels in the kernel

and max pooling is proposed to find the maximum number of input pixels, which are

smaller than operations for convolutional layers in real cases.

3.3.2 Mixed Unconventional Kernels

In this work, in order to minimise the hardware costs while maintaining the CNN

classification accuracy, the MAC operations in the convolutional layers are minimised

by reducing the kernel sizes, i.e. the product of Kh and Kw in (3.2). For example, a 2-D

3×3 convolution kernel can be replaced by a 3×1 kernel followed by 1×3 kernel, which

reduces the number of operations from 9 to 6. However, previous research suggests that

the replacement is not equivalent as it does not work as well on some of the lower level

layers [87], and not all possible 3× 1 kernels are captured by the decomposition. Hence,

such a substitution requires the network to have extra kernels or layers to compensate,

which may potentially increase again the computational complexity. Therefore, the

first question to investigate here is what kinds of kernels can be replaced by smaller

ones in a convolutional layer. In addition, without adding an additional convolution

kernels, it is investigated whether the conventional 2-D square kernels can be directly

replaced by more generic sizes of m× n shape kernels. Finally, the best combination

of different shapes and sizes of kernels for each convolutional layer is considered.

Utilising different kernel sizes allows the network to extract features at multiple

scales [7]. It is becoming more popular for state-of-the-art CNN architectures to use

small kernels, such as 3× 3 and 5× 5. Therefore, the largest kernel selected for the

network architecture proposed here has a size of 5 × 5. In order to find the best

combination of kernel shapes in a convolutional layer, conventional square kernels and

1-D kernels are used as well as other sizes of kernels, such as 5× 3 and 1× 1. In total

there are 9 different sizes of kernels considered here, the largest being 5× 5 and the

smallest one 1× 1, as shown in Fig. 3.2.
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Figure 3.2 (a) The set of unconventional kernels. The number of operations required to
compute each of the unconventional kernels can be calculated by kernel height × width.
(b) Format of the genotype: The Red and Green Lines shows two different individuals
which represent different connections between different size and shape of kernels.

Previous approaches have shown that it is possible to use a series of kernels with differing

sizes to better handle multiple-scale objects in a convolutional layer [7]. Rather than

using conventional square kernels, this work puts the set of 1-D stripe kernels into
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a single convolutional layer. This is so that the network can operate in parallel on

different sizes with the most accurate detailing, 1×1, to the biggest kernels, 5×5. Then,

all feature maps generated from the different kernels are concatenated together into a

single output tensor in order to form the input of the next stage. Padding strategy are

applied to make sure that the output feature maps from each set of unconventional

kernels will have the same resolution as others. Then, the concatenation are used to

combine the output feature maps from each set of unconventional kernels into one

output tensor. The overall architecture of the proposed design can be viewed as Fig. 3.3.

Figure 3.3 Overall design of the convolutional layer which involves multiple sizes of
kernels to produce different feature maps. If the strides of each type of kernel are the
same, using the padding method, the output from each set of kernels will be the same
as other kernels. Therefore, the final output from this layer can be concatenated into a
single tensor with no additional computation operation required.
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3.3.3 Multi-Objective Evolutionary Optimisation

Following the convolutional layer design methodology from the previous section, it is

difficult to define the optimal kernel sizes required to replace the conventional square

kernels in a given CNN architecture. The new methods described here propose to

use the non-dominated sorting genetic algorithm (NSGA-II) to explore the kernel size

design space of the CNN architecture. NSGA-II is one of the most popular multi-

objective optimisation algorithms which uses a fast non-dominated sorting approach

and diversity preservation [18]. The approach of optimising for Pareto optimality makes

it possible to trade-off between network accuracy and hardware resource consumption.

An overview of optimising a given CNN architecture is shown in Fig. 3.4.

In the optimisation loop, each of the possible unconventional kernels is identified with

its kernel ID that represents a specific kernel. The kernels from all layers of the CNN

are encoded in the genotype. Table. 3.1 illustrates the genetic representation for the

MOEA. In the optimisation loop, convolution kernels are encoded as integers from 0

to 8, where each integer represents a size of convolution kernel. As we are focusing on

optimising the convolutional layers, other hyperparameters of the network are kept the

same as in the input CNN, e.g. other types of layers, stride, activation function and

number of layers.

The initial parent population of NSGA-II is generated by randomly replacing the

original square kernels with randomly selected unconventional kernel sizes for all

convolutional layers in the network. After the initial parent population is created,

the first offspring population is generated by mutation operation, which changes the

shape of randomly selected kernels based on a given probability. In this case, the

genetic representation only consists of a single chromosome, a vector encoding the

kernel shapes. The mutation process is presented in Algorithm 1. Crossover operation

is not used in this case.
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Given a conventional 
CNN architecture

Initialise the parent 
population

Evaluate the fitness

Select new parent

Training the network by 
stochastic gradient descent 

with training dataset

Decode the genotype to 
network architecture 

configuration

Rank parent population 
and offspring together

Calculate the number of 
operations of target 
network and test the 

classification accuracy on 
evaluation data

Generate offspring by 
mutation

Figure 3.4 Overview of the multi-objective optimisation loop. The method selects a
set of unconventional kernel shapes replacing the original (conventionally used) square
kernels in a given CNN architecture. Each individual is trained on a training data set.
Then, the fitness is calculated and assigned based on the classification accuracy on the
evaluation data set (objective 1) and the number of arithmetic operations (objective 2).
NSGA-II searches for the Pareto front that trades-off between of number operations
and model classification accuracy.

Then, the fitness of each individual in the population is evaluated by calculating the

number of operations in the convolutional layers and testing the classification accuracy

of the trained model on a validation set. The architecture generated by NSGA-II is

trained using stochastic gradient descent (SGD), using a model training dataset. In

this design, one of the fitness measures of NSGA-II is the classification error which is

defined as 1 - Top-1 accuracy of trained model on the test dataset. Another fitness is
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Table 3.1 Genetic representation for convolution kernels

Representation Convolution Kernel Number of Multiplications
0 1 x 1 1
1 1 x 3 3
2 1 x 5 5
3 3 x 1 3
4 3 x 3 9
5 3 x 5 15
6 5 x 1 5
7 5 x 3 15
8 5 x 5 25

Algorithm 1 Mutation process
Procedure: Mutation (P, ρ). ▷ Population (P ) has N individu-
als and M genes in each individual. The mutation probability is
ρ.

1: Offspring population (O) ← P
2: for i← 1 to N do
3: for j ← 1 to N do
4: if random(0, 1) < ρ then
5: Oi,j ← randomInt(0, 8)
6: end if
7: end for
8: end for

the summation of MAC operations required to compute all of the convolutional layers

in the network, which is calculated by (3.2). Therefore, the fitness function will be:

f(x) = min [classification error, number of multiplications] (3.4)

Finally, NSGA-II ranks the fitness of each individual by using a non-dominated sorting

approach and a diversity preservation strategy to ensure selection with elitism and a

uniform spread of solutions. In non-dominated sorting, each solution p has two entities:
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the first is domination count, the number of solutions that dominate p; the second is

the number of solutions that p dominates. All solutions will be sorted according to

each solution’s domination count into multiple ranking levels. Diversity preservation is

achieved by adopting a crowding distance comparison, which calculates the distance

of each individual to others. So that, when there are two solutions with the same

domination level, the one that resides in less densely populated points of the solution

space is selected [44]. Following this, half of the individuals which have higher rank

will be selected as the parent population for the next generation. The optimisation

loop is demonstrated in Algorithm 2.

Algorithm 2 NSGA-II for optimising kernel shapes and sizes
Procedure: NSGA-II (M, N, f(x)). ▷ evolving N individuals for M genera-
tion with fitness function of f(x), ∀x ∈ X, where X is the set of convolution ker-
nels.

1: Initialise parent population P1 = [x1, x2, ..., xN ]
2: Offspring population (O1) ← Mutation (P1)
3: for i← 1 to M do
4: Ci ← Oi ∪ Pi in size 2N
5: Ri ← f(Ci) ▷ evaluating each individual in Ci with fitness function f(x)
6: F ← Non-Dominated-Sorting(Ri)
7: Pi+1 ← Ø
8: j ← 1
9: while |Pi+1| + |Fj| ≤ N do

10: Crowding-Distance-Calculation(Fj)
11: Pi+1 ← Pi+1 ∪ Fj

12: j ← j + 1
13: end while
14: Fj ← Descend-Sort(Fj)
15: Pi+1 ← Pi+1∪Fj [1 : (N −|Pi+1|)] ▷ individual with less crowding distance from

the first to the (N − |Pi+1|)th of Fj to fill Pi+1.
16: Oi+1 ← Mutation(Pi+1)
17: end for
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3.4 Experimental Results and Analysis

Each individual’s fitness needs to be evaluated separately by training and testing the

resulting network. State-of-the-art CNN architectures may require extremely large

computational budgets for processing the networks. The aim in this chapter is to show

the improvement of the proposed method compared with conventional convolutional

layers in terms of trade-off between computation costs and classification accuracy.

Therefore, a small CNN is used here as the benchmark network to illustrate the

improvement achieved by our proposed method. To evaluate the capability and the

full potential for scalability of the proposed method, it is also tested on deeper CNN

architectures.

3.4.1 Experimental Settings

The benchmark CNN architecture is built based on the LeNet-5 architecture [27]. The

original LeNet-5 consists of three convolutional layers and two average-pooling layers,

a fully-connected layer and a classification layer. In order to improve the classification

accuracy of the network, we increase the number of kernels in each of the convolutional

layer and nodes in the fully-connected layers. The overall architecture is shown in

Fig. 3.5, which is used as the benchmark topology to test the proposed method.

The optimisation method is applied to three different datasets, MNIST [8], Fashion-

MNIST [89] and CIFAR-10 [9]. MNIST and Fashion-MNIST consist of a training set

of 60,000 images and a test set of 10,000 images. Each image in the two MNIST sets is

a 28× 28 grey-scale image, associated with a label from 10 different classes. CIFAR-10

is split into a training set of 50,000 images and a test of 10,000 images. Each image

in the CIFAR-10 set is a 32× 32 pixel RGB image, associated with a label from 10

different classes. The network is trained on the training sets and evaluated in the

test set, which is one of the fitness measures of the proposed method. The number of
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5 × 5 × 32, stride = 1, padding = same

5 × 5 × 64, stride = 1, padding = same

Nodes = 512

2 × 2 , stride = 2
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Figure 3.5 The benchmark CNN used to test our optimisation method. The benchmark
CNN has four layers that is built based on the LeNet-5 architecture. The network
involves two 2-D convolutional layers, which contain 32 and 64 kernels respectively. All
of the kernels have dimensions of 5× 5 and the stride is 1. Each convolutional layer is
followed by a max pooling one with dimensions of 2× 2 and a stride of 2. There is a
fully connected layer connected to the output of the second max pooling layer that has
512 nodes. Finally, a classification layer is used to predict the best classification label
applied to the image.

operations is calculated by the total number of multiplications in two convolutional

layers, the second objective measure used here. All of the networks are trained by

stochastic Gradient Decent (SGD) method and use the Adam optimiser [90] with a

learning rate of 1e-3. The softmax cross-entropy loss is used as the loss function. Each

model is trained for 30 epochs.

In order to explore the Pareto front of the CNN architecture, the optimisation loop

is set to run 100 generations for a population size of 25 individuals. There is only
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one type of chromosome. Hence, only mutation is used as the genetic operator, the

mutation rate is 0.1.

3.4.2 Experimental Results

In order to evaluate the performance of the proposed method, it has been tested

on three different benchmarks, MNIST, Fashion-MNIST and CIFAR-10 using two

optimisation objectives, the total number of multiplications in convolutional layers,

and the model classification accuracy. All experiments are implemented on Intel Xeon

6138 20-core 2.0 GHz CPU with single NVIDIA Tesla V100 32GB SXM2 GPU. The

approximate runtime of each experiment is reported on Table 3.2.

Table 3.2 Approximate runtime of the proposed method on each dataset.

Model Dataset Runtime

LeNet-5
MNIST ≈ 5 days

Fashion-MNIST ≈ 5 days
CIFAR-10 ≈ 9 days

Results for MNIST and Fashion-MNIST

For evaluating the proposed method on MNIST and Fashion-MNIST datasets, the

input layer of the benchmark is configured as 28× 28× 1 input neurons. Then, the

benchmark CNN is trained for 100 epochs by using the Adam optimiser [90] with an

initial learning rate of 0.001, and the learning rate is reduced by factor of 10 at 30th

epoch for both training MNIST and Fashion-MNIST. After the training process is

completed, the model accuracy for both datasets is evaluated on the test sets. For

these two datasets, the benchmark CNN achieves a classification accuracy of 98.92%

on MNIST and 92.12% on Fashion-MNIST. Both benchmark networks require a total

of 10,662,400 multiplications in their convolutional layers.
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For the experimental results, there are three reference solutions that have been selected

from each set of solutions. The first reference point, Ref 1, has the highest accuracy. The

second reference point is one which requires significantly less computational resources

while still featuring high accuracy. The third reference point is the trade-off solution

closest to the origin between number of multiplications and classification accuracy, i.e.

the “best” trade-off between the two objectives. The optimisation results after running

100 generations are shown in Fig 3.6, and the comparison between the benchmark

network and reference point is shown in Table 3.3.

Table 3.3 Comparison between the benchmark network, i.e. LeNet architecture shows in
Fig. 3.5, and solutions found by the proposed method on MNIST and Fashion-MNIST
datasets. Three reference points are selected from optimised results for each dataset.

Dataset Model Top-1 Acc. Acc. improve Reduction in Mults.

MNIST

Benchmark 98.92% - -
Ref 1 99.56% 0.64% 2.15x
Ref 2 99.54% 0.62% 3.13x
Ref 3 99.49% 0.57% 7.02x

Fashion-MNIST

Benchmark 92.12% - -
Ref 1 93.14% 1.02% 2.95x
Ref 2 93.07% 0.95% 4.24x
Ref 3 92.79% 0.67% 9.15x

Results for CIFAR-10

Then, the proposed method is tested on the CIFAR-10 dataset. In this experiment, the

training dataset is created by randomly selecting 40,000 images from the training set,

and the remaining 10,000 images are used for fitness evaluation. Finally, architectures

found are trained on the training set for 100 epochs and classification accuracy is tested

on the test set. To prevent overfitting, a weight decay of 0.0001 and data augmentation

have been used for training the networks. The data augmentation used is based on [91],

that is padding 4 pixels on each side and randomly crop a patch of a size of 32× 32

from the padded image or its horizontally flipped version. In order to handle the colour
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(a)

(b)

Figure 3.6 (a) Optimised architectures by the proposed method after 100 generations
on MNIST. (b) Optimised architectures by the proposed method after 100 generations
on Fashion-MNIST.
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image inputs, the input layer of the benchmark network is presented to the network as

3 channel input.

After configuring the benchmark network to accept colour images, the total number of

multiplications required for the convolutional layers further increases to 15,564,800, and

the classification error is 17.63% on CIFAR-10. The optimisation loop has a population

of 25 individuals and was run for a 100 generations. There are three reference solutions

that have been selected from each set of solutions using the same approach as before:

the first reference solution features the highest accuracy, the second reference solution

uses less resources while featuring high accuracy, and the third reference solution has the

closest-to-origin trade-off between number of multiplications and classification accuracy.

The optimisation result after running the proposed method for 100 generations is shown

in Fig 3.7.

Figure 3.7 Optimised architectures by the proposed method after 100 generations on
CIFAR-10.
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For further evaluation, the three architectures are then re-trained on the whole training

set, i.e. 50,000 images for training, and the classification accuracy is evaluated on the

test set which contains 10,000 examples. Each network architecture is re-trained for

100 epochs with weight decay and data augmentation [91]. All of them are trained by

using the Adam optimiser [90] with an initial learning rate of 0.001, and the learning

rate is reduced by a factor of 10 at the 30th epoch. After re-training and testing, the

comparison between the benchmark network and reference point is shown in Table 3.4.

Table 3.4 Comparison between the benchmark network and three reference solutions
found by the proposed method on CIFAR-10 dataset after re-training for 100 epochs.

Dataset Model Top-1 Acc. Acc. improve Reduction in Mults.

CIFAR-10

Benchmark 82.37% - -
Ref 1 83.75% 1.38% 2.71x
Ref 2 82.54% 0.17% 4.06x
Ref 3 80.84% -1.53% 7.14x

3.4.3 Convolution Kernels Distribution

From the experimental results, it can be seen that the proposed method shows significant

reduction in computational costs for processing CNN. In this section, the details of

convolution kernels of optimised CNNs for each dataset has been shown in here.

There are three reference network architectures picked from the optimisation results

from each dataset. The first reference point, “Ref 1”, is defined by the optimised

result with the highest accuracy. The second reference point, “Ref 2” has a slightly

lower classification accuracy than the first reference point but saves more computation

resources. The third reference point, “Ref 3”, is the optimised architecture with closest-

to-origin trade-off between number of multiplications and classification accuracy.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8 (a) Kernel distribution of the first convolutional layer of Ref 1 on MNIST
dataset. (b) Kernel dist. of the second conv. layer of Ref 1 on MNIST dataset. (c)
Kernel dist. of the first conv. layer of Ref 2 on MNIST dataset. (d) Kernel dist. of
the second conv. layer of Ref 2 on MNIST dataset. (e) Kernel dist. of the first conv.
layer of Ref 3 on MNIST dataset. (f) Kernel dist. of the second conv. layer of Ref 3
on MNIST dataset.
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Fig 3.8 shows details of how the convolutional layers of the benchmark architecture

on the MNIST dataset have been built by the proposed method. It can be seen that

all these three reference points mainly contain 5× 5 kernels in the first convolutional

layer. However, the second convolutional layers of the three reference architecture

are different. As is shown in Fig 3.8, the kernels in the second convolutional layer of

“Ref 3” are mainly of size 1 × 1. The classification accuracy of “Ref 3” requires far

fewer computation resources than the “Ref 1” that mainly contains 3× 5 kernels in its

second convolutional layer, although both networks slightly outperform the benchmark

architecture.

Fig 3.9 illustrates three optimised network architectures using Fashion-MNIST dataset.

As is shown in Fig 3.9, the kernels in both convolutional layers of optimised “Ref 1”

mainly involves 3 × 3 kernels, and sightly increases the classification accuracy over

the benchmark architecture. The kernel distributions of “Ref 2” and “Ref 3” on

Fashion-MNIST are quite similar to the “Ref 2” and “Ref 3” on MNIST, where the

first convolutional layer mostly features 5× 5 kernels and uses smaller kernels.

Fig 3.10 demonstrates how the convolutional layers of the optimised architecture are

built by the proposed method using CIFAR-10 dataset. It can be seen from Fig 3.10,

how the optimised architecture with the highest classification accuracy, “Ref 1”, is

mainly involves 3× 3 kernels in both first and second convolutional layers. The “Ref

1” architecture is quite similar with most state-of-the-art CNN design methodology,

such as VGG [5], which only contains 3 × 3 kernels in its convolutional layers. The

kernels in the first convolutional layer of “Ref 2” are quite similar to the kernels in

the first convolutional layer of “Ref 1”, where both of them have 26 3 × 3 kernels

with several other shapes of kernels. The second convolutional layer of “Ref 2” mainly

contains 1 × 1 kernels, which saves around 1.5X computational resources and only

has 1% classification accuracy decrease compared with “Ref 1”. The third reference

point, “Ref 3”, has a classification accuracy of about 1.5% lower than the benchmark
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9 (a) Kernel distribution of the first convolutional layer of Ref 1 on Fashion-
MNIST dataset. (b) Kernel dist. of the second conv. layer of Ref 1 on Fashion-MNIST
dataset. (c) Kernel dist. of the first conv. layer of Ref 2 on Fashion-MNIST dataset.
(d) Kernel dist. of the second conv. layer of Ref 2 on Fashion-MNIST dataset. (e)
Kernel dist. of the first conv. layer of Ref 3 on Fashion-MNIST dataset. (f) Kernel
dist. of the second conv. layer of Ref 3 on Fashion-MNIST dataset.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10 (a) Kernel distribution of the first convolutional layer of Ref 1 on CIFAR-10
dataset. (b) Kernel dist. of the second conv. layer of Ref 1 on CIFAR-10 dataset. (c)
Kernel dist. of the first conv. layer of Ref 2 on CIFAR-10 dataset. (d) Kernel dist. of
the second conv. layer of Ref 2 on CIFAR-10 dataset. (e) Kernel dist. of the first conv.
layer of Ref 3 on CIFAR-10 dataset. (f) Kernel dist. of the second conv. layer of Ref 3
on CIFAR-10 dataset.

but consumes around 7X computational resources less than the benchmark. From the

optimisation results, “Ref 3” mainly features 3× 3 kernels in both convolutional layers.
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3.5 Summary

In summary, this chapter proposed a generic Multi-objective Evolutionary Algorithm

(MOEA)-based approach for optimising the size and efficiency of CNN architectures by

introducing unconventional (non-square) kernel shapes and combining different sizes

of convolution kernels. The proposed method automatically generates combinations

of these unconventional kernels that are used to replace the set of one-size square

convolution kernels produced by a conventional approach. The optimisation by MOEA

provides a trade-off solution space between computational resources and classification

accuracy, which is unique to such algorithms. The results show that a significant

reduction in the computational resource consumption with negligible sacrifice of (and

sometimes slightly increased) classification accuracy.

The proposed method has been tested on MNIST, Fashion-MNIST and CIFAR-10

datasets. As can be seen from the results, the proposed method shows large improve-

ments on computational resource consumption, some optimised results with increases

in classification accuracy, compared with conventional design of convolutional layers.

Comparing reference points from the optimisation results on each dataset, the first

convolutional layers usually involves conventional square kernels, but in the second

convolutional layers, different shapes of unconventional kernels have been placed.
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4.1 Overview

According to the results from previous investigation in Chapter 3, replacing the square

convolution kernels with combinations of unconventional kernels found by MOEA can

significantly reduce the number of multiplications required in convolutional layers while

processing CNNs. In this chapter, a further optimisation of reducing the number of

multiplications in convolutional layers is considered.

State-of-the-art CNN designs contain multiple convolutional layers in order to extract

multiple features from input images. For instance, VGG-11 [5] has eight convolutional

layers. The first convolutional layer of VGG-11 involves 64 convolution kernels, the

second convolutional layer of VGG-11 has 128 convolution kernels, the third and

fourth convolutional layer contain 256 convolution kernels each. Then, all subsequent of

convolutional layers of VGG-11 involve 512 convolution kernels. The trend of increasing

numbers of kernels in convolutional layers of the ResNet architecture [30] is similar to

the VGG architecture, where the number of kernels in convolutional layers of ResNet

increases from 64 to 512. As of yet, there is not a clear methodology that describes

how many convolution kernels should be used to design convolutional layers most

efficiently. To address this problem, in this chapter a multi-objective evolutionary

algorithm-based method is proposed to optimise pre-designed CNN architecture. The

optimisation method is proposed to use MOEA to reduce the number of kernels in

convolutional layers for a specific CNN architecture. As the total number of kernels

in convolutional layers decreases, the computational resources that are required for

processing the CNN is reduced. At the same time, the previous chapter has verified

that using a combination of unconventional kernels can significantly reduce the number

of multiplications in convolutional layers, the proposed method aims to combine both

reduction of size and number of kernels in convolutional layers.

In order to compare how the reduction in number of kernels in convolutional layers

affects network classification accuracy, the proposed method is tested on the same

69



4.2 Methodology

datasets and CNN architectures as the experiments in Chapter 3, that is MNIST,

Fashion-MNIST and CIFAR-10 dataset with LeNet. Then, the proposed method has

been tested on deeper CNN architectures, including five-layers networks, six-layers

and VGG11 on CIFAR-10 dataset, to show the scalability of proposed method for

optimising large-scale CNN architectures.

This chapter is organised as follows: Section 4.2 gives the details that applying MOEA

to optimise and explore the design space of CNN architecture and explains its features.

Section 4.3 demonstrates test experiments of proposed method with different CNN

architectures on various datasets and provides a proof-of-concept of the performance

of the proposed method. As well as comparing the solutions which are founded by

the proposed method with other peer competitors. Finally, Section 4.4 concludes the

chapter.

4.2 Methodology

In this section, an improved multi-objective optimisation method is proposed with

the aim to reduce the number of computation operations further and ensure good

classification accuracy of low-cost CNN models. In Chapter 3, the experimental

results demonstrate that using different shapes and sizes of convolution kernels can

significantly reduce the computational resource consumption and preserve, or improve,

the classification accuracy for processing CNN applications. This section gives the

details of the proposed method that to further reduce the computational resource

consumption.
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4.2.1 Multi-objective Evolutionary Algorithm

As the computational resource analysis described in Chapter 3, the number of multi-

plication in convolutional layers of CNNs is proportional to the size and number of

convolution kernels, as shown in (3.2). Therefore, in order to reduce the computational

resource consumption in processing CNNs, both size and number of convolution kernels

are now minimised. In this case, NSGA-II [18] has been adopted as the optimisation

tool. Specifically, the fast non-dominated sorting approach and diversity preservation

strategy of NSGA-II ensure that the optimisation can converge to a uniform spread of

Pareto-optimal results which can achieve a trade-off solution between multiple objec-

tives. The Pareto-optimal solution allows the CNN architecture to achieve trade-off

solutions between number of multiplications required in convolutional layers, total

number of convolution kernels, and the classification accuracy on the task dataset.

4.2.2 Convolutional Layer Optimisation

The convolutional layer evolutionary optimisation framework is illustrated in Fig 4.1.

The optimisation framework aims to minimise the number of kernels in convolutional

layers while simultaneously applying unconventional kernels introduced in Chapter 3.

The proposed multi-objective optimisation flow involves the following components:

• Parametric convolution kernels: The pre-designed CNN involves different

numbers and sizes of kernels in each convolutional layer. The MOEA representa-

tion encodes the size of kernels into a set of genes. An integer representation is

used to represent the size of kernels, for instance, 1 represents a kernel size of

1× 1, 2 represents the kernel size of 1× 3, 3 represents the kernel size of 1× 5, 4

represents the kernel size of 3× 1 and so on, as the set of unconventional kernels

shows in Fig 3.2a. In this case, the number ‘0’ represents ‘removing kernel’. After
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Given CNN pre-designed 

architecture

Parametric convolution

kernels

Seeding initial population

Generate new population

by genetic operation,

including removing 

kernels

from the convolutional 

layer

Applying the
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number of multiplication

in convolutional layers

and the total amount of

convolution kernels as
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Optimal architectures

Decode the Generic

presentation to build

CNN

Initialise weights and

biases

Training the CNN on

training dataset

Testing classification

accuracy of the trained

model on test dataset

Evaluating the total 

number of

multiplication in

convolutional layers

and the total amount

of convolution

kernels

Multi-objective 

Optimisation

CNN evaluation

Figure 4.1 Convolutional layer optimisation flow. On the left hand side are the
evolutionary algorithm steps. On the right hand side is the CNN evaluation process.

parameterising convolution kernels into genes, the total number of genes in each

individual will be the sum of kernels in each convolutional layer.
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• Seeding the initial population: In this work, the initial populations are

seeded by manually setting several sets of unconventional kernels, randomly

generating combinations of unconventional kernels, and setting a pre-designed

architecture. In particular, the first individual represents the original pre-designed

network, such LeNet [27] and VGG [5]. From the previous experimental results

in Chapter 3, the architectures found by MOEA contain large number of a

single type of convolution kernels in each layer, combining with small number

of other type of convolution kernels. Therefore, from the second individual to

10th individual, they are set to single type of unconventional kernels from 1× 1

to 5 × 5, respectively. Finally, the rest of individuals are seeded by random

combination of unconventional kernels.

Individual 0 ...Individual 1 Individual 3 Individual n

G0 G1 G2 Gn...

0:  Removed Kernel
1:          1x1             
2:          1x3             
3:          1x5             
4:          3x1             
5:          3x3             
6:          3x5             
7:          5x1             
8:          5x3             
9:          5x5             

Population

Chromosome

Kernels

Figure 4.2 An example that describes the population and chromosome for the proposed
method.
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• Genetic Operator: In the proposed method, only mutation operation is used

as genetic operator. The mutation operation modifies the size and shape of con-

volution kernels based on a given mutation probability. The mutation probability

is defined by p, with p ∈ [0, 1]. The mutation operation generates a new network

architecture that is ready for training and evaluation. In this case, the mutation

process is presented in Algorithm 3.

Algorithm 3 Mutation operation
Procedure: Mutation (P, ρ). ▷ Population (P ) has N individu-
als and M genes in each individual. The mutation probability is
ρ.

1: Offspring population (O) ← P
2: for i← 1 to N do
3: for j ← 1 to N do
4: if random(0, 1) < ρ then
5: Oi,j ← randomInt(0, 9)
6: end if
7: end for
8: end for

• Fitness evaluation: The fitness evaluation calculates the fitness scores of each

individual. In the proposed method, there are three objectives that need to be

evaluated in the MOEA. The first objective is the network classification error. The

classification error is defined by (4.2.2). The second objective is the total number

of multiplications in convolutional layers which refers to overall computational

cost for processing the CNN. The number of multiplications in convolutional

layers, Operationtotal, is calculated by the sum of number of multiplications in

each convolutional layer, as described :

Operationtotal =
L∑

l=1
(

C∑
c=1

(
N∑

n=1
(Fh × Fw ×Khn ×Kwn))) (4.1)

where L describes the number of convolutional layers in the target CNN. C is the

number of input feature maps. N is the number of convolution kernels. Fh and

Fw indicate the height and width of the input feature maps respectively. Khn and
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Kwn indicate the height and width of convolution kernels. The third objective

is the total number of convolutional kernels in the target CNN. Therefore, the

fitness function for minimising three objectives is described in (4.3).

Classification Error = 1− Classification Accuracy (4.2)

f(x) = min [classification error, No. of multiplications, No. of kernels]

(4.3)

The adapted algorithm for optimising the convolutional layers, in this case, is demon-

strated in Algorithm 4.

Algorithm 4 NSGA-II for optimising convolutional layer
Procedure: NSGA-II (M, N, f(x)). ▷ evolving N individuals for M genera-
tion with fitness function of f(x), ∀x ∈ X, where X is the set of convolution ker-
nels.

1: Initialise parent population P1 = [x1, x2, ..., xN ]
2: Offspring population (O1) ← Mutation(P1)
3: for i← 1 to M do
4: Ci ← Oi ∪ Pi in size 2N
5: Ri ← f(Ci) ▷ evaluating each individual in Ci with fitness function f(x)
6: F ← Non-Dominated-Sorting(Ri)
7: Pi+1 ← Ø
8: j ← 1
9: while |Pi+1| + |Fj| ≤ N do

10: Crowding-Distance-Calculation(Fj)
11: Pi+1 ← Pi+1 ∪ Fj

12: j ← j + 1
13: end while
14: Fj ← Descend-Sort(Fj)
15: Pi+1 ← Pi+1∪Fj [1 : (N −|Pi+1|)] ▷ individual with less crowding distance from

the first to the (N − |Pi+1|)th of Fj to fill Pi+1.
16: Oi+1 ← Mutation(Pi+1)
17: end for
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4.3 Experimental Setup and Results

In this section, the proposed method is tested and evaluated on various CNN archi-

tectures with multiple datasets. The aim in this section is to show the performance

gain of the proposed compared with conventional CNN design in terms of trade-off be-

tween network’s classification accuracy, computational costs and number of convolution

kernels.

4.3.1 Experiment Setup

The experiments are set out in two parts. The first part is testing the proposed

method with LeNet, the same as the benchmark architecture in Chapter 3, on MNIST,

Fashion-MNIST and CIFAR-10 datasets. In this part, the set of experiments is aimed

to find out how the reduction in number of convolution kernels can further improve the

network performance, compared with only using unconventional shapes and sizes of

kernels as proposed in Chapter 3. The benchmark CNN is trained on training datasets,

which contain 60,000 28× 28 grey-scale images on MNIST and Fashion-MNIST, and

50,000 32 × 32 RGB images on CIFAR-10 associated with a label from 10 different

categories. All of the benchmarks are trained by Stochastic Gradient Decent (SGD)

method using Adam optimiser [90] with an initial learning rate of 1e-3 for 100 epochs.

The learning rate is reduced by factor of 10 at 30th epoch. The softmax cross-entropy

loss is used as the loss function. In order to improve the classification accuracy by

reducing network overfitting, L2 regularisation [92] with a weight decay of 0.0001 is

applied to the training process. A dropout rate of 0.5 in fully-connected layer is also

applied to the training process. Then, the benchmark accuracy for each dataset is

reported by evaluating trained models on test datasets, that involve 10,000 28× 28

grey-scale images on MNIST and Fashion-MNIST, and 10,000 32× 32 RGB images on

CIFAR-10.
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The second part of the experiments is testing the proposed method with three deep

CNNs, including five-layer, six-layer CNNs and VGG-11 [5] on CIFAR-10 dataset. In

the experiments, two CNNs are constructed by ourselves, i.e. five-layer CNN and

six-layer CNN. These two CNNs are designed based on the LeNet architecture but

deeper than the original LeNet. The five-layer CNN adds an extra convolutional layer

after the second convolutional layer of LeNet with 64 3× 3. The six-layer CNN adds

two convolutional layers after the second convolutional layer of LeNet, both two extra

layers have 64 3× 3 convolutional kernel in each of them. The reason for constructing

the five-layer CNN and six-layer CNN in this way is because that there is a big gap of

depth between LeNet and VGG-11. Therefore, we construct the five-layer CNN and

six-layer CNN to evaluate the proposed method in multiple CNN architectures.The

second part of experiments aims to demonstrate that the proposed method is capable

of optimising various deeper CNN architectures. The three CNNs are:

• Five-layer CNN: The five-layer benchmark architecture consists of three convo-

lutional layers, each layer includes 64 3×3 convolution kernels. Each convolutional

layer is followed by a 2 × 2 max pooling operation. A fully-connected layer is

connected to the last max-pooling layer with 512 neurons. The classification

layer is connected to the end.

• Six-layer CNN: The six-layer benchmark architecture has four convolutional

layers, each layer also includes 64 3× 3 convolution kernels. The max pooling

operations are applied at the end of the first, second and fourth convolutional

layers. After the last max-pooling operation, there is a fully-connected layer with

a total of 512 neurons and a sofmax operation is used to predict the classification

at the classification layer.

• VGG-11: The VGG-11 was designed by K. Simonyan and A. Zisserman [5]. This

model totally contains eight convolutional layers, two fully-connected layers and

one classification layer. All of kernels in each convolutional layer have dimension
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of 3× 3. The first convolutional layer of VGG-11 has 64 kernel and the second

convolutional layer has 128 kernels. The third and fourth convolutional layer

involve 256 kernel respectively. Then, there are 512 kernels designed for 5th,

6th, 7th and 8th convolutional layer respectively. The max pooling operation is

activated at the end of 1st, 2nd, 4th, 6th and 8th convolutional layers. Then, both

1st and 2nd fully-connected layer have 4096 neurons in each one. The original

VGG-11 is designed for using in ImageNet [10] dataset, which has 1000 labels.

In the experiment, the VGG-11 is targeted to handle CIFAR-10 dataset, that is

10 labels in total. Therefore, in this case, the classification layer of VGG-11 is

modified to contain 10 neurons.

For these deeper CNNs, experiments are implemented on CIFAR-10 dataset. The

benchmarks have been trained by SGD method with Adam optimiser [90] for an initial

learning rate of 1e-3 for 100 epochs. The learning rate is reduced by factor of 10 at

30th epoch. Softmax cross-entropy loss has been used as the loss function. To prevent

overfitting, L2 regularisation [92] with a weight decay of 0.0001, dropout and data

augmentation methods are applied to the training process. The data augmentation

used is based on [91], that is padding 4 pixels on each side and randomly crop a patch

from the padded image or its horizontally flipped version. A dropout rate of 0.5 is

applied to the training process.

In this section, all of the optimisation loops have been set to run for 100 generations

for a population size of 25 individuals and only mutation operation has been used as

genetic operator. The mutation rate of all experiments is set to 0.1. All experiments

are implemented on Intel Xeon 6138 20-core 2.0 GHz CPU with single NVIDIA Tesla

V100 32GB SXM2 GPU. The approximate runtime of each experiment is reported on

Table 4.1.
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Table 4.1 Approximate runtime of the optimisation loop on each dataset.

Model Dataset Runtime

LeNet-5
MNIST ≈ 5 days

Fashion-MNIST ≈ 5 days
CIFAR-10 ≈ 9 days

Five-layer CNN CIFAR-10 ≈ 12.5 days
Six-layer CNN CIFAR-10 ≈ 16.6 days

VGG-11 CIFAR-10 ≈ 33.5 days

4.3.2 Experimental Results on LeNet

For evaluating the proposed method on MNIST and Fashion-MNIST, the LeNet is

configured with 28× 28 neurons in input layer. The initial population are seeded with

25 individuals. The first individual is the original test architecture, that contains 32

5× 5 kernels in first convolutional layer and 64 5× 5 kernels in second convolutional

layer. From the second to the 9th individuals, they are seeded with single type of

kernels from 1×1 to 5×3, as described in Section 4.2. Rest of individuals are initialised

with random kernels. Each individual are then trained by SGD method for 100 epochs

with learning rate of 1e-3. The proposed method is set to run for 100 generations and

optimisation results are reported by the last generation.

Fig. 4.3 illustrates the optimisation results for LeNet on MNIST and Fashion-MNIST

after running 100 generations following the same methodology from Chapter 3. As

shown in Fig 4.3, three reference points from the optimisation results have been selected

for comparing the network performance with original architecture for each dataset.

The first reference point is the network architecture with the highest classification

accuracy from the set of optimal results. The second reference point uses less resource

than first reference architecture while keeping high classification accuracy. The third

reference point is the trade-off solution that closing the the origin between the network

classification accuracy, the number of multiplications and the number of kernels.
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(a)

(b)

Figure 4.3 (a) Optimisation results for proposed method after running 100 generations
on MNIST. (b) Optimisation results for proposed method after running 100 generations
on Fashion-MNIST.
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The benchmark CNN achieves a classification accuracy of 98.92% on MNIST dataset

and 92.12% on Fashion-MNIST. Both benchmark networks require a total of 10,662,400

multiplications in their convolutional layers. The comparison between selected reference

architectures and benchmarks on each dataset is shown in Table 4.2.

Table 4.2 Comparison between the benchmark network and solutions found by proposed
method on three datasets. Three reference points are selected from optimised results
for each dataset.

Dataset Model Top-1 Acc. Acc. improve Reduction in Mults.

MNIST

Benchmark 98.92% - -
Ref 1 99.52% 0.60% 2.84x
Ref 2 99.48% 0.56% 7.04x
Ref 3 99.38% 0.46% 18.38x

Fashion-MNIST

Benchmark 92.12% - -
Ref 1 92.96% 0.84% 3.74x
Ref 2 92.75% 0.63% 8.12x
Ref 3 92.67% 0.55% 11.03x

As shown in Table 4.2, all reference points from the optimal solutions that are found by

the proposed method demonstrate significant reduction in number of multiplications

while the network classification accuracy is maintained, or outperforms the benchmark

architecture on both MNIST and Fashion-MNIST datasets. The reference points

selected here are following the same selection methodology as in Chapter 3. The results

for all of the reference point solutions in this experiment feature lower computational

resource costs than the reference points that are obtained by two-objective optimisation

method in Chapter 3.

Fig 4.4 and Fig 4.5 illustrate the kernel distributions of the three reference architectures

that are found by the proposed method on MNIST and Fashion-MNIST dataset,

respectively. Compared with the results in Chapter 3, the three objective optimisation

method reduces the number of convolution kernels in all case.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4 The figure demonstrates the kernels that are built up the CNNs by the
proposed method on MNIST dataset. (a) Kernel distribution of the first convolutional
layer of Ref 1 on MNIST dataset. (b) Kernel dist. of the second convolutional layer of
Ref 1. (c) Kernel dist. of the first convolutional layer of Ref 2. (d) Kernel dist. of the
second convolutional layer of Ref 2. (e) Kernel dist. of the first convolutional layer of
Ref 3. (f) Kernel dist. of the second convolutional layer of Ref 3.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5 The figure demonstrates the kernels that are built up the CNNs by the
proposed method on Fashion-MNIST dataset. (a) Kernel distribution of the first
convolutional layer of Ref 1 on Fashion-MNIST dataset. (b) Kernel dist. of the second
convolutional layer of Ref 1. (c) Kernel dist. of the first convolutional layer of Ref 2.
(d) Kernel dist. of the second convolutional layer of Ref 2. (e) Kernel dist. of the first
convolutional layer of Ref 3. (f) Kernel dist. of the second convolutional layer of Ref 3.
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Then, the proposed method has been tested on LeNet with CIFAR-10 dataset. The

CIFAR-10 dataset contains totally 50,000 training images and 10,000 test images. In

this experiment, only the training images from CIFAR-10 dataset are used for the

optimisation loop. The 50,000 images are split into two parts, sub-training set and

sub-validation set. The sub-training set contains 40,000 and the sub-validation set has

10,000 images. The sub-training set is used for training CNNs which are generated by

the MOEA and the sub-validation set is used for testing the classification for these

CNNs. After the optimisation process, optimal results are then re-trained and tested

on full CIFAR-10 dataset.

In order to handle RGB images, the LeNet has been modified with 3-channel inputs.

In this case, the L2 regularisation of 0.0001 and data augmentation methods [91] have

been applied for training the CNNs. For the data augmentation, input images are

randomly padded 4 pixels on each side and randomly cropped a patch from the padded

images or its horizontally filliped version. After training the network for 100 epochs,

the benchmark requires 15,564,800 multiplication operations with testing classification

error of 17.63% on CIFAR-10.

For optimising the LeNet on CIFAR-10 dataset, the population has been set to 25

individuals with mutation rate of 0.1. After running for 100 generations, the result has

been shown in Fig 4.6. There are three reference points from the last generation been

selected as optimal architectures. The first reference point is the network architecture

which features the highest classification accuracy achieved by the proposed method.

The second reference point is the one that still features good classification performance

while uses less computational resources than the first reference point. Notably, it also

outperforms the benchmark network architecture in this case. The third reference point

is the best trade-off (closest to origin) between number of multiplications, number of

kernels and classification accuracy after optimisation.
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Figure 4.6 Optimised architectures after 100 generations on CIFAR-10 by the proposed
method.
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Then, these three reference architectures have been re-trained on the full CIFAR-10

dataset, i.e. 50000 training images, by the same methodologies as the benchmark. After

training for 100 epochs, three reference architectures have been tested on the testing

set, i.e. 10000 testing images. The comparison of networks performance between the

benchmark and reference points after re-training is shown in Table 4.3.

Table 4.3 Comparison between the benchmark network and solutions found by proposed
method on CIFAR-10 dataset with three-objective optimisation.

Dataset Model Top-1 Acc. Acc. improve Reduction in Mults.

CIFAR-10

Benchmark 82.37% - -
Ref 1 83.47% 1.10% 2.85x
Ref 2 82.46% 0.09% 5.93x
Ref 3 80.73% -1.64% 8.03x

Fig. 4.6 illustrates optimal solutions for the benchmark network on the CIFAR-10

dataset. Compared with the two-objective optimisation in the Chapter 3, a number

of kernels in both convolutional layers have been removed by the three-objective

optimisation method. By removing some of the kernels, optimising for the three

objectives can further reduce the number of multiplications that are required to process

the CNN without compromising significantly on classification accuracy. In addition,

Fig. 4.7 shows the kernel distributions of three reference points for both convolutional

layers after applying the proposed method. It can be seen from Fig. 4.7, Ref 1 contains

a majority of 3×3 kernels, and combined with a small number of unconventional kernels

in both convolution layers. For Ref 2 and Ref 3, these networks mainly involve 3× 3

kernels in the first convolutional layer and also make use of kernels with different sizes.

In the second convolution layer of Ref 2, most of 3× 3 kernels are replaced by 1× 3

kernels and 3× 1 kernels. This replacement is the main reason for Ref 2’s significant

reduction in computational resource compared Ref 1 and only has a small impact on its

classification accuracy. Both the Ref 1 and Ref 2 outperform the benchmark CNN. Ref

3 provide the best trade-off between the number of multiplications, number of kernels
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7 The figure demonstrates the kernels that are built up the CNNs by the
proposed method on Fashion-MNIST dataset. (a) Kernel distribution of the first
convolutional layer of Ref 1 on CIFAR-10 dataset. (b) Kernel dist. of the second
convolutional layer of Ref 1. (c) Kernel dist. of the first convolutional layer of Ref 2.
(d) Kernel dist. of the second convolutional layer of Ref 2. (e) Kernel dist. of the first
convolutional layer of Ref 3. (f) Kernel dist. of the second convolutional layer of Ref 3.
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and classification accuracy. It can be seen that Ref 3 uses 8.03x fewer multiplications

than the benchmark CNN with only 1.64% increases of classification error. Both

convolutional layers in Ref 3 involve 1× 3 kernels and 3× 1 kernels at the most.

4.3.3 Experimental Results on Deeper CNNs

As shown in the results of previous experiments, the proposed method demonstrates

significant improvements in reducing computational resource consumption in convolu-

tional layers. The effectiveness of the proposed method is now evaluated on deeper

CNNs to give some indication of scalability. The benchmark architecture that is used

in these experiments are five-layer CNN, six-layer CNN and VGG-11 [5].

These experiments use three objectives to evaluate the fitness, which are number of

multiplications, Top-1 classification error and number of convolution kernels. During

optimisation process, all networks are trained on CIFAR-10 dataset for 30 epochs and

the evolutionary loop is set to run 100 generations with population size of 25. There are

50,000 images used to train and evaluate each individuals. 40,000 images are randomly

sampled from the training set of CIFAR-10 dataset. The rest of 10,000 from the the

training set of CIFAR-10 dataset are then used for evaluation.

The L2 regularisation of 0.0001 and data augmentation methods [91] have been applied

for training all of CNNs in these experiments. The data augmentation process includes

that randomly padding 4 pixels on each side of input images and randomly cropping a

patch from the padded images or its horizontally flipped version.

The Fig. 4.8 shows the optimal results that are found by the proposed method on

CIFAR-10 dataset. Three reference architectures from each experiment are selected and

re-trained for 100 epochs on the whole training set of CIFAR-10 and the classification

accuracy is evaluated on the test set. The first reference point features the highest

classification accuracy in the solution set after optimisation. The second reference
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(a)

(b)

Figure 4.8 (a) Five-layer CNNs that optimised by the proposed method after 100
generations on CIFAR-10. (b) Six-layer that optimised by the proposed method after
100 generations on CIFAR-10.
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point involves fewer multiplications and still features good classification accuracy,

compared with benchmark network. The third reference point is the best trade-off

solution (closest to origin) between number of multiplications, number of kernels, and

classification accuracy. The details of reference points from each network architecture

have been demonstrated in Fig 4.9 and Fig 4.10.
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Figure 4.9 The figure demonstrates the kernels that are built up the five-layer CNNs by the proposed method on CIFAR-10
dataset. (a) to (c) shows the kernel distribution of three convolutional layers of Ref 1 from network optimisation results. (d)
to (f) shows the kernel distribution of three convolutional layers of Ref 2 from network optimisation results. (g) to (i) shows
the kernel distribution of three convolutional layers of Ref 3 from network optimisation results.
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Figure 4.10 The figure demonstrates the kernels that are built up the six-layer CNNs by the proposed method on CIFAR-10
dataset. (a) to (d) shows the kernel distribution of four convolutional layers of Ref 1 from network optimisation results. (e)
to (h) shows the kernel distribution of four convolutional layers of Ref 2 from network optimisation results. (i) to (l) shows
the kernel distribution of four convolutional layers of Ref 3 from network optimisation results.
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Table 4.4 Experimental results for five-layer CNN and six-layer CNN on CIFAR-10

Model Referent Network Acc. improve Reduction in Mults.

five-layers
Ref 1 0.16% 1.17x
Ref 2 -1.03% 2.31x
Ref 3 -2.44% 3.06x

six-layers
Ref 1 -0.32% 2.13x
Ref 2 -0.95% 2.90x
Ref 3 -2.46% 4.42x

Table. 4.4 illustrates the results of three reference architectures that are found by the

proposed method for each benchmark. As shown in Table. 4.4, the proposed method

still can outperform the network using only conventional 3 × 3 convolutions, which

is the standard setting in modern CNN architecture design. As the results show, the

number of multiplications in convolutional layers of the three-layer CNN achieves 1.17x

less than the benchmark architecture, while the Top-1 accuracy increases by 0.16%.

For LeNet, the proposed method achieve 2.13x saving in number of multiplication with

0.32% decrease in Top-1 accuracy. This demonstrates the capability of the proposed

method to be applied to deeper CNN architectures.

Finally, the proposed method has been applied to VGG-11 [5]. The original VGG-11

has been initially trained by SGD method with Adam optimiser [90] for an initial

learning rate of 1e-3 for 100 epochs on CIFAR-10. The learning rate is reduced by

factor of 10 at 30th epoch. The data augmentation methods [91], L2 regularisation

of 0.0001 and dropout rate of 0.5 have been applied in the training process. After

training process, the model achieves a classification accuracy of 86.78% on CIFAR-10

testing dataset and the number of operations in convolutional layers that required for

processing CIFAR-10 images is 152,764,416.

For the optimisation loop, a total of 50,000 training images of CIFAR-10 have been

split into a sub-training set of 40,000 images and a sub-testing set of 10,000 images.
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Each individual has been trained on the sub-training set of 30 epochs with the same

training methods as the benchmark. Then, each individual is tested on the sub-testing

set. The classification accuracy on sub-testing set, number of multiplications and

number of convolution kernels of each individual are reported as the fitness to the

MOEA. A population size of 25 individuals with a mutation rate of 0.1 has been set

to the optimisation loop. After running the proposed method for 100 generation, the

optimisation results have been shown in Fig 4.11.

Figure 4.11 Optimisation results for proposed method after running for 100 generations
on CIFAR-10.

Three reference points have been selected from the optimisation results. The first

reference point, Ref 1, has the lowest classification error from the optimisation results.

The classification accuracy of the second reference point, Ref 2, is close to the Ref 1,

but use less computational resources. The third reference point, Ref 3, is defined as the
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best trade-off between classification error, total number of multiplications and total

number of convolution kernels. Then, the three reference point have been trained on

the whole training dataset, i.e. 50,000 training images in total. Each reference point

has been trained by SGD method for 100 epochs with Adam optimiser [90] and the

initial learning is 0.001. Then, the learning rate is reduced by factor of 10 at 30th

epochs. To avoid overfitting, L2 regularisation of 0.0001 and dropout rate of 0.5 are

applied to training process. A data augmentation method [91] that padding with 4

pixels and random crop with random horizontal flip is also applied to the training

process. After re-training these reference points, the comparison between the original

VGG-11 and optimised solutions is shown in Table 4.5.

Table 4.5 Comparison between the original VGG-11 and solutions found by proposed
method on CIFAR-10 dataset with three-objective optimisation.

Dataset Model Top-1 Acc. Acc. improve Reduction in Mults.

CIFAR-10

Benchmark 86.78% - -
Ref 1 87.02% 0.24% 1.37x
Ref 2 86.12% -0.66% 3.00x
Ref 3 80.56% -6.22% 4.97x

As shown in Table 4.5, the optimal solutions that found by the proposed method

require less number of multiplications than the standard VGG-11. At the same time,

the classification accuracy of Ref1 is outperformed the original VGG-11. Ref2 requires

3x less multiplications with only 0.66% decrease in classification accuracy, compared

with original VGG-11.

The Table 4.6 demonstrates models’ classification accuracy which are found by the

proposed method against the other peer competitors who also applied EAs to optimise

the CNNs in recent years on MNIST, Fashion-MNIST and CIFAR-10 datasets. It can

be observed, all reference points evolved by the three-objective optimisation method get

the highest classification accuracy on MNIST dataset, compared with other EA-based

optimisation methods. For the Fashion-MNIST dateset, the Ref 1 from the LeNet
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Table 4.6 Comparison between the proposed method and other evolutionary optimisa-
tion methods for optimising CNN architecture.

Dataset Model Classification Accuracy

MNIST

B. Cheung and C. Sable [53] 98.54%
LeNet CNN Ref 1 99.52%
LeNet CNN Ref 2 99.48%

LeNet Ref 3 99.38%

Fashion-MNIST

D. Kang and C. Ahn [93] Exp. A 92.90%
D. Kang and C. Ahn [93] Exp. B 93.24%
D. Kang and C. Ahn [93] Exp. C 92.98%

EvoCNN [94] 92.72%
LeNet Ref 1 92.96%
LeNet Ref 2 92.75%
LeNet Ref 3 92.67%

CIFAR-10

MOCNN [60] Setting 1 84.50%
MOCNN [60] Setting 2 85.20%

J. Prellberg and O. Kramer [57] Setting 1 85.00%
J. Prellberg and O. Kramer [57] Setting 2 77.60%
J. Prellberg and O. Kramer [57] Setting 3 70.40%

LeNet Ref 1 83.47%
LeNet Ref 2 82.46%
LeNet Ref 3 80.73%

Five-layer CNN Ref 1 84.76%
Five-layer CNN Ref 2 83.57%
Five-layer CNN Ref 3 82.16%
Six-layer CNN Ref 1 82.77%
Six-layer CNN Ref 2 82.07%
Six-layer CNN Ref 3 80.56%

VGG-11 Ref 1 87.02%
VGG-11 Ref 2 86.12%
VGG-11 Ref 3 80.56%
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optimisation results gets the third place in classification accuracy, which only has

0.28% less than the best result and 0.02% less than the second best result in network’s

classification accuracy. The Ref 1 and Ref 2 from the VGG-11 optimisation results lead

the first and second best classification on CIFAR-10 dataset, compared with EA-based

optimisation method for CNNs. Optimising LeNet by proposed method on CIFAR-10

dataset are less accurate than other networks. The main reason is because the LeNet-5

is originally designed for recognising grey-scale handwritten digits, which is not as deep

as other architectures that are designed for RGB image classification, such as VGGNet.

4.4 Summary

In this chapter, a three-objective evolutionary optimisation method for optimising

the convolutional layers is introduced to reduce the size of convolutional layers and

explore the design space of CNNs by combining different number and multiple size of

unconventional convolution kernel which was proposed in Chapter 3. The methodology

developed in this chapter is an extension of the work in Chapter 3. Here, in contrast,

the number of convolution kernels in each convolutional layer is no longer the same as

the benchmark. The MOEA is required to make decisions about how many convolu-

tion kernels should be used in each convolutional layer, and what size and shape of

convolution kernels should be involved. The experimental results show that a trade-off

space between number of multiplication in convolutional layer, classification accuracy

and number of kernels usage can be achieved.

The proposed method has been successfully applied to the optimisation of various CNNs

on MNIST, Fashion-MNIST and CIFAT-10 datasets. Compared with conventional

designs in original benchmark architectures, the proposed method demonstrates signifi-

cant improvements on saving computational resources and sometimes with increases in

classification accuracy. there is also a comparison between the proposed method and
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other EA-based optimisation method for CNNs. Compared with these peer competitors,

the proposed method leads the best optimisation results on MNIST and CIFAR-10

datasets.
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Chapter 5

8-bit Integer Quantisation through

Evolutionary Optimisation
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5.1 Overview

In this chapter, an evolutionary algorithm (EA) based adaptive integer quantisation

method is proposed to reduce network size. The proposed method uses single objective

rank-based evolutionary strategy to find the best quantisation bin boundaries for

fixed quantised bit width. Due to computational cost, as a proof of concept, the

performance of the proposed method is evaluated on a relatively small CNN, the

LeNet-5 architecture, using the CIFAR-10 dataset. The aim is to devise a methodology

that allows adaptive quantisation of both weights and bias, reducing them from 32-bit

floating point to 8-bit integer representation for LeNet-5, while retaining accuracy.

The experiments compare straight-forward (linear) quantisation from 32-bits to 8-bits

with the proposed adaptive quantisation method. The results show that the proposed

method is capable of quantising CNNs to lower bit width representation with only a

slight loss in classification accuracy.

5.1 Overview

Convolutional Neural Networks (CNNs) have been widely used in image classification

and object detection tasks. In recent years, many CNN architectures have been de-

veloped, such as GoogLeNet [7] and AlexNet [6]. The state-of-the-art achievements

of designing CNN architectures have demonstrated significant improvements on net-

work classification accuracy on various benchmark datasets. In order to increase

the classification accuracy on specific tasks, modern CNNs are usually designed with

extremely deep layers[5]. Most of the weights and bias values of the state-of-the-art

CNNs are implemented and trained using 32-bit floating point representation. However,

this poses significant challenges to embedded hardware systems, especially processing

deep CNNs on memory-constrained platforms. Therefore, in order to implement deep

CNNs in certain memory-constrained platforms, such as Field-Programmable Gate

Arrays (FPGAs) and embedded devices, the memory usage of processing CNNs has to
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be reduced. And also, applying integer representation can be much more efficiently

processed in hardware systems.

Evolutionary algorithms (EAs) are today a state-of-the-art methodology in solving hard

multi-objective optimisation problems [45]. EAs were created by taking inspiration

from natural selection and survival of the fittest from Darwinian Evolution and modern

genetics [16]. EAs aim to generate a set of possible solutions (so-called population) in

a single run of the algorithm. In recent years, there have been several research studies

focusing on optimising neural network typologies and their connection weights. These

approaches have demonstrated that using evolutionary algorithms to evaluate neural

network topology can achieve competitive performance on state-of-the-art benchmark

datasets [19–21].

This chapter investigates adaptive integer quantisation of feed-forward CNN architec-

tures for application in resource-constrained scenarios by using EAs. An EA-based

adaptive integer quantisation method is proposed to quantise pre-trained CNNs, i.e.

post-training quantisation [95], to 8-bit integer weights and bias. In order to quan-

tise CNNs to smaller bit width integer representation while keeping the classification

accuracy as high as possible, the proposed method uses the CNN classification accu-

racy as fitness during the optimisation. The proposed method is then evaluated on

LeNet-5 architecture [27] with CIFAR-10 dataset [9]. As the results show, the proposed

method quantises both weights and bias values across all layers for LeNet-5 from 32-bit

floating point representation down to 8-bit integer value with only slight increases in

classification error.

This chapter is organised as follows: Section 5.2 gives an overview of the current

approaches of different quantisation methods for pre-trained CNNs, as well as different

data representation for weights and bias. Section 5.3 describes the methodology that

designs and implements EAs to quantise pre-trained CNNs and explains its features.

Section 3.4 shows the test experiments applying the proposed method to quantise
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weights and bias values for LeNet-5 with CIFAR-10 dataset and provides a proof-

of-concept of the proposed method. Finally, Section 5.5 summarises the paper and

discusses further works.

5.2 Related Work

In order to process CNNs more efficiently and quicker, quantisation methods aim to

reduce the size of CNN models while keeping models as accurate as possible [96, 97].

5.2.1 Vector Quantisation

Vector quantisation is a method for compressing densely connected layers to make CNNs

smaller. It quantises groups of similar numbers together [98]. The disadvantage is that,

in order to reduce the computation and memory resources usage, vector quantisation

always has some inherent loss of accuracy.

Gong et al [99] proposed a vector quantisation method that quantise weights of fully-

connected layers of a CNN, as parameters in fully-connected layers take the most

of memory space in CNNs [100]. Denil et al [101] applied vector quantisation to

significantly reduce the number of dynamic parameters in deep models by representing

the weight matrix as a low rank product of two smaller matrices. Other approaches

use bio-inspired generative models to encode large numbers of parameters and network

structures in compact representations [102, 103]. Jiang Su [100] conducted research

on reducing network redundancy of artificial neural networks implemented on FPGAs.

Their work suggests that the network redundancy can be reduced at the data-level and

model level. The hardware system after reducing network redundancy shows that both

logic resources and on-chip memory usage can be reduced.
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5.2.2 Low-precision Representation for Neural Networks

Fixed-point quantisation is normally used in improving CNNs performance. In earlier

works, low precision fixed-point representation has been used in training CNNs [104].

Lin et al [105] investigated a method to identify the optimal fixed-point bit width

allocation across convolutional layers based on the number of parameters in each con-

volutional layer. Wu et al [106] proposed a quantisation scheme for both convolutional

layers and fully-connected layers that accelerates the CNNs processing speed and

reduce the memory costs for processing CNNs in mobile devices. An FPGA-based low

precision fixed-point implementation has been investigated by Sit et al [107].

In recent years, a more efficient low precision neural network model has been proposed,

called Binarized Neural Networks (BNNs) [108]. In the BNNs, all of weights are

approximated with binary ones. The core idea is to binaries the weight values in the

weight matrices and the function values of each activation function down to -1 and 1 at

the same time. Due to the extremely low precision of BNNs, it shows more significant

performance gain on FPGA implementation. M. Rastegari et al. [97] proposed a XNOR-

Net where both of the weights and inputs are binary values. So that, compared with

BNNs, the XNOR-Net can further improve the memory saving. Their experimental

results show that the XNOR-Net can reduce the memory usage by 32x and 58x speedup

compared with full-precision AlexNet [6] for ImageNet dataset [10] on GPU and CPU

implementation. Their results also show that the classification accuracy with Binary-

Weight-Network version of AlexNet is the same as the full-precision AlexNet. Then,

FINN [109] and FP-BNN [110] provides the solution for mapping BNNs onto FPGA.

Their results show that because of less memory and computing resource usage, the

FPGA implementation of BNNs get the highest throughput at the time of publication

as well as less power consumption.
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5.3 Methodology

The main idea in this work for quantising pre-trained CNNs to low-precision integer

representation is to consider how the width of each quantisation bin can be optimised

while keeping the classification accuracy of the model as high as possible. In this

section, a rank-based evolutionary strategy for finding the best quantisation bin widths

after converting 32-bit to 8-bit representation is introduced. Choosing an integer-based

representation brings additional benefits when implementing the model in hardware, e.g,

FPGAs or embedded systems. There are other potential benefits when combining the

proposed adaptive quantisation concept with that of approximate computing hardware.

For example, we have explored the use of an efficient approximate multiplier in previous

work [1] that may be a good candidate for exploring this in the future.

5.3.1 Integer Quantisation

Quantisation methods are normally used in signal processing, where an analogue

signal needs to be converted into the digital domain. During quantisation, a range of

continuous values is quantised into a single numerical value. For example, 8-bit integer

quantisation of continuous real values between 0 and 1 divides the range [0..1] into

256 equally-sized intervals and maps each of them to one of the corresponding 256

integer values which represent the original set. The key of implementing a quantisation

method is to decide the quantisation boundary that determines what kinds of values

can be quantised to a representative value, as shown in Fig. 5.1a.

Following the quantisation method from above, it is hard to determine what sizes of

the quantisation bins can make the classification accuracy of quantised weights and

bias as high as possible for a given pre-trained CNN. The adaptive integer quantisation

method proposes to use an evolutionary algorithm to find upper and lower boundaries
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(a)

(b)

Figure 5.1 (a) An example of linear quantisation. The blue line shows 1000 evenly
spaced numbers from 0 to 10. The orange line represents that quantise the red line value
to 5 representative values. (b) An example of adaptive (non-linear) quantisation. The
blue line shows 1000 evenly spaced numbers from 0 to 10. The orange line represents
that quantise the red line value to 5 representative values with different boundaries.
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for each quantisation bin within the low-precision integer representation, as shown in

Fig. 5.1b.

5.3.2 Evolutionary Approach for Adaptive Integer Quantisa-

tion

In order to explore the bin boundaries, a rank-based evolutionary strategy to find out

the best bin location and size for quantising CNNs is developed. An overview of the

proposed adaptive integer quantisation method is shown in Fig. 5.2.

For the EA, the size of each individual will depend on the quantisation bit width and

the depth of the CNN. If the quantisation bit width is n, the number of bins under this

bit width will be 2n. Then, the size of the individual for a given CNN with m layers

will be (2n − 1)×m× 2, including both weights and biases for all layers. For example,

if the adaptive integer quantisation is used to quantise a two-layer network with 4-bit

integer representation, each individual will contain 60 genes. Each gene is initialised

with a random number from 0 to 1. This number represents where the range interval

is cut for each quantisation bin. The pre-trained model contains weights and biases

with 0 to 1 32-bit floating point value, therefore, the genome will cut the floating value

and generate related quantisation bins. An example of 3-bit quantisation genome has

been shown in Fig. 5.3.

After the initial population is generated, mutation operation is used to generate the

offspring of the initial population. The mutation operation modifies the gene between

the range of 0 and 1 based on a given mutation probability. The mutation operation is

described in Algorithm 5.

Then, both the initial population and the offspring population are decoded to rep-

resentative quantisation bins. The fitness of the individuals is evaluated by running
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Given a pre-trained CNN 
with Float32 weights and 

biases

Generate offspring by 
mutation operator

Initialise parent population 
for adaptive integer 

quantisation

Evaluate classification 
accuracy with quantised 

weights and biases

Rank classification accuracy 
together for parent and 

offspring

Maximum 
generation 
matched

Save the model with the 
highest weights and biases

Decode the population to 
weights and biases for CNN

Yes

No

Figure 5.2 Overview of the adaptive integer quantisation loop. The method generates
a set of bins to quantise the original weights and biases. The classification accuracy
of each individual is evaluated on a test dataset, and represents as fitness to the EA.
Then, the classification accuracy of each individual is ranked by the EA. The individual
with the highest classification accuracy will be used as the parent population to the
next generation.

classification accuracy of the CNNs inference using the quantised integer weights and

biases on the test dataset. Then, the classification accuracy of both parent and offspring

populations are ranked from the highest to lowest. The individual with the highest
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Figure 5.3 The figure shows how to decode 3-bit quantisation bin widths from the
parameters stored in the genome. The genome is encoded in the same order as the bin
from minimum to maximum value (left to right). The middle gene (G3) between G0
and G6 divides the range from minimum value (0) to maximum value (1) according to
its parameter value. Then, the middle gene (G1) between minimum value (0) and gene
G3 divides the value from minimum to G1’s parameter value. The middle gene (G5)
between the maximum value (1) and gene G3 cut the value from G5’s representative
value to maximum value and so on. This iterative bisection method is used to simplify
mutation operation and avoid convergence towards large clusters of small bins.
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Algorithm 5 Mutation operation
Procedure: Mutation (P, ρ). ▷ Population (P ) has N individu-
als and M genes in each individual. The mutation probability is
ρ.

1: Offspring population (O) ← Ø
2: for i← 1 to N do
3: for j ← 1 to N do
4: if random(0, 1) < ρ then
5: Oi,j ← random[0, 1]
6: else
7: Oi,j ← P0,j

8: end if
9: end for

10: end for

rank will be taken as the parent genome and then mutated to obtain the population for

the next generation. The loop will be running until the specified number of generations

is reached.

The overall system of adaptive integer quantisation shows in Algorithm 6 and works as

follows:

1. Get weights and biases from pre-trained CNN model.

2. Generate genomes and decode genomes to respective weights and biases.

3. Evaluate classification accuracy of CNN inference by quantised weights and

biases.

4. Rank results from CNN inference.

5. Repeat 2) to 4) until the system reaches the maximum generation

6. The model with the highest classification accuracy is saved as quantised model

of adaptive integer quantisation.
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Algorithm 6 Evolutionary Strategy for adaptive integer quantisation
Procedure: Evolutionary Strategy (M, N, f(x)). ▷ evolving N individu-
als for M generation with fitness function of f(x), ∀x ∈ X, where f(x) =
max[classification accuracy] and X ⊂ [0, 1]

1: Initialise parent population P1 = [x1, x2, ..., xN ]
2: Offspring population O1 ← Mutation (P1)
3: for i← 1 to M do
4: Ci ← Oi ∪ Pi in size 2N
5: Ri ← f(Ci) ▷ evaluating each individual in Ci with fitness function f(x)
6: Ri ← Descend-Sort(Ri) ▷ ranking the individual with the fitness (classification

accuracy) from high to low in Ci

7: Ci ← Ranking Ci based on Ri

8: Pi+1 ← Ø
9: for j ← 1 to N do

10: Pi+1,j ← Ci,j

11: end for
12: Oi+1 ← Mutation(Pi+1)
13: end for

5.4 Experimental Results

In this section, the proposed method has been tested and evaluated using the LeNet-

5 [27] benchmark CNN architecture. A small CNN, the Lenet-5 architecture, is used

here as an initial benchmark architecture to illustrate the performance achieved by our

proposed adaptive quantisation method.

5.4.1 Experiment Setup

The original Lenet-5 architecture is built using two convolutional layers, pooling layers

connected at the end of each convolutional layer, fully-connected layers and a classifi-

cation at the end. In order to improve the classification accuracy of the benchmark

CNN, the number of convolution kernels is increased in each of the convolutional layers

and the number of nodes in fully-connected layers is also increased. All convolutional
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layers and fully-connected layers are followed by rectified linear unit (ReLU) [111] as

activation function. The overall architecture is shown in Fig. 5.4.

Input Image

Conv _1

MaxPool _1

Conv_2

MaxPool _2

FC_1

Classification

5 × 5 × 32, stride = 1, padding = same

5 × 5 × 64, stride = 1, padding = same

Nodes = 512

2 × 2 , stride = 2

2 × 2, stride = 2

Figure 5.4 The benchmark architecture that is used to test the proposed method. The
network consists of two 2D convolutional layers, which involve 32 and 64 convolution
kernels respectively. All of the kernels are sized 5x5 and the stride is 1. Each
convolutional layer is followed by a max-pooling layer which is sized 2x2 and a stride
of 2. There is a fully-connected layer featuring 512 nodes connected at the end of the
second max-pooling layer. Finally, a classification layer is used to predict the best
classification label to best describe the image.

The proposed method is applied to CIFAR-10 dataset [9], which in total contains

60,000 images. The CIFAR-10 is split into a training set of 50,000 images and a test

set of 10,000 images. Each image is a 32× 32 RGB image, associated with a label from

10 classes. The Lenet-5 is trained by stochastic gradient descent (SGD) method with a
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batch size of 64. The weights are initialised using a truncated normal distribution with

standard deviation of 0.1. The Adam optimiser [90] is used with an initial learning rate

of 0.001. The ‘softmax cross-entropy loss’ is used as the loss function. The CNN has

been trained for 50 epochs in total and the learning is decreased to 1× 10−4 after 10

epochs. After 50 epochs of training, the benchmark CNN has reached the classification

accuracy of 78.28%.

In order to explore the best quantisation bin distribution, the proposed method is

built on a single-objective, rank-based evolutionary strategy. The initial population

is generated randomly from 0 to 1. The experiment is set to run for 200 generations

using a population size of 100. Only mutation operation is applied with the mutation

rate set to a probability of 0.1.

5.4.2 Results for Accuracy

The results of the proposed method are reported in Fig. 5.5. The experiment is

setup to compare the classification accuracy between the original 32-bit floating

point (Float32), linear 8-bit integer (INT8) quantisation and adaptive 8-bit integer

quantisation. The original Float32 values are the ones from the pre-trained LeNet-5

which has weight distributions between -1 and +1 in Float32 representation. The linear

INT8 quantisation represents linearly quantised weights from the pre-trained Float32

network that will generate a weights distribution between -128 to +127 as a baseline

comparison. The linear INT8 quantisation method is used in both convolutional layers,

but the Float32 representation is kept for the fully-connected layers. The simple linear

INT8 quantisation reaches a reduced classification accuracy of 64.79%.

It can been seen from Fig. 5.5 that the classification accuracy of quantised networks

is increased significantly during the first 40 generations and continues to sightly

increase after the 50th generation. The final best fitness after 200 generations has
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Figure 5.5 Classification Accuracy vs. Generation. The blue line shows the best fitness
of each generation. The maximum, minimum and mean classification accuracy of
quantised model are reported to show the performance of the proposed method. The
read and green lines show the mean and median of each generation, respectively. The
red dot indicates the classification accuracy of the pre-trained LeNet-5 on CIFAR-
10 dataset using the original 32-bit floating point representation, and the blue star
represents the classification accuracy of LeNet-5 with linear 8-bit integer quantised
weights.

achieved classification accuracy of about 73%. Although the classification accuracy of

the adaptive integer quantised network is lower than that from the original Float32

representation, it features significantly better accuracy than the network using basic

linear INT8 quantisation.

Fig. 5.6 shows the distribution of quantised weights for convolutional layers of LeNet-5

after 100 generations. As can be seen from Fig. 5.6a, the original weights distribution

of the pre-trained LeNet-5 is similar to a normal distribution ranging between -0.6 to

+0.5. Accordingly, the linear 8-bit integer quantisation only covers the distribution

range between -80 to +70, without changing the weights distribution shape. However,
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(a)

(b)

Figure 5.6 The comparison between original weights distribution, 8-bit linear integer
quantised weights and 8-bit adaptive integer quantised weights for convolutional layers
of test CNN. The y-axes are log10 scale so that the profile of the distribution becomes
more visible. (a) Weights distributions of pre-trained Float32 weights, linear quantised
INT8 and adaptive integer quantised INT8 for first convolutional layer. (b) Weights
distributions of pre-trained Float32 weights, linear quantised INT8 and adaptive integer
quantised INT8 for second convolutional layer.
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as the figure shows, the 8-bit adaptive integer quantisation does not only expand the

weights distribution to the full range of -128 to +127, but it also changes the original

weights distribution’s shape profile.

After applying the adaptive integer quantisation method to the pre-trained model, the

original normal distribution’s profile has been significantly changed, and also the range

of the adaptive integer quantisation distribution is much larger than that from the

linear integer quantisation. Therefore, under the same quantised bit width, adaptive

integer quantisation can more efficiently express information than simple linear integer

quantisation. The comparison of weights distribution between pre-trained Float32,

linear quantised INT8 and 8-bit adaptive integer quantisation for the fully-connected

layer and classification layer are shown in Fig. 5.7.

5.5 Summary

The proposed adaptive quantisation method applies a rank-based evolutionary algorithm

to generate different bin locations and sizes for quantising a pre-trained CNN. As the

experimental results show, the proposed method can successfully quantise pre-trained

CNNs with reasonable classification accuracy. Although, after running 200 loops, the

quantised CNN shows same loss in classification accuracy compared with the original

32-bit floating point representation, however, the size of the quantised model is much

smaller than the original. In this case, the memory used to store the weights and

biases values are reduce 4 times, as all weights and biases values in the network are

converted from 32 bits down to 8 bits. The results show that the proposed method

provides a significant improvement over the results obtained from simple linear integer

quantisation.
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(a)

(b)

Figure 5.7 Comparison between original weight distribution, 8-bit linear integer quan-
tised weights and 8-bit adaptive integer quantised weights for fully-connected CNN
layers. The y-axes are log10 scale so that the profile of the distribution becomes more
visible. (a) Weights distributions of pre-trained Float32 weights, linear quantised INT8
and adaptive integer quantised INT8 for the first fully-connected layer. (b) Weights
distributions of pre-trained Float32 weights, linear quantisaed INT8 and adaptive
integer quantised INT8 for classification layer.
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Chapter 6

Adaptive Integer Quantisation for

Various Bit-Width Configurations
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6.1 Overview

In the previous chapter, an EA-based adaptive quantisation method has been proposed

to quantise the weights and biases of pre-trained CNNs from 32-bit floating point to

8-bit integer representation. As a result, the parameter size of target CNNs has reduced

to 4x smaller than using 32-bit floating point, and also, the classification accuracy

of the quantised model by EA-based adaptive quantisation method is significantly

higher than using simple integer quantisation. In this chapter, applying mixed-precision

number representations to quantise CNNs is investigated.

The investigation of different bit-width representation of EA-based adaptive integer

quantisation is divided into two categories. Firstly, in order to find out how different

integer representations between convolutional layers and fully-connected layers effect a

network’s classification accuracy, and how different bit-width settings between convolu-

tional layers and fully-connected layers can be applied in the proposed quantisation

method. Second, an investigation of how different integer representations between

weights and biases affect the network’s classification accuracy is carried out. To do

this, the adaptive integer quantisation method is configured to quantise the weights

and biases of a pre-trained network with mixed-precision number representation.

Furthermore, the quantisation methodology developed here is combined with the

computational cost optimisations proposed in Chapter 3 and Chapter 4.

The rest of this chapter is organised as follows: Section 6.2 introduces the configuration

of EA-based adaptive integer quantisation method, which is used to carry out the

two investigations from above, i.e. the configurations of adaptive integer quantisation.

Section 6.3 demonstrates some experimental results of applying different bit-width to

quantisation pre-traind CNNs by adaptive integer quantisation, and also the proposed

methodology is applied to quantise the models which are found in Chapter 3 and

Chapter 4. Finally, Section 6.4 concludes this chapter.
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6.2 Configuration of the Evolutionary Algorithm

6.2.1 Mixed-Precision between Convolutional Layers and Fully-

Connected Layers

For the first investigation, i.e applying different integer representation for convolutional

layers and fully-connected layer, the population is configured as follows.

Csize = [Nconv × (2Bconv − 1) + Nfc × (2Bfc − 1)]× 2 (6.1)

The equation 6.1 describes the number of genes in each individual which is applied to

the EA-based adaptive integer quantisation, where Csize is the total number of genes

in each individual, Nconv and Nfc represent the number of convolutional layer and

the number of fully-connected layer in target CNN, Bconv indicates the quantisation

bit-width for convolutional layers and Bfc represents the quantisation bit-width for

fully-connected layers. For each layer, both weights and biases are targeted to be

quantised by adaptive integer quantisation at the same time, therefore, chromosomes

include both weights and biases in the EA representation. For example, to quantise

with 8-bit integer representation in convolutional layers and 4-bit integer representation

in fully-connected layers for a two convolutional layer and two fully-connected layers

CNN, the number of genes of each individual will be 1080.

G0
G0 G1 … G254 G255 … G509 G510 … G764 … G1019 G1020 … G1034 G1035 … G1049 … G1079

Weights of first 
convolutional 
layer

G1 … G254 G255 … G509 G510 …

{

Biases of first 
convolutional 
layer

{

Weights of second 
convolutional layer

{

Weights of first 
fully-connected 
layer

{

Biases of first 
fully-connected 
layer

{

Figure 6.1 An example of the chromosome that is used for 8-bit integer in convolutional
layers and 4-bit integer in fully-connected layers. Each set of genes are then decoded
by the method described in Fig 5.3 in Chapter 5.
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The Fig 6.1 shows an example of a chromosome that is used for quantising the CNN

for 8-bit integer in convolutional layers and 4-bit integer in fully-connected layers by

the EA-based adaptive integer quantisation. The chromosomes are encoded as the

same order as the layers in the target CNN’s architecture. As the example shows in

Fig 6.1, quantising a CNN with two convolutional layers and two fully connected layer

by 8-bit integer representation in convolutional layers and 4-bit integer representation

in fully-connected layers, the first 255 genes indicates the bin boundaries for quantising

the weights of the first convolutional and the second 255 genes represents the bin

boundaries for quantising the weights of the first convolutional layers. Then the third

255 genes and fourth 255 genes indicate the bin boundaries for quantising weights and

biases of the second convolutional layer, respectively. Finally, fifth 15 genes, sixth 15

genes, seventh 15 genes and eighth 15 genes indicate the bin boundaries for quantising

weights and biases of the first fully-connected layers and weights and biases of the

second fully-connected, respectively.

6.2.2 Mixed-Precision between Weights and Biases

Second investigation is carried on finding out whether is possible to apply different

bit-width integer representation for weights and bias on target CNN.

Csize = (Nconv + Nfc) ∗ [(2Bweight − 1) + (2Bbias − 1)] (6.2)

Equation 6.2 is used to calculate the chromosome size that will be used for quantising

a pre-trained CNN with different integer representations for the EA-based adaptive

integer quantisation. Similarly, Nconv and Nfc indicate the number of convolutional

layers and the number of fully-connected layers of the target CNN, respectively. Bweight

represents the quantisation bit-width for weights in each layer and Bbias represents the

quantisation bit-width for biases in each layer.
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G0
G0 G1 … G254 G255 … G509 G510 … G764 … G1019 G1020 … G1034 G1035 … G1049 … G1079

Weights of first 
convolutional 
layer

G1 … G254 G255 … G509 G510 …

{
Biases of first 
convolutional 
layer

{

Weights of second 
convolutional layer

{

Weights of first 
fully-connected 
layer

{

Biases of first 
fully-connected 
layer

{

Figure 6.2 An example of the chromosome that quantising a pre-trained CNN with
two convolutional layers and two fully-connected layers by 8-bit integer in weights and
4-bit integer in biases. Then, each set of the genes is decoded by the method described
in Fig 5.3 in Chapter 5.

The Fig 6.2 illustrates an example of a chromosome which describing the EA representa-

tion for quantising pre-trained CNN by EA-based the adaptive integer quantisation with

8-bit integer for weights and 4-bit integer for biases. Similar to the first investigation,

the chromosome is encoded in the same order as the pre-trained CNNs. For instance,

in Fig 6.2, the 255 genes represent the quantisation bin boundaries of the weights in

first convolutional layer and followed by 15 genes that indicate the quantisation bin

boundaries of the bias in first convolutional layers. From 510th to 764th and from

765th to 780th genes are encoded to represent the weights and biases of the second

convolutional layers, respectively. There are totally 1080 genes used for quantising

a network with two convolutional layers and two fully-connected layers using 8-bit

weights and 4-bit biases.

6.3 Experimental Setup and Results

6.3.1 Experimental Setup

In this section, the CNN used for testing the EA-based adaptive quantisation method

is the same as in Chapter 5, featuring two convolutional layers with 32 and 64 5× 5

convolution kernels, respectively. Two max pooling layers are connected at the end

of each convolutional layer, and a fully-connected layer with 512 neurons and a
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classification layer is connected at the end. The activation function used in this CNN

is rectified linear unit (ReLU) [111]. Fig 6.3 illustrates the test CNN architecture.

Input Image

Conv _1

MaxPool _1

Conv_2

MaxPool _2

FC_1

Classification

5 × 5 × 32, stride = 1, padding = same

5 × 5 × 64, stride = 1, padding = same

Nodes = 512

2 × 2 , stride = 2

2 × 2, stride = 2

Figure 6.3 The CNN architecture is used to test the EA-based adaptive integer
quantisation.

The CNN is trained on CIFAR-10 dataset [9] by SGD method with a batch size of 64.

Weights are initialised by a truncated normal distribution with a standard deviation

of 0.1. The Adam optimiser [90] is used with an initial learning rate of 0.001. The

softmax cross-entropy loss is used as the loss function. The CNN has been trained for

50 epochs in total and the learning rate is decreased to 1× 10−4 after 10 epochs. After

50 epochs of training, the benchmark CNN has reached a classification accuracy of

78.28%.
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The EA-based adaptive integer quantisation loop is set to run for 200 generations

with a population size of 10 individuals. Only mutation operation is applied with the

mutation rate set to a probability of 0.1.

6.3.2 Experimental Results

In the first experiment, the weights and biases in convolutional layers are quantised

to 8-bit integer and the weights and biases in fully-connected are variable. In this

case, the best fitness obtained from 8-bit adaptive integer quantisation in Chapter 5 is

used to initialise the population, thus, the first individual in the initial population uses

the quantisation bin parameters of the convolutional layers of the best results from

experiments results in Chapter 5. The remaining individuals in the initial population

are randomly initialised.

Seven experiments are conducted with 8-bits in convolutional layers, and 7-bits in fully-

connected layers(C8F7), 8-bits in convolutional layers with 6-bits in fully-connected

layers(C8F6), 8-bits in convolutional layers with 5-bits in fully-connected layers(C8F5),

8-bits in convolutional layers with 4-bits in fully-connected layers(C8F4), 8-bits in

convolutional layers with 3-bits in fully-connected layers(C8F3), 8-bits in convolutional

layers with 2-bits in fully-connected layers(C8F2) and 8-bits in convolutional layers

with 1-bit in fully-connected layers(C8F1) . The experimental results are reported in

Fig. 6.4.

As shown in Fig. 6.4, apart from C8F8, all results from EA-based adaptive integer

quantisation with different bit-width combination between the convolutional layers

and fully-connected layer outperform the classification accuracy of linear 8-bit integer

quantisation. Compared with 8-bit adaptive integer quantisation which has been

demonstrated in Chapter 5, marked as C8F8, the experimental results of C8F7, C8F4

and C8F3 have slightly higher classification accuracy than using 8-bit integer only
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Figure 6.4 Classification Accuracy vs. Generation. In this experiment, the data
precision of convolutional layers is kept as 8-bit integer representation and the data
precision of fully-connected layers are reduced from 7-bit to 1-bit integer representation.

and C8F4 achieve 73.20% in classification accuracy after quantisation which is the

highest classification accuracy in this set of experiments. Different from others, after

200 generations, C8F3, C8F2 and C8F1 has lower classification accuracy than the

linear 8-bit quantisation. Since the classification accuracy the C8F5 starts dramatically

increasing after 170th generation, while others’ classification accuracy grow faster

in early generations, classification accuracy of C8F5 may keep increasing after 200

generation. However, in order to make fair comparison, all experiments were set to run

for 200 generation. Even reducing the precision in fully-connected layer down to 2 bits,

the network’s classification accuracy is still close to 8-bit representation, which only

has 0.12% of classification accuracy drop after quantisation. However, the network’s

classification accuracy of C8F1 is always 10% and does not have any improvement

during the quantisation process. This suggests that it is necessary to keep at least

2-bits in the fully-connection layer when implementing the proposed method. Table. 6.1
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compares the classification accuracy of different precision after EA-based adaptive

integer quantisation.

Table 6.1 Comparison between the original network, 8-bit EA-based adaptive integer
quantisation, linear 8-bit integer quantisation and different bit-width in fully-connected
layers.

Dataset Model Classification Accuracy

CIFAR-10

Original 78.28%
Linear 8-bit 64.79%

Adaptive 8-Bit (C8F8) 72.12%
C8F7 73.00%
C8F6 72.00%
C8F5 62.00%
C8F4 73.20%
C8F3 72.98%
C8F2 72.00%
C8F1 10.00%

For the second set of experiments, the weights and biases in the fully-connected layer

are quantised to 8-bit and the representation in the convolutional layers is variable.

The best parameters from Chapter 5 are loaded into the first individual of the initial

population. The remaining individuals in the initial population are randomly initialised.

The experimental results are reported in Fig. 6.5.

It can be seen from Fig. 6.5, that all of the networks’ classification accuracy of test

experiments are much lower than the classification accuracy of the 8-bit EA-based

adaptive integer quantisation, which is marked as C8F8. The experimental results show

that even only reducing one bit of precision of weights and biases of convolutional layers,

the classification accuracy has a dramatic drop, compared with applying 8-bits in all

layers. The experimental results suggest that, as the data precision for convolutional

layers goes down, the classification accuracy of the network decreases. Table. 6.2
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Figure 6.5 Classification Accuracy vs. Generation. In this experiment, the data
precision of fully-connected layers is kept as 8-bit integer representation and the data
precision of convolutional layers are reduced from 7-bit to 1-bit integer representation.

Table 6.2 Comparison between the original network, 8-bit EA-based adaptive integer
quantisation, linear 8-bit integer quantisation and different bit-width in convolutional
layers.

Dataset Model Classification Accuracy

CIFAR-10

Original 78.28%
Linear 8-bit 64.79%

Adaptive 8-Bit (C8F8) 72.12%
C7F8 33.00%
C6F8 30.00%
C5F8 19.00%
C4F8 12.00%

shows the comparison of classification accuracy between 8-bit fully-connected layer

and different data precision of the convolutional layers.
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Figure 6.6 Classification Accuracy vs. Generation. In this experiment, the data
precision of weights is kept as 8-bit integer representation and the data precision of
biases is reduced from 7-bit to 1-bit integer representation.

In the third set of experiments, the data precision of weights in all layers is kept as

8-bit integer representation and varied the data precision for biases. In this case, the

genomes of quantised weights from experimental result in Chapter 5 are again used to

initialise are individual in the initial population. More specifically, the genes which

represent the weights of CNN in first individual of initial population is the experimental

results that evolved from 8-bit EA-based adaptive integer quantisation, and the genes

of bias are initialised randomly. Other individuals in initial population are randomly

initialised with numbers between 0 and 1. Seven experiments are conducted to test

the mixed-precision between weights and biases. Parameter settings range from 8-bit

weights with 7-bit biases (W8B7) to 8-bit weights with 1-bit biases (W8B1). The

experimental results are shown in Fig 6.6.
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As can been seen from Fig 6.6, in general, as the the bit-width of biases goes down,

model’s classification accuracy decreases. Three combinations are outperformed the

classification accuracy of the basic quantised 8-bit model, which are W8B7, W8B6 and

W8B5.

In the final experiment, 8-bit biases are kept, and the precision of weights is varied.

The same as in previous population initialisation, genomes of quantised biases from

experimental result in Chapter 5 are used as one of the individuals in the initial

population and remaining individuals are initialised randomly. The experimental

results are illustrated in Fig 6.7.
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Figure 6.7 Classification Accuracy vs. Generation. In this experiment, the data
precision of biases is kept as 8-bit integer representation and the data precision of
weights is reduced from 7-bit to 5-bit integer representation.

As is illustrated in Fig 6.7, there is a dramatic drop in model’s classification accuracy

after quantising the pre-trained model with low-precision in weights. Overall, applying

small bit-width integer representation for weights and 8-bit integer representation for

biases leads to poor classification accuracy. Table. 6.3 shows the model’s classification
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Table 6.3 Comparison between the original network, 8-bit EA-based adaptive integer
quantisation, linear 8-bit integer quantisation and mix-precision between weights and
biases

Dataset Model Classification Accuracy

CIFAR-10

Original 78.28%
Linear 8-bit 64.79%

Adaptive 8-Bit (C8F8) 72.12%
W8B7 76.00%
W8B6 76.00%
W8B5 75.00%
W8B4 72.00%
W8B3 65.00%
W8B2 67.00%
W8B1 68.00%
W7B8 30.00%
W6B8 13.00%
W5B8 28.00%

accuracy when using mixed-precision between weights and biases compared with the

pre-trained 32-bit floating point representation, the linear 8-bit integer quantisation

and the 8-bit EA-based adaptive integer quantisation methodology from Chapter 5.

Then, the EA-based adaptive integer quantisation methodology is tested on LeNet

with MNIST dataset. Based on the previous investigation, the quantisation setting of

8-bit integer representation in convolutional layers with 4-bit integer representation

for fully-connected layers is applied to quantise the LeNet on MNIST dataset. In this

experiment, the EA-based adaptive integer quantisation is set to a population size of 20

and run for 200 generations. After running the EA-based adaptive integer quantisation

for 200 generations, the model achieves a classification accuracy of 99.37%. The result

of EA-based adaptive integer quantisation is compared to current approaches.
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Table 6.4 Comparison between the EA-based adaptive integer quantisation method
and recent approaches in quantisation of CNN on LeNet with MNIST dataset.

Method Bit width Data type Classification error

S. Gupta et al. [104] 14 Fixed point 0.83
12 Fixed point 0.90%

Deep Compression [14] 8-bit Conv/5-bit FC Floating point 0.74
TWN [112] 2 Binary 0.65%
SWS [113] 3 Fixed points 0.97%

Bayesian Compression [114] 7-18 Fixed point 1.00%
Proposed 8-bit Conv/4-bit FC Integer 0.63%

The Table 6.4 illustrates the comparison between the EA-based adaptive integer

quantisation and other approaches for quantising LeNet on MNIST dataset. It can

be seen from the table, the EA-based adaptive integer quantisation achieves the

lowest classification error in quantising LeNet on MNIST dataset, compared to peer

competitors. And also, the EA-based adaptive integer quantisation allows the quantised

model to process weights and biases in integer representation, compared with most of

the quantisaiton methodologies which are applying fixed point for weights and biases.

6.3.3 Combining with Computational Cost Optimisation

The EA-based adaptive integer quantisation demonstrates that the proposed methodol-

ogy is capable of quantising pre-trained CNNs from 32-bit floating point representation

to small bit-width integer representation. Here, the optimised CNNs in Chapter 4 are

quantised with 8-bit integer in convolutional layers and 4-bit integer in fully-connected

layers.

The Fig. 6.8 illustrates the models’ classification accuracy achieved by the proposed

methodology. It can be seen from the figure that, although the EA-based adaptive

integer quantisation methodology achieves high classification accuracy on standard

LeNet architecture after quantising with 8-bit integer in convolutional layers and 4-bit
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Figure 6.8 Quantising the three reference points of LeNet which are optimised in
Chapter 4 on CIFAR-10 dataset with 8-bit representation in convolutional layers and
4-bit integer representation in fully-connected layers.

integer in fully-connected layers, the reference architectures of optimised LeNet in

Chapter 4 have very poor classification accuracy after quantisation.

The experimental result suggests that combining the computational cost optimisation

with EA-based adaptive integer quantisation methodology cannot make the model

achieve a sufficient performance, despite the two methodologies have been demonstrated

to significantly improve CNNs’ computational cost and model size individually.

6.4 Summary

This chapter has shown how the EA-based adaptive integer quantisation methodology

performs using mixed-precision between convolutional layers and fully-connected layers,

or between weights and biases for quantising pre-trained CNNs. The experimental

results indicate that providing mixed-precision integer representations for quantising

pre-trained CNNs can further improve the models’ classification accuracy over using the

same 8-bit integer setting for all parameters. This suggests that convolutional layers

should be quantised with larger integer representation than fully-connected layers.
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Typically, applying 8-bit integer representation in convolutional layers and 4-bit integer

representation in fully-connected layers achieves the highest classification accuracy

(C8F4), compared with other settings, i.e. C8F7, C8F6, C8F5. C8F3, C8F2 and C8F1,

of mixed-precision between convolutional layers and fully-connected layers. For the

data precision between weights and biases, the experimental results demonstrate that

large bit-width should be used for quantising weights and small bit-width integer may

be used for quantisation of biases.

The main challenge in this chapter is that it is difficult to combine the EA-based

adaptive integer quantisation methodology with the optimised architectures found by

computational cost optimisation in Chapter 4. The experimental results illustrate that

both optimisation methodologies work well when applied individually. However, when

combing the two methodologies together, the model’s classification accuracy drops

dramatically. This opens up a question for further research into how to best combine

the two optimisation methodologies in a beneficial way.
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Conclusions and Future Work
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7.1 Conclusions

This thesis has developed an optimisation framework that combines evolutionary

algorithms (EAs) with convolutional neural networks. The objectives of the thesis are

divided into two categories: firstly, to reduce the computational resources costs for

processing convolutional neural networks (CNNs) while maintaining CNNs’ classification

accuracy. Secondly, to provide a quantisation method that can reduce the parameter

size with low precision integer representation. Multi-objective evolutionary algorithms

(MOEAs) have been applied to reduce the size and number of convolution kernels and

expand solution space across various shapes of convolution kernels. Then, an EA-based

adaptive integer quantisation is proposed to quantise the weights and bias of CNNs

from 32-bit floating point representation to low precision integer representation. It has

been demonstrated that these approaches provide opportunities to reduce the size of

CNNs and improve their performance.

This work starts with reviewing the background of CNN designs and MOEAs in

Chapter 2. The demand identified for modern CNN designs and optimisation is

how to reduce model complexity through reduction in the computational resources

and memory costs to make the CNNs small and efficient. As a result, EAs can be

used to solve optimisation problems that considering single or multiple optimisation

objectives. Recent research shows the classification accuracy of CNNs can be improved

by optimising the architecture through EA. However, there are limited works focused

on reducing the computational resources and memory costs for processing CNNs by

evolutionary-inspired techniques.

Chapter 3 demonstrates a MOEA-based framework that is used to trade-off between the

computational resource requirement and the model classification accuracy by combining

multiple size and shapes of unconventional convolution kernels. The experimental

results illustrate that MOEA is able to generate combinations of unconventional kernels

to replace the set of one-size square kernels produced by conventional designs and leads
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significant reduction in computational resource costs with negligible sacrifice of (and

sometimes slightly increased) classification accuracy.

The methodology provides in Chapter 4 is an extension work of the Chapter 3 which is

focused on further saving on computational resources costs by reducing the number of

convolution kernels in each convolutional layers. In this way, a three-objective MOEA-

based optimisation method is used to trade-off between the number of multiplications

required for processing a CNN, the total number of convolution kernels a in CNN

and the model’s classification accuracy. The methodology is evaluated on multiple

CNN architectures with various image datasets. As the experimental results show.

the optimised CNNs demonstrate significant improvement on saving computational

resources and outperform the classification accuracy over standard CNNs.

The results and methods that are developed in Chapter 3 and Chapter 4 have suc-

cessfully completed objective 1, “Develop an optimisation methodology to reduce

computational cost of processing feed-forward CNNs with combinations of various

unconventional convolution kernel shapes and sizes.”

In Chapter 5, an EA-based adaptive integer quantisation methodology is proposed to

quantise the weights and biases of pre-trained CNNs from original 32-bit floating repre-

sentation to 8-bit integer representation. The EA-based adaptive integer quantisation

method has been shown to successfully quantise the weights and biases of CNNs. It

can be seen from the experimental results that, although the quantised model has a

slightly lower classification accuracy than using 32-bit floating point representation,

the model size is much smaller than that of the original model.

Chapter 6 carries on the investigation of quantising pre-trained CNNs using mixed-

precision integer representations. The investigation is divided into two parts, firstly,

different precision of integer presentation between convolutional layers and fully-

connected layers is tested. The experimental results show that applying 8-bit integer
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for weights and biases in the convolutional layers and 4-bit integer for weights and biases

in the fully-connected layers leads to the highest classification accuracy, compared with

other combinations. The data representation of weights and biases in fully-connect

layers can go down to 2-bit without significant loss in model’s classification accuracy.

The second part applies different precision for weights and biases. The experimental

results suggest that low-precision biases have only a slight impact on the model’s

classification accuracy. The EA-based adaptive integer quantisation has also been

tested on the optimised CNNs from Chapter 4. However, the experimental results

indicate that combining both optimisation methodologies leads to poor results in

model’s classification accuracy.

The methodology and experimental results in Chapter 5 and Chapter 6 corresponds

to objective 2 which is “Devise a methodology that allows adaptive quantisation

of both weights and bias from 32-bit floating point representation to lower bit-width

integer representation while retaining model classification accuracy”. The contributions

support that the objective 2 has been successfully completed.

Review of Hypothesis

At the beginning, the thesis states the main hypothesis:

“Applying evolutionary algorithms to optimise structure of trained CNN models can

achieve significant improvements in resource consumption and memory usage while

maintaining the classification accuracy of the original models via reducing the number

of operations required for processing convolutional layers, and applying low-precision

integer data representation for trained CNN models’ parameters, i.e. weights and

biases.”

With following sub-hypotheses:
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Sub-hypothesis 1: Unconventional shapes of convolution kernels, e.g. 1× 3 and 3× 1

kernels, can be used to replace some of the commonly-used square convolution kernels

to reduce the computational cost of convolutional layers.

Sub-hypothesis 2: Multi-objective evolutionary algorithms can be used to optimise

the computational resource consumption by reducing the size, shape and number of

kernels in convolutional layers for specific tasks.

Sub-hypothesis 3: Evolutionary algorithms are capable of quantising CNN weights

and biases from their original 32-bit floating point representation to small bit-width

integer representation while minimising the loss in classification accuracy.

Sub-hypothesis 4: Applying different bit-widths of integer representation for convo-

lutional layers and fully-connected layers can achieve further reduction in parameter

size while minimising the loss in classification accuracy.

The two-objective methodology which is proposed in Chapter 3 combines the MOEA

with unconventional convolution kernels. The proposed methodology selects combina-

tions of various unconventional shapes and sizes of 2-D convolution kernels to replace

the square kernels in original designs. The proposed methodology generate a trade-off

solution between number of multiplication and model’s classification accuracy. As the

experimental results shows, the number of multiplication required for processing CNNs

is significantly reduced with negligible sacrifice of (and sometimes slightly increased)

model’s classification accuracy. The evidence provided in Chapter 3 can completely

support Sub-hypothesis 1.

Chapter 4 introduces a three-objective optimisation method that provides trade-

offs between number of multiplications, number of kernels in convolutional layers

and model’s classification accuracy. The proposed methodology combining different

number and multiple size of low-computation unconventional convolution kernels.
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The methodology has been tested on various CNNs with multiple datasets. The

experimental results in Chapter 4 provide reasonable support for Sub-hypothesis 2.

The EA-based adaptive integer quantisation methodology proposed in Chapter 5

quantises the weights and biases in pre-trained from 32-bit floating point representation

to 8-bit integer representation. Then, Chapter 6 applies mixed-precision integer

representation between convolutional layers and fully-connected layers of pre-trained

CNNs to further reduce the parameter size. An investigation of mix-precision integer

representation between weights and biases is also carried out in Chapter 6. The

resultant evidence in Chapter 5 and Chapter 6 fully support the Sub-hypothesis 3

and Sub-hypothesis 4.

Critical Discussions

This PhD thesis has successfully pushed the research boundary showing that evolution-

ary algorithms are promising techniques to optimise CNN designs in the context of

reducing computational resources cost and parameter size. However, there are some

limitations in this PhD work which may be improved in the future.

• As a population-based optimisation methodology, the proposed evolutionary

optimisation techniques requires a long time to run.

• The proposed computational cost optimisation and data representation optimisa-

tion demonstrate significant improvement in reducing computational cost and

parameter size, respectively. However, in Chapter 6, the combination of two

optimisation methodologies shows poor results in models’ classification accuracy.

An initial guess as to what is causing this issue is that the optimised models

have fewer kernels than the original models, and the kernel size is also smaller

in the optimised model. In order to extract enough features from inputs, each
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kernel might need a large range to represent data, which might result in the

representation range of an integer not being enough to cover the range.

7.2 Future Work

Based on the findings in this thesis, there are few research avenues which can be

explored in the future.

Runtime Optimisation for Evolutionary Algorithms

The evolutionary algorithms are population-based methods, which require numerous

evaluations and computing resources essential for implementing evolutionary algorithms.

Typically, when applying evolutionary techniques to optimise CNN designs, each model

needs to be trained and validated individually. For the proposed computational cost

optimisation methodology, the most time-consuming and computation-costly part is

training CNNs that large amount of data in training dataset have to be processed for

certain epochs. Therefore, reducing the runtime when training CNNs will accelerate the

proposed optimisation methodology. Possible research direction can be, for example,

finding out how many epochs are enough for training target CNNs. When CNNs are

trained for enough epochs that the performance might not be improved by further

training, the training process can be terminated early to save time and computational

costs, instead of training the model for a fixed epochs.

The second way for accelerating the optimisation process would be parallelisation.

All experiments in Chapter 3 and Chapter 4 are implemented on a single GPU. In

this case, only one individual can be trained at a time. Therefore, if there are more

GPU resources available, all individual in each generation can be trained together on

separate GPUs. For example, in Chapter 3 and Chapter 4, the population contains
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25 individuals. The optimisation loop could apply 25 GPUs to train these individuals

together. In this case, the runtime for the proposed method can be accelerated up to

25×, if the memory speed and bandwidth are also enough.

Combining Computational Cost Optimisation and Data Representation

Optimisation

One of the experiments in Chapter 6 investigates how the models’ classification accuracy

will be affected by combining the computational cost optimisation methodology and

adaptive integer quantisation methodology. However, the results demonstrate that

there is a large gap between the original model (optimised by computational cost

optimisation in Chapter 4) and the quantised model. The potential cause has been

discussed previous section which could be an interesting research avenue for combining

two optimisation methodologies.

Implementing the Optimised CNNs into Hardware

The experimental results in this PhD work demonstrate significant saving in content

of number of multiplication in Chapter 3 and Chapter 4. The reduction in number

of multiplications can be regarded as multiply-accumulate operations in hardware

implementation. Therefore, implementing CNNs which optimised by this PhD work

into hardware platform to test the performance will be one of the future work. Moreover,

an efficient approximate multiply-accumulate array [1] has been proposed to replace

the conventional multiply-accumulator during this PhD work. How to implement the

optimised CNNs into the approximate multiply-accumulate array [1] and optimise

dataflow for processing the typical optimised CNNs can be one of future research

direction.
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Evolutionary Optimisation for Recurrent Neural Networks

The optimisation methodologies proposed in this PhD work is focusing on reducing

the computational cost and models’ size of CNNs. Recurrent neural networks are

another type of artificial neural works which also require millions of multiplications and

gigabytes of memory to process data. Since the evolutionary technique demonstrated

significant improvement in optimising CNNs, how to apply the evolutionary algorithms

to optimise the computational cost and parameter size of recurrent neural networks

can be an interesting investigation for the future.
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Abbreviations

(1+1)-ES (1+1) Evolutionary Strategy

(µ + λ)-ES (µ + λ) Evolutionary Strategy

(µ, λ)-ES (µ, λ) Evolutionary Strategy

1-D One-dimension

2-D Two-dimensions

3-D Three-dimensions

ACBs Asymmetric Convolution Blocks

AI Artificial Intelligence

ANN Artificial Neural Network

BNN Binarized Neural Network

BN Batch Normalisation

CMA-ES Covarience Matrix Adaptation Evolution strategy

CNN Convolutional Neural Network

DL Deep Learning

DNN Deep Neural Network

EA Evolutionary Algorithm

FCNN Fully-Connected Neural Network
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Abbreviations

FFT Fast Fourier Transformation

FPGA Field-Programmable Gate Array

GA Genetic Algorithm

LRN Local Response Normalisation

MAC Multiply-accumulation

MOEA Multi-objective Evolutionary Algorithm

MOGA Multi-objective Genetic Algorithm

NSGA-II Non-dominated Sorting Genetic Algorithm-II

NSGA Non-dominated Sorting Genetic Algorithm

SGD Stochastic Gradient Descent

VEGA Vector Evaluated Genetic Algorithm

VQ Vector Quantisation

143



References

[1] Z. Wang, M. A. Trefzer, S. J. Bale, and A. M. Tyrrell, “Approximate multiply-
accumulate array for convolutional neural networks on fpga,” in 2019 14th
International Symposium on Reconfigurable Communication-centric Systems-on-
Chip (ReCoSoC). IEEE, 2019, pp. 35–42.

[2] Z. Wang, M. A. Trefzer, S. Bale, and A. M. Tyrrell, “Adaptive integer quantisation
for convolutional neural networks through evolutionary algorithms,” in 2021 IEEE
Symposium Series on Computational Intelligence (SSCI). IEEE, 2021, pp. 1–7.

[3] Z. Wang, M. A. Trefzer, S. J. Bale, and A. M. Tyrrell, “A multi-objective
evolutionary approach for efficient kernel size and shape for cnn,” in 2022
International Joint Conference on Neural Networks (IJCNN). IEEE, 2022, pp.
1–8.

[4] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep
neural networks: A tutorial and survey,” Proceedings of the IEEE, vol. 105, no. 12,
pp. 2295–2329, 2017.

[5] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing
systems, 2012, pp. 1097–1105.

[7] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.

144



References

[8] L. Deng, “The mnist database of handwritten digit images for machine learning
research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–142, 2012.

[9] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny
images,” 2009.

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A
large-scale hierarchical image database,” in 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 2009, pp. 248–255.

[11] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional
neural networks,” in International Conference on Machine Learning. PMLR,
2019, pp. 6105–6114.

[12] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks
for mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[13] A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep neural network
models for practical applications,” arXiv preprint arXiv:1605.07678, 2016.

[14] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding,” arXiv preprint
arXiv:1510.00149, 2015.

[15] C. A. C. Coello, “A short tutorial on evolutionary multiobjective optimiza-
tion,” in International Conference on Evolutionary Multi-Criterion Optimization.
Springer, 2001, pp. 21–40.

[16] M. Bhuvaneswari, Application of evolutionary algorithms for multi-objective
optimization in VLSI and embedded systems. Springer, 2014.

[17] C. A. C. Coello, G. B. Lamont, D. A. Van Veldhuizen et al., Evolutionary
algorithms for solving multi-objective problems. Springer, 2007, vol. 5.

[18] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjec-
tive genetic algorithm: Nsga-ii,” IEEE transactions on evolutionary computation,
vol. 6, no. 2, pp. 182–197, 2002.

[19] L. Xie and A. Yuille, “Genetic cnn,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 1379–1388.

145



References

[20] M. Suganuma, S. Shirakawa, and T. Nagao, “A genetic programming approach
to designing convolutional neural network architectures,” in Proceedings of the
Genetic and Evolutionary Computation Conference, 2017, pp. 497–504.

[21] D. E. Moriarty and R. Miikkulainen, “Hierarchical evolution of neural networks,”
in 1998 IEEE International Conference on Evolutionary Computation Proceedings.
IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360).
IEEE, 1998, pp. 428–433.

[22] Y. Bengio et al., “Learning deep architectures for ai,” Foundations and trends®
in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[23] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[24] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural
network acoustic models,” in Proc. icml, vol. 30, no. 1, 2013, p. 3.

[25] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,”
arXiv preprint arXiv:1511.07122, 2015.

[26] S. Belharbi, “Neural networks regularization through representation learning,”
arXiv preprint arXiv:1807.05292, 2018.

[27] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278–2324, 1998.

[28] A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv preprint
arXiv:1803.08375, 2018.

[29] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting,” The journal
of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[31] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, “Microsoft coco: Common objects in context,” in European
conference on computer vision. Springer, 2014, pp. 740–755.

146



References

[32] N. Bjorck, C. P. Gomes, B. Selman, and K. Q. Weinberger, “Understanding
batch normalization,” Advances in neural information processing systems, vol. 31,
2018.

[33] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell, “Caffe: Convolutional architecture for fast feature embed-
ding,” in Proceedings of the 22nd ACM international conference on Multimedia.
ACM, 2014, pp. 675–678.

[34] F. Tu, S. Yin, P. Ouyang, S. Tang, L. Liu, and S. Wei, “Deep convolutional
neural network architecture with reconfigurable computation patterns,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 8, pp.
2220–2233, 2017.

[35] M. A. Trefzer and A. M. Tyrrell, “Evolvable hardware,” From Practice to Appli-
cation. Springer, 2015.

[36] A. E. Eiben, J. E. Smith et al., Introduction to evolutionary computing. Springer,
2003, vol. 53.

[37] J. Brownlee, Clever algorithms: nature-inspired programming recipes. Jason
Brownlee, 2011.

[38] F. Hoffmeister and T. Bäck, “Genetic algorithms and evolution strategies: Simi-
larities and differences,” in International Conference on Parallel Problem Solving
from Nature. Springer, 1990, pp. 455–469.

[39] A. P. Engelbrecht, Computational intelligence: an introduction. John Wiley &
Sons, 2007.

[40] R. Hinterding, “Gaussian mutation and self-adaption for numeric genetic algo-
rithms,” in Proceedings of 1995 IEEE International Conference on Evolutionary
Computation, vol. 1. IEEE, 1995, p. 384.

[41] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies–a comprehensive introduc-
tion,” Natural computing, vol. 1, no. 1, pp. 3–52, 2002.

[42] N. Hansen, “The cma evolution strategy: A tutorial,” arXiv preprint
arXiv:1604.00772, 2016.

[43] V. Pareto, Cours d’économie politique. Librairie Droz, 1964, vol. 1.

147



References

[44] C. C. Coello, “Evolutionary multi-objective optimization: a historical view of the
field,” IEEE computational intelligence magazine, vol. 1, no. 1, pp. 28–36, 2006.

[45] T. Back, M. Emmerich, and O. Shir, “Evolutionary algorithms for real world
applications [application notes],” IEEE Computational Intelligence Magazine,
vol. 3, no. 1, 2008.

[46] J. D. Schaffer, “Multiple objective optimization with vector evaluated genetic
algorithms,” in Proceedings of the First International Conference on Genetic
Algorithms and Their Applications, 1985. Lawrence Erlbaum Associates. Inc.,
Publishers, 1985.

[47] C. M. Fonseca, P. J. Fleming et al., “Genetic algorithms for multiobjective
optimization: Formulationdiscussion and generalization.” in Icga, vol. 93, no.
July, 1993, pp. 416–423.

[48] N. Srinivas and K. Deb, “Muiltiobjective optimization using nondominated sorting
in genetic algorithms,” Evolutionary computation, vol. 2, no. 3, pp. 221–248,
1994.

[49] D. Floreano, P. Dürr, and C. Mattiussi, “Neuroevolution: from architectures to
learning,” Evolutionary intelligence, vol. 1, no. 1, pp. 47–62, 2008.

[50] S. Fujino, N. Mori, and K. Matsumoto, “Deep convolutional networks for human
sketches by means of the evolutionary deep learning,” in 2017 Joint 17th World
Congress of International Fuzzy Systems Association and 9th International Con-
ference on Soft Computing and Intelligent Systems (IFSA-SCIS). IEEE, 2017,
pp. 1–5.

[51] A. Singh, S. Saha, R. Sarkhel, M. Kundu, M. Nasipuri, and N. Das, “A genetic
algorithm based kernel-size selection approach for a multi-column convolutional
neural network,” arXiv preprint arXiv:1912.12405, 2019.

[52] A. Dahou, M. A. Elaziz, J. Zhou, and S. Xiong, “Arabic sentiment classifica-
tion using convolutional neural network and differential evolution algorithm,”
Computational intelligence and neuroscience, vol. 2019, 2019.

[53] B. Cheung and C. Sable, “Hybrid evolution of convolutional networks,” in
2011 10th International Conference on Machine Learning and Applications and
Workshops, vol. 1. IEEE, 2011, pp. 293–297.

148



References

[54] Y. Bi, B. Xue, and M. Zhang, “An evolutionary deep learning approach using
genetic programming with convolution operators for image classification,” in 2019
IEEE congress on evolutionary computation (CEC). IEEE, 2019, pp. 3197–3204.

[55] S. Gibb, H. M. La, and S. Louis, “A genetic algorithm for convolutional network
structure optimization for concrete crack detection,” in 2018 IEEE Congress on
Evolutionary Computation (CEC). IEEE, 2018, pp. 1–8.

[56] L. M. Zhang, “A new compensatory genetic algorithm-based method for effective
compressed multi-function convolutional neural network model selection with
multi-objective optimization,” arXiv preprint arXiv:1906.11912, 2019.

[57] J. Prellberg and O. Kramer, “Lamarckian evolution of convolutional neural
networks,” in International Conference on Parallel Problem Solving from Nature.
Springer, 2018, pp. 424–435.

[58] M. G. B. Calisto and S. K. Lai-Yuen, “Self-adaptive 2d-3d ensemble of fully
convolutional networks for medical image segmentation,” in Medical Imaging
2020: Image Processing, vol. 11313. SPIE, 2020, pp. 459–469.

[59] M. Baldeon-Calisto and S. K. Lai-Yuen, “Adaresu-net: Multiobjective adaptive
convolutional neural network for medical image segmentation,” Neurocomputing,
vol. 392, pp. 325–340, 2020.

[60] B. Wang, Y. Sun, B. Xue, and M. Zhang, “Evolving deep neural networks by multi-
objective particle swarm optimization for image classification,” in Proceedings of
the Genetic and Evolutionary Computation Conference, 2019, pp. 490–498.

[61] B. Fielding and L. Zhang, “Evolving image classification architectures with
enhanced particle swarm optimisation,” IEEE Access, vol. 6, pp. 68 560–68 575,
2018.

[62] M. Loni, A. Majd, A. Loni, M. Daneshtalab, M. Sjödin, and E. Troubitsyna, “De-
signing compact convolutional neural network for embedded stereo vision systems,”
in 2018 IEEE 12th International Symposium on Embedded Multicore/Many-core
Systems-on-Chip (MCSoC). IEEE, 2018, pp. 244–251.

[63] D. Song, C. Xu, X. Jia, Y. Chen, C. Xu, and Y. Wang, “Efficient residual dense
block search for image super-resolution,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, no. 07, 2020, pp. 12 007–12 014.

149



References

[64] M. Suganuma, M. Kobayashi, S. Shirakawa, and T. Nagao, “Evolution of deep con-
volutional neural networks using cartesian genetic programming,” Evolutionary
computation, vol. 28, no. 1, pp. 141–163, 2020.

[65] T. Hassanzadeh, D. Essam, and R. Sarker, “Evou-net: an evolutionary deep fully
convolutional neural network for medical image segmentation,” in Proceedings of
the 35th Annual ACM Symposium on Applied Computing, 2020, pp. 181–189.

[66] E. Miahi, S. A. Mirroshandel, and A. Nasr, “Genetic neural architecture search for
automatic assessment of human sperm images,” Expert Systems with Applications,
vol. 188, p. 115937, 2022.

[67] N. Mitschke, M. Heizmann, K.-H. Noffz, and R. Wittmann, “Gradient based
evolution to optimize the structure of convolutional neural networks,” in 2018
25th IEEE International Conference on Image Processing (ICIP). IEEE, 2018,
pp. 3438–3442.

[68] Z. Yang, Y. Wang, X. Chen, B. Shi, C. Xu, C. Xu, Q. Tian, and C. Xu, “Cars:
Continuous evolution for efficient neural architecture search,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020,
pp. 1829–1838.

[69] Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei, and J. Sun, “Single path one-
shot neural architecture search with uniform sampling,” in European conference
on computer vision. Springer, 2020, pp. 544–560.

[70] Y. Liu, Y. Sun, B. Xue, M. Zhang, G. G. Yen, and K. C. Tan, “A survey on
evolutionary neural architecture search,” IEEE transactions on neural networks
and learning systems, 2021.

[71] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected
convolutional networks,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, pp. 4700–4708.

[72] T. Elsken, J.-H. Metzen, and F. Hutter, “Simple and efficient architecture search
for convolutional neural networks,” arXiv preprint arXiv:1711.04528, 2017.

[73] A. Sironi, B. Tekin, R. Rigamonti, V. Lepetit, and P. Fua, “Learning separable
filters,” IEEE transactions on pattern analysis and machine intelligence, vol. 37,
no. 1, pp. 94–106, 2014.

150



References

[74] K. O. Stanley and R. Miikkulainen, “Efficient evolution of neural network topolo-
gies,” in Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02
(Cat. No. 02TH8600), vol. 2. IEEE, 2002, pp. 1757–1762.

[75] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci, “A hypercube-based encoding for
evolving large-scale neural networks,” Artificial life, vol. 15, no. 2, pp. 185–212,
2009.

[76] P. Verbancsics and J. Harguess, “Image classification using generative neuro
evolution for deep learning,” in 2015 IEEE winter conference on applications of
computer vision. IEEE, 2015, pp. 488–493.

[77] G. Morse and K. O. Stanley, “Simple evolutionary optimization can rival stochas-
tic gradient descent in neural networks,” in Proceedings of the Genetic and
Evolutionary Computation Conference 2016, 2016, pp. 477–484.

[78] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le, and
A. Kurakin, “Large-scale evolution of image classifiers,” in Proceedings of the
34th International Conference on Machine Learning-Volume 70. JMLR. org,
2017, pp. 2902–2911.

[79] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju,
H. Shahrzad, A. Navruzyan, N. Duffy et al., “Evolving deep neural networks,”
in Artificial Intelligence in the Age of Neural Networks and Brain Computing.
Elsevier, 2019, pp. 293–312.

[80] Y.-H. Kim, B. Reddy, S. Yun, and C. Seo, “Nemo: Neuro-evolution with multi-
objective optimization of deep neural network for speed and accuracy,” in JMLR:
Workshop and Conference Proceedings, vol. 1, 2017, pp. 1–8.

[81] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “Automatically designing cnn
architectures using genetic algorithm for image classification,” arXiv preprint
arXiv:1808.03818, 2018.

[82] J. F. Miller and S. L. Harding, “Cartesian genetic programming,” in Proceedings of
the 10th annual conference companion on Genetic and evolutionary computation,
2008, pp. 2701–2726.

[83] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional neural
networks with low rank expansions,” arXiv preprint arXiv:1405.3866, 2014.

151



References

[84] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploiting linear
structure within convolutional networks for efficient evaluation,” in Advances in
neural information processing systems, 2014, pp. 1269–1277.

[85] J. Jin, A. Dundar, and E. Culurciello, “Flattened convolutional neural networks
for feedforward acceleration,” arXiv preprint arXiv:1412.5474, 2014.

[86] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A
large-scale hierarchical image database,” in 2009 IEEE Conference on Computer
Vision and Pattern Recognition, 2009, pp. 248–255.

[87] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the
inception architecture for computer vision,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 2818–2826.

[88] X. Ding, Y. Guo, G. Ding, and J. Han, “Acnet: Strengthening the kernel skeletons
for powerful cnn via asymmetric convolution blocks,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 1911–1920.

[89] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms,” arXiv preprint arXiv:1708.07747,
2017.

[90] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[91] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu, “Deeply-supervised nets,”
in Artificial intelligence and statistics. PMLR, 2015, pp. 562–570.

[92] A. Y. Ng, “Feature selection, l 1 vs. l 2 regularization, and rotational invariance,”
in Proceedings of the twenty-first international conference on Machine learning,
2004, p. 78.

[93] D. Kang and C. W. Ahn, “Efficient neural network space with genetic search,” in
International Conference on Bio-Inspired Computing: Theories and Applications.
Springer, 2019, pp. 638–646.

[94] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “Evolving deep convolutional
neural networks for image classification,” IEEE Transactions on Evolutionary
Computation, vol. 24, no. 2, pp. 394–407, 2019.

152



References

[95] R. Krishnamoorthi, “Quantizing deep convolutional networks for efficient infer-
ence: A whitepaper,” arXiv preprint arXiv:1806.08342, 2018.

[96] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net: Training
low bitwidth convolutional neural networks with low bitwidth gradients,” arXiv
preprint arXiv:1606.06160, 2016.

[97] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet
classification using binary convolutional neural networks,” in European conference
on computer vision. Springer, 2016, pp. 525–542.

[98] A. Gersho and R. M. Gray, Vector quantization and signal compression. Springer
Science & Business Media, 2012, vol. 159.

[99] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep convolutional
networks using vector quantization,” arXiv preprint arXiv:1412.6115, 2014.

[100] J. Su, “Artificial neural networks acceleration on field-programmable gate arrays
considering model redundancy,” 2018.

[101] M. Denil, B. Shakibi, L. Dinh, N. De Freitas et al., “Predicting parameters in
deep learning,” in Advances in neural information processing systems, 2013, pp.
2148–2156.

[102] K. O. Stanley, “Efficient evolution of neural networks through complexification,”
Ph.D. dissertation, 2004.

[103] M. A. Trefzer, T. Kuyucu, J. F. Miller, and A. M. Tyrrell, “Image compression
of natural images using artificial gene regulatory networks,” in Proceedings of the
12th annual conference on Genetic and evolutionary computation. ACM, Jul.
2010, pp. 595–602.

[104] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning with
limited numerical precision,” in International conference on machine learning.
PMLR, 2015, pp. 1737–1746.

[105] D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantization of deep
convolutional networks,” in International conference on machine learning. PMLR,
2016, pp. 2849–2858.

153



References

[106] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional
neural networks for mobile devices,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 4820–4828.

[107] M. Sit, R. Kazami, and H. Amano, “Fpga-based accelerator for losslessly quan-
tized convolutional neural networks,” in 2017 International Conference on Field
Programmable Technology (ICFPT). IEEE, 2017, pp. 295–298.

[108] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized
neural networks: Training deep neural networks with weights and activations
constrained to+ 1 or-1,” arXiv preprint arXiv:1602.02830, 2016.

[109] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers, “Finn: A framework for fast, scalable binarized neural network
inference,” in Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. ACM, 2017, pp. 65–74.

[110] S. Liang, S. Yin, L. Liu, W. Luk, and S. Wei, “Fp-bnn: Binarized neural network
on fpga,” Neurocomputing, vol. 275, pp. 1072–1086, 2018.

[111] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in Icml, 2010.

[112] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” arXiv preprint
arXiv:1605.04711, 2016.

[113] K. Ullrich, E. Meeds, and M. Welling, “Soft weight-sharing for neural network
compression,” arXiv preprint arXiv:1702.04008, 2017.

[114] C. Louizos, K. Ullrich, and M. Welling, “Bayesian compression for deep learning,”
Advances in neural information processing systems, vol. 30, 2017.

154


	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Declaration
	Introduction
	Motivation
	Hypotheses and Objectives
	Contributions
	Thesis Structure

	Background
	Convolutional Neural Networks
	Introduction to Convolutional Neural Networks
	Computational and Memory Cost Analysis 
	Computational Cost and Memory requirement of CNNs

	Evolutionary Optimisation
	Introduction to Evolutionary Algorithms
	Basic Operation in Evolutionary Algorithms
	Evolutionary Strategies
	Multi-objective Evolutionary Algorithms

	Evolutionary Optimisation in Neural Networks
	Summary

	Evolutionary Optimisation of Kernel Shapes and Sizes
	Overview
	Related Works
	Optimisation of Network Architecture
	Unconventional Convolutions

	Methodology
	Computational Resource Consumption
	Mixed Unconventional Kernels
	Multi-Objective Evolutionary Optimisation

	Experimental Results and Analysis
	Experimental Settings
	Experimental Results
	Convolution Kernels Distribution

	Summary

	Evolutionary Optimisation of Convolutional Layer Design
	Overview
	Methodology
	Multi-objective Evolutionary Algorithm 
	Convolutional Layer Optimisation

	Experimental Setup and Results
	Experiment Setup
	Experimental Results on LeNet
	Experimental Results on Deeper CNNs

	Summary

	8-bit Integer Quantisation through Evolutionary Optimisation 
	Overview
	Related Work
	Vector Quantisation
	Low-precision Representation for Neural Networks

	Methodology
	Integer Quantisation
	Evolutionary Approach for Adaptive Integer Quantisation

	Experimental Results
	Experiment Setup
	Results for Accuracy

	Summary

	Adaptive Integer Quantisation for Various Bit-Width Configurations
	Overview
	Configuration of the Evolutionary Algorithm
	Mixed-Precision between Convolutional Layers and Fully-Connected Layers
	Mixed-Precision between Weights and Biases

	Experimental Setup and Results
	Experimental Setup
	Experimental Results
	Combining with Computational Cost Optimisation

	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Abbreviations
	References

