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Abstract

In Cirici, Egas Santander, Livernet and Whitchouse define model structures on filtered chain com-
plexes and bicomplexcs whose weak equivalences are the r-weak equiva]ences, ie. isomorphisms on the (7“ + 1)—pages
of the associated spectral sequences. In this thesis we study and generalise these model structures. These generalisa-
tions (fC)g and (bC) g for fixed such 7 are indexed by subsets S of {0,1, ..., 7} containing 7 in the former case
and 0 and 7 in the latter and are finitely cofibrantly generated.

We show each of these model structures is a left (and right) proper, cellular and stable model category. We con-
struct a left adjoint £ to the product totalisation functor and show, by means of Greenlees and Shipley’s cellulariza-
tion principle, that it is a Quillen equivalence for suitable indexing sets S. As a consequence all the model categories
considered thus far have equivalent homotopy categories induced via a zig-zag of Quillen equivalences given by com-
positions of the L-product totalisation, identity-identity and shift-décalage adjunctions. The model structures with
r-weak equivalences are shown to have no left Bousfield localisation to a model structure with (7 + 1)-weak equiva-
lences. We also derive existence of various bounded variants of the model structures (fC) .

We then focus on the model structures on filtered chain complexes, give a classification of their cofibrant objects
and cofibrations with a boundedness restriction on their filerations and show the (fC) 4 satisfy the unit and pushout-
product axioms thereby giving monoidal model categories. Furthermore the (fC) g satisfy the monoid axiom of
Schwede and Shipley yielding model structures on modules and algebras enhancing the homotopy theory of Halperin
and Tanr¢ on filcered differential graded algebras to a model category structure.
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Introduction

The primary aim of this thesis is to investigate various model structures relating to spectral sequences which were
introduced by Cirici, Egas Santander, Livernet and Whitehouse in [CELW19] and establish what properties of model
categories commonly sought these model structures satisfy. These model structures, on the categories of filtered chain
complexes and bicomplexes, have as their weak equivalences those morphisms of filtered chain complexes or bicomplexes
inducing a quasi-isomorphism on the r-page of the associated spectral sequences, equivalently isomorphisms on the
(r + 1)-pages. Thus their weak equivalences are determined at a finite stage of the associated spectral sequences.
Fibrations were determined by various surjectivity conditions on k‘—cycles for k < rused in constructing the k—pages
of the spectral sequences, this can be seen to be in analogy with the surjectivity conditions of the projective model
structure on chain complexes whose fibrations are degreewise surjections.

Alist of the results of this thesis appears towards the end of this introduction. We firstly give some motivation for
model categories and spectral sequences.

Motivation for model categories

Model categories were introduced by Quillen in as a framework for studying the bomotopy category HO(C)
associated to some category C with a notion of weak equivalence YWW. A major problem with studying homotopy theory
prior to model categories is a lack of control over Ho(C). Indeed the model for Ho(C) as being the localisation of
CIW™1] of C at W has set theoretic issues; the collection of homotopy classes of morphisms between any two objects
may form a proper class instead of a set. Model categories circumvent this issue by exhibiting a model of Ho(C) by firstly
tal(ing a full subcategory of C and then quotienting the sets of\morpbisms by an equivalence relation thus ensuring we
still have a set oFmorpliisms, The equivalence ofcategories between C[W_l] and the latter construction is justiﬁed
by the Whitehead theorem Proposition 1.2.8].

Model categories also axiomatise various constructions and properties frequently used in and common to lots of

homotopy theories; (co)fibrant objects, cylinder and path objects, function complex objects, etc., they provide a means
by which one can ‘compare’ model categories via Quillen functors and a notion of deriving functors which generalises
those found in homological algebra to a non-abelian setting.
This general framework allows model category structures to be constructed in many different contexts (listed
shortly) both algebraic and topological. The model structures considered in this thesis will be cofibrantly generated and so
) £
verification of a model category structure is made much simpler by the small object argument of Quillen, Theorem|1.4.2.4

Other models for homotopy theories

There are many other axiomatic frameworks for homotopy theories: relative categories later studied furcther
in [BK12l, homotopical categories and categories with weak equivalences have the notion of weak equivalences;
categories of fibrant objects (also called Brown categories) [Bro73, partial Brown categories and almost Brown cate-
gories extend these by introducing a subcategory of fibrations with various additional axioms; dually there are
cofibration categories and Waldhausen categories (the latter introduced for the study of K-theory) which
instead add cofibrations; Cartan-Eilenberg categories only introduce the notion of coftbrant models and strong
and weak equivalences; model categories (already mentioned) and infinity categories and their many models

capturing higher homotopical information.

Examples of model categories

To demonstrate the pervasiveness and applicability of model categories in algebraic topology (and more widespread)
we list some examples.

The archetypal example of a model category is the Quillen model structure on simplicial sets introduced in
whose weak equivalences are the m,-isomorphisms. This model structure has many nice properties and many other
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model categories have simplicial structure in some sense compatible with the Quillen model structure (or such simplicial

structure is introduced via Reedy model structures Theorem 5.2.5]); such model categories have particularly
useful constructions, e.g. homotopy function complexes which encode the ‘higher dimensional’ information of the set of
homotopy classes of maps between two objects. Of more relevance and comparable to the model structures considered
in this thesis is the projective model structure on chain complexes. Weak equivalences are the quasi-isomorphisms and
fibrations the degreewise surjections. Many model categories on more algebraic categories use similar weak equivalences
and fibrations, often these model structures are defined via a transfer theorem from the projective model scructure.
E.g the model structure of differential graded algebras is cransferred from the projective model structure along the
free—forgetful adjunction.

Model categories have more generally found use in more specialised branches of homotopy theory. In the stable
setting, where the suspension functor on spaces has been inverted so as to obtain a triangulated category, model category
structures have been defined in the guise of sequential spectra [BF78], symmetric spectra [HSSO0], orthogonal spectra
and many more similar. Equivariant topologica] spaces, where spaces are now equipped with group actions,
form a model category and there is a stable analogue [HHR21]. Categories of pro-objects, i.e. formal completions
of a category, can be equipped with various model categories discussed later in Qucstion In the
setting of dendroidal sets, [MW07], there is a model structure, [CMIT], whose fibrant objects are the co-operads. Bergner,
[Ber07], defines a model structure on simplicial categories whose weak equivalences are the Dwyer-Kan equivalences, i.c.

those simplicial functors F': C — D such that Homgge,(¢1, ¢2) — Homgge (Fe, Feg) is a weak equivalence for all
c1,¢o € C. The geometric realisation—singular simplices adjunction provides a Quillen equivalence to a model structure
on topological categories. There are many model structures on simplicial presheaves some of which are collected in
including model categories in the motivic setting Sh ((Sm/k) ys , A).

Many more examples can be found in, for example, [Bal21].

Motivation for spectral sequences

Spectral sequences arose as a computational tool from work of Leray, [Ler46al [Ler46bl, as a means of calculating homology
groups of a chain complex by a series of approximations. For a chain complex whose homology one wishes to compute,
one begins by equipping it with a filtration. In topology this most often comes from some sort of geometric data. Using
the filtration a series oFapproximations are obtained by taking some notion oF‘T—homo]ogy' denoted E,., that is we
work with T—cyclcs instead of the kernel of the differential (those elements of the chain complex whose differential is
7‘—degrees lower in filtration) and similarly a notion of?‘—boundary in place of the image of the differential. Each of these
r-pages ;. forms a collection of chain complexes where the differential is some appropriate restriction (in a very loose
sense of the word) of the differential, which compute the next page Ey41, so that a spectral sequence is an infinite
series ofcomputations.

As a computational tool one hopes (or better expects) that the spectral sequence collapses at some stage, meaning
there are isomorphisms of bigraded modules E;"* = E'Z;l = ... = EY* forall v > k for some k, thereby giving
some 0o-page F3*. Under good convergence criteria this E-page along a diagonal gives the graded pieces of a filtration
of the homology of the chain complex from which one can recover, up to isomorphism and extension problems, the
homology of the chain complex.

Examples of spectral sequences
As demonstration of their computational worth and significance in homotopy theory we give some examples of spectral

sequences appearing frequently in the literature. The grading conventions in these examples is not consistent.

« The Leray-Serre spectral sequence, [Ser30, which given a fibration ' — E — B of spaces computes the homology
of the total space E given the data of the homology of the base B with coefficients in the homology of the fibre
F (we assume for simplicity here that the fundamental group of B acts trivially on the fibre):

EY? = H? (B; HY(F)) = H""(E)

whose use is immediately apparent by considering fibrations such as the loop-path space fibration Q5™ — * —
S™. This spectral sequence then gives a way to compute the homology of loop spaces.

« The Eilenberg-Moore spectral sequence, [Smi69], which (over a field) computes the homology of a pullback of

a fibration (again we assume for simplicity the action of the fundamental group is trivial). Le. given a pullback



square

there is a spectral sequence:

B3 = Toryy! ) (H*(X); H*(E)) = HP*9 (Ey) .

The Adams spectral sequence, [Nov67], (and its many generalisations) which for bounded below spectra of
finite type X and Y computes the stable homotopy class of maps from X to the p-completion Y(/;)' The spectral
sequence is given by:

Ey' = Exty (HY, H*X) = [X, Y]

where H = HF), here is the Eilenberg-Mac Lane spectrum with Fy, coefficients, i.e. mod p cohomology, and
A is the Steenrod algebra H* H. The special case with X =Y = S the sphere spectrum reduces to a spectral
sequence computing the p-primary part of the stable homotopy groups of spheres:

Ey" = Ext (H*S, H*S) = Ext}’ (Fp,Fp) = [S,S()] 2 (4(S))p -

The Atiyah-Hirzebruch spectral sequence, [Mau63], used to compute some generalised cohomology E*(X)
given knowledge of the ordinary cohomology H*(X') and E*(x):

i HP (X BY() = B (X)

for example complex topological K-theory KU has KU (%) being a Laurent polynomial ring generated by the
Bott element § in degree 2 and the Atiyah-Hirzebruch spectral sequence now gives a way of computing the

topological K-theory KU*(X).

Literature review

Shortly we will discuss our motivation for the work of this thesis, first however we discuss work already carried out
in this area. Model structures, or homotopy theories, re]ating to spectra] sequences have a]ready been considered in

CELWT FGLW22 (W22, We give a brief overview of their results here in chronological order.

The homotopy theory of Halperin & Tanré on filtered commutative differential graded algebras

With motivation from rational homotopy theory, see for a survey article or for a reference book,
Halperin and Tanré construct a homotopy theory on the category of filtered commutative differential graded algebras
with many good properties when the underlying ring contains the field Q, although they stop short ofshowmg whether
it is a fully fledged model category — they only consider morphisms they term (R, )-extensions, [HT90} Definition 2.2
(v)], instead of cofibrations in general. Here R is the commutative ground ring the algebras are taken over, viewed as
being concentrated in degree 0. These extensions of an algebra A take the form of a (completed) tensor product ARQAY
where A is the free commutative differential graded algebra on some graded module Y, c.f. the notion of an I-Cell
object for I a L gener: ating set of cofibrations. They do however define in generality a notion of quasi-isomorphism and
fibration, Definitions 2.2 (iii) & (iv)], termed (R, 1)-quasi-isomorphism and (R, r)-fibration respectively. These
are morphisms inducing isomorphisms on the (7 + 1)-page of the associated spectral sequence and surjections on the
r-cycles respectively which are a common feature of the subsequent homotopy theories as well.

We mention some of the good properties this homotopy theory has. [HT90] Propositions 3.4 & 3.5] show that
pushouts preserve (R, 7)-extensions (resp. pullbacks preserve (R, r)-fibrations) as well as preserving (R, )-extensions
that are also (R, )-quasi-isomorphisms (resp. (R, 7)-fibrations that are also (R, r)-quasi-isomorphisms). They show,
[HT90] Theorem 4.2], that all morphisms ¢: A — A’ admit a model, i.e. a factorisation into an (R, 7)-extension
followed by an (R, r)-quasi-isomorphism. They say of their technique for showing this:

«L'idée de la démonstration est de construire d’'abord un modeéle “classique” pour le morphism E,.(¢), et
ensuite de le “perturber” afin d’arriver au modele voulu de ¢.»
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That is they construct a model on the r-page of the spectral sequence in the usual sense of the rational homotopy theory
of Quillen, [Qui69], and perturb it to obtain a model on the level of the algebras.

§5] shows the existence of lifts one would expect if it were a model category, e.g. lifts of (R, 1)-extensions
against rnorphisms that are (R7 T)—fibrations and (R7 T)—quasi—isomorphisrns, Theorem 5.1]. In §6] they
construct cylinder objects, use them to define a homotopy relation and show homotopic morphisms induce the same
morphism on the (7 + 1)-page of the associated spectral sequence.

§7] restricts to the case Q@ C R and shows existence of lifts of morphisms that are both (R, 7)-extensions
and (R, 7)-quasi-isomorphisms against (R, r)-fibrations and §8 ] addresses uniqueness of minimal models. Tanré
later makes use of this homotopy theory in [Tan94].

The P-categories of Cirici on filtered differential graded algebras

In their PhD. thesis, [Cir12], Cirici considers the category of filtered (homological and non-negatively graded) differ-
ential graded algebras over a field k. They introduce a notion of a P-category with cofibrant models, similar to that of
a Brown category, with two distinguished classes of‘morphismsﬁbmtions and weak cquivalences a]ong with afunctorial
path construction required to satisfy a list of axioms [Cir12] Definition 1.2.18]. In their category of filcered differential
graded algebras (fdgas) they define a morphism of fdgas f: A — B to be a filtered fibration, Definition 4.2.4],
if the induced morphism on graded pieces Gr? f : Gr? A — GrP B is a surjection for all p € Z and a weak equivalence
it H*(Gr?f): H"(Gr?A) — H™(GrPB) is an isomorphism for all p € Z and n € Z>. With these notions
of fibrations and weak equivalences they show that the category of filtered differential graded algebras over a field
kisa P-category, [Cir12l Proposition 4.2.9]. Forgetting the aigebra structure these fibrations and weak equivaiences
further agree with those of the 7 = 0 model structure of on the category of (unbounded) filtered chain
complexes to be discussed shortly. They further introduce, [Cir12] Definition 4.2.13], the notion of a filtered KS-extension
of degree n and weight p of an fdga A by a filtered graded module V', use this to define filtered cofibrant dgas, [Cir12]
Definition 4.2.14], and show that these lift against those morphisms that are both weak equivalences and fibrations,
thereby deserving the name cofibrant, Proposition 4.2.15]. These cofibrant filtered dgas C behave well with
respect to the homotopy theory in that the functor [C, —| sending an fdga to the class of maps defined by filtered
homotopy equivalence sends weak equivalences to bijections, Corollary 4.2.16].

They then generalise these definition to E,-fibrations, those morphisms surjective on the r-page of the associated
spectral sequence, and similarly to E,.-quasi isomorphisms, along with an r-path object Definitions 4.3.1,4.3.2
& 4.3.8] and with these notions show the category of fdgas has a P-category structure, Proposition 4.3.12].
The notion of a filtered cofibrant fdga generalises to Definition 4.3.13] with similar analogous results
Propositions 4.3.17 & 4.3.18]. Note whilst the E,.-quasi isomorphisms are the weak equivaiences of the r-model structures
considered later in the fibrations do not agree.

These P-category structres are suitably comparable in the sense that the décalage functor of Deligne, [Del71], induces
equivalences of homotopy categories from the P-category with E;. 1 1-quasi isomorphisms to the P-category with E,.-
quasi isomorphisms, Theorem 4.3.7]. Lastly of relevance to this chesis is the left adjoint to the décalage functor
which is shown to be inverse on the subcategories of cofibrant objects, Lemma 4.3.16].

The model categories of Cirici, Egas Santander, Livernet and Whitehouse on filtered complexes and

bicomplexes

We give here an overview of the results of our principal reference, [CELW19], whose model structure we investigate in
this thesis. From a filtered chain complex we can extract an associated spectral sequence, and likewise for bicomplexes
via first applying a (product) totalisation functor. The r-page of the spectral sequence associated to a filtered chain
complex A is given as a quotient of the 7-cycles, denoted Z,.(A), of A by the r-boundaries, denoted B,-(A). These can
be viewed as approximations to the kernel and image of the differential respectively and the 7-cycle and r-boundary
functors are representable by filtered chain complexes Z;* and B}*. The authors use these representing objects to
construct, for each r, two cofibrantiy generated model structures on fC, Theorems 3.14 and 3.16]. Setting
I, = {Z,41 — By11}, where we supress any bidegrees, and similarly J, = {0 — Z,} the two model structures
denoted (fC),. and (fC),., are defined by:

model category  generating cofibrations  generating acyclic cofibrations
(f0), I, X Ir
(fC),, 1, VU Jr Uk—o Jr
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which agree for 7 = 0. These are right proper, since every object is fibrant, and for a fixed 7 Quillen equivalent, [CELW19]
Remark 3.17]. They consider the shiﬁ—dc’calage adjunction, S - Dec of‘Deligne. These are endomorphisms on the category
of filtered chain complexes and on the pages of the associated spectral sequences have the effect of shifting the pages
back and forth, i.c. E41DecA =2 Ej 9 A, with some shift of indices. The shift-décalage adjunction is shown to give a
Quillen equivalence = (fC), &= (fC),,; :Decaswellas Sz (fC),, == (fC)(rt1y :Dec. Thus the homotopy
categories of all these model structures are equivalent. Similar model structures are also constructed on bicomplexes with
the caveat that some care is needed to construct appropriate representing objects for 7-cycles and r-boundaries. These
they term witness r-cycles and witness r-boundaries denoted ZW,. and BW,.. Defining I, = {ZW, 41 — BW, 41} and
Jr = {0 — ZW,} as before they constuct two right proper cofibrantly generated model structures on bC, [CELW19]
Theorems 4.37 and 4.39] determined by:

model category  generating cofibrations  generating acyclic cofibrations
(bC),. I, Jo U J,
—1
(1), LU Uiy Jr

which again agree when r = 0.

The model structures of Muro and Roitzheim on bicomplexes and multicomplexes

In [MR19] Muro and Roitzheim define two model structures on the category of (right plane) bicomplexes with hori-
zontal differential dp, : Xp « = Xp—1 . The first model structure, [MR19] Theorem 3.1], is cofibrantly generated and
has weak equivalences detected by the totalisation functor and fibrations f: X — Y the bidegree-wise surjections
and isomorphisms on the vertical homology Hy . (f): Hy . (X) = Hp (Y). This model structure is shown to
be monoidal with cofibrant unit satisfying the monoid axiom, [MR19] Proposition 3.3], and there is in fact a strong
symmetric monoidal Qui]lcn Cquivalcncc with the projective model structure on (unbounded) chain complcxcs, [MR19]
Proposition 3.4], whose left Quillen adjoint is inclusion of a chain complex into bicomplexes in horizontal degree 0.
Their second model structure, [MRI9, Theorem 4.1], on bicomplexes they name the Cartan-Eilenberg model structure
or the E2-model structure; the former since a cofibrant resolution of a chain complex concentrated in degree 0 is a
Cartan—Eilenbc;g resolurion and the latter since the weak equivalences are those morphisms inducing isomorphisms
on the 2-page of the associated spectral sequence. The fibrations of the Cartan-Eilenberg model structure are those
morphisms inducing 1) bidegree-wise surjections, 2) are surjections on ker dg,* for p > 0 and 3) H{;,q(f) is an iso-
morphism for all p and g. The Cartan-Eilenberg model structure is also shown to be monoidal with cofibrant unit
satisfying the monoid axiom, [MRI9] Proposition 4.2]. Lastly they generalise the total model structure on bicomplexes
to a total model structure on (bounded) multicomplexes also known as twisted complexes. Such structures have not just
horizontal and vertical differentials but oﬁ diagonal diﬁcrentials di: Xpq = Xp—iqri—1 for i > 0 with their sign
conventions required to satisfy Zi+j:n did; = 0 forn > 0. An analogous (coproduct) totalisation functor is defined
IMR19] Definition 5.2] and a cofibrantly generated model structure, [MR19] Theorem 5.13], referred to as the total
model structure on multicomplexes, is constructed with equivalences those becoming isomorphisms after applying the
totalisation functor, and whose fibrations are also bidegree—wise surjective morphisms that induce isomorphisms on
vertical homology. It is simi]arly shown to be monoidal with cofibrant unit and satisfying the monoid axiom (for an
appropriate tensor product) in [MRI9) Proposition 5.15] and they show that there is a strong symmetric monoidal
Quillen equivalence with the projective model structure on chain complexes, [MR19] Proposition 5.16].

The model categories of Fu, Guan, Livernet and Whitehouse on multicomplexes

In [FGLW22] the authors construct model structures on the category of (truncated) multicomplexes in a similar
way to [CELWT9. They define an n-truncated mulricomplcx, whose category is denoted n — mCpg, as a mu]ticomplex
with the differentials d; = 0 for ¢ > n. The difference here is that the analogous witness cycles and boundaries
for the model structures on n-multicomplexes are inductively defined via iterated pushouts, [FGLW22| Definitions
3.15 and 3.17]. Similar generating sets of cofibrations and acyclic cofibrations as for bicomplexes in [CELW19] are
defined and [FGLW22] Theorem 3.28] provides existence of a right proper cofibrantly generated model structure on
n—multicomplexes for 2 < n < oo whose weak equiva]ences are the r-quasi isomorphisms on the associated spectral
sequences, here 00 — mCr denotes the category of multicomplexes. There is also a model structure analogous to that
of (bC)T, given by [EGLW?22, Theorem 3.30]. For each 7 > 0 the authors also demonstrate Quillen equivalences in
[FGLW22| Theorem 4.5]:

meCR <¢;> 37mCR <*;> 47mCR <¢73 ...<*;> nfmCR (*73 OO*TTLCR.
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They also define model structures on the left half plane (truncated) multicomplexes via transfer [FGLW22| Proposition
5.11] and consider coﬁbrancy of‘objects of the model structures [FGLW22l Theorem 3.30] demonstrating that the unit,
a copy of R concentrated in a single bidegree, is not cofibrant and that the various infinite witness cycles ZWh (%, *)

are cofibrant replacements for the unit, [FGLW22| Proposition 6.7].

The almost Brown category of Livernet and Whitehouse on spectral sequences

More recently in the preprint [LW22] Livernet and Whitchouse investigate existence of homotopy theories directly on
a category of spectral sequences SpSe p; objects are a family (A, ¢,.) of bigraded modules where A, is an r-bigraded

module, i.e. has a differential §,: AP4 — AP=™97"F1 and 1), is an isomorphism 9, : H,(4,) =, Ay41 of bigraded
modules. Morphisms of such objects f: (A,1) — (B ¢) are appropriately defined and in fact are deteremined by
the 0-page fo: Ag — Bo. The immediate problem with this category is that it is neither complete nor cocomplete,
ILXX22] §3.2], so a well behaved model category cannot be constructed on this category (the situation is similar if one
tries to work in a category of Cartan-Eilenberg systems [CE56, Chapter XV §7]). Instead they introduce the notion
of an almost Brown category Definition 4.1.1], (c.f. Brown categories, [Bro73|, and partial Brown categories, [Hor16]).
This has notions of weak equivalences and fibrations with all finite products and satisfying some model category like
axioms. Defining as before, for a fixed 7, the weak equivalences to be Ey.-quasi isomorphisms and fibrations to be
surjections on the first 7-pages they show that the category of spectral sequences admits an almost Brown structure
for each # > 0. The fibrations and acyclic fibrations are also shown to be detected by generating sets analogous to
generating cofibrations and generating acyclic cofibrations, Propositions 54.2 and 5.4.3]. Analogues on the
level of these spectral sequences of the shift-décalage functors of Deligne, [Del71], are also constructed and shown to
preserve sufficient homotopy information referred to as left exactness preserving weak equivalences, acyclic fibrations
and pullbacks of acyclic fibrations. Le. the shift functor St (SpSeg), — (SpSeg),., is left exact for all » > 0
and the décalage functor Dec: (SpSeg),. — (SpSeg),._; is left exact for all » > 1, Proposition 5.3.3 and
5.3.4]. They also note similar to the previous homotopy theories introduced that there are nested inclusions of weak
equivalences and fibrations W, C Wy41 and Fib,;; C Fib,.. One can interpret the model scructures (fC),. as
almost Brown categories and the obvious spectral sequence functor E: (fC),. — (SpSeg),. is shown to be a left
exact functor [LW22] Proposition 6.1.1]. They note however that the spectral sequence functor E does not induce an
equivalence on homotopy categories after inverting the weak equivalences since the associated graded functors lose
information, [LW22] Proposition 6.1.3]. Similarly they show the spectral sequence functor from the r-model category
of n-multicomplexes to (SpSep),. is a left exact functor.

Other appcarences ofspectral sequences in model categories

Here we make note of other appearences in the literature of model structures closely related to spectral sequences.

Dwyer, Kan and Stover defined in a model structure on the category of simplicial objects in pointed spaces.
In their model structure a morphism of simplicial pointed spaces X — Y is a weak equivalence, §3.2], it the
morphism of simplicial groups m; X — ;Y is a weak equivalence of the underlying simplicial sets or equivalently
there are induced isomorphisms 7;m; X 22 m;m;Y for all j > 0. They refer to these weak equivalences as Ea-weak
equivalences and justify this teminology as follows.

Given a simplicial pointed space X (which is also Reedy fibrant) there is a first quadrant spectral sequence, known
as the Quillen-Bousfield-Friedlander spectral sequence, whose Ea-page is:

E? = mpmg1 X = mpigmap(St, X)
given in §3.6] (see also Theorem 4.5]). A weak equivalence in this model structure then corresponds to
a morphism inducing an isomorphism between the Ea-pages of the Quillen-Bousfield-Friedlander spectral sequences
of X and Y.

§5] relaxes the assumptions somewhat to more general simplical object categories sC, that are pointed,
closed model categories with all colimits, all objects being cofibrant and a choice of cofibrant co-grouplike object.
The weak equivalences in this generalised model structure are also known as Eg-weak equivalences and justifying this
there is a corresponding spectral sequence; for an X € sC, (which is Reedy fibrant) there is a first quadrant spectral
sequence whose Fa-page is:

E2 = ﬂp[ZqM7 X] = 7Tp+qmap(M7X) 5

p.q

where M is the co-grouplike object, [DKS93] §5.7].
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Motivation for the study of model categories relating to spectral sequences

We provide here some motivation for studying model structures on objects yielding a spectra] sequence whose weak
equivalences are those morphisms inducing an isomorphism on the ( + 1)-page.

We have already discussed the work ofHalperin and Tanré, [HTI0], who consider filtered commutative differential
graded algebras. Their motivation for considering such objects comes from the viewpoint of rational homotopy theory
where there is an equivalence of categories between rational homotopy types and commutative differential graded algebras,
see for example Theorem 1.7] for a precise statement. Rational homotopy theory has proved an important area
of research owing to this equiva]ence. Halperin and Tanré’s work allowed a genera]isation to models for fibrations
where the usual restriction of the fundamental group of the base acting nilpotently Theorem 3.5] is removed.
They stop short of showing a model category structure on such objects however. Constructing a model structure on
such objects is then a desireable goal to elevate their homotopy theory fully to a model category.

A second motivation comes from the study of Ao -algebras. We firstly introduce some background. A-algebras
can be thought of as homotopy associative replacements for differential graded algebras; the operad encoding them is
in fact a cofibrant replacement of the associative operad in a relevant model category [BMO3] and is obtained by a
Boardman—\/ogt or cobar-bar resolution construction, [BV73[BMOG]. Over a field a result of Kadeishvili, [Kad&0l, asserts
that every differential graded algebra Ais quasi—isomorphic to a minimal Aoo—algebm given by an Aoo—algebra structure
on the homology H. A. This can also be seen as a special case of the homotopy transfer theorem, [LV12] Theorem 10.3.3].
These minimial models classify isomorphism classes of differential graded algebras up to quasi-isomorphism. The use
of the field here is in constructing a cycle selection map so one can apply a similar result with sufficient projectivity
assumptions.

Sagave considers what modifications to this theory can be made if one removes the ﬁeld/projective assumptions.
In Sagave introduces the notion of a derived Aoo-algebra, denoted d A, which is now a bigraded object and
introduced so as to allow projective resolutions of an Asg-algebra. In this setting any differential graded algebra A
over a ring k admits a k-projective minimal d Aog-algebra model E well defined (up to Ea-equivalence) together with an
Es-cquivalence E — A. Here the Eg-equivalence refers to an isomorphism on the Eg-page of the spectral sequence
associated to the totalisation of the bigraded d Ao -algebra E. These minimal d Ao-algebras classity differential graded
algebras up to quasi—isomorphism. A model structure on such objects whose weak equivalences are the isomorphisms
on the Es-page could then assist with determining whether any two minimal models are E-equivalent. Similarly
generalisations to higher r where weak equivalences are now isomorphisms on the (74 1)-page of the spectral sequence
associated to some object could help in situations where an object is defined up to an E, 1-equivalence. In such a model
structure if it indeed exists the k—projective minimal models of Sagave just discussed may be cofibrant rep]acements
for an Asc-algebra viewed as a dAo-algebra.

In [CHO3I, Lefevre-Hasegawa equips the category of Ao -algebras (with co-morphisms) over a field with a model
structure (without limits) whose weak equivalences are Ao -quasi-isomorphisms. The homotopy theory of Aoo-algebras
has also been studied in e.g. [Gra99], dAoo-algebras have been studied in and closely related notions
of the latter, called Dgg)—differential Aoo—algebras, in .

With regard to tentative model structures on dAso-algebras the authors of [CELWI8] remark:

“We expect that both the new descriptions of derived Aoo—algebras and the properties ofhomotopies devel-
oped here will allow us to endow the category of derived Ao-algebras with the structure of a model
category without limits in the future, with weak equivalences being E.-quasi-isomorphisms.”

The model structures on filtered chain complexes and bicomplexes constructed in and considered in this
thesis are a starting point for such a model structure in the simpler cases where we do not consider the homotopy
notions of Dy, i.e. the operad encoding multicomplexes, or Aoo. A model structure on Doo-structures with E.-
weak equiva]ences is constructed in [FGLW?22] and has already been discussed. Note too that one of the equivalent
formulations of d A -algebras given in [CELW18] is as split Aoo-algebras in filtered chain complexes.

One could view the model structures considered on filtered chain comp]exes or bicomp]exes as natural generali—
sations of the projective model structure on chain complexes; the 0-model structure on bicomplexes is really just the
projective model structure on (vertical) chain complexes of (horizontal) chain complexes. Further varying r there are
inclusions of weak equivalences (and fibrations for certain model structures) and the interaction between the model
structures is of interest in its own right. In partieu]ar one question the author would like to understand better is to
what extent (with regard to the model category structure) is a model structure on either filtered chain complexes or
bicomplexes with (T‘ + 1)—Weak equivalences a localisation of a model structure with r-weak equivalences. We will see
however that these model structures are already Quillen equivalent via a shift-décalage adjunction.
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This feature of multiple closely related cofibrantly generated model structures on the same underlying category
could prove important as a ‘testing ground’ for new results; indeed it has already led to the detection of an error in a
draft copy of [HHR21] on building new model structures from multiple existing ones which has since been corrected.

With more consideration to spectral sequences themselves the knowledge of when a morphism of spectral sequences
induces an isomorphism on the infinity page is useful information for comparing their homologies. Whilst we do not
directly consider the infinity page in the main work of this thesis for those spectral sequences that collapse these model
structures may prove useful in chis regard. In Question we consider how one might equip an appropriate category
with a model structure whose weak equiva]ences are the isomorphisms on the 00-page.

Filtrations appear naturally in many areas, as evidenced by the abundance of spectral sequences, so having a good
homotopy theory of filtered objects could prove very useful. This and the examples given previously provide the author
with plenty of motivation for further investigating these model structures.

Areas of further work

There are many questions that arose from the work constituting this thesis some of which have been listed in Appendix
and left unanswered as direction onotential future work. Two major considerations worth stating now and not studied
in this thesis beyond short remarks are firstly issues relating to the convergence properties of any of the associated
spectral sequences and secondly, and related to the first, is existence of model structures whose weak equivalences are
given by isomorphisms on the co-page of the associated spectral sequence. Whilst we do consider the model structures
on filtered chain complexes’ interaction with a tensor product we do not use a completed tensor product as in [HT90].

Structure of the document and summary of new results

We detail now the new results of this thesis. As stated earlier many of the results are estab]ishing various properties
one would like to have of model categorics.
Chapter

ThlS chapter contains the necessary bﬂCkgl’OU.l’ld, references, conventions, etc. FOT the subsequent chapters.

Chapter

Firstly work in the existing literature has not considered any comparison between the model categories of filtered
chains and bicomp]exes. We construct then a left adjoint to the product totalisation functor with the aim of later
showing a Quillen equivalence between the model categories.

Proposition

Similarly we show there is an adjunction involving the coproduct totalisation functor:

There is an adjunction of categories L: fC 75 bC :Tot!.

Proposition There is an adjunction of categories Tot®: bC == fC :R.

. . . I . .
However we make no use of this adjunctlon. We also compute L and Tot app]led to T—Cycles and r-witness Cycles
respectively and additionally show the following theorem asserting the unit map is an s-weak equivalence on s-cycles.
P ¥ ¥ 5 5 p q Y

For s > 1 the unit of the adjunction applied to an s-cycle, Z5(p,p +n) — Tot'"LZ,(p,p + n), is
an isomorphism on the s-page.

Proposition

Lastly we Kan transfer a model structure to obrain a total model structure.

Corollary There is a total model structure on bicomplexes cofibrantly generated by generating cofibrations I =
{ZWeo,—0o(n) = BWeo —oo(n)} and generating acyclic cofibrations J == {0 — BWso, oo } in which:

1. weak equivalences are those morphisms f of bicomplexes such thar H Tot™ is an isomorphism,

2. fibrations are those morphisms f of bicomplexes such that Tot™ is (homologically) degreewise surjective, i.e. f is bidegree-
wise surjective.
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Chapter
We then generalise the model structures of [CELWI9] by introducing model structures ‘in between’ those of (fC),. and

(fC),. and similarly for bicomplexes and obtain various results concerning this collection of model categories. These

follow casily from the work of [CELWII]. We define Ig == I, U UseS\{r} Jsand Jg = J,cg Js-

Theorem [3.1.0.2} For ecvery > 0 and every subset S C {0,1,...,r} including r, the category fC admits a right proper

cofibrantly generated model structure, which we denote ( fC) g, where:
1. weak equivalences are E.-quasi-isomorphisms,

2. fibrations are morphisms of filtered chain complexes f: A — B such that Z(f) is bidegree-wise surjective for each
s €S, and

3. Ig and Jg are the sets of generating cofibrations and generating trivial cofibrations respectively.
Further (fC) g is a finitely generated model category.
The cases S = {r} and S = {0,1,2,...,r} give the original model structures (fC),. and (fC),., of [CELWTI).

Js and we also have the following

Similarly for bicomplexes we define Ig == I, U UseS\{o,r} Jsand Js = J,cg

theorem.

Theorem Foreveryr > 0 and every subset S C {0, 1,..., 7“} including both 0 and r, the category bC admits a Vight

proper cofibrantly generated model structure, which we denote (bC) g, where:
1. weak equivalencas are ET—quasi—isomorphisms,

2. fibrations are morphisms of filtered chain complexes f: A — B such that ZWs(f) is bidegree-wise surjective for each
s €S, and

3. Is and Jg are the sets of generating cofibrations and generating trivial cofibrations respectively.
Further (bC) g is a finitely generated model category.

The cases S = {0,r} and S = {0,1,2,...,r} give the original model structures (bC),. and (bC),., of [CELWTI).
Thus to the tables of the model structures of [CELWT19] we gave carlier we add the model structures (fC)S and (bC)S

genera]ising the previous. For filtered chain complexes we have

model category  generating cofibrations  generating acyclic cofibrations

(fc>r IT J’r
(fC),. L uUiZg Jr Ur—o Jr
(fC)4 Is Js

and FOT' bicomplexes we have

model category  generating cofibrations  generating acyclic cofibrations
(6C), I I
(bC),. I UUio Jr Uizo -
(bC)g Is Js

Fixing an 7 we show all the model structures on filtered chain complexes indexed by an S with max S = r are Quillen
equivalent via identity-identity adjunctions.

Proposition [3.1.0.6} For a fixed r and subsets S’ CSC{o,1,...,r} boh containing 1 there is a Quillen equivalence:
id: (fC)g == (fC)g :id .

Similarly ﬁxing an r the model structures on bicomplexes indexed by an S with max S = r are Quillen equivalent
via the identity-identity adjunction.
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Proposition [3.2.0.6} For a fixed r and subsets ' C S C {0, 1, ..., 7} containing 0 and 7 there is a Quillen equivalence
id: (bC)g === (bC)gq :id .

We show in Corollaries[3.3.0.4|and[3.3.0.9| that all these model category structures are distinct. We then show there
isa homotopical comparison between these model structures on filtered chain complexes and bicomplexes by shOWing
the £ 4 Tot™ is a Quillen adjunction for appropriate indexing sets S.

Proposition[3.4.0.2l For S a subset of {0, 1, ..., 7} containing both 0 and r there is a Quillen adjunction
L:(fC)g == (bC)g : Tot™

Writing S + 1 for the set {s + 1 | s € S} we show that the shift-décalage adjunctions generalise as follows.

Proposition [3.5.0.2) There are Quillen equivalences given by the shift-décalage adjunction:
S: (fC)g == (fC) gy, :Dec .

We further explain the poset given on the model structures (fC) g where S” < S if there is a left Quillen functor
from (fC)g, to (fC) 4 obtained by composing some of the identity-identity and shift-décalage adjunctions. The model

structures (fC) g and (bC) g are shown to be left proper in Theorems[3.7.1.7jand 3.7.2.8) cellular in Propositions[3.8.1.5
and [3.8.2.2| and stable in Propositions [3.9.1.2|and [3.9.2.4] We then show there is a Quillen equivalence between the

model categories of filtered chain complexes and bicomplexes.

Theorem [3.10.0.4] For S contatining both O and 1 there is a Quillen equivalence between the S-model structure on filtered

chain complexes and the S-model structure on bicomplexes given by the £ = Tot™ adjunction:
L:(fC)g == (bC)g : Tot"

In Proposition B.11.0.1}we show for the model categories of the above with weak equivalences the r-equivalences
there are no left Bousfield localisations with weak equivalances the (r + 1)-equivalences. We then briefly explain
constructions of various bounded variants of the model structures (fC) g and (bC) .

Corollary|[3.12.1.2) There is a cofibrantly generated model structure denoted ( fC Z) s

r-quasi isomorphisms and with generating cofibrantions TIg and generating acyclic cofibrations T.Jg.

on fCZ whose weak equivalences are the

Theorem[3.12.2.1} For every 7 > 0 and every subset S C {0,1,...,r} including r, the category fC < admits a right proper
cofibrancly generated model structure, which we denote ( fC=) o Where:

1. weak equivalences are Er—quasi—isomorphisms,

2. fibrations are morphisms of filtered chain complexes f: A — B such that ZP'PT"(f) is bidegree-wise surjective for
n<-lands € S, and

3. klg and KkJg are the sets of generating cofibrations and generating acyclic cofibrations respectively.
Furthermore ( fC S) g is a finitely generated model category.

Theorem [3.12.3.15| For every subser S C {0,1,2,...,7} containing r the category f>C admits a right proper cofibrantly

generated model structures, which we denote (f>C) g, whose:
1. weak equivalences are the Er—quasi—isomorphisms,
2. fibrations are morphisms that for all s € S are ZPP+"surjective for p > s and all n, and
3. generating cofibrations and generating acyclic cofibrations are given by I g and J 52 respectively.

Furthermore (f>C) ¢ is a finitely generated model category.
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Chapter

After recalling a classification of cofibrations in the projective model structure on unbounded chain complexes we
begin a partial classification of cofibrant objects and cofibrations in (fC),. We show that cofibrant objects must
satisfy a list of conditions incorporating both usual projective conditions and conditions relating to 7-homotopy. These
conditions, given in the following lemma, are shown by a sequence of lemmas within.

Lemma A cofibrant filtered chain complex A in the -model structure on fC satisfies the following conditions:
1. %1:71 is a projective R-module for all p,n € Z,
2. A™ is a projective R-module for alln € Z,
3. the filtration on A is exhaustive, and
4. for an element @ € F A™ we have da € Fp,TA”Jrl.

Via another sequence of lemmas we give a nice interpretation of how cofibrant objects differ in the model categories
(fC) g where we vary S but keep max .S = 7 fixed. The following proposition interprets the cofibrant objects in ( fC) g
as those where the pages of the spectral sequence beneath 7 are allowed to change from the s-page to the (s + 1)-page
onlyifs € S.

Proposition Let A be a cofibrant object of (fC)g. Then for k < rand k & S the k-page differential dj, of A is 0.

We then give our partial classification for the cofibrant objects in ( fC),.. These satisfy the previous list of conditions
in addition to a boundedness condition on the filtration given in the following as the final condition.

Proposition Given a filtered chain complex A such that the following conditions hold
1. the graded pieces Gr, A™ are projective for all p,n € Z,
2. for a pure element a € F, A™ we have da € F,_, A" forall p,n € Z,
3. the filtration on A is exhaustive, and

4. whenever we have an T—acyclic ﬁlt@rcd chain complcx K and a morphism A — Y"K there is a liff in the following
diagmm:
C, (K)
B l
A 5 YK
5. and further such that for all n there is a p(n) € Z such that Fy,,y A™ = 0 (i.e. the filtration is bounded below but not
necessarily uniformly),
then A is cofibrant in the r-model structure on fC.

With some cofibrant objects understood we classify those cofibrations whose cokernel are cofibrant objects of this
bounded form. As for cofibrations in chain complexes we have the following lemma.

Lemmal{4.2.0.3] An r-cofibrationi: A — B is such that B is isomorphic to a twisted direct sum of A and the cokernel of i as
filtered chain complexes.

In the above then we have B =2 A &, C for C the cokernel of 7 and a twist differential 7. We define such a twisted
filtered chain complex to be surpressive if the twist map 7 supresses filtration by r and using this terminology show the
following partial classification of cofibrations in (fC),. again with the same boundedness assumption on the filtration

of the cokernel.

Lemma[4.2.0.6| An r-supressive inclusion i: A — B whose cokernel C'is cofibrant and such that for any n there is a p(n)
with Fy,,)C™ = 0 is an r-cofibration.

Restricting to the subcategory of those objects whose differential is I-supressive we show that the shift-décalage
adjunction induces an equivalence of categories between such I-supressive objects and (I + 1)-supressive objects and
show too that décalage preserves cofibrancy.

Lemma Let B be a cofibrant object of (fC) g, then Dec! B is a cofibrant object in (fC)s-
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Chapter

We next consider the interaction of the monoidal product in fC with the model structures. We construct a cofibrant
replacement for the unit. We let Q-1 denote the filtered chain complex given by

Q= PRy — DR | -
=0 j=1

where the differential is given by mapping each R?,i) diagonally onto the copies of R indexed as R%irii) and
R%_T_i_l) for ¢ > 1 and by the identity map from R(()o) to R%_T_l).

Corollary|5.1.0.6| The filtered chain complex QI is an S-cofibrant replacement of the unit.

Using this cofibrant replacement for the unit we verify the unit axiom for a monoidal model structure on filtered

chain complexes.

Proposition [5.2.0.2] The composite function QI ® A — 1 ® A — A is an r-weak equivalence for all (not necessarily
coftbrant) A.

And show too that the (fC) g satisfy the pushout-product axiom.

Lemma(5.3.2.1|and Corollary(5.3.1.4} The pushout product of generating cofibrations i and j is a cofibration which is addition-
ally acyclic if either i or j is.

A consequence of these results is that the model categories (fC) g are monoidal so that there is an induced monoidal
structure on the homotopy category.

Thcorem Each of the model categories (fC) g of Theoremis a monoidal model category.

Additionally we show that these monoidal model structures satisfy Greenlees and Shipley’s monoid axiom.
Corollary The model categories (fC)g satisfy the monoid axiom.

As a consequence we have model categories indexed by .S on various categories of algebras or modules.

Theoremsto Fix 7 and let S be a subset of {0, 1, ..., 7 — 1,1} containing . Let A be a filtered differential
graded algebra. Then there are cofibrantly generated model structures, whose weak equivalences are the r-quasi isomorphisms and
ﬁbmtions those morphisms that are surjective on all S—cyclcs for s € S, on the categories of lcft A-modules, and when A is
graded-commutative, on the categories of A-modules and A-algebras.

Lastly in Corollaries [5.5.0.6] and [5.5.0.9| we use a resule of [Murl5] to adapt the S-model structures on filtered

chain complexes to ones where the unit of the tensor product is a cofibrant object and where all shifts of the unit are
p p ]

additionally cofibrant. These new model structures are additionally monoidal satisfying the monoid axiom by the same
result of [Mur15] so one can immediately deduce existence of S-model structures on modules and algebras of fC whose
unit is now cofibrant.

Appendix @
We consider in this appendix the question of finding a cylinder object on an S-cofibrant filtered chain complex. We also
discuss a notion of flatness for filcered chain complexes.

Appendix

This appendix proves the functor R is indeed a right adjoint to the coproduct totalisation functor Tot?. The argument
is very much dual to that for £ A Tot™.

Appendix
We detail in this appendix questions that have arisen in the work of this thesis and that remain unanswered in this
document. They are potentia] future directions of work.
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CHAPTER

Background and Conventions

In this chapter we collect all the background material and conventions we will use in the following chapters. We
assume some level of Familiarity with regard to commonly used machiner_y within algebraic topolog_y, e.g. definitions of
categorics and their (co)limits will be left unstated as will chain complexes and their homologies. We will however recall
some terminology and definitions regarding ordinals within set theory for the purpose of the small object argument in
constructing cofibrantly generated model categories.

Filtered chain complexes and bicomplexes will be defined and some conventions established with regard to them
along with various adjunctions involving one or both categories. We define spectral sequences, give definitions for
r-cycle and r-boundaries as well as their representing objects and state how to obtain a spectral sequence from a filtered
chain complex. We also define the shift-décalage adjunction of Deligne.

Our principal focus of this thesis being model categories, we define and explain in detail the framework of a model
category along with some important properties and results. We also include the motivation for (and a particular case
of) homotopy (co)limits.

We recall the projective model structure on chain complexes as it serves as frequent motivation for constructions or
proof methods in the filtered setting we consider. We also recall the 7 and 7'-model structures of [CELWI9] on filtered
chain complexes and bicomplexes along with their constructions and other pertinent constructions. In particular they
are cofibrantly generated model structures whose generating sets are analogous to the sphere and disc inclusions of’
chain comp]exes. The representing objects OFT—cycles and r-boundaries are the zma]ogues of the spheres and discs in
these setcrings.

We end this chapter with a short summary of conventions frequently used throughout this document.

1.1 Set theory: cardinals, ordinals and smallness

This section details the prerequisite material on set theory necessary for eoﬁbrantly generated model categories as well
as the notion of smallness. We use notation and conventions that can be found in [Hov99] §2.1.1], [Hir03] §10.1] or
[]cc(B, §2].

Definition 1.1.0.1. We make the following definitions which are standard in set theory.
1. A set T is well ordered if it is totally ordered and such that every non-empty subset of 7" has a minimal element.
2. Aset T is transitive if every element of T is a subset of T".
3. Asset v is an ordinal if it is well ordered by the membership relation € and is transitive.

4. For av an ordinal we define the succesor ordinal to be Succ(a) := aU{a}. The set Succ(e) is an ordinal whenever
Qis.

5. If e is an ordinal but not a successor ordinal it is of the form ae = sup {8 | 8 < a} and said to be a limit ordinal
(we include {} as being a limit ordinal).



The following theorem yields all ordinals.
Theorem 1.1.0.2 (Transfinite Induction, [Jec03| Theorem 2.14]). Let C' be a class of ordinals such that:
1L {}eC,
2. if a € C then so too is Succ(ar), and
3. ifa# {}isalimic ordinal and 8 € C forall § < acthena € C,
then C'is the class of all ordinals.

Remark 1.1.0.3. We will view an ordinal A as a category with objects the elements of A and for all o, 8 € A there is
exactly one morphism ac = 8 whenever o < 8. Note that in this interpretation a v € A such that y is a limit ordinal
is the colimit in the category of A over the full subcategory of elements of A which are less than 7y or equivalently admit
morphisms to A.

Definition 1.1.0.4. For C a cocomplete category:

1. if A is an ordinal, then a A-sequence is a colimit preserving functor X : A — C (most helpfully viewed as a
sequence ofcomposed morphisms in C:

()Q)—é)(1—94¥2—%...)
where colima <y Xo — X is an isomorphism for all limit ordinals ), and

2. the composition of the A-sequence is the morphism

Xo — colim Xg .
0 BEX A

Definition 1.1.0.5. A cardinal is an ordinal of greater cardinality than any lesser ordinal.
Definition 1.1.0.6. The cardinal of a set T' is the unique cardinal in bijection with T.

Definition 1.1.0.7. A cardinal 7y is regular if for any set A whose cardinal is less than 7y and sets Sy, for each @ € A also

whose cardinals are less than =y, we have the cardinal of | S is less than 7.

acA

Definition 1.1.0.8. Let « be an ordinal and  a cardinal, we say that o is y-filtered if it is a limit ordinal and for any
A C «a with the cardinal of A less than or equal to , then sup 4 < o

Defmition 1.1.0.9. Let C be a cocomplete category, M a subclass of the morphisms of C, C' € C and & a regular
cardinal. Then C' is said to be x-small relative to M if for all k-filtered ordinals A and A-sequences X : A — C with
each morphism Xo — Xgyce(a) in M, then:

colim Home (C, X,) — Home(C, colim X,,)
a<< a<ly

is an isomorphism. Further C' is small relative to M if it is k-small relative to M for some cardinal &, and C'is small if
it is small relative to C.

Remark 1.1.0.10. If & is a finite cardinal in Definition|1.1.0.9|we also use the terminologyﬁnit@ in place of small.

Recall M is a finitely presented R-module if there is a short exact sequence of the form @,, R — @,, R —
M — 0, i.c. there are finitely many generators given by the basis of @,, R and finitely many relations given by those

of @,, R.

Examples 1.1.0.11. Examples of small and finite objects given in [Hov99) Examples 2.1.4, 2.1.6 & Lemma 2.3.2] include:
1. in the category of sets every set is small, and finite sets are precisely the finite objects,
2. in the category of R-modules every R-module is small and the finitely presented B-modules are the finite objects,

3. in the category of chain complexes over a ring R every chain cumplex is small and the bounded (above and
below) chain complexes of finitely presented R-modules are the finite objects.



1.2 Category theory

121 Category of filtered chain complexes

Throughout this thesis R will denote a commutative unital ring.

Definition 1.2.1.1. A filtered object X in a category C is an object X with an increasing filtration, i.c. subobjects Fj X C X
for all p € Z such that F, X C Fj11 X.

Example 1.2.1.2. We will make use of the following two filtered objects.

1. A filtered R-module M consists of an R-module M with submodules F,M C M for cach p € Z with inclusions
F,M C Fy M.

2. A filtered chain complex of R-modules C' consists of a (cohomologically graded) chain complex C' and subchain
complexes F,C of C for cach p € Z. In particular the differentials of C preserve filtration, i.e. for ¢ € C™ with
¢ € F,C™ then dc € F,C"1,

Defiition 1.2.1.3. A morphism of filtered objects f: X — Y in a category C is a morphism of the underlying objects
that preserves the filtrations, ie. f (F,,X) C F,Y, forall p € Z.

Notation 1.2.1.4. The category of filtered chain complexes over a ring R will be denoted fC.

Notation 1.2.1.5. The filtered chain complex A with one copy of R in cohomological degree n and such that 0 =
F,_1A C FyA = A will be denoted R"p). We will frequently abuse notation and also use R?p) to denote a subobject

of another filtered chain complex, to build larger ones from these pieces.

Definition 1.2.1.6. An clement of a filtered chain complex a € A is said to be of pure filtration degree p if a € F,, A and
a ¢ Fy_1A4, ie. pis the firsc fileration indexing where a appears.

n

The previous notation R(p

) could then be described as the chain comp]ex with a copy of R in degree n of pure
degree p.

Definition 1.2.1.7. A morphism of filtered chain complexes f: A — B is strict if whenever a € A™ is such that
f(a) € F,B"™ then we have a € F,A™.

We are principally interested in this category of filtered chain complexes. In defining model category structures
on this category we will need to know that fC admits all small (co)limits. This was established in [CELWT19] Remark
2.6]. Limits are computed as one might naively think, but the same is not true for colimits. We will need the process of
constructing colimits later for verifying the pushout-product of generating (acyclic) cofibrations is also a cofibration
(which is acyclic if either cofibration is) so we recall a construction here.

Notation 1.2.1.8. We denote by Zoo the category wi th objects ZU{OO} thought ofasa category with a unique morphism
n — m whenever n < m in Z and a unique morphism n — 00 for cach n € Z, so that Z is the category Z with a
terminal objcct adjoined.

Lemma 1.2.1.9 ([CELWI9| Remark 2.6]). For the category fC we can compute

« limits levelwise, i.e. for a diagram D: I — fC the underlying chain complex of the limit of D is limy D (i) where we
forget filtration, and the p-filtered part of the limit is given by F, limy D(¢) = limy F,, D(i), and

-+ colimits can be computed by viewing fC as a reflective subcategory of Co*, i.e. there is an adjunction p: Co> 7= fC :i
where the left adjoint p sends a Z oo, indexed chain complex E: Zoo — Cp to the filtered chain complex with underlying
chain complex E(00) and p-filtered part F,pE = im (E(p) — E(00)). The colimit of a diagram D: J — fC can
then be computed as colimjy D = r colim y i D, so that the underlying chain complex is the colimit of the underlying
chain complexes of the D(j) and the p-filtered part is given by

F, co}}imD =im (colJim D) (p) — Co}]im D(j)(oo)) .



We consider a specific case of the colimit construction for filtered chain complexes for those morphisms f: A —
B of fC with the property that if an element a € A™ is such that f(a) € F,B" thena € F, A", i.e. that f is a strict
morphism of filtered chain complexes. We consider the cokernel of the morphism f which we denote by B/A. This
is computable according to Lcmma and have underlying chain complex B/A (where we forget filcracions) and

filcration given by:

n_ . F,B" B"
F, (B/A) _lm<FpA" — An)

For the given morphism f if an element of F,, B™/F,, A" becomes 0 in B™/A™ then it was of the form f(a) for some
a € A" and where f(a) € F,B", however the assumption on f implies that a € F, A™ hence in F},B"/F, A" the

element f(a) is 0. This gives the map of the image is an inclusion and so we can compute the cokernel homological
degree-wise and filtration degree-wise.

Lemma 1.2.1.10. For a strict morphism of filtered chain complexes the cokernel can be computed filtration degree-wise.

The category of chain complexes can be equipped with a monoidal product, the tensor product, for which — ® A
is left adjoint to the enriched Hom functor Home (A, —), (in this paper we use an underline to denote an enriched
Hom functor). We show here that this can be extended to the filtered setting we work in.

Definition 1.2.1.11. The tensor product of X, Y € fC has underlying chain complex the usual one:
Xey)'= x'oy’,
i+j=n
and is given in fileration p by:

F(X@Y)= Y m(FXeFY +XY),
i+j=p

where as usual the differential is given according to the Koszul sign rule, d(z ® y) = dr ®@ y + (—1)I"l2 @ dy with
|| being the cohomological degree of .

Remark 1.2.1.12. Note that Frequently in the literature one wants to take a completed tensor product when the tensor
components carry some topological information. This is used for example in [IT90]. We do not consider issues relating
to convergence in this thesis however and it is advantageous to have a tensor-hom adjunction so we use an uncompleted
form.

Notation 1.2.1.13. We denote by REZ;i((Z;) the tensor product R?p) ® ng) making judicious use of bracketing for

clarity.
Definition 1.2.1.14. The internal hom object of X, Y € fC has underlying chain complex the usual one:

Hom ;¢ (X,Y)" := [ [ Hom(X*,Y*™) ,
1€Z
and is given in filtration p by:
F,Hom ¢ (X,Y)" = [ [ F,Homp (X', V")
i€L
where F,Homp(X®, Y*") := {f | f(F,X") C F,y,Y""" Va}. The differential on an element f = (f;); €
Hom ;¢ (X, Y)" is given by:
(fi)i (d o fi = (=1)"fiy1 0 dX)Z- .
Lemma 1.2.115. For any X € fC there is an adjunction pair (— ®Y') 4 Hom ¢ (Y, —) on the category of filtered chain

complexes.

Homyc(X ® Y, Z) = Homye (X, Hom (Y, Z))
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Proof. There is already a closed monoidal structure on the level of non-filtered chain complexes which is the underlying
bijection in the filtered case, we need only check that the bijection sends filtered morphisms to filtered morphisms.
One direction of the bi]'ections takes the form:

¢: Hompe(X ®Y,Z) — Homfc(X7Ho7mfc(Y, 7))
fr= (o= (F@yiiy = feoy) ) .

where y € Y. Given then a morphism f: X ® Y — Z we need to verify the adjoint morphism ¢(f) just defined
is a morphism of filtered chains. Take then an € F, X", we need to check that the morphism f(x); satisfies the
condition imposed in Dcﬁnition i.e. that f(z);(F,Y?) C Fa+pYi+”. Given then y € F,Y? we have that
f(@)iy = f( ®@y) where x @ y € Fpp ol VT and so f(2)i(F,Y?) C FpiaY'™, showing that ¢o(f) is too a
morphism of filtered chains when f is. The inverse of the bijection is given by:
¢ Homye (X, Hom o (Y, Z)) — Homye(X ®@ Y, Z)
g— (x@y = g(x)i(y) -

Suppose now g is a morphism of filtered chains, for an element of F,(X ® Y))™ in the image of F; X* ® F,_;Y"~F,
say from x ® y, we have (g(x);); € FyHom ;o (Y, Z)k and so by definition of the fileration on the Hom ;¢ we have
G @)k (Fp Y F) C Fyj i 20 Mk = B 77 e g(2)n—k(y) € FpZ™ and 1(g) preserves the fileration. %
Lemma 1.2.1.16. A filtered chain complex A is a finite object of the category fC if and only if it satisfies the following conditions:

1. F, A" is finitely presented for all p and n,

2. A" =0 forall n < ny for some nq,

3. A™ = 0 for all n > ng for some ng,

4. F,, A = 0 for some finite p1, and

5. EFp, A = A for some finite po.

In the presence of conditions 2 and 3, the conditions 4 and 5 are equivalent to the following: for each n there are
p1(n) and pa(n) such that F, () A" = 0 and F), () A" = A"

Such a filtered chain complex can be visualised, via the inclusion functor i: fC — Clz%x, to be bounded within a
box such that left, right and down of the box are 0 modules, within the box are finitely presented R-modules and above
the box the morphisms of i.X induced from Zo are identities. In preparation for the proof consider a A-sequence of’
filtered chain complexes (Xo — X7 — .. .). We give an expressions for the colimit of this A-sequence. The underlying
chain complex of the colimit is just the colimit of the underlying chain complexes. We can compute the p-filtered part

using the reflector-inclusion adjunction of Lemma|1.2.1.9]as follows:

F, (colim X )" = F, (r colimiXg)"
= rcolim(iXg),

=im (colim(ng)Z — colim(iXﬂ)go) . (1.1)

One can easily show that relaxing any of the conditions of Lemma[l.2.1.16] yields a non-finite filtered chain complex,
we are then left with proving the other direction.

Proof. To show A is finite we must show that for any limit ordinal A and any A-sequence
Xo—=X1 2 Xo—...>Xg—...)
the fb”owing set map is an isomorphism
colim Hom ¢ (A, X3) — Hom ¢ (A, colim Xg) . 1.2
olin re(A, Xg) re (A, colim X) (1.2)
Surjectivity: Consider a morphism f € Hom ¢ (A4, colimg<y X ). This gives morphisms of R-modules on the p-

filcered parts
Fypf": Fy A" — im (colim(i X)) — colim(iXg)%,) (1.3)



using Equation . Consider a set of R-module generators of the Fj,A™ forp; < p < pgandny < n < ng of
the theorem . There are finitely many such generators {a;} as each is finitely presented and our range of p and n is
finite. For an a; to map into colim X it must land in the image of Equation so that there is some element of
z; € colim(iX )y whose image in colim(iXg)7, is the same as that of a;. There is then an mf(l) in some Fp X,y
equal to x; in the colimit. Constructing these for all generators gives a set map from our chosen set of generators into
various X g. This need not give a morphism of filtered chains yet. We consider now, for those chosen generators of each
FpA" in the range p1 < p < pa and n; < n < ng the relations {Tj} between them which again is a finite set as these
R-modules are finitely presented and our range of p and 7 is finite. Each relation is a sum of some of the generators a;

5G)

which is 0 in A however the sum of the corresponding lifts 2~ need not be 0 in Xy,45(3(i))- The relation is however

B are satisfied. Doing so for all generators and

0in colim X3 so there is some X, where the relation in terms of the
relations between them and taking the maximum of all B(i) and « Lonstructed thus far (which really is a maximum as
we only have finitely many such) gives R-module morphisms of the filtered parts F,, A™ into colim Xﬁ which factorises
via some X,. These do not yet assemble to a morphism of filtered chain complexes. One can however perform a similar
trick to ensure that differentials commute with the constructed map. We have finitely many generators which have
lifts into some X, we find lifts too of the da; into some X but the differential of the lifts of the generators need not
agree with the lifts of the da; however do eventually, again we take a maximum of the indices of the Xq to obtain a
map of R-modules which commutes with the differentials. Lastly we ensure that for F,A™ C Fj,41A™ in our range
that the morphisms into the X, agree, again we can do so on generators (of which there are finitely many of them) and
finally take a maximum over all indices of the Xq which we have factorised via, say into X ,. This is then a morphism
of filtered chain complexes A — X, since we have ensured it is a morphism of R-modules on the filtered parts,
that it commutes with differentials, and such that morphism firstly restricted to F},11A™ and then to Fj A™ agrees
with that constructed by restricting first to £, A™. The composite A — X,, — colim X3 is a factorisation of
A — colim Xg and so the morphism Equation is indeed surjective.

Injectivity: Consider two morphisms f, ¢ in colim Hom¢(A, X3) which under the morphism Equation
become equal. Represent them by some f, g: A — X,. Via similar arguments for surjectivity we can then, for each
generator, find X4 in which the two maps agree on that generator after post composition A — X, — X,. Taking
the maximum over the indices of each such X, gives a filtered chain complex, say X, in which the composite of f and
g with X, — X agree on all generators and so f and g are equal in colim Hom ¢ (A, Xg). D

A similar proof shows that all filtered chain complexes are small objects.
Lemma 1.2.1.17. All objects of the category fC are small.

The fo]lowing definition is a simple renaming of [CELWT9| Definition 3.5] of the r-translation functor 7. and its
inverse. We introduce this new notation to agree with the usual stable notation.

Definition 1.2.1.18. For a filtered chain complex A the r-suspension 3" A and r-loops 2" A of A have underlying chain
complex the usual suspension and desuspension of A and whose underlying filtrations are given by:

E YA = F, A"
F,Q A" = Fy A" 1

and whose differentials are d?™4 = @4 = —d4.

Lemma 1.2.1.19. The X" functor is isomorphic to tensoring on the left by R( ) and the §" functor is isomorphic to temormg on

the left by R -

Remark 1.2.1.20. Whilst the category of chain complexes is an abelian category the category of filtered chain complexes
is not. A consequence of the abelian axioms is that a morphism f: A — B is an isomorphism if and only if its kernel
and cokernel are both 0. However one can define a morphism of filtered R-modules which has 0 kernel and cokernel
but is not an isomorphism, [GM03| Chapter IT §5.17].

Lastly we make a remark on linear maps for an R-module compatible with a filtration. Consider a direct sum of
R-modules A == R,y @ Rp,) @ ... D Rp,) where the p; denote the pure filtration degree of the copy of R and are
such that p; > pg2 > ... pj. For a matrix representing a linear map of chain complexes A — A with the obvious basis
tobea map of filtered chain Complexes it must be lower triangular. We will later make use of this regarding change of
bases compatible with a filtracion.
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122 Category of bicomplexes

Definition 1.2.2.1. A bicomplex A over a ring R is a collection of bigraded modules AY for 1,j € Z with differentials
do: A% — AT and dy: A% — A1 called the vertical and horizontal differentials respectively such that
dp ody = 0and d; o dy = 0, and such that they commute dy o dy = d; o dp.

Definition 1.2.2.2. A morphism of bicomplexes f: A — B is a collection of R-module morphisms f%79: A% —s B%J
for i, j € Z such that they commute with the differentials, f odg =dpo fand fody =dyo f.

Notation 1.2.2.3. The category of bicomplexes over a ring R will be denoted bC.

Remark 1.2.2.4. The category of bicomplexes is clearly isomorphic to the category C?(C™) of chain complexes of chain
complexes over R where the v and h superscripts refer to the direction of the differential. There is also an isomorphism
of‘categories from bC to C" (C”). We will make use of the former in interpreting the 7 = 0 model structure of [CELW19]
on bicomplexes.

Definition 1.2.2.5. The product totalisation functor Tot™: bC — fC is defined on a bicomplex K by:
Tot™(K)" = [[ K",
i€EZ
with fileration given by the column filtration:
F,Tot"(K)" = [ K",

i<p

and with differential given on an element (kl)z € Hl Kbitn by:
d: (kz)z — (d0k7 + (71)nd1k’i+1)i .

On a morphism of bicomplexes f: K — J the functor Tot™ is given by TotH(f)” = [, f%**". Note that this
preserves filtration and differentials.

There is also a coproduct totalisation functor but we won’t make so much use of it and so where we omit the
adornments and write Tot we mean Tot!".

Definition 1.2.2.6. The coproduct totalisation functor Tot® : bC — fC is defined on a bicomplex K by:
Tot®(K)" == P K",
iE€EZ
with filtration given by the column filtration:
F,Tot®(K)" == (P K"+,

i<p

and with differential given on an element (kz)z S @Z Kbitn by:
d: (ki)z — (dokz + (71)nd1ki+1)i .

On a morphism of bicomplexes f: K — J the functor Tot® is given by Tot® ()" := @D, f*™. Note that this
preserves fileration and differentials.

There is a symmetric monoidal tensor product on bicomp]exes given in the same way as for chain comp]exes.

Definition 1.2.2.7. For bicomplexes A and B we define the tensor product of A and B denoted A ® B to be such that
AoBpi— @) Amm g prm

ni+na=p
mi+ma=q

with differentials d64®B and d‘f®B given on an element a ® b € A" @ B">"™2 C (A ® B)P9 by:
dy®P(a@b) =dfa®@b+a (-1)"dgb,
d®Bla®b) =dta®b+a® (—-1)4dPb,

where |a| = nq + my.
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Definition 1.2.2.8. For a bicomplex A the r-suspension X" A and r-loops 2" A of A are given by:
(BrA)P = Ap—rmamrl
(QTA)p,q — Ap+r,q+r71 ,

and whose differentials are df 4 = d5 4 = (=1)"1df and d¥" 4 = a7 4 = (—1)"d{".

1.2.3  Locally presentable categories
Definition 1.2.3.1. A category Z is filtered if it is non-empty and the following two conditions hold
L forall4,j € T there exists a k € 7 and morphisms ¢ — k and j — k, and
2. forall4,j € C and every pair f,g: ¢ =3 j thereexistsak € Zand h: j — k with hf = hg.
Definition 1.2.3.2. A category C is a locally presentable category if there is a regular cardinal A such that
1. Cis locally small, i.c. the collection of morphisms between two objects is a set,
2. C has all small colimits, and
3. there is a set of objects S such that any object of C is a A-filtered colimit of objects of S.

Lemma 1.2.3.3. The category fC of filtered chain complexes is a locally presentable category.

Proof. Note that Cp is a locally presentable category and since Zo is a small category the functor category C;Zf" is
locally presentable. Using the adjunction p: C;Z{“ 7= fC i we can then exhibit the generation condition for locally
presentable categories. If S is a set of A-small objects generating CIZ% under A-filtered colimits then the set pS generates
fC; for an object A € fC we have that iA = colim; F for some A-filtered functor F': [ — CR"O with 1mage of
objects in S md so A = piA = pcolimy F' = colim pF since left adjoints commute with colimits. &

13 Spectral sequences

Spectral sequences are tools used to aid in homology (and homotopy) calculations by constructing a sequence of
successive approximations. The end result being a bigraded collection of algebraic data from which one may need to
solve extension problems to correctly construct the homology.

13.1 Definition

Our definition of a spectral sequence is near identical to that of McCleary [McCO1} Definition 2.2] except we begin
indexing of our pages at 0 instead of 1 and the bidegrees of the differentials are a mix of McCleary’s homological and
cohomo]ogica] grading, the latcer chosen to agree with the setup in [CELWTI9].

Definition 1.3.1.1. A spectral sequence is a sequence of bigraded differential modules { E¥*, d,.} for r > 0 with d; of
bidegree (—r, 1 — r) such that

ker (d,: BP9 — Bp-ra+l=r)
im (dr: ERrmasitr Ef’q)

1%

EPY = BP9 (ES*,d,)

for cach r > 0. The bigraded module E>* will be referred to as the r-page, and the differential d,. as the r-differential.

Definition 1.3.1.2. A morphism of spectral sequences f: {E>* d,} — {E** d,} is a sequence of morphisms of
bigraded differential modules f,.: E¥* — E** such that f; induces the morphism f,41 for each r > 0.

Lemma 1.3.1.3 (IMcCO1T, Theorem 3.41). For a morphism f: {E5*, d,} — {E*,d,} of spectral sequences, if f is an
isomorphism of bigraded differential modules for some s then all subsequent fy., v > s, are isomorphisms too.
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1.3.2 Construction

We will construct our spectral sequence via r-cycle and r-boundary objects of filtered chain complexes as in [McCO01]
§2.2] however with slightly different notation to agree with that of [CELW19]. There are alternate setups, e.g. exact
couples IMcCO0T} §2.2] and Cartan—Eilenberg Systems [McCO0T], Exercise 2.2] or [CE5G), Chapter XV]. The construction
we take here is in fact equivalent to that of exact couples, see [McC01] Proposition 2.11].

Definition 1.3.2.1. For r > 0, the r-cycles Z**(A) of a filtered chain complex A are given in bidegree (p, n + p) by
ZPTP(A) = F,A"Nd ' F,_ A"t

Defmition 1.3.2.2. The representing object for the r-cycles of filtered chain complexes, denoted Z¥*, is given by

Z,(p,n+p) = (R?p) 1, gt ) .

(p=)
Definition 1.3.2.3. For r > 1, the r-boundaries B}*(A) of a filtered chain complex A is given in bidegree (p,n + p)
by
BYRH(A) s T ) 4 2t
and for r = 0 is given by

BYP(A) = 25 P (A)

Definition 1.3.2.4. The representing object for the r-boundaries of filtered chain complexes, denoted B*, is given for
r>1 by
B.(p,n+p)=Z._1(p+r—1Lp+r—14+n-1)®Z._1(p—1,p—14+n).

Note 1.3.2.5. McCleary uses B* to denote just dZ;"* whereas we include the extra 7-cycle component. This is done
to agree with the notation of [CELW19].
Notation 1.3.2.6. We will also occasionally make use of objects we denote Z,.(p, p + n)(N) for some R-module N
which we take to be (N” — Nl )

(p) (p—7)

Given a filtered chain complex A we can now define a spectral sequence. The notation differs slightly from
ICELWT9] here in that we use d,. for the r-differential instead of their §,..

Definition 1.3.2.7. The 7-page E*(A) of a filtered chain complex (A, d) for r > 0 is given in bidegree (p, p + n) by

zpre(a)
- vap‘i‘n(A)

b

EPPT(A)
and for an element [a] € EPPT"(A) represented by a € ZPPT™(A) we define its r-differential by d,[a] := [da] €
Effr,pfrjtl (A)

Lemma 1.3.2.8 ([McCO1} Theorem 2.6]). The r-pages and r-differentials of Definition define the structure of a spectral

sequence.
Definition 1.3.2.9. A morphism f of filtered chain complexes will be called an r-weak equivalence, r-quasi-isomorphism
or E,-quasi-isomorphism if it induces an isomorphism between the (r + 1)-pages of the associated spectral sequence.
1.33  Shift-décalage adjunction

On the category of filtered chain complexes there is the shift—décalage adjunction7 St A Dec, of Deligne [Del71]
Definition 1.3.3]. with the property that (S™) Y (Epsr) = Er and (Dec”) H(EL) = Eppr.

Definition 1.3.3.1. Lec 7 > 0 and A be a filtered chain complex. On the category of filtered chain complexes we define
the endofuncrors:

L. r-shift of A, denoted S™ A, with the same underlying chain complex and filcration given by:
F,S"A" == F, ., A",
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2. r-décalage of A, denoted Dec” A, with the same underlying chain complex and filtration given by:

F,Dec" A" i= Fp_py A" N d ™" (Fpyp_p A"H) = ZP7rmp=rmdn 4y

All differentials being induced from the filtered chain complex A.

One can easily check these do indeed define functors, that S™ = St o ... 0 81 Dec” = Dec! o ... 0 Decl,
id = Dec’ = S0, and finally that we have the following lemma.

Lemma 1.3.3.2 ([CG16| Proposition 2.16]). For each 7 > 0 there is an adjunction pair S™ Dec” for which the unit of the
adjunction, n: id = Dec" o S", is the identity morphism.

1.4  Model categories

A model category is a particulary nice framework in which to study homotopy theory and general enough to encompass
the standard homotopy theories on spaces, chain complexes, spectra and many more. One of the main problems with a
homotopy theory is the construction of its homotopy category, i.e. inverting the weak equivalences. As an example there
are homotopically poorly behaved spaces which whilst being weakly equivalent to a second space are not homotopic
to it. A model category makes this process of inverting the weak equivalences comparatively tractible by providing
the notions of cofibrant and fibrant objects. These have the nice property that mapping out of a cofibrant object
is homotopically well behaved and similarly for mapping into fibrant objects. If one then restricts to the category
of fibrant-cofibrant objects, i.e. those that are both fibrant and cofibrant, the process of constructing the homotopy
category is as simple as inverting the homotopy equivalences, a more easi]y manageab]e class of‘morphisms.

1.4.1 Definition

Definition 1.4.1.1. For morphisms f and g in a category C we say that f is a retract of ¢ if there is a commutative
diagram of the form

Defmition 1.4.1.2. A model category M is a category with three subclasses of the morphisms called weak equivalences,
fibrations and coftbrations, and denoted respectively by W, Fib and Cof with functorial factorisations (v, 8) and (v, §)
satisfying the following:

1. (Co)completeness: The underlying category has all small colimits and all small limits.

2. 2—ouf—of—3: For a commutative triang]e

A— > C
B
in M if any two of the three morphisms are in W so too is the third.

3. Retracts: For f and g morphisms of C with f a retract of g, then f is in W (resp. Fib, Cof) whenever g is in W
(resp. Fib, Cof).

4. Liftings: For a commutative square

b
ol
NT%

(1.4)

in C in which we either have:
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+ 4 is a cofibration and p is both a weak equivalence and fibration, or
+ 4 is both a weak equivalence and cofibration, and p is a fibration,
then there exists a, not necessarily unique, morphism A which makes the diagram commute.
5. Factorisations: For a morphism f we can factor f as cither:

« B(f) o a(f) where a(f) is a cofibration, and B(f) a weak equivalence and fibration, or
« 0(f) o y(f) where y(f) is a weak equivalence and cofibration, and 6(f) a fibration.

Remarks 1.4.1.3. We note some remarks and immediate consequences regarding the definition.

1. Quillen’s original defintion, [Qui67], lacked the functorial aspect of the factorisations however this can prove
useful and the model categories we consider will all be constucted in such a way that we are handed functorial
factorisations so we have included it in our definition as has become common. The original definition also only
required finite limits and colimits.

2. The category being (co)complete means there exist initial and terminal objects, we denote these by 0 and 1
respective]y.

We list some standard nomenclature for referring to morphisms and their properties in model categories.
Definition 1.4.1.4. We will call a morphism that is both a weak equivalence and fibration an acylic fibration, and a

morphism that is both a weak equvialence and cofibration an acyclic cofibration. These are also commonly called erivial
ﬁbmrions and trivial coﬁbmrions.

Notation 1.4.1.5. We will denote the property that a morphism A — B is:
1. a cofibration by A — B,
2. afibration by A - B, and
3. a weak equivalence by 4 5 B,
and combine these when appropriate.
Definition 1.4.1.6. For an object A of a model category M we say A is:
1. cofibrant if the morphism 0 — A is a cofibration, and
2. fibrant if the morphism A — 1 is a fibration.

Definition 1.4.1.7. A morphism 4 is said to have the left lifting property with respect to p, alternatively p has the righ
lifting property with respect to 4, if there is a lift & in any commutative diagram of the form of Diagram

Remark 1.4.1.8. In particular Definitions|1.4.1.4/and[1.4.1.7|say that the acyclic cofibrations have the left lifting property

with respect to the fibrations, and cofibrations have the left lifting property with respect to acyc]ic fibrations.

Remark 1.4.1.9. Definition|1.4.1.2{contains redundant information in that any two of the sub-classes of morphisms W,
Fib and Cof determine the third. Part of this claim is proven in [Hov99, Lemma 1.1.10].

The following is one definition of the homotopy category. We will shortly, Definition[1.4.1.14] introduce a second
more tractable definition of the homotopy category which is equivalent to this one as categories. This definition can

be found in Definition 1.2.1].

Definition 1.4.1.10. The homotopy category of a model category M, denoted Ho(M), is the category obtained by
inverting the class of weak equivalences in M. That is the objects are those of M. For the morphisms we first take
strings (f1, fa, - - -, fn) of composable morphisms of M with each f; either a morphism of M or the reversal w=!
of a morphism of W. The morphisms of Ho(M) are then this class with the identifications (f, g) = (g o f) for f, g
composable morphisms of M, (w, w™1) = id, (w™!,w) = id for the identity on the domain and codomain of w
respectively and where the identity on an object X is given by (1x).

Definition 1.4.1.11. Let A and X be objects of a model category C
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1. A cylinder object for A is a factorisation of the fold morphism V: ATJ] A — A by a cofibration followed by a

weak equiva]ence:

AJJA—IxA— A,
we denote the inclusions of the first map of either component of A by 1 and 9.

2. A path object for X is a factorisation of the diagonal morphism A: X — X x X by a weak equivalence followed
by a fibration:

X=X 5 XxX.

we denote the projections of the second map onto either component by 71 and .
Remarks 1.4.1.12. The following are worth noting with regard to these objects.

1. Despite what the notation might suggest the cylinder object X A need not be a product (categorical or otherwise)
of an object I with A. Similarly the path object X7 need not be an object of functions. However both of these
are common ways of forming such cylinder and path objects.

2. Observe that in a model category we always have at least one way of doing this using the functorial factorisations
and that the weak equivalences in the defmition will be in addition fibrations and cofibrations respectively.

Definition 1.4.1.13. For A and X objects of a model category M with two morphisms f, g: A — X we define:

1. a left homotopy to be a morphism h: I X A — X from a cylinder object of A to X such that hi; = f and
hiz =g,

2. a right homotopy to be a morphism k: A — X1 from A to a path object on X such that w1k = f and mek = g.

Each of these notions of homotopy generate an equivalence relation on Hom(A, X) and for A cofibrant and
Y fibrant these equivalence relations, which we denote by =, coincide, [Hov99] Corollary 1.2.6]. Further by [Hov99)
Theorem 1.2.10] we can take the following as the definition of the homotopy category of M. It is equivalent as a
category to that previously given in Dcﬁnitionm

Definition 1.4.1.14. The homotopy category of a model category M denoted Ho(M) has objects the fibrant-cofibrant
objects of M and morphisms Homygo( gy (A, X) = Hom (A, X)/ ~.

142 Cofibrantly generated model categories

A recurring problem in constructing model categories is that whilst some of the three defining classes may be simple
to describe one of them may have a less simple classification, e.g. the projective model structure on unbounded chain
complexes has simple descriptions for the weak equivalences and fibrations but a more complicated form for the
cofibrations explained at the start of‘Chnpter We can however take advantage of the 1ifting axioms, more particular]y
Remark to specify only two of the three classes. And going one step further we can potentially choose subsets
of the cofibrations (resp. acyclic cofibrations) such that those morphisms with the right lifting property with respect
to these subsets are the acyclic fibrations (resp. fibrations). Having then determined the (acyclic) fibrations these, by
the lifting axioms, determine the (acyclic) cofibrations and so determine the three subclasses of weak equivalences,
fibrations and cofibrations. We will describe here cofibrantly generated model categories via the small object argument
which has the added advzmtage of:providing for us the factorisation axioms required of a model category.

Definition 1.4.2.1. For I a set ofmorphisms of a category we denote by
1. I-Inj the set ofmorphisms with the right lifting property with respectto I, and call chese morphisms I-injecrive,
2. I-Proj the set of morphisms with the left lifting property with respect to I, can call these morphisms I-projective,

3. I-Cof the set of morphisms with the left lifting property with respect to I-Inj, ie. I-Cof = (I-Inj) -Proj,
and call these morphisms I-cofibrations.

Definition 1.4.2.2. Given a sct of morphisms I of a category, the relative I-cells are those morphisms obtained from an
object by a transfinite composition ofpushouts of‘maps in I. These are denoted by I-Cell.

Notation 1.4.2.3. The morphisms I-Cell are sometime referred to as I-regular cofibrations and denoted I-Cof reg, sce
for example [SSOQ].
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Theorem 1.4.2.4 (Small Object Argument, [Hov99, Theorem 2.1.14]). For C a category with all small colimits and I a set
of morphisms of C, for which the domains of I are small relative to I -Cell there are functorial factorisations (v, B) of any

morphism f into B(f) o a(f) witha(f) € I-Celland B(f) € I-Inj.
Lemma 1.4.2.5 ([HHov99 Lemma 2.1.10]). For I a set ofmorphisms ofa category we have I -Cell C I-Cof.

Definition 1.4.2.6. A cofibrantly generated model category is a model category M with two set of morphisms I and J
such that:

1. the domains of I (resp. J) are small relative to I-Cell (resp. J-Cell),
2. the class of trivial fibrations (resp. fibrations) is /-Inj (resp. J-Inj).
The set I is called the generating Coﬁbrations and J the generating acyclic coﬁbmtions.

Note 1.4.2.7. When referring to a cofibrantly generated model category the (possibly adorned) letter I will always refer
to the generating cofibrations, and J the generating acyc]ic cofibrations.

Definition 1.4.2.8. A cofibrantly generated model structure such that the domains and codomains of the generating
cofibrations and generating acyclic cofibrations are finite relative to the cofibrations will be refrred to as a finitely
cofibrantly generated model category.

The following theorem allows us to check when sets I and J do indeed determine a model category structure and
the model structures of [CELWT9] are constucted using it.

Theorem 1.4.2.9 ([Hov99] Theorem 2.1.19]). For C a category closed under all small (co)limits, with W a subclass of the
morphisms, and I and J sets of morphisms. Then I and J determine a cofibrantly generated model category with weak equivalences

W if and only if
1. W satisfies the two out of three property,
2. the domains of I (resp. J) are small relative to I -Cell (resp. J-Cell),
3 J-Cell CWNI-Cof,
4 I-Inj C W J-Ing and
5. eithee WNI-Cof C J-Cofor WNJ-Inj C I-Inj.

A useful (classification) result of cofibrations in a cofibrantly generated model category is the following which gives
a morphism is a cofibration if and only if it is the retract of an /-Cell morphism. A similar proof shows that acyclic
cofibrations are precisely the retracts of the J-Cell morphisms.

Proposition 1.4.2.10. For a cofibrantly generated model category M with generating cofibration I any cofibration is a retract
of an I-cell morphism.

Proof. For a cofibration f: A — B factorise it via the small object argument into an I-cell morphismé: A — X
followed by an acyclic fibration p: X — B. There is then a lift b in the lifting problem

Aty X

]

BTB

and we can form the commutative diagram

which exhibits f as a retract of the I-cell 4.
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1.4.3  Quillen adjunctions and equivalences

Lemma 1.4.3.1 ([Hov99l Lemma 1.3.4]). For an adjunction F': M = N :G of model categories the following are equivalent:
1. F preserves cofibrations and acyclic cofibrations, and
2. @ preserves fibrations and acyclic fibrations.

Definition 1.4.3.2. For M and A model categories, an adjunction F': M &2 N : G is a Quillen adjunction if one (and
therefore both) of the conditions of Lemmal|l.4.3.1]is satisfied.

Definition 1.4.3.3. For a Quillen adjunction F': M 7= N :G we define:

1. the total left derived functor LE of F' is the composite of the cofibrant replacement @ followed by F' on the
homotopy categories

Ho(M) 229 Ho(Mm,) 22 1o |

2. the total right derived functor RG of G is the composite of the fibrant replacement R followed by G on the

homotopy Categories
Ho(WV) 2 How;) 22 Ho(M)

Lemma 1.4.3.4 ([Hov99 Lemma 1.3.10]). For a Quillen adjunction F': M 7= N G the rotal left and derived funcrors
give an adjunction, called the derived adjunction, on the homotopy categories LE': HO(M) = Ho(N) :RG.

Definition 1.4.3.5. A Quillen adjunction F': M =2 N : G is a Quillen equivalence if for a cofibrant object m € M
and fibrant objecc n € A a morphism f: F'm — n is a weak equivalence in AV if and only if its adjunct morphism
f: m — Gn is a weak equivalence in M.

Lemma 1.4.3.6 ([Hov99| Proposition 1.3.13]). For a Quillen equivalence F': M = N :G the derived adjunction is an
equivalence on the homotopy categories. &

Examp]e 1.4.3.7. There is an adjunction i: CE = Cg : 7 between the categories ofnon—positively graded chain
complexes and the category of unbounded chain complexes. The left adjoint 4 is inclusion and the right adjoint 7
is truncation which is the identity in negative degrees, 0 in positive degrees, and in degree 0 gives the kernel of the
differential. It can be shown that 7 preserves both fibrations and acyclic fibrations and so forms a Quillen adjunction
by Defmition This is not however a Quillen equivalence; take in Deﬁnitionc to be the chain complex 0
and d to be the chain complex with R in degree 1 and 0 otherwise. Then we have a Quillen equivalence cS71d=0
but the morphism ic — d is not a weak equivalence.

We will later, Section[3.12] use adjunctions of this form to infer bounded variants of the model structures considered

on filtered chain complexes and bicomplexes.

1.4.4 Transfer theorems of model structures

Theorem 1.4.4.1 (Kan Transfer Theorem, [Hir03| Theorem 11.3.2]). Let M be a model category cofibrantly generated by I
and J, C a complete and cocomplete category, and an adjunction pair F': M 752 C :U. Then there exists a cofibrantly generated
model structure on C with generating cofibrations F'I, generating acyclic cofibrations F'.J and weak equivalences U™ W if

1. FI and F'J admit the small object argument, and
2. U takes relative F'J-cell complexes to weak equivalences.

Example 1.4.4.2. The free-forgetful adjunction F': sSets == sAb :U gives a way of transferring the cofibrantly
generated Kan model structure on slmphcml sets to a model structure on simplicial Abelian groups via the Kan tr ansfer
theorem. The model structure obtained is in fact Quillen equivalent to the standard projective model structure on
non-negatively (homologically) graded chain complexes via the Dold-Kan adjunction.

Other results on transferring model structure exist and usually rely on checking an acyclicity condition, see for
example [BHK™15].
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1.4.5 Monoidal model categories

Suppose we have both a model category structure and a monoidal category structure on the same category C. We state
here standard conditions and results for existence of an induced monoidal structure on the homotopy category.

Defiition 1.4.5.1. The pushout-product i X j of two morphisms i: A — B and j: C — D is given by

i¥j:AeD [ B&C —B®D.
ARC

The following definition of a monoidal model category has two conditions, the first ensuring that we do indeed
have an induced product on the homotopy category and the second ensures we have a unit in the homotopy category.

Definition 1.4.5.2. A monoidal model category is a model category equipped with the structure of a closed symmetric
monoidal category such that:

1. the pushout-product 4 X j is a cofibration whenever both ¢ and j are, and additionally is acyclic if either 4 or j
is,

2. there exists a cofibrant replacement of the tensor unit I, i.e. weak equivalence QI — I with QI cofibrant,
such that for all cofibrant X the morphism Q1 ® X — X is a weak equivalence.

Remark 1.4.5.3. Note that when the unit is already cofibrant the second condition is redundant, this is true for many
common examples of monoidal model categories including sSets, and Cg. An example where the unit is not cofibrant
are symmetric spectra, Example 2]. We will see that fC is a monoidal model category in which the unit is not
cofibrant providing a new example.

The major result of having a monoidal model category structure is the following theorem.

Theorem 1.4.5.4 ([Hov99, Theorem 4.3.2]). For M a monoidal model category there is a closed symmetric monoidal stmctur@
on Ho(M) with tensor pr oducr the left derived funcror — @% —

The following result allows us to check the pushout-product axiom only for the generating (acyclic) cofibrations.

Lemma 1.4.5.5 ([Hov99 Lemma 4.2.4]). For I and J the generating cofibrations and acyclic cofibrations respectively of a model
category further equipped with the structure of a closed symmetric monoidal category satisfying IKI C I-Cof, IKJ C J - C'of
and J X I C J-Cof, then the pushout-product axiom holds.

1.4.6 Monoid axiom

The monoid axiom, defined by Schwede and Shipley in provides a condition from which, along with a coﬁbratn]y
generated assumption, we can infer a cofibrantly generated model structure on the category of left R-modules for R a
monoid or R-modules and R-algebras for R a commutative monoid.

Having a good understanding of the cofibrations of a cofibrantly generated model category C does not however
necessarily give a good understanding of the cofibrations in the model structures on left R-modules, R-modules or
R-algebras. For example, the projective model structure of bounded chain complexes has well understood cofibrations:
they are the degreewise monomorphisms with cofibrant cokernel (i.e. degreewise plrojective)7 however the cofibrations
of R-algebras are not so casily classified. In particularly nice cases, e.g. in rational homotopy theory, cofibrations in
model categories of commutative differential graded algebras can be described in terms of retracts of relative Sullivan
algebras.

The following is Schwede and Shipley’s definition of the monoid axiom, a condition required to obtain the above
model structures, see Definition 3.3]. We will make use OFDeﬁnitionand Theorem 3|to show there
are S-model structures of filtered differential graded algebras in Section

Definition 1.4.6.1 (Monoid Axiom). A monoidal model category M is said to satisfy the monoid axiom if the relative
cells obtained from the monoid product of the acyclic cofibrations with M are weak equivalences, i.c :

(WnCof) ® M) -Cel1l C W ..

It suffices to check the monoid axiom on the generating acyclic cofibrations as shown in [SSOQ].
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Lemma 1.4.6.2 ([SS00| Lemma 3.5 (2)]). Let M be a cofibrantly generated model category with closed symmetric monoidal
structure and generating acyclic cofibrations J. If every map of (J @ M)-Cellisaweak equivalence then the monoid axiom

holds.

Theorem 1.4.6.3 ([SS00| Theorem 4.1]). For a cofibrantly generated, monoidal model category M satisfying the monoid axiom
and such that every object of M is small then:

1. for R a monoid in M, the category of left R-modules is a cofibrantly generated model category,

2. for R in addition commutative, the category of R-modules is a cofibrantly generated, monoidal model category satisfying
the monoid axiom, and

3. for R a commutative monoid, the category of R-algebras is a cofibrantly generated model category.

Remark 1.4.6.4. The weak equivalences and fibrations in the model categories of Theorem|1.4.6.3|are precise]y those of
the underlying model category M.

1.4.7 Left and right properness

Recall that the (co)base change of an isomorphism is an isomorphism. One might ask for a similar condition for weak
equivalences however this need not be true, instead we have the following definitions.

Defmition 1.4.7.1. A model category M is said to be:
1. left proper if cobase changes along cofibrations preserve weak equivalences,
2. right proper if base changes along fibrations preserve weak equivalences, and
3. proper if it is both left and right proper.

Remark 1.4.7.2. A model category in which every object is cofibrant (resp. fibrant) is automatically left (resp. right)
proper.

Example 1.4.7.3. The model category of projective unbounded chain complexes is proper (despite not all objects being
cofibrant) and the Quillen model structure on sSets is proper (despite not all objects being fibrant).

Left and right properness have some nice consequences for the model category. For example pushouts (resp. pull-
backs) along cofibrations (resp. fibrations) are automatically homotopy pushouts (resp. pullbacks) in left (resp. right)
proper model categories, Section A model category which is both left proper and cellular is guaranteed to have
Bousfield localisations at any set of morphisms, Scction A result of Dugger, [DugOT} Proposition A.5], also asserts
that a left proper cofibrantly generated model category has a set of cofibrant objects {C; } detecting weak equivalences
in the sense that Y — X is a weak equivalence if and only if the function complexes map(C;,Y") — map(C;, X)
are weak equivalences for all C;.

1.4.8 Homotopy pullbacks and pushouts

The definition of‘homotopy (co)limits repairs a fundamental flaw in the lack of:homotopy invariance in (co)limits
in a model category. Le. given a general model category M, an indexing category I and two functor F,G: I — M
with natural transformation a: F' = G satisfying for each object ¢ € I the morphism ¢ : F(i) — G(4) is a weak
equivalence it is not necessarily true that there is a weak equivalence colim F' — colim G or lim F' — lim G. Indeed
the following provides a standard counterexample for the case of the colimit.

Counterexample 1.4.8.1. We consider pushouts in the Quillen model category of pointed topological spaces. In the
following two pushouts we have a weak equivalence between the corresponding objects of the three corners of the
pushout however the induced map on the pushout * — 52 is not a weak equivalence.

St —— Sl —— D2
| L.
* > ok D? > §2
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We will recall here a homotopical correction for a particular case of this failing of (co)limits. There are very general
constructions producing good notions 0?h0motopy (co)limits invariant under weak equiva]ence of‘diagrams as above
however we will only need a very basic case of this involving pullbacks so we limit ourselves to discussing homotopy
pullbacks — the notion of homotopy pushout is dual. The general method for constructing homotopy (co)limits in
an arbitraty (i.e. not necessarily simplicial) model category M involves simplicial framings and are given as
Definitions 19.1.2 & 19.1.5]. In a right proper model category the pullback of fibrant objects is naturally weakly equivalent
to such a general homotopy limit by Proposition 19.5.3]. The definition of a homotopy pullback we then use is
given in the following definition which replaces the morphisms of a pullback by fibrations. It can be found as
Definition 13.3.2]. We use E to denote a functorial factorisation of a morphism f: X — Z into a trivial cofibration

iy X — E(f) tollowed by a fibration py: E(f) = Z.

Definition 1.4.8.2. Suppose M is a right proper model category. The homotopy pullback of a diagram

which will be denoted diagramatically by

P
Jh

N =

X —
in which P is given by the actual pullback diagram

Py E(f)

-
Pg

~

This construction really is homotopy invariant in a right proper model category.
Proposition 1.4.8.3 ([Hix03| Proposition 13.3.4]). Suppose M is a right proper model category in the diagram

)(1 f1 Zl g1 Yl

NJ/U)X NJ/U}Z NJ/’U)Y
X5 T) Zo «QT Y5

that the morphisms f1, f2, g1 and g2 are fibrations and the morphisms wx , wy and wyz are weak equivalences. Then fhc
induced map on the pullbacks is a weak equivalence.

As a corollary replacing either X or Y by a weakly equivalent object yields a weakly equivalent homotopy pullback,
Corollary 13.3.5]. We will use the following form of computing homotopy pullbacks which asserts that one
need only replace either the morphism f or g by a fibration in Definition[1.4.8.2]

Corollary 1.4.8.4 ([Hir03| Corollary 13.3.81). Suppose M is a right proper model category in which either f or g is a fibration

in the diagram

rhcn El‘l(’ pullback is wcakly cquivalcnt to Eh(’ homotopy pullback.

Dually one has the following definition and results about homotopy pushouts. Now let £ denote a functorial factori-
sation of morphism f: Z — X into a cofibration ¢y : Z — E(X) followed by an acyclic fibration py: E(X) — X.
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Definition 1.4.8.5. Suppose M is a left proper model category. The homotopy pushout of a diagram

z-1 5 x

which will be denoted diagramatically by

in which P is given by the actual pushout diagram

Z ——— E(X)

E(Y)

[
h
> P
Which is similarly homotopy invariant by a dual argument.

Proposition 1.4.8.6 ([Hix03] Proposition 13.5.3]). Suppose M is a left proper model category in the diagram

X, +2 <7 27
NJ{U}X NJ(wZ NJ(wY
X +2< 7 25 Y,
that the morphisms i1, iz, j1 and ja are fibrations and the morphisms wx , wy and w z are weak equivalences. Then the induced
map on the pushouts is a weak equivalence. &
And similarly it can be computed by replacing only one of f and g by a cofibration.
Corollary 1.4.8.7. Suppose M is a left proper model category in which cither f or g is a cofibration in the diagram

7z -1 x

& ,

X

then the pushout is weakly equivalent to the homotopy pushout.

1.4.9 Stable model categories

Recall in a pointed category the initial and terminal objects are isomorphic and in this setting we denote such an object
by *.

Definition 1.4.9.1. For a pointed model category M we define

1. The suspcnsion functor > on an object X S HO(M) to be the homotopy pUS]'IOth

X —— %
i Thov
* y UX

2. The loop functor 2 on an object X € Ho(M) to be the homotopy pullback
QX > %
Jh l '
1 — X
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Quillen’s original definition makes use of cylinder and path objects on an object X [Qui67, Chapter 1 §2]. Hovey,
[Eov99l, alternatively defines the suspension and loop functor via the functors — AL ST and RHom(St, —) one obrtains
from a simplicia] framing. The discussion Fo]lowing [Hov99l Definition 6.1.1] justiﬁes our use of the above definition.
We have that on the homotopy category the suspension and loop functors form an adjoint pair ¥: Ho(M) &=
Ho(M) :Q [Qui67, Chapter 1 §2] or [Hov99, Corollary 3.1.6].

Note that by Corollaryin a right proper model category we have the following proposition.

Lemma 1.4.9.2. For a pullback diagram in a right proper pointed model category where f is a fibration and Y is acyclic a
pullback diagram of the following form is a homotopy pullback and therefore Z ~ Q.X:

Z ----- »Y
b
MEENS ‘e

Definition 1.4.9.3. A pointed model category M is a stable model category if the suspension-loop adjoint pair is an
equivalence of categories of the homotopy category Ho(M).

Examples 1.4.9.4. The following are the two standard examples of stable model categories for which the suspension
and loop functors can in fact be realised on the model category level.

1. Unbounded chain complexes with the suspension and loop functors shifting the degree by 1, and
2. Spectrawhich are constructed specifically to be a stabilisation of the model category of spaces. The suspension and
loop functors here correspond to smashing with the spectrum S and taking the function complex Hom(S1, —).
1.410 Cellular model categories

Definition 1.4.10.1. A cofibrantly generated model category M with sets I and J of generating (acyclic) cofibrations
is said to be cellular if the following hold:

1. the domains and codomains of I are small,
2. the domains of J are small relative to I, and

3. the cofibrations are effective monomorphisms, i.c that any cofibration ¢: X — Y is the equaliser of
Y —=Y][[,Y .

Definition 1.4.10.2. A monomorphism i: A — B is a regular monomorphism if it is the equaliser of some pair of
morphisms B — C,
A—— B—=C .

Proposition 1.4.10.3. [n a category with equalisers and cokernel pairs the class of regular monomorphisms coincides with the
class of cffectivc monomorphisms.

Proof. The proof is dual to that of [Bor(8] Proposition 2.5.7].

So in particular in a model category M to show a monomorphism is an effective monomorphism we need only
show it is a regular monomorphism.

1.4.11 Homotopy function comp]exes

The notion of a homotopy function complex (or mapping complex) from X to Y is a simplicial generalisation of the
homotopy set of maps between X and Y taking account of the ‘higher dimensional information’. In a simplicial
model category, [Hir03) Definition 9.1.6], the homotopy function complex map(X, Y) is easily defined, see [Hov99]
Remark 5.2.10], however in model categories 1acking the simp]icia] structure the construction is much more involved
as the simplicial scructure must be introduced in a homotopically coherent manner. We do not make extensive use
of homotopy function complexes in this thesis so we mainly reference constructions from [Hov99]. Their use in this
thesis will be in defining Bousfield localisations.
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Definition 1.4.11.1. A Reedy category is a category D with two subcategories D_ and D and a degree functiondeg: D —
A for some ordinal A such that

+ every non-identity morphism of D_ lowers degree,
« every non-identity morphism of D raised degree, and
 every morphism of D factors uniquely into a morphism of D_ followed by a morphism of Dy.

Examplc 1.4.11.2. The simplex category Ais an examp]e with A_ the subcategory of\surjective order—preserving maps
and Ay the subcategory of injective order-preserving maps. Similarly A°P is a Reedy category with (A°P)_ = (A4)°P
and (A%), = (A_)°P.

For C a category and D a Reedy category, we have a subcategory of the slice category denoted (D ); whose objects
are the non-identity morphisms of Dy with codomain 7, f: j — ¢ and whose morphisms from f: j = itog: k — 4
are commutative triangles h:

with A a morphism of D.. Note for an object X of CP there is a functor from this category to C which assigns to an
object f: j — i the object X;. Similarly we have a subcategory of the coslice category denoted (D_)? whose objects
are the non-identity morphisms of D_ with domain ¢, f: i — j and whose morphisms from f: i — jtog: i — k
are commutative triangles h:

with h a morphism of D_, which again for an object X of CP there is a functor sending an object f: i — j to X;.
Definition 1.4.11.3. For a complete and cocomplete category C, Reedy category D and X € CP we define:
1. the latching space object L; X given by

L;X = colim Xj,
(G—=De(D1):

2. and the matching space object M; X given by

(i=j)e(D-)!

Theorem 1.4.11.4 ([Hov99| Theorem 5.2.5]). For M a model category and D a Reedy category there is a model category struc-
ture, called the Reedy model category, on the category MP where a morphism f: X =Y of M D e natural transformation
of functors X = Y is:

1. a weak equivalence if f;: X; — Y is a weak equivalence for each i € D,
2. an (acyclic) fibration if X;; HLiX L;Y — Y is an (acyclic) fibration for each i € D, and
3. an (acyclic) cqﬁbmtion 1fX1 — M; X HMiY Y; isan (acyclic) cqﬁbmrionfor eachi € D.

In particular we have Reedy model category structures on the category ofcosimplicial and simplicia] objects in any

model category M. For an X € M we denote by:

« 0* X the cosimplicial object whose n™ object is [1,,+1 X and whose coface and codegeneracy maps are inclusions

and fold maps,
« 7*X the cosimplicial objects whose nh object is X and whose coface and codegeneracy maps are identities,

+ £, X the simplicial object whose nth object is X and whose face and degeneracy maps are identities, and
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- 7.X the simplicial object whose n" object is [], . ; X and whose face and degeneracy maps are projections and

inclusions.

n+1

Definition 1.4.11.5. For M a model category and X, Y objects of M we define:

1. a cosimplicial frame of X to be a factorisation, in the Reedy model category on M®A | of the natural map £* X —
r* X into a cofibration followed by a weak equivalence which are isomorphisms in degree 0:

X o— XS rX .

. . ~ ~ . . . op
2. asimplicial frame of Y to be a factorisation, in the Reedy model category on MA™ of the natural map £,Y —
R.Y into a weak equivalence followed by a fibration which are isomorphisms in degree 0:

LY 3Y, > R.Y .
[Hov99) Theorem 5.2.8] give functorial cosimplicial and simplicial framings in M. We can now define left and
right homotopy function complexes.

Definition 1.4.11.6. For M a model category, X, Y objects of M and X*, Y, cosimplicial and simplicial frames of X
and Y respectively we define:

L. the left homotopy function complex map;(X,Y") to be the simplicial set whose n™ object is Hom g (X *[n],Y),
and

2. the right homotopy function complex map,.(X,Y") to be the simplicial set whose n object is Hompg (X, Yi[n])
both equiped with the obvious induced simp]icia] structure from X* and Y,.

I in addition we require that X is cofibrant and Y fibrant in M then the left and right homotopy functions are
homotopy equivalent. This follows by relating both to the bisimplicial set with n x m™ object Hom g (X *[n], Yi[m]),
we denote cither of map,. or map; simply by map in this case.

Proposition 1.4.11.7 ([Hov99| Theorem 5.4.7]). For M a model category, X a cofibrant object of M and Y a fibrant object
of M then there are weak equivalences

map;(X,Y) — map(X,Y) < map,(X,Y) .

Henceforth we shall only consider homotopy function complexes with a cofibrant domain and fibrant codomain
SO we simply write map.

1.4.12 Bousfield localisations

A localised model category is a modification of some model category so as to expand the class of weak equivalences
whilst retaining the structure of a model category. Such a construction achieves a new category with an appropriate
universal property outlined below in it’s original construction. Often this is done so as to localise at (or away from)
a prime to focus on p-torsion information or to pass to a rational homotopy theory. As a result one of (or both) the
classes of fibrations and cofibrations must also change since any two defining subclasses of morphisms of a model
category determines the third. Bousfield constructed the first such localised homotopy theories in [Bou75] where,
for an arbitrary homology theory Ay, a localisation functor on the category of simplicial sets is constructed which
induces a h-localisation functor on the homotopy category, i.c. a functor E: Ho(sSets) — Ho(sSets) and natural
transformation nx : 1 = F such that:

L nx: X — EX induces hy(X) = h(EX), and

2. whenever f: X — Y (in the homotopy category) induces a h, isomorphism there is a unique factorisation

X Iy

NN

EX

23



Bousfield later made a similar definition and construction for localisation of spectra with respect to homology in [Bou79].
Later notions of localisations with respect to a class ofmorphisms in an arbitrary model category were considered, see
[Hir03] for a textbook account.

We consider here localisations known as left Bousfield localisations and right Bousfield localisations. These have the nice
property that their existence are known, under reasonable assumptions, and that they only alter two of the three defining
classes ofmorphisms, the weak equiva]ences and fibrations for left Bousfield localisations, and the weak equiva]ences
and cofibrations for the right Bousfield localisations. The reference for these localisations which we follow is [Hir03].

Definition 1.4.12.1. For a model category M with subclass of morphisms C we say:

L. an object W of M is C-local if it is fibrant in M and for all f: A — B of C the induced maps on homotopy
function complexes, map(f, W): map(B, W) — map(A, W), are all weak equivalences, and

2. amorphism g: X — Y of M is a C-local equivalence if for every C-local object W of M the induced maps on
homotopy function complexes, map(g, W): map(Y, W) — map(X, W), are all weak equivalences.

Definition 1.4.12.2. The left Bousfield localisation of a model category M with respect to a subclass of morphisms C
is, if it exits, the model category, denoted Le M, with:

1. weak equivalences of LM being the C-local equivalences, and
2. cofibrations of Lg M being the cofibrations of M.

The following gives existence of left Bousfield localisations under reasonsable assumptions.

Theorem 1.4.12.3 ([Hir03| Theorem 4.1.11). For M a left proper and cellular model category with a subset C of morphisms
the left Bousfield localisation Le M exists and is also left proper and cellular.

Example 1.4.12.4. Standard model categories which are left proper and cellular, and therefore satisfy the conditions of
Theorem|[1.4.12.3|include the Quillen model category of (pointed) simplicial sets and the projective model structure on

chain complexes.

The existence theorem for right Bousfield localisations we state here and use later is a localisation at a set of objects
instead of set of maps. It also goes by the name of cellularization. The following definition appears as (part of) [Hir03]
Definition 3.1.8].

Definition 1.4.12.5. Let M be a model category and K a set of objects of M. A morphism g: X — Y of M is said to
be a IC-colocal equivalence or a KC-cellular equivalence if for all A € IC the induced map of homotopy function complexes

map(4, g): map(A, X) — map(A,Y) is a weak equivalence.

Definition 1.4.12.6. The right Bousfield localisation of a model category M with respect to a subclass of morphisms C is,
if it exists, the model category, denoted Re M, with:

1. weak equivalences of R M being the C-colocal equivalences, and
2. fibrations of R¢ M being the fibrations of M.

The following statement of existence of the right Bousfield localisation at K includes corrections from the errata
of [Hir03).

Theorem 1.4.12.7 (Existence of Right Bousfield Localisations,[Hir03| Theorem 5.1.1]). For M a right proper and cellular
model cateogry and subset of objects IC of M with C the class of KC-colocal equivalences the right Bousfield localisation Rc./\/l

exists and is also right proper and cellular.

Definition 1.4.12.8. Right Bousfield localisation of M at a set IC as above is often called the KC-cellularization of M at
K and the resulting localisation R¢ M will be denoted K-cell-M.
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1.5 The projective model category of chain complexes

The category of (cohomologically) graded chain complexes can be equipped with a model category structure commonly
know as the projective model structure in which the weak equivalences are the quasi—isomorphisms and the fibrations the
degree-wise surjections. This model structure will serve as frequent motivation and intuition for various constructions
and definitions to come so we recall here the projective model structure in detail.

Definition 1.5.0.1. The sphere S™ and disc D™ objects in the category of chain complexes are given by:
S"=(..-0—>R">0—...),
D' =(..20=2R"5R"-0—>..) .
with inclusion 4, : ™ — D™~1 given by the identity in degree n.

These are representing objects for the kernel and image of the differentials. The following can be found proved
in [Hov99, Theorem 2.3.11] or in much greater generality in [CHO2| Theorem 2.2] and is commonly referred to as the
projective model structure on (unbounded) chain comp]exes.

Theorem 1.5.0.2. There is a cofibrantly generated projective model structure on Cr where:
1. weak equivalences are the quasi-isomorphisms,
2. fibrations are the degrecwise surjections, and

3. generating cofibrations are given by I = {i,: S™ — D" 1},¢cz and generating acyclic cofibrations by J = {0 —
Dn }ne 7.

In the introduction to Chaptcrwc explain how one classifies the cofibrations. This model structure has many
nice properties including being finitely cofibrantly generated, left and right proper, cellular and stable.

1.6 r-Model categories of filtered chain comp]exes

The following results are those of [CELWI9] and establish two model structures on fC for each 7 > 0 (although these
agree for r = 0).

Definition 1.6.0.1. The morphism ¢,.: Z,.(p,n) — B, (p, n) is given bidegree-wise by the diagonal whenever possible
or otherwise the identity.

n n+1
(R(p) R(p—r—l))

w”l J{w"“

n—1 n n n+1
(R@wﬂ‘@j*RwﬁgR@—niﬁﬁ’R@ﬂun)

Definition 1.6.0.2. Denote by w,: B*(A) — Z*(A) the morphism of filtered chain complexes obtained by
precomposing an element of B;*(A) thought of as a map B,.(%, %) — Aby ¢, 1 Z,.(*,%) = B,.(x, *).

The following definitions provides the generating (acylic) cofibrations.
Defmition 1.6.0.3. Let I, and J; be the sets of morphisms of fC given by
I ={Z,11(p;n) — Brp1(p; )}y nez

J, = {0 — Zr(p7 n)}p,nEZ :

We hﬁl’lCeFOftl’l refer to these as thC gencmting T—cqﬁbmfions H.I’ld gcncmting ’I"—ﬁlC)}CliC coﬁbmtions respectively.

Definition 1.6.0.4. Let I} and J] be the sets of morphisms of fC given by

r—1
I=5ul]JJ,
k=0

JT/, = LTJ Jk .
k=0
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We henceforth refer to these as the generating r’'-cofibrations and generating '-acyclic cofibrations respectively.

Theorem 1.6.0.5 ([CELW19] Theorem 3.14]). There is a right proper cofibrantly generated model structure on fC, which we
denote by (fC),., with generating cofibrations I, and generating acyclic cofibrations J,.. These give the following classifications
of morphisms:

1. weak equivalences are the E,-quasi-isomorphisms,
2. fibrations are those morphisms f with Z,(f) bidegree-wise surjective.

Theorem 1.6.0.6 ([CELWI9] Theorem 3.16]). There is a right proper cofibrantly generated model structure on fC, which we
denote by (fC)

of morphisms:

1, with generating cofibrations I, and generating acyclic cofibrations J). These give the following classifications

1. weak equivalences are the E,-quasi-isomorphisms,
2. fibrations are those morphisms f with Z,(f) bidegree-wise surjective for all 0 < k < r.

Note one has the pushout of Z,11(p,p + n) — Bry1(p,p + n) by 0 is also an (r + 1)-cycle as observed in
[CELWT9], Lemma 3.2] and so since pushouts of cofibrations are cofibrations the following lemma is immediate.

Lemma 1.6.0.7. The morphisms 0 = Z,1(p, p + n) are cofibrations in both (fC),. and (fC),..

We will later extend these results and show there are model structures in between the (fC),. and (fC),, model
structures. We state here the sequence of lemmas and propositions that prove the existence of the model structure

(fC),. as shown in [CELWI9. The result for (fC),., is a consequnce of the former.
Proposition 1.6.0.8 ([CELW19| Proposition 3.12]). We have I, -Inj = &, N J,. -Inj.
Proposition 1.6.0.9 ([CELWI9)] Proposition 3.13]). Forallr > 0and all 0 < k < 7 we have Ji -Cof C &,.

Theorem|1.6.0.5[now follows from these by an application of Theorem|1.4.2.9} Further the shift-décalage adjunctions
13.3.2

of Lemma|1.3.3.2) induce Quillen equiva]ences given as the fbllowing theorem.

Theorem 1.6.0.10 ([CELWI9] Theorem 3.22]). For all r,1 > 0 we have a Quillen equivalence:
St (fC), —= (fC)TH : Dect

There is a similar result for the ’-model structure. The following is a useful surjectivicy result.

Lemma 1.6.0.11 ([CELW19, Lemma 2.8]). For f: A — B a morphism of filtered chain complexes and 1 > 0 the following

are equivalent:
L. the maps Z,(f) and ZW,_1(f) are surjective,
2. the maps E.(f) and ZW,_1(f) are surjective.
We define the 7-cone of a filtered chain complex with a different sign convention then that of Definition

3.5]. It has useful properties analogous to that of the cone object for chain comp]exes.

Definition 1.6.0.12. The r-cone C;(A) of a morphisms f: A — B of filtered chain complexs has underlying filtered
graded modules that of X" A @ B with filtration given by

E,C.(f)" == F, ,A""' @ F,B"

—d 0

and differential given by d: (a,b) — (—da, fa + db) or in matrix notation d = ( Fod

). We further denote the
r-cone of the identity morphism id: A — A by C,.(A4).

Lemma 1.6.0.13 ([CELWI9, Remark 3.7]). A morphism f: A — B is an r-weak equivalence if and only if the r-bigraded
complex E.(Cr-(f)) is acyclic, i.e. the r-cone of f is r-acyclic. &

Note there are inclusion and projection morphisms i2: B — C,.(f) and 7: C,.(f) — X" A.

Lemma 1.6.0.14 ([CELW19] Notation 3.7]). The 7-cone is r-acyclic and the projection 7 : Cr(A) — X"Ais Zg-bidegree-
wise surjective for all 0 < s <. &

Definition 1.6.0.15. We say the differential d of a filtered chain complex A supresses the fileration by r if for all p and n
we have dF, A" C Fp_TA”+1. Equivalently we say the object A is 7-supressive.
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1.7 r-Model categories of bicomplexes
Note given a bicomplex we can apply the totalisation functor of Definition[1.2.2.5 to obtain a filtered chain complex.

Definition 1.7.0.1. A morphism f of bicomplexes will be called an 7-weak equivalence or r-quasi-isomorphism if it induces
an isomorphism between the (7 4 1)-pages of the associated spectral sequence after applying the product totalisation

functor of‘Deﬁnitionm

The following results are those of [CELWI9] and establish two model structures on bC for each r > 0 (although
these agree for r = 0 and also for r = 1). The following definitions provide the generating cofibrations (and the
generating acyclic cofibrations after a small modification). Note our definition of ZWq and ZW (and these ones
only) are shifted vertically by 1 in contrast with those of [CELW19]. In the figures of this section which represent
bicomplexes, the symbol ® denotes a copy of the R-module R in some bidegree. Bidegrees of certain R-modules @ have

been speciﬁed.

Definition 1.7.0.2. For 7 > 1, the r-cycles ZW*(A) ofa ﬁltere_d chain complex A are given in bidegree (p,p + n)
by sequences of elements (ag, a1, . .., ar_1) witha; € AP=EP=HHm and such that doag = 0 and doa; 1 = dya; for
0 <4 <r—2 Forr =0 the r-cycles ZW; " (A) of a bicomplex A are given in bidegree p, p + n by APP+™,

Definition 1.7.0.3. The representing object for the r-cycles of bicomplexes, denoted ZW; ™, is given in bidegree (p, p+n)
for r > 1 by the bicomplex with a copy of R in bidegrees (p —4,p — ¢ +n) for 0 < i <7 — 1 and a copy of R in
bidegrees (p — 1,p — 14+ n+1) for 0 < ¢ <1 — 1 where differentials are the identity whenever possible, Figure
For r = 0 the bicomplex Z2W¢™ is given in bidegree (p, p + n) with a copy of R in bidegrees (p,p+n), (p — 1,p —
1+n+1),(p,p+n+1)and (p—1,p — 1 + n+ 2) with identity differentials whenever possible, Figure

o<——@©@

T (p,p+n)

o

o—0

o—@

oo
(p—r+l,p—r+1+n)

Figure 1.1: The bicomp]ex ZWT(p,p +n)

o—©

]

oi—@O
(p,p+n)

Figure 1.2: The bicomp]ex ZWO(p,p + n)

Definition 1.7.0.4. For r > 2 the r-boundary BW*(A) of a bicomplex A is given in bidegree (p,p + n) by
ZWPHTIPETART2 Ay @ Appin—l @ WP BPTI LAY For i = 1 the r-boundaries BWy ™ (A) is APPT7—1,
For r = 0 the r-boundaries BW;"*(A) is 0.

Definition 1.7.0.5. The representing object for the r-boundaries of a bicomplex, denoted BW.*, is given in bidegree

(p,p+n)forr >2by ZW,.(p+r—1,p+r—14+n—-1)B ZWo(p,p+n—1)® ZW,(p—1,p—1+n), for
r=1by ZWo(p,p+n—1) and for r = 0 by 0, Figure
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Figure 1.3: The bicomplex BW,.(p,p + n)

Definition 1.7.0.6. The morphism ;. : ZW,(k, %) = BW,.(x, %) is given component-wise by the diagonal whenever
possible or otherwise the identity.

Definition 1.7.0.7. Denote by w, : BW"*(A) — ZW*(A) the morphism of bicomplexes of [CELWI9] Definition
4.1] obtained by precomposing an element of BW,*»*(A) thought of as a map BW,.(x, %) — Aby ¢, : ZW,.(*, %) —
BW,.(x, %).
Definition 1.7.0.8. Let 1, and J,. be the sets of morphisms of fC given by

IT = {ZW"“’Fl(p? n) — BWT+1(p7 n)}p,nez )

Jr ={0— ZW.(p,n)}, nez -

We henceforth refer to I, as the generating T—coﬁbmtions and Jy U J, as the generating T—acyclic coﬁbmtions respectively.

Definition 1.7.0.9. Let I and J/. be the sets of morphisms of fC given by
r—1
I=5ul]JJ,
k=0

J; = LTJ Jk .
k=0

- -1 . . : ‘ .
We henceforth refer to I, U |J;_ Ji as the generating r'-cofibrations and Jj,_, Jx as the generating r’-acyclic
coftbrations respectively.

Theorem 1.7.0.10 ([CELW1I9] Theorem 4.37]). There is a right proper cofibrantly generated model structure on bC, which we
denote by ( bC ) o Wi th generating cqﬁbmtions I, and generating acyclic coﬁbmtions JoUJ,.. These give thefollowi ng classiﬁcations
of morphisms:

1. weak equivalences are the ET—quasi—isomorphisms,
2. fibrations are those morphisms f with ZWo(f) and ZW,(f) bidegree-wise surjective.

Theorem 1.7.0.11 ([ICELW19| Theorem 4.39]). There is a right proper cofibrantly generated model structure on bC, which we
denote by (bC),.., with generating cofibrations I, and generating acyclic cofibrations J}.. These give the following classifications
of morphisms:

1. weak equivalences are the E,-quasi-isomorphisms,

28



2. fibrations are those morphisms f with ZWy,(f) bidegree-wise surjective for all 0 < k < r.

Ana]ogous results hold for bicomp]exes as did for filtered chains proving existence of these model categories however
note in this setting there is no analogous shift—décalage adjunction. The following is a useful surjectivity result.

Lemma 1.7.0.12 ([CELW19| Remark 4.5]). For f: A — B a morphism of bicomplexes and v > 1 the following are

equivalent:
1. the maps ZW,.(f), ZWy_1(f), and f are surjective,
2. themaps E(f), ZWy_1(f), and f are surjective.

Remark 1.7.0.13. Note that the 0-model structure on bicomplexes is such that its weak equivalences are those morphisms
inducing an isomorphism on vertical homology and whose fibrations are bidegree-wise surjective. Identifying the
category of bicomplexes with the category of (vertical) chain complexes of (horizontal) chain complexes we see that the
0-model structure on bicomplexes is the projective model structure of (vertical) chain complexes of (horizontal) chain
complexes of for example [CHOZ2]. To explain further their resule, [CHO2 Theorem 2.2], states that for a projective class,
[CHO2| Definition 1.1], in an abelian category A there is a model structure on unbounded chain complexes in A with
the weak equivalences and fibrations (and therefore so too the cofibrations) determined by the projective class. Here
we take A = Cp to be the category of (horizontal) chain complexes and the projective class to consist of the data of
the acyclic cofibrant objects in A = Cg (with its usual projective model structure) and the collection of maps to be
the degreewise surjections. The obtained model structure on chain complexes of chain complexes has fibrations being
the bidegreewise surjections and weak equivalences the vertical homology isomorphisms. In addition Theorem
5.7] gives precisely the same set of generating cofibrations and acyclic cofibrations as above.

The r-cone of a bicomplex is defined by the same means as in [CELWI9] Remark 4.27].

Definition 1.7.0.14. The r-cone, for 7 > 1, of a bicomplex A is denoted by C;.(A) and given by the tensor product
ZW,(rr—1)® A.

Note there is a projection morphism 9, : Cr.(4) — X" A.

Lemma 1.7.0.15 ([CELW19] Propositions 4.29 & 4.32]). The r-cone is r-acyclic and the projection 1y : Cr(A) = X" Ais
ZWs-bidegree-wise surjective for all 0 < r < s. &

Lemma 1.7.0.16. A bicomplex A is a finite object if and only if it is bounded and each Abd s a finitely presented R-module.

Proof. The proof is similar to that of [Hov99| Lemma 2.3.2].

1.8 Conventions

. Throughout R will denote a fixed commutative unital ring.

Unless otherwise stated chain complexes are taken to be cohomologically graded.

+ We will ocasionally have need to specify a name for the generator 1 of the R-module R. We will do so by writing
R{a} to mean the free R-module R on one generator a thought of as the element 1. For the filtered R-modules
R, we will do so similarly by denoting by R}, {a} the filtered R-module R, with generator a thought of
as the element 1. Where multiple such identifications arise, e.g. R{a} and R{b} and we have need for change
of bases we may abuse notation somewhat and write R{a + b} for another copy of the R-module R on one
generator given by the sum a + b.

+ In commutative diagrams we frequently denote some R-modules with maps between them form a (filcered)
chain complex by enclosing them in brackets.

« The tensor product ® will denote either the symmetric monoidal tensor product of filtered chain complexes or
bicomplexes.
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+ The morphisms A, V, A~ and V™ will denote the following morphisms:

A:A->Ad A ViAgA— A
a+— (a,a) (a,b) —a+b

AT: A= Ap A VT:ApA— A
a+— (a,—a) (a,b) —a—10

« The maps 41 and 45 will denote inclusions into the first and second components and similarly 771 and 72 the
projections onto the first and second components.

« In diagrams we usually omit a label for an identity morphism between copies of R, or denote it either by 1 or id.

« The class of morphisms of filtered chain complexes (or bicomplexes) consisting of 7-weak equivalences will be

denoted &,..









CHAPTER

Adjoints to Totalisation Functors

We construct an adjoint to the product and coproduct totalisation functors, although we only make use of the
former. That is we have the following propositions.

Proposition[2.1.0.2L There is an adjunction of categories L£: fC 7= bC :Tot ™.

We give descriptions of the functors £ and Tot™! applied to representing (witness) cycle and boundary objects and
show that the unit of the adjunction £ - Tot™ on an s-cycle is an s-equivalence.

Proposition[2.2.1.2f For s > 1 the unit of the adjunction applied to an s-cycle, Z5(p,p +n) — Tot £ 2, (p,p + n), is
an isomorphism on the s-page.

We will later make use of this s-equivalence of the unit map to show that Proposition[2.1.0.2]is a Quillen equivalence
with appropriate model categories yet to be defined. Lastly we show existence of a total model structure on bC induced
by the Kan transfer.

Corollary [2.4.0.3) There is a total model structure on bicomplexes cofibrantly generated by generating cofibrations I =
{ZWoo,—0o(n) = BWeo,—oo(n)} and generating acyclic cofibracions J == {0 — BWso, oo } in which

1. weak equivalences are those morphisms f of bicomplexes such that H *Tot™ is an isomorphism,

2. fibrations are those morphisms f such that Tot™ is (homologically) degreewise surjective, i.c. f is bidegreewise surjective.

2.1  Left adjoint to product totalisation

We construct a left adjoint, denoted £, to the totalisation functor Tot!! ochﬁnition In private communications
between the authors of [CELW19] an adjunction between (non-filtered) chain complexes and bicomplexes is established
with the aim of extending this to the filtered setting. This unfortunately fails due to non-naturality of split short exact
sequences arising from the graded pieces Gr;C = F;C/F;_1C and so reconstructions of maps are not guaranteed
to be compatible with the differential. We correct for this here by instead using the quotient objects C'/F;_1C' from
which we can reconstruct a map defined on the whole of C.

Defmition 2.1.0.1. The functor £: fC — bC is defined on a filtered chain complex C' by:

cn o Cnfl
F;,_Cn F,Cn-17

L(C)i,iJrn —

where the differentials dg and dq are given on an (1‘, y) S ﬁ(C)i"H'" by:

do: (z,y) — (dz,z —dy) ,
di: (z,y) = (0, (-1)"x) .
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On a morphism of filtered chain complexes, g: C' — D, the functor £ is given by £(g)"*+" == g & g?gf where g;*
denotes the map C"/F;_1C™ — D™ /F;_1 D™ induced by g, noting that this map is defined as g preserves filtration

and commutes with differentials since g does.

It is a straightforward check that the differentials define a bicomplex structure on the bigraded modules £(C)**

and that £(g) is indeed a morphism of bicomplexes.

Note that the z written in the image of dg should perhaps more properly be written as the class [x] of z €
C"™/F;_1C"™ in the module C™/F;C", we will omit such notation most of the time. Similarly the d appearing in dy
is also used to denote the induced differential on the quotient modules.

We need to then describe natural maps between the hom sets Homye (£(C), K) and Homye (C, TotH(K))
which are bijections. Given a map f: £(C) — K of bicomplexes we obtain a map of filtered chain complexes
f: C — Tot! (K) from the following diagram:

cn I » Tot"(K)" = [, K¥i+n
o
H?, F,L 1Cm

where the map from C™ to [[, C™/F;—1C™ is an infinite diagonal followed by a product of quotient maps.

We check the map f as defined is a map of filtered chain complexes, i.c. commutes with differentials — it clearly
respects filtration. Take an element ¢ € C™. In the following series of equalities we write ¢; to denote the class of ¢ in
the quotient group C™/F;_1C™ and note that the class [¢;] of ¢; in C™/F;C™ is equal to €;+1. We then have in the
following the first equality follows by definition of f, the second by definition of the differential on Tot™, the third
commutes dy and dy past the bicomplex map f, the fourth applies the definition of dp and d; in £(C') (noting here
we are careful about the class [¢;41]), the fifth cancels signs and uses the class [¢;] € C"/F;,C™ of ¢; € C™/F,_1C™ is

just €1, the sixth cancels terms of opposite sign in the sccond component and the last again uses the definition of f.

df(c) = d (£ "(e;,0)),
(d 2 ,+n (@,0) + (—=1)"d N aant 1+1+n(c +170))
= (7 (e, 0) + (~1)" Py (€, 0)),
= (P (dey, [61]) + (— 1" T =10, 64),
= (frt(de;, eqq) — fi’i+n+1(0aéi+1))i
= (fH Y (de;, 0)),
(dc)

Il
~h

Now suppose we have a map g: C' — Tot" (K) of filtered chain complexes, we define a map §: £(C) — K

ofbiuo r}alexes bldegreewme as follows. Let g™ be the composite of g": C™ — Tot!! (K)™ with the projection

7 : Tot — K% Now we define:

gi,i+n: £(0)1,1+n — Ki,i+n
(i‘,ﬂ) — gi,i+n$ 4 (_1)ndlgi+l,i+1+n—ly
where € C" is a choice of representative of Z € C™/F;_1C™, and y € C™~1 a choice of representative of
y € C"1/F,C"~1. Note however that since g maps F;_1C™ into Hj<i71 K73%7 and similarly F,C™ ! into
Hj<i K731 \we have the image of g% is well defined, i.e. does not depend on choice of representing elements.

Note that we have the following relation between projection maps 7% and differentials d, dg, and d:
wld(kj); = 7' (dokj + (=1)"dikjs1); = doki + (—=1)"dikita 2.1

when the degree of (k;); is n.
We now check that the maps §*
and d;. Writing d for the induced differential on quotients appearing in the definition of £, note below that dz = dz.

Ghitn together deﬁne a map ofbmomplexes i.e. commute Wlth the d1fferentlals d()
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The first equality follows by defmition of dg, the second by definition of §, the third rewrites g** using the projections,
the fourth commutes d and g, the fifth uses Equation 2.1), the sixth cancels terms of opposite sign and one involving
didy as well as commuting a dg and d1, and lastly we apply the definition of g.

go g (2, ) = ¢V (de, 2 — dy)
— gi’i+n+1(d1') + (—1)n+1d1gi+1’i+l+n($ _ dy)
nigdr + (=1)" T dyrH gr — (=1)" T dyrtH gdy
= nldgx + (=1)" T dint g — (=1)" M dynt T dgy
_ dogi,i—i-nx + (_1 ndlgi+1,i+1+n$ + (_1)n+1dlgi+1,i+1+nx
_ (_1)n+1d1 (dogi+1,i+1+n—1y T (_1>n—1dlgi+2,i+2+n—1y)
— dogi,i+nl, 4 (_1)nd0dlgi+1,i+l+n—ly
= dog""t"(2,7)
In the following the first equality follows by definition of d1, the second by definition of g, the third by did; = 0, and
the last again by definition of §.
gi—l,i—l+n+ld1 (ii'7 g) _ gi—l,i—l—&—n—ﬁ—l(o’ (_1)n+lf)
_ (_1)n+1(_1)n+1dlgi,i+nx
— dl (gi,i-‘rnx 4 (_1)ndlgi+1,i+l+n—1y)
= dg""t"(z,7)

Thus § computes with both differentials. We now verify that f = f: L(C) — K.In what follows the first equality
follows by definition of g, the second rewrites frox using the projections 7, the third by definition of f noting here Z;
is the class of our choice « in the quotient group C™ /F;_1C™ and in particular Z; = Z, similarly for g;. The fourth
app]ies the projections and uses T; = T, the fifth commutes differentials, the sixth applies dy, and ]astly we cancel
signs and use linearity.

fi,i+n(j7g) — fi,i-i—nx + (_l)ndlf‘i-l-l,i—i-l—i-n—ly
=’ fz+ (1) dim" fy

= gt (fj)j+n(5fj,0))j + (_1)nd17ri+1 (fj’j+n_l(l7j,0))j

_ fi’iJrn(:Z', O) + (*1)nd1fi+1’i+1+n71(1,_/, O)

FUE(E,0) 4 (=1)" f5 " da (5, 0)
=[O, 0) 4 (1) 0, (1))
=@, 9)

Fina“y we check that 5:7 =g:C— TotH(K). The first equa]ity does nothing other than remind us § is a map of
bicomplexes, the second follows by definition of f, the third by definition of § noting that a choice of representative

of the class ¢; of ¢ is ¢ itself, the fourth by removing the zero term, and lastly by definition of g»#*™.

)
gi,i+n + (71)ndlgi+1,i+1+n710)

%

The bijections between the hom sets Homye (LA, B) and Hom ¢¢ (A, TotHB) are casily seen to be natural by
construction. We have then proved the following result.

Proposition 2.1.0.2. There is an adjunction of categories L: fC == bC :Tot™.
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22 The adjoints applied to representing Cycle and boundary objects

We consider the effect of applying the left adjoint £ to s-cycles Z5 and s-boundaries Bj, as well as the effect of Tot™
on s-witness cycles ZW; and s-witness boundaries BW;. Since L is a left adjoint it commutes with coproducts and
so the effect on boundaries is known from By = 251 @ Z5_ 1 via LB X L(Z5 1 D Zs1) X LE; 1 DLE 1. It

suffices then to analyse the bicomplexes £LZ.

221 L applied to Z,

We fix an s-cycle Z5(p, p + n) to which we will apply £. The definition of £ was given on a filtered chain complex C
by:
. con cn-1

L(C)»Tm =
( ) Fi_lC’” @ FiC”* ’
so applying £ to our s-cycle we have non-zero entries of the bicomplex only on diagonals n, n + 1 and n + 2. For
C = Z4(p, p+n) the quotients of the direct sum of the LO“*™ are either a copy of R or 0. We temporarily introduce
the notation M = R?p) and N = R?;_ls) to help keep track of each summand. The bicomplex £Z,(p, p + n) is then
depicted in Figurcwhcrc the modules M @ 0 and N @ M demarcated by dashed boxes are in bidegrees (p, p +n)
and (p — s,p — s + n + 1) respectively. The differentials ofFigureare also obtained from the definition of L.

We now show that up to isomorphism the bicomp]ex LZ, (p,p + n) is isomorphic to a direct sum of a witness

s—cyc]e and an infinite number of witness 0—cycles. More precise]y:

LZ;(p,p+n)=ZWs(p,p+n) EB@ZWO(p— s—k,p—s—k+n). (2.2)
k>0

To see this we make a change of basis of the R-modules of\FigureoFthe form N @ M. We now write € and g for
the element 1 of M = Rand fand hfor1 € N = R, so that M = R{e} = R{g} and N = R{f} = R{h} in the
notation of Scction Consider one of the subdiagrams ofFigurcgivcn by the following:

R{f} " R{f} © R{e} ¢ Ric}

V,T TA . (23)

R{h} e———— R{h} & R{g} - R{g}

(1"

We change basis on the modules given by R{f} ® R{e} (and similarly R{h} ® R{g}) as follows:

0: R{f}® R{e} — R{f +e}® R{e}
(a,b) — (a,b—a)

to obtain an isomorphic diagram given by:

(71)"*’17‘-1

R{f} R{f + e} ® R{e} — R{e}

(0 4)] Til , o (24

R{R} ———— R{h+ g} & R{g} «—— - Rig}

(1"

where the isomorphism is given by 8 on R{f} & R{e} and R{h} ® R{g}, and by the identity elsewhere. This is
casily verified to commute with all differentials. Applying this isomorphism to all such modules of the bicomplex
LZ(p,p + n) we obtain the bicomplex of Figure Which7 up to signs, is of the form Equation . Writing N for
the R-modules R{f + e} and R{h + g} under this change of basis the new structure of the bicomplex LZ,(p,p +n)
is given in Figure We have then shown:

Lemma 2.2.1.1. There is an isomorphism of bicomplexes:

LZ,(pp+n) = ZW,(pp+n) &P EWo(p—5—k,p—s—k+n).
k>0
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We consider now the unit of the £ = Tot™ adjunction on cycles Z,(p, p+n) — Tot™ LZ,(p, p+n). We will show
such a morphism is an s-equivalence. The unit is the adjoint morphism to the identity LZ,(p, p+n) — LZ,(p, p+n).
Recall the adjoint to a morphism f: £L(C) — K is given in degree n by f as follows:

cn I » Tot™ (K)" = [, K¥+"
\ % ) (2.5)
Forr(=,0)),
CTL 2
Hl F;_,C™

where the map from C™ to [[, C™/F;—1C™ is an infinite diagonal followed by a product of quotient maps. We then
apply this construction with C = Z4(p, p+n) and K = LZ;(p, p+n). We compute the images of the generator 1 of
R?p) and 1 of‘R?ptls in the filtered chain complex Z5(p, p + n). From the description of Equation (2.5) the image of

le R?p) is the diagonal of all generators 1 of the M @ 0 on the n-diagonal ofFlfjurc and the image of 1 € Rnp+1s)
is the diagonal of the generators of the N in the (n 4 1)-diagonal summands N @& M.
From the second description of LZ, (p,p + n) given in Figureit now follows that the unit of the adjunction

Zs(p,p+n) — Tot'LZ, (p,p + n) is an s-weak equivalence: under the change of basis this map still maps t?e
R

is given by the diagonal on (1, —1) in the modules of the form N’ & M. The former can be rewritten as thc(iurr)l
(1,1,1,...,1,0,0,...)+(0,...,0,1,1,...) where the first element has s components being 1 and the rest 0, and the
second s components being 0 and the rest 1. We denote these by zand b 1‘espective1y. Both the infinite di agonal on1and
z are elements ()fo’p+"T0tH£Zs (p, p+n) and differ by b which is an element ()FBg’p+"TotH£ZS (p,p+n)and so
represent the same element of the s-page. The 0-page through to the s-page for both Z,(p, p+n) and Tot' L Z, (p,p+
n) consists of two copies of R, one in bidegree (p, p + n) and the other in bidegree (p — s — 1,p — s + n) with an
identity differential appearing on the s-page. Our description above shows that up to a boundary element the element

generator 1 € R?p) to the same diagonal of generators of M, however now the image of the generator 1 €

(1,1,...) has image z so that we have an isomorphism of s-pages. We have then shown the following result.

Proposition 2.2.1.2. For § > 1 the unit of the adjunction applied to an s-cycle, Z5(p,p +n) — Tot'LZ, (p,p + n), is
an isomorphism on the s-page. &

222 Tot! applied to ZW, and BW,

We have less use for these resules but sketch the answers for completeness. One can make a similar change of basis
(compatible with the filtration) such that for s > 1 the filtered chain complex TotHZWs becomes the direct sum of
an s-cycle and (s — 1) O-cycles. More precisely we have:

s—1
Tot" ZW,(p,p+n) = Zi(p,p+n) © @D Zo(p —ip — i+ 1)
i=1

where the direct sum is empty for s = 1. For s = 0 one also has
Tot" ZWo(p,p+n) = Zo(p,p+n) ® Zo(p— Lp+n) .

Note then that Tot™ BW can be similarly expressed since the totalisation functor commutes with finite direct sums.

2.3 Right adjoint to coproduct totalisation

There is an analogous right adjoint to the coproduct totalisation functor Tot® of Definition|1.2.2.6|which we define
here and whose proofthat it is indeed a right adjoint we defer to Appcndlxl as we have no use for it in our work. It is
defined similarly to Tot™ instead using subobjects rather than quotient objects and with minor changes to signs.

Definition 2.3.0.1. The functor R: fC — bC is defined on a filtered chain complex C' by:
R(C)"" = F,_,C" @ F,C™
where the differentials dy and dy are given on an (z,y) € R(C)%**" by:
do: (z,y) — (—dx,dy + x) ,
di: (z,y) — (0, (71)"+1z) .
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Figure 2.1: The bicomplex L2, (p,p+n)
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Figure 2.2: Change of basis of the bicomplex LZ4(p, p + n)

_l)nJrl‘
0BaM¢———Ma0!

1
(_1 n+1
0pM+—M®O0

(71)n+1
0PM<«c—M®O0



'R(g)i’H'" = grfi @ gﬁ where

gﬂ denotes the map F;C™ — F; D™ given by restricting g, noting that this map is defined as ¢ preserves filtration

On a morphism of filtered chain complexes, g: C' — D, the functor R is given by

and commutes with differentials since g does.

It is a straightforward check that the differentials define a bicomplex structure on the bigraded modules R(C)**

and that R(g) is indeed a morphism of bicomplexes.
Proposition 2.3.0.2. There is an adjunction of categories Tot®: bC =2 fC :R.
Proof. The proof is Appendix

2.4 Total model structure

Muro and Roitzheim construct a total model structure on bicomplexes using their coproduct totalisation functor from
bounded bicomplexes to bounded chain complexes whose weak equivalences are those morphisms such that HTot®
are isomorphisms, [IMR19] Theorem 3.1]. They also generalise this to a total model structure on twisted chain complexes,
IMRT9] Theorem 5.13]. We brieﬂy sketch a total model structure on unbounded chain complexes using the product
totalisation functor and obrtained via the Kan transfer theorem.

We have an adjoint pair from chain complexes to bicomplexes obtained by composing the adjunction of Propo-
sitionwith an adjunction between chain complexes and filtered chain complexes; we denote this adjunction
G: Cr == fC :U where the functor U forgets filtration and the functor G equips a chain complex A with a fileration
such that F,GA = 0 forall p € Z.

Using the Kan transfer theorem and this composite adjunction we can then equip the category of‘bicomplexes with
a model structure in which the weak equivalences (resp. fibrations) are those morphisms which are weak equivalences
(resp. fibrations) after applying the composite functor. This will be cofibrantly generated by applying the Kan transfer

theorem, Theorem|1.4.4.1

Lemma 2.4.0.1. The adjunction L£: Cr == bC : Tot!! satisfies the conditions of the Kan transfer theorem where we equip Cr
with the projective model structure, i.e :

1. L(I) and L (J) admit the small object argument, and
2. Tot™ takes relative L£(.J)-cell complexes to weak equivalences.

Proof. Condition 1 follows since every bicomp]ex is small. For Condition 2 a relative /:,(J)—ce]l complex is a transfinite

pushout of a bicomplex A by elements of £(J). The elements of £(J) consists of morphisms from the 0 bicomplex

into an infinite direct sum of discs ZWy, so the transfinite pushout is of the form A — A & @ ZW, whmh is
taken by Tot™ to a weak equivalence. ‘

Definition 2.4.0.2. We denote by Z2Weo, _oo(n) the bicomplex given by the limit

ZWoo,—co(n) =lim (ZWe(p,p + 1)) .
P
Applying the functor £ to a sphere object S™ in Cp, gives the bi-infinite staircase ZWoo _ o0 (1), and as noted above
applied to a disc object D™ gives an infinite direct sum of bicomplex discs Z2Wy which we'll denote BWoo — o0 (7).

Corollary 2.4.0.3. There is a total model structure on bicomplexes cofibrantly generated by generating cofibrations I =
{ZWoo,—00(n) = BWeo oo (1)} and generating acyclic cofibrations J == {0 = BWso, _oo } in which:

1. weak equivalences are those morphisms f of bicomplexes such thar H Tot™ is an isomorphism,

2. fibrations are those morphisms f of bicomplexes such that Tot™ is (homologically) degreewise surjective, i.c. f is bld(’gl ee-
wise surjective.
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CHAPTER

Poset of Model Structures

In this chapter we establish some generalisations of the model structures (fC), and (fC),., on filtered chain
complexes of Theorems|1.6.0.5/and |1.6.0.6{and (bC),. and (bC),., on bicomplexes of Theorems|1.7.0.10{and |1.7.0.11)and

establish some properties these model structures have in addition to existence of Quillen equivalences between them,

the effect of certain Bousfield localisations and derive existence of various bounded variants.

The new model structures are established in the following theorems whose proofs follow in much the same way as
in [CELWI9]. For a set S with max S = r we begin by deﬁning generating sets Ig and Jg which are the usual I,. and
Jr with extra the acyclic morphisms Jg added to both for each s € S.

Theorem [3.1.0.2} For ecvery 7 > 0 and every subset S C {0,1,...,r} including r, the category fC admits a right proper

cofibrantly generated model structure, which we denote ( fC) g, where:
1. weak cquivalcnccs are Er—quasi—isomorphisms,

2. fibrations are morphisms of filtered chain complexes f: A — B such that Z(f) is bidegree-wise surjective for each
s €S, and

3. Ig and Jg are the sets of generating cofibrations and generating trivial cofibrations respectively.
Further (fC) g is a finitely generated model category.
Is and Jg are similarly defined for bicomplexes, noting however that Jg must contain the morphisms of Jp.

Theorem(3.2.0.2| For every 7 > 0 and every subset S C {0, 1,. .., r} including both 0 and r, the category bC admits a right

proper coftbrantly generated model structure, which we denote (bC) g, where:
1. weak equivalences are E.-quasi-isomorphisms,

2. fibrations are morphisms of filtered chain complexes f: A — B such that ZW(f) is bidegree-wise surjective for each
s €S, and

3. Ig and Jg are the sets of generating cofibrations and generating trivial cofibrations respectively.
Further (bC) g is a finitely generated model category.
We show that these model structures are indeed distinct in Corollaries[3.3.0.4]and[3.3.0.9]by constructing morphisms

with specific cycle surjectivity properties.

Propositions 3.1.0.6 and 3.5.0.2] establish some Quillen equivalences between all of the S-model categories on
fC, Proposition [3.2.0.6| establishes Quillen equivalences between some of the S-model structures on bC, and Proposi-
tion[3.4.0.2] establishes a Quillen adjunction between the S-model structures on fC and bC when {0,7} C S.

We then consider the poset denoted N whose elements are the S-model structures on fC and with the < relation

given by existence of a left adjoint constructed by identity maps and the shift functor. We show this poset has a
distributive lattice structure whose join and meet operations are given by the initial model structure amongst the (fC) g
admitting left adjoints of these forms and the terminal model soructure amongst the (fC) g admitting left adjoints of these forms.
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Corollary[3.6.0.16] The lactice struceure on N is a distribucive lactice.

We then turn to demonstrating properties of an individual (fC)g or (bC)g. These model structures are right
proper automatically since all objects are fibrant. For left properness we make use of a proof technique of a theorem of
Lack, Theorem 6.3], which on finitely cofibrantly generated model categories. We study s-cycles in the model
structures and prove the following theorems.

Theorem[3.7.L7} The model categories (fC) g of Theorem[3.1.0.2 are left proper.
Theorem The model categories (bC) g of']'heoremarc left proper.
We also demonstrate that they are cellular model categories:
Proposition The model categories (fC)g of'l'heoremarc cellular.
Proposition The model categories (bC) g of Theorem 3.2.0.2)are cellular.

And by computing pullbacks of fibrations from an acyclic object (the r-loops on the r-cone) to an A along the 0
morphism 0— A give a description of the loop and suspension functors and that the model categories are stable.

Proposition 3.9.1.2}  The model categories (fC)g of Theorem are stable model categories whose loops and suspension
functors are given by Q" and X"

Proposition 3.9.2.4] The model categories (bC) g of Theorem are stable model categories whose loops and suspension
functors are given by " and 3.

Using the adjunction £ + Tot™ of Proposition [2.1.0.2|and the cellularization principle of Greenlees and Shipley,
Theorem[3.10.0.3] we show that the adjunction is in fact a Quillen equivalence.

Theorem|3.10.0.4] For S containing both 0 and r there is a Quillen equivalence between the S-model structure on filtered chain
complexes and the S-model structure on bicomplexes given by the £ Tot™ adjunction:
L:(fC)g == (bC)g : Tot"
We show that one cannot left Bousfield localise from an S-model structure on either fC or bC with weak equiva-

lences the r-weak equivalences and obtain a model category with weak equivalences the (7 + 1)-weak equivalences.

Proposition[3.11.0.1} Let M g be one of the model structures of either poset, where M is either fC or bC whose weak equivalences
are the r-weak equivalences. Then there is no left Bousfield localisation M,y of Mg whose weak equivalences are the (1 +1)-
weak equivalences.

Lastly we construct some bounded model structures on fC. The categories fC= and fC= denote the categories of
filtered non-negatively graded chain complexes and filtered non-positively graded chain complexes respectively.

Corollary|[3.12.1.2| There is a cofibrantly generated model structure denoted (fC Z) gon fC Z whose weak equivalences are the

r-quasi isomorphisms and with generating cofibrations 71 and generating acyclic cofibrations TJg.

Theorem 3.12.2.1} For every 7 > 0 and cvery subsec S C {0,1, ..., r} including r, the category fC= admits a right proper

cofibrantly generated model structure, which we denote ( fC S) o Where:
1. weak equivalences are E.-quasi-isomorphisms,

2. fibracions are morphisms of filtered chain complexes f: A — B such that Z*T™(f) is bidegree-wise surjective for
n<-lands €S, and

3. klg and KJg are the sets of generating coﬁbmtions and generating acyclic coﬁbmtions rc‘spectively.
Furthermore (fC=) g is a fnicely generated model category.
Lastly we define S-model structures on the category of non-negatively filtered chain complexes f>C.

Theorem [3.12.3.15| For every subser S C {0,1,2,...,7} containing r the category f>C admits a right proper cofibrantly

generated model structures, which we denote (f>C) g, whose:
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1. weak equivalences are the Ey-quasi-isomorphisms,
2. fibrations are morphisms that for all s € S are ZP"PT"surjective for p > s and all n, and
. oo . T ) > > )
3. generating cofibrations and generaring acyclic cofibrations are given by I and Jg respectively.
Furthermore (f>C) g is a finitely generated model category.

Due to the difference in representing objects used in generating cofibrations and acyclic cofibrations between the
0-model structure and the 7-model structure (r > 1) on bicomplexes, Thcorcm many of the proofs of this
chapter do not work as written for the 0-model structure. However due to Rcmarkmany of the results of
this chapter regarding the 0-model scructure are already known from [CHOZ2], in particular stabilicy Lemma
2.16], properness [CHO2| Proposition 2.18] and (finite) cofibrant generation [CHO2| Theorem 5.7]. Henceforth for
bicomplexes whilst we write our results for all v > 0 our proof may only apply for > 1 and we rely on the above for
the case r = 0.

31 Construction of new model structures on filtered chain complexes

The original model structures of [CELWI9] on either bicomplexes or filtered chain complexes for a fixed 7 can be seen
to differ by the descriptions of their fibrations. For convenience we use the descriptions for filtered chain complexes in
the Following discussion. In the first model structure we only require surjections on the T—cycles and in the second we
require surjections on all s-cycles for 0 < s < 7. There should be intermediate model structures with r-weak equivalences
and where fibrations are characterised as being surjective on all s-cycles for a fixed subset S C {0, 1, ..., r} containing
7 and indeed this section proves existence of such model structures. Originally the author attempted to show existence
of these model structures by mixing the model structures (fC), for each s € S. There are various results in the literature
on mixing model structures.

Cole in Theorem 2.1] shows that for two model structures on C with weak equivalences Wy and W, and
fibrations Fib; and Fibg respectively such that Wi € W, and Fiby C Fiby then there is a mixed model structure on
C with weak equivalences W5 and fibrations Fibq. There is a dual result replacing the inclusion of fibrations by an
inclusion of cofibrations. The r-model structures of [CELW19] do not satisfy the fibration or cofibration inclusions
along with the weak equivalence inclusion so we cannot apply this result here. One could also attempt to use
Proposition 5.2.34] however their conditions are not satisfied in our setting either.

The author in fact shows existence of such intermediate model structures by explicitly giving the generating cofir-
bations and generating cofibrations from which the model structures follows easily from results already established
in [CELWT9]. These new model structures on fC and bC are in fact examples of intermediate model structures of [Bal21]
Proposition 4.9.4], although for this proposition one still needs to exhibit a weak factorisation system (see Defini-
tion 2.1.12]) to apply the result which we obtain from the small object argument.

Definition 3.1.0.1. We fix an 7 > 0, and denote by S a subset of {0,1,...,7} which must include r. We define
Is and Jg as follows:

Is=LuU |J J.,
seS\{r}

U

ses

Jsl

Theorem 3.1.0.2. For cvery r > 0 and every subset S C {0, 1,...,r} including r, the category fC admits a right proper
cofibrantly generated model structure, which we denote ( fC) g, where:

1. weak equivalcnces are ET-—quasi—isomorphisms,

2. fibrations are morphisms of filtered chain complexes f: A — B such that Z(f) is bidegree-wise surjective for each
s €S, and

3. Ig and Jg are the sets of generating cofibrations and generating trivial cofibrations respectively.

Further (fC)g is a finitely generated model category.

The cases S = {r}and S = {0,1,...,r} are the model structures constructed in [CELWI9]. The proof proceeds
by the same method as in [CELW19], i.c. we verify conditions 3,4 and 5 of Theorem|[1.4.2.9
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Proposition 3.1.0.3. We have Is-Inj = &, N Jg-Inj.

Proof. The third equality in the following is the result I,-Inj = &, N J,-Inj for the model structure of Theo-
rem|1.6.0.5)

Is-Inj = (LU |J Ji|-Inj
seS\{r}
=I-Injn () Jo-Inj
seS\{r}
=(&NJ-mj) N (] Je-Inj
seS\{r}
=& NJg-Inj .

The proof of the following is also identical to its counterpart in [CELW19]. Recall the r-loops functor " of
Definition|.2.1.18| and r-cone functor C. of Definition|1.6.0.12

Proposition 3.1.0.4. For every r > 0 and every subset S C {0, 1, ..., 7} including r we have Jg-Cof C &,.

Proof. Let f: A — B bea Jg-Cof so that it has the left lifting property with respect to those morphisms ¢ that are
Zs(g) bidegree-wise surjective for all s € S. Consider then the lifting problem:

A—— A®QC(B)

e
fl T
B~———B
The morphism (f, 1) is a Zs-surjection for all s € S, by Lemma|[1.6.0.14| so there exists a lift. Since Q"C,.(B) is
r-acyclic, again by Lemma|1.6.0.14} applying Ey41 to the diagram gives f € &,. &

Proof of Theorem It remains to prove conditions 3,4 and 5 of Theorem hold. Conditions 4 and 5 are
Proposition The inclusion J-Cell C W of condition 3 follows from Proposition [3. and the inclusion
J-Cell C I-Cof as follows: by Proposition@we have Is-Inj C Jg-Inj, hence Jg- Cof C Ig-Cof. Right
properness follows since every object is fibrant. Lastly it is finitely generated since the domains and codomains of I'g

and Jg are finite relative to the cofibrations (in fact relative to the entire category) by Lemma|l.2.1.16

Theorem [3.1.0.2| then gives for a fixed r, 2" cofibrantly generated model structures indexed by the powerset of
{0,1,...,r — 1} or alternatively as described above by those subsets of {0, 1, ..., 7} including r.

Notation 3.1.0.5. For S C {0, 1,...,7} containing r we write ( fC) g for the model structure given by Thcorcm
The special cases of S = {r} and S = {0,1,...,7} will be denoted by (fC),. and (fC),, respectively in agreement
with [CELWT9]. We also refer to the cofibrations of the S-model structure as S-cofibrations and similarly refer to the
fibrations as the S-fibrations.

Proposition 3.1.0.6. For a fixed r and subsets S C S C{0,1,...,r} boh containing 1 there is a Quillen equivalence:
id: (fC)g === (fC)g :id .

Proof. We check the right adjoint sends (acyclic) fibrations to (acyclic) fibrations. A fibration on the right hands
side is a morphism f with Z5(f) bidegree-wise surjective for all s € S. This also then satisfies Z5(g) bidegree-wise
surjectivity for all s € S’ since S’ C S, hence the right adjoint preserves fibrations. Preserving acyclic fibrations
follows since weak equiva]ence@ are the same on both sides and the right 1d'0int is an identity functor. This gives the
identity-identity adjunction is a Quillen adjunction. Quillen equivalence follows since the functors are the 1dent1ty
and weak LC[ulVAlLl’lLCb are the same on both sides. {
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3.2 Construction of new model structures on bicomplexes

Definition 3.2.0.1. We fix an 7 > 0, and denote by S a subset of {0, 1, ..., r} which must include 0 and 7. We define
Ig and Jg as follows:

Is=LuU |J J,
seS\{0,r}

JS::UJS'

ses

Theorem 3.2.0.2. For every 7 > 0 and every subset S C {0, 1,. .., r} including both 0 and r, the category bC admits a right
proper coftbrantly generated model structure, which we denote (bC) g, where:

1. weak equivalences are E.-quasi-isomorphisms,

2. fibrations are morphisms of filtered chain complexes f: A — B such that ZW(f) is bidegree-wise surjective for each
s €S, and

3. Is and Jg are the sets of generating cofibrations and generating trivial cofibrations respectively.
Further (bC) g is a finitely generated model category.

The proof proceeds by the same method as in [CELWII), i.c. we verify conditions 3, 4 and 5 ofTheorem
Proposition 3.2.0.3. We have [g-Inj =&, N Jg-Inj.

Proof. The third equality in the following is the result I,-Inj = &, N Joinf NJ,.-Inj for the model structure of
Theorem [LZ0.10]

Is-Inj = [ I, U U Js | -1nj

seS\{0,r}
=IL-mmjn () Je-Inj]
seS\{0,r}
= (& NJo-InjNJo-Inj) N (] Jo-Inj
s€S\{0,r}
=& NJg-Inj .

Recall the 7-loops functor Q" of Definition|1.2.2.8|and r-cone functor C; of Definition(1.7.0.14
Proposition 3.2.0.4. For every > 0 and every subsec S C {0, 1, ..., 7} including 0 and r we have Jg-Cof C &,.

Proof. Let f: A — B be a Jg-Cof so that it has the left lifting property with respect to those morphisms g that are
ZW,(g) bidegree-wise surjective for all s € S. Consider then the lifting problem:

The morphism 1, is 2" applied to the morphism of Lemma(1.7.0.15[s0 that (f, 1) is a ZW,-bidegree-wise surjection
for all s € S so there exists a lift. Since Q" C,.(B) is 7-acyclic by Lemma|.7.0.15} applying .11 to the diagram gives
feé. &

Proof of Theorem|3.2.0.2] This is the same as for filtered chains noting that finite objects in (bC) g are the boundcd
bicomplexes which in each bidegree are finitely presented R-modules, Lemma(1.7.0.16

Notation 3.2.0.5. For S € {0,1,...,r} containing both 0 and r we write (bC) g for the model structure given
by Theorem The special cases of S = {0,7} and S = {0,1,...,7} will be denoted by (bC),. and (bC),.,
respectively in agreement with [CELW19]. Again we call the cofibrations and fibrations of the S-model structure the
S-cofibrations and S-fibrations.
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Proposition 3.2.0.6. For a fixed r and subsets S’ C S C {0, 1, ..., 7} containing 0 and 7 there is a Quillen equivalence

id: (bC)g === (bC)g :id .

3.3 Distinctness of model structures

We verify that all these model structures defined in Theorems[3.1.0.2]and 3.2.0.2] m are indeed distinct model structures.
We do so by showing that the fibrations are different for which we show existence of morphisms satisfying specific Zj,
or ZW, surjectivity conditions.

Definition 3.3.0.1. The morphisms a?2P™" and 2P+ of filtered chain complexes are given by:

cabPt Zo(p+ 1,p+ 1+ n) — Zs(p,p + n) whose underlying maps of R-modules are the identity

wherever possible:

| |

(Ry —— RL)

. pertn Zo 1(p,p+n)® R?ptls) — Zs(p, p + n) whose underlying maps of R-modules are the identity

or fold maps wherever possible:

n n+1 n+1
(Bp — R 0 R

| o

(By ——— B%)

Lemma 3.3.0.2. We have the following surjectivity results:
« the morphisms a>* are Zy-surjective for all k > s + 1 and not Z;-surjective otherwise,
« the morphisms B3 are Zy-surjective for all k < s — 1 and not Zy-surjective otherwise.

Remark 3.3.0.3. We can easily form a morphism of filtered chain complexes that is Zg-surjective for all k # s by taking
the composition of the direct sum of the & and 8 with the fold map:

PO = Vo (ol @ BTN

Existence of such morphisms then immediately proves the following distinctness resule by the classification of the
fibrations.

Corollary 3.3.0.4. The model structures of Theorem|3.1.0.2|are all distinct.

We construct similar morphisms d, € and  for bicomplexes to show distinctness for the bicomplex model structures.
Firstly we define a corner bicomplex.

Definition 3.3.0.5. The bicomplex CW (p, p + n) has a copy of R in bidegrees (p,p+n), (p—1,p—14+n+1) and
(p,p + n + 1) whose differentials are the identity morphism whenever possible.

In Figures and of the following definition all  denote a copy of R with a bidegree indicated and all
differentials are identities except the ones labelled 41 and i3 which are inclusions into either the first or second copy

R of the R-module R & R denoted by ee.
Definition 3.3.0.6. The morphisms 627" and e2"P" of bicomplexes are given by:

e OPPI ZWeii(p+1,p+14n) — ZWy(p, p+ n) whose underlying maps of R-modules are the identity
whenever possible and is depicted in Figurc
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°
T (p,p +n) T (p,p+n)
° °
5§,p+n
o o o o
o—eo o—eo
Figure 3.1: The morphism 627"
°oc—eo oc—e
T (p,p+n) T (p,p+n)
°oc—e oc—e
I I
€€,p+n
eei—o . o o
in|
o—eo o—eo

Figure 3.2: The morphism eZ-P+™

« Pt ZWe 1 (p,p+n)CW(p—s+1,p—s+1+n) — ZWs(p,p+ n) whose underlying maps of
R-modules are the identity or fold maps whenever possible and is depicted in Figure

Lemma 3.3.0.7. We have the following surjectivity results:
« the morphisms 6%* are ZWy-surjective for all k > s + 1 or k = 0 and not ZWy-surjective otherwise,
« the morphisms €5* are ZWj;-surjective for all k < s — 1 and not ZW}, surjective otherwise.

Remark 3.3.0.8. We can also form a morphism of bicomplexes that is ZWj-surjective for all & # s by taking the
composition of the direct sum of the § and € with the fold map:

p,p+n . p,p+n p,p+n
Cs '_ v o (68 @ 6s ) .
Existence of these morphisms proves the following distinctness result.

Coro]]ary 3.3.0.9. The model structures of Theorem|3.2.0.2| are all distinct.

3.4 Quillen adjunctions between (fC)g and (bC)4

We show that for S a subset of {0, 1,...,7} containing 0 and r there is a Quillen adjunction
L:(fC)g == (bC)4 : Tot" |

by showing that Tot™ is a right adjoint. By definition of the r-weak equivalences of (bC)S the functor Tot!! already

preserves weak equivalences. We just need to check then that Tot™ sends fibrations to fibrations.

Lemma34.0.1. Let f: Y — X beamorphism of bicomplexes that is both Z Wo-surjective and Z W -surjective, then Tot™ ( £)
is Zg-surjective.
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Proof. Let (x;)i<p € FpTotHX" where z; € X»*™ and such that dTOtHX(xi)Z-Sp € Fp_s X" Recall the differen-
tial dTOtHXZ (kl)z — (doki + (_1)nd1ki+1>i so that dQSL'p =0and dol‘p,i,1 = —(—1)nd1$p,7; for0 <7< s—2.
The sequence (a?p, ()" o, 1,2y 0, (1) Map_s, ..., ixp_s_H) is then an element of ZWPP+" X and since
f is ZW-surjective we can find a lift (yp, . . . , Yp—s+1)- By ZWo-surjectivity of f we can also find lifts y,—; of z,—;
for i > s + 2. The element (yp, (=) 1, ypa, ()" iy sy Y51y Yp—ss Yp—s—1s - - ) is then a
Zs-lift as required.

The lemma shows that Tot™! sends S-fibrations of (bC) g to S-fibrations of (fC)g. Hence we have shown the
fb“owing.

Proposition 3.4.0.2. For S a subset of {0, 1, ..., 7} containing both 0 and 1 there is a Quillen adjunction
L:(fC)g == (bC)g : Tot"

In fact the model structures on (bC)S is a right transferred model structure along this adjunction since its weak

equivalences and fibrations are determined by the functor Tot™.

3.5 Quillen equivalences between the (fC)

For §" C S with max S’ = max S = r there were the identity-identity Quillen equivalences of Propositions|3.1.0.6
and3.2.0.6|for filtered chains and bicomplexes respectively. For the category fC there are in fact more Quillen equiva-
lences. Recall the shift-décalage adjunction of Lemma(1.3.3.2|which gave Quillen equivalences of the form

Sk: (fC), == (fC), ., :Dec

Notation 3.5.0.1. For aset S and ! € N we denote by S+ [ theset {s+1|s € S}

Proposition 3.5.0.2. There are Quillen equivalences given by the shift-décalage adjunction:
S: (fC)g == (fC) g4, :Dec .

Proof. This follows from the proof in the case S*¥: (fC), 7= (fO) i :Dec”. See [CELWT9], Theorem 3.22].

3.6 Quillen zig-zags and a distributive lattice

Remark 3.6.0.1. The shift-décalage and identity-identity adjunctions do not give that all model structures in the posets
are Quillen equivalent, only that there are zig-7ags of Quillen equivalences between any two. Consider the Fo”owing
diagram

(f€)
STlDec
(fO) 2y T2 (FO) 1)

There is a Quillen equivalence between (fC) 5y and the other two model categories but not between (fC){g} and
(fC){LQ} (at least if we only use the shift-décalage and identity-identity adjunctions).

We now assemble for all 7 the posets of model structures of filtered chain complexes together into one larger poset.
The underlying set of the poset is then finite non-empty subsets of the power set of Ny and we generate the partial
order < as follows: for two model structures indexed by 7" and S we have T' < S if cither

1. T C S, withmaxT = max S,
2.85=T+1.

These generating inequalities of the poset are respectively the left adjoints of the identity-identity adjunctions and the
shift—déca]age adjunctions.

Definition 3.6.0.2. Denote by N the poset with the above definition for <.
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{O’ 17 27 3}

TN

{0,1,2} —— {1,2,3} {0,2,3}

N R

0,1}y ———— {1, 2};@2 3}
{0,2y —F—— {1, 3} {0 3}

N

{0} {1} {2} {3}

Figure 3.3: The poset N

For those elements of AV whose maxima are 3 or less the poset is displayed in Figure With an arrow @ — b
denoting the relation a < b.

Given that not all these model structures are Quillen equivalent via composites of these two adjunctions it is worth
finding for any two model structures indexed by T"and S the ‘terminal model structure admitting a left Quillen functor
to these’ and the ‘initial model structure admitting a left Quillen functor from these’. We will show such operations
give the join and meet operations respective]y for a distributive lattice structure on N. We recall now the definition
of a distributive lattice. It can be found for instance as [DP02) Definition 4.4].

Definition 3.6.0.3. A lattice (A, V, A) is a partially ordered set A with binary operations V, called join, and A, called
meet, on its elements such that

La<aVvVb=0bVa,and
2.anb=bAa<a.

It is further a distributive latcice if for all a, b, ¢ € A we have:
LaV(bAc)=(aVb)A(aVc), and
2.an(bVve)=(anb)V(aAc).

We will abuse notation and denote a poset and distributive lattice over that poset by the same symbol. The meet
and join operations we will define on ' will form the structure of a distributive lattice which will not be easy to write
down a proof of, so we instead prove this indirectly by showing such structure is isomorphic to another distributive
lattice by virtue of Birkhoff's Representation Theorem

Definition 3.6.0.4. Given a distributive lattice A an element a € A is said to be join-irreducible if it is neither:
1. the least element of the lattice, nor
2. the join of two smaller elements.
Definition 3.6.0.5. A lower set L of a lattice A is a subset L C A such thatifa < [ foralll € L thena € L too.

Theorem 3.6.0.6 (Birkhoff’s Representation Theorem [DP02] Theorem 5.12]). Any finite distributive lattice A is isomorphic
to the distributive lattice on the set of lower sets of the partial order on the join-irreducible elements with meet and join opcmmons
usual set theoretic intersection and union. {

The correspondence between elements of the two lattices of Theorem[3.6.0.6]is given by sending an element A € A
to the set of:joinlirreducible elements of A less than or equal to A and by sending a lower set L to the join of all
elements of L (note this is a finite join since A is finite). Our proof of a distributive lattice structure on N will procede
as follows:

1. define the meet and join operations on AV,
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2. find the join-irreducible elements of N (we do not need a distributive lattice structure to define these elements),

3. restricting to those elements of N with largest element less than or equal to some n show that our meet and
join elements we defined on A correspond to the union and intersection operations on the set of lower sets of
the partial order of the join-irreducible elements.

Definition 3.6.0.7. Given two elements S and T" of N we define the join and meet operations as follows:
« SVT =(S+max{SUT} —maxS) U (T +max{SUT} —maxT), and
e SAT=(S —max{SUT} +maxT)N (T —max{SUT}+ maxT).

The intuition behind these join and meet operations with respect to two indexing sets S and 7" for the model
structures is as follows: for join, we apply repeated shift functors to the set with the smaller maximum so that the
maxima of the two sets agree and then we take the union, for meet we apply décalage repeatedly to the set with the
]arger maximum so the maxima agree and then take intersections. The unions and intersections here are encoding
repeated app]ications of either the left or right Quillen identity functors. An alternate way ofviewing this is the meet
operation gives the ‘largest’ or ‘terminal’ model structure in the poset admitting left adjoints (of the form composites
of identity-identity and shift-décalage) to S and T, and the join operation the ‘smallest’ or ‘initial’ model structure
admitting left adjoint from S and T to it.

Lemma 3.6.0.8. The join-irreducible elements of N equipped with the join operation of Definition are those of the form
{n} or {0,n} wheren > 1.

Proof. Note {0} is not a join-irreducible element since it is the least element of the poset M. Suppose U is not of the
form of {n} or {0, n} withn > 0 so that there is a second greatest element of U which is non-zero. Say {m,n} C U
withn = max U and m = max(U \ {n}). Then we have thac U = {m —1,n— 1} V (U \ {m}). Note that we have
both{m —1,n —1} <Uand U \ {m} < U and that m — 1 > 0 so that U cannot be join-irreducible.

Now consider an element of the form {n} with n > 1, it is clearly join-irreducible since the join is defined as the
union of two sets and so for S VT = {n} we must have either (or both) (S + max{S U T} — max S) = {n} and
(T +max{SUT} —maxT) = {n} so that at least one of S or T" is {n}. But this does not exhibit {n} as the join
of two smaller elements, hence {n} is join-irreducible.

Lastly consider an element of the form {0, n} withm > 1. Again either we have one of the two sets (S +max{S U
T} —maxS) = {n} and (T + max{SUT} —maxT) = {n} is {0,n} which doesn’t exhibit {0, n} as the join of
two smaller sets, or we have one of (S + max{SUT} — max S) = {n} and (T + max{SUT} —maxT) = {n}
is {0} and the other {n}. But one of these sets has been shifted so that their maxima agree which is not the case since
0 < n hence {0,n} is join-irreducible. &

The poset of join-irreducible elements of AV is depicted in Figurc For the proof that NV is a distributive lattice

{0,1} {0,2} {0,3} {0,4} {0,5} {0,6}

T T 1 T T ]

{1} {2} {3} {4} {5} {6}

Figure 3.4: The poset of join-irreducibles of N

we will restrict to the sub-lactices NV, consisting of those sets whose maximum element is ac most 7. The poset of

join-irreducibles of AV;. is then the obvious truncation ofFigurcconsisting of {n} and {0,n} withn <r.

Definition 3.6.0.9. The poset of join-irreducible elements of N will be denoted JZN and the poset of join-irreducibles
of the truncation NV, by JIN,.

Example 3.6.0.10. The poset JZN 5 of join-irreducible elements of N3 is depicted in Figure The set of lower sets

of this poset are

{0} {{1},{0,1},{2}} {{1},{0,1},{2},{0,2}}

{{1}} {{1}5,{0, 13, {2}, {3}}  {{1},{0,1},{2},{0,2}, {3}}

{1}, {2}} {{1},{2},{0,2}} {{1},{0, 1}, {2}, {3}, {0, 3}}
{125 {30 {{13:42},{0,2}, {3} {{1},{2},{0,2},{3},{0,3}}
{101 {15 {25 {85:{0,3} {{1},{0,1}, {2}, {0, 2}, {3}, {0, 3}}
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(0,1} {0,2} {0,3}

{1} {2} 3}

Figure 3.5: The poset of join-irreducibles of N3

The particularly simple structure of the posets JIN, make it casy to classify the set of lower sets of the join-
irreducible elements of V.. One can see the following easily from the structure of V..

Lemma 3.6.0.11. The lower sets of the join-irreducible elements of Ny are of the form @, or

{{1n{2h . s U {{0,4:},{0,t2}, ..., {0, tx }}
where the first set contains all elements @ for 1 <4 < s and max; t; < s.

We now show a bijection between the set of lower sets of the partial order on the join—irreducible elements of\./\/‘r
and elements of NV,..

Lemma 3.6.0.12. There is a set bijection from N,. to the set of lower sets of join-irreducible elements of N

Proof. Lower set to N,.: We send a lower set to the join of its elements in ;.. This maps () to the element {0}. Given a
non-empty lower set of the form

{{1}7 {2}7 R {S}} U {{07t1}a {Oat2}7 R {O,tk}}

where s < 7 we send it to the join of its elements. Accordingly we have to shift all the subsets up so that their maxima
agree and take union by the definition of the join operation. This gives the set
{s—t1,8s—ta,...,8 —tx, s} .

N, to lower set: We send an element of ;. to the lower set of all join-irreducible elements of ;. less than or equal
to it. This maps {0} to (. Given an element S = {t1,to,...,tg, s} the singleton join-irreducibles less than S are
{{0},{1},{2},...,{s}}. Forajoin-ireducible of the form {0, a} this is less than S if and only if {0, a} A.S = {0, a}.
This holds if and only if a < sand t; = s — a for some t; € S.

These operations are easily seen to be inverse to each other.

Definition 3.6.0.13. Denote by « the set morphism sending an element of N,. to a lower set of the bijection of

Lemma[3.6.0.12and 3 its inverse.
Lemma 3.6.0.14. We have the following identities:
a(AV B) = (aA) U (aB)
a(ANAB) = (aA)N (aB),
i.e. o and B preserve the join and meet operations.
Proof. Let the elements A and B of NV, be given by:
A=1{s1,82,...,8n,8}
B={tito,... t,t}
where without loss of generality ¢ < sand 51 < s2 < ...sp, < s and similarly for the ;. We then have
a(AV B)=a({s1,82,..,8n, s} U{t1 +s—t,ta+s—1t,...,tm +s—1t,5})
=a({s1,82,. .., Sn,t1 +8—t,ta+S—t,...,tm +8—1t,5})

{1142}, ... {s}}U{{0,s —s;} |1 <i<n}U{{0,t—t;} |1 <i<m}
= (aA) U (aB)
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where we have used the definition of @ from Lemma[3.6.0.12] Similarly for compatibility with the meet operations we
have:

a(ANB)=a({s1+t—s,s0+t—8,...,8, +t—s,t}N{ty1,ta,... , tm,t})
={{1},.. ., {t}} U{{0,a} |a =t —t; forsome 1l < i < m,
anda=t—(s; +t—s)=s—s;jforsomel < j<n}

a(A)Na(B) ={{1},{2},....{s}} n{{0,s —s;} |1 <i<n}
A (2 A N {0~ ) [1<i<m)
These two descriptions of (A A B) and a(A) N a(B) are equal and so we have shown o commutes with the meet

and join operations. By replacing A and B in the equations ochmmaWith B(C) and B(D) and applying 8

to the same equations we obtain /3 preserves the meet and join operations too.
Corollary 3.6.0.15. The lactice scructure on Ny is a distribucive lactice.

Proof. Since JZN, is a dlbtrll’)uthL lattice since its join and meet operations are union and intersection so too thgn

is NV, bv Lemma

Coro]]ary 3.6.0.16. The lattice structure on N is a distributive lattice.

Proof. The meet and join operations on S and T" can be computed in ;. where 7 is the larger of the maxima of S and

T The distributive equations hold in N, hence they hold too in N.

3.7 Left properness

In this section we prove all model structures (fC) g and (bC) ¢ constructed are left proper, i.c. the cobase change of a
weak equivalence along a cofibration is a weak equivalence. The author learnt the following technique from
where a model structure on the category of (small) 2-categories with morphisms the 2-functors is constructed and
shown to be left (and right) proper. We reproduce it here adding a couple of details. Recall the notion of a ﬁnite]y

cofibrantly generated model category Definition(1.4.2.8

Proposition 3.7.0.1. Let M be a finitely cofibrantly generated model category with generating cofibrations I such that whenever
we have a double pushout diagram of the form

S——A—»B
[ b
D*>OT>P

with ¢ a generating cofibration and p a trivial fibration then p' is a trivial fibration too, then M is a left proper model category.
Proof. We follow the proof given in [Lac02] which proceeds in three steps. We consider diagrams of the form

A—>B

lf l (32)

C*,>P
p

starting with the assumptions of the proposition and proceed as follows: firstly we upgrade f to be a relative /-Cell
morphism, secondly we upgrade t}lL relative /-Cell complex to a cofibration, and lastly we remove the requirement
that p be a fibration. As noted in [Lac02] the first of these steps requires the finitely generated assumption and the
second & third steps are general f:lCtb about model categories.

Step 1: Suppose in Equation (3.2) that f is a relative /-Cell complex so that it is a transfinite composition of
pushouts of generating Loﬁbutlom and that p is a trivial fibration. We want to show p’ is also a trivial fibration.

54



Suppose the transfinite composition is indexed by a limit ordinal A and that by induction the result holds for all
smaller ordinals «v, then each vertical map with domain an A, is a trivial fibration.

T,

A A A C
¢ A e
B B B, P

Then by [Hov99, Lemma 7.4.1] the colimit is a trivial fibration since M is finitely cofibrantly generated and the
Ao — B are trivial fibrations. The case of A being a successor ordinal is taken care of by the assumptions on
Diagram@

Step 2: Suppose now f is a cofibration in Equation and p a trivial fibration. Factorise f using the small object
argument into a relative I-Cell complex u: A — @ followed by a trivial fibration v: @ 5 C,so f =vou. We
then have the following diagram:

A>—7>Q
fon iv
CTC

which admits a lift h. We can now form the Fol]owing diagram:

h

Arts o Q-
T r i r l r lpl
B P P P

noting that v o h = id so too is the pushout composite P — P; — P. The composite h o f = w and is therefore
a relative 7-Cell complex, then by step 1 the pushout of p along h o f is a trivial fibration. Hence the morphism
@ — P is a trivial fibration. But since v o h = id and so too its pushout we have that C' — P is a retract of the
trivial fibration Q — Py hence p’: C' — P is a trivial fibration.

Step 3: Suppose now f is a cofibration and p merely a weak equivalence. We factorise p into a relative /-Cell
complex s: A = K followed by a trivial fibration ¢t: K 5 B, so that p = ¢ 0 s and note that by the two out of three
property § is also a weak equivalence. We then have the following diagram in which the composite of the top row is p:

A=K+ B
! rl rl.
C——P,——P

Pushouts of (trivial) cofibrations are (trivial) cofibrations so C — Pj is a trivial cofibration and K — Py a
cofibration. But since the right hand square is a pushout, ¢ is a trivial fibration and K' — P, a cofibration, by step
2 we have that P, — P is a trivial fibration. Hence the composite C — P, — P is the composite of a tr1v1 11
cofibration followed by a trivial fibration and so is a weak equivalence.

Our next aim is then to use Proposition 3.7.0.1{ to verify that the model categories (fC) g and (bC) g satisfy the
conditions of Proposition [3.7.0.1} i.c. that they are finitely generated model categories and that in the diagram of
Diagramthc morphism p’ is a trivial fibration, and therefore that they are all left proper.

3.7.1 Left properness of (fC)g

Recall the notation R{a} of Sectiondenoting the generator 1 € R of the R-module R{a} := R by a. We also
abuse notation and use it to denote the image of the generator under a map R{a} = R — A.
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We first calculate, for a filtered chain complex A, the pushout of A with a generating cofibration Z,41(p,n) —
BT+1 (pa n)

(R?m{a} — R?ptlrm) — 4

0y i) 1 e

1 n
(R?pm 7} » R, @ B, la} (p—r—1) r A

Recall that one computes colimits in (fC) g by first passing to CIZ{ via the inclusion functor, computing the colimit
there and then passing back via the reflector, Lemma The pushout can then be described as follows. The
underlying chain complex of A is A with an extra summand R{a} in homological degree n and an extra summand
R{~} in homological degree n — 1, with filtracion given by:

F,(A")™ = F,A™ m#n—1,n,
nn __ FqAn q < p— ]-a
Fy(AD)" = {FQA"EBR{Q} qg>p-—1,
nn-1 _ [F A" qg<p+r,
Fo(A)" = {FqA”1 ©R{7v} gq=>p+r

and where the differentials of the two new elements o and 7y are given by dae = da and dy = a — . We now compute
the s-cycles in A’ for s < 7. Note that Z&4™(A’) will be equal to Z297™(A) when either m # n,n — 1 or if
m = nwhen g < p— 1, or lastly if m = n — 1 when ¢ < p + 7. The proof of the following lemma concerns the

remaining cases.

Lemma 3.7.1.1. For the filtered chain complex A’ of the pushout Equation , and s < 1 the following describes the s-cycles:

s 739t (A) @ R{a} qg>p-—1,

goarn—1 gy = {287 A g<p+r,

: ZPr Y A) @ R{v} q=p+r,
ZLatm (AN = Z2atm(A) m #n,n — 1.

Proof. In homological degree n with ¢ > p — 1, we have an element (z, ka) € FyA" @ R{a} = Fy(A’)"™, for some
k € R,isin 229t (A") it and only if dz + kda € Fy_s(A")™ or equivalently when dx + kda € F,_sA™ since
dao=daanda € A C A’ Butif ¢ > p—1and s < r then since kda € F,_,_1 A™ we have

kda € Fp_p 1 A" C F,_,A" C F,_ A",
so that in fact dz € F;_sA™ and then that € Z297™(A). Hence for ¢ > p — 1 the s-cycles in question are given
by:
ZPT(A) = 22T (A) @ R{a} .
In homological degree n — 1 with ¢ > p + r we have an element (z, k) € F; A" & R{y} = F,(A")" 1 is
in Z&9t=1(A’) if and only if do + kdy € F,_s(A")"! or equivalently when dz + ka — ka € F,_s(A’) since

dy = a—a.Since s < rwe have g—s > p+r—s > pso that ka and ko are both in Fyy_¢(A’) so thatdz € F,_s(A)
and then that z € Z29"~1(A). Hence for ¢ > p + r the s-cycles for s < r are given by:

23N (A) = 281 () @ Ry

We also have need for a description of the (r + 1)-cycles of the pushout A’. For most (r + 1)-cycles we have a

similar classification as for the s-cycles with s < 7, the exceptions being Zf_:ll’p_H_H (A") and Zfilr’p+r+n_1 (AN.
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Lemma 3.7.1.2. [or the filtered chain complex A’ of the pushout of Equation , the following describe the (1 + 1)-cycles:

ZR8(A) g<p-1,
ngfn(A/) = {(x, ka) | dr + kda € Fp—r—zA"H} g=p—1,
ZET(A) @ R{a} q>p,
ZEE A g<p+r,
ZPI AN = S {(2, k) | do + ka — ka € F, 1 (A)"} qg=p+r,
ZPE 1 (A) © R{v} g>pHr+1,
ZEET(AY) = 229 (A) m#n,n—1.

Proof. The first case in cach cohomological degree is clear, the third cases in cohomological degrees n and n — 1 are
similar to the proof‘of‘Lcmma We calculate then the second cases in degrees n and n — 1.

In homological degree n with ¢ = p — 1 we have an element (2, ka) € F,A" @ R{a} = F,(A)" is in
Zg_’f;_n(A/) = Zf_;ll’p_1+n(A/) if and only if do + kda € Fq_r_l(A/)"'H = Fp_T_Q(A/)"+1, or equivalently
dz + kda € F,_,_o A" The case for homological degree n — 1 with ¢ = p + 7 is similar. &

Note lfWG further have a morphism A — B and form the iterated pushout

Zrp1(pyn) —— A - s B

I

Bryi(pn) — A —— B
p

then B’ takes a similar form to A’ in that since each square is a pushout so too is the composite square so B’ is obtained
from the pushout square

Z’F"rl(pa n) — B

-

Bry1(p,n) —— B’

where the top horizontal morphism is the composite of Z,41(p,n) — A with p. We denote the new elements by 8
(instead of &) and 6 (instead of y), which appear in the same filtration and homological degrees as o and 7y respectively,

and whose differentials are dB = db where b = pa, and dd = b — . Note too that p'a = S and p'y = 4.
Proposition 3.7.1.3. Fora morphism of_ filtered chain complcxes p: A — B we have the following surjectivity results on cycles:

1. if pis such that Z(p) is bidegree-wise surjective for some s < 7, then the pushout p': A" — B’ also satisfies Zs(p')
is bidegree-wise surjective,

2. suppose p is such that Z,.(p) is bidegree-wise surjective and is an r-weak equivalence, then the pushouc p': A’ — B’
also satisfies Zy41(p") is bidegree-wise surjective.

Proof- Most cycle surjectivity conditions on p’ follow directly from our description of the cycles of A’ (and the equiva-
) ] > y p y q

lent descriptions for B’) from Lemmas [3.7.1.1|and 3.7.1.2| along with p(e) = 8 and p(7) = 0. The missing cases are

. . o —1,p—1 —1
bidegree-wise surjectivity of Z2 ;" 7 (p') and ij__f’p_‘—r"_n ().

For the former case of‘Zf_le’p_H_n (p') we consider an element of (y, k) € Zf_:ll’p_1+n(B/) so that dy+kdS =
dy + kdb € F,_,_3B" ! by Lemma[3.7.1.2|s0 then we have an element of‘BfJ:fil’pirilJrnJrl(B) given by:

1
) .
( toyi—yy —= REZ @ R, {dy + kdb} M R

(p—r—1 (p2r2)> — B (3.4)

which gives a commutative diagram of the form:

Z,.+1(p—7‘—1,p—r—1+n—|—1)%14

Zl n ~|P

Bryip—r—1,p—r—1+n+1) —— B
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where the morphism B, 41 (%, *) — B is given by Equation . Since @ is a generating r-cofibration and p an r-acyclic
fibration there exists a lift b and we let & = hy. We then have h(dy + kdb) = dz+ kda, so that (x, ko) € F,_1(A")"
withdz+kda = do+kda = h(dy+kdb) € h (Fp_p_oB"*') C F,_, o A" ! andso (2, ka) € ZP P17 (A")
is the required lift.

The latter case onfI{"p+7‘+"_1(p/) is near identical, we consider an element (y, kd) € )

that dy + kdd = dy + kb— kB € F,_1(B’)" by Lemma or equivalently that dy + kb € Fj,_1 B™. Again then
we have a boundary element of Bfffrn(B) given by:

Zfi-{,p-i-r-i-n—l (B')

(p+7) (p—1) (p—r—1)

o)
(R” i-yy = Ry @ RE, ) {dy + kb} J R ) —— B (3.5)

again giving a commutative diagram of the form:

Zr11(p, p+n) % A

Bri1(p,p+ n) — B

i

whose morphism B, 41 (%, %) — B is given by Equation and for which a lift h exists. Define ¢ = hy so that
h(dy+kb) = dz+ ka. Now (x, k) € Fyyr(B')"~ maps to (y, kd) under p’ and we have d(z, k) = dz+ kdy =
dz+ka—ka = h(dy+kb) —ka € h (F,_1B")+F,_1(A")" = F,_1(A")" so that (z, ky) € ZPIPPH 1A
is the required lift.

These then show the remaining cases of part 2 of the lemma.

Lemma 3.7.1.4. The kernel of the pushouc p’: A’ — B"is K = ker(p: A — B).

Proof. This is clear from the description of A’ and B’ and that kernels are computed fileration degree-wise .md
cohomological degree-wise in fC. '

Recall the map wy41: Bry1(—) = Zy11(—) of Defmition1.6.0.2

Proposition 3.7.1.5. For p an r-weak equivalence which is Z,.-bidegree-wise surjective, the morphism E 7 (p'): B2 (A') —
E:_’:l (B’) on the (r + 1)—pagcs of the associated spectral sequences is injective.

Proof. Consider a cycle z representing some class of £} (A’) whose image under E,1(p') is 0. We then have a
boundary (o, ¢1), where we write ¢g and ¢; for the two r-cycles, in B,y (B') such that p/(2) = w,41 ((co, ¢1)). Since
pis Z,-surjective so too is p’ by Propositionso we can lift ¢g and ¢; to r-cycles eg and e3 of A’. We then have that
z—wry1 ((€0, €1)) isan (r+1)-cycle of A’ which is in the kernel of p’. By Lemmathe kernel of p’ is K = ker(p)
which is T—acyc]ic, since pu“backs OFacyclic fibrations are acyclic fibrations, so the Cycle Z— Wr41 ((eo, 81)) is in fact
an (r + 1)-boundary say (ko, k1), hence the cycle z is an (7 + 1)-boundary z = w,41 ((€g + ko, e1 + k1)), proving
injectivity of E,41(p’). @

Corollary 3.7.1.6. Let p: A — B be an S-trivial fibracion for the model structure (fC) g (whose weak equivalences are the
r-weak equivalences) of Theorem [3.1.0.2)and A — A’ the pushout of A along a generating cofibration. The pushout p’ of p
along A — A’ is an S-trivial fibration.

Proof. If the generating cofibration is of the form 0 — Z (%, %) then p’ is of the form A® Z,(*, %) — B® Z,(*, *)
and the result is clear.

If the generating cofibration is of the form Z, 41 (%, %) — By11(x,%) and if s € S with s < 7 so that p is
Since p is Zy-surjective and also an 7-weak equivalence
the pushout is Z,.y1-surjective by part 2 of Proposition [3.7.1.3} and hence E,1(p’) is surjective by Lcmma
Lastly by Propositionsince pis an r-weak equivalence and Z,.-bidegree-wise surjective Ey41(p’) is bidegree-wise

injective. Hence p’ is an S-trivial fibration.

Zg-surjective then so too is p’ by part 1 of Proposition

Theorem 3.7.1.7. The model categories (fC)s of Theorem|3.1.0.2|are left proper.

58



Proof. By Proposition 3.7.0.1]it suffices to show that (fC)s is a finitely cofibrantly generated model structure and chat
in the double pushout

S—>A*»B

{7 G.6)

D*>C*,>P
p

where 7 is a generating cotibration of (fC)g and p a trivial fibration of (fC) g that p’ is also a trivial fibracion of (fC)s.
The model structure is finitely cofibrantly generated by Lemma [1.2.1.16] and the double pushout condition follows

from Corollary 3.

372 Left properness of (bC)g

We follow a similar procedure here for bicomplexes, we show the double pushouts maintain the various surjectivity
conditions required and then show injectivity of the (r + 1)-page.

D,p+n ~
ZWPPE —— A—=» B

N

BWPIT" —— A —— B

We begin by describing the pushout A’. We denote by (ag, . . ., a,) the (r+1)-cycle of A determined by Equation

and its image under p by p(ao, ..., ar) = (bo, ..., b,). The pushout can be computed bidegree-wise, we denote by
(g, - ., ap_1) the generators of the r-cycle ZWETHPHr+n OFBWff;’_n and by «y the generator of‘ZWg’p-i_n_l of

BWfffn, so that the image ag is identified with dy,.—1 + doy in the pushou.

Lemma 3.7.2.1. The pushout A s given by the quotient of A ® ZWp+T’p+T+" @ ZWp ptn—l , where the new generating
elements of ZWMT’HTJF” are given by the cv; and dyv; and the generators of ZWy p+n ! by 7, doy, d1y and dody 7, by
the relation dgy = ag — dycu—1.

Next we classify the s-cycles of the pushout A’ for s < r + 1. Clearly in bidegrees (p,p + m) withm # n,n — 1
the s-cycles will be the same as those of A, we then need to understand them on the n — 1 and n diagonals. We
do not give as explicit a description as for filtered chain complexes but only enough so as to prove cycle surjectivity
results. For the n diagonal we have new elements the dya, and di1y to consider. We also have doy but note that
ap = doy + dyoy_1 so it does not introduce new elements not already introduced by the dj a,. Note next that the
dya, all satisfy dydya, = 0 = dody i so we can ignore all dja,, when computing whether a sequence is an s-cycle
or not. Consider now we have an s cycle in which d;7 appears in some component say:

(20,1, Tim1, Ti + KA1V, Tig 1y vy Ts—1) (3.8)
in which the z; are elements of A and we have removed any dj ... For this to be an s-cycle we need
1. dozg =0,
2. dizj = doxjp1 whenj #i—1,5 -1, and
3. dizi—1 = do(z; + Kdy7y), which since dod1y = d1ag amounts to having dyz;—1 = dox; + Kkdyao.
So Equation is an s-cycle of A’ if and only if the following is an s-cycle of A:
(T, X1y oy Tjm1 — KAQ, Tiy Tig1ye -y Ls—1)

since dpag = 0. For those s-cycles that involve the bidegree of dq7y the s-cycles of A" without any of the dy o, are
then in bijection with the s-cycles of A via the above translation. We summarise this in the following lemma which
requires a certain degree of sensible interpretation with regard to in which degrees the d1y and dj ov, can appear. For
example for ¢ < p — 2 all the coefticients £ and k4 must be 0 in the following lemma.

Lemma 3.7.2.2. The s-cycles of Al'in bidegrees (q,q +n) are of the form:
(o, 21y, Tim1 + Kao, T; + K17, Tit1, -+, Ts—1) + (0,...,0,kodraxg, . . ., Kp—1d10tr—1,0,...,0)

for some K, ki € R and where the x; are in appropriate bidegrees and the sequence (x;); is an s-cycle of A.
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Consider now s-cycles along the (n — 1)-diagonal. The new elements of the pushout A’ are 7y and the ... Suppose
an s-cycle of A’ has in some component a non-zero mutiple of an a, say @; + ;. Then dg of this must equal dy
of the (i — 1)-component of the s-cycle and so the (i — 1)-component must be of the form z;_1 + kja;_1 where
the coefficients of the @, are equal. Iterating up our s-cycle must have a kKo, in cach component for * < 4 and where
K = Kj, this also shows ¢ > j. Iterating down instead any subsequent components of the s-cycle must also be of the
form x4 + Kovyj—; for * <1 — 1. 1f a component has a non-zero ¥ summand, «; + Ay then the (¢ — 1)-component
must have non-zero o, _; summand x;_1 + Ko,_1 since

do(z; + Ay) = di(zi—1 + Koe—1)

which gives dox; — dix;—1 = Kdiay—1 — Ado7y and since the left hand side is in A so too is the right hand side
but this can only happen if A = —& so that doz; — dix;—1 = kdiay—1 + kdyy = Kag. So for an s-cycle of A’ to
have component with summand —#7y it must have all previous components having summands of the form K, and
the v summand appears in a component of index 7 or higher so that the s-cycle is an (7 4+ 1)-cycle (or longer). These
descriptions are summarised in the following lemma. We denote the datum ofa Jj-cycle given by (kao, kg ..., Koy)
by R(ao, Oy ozj) which is isomorphic to the R-module R which determines the coefficient .

Lemma 3.7.2.3. For s < 7 the s-cycles of A" along the (n—1)-diagonal are of the form ZWs(A) & R(a, a1, . . ., o) where
the module R(cv, a1, . . ., ¢uj) denotes a single copy of R determining the coefficient & and where cuj shares a bidegree with the
final component of the s-cycle. For s = 1+ 1 the r 4 1 cycles are either of the above form ZW,41(A) ® R(ag, a1, .. ., )
or of the form ZW,41(A) & R(ao, @1, ..., Qp_1,7) where again the module R(cy, a1, . .., cp_1,7y) determines the
coefficient k and A = —k, with 7y sharing a bidegree with the final component of the (r + 1)-cycle. &

Given these descriptions of the s-cycles we now show given ZW-surjectivity conditions on a map of bicomplexes
p: A — B the induced map on pushouts A" — B’ is also ZW-surjective where B’ is the double pushout in

ZWT+1(p7p+n) — A % B

| L]

BW,1(p,p+n) — A —— B

and note that the pushout B’ has a similar description as A does. We write a, = p(b*) and let B have new elements
B4 and § where the induced map satisfies p(c.) = Bs and p(7y) = d. The preceeding two lemmas give the following
surjectivity results.

Lemma 3.7.2.4. Suppose p: A — B satisfies ZWg-surjectivity for some s < 1 =+ 1, then so too does P

Proof. This is apparent from our descriptions of s-cycles of A’. We can lift s- -cycles of B into s-cycles of A by Assumption
and replace B, and & with au and v respectively. This finds an s-cycle preimage of any s-cycle of B’ under p'.

Lemma 3.7.2.5. The kernel of p': A — Bis K = ker(p: A — B).

Recall the map wyy1: BWyg1(—) — ZW,1(—) of\Deﬁnition

Lemma 3.7.2.6. Suppose p: A — B is an r-weak equivalence which is also surjective on O-cycles and 7- cvcles i an
acyclic fibration in (bC),., then the induced morphism on the (1 + 1)-page of the spectral sequence E 3y (p'): By (A') —
E7 (B') is injective.

Proof. Consider a cycle [2] € E; (A”), represented by an (r + 1)-cycle z, such that its image under E, 41 (p’) is 0, so
that the p(2) is a boundary of B’. Hence p(2') = wy11 ((co, ¢1, ¢2)) where ¢ and ¢z are the 7-cycles, and ¢; the 0-
cycle making up an (r 4 1)-boundary. By assumption p is surjective on 0-cycles and r-cycles so by Lcmmaso oo
is p’. Hence we can lift ¢g and ¢2 to m-cycles eg and e of A" and ¢; to a O-cycle €3 of A’. Consider now the (r+1)-cycle
z—wr41 ((eo, €1, €2)) of A’, each component is in the kernel of p’ which is K’ = ker(p) by Lemmamhence since
K is r-acyclic we have that the (r + 1)-cycle z — wy11 ((eg, €1, €2)) is an (r 4 1)-boundary, say w11 ((ko, k1, k2))

Hence z too is an (7 4 1)-boundary, z = w41 ((e0 + ko, €1 + k1, e2 + k2)). This shows E;. 41 (p’) is injective. &

Corollary 3.7.2.7. Let p: A — B be an S-trivial fibration for the model structure (bC) g (whose weak equivalences are the
r-weak equivalences) of Theorem [3.2.0.2land A — A’ the pushout of A along a generating cofibration. The pushout p' of p
along A — A’ is an S-trivial fibration.
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Proof. 1f the generating cofibration is of the form 0 — ZW?7'* then p’ is of the form A® ZW5™* — B ® ZW5*
and the result is clear.

If the generating cofibration is of the form ZW,. 41 (%, %) — BW,;41(*, %) and if s € S so that p is surjective on
s-cycles then so too is p’ by Lemma Since p is surjective on O-cycles, r-cycles and also on the (r 4 1)-page of the
spectral sequence it is surjective on (7 + 1)-cycles too by Lemma|1.7.0.12|and so again by Lemma[3.7.2.4|we have p’ is
also surjective on (r +1)-cycles and again by Lemma|1.7.0.12[p’ is surjective on the (r+1)-page of the spectral sequence.
Lastly, by Lcmma since p is an 7-weak equivalence and ZWy and ZW,-bidegree-wise surjective Ey11(p') is

bidegree-wise injective. Hence p’ is an S-trivial fibration.

Theorem 3.7.2.8. The model categories (bC) S of Theorem|3.2.0.2 are lcft proper.

Proof. By Proposition 3.7.0.1]it suffices to show that (bC)g is a finitely cofibrantly generated model structure and that
in the double pushout

B
l (3.9)
P

where i is a generating cofibration of (bC) g and p a trivial fibration of (bC) g that p’ is also a trivial fibration of (bC) g.
The model scructure is fmltely cofibrantl y generated by Lemma [1.7.0.16] and the double pu%hout condition fol]ows

from Qorollary m

3.8 Cellularity

3.8.1 Cellularity of (fC)g

The smallness conditions of Definition have already been established so our main task here is to Verify the
effective monomorphism condition. We will do so by instead showing that cofibrations are regular monomorphisms
and use Proposition to obtain they are effective monomorphisms. To show a cofibration f: A — Bisa
regular monomorphism we would like to show that f is the equaliser of some pair of morphisms, the obvious choice
being the equaliser of the pair 0, ¢: B — B/A where ¢ is the map from B to the cokernel B/A. This is in general not
true for any morphism of filtered chain comp]exes however it will be true for che strict morphisms (Deﬁnition
so we will demonstrate that any cofibration in (fC) g is a strict morphism of filtered chain complexes.

Definition 3.8.1.1. For an R-module N we denote by Dy (N) the filtered chain complex whose underlying chain
complex is D™ (N) and such that Fp_ng(N) = 0and F;DD;L(N) = Dg(N) We also write D™(N) for the filtered
chain complex whose underlying complex is D™ (N') and which is in all filcration degrees.

Lemma 3.8.1.2. The filtered chain complexes D™ (N') and Dy (N ) are acyclic and fibrant in the model seructures (fC)g.

Lemma 3.8.1.3. Cofibrations in ( fC) g are inclusions.
Proof. Leti: A — B be a cofibration in (fC) g and consider the lifting problem

A —— D1 (Am)

R
. -
% e
-
-
-
-

B—0
where the disc ob’ect is in all fileration d€g1€€§ and the map from A to the disc is the identitv in deglee n and the

composite of the dlﬁerentml and identity in degree 7 — 1. Since 4 is a cofibration and the disc an S-acyclic flbmnt
object a lift exists. Since the map from A to the disc object is an inclusion in degree 7 so too is .

In fact we have the stronger result that cofibrations are strict inclusions by taking appropriate disc objects.

Lemma 3.8.1.4. Cofibrations in (fC) g are strict inclusions of filtered chain complexes.
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Proof. Welet f: A — B be a cofibration of (fC)g, take N = A" /F},_1 A", and consider the diagram

A —— DI"Y(N)

I

B—0

where the morphism from A to the disc is given by the inclusion of Fy A" — A" followed by the quotient A™ —
A"/Fp_1A" in degree n which fu]ly determines the morphism. A lift h exists in the diagram since f is a cofibration
and the disc object is acyclic and fibrant in (fC)g. Consider then an clement a € F, A" If f(a) € F,_1B" then
hf(a) = 0 since the (p — 1)-fileered part of the disc object is 0, hence the image of @ in the disc object is 0 b)
commutativity of the diagram and so @ € Fj,_1 A™. This shows the morphism f is strict. &

Proposition 3.8.1.5. The model categories (fC) g of Theorem|3.1.0.2]are cellular.

Proof. We need to show the three conditions of Definition(1.4.10.1{hold. By Lemma 1.2.1A16:the domains and codomains

of the generating cofibrations are all small, as are the domains of the generating acyclic cofibrations hence they are small

relative to the generating cofibrations. This shows the first two conditions. For condition 3 we need to demonstrate
all cofibrations are effective monomorphisms By Proposition lmwe need only check the cofibrations are regular
monomorphisms. The cofibrations are certainly monomorphlsms by Lemmal3.8.1.3|and by Lcmmathcy are strict
morphisms of filtered chain complexes, hence by Lemmas and|l @ we can compute cokernels of cofibrations

cohomological degree-wise and filtration degree-wise. This gives the cofibration A — B is the kernel of its cokernel

and so A — B is the equaliser of the pair 0,¢: B — B/A and hence a regular monomorphism. This shows any
cofibration is a regular monomorphism and hence an effective monomorphism. &
382 Cellularity of (bC)¢

Lemma 3.8.2.1. Cqﬁbmtions n (bC ) g are (dcgreewise split) monomorphisms.

Proof. The proof is similar to that for chain complexes [Hov99] Proposition 2.3.9].

Proposition 3.8.2.2. The model categories (bC) g of Theorem [3.2.0.2)are cellular.

Proof. We need to show the three conditions of Definition|1.4.10.1/hold. By Lemma|1.7.0.16|the domains and codomains

of the generating cofibrations are all ﬁnite, as are the domains of the generating acyclic cofibrations hence they are small
relative to the generating cofibrations. This shows the first two conditions. For condition 3 we need to demonstrate
all cofibrations are effective monomorphisms. By Proposition [1.4.10.3|we need only check the cofibrations are regular

monomorphisms. The cofibrations are certainly monomorphisms by Lemma [3.8.2.1|and since bC is an abelian category
any monomorphism A — B is a kernel of some morphism f: B — C and hence the equaliser of the pair
f,0: B— C,so A — B is regular. This shows any cofibration is a regular monomorphism and hence an effectlve
monomorphism. ;

3.9 Stability
3.9.1  Stability of (fC)4

We show that the model structures of (fC) g on filtered chain complexes are stable model categories. Recall the
definition of a stable model category, Definition[1.4.9.3] Recall too that in a pointed model category the loop functor
on A can be computed by a homotopy pullback of the diagram

QA >
ah

e %

* ——

and that such a homotopy pullback, in a right proper model category, can be computed by replacing the map + — A
by an acyclic fibration and taking a standard pu]lback as in Lemma|1.4.9.2
For filtered chain complexes recall the notion of the r-suspension X7, r-loops " and r-cone C, functors of

Definitions|l.2.1.18]and|1.6.0.12|and that there is a projection 7: Cy.(A) — 37 A which by Lemma 1.6.0.14is surjective
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on all s-cycles with s < 7 so in particular is a fibration for all model structure (fC)g with max S = r and such
that C;.(A) is r-acyclic. Applying the 7-loops functor to this map we obtain a map Q"mw: Q"C,.(A) — A which is
surjective on all s-cycles for s < 7. Note too that the kernel of 7 is simply 2" A. By Lemmawe can then give a
model for the loop functor on Ho (fC) g on the level of the model category (fC) g by the pullback diagram:

QrA » Q"CL(A)
S
A
from which the following is immediate.
Lemma 3.9.1.1. The loop functor on an object A in the model category (fC) g is given by Q" A.

Note that in any pointed model category the loop functor is always right adjoint to the suspension functor. Since
our loop functor, £, is an automorphism of fC its adjoint must be its inverse which is given by £". We have then

proved the following.

Proposition 3.9.1.2. The model categories (fC)g of Theorem are stable model categories whose loops and suspension
functors are given by Q" and 3.

3.9.2  Stability of (bC) g

We now wish to show a similar result for (bC) g The proof of (bC) ¢ being stable is similar to that of ( fC) g, we compute
a pullback of a projection from a cone object, however this gives an object more unwieldy then a simple shift by an
expected bidegree, however this pullback is weakly equivalent to the shift.

For bicomplexes recall the notion of the r-suspension and 7-loops functors X" and " given in Definition [[2.2.8]
and the r-cone functor C,. of‘Deﬁnitionand that the 7-cone C;.(A) on a bicomplex A is equivalent to tensoring
the bicomplex by ZW,.(r, r — 1). There is a projection of ZW,.(r,7 — 1) onto the bicomplex R™"~! and this induces
a projection, by tensoring by A, of C,.(A) onto the r-suspension of A, i.e. we have a morphism w: C.(A) — X"A
which we can apply the 7-loop functor to to obtain Q": Q"C,.(A) — A. Note too that Q"C\.(A) is r-acyclic since
Cyr(A) is r-acyclic by Lemma By Lemmawe can then give a model for the loop functor on Ho (bC) ¢
on the level of the model category (bC) ¢ by the pullback diagram:

P » Q"CL(A)
B
A

which is so far the same method we used for (fC) g. Now however we must identify P. The bicomplex Q7C.(A) is
equivalent to tensoring by ZW,.(0,0). We introduce the following notation.

Notation 3.9.2.1. The bicomplex NW,.(p, q) is given by the pullback of the projection ZW,.(p, ¢) — RP*? along the
0 map 0 — RP-4.

The pullback P is then the bicomplex NW,.(0,0) ® A. We wish to show this is 7-weakly equivalent to " A. Note
there is an inclusion 7: 2"A — NW,.(0,0) ® A.

Lemma 3.9.2.2. The inclusioni: Q" A — NW,.(0,0) @ A is an r-weak equivalence.

Proof. Let vy, 2, ..., 4, ..., ap_1 denote the generators of NW,.(0, 0) in bidegrees (—¢, —%) and similarly By, 31,
ooy Biy -+« oy Br—1 denote the generators of NW,.(0, 0) in bidegrees (—i, —i+1) so thatd®a; = B;—1 for0 < i < r—1
and d*a; = B;_1. The inclusion i: Q"A — NW,.(0,0) ® A is then just the map a — B,_1 ® a.

We consider the 0-page of the spectral sequence of NW,.(0,0) @ A. No element of the form ¥;0; ® a; are
O-cycles since d’a; # 0. We then need only consider elements of the form 3;8; ® a; in the kernel of dy so that
cach a; € ker dé‘. Note however that ¥j<,_2f8; ® a; = dozigr,lai ® a; hence those elements are in the image
of the differential and become 0 on the 0-page of the associated spectral sequence. Note too that no new elements
are introduced with image under d° given by 3,1 ® a,—1 (unless a,—1 were already in the image of d°). Hence the
inclusion i: Q"A — NW,.(0,0) ® A induces an isomorphism on the 0-page of the spectral sequence and so on all
subsequence pages of the spectral sequence. @
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We then have a model for the loops functors on the level of the model category (bC) ¢ given by 2" and again since
suspension is adjoint to the loops functor and we have modelled the loop functor by an auto-equivalence of bC the
suspension functor can be modelled by 7.

Lemma 3.9.2.3. The loop functor on an object A in the model category (bC) 4 is given by Q2" A.

And we have shown the following result.
Proposition 3.9.2.4. The model categories (bC) g of Theorem 3.2.0.2) are stable model categories whose loops and suspension
functors are given by Q" and ¥ @
310 Quillen equivalences between the posets

We consider the £ 4 Tot™ adjunction of Proposition [2.1.0.2f which was shown to be a Quillen adunction between

approprlate model structures

L:(fC)g == (bC)g : Tot"

Recall from Definitions[1.4.12.5|and [1.4.12.6] the notion of a right Bousfield localisation and from Thcorcmthe
existence of right Bousfield localisations of right proper cellular model categories at the IC-cellular equivalences for
some set of‘objects JC. These definitions and results can also be found in [GST3]. Since both model structures are right
(and left) proper and cellular they admit right (and left) Bousfield localisations at any set of:objects K (and morphisms
C) by Theorems|1.4.12.3[and [1.4.12.7} We also have the following result of Dugger.

Proposition 3.10.0.1 ([Dug01} Proposition A.5]). For M a left proper, cofibrantly generated model category there exists a set
w of coﬁbmnt objects dctccring weak cquivalences, ie. that X — Y is a weak 6quivalence 1f and only if the induced map on
homoropy function complexes

map(A, X) — map(4,Y)

is a weak cquivalence for all A € W. Further the set W can be taken to be a set of coﬁbmnr rcplaccmcnts for the domains and
codomains of the generating coﬁbmtions. &

We will make use of these results along with the cellularization principle of Greenlees-Shipley to show that the
L -4 Tot" adjunction is in fact a Quillen equivalence. We likely do not have need for such a powerful result as we
will show the particular cellularizations we take do not in fact alter the model categories. The fb”owing is Greenlees
and Ship]ey’s definition of smallness required to state the cellularization theorem which is a notion of smallness in the
homotopy category. To avoid confusion we shall refer to it as homotopically small.

Definition 3.10.0.2. An object K is homotopically small if for any set of objects { Yy } we have, in the homotopy category,
the natural map @, [K, Ya| = [K, AaYa] is an isomorphism.

Recall the notion of the K cellularization of M given in Definition [1.4.12.8

Theorem 3.10.0.3 (The Cellularization Principle, [GST3] Theorem 2.7]). Let M and N be right proper, stable, cellular
model categories with a left Quillen funccor F': M — N and adjoint U. Write Q for a cofibrant replacement funcor in N and
R for a fibrant replacement in N.

1. Let K = { Ay} be aset of objects in M with FQIKC = {FQAy} the corresponding set in N. Then F and U induce a

Quillen adjunction:

F:K-cell-M —=—= FQK-cell-N :U
between the K-cellularization of M and the FQK-cellularization of N

2. If K = {Au} is further a stable set of homotopically small objects in M such that for each A € K we have FQA
is small in N and the derived unic QA — URFQA is a weak equivalence in M, then F' and U induce a Quillen

equivalcnce between the cellularizations:
K-cell-M ~qg FQK-cell-N .
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There is a third part to the theorem instead using a set of homotopically small objects of AV we have no need of here.
Our goal now is to use the celullarization principle to show that the adjunctions £: (fC)g &= (bC)4 :Tot™ are
Quillen equivalences. We will take M = (fC)S, N = (bC)S and /C will be the set obtained from Proposition
which consists of the domains and codomains of the generating cofibrations of (fC)g (they are already cofibrant
objects). We take the functors tobe F' = Land U = Tot™. Note that in this setting we already know M and N
are right proper, stable and cellular. The first part OFTheoremis then immediate. To obtain the result of the

second part we need to check the following:
1. K is a stable set of homotopically small objects,
2. for cach A € K that FQA is homotopically small (the A are already cofibrant so we needn’t apply @ here),
3. the derived unit QA — URFQA = Tot" LA is a weak equivalence for all A € K (A is already cofibrant and

every object is fibrant).

This will establish the Quillen equivalence between the C-cellulatization K-cell- (fC)S and the F'Q/C-cellularization
FQIC-cell- (bC)g. The former is just ( fC) g since the K-cellular equivalences are simply 7-quasi-isomorphisms and
the fibrations are unchanged by right Bousfield localisations — the definition of K-cellular equivalence was given in
Deﬁnition and that these are the 7-quasi-isomorphisms follows from Proposition It will then remain

to show that:
4. right Bousfield localising (bC) g at FQK doesn’t change the model structure.

Theorem 3.10.0.4. For S containing both 0 and r there is a Quillen equivalence between the S-model structure on filtered chain
complexes and the S-model structure on bicomplexes given by the £ Tot! adjunction:

L:(fC)g == (bC)g : Tot"

Proof. We will show the conditions 1-4 above hold. Note 1 is immediate since the generating cofibrations are closed
under the loop and suspension functors. For condition 2 we already have that the A are cofibrant so we need only
show that the £A are homotopically small for all A € K. Such an A is some t-cycle where ¢ < r + 1 and from
LemmaEZt (%, *) is isomorphic to the direct sum of a witness ¢-cycle and an infinite number of witness O-cycles.
In the homotopy category this is isomorphic to just the constituent t—cycle and by [Hov99, Theorem 7.4.3] we have
that this is homotopically small.

Condition 3 was shown in Proposition For condition 4 we compute LK. The set IC consists of some of
the t-cycles for t < r + 1. Applying the functor £ to this set we obtain some bicomplexes, which by Lemma
are cach isomorphic to a witness t-cycle and an infinite direct sum of witness O-cycles. Applying the same result,
Proposition used to obtain K to the model category (bC)g we obtain a set J of objects detecting weak
equivalences and such that right Bousfield localising (bC) ¢ at J does not change the model structure. Note then the
effects of localising at the sets £IC and J are the same since (up to direct sums) they both consist of the same witness
t-cycle objects, noting too that the functor £ introduces into K witness 0-cycles which are always present as generating
acyclic cofibrations of the bicomplex model structures.

We have then shown that the conditions of the second part of the cellularization princip]e, Theorem are
satisfied and that the I and FQK-cellularisations do not change the model structure, therefore we have a Quillen
equivalence:

. s . II
A priori one might not expect the model structures (fC) g and (bC) g to be Quillen equivalent. The reason being
that the category of filtered chains ‘contains much more information’, e.g. the filtrations associated to the totalisation of
a bicomplex is always Hausdorff and exhaustive which are not required of our filtered chain complexes. An explanation

for this Quillen equivalence despite the descrepancy is that the S-model structure of filtered chain complexes ‘only
sees’ the fileration within (r + 1) fileration degrees of any finite fileration stage.

3.11 Non-existence of certain Bousfield localisations

Consider in cither filtered chain complexes or bicomplexes one of the model structures of the poset Mg whose weak
equivalences are the r-weak equivalences. A natural question is: “Does this model structure admirt a (left or right)
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Bousfield localisation with weak equivalences the (r + 1)-weak equivalences?”. We will show here that no such left
Bousfield localisations exist, the issue being that the S—generating cofibrations are contained in the (7“ + 1)—Weak
equivalences.

Proposition 3.11.0.1. Let Mg be one of the S-model structures of either poset, where M is either fC or bC whose weak
equivalences are the r-weak equivalences. Then there is no left Bousfield localisation M ey of M g whose weak equivalences are
the (r + 1)-weak equivalences.

Proof. Suppose for contradiction such a left Bousfield localisation M,eq, exists, so that the cofibrations, fibrations
and weak equivalences satisfy Cpeyw = Cg, Frew C Fs and Whew = Wrp1 D W, = Wa respectively. Note that the
M ey at least has a set of generating cofibrations Ipe, = Ig and that Iy C Whey. We will show as a consequence
that all cofibrations Cpeip € Whew-

By assumption M ,¢,, is a model structure so that pushouts of acyclic cofibrations are acyclic cofibrations, hence
pushouts along elements of I,,¢q are acyclic cofibrations in Myeq,. All Ig-Cell morphisms are now also acyclic
cofibrations in Myeq. Indeed we can take such a transfinite composition X : A = M of morphisms that are pushouts
along elements of Is which is a composition of (7 4+ 1)-weak equivalences and consider it in the model category M4 1.
This model structure is finitely generated by either Lemma or Lemma 2.3.3] and the domains and
codomains of I, are finite relative to the whole category, so transfinite compositions of (r 4 1)-weak equivalences are
(r 4 1)-weak equivalences by Corollary 7.4.2]. Hence in M1 the morphism X¢ — colim X is an (r + 1)-
weak equivalence and so too then is a weak equivalence of the model structure My,eqy since Whewy = Wiyy1. By
Propositionall cofibrations Cyeq are retracts of elements of Ig-Cell and since the latter are all (r + 1)—Weak
equivalences so too are all Cp,eyy since retracts preserve weak equivalences.

Now consider any morphism f in M e, and factor it as a cofibration followed by an acyclic fibration, by the
above the cofibration is necessarily an (1 4+ 1)-weak equivalence and so too is the acyclic fibration since its acychc
Hence so too is f which shows any morphism of M is an (r + 1)-weak equivalence which gives the contradiction. &

312 Bounded model structures on (fC)g

Given a mode] category M Hl’ld a gategory C one can often construct new mode] category structures ]Z)V means ()fﬂ

transfer along an adjunction either of the fom F: M &2 C :U ot U: C &2 M :F, cg. Thcorcm applies
in the former case Wl’l(‘ﬂ suitable conditions are satisfied and more generally one has the results of [B m
which give existence results for model structures transferred along adjunctions (the latter paper comains a corrected
proof of a result of the former). One of the main results stated is the following theorem.

Theorem 3.12.0.1 ( Theorem 2.23]). For an adjunction U : C &2 = M:F of locally presentable categories with M
cofibrantly generated by a pair of sets with cofibrations Cof and weak equivalences W such that (U~ Cof) -Inj C U~*W
then there is a left induced model structure on C cofibranely generated by a pair of sets with cofibrations U~ Cof and weak
equivalences U —w. &

This is shown by an application of [MRT4] Theorem 3.2] which asserts that the 2-category of combinatorial categories
have pseudopullbacks computed in the 2-category of cellular categories and as explained in Remark A.3] one com-
putes the transferred model structure by a pseudopullback of Ceyiy — Miyiy along M — M,y where the triv
subscripts denote a trivial weakfactorisarion system in which all morphisms are cofibrations.

Definition 3.12.0.2. Given an adjunctionU: C == M : F with M a model structure with weak equivalences W and
cofibrations Cof if there exists a model structure on C whose weak equivalences are U~ and cofibrations U~ Cof
then this model structure on C is said to be a left induced model structure.

These then are some of the tools we have to transfer model structures along adjunctions and note all these more
general results on transferred model structures involve checking some acyclicity condition.

As examples and to motivate what follows one has adjunctions involving the inclusion of non-negatively or non-
positively graded cochain comp]exes into cochain comp]exes and one can induce, from the projective model structure
on unbounded chain complexes, model structures on the bounded variants which for the non-positively graded cochain
Complcxcs is the usual bounded projective model structure. This bounded projective model structure can be found
for instance in the discussion following Corollary 2.12]. In the following the functor 4 denotes the inclusion of
bounded variants of a category into the full category.

First recall that from the unbounded projective model structure on chain Comp]exes that there is a truncation

functor 7: Cp — Cg which is the identity on positive degrees and in degree 0 is the quotient by the the image of
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the differential d: X1 — Xj. This functor is left adjoint to the inclusion functor of non-negatively graded chain
comp]exes into chain comp]exes:

> .
T7:Cr == Cf 11

The Kan transfer theorem, Theorem can then be used to obtain a cofibrantly generated model structure on
non-negatively graded chain complexes.

To induce the projective model structure on non-positively graded cochain complexes note that one can’t apply
the Kan transfer theorem. The adjunction that one would try to use is of the form

n:Cp === C’; 1

where the functor 7 is the naive truncation which simply forgets the portion of the cochain complex in positive degrees.
Note then however that this adjunction does not satisty the conditions of‘Theoremsince7 for J the generating
cofibrations of Cg, @ does not send relative nJ-Cell complexes to weak equivalences: the morphism from 0 to the
disc with components in degrees Oand lisin J, app]ying n to it gives the relative nJ-Cell morphism 0 — RO which
is not a weak equivalence after applying 7.

Instead then one can apply Theorem to a different adjunction. The functor 7 is also a left adjoint with
right adjoint given by & which forgets the portion of the cochain complex in positive degrees and in degree 0 takes the
kernel of the differential.

ker(d: AO—>A1), n=>0
A", n<-—1

HA” —

The acyclicity condition is not hard to check here since bounded cofibrant objects are just the degreewise projective
chain complexes. Furthermore we have that k1 and x.J are generating sets for the bounded projective model structure.
We give existence of various bounded model structures obtained from those of (fC) ¢ by a transfer theorem.

Note3.12.0.3. In the following subsections imposing any of the boundedness conditions loses stability and shift-décalage
functors so we don’t necessarily have equivalences of the homotopy categories when we vary S.

3.12.1  S-Model structures on fC=

In Proposition 5.11] the authors use the Kan transfer theorem in a similar way to obrtain for each r > 0
cofibrantly generated model structures on their bounded n-truncated multicomplexes, bounded in the sense that
AP? = 0 whenever p > 0. The case n = 2 gives bounded model structures on bC which easily generalises to bounded
model structures on the (bC) g, bounded in the same sense. We give here analogous bounded model structures on (fC) g
again by application of the Kan transfer theorem. There is an adjunction we also denote 7 4 4 between the categories
fCand fC= where the latter denotes the category of filtered objects in C%. The right adjoint ¢ is inclusions of a filtered
bounded comp]ex into filtered comp]exes and the left adjoint T is given as

A", n>1
TA" =< A%/imd, n=0
0, otherwise

where the fileration on 7A% is F,7A? := (F,A°)/im d. We then verify this adjunction 7: fC 722 fC= :i satisfies
the conditions of the Kan transfer theorem where we equip (fC) g with one of the S-model structures.

Lemma 3.12.1.1. The adjunction 7: (fC)g 7= fC= :i satisfies the conditions of Theorem|1.4.4.1

Proof. All objects of fC= are small by a similar proof to Lemma|1.2.1.16|which proves condition 1. For condition 2 note
that the set 7.J consists of s-cycles Z,(p, n) for n > 0; the ones of the form Z4(p, 0) become 0 under the functor 7.
Hence applyingi to a relative 7Jg-Cell is a weak equiva]ence. &

Applying the Kan transfer theorem we then obtain the following corollary.

Corollary 3.12.1.2. There is a cofibrantly generated model structure denoted ( fc 2) gon fC 2 whose weak equivalences are the
r-quasi isomorphisms and with generating cofibrantions T1g and generating acyclic cofibrations TJg.
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3.122  S-Model structures on fC<

. < .. . .
For the same reason as above withn: Cg 7= C5 :i we cannot apply the same method to equip fC= with an S-model
structure. Observe that the left adjoint to the inclusion functor i: fCS — fC is given by naive truncation:

n: fC == fC< :i

which simply forgets the portion of the filtered chain complex in positive cohomological degree. However then condition
2 of Theorem|1.4.4.1|is not satisfied: n.Zs (p, p+0) is an nJ-Cell complex but ¢ does not send it to a weak equivalence
in (fC)g.

Instead then we would like to apply Theorem[3.12.0.1]to the adjunction

i: fCS —— fC :k .

as before where here k does the same kernel truncation ignoring fileration. The issue here however is that Checking the
acyclicity condition is not an option since our study of cofibrations of Chapter E is not complete enough. However
recall that K1 and kJ gave generating (acyclic) cofibrations for the bounded projective model structure on cochain
complexes and we can ask do kg and kJg give generating (acyclic) cofibrations for a model structure on fCS.

Theorem 3.12.2.1. For every 7 > 0 and every subset S C {0,1,...,7} including r, the category fC< admits a right proper
cofibrantly generated model structure, which we denote ( fC S) o where:

1. weak equivalcnccs are Er—quasi—isomorphisms,

2. fibrations are morphisms of filtered chain complexes f: A — B such that ZX**™(f) is bidegree-wise surjective for
n<-lands €S, and

3. klg and KkJg are the sets of generating cofibrations and generating acyclic cofibrations respectively.
Furthermore ( fc S) gisa finitely generated model category.

Proof. For S = {r} one verifies that [CELWI9| Propositions 3.12 & 3.13] still hold for I and J replaced by xI and K.J.
This gives the model structures for S = {r}. One then applies the same method for the proof of Theorem 3.1.0. 2 to

obtain the remaining model structures.

3123 Bounded model structures on f>C

We'd similarly like to bound the filtration, we consider then the subcategory of fC consisting of those objects A with
F_1 A = 0. We denote this subcategory by f>C and note that there is an adjunction ¢: fC &= f>C :i where again i
is inclusion and the left adjoint g is given by gA™ := A™/F_; A™ with fileration F,gA™ := F,A"/F_1A™ forp > 0
and obvious induced differentials. This adjunction q 11 has the same defects as that of n - ¢ when trying to apply the
Kan transfer theorem if > 1; the relative ¢Jg-cell complex given by 0 — ¢Z,-(0,0) is just 0 — R(()o) which is not

sent to a Weak equivalence ]Z)y 1. However we can apply Kan transfer fbr the caser = 0.

Theorem 3.12.3.1. For r = 0 the category f>C admits a right proper cofibrantly generated model structure, which we denote

(f>C), where:
1. weak equivalences are the E,-weak-equivalences,
2. fibrations are morphisms of filtered chain complexes f: A — B such char ZPP+™ is bidegree-wise surjective, and
0 8 ] )

3. qlo and qJo are the sets of generating cofibrations and generating acyclic cofibrations respectively.

Proof. All objects of f>C are small by a similar proof to Lemma A relative ¢Jy-Cell complex is of the form
A — AP Zo(p,p+ n) where the direct sum is over some number of copies of 0-cycles with p > 0. The functor ¢
then sends this morphism to a 0-weak equwalence in fC. This shows the 2 conditions of Theorem [[4.4.T]are sqtlsﬁed
so we apply the Kan transfer theorem to ¢: fC 72 f>C :i.
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There are other adjunctions between f>C and fC. We can exhibit 4, the inclusion functor, as the left adjoint.
it f>C == fC :( .

The functor ¢ simply forgets the filtration information in fileration degrees p < 0 so that the composite functor i¢ on
a filtered chain complex A is setting F_19(A = 0 and F},i(A = F}, A for higher p with the same underlying chain
complex. The effect of ¢ on a cycle Z,.(p,p 4+ n) € fC is the identity if p > 7 or a shortening (or concertina) of the
cycle to Z,(p, p + n) otherwise where we interpret these latter cycles in f>C.

The functor ( is also a left adjoint to the functor  which given an A € f5C hasnA € fC as having the same
underlying chain complex with the same filtration in non-negative degrees and where FnA = FyA forallp < 0.

Lastly 7 is also left adjoint to a functor we denote v: fC — f>C. Onan A € fC the functor v has the same
fileration for positive fileration degrees however ForvA = ﬁp<0FpA,

We then have a chain of adjunctions filtered chain complexes and non-negatively bounded filtered chain complexes:

gdid4CHdn v

The author has been unable to show that the S-model structure on fC transfers, cither by ’l‘heoremor Theo-
rem along any of these adjunctions. Instead then to show existence of the remaining model structures (fZC)S
we follow the proof‘method of [CELWT9] with an appropriate choice ofgenerating cofibrations and acyclic cofibrations.
We do so first for § = {r} and then construct all S-model structures as was done for the (fC)g.

Definition 3.12.3.2. We denote by [TZ and JT2 the sets of morphisms given by:

ITZ =q {Zr+1(pa ’ﬂ) - BTJFl(p’ n)}
JTZ = {O — Zr(p? n)}er

We have then restricted our set of 7-cycles by taking those which live in filtration degree 0 or greater and truncated
the generating cofibrations. For those generating cofibration with p > 7 + 1 this has no effect. Otherwise they are

altered so as to introduce instead morphisms of the form:

n—1 i1
(R<p+r> —— R, @R?pﬂ))

when 7 4+ 1 > p > 1. When we have p = 0 we obtain the new generating cofibration:

(1)

and for 0 > p > —r we obrain simply:

n—1
<R<p+r>)
All smaller p result in the morphism 0: 0 — 0. As for the 7-model structure these are easily seen to be the representing
objects for the r-cycles and 7-boundaries whose quotient gives the r-page of the associated spectral sequences. We now
need to show a similar sequence of lemmas as in [CELW19] used to prove a model category structure hold. Recall the
morphism ¢, : Z,.(p,n) — By (p,n) representing the inclusion of boundary elements into cycle elements.

Definition 3.12.33. We write Z2 (p,n) = ¢Z,(p,n) and BZ (p,n) = qB,(p,n). We also abuse notation and denote
by ¢, the morphism gy,
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Lemma 3.12.34. Pushouts of the generating cofibrations yield either 0 — Z,41(p,n) for p > r + 1 or the morphism
0 R o0 < p S 2

Definition 3.12.3.5. We say a morphism f: A — B of f>C is KPPt surjective if there exist all lifts of diagrams of
the form:
0—— A4

x
mn

Rjy —— B

Corollary 312.3.6. Any morphism f € IZ -Inj satisfies fol ~surjectivity for p > 1 + 1 and KPPT*surjectivity for

r 2 p 2 0. &

Definition 3.12.3.7. For A € f>C we define the R-modules ZKp’p+n (A) = Hom(Z7?+1(p, n), A) where we take

the Hom objects as R-modules. Similarly we define the R-modules BKfff_n (A) = Hom(BTZJrl (p,n), A)

These give the (7 + 1)-cycle and boundary objects in the bounded context of f>C whose quotient gives the
(r 4 1)-page of the associated spectral sequence. Explicitly then these are given by

Hom(Z,11(p,n),A), forp>r+1
p,p+n _ r+1\/s 5 5
ZET(A) = { Hom(RY,), A), for0<p<r

for the former and for the latter we have

Hom(B,+1(p, )7 A), forp>r+1
BKfflJF”(A) = HOm(R"p+1T) —) R?p) S R(p 1),14), forl<p<r
Hom (R} — RP.) | A), for p = 0.

Lemma 3.12.3.8 ([CELW19, Lemma 2.8]). Forr > 0and f: A — B a morphism of f>C the following are equivalent:
1. the maps ZK,(f) and ZK41(f) are bidegree-wise surjective, and
2. the maps ZK,(f) and E11(f) are bidegree-wise surjective.

Proof. This is shown in much the same way as in [CELWT9].

Proposition 3.12.3.9 (ICELW19] Proposition 3.11]). A morphism f of f>C is JZ - Inj if and only if ZPPH7( f) is surjective
forallp > randalln &

Proposition 3.12.3.10 ([CELWI9] Proposition 3.12]). We have IZ -Inj = JZ -InjNE,.

Proof. The proofis much the same as in with care taken for those cycle and boundary objects which have
become truncated.

Take an f: A — B which is IZ-Inj and therefore satisfies fof —surjectivity for p > r + 1 and KPPH*-
surjectivity for 0 < p <7 by Corollary In the following diagram:

A

~

Zf‘z+1(p7 ) *> Br+1(p7 ) *> B

the lift y exists by Corollary[3.12.3.6) and then so too does the lift 1 by IZ-injectivity. This shows that f € JZ-Inj.

Since f is Zp’p ~surjectivity for p > 7+ 1 and KPP *surjectivity for 0 < p < r by Corollary[3.12.3.6|it is then also

T+1—b1d€g‘[‘€€—WlS€ surjective. We check that ET_;,_l(f) is also bidegree—wise injective. Let [a] be a class in ET+1(A)
represented by an @ € ZK,41(A) such that E,41(f)([a]) = 0 ie. that [fa] = 0 so there is a boundary element
of BK,41(B) whose image under ¢, is f(a). Write b and ¢ for the cycle components of this boundary image of
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BK,11(B) noting that for b we might have either db = 0if 1 < p <7 or b = 0 when p = 0 so that f(a) = b+ dc

There is then a commuative diagram of the form

>
Z;+1(p7 ’I’L) L}){ A
%Hlb+f/’ Lf (3.10)
B

g b+d.
87‘2+1(p7n) %

for which a lift exists since f is [Z-Inj with b again perhaps having db' = 0 or &' = 0 for the same filtration indices.
This shows injectivity of Epy1(f).

We now wish to show thac if f € JZ-Inj N &, then f € IZ-Inj. Given a solid diagram of the form of
Equation we demonstrate existence of a lift. Take a, b and ¢ as above with similar restrictions according to
filcration degree. Since f € &, we have by injectivity on the (7 + 1)-page that [a] = 0 so that a € BKPP*"(A) and
we write @ = b’ + dc’ as before although note these are not necessarily lifts of b and ¢ yet. We then have the equation
b—f(b') = d(f(c") — c) which shows the element f(c/) — ¢ is an element of Z KP+mP+rn=1(B) By Lemma
we can lift this to an element u ()f‘ZKfif’p+T+n_1(A) so that f(u) = f(¢/) —cand b — f(b') = df (u) = f(du).
Setting 8 = V' + du and v = ¢ — w gives a lift of the element of BK. &

Proposition 3.12.3.11 ([CELWI9, Proposition 3.13]). Forallr > 0and all 0 < k < 7 we have JZ-Cof CE&,.

Proof. The proof is identical to that of [CELW19] noting that their functor M, restricts to an endo-functor on f>C
which enjoys the same properties as that on fC. o

Theorem 3.12.3.12 (Theorem 3.14). For every 1 > 0 the category f>C admits a right proper cofibrantly generated model
structures whose:

« weak equivalences are the Ey-quasi-isomorphisms,

« fibrations are morphisms that are ZF*PT"-surjective for p > r and all n, and

« generating cofibrations and generaring acyclic cofibrations are given by IZ and JZ respectively.
Proof. We verify conditions 1-5 of Theorem|[1.4.2. 9' Condition 1 is clear, condition 2 follows since all elements of f>C
are small via a similar proof as in Lemma 12.1.16] condition 3 follows from Proposition [3.12.3.11) and J -Cell C
J> Cof C I> Cof where the last inclusion follows since I -Inj C J——In_] by Proposition|3.12.3.10 Conditions
4 and 5 follows from Proposition[3.12.3.10] This gives a right proper (since every object is fibrant) cofibrantly gener ated

model category as claimed.

From these we can, as in the unbounded filtration setting, obtain S-model structures on f>C.

Definition 3.12.3.13. Let S be a subset of {0,1,2...,7} containing 7. We define the sets ISZv and JSZ of morphisms of
f>C as follows:

Iz=17ulJJ7,
ses

JE::UJSZ.

seS
Lemma 3.12.3.14. We have IZ -Ing = JZ -Inj N E,.
Proof. The third inequality in the following is the result IZ-Inj = JZ-Inj N &, for the r-model structure on f>C.

Iz = <I§ ulYJ J§> -Inj

ses
=I7-InjN () JZ-Inj

ses
= (JZ-InjN&) N () JZ-Inj
sES
= J5-Injné, .
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The proof of the following is then much the same as for the S-model structure on fC.

Theorem 3.12.3.15. For every subset S C {0,1,2,...,7} containing r the category f>C admits a right proper cofibrantly
generated model structures, which we denote ( f>C) g, whose:

1. weak cquivalcnces are the Er—quasi—isomorphisms,
2. fibrations are morphisms that for all s € S are ZP"PT"surjective for p > s and all n, and
. o . . . > > .
3. generating cofibrations and generaring acyclic cofibrations are given by Ig and Jg respectively.

Furthermore (f>C) ¢ is a finitely generated model category.
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CHAPTER

Cofibrancy in (fC

In this section we consider cofibrancy primarily in the model structure ( fC),. with some interpretations for (fC) g
more generally. Whilst we do not dass1fv all cofibrant objects and cofibrations owing to difficulties involving the
filtration we do classify those whose filtration is bounded in a suitable sense. We briefly recall how cofibrations in
the projective model structure on unbounded chain comp]exes are classified. The full details of this can be found in
[AFHnd or [Hov99) §2.3] for a published account.

1. Firstly one considers for a cofibrant object lifts against the acyclic surjection of chain complexes from a disc
object on N to a disc object on M coming from a surjection of R-modules N —» M. Necessary existence of a
lift shows the cofibrant chain complex is degreewise projective.

2. Secondly one has, for any acyclic complex K, an acyclic surjection from the cone on K to K which the cofibrant
object necessarily lifts against.

3. Thirdly these two restrictions on an object X, i.e. degreewise projective and has all lifts against C(K) — K
for any acyclic K can be shown to be sufficient for X to be cofibrant: for a lifting problem of X against an
acylic surjection B 5 B one forms lifts degreewise irrespective of compatibility with the differential using
the degreewise projective assumption and then by considering the difference of such a lift with the differentials
dh — hd which lands in the shift of the kernel K of ' — B one can correct for the discrepancy of dh — hd
not being 0 using the second condition that X lifts against C(K) — LK.

This then gives a classification of cofibrant objects. In the bounded setting one can completely remove the second
condition involving all lifts against C(K) — XK for acyclic K since the homotopical correction can be acheived via
an inductive argument starting in homologica] degree 0. We can then continue the classification to all cofibrations as
follows.

4. By considering lifting problems of a cofibration, A — B, against the surjection from a disc on IV to 0 one can
show that the cofibration is necessarily a degreewise split inclusion of R-modules.

5. Next note that the pushout of a cofibration is a cofibration hence the cokernel C' of A — B is cofibrant and
necessarily satisfies the classification conditions above.

6. By the degreewise split inclusion condition we can rewrite the cofibration as the inclusion of A into the twisted
direct sum A @, C =2 B for some twisted differential 7: C — A.

7. Given then a morphism of the form of the inclusion of a chain complex A into A &, C where C is cofibrant
one can constuct a lift against an acyclic fibration Y — X since C' is cofibrant it can be lifted against the
acyclic fibration irrespective of the twist differential 7 to some morphism h, note one already has a lift of the A
portion of A @, C and there is no choice in the matter. Next consider the difference of this lift of C' and the
differential, i.e. dXh — (j7 + hd®) where j is the map from A to Y. Again this lands in the (shift of the) kernel
K of Y — X and one uses existence of lifts of C against C(K) — XK to provide a homotopical correction
for the incompatibility of the lift with the differential.
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This then classifies all cofibrations in the projective model structure on unbounded chain complexes. In this section we
follow this structure of proof to classify those cofibrations whose cokernel has a bounded assumption on the filtration.
The author has been unable to remove this assumption in general however note there are cofibrant objects that don’t
satisfy this assumption. The reader should notice obvious replacements of disc objects to analogous r-disc objects, cones
to r-cones and surjectivity conditions to Z,-surjectivity conditions. The classification of such cofibrant objects is given
as Propositionwhere all but condition 5 are neccessary conditions to be cofibrant. Note the key differences
when a fileration is involved for the (fC),. model structures where we now have that the graded pieces are projective
and that the differential suppreses the filtration by T,

The main results (analogous to those in chain Complexes) are listed below. We show conditions required of a

cofibrant object in (fC),..
Lemma A cofibrant filtered chain complex A in the r-model structure on fC satisfies the following conditions:
L #1:” is a projective R—modulefor allp,n € Z,
2. A™ is a projective R-module for alln € Z,
3. the fileration on A is exhaustive, and
4. for a pure element a € F, A™ we have da € Fp,TA"'H.

Following this we show that with an added assumption on the boundedness of the filtration that this is sufficient
to be cofibrant.

Proposition Given a filtered chain complex A such that the following conditions hold:
1. the graded pieces Gry, A™ are projective for all p,n € Z,
2. for a pure element a € F, A™ we have da € F,_, A" forall p,n € Z,
3. the filtration on A is exhaustive, and

4. whenever we have an r-acyclic filtered chain complex K and a morphism A — X" K there is a lift in the following
diagram:
C, (K)

7 i ,

A—— YK
5. and further such that for all n there is a p(n) € Z such that Fym)A™ = 0 (i.c. the filtration is bounded below but not
necessarily uniformly),
then A is cofibrant in the r-model structure on fC.

We also note that this added condition is not necessary of a cofibrant object of (fC)T. In Chapter We give a
cofibrant replacement of the unit which does not satisfy this boundedness assumption. As in chain complexes we can
show that cofibrations are degreewise split inclusions which are also strict giving an inclusion into a twisted direct
sum interpretation of cofibrations.

Lemma(4.2.0.3l An r-cofibration i: A — B is such that B is isomorphic to a twisted direct sum of A and the cokernel of i as

filtered chain complexes.

With an added condition of the twist map 7 of the twisted direct sum above being an r-suppressive differential,

called an r-supressive inclusion, we can give a subclass of the r-cofibrations.

Lemma An r-supressive inclusion i: A — B whose cokernel C'is cofibrant and such that for any n there is a p(n)
with Fy,,)C™ = 0 is an r-cofibration.

We also give a result on the s-pages of a cofibrant A € (fC)g for s < 7 by considering the cellular objects and
using the fact that all cofibrations are retracts of cellular cofibrations.

Proposition Let A be a cofibrant object of (fC)g. Then for k < rand k & S the k-page differential dj, of A is 0.
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This result then says for a cofibrant object A of (fC)g and k ¢ S with k < 7 that EyA = Ej 1 A. Lastly
we show that the décalage functor preserves cofibrant objects for appropriate S-model structures. The shift functor
automatically does so as it is a left Quillen functor.

Lemma Let B be a cofibrant object of (fC) g, then Dec! B is a cofibrant object in (fC)s-

4.1 Cofibrancy in filtered chain complexes
We give necessary conditions for an object to be cofibrant in the r-model structure on fC and show, with an added
boundedness assumption on the filtration, that these conditions are sufficient to be cofibrant. Our list of necessary
conditions is given in the following lemma. Unless stated otherwise all morphisms are morphisms of filtered chain
complexes.
Lemma 4.1.0.1. A cofibrant filtered chain complex A in the r-model structure on fC satisfies the following conditions:
A" . ) 3

1 74 1S a projective R-module for all p,n € Z,

2. A™ is a projective R-module for alln € Z,

3. the filtration on A is exhaustive, and

4. for a pure element a € F, A™ we have da € Fp_TA”Jrl.

We know of no such condition regarding the filtration being Hausdorff. Recall the notation of Notation|1.3.2.6
We will make use of the following fibrations.

Definition 4.1.0.2. Given a surjection of R-modules m: N — M we define o2P*" to be the morphism given by
oPPt Zoap+s+1Lpts+1+n—1)(N) — Zip+s,p+s+n—1)(M)

which is given in homological degree 7 by 7 at and above filtration degree p and 0 otherwise, and in homological
degree n — 1 by 0 in filtration degree p + s and 7 in all higher filtration degrees.

(N(Z;lsﬂ) E— N(TL))
K K

(N i) — N &))

Remark 4.1.0.3. These are similar to the morphisms oz’s”p+" of Definition3.3.0.1|with R-modules M and N instead of
R.

Lemma 4.1.0.4. For 0 < s < r the morphims o?"PT™ are r-acyclic fibrations.

Proof. The domain and codomain are s 4+ 1 and s-cycles respectively on some R-module so are 7-acyclic when s < r
hence the morphism is a weak equivalence. It is also an 7-fibration since all elements in homological degree n are
r-cycles and 7 is surjective, and in homological degree n — 1 there are no r-cycles except 0 until the (p + r)-filtered
part, but since s + 1 < 7 any 7-cycle of the codomain is in the image of an r-cycle of the domain.

We also have the following result.
Lemma 4.1.0.5. For 0 < s < r and surjectionm: N — M the morphism
PP = Z (p+s,p+s+n—1)(m): Zs(p+s,p+s+n—1)(N)— Z,(p+s,p+s+n—1)(M)
is an r-acyclic fibration.
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Lemma 4.1.0.6. A morphism A — Z4(p + s,p + s +n — 1)(N) is equivalent to a morphism of R-modules

An

N
Fy A" 1 dFy g A1

In particular when s = 0 we have A — Z4(p+ s,p+ s +n — 1)(N) is equivalent to a morphism of R-modules

A
— — N.
Fy,_1An
Proof. Suchamapisofthe form A — (N&:_i) — N&) ). In cohomological degree n this is then a map A"/Fp_lA" —
N.In cohomological degree n—1 we have the image ofF(p+5,1)A"_1 isOin N&:}S) and so the image of‘dF(ers,l)A"_l

is 0in N&). Together these imply the lemma.
Lemma 4.1.0.7. If A is cofibrant in the 7-model structure on fC then %{Zn is projective for all p,n € Z.

Proof. Given a surjection m: N — M of R-modules we consider diagrams of the form:

Zo(p,p—i— n—1)(N)

o v
lpg,wrn

A= Zo(pyp+n— 1)(M)

which necessarily have a lift since pg,p+n is an r-acyclic fibration by Lemmaf4.1.0.5/and A is cofibrant. By Lemma}4.1.0.6

this diagram is then equivalent to one of the form

N
3
- f
_AY
Ty An — M
n
which given T was an arbitrary surjection shows that the ﬁ are projective.
p—1

Lemma 4.1.0.8. If A is cofibrant in the r-model structure on fC then A™ is projective for all n € Z.

Proof. The proof is the same as that of Lemma [4.1.0.7) except we take p = —00, so the O-cycles live in all filtration
degrees. &

Lemma 4.1.0.9. If A is cofibrant in the r-model structure on fC then the filcration on A is exhaustive.
Proof Given the filtered chain complex Awelet A = UprA, i.e. the union of all filtered pieces so that A is exhaustive.

Note that the inclusion A — A is an r-acyclic fibration, indeed the definiton of being an r-weak equivalence and
r-fibration only rely on the filtered parts, never on any element of A\ A. We then consider the lifting problem

D

-
A——
id

for which the lift must exist since A is cofibrant. This factorises the identity map through the union of its filtered parts

andso A = A.
The following sequence of lemmas show which differentials of a cofibrant object of (fC) g must be 0.

Lemma 4.1.0.10. Given a filtered chain complex (or bicomplex) B whose k-page differential is 0 and a filtered chain complex (or
bicomplex) A which is a retract of B then the k-page differential of A is also 0.
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Proof. Given A is a retract of B we have the diagram
id

/\

A——B— A

from which we obrain the diagram of k-pages

EkA EkB EkA
e le s
ELA E.B A

whose horizontal composites are the identity and differential dkB = 0. A diagram chase shows that d,‘? = 0 too.

Lemma 4.1.0.11. Suppose A has dy, = 0 with k < 1, then so too does the pushout of A by a morphism of the form Z,41 (p, p+
n) = Bry1(p,p+ n).

Proof. This can be seen by considering the s-cycle description of A of Lemma[3.7.1.1} By commutativity of the diagram:

Z]fvp+n(A) dk ngk,pfk«l»n«#l(A)
Bi’«?w‘”(A) Bifk,pfk+n+1(A)

| |

Zg’ern(A/) dk ngk,p—k+n+1(A/)
Blzs,ern(A/) Bz—k,p—k+n+1(A,)

0k remains 0 on those k-cycles of A in A’ we need only consider new k-cycles. The pushout introduces o and ,
when considered as k-cycles representing a class of‘E,fil’p71+n(A') and EZ+T’p+T+n71 (A’) respectively for k < r
one observes that under the differential dj, these classes become 0 since for example da € Zf:f’piernJrl(A) -
Bp=stlp=stlntl( A) and similarly for dry with the appropriate indexing.

Lemma 4.1.0.12. Suppose A has dj, = 0, then so too does the pushout of A by a morphism of the form 0 — Z4(p,p+n) for

Lemma 4.1.0.13. Suppose A has dj, = 0 and we work in a model category (fC) g with k ¢ S and k < r, then so too does a
relative Ig-cell whose domain is A.

Proof. By Lemmas}4.1.0.11jand4.1.0.12|we know that the pushout of a filtered chain complex with d, = 0 by a generating
cofibration in Ig also has trivial k-page differential. It now remains to show a transfinite composition of such pushouts
preserves this property. We do so by transfinite induction §7.1], the base case is the statement that the filtered
and[4.1.0.12]and it remains to show the
limit ordinal case. Suppose then A is a limit ordinal and we have a A sequence of filtered chain complexes such that
for each ov < A the filtered chain complex indexed by a has di, = 0. Given an element [z] of the k-page of the colimit
of the A sequence we can represent this by some k-cycle in the colimit of the A sequence. There are indexing ordinals

chain complex A has trivial dj, the successor ordinal case is Lemmas[4.1.0.11

B,7 < A with elements y and z respectively such that the image of y in the colimit is «, and is in the same filtration
degree, and that of z in the colimit is dz and of the same filtration degree. Taking the larger of these two ordinals we
have that (the image of) y is a k-cycle and since the k-page differential on this stage of the A-sequence is 0 so too then
is that of [] in the colimit, this proves the statement for limit ordinals.

Proposition 4.1.0.14. Let A be a cofibrant object of (fC)g. Then for k < 1 and k ¢ S the k-page differential dj, of A is 0.

Proof. Any relative Ig-cell object has dj, = 0 for k ¢ S by Lemma4.1.0.13] Since any cofibrant A in (fC)g isa retract
of an Ig-cell object by Proposition|1.4.2.10| then the k-page d1fhrcnt1al of Ais also 0 by Lemma}4.1.0.10

Lemma 4.1.0.15. If A is cofibrant in the r-model structure on fC then for a pure element a € F, A™ we have da € Fj,—, A™.
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Proof. By Proposition4.1.0.14| the differentials ds = 0 for 0 < s < 7 so that
GrpA" = EJPT"A = EPPT A = = EPPM A = ERPTA
and the first non-zero differential is on the r-page
5y EPPTMA = GrpA" — Grgjrl = Ef_7"p_7'+"+1
and hence the differential d on A induces a morphism

4 BA BAnt
Fp A" By, At

showing that the differential d maps a pure element @ € F, A™ into Fp,rA”Jrl.

Proof of Lemmal4.1.0.1] The preceeding lemmas show the condition of Lemmaf4.1.0.1

Similar results of have a]ready been observed in the work of Cirici Lemma 4.3.15] but only in the restricted
sense of their Ey-cofibrant dgas [Cir12] Definition 4.3.14] built as colimits of KS-extensions of [Cir12] Definition 4.3.13].
These E,-cofibrant dgas are shown to have the left lifting property with respect to a class of r-acyclic fibrations, [Cir12l
Proposition 4.3.17].

With these necessary conditions on cofibrant objects of (fC),. established we show now that with an extra assump-
tion on the boundedness of the filtration, condition 5 in the following, that this is sufficient to be cofibrant. This is
then not a full classification of the cofibrant objects of fC. Indeed the cofibrant replacement of Definition does
not satisfy condition 5 but is still cofibrant.

Recall the r-cone C). construction Dcﬁnitionand the r-suspension 3" ochﬁnition
Proposition 4.1.0.16. Given a filtered chain complex A such that the following conditions hold

1. the graded pieces Gry, A™ are projective for all p,n € Z,

2. for a pure element a € F, A™ we have da € Fp_T.A""'1 forallp,n € Z,

3. the filtration on A is exhaustive,

4. whenever we have an r-acyclic filtered chain complex K and a morphism A — X" K there is a lift in the following
diagram:
C, (K)

E l
A—— YK
5. and further such that for all n there is a p(n) € Z such that Fj,(,) A™ = 0 (i.e. the filtration is bounded below but not
necessarily uniformly)
then A is cofibrant in the r-model structure on fC.

The proof of this is very similar to the classification of cofibrant objects in the (unbounded) projective model
structure of chain complexes. We obtain a lift of graded (filtered) R-modules using assumptions 1-3 and 5 and then
use the remaining assumption to correct this lift so it is compatible with the differentials.

We will use the fo]]owing lemma implicitly for the proof:.

Lemma 4.1.0.17. Given a morphism f: B — Y vestricting toamap fa: A — X and short exact sequences

A B C
T
X Y A

with C' and Z projective then for any splictings the map f is isomorphic to one of the form

0 0

0 0

fa T\ .

for some twist map 7: C' — X and where fc is the induced map between the quotients C and Z.
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Proof. We consider a lifting problem of the form

(4.1)

><<T"<

.
A—7

where the morphism 7 is an r-acyclic fibration.
For each homological degree n we split A™ into its graded pieces as follows. There is a p(n) such that Fj,,) A" = 0
and we set p = p(n) + 1. There is then a short exact sequence of the form

Fpp A”

—0
Fp,An

0 — F,A" — F, 1 A" —

in which the graded picces are projective by assumption so we have a splitting

F, A"
F A"~ B A" p+1
p+1 P & Fp An
and inducting up we obtain for each k
Fo A" = F A" & Fp+1An Fp+2An o Fp+k71A” FerkAn
P P FpAn Fp+1An Fp+k_2An Fp+k_1An
and furcher since the filtration is exhaustive we have
AN o B FP+/€An )
noo Fore-14"

Consider then the differential d: A™ — A™ ! between this graded piece presentation of A™ and a corresponding one
for An+L, By (repeated application of) Lemmathe differential restricted to the pieces representing Fj4,A™
must have image in the graded pieces representing Fp+kA"+1, and by the second assumption a pure element in the
Fpik A"/ Fpyi 1 A™ has image in Fyyp—p A"/ F, i1 A" 50 combining these two resules we have that the
image of a graded piece Fpix A"/ Fyy—1A™ has image in the graded pieces F, A" /F, 1 A" forqg <p+k—r.

Consider then f restricted to a graded piece Fp 4 A"/ Fpir—1A™. Since elements of this graded piece thought of
as elements of A are 7-cycles, in Zptkptkan A 5o then too are their images under f. Since 7 is an 7-fibration it is
Zy-bidegree-wise surjective so we can lift this restriction of the graded piece into Y using projectivity of the graded
piece and Zy-surjectivity. We do this for all graded pieces of the decomposition in all homo]ogical degrees irrespective
of each other. This gives a lift of graded R-modules compatible with filtration but not necessarily with the differential.
We denote this lift of filtered graded modules by G.

We now correct for the differential. Consider now the morphism

t=d'G—-Gd*: A— XY
which is indeed a morphism of filtered chain complexes, not just of graded filtered modules, since
td* = d¥ Gd* — GdAd* = d¥ Gd* = —d™Y Gd* = d¥Yd¥ G — d¥Y Gdt = d7Vt .

Note too that since G is a lift (of graded filtered modules) we have 7t = 0 and also since we have lifted using the
surjectivity of\r—cycles everywhere we in fact have

t: A—YX"K

where K is the kernel of 7. Since 7 is an r-acyclic fibration its kernel is 7-acyclic therefore so too is X" K and so, by
the final assumption, we have a lift in the following diagram:

Cr (K)

T* l

A S'K
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Unwrapping the definition of the cone object, Definition[1.6.0.12] we have that T" is a morphism given (on the p-filtered
part) by

T = (1’32) : FyA — F,C. (K) = F,_, K" & F,K"

and where the differential on the far right is given by

JC) _ (A7 0 (=d 0
1 odf) 1 df

and so, since T is a morphism of filtered chain Complexes, we have that:

N o4 Cr(K) —d5 0 t\ —dXt
(ngA) =Td* =d T = 1 dK T = t-i—dKTz . (4.2)

We finally define our lift in Equation to be g := G + T3, where we interpret the image of 75 in Y since K C Y/,
which is certainly a morphism of graded filtered modules and the second equation in Equation shows it commutes
with differentials. We have then shown that the object A with these assumptions lifts against any r-acyclic fibration
and so is r-cofibrant. i

We include here an example demonstrating that a disc object in all filtracion degrees is not cofibrant.

Example 4.1.0.18. By Z(—00,n) we mean the chain complex R" — R"*! whose R-modules are in all filcration
degrees. The filtered chain complexes Z(—00,7n) are not cofibrant in any of the model structures (fC) g. To see this
consider the lifting problem:

@pez Zo (pv TL)

Nie

Z(—00,n) ——— Z(—o0,n)

in which the horizontal morphism is the identity and the morphism € is the idenity whenever possible. The morphism
€ is a O-weak equivalence since its domain and codomain are both 0-acyclic and is also Zj-bidegree-wise surjective for
all k& > 0 so is therefore an acylic ﬁbratiqn in all (fC)g. The only morphienl from Z(foc‘>, n) to P,cz Zo(p,n) is
the 0 morphism however so there is no lift and hence Z(—00, n) is not cofibrant in any of the (fC)g.

4.2 Cofibrations in filtered chain complexes

We will show the class of maps of filtered chain complexes which are (cohomologically) degreewise split inclusions
A= A &, C with cofibrant cokernel C with a bounded fileration and such that che differencial 7 supresses filtration
by 7 are cofibrations. This is an imperfect characterisation due to the requirement that C have a bounded fileration.
Recall that we have already shown that cofibrations are strict inclusions, Lemmas and A consequence
of this then is that for an element of A the pure filtration degree cannot be decreased by the map ¢ but only by the

differential of A.
Definition 4.2.0.1. The twisted direct sum of filtered chain complexes A and C, denoted A @, C, is a filtered chain

complex whose underlying filtered graded modules is the direct sum A @ C' but whose differential is given by:

Ao = 0 d° tAeC — Al
and we call 7: C — A the twist map.

Note that since dA®7 is a differential we must have d4®7C 0d4®~C = ( which holds if and only ifdAr+7d¢ = 0.
This is, up to sign and shift, the r-cone of a morphism of filtered chain complexes given as [CELWT9| Definition 3.5].
There is an inclusion of filtered chain complexes i: A — A @, C and projection A ®, C — C.

Lemma 4.2.0.2. Anr-cofibration, i: A — B, is a degree-wise split inclusion, after forgetting filtration, with cofibrant cokernel.
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Proof. Let C be the cokernel of 3. The cokernel being cofibrant follows since the pushout of a cofibration is a cofibration.
For the spliting we have that C™ is projective so the following short exact sequence splits:

0—A"— B" —C"—0.

From this we have an isomorphism of filtered chain complexes between B and the twisted direct sum of A and C
over some maps 7: C' — A (which shift degree).

B2Ag,C,
where the filtration on the twisted direct sum is induced from that of B.

Lemma 4.2.0.3. An r-cofibrationi: A — B is such that B is isomorphic to a twisted direct sum of A and the cokernel of i as
filtered chain complexes.

Proof. Write C for the cokernel, as a filcered chain complex, of 7. Since C is cofibrant C"™ is a projective R-module for

cach n and so cach short exact sequence of Lemma

0 A" B cn 0

n n
q

splits, as R-module morphisms, so that B® = A™ @ C™ as R-modules.

B'+—= s A®C
br— (b— s"qg"b,q"b)

i"a+ s"c «— (a,c)

We can then equip A™ @ C™ with a filtration induced from B™ by this isomorphism making an isomorphism of
filtered R-modules. This new filtration agrees with that on A™: consider an (a,0) € F,(A™ @ C™) = B™ which
corresponds via the isomorphism to some b € F,B" via b — (b — s"¢"b,0) = (b,0) so that i"a = b. Note that a
cofibration cannot decrease the pure filtration degree of an element since they are strict inclusions by Lemma |3.8.1.4
so that a € F),A™ and therefore the filtration on A™ agrees with thaton A™ @ C™.
We then have an induced differential d: A" @ C™ — A" @ C™*! from that of B which preserves the filtration
and squares to zero, since dZ does. Writing )™ : B™ — A™ @ C™ for this isomorphism and ¢™ for its inverse we have:
d(a,c) = " (dP (" (a, )
=" (dP(i"a + s™c))
= (dP(i"a+ s"c) — s"Tg" 1 dP (i"a + s™¢),¢" T dP (i"a + s™¢))
_ (in+1dBa + dBSnC o sn+1qn+1in+1dBa o Sn+1qn+1stnC qn+lin+ldBa + anrlstnC))
= (i"+1dBa +dBs"e — s"HgntaBsne q"+1st"c) .
However both ¢ and g are morphisms of filtered chain complexes so in particular
d9c=d%"s"c = q"dPs"c
so that we have d(a, ¢) = (dAa +dBstc — smtlgntlaBsne, dcc) and defining 7 by
0" — AL
cr— dBs"e — "Lyt iaBsne

we have that as filtered chain complexes B is isomorphic to a twisted direct sum A&, C of the filtered chain complexes

Aand C.

Definition 4.2.0.4. A (cohomologically) degree-wise split inclusion i: A — B is an r-supressive inclusion if the maps
T suppress filtration by 7.
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Definition 4.2.0.5. An r-cofibration % is an T-suppressive coﬁbmtion if 7 is an r-supressive inclusion.

Note that since all cofibrations are strict inclusions this is really just requiring the splitting with the additional
condition on 7. We will show the following which provides a subclass of the class of 7-cofibrations.

Lemma 4.2.0.6. An r-supressive inclusioni: A — B whose cokernel C' is r-cofibrant and such that for any n there is a p(n)
. n N .
with Fy;,)C™ = 0 is an r-cofibration.

We do not know whether all 7-cofibrations are necessarily 7-suppressive. The obvious choices of 7-acyclic fibrations
to use to prove such a statement, involving either path objects or cone objects, do not appear to impose the suppressive
condition on the cofibration. We also do not have a counterexample to this statement. The author suspects that all
r-cofibrations are necessarily suppressive.

Proof. Given such an 4 and an r-acyclic fibration f: Y — X we consider a lifting problem of the form:

A—F2 Y

2

A, C — X

As for the proof of Proposition [4.1.0.16|since C' is cofibrant we can write each C™ as a direct sum of its graded pieces
starting at some fileration level p = p(n) + 1:

o

FpnC™

(o= —_—
Fp+k,1C”

k=0

(4.3)

Since C' is cofibrant d¢ suppresses fileration by 7 and so too does the twist map T by the suppressive inclusion
assumption, so the differential d4®¢ applied to an element (0, ¢), where ¢ is an element of one of the graded pieces
of Equation , also suppresses filtration by 7. So such a ¢ € F,C™/F,_1C™ has image in Z297"(X). By r-cycle
surjectivity of f we can lift the image of each graded piece (for each fileration and cohomological indexing) of C' using
these decompositions into 7-cycles of Y. Denote this lift by G and note it is only a lift of filtered R-modules and is
not necessarily compatible with any differentials. We next define t*: C™ — ynt+l by:

t:=d"G—Gd” —pr.
As in the proof of Proposition the image of  is in the kernel K = ker(f: Y — X) and d¥t + td® = 0

so thatitisa map into the suspension of K, we need to check it is a map into the r-suspension of K however. This
follows since every ¢ € C™ is an r-cycle, G lifts m-cycles, and 7 supresses filtration by r. Since d® and 7 both suppress
filtration by p we have ¢ is a map of filtered chain complexes from C' into X" K. By cofibrancy of C' the lifting problem

C—— YK

has a solution T = (;: . The required lift of A @, C is then given by h = ((p G+ Tg). We have G + T5
2

is a morphism of filtered R-modules which is a lift of A @, C' — X since T3 has image in the kernel, and using
Tod® =t + d¥ T, we can show it commutes with differentials:

dh=d" (¢ G+T)
= (¢ d¥(G+Ty))
(pd* d¥Y G+ d=Ty)
(pd?  (t+ Gd® + 1) + (T2d® —t))
(pd?  Gd° + o1 + Thd)
(

dA

= (¢ G+T)d"*“,

which shows this lift is indeed a lift of filtered chain complexes.
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43 Shift—décalage adjunction on cofibrant objects

In [Cir12l Lemma 4.3.16] Cirici shows that the shift-décalage adjunction restricts to functors between their notions of
E,-cofibrant and E,;1-cofibrant objects. In this section we show a similar results holds for the cofibrant objects of
the model categories (fC)g.

Consider the shift-décalage adjunction ochmmaand recall the terminology of an object being I-supressive
Deﬁnition The shift functors S are inclusions of filtered chain complexes into the full subcategory of filtered
chain complexes consisting of the [-supressive objects. The décalage functor conversely is not an inclusion on filtered
chains, for example we have

Dec (Zo(p,p +n)) = Dec(Z1(p+ 1,p+1+n)) ,

whilst Zo(p,p + n) 2 Z1(p + 1,p + 1 + n) so that the adjunction is not an equivalence of categories. However
restricting to the full subcategory oFl—supressive objects the adjunction becomes an equiva]ence.

Definition 4.3.0.1. The full subcategory of fC consisting of the [-supressive objects is denoted by Supp; - fC.
Slightly more generally we have the categories of I-supressive objects and (I + k)-supressive objects are equivalent.

Lemma 4.3.0.2. There is an equivalence of categories:
St Suppy, -fC == Suppy, ;- fC :Dec!

Proof. Given a k-supressive object A we have for any a € F, A" thatda € F, _pAML Applying St to A we have that

a € F,A" = p,lnSlA" and da € F, A"t = p—k—l(n+1) SIA"'*'1 = Fy_in—( kH)SlA"'H. So that every

element of‘SlA" isnow a (k + 1)-cycle, hence (k + )-supressive.
Similarly suppose B is (k + )-supressive so that for any b € F, B" we have that db € F,_ ) B" .

be F,B" = Z""*"(B)

= p+lnDeclB”
aﬂd we have

db € Fp—(k-i—l)Bn _ le)_(k+l)7p_(k+l)+n+1(B)
= p+l(n+1)—(k+l)DeCan

= pHn,kDeclB"

which shows that any element of Dec! B" is a k-cycle, hence Dec' B is k-supressive.
We already know that Dec! o S' = id we now check that §% o Dec! = id. Take B to be (k 4 I)-supressive, then:
F,S' o Dec! B" = F,,j,Dec' B"
_ Zp—i—ln—ln,p—i—ln—ln-‘ran
'
=Zprinpr
= Bn

Where the 135[’, equa]ltv {’O”OWQ since B N (k + l) iupresqlve and SO l iuplﬁiﬂlVe So then S "ll’ld Dec are inverse
functors on these full subcategorles and we hAV€ an equlv 1lence ()fC 1t€501"l€% Z

Corol]ary 4.3.0.3. There is an cquivalcnce of categories between ﬁ]t@red chain complcxes and l—suprcssive objects.

An [-supressive filtered chain complex is then precisely a filtered chain complex which is in the image of the functor
S!. Recall now that cofibrant objects in (fC) g are at least [-supressive where [ is the smallest element of S. We'd now
S ~
like to establish a similar result showing an equivalence of categories between the cofibrant objects of two of the model
categories of Theorem [3.1.0.2} We know the shift functors already preserve cofibrants objects so we must show that so
too does décalage to some extent.

Lemma 4.3.0.4. Suppose a morphism p of filtered chain complexes is Zs-surjective. Then Slpis Z g4 -surjective.
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Proof. Consider S'p: S'A — S'B and an element b € Zf_’f;rn(SlB), so that

b€ F,S'B" = F,y;,B"

db € Fp,(5+l)San+1 = Fp7(5+l)+l(n+1)Bn+l = p+l’ﬂ*SBn+1

but since p is Zs-surjective we can find a Z,-lift of b € B and this gives a Zg1-lift of b in S'B.

Recall the notation S + [ of Notation for Sasetandl € N.
Lemma 4.3.0.5. Let B be a cofibrant object of (fC) g, then Dec! B is a cofibrant object in (fC)s-

Proof. Consider the lifting problem
Y

Nlp
Dec!B —— X

where p is an acyclic fibration of (fC) 4. Applying S to the diagram gives

Sty

lelp

B—— S'X

where we have used Lemma4.3.0.2|with S'Dec! B = B since B is [-supressive. Further the morphism S'p i
fibration now of (fC)SH; it is a fibration since S* sends Zy-surjections to Z4-surjections by Lemma

(4.4)

(4.5)

s an acyclic

4.3.0.4|and

an (r 4 1)-weak equivalence by [CELWT9] Lemma 3.27] which shows St sends r-weak equivalences to (r + [)-weak
equivalences. Hence since B is cofibrant in (fC) g, there is a lift in Equation . Applying Dec' to this lift gives a

lift in Equation (4.4).
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CHAPTER

S-Model Structure of Filtered Chain

Complexes is Monoidal

In this chapter we study the interaction of the S-model category structures (fC) g of Theoremwith the
monoidal product on filtered chain complexes Dcﬁnition We will show that they satisfy the conditions, the
pushout-product axiom and the unit axiom, of a monoidal model category structure of Dcﬁnition on (fC)g.
Hence we obtain an induced monoidal structure on the homotoy category Ho (fC) g with unit given by a cofibrant
replacement of the unit. The pertinent results for establishing this are listed below.

Example[5.1.0.7, The monoidal unit in (fC) g is not coftbrant.

Corollary([5.1.0.6, A cofibrant replacement of the monoidal unit in (fC) g, with 7 = max S, is given by

Q= | DRL) — DRy
=0 j=1

where the differential is given by mapping each R(()_ 2 diagonally onto the copies of R indexed as R%_ i) and R(l_ i) for
i > 1 and by the identity map from R(()o) to R%i r—1)"

Proposition [5.2.0.2) The composite function QrI @ A — I ® A — A is an r-weak equivalence for all (not necessarily
cofibrant) A.

Our characterisation of a subclass of cofibrations of Lcmma is sufficient to show that pushout-products of
generating r-cofibrations are also r-cofibrations. This result constitutes most of this chapter and verifying pushout-
products of a generating r-cofibration with a morphism of the form 0 — Z;(x, %) are cofibrations is comparitively
strai gh tforward.

Lemma The pushout-product of i: Zyy1(p,n) — Bry1(p,n) and j: Zrp1(q,m) — Bryi(g,m) in (fC)g

where max S = risa coﬁbmrion.

Theorem|5.3.2.2} Each of the model categories (fC) g of Theorem is a monoidal model category.
Following work of Schwede and Ship]ey [SSO0] we will then in Sec use the monoidal model structure
1.4.6.1]

in combination with an additional axiom, the monoid axiom Definition|1.4.6.1] to show that the category of filtered
differential graded algebras can be equipped with an S-model structure. One can also infer S-model category structures
on modules over a filtered differential graded algebra from the same monoid axiom.

Corollary[5.4.0.4, The model categories ( fC) g satisfy the monoid axiom.
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This implies existence of various model categories of module objects, Theorems[5.4.0.5/and [5.4.0.6] Furthermore
we have the following theorem in which for A a filtered differential graded-commutative algebra we let T4 denote the
free A-algebra functor.

Theorem [5.4.0.7, For a fixed r, subset S C {0,1,...,r = 1,7} containing  and filtered differential graded-commutative
algebra A there is a cofibrantly generated model category structure on A-algebras whose weak equivalences are the r-quasi-
isomorphisms and fibrations those morphisms that are surjective on all s-cycles with s € \S. The generating cofibrations are given

by T'sIs and generating acyclic cofibrations by T'a Js.

We conclude with a section using the work of Muro, [Mur15], to show that the 7-model structures can be adapted,
to Quillen equiva]ent ones, in which the unit is cofibrant Section

Corollary[5.5.0.6] For ecvery 7 > 0 and every subset S C {0, 1, ..., 7} including r, the category fC admits a left and right
proper cofibrantly generated monoidal model structure, which we denote jf? g satisfying the monoid axiom where:
1. weak equivalences are E.-quasi-isomorphisms,

2 Ig == Ig U {0 — R?O)} and Jg == Jg U {j oig,1: QrI — D} are the sets of generating cofibrations and

generating trivial coﬁbmtions respccrivcly
One can also make a more symmetrical constrution via the same proof of Muro by forcing all R | to be cofibrant.
) P Yy & (p)

Corollary[5.5.0.9} For every r > 0 and every subset S C {0, 1, ..., 7} including r, the category fC admits a left and right

proper coftbrantly generated monoidal model structure, which we denote (?E) & satisfying the monoid axiom where:
1. weak equival(’nces are ET—quasi—isomorphisms,
2 Ig =IsU{0 — R?p)}p,nez and Jg = Jg U {jo Z'Qrpy(mp) : QTR?p) — D?p)} are the sets of generating

cofibrations and generating trivial cofibrations respectively.

5.1 A cofibrant replacement for the unit

In this section we show that the monoidal unit R?O is not cofibrant and construct a cofibrant replacement for it. In
the model categories of bicomplexes a cofibrant replacement for the unit was given in Proposition 6.7] as
an infinite staircase. The cofibrant replacement is similar to that for bicomplexes however depends on 7 unlike the
case for bicomplexes.

Definition 5.1.0.1. We denote by QI the filtered chain complex given by:

QI = PR ) — DR,y |
i=0 j=1

where the differential is given by mapping each R?—i) diagonally onto the copies of R indexed as R(l—r—i) and
R%_T_i_l) for i > 1 and by the identity map from R(()O) to R%_r_l).

We will first show that this is a cofibrant replacement for the unit in one of the model categories, (fC)g, of
Theorem and then show R?O) is indeed not cofibrant. The object QI can be more easily pictured as follows
where all arrows denote identity morphisms, the summands in cohomological degree 0 are displayed in the first column
and those of degree 1 in the second column:
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Example 5.1.0.2. We provide a description of the pages of the associated spectral sequence of Q1. The Ej page to the
E, page are isomorphic with a copy of R in each bidegree (p,p +n)withp <0andn =0aswell asa copy of R in
each bidegree (p,p + n) withp < —r — 1 and n = 1. The differentials dj, are all 0 for K < r — 1 and the r-page
differentials d, are the identities between bidegrees (—p, —p) and (—p — 7, —p — r + 1) for p > 1, Figure[5.1] We
then have Eoo (Qr1) = Er11(QrI) with a single copy of R in bidegree (0,0) and 0 elsewhere.

Figure 5.1: The r-page of the spectral sequence associated to Q1.

Notation 5.1.0.3. We will denote by 1?—/%) and 1%_7,_1_@ generators of the summands R(()_k) and R(l—r—l—k) of Q1.
Before we prove this is an r-cofibrant replacement of the unit note the following change of basis (displayed vertically)
between two filtered chain complexes (displayed horizontally):

n A n+1 n+1
( » — 7 By @R@—l))

Ll L (1 _01> . (5.1)

(R?p) Rn+1 @ Rn-‘,—l )

1 (p) (p—1)
0

We prove that QI is an r-cofibrant replacement for the unit for = 0 and then appeal to the shift-decalage
adjunction to obtain the result for all other S-model structures.

Proposition 5.1.0.4. The filtered chain complex QoI of Definition[5.1.0.1|is a O-cofibrant replacement for the unit.

Proof. There is an obvious morphism of filtered chain complexes QoI — R(()O) projecting onto the R?o) summand.
This morphism is a O-quasi-isomorphism,; the copy OFR?O) in Qo{ is a 1-cycle and not a 1-boundary. Any other 1-cycle
in cohomological degree 0 must be a finite sum of the 1?—k) whose coefficient ofl(()o) is non-zero, all other 1?—k) for
k > 0 become 0 on the 1-page. Similarly all finite sums of cohomological degree —1 generators can be seen to be
1-boundaries. Hence the morphism Qo — R?o) is a 0-quasi-isomorphism.

We now wish to show QoI is O-cofibrant, i.c. given a O-acylic fibration f: E — B we can construct a lift in the
diagram:

E
PR
le :
QoI —— B
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We proceed by induction down the staircase, note that by Lemma(l.6.0.7|che morphism 0 — Z7(0, 0) is a O-cofibration
so that we can lift the top of the staircase R(()o) — R%,l) against f.

The induction step lifts a step of the staircase against f subject to knowing where the top of the step is mapped to. Le.
we lift the following portion of Qof

1
Ri_p

e :

Ry — Ri_4

subject to already knowing where the R%_k) summand is lifted to. This is equivalent to finding a lift in the diagram:

(RM) = &

o {f ,

0 A 1 1
(R(—m — Ry ® R(—k—l)) — B
or equivalently, by the change of basis of Equation , a lift in the following diagram:

(R%—k)> —3 &

Al /// ~if : (5.2)
(o) ’
(R?—m —= Ry ® R%—k—l)) — B

This lifting problem is then just a special case of a lift of Z7(—k, 1) — B1(—k, 1) in which the images of two of the
differentials are 0 in £ and B respectively. Since f is a O-acyclic fibration there is then a lift in Equation .

Lemma 5.1.0.5. Applying the r-shift functor to QoI gives Qr1, ie. STQol = Qr1.
Corollary 5.1.0.6. The filtered chain complex Q1 is an S-cofibrant replacement for the unit.

Proof. By the shift-décalage adjunction a lift of QI = S" Qo[ against an S-acyclic fibration f is equivalently a lift
of QoI against Dec” (f). The lift in the laccer exists since Dec” takes S-acyclic fibrations to 0-acyclic fibrations by

Proposition|3.5.0.2) and Qo1 is O-cofibrant. @

Example 5.1.0.7. The filcered chain complex R?O) is not cofibrant in any of the model structures (fC)g of Theo-
1‘em We have the projection T: QI — R(()o) onto the unit which is the identity on the component given by
R?O) and 0 otherwise. We've seen that this is a 0-weak equivalence for r = 0 and applying the shift functor S shows
7 is an r-weak equivalence. It is further a Z,-bidegree-wise surjection for all s < 7 since 7 is just projection onto one
of it’s components. We then consider the lifting problem:

Qrl

|~
RO

id 0
o — B

If the unit were cofibrant a lift would exist in this diagram. The image of the generator 1 of R(()O) under such a lift
would ﬁrstly have to have differential 0 and secondly have image in only a finite number of the EB;ZO R?—i)' Let g
be greatest such that the image of the generator under the lift has non-zero image in the R(()_q) component. We can
then see that the differential of the lift of this generator is non-zero as there is a non-zero differential from the R?,q)
component with image in R(ilq,r,l) which cannot be cancelled by a differential from R?,qfl) by maximality of g.

This shows no such lift can exist and therefore that R(()o) cannot be cofibrant.
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5.2 Verification of the unit axiom

We would now like to verify the unit axiom, Definition[l.4.5.2]condition 2, with Q.1 as the choice of cofibrant replace-
ment for the unit. We begin by identifying the (r+1)-cycles and (r 4 1)-boundaries in the tensor product @I ® A for
some filtered chain complex A. Using the generators of Notation[5.1.0.3{we can write an element ¢ € F),(Q,I ® A)"

as a finite sum of tensors:

9= Z 1(()—k) ® a?p-i-k) + Z 1%—7“—1—1') ® a?p_—i-lr+1+j) )
k>0 7>0
with az) € Fqu. Note that there are no issues in this case arising from the definition of the filtered tensor product
as we can view the underlying filtered graded module of QI ® A as being a direct sum of shifts of A (the shifts
corresponding to the filtration and cohomological indexing of the R components of Q,I). Further applying the
differential of Q-1 ® A to g we obrain:

_ 0 n 1 n—1 n n
dg = 1y @dafy g+ 1 1 @ (_da(p+r+1+j) )+ a<p+j+1>) :
E>0 >0
Lemma 5.2.0.1. Anelement ¢ € F,(Q,I® A)™isan (r+1)-cycle, ie. q € fol—’_n(QTI ® A), if and only if the following
hold:

L aly € Z(A),

2 al,yr) € ij__f’p+k+" (A), for each k > 1, and

71 .
3 a?pﬂ') - da?p+r+j) € Fp_14;A"™, foreach j > 1.

Not‘e that the third condition of the lemma is giving an explicit representation of\a?ﬁk) as an (7 + 1)-boundary,
and in fact (3) = (2).

Proof. Assume ¢ is an (1 + 1)-cycle, so then dg € Fp——1(Q,I ® A)" T and we have:
1. 1?—k) ® da?p_,’_k) €EFp1(Qr® A)"'H, for k > 0, and

2. 1}

n—1 n
iy @ (—da +o

n n+l £~
(prr+1+5) T %p+i) +a(p+j+1)) € Fypor1(@r 1 © A)™H, for j 2 0

The first condition of the proof then says, for k = 0, that da?, € F,_,_1 A" giving the first condition of the
p y (p) p giving
lemma. For k > 1 it says that da?erk) IS Fp_r_l_,_kA”"'l. The second condition gives us that

—1
—dag, oy ivgy T o)+ Aprjrn) € FpijA”

which can be rewritten as
n—1 n n
—dag, Sy T At € Fpri AT
Combined with the first condition we thus obtain a diagram of the form of Equation (5.3) which demonstrates the

remaining two conditions.

n+1
(R?p+j+1) {0111} ’ R(p-i—j—r))

Al l (53)
(Rn—l { n—1 } ((1)) R" D R? (01) Rn-i—l )
(p+5+1+7) W (ptr+1+5) P Bprirn) D ) 7 ptj—r)
The reverse direction is similarly obtained.

Using this classification of (7 4 1)-cycles and (1 + 1)-boundaries we can obtain a result slightly stronger than the
unit axiom for a monoidal model category. Since Z;"*(—) is functorial we have a morphism fofn (QI®A) —
fof_n (A), and this is given by projection onto the 1?0) & — component followed by the isomorphism R?O) QRAA.
This functoriality argument also shows condition 1 of the preceeding lemma. It also shows however that for the (r+1)-

cycle ¢ above, if the image is a boundary then so too is a?p) in A.
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Proposition 5.2.0.2. The composite function QrI @ A — I ® A — A is an r-weak equivalence for all (not necessarily
coftbrant) A.

Proof. We will show the following map is both injective and surjective for all p,n € Z,

Zp ,p+n (QrI ® A) Z:v ,ptn (A)

Ep i [®A ) SN 41 EZD ,p+n A) .
i (Qr )= BYP(Q I ® A) BT (A) G

Surjectivity: Surjectivity of the map is clear since forana € Zf_fl_‘—n (A) we can take the element given by 1(()0) ®a €

fofrn (QrI®A),whichis an (r+1)-cycle by the classification of Lemmal5.2.0.1} whose image is @ under the composite
Q1A — A
Injectivity: For injectivity we consider an (r 4+ 1)-cycle ¢ € fof_n(QT[ ® A) with image in Bfff_n (A). By

5.2.0.1 for & > 1 and the preceedmg discussion for £ = 0 this means that a(pHC) Bf_tf’p+k+n (A).

Lemma

Lemmal5.2.0.1]also gives an exp]lut representation of a(p+k) as a bOuﬂddl) for £ > 1 and we choose one for k = 0

and write these as

Alpir) = da(p+r+k) + bptk-1)
Bfif,p+k+n(A) _ de-i—k,p—i—k—Q—n I(A) Zf+k+T—1,p+k+T—1+n(A) )

We can then rewrite the 1?7,6) ® a?erk) components as:

0 n . 0 —1 0 n
Lk @ a(pip) =d (1(_@ ® a?p+k+r)) 1k) @ Dpyr—1)
1 n—1 1 n—1
- 1(—k—r) ® Cptktr) — 1(—k—r—1) ® Cptktr)
where the penultimate term is interpreted as 0 when & = 0. Rearranging the previous and summing over k>0 gives:

0 n—1 0 n
=) (1< B ® i) 1 ® a(erkJrr)) > (d (1(,k) ® “<p+k+r>) + 1k @ bpn—)
k>0 k>0

1 popn) ® a(p+k+r>) ’
and we now identify terms on the r%ht as belonging to constituent r-cycles of (r + 1)- boundarms The term with
(p+k+r) is an element of ZPFHTPHr+n=1(Q T @ A) since a(erkJrr)
as are all 1(—k)» and hence its differential is in Bfff_" (QrI ® A). Similarly b( k1) iSanT- -cycle and the final two

terms of the right side sum are elements of Fj,—1 (QrI ® A)™, hence are also elements of Bfffrn(QTI ® A). We havc
then written g as a sum of boundary elements proving injectivity. &

is an r-cycle

differential applied to, l( I ®al

The proof of Proposition[5.2.0.2|demonstrates the following result which is identical to that of Lemmal5.2.0.1|except
we replace the remaining cycles with boundaries.
Corollary 5.2.0.3. An element ¢ € Fp(QrI ® A) is an (r + 1)-boundary, i.e. g € Bfffrn(QTI ® A), if and only if the
following hold:

I af,y € BIE(A),

2. a?ﬁk) € ij__f’p+k+n (A), for each k > 1, and
3 af,py — da?p+1r+k) € Fp_14;A", foreach j > 1.

In fact existence of a cofibrant replacement for the unit satisfying the unit axiom implies all cofibrant replacements
of the unit satisfy the unit axiom [MurI5, Lemma 7].

5.3 Verification of the pushout—product axiom

With the unit axiom established it remains to show the pushout-product axiom holds for the (acyclic) cofibrations
of (fC) . We will demonstrate this by verifying the pushout-product axiom of the generating (acye ic) cofibrations
of (fC) g and bootstrapping the result to hold for all cofibrations with the aid of Lemma 5| We have sufficient
knowledge regarding the cofibrations to show, using Lcmma that che pushout—products are cofibrations too.
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5.3.1 Decompositions of certain tensor products
Recall the notations of Notation|1.2.1.13[and Sectionand consider the tensor product Z5(p, n) ® Z;(g, m), where
w.lo.g. s < t. This can be depicted as the filtered chain complex:

(n)+(m) (n+1)+(m)
R p)+(q) {d} R(p s)+(q) {c}

| Jen

(n)+(m+1) (n+1)+(m+1)
R( )+(g—1) {6} R(p s)+(qg—1) {a}

where we have given names a, b, ¢ and d to the generator 1 of each copy of R. There is a change of basis compatible
with the filtration to the filtered chain complex with generators a, (—1)™b, (—1)™b + ¢ and d. Note that if s < ¢
there is not a change of basis to a, (—1)"() + ¢, ¢ and d as we can no longer refer to the element b in filtration dcgree
p + ¢ — t unless we use both (—1)"b + ¢ and b which both live in filtration degree p — s 4 ¢ which is greater than
p—t+aq.

Our change of basis to a, b,(—1)™b + ¢ and d is such that the differentials of d and b are (—1)"b + c and a
respectively and both d and b are therefore s-cycles. We have then shown the following lemma.

Lemma 5.3.1.1. For s < t, there is an isomorphism of filtered chain complexes
Zi(q,m) @ Zo(p,n) 2 Z(p+gn+m)® Z(p+qg—t,n+m+1).
Corollary 5.3.1.2. In the model category (fC) g with s,t € S the pushout-product of 0 = Z(q,m) and 0 — Z,(p,n) is

an acyclic coﬁbmrion.

Proof. By Lemma(5.3.1.1|the pushout-product is isomorphic to 0 = Z5(p + ¢, n+m) & Zs(p+q —t,n +m + 1)

which is the direct sum of two acyclic cofibrations, since s € S, hence is an acyclic cofibration.

We now wish to show a similar decomposition for the tensor product of Z, 11 (p, n) = Bry1(p, n) with Z4(q, m),
for s < 7, which is the pushout-product of Z,11(p,n) = Byy1(p,n) and 0 — Z,(g, m). This morphism of filcered
chain complexes can be depicted as in Figure with generators as indicated. We now compute a change of basis, for the
domain we use as a basis: A, B, B+ (—1)"C and D. For the codomain we use a, b, b+ (—1)"¢, b+ (—1)"c+ (—1)"d,
e,e+ f, f+ (—=1)""1g and h. We have written each list of generators so that for those of the same cohomological
degree the_y appear in ascending filtration order. This makes it clear that this change of basis is compatible with the
filcration so we have an isomorphism of filcered chain complexes, not just of chain complexes. We now observe that
under this new basis the morphism is the direct sum of the following four morphisms with the dashed arrows indicating
the morphisms of filtered chain complexes:

0 ————0 9 :
R{hy — R{f + (~1)""ig} R{e} ————— R{b+(~1)"c}
R{‘B’} —_— R{(—l?”“A} R{P} ——  R{B+ (‘—1)"(]}
R{%}} S R{(—lﬁ"“a} R{e%l— f} —— R{b+ (—l)ilc—f— (-1)"d}

which exhibits the pushout product of Z,11(p,n) — Byy1(p,n) and 0 — Z4(g,m) as the direct sum of four
S-acyclic cofibrations, since s € S, two of which are in fact isomorphisms. We have then proved the following lemma.

Lemma 5.3.1.3. For s < 7, there is a change of basis exhibiting the pushout-product of Z,41(p,n) — Bri1(p,n) and
0 — Z5(q, m) as the direct sum of morphisms:

0 0
4 ® 1
Zip+qg+r,n+m—1) Zp+q—1,n+m)
Zip+g—r—1L,n+m+1) Zs(p+q,n+m)
® 4 ) {
Zip+tqg—r—1Ln+tm+1) Zs(p+q,n+m)
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RO+ 1 (n+1)+(m)
i) P R, 1) (g 1B
— ) |
(n)+(m+1) I (n+1)+(m+1) !
R(p)+(q s) ¢} 1 ! R(p r—1)+(q— 9){A} 11
) | | ‘
1 I ~ 1, <4
(n=1)+(m) i | (n)+(m) (n)+(m) ™ | (n+1)+(m)
Bpinyii 1) 1 i Ripyiq) {7 BTy e} — By {0}
Ail 1 % ‘i, Aﬂ
(n—1)+(m+1) (n)+(m+1) (n)+(m+1) (n+1)+(m+1)
RO ) 9} @ LS A [ Sp s s () B L s (1)

Figure 5.2: Pushout-product of Z,11(p,n) = Bry1(p,n) and 0 — Z,(g, m)



As an immediate corollary we have the following:

Corollary 53.14. In the model category (fC)g with s € S and r = max.S, the pushout-product of Z,1(p,n) —
Bri1(p,n) and 0 — Z4(q, m) is an acyclic cofibration. &

5.3.2  Pushout-product of generating cofibrations of (fC),.
Recall the construction of Lemma [1.2.1.9| which computed a colimit of a diagram X: I — fC as the composite

rcolimy iX. Le. we interpret a filtered chain complex as an object ofC;Z{r via 4, compute the colimit degreewise in
CIZ{ and then apply the reflector 7. We will make use of this for computation of the pushouts in the pushout-products.

We now consider the case of the pushout-product of two generating cofibrations of (fC),.. Let i be the morphism
Or+1: Zry1(g,m) — Bri1(g, m) and j be the morphism @41 Zr41(p,n) — Bri1(p, n). Recall that 4 can
be displayed as follows where the components of 4 are diagonal or identity maps:

(R —— RG)

z""l li’"“ )

®R™ . — R )

m—1 m
(R R (¢=1) (01) (g—r—1)

(g+r) (%) (a)

and similarly for j:

(R?p) - R?ptlrfl))

j”l lj"“

J@®RP ) = R )

n—1
(R Ry (»=1) (01) (p—r—1)

(p+7) (}) (»

Recall too the notation of Notation [1.2.1.13] Our first goal is to compute the domain of the pushout-product ¢ X j
which is given by the pushout:

Zri1(g,m) @ Zrya(pyn) —— Bryi(g,m) ® Zr41(p,n)

l ] l : (5.4)

Z’FJrl(Qu m) ® Br+1(p7 ’I’L) dOHl(Z X j)

The three components of this pushout are depicted in Figure as Zry1(q,m) ® Bry1(p,n), Zr11(g,m) ®
Zri1 (p, n) and Br+1(q, m) ® Zr11(p, n) 1‘espective]y. The demarcated boxes illustrate the maps in the pushout
Figure a demarcated box of the centre Z,. 11 (q, m) ® Zri1 (p7 n) maps via the identity or diagonal as appropriate
into the demarcated boxes of the same type in the other two subdiagrams of Figurc

Similarly the tensor product of the codomain By41 (g, m) ® Byr41(p,n) can be depicted as in Figurc We give
names to each of the R-modules of these figures to simplify the notation. The R-modules of\Figurecorrespond to
those OFFigurezmd similarly those OFFigurecorrespond with those OFFigure This change of notation will
be used in the diagrams in CZR°°. Converting the three filtered chain complexes of Figure[5.3|to Zyo-diagrams of chain
complexes via the reflector-inclusion adjunction of Lemmagives Figures[5.7|to

Under this new labelling of‘Figure the maps of the pushout become:

A: I —BaoC 1: J— F A: K —FoG 1: L—H (5.5)
A:l—>Na@P A — QT 1: K — S 1: L —U

and with reference to this labelling we compute the pushout in Z-chains of Figures andover Figure We
also list the deﬁning maps from the three components of the pushout in Figureto Figure

A:A—-CoFE A:B—-Faol A:C—oHpK 1:D—=J
A:E—-L®N 1: F—> M 1:G— 0 1:H—> P

AN T—-FoloHDK A:J—>LON A: K —->ModO 1: L—-P (5.6)
A:M—-B®dD A:N—-FoH 1: 0 -G A:P—I1IdK
1:Q— L A:S—>MaO 1: T — N 1:U— P
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(n—1)+(m) (-np"! Rn=D+(m+1)

(p+r)+(q) (p+r)+(g—r—1)
i1 i1
| pp(n)+(m) | (n)+(m+1)
| R(p)+(q) | R(p)+(q—r—1)
| ! (-1)"id
e @
| () +(m) (n)+(m+1)
Bt | B 1tg-r)
T2 ™2
L () +(m) (-nn*t (n+1)+(m—+1)
‘»‘Ri(Pjlei)‘FEQ)J R(pfrfl)Jr(qfrfl)

b p(n)4(m) (=" (n)+(m+1)
Bt Bp)ta—r-)
D (1) +(m) (—1)mtt R+D+(m+1)
1 Hp—r=1)+(q) | (p—r—1)+(g—r—-1)
(n)+(m—1) (-1 S n(m)H(m) o pln)+(m) | (-1)"ms (n)+(m+1)
Ryt atn) Rt @ Bpre-n | Byt g-r-1)
id
(n41)+(m—1) (1" 0 S D4(m) . ) (m) 1 (D)™ Tim (n41)+(m+1)
Bpr vt = 2 B0 @ Boririey T BTt

Figure 5.3: Components of the pushout

Recall that in a diagram category of an abelian category colimits are computed index-wise, so we can compute
colimits coordinate-wise in these figures. Despite the Zo indexing not necessairly inducing inclusions from one stage
to the next we shall still refer to it in the Fo]iowing as a filtration indexing for convenience.

In homological degree n + 1 4+ m + 1: all filtration degrees, above p — 7 — 1+ ¢ — 7 — 1, have the same pushout of
the form

L1y H
1i -4
U----- > L

whose pushout can be taken to be L. Also note all induced maps from the filtration indexing are the identity between
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(n—1)+(m—1) (=D)"" i (n=1)+(m) o pn=D)+(m) (=1)" ' (n—1)+(m+1)
(p+r)+(g+r) (p+r)+(q) (p+r)+(g—1) (p+7r)+(q—r—1)
i1 id i1
(n)+(m—1) (n)+(m) (n)+(m) (n)+(m+1)
Rp)1(gr) Rp)1(a) & Ry Rip)t(g—r—1)
(—=1)™id (—1)"id
® ® ® ®
(n)+(m—1) (n)+(m) R+ (n)+(m+1)
R, 1) 4 (gt RO © RO R, 1) g=r—1)
T2 J ™2
(n+1)+(m—1) (—)™T iy (n+1)+(m) (n+1)+(m (=)™ 'y (n+1)+(m+1)
Rp r—1)+(q+r) Rp r—1)+(q) @ R(p r— 1)+q 1) Rp r—1)+(g—r—1)

Figure 5.4: Codomain of the pushout-product ¢ X j

A" o p
| |
P
c G
e |
— "k
-
M (=1)"41 Nop_ (D' —1)"my g
| | |
O — i QT — e U

Figure 5.5: Named components of the pushout

these pushouts.

In homological degree n + 1 + m: we have in filcration degree p — 1 4+ ¢ — 7 — 1 the pushout of 7" and G over 0
which is G @ T. In filtration degrees p + ¢ — r — 1 and above we have the pushouts are of the form

JOK — FoFad

| -
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_1yn-1; 1yl
A (=1) L ,C @ E (=1) N
| | !
B F o I M
e —— D e ———— D
D H & K o
ml | yz
_— _

C—rm L ® N—m 7 2

Figure 5.6: Named codomain of the pushout-product ¢ X j

( 1
(="
pP+tq [———— Jae K
((_1)n+1 1)
p+q-1-1 JOK —— L
p-r-1+q-r-1 : . L
p-r-1+q-r-2 0 0 0
Q> 6\ ’GX\
X'Q \x S
<~ & Q;\

Figure 5.7: Representation in Zeo chains of Z,41(q,m) @ Z,41(p, n)

which, under the maps of Equation , identifies E with the diagonal of @ @& T via J, and identifies S with the
diagonal of ' @ G. We can then take F' @ G @ Q @ T as the pushout. The induced maps from Z are the inclusion
of GETino FOGHQPT fromp—1+4+¢—r—1ctop+ g—r—1and identity maps above this.

In homological degree n + m: we have in filtration degree p 4+ ¢ — 1 the pushout of C' @ D and O @ P over 0 giving
C @D ® O @ P. In filtration degrees p 4 ¢ and above the pushout is of the form

| —BaCaéD

| -

NoOGP --—--- »BeCe®DODP

where the maps of Equation identifies the diagonal of B @ C with the diagonal of N @ P via I. The pushout is
isomorphic to B& C @ D & O & P, since we can express 1y as 1 g + 1o — 1 p under the identification from I. The
induced maps from Z, as before, are inclusions of submodules or the identity as appropriate.

In homological degree n — 1 + m: the pushout is simply A @ M in fileration degree p + 7 + ¢ and above.

We can then depict this pushout in Zso-chains as Figure 5.10|where we have also calculated the induced differentials
of the pushout. We now apply the reflector functor of the adjunction between Zos-indexed chains and filtered chain
complexes which finishes the computation of the pushout in filtered chains.
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7
1
0
p+r+q M——NpODP
E 1 (_1)n+1 0 ).
0 0 (-1n"
0 0 1
pP+q NeOeoP— QST
p+q-1 OgP——QdSaT
(=t 0
( 0 (—1)"
) 0 1
0 1 (=1t
p+q-r-1 QeSas 7§ )
p-l+g-r-1 T ———U
(—yn+l
p-r-l+q-r-1 U
p-r-l+q-r-2 0 0 0 0
& & & &
B > N X
< 4\ N3
Figure 5.8: Representation in Z, chains of B,41(¢,m) ® Z,41(p, n)
In the notation of A, B, . .. the pushout is of the form:

S
Jm
QD W

=
—

|

(=)™ i

(_1)n71i1

|

— |

IS @ |
o @ |~

3
M
%

%)
|
I~

_qyn—1
A (=1

lo

[y

)
)

)

=2

3

TR QO MU

N
|
=
3
tl

X
<

2
i

= @ I~
R— 0@ 8 +— ¥

=

B — B ¢ D

O «— P
3

=
L
=
]
.
3

(5.7)
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1
)
(-1n?

p+req A—BaoCaeD
A 1 0\
((1)” 0 1)
0 (_1)n 0
P+q BoCdD ——ECF®G
p+q-1 C®D —FpFaG

1 0
0 1
5

(=n™*t 0 1)

p+q—r—l FEepFeG————H
p-1+q-r-1 G B E— H

p-r-1l+q-r-1 : : . H
p-r-1+q-r-2 0 0 0 0
& & & &
& < & >
<>

Figure 5.9: Representation in Zoo chains of Z,11(q, m) ® Byy1(p,n)
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€01

p+r+q

Ptq

p+q-1

p+q-r-1

p-1+q-r-1

p-r-l+q-r-1

p-r-1+q-r-2

(—1)"

1
0 (="
(71)71,—1 0
0 1
0 (1)t
Ao M BeCoeDpOdP
(=" 0 1 0 (=)™
0 1 0 (—1)nt! 0
0 (— 1)" 0 o (—1)"
0

B@C@D@O@P—————%F@Q@G@T

C@D@O@P—————aF@Q@G@T

1 0
1 0 (-1t 0
(=n™ 0 0 (="
1 0 0 1
(0 1 (=™t
FoQaeGaeT L
GeT L
(1 (_1)n+1>
L
0 0 0 0
N
,Q X
/\/X'& QX.& X\x\ \X'{(\
Q ,{\X

Figure 5.10: Representation in Zq, chains of the pushout



The maps in Equation a, 3,7 and € are given as follows:

1
a=|0]:A—BaoCoP
0

(1)”)
g=| (-1)" | : M —BacaPr

= (8 } 0>:BEBC€BP—>Q®T
):B@C@PHF@G

We also describe the induced map

iWj: Z,41(q,m) @ Brya(p, n) 1T Br11(q,m) @ Zr11(p,n) — Brya(q,m) @ Brya(p,n) -

Zr41(g;m)@Zr41(pyn)

With reference to Equation (5.6) we can describe this map by:

A:A—CoE 1: 0 — G 1:G— 0 A:B—Faol
A:M— B®dD 1: F— M 1: T — N AN:C—HDK
1: D —J 1:Q — L 1: L — P A:P—IdK

One can easily Verif}7 that these maps of the R-modules commute with the differentials and so assemble to a map of fil-
tered chain complexes. We also provide the translation back to the sub/superscript notation displaying the homo]ogical

and fileration dcgrccs in Figurc
It remains to show that the pushout product is indeed a generating cofibration for which we apply Lemma[4.2.0.6)

Lemma 5.3.2.1. The pushout-product of i: Z,11(p,n) = Bry1(p,n) and j: Z,41(q,m) — Bryi(g,m) in (fC)g
where max S = r is a cofibration.

Proof. By Lemma it is enough to show that ¢ X j is an r-supressive inclusion whose cokernel C' is cofibrant with
for all n a p(n) such that Fj,,)C™ = 0.

The cokernel is given, up to signs, by

Rr—D+(m=1) =1, p(n—1)+(m)

(p+r)+(g+r) (p+r)+(g—1)
(n)+(m—1) (n)+(m)
R, 1) 4 (g1r) R ) -

which decomposes into the direct sum of two representing 7-cycles by Lemma hence is cofibrant. Further
writing dom (i & ) and cod(i K j) for the domain and codomain of ¢ ¥ j we must have that, under the twisted
direct sum decomposition oFLemmﬂqui X jintoi X j: dom(i X j) — dom(i X j) @, C, char the cwist 7
surpresses filcration by r. Finally we have that the filtration on C' is bounded below. Hence the pushout-product ¢ X j
is a cofibration in (fC) and so too thenin (fC)g. ¢

We have then shown the following theorem.
Theorem 5.3.2.2. Each of the model categories (fC) g of Theorem3.1.0.2)is a monoidal model category.

Proof. The unit axiom was proved in Proposition 5.2.0.2 and the pushout—product axioms were proved in Lemmal/5.3.2.1
and Corollaries[5.3.1.2|and [5.3.1.4| for the generating (acyclic) cofibrations, we can now apply Lemma|1.4.5.5 to obtain

the result.

104



n+m—1 (_1)7171 n+m

(p+7)+(q) (p+r)+(g—r—1)
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n+m n+m n+m-+1
. 5 Rpyvg @ Bg)ie-n ) By a-r-1)
R?P)-T(q+r) n+§3 n+m+€?
RN RN (g=r—1)
! \b ijz
n+m (_1)”+17;1 n+m-+1 n+m+1 (—1)"+1ﬂ'2 n+m-+2
R ey —— 150 v @ B )iy —— RGO gy
ii&j
(n—1)+(m—1) (-1)" ' (n—1)+(m) N (n—1)+(m) (-1)" 'y (n—1)+(m+1)
Ripsrit@rn’ — 2 Bt @ Biprmr-n » Ripiryt(g—r-1)
; i b
(n)+(m—1) (n)+(m) (n)+(m) (n)+(m+1)
Ryt atr) - Bpyr @ Bpyra-n oy Rip)4g-r-1)
o S .o @ S G o
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Rip 1)1 (g+r) Ry e @ Boplirg- Ry 1)1 (g—r-1)
- 1 -
(n+1)+(m—1) (=)0 (n+1)+(m) (n+1)+(m) (=" (n+1)+(m+1)
Ryt = 2 Borniw @ Borniren = 7 B

Figure 5.11: The pushout-product of generating cofibrations

As a consequence we can infer the internal hom object preserves acyclic fibrations when its first component is
cofibrant. Recall from Definition [1.2.1.14| that we have an internal Hom object right adjoint to the tensor product.
Fixing the first object as a t-cycle we have a special case given by

FyHom (2,(p,n),Y)™ = Fpy V"™ @ Fpyr Y "HIFT

with differential
Fpy Y™ M @ Fyppy YV 3 (2,y) = (d — (=1)™y, dy) -

Lemma 5.3.2.3. Let (fC) g be one of the model structures of Theorem with s € S. Then the functor Hom (Z4(p, n), —)
preserves acyclic fibrations in (fC)g.

Proof. Let : Y — X be an acyclic fibration in (fC)g. We must show that
Hom (Z,(p,n),7) : Hom (Z,(p,n),Y) — Hom (Z,(p, n), X)

is an acyclic fibration, i.e. that it has the right lifting property with respect to all cofibrations i: A — B of (fC)g in

A —— Hom (Z4(p,n),Y)

{ J{Hoirn(zs (pyn),m)

B —— Hom (Z,(p,n), X)
or equivalently by the tensor hom adjunction that 7: Y — X has the right lifting property in all diagrams of the form

A® Z,(p,n) — Y

oo |

B® Z,p,n) — X
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All of the morphisms (A — B) ® Z(p, n) are cofibrations in (fC) g by 'I‘heoremhence a lift exists.

More generally one could replace Z4(p, ) by any cofibrant object A and the functor Hom(A, —) would preserve
acyclic fibrations. And further if A were acyclic Hom(A, —) would preserve all fibrations.

5.4 Model structures from the monoid axiom

With monoidal model structures established for filtered chain comp]exes by proving the unit and pushout—product
axioms we now also demonstrate the monoid axiom which yields a model structure on algebra objects in the monoidal
category of filtered chain complexes7 i.e. model structures of filtered differential graded algebras. This then enhances
previous work of Halperin and Tanré, [HT90], to equip filcered differential graded algebras with fully fledged model
structures with r-weak equivalences.

Recall from Lcmma that in a cofibrantly generated monoidal model category M with generating acyclic
cofibrations J that M satisfies the monoid axiom if every morphism of (J ® M)-Cof eg is a weak equivalence, where
the notation J-Cof eg is of Notation

Lemma 5.4.0.1. Any map in Jg ® fC is an r-weak equivalence.

Proof. Any map is of Jg ® fC is of the form 0 = Z,(p,p +n) ® A for some A € fC and s € S, so is some shift of
the s-cone, Definition|1.6.0.12} of A which is s-acyclic and hence r-acyclic.

Lemma 5.4.0.2. A pushout of a filtered chain complex A by an element of J @ fC is a weak equivalence.

Proof. The pushout is of the form A — A® Z; @ B for some B € fC which is a weak equivalence since 0 = Z, ® B

is a weak equivalence.
Proposition 5.4.0.3. Every map of (J ® fC)-Cof,,, is a weak equivalence.

Proof. Since the model category (fC)g is a finitely cofibrantly generated model category by Lemma|l.2.1.16|then by
[Hov99, Corollary 7.4.2] it suffices to show €J.Ch quhout in the construction of a map of (J ® M)- -Cofregisa weak

equlvalenge. T}‘lN 1S the resu]t OFLemITI"l

Corollary 5.4.0.4. The model categories (fC) g satisfy the monoid axiom.

P;oof By [SSO0] Lemma 3. 5 (2)] it suffices to show that maps in (J ® fC) Cofreg are weak equlva]engeq This is the

result of Proposition 5.
Each of the following results is immediate from Theorem [1.4.6.3] the fact that (fC)g is cofibrantly generated

Wlth a” Ob]CCt@ bﬁll’lg sma] s and tl’lﬁt (fC)S SatlSFlCS the m0n01d axiom. Tl’lC statements ’117011{ the sets ofgenemtmg

cofibrations and acyclic cofibrations follows from the proof of Theorem|1.4.6.3

Theorem 5.4.0.5. For a fixed r, subset S C {0,1,...,7 — 1,7} containing r and filtered differential graded algebra A
there is a model category structure on left A-modules whose weak equivalences are the r-quasi-isomorphisms and fibrations those
morphisms that are surjective on all s-cycles with s € S. The generating cofibrations are given by A® Ig and generating acycllc

coftbrations by A ® Jg.

Theorem 5.4.0.6. For a fixed 7, subset S C {0,1,...,r — 1,7} containing r and filtered differential graded-commucative
algebra A there is a cofibrantly generated model category structure on A-modules whose weak equivalences are the r-quasi-
isomorphisms and fibrations those morphisms that are surjective on all s-cycles with s € S. The gcnc;atzng coftbrations are gwm
by A ® Ig and generating acyclic cofibrations by A ® Jg. Further this model category satisfies the monoid axiom

In the following for A a filtered differential graded algebra we let T'4 denote the free A-algebra functor.

Theorem 5.4.0.7. For a fixed r, subser S C {0,1,...,r — 1,7} containing v and filtered differential graded-commucative
algebra A there is a cofibrantly generated model category structure on A-algebras whose weak equivalences are the r-quasi-
isomorphisms and fibrations those morphisms that are surjective on all s-cycles with s € S. The generating cofibrations are gwen

by T'aIs and generating acyclic cofibrations by T'a Jg.

In particular taking A = R?o) the monoidal unit in this last result we obtain a model category of filtered differential

graded algebras.

106



Corollary 5.4.0.8. For a fixed r, subset S C {0,1,...,r — 1,7} containing r there is a cofibrantly generated model cate-
gory structure on filtered differential graded algebras whose weak equivalences are the T-quasi-isomorphisms and fibrations those
morphisms that are surjective on all s-cycles with s € S. The generating cofibrations are given by Is and generating acyclu

coftbrations by Jg.

5.5 Forcing the unit to be cofibrant

In Example WC showed that the unit R(()O) is not cofibrant in any of the model structures (fC) . Having a cofibrant
unit does not seem an unreasonable requirement and is the case in many model structures of interest, most relevantly
in the projective model structure on chain complexes the unit RY is cofibrant. Muro’s paper provides a method
of adapting a monoidal model category, by changing its fibrations and cofibrations but preserving weak equivalences,
so that the unit becomes cofibrant. This method is in fact controlled in the sense that it is still a cofibrantly generated
model category, with added generating cofibrations and generating acyclic cofibrations.

Definition 5.5.0.1. A model category with the structure of a closed symmetric monoidal category satisfies the very
strong unit axiom if there exists a cofibrant replacement Q1 of the unit I of the tensor product such that for all X the

morphism Q1 ® X — X is a weak equivalence.

This strengthing of the unit axiom removes the requirement that X be cofibrant. Recall that in Proposition
we showed that the model categories (fC) g satisfy not just the unit axiom but also the very strong unit axiom. Whilst
existence of a cofibrant replacement of the unit satisfying the unit axiom implies all cofibrant replacements of the
unit satisfy the unit axiom, Muro remarks the same does not necessarily hold for the very strong unit axiom if either
the monoidal structure is not symmetric or it doesn’t satisfy the monoid axiom. Since the model structures (fC) g are

symmetric and satisfy the monoid axiom, Coroﬂary 4f any cofibrant replacement of the unit satisfies the very

strong unit axiom. One of Muro’s theorems asserting existence of a modified model category with cofibrant unit states

the following.

Theorem 5.5.0.2 ([Mur15} Theorem 3]). Let M be a cofibrantly generated monoidal category with generating cofibrations I
and generating acyclic cofibrations J satisfying the very strong unit axiom for a cofibrant replacement w: QI 51 of the unit L.
Let

T D3OI
QI D2

be a factorisation of (m,id): QI][I — Tinco a cofibration followed by a weak equivalence in M. Let igr: QI — QI 1
be the inclusion of QL. Assume further that the domains of I are small relative to I-cellfor I :=TU{) — I} and thar QI
and the domains of J are small relative to J -Cell for J == J U {j oigr: QI — D}. Then there is a cofibrantly generated
monoidal model category M with sets of generating cofibrations I and generating acyclic cofibrarions J with the same underlying
category and weak equivalences. Further if M is left (vesp. right) proper so too is M and if M is symmetric and satlsﬁes rhe
monoid axiom so too does M.

Muro also notes that there is then a monoidal Quillen equivalence M =2 M, ie. the left adjoint ¢d is a monoidal
functor and id(QI) — 4d(I) is a weak eqivalence. We wish to apply this theorem with M = (fC)g, I = Ig and
J = Jg so for the unit I = R?o) and cofibrant replacement Q1 of R?o) we must construct a factorisation of the

morphism
(m,id): QI ] Ry — Ry -

into a cofibration followed by aweak equiva]ence. We construct such a D and factorisation required of Theorem|[5.5.0.2
as follows. We first introduce a shifted degree 1 projection map.

Definition 5.5.0.3. We denote by p, the composite (degree 1) morphism
. . r,_. N ~ rpd ~ —1
pri=idl, o X'm: X7Q.I = IRy = R,y — Ry,
where the degree 1 morphism idl_,, is the identity map that decreases filtration by 7.

We denote by D the ﬁltered Chail’l COmplCX givel’l by
D= Q0 RYy)) 0, 2'Q.1
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where the twist morphism 7 is given in the first component as the degree 1 morphisms shifting filtraion by 7 that
maps the components of 7@, I identically onto the corresponding components of ), and in the second component
by the morphism —py. The first morphism j of the factorisation of the Theorem is simply the inclusion of’
QI ® R?O) into the first component of the twisted direct sum. We will show shortly that is indeed a cofibration. The
second morphism ¢ is given by, on the first component of the direct sum, the morphism 7: QI — ROO on the first

component and the identity on the second, and on the second component of the twisted direct sum by 0. We will also
show that this second map ¢ is a weak equivalence.

Lemma 5.5.0.4. The morphism j: Q1 & R?O) — D is a cofibration in (fC) .

Proof. The cokernel of the morphism is the filtered chain complex X" @), I. Note that the proof of Lemma4.2.0.6can
be used here depsite the condition on a bounded filtration of the cokernel not being satisfied since we have a good
decomposition of X7Q,-I (the obvious one) into a direct sum in each cohomological degree. Usmg this dCLOHlpOQlthI]

one then applies the rest of the proof of Lemma4.2.0.6|to show this morphism lifts against acyclic fibrations.
Lemma 5.5.0.5. The morphism q: D — R?O) is an r-weak equivalence.
Recall the notion of an 7-cone from Definition[L6.0.12

Proof. One can identify the chain complex D with the r-cone of the morphism QI — Q.1 @ R?O) which is the
identity onto the first component and the map 7 onto the second. One can then identify the r-page of this filtered
chain complex, by [CELWT9] Remark 3.6], from which one deduces that the ( + 1)-page is isomorphic to that of the
associated 9peetra1 sequence of R(O) Hence the morphism g: D — R(O) is an r-weak equivalence. &

These two lemmas then provide a factorisation of (7, id): QI @ R(O) — R(()O) into a cofibration followed by a
weak equivalence as required by Theorem|5.5.0.2

Corollary 5.5.0.6. For cvery 7 > 0 and every subset S C {0,1, ..., 7} including r, the category fC admits a left and right

proper cofibrantly generated monoidal model structure, which we denote ( fC ) , satisfying the monoid axiom where:
s .

1. weak equivalences are Er—quasi—isomorphisms,

2 Ig:=1I5U {0 — R(()O)} and Jg == JgU {joig,1: @rI — D} are the sets of generating cofibrations and generating
trivial cofibrations respectively.

Proof. The model categories (fC) g of Theorem[3.1.0.2|are right proper, since all objects are fibrant, left proper by The-
orem [3.7.1.7}and monoidal by Theorem|5.3.2.2} Furthermore the morphism 7: QI — R(OO) is a cofibrant replacement

of the unit which satisfies the very strong unit axiom by Proposition[5.2.0.2]and by Lemmas[5.5.0.4]and [5.5.0.5/ has a

factorisation into a cofibration followed by a weak equivalence. All objects of fC are small relative to the whole cate-
gory by Lemma(1.2.1.17] hence all conditions of Theorem|[5.5.0.2| are satisfied so the eorrol]ary follows with generating

cofibrations and acyelic cofibrations given by:

jg = IsLJ{O%R(()O)} R

Js=Jsu{joigr: QI — (@@ Ry) @ 27Q,1} .

Note 5.5.0.7. These model categories (]/c\é) S are not finitely cofibrantly generated since the objects (-1 are not finite
objects in fC.

One apparent disadvantage to this construction in our setting is we lose our particularly nice description of the
fibrations. They still must satisfy Z,-bidegree-wise surjectivity but now with an added condition coming from the
newly added morphisms of J.

Muro also provides a characterisation of cofibrant objeets in ]\Z Firstly an object X of M is said to be coﬁbmnt mod

I'if it is a retract of an object Y which admits a cofibration [ [, I — Y for some indexing set T'. The characterisation
is then given by the following result of Muro.

108



Proposition 5.5.0.8 ([Mur15 Corollary 11]). For M satisfying the conditions of Theorem|5.5.0.2} an object X is cofibrant mod
Lin M if and only it is cofibrant in M. &

The generating cofibrations fg and generating acyclic cofibrations jg given by Corollary 5.5.0.6| are not stable
sets under the suspension X" and loop £2" functors. We can make all R?p) cofibrant by adding appropriate generating

cofibrations and acyclic cofibrations as for Igand Jg.
Corollary 5.5.0.9. For cvery r > 0 and every subset S C {0,1, ..., 7} including r, the category fC admits a left and right
proper cofibrantly generated monoidal model structure, which we denote ( f C) , satisfying the monoid axiom where:
- S
1. weak equivalences are E.-quasi-isomorphisms,

2 Ig = 1IsU {0 — R?p)}p,nGZ a‘nd Jg = Jg U {jo 'L'QTRZ;): QTR?p) — Dz’p)} are the sets ofgenemrh?g
coﬁbmtions and generating trivial coﬁbmtions rc‘spectively‘ &b

Pr OOf The pI‘OOFl@ 1dent1ul to that Of’ Cor ollary l’lOtlTlg that the pr OOFOFm Them cm 3] doei WOI']( by addmg

more of the 0 — R( ) to the generating coﬁbmtlons so long as we add the corresponding acyclic cofibrations.
One of the consequence of [MurI5| Theorem 3] was that the monoid axiom still holds in the newly constructed

model categories. We can then deduce as before model categories of modules and algebras where the unit is now
cofibrant.
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APPENDIX

Cylinder Objects and Cosimplicial Frames

A1 Cylinder objects in (fC)4

Recall the definition of cylinder and path objects, Deﬁnition and the notion of left and right homotopy, Defini-
tion and that for cofibrant X and fibrant Y the notion of left and right homotopy is the same, [Hov99] Corollary
1.2.6], so that to compute the homotopy classes of maps from X to ¥ we can equivalently quotient Homa (X,Y") by
cither the left or right homotopy relation.

In the model categories (fC) g fibrations are generally easier to work with and understand, and constucting path
objects is straightforward. Indeed the following gives a path object:

X =5 Hom(I,, X) — X x X .

Construction of a cylinder object is not so simple. Consider the fold map on the unit of fC, R?O) 11 R?O) — R?O).
A first guess at a factorisation of this map to give a cylinder object might be a filtered generalisation of the interval
object in chain Comp]exes taking account of the 7 = max S, i.c.

0 0 0
Ry [T Bloy — I — Ry, -

however whilst the second map is indeed a weak equivalence the first map is not a cofibration; its cofibre is R(:; which
is not cofibrant. In Section We constructed a cofibrant replacement of the unit so we consider now replacing the
R(_J portion of I, by something weakly equivalent which is in addition cofibrant. Recall the cofibrant replacement

of the unit denoted Q-1 of‘Sectionand projection map 7: QI = R?O). Recall the shifted projection map p; of
Definition[5.5.03

Definition A.1.0.1. We define the filtered chain complex Q,Cyl,. to be:

Q.Cy1, = ((Ry @ BY)) @, 2 Qu1)

where the twist map 7 is given by (_p; )

Note we have an inclusion of the first component of the twisted direct sum and a fold map @,V which is the fold
map on the first component of the twisted direct sum Ry @ R(g) and 0 on the second 3" Q,.1. We can now give a
factorisation of the fold map V: R(()o) @ R?O) — R?O) into a cofibration followed by a weak equivalence.

. 0 0 ~ 0
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Lemma A.1.0.2. The factorisation of Equation factorises the fold map R(()O) ® R?O) — R(()O) into a coftbration followed

by an acylic fibration in (fC) g withmax S = r.

Proof. The first map being a cofibration follows (almost) from Lemma with a slight modification since the
cokernel C' is £"Q),-I does not satisfy the bounded fileration result; we do not have for each n a p(n) such that
Fp(n)C" = 0. The issue is the decomposition of C' into a direct sum of its filtered parts however note since Q-1 is
defined as a direct sum of shifts of the unit there is no issue with applying the method of the proof to find a lift, hence
the first morphism is indeed a cofibration.

The second map is Zy-surjective for all 0 < & < 7 hence is a fibration in (fC)g. To see that it is an 7-weak
equivalence note that the twisted direct sum is isomorphic to

Ry & (Rl @, 57Q.1) (A2)

where the twist map 7 is now ?imply pr; the change of basis here has the first R?O) component of Equation as
the first R?O) appearing‘in Definition K.l.().% and the R?O) component of the twisted direct sum is the anti—diagonal,
generated by (1, —1), of R?O) S R(()O) in Definition é.l.().ll Consequently Equation l| becomes

. 0 0 0 0 T ~ 0
V: R, @ RY, — Ry, ® (RY) ©, 37Q, 1) o RY,
0o -1
0 0

The twisted direct sum component is isomorphic to the r-cone of Definition|1.6.0.12on the morphism 7: QI —
R(()o)v and so by Lemma|l.6.0.13|is r-acyclic since 7 is an r-weak equivalence by Corollary|5.1.0.6f This completes thc

lemma.

We want to use this factorisation as foundation for a more general factorisation of the fold map V: K @ K — K,
where K is a cofibrant object of (fC) g. We have shown that (fC) g is a monoidal model category in Theorem
hence we can tensor the first map of Equation by the cofibrant K and still have a cofibration. If the morphism
Q-V: Q. Cyl. — R?O) remains an r-weak equivalence after tensoring by K then a cylinder object of K can be
obtained by tensoring Equation by K.

Reca]l that FOI' a ShOTt exact sequence oFR—modu]es
0—+-A—B—-C—=0

if B and C are flat so too is A; one sees this by considering the associated long exact sequence to the functor — ® X
for some R-module X.

Lemma A.1.0.3. Let A be a filtered chain complex such that A™ and A™ | Fj, A™ are flat for alln, p € Z, then —® A preserves
kernels.

Proof. Let Z be the kernel of a morphism f: Y — X of filtered chain complexes and recall the definition of the
tensor product in filtered chain complexes Dcﬁnition For the tensor product of G and H we write ¢ for the
morphism:
o: P F,-G @ FH — (G H)"
q€Z i€l

or the restriction to some of its components. We now want to show the filtration on Z ® A is the expected one, so we
consider now an element a of F,(Y ® A)™ so that @ = p(Xy; ® a;) for some y; ® ay € F_q ® FyA for some ¢
such that (f ® A)(a) = 0. We restrict to consider the component X"~ @ A? of (X ® A)™ and similarly for Y in
place of X. We are then supposing that the y; are elements of Y™~ for a fixed n and i and that a; are elements of A?
for the same fixed 4. Take m; to be the max filtration degree of the y; and myg to be the max fileration degree of the a;.

Fpp, X" 1@ Fp,, A ? X" @A C (X A"

\/

ani ® Fm2Ai
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The morphism Fy,, X" @ F,,, A" — X"~' ® F,,,, A% is an inclusion since it is the tensor product of the inclusion
of a filtered piece by the flac module Fj,, A*. The morphism X" ™" @ Fj;,, A* = X" 7" ® A® is also an inclusion; to
show this we consider the short exact sequence

, ) Ai

0 — Fp,A — A" — ——
Fp,, At

from which we obtain a long exact sequence from the left derived functors of X"~ @ —:

i

Foy A

%

" Fony A

... — Tory <X”i ) — X" QF,, A X" A s X" e —0
of which the Tor; term is 0 since A/ F,,, A® is flac by assumption, hence X"t @ F, A" - X" ' ® A’ is an
inclusion.
We can then see that for (X fy; ® a;) to be 0 we must have that ¥ fy; ® a; = 0. Since we have an exact sequence
of R-modules
0— Fp, 2" " — Fp Y™ ' — F X"

we also have an exact sequence after tensoring by the flat F,,, A?
0— Fp, 2" '@ FpyA' — F Y '@ F, A — Fpy X' @ Fypy, A°
and so by exactness Yy; ® a; = Yz @ ay.

Counterexample A.1.0.4. We list some counterexamples to show that the conditions A™ and A™/F, A™ are flat are
necessary. For simplicity we work in filtered R-modules instead of chain complexes as the differentials play no role in
flatness.

1. Take R = Z/AZ and I = 27Z/AZ as an R-module. Note too that R/I = I, I ® I = I and that the natural
map I @1 = I ® A = [ is the zero map. We let A be the filtered module with F_1A = 0, FpA = I and
FilA=A= R Take Z = I,Y = R and X = I where the filtration on Z has F_1Z = 0 and FyZ = Z and
similarly for Y and X so that there is a pullback diagram in filtered R-modules:

Z ——Y
J

[
00— X

We now tensor this diagram D :== (Z — Y — X)) by A. The first two rows of the following diagram depicit
the fileration of this tensor product in fileration degrees 1, 0 and the third the tensor product by FyA:

D®A: IRA— AQA —— I®RA
Fo(D @ A): 00— AR ———0
FyD @ FyA: I — > Al —— I®1

where the first row is the tensor product of the underlying modules, and the second row is obtained by calculating
the map which takes the image of the third row in the first. We can rewrite this as

Fi(D® A): I A I

Fo(D® A): 0—— AT ——0

and we can see that tensoring b_y A has not preserved the pullback diagram since in filtration degree Fy we do
not have that 0 is the kernel of the map I — 0.
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2. Similarly one can show that just the requirement that A™ and F}, A™ be flat are not sufficient either. Take Z, Y
and X filcered Z-modules whose —1° filtration is 0, and 0™ fileration is the full module, respectively Z, Z and
Z/2Z so that there is a pullback diagram of the form

Z ——Y
.

[
00— X

and take A to be the filcered Z-module with F_1 A = 0, FoA = Z and F1 A = A = Z however such thar the
inclusion Fy A — F1 A is multiplication by 2. One can check similarly to the previous example that tensoring
the pullback diagram by A does not preserve the pullback property.
Lemma A.1.0.5. Let A be a filtered chain complex such that either A™ is not flac for some n or A™ [ F, A™ is not flat for some
n and p, then tensoring by A does not preserve kernels in general.
Proof. The lemma is clear if A™ is not flat for some n. The differentials play no role so we show the lemma for
filtered R-modules instead and suppose that A/F}, A is not flat for some p. Take a short exact sequence of R-modules
0—Z—Y — X — Osuch that — ® A/ F, A does not preserve left exactness of this short exact sequence. We make

Z,Y and X into filtered R-modules as before, by letting their —1°° filtration piece by 0 and the ot piece be the full
R-module. We then compute Fj, (A ® Z) and similarly with ¥ and X in place of Z.

F,(A® Z) =im (F,A® FoZ — A® Z)
—im(F,A®Z — A® Z)

and we can compute the latter by the long exact sequence of the left derived functor of — ® Z applied to the short
exact sequence 0 — F,A -+ A — A/F,A — 0. This gives

Fo(ARZ)=im(F,bA®Z — A® Z)
=ker(A®Z — A/F,A® Z) .

We can assemble the fb”owing commutative diagram in which the rows are exact, any two composab]e vertical mor-
phisms compose to 0 and the middle vertical Complex is exact.

0 ?

l

0 — F(A®RZ) — AQRZ ——» A/F,LARZ —— 0

l

0 — FARY) —— ARQY — A/F,AQY —— 0

l

0 — FA®X) — A®X — A/F,JA® X —— 0

— T +— "o

0

where ? is the kernel of‘A/FpA ® 4 — A/FpA ® Y and is non-zero by assumption. Computing the long exact
sequence associated to this short exact sequence of chain complexes we get, using that the middle complex is exact,
that the vertical homology at F},(A ® Z) is non-zero so that Fj,(A ® Z) — F,(A ® Y') is not an inclusion W]’lth
shows that A ® Z is not the kernel of AQY — A® X.

Corollary A.1.0.6. For a filtered chain complex A the functor — & A preserves kernels if and only if A™ and A™/F, A™ are
flat for each p and n.

Corollary A1.0.7. Let K be cofibrant, then — @ K preserves kernels.

Proof. Recall from Lemmaf4.1.0.1|chat for a cofibrant K that K™ and K" /F, K™ are projective for all p,n € Z. Smce
projective R-modules are flat the corollary now follows from Lemma[A.1.0.3

114



Lemma A.1.0.8. The tensor product of Q,V: Q,Cyl, — R?O) with a cofibrant K is an r-weak equivalence.

Proof. We rewrite the morphism firstly using the change of basis of Equation (A.2) so it again becomes:

R, & (R?O) @, 27Q, ]) ~ R (A3)

(100)

where the second component, R(()o) @r X7Q,-1, is isomorphic to the r-cone on 7, Cy- (7). Note that C.(7) is a kernel:

Cr(ﬂ- E— QT (r+1)

1
00— R(r )
and so tensoring this diagram by a cofibrant K preserves the pullback by Corollary Further 7 ® K is still a
weak equivalence by Proposition|5.2.0.2|and also a fibration, so that the pullback C;.(7) @ K — 0 is also an acyclic

fibration, in particular an 7-weak equivalence.

W)@KHQTR( +1)®K

l Nlﬂ'@K
0———— RL, ®K

This shows that tensoring Equation (A.3) by K is still a weak equivalence.

We have then shown the following construction of a cylinder object on a cofibrant K in (fC)g, (this cylinder
object only depends on 7 = max 5).

Corollary A.1.0.9. There is a factorisation of the fold map V: K[ K — K in (fC)g into a cofibration followed by an
acyclic fibration:

Q,V: KHK—>QTIT®K—>K.

This then gives a way of computing homotopy classes of maps from a cofibrant X to a fibrant Y via left homotopies.

A2 Higher factorisations and cosimp]icial frames

In the previous section we gave a factorisation of the fold map V: R?O) 11 RO — ROO) into a cofibration followed
by a weak equivalence. This factorisation is the analogue in (fC) g of the factorlsatlon of the fold map of simplicial
sees A[0] JTA[0] — A[l] — AJ0] into a cofibration followed by weak equivalence. We could have written this
instead as OA[1] — A[1] — AJ0]. In simplicial sets we can also factorise the collapse maps OA[n] — AJ0] as
0A [n] — A[n] — A[O] and we now sketch analogues to these ‘higher dimensional factorisations’ in (fC)S. Recall to
construct OA[n + 1] from A[n] one takes 1 + 2 copies of A[n] and identifies various boundaries (explicitly pushouts
of coproducts of A[n] over A[n — 1] subobjects). To then obtain A[n + 1] from OA[n 4 1] one needs only add an
(n + 1)-dimensional cell whose boundary is 9A[n + 1]. For the analogues in (fC) g we perform similar pushouts
and to add an (n + 1)-dimensional cell we use instead iterated suspensions of the cofibrant replacement of the unit.
We introduce new notation to elicit the factorisations in simplcial sets. Denote by RA[0] the filtered chain complex
R?O) and by RA[1] the filtered chain complex @, Cyl,.. Consider the quotient of three copies of RA[1] where the end
subobjects given by the RA[0] are identified as in the construction of 9A[2] from three copies of A[1]. We denote
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this filtered construction by ROA[2]. Explicitly this filcered chain complex ROA[2] is given by:

/ﬁ”x /’\

yrQI Q1 ETQT QI
— ;lp
ET QQT
—p —p
Ry, T QI —— Ry, Ry, T QTI — Ry,

and one can obtain higher dimensional versions in much a similar way.

116









APPENDIX

Right Adjoint to Coproduct Totalisation

This appendix proves that the functor R ofDefmitionis right adjoint to the coproduct totalisation functor
Tot®. We need to describe natural maps between the hom sets Homye ('I‘O‘c@([()7 C) and Homye (K, R(C)) and
show they are bijections.

We write 72 for the projection onto the second component of any direct sum of two R-modules. Given a map
f: K — R(C) of bicomplexes we obtain a map of filtered chain complexes f: Tot®(K) — C by the following

di agram:

o] T

Note by construction FyTot® (K)™ is mapped by f into F;C™, so that f degreewise is a map of filtered R-modules.
We check that f commutes with differentials. First note the following equation, for an (z,y) € F,_C"tl g F,C™

dmay(z,y) = dy = mado(x,y) + (—1)"m2d1 (2, ) . (B.1)

Now in the following series of equalities we have the first follows from the definition of d on Tot®, the second by
definition of f, the third by commuting dy and dy past f** using f is a map of bicomplexes, the fourth reindexes the
last part as we are summing over all 4, the fifth by co]lecting terms, the sixth using equation and the last again by
definition of f.

Frtd(k) = 1 (doki + (—1)"di ki)
= > o f T (dok; + (—1)"dakisa)
=D mado f ks (= 1) mady f R
= mado fr ki 4 (=1)" mady f1 R
= Z ma(do + (—1)"dy) £k,
= Z o f5

= df" (ki)
This then shows f is a map of filtered chain complexes.
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Now suppose we are given amap, g: Tot®(K) — C of filtered chain complexes. We define amap, §: K — R(C),
of bicomplexes. We write ™ : K#*" — Tot®(K)™ for the inclusion of the i summand.

gi,i+n: Ki,i+n _ R(C)Z’7'+n
k— ((_1)n+1gni71,i71+n+1d1k, g,r,z,lJrnk)

We check that the maps §%“t™ commute with the differentials dg and dy. The first equality in the following

follows from the definition of g, the second from the definition of d; on R(C), the third from d;d; = 0 and
(=1)"F1(=1)"*! = 1, and the last again from the defintion of §.

d ~1, z+n(k,) (( )n+1g7’]i_1’i_1+n+1d1k‘, gni,i+nk)

dy
= (0, (~1)H (— 1) gy L )
(-1
=g

1 2,i— 2+n+2d1d1 i—1,i— 1+n+1d I{i)

k, gn
—1,0— l+n+1(d k‘)

We will make use of the foHowing equation relating differentials and the inclusion maps 7:

dni,i+nk_ _ ni,i—i—n—i—ldok _|_ (_1)nni—1,i—1+n+1d1k, . (BZ)

We show too that %+ commutes with dp. In the following we then have the first equality follows from the definition
of §, the second from the definition of dy on R(C'), the third commutes d and g using ¢ is a map of filtered chain
complexes, the fourth uses equation on the first component, the fifth uses equationon the second component,
the sixth cancels the term involving did; in the first component and the terms of opposite sign in the second, the
seventh commutes dgy and d1, and lastly we use the definition of §.

dog" " (k) = do (~1)" g’ M T dk, g0 k)
( l)ndg’l’}l 1,i— 1+n+1d k dgnz ’L+nk + ( )n+lgni71,i71+n+1dlk)
( l)ngdnz 1,i— 1+n+1d k gdnz ’L+le + ( )n+lg’l7i71’i71+n+1d1k')
(—1)ngyi— L1t 2 g e 4 (— 1)L (1) Py 2822 gk
gdn Tk + (_1)n+lgni—l,i—1+n+1d1k)
((_1)ngni—1,i—1+n+2d0d1k b)Y (1) 2 g
gni,i—i-n—i-ldok 4 (_1)ngni—1,i—1+n+1d1k n (_1)n+lgni—1,i—1+n+1d1k)
C1)rgnim b2 g g g gni,i+n+1d0k)
B R R N gni,i+n+1d0k)
P (dok)

We now Verify that f = f: K = R(C). The first equa]ity in the Fo]]owing follows from the definition of g, the
second by definition of f, the third uses the equation 71 (z,y) = (—1)"mady (2, y) when (z,y) € R(C)™ and we
take (z,y) = fH"k, the fourth equality is cancelling signs, and the last uses the definition of the projections 7.

J?i,zurn( k) = (( )n+1fnz Lislbntlg g Fpis z+nk)
(A g i
= (=)™ (=) g foH ke, o fTE)

= (mofY "k, mo fO k)

= P
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Finally we verify that g =g: Tot?® (K) — C. The first equality in the following follows from the definition of 1
the second by definition of g, the third from applying o, and the last by linearity of g.

.én(kz)z — Zﬂ_2gi,i+nki

— Z o ((—1)n+lgni_17i_1+n+1d1ki, gnz,l-i-nkl)

i
_ Z gni,iJrnk,i
= g(ki)i
We have proven now the following proposition.

Proposition B.0.0.1. There is an adjunction of categories Tot®: bC == fC : R.
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APPENDIX

Questions

We discuss here some questions the author has regarding model structures related to spectral sequences. They are
potential future directions of work.

Question C.1. The projective model structure on (bounded) chain complexes can be obtained via the Dold-Kan
adjunction from transferring the Quillen model structure on simplicial sets along the free-forgetful adjuntion between
simp]icia] sets and simp]icia] R-modules. Can the bounded model structures on filcered chain complexes be obtained
by transfer along a filtered Dold-Kan adjunction in a similar way? What would such a model structure on filtered
simplicial sets be describing?

Question C.2. Can we perform a series of left and right Bousfield localisations to pass from one of the r-model
structures to an (7 + 1)-model structure? Or perhaps more simply are there non-trivial Bousfield localisations of any
of the model structures in the posets?

Question C.3. Can we construct an model structure whose weak equivalences are those maps of filtered chain complexes
that are isomorphisms on the co-page of the associated spectral sequence or those maps that are eventually isomorphisms
on some page of the spectral sequences? We refer to such a tentative model structure as an co-model structure. The
immediate problem is that the co-boundaries are not representable however they are still pro-representable. Perhaps
then the question is better asked as “is there an co-model structure on the category of pro-filtered chain complexes™

We first recall for a category C the category of pro-objects of C denoted pro-C and then give a brief overview of
homotopy theories related to categories of pro-objects (or similar).

Defmition C.0.0.1. A category I is said to be cofiltering if it is small, non-empty and satisfies:
L. forall4,j € I there exists a k € I with maps kK — ¢ and k — 7, and
2. for any pair of maps f, g: ¢ = j there exists a k € I and arrow h: k — 7 such that fh = gh.

Defition C.0.0.2. The category of pro-objects in C denoted pro-C has objects all functors X : I — C where I isa
cofiltered category and has as morphisms between X: I — Cand Y': J — C the class
Hompyo_¢(X,Y") = lim colim Home (X5,Y5) .
i 4

We have omitted the definition of composition which can be found explicitly in [EH76| Definition 2.1.1]. When
I = J natural transformations between X and Y are examples of morphisms of pro-C but there are many more
morphisms than just the natural transformations (even when I = J). The category pro-C can be thought of as having
objects the formal cofiltered limits of C. This category is complete, essentially by definition, and further cocomplete
whenever C is, see [[sa02] for constructions of limits and colimits in the category pro-C. These constructions can be
dualised to give a category of ind-objects of C using filtered diagrams. We relax the notion of model category/structure
for this discussion to mean whatever it means in each of the Fo”owing papers considered.

Artin and Mazur in [AM69] consider, without reference to any model structure, the pro-homotopy category i.c. pro
objects in the usual homotopy category of spaces. They use this to define homotopy invariants of a locally noetherian
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scheme, using the ¢tale topology, they refer to as the étale homotopy type. They further observe that this homotopy theory
is “amenable to the techniques of classical algebraic topology” in that it admits Hurewicz and Whitehead theorems
and one can work with Postnikov decompositions. Further one has good pro—ﬁnite and p-adic eompietions. The
consequences to geometry this theory entails is considerable but we focus only on the good properties this homotopy
theory has, see for instance as well.

Grossman, in [Gro75], considers a restriction of pro-objects and only considers the subcategory of towers, i.e. pro-
objects of the form

o= X1 2 X — .= X

Grossman then develops a model category structure on the category of towers of simplicial sets (although they remark
that the definitions and proofs are not combinatorial).

Seperately homotopy theories ofpro—objects were used in [EII76] where, under suitable restrictions on a model
category C, a model category structure on pro-C exists too and they study the homotopy theory comparing Ho(pro-C)
with pro-Ho(C) and discuss the homotopy and homology groups thereof. They also apply this to generalized Steenrod
homology in shape theory.

Isaksen develops the homotopy theory of pro-objects further and equips categories of pro-objects with model
structures (under assumptions on C). In the category of pro-simplicial sets, used in the ¢tale homotopy theory
in and shape theory of [MS82], is given a model category structure (with non-functorial factorisations) which
Isaksen notes is closely related to the “strict structure” of [EH76]. The weak equivalences in this model structure are
appropriately the weak equivalences of [AMGI]. This then generalises the model structure of on towers and
puts the homotopy theory of [AM69] on a stronger footing; one can now work on the level of pro-simplicial sets so can
work with strictly commutative diagrams rather than those commutative only up to homotopy for instance, although
note that morphisms in the two different homotopy categories do not in general agree, see §8]. The construction
of this model structure is somewhat involved in that firstly local systems are used to discuss weak equivalences in
pro-sSets instead of basepoints, since points of pro-simplicial sets may not exist, and secondly the model structure is
not cofibrantly generated, Corollary 19.3], hence the non-functorial factorisations so the proofis not as simple
as demonstrating a result like Theorem
simplieiai sets is vital to their proo{"so does not easiiy extend to pro—topo]ogieai spaces for examp]e.

Isaksen extends the resules of [EH76] to show existence of a strice model structure on pro-C whenever C
is a proper model category. To describe this further we state some terminology found in [Isa04l. A level representation
of a morphism of pro-objects X — Y is an isomorphic morphism, i.c.:

iSI{kSCﬂ I{iSO remari(s that the Funetoriality O{: ti‘lC skeieta] fiitration on

In

in the pro-C such that X and Y are indexed by the same indexing set I and f is a natural transformation of the
functors X: I — Cand Y': I — C. A morphism of pro-objects then satisfies a property essentially levelwise if there
is a level representation for which all morphisms f; satisfy the property. In the strict model structure on pro-C the
strict weak equivalenccs are then the essentially levelwise weak equivalences and the strict coﬁbmtions the essentially levelwise
coftbrations. Again these model categories are not cofibrantly generated and despite every object of every pro-category
being cosmall Corollary 3.5] the strict model category of pro-simplicial sets is not fibrantly generated cither,
although adapting to pro-(k-bounded simplicial sets) or relaxing to Chorny’s notion of class fibrantly generated, [ChoOdl,
one can obtain a form of fibrant generation. A similar result holds for the model structure of [[sa01].

In Christensen and Isaksen consider localisations of the strict model structure of [[sa04]. Existence of these
localisations is provided by Theorem 4.4] and they use it to construct a model structure, Theorem 6.5],
on pro-spectra whose weak equivalences are isomorphisms on the colimits of the cohomotopy, Definition 6.2].

Here the cohomotopy of a pro-spectrum X is given by:

"X = colimn" X, .
S
They refer to this as the 7*-model structure. Their main result is that this 7*-model structure on pro-spectra is Quillen
equivalent to the opposite of the usual stable model structure on spectra, Corollary 8.6].
In [[sa05] Isaksen constructs two model categories on pro-spaces for cach ring R. The cofibrations are those of
the strict model structure and the weak equivalences are respectively the R-cohomology weak equivalences and the R-

homology weak equivalences given as [Isa05] Definitions 5.2 & 5.4] which they remark, [[sa05] Remark 5.3], are distinct
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notions. Here the cohomology of a pro-spectrum X with M coefficients is given by:
H"(X; M) = co£imH"(Xs; M),
and the homology of a pro-spectrum X with M coefficients is the pro-group given by:
Hy (X5 M) = {Hy, (Xs; M)}

They also shows that the R-homology weak equivalences are in fact those morphisms which are M-cohomology weak
equivalences for all R-modules M, see Proposition 5.5].

In the paper of Fausk and Isaksen the authors define the notion of a filtered model category, Definition
4.1], on a category C which must satisfy a list of model structure like axioms, Axioms 4.2-4.6], which is further a
proper filtered model category if it in addition satisfies Axioms 4.9 & and 4.10]. One of the conditions is that there
are classes W, for each a € A for some directed set A such that Wy C W, whenever b > a. Given a proper filtered
model category on a category C there is then proper model structure on pro-C, Theorem 5.15], whose weak
equivalences are those morphisms of pro-objects that are essentially levelwise W, for all a € A. This in fact recovers
the model category of [[sa01l, sce Example 7.2].

Some other TT]Ode] structures appearing on pro—categories are listed bC]OW.

+ The model structures of Quick of pro-finite spaces, [Qui08} Theorem 2.12 | and [Quill} Theorem 2.3], pro-finite
G-spaces, [Quill] Theorem 2.20], and pro-finite G-spectra, [Quill] Theorem 2.20].

+ The Z/p-model structure of Morel, [Mor96]], on pro-finite spaces whose weak equivalences are those morphisms
incuding isomorphisms on Z/p-cohomology and where the Bousfield-Kan completion functor of [BK72] is a
fibrant replacement functor.

With this overview of the literature regarding model structures on categories of pro-objects we provide now some
commentary on the question of existence of an co-model structure on pro- fC. We suggested an co-model structure
on pro- fC in place of fC since the co-boundary functor is not representable but instead pro-representable. The
motivation for having (pro—)representable objects is so that one can use them as domains and codomains for generating
cofibrations and acyclic cofibrations for a model structure. However in each of the papers briefly reviewed above the
model structures on pro-C have been seen to be not cofibrantly generated. This recurring shortcoming of model
structures on pro-C suggests we should not expect a potential co-model structure on pro-fC to be cofibrantly
generated either but perhaps constructed along lines similar to that of one of the preceeding model structures.

Note however that we can immediately deduce strict model structures on pro- fC (resp. pro-bC) coming from

thC (fC)S (l"CS'p. (bC)S) modcl structures WhICh we rccord hCI”C.

Theorem C.0.0.3. Forr > Oand S C {0,1,2,...,r} containing r the category pro-fC can be equipped with a proper
model structure (with non-functorial factorisations), which we denote (pro- fC) g, whose weak equivalences are the essentially
levelwise r-weak equivalences and cofibrations are the essentially levelwise S-cofibrations.

Proof. Given such an S there is the (fC) ¢ model structure of Theorem 3.1.0.2{which is right proper since every ob ect
is fibrant and left proper by Theorem|[3.7.1.7} The result now follows by [[sa04] Theorem 4.15].

Theorem C.0.04. Forr > 0and S C {0,1,2,...,7} containing both 0 and 7 the category pro-bC can be equipped with
a proper model structure (with non-functorial factorisations), which we denote (pro-bC) g, whose weak equivalences are the
essentially levelwise r-weak equivalences and cofibrations are the essentially levelwise S-cofibrations.

Proof. Given such an S there is the (bC)S model scructure of Theorem [3.2.0.2| which is right proper since every ob ect
is fibrant and left proper by Theorem|[3.7.2.8] The result now follows by [Tsa04] Theorem 4.15]. &

Note the last paper [FI07], whilst sounding ideal for our setup, does not yield a candidate co-model structure as
the containment of r-weak equivalences is the wrong way:

Wo CW1 C W, C

Question C4. The £ Tot!! adjunction can likely be generalised to an adjunction from filtered chain complexes
to n-truncated multicomplexes but perhaps not from multicomplexes with all differentials. It is then feasible such
adjunctions would form yet more Quillen equivalences between model structures on n-truncated multicomplexes and
filcered chain complexes.
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Question C.5. Perhaps related to Questionis7 given some category and a method of constructing a filtered chain
complex from that category with the aim 0?1‘uﬂm’ng a spectral sequence, what conditions does one obtain on morphisms
in that category to construct an r-(co)fibration or r-weak equivalence once one takes the associated filtered object. E.g.
in an (subcategory of an) arrow category of spaces whose objects are fibrations of CW complexes/simplicial sets, to
such an object one can associate a filtered chain complex whose spectral sequence is the Leray-Serre spectral sequence
associated to the fibration. Given then a morphism between fibrations, what conditions on this morphism does one
require to obtain an 7-(co)fibration or r-weak equivalence on the filtered chain complexes?
And further can one transfer the S-model structures to these categories?

Question C.6. It would be informative to see to what extent one could formalise issues relating to convergence within
the framework of these model categories (potentially the tentative co-model category). When spectral sequences are
B0a99l). Frequently
convergence is automatic from some boundedness conditions on the filtration, i.e. for each n there exists p1(n) and
p2(n) such that F, ) A" = 0 and F},,(,) A" = A". Restricting to such a category of filtered chain complexes

with bounded filtrations will be neither complete nor cocomplete so we cannot define a model structure on such a

employed one wants to know the spectral sequence converges (and to what extent it converges, see

subcategory without relaXing what we mean by model category. However as seen in Section if we impose a fixed
filtration degree where boundedness must occur we can define model category structures.

Question C.7. The interaction between the various model structures, by which we mean the various inclusions of
weak equivalences, fibrations or cofibrations across the model structures of fC and bC, is worth further study (this
also relates to the Question[C.2). Of note in the literature where similar examples occur are Beke’s model structures on
simplicial sets. Propostion 2.1 & Theorem 2.2] gives a model structure on simplicial sets for each n > 0 whose

weak equivalences are the usual weak equivalences ofsimplicial sets and satisfy the fol]owing proper inclusions:

Fiby C Fiby C ... C Fib, C ...,
Cofg D Cof; D...DCof, D....

Question C.8. All model structures considered in this thesis on filtered chain Comp1eer or bicomplexes can be viewed
as projective model structures in some sense. In analogy with chain complexes which have both a cofibrantly generated
projective model structure and cofibrantly generated injective model structure (chis is cofibrantly generated and not
fibrantly generated, [Hov99, Theorem 2.3.13]) we ask are there analogous injective S-model structures on fC and bC
and what is the analogous intepretation for the various S with fixed 7 of Proposition .’

Such injective S-model structures are also 1ike1y to be Quillen equiva]ent to the ones considered within as there is
a Quillen equivalence induced by the identity—identity adjunction; weak equivalences are the same on both sides and
the projective cofibrations are a subclass of the injective monomorphisms which are simply the degreewise inclusions:

L oproj .y aing
i:Cpl === Cg’ i1

Question C.9. Does the adjunction Tot® R of Propositionlcft induce one model structures from fC to a
model structure on bC?
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