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Abstract

In [CELW19] Cirici, Egas Santander, Livernet and Whitehouse define model structures on filtered chain com-
plexes and bicomplexes whose weak equivalences are the r-weak equivalences, i.e. isomorphisms on the (r + 1)-pages
of the associated spectral sequences. In this thesis we study and generalise these model structures. These generalisa-
tions (fC)S and (bC)S for fixed such r are indexed by subsets S of {0, 1, . . . , r} containing r in the former case
and 0 and r in the latter and are finitely cofibrantly generated.

We show each of these model structures is a left (and right) proper, cellular and stable model category. We con-
struct a left adjoint L to the product totalisation functor and show, by means of Greenlees and Shipley’s cellulariza-
tion principle, that it is a Quillen equivalence for suitable indexing sets S. As a consequence all the model categories
considered thus far have equivalent homotopy categories induced via a zig-zag of Quillen equivalences given by com-
positions of the L-product totalisation, identity-identity and shift-décalage adjunctions. The model structures with
r-weak equivalences are shown to have no left Bousfield localisation to a model structure with (r+ 1)-weak equiva-
lences. We also derive existence of various bounded variants of the model structures (fC)S .

We then focus on the model structures on filtered chain complexes, give a classification of their cofibrant objects
and cofibrations with a boundedness restriction on their filtrations and show the (fC)S satisfy the unit and pushout-
product axioms thereby giving monoidal model categories. Furthermore the (fC)S satisfy the monoid axiom of
Schwede and Shipley yielding model structures on modules and algebras enhancing the homotopy theory of Halperin
and Tanré on filtered di�erential graded algebras to a model category structure.
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Introduction
The primary aim of this thesis is to investigate various model structures relating to spectral sequences which were
introduced by Cirici, Egas Santander, Livernet and Whitehouse in [CELW19] and establish what properties of model
categories commonly sought these model structures satisfy. These model structures, on the categories of filtered chain
complexes and bicomplexes, have as their weak equivalences those morphisms of filtered chain complexes or bicomplexes
inducing a quasi-isomorphism on the r-page of the associated spectral sequences, equivalently isomorphisms on the
(r + 1)-pages. Thus their weak equivalences are determined at a finite stage of the associated spectral sequences.
Fibrations were determined by various surjectivity conditions on k-cycles for k ≤ r used in constructing the k-pages
of the spectral sequences, this can be seen to be in analogy with the surjectivity conditions of the projective model
structure on chain complexes whose fibrations are degreewise surjections.

A list of the results of this thesis appears towards the end of this introduction. We firstly give some motivation for
model categories and spectral sequences.

Motivation for model categories

Model categories were introduced by Quillen in [Qui67] as a framework for studying the homotopy category Ho(C)
associated to some category C with a notion of weak equivalenceW . A major problem with studying homotopy theory
prior to model categories is a lack of control over Ho(C). Indeed the model for Ho(C) as being the localisation of
C[W−1] of C atW has set theoretic issues; the collection of homotopy classes of morphisms between any two objects
may form a proper class instead of a set. Model categories circumvent this issue by exhibiting a model of Ho(C) by firstly
taking a full subcategory of C and then quotienting the sets of morphisms by an equivalence relation thus ensuring we
still have a set of morphisms. The equivalence of categories between C[W−1] and the latter construction is justified
by the Whitehead theorem [Hov99, Proposition 1.2.8].

Model categories also axiomatise various constructions and properties frequently used in and common to lots of
homotopy theories; (co)fibrant objects, cylinder and path objects, function complex objects, etc., they provide a means
by which one can ‘compare’ model categories via Quillen functors and a notion of deriving functors which generalises
those found in homological algebra to a non-abelian setting.

This general framework allows model category structures to be constructed in many di�erent contexts (listed
shortly) both algebraic and topological. The model structures considered in this thesis will be cofibrantly generated and so
verification of a model category structure is made much simpler by the small object argument of Quillen, Theorem 1.4.2.4.

Other models for homotopy theories

There are many other axiomatic frameworks for homotopy theories: relative categories [DK80] later studied further
in [BK12], homotopical categories [DHKS04] and categories with weak equivalences have the notion of weak equivalences;
categories of fibrant objects (also called Brown categories) [Bro73], partial Brown categories [Hor16] and almost Brown cate-
gories [LW22] extend these by introducing a subcategory of fibrations with various additional axioms; dually there are
cofibration categories [Bau89] and Waldhausen categories [Wal85] (the latter introduced for the study of K-theory) which
instead add cofibrations; Cartan-Eilenberg categories [GNPR10] only introduce the notion of cofibrant models and strong
and weak equivalences; model categories [Qui67] (already mentioned) and infinity categories [Cis19] and their many models
capturing higher homotopical information.

Examples of model categories

To demonstrate the pervasiveness and applicability of model categories in algebraic topology (and more widespread)
we list some examples.

The archetypal example of a model category is the Quillen model structure on simplicial sets introduced in [Qui67]
whose weak equivalences are the π∗-isomorphisms. This model structure has many nice properties and many other
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model categories have simplicial structure in some sense compatible with the Quillen model structure (or such simplicial
structure is introduced via Reedy model structures [Hov99, Theorem 5.2.5]); such model categories have particularly
useful constructions, e.g. homotopy function complexes which encode the ‘higher dimensional’ information of the set of
homotopy classes of maps between two objects. Of more relevance and comparable to the model structures considered
in this thesis is the projective model structure on chain complexes. Weak equivalences are the quasi-isomorphisms and
fibrations the degreewise surjections. Many model categories on more algebraic categories use similar weak equivalences
and fibrations, often these model structures are defined via a transfer theorem from the projective model structure.
E.g the model structure of di�erential graded algebras is transferred from the projective model structure along the
free-forgetful adjunction.

Model categories have more generally found use in more specialised branches of homotopy theory. In the stable
setting, where the suspension functor on spaces has been inverted so as to obtain a triangulated category, model category
structures have been defined in the guise of sequential spectra [BF78], symmetric spectra [HSS00], orthogonal spectra
[MMSS01] and many more similar. Equivariant topological spaces, where spaces are now equipped with group actions,
form a model category [DK85] and there is a stable analogue [HHR21]. Categories of pro-objects, i.e. formal completions
of a category, can be equipped with various model categories [EH76, Isa01, Isa04] discussed later in Question C.3. In the
setting of dendroidal sets, [MW07], there is a model structure, [CM11], whose fibrant objects are the∞-operads. Bergner,
[Ber07], defines a model structure on simplicial categories whose weak equivalences are the Dwyer-Kan equivalences, i.e.
those simplicial functors F : C → D such that HomsSet(c1, c2)→ HomsSet(Fc1, F c2) is a weak equivalence for all
c1, c2 ∈ C. The geometric realisation-singular simplices adjunction provides a Quillen equivalence to a model structure
on topological categories. There are many model structures on simplicial presheaves some of which are collected in
[Bla01] including model categories in the motivic setting Sh

(
(Sm/k)Nis ,A1

)
.

Many more examples can be found in, for example, [Bal21].

Motivation for spectral sequences

Spectral sequences arose as a computational tool from work of Leray, [Ler46a, Ler46b], as a means of calculating homology
groups of a chain complex by a series of approximations. For a chain complex whose homology one wishes to compute,
one begins by equipping it with a filtration. In topology this most often comes from some sort of geometric data. Using
the filtration a series of approximations are obtained by taking some notion of ‘r-homology’ denoted Er , that is we
work with r-cycles instead of the kernel of the di�erential (those elements of the chain complex whose di�erential is
r-degrees lower in filtration) and similarly a notion of r-boundary in place of the image of the di�erential. Each of these
r-pages Er forms a collection of chain complexes where the di�erential is some appropriate restriction (in a very loose
sense of the word) of the di�erential, which compute the next page Er+1, so that a spectral sequence is an infinite
series of computations.

As a computational tool one hopes (or better expects) that the spectral sequence collapses at some stage, meaning
there are isomorphisms of bigraded modules E∗,∗k ∼= E∗,∗k+1

∼= . . . ∼= E∗,∗r for all r ≥ k for some k, thereby giving
some∞-pageE∗,∗∞ . Under good convergence criteria thisE∞-page along a diagonal gives the graded pieces of a filtration
of the homology of the chain complex from which one can recover, up to isomorphism and extension problems, the
homology of the chain complex.

Examples of spectral sequences

As demonstration of their computational worth and significance in homotopy theory we give some examples of spectral
sequences appearing frequently in the literature. The grading conventions in these examples is not consistent.

• The Leray-Serre spectral sequence, [Ser50], which given a fibration F → E → B of spaces computes the homology
of the total space E given the data of the homology of the base B with coe�cients in the homology of the fibre
F (we assume for simplicity here that the fundamental group of B acts trivially on the fibre):

Ep,q2 := Hp (B;Hq(F ))⇒ Hp+q (E)

whose use is immediately apparent by considering fibrations such as the loop-path space fibration ΩSn → ∗ →
Sn. This spectral sequence then gives a way to compute the homology of loop spaces.

• The Eilenberg-Moore spectral sequence, [EM66, Smi69], which (over a field) computes the homology of a pullback of
a fibration (again we assume for simplicity the action of the fundamental group is trivial). I.e. given a pullback
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square
Ef E

X B

y

there is a spectral sequence:

Ep,q2 := Tor∗,∗H∗(B) (H∗(X);H∗(E))⇒ Hp+q (Ef ) .

• The Adams spectral sequence, [Ada58, Nov67], (and its many generalisations) which for bounded below spectra of
finite typeX and Y computes the stable homotopy class of maps fromX to the p-completion Y ∧(p). The spectral
sequence is given by:

Es,t2 := Exts,tA (H∗Y,H∗X)⇒ [X,Y ∧(p)]

where H = HFp here is the Eilenberg-Mac Lane spectrum with Fp coe�cients, i.e. mod p cohomology, and
A is the Steenrod algebra H∗H . The special case with X = Y = S the sphere spectrum reduces to a spectral
sequence computing the p-primary part of the stable homotopy groups of spheres:

Es,t2 := Exts,tA (H∗S, H∗S) ∼= Exts,tA (Fp,Fp)⇒ [S,S∧(p)] ∼= (π∗(S))p .

• The Atiyah-Hirzebruch spectral sequence, [AH61, Mau63], used to compute some generalised cohomology E∗(X)
given knowledge of the ordinary cohomology H∗(X) and E∗(∗):

Ep,q2 := Hp (X;Eq(∗))⇒ Ep+q (X) ,

for example complex topological K-theory KU has KU(∗) being a Laurent polynomial ring generated by the
Bott element β in degree 2 and the Atiyah-Hirzebruch spectral sequence now gives a way of computing the
topological K-theory KU∗(X).

Literature review

Shortly we will discuss our motivation for the work of this thesis, first however we discuss work already carried out
in this area. Model structures, or homotopy theories, relating to spectral sequences have already been considered in
[HT90, Cir12, CELW19, MR19, FGLW22, LW22]. We give a brief overview of their results here in chronological order.

The homotopy theory of Halperin & Tanré on filtered commutative di�erential graded algebras

With motivation from rational homotopy theory, see [AH86] for a survey article or [FHT01] for a reference book,
Halperin and Tanré construct a homotopy theory on the category of filtered commutative di�erential graded algebras
with many good properties when the underlying ring contains the fieldQ, although they stop short of showing whether
it is a fully fledged model category — they only consider morphisms they term (R, r)-extensions, [HT90, Definition 2.2
(v)], instead of cofibrations in general. Here R is the commutative ground ring the algebras are taken over, viewed as
being concentrated in degree 0. These extensions of an algebraA take the form of a (completed) tensor productA⊗̂ΛY
where Λ is the free commutative di�erential graded algebra on some graded module Y , c.f. the notion of an I-Cell
object for I a generating set of cofibrations. They do however define in generality a notion of quasi-isomorphism and
fibration, [HT90, Definitions 2.2 (iii) & (iv)], termed (R, r)-quasi-isomorphism and (R, r)-fibration respectively. These
are morphisms inducing isomorphisms on the (r + 1)-page of the associated spectral sequence and surjections on the
r-cycles respectively which are a common feature of the subsequent homotopy theories as well.

We mention some of the good properties this homotopy theory has. [HT90, Propositions 3.4 & 3.5] show that
pushouts preserve (R, r)-extensions (resp. pullbacks preserve (R, r)-fibrations) as well as preserving (R, r)-extensions
that are also (R, r)-quasi-isomorphisms (resp. (R, r)-fibrations that are also (R, r)-quasi-isomorphisms). They show,
[HT90, Theorem 4.2], that all morphisms ϕ : A → A′ admit a model, i.e. a factorisation into an (R, r)-extension
followed by an (R, r)-quasi-isomorphism. They say of their technique for showing this:

«L’idée de la démonstration est de construire d’abord un modèle “classique” pour le morphism Er(ϕ), et
ensuite de le “perturber” afin d’arriver au modèle voulu de ϕ.»
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That is they construct a model on the r-page of the spectral sequence in the usual sense of the rational homotopy theory
of Quillen, [Qui69], and perturb it to obtain a model on the level of the algebras.

[HT90, §5] shows the existence of lifts one would expect if it were a model category, e.g. lifts of (R, r)-extensions
against morphisms that are (R, r)-fibrations and (R, r)-quasi-isomorphisms, [HT90, Theorem 5.1]. In [HT90, §6] they
construct cylinder objects, use them to define a homotopy relation and show homotopic morphisms induce the same
morphism on the (r + 1)-page of the associated spectral sequence.

[HT90, §7] restricts to the case Q ⊆ R and shows existence of lifts of morphisms that are both (R, r)-extensions
and (R, r)-quasi-isomorphisms against (R, r)-fibrations and [HT90, §8 ] addresses uniqueness of minimal models. Tanré
later makes use of this homotopy theory in [Tan94].

The P-categories of Cirici on filtered di�erential graded algebras

In their PhD. thesis, [Cir12], Cirici considers the category of filtered (homological and non-negatively graded) di�er-
ential graded algebras over a field k. They introduce a notion of a P-category with cofibrant models, similar to that of
a Brown category, with two distinguished classes of morphisms fibrations and weak equivalences along with a functorial
path construction required to satisfy a list of axioms [Cir12, Definition 1.2.18]. In their category of filtered di�erential
graded algebras (fdgas) they define a morphism of fdgas f : A→ B to be a filtered fibration, [Cir12, Definition 4.2.4],
if the induced morphism on graded piecesGrpf : GrpA→ GrpB is a surjection for all p ∈ Z and a weak equivalence
if Hn(Grpf) : Hn(GrpA) → Hn(GrpB) is an isomorphism for all p ∈ Z and n ∈ Z≥0. With these notions
of fibrations and weak equivalences they show that the category of filtered di�erential graded algebras over a field
k is a P-category, [Cir12, Proposition 4.2.9]. Forgetting the algebra structure these fibrations and weak equivalences
further agree with those of the r = 0 model structure of [CELW19] on the category of (unbounded) filtered chain
complexes to be discussed shortly. They further introduce, [Cir12, Definition 4.2.13], the notion of a filtered KS-extension
of degree n and weight p of an fdga A by a filtered graded module V , use this to define filtered cofibrant dgas, [Cir12,
Definition 4.2.14], and show that these lift against those morphisms that are both weak equivalences and fibrations,
thereby deserving the name cofibrant, [Cir12, Proposition 4.2.15]. These cofibrant filtered dgas C behave well with
respect to the homotopy theory in that the functor [C,−] sending an fdga to the class of maps defined by filtered
homotopy equivalence sends weak equivalences to bijections, [Cir12, Corollary 4.2.16].

They then generalise these definition to Er-fibrations, those morphisms surjective on the r-page of the associated
spectral sequence, and similarly to Er-quasi isomorphisms, along with an r-path object [Cir12, Definitions 4.3.1, 4.3.2
& 4.3.8] and with these notions show the category of fdgas has a P-category structure, [Cir12, Proposition 4.3.12].
The notion of a filtered cofibrant fdga generalises to [Cir12, Definition 4.3.13] with similar analogous results [Cir12,
Propositions 4.3.17 & 4.3.18]. Note whilst theEr-quasi isomorphisms are the weak equivalences of the r-model structures
considered later in [CELW19] the fibrations do not agree.

These P-category structres are suitably comparable in the sense that the décalage functor of Deligne, [Del71], induces
equivalences of homotopy categories from the P-category with Er+1-quasi isomorphisms to the P-category with Er-
quasi isomorphisms, [Cir12, Theorem 4.3.7]. Lastly of relevance to this thesis is the left adjoint to the décalage functor
which is shown to be inverse on the subcategories of cofibrant objects, [Cir12, Lemma 4.3.16].

The model categories of Cirici, Egas Santander, Livernet and Whitehouse on filtered complexes and
bicomplexes

We give here an overview of the results of our principal reference, [CELW19], whose model structure we investigate in
this thesis. From a filtered chain complex we can extract an associated spectral sequence, and likewise for bicomplexes
via first applying a (product) totalisation functor. The r-page of the spectral sequence associated to a filtered chain
complex A is given as a quotient of the r-cycles, denoted Zr(A), of A by the r-boundaries, denoted Br(A). These can
be viewed as approximations to the kernel and image of the di�erential respectively and the r-cycle and r-boundary
functors are representable by filtered chain complexes Z∗,∗r and B∗,∗r . The authors use these representing objects to
construct, for each r, two cofibrantly generated model structures on fC, [CELW19, Theorems 3.14 and 3.16]. Setting
Ir = {Zr+1 → Br+1}, where we supress any bidegrees, and similarly Jr = {0 → Zr} the two model structures
denoted (fC)r and (fC)r′ are defined by:

model category generating cofibrations generating acyclic cofibrations

(fC)r Ir Jr
(fC)r′ Ir ∪

⋃r−1
k=0 Jr

⋃r
k=0 Jr
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which agree for r = 0. These are right proper, since every object is fibrant, and for a fixed r Quillen equivalent, [CELW19,
Remark 3.17]. They consider the shift-décalage adjunction,S a Dec of Deligne. These are endomorphisms on the category
of filtered chain complexes and on the pages of the associated spectral sequences have the e�ect of shifting the pages
back and forth, i.e.Ek+1DecA ∼= Ek+2A, with some shift of indices. The shift-décalage adjunction is shown to give a
Quillen equivalence S : (fC)r −→←− (fC)r+l :Dec as well as S : (fC)r′ −→←− (fC)(r+l)′ :Dec. Thus the homotopy
categories of all these model structures are equivalent. Similar model structures are also constructed on bicomplexes with
the caveat that some care is needed to construct appropriate representing objects for r-cycles and r-boundaries. These
they term witness r-cycles and witness r-boundaries denotedZWr andBWr . Defining Ir = {ZWr+1 → BWr+1} and
Jr = {0→ ZWr} as before they constuct two right proper cofibrantly generated model structures on bC, [CELW19,
Theorems 4.37 and 4.39] determined by:

model category generating cofibrations generating acyclic cofibrations

(bC)r Ir J0 ∪ Jr
(bC)r′ Ir ∪

⋃r−1
k=0 Jr

⋃r
k=0 Jr

which again agree when r = 0.

The model structures of Muro and Roitzheim on bicomplexes and multicomplexes

In [MR19] Muro and Roitzheim define two model structures on the category of (right plane) bicomplexes with hori-
zontal di�erential dh : Xp,∗ → Xp−1,∗. The first model structure, [MR19, Theorem 3.1], is cofibrantly generated and
has weak equivalences detected by the totalisation functor and fibrations f : X → Y the bidegree-wise surjections
and isomorphisms on the vertical homology Hv

p,∗(f) : Hv
p,∗(X)

∼=−→ Hv
p,∗(Y ). This model structure is shown to

be monoidal with cofibrant unit satisfying the monoid axiom, [MR19, Proposition 3.3], and there is in fact a strong
symmetric monoidal Quillen equivalence with the projective model structure on (unbounded) chain complexes, [MR19,
Proposition 3.4], whose left Quillen adjoint is inclusion of a chain complex into bicomplexes in horizontal degree 0.
Their second model structure, [MR19, Theorem 4.1], on bicomplexes they name the Cartan-Eilenberg model structure
or the E2-model structure; the former since a cofibrant resolution of a chain complex concentrated in degree 0 is a
Cartan-Eilenberg resolution and the latter since the weak equivalences are those morphisms inducing isomorphisms
on the 2-page of the associated spectral sequence. The fibrations of the Cartan-Eilenberg model structure are those
morphisms inducing 1) bidegree-wise surjections, 2) are surjections on ker dbp,∗ for p > 0 and 3) Hh

p,q(f) is an iso-
morphism for all p and q. The Cartan-Eilenberg model structure is also shown to be monoidal with cofibrant unit
satisfying the monoid axiom, [MR19, Proposition 4.2]. Lastly they generalise the total model structure on bicomplexes
to a total model structure on (bounded) multicomplexes also known as twisted complexes. Such structures have not just
horizontal and vertical di�erentials but o� diagonal di�erentials di : Xp,q → Xp−i,q+i−1 for i ≥ 0 with their sign
conventions required to satisfy

∑
i+j=n didj = 0 for n ≥ 0. An analogous (coproduct) totalisation functor is defined

[MR19, Definition 5.2] and a cofibrantly generated model structure, [MR19, Theorem 5.13], referred to as the total
model structure on multicomplexes, is constructed with equivalences those becoming isomorphisms after applying the
totalisation functor, and whose fibrations are also bidegree-wise surjective morphisms that induce isomorphisms on
vertical homology. It is similarly shown to be monoidal with cofibrant unit and satisfying the monoid axiom (for an
appropriate tensor product) in [MR19, Proposition 5.15] and they show that there is a strong symmetric monoidal
Quillen equivalence with the projective model structure on chain complexes, [MR19, Proposition 5.16].

The model categories of Fu, Guan, Livernet and Whitehouse on multicomplexes

In [FGLW22] the authors construct model structures on the category of (truncated) multicomplexes in a similar
way to [CELW19]. They define an n-truncated multicomplex, whose category is denoted n −mCR, as a multicomplex
with the di�erentials di = 0 for i ≥ n. The di�erence here is that the analogous witness cycles and boundaries
for the model structures on n-multicomplexes are inductively defined via iterated pushouts, [FGLW22, Definitions
3.15 and 3.17]. Similar generating sets of cofibrations and acyclic cofibrations as for bicomplexes in [CELW19] are
defined and [FGLW22, Theorem 3.28] provides existence of a right proper cofibrantly generated model structure on
n-multicomplexes for 2 ≤ n ≤ ∞ whose weak equivalences are the r-quasi isomorphisms on the associated spectral
sequences, here∞−mCR denotes the category of multicomplexes. There is also a model structure analogous to that
of (bC)r′ given by [FGLW22, Theorem 3.30]. For each r ≥ 0 the authors also demonstrate Quillen equivalences in
[FGLW22, Theorem 4.5]:

2−mCR 3−mCR 4−mCR . . . n−mCR ∞−mCR .

xiii



They also define model structures on the left half plane (truncated) multicomplexes via transfer [FGLW22, Proposition
5.11] and consider cofibrancy of objects of the model structures [FGLW22, Theorem 3.30] demonstrating that the unit,
a copy of R concentrated in a single bidegree, is not cofibrant and that the various infinite witness cycles ZWn

∞(∗, ∗)
are cofibrant replacements for the unit, [FGLW22, Proposition 6.7].

The almost Brown category of Livernet and Whitehouse on spectral sequences

More recently in the preprint [LW22] Livernet and Whitehouse investigate existence of homotopy theories directly on
a category of spectral sequences SpSeR; objects are a family (Ar, ψr) of bigraded modules where Ar is an r-bigraded
module, i.e. has a di�erential δr : Ap,qr → Ap−r,q−r+1

r and ψr is an isomorphism ψr : H∗(Ar)
∼=−→ Ar+1 of bigraded

modules. Morphisms of such objects f : (A,ψ) → (B,ϕ) are appropriately defined and in fact are deteremined by
the 0-page f0 : A0 → B0. The immediate problem with this category is that it is neither complete nor cocomplete,
[LW22, §3.2], so a well behaved model category cannot be constructed on this category (the situation is similar if one
tries to work in a category of Cartan-Eilenberg systems [CE56, Chapter XV §7]). Instead they introduce the notion
of an almost Brown category [LW22, Definition 4.1.1], (c.f. Brown categories, [Bro73], and partial Brown categories, [Hor16]).
This has notions of weak equivalences and fibrations with all finite products and satisfying some model category like
axioms. Defining as before, for a fixed r, the weak equivalences to be Er-quasi isomorphisms and fibrations to be
surjections on the first r-pages they show that the category of spectral sequences admits an almost Brown structure
for each r ≥ 0. The fibrations and acyclic fibrations are also shown to be detected by generating sets analogous to
generating cofibrations and generating acyclic cofibrations, [LW22, Propositions 5.4.2 and 5.4.3]. Analogues on the
level of these spectral sequences of the shift-décalage functors of Deligne, [Del71], are also constructed and shown to
preserve su�cient homotopy information referred to as left exactness preserving weak equivalences, acyclic fibrations
and pullbacks of acyclic fibrations. I.e. the shift functor S : (SpSeR)r → (SpSeR)r+1 is left exact for all r ≥ 0
and the décalage functor Dec: (SpSeR)r → (SpSeR)r−1 is left exact for all r ≥ 1, [LW22, Proposition 5.3.3 and
5.3.4]. They also note similar to the previous homotopy theories introduced that there are nested inclusions of weak
equivalences and fibrations Wr ⊂ Wr+1 and Fibr+1 ⊂ Fibr . One can interpret the model structures (fC)r as
almost Brown categories and the obvious spectral sequence functor E : (fC)r → (SpSeR)r is shown to be a left
exact functor [LW22, Proposition 6.1.1]. They note however that the spectral sequence functor E does not induce an
equivalence on homotopy categories after inverting the weak equivalences since the associated graded functors lose
information, [LW22, Proposition 6.1.3]. Similarly they show the spectral sequence functor from the r-model category
of n-multicomplexes to (SpSeR)r is a left exact functor.

Other appearences of spectral sequences in model categories

Here we make note of other appearences in the literature of model structures closely related to spectral sequences.
Dwyer, Kan and Stover defined in [DKS93] a model structure on the category of simplicial objects in pointed spaces.

In their model structure a morphism of simplicial pointed spaces X → Y is a weak equivalence, [DKS93, §3.2], if the
morphism of simplicial groups πiX → πjY is a weak equivalence of the underlying simplicial sets or equivalently
there are induced isomorphisms πjπiX ∼= πjπiY for all j ≥ 0. They refer to these weak equivalences as E2-weak
equivalences and justify this teminology as follows.

Given a simplicial pointed space X (which is also Reedy fibrant) there is a first quadrant spectral sequence, known
as the Quillen-Bousfield-Friedlander spectral sequence, whose E2-page is:

E2
p,q := πpπq+1X ⇒ πp+qmap(S1, X) ,

given in [DKS93, §3.6] (see also [BF78, Theorem 4.5]). A weak equivalence in this model structure then corresponds to
a morphism inducing an isomorphism between the E2-pages of the Quillen-Bousfield-Friedlander spectral sequences
of X and Y .

[DKS93, §5] relaxes the assumptions somewhat to more general simplical object categories sC∗ that are pointed,
closed model categories with all colimits, all objects being cofibrant and a choice of cofibrant co-grouplike object.
The weak equivalences in this generalised model structure are also known as E2-weak equivalences and justifying this
there is a corresponding spectral sequence; for an X ∈ sC∗ (which is Reedy fibrant) there is a first quadrant spectral
sequence whose E2-page is:

E2
p,q := πp[Σ

qM,X]⇒ πp+qmap(M,X) ,

where M is the co-grouplike object, [DKS93, §5.7].
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Motivation for the study of model categories relating to spectral sequences

We provide here some motivation for studying model structures on objects yielding a spectral sequence whose weak
equivalences are those morphisms inducing an isomorphism on the (r + 1)-page.

We have already discussed the work of Halperin and Tanré, [HT90], who consider filtered commutative di�erential
graded algebras. Their motivation for considering such objects comes from the viewpoint of rational homotopy theory
where there is an equivalence of categories between rational homotopy types and commutative di�erential graded algebras,
see for example [AH86, Theorem 1.7] for a precise statement. Rational homotopy theory has proved an important area
of research owing to this equivalence. Halperin and Tanré’s work allowed a generalisation to models for fibrations
where the usual restriction of the fundamental group of the base acting nilpotently [AH86, Theorem 3.5] is removed.
They stop short of showing a model category structure on such objects however. Constructing a model structure on
such objects is then a desireable goal to elevate their homotopy theory fully to a model category.

A second motivation comes from the study of A∞-algebras. We firstly introduce some background. A∞-algebras
can be thought of as homotopy associative replacements for di�erential graded algebras; the operad encoding them is
in fact a cofibrant replacement of the associative operad in a relevant model category [BM03] and is obtained by a
Boardman-Vogt or cobar-bar resolution construction, [BV73, BM06]. Over a field a result of Kadeishvili, [Kad80], asserts
that every di�erential graded algebraA is quasi-isomorphic to a minimalA∞-algebra given by anA∞-algebra structure
on the homology H∗A. This can also be seen as a special case of the homotopy transfer theorem, [LV12, Theorem 10.3.3].
These minimial models classify isomorphism classes of di�erential graded algebras up to quasi-isomorphism. The use
of the field here is in constructing a cycle selection map so one can apply a similar result with su�cient projectivity
assumptions.

Sagave considers what modifications to this theory can be made if one removes the field/projective assumptions.
In [Sag10] Sagave introduces the notion of a derived A∞-algebra, denoted dA∞, which is now a bigraded object and
introduced so as to allow projective resolutions of an A∞-algebra. In this setting any di�erential graded algebra A
over a ring k admits a k-projective minimal dA∞-algebra model E well defined (up to E2-equivalence) together with an
E2-equivalence E → A. Here the E2-equivalence refers to an isomorphism on the E2-page of the spectral sequence
associated to the totalisation of the bigraded dA∞-algebraE. These minimal dA∞-algebras classify di�erential graded
algebras up to quasi-isomorphism. A model structure on such objects whose weak equivalences are the isomorphisms
on the E2-page could then assist with determining whether any two minimal models are E2-equivalent. Similarly
generalisations to higher r where weak equivalences are now isomorphisms on the (r+1)-page of the spectral sequence
associated to some object could help in situations where an object is defined up to anEr+1-equivalence. In such a model
structure if it indeed exists the k-projective minimal models of Sagave just discussed may be cofibrant replacements
for an A∞-algebra viewed as a dA∞-algebra.

In [LH03], Lefèvre-Hasegawa equips the category of A∞-algebras (with∞-morphisms) over a field with a model
structure (without limits) whose weak equivalences are A∞-quasi-isomorphisms. The homotopy theory of A∞-algebras
has also been studied in e.g. [Gra99], dA∞-algebras have been studied in [LH03, CELW18] and closely related notions
of the latter, called D(s)

∞ -di�erential A∞-algebras, in [Lap02].
With regard to tentative model structures on dA∞-algebras the authors of [CELW18] remark:

“We expect that both the new descriptions of derivedA∞-algebras and the properties of homotopies devel-
oped here will allow us to endow the category of derivedA∞-algebras with the structure of a model
category without limits in the future, with weak equivalences being Er-quasi-isomorphisms.”

The model structures on filtered chain complexes and bicomplexes constructed in [CELW19] and considered in this
thesis are a starting point for such a model structure in the simpler cases where we do not consider the homotopy
notions of D∞, i.e. the operad encoding multicomplexes, or A∞. A model structure on D∞-structures with Er-
weak equivalences is constructed in [FGLW22] and has already been discussed. Note too that one of the equivalent
formulations of dA∞-algebras given in [CELW18] is as split A∞-algebras in filtered chain complexes.

One could view the model structures considered on filtered chain complexes or bicomplexes as natural generali-
sations of the projective model structure on chain complexes; the 0-model structure on bicomplexes is really just the
projective model structure on (vertical) chain complexes of (horizontal) chain complexes. Further varying r there are
inclusions of weak equivalences (and fibrations for certain model structures) and the interaction between the model
structures is of interest in its own right. In particular one question the author would like to understand better is to
what extent (with regard to the model category structure) is a model structure on either filtered chain complexes or
bicomplexes with (r + 1)-weak equivalences a localisation of a model structure with r-weak equivalences. We will see
however that these model structures are already Quillen equivalent via a shift-décalage adjunction.
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This feature of multiple closely related cofibrantly generated model structures on the same underlying category
could prove important as a ‘testing ground’ for new results; indeed it has already led to the detection of an error in a
draft copy of [HHR21] on building new model structures from multiple existing ones which has since been corrected.

With more consideration to spectral sequences themselves the knowledge of when a morphism of spectral sequences
induces an isomorphism on the infinity page is useful information for comparing their homologies. Whilst we do not
directly consider the infinity page in the main work of this thesis for those spectral sequences that collapse these model
structures may prove useful in this regard. In Question C.3 we consider how one might equip an appropriate category
with a model structure whose weak equivalences are the isomorphisms on the∞-page.

Filtrations appear naturally in many areas, as evidenced by the abundance of spectral sequences, so having a good
homotopy theory of filtered objects could prove very useful. This and the examples given previously provide the author
with plenty of motivation for further investigating these model structures.

Areas of further work

There are many questions that arose from the work constituting this thesis some of which have been listed in Appendix C
and left unanswered as direction of potential future work. Two major considerations worth stating now and not studied
in this thesis beyond short remarks are firstly issues relating to the convergence properties of any of the associated
spectral sequences and secondly, and related to the first, is existence of model structures whose weak equivalences are
given by isomorphisms on the∞-page of the associated spectral sequence. Whilst we do consider the model structures
on filtered chain complexes’ interaction with a tensor product we do not use a completed tensor product as in [HT90].

Structure of the document and summary of new results

We detail now the new results of this thesis. As stated earlier many of the results are establishing various properties
one would like to have of model categories.

Chapter 1

This chapter contains the necessary background, references, conventions, etc. for the subsequent chapters.

Chapter 2

Firstly work in the existing literature has not considered any comparison between the model categories of filtered
chains and bicomplexes. We construct then a left adjoint to the product totalisation functor with the aim of later
showing a Quillen equivalence between the model categories.

Proposition 2.1.0.2. There is an adjunction of categories L : fC −→←− bC :TotΠ.

Similarly we show there is an adjunction involving the coproduct totalisation functor:

Proposition 2.3.0.2. There is an adjunction of categories Tot⊕ : bC −→←− fC :R.

However we make no use of this adjunction. We also compute L and TotΠ applied to r-cycles and r-witness cycles
respectively and additionally show the following theorem asserting the unit map is an s-weak equivalence on s-cycles.

Proposition 2.2.1.2. For s ≥ 1 the unit of the adjunction applied to an s-cycle, Zs(p, p + n) → TotΠLZs(p, p + n), is
an isomorphism on the s-page.

Lastly we Kan transfer a model structure to obtain a total model structure.

Corollary 2.4.0.3. There is a total model structure on bicomplexes cofibrantly generated by generating cofibrations I :=
{ZW∞,−∞(n)→ BW∞,−∞(n)} and generating acyclic cofibrations J := {0→ BW∞,−∞} in which:

1. weak equivalences are those morphisms f of bicomplexes such that HTotΠ is an isomorphism,

2. fibrations are those morphisms f of bicomplexes such that TotΠ is (homologically) degreewise surjective, i.e. f is bidegree-
wise surjective.
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Chapter 3

We then generalise the model structures of [CELW19] by introducing model structures ‘in between’ those of (fC)r and
(fC)r′ and similarly for bicomplexes and obtain various results concerning this collection of model categories. These
follow easily from the work of [CELW19]. We define IS := Ir ∪

⋃
s∈S\{r} Js and JS :=

⋃
s∈S Js.

Theorem 3.1.0.2. For every r ≥ 0 and every subset S ⊆ {0, 1, . . . , r} including r, the category fC admits a right proper
cofibrantly generated model structure, which we denote (fC)S , where:

1. weak equivalences are Er-quasi-isomorphisms,

2. fibrations are morphisms of filtered chain complexes f : A → B such that Zs(f) is bidegree-wise surjective for each
s ∈ S, and

3. IS and JS are the sets of generating cofibrations and generating trivial cofibrations respectively.

Further (fC)S is a finitely generated model category.

The cases S = {r} and S = {0, 1, 2, . . . , r} give the original model structures (fC)r and (fC)r′ of [CELW19].
Similarly for bicomplexes we define IS := Ir ∪

⋃
s∈S\{0,r} Js and JS :=

⋃
s∈S Js and we also have the following

theorem.

Theorem 3.2.0.2. For every r ≥ 0 and every subset S ⊆ {0, 1, . . . , r} including both 0 and r, the category bC admits a right
proper cofibrantly generated model structure, which we denote (bC)S , where:

1. weak equivalences are Er-quasi-isomorphisms,

2. fibrations are morphisms of filtered chain complexes f : A → B such that ZWs(f) is bidegree-wise surjective for each
s ∈ S, and

3. IS and JS are the sets of generating cofibrations and generating trivial cofibrations respectively.

Further (bC)S is a finitely generated model category.

The cases S = {0, r} and S = {0, 1, 2, . . . , r} give the original model structures (bC)r and (bC)r′ of [CELW19].
Thus to the tables of the model structures of [CELW19] we gave earlier we add the model structures (fC)S and (bC)S
generalising the previous. For filtered chain complexes we have

model category generating cofibrations generating acyclic cofibrations

(fC)r Ir Jr
(fC)r′ Ir ∪

⋃r−1
k=0 Jr

⋃r
k=0 Jr

(fC)S IS JS

and for bicomplexes we have

model category generating cofibrations generating acyclic cofibrations

(bC)r Ir Jr
(bC)r′ Ir ∪

⋃r−1
k=0 Jr

⋃r
k=0 Jr

(bC)S IS JS

Fixing an r we show all the model structures on filtered chain complexes indexed by an S with maxS = r are Quillen
equivalent via identity-identity adjunctions.

Proposition 3.1.0.6. For a fixed r and subsets S′ ⊆ S ⊆ {0, 1, . . . , r} both containing r there is a Quillen equivalence:

id : (fC)S′ (fC)S : id .

Similarly fixing an r the model structures on bicomplexes indexed by an S with maxS = r are Quillen equivalent
via the identity-identity adjunction.
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Proposition 3.2.0.6. For a fixed r and subsets S′ ⊆ S ⊆ {0, 1, . . . , r} containing 0 and r there is a Quillen equivalence

id : (bC)S′ (bC)S : id .

We show in Corollaries 3.3.0.4 and 3.3.0.9 that all these model category structures are distinct. We then show there
is a homotopical comparison between these model structures on filtered chain complexes and bicomplexes by showing
the L a TotΠ is a Quillen adjunction for appropriate indexing sets S.

Proposition 3.4.0.2. For S a subset of {0, 1, . . . , r} containing both 0 and r there is a Quillen adjunction

L : (fC)S (bC)S :TotΠ .

Writing S + 1 for the set {s+ 1 | s ∈ S} we show that the shift-décalage adjunctions generalise as follows.

Proposition 3.5.0.2. There are Quillen equivalences given by the shift-décalage adjunction:

S : (fC)S (fC)S+1 :Dec .

We further explain the poset given on the model structures (fC)S where S′ < S if there is a left Quillen functor
from (fC)S′ to (fC)S obtained by composing some of the identity-identity and shift-décalage adjunctions. The model
structures (fC)S and (bC)S are shown to be left proper in Theorems 3.7.1.7 and 3.7.2.8, cellular in Propositions 3.8.1.5
and 3.8.2.2 and stable in Propositions 3.9.1.2 and 3.9.2.4. We then show there is a Quillen equivalence between the
model categories of filtered chain complexes and bicomplexes.

Theorem 3.10.0.4. For S contatining both 0 and r there is a Quillen equivalence between the S-model structure on filtered
chain complexes and the S-model structure on bicomplexes given by the L a TotΠ adjunction:

L : (fC)S (bC)S :TotΠ .

In Proposition 3.11.0.1 we show for the model categories of the above with weak equivalences the r-equivalences
there are no left Bousfield localisations with weak equivalances the (r + 1)-equivalences. We then briefly explain
constructions of various bounded variants of the model structures (fC)S and (bC)S .

Corollary 3.12.1.2. There is a cofibrantly generated model structure denoted
(
fC≥

)
S

on fC≥ whose weak equivalences are the
r-quasi isomorphisms and with generating cofibrantions τIS and generating acyclic cofibrations τJS .

Theorem 3.12.2.1. For every r ≥ 0 and every subset S ⊆ {0, 1, . . . , r} including r, the category fC≤ admits a right proper
cofibrantly generated model structure, which we denote

(
fC≤

)
S

, where:

1. weak equivalences are Er-quasi-isomorphisms,

2. fibrations are morphisms of filtered chain complexes f : A → B such that Zp,p+ns (f) is bidegree-wise surjective for
n ≤ −1 and s ∈ S, and

3. κIS and κJS are the sets of generating cofibrations and generating acyclic cofibrations respectively.

Furthermore
(
fC≤

)
S

is a finitely generated model category.

Theorem 3.12.3.15. For every subset S ⊆ {0, 1, 2, . . . , r} containing r the category f≥C admits a right proper cofibrantly
generated model structures, which we denote (f≥C)S , whose:

1. weak equivalences are the Er-quasi-isomorphisms,

2. fibrations are morphisms that for all s ∈ S are Zp,p+ns -surjective for p ≥ s and all n, and

3. generating cofibrations and generating acyclic cofibrations are given by I≥S and J≥S respectively.

Furthermore (f≥C)S is a finitely generated model category.
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Chapter 4

After recalling a classification of cofibrations in the projective model structure on unbounded chain complexes we
begin a partial classification of cofibrant objects and cofibrations in (fC)r . We show that cofibrant objects must
satisfy a list of conditions incorporating both usual projective conditions and conditions relating to r-homotopy. These
conditions, given in the following lemma, are shown by a sequence of lemmas within.

Lemma 4.1.0.1. A cofibrant filtered chain complex A in the r-model structure on fC satisfies the following conditions:

1. An

FpAn
is a projective R-module for all p, n ∈ Z,

2. An is a projective R-module for all n ∈ Z,

3. the filtration on A is exhaustive, and

4. for an element a ∈ FpAn we have da ∈ Fp−rAn+1.

Via another sequence of lemmas we give a nice interpretation of how cofibrant objects di�er in the model categories
(fC)S where we vary S but keep maxS = r fixed. The following proposition interprets the cofibrant objects in (fC)S
as those where the pages of the spectral sequence beneath r are allowed to change from the s-page to the (s+ 1)-page
only if s ∈ S.

Proposition 4.1.0.14. Let A be a cofibrant object of (fC)S . Then for k < r and k /∈ S the k-page di�erential dk of A is 0.

We then give our partial classification for the cofibrant objects in (fC)r . These satisfy the previous list of conditions
in addition to a boundedness condition on the filtration given in the following as the final condition.

Proposition 4.1.0.16. Given a filtered chain complex A such that the following conditions hold

1. the graded pieces GrpAn are projective for all p, n ∈ Z,

2. for a pure element a ∈ FpAn we have da ∈ Fp−rAn+1 for all p, n ∈ Z,

3. the filtration on A is exhaustive, and

4. whenever we have an r-acyclic filtered chain complex K and a morphism A → ΣrK there is a lift in the following
diagram:

Cr (K)

A ΣrK

,

5. and further such that for all n there is a p(n) ∈ Z such that Fp(n)A
n = 0 (i.e. the filtration is bounded below but not

necessarily uniformly),

then A is cofibrant in the r-model structure on fC.

With some cofibrant objects understood we classify those cofibrations whose cokernel are cofibrant objects of this
bounded form. As for cofibrations in chain complexes we have the following lemma.

Lemma 4.2.0.3. An r-cofibration i : A→ B is such that B is isomorphic to a twisted direct sum of A and the cokernel of i as
filtered chain complexes.

In the above then we have B ∼= A⊕τ C for C the cokernel of i and a twist di�erential τ . We define such a twisted
filtered chain complex to be surpressive if the twist map τ supresses filtration by r and using this terminology show the
following partial classification of cofibrations in (fC)r again with the same boundedness assumption on the filtration
of the cokernel.

Lemma 4.2.0.6. An r-supressive inclusion i : A −→ B whose cokernel C is cofibrant and such that for any n there is a p(n)
with Fp(n)C

n = 0 is an r-cofibration.

Restricting to the subcategory of those objects whose di�erential is l-supressive we show that the shift-décalage
adjunction induces an equivalence of categories between such l-supressive objects and (l + 1)-supressive objects and
show too that décalage preserves cofibrancy.

Lemma 4.3.0.5. Let B be a cofibrant object of (fC)S+l, then DeclB is a cofibrant object in (fC)S .
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Chapter 5

We next consider the interaction of the monoidal product in fC with the model structures. We construct a cofibrant
replacement for the unit. We let QrI denote the filtered chain complex given by

QrI :=

 ∞⊕
i=0

R0
(−i) −→

∞⊕
j=1

R1
(−r−j)

 ,

where the di�erential is given by mapping each R0
(−i) diagonally onto the copies of R indexed as R1

(−r−i) and
R1

(−r−i−1) for i ≥ 1 and by the identity map from R0
(0) to R1

(−r−1).

Corollary 5.1.0.6. The filtered chain complex QrI is an S-cofibrant replacement of the unit.

Using this cofibrant replacement for the unit we verify the unit axiom for a monoidal model structure on filtered
chain complexes.

Proposition 5.2.0.2. The composite function QrI ⊗ A −→ I ⊗ A −→ A is an r-weak equivalence for all (not necessarily
cofibrant) A.

And show too that the (fC)S satisfy the pushout-product axiom.

Lemma 5.3.2.1 and Corollary 5.3.1.4. The pushout product of generating cofibrations i and j is a cofibration which is addition-
ally acyclic if either i or j is.

A consequence of these results is that the model categories (fC)S are monoidal so that there is an induced monoidal
structure on the homotopy category.

Theorem 5.3.2.2. Each of the model categories (fC)S of Theorem 3.1.0.2 is a monoidal model category.

Additionally we show that these monoidal model structures satisfy Greenlees and Shipley’s monoid axiom.

Corollary 5.4.0.4. The model categories (fC)S satisfy the monoid axiom.

As a consequence we have model categories indexed by S on various categories of algebras or modules.

Theorems 5.4.0.5 to 5.4.0.7. Fix r and let S be a subset of {0, 1, . . . , r − 1, r} containing r. Let A be a filtered di�erential
graded algebra. Then there are cofibrantly generated model structures, whose weak equivalences are the r-quasi isomorphisms and
fibrations those morphisms that are surjective on all s-cycles for s ∈ S, on the categories of left A-modules, and when A is
graded-commutative, on the categories of A-modules and A-algebras.

Lastly in Corollaries 5.5.0.6 and 5.5.0.9 we use a result of [Mur15] to adapt the S-model structures on filtered
chain complexes to ones where the unit of the tensor product is a cofibrant object and where all shifts of the unit are
additionally cofibrant. These new model structures are additionally monoidal satisfying the monoid axiom by the same
result of [Mur15] so one can immediately deduce existence of S-model structures on modules and algebras of fC whose
unit is now cofibrant.

Appendix A

We consider in this appendix the question of finding a cylinder object on an S-cofibrant filtered chain complex. We also
discuss a notion of flatness for filtered chain complexes.

Appendix B

This appendix proves the functorR is indeed a right adjoint to the coproduct totalisation functor Tot⊕. The argument
is very much dual to that for L a TotΠ.

Appendix C

We detail in this appendix questions that have arisen in the work of this thesis and that remain unanswered in this
document. They are potential future directions of work.

xx
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CHAPTER 1
Background and Conventions

In this chapter we collect all the background material and conventions we will use in the following chapters. We
assume some level of familiarity with regard to commonly used machinery within algebraic topology, e.g. definitions of
categories and their (co)limits will be left unstated as will chain complexes and their homologies. We will however recall
some terminology and definitions regarding ordinals within set theory for the purpose of the small object argument in
constructing cofibrantly generated model categories.

Filtered chain complexes and bicomplexes will be defined and some conventions established with regard to them
along with various adjunctions involving one or both categories. We define spectral sequences, give definitions for
r-cycle and r-boundaries as well as their representing objects and state how to obtain a spectral sequence from a filtered
chain complex. We also define the shift-décalage adjunction of Deligne.

Our principal focus of this thesis being model categories, we define and explain in detail the framework of a model
category along with some important properties and results. We also include the motivation for (and a particular case
of) homotopy (co)limits.

We recall the projective model structure on chain complexes as it serves as frequent motivation for constructions or
proof methods in the filtered setting we consider. We also recall the r and r′-model structures of [CELW19] on filtered
chain complexes and bicomplexes along with their constructions and other pertinent constructions. In particular they
are cofibrantly generated model structures whose generating sets are analogous to the sphere and disc inclusions of
chain complexes. The representing objects of r-cycles and r-boundaries are the analogues of the spheres and discs in
these setttings.

We end this chapter with a short summary of conventions frequently used throughout this document.

1.1 Set theory: cardinals, ordinals and smallness

This section details the prerequisite material on set theory necessary for cofibrantly generated model categories as well
as the notion of smallness. We use notation and conventions that can be found in [Hov99, §2.1.1], [Hir03, §10.1] or
[Jec03, §2].

Definition 1.1.0.1. We make the following definitions which are standard in set theory.

1. A set T is well ordered if it is totally ordered and such that every non-empty subset of T has a minimal element.

2. A set T is transitive if every element of T is a subset of T .

3. A set α is an ordinal if it is well ordered by the membership relation ∈ and is transitive.

4. Forα an ordinal we define the succesor ordinal to be Succ(α) := α∪{α}. The set Succ(α) is an ordinal whenever
α is.

5. If α is an ordinal but not a successor ordinal it is of the form α = sup {β | β < α} and said to be a limit ordinal
(we include {} as being a limit ordinal).

3



The following theorem yields all ordinals.

Theorem 1.1.0.2 (Transfinite Induction, [Jec03, Theorem 2.14]). Let C be a class of ordinals such that:

1. {} ∈ C ,

2. if α ∈ C then so too is Succ(α), and

3. if α 6= {} is a limit ordinal and β ∈ C for all β < α then α ∈ C ,

then C is the class of all ordinals.

Remark 1.1.0.3. We will view an ordinal λ as a category with objects the elements of λ and for all α, β ∈ λ there is
exactly one morphism α→ β whenever α < β. Note that in this interpretation a γ ∈ λ such that γ is a limit ordinal
is the colimit in the category of λ over the full subcategory of elements of λ which are less than γ or equivalently admit
morphisms to λ.

Definition 1.1.0.4. For C a cocomplete category:

1. if λ is an ordinal, then a λ-sequence is a colimit preserving functor X : λ → C (most helpfully viewed as a
sequence of composed morphisms in C:

(X0 → X1 → X2 → . . .)

where colimα<γ Xα → Xγ is an isomorphism for all limit ordinals γ), and

2. the composition of the λ-sequence is the morphism

X0 → colim
β∈λ

Xβ .

Definition 1.1.0.5. A cardinal is an ordinal of greater cardinality than any lesser ordinal.

Definition 1.1.0.6. The cardinal of a set T is the unique cardinal in bijection with T .

Definition 1.1.0.7. A cardinal γ is regular if for any set A whose cardinal is less than γ and sets Sa for each a ∈ A also
whose cardinals are less than γ, we have the cardinal of

⋃
a∈A Sa is less than γ.

Definition 1.1.0.8. Let α be an ordinal and γ a cardinal, we say that α is γ-filtered if it is a limit ordinal and for any
A ⊆ α with the cardinal of A less than or equal to γ, then supA < α.

Definition 1.1.0.9. Let C be a cocomplete category, M a subclass of the morphisms of C, C ∈ C and κ a regular
cardinal. Then C is said to be κ-small relative to M if for all κ-filtered ordinals λ and λ-sequences X : λ → C with
each morphism Xα → XSucc(α) in M , then:

colim
α<λ

HomC(C,Xα) −→ HomC(C, colim
α<γ

Xα)

is an isomorphism. Further C is small relative to M if it is κ-small relative to M for some cardinal κ, and C is small if
it is small relative to C.

Remark 1.1.0.10. If κ is a finite cardinal in Definition 1.1.0.9 we also use the terminology finite in place of small.

Recall M is a finitely presented R-module if there is a short exact sequence of the form
⊕

mR →
⊕

nR →
M → 0, i.e. there are finitely many generators given by the basis of

⊕
nR and finitely many relations given by those

of
⊕

mR.

Examples 1.1.0.11. Examples of small and finite objects given in [Hov99, Examples 2.1.4, 2.1.6 & Lemma 2.3.2] include:

1. in the category of sets every set is small, and finite sets are precisely the finite objects,

2. in the category ofR-modules everyR-module is small and the finitely presentedR-modules are the finite objects,

3. in the category of chain complexes over a ring R every chain complex is small and the bounded (above and
below) chain complexes of finitely presented R-modules are the finite objects.

4



1.2 Category theory

1.2.1 Category of filtered chain complexes

Throughout this thesis R will denote a commutative unital ring.

Definition 1.2.1.1. A filtered objectX in a category C is an objectX with an increasing filtration, i.e. subobjectsFpX ⊆ X
for all p ∈ Z such that FpX ⊆ Fp+1X .

Example 1.2.1.2. We will make use of the following two filtered objects.

1. A filteredR-moduleM consists of anR-moduleM with submodules FpM ⊆M for each p ∈ Z with inclusions
FpM ⊆ Fp+1M .

2. A filtered chain complex of R-modules C consists of a (cohomologically graded) chain complex C and subchain
complexes FpC of C for each p ∈ Z. In particular the di�erentials of C preserve filtration, i.e. for c ∈ Cn with
c ∈ FpCn then dc ∈ FpCn+1.

Definition 1.2.1.3. A morphism of filtered objects f : X −→ Y in a category C is a morphism of the underlying objects
that preserves the filtrations, i.e. f (FpX) ⊆ FpY , for all p ∈ Z.

Notation 1.2.1.4. The category of filtered chain complexes over a ring R will be denoted fC.

Notation 1.2.1.5. The filtered chain complex A with one copy of R in cohomological degree n and such that 0 =
Fp−1A ⊂ FpA = A will be denoted Rn(p). We will frequently abuse notation and also use Rn(p) to denote a subobject
of another filtered chain complex, to build larger ones from these pieces.

Definition 1.2.1.6. An element of a filtered chain complex a ∈ A is said to be of pure filtration degree p if a ∈ FpA and
a /∈ Fp−1A, i.e. p is the first filtration indexing where a appears.

The previous notation Rn(p) could then be described as the chain complex with a copy of R in degree n of pure
degree p.

Definition 1.2.1.7. A morphism of filtered chain complexes f : A −→ B is strict if whenever a ∈ An is such that
f(a) ∈ FpBn then we have a ∈ FpAn.

We are principally interested in this category of filtered chain complexes. In defining model category structures
on this category we will need to know that fC admits all small (co)limits. This was established in [CELW19, Remark
2.6]. Limits are computed as one might naïvely think, but the same is not true for colimits. We will need the process of
constructing colimits later for verifying the pushout-product of generating (acyclic) cofibrations is also a cofibration
(which is acyclic if either cofibration is) so we recall a construction here.

Notation 1.2.1.8. We denote byZ∞ the category with objectsZ∪{∞} thought of as a category with a unique morphism
n→ m whenever n ≤ m in Z and a unique morphism n→∞ for each n ∈ Z, so that Z∞ is the category Z with a
terminal object adjoined.

Lemma 1.2.1.9 ([CELW19, Remark 2.6]). For the category fC we can compute

• limits levelwise, i.e. for a diagram D : I −→ fC the underlying chain complex of the limit of D is limI D(i) where we
forget filtration, and the p-filtered part of the limit is given by Fp limI D(i) = limI FpD(i), and

• colimits can be computed by viewing fC as a reflective subcategory of CZ∞R , i.e. there is an adjunction ρ : CZ∞R −→←− fC : i
where the left adjoint ρ sends aZ∞ indexed chain complexE : Z∞ −→ CR to the filtered chain complex with underlying
chain complexE(∞) and p-filtered part FpρE = im (E(p) −→ E(∞)). The colimit of a diagramD : J → fC can
then be computed as colimJ D = r colimJ iD, so that the underlying chain complex is the colimit of the underlying
chain complexes of the D(j) and the p-filtered part is given by

Fp colim
J

D = im
(

colim
J

D(j)(p) −→ colim
J

D(j)(∞)
)
.
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We consider a specific case of the colimit construction for filtered chain complexes for those morphisms f : A −→
B of fC with the property that if an element a ∈ An is such that f(a) ∈ FpBn then a ∈ FpAn, i.e. that f is a strict
morphism of filtered chain complexes. We consider the cokernel of the morphism f which we denote by B/A. This
is computable according to Lemma 1.2.1.9 and have underlying chain complex B/A (where we forget filtrations) and
filtration given by:

Fp (B/A)
n

= im

(
FpB

n

FpAn
−→ Bn

An

)
.

For the given morphism f if an element of FpBn/FpAn becomes 0 in Bn/An then it was of the form f(a) for some
a ∈ An and where f(a) ∈ FpBn, however the assumption on f implies that a ∈ FpAn hence in FpBn/FpAn the
element f(a) is 0. This gives the map of the image is an inclusion and so we can compute the cokernel homological
degree-wise and filtration degree-wise.

Lemma 1.2.1.10. For a strict morphism of filtered chain complexes the cokernel can be computed filtration degree-wise.

The category of chain complexes can be equipped with a monoidal product, the tensor product, for which −⊗A
is left adjoint to the enriched Hom functor HomCR(A,−), (in this paper we use an underline to denote an enriched
Hom functor). We show here that this can be extended to the filtered setting we work in.

Definition 1.2.1.11. The tensor product of X,Y ∈ fC has underlying chain complex the usual one:

(X ⊗ Y )
n :=

⊕
i+j=n

Xi ⊗ Y j ,

and is given in filtration p by:

Fp (X ⊗ Y ) :=
∑
i+j=p

im (FiX ⊗ FjY → X ⊗ Y ) ,

where as usual the di�erential is given according to the Koszul sign rule, d(x⊗ y) = dx⊗ y + (−1)|x|x⊗ dy with
|x| being the cohomological degree of x.

Remark 1.2.1.12. Note that frequently in the literature one wants to take a completed tensor product when the tensor
components carry some topological information. This is used for example in [HT90]. We do not consider issues relating
to convergence in this thesis however and it is advantageous to have a tensor-hom adjunction so we use an uncompleted
form.

Notation 1.2.1.13. We denote by R(n)+(m)
(p)+(q) the tensor product Rn(p) ⊗ R

m
(q) making judicious use of bracketing for

clarity.

Definition 1.2.1.14. The internal hom object of X,Y ∈ fC has underlying chain complex the usual one:

HomfC(X,Y )n :=
∏
i∈Z

Hom(Xi, Y i+n) ,

and is given in filtration p by:

FpHomfC (X,Y )
n :=

∏
i∈Z

FpHomR

(
Xi, Y i+n

)
where FpHomR(Xi, Y i+n) :=

{
f | f(FaX

i) ⊆ Fa+pY
i+n ∀a

}
. The di�erential on an element f = (fi)i ∈

HomfC(X,Y )n is given by:

(fi)i 7→
(
dY ◦ fi − (−1)nfi+1 ◦ dX

)
i
.

Lemma 1.2.1.15. For any X ∈ fC there is an adjunction pair (−⊗ Y ) a HomfC(Y,−) on the category of filtered chain
complexes.

HomfC(X ⊗ Y,Z) ∼= HomfC(X,HomfC(Y,Z))

6



Proof. There is already a closed monoidal structure on the level of non-filtered chain complexes which is the underlying
bijection in the filtered case, we need only check that the bijection sends filtered morphisms to filtered morphisms.
One direction of the bijections takes the form:

ϕ : HomfC(X ⊗ Y, Z) −→ HomfC(X,HomfC(Y,Z))

f 7−→
(
x 7−→

(
f̃(x)i : y 7→ f(x⊗ y)

)
i

)
,

where y ∈ Y i. Given then a morphism f : X ⊗ Y −→ Z we need to verify the adjoint morphism ϕ(f) just defined
is a morphism of filtered chains. Take then an x ∈ FpXn, we need to check that the morphism f̃(x)i satisfies the
condition imposed in Definition 1.2.1.14, i.e. that f̃(x)i(FaY

i) ⊆ Fa+pY
i+n. Given then y ∈ FaY i we have that

f̃(x)iy = f(x ⊗ y) where x ⊗ y ∈ Fp+aY
i+n and so f̃(x)i(FaY

i) ⊆ Fp+aY
i+n, showing that ϕ(f) is too a

morphism of filtered chains when f is. The inverse of the bijection is given by:

ψ : HomfC(X,HomfC(Y, Z)) −→ HomfC(X ⊗ Y, Z)

g 7−→ (x⊗ y 7→ g(x)i(y)) .

Suppose now g is a morphism of filtered chains, for an element of Fp(X ⊗ Y )n in the image of FjXk ⊗ Fp−jY n−k ,
say from x⊗ y, we have (g(x)i)i ∈ FjHomfC(Y, Z)k and so by definition of the filtration on the HomfC we have
g(x)n−k(Fp−jY

n−k) ⊆ Fp−j+jZn−k+k = FpZ
n, i.e. g(x)n−k(y) ∈ FpZn and ψ(g) preserves the filtration.

Lemma 1.2.1.16. A filtered chain complexA is a finite object of the category fC if and only if it satisfies the following conditions:

1. FpAn is finitely presented for all p and n,

2. An = 0 for all n ≤ n1 for some n1,

3. An = 0 for all n ≥ n2 for some n2,

4. Fp1A = 0 for some finite p1, and

5. Fp2A = A for some finite p2.

In the presence of conditions 2 and 3, the conditions 4 and 5 are equivalent to the following: for each n there are
p1(n) and p2(n) such that Fp1(n)A

n = 0 and Fp2(n)A
n = An

Such a filtered chain complex can be visualised, via the inclusion functor i : fC −→ CZ∞R , to be bounded within a
box such that left, right and down of the box are 0 modules, within the box are finitely presentedR-modules and above
the box the morphisms of iX induced from Z∞ are identities. In preparation for the proof consider a λ-sequence of
filtered chain complexes (X0 → X1 → . . .). We give an expressions for the colimit of this λ-sequence. The underlying
chain complex of the colimit is just the colimit of the underlying chain complexes. We can compute the p-filtered part
using the reflector-inclusion adjunction of Lemma 1.2.1.9 as follows:

Fp (colimXβ)
n

= Fp (r colim iXβ)
n

= r colim(iXβ)np

= im
(
colim(iXβ)np −→ colim(iXβ)n∞

)
. (1.1)

One can easily show that relaxing any of the conditions of Lemma 1.2.1.16 yields a non-finite filtered chain complex,
we are then left with proving the other direction.

Proof. To show A is finite we must show that for any limit ordinal λ and any λ-sequence

(X0 → X1 → X2 → . . .→ Xβ → . . .)

the following set map is an isomorphism

colim
β<λ

HomfC(A,Xβ) −→ HomfC(A, colim
β<λ

Xβ) . (1.2)

Surjectivity: Consider a morphism f ∈ HomfC(A, colimβ<λXβ). This gives morphisms of R-modules on the p-
filtered parts

Fpf
n : FpA

n −→ im
(
colim(iXβ)np −→ colim(iXβ)n∞

)
(1.3)
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using Equation (1.1). Consider a set of R-module generators of the FpAn for p1 ≤ p ≤ p2 and n1 ≤ n ≤ n2 of
the theorem . There are finitely many such generators {ai} as each is finitely presented and our range of p and n is
finite. For an ai to map into colimXβ it must land in the image of Equation (1.3) so that there is some element of
xi ∈ colim(iXβ)np whose image in colim(iXβ)n∞ is the same as that of ai. There is then an xβ(i)

i in some FpXn
β(i)

equal to xi in the colimit. Constructing these for all generators gives a set map from our chosen set of generators into
variousXβ . This need not give a morphism of filtered chains yet. We consider now, for those chosen generators of each
FpA

n in the range p1 ≤ p ≤ p2 and n1 ≤ n ≤ n2 the relations {rj} between them which again is a finite set as these
R-modules are finitely presented and our range of p and n is finite. Each relation is a sum of some of the generators ai
which is 0 in A however the sum of the corresponding lifts xβ(i)

i need not be 0 in Xmax(β(i)). The relation is however
0 in colimXβ so there is someXα where the relation in terms of the xβ(i)

i are satisfied. Doing so for all generators and
relations between them and taking the maximum of all β(i) and α constructed thus far (which really is a maximum as
we only have finitely many such) givesR-module morphisms of the filtered partsFpAn into colimXβ which factorises
via someX•. These do not yet assemble to a morphism of filtered chain complexes. One can however perform a similar
trick to ensure that di�erentials commute with the constructed map. We have finitely many generators which have
lifts into some X•, we find lifts too of the dai into some X• but the di�erential of the lifts of the generators need not
agree with the lifts of the dai however do eventually, again we take a maximum of the indices of the X• to obtain a
map of R-modules which commutes with the di�erentials. Lastly we ensure that for FpAn ⊆ Fp+1A

n in our range
that the morphisms into theX• agree, again we can do so on generators (of which there are finitely many of them) and
finally take a maximum over all indices of the X• which we have factorised via, say into Xµ. This is then a morphism
of filtered chain complexes A −→ Xµ since we have ensured it is a morphism of R-modules on the filtered parts,
that it commutes with di�erentials, and such that morphism firstly restricted to Fp+1A

n and then to FpAn agrees
with that constructed by restricting first to FpAn. The composite A −→ Xµ −→ colimXβ is a factorisation of
A −→ colimXβ and so the morphism Equation (1.2) is indeed surjective.

Injectivity: Consider two morphisms f, g in colim HomfC(A,Xβ) which under the morphism Equation (1.2)
become equal. Represent them by some f, g : A −→ Xγ . Via similar arguments for surjectivity we can then, for each
generator, find X• in which the two maps agree on that generator after post composition A −→ Xγ −→ X•. Taking
the maximum over the indices of each suchX• gives a filtered chain complex, sayXδ , in which the composite of f and
g with Xγ −→ Xδ agree on all generators and so f and g are equal in colim HomfC(A,Xβ).

A similar proof shows that all filtered chain complexes are small objects.

Lemma 1.2.1.17. All objects of the category fC are small.

The following definition is a simple renaming of [CELW19, Definition 3.5] of the r-translation functor Tr and its
inverse. We introduce this new notation to agree with the usual stable notation.

Definition 1.2.1.18. For a filtered chain complex A the r-suspension ΣrA and r-loops ΩrA of A have underlying chain
complex the usual suspension and desuspension of A and whose underlying filtrations are given by:

FpΣ
rAn = Fp−rA

n+1 ,

FpΩ
rAn = Fp+rA

n−1 ,

and whose di�erentials are dΩrA = dΣrA = −dA.

Lemma 1.2.1.19. The Σr functor is isomorphic to tensoring on the left byR−1
(r) and the Ωr functor is isomorphic to tensoring on

the left by R1
(−r).

Remark 1.2.1.20. Whilst the category of chain complexes is an abelian category the category of filtered chain complexes
is not. A consequence of the abelian axioms is that a morphism f : A→ B is an isomorphism if and only if its kernel
and cokernel are both 0. However one can define a morphism of filtered R-modules which has 0 kernel and cokernel
but is not an isomorphism, [GM03, Chapter II §5.17].

Lastly we make a remark on linear maps for an R-module compatible with a filtration. Consider a direct sum of
R-modulesA := R(p1)⊕R(p2)⊕ . . .⊕R(pk) where the pi denote the pure filtration degree of the copy ofR and are
such that p1 ≥ p2 ≥ . . . pk . For a matrix representing a linear map of chain complexes A→ A with the obvious basis
to be a map of filtered chain complexes it must be lower triangular. We will later make use of this regarding change of
bases compatible with a filtration.
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1.2.2 Category of bicomplexes

Definition 1.2.2.1. A bicomplex A over a ring R is a collection of bigraded modules Ai,j for i, j ∈ Z with di�erentials
d0 : Ai,j −→ Ai,j+1 and d1 : Ai,j −→ Ai−1,j called the vertical and horizontal di�erentials respectively such that
d0 ◦ d0 = 0 and d1 ◦ d1 = 0, and such that they commute d0 ◦ d1 = d1 ◦ d0.

Definition 1.2.2.2. A morphism of bicomplexes f : A −→ B is a collection ofR-module morphisms f i,j : Ai,j −→ Bi,j

for i, j ∈ Z such that they commute with the di�erentials, f ◦ d0 = d0 ◦ f and f ◦ d1 = d1 ◦ f .

Notation 1.2.2.3. The category of bicomplexes over a ring R will be denoted bC.

Remark 1.2.2.4. The category of bicomplexes is clearly isomorphic to the category Cv(Ch) of chain complexes of chain
complexes overR where the v and h superscripts refer to the direction of the di�erential. There is also an isomorphism
of categories from bC to Ch(Cv). We will make use of the former in interpreting the r = 0 model structure of [CELW19]
on bicomplexes.

Definition 1.2.2.5. The product totalisation functor TotΠ : bC → fC is defined on a bicomplex K by:

TotΠ(K)n :=
∏
i∈Z

Ki,i+n ,

with filtration given by the column filtration:

FpTotΠ(K)n :=
∏
i≤p

Ki,i+n ,

and with di�erential given on an element (ki)i ∈
∏
iK

i,i+n by:

d : (ki)i 7→ (d0ki + (−1)nd1ki+1)i .

On a morphism of bicomplexes f : K → J the functor TotΠ is given by TotΠ(f)n :=
∏
i f

i,i+n. Note that this
preserves filtration and di�erentials.

There is also a coproduct totalisation functor but we won’t make so much use of it and so where we omit the
adornments and write Tot we mean TotΠ.

Definition 1.2.2.6. The coproduct totalisation functor Tot⊕ : bC → fC is defined on a bicomplex K by:

Tot⊕(K)n :=
⊕
i∈Z

Ki,i+n ,

with filtration given by the column filtration:

FpTot⊕(K)n :=
⊕
i≤p

Ki,i+n ,

and with di�erential given on an element (ki)i ∈
⊕

iK
i,i+n by:

d : (ki)i 7→ (d0ki + (−1)nd1ki+1)i .

On a morphism of bicomplexes f : K → J the functor Tot⊕ is given by Tot⊕(f)n :=
⊕

i f
i,i+n. Note that this

preserves filtration and di�erentials.

There is a symmetric monoidal tensor product on bicomplexes given in the same way as for chain complexes.

Definition 1.2.2.7. For bicomplexesA andB we define the tensor product ofA andB denotedA⊗B to be such that

(A⊗B)p,q :=
⊕

n1+n2=p
m1+m2=q

An1,m1 ⊗Bn2,m2

with di�erentials dA⊗B0 and dA⊗B1 given on an element a⊗ b ∈ An1,m1 ⊗Bn2,m2 ⊆ (A⊗B)p,q by:

dA⊗B0 (a⊗ b) = dA0 a⊗ b+ a⊗ (−1)|a|dB0 b ,

dA⊗B1 (a⊗ b) = dA1 a⊗ b+ a⊗ (−1)|a|dB1 b ,

where |a| = n1 +m1.
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Definition 1.2.2.8. For a bicomplex A the r-suspension ΣrA and r-loops ΩrA of A are given by:

(ΣrA)p,q = Ap−r,q−r+1 ,

(ΩrA)p,q = Ap+r,q+r−1 ,

and whose di�erentials are dΩrA
0 = dΣrA

0 = (−1)r+1dA0 and dΩrA
1 = dΣrA

1 = (−1)rdA1 .

1.2.3 Locally presentable categories

Definition 1.2.3.1. A category I is filtered if it is non-empty and the following two conditions hold

1. for all i, j ∈ I there exists a k ∈ I and morphisms i→ k and j → k, and

2. for all i, j ∈ C and every pair f, g : i⇒ j there exists a k ∈ I and h : j → k with hf = hg.

Definition 1.2.3.2. A category C is a locally presentable category if there is a regular cardinal λ such that

1. C is locally small, i.e. the collection of morphisms between two objects is a set,

2. C has all small colimits, and

3. there is a set of objects S such that any object of C is a λ-filtered colimit of objects of S .

Lemma 1.2.3.3. The category fC of filtered chain complexes is a locally presentable category.

Proof. Note that CR is a locally presentable category and since Z∞ is a small category the functor category CZ∞R is
locally presentable. Using the adjunction ρ : CZ∞R −→←− fC : i we can then exhibit the generation condition for locally
presentable categories. IfS is a set ofλ-small objects generating CZ∞R underλ-filtered colimits then the set ρS generates
fC; for an object A ∈ fC we have that iA = colimI F for some λ-filtered functor F : I → CZ∞R with image of
objects in S and so A = ρiA = ρ colimI F = colimI ρF since left adjoints commute with colimits.

1.3 Spectral sequences

Spectral sequences are tools used to aid in homology (and homotopy) calculations by constructing a sequence of
successive approximations. The end result being a bigraded collection of algebraic data from which one may need to
solve extension problems to correctly construct the homology.

1.3.1 Definition

Our definition of a spectral sequence is near identical to that of McCleary [McC01, Definition 2.2] except we begin
indexing of our pages at 0 instead of 1 and the bidegrees of the di�erentials are a mix of McCleary’s homological and
cohomological grading, the latter chosen to agree with the setup in [CELW19].

Definition 1.3.1.1. A spectral sequence is a sequence of bigraded di�erential modules {E∗,∗r , dr} for r ≥ 0 with dr of
bidegree (−r, 1− r) such that

Ep,qr+1
∼= Hp,q (E∗,∗r , dr) ∼=

ker
(
dr : Ep,qr → Ep−r,q+1−r

r

)
im
(
dr : Ep+r,q−1+r

r → Ep,qr
)

for each r ≥ 0. The bigraded module E∗,∗r will be referred to as the r-page, and the di�erential dr as the r-di�erential.

Definition 1.3.1.2. A morphism of spectral sequences f : {E∗,∗r , dr} −→ {Ẽ∗,∗r , d̃r} is a sequence of morphisms of
bigraded di�erential modules fr : E∗,∗r −→ Ẽ∗,∗r such that fr induces the morphism fr+1 for each r ≥ 0.

Lemma 1.3.1.3 ([McC01, Theorem 3.4]). For a morphism f : {E∗,∗r , dr} −→ {Ẽ∗,∗r , d̃r} of spectral sequences, if fs is an
isomorphism of bigraded di�erential modules for some s then all subsequent fr , r ≥ s, are isomorphisms too.
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1.3.2 Construction

We will construct our spectral sequence via r-cycle and r-boundary objects of filtered chain complexes as in [McC01,
§2.2] however with slightly di�erent notation to agree with that of [CELW19]. There are alternate setups, e.g. exact
couples [McC01, §2.2] and Cartan-Eilenberg Systems [McC01, Exercise 2.2] or [CE56, Chapter XV]. The construction
we take here is in fact equivalent to that of exact couples, see [McC01, Proposition 2.11].

Definition 1.3.2.1. For r ≥ 0, the r-cycles Z∗,∗r (A) of a filtered chain complex A are given in bidegree (p, n+ p) by

Zp,n+p
r (A) := FpA

n ∩ d−1Fp−rA
n+1 .

Definition 1.3.2.2. The representing object for the r-cycles of filtered chain complexes, denoted Z∗,∗r , is given by

Zr(p, n+ p) :=
(
Rn(p)

1−→ Rn+1
(p−r)

)
.

Definition 1.3.2.3. For r ≥ 1, the r-boundaries B∗,∗r (A) of a filtered chain complex A is given in bidegree (p, n+ p)
by

Bp,n+p
r (A) := dZp+r−1,p+r−1+n−1

r−1 (A) + Zp−1,p−1+n
r−1 (A) ,

and for r = 0 is given by
Bp,n+p

0 (A) := Zp−1,p−1+n
0 (A) .

Definition 1.3.2.4. The representing object for the r-boundaries of filtered chain complexes, denoted B∗,∗r , is given for
r ≥ 1 by

Br(p, n+ p) := Zr−1(p+ r − 1, p+ r − 1 + n− 1)⊕Zr−1(p− 1, p− 1 + n) .

Note 1.3.2.5. McCleary uses B∗,∗r to denote just dZ∗,∗r whereas we include the extra r-cycle component. This is done
to agree with the notation of [CELW19].

Notation 1.3.2.6. We will also occasionally make use of objects we denote Zr(p, p + n)(N) for some R-module N

which we take to be
(
Nn

(p) → Nn+1
(p−r)

)
.

Given a filtered chain complex A we can now define a spectral sequence. The notation di�ers slightly from
[CELW19] here in that we use dr for the r-di�erential instead of their δr .

Definition 1.3.2.7. The r-page E∗,∗r (A) of a filtered chain complex (A, d) for r ≥ 0 is given in bidegree (p, p+ n) by

Ep,p+nr (A) :=
Zp,p+nr (A)

Bp,p+nr (A)
,

and for an element [a] ∈ Ep,p+nr (A) represented by a ∈ Zp,p+nr (A) we define its r-di�erential by dr[a] := [da] ∈
Ep−r,p−r+1
r (A).

Lemma 1.3.2.8 ([McC01, Theorem 2.6]). The r-pages and r-di�erentials of Definition 1.3.2.7 define the structure of a spectral
sequence.

Definition 1.3.2.9. A morphism f of filtered chain complexes will be called an r-weak equivalence, r-quasi-isomorphism
or Er-quasi-isomorphism if it induces an isomorphism between the (r + 1)-pages of the associated spectral sequence.

1.3.3 Shift-décalage adjunction

On the category of filtered chain complexes there is the shift-décalage adjunction, S1 a Dec, of Deligne [Del71,
Definition 1.3.3]. with the property that (Sr)−1(Ek+r) = Ek and (Decr)−1(Ek) = Ek+r .

Definition 1.3.3.1. Let r ≥ 0 andA be a filtered chain complex. On the category of filtered chain complexes we define
the endofunctors:

1. r-shift of A, denoted SrA, with the same underlying chain complex and filtration given by:

FpS
rAn := Fp+rnA

n ,
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2. r-décalage of A, denoted DecrA, with the same underlying chain complex and filtration given by:

FpDecrAn := Fp−rnA
n ∩ d−1

(
Fp−rn−rA

n+1
)

= Zp−rn,p−rn+n
r (A) .

All di�erentials being induced from the filtered chain complex A.

One can easily check these do indeed define functors, that Sr = S1 ◦ . . . ◦ S1, Decr = Dec1 ◦ . . . ◦ Dec1,
id = Dec0 = S0, and finally that we have the following lemma.

Lemma 1.3.3.2 ([CG16, Proposition 2.16]). For each r ≥ 0 there is an adjunction pair Sr ` Decr for which the unit of the
adjunction, η : id =⇒ Decr ◦ Sr , is the identity morphism.

1.4 Model categories

A model category is a particulary nice framework in which to study homotopy theory and general enough to encompass
the standard homotopy theories on spaces, chain complexes, spectra and many more. One of the main problems with a
homotopy theory is the construction of its homotopy category, i.e. inverting the weak equivalences. As an example there
are homotopically poorly behaved spaces which whilst being weakly equivalent to a second space are not homotopic
to it. A model category makes this process of inverting the weak equivalences comparatively tractible by providing
the notions of cofibrant and fibrant objects. These have the nice property that mapping out of a cofibrant object
is homotopically well behaved and similarly for mapping into fibrant objects. If one then restricts to the category
of fibrant-cofibrant objects, i.e. those that are both fibrant and cofibrant, the process of constructing the homotopy
category is as simple as inverting the homotopy equivalences, a more easily manageable class of morphisms.

1.4.1 Definition

Definition 1.4.1.1. For morphisms f and g in a category C we say that f is a retract of g if there is a commutative
diagram of the form

A C A

B D B

f

1

g f

1

.

Definition 1.4.1.2. A model categoryM is a category with three subclasses of the morphisms called weak equivalences,
fibrations and cofibrations, and denoted respectively byW , Fib and Cof with functorial factorisations (α, β) and (γ, δ)
satisfying the following:

1. (Co)completeness: The underlying category has all small colimits and all small limits.

2. 2-out-of-3: For a commutative triangle
A C

B

inM if any two of the three morphisms are inW so too is the third.

3. Retracts: For f and g morphisms of C with f a retract of g, then f is inW (resp. Fib, Cof) whenever g is inW
(resp. Fib, Cof).

4. Liftings: For a commutative square
A Y

B X

i ph (1.4)

in C in which we either have:
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• i is a cofibration and p is both a weak equivalence and fibration, or

• i is both a weak equivalence and cofibration, and p is a fibration,

then there exists a, not necessarily unique, morphism h which makes the diagram commute.

5. Factorisations: For a morphism f we can factor f as either:

• β(f) ◦ α(f) where α(f) is a cofibration, and β(f) a weak equivalence and fibration, or

• δ(f) ◦ γ(f) where γ(f) is a weak equivalence and cofibration, and δ(f) a fibration.

Remarks 1.4.1.3. We note some remarks and immediate consequences regarding the definition.

1. Quillen’s original defintion, [Qui67], lacked the functorial aspect of the factorisations however this can prove
useful and the model categories we consider will all be constucted in such a way that we are handed functorial
factorisations so we have included it in our definition as has become common. The original definition also only
required finite limits and colimits.

2. The category being (co)complete means there exist initial and terminal objects, we denote these by 0 and 1
respectively.

We list some standard nomenclature for referring to morphisms and their properties in model categories.

Definition 1.4.1.4. We will call a morphism that is both a weak equivalence and fibration an acylic fibration, and a
morphism that is both a weak equvialence and cofibration an acyclic cofibration. These are also commonly called trivial
fibrations and trivial cofibrations.

Notation 1.4.1.5. We will denote the property that a morphism A→ B is:

1. a cofibration by A� B,

2. a fibration by A� B, and

3. a weak equivalence by A ∼→ B,

and combine these when appropriate.

Definition 1.4.1.6. For an object A of a model categoryM we say A is:

1. cofibrant if the morphism 0→ A is a cofibration, and

2. fibrant if the morphism A→ 1 is a fibration.

Definition 1.4.1.7. A morphism i is said to have the left lifting property with respect to p, alternatively p has the right
lifting property with respect to i, if there is a lift h in any commutative diagram of the form of Diagram 1.4.

Remark 1.4.1.8. In particular Definitions 1.4.1.4 and 1.4.1.7 say that the acyclic cofibrations have the left lifting property
with respect to the fibrations, and cofibrations have the left lifting property with respect to acyclic fibrations.

Remark 1.4.1.9. Definition 1.4.1.2 contains redundant information in that any two of the sub-classes of morphismsW ,
Fib and Cof determine the third. Part of this claim is proven in [Hov99, Lemma 1.1.10].

The following is one definition of the homotopy category. We will shortly, Definition 1.4.1.14, introduce a second
more tractable definition of the homotopy category which is equivalent to this one as categories. This definition can
be found in [Hov99, Definition 1.2.1].

Definition 1.4.1.10. The homotopy category of a model category M, denoted Ho(M), is the category obtained by
inverting the class of weak equivalences inM. That is the objects are those ofM. For the morphisms we first take
strings (f1, f2, . . . , fn) of composable morphisms ofM with each fi either a morphism ofM or the reversal w−1

of a morphism ofW . The morphisms of Ho(M) are then this class with the identifications (f, g) = (g ◦ f) for f, g
composable morphisms ofM, (w,w−1) = id, (w−1, w) = id for the identity on the domain and codomain of w
respectively and where the identity on an object X is given by (1X).

Definition 1.4.1.11. Let A and X be objects of a model category C
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1. A cylinder object for A is a factorisation of the fold morphism∇ : A
∐
A→ A by a cofibration followed by a

weak equivalence:
A
∐

A→ I ×A→ A ,

we denote the inclusions of the first map of either component of A by i1 and i2.

2. A path object forX is a factorisation of the diagonal morphism ∆: X → X×X by a weak equivalence followed
by a fibration:

X → XI → X ×X .

we denote the projections of the second map onto either component by π1 and π2.

Remarks 1.4.1.12. The following are worth noting with regard to these objects.

1. Despite what the notation might suggest the cylinder object I×A need not be a product (categorical or otherwise)
of an object I with A. Similarly the path object XI need not be an object of functions. However both of these
are common ways of forming such cylinder and path objects.

2. Observe that in a model category we always have at least one way of doing this using the functorial factorisations
and that the weak equivalences in the definition will be in addition fibrations and cofibrations respectively.

Definition 1.4.1.13. For A and X objects of a model categoryM with two morphisms f, g : A→ X we define:

1. a left homotopy to be a morphism h : I × A → X from a cylinder object of A to X such that hi1 = f and
hi2 = g,

2. a right homotopy to be a morphism k : A→ XI from A to a path object on X such that π1k = f and π2k = g.

Each of these notions of homotopy generate an equivalence relation on Hom(A,X) and for A cofibrant and
Y fibrant these equivalence relations, which we denote by ', coincide, [Hov99, Corollary 1.2.6]. Further by [Hov99,
Theorem 1.2.10] we can take the following as the definition of the homotopy category ofM. It is equivalent as a
category to that previously given in Definition 1.4.1.10.

Definition 1.4.1.14. The homotopy category of a model categoryM denoted Ho(M) has objects the fibrant-cofibrant
objects ofM and morphisms HomHo(M)(A,X) = HomM(A,X)/ '.

1.4.2 Cofibrantly generated model categories

A recurring problem in constructing model categories is that whilst some of the three defining classes may be simple
to describe one of them may have a less simple classification, e.g. the projective model structure on unbounded chain
complexes has simple descriptions for the weak equivalences and fibrations but a more complicated form for the
cofibrations explained at the start of Chapter 4. We can however take advantage of the lifting axioms, more particularly
Remark 1.4.1.9, to specify only two of the three classes. And going one step further we can potentially choose subsets
of the cofibrations (resp. acyclic cofibrations) such that those morphisms with the right lifting property with respect
to these subsets are the acyclic fibrations (resp. fibrations). Having then determined the (acyclic) fibrations these, by
the lifting axioms, determine the (acyclic) cofibrations and so determine the three subclasses of weak equivalences,
fibrations and cofibrations. We will describe here cofibrantly generated model categories via the small object argument
which has the added advantage of providing for us the factorisation axioms required of a model category.

Definition 1.4.2.1. For I a set of morphisms of a category we denote by

1. I-Inj the set of morphisms with the right lifting property with respect to I , and call these morphisms I-injective,

2. I-Proj the set of morphisms with the left lifting property with respect to I , can call these morphisms I-projective,

3. I-Cof the set of morphisms with the left lifting property with respect to I-Inj, i.e. I-Cof = (I-Inj) -Proj,
and call these morphisms I-cofibrations.

Definition 1.4.2.2. Given a set of morphisms I of a category, the relative I-cells are those morphisms obtained from an
object by a transfinite composition of pushouts of maps in I . These are denoted by I-Cell.

Notation 1.4.2.3. The morphisms I-Cell are sometime referred to as I-regular cofibrations and denoted I-Cofreg, see
for example [SS00].
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Theorem 1.4.2.4 (Small Object Argument, [Hov99, Theorem 2.1.14]). For C a category with all small colimits and I a set
of morphisms of C, for which the domains of I are small relative to I-Cell there are functorial factorisations (α, β) of any
morphism f into β(f) ◦ α(f) with α(f) ∈ I-Cell and β(f) ∈ I-Inj.

Lemma 1.4.2.5 ([Hov99, Lemma 2.1.10]). For I a set of morphisms of a category we have I-Cell ⊆ I-Cof.

Definition 1.4.2.6. A cofibrantly generated model category is a model categoryM with two set of morphisms I and J
such that:

1. the domains of I (resp. J ) are small relative to I-Cell (resp. J-Cell),

2. the class of trivial fibrations (resp. fibrations) is I-Inj (resp. J-Inj).

The set I is called the generating cofibrations and J the generating acyclic cofibrations.

Note 1.4.2.7. When referring to a cofibrantly generated model category the (possibly adorned) letter I will always refer
to the generating cofibrations, and J the generating acyclic cofibrations.

Definition 1.4.2.8. A cofibrantly generated model structure such that the domains and codomains of the generating
cofibrations and generating acyclic cofibrations are finite relative to the cofibrations will be refrred to as a finitely
cofibrantly generated model category.

The following theorem allows us to check when sets I and J do indeed determine a model category structure and
the model structures of [CELW19] are constucted using it.

Theorem 1.4.2.9 ([Hov99, Theorem 2.1.19]). For C a category closed under all small (co)limits, with W a subclass of the
morphisms, and I andJ sets of morphisms. Then I andJ determine a cofibrantly generated model category with weak equivalences
W if and only if

1. W satisfies the two out of three property,

2. the domains of I (resp. J ) are small relative to I-Cell (resp. J-Cell),

3. J-Cell ⊆ W ∩ I-Cof,

4. I-Inj ⊆ W ∩ J-Inj, and

5. eitherW ∩ I-Cof ⊆ J-Cof orW ∩ J-Inj ⊆ I-Inj.

A useful (classification) result of cofibrations in a cofibrantly generated model category is the following which gives
a morphism is a cofibration if and only if it is the retract of an I-Cell morphism. A similar proof shows that acyclic
cofibrations are precisely the retracts of the J-Cell morphisms.

Proposition 1.4.2.10. For a cofibrantly generated model categoryM with generating cofibration I any cofibration is a retract
of an I-cell morphism.

Proof. For a cofibration f : A → B factorise it via the small object argument into an I-cell morphism i : A → X
followed by an acyclic fibration p : X → B. There is then a lift h in the lifting problem

A X

B B

i

f ∼p

id

h

and we can form the commutative diagram

A A A

B X B

id

f

id

id

i f

h

id

p

which exhibits f as a retract of the I-cell i.
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1.4.3 Quillen adjunctions and equivalences

Lemma 1.4.3.1 ([Hov99, Lemma 1.3.4]). For an adjunctionF : M−→←− N :G of model categories the following are equivalent:

1. F preserves cofibrations and acyclic cofibrations, and

2. G preserves fibrations and acyclic fibrations.

Definition 1.4.3.2. ForM andN model categories, an adjunction F : M−→←− N :G is a Quillen adjunction if one (and
therefore both) of the conditions of Lemma 1.4.3.1 is satisfied.

Definition 1.4.3.3. For a Quillen adjunction F : M−→←− N :G we define:

1. the total left derived functor LF of F is the composite of the cofibrant replacement Q followed by F on the
homotopy categories

Ho(M) Ho(Mc) Ho(N )
Ho(Q) Ho(F )

,

2. the total right derived functor RG of G is the composite of the fibrant replacement R followed by G on the
homotopy categories

Ho(N ) Ho(Nf ) Ho(M)
Ho(R) Ho(G)

.

Lemma 1.4.3.4 ([Hov99, Lemma 1.3.10]). For a Quillen adjunction F : M −→←− N :G the total left and derived functors
give an adjunction, called the derived adjunction, on the homotopy categories LF : Ho(M) −→←− Ho(N ) :RG.

Definition 1.4.3.5. A Quillen adjunction F : M −→←− N :G is a Quillen equivalence if for a cofibrant object m ∈ M
and fibrant object n ∈ N a morphism f : Fm −→ n is a weak equivalence inN if and only if its adjunct morphism
f̃ : m −→ Gn is a weak equivalence inM.

Lemma 1.4.3.6 ([Hov99, Proposition 1.3.13]). For a Quillen equivalence F : M −→←− N :G the derived adjunction is an
equivalence on the homotopy categories.

Example 1.4.3.7. There is an adjunction i : C≤R −→←− CR :τ between the categories of non-positively graded chain
complexes and the category of unbounded chain complexes. The left adjoint i is inclusion and the right adjoint τ
is truncation which is the identity in negative degrees, 0 in positive degrees, and in degree 0 gives the kernel of the
di�erential. It can be shown that τ preserves both fibrations and acyclic fibrations and so forms a Quillen adjunction
by Definition 1.4.3.2. This is not however a Quillen equivalence; take in Definition 1.4.3.5 c to be the chain complex 0

and d to be the chain complex with R in degree 1 and 0 otherwise. Then we have a Quillen equivalence c ∼→ τd = 0
but the morphism ic −→ d is not a weak equivalence.

We will later, Section 3.12, use adjunctions of this form to infer bounded variants of the model structures considered
on filtered chain complexes and bicomplexes.

1.4.4 Transfer theorems of model structures

Theorem 1.4.4.1 (Kan Transfer Theorem, [Hir03, Theorem 11.3.2]). LetM be a model category cofibrantly generated by I
andJ , C a complete and cocomplete category, and an adjunction pairF : M−→←− C :U . Then there exists a cofibrantly generated
model structure on C with generating cofibrations FI , generating acyclic cofibrations FJ and weak equivalences U−1W if

1. FI and FJ admit the small object argument, and

2. U takes relative FJ -cell complexes to weak equivalences.

Example 1.4.4.2. The free-forgetful adjunction F : sSets −→←− sAb :U gives a way of transferring the cofibrantly
generated Kan model structure on simplicial sets to a model structure on simplicial Abelian groups via the Kan transfer
theorem. The model structure obtained is in fact Quillen equivalent to the standard projective model structure on
non-negatively (homologically) graded chain complexes via the Dold-Kan adjunction.

Other results on transferring model structure exist and usually rely on checking an acyclicity condition, see for
example [BHK+15].
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1.4.5 Monoidal model categories

Suppose we have both a model category structure and a monoidal category structure on the same category C. We state
here standard conditions and results for existence of an induced monoidal structure on the homotopy category.

Definition 1.4.5.1. The pushout-product i� j of two morphisms i : A −→ B and j : C −→ D is given by

i� j : A⊗D
∐
A⊗C

B ⊗ C −→ B ⊗D .

The following definition of a monoidal model category has two conditions, the first ensuring that we do indeed
have an induced product on the homotopy category and the second ensures we have a unit in the homotopy category.

Definition 1.4.5.2. A monoidal model category is a model category equipped with the structure of a closed symmetric
monoidal category such that:

1. the pushout-product i� j is a cofibration whenever both i and j are, and additionally is acyclic if either i or j
is,

2. there exists a cofibrant replacement of the tensor unit I , i.e. weak equivalence QI ∼−→ I with QI cofibrant,
such that for all cofibrant X the morphism QI ⊗X −→ X is a weak equivalence.

Remark 1.4.5.3. Note that when the unit is already cofibrant the second condition is redundant, this is true for many
common examples of monoidal model categories including sSets∗ and CR. An example where the unit is not cofibrant
are symmetric spectra, [Mur15, Example 2]. We will see that fC is a monoidal model category in which the unit is not
cofibrant providing a new example.

The major result of having a monoidal model category structure is the following theorem.

Theorem 1.4.5.4 ([Hov99, Theorem 4.3.2]). ForM a monoidal model category there is a closed symmetric monoidal structure
on Ho(M) with tensor product the left derived functor −⊗L −.

The following result allows us to check the pushout-product axiom only for the generating (acyclic) cofibrations.

Lemma 1.4.5.5 ([Hov99, Lemma 4.2.4]). For I and J the generating cofibrations and acyclic cofibrations respectively of a model
category further equipped with the structure of a closed symmetric monoidal category satisfying I�I ⊆ I-Cof, I�J ⊆ J-Cof,
and J � I ⊆ J-Cof, then the pushout-product axiom holds.

1.4.6 Monoid axiom

The monoid axiom, defined by Schwede and Shipley in [SS00] provides a condition from which, along with a cofibratnly
generated assumption, we can infer a cofibrantly generated model structure on the category of left R-modules for R a
monoid or R-modules and R-algebras for R a commutative monoid.

Having a good understanding of the cofibrations of a cofibrantly generated model category C does not however
necessarily give a good understanding of the cofibrations in the model structures on left R-modules, R-modules or
R-algebras. For example, the projective model structure of bounded chain complexes has well understood cofibrations:
they are the degreewise monomorphisms with cofibrant cokernel (i.e. degreewise projective), however the cofibrations
of R-algebras are not so easily classified. In particularly nice cases, e.g. in rational homotopy theory, cofibrations in
model categories of commutative di�erential graded algebras can be described in terms of retracts of relative Sullivan
algebras.

The following is Schwede and Shipley’s definition of the monoid axiom, a condition required to obtain the above
model structures, see [SS00, Definition 3.3]. We will make use of Definition 1.4.6.1 and Theorem 1.4.6.3 to show there
are S-model structures of filtered di�erential graded algebras in Section 5.4.

Definition 1.4.6.1 (Monoid Axiom). A monoidal model categoryM is said to satisfy the monoid axiom if the relative
cells obtained from the monoid product of the acyclic cofibrations withM are weak equivalences, i.e :

((W ∩ Cof)⊗M) -Cell ⊆ W .

It su�ces to check the monoid axiom on the generating acyclic cofibrations as shown in [SS00].
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Lemma 1.4.6.2 ([SS00, Lemma 3.5 (2)]). LetM be a cofibrantly generated model category with closed symmetric monoidal
structure and generating acyclic cofibrations J . If every map of (J ⊗M)-Cell is a weak equivalence then the monoid axiom
holds.

Theorem 1.4.6.3 ([SS00, Theorem 4.1]). For a cofibrantly generated, monoidal model categoryM satisfying the monoid axiom
and such that every object ofM is small then:

1. for R a monoid inM, the category of left R-modules is a cofibrantly generated model category,

2. for R in addition commutative, the category of R-modules is a cofibrantly generated, monoidal model category satisfying
the monoid axiom, and

3. for R a commutative monoid, the category of R-algebras is a cofibrantly generated model category.

Remark 1.4.6.4. The weak equivalences and fibrations in the model categories of Theorem 1.4.6.3 are precisely those of
the underlying model categoryM.

1.4.7 Left and right properness

Recall that the (co)base change of an isomorphism is an isomorphism. One might ask for a similar condition for weak
equivalences however this need not be true, instead we have the following definitions.

Definition 1.4.7.1. A model categoryM is said to be:

1. left proper if cobase changes along cofibrations preserve weak equivalences,

2. right proper if base changes along fibrations preserve weak equivalences, and

3. proper if it is both left and right proper.

Remark 1.4.7.2. A model category in which every object is cofibrant (resp. fibrant) is automatically left (resp. right)
proper.

Example 1.4.7.3. The model category of projective unbounded chain complexes is proper (despite not all objects being
cofibrant) and the Quillen model structure on sSets is proper (despite not all objects being fibrant).

Left and right properness have some nice consequences for the model category. For example pushouts (resp. pull-
backs) along cofibrations (resp. fibrations) are automatically homotopy pushouts (resp. pullbacks) in left (resp. right)
proper model categories, Section 1.4.8. A model category which is both left proper and cellular is guaranteed to have
Bousfield localisations at any set of morphisms, Section 1.4.12. A result of Dugger, [Dug01, Proposition A.5], also asserts
that a left proper cofibrantly generated model category has a set of cofibrant objects {Ci} detecting weak equivalences
in the sense that Y → X is a weak equivalence if and only if the function complexes map(Ci, Y ) → map(Ci, X)
are weak equivalences for all Ci.

1.4.8 Homotopy pullbacks and pushouts

The definition of homotopy (co)limits repairs a fundamental flaw in the lack of homotopy invariance in (co)limits
in a model category. I.e. given a general model categoryM, an indexing category I and two functor F,G : I →M
with natural transformation α : F ⇒ G satisfying for each object i ∈ I the morphism αi : F (i) → G(i) is a weak
equivalence it is not necessarily true that there is a weak equivalence colimF → colimG or limF → limG. Indeed
the following provides a standard counterexample for the case of the colimit.

Counterexample 1.4.8.1. We consider pushouts in the Quillen model category of pointed topological spaces. In the
following two pushouts we have a weak equivalence between the corresponding objects of the three corners of the
pushout however the induced map on the pushout ∗ → S2 is not a weak equivalence.

S1 ∗ S1 D2

∗ ∗ D2 S2p p
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We will recall here a homotopical correction for a particular case of this failing of (co)limits. There are very general
constructions producing good notions of homotopy (co)limits invariant under weak equivalence of diagrams as above
however we will only need a very basic case of this involving pullbacks so we limit ourselves to discussing homotopy
pullbacks – the notion of homotopy pushout is dual. The general method for constructing homotopy (co)limits in
an arbitraty (i.e. not necessarily simplicial) model categoryM involves simplicial framings and are given as [Hir03,
Definitions 19.1.2 & 19.1.5]. In a right proper model category the pullback of fibrant objects is naturally weakly equivalent
to such a general homotopy limit by [Hir03, Proposition 19.5.3]. The definition of a homotopy pullback we then use is
given in the following definition which replaces the morphisms of a pullback by fibrations. It can be found as [Hir03,
Definition 13.3.2]. We use E to denote a functorial factorisation of a morphism f : X → Z into a trivial cofibration
if : X → E(f) followed by a fibration pf : E(f)→ Z .

Definition 1.4.8.2. SupposeM is a right proper model category. The homotopy pullback of a diagram

Y

X Z

g

f

which will be denoted diagramatically by
P Y

X Z

yh

in which P is given by the actual pullback diagram

P E(f)

E(g) C

pg

pf

y
.

This construction really is homotopy invariant in a right proper model category.

Proposition 1.4.8.3 ([Hir03, Proposition 13.3.4]). SupposeM is a right proper model category in the diagram

X1 Z1 Y1

X2 Z2 Y2

f1

wX∼ wZ∼

g1

wY∼

f2
g2

that the morphisms f1, f2, g1 and g2 are fibrations and the morphisms wX , wY and wZ are weak equivalences. Then the
induced map on the pullbacks is a weak equivalence.

As a corollary replacing eitherX or Y by a weakly equivalent object yields a weakly equivalent homotopy pullback,
[Hir03, Corollary 13.3.5]. We will use the following form of computing homotopy pullbacks which asserts that one
need only replace either the morphism f or g by a fibration in Definition 1.4.8.2.

Corollary 1.4.8.4 ([Hir03, Corollary 13.3.8]). SupposeM is a right proper model category in which either f or g is a fibration
in the diagram

Y

X Z

g

f

,

then the pullback is weakly equivalent to the homotopy pullback.

Dually one has the following definition and results about homotopy pushouts. Now letE denote a functorial factori-
sation of morphism f : Z → X into a cofibration if : Z → E(X) followed by an acyclic fibration pf : E(X)→ X .
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Definition 1.4.8.5. SupposeM is a left proper model category. The homotopy pushout of a diagram

Z X

Y

f

g

which will be denoted diagramatically by

Z X

Y P

f

g

ph

in which P is given by the actual pushout diagram

Z E(X)

E(Y ) P

if

ig

ph
.

Which is similarly homotopy invariant by a dual argument.

Proposition 1.4.8.6 ([Hir03, Proposition 13.5.3]). SupposeM is a left proper model category in the diagram

X1 Z1 Y1

X1 Z1 Y2

wX∼

i1 j1

wZ∼ wY∼

i2 j2

that the morphisms i1, i2, j1 and j2 are fibrations and the morphismswX , wY andwZ are weak equivalences. Then the induced
map on the pushouts is a weak equivalence.

And similarly it can be computed by replacing only one of f and g by a cofibration.

Corollary 1.4.8.7. SupposeM is a left proper model category in which either f or g is a cofibration in the diagram

Z X

X

f

g ,

then the pushout is weakly equivalent to the homotopy pushout.

1.4.9 Stable model categories

Recall in a pointed category the initial and terminal objects are isomorphic and in this setting we denote such an object
by ∗.

Definition 1.4.9.1. For a pointed model categoryM we define

1. The suspension functor Σ on an object X ∈ Ho(M) to be the homotopy pushout

X ∗

∗ ΣX
ph

,

2. The loop functor Ω on an object X ∈ Ho(M) to be the homotopy pullback

ΩX ∗

∗ X

yh .
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Quillen’s original definition makes use of cylinder and path objects on an object X [Qui67, Chapter 1 §2]. Hovey,
[Hov99], alternatively defines the suspension and loop functor via the functors−∧LS1 andRHom(S1,−) one obtains
from a simplicial framing. The discussion following [Hov99, Definition 6.1.1] justifies our use of the above definition.
We have that on the homotopy category the suspension and loop functors form an adjoint pair Σ: Ho(M) −→←−
Ho(M) :Ω [Qui67, Chapter 1 §2] or [Hov99, Corollary 3.1.6].

Note that by Corollary 1.4.8.4 in a right proper model category we have the following proposition.

Lemma 1.4.9.2. For a pullback diagram in a right proper pointed model category where f is a fibration and Y is acyclic a
pullback diagram of the following form is a homotopy pullback and therefore Z ' ΩX :

Z Y

∗ X

y
f .

Definition 1.4.9.3. A pointed model categoryM is a stable model category if the suspension-loop adjoint pair is an
equivalence of categories of the homotopy category Ho(M).

Examples 1.4.9.4. The following are the two standard examples of stable model categories for which the suspension
and loop functors can in fact be realised on the model category level.

1. Unbounded chain complexes with the suspension and loop functors shifting the degree by ±1, and

2. Spectra which are constructed specifically to be a stabilisation of the model category of spaces. The suspension and
loop functors here correspond to smashing with the spectrum S1 and taking the function complex Hom(S1,−).

1.4.10 Cellular model categories

Definition 1.4.10.1. A cofibrantly generated model categoryM with sets I and J of generating (acyclic) cofibrations
is said to be cellular if the following hold:

1. the domains and codomains of I are small,

2. the domains of J are small relative to I , and

3. the cofibrations are e�ective monomorphisms, i.e that any cofibration i : X → Y is the equaliser of

Y Y
∐
X Y .

Definition 1.4.10.2. A monomorphism i : A −→ B is a regular monomorphism if it is the equaliser of some pair of
morphisms B −→ C ,

A B C .

Proposition 1.4.10.3. In a category with equalisers and cokernel pairs the class of regular monomorphisms coincides with the
class of e�ective monomorphisms.

Proof. The proof is dual to that of [Bor08, Proposition 2.5.7].

So in particular in a model categoryM to show a monomorphism is an e�ective monomorphism we need only
show it is a regular monomorphism.

1.4.11 Homotopy function complexes

The notion of a homotopy function complex (or mapping complex) from X to Y is a simplicial generalisation of the
homotopy set of maps between X and Y taking account of the ‘higher dimensional information’. In a simplicial
model category, [Hir03, Definition 9.1.6], the homotopy function complex map(X,Y ) is easily defined, see [Hov99,
Remark 5.2.10], however in model categories lacking the simplicial structure the construction is much more involved
as the simplicial structure must be introduced in a homotopically coherent manner. We do not make extensive use
of homotopy function complexes in this thesis so we mainly reference constructions from [Hov99]. Their use in this
thesis will be in defining Bousfield localisations.
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Definition 1.4.11.1. A Reedy category is a categoryD with two subcategoriesD− andD+ and a degree function deg : D →
λ for some ordinal λ such that

• every non-identity morphism of D− lowers degree,

• every non-identity morphism of D+ raised degree, and

• every morphism of D factors uniquely into a morphism of D− followed by a morphism of D+.

Example 1.4.11.2. The simplex category ∆ is an example with ∆− the subcategory of surjective order-preserving maps
and ∆+ the subcategory of injective order-preserving maps. Similarly ∆op is a Reedy category with (∆op)− = (∆+)op

and (∆op)+ = (∆−)op.

For C a category andD a Reedy category, we have a subcategory of the slice category denoted (D+)i whose objects
are the non-identity morphisms ofD+ with codomain i, f : j → i and whose morphisms from f : j → i to g : k → i
are commutative triangles h:

j k

i
f

h

g
,

with h a morphism of D+. Note for an object X of CD there is a functor from this category to C which assigns to an
object f : j → i the object Xj . Similarly we have a subcategory of the coslice category denoted (D−)i whose objects
are the non-identity morphisms of D− with domain i, f : i→ j and whose morphisms from f : i→ j to g : i→ k
are commutative triangles h:

i

j k

f g

h

,

with h a morphism of D−, which again for an object X of CD there is a functor sending an object f : i→ j to Xj .

Definition 1.4.11.3. For a complete and cocomplete category C, Reedy category D and X ∈ CD we define:

1. the latching space object LiX given by

LiX := colim
(j→i)∈(D+)i

Xj ,

2. and the matching space object MiX given by

MiX := lim
(i→j)∈(D−)i

Xj .

Theorem 1.4.11.4 ([Hov99, Theorem 5.2.5]). ForM a model category andD a Reedy category there is a model category struc-
ture, called the Reedy model category, on the categoryMD where a morphism f : X → Y ofMD , i.e. natural transformation
of functors X ⇒ Y is:

1. a weak equivalence if fi : Xi → Yi is a weak equivalence for each i ∈ D,

2. an (acyclic) fibration if Xi

∐
LiX

LiY → Yi is an (acyclic) fibration for each i ∈ D, and

3. an (acyclic) cofibration if Xi →MiX
∏
MiY

Yi is an (acyclic) cofibration for each i ∈ D.

In particular we have Reedy model category structures on the category of cosimplicial and simplicial objects in any
model categoryM. For an X ∈M we denote by:

• `∗X the cosimplicial object whose nth object is
∐
n+1X and whose coface and codegeneracy maps are inclusions

and fold maps,

• r∗X the cosimplicial objects whose nth object is X and whose coface and codegeneracy maps are identities,

• `∗X the simplicial object whose nth object is X and whose face and degeneracy maps are identities, and
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• r∗X the simplicial object whose nth object is
∏
n+1X and whose face and degeneracy maps are projections and

inclusions.

Definition 1.4.11.5. ForM a model category and X,Y objects ofM we define:

1. a cosimplicial frame of X to be a factorisation, in the Reedy model category onM∆, of the natural map `∗X →
r∗X into a cofibration followed by a weak equivalence which are isomorphisms in degree 0:

`∗X � X∗
∼→ r∗X .

2. a simplicial frame of Y to be a factorisation, in the Reedy model category onM∆op

, of the natural map `∗Y →
R∗Y into a weak equivalence followed by a fibration which are isomorphisms in degree 0:

`∗Y
∼→ Y∗ � R∗Y .

[Hov99, Theorem 5.2.8] give functorial cosimplicial and simplicial framings inM. We can now define left and
right homotopy function complexes.

Definition 1.4.11.6. ForM a model category, X,Y objects ofM and X∗, Y∗ cosimplicial and simplicial frames of X
and Y respectively we define:

1. the left homotopy function complex mapl(X,Y ) to be the simplicial set whose nth object is HomM(X∗[n], Y ),
and

2. the right homotopy function complex mapr(X,Y ) to be the simplicial set whose nth object is HomM(X,Y∗[n])

both equiped with the obvious induced simplicial structure from X∗ and Y∗.

If in addition we require that X is cofibrant and Y fibrant inM then the left and right homotopy functions are
homotopy equivalent. This follows by relating both to the bisimplicial set with n×mth object HomM(X∗[n], Y∗[m]),
we denote either of mapr or mapl simply by map in this case.

Proposition 1.4.11.7 ([Hov99, Theorem 5.4.7]). ForM a model category, X a cofibrant object ofM and Y a fibrant object
ofM then there are weak equivalences

mapl(X,Y )→ map(X,Y )← mapr(X,Y ) .

Henceforth we shall only consider homotopy function complexes with a cofibrant domain and fibrant codomain
so we simply write map.

1.4.12 Bousfield localisations

A localised model category is a modification of some model category so as to expand the class of weak equivalences
whilst retaining the structure of a model category. Such a construction achieves a new category with an appropriate
universal property outlined below in it’s original construction. Often this is done so as to localise at (or away from)
a prime to focus on p-torsion information or to pass to a rational homotopy theory. As a result one of (or both) the
classes of fibrations and cofibrations must also change since any two defining subclasses of morphisms of a model
category determines the third. Bousfield constructed the first such localised homotopy theories in [Bou75] where,
for an arbitrary homology theory h∗, a localisation functor on the category of simplicial sets is constructed which
induces a h∗-localisation functor on the homotopy category, i.e. a functor E : Ho(sSets)→ Ho(sSets) and natural
transformation ηX : 1⇒ E such that:

1. ηX : X → EX induces h∗(X) ∼= h∗(EX), and

2. whenever f : X → Y (in the homotopy category) induces a h∗ isomorphism there is a unique factorisation

X Y

EX

f∗

ηX
.
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Bousfield later made a similar definition and construction for localisation of spectra with respect to homology in [Bou79].
Later notions of localisations with respect to a class of morphisms in an arbitrary model category were considered, see
[Hir03] for a textbook account.

We consider here localisations known as left Bousfield localisations and right Bousfield localisations. These have the nice
property that their existence are known, under reasonable assumptions, and that they only alter two of the three defining
classes of morphisms, the weak equivalences and fibrations for left Bousfield localisations, and the weak equivalences
and cofibrations for the right Bousfield localisations. The reference for these localisations which we follow is [Hir03].

Definition 1.4.12.1. For a model categoryM with subclass of morphisms C we say:

1. an object W ofM is C-local if it is fibrant inM and for all f : A → B of C the induced maps on homotopy
function complexes, map(f,W ) : map(B,W )→ map(A,W ), are all weak equivalences, and

2. a morphism g : X → Y ofM is a C-local equivalence if for every C-local object W ofM the induced maps on
homotopy function complexes, map(g,W ) : map(Y,W )→ map(X,W ), are all weak equivalences.

Definition 1.4.12.2. The left Bousfield localisation of a model categoryM with respect to a subclass of morphisms C
is, if it exits, the model category, denoted LCM, with:

1. weak equivalences of LCM being the C-local equivalences, and

2. cofibrations of LCM being the cofibrations ofM.

The following gives existence of left Bousfield localisations under reasonsable assumptions.

Theorem 1.4.12.3 ([Hir03, Theorem 4.1.1]). ForM a left proper and cellular model category with a subset C of morphisms
the left Bousfield localisation LCM exists and is also left proper and cellular.

Example 1.4.12.4. Standard model categories which are left proper and cellular, and therefore satisfy the conditions of
Theorem 1.4.12.3 include the Quillen model category of (pointed) simplicial sets and the projective model structure on
chain complexes.

The existence theorem for right Bousfield localisations we state here and use later is a localisation at a set of objects
instead of set of maps. It also goes by the name of cellularization. The following definition appears as (part of) [Hir03,
Definition 3.1.8].

Definition 1.4.12.5. LetM be a model category andK a set of objects ofM. A morphism g : X → Y ofM is said to
be aK-colocal equivalence or aK-cellular equivalence if for all A ∈ K the induced map of homotopy function complexes
map(A, g) : map(A,X)→ map(A, Y ) is a weak equivalence.

Definition 1.4.12.6. The right Bousfield localisation of a model categoryM with respect to a subclass of morphisms C is,
if it exists, the model category, denoted RCM, with:

1. weak equivalences of RCM being the C-colocal equivalences, and

2. fibrations of RCM being the fibrations ofM.

The following statement of existence of the right Bousfield localisation at K includes corrections from the errata
of [Hir03].

Theorem 1.4.12.7 (Existence of Right Bousfield Localisations,[Hir03, Theorem 5.1.1]). ForM a right proper and cellular
model cateogry and subset of objects K ofM with C the class of K-colocal equivalences the right Bousfield localisation RCM
exists and is also right proper and cellular.

Definition 1.4.12.8. Right Bousfield localisation ofM at a set K as above is often called the K-cellularization ofM at
K and the resulting localisation RCM will be denoted K-cell-M.

24



1.5 The projective model category of chain complexes

The category of (cohomologically) graded chain complexes can be equipped with a model category structure commonly
know as the projective model structure in which the weak equivalences are the quasi-isomorphisms and the fibrations the
degree-wise surjections. This model structure will serve as frequent motivation and intuition for various constructions
and definitions to come so we recall here the projective model structure in detail.

Definition 1.5.0.1. The sphere Sn and disc Dn objects in the category of chain complexes are given by:

Sn := (. . .→ 0→ Rn → 0→ . . .) ,

Dn−1 :=
(
. . .→ 0→ Rn−1 → Rn → 0→ . . .

)
.

with inclusion in : Sn → Dn−1 given by the identity in degree n.

These are representing objects for the kernel and image of the di�erentials. The following can be found proved
in [Hov99, Theorem 2.3.11] or in much greater generality in [CH02, Theorem 2.2] and is commonly referred to as the
projective model structure on (unbounded) chain complexes.

Theorem 1.5.0.2. There is a cofibrantly generated projective model structure on CR where:

1. weak equivalences are the quasi-isomorphisms,

2. fibrations are the degreewise surjections, and

3. generating cofibrations are given by I = {in : Sn → Dn−1}n∈Z and generating acyclic cofibrations by J = {0 →
Dn}n∈Z.

In the introduction to Chapter 4 we explain how one classifies the cofibrations. This model structure has many
nice properties including being finitely cofibrantly generated, left and right proper, cellular and stable.

1.6 r-Model categories of filtered chain complexes

The following results are those of [CELW19] and establish two model structures on fC for each r ≥ 0 (although these
agree for r = 0).

Definition 1.6.0.1. The morphism ϕr : Zr(p, n)→ Br(p, n) is given bidegree-wise by the diagonal whenever possible
or otherwise the identity. (

Rn(p) Rn+1
(p−r−1)

)
(
Rn−1

(p+r) Rn(p) ⊕R
n
(p−1) Rn+1

(p−r−1)

)ϕn ϕn+1

(1
0) (0 1)

Definition 1.6.0.2. Denote by wr : B∗,∗r (A) −→ Z∗,∗r (A) the morphism of filtered chain complexes obtained by
precomposing an element of B∗,∗r (A) thought of as a map Br(∗, ∗)→ A by ϕr : Zr(∗, ∗)→ Br(∗, ∗).

The following definitions provides the generating (acylic) cofibrations.

Definition 1.6.0.3. Let Ir and Jr be the sets of morphisms of fC given by

Ir := {Zr+1(p, n) −→ Br+1(p, n)}p,n∈Z ,

Jr := {0 −→ Zr(p, n)}p,n∈Z .

We henceforth refer to these as the generating r-cofibrations and generating r-acyclic cofibrations respectively.

Definition 1.6.0.4. Let I ′r and J ′r be the sets of morphisms of fC given by

I ′r := Ir ∪
r−1⋃
k=0

Jk ,

J ′r :=

r⋃
k=0

Jk .
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We henceforth refer to these as the generating r′-cofibrations and generating r′-acyclic cofibrations respectively.

Theorem 1.6.0.5 ([CELW19, Theorem 3.14]). There is a right proper cofibrantly generated model structure on fC, which we
denote by (fC)r , with generating cofibrations Ir and generating acyclic cofibrations Jr . These give the following classifications
of morphisms:

1. weak equivalences are the Er-quasi-isomorphisms,

2. fibrations are those morphisms f with Zr(f) bidegree-wise surjective.

Theorem 1.6.0.6 ([CELW19, Theorem 3.16]). There is a right proper cofibrantly generated model structure on fC, which we
denote by (fC)r′ , with generating cofibrations I ′r and generating acyclic cofibrations J ′r . These give the following classifications
of morphisms:

1. weak equivalences are the Er-quasi-isomorphisms,

2. fibrations are those morphisms f with Zk(f) bidegree-wise surjective for all 0 ≤ k ≤ r.

Note one has the pushout of Zr+1(p, p + n) → Br+1(p, p + n) by 0 is also an (r + 1)-cycle as observed in
[CELW19, Lemma 3.2] and so since pushouts of cofibrations are cofibrations the following lemma is immediate.

Lemma 1.6.0.7. The morphisms 0→ Zr+1(p, p+ n) are cofibrations in both (fC)r and (fC)r′ .

We will later extend these results and show there are model structures in between the (fC)r and (fC)r′ model
structures. We state here the sequence of lemmas and propositions that prove the existence of the model structure
(fC)r as shown in [CELW19]. The result for (fC)r′ is a consequnce of the former.

Proposition 1.6.0.8 ([CELW19, Proposition 3.12]). We have Ir-Inj = Er ∩ Jr-Inj.

Proposition 1.6.0.9 ([CELW19, Proposition 3.13]). For all r ≥ 0 and all 0 ≤ k ≤ r we have Jk-Cof ⊆ Er .

Theorem 1.6.0.5 now follows from these by an application of Theorem 1.4.2.9. Further the shift-décalage adjunctions
of Lemma 1.3.3.2 induce Quillen equivalences given as the following theorem.

Theorem 1.6.0.10 ([CELW19, Theorem 3.22]). For all r, l ≥ 0 we have a Quillen equivalence:

Sl : (fC)r (fC)r+l :Decl .

There is a similar result for the r′-model structure. The following is a useful surjectivity result.

Lemma 1.6.0.11 ([CELW19, Lemma 2.8]). For f : A → B a morphism of filtered chain complexes and r ≥ 0 the following
are equivalent:

1. the maps Zr(f) and ZWr−1(f) are surjective,

2. the maps Er(f) and ZWr−1(f) are surjective.

We define the r-cone of a filtered chain complex with a di�erent sign convention then that of [CELW19, Definition
3.5]. It has useful properties analogous to that of the cone object for chain complexes.

Definition 1.6.0.12. The r-cone Cr(A) of a morphisms f : A→ B of filtered chain complexs has underlying filtered
graded modules that of ΣrA⊕B with filtration given by

FpCr(f)n := Fp−rA
n+1 ⊕ FpBn

and di�erential given by d : (a, b) 7→ (−da, fa+ db) or in matrix notation d =

(
−d 0
f d

)
. We further denote the

r-cone of the identity morphism id : A→ A by Cr(A).

Lemma 1.6.0.13 ([CELW19, Remark 3.7]). A morphism f : A → B is an r-weak equivalence if and only if the r-bigraded
complex Er(Cr(f)) is acyclic, i.e. the r-cone of f is r-acyclic.

Note there are inclusion and projection morphisms i2 : B → Cr(f) and π : Cr(f)→ ΣrA.

Lemma 1.6.0.14 ([CELW19, Notation 3.7]). The r-cone is r-acyclic and the projection π : Cr(A) −→ ΣrA is Zs-bidegree-
wise surjective for all 0 ≤ s ≤ r.

Definition 1.6.0.15. We say the di�erential d of a filtered chain complex A supresses the filtration by r if for all p and n
we have dFpAn ⊆ Fp−rAn+1. Equivalently we say the object A is r-supressive.
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1.7 r-Model categories of bicomplexes

Note given a bicomplex we can apply the totalisation functor of Definition 1.2.2.5 to obtain a filtered chain complex.

Definition 1.7.0.1. A morphism f of bicomplexes will be called an r-weak equivalence or r-quasi-isomorphism if it induces
an isomorphism between the (r + 1)-pages of the associated spectral sequence after applying the product totalisation
functor of Definition 1.2.2.5.

The following results are those of [CELW19] and establish two model structures on bC for each r ≥ 0 (although
these agree for r = 0 and also for r = 1). The following definitions provide the generating cofibrations (and the
generating acyclic cofibrations after a small modification). Note our definition of ZW0 and ZW0 (and these ones
only) are shifted vertically by 1 in contrast with those of [CELW19]. In the figures of this section which represent
bicomplexes, the symbol • denotes a copy of theR-moduleR in some bidegree. Bidegrees of certainR-modules • have
been specified.

Definition 1.7.0.2. For r ≥ 1, the r-cycles ZW ∗,∗r (A) of a filtered chain complex A are given in bidegree (p, p + n)
by sequences of elements (a0, a1, . . . , ar−1) with ai ∈ Ap−i,p−i+n and such that d0a0 = 0 and d0ai+1 = d1ai for
0 ≤ i ≤ r − 2. For r = 0 the r-cycles ZW ∗,∗0 (A) of a bicomplex A are given in bidegree p, p+ n by Ap,p+n.

Definition 1.7.0.3. The representing object for the r-cycles of bicomplexes, denotedZW∗,∗r , is given in bidegree (p, p+n)
for r ≥ 1 by the bicomplex with a copy of R in bidegrees (p − i, p − i + n) for 0 ≤ i ≤ r − 1 and a copy of R in
bidegrees (p− 1, p− 1 + n+ 1) for 0 ≤ i ≤ r − 1 where di�erentials are the identity whenever possible, Figure 1.1.
For r = 0 the bicomplex ZW∗,∗0 is given in bidegree (p, p+ n) with a copy of R in bidegrees (p, p+ n), (p− 1, p−
1 + n+ 1), (p, p+ n+ 1) and (p− 1, p− 1 + n+ 2) with identity di�erentials whenever possible, Figure 1.2.

(p, p+ n)

(p− r + 1, p− r + 1 + n)

. .
.

. .
.

Figure 1.1: The bicomplex ZWr(p, p+ n)

(p, p+ n)

Figure 1.2: The bicomplex ZW0(p, p+ n)

Definition 1.7.0.4. For r ≥ 2 the r-boundary BW ∗,∗r (A) of a bicomplex A is given in bidegree (p, p + n) by
ZW p+r−1,p+r+n−2

r−1 (A)⊕Ap,p+n−1 ⊕ ZW p−1,p−1+n−1
r−1 (A). For r = 1 the r-boundaries BW ∗,∗0 (A) is Ap,p+n−1.

For r = 0 the r-boundaries BW ∗,∗0 (A) is 0.

Definition 1.7.0.5. The representing object for the r-boundaries of a bicomplex, denoted BW∗,∗r , is given in bidegree
(p, p+ n) for r ≥ 2 by ZWr(p+ r− 1, p+ r− 1 + n− 1)⊕ZW0(p, p+ n− 1)⊕ZWr(p− 1, p− 1 + n), for
r = 1 by ZW0(p, p+ n− 1) and for r = 0 by 0, Figure 1.3.
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i2

. .
.

. .
.

i1

(p, p+ n)

i2

π2

π1

π1

. .
.

. .
.

Figure 1.3: The bicomplex BWr(p, p+ n)

Definition 1.7.0.6. The morphism ϕr : ZWr(∗, ∗)→ BWr(∗, ∗) is given component-wise by the diagonal whenever
possible or otherwise the identity.

Definition 1.7.0.7. Denote bywr : BW ∗,∗r (A) −→ ZW ∗,∗r (A) the morphism of bicomplexes of [CELW19, Definition
4.1] obtained by precomposing an element ofBW ∗,∗r (A) thought of as a mapBWr(∗, ∗)→ A by ϕr : ZWr(∗, ∗)→
BWr(∗, ∗).

Definition 1.7.0.8. Let Ir and Jr be the sets of morphisms of fC given by

Ir := {ZWr+1(p, n) −→ BWr+1(p, n)}p,n∈Z ,

Jr := {0 −→ ZWr(p, n)}p,n∈Z .

We henceforth refer to Ir as the generating r-cofibrations and J0 ∪ Jr as the generating r-acyclic cofibrations respectively.

Definition 1.7.0.9. Let I ′r and J ′r be the sets of morphisms of fC given by

I ′r := Ir ∪
r−1⋃
k=0

Jk ,

J ′r :=

r⋃
k=0

Jk .

We henceforth refer to Ir ∪
⋃r−1
k=0 Jk as the generating r′-cofibrations and

⋃r
k=0 Jk as the generating r′-acyclic

cofibrations respectively.

Theorem 1.7.0.10 ([CELW19, Theorem 4.37]). There is a right proper cofibrantly generated model structure on bC, which we
denote by (bC)r , with generating cofibrations Ir and generating acyclic cofibrationsJ0∪Jr . These give the following classifications
of morphisms:

1. weak equivalences are the Er-quasi-isomorphisms,

2. fibrations are those morphisms f with ZW0(f) and ZWr(f) bidegree-wise surjective.

Theorem 1.7.0.11 ([CELW19, Theorem 4.39]). There is a right proper cofibrantly generated model structure on bC, which we
denote by (bC)r′ , with generating cofibrations I ′r and generating acyclic cofibrations J ′r . These give the following classifications
of morphisms:

1. weak equivalences are the Er-quasi-isomorphisms,
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2. fibrations are those morphisms f with ZWk(f) bidegree-wise surjective for all 0 ≤ k ≤ r.

Analogous results hold for bicomplexes as did for filtered chains proving existence of these model categories however
note in this setting there is no analogous shift-décalage adjunction. The following is a useful surjectivity result.

Lemma 1.7.0.12 ([CELW19, Remark 4.5]). For f : A −→ B a morphism of bicomplexes and r ≥ 1 the following are
equivalent:

1. the maps ZWr(f), ZWr−1(f), and f are surjective,

2. the maps Er(f), ZWr−1(f), and f are surjective.

Remark 1.7.0.13. Note that the 0-model structure on bicomplexes is such that its weak equivalences are those morphisms
inducing an isomorphism on vertical homology and whose fibrations are bidegree-wise surjective. Identifying the
category of bicomplexes with the category of (vertical) chain complexes of (horizontal) chain complexes we see that the
0-model structure on bicomplexes is the projective model structure of (vertical) chain complexes of (horizontal) chain
complexes of for example [CH02]. To explain further their result, [CH02, Theorem 2.2], states that for a projective class,
[CH02, Definition 1.1], in an abelian categoryA there is a model structure on unbounded chain complexes inA with
the weak equivalences and fibrations (and therefore so too the cofibrations) determined by the projective class. Here
we takeA = CR to be the category of (horizontal) chain complexes and the projective class to consist of the data of
the acyclic cofibrant objects in A = CR (with its usual projective model structure) and the collection of maps to be
the degreewise surjections. The obtained model structure on chain complexes of chain complexes has fibrations being
the bidegreewise surjections and weak equivalences the vertical homology isomorphisms. In addition [CH02, Theorem
5.7] gives precisely the same set of generating cofibrations and acyclic cofibrations as above.

The r-cone of a bicomplex is defined by the same means as in [CELW19, Remark 4.27].

Definition 1.7.0.14. The r-cone, for r ≥ 1, of a bicomplex A is denoted by Cr(A) and given by the tensor product
ZWr(r, r − 1)⊗A.

Note there is a projection morphism ψr : Cr(A)→ ΣrA.

Lemma 1.7.0.15 ([CELW19, Propositions 4.29 & 4.32]). The r-cone is r-acyclic and the projection ψr : Cr(A)→ ΣrA is
ZWs-bidegree-wise surjective for all 0 ≤ r ≤ s.

Lemma 1.7.0.16. A bicomplex A is a finite object if and only if it is bounded and each Ai,j is a finitely presented R-module.

Proof. The proof is similar to that of [Hov99, Lemma 2.3.2].

1.8 Conventions

• Throughout R will denote a fixed commutative unital ring.

• Unless otherwise stated chain complexes are taken to be cohomologically graded.

• We will ocasionally have need to specify a name for the generator 1 of theR-moduleR. We will do so by writing
R{a} to mean the freeR-moduleR on one generator a thought of as the element 1. For the filteredR-modules
Rn(p) we will do so similarly by denoting by Rn(p){a} the filtered R-module Rn(p) with generator a thought of
as the element 1. Where multiple such identifications arise, e.g. R{a} and R{b} and we have need for change
of bases we may abuse notation somewhat and write R{a + b} for another copy of the R-module R on one
generator given by the sum a+ b.

• In commutative diagrams we frequently denote some R-modules with maps between them form a (filtered)
chain complex by enclosing them in brackets.

• The tensor product ⊗ will denote either the symmetric monoidal tensor product of filtered chain complexes or
bicomplexes.
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• The morphisms ∆,∇,∆− and∇− will denote the following morphisms:

∆: A→ A⊕A ∇ : A⊕A→ A

a 7→ (a, a) (a, b) 7→ a+ b

∆− : A→ A⊕A ∇− : A⊕A→ A

a 7→ (a,−a) (a, b) 7→ a− b

• The maps i1 and i2 will denote inclusions into the first and second components and similarly π1 and π2 the
projections onto the first and second components.

• In diagrams we usually omit a label for an identity morphism between copies ofR, or denote it either by 1 or id.

• The class of morphisms of filtered chain complexes (or bicomplexes) consisting of r-weak equivalences will be
denoted Er .
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CHAPTER 2
Adjoints to Totalisation Functors

We construct an adjoint to the product and coproduct totalisation functors, although we only make use of the
former. That is we have the following propositions.

Proposition 2.1.0.2. There is an adjunction of categories L : fC −→←− bC :TotΠ.

We give descriptions of the functors L and TotΠ applied to representing (witness) cycle and boundary objects and
show that the unit of the adjunction L a TotΠ on an s-cycle is an s-equivalence.

Proposition 2.2.1.2. For s ≥ 1 the unit of the adjunction applied to an s-cycle, Zs(p, p + n) → TotΠLZs(p, p + n), is
an isomorphism on the s-page.

We will later make use of this s-equivalence of the unit map to show that Proposition 2.1.0.2 is a Quillen equivalence
with appropriate model categories yet to be defined. Lastly we show existence of a total model structure on bC induced
by the Kan transfer.

Corollary 2.4.0.3. There is a total model structure on bicomplexes cofibrantly generated by generating cofibrations I :=
{ZW∞,−∞(n)→ BW∞,−∞(n)} and generating acyclic cofibrations J := {0→ BW∞,−∞} in which

1. weak equivalences are those morphisms f of bicomplexes such that H∗TotΠ is an isomorphism,

2. fibrations are those morphisms f such that TotΠ is (homologically) degreewise surjective, i.e. f is bidegreewise surjective.

2.1 Left adjoint to product totalisation

We construct a left adjoint, denotedL, to the totalisation functor TotΠ of Definition 1.2.2.5. In private communications
between the authors of [CELW19] an adjunction between (non-filtered) chain complexes and bicomplexes is established
with the aim of extending this to the filtered setting. This unfortunately fails due to non-naturality of split short exact
sequences arising from the graded pieces GriC := FiC/Fi−1C and so reconstructions of maps are not guaranteed
to be compatible with the di�erential. We correct for this here by instead using the quotient objects C/Fi−1C from
which we can reconstruct a map defined on the whole of C .

Definition 2.1.0.1. The functor L : fC → bC is defined on a filtered chain complex C by:

L(C)i,i+n :=
Cn

Fi−1Cn
⊕ Cn−1

FiCn−1
,

where the di�erentials d0 and d1 are given on an (x, y) ∈ L(C)i,i+n by:

d0 : (x, y) 7→ (dx, x− dy) ,

d1 : (x, y) 7→
(
0, (−1)n+1x

)
.
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On a morphism of filtered chain complexes, g : C → D, the functor L is given by L(g)i,i+n := ḡni ⊕ ḡ
n−1
i+1 where ḡni

denotes the map Cn/Fi−1C
n → Dn/Fi−1D

n induced by g, noting that this map is defined as g preserves filtration
and commutes with di�erentials since g does.

It is a straightforward check that the di�erentials define a bicomplex structure on the bigraded modules L(C)∗,∗

and that L(g) is indeed a morphism of bicomplexes.
Note that the x written in the image of d0 should perhaps more properly be written as the class [x] of x ∈

Cn/Fi−1C
n in the module Cn/FiCn, we will omit such notation most of the time. Similarly the d appearing in d0

is also used to denote the induced di�erential on the quotient modules.
We need to then describe natural maps between the hom sets HombC (L(C),K) and HomfC

(
C,TotΠ(K)

)
which are bijections. Given a map f : L(C) → K of bicomplexes we obtain a map of filtered chain complexes
f̃ : C → TotΠ(K) from the following diagram:

Cn TotΠ(K)n =
∏
iK

i,i+n

∏
i

Cn

Fi−1Cn

f̃n

(fi,i+n(−,0))
i

where the map from Cn to
∏
i C

n/Fi−1C
n is an infinite diagonal followed by a product of quotient maps.

We check the map f̃ as defined is a map of filtered chain complexes, i.e. commutes with di�erentials — it clearly
respects filtration. Take an element c ∈ Cn. In the following series of equalities we write c̄i to denote the class of c in
the quotient group Cn/Fi−1C

n and note that the class [c̄i] of c̄i in Cn/FiCn is equal to c̄i+1. We then have in the
following the first equality follows by definition of f̃ , the second by definition of the di�erential on TotΠ, the third
commutes d0 and d1 past the bicomplex map f , the fourth applies the definition of d0 and d1 in L(C) (noting here
we are careful about the class [ci+1]), the fifth cancels signs and uses the class [c̄i] ∈ Cn/FiCn of c̄i ∈ Cn/Fi−1C

n is
just c̄i+1, the sixth cancels terms of opposite sign in the second component and the last again uses the definition of f̃ .

df̃(c) = d
(
f i,i+n(c̄i, 0)

)
i

=
(
d0f

i,i+n(c̄i, 0) + (−1)nd1f
i+1,i+1+n(c̄i+1, 0)

)
i

=
(
f i,i+n+1d0(c̄i, 0) + (−1)nf i,i+n+1d1(c̄i+1, 0)

)
i

=
(
f i,i+n+1(dc̄i, [c̄i]) + (−1)nf i,i+n+1(−1)n+1(0, c̄i+1)

)
i

=
(
f i,i+n+1(dc̄i, c̄i+1)− f i,i+n+1(0, c̄i+1)

)
i

=
(
f i,i+n+1(dc̄i, 0)

)
i

= f̃(dc)

Now suppose we have a map g : C → TotΠ(K) of filtered chain complexes, we define a map ĝ : L(C) → K
of bicomplexes bidegreewise as follows. Let gi,i+n be the composite of gn : Cn → TotΠ(K)n with the projection
πi : TotΠ(K)n → Ki,i+n. Now we define:

ĝi,i+n : L(C)i,i+n → Ki,i+n

(x̄, ȳ) 7→ gi,i+nx+ (−1)nd1g
i+1,i+1+n−1y

where x ∈ Cn is a choice of representative of x̄ ∈ Cn/Fi−1C
n, and y ∈ Cn−1 a choice of representative of

ȳ ∈ Cn−1/FiC
n−1. Note however that since g maps Fi−1C

n into
∏
j≤i−1K

j,j+n and similarly FiCn−1 into∏
j≤iK

j,j+n−1, we have the image of ĝi,i+n is well defined, i.e. does not depend on choice of representing elements.
Note that we have the following relation between projection maps πi and di�erentials d, d0, and d1:

πid(kj)j = πi(d0kj + (−1)nd1kj+1)j = d0ki + (−1)nd1ki+1 (2.1)

when the degree of (kj)j is n.
We now check that the maps ĝi,i+n together define a map of bicomplexes, i.e. commute with the di�erentials d0

and d1. Writing d̄ for the induced di�erential on quotients appearing in the definition of L, note below that d̄x̄ = d̄x.
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The first equality follows by definition of d0, the second by definition of ĝ, the third rewrites g∗,∗ using the projections,
the fourth commutes d and g, the fifth uses Equation (2.1), the sixth cancels terms of opposite sign and one involving
d1d1 as well as commuting a d0 and d1, and lastly we apply the definition of ĝ.

ĝi,i+n+1d0(x̄, ȳ) = ĝi,i+n+1(d̄x, x̄− d̄y)

= gi,i+n+1(dx) + (−1)n+1d1g
i+1,i+1+n(x− dy)

= πigdx+ (−1)n+1d1π
i+1gx− (−1)n+1d1π

i+1gdy

= πidgx+ (−1)n+1d1π
i+1gx− (−1)n+1d1π

i+1dgy

= d0g
i,i+nx+ (−1)nd1g

i+1,i+1+nx+ (−1)n+1d1g
i+1,i+1+nx

− (−1)n+1d1

(
d0g

i+1,i+1+n−1y + (−1)n−1d1g
i+2,i+2+n−1y

)
= d0g

i,i+nx+ (−1)nd0d1g
i+1,i+1+n−1y

= d0ĝ
i,i+n(x̄, ȳ)

In the following the first equality follows by definition of d1, the second by definition of ĝ, the third by d1d1 = 0, and
the last again by definition of ĝ.

ĝi−1,i−1+n+1d1(x̄, ȳ) = ĝi−1,i−1+n+1(0, (−1)n+1x̄)

= (−1)n+1(−1)n+1d1g
i,i+nx

= d1

(
gi,i+nx+ (−1)nd1g

i+1,i+1+n−1y
)

= d1ĝ
i,i+n(x̄, ȳ)

Thus ĝ computes with both di�erentials. We now verify that ˆ̃
f = f : L(C)→ K . In what follows the first equality

follows by definition of ĝ, the second rewrites f̃∗,∗ using the projections π∗, the third by definition of f̃ noting here x̄j
is the class of our choice x in the quotient group Cn/Fj−1C

n and in particular x̄i = x̄, similarly for ȳj . The fourth
applies the projections and uses x̄i = x̄, the fifth commutes di�erentials, the sixth applies d1, and lastly we cancel
signs and use linearity.

ˆ̃
f i,i+n(x̄, ȳ) = f̃ i,i+nx+ (−1)nd1f̃

i+1,i+1+n−1y

= πif̃x+ (−1)nd1π
i+1f̃y

= πi
(
f j,j+n(x̄j , 0)

)
j

+ (−1)nd1π
i+1
(
f j,j+n−1(ȳj , 0)

)
j

= f i,i+n(x̄, 0) + (−1)nd1f
i+1,i+1+n−1(ȳ, 0)

= f i,i+n(x̄, 0) + (−1)nf i,i+nd1(ȳ, 0)

= f i,i+n(x̄, 0) + (−1)nf i,i+n(0, (−1)nȳ)

= f i,i+n(x̄, ȳ)

Finally we check that ˜̂g = g : C → TotΠ(K). The first equality does nothing other than remind us ĝ is a map of
bicomplexes, the second follows by definition of f̃ , the third by definition of ĝ noting that a choice of representative
of the class c̄i of c is c itself, the fourth by removing the zero term, and lastly by definition of gi,i+n.

˜̂gn(c) = ˜(ĝi,i+n(−,−))(c)

=
(
ĝi,i+n(−, 0)

)
i
(c)

=
(
gi,i+nc+ (−1)nd1g

i+1,i+1+n−10
)
i

=
(
gi,i+nc

)
i

= gn(c)

The bijections between the hom sets HombC (LA,B) and HomfC
(
A,TotΠB

)
are easily seen to be natural by

construction. We have then proved the following result.

Proposition 2.1.0.2. There is an adjunction of categories L : fC −→←− bC :TotΠ.
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2.2 The adjoints applied to representing cycle and boundary objects

We consider the e�ect of applying the left adjoint L to s-cycles Zs and s-boundaries Bs, as well as the e�ect of TotΠ

on s-witness cycles ZWs and s-witness boundaries BWs. Since L is a left adjoint it commutes with coproducts and
so the e�ect on boundaries is known from Bs = Zs−1 ⊕Zs−1 via LBs ∼= L(Zs−1 ⊕Zs−1) ∼= LZs−1 ⊕LZs−1. It
su�ces then to analyse the bicomplexes LZs.

2.2.1 L applied to Zs

We fix an s-cycle Zs(p, p+ n) to which we will apply L. The definition of L was given on a filtered chain complex C
by:

L(C)i,i+n :=
Cn

Fi−1Cn
⊕ Cn−1

FiCn−1
,

so applying L to our s-cycle we have non-zero entries of the bicomplex only on diagonals n, n + 1 and n + 2. For
C = Zs(p, p+n) the quotients of the direct sum of theLCi,i+n are either a copy ofR or 0. We temporarily introduce
the notation M = Rn(p) andN = Rn+1

(p−s) to help keep track of each summand. The bicomplex LZs(p, p+ n) is then
depicted in Figure 2.1 where the modules M ⊕ 0 and N ⊕M demarcated by dashed boxes are in bidegrees (p, p+ n)
and (p− s, p− s+ n+ 1) respectively. The di�erentials of Figure 2.1 are also obtained from the definition of L.

We now show that up to isomorphism the bicomplex LZs(p, p + n) is isomorphic to a direct sum of a witness
s-cycle and an infinite number of witness 0-cycles. More precisely:

LZs(p, p+ n) ∼= ZWs(p, p+ n)⊕
⊕
k≥0

ZW0(p− s− k, p− s− k + n) . (2.2)

To see this we make a change of basis of the R-modules of Figure 2.1 of the form N ⊕M . We now write e and g for
the element 1 of M = R and f and h for 1 ∈ N = R, so that M = R{e} = R{g} and N = R{f} = R{h} in the
notation of Section 1.8. Consider one of the subdiagrams of Figure 2.1 given by the following:

R{f} R{f} ⊕R{e} R{e}

R{h} R{h} ⊕R{g} R{g}

(−1)n+1π1

(−1)ni2

(−1)n+1π1

∇−

(−1)ni2

∆ . (2.3)

We change basis on the modules given by R{f} ⊕R{e} (and similarly R{h} ⊕R{g}) as follows:

θ : R{f} ⊕R{e} −→ R{f + e} ⊕R{e}
(a, b) 7−→ (a, b− a)

to obtain an isomorphic diagram given by:

R{f} R{f + e} ⊕R{e} R{e}

R{h} R{h+ g} ⊕R{g} R{g}

(−1)n+1π1

(−1)ni2

(−1)n+1π1

(
0 −1

)
(−1)ni2

i1 , (2.4)

where the isomorphism is given by θ on R{f} ⊕ R{e} and R{h} ⊕ R{g}, and by the identity elsewhere. This is
easily verified to commute with all di�erentials. Applying this isomorphism to all such modules of the bicomplex
LZs(p, p+ n) we obtain the bicomplex of Figure 2.2 which, up to signs, is of the form Equation (2.2). Writing N ′ for
theR-modulesR{f + e} andR{h+ g} under this change of basis the new structure of the bicomplex LZs(p, p+n)
is given in Figure 2.2. We have then shown:

Lemma 2.2.1.1. There is an isomorphism of bicomplexes:

LZs(p, p+ n) ∼= ZWs(p, p+ n)⊕
⊕
k≥0

ZW0(p− s− k, p− s− k + n) .
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We consider now the unit of theL a TotΠ adjunction on cyclesZs(p, p+n)→ TotΠLZs(p, p+n). We will show
such a morphism is an s-equivalence. The unit is the adjoint morphism to the identityLZs(p, p+n)→ LZs(p, p+n).
Recall the adjoint to a morphism f : L(C)→ K is given in degree n by f̃ as follows:

Cn TotΠ(K)n =
∏
iK

i,i+n

∏
i

Cn

Fi−1Cn

f̃n

(fi,i+n(−,0))
i

(2.5)

where the map from Cn to
∏
i C

n/Fi−1C
n is an infinite diagonal followed by a product of quotient maps. We then

apply this construction withC = Zs(p, p+n) andK = LZs(p, p+n). We compute the images of the generator 1 of
Rn(p) and 1 of Rn+1

(p−s) in the filtered chain complex Zs(p, p+ n). From the description of Equation (2.5) the image of
1 ∈ Rn(p) is the diagonal of all generators 1 of theM ⊕ 0 on the n-diagonal of Figure 2.1, and the image of 1 ∈ Rn+1

(p−s)
is the diagonal of the generators of the N in the (n+ 1)-diagonal summands N ⊕M .

From the second description of LZs(p, p+ n) given in Figure 2.2 it now follows that the unit of the adjunction
Zs(p, p + n) → TotΠLZs(p, p + n) is an s-weak equivalence: under the change of basis this map still maps the
generator 1 ∈ Rn(p) to the same diagonal of generators of M , however now the image of the generator 1 ∈ Rn+1

(p−s)
is given by the diagonal on (1,−1) in the modules of the form N ′ ⊕M . The former can be rewritten as the sum
(1, 1, 1, . . . , 1, 0, 0, . . .)+(0, . . . , 0, 1, 1, . . .) where the first element has s components being 1 and the rest 0, and the
second s components being 0 and the rest 1. We denote these by z and b respectively. Both the infinite diagonal on 1 and
z are elements ofZp,p+ns TotΠLZs(p, p+n) and di�er by bwhich is an element ofBp,p+ns TotΠLZs(p, p+n) and so
represent the same element of the s-page. The 0-page through to the s-page for bothZs(p, p+n) and TotΠLZs(p, p+
n) consists of two copies of R, one in bidegree (p, p+ n) and the other in bidegree (p− s− 1, p− s+ n) with an
identity di�erential appearing on the s-page. Our description above shows that up to a boundary element the element
(1, 1, . . .) has image z so that we have an isomorphism of s-pages. We have then shown the following result.

Proposition 2.2.1.2. For s ≥ 1 the unit of the adjunction applied to an s-cycle, Zs(p, p + n) → TotΠLZs(p, p + n), is
an isomorphism on the s-page.

2.2.2 TotΠ applied to ZWs and BWs

We have less use for these results but sketch the answers for completeness. One can make a similar change of basis
(compatible with the filtration) such that for s ≥ 1 the filtered chain complex TotΠZWs becomes the direct sum of
an s-cycle and (s− 1) 0-cycles. More precisely we have:

TotΠZWs(p, p+ n) ∼= Zs(p, p+ n)⊕
s−1⊕
i=1

Z0(p− i, p− i+ n)

where the direct sum is empty for s = 1. For s = 0 one also has

TotΠZW0(p, p+ n) ∼= Z0(p, p+ n)⊕Z0(p− 1, p+ n) .

Note then that TotΠBWs can be similarly expressed since the totalisation functor commutes with finite direct sums.

2.3 Right adjoint to coproduct totalisation

There is an analogous right adjoint to the coproduct totalisation functor Tot⊕ of Definition 1.2.2.6 which we define
here and whose proof that it is indeed a right adjoint we defer to Appendix B as we have no use for it in our work. It is
defined similarly to TotΠ instead using subobjects rather than quotient objects and with minor changes to signs.

Definition 2.3.0.1. The functorR : fC → bC is defined on a filtered chain complex C by:

R(C)i,i+n := Fi−1C
n+1 ⊕ FiCn ,

where the di�erentials d0 and d1 are given on an (x, y) ∈ R(C)i,i+n by:

d0 : (x, y) 7→ (−dx, dy + x) ,

d1 : (x, y) 7→
(
0, (−1)n+1x

)
.
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M ⊕ 00⊕M

M ⊕ 00⊕M

M ⊕ 00⊕M

..
.

. .
.

M ⊕ 00⊕M

M ⊕ 0N ⊕M0⊕N

M ⊕ 0N ⊕M0⊕N

M ⊕ 0N ⊕M0⊕N

..
.

. .
.

(−1)n+1

(−1)n+1

(−1)n+1

(−1)n+1

(−1)n+1i2

(−1)n+1i2

(−1)n+1i2

(−1)nπ1

(−1)nπ1

(−1)nπ1

1

1

1

1

1

∆

∆

∆

∇−

∇−

∇−

. .
.

Figure 2.1: The bicomplex LZs(p, p+ n)

38



M ⊕ 00⊕M

M ⊕ 00⊕M

M ⊕ 00⊕M

..
.

. .
.

M ⊕ 00⊕M

M ⊕ 0N ′ ⊕M0⊕N

M ⊕ 0N ′ ⊕M0⊕N

M ⊕ 0N ′ ⊕M0⊕N

..
.

. .
.

(−1)n+1

(−1)n+1

(−1)n+1

(−1)n+1

(−1)n+1i2

(−1)n+1i2

(−1)n+1i2

(−1)nπ1

(−1)nπ1

(−1)nπ1

1

1

1

1

1

i1

i1

i1

(
0 −1

)

(
0 −1

)

(
0 −1

)

. .
.

Figure 2.2: Change of basis of the bicomplex LZs(p, p+ n)
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On a morphism of filtered chain complexes, g : C → D, the functorR is given byR(g)i,i+n := gn+1
|i−1 ⊕ g

n
|i where

gn|i denotes the map FiCn → FiD
n given by restricting gn, noting that this map is defined as g preserves filtration

and commutes with di�erentials since g does.

It is a straightforward check that the di�erentials define a bicomplex structure on the bigraded modulesR(C)∗,∗

and thatR(g) is indeed a morphism of bicomplexes.

Proposition 2.3.0.2. There is an adjunction of categories Tot⊕ : bC −→←− fC :R.

Proof. The proof is Appendix B.

2.4 Total model structure

Muro and Roitzheim construct a total model structure on bicomplexes using their coproduct totalisation functor from
bounded bicomplexes to bounded chain complexes whose weak equivalences are those morphisms such that HTot⊕

are isomorphisms, [MR19, Theorem 3.1]. They also generalise this to a total model structure on twisted chain complexes,
[MR19, Theorem 5.13]. We briefly sketch a total model structure on unbounded chain complexes using the product
totalisation functor and obtained via the Kan transfer theorem.

We have an adjoint pair from chain complexes to bicomplexes obtained by composing the adjunction of Propo-
sition 2.1.0.2 with an adjunction between chain complexes and filtered chain complexes; we denote this adjunction
G : CR −→←− fC :U where the functorU forgets filtration and the functorG equips a chain complexAwith a filtration
such that FpGA = 0 for all p ∈ Z.

Using the Kan transfer theorem and this composite adjunction we can then equip the category of bicomplexes with
a model structure in which the weak equivalences (resp. fibrations) are those morphisms which are weak equivalences
(resp. fibrations) after applying the composite functor. This will be cofibrantly generated by applying the Kan transfer
theorem, Theorem 1.4.4.1.

Lemma 2.4.0.1. The adjunction L : CR −→←− bC :TotΠ satisfies the conditions of the Kan transfer theorem where we equip CR
with the projective model structure, i.e :

1. L (I) and L (J) admit the small object argument, and

2. TotΠ takes relative L(J)-cell complexes to weak equivalences.

Proof. Condition 1 follows since every bicomplex is small. For Condition 2 a relative L(J)-cell complex is a transfinite
pushout of a bicomplex A by elements of L(J). The elements of L(J) consists of morphisms from the 0 bicomplex
into an infinite direct sum of discs ZW0, so the transfinite pushout is of the form A −→ A ⊕

⊕
ZW0 which is

taken by TotΠ to a weak equivalence.

Definition 2.4.0.2. We denote by ZW∞,−∞(n) the bicomplex given by the limit

ZW∞,−∞(n) := lim
p

(ZW∞(p, p+ n)) .

Applying the functorL to a sphere objectSn in CR gives the bi-infinite staircaseZW∞,−∞(n), and as noted above
applied to a disc object Dn gives an infinite direct sum of bicomplex discs ZW0 which we’ll denote BW∞,−∞(n).

Corollary 2.4.0.3. There is a total model structure on bicomplexes cofibrantly generated by generating cofibrations I :=
{ZW∞,−∞(n)→ BW∞,−∞(n)} and generating acyclic cofibrations J := {0→ BW∞,−∞} in which:

1. weak equivalences are those morphisms f of bicomplexes such that HTotΠ is an isomorphism,

2. fibrations are those morphisms f of bicomplexes such that TotΠ is (homologically) degreewise surjective, i.e. f is bidegree-
wise surjective.
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CHAPTER 3
Poset of Model Structures

In this chapter we establish some generalisations of the model structures (fC)r and (fC)r′ on filtered chain
complexes of Theorems 1.6.0.5 and 1.6.0.6 and (bC)r and (bC)r′ on bicomplexes of Theorems 1.7.0.10 and 1.7.0.11 and
establish some properties these model structures have in addition to existence of Quillen equivalences between them,
the e�ect of certain Bousfield localisations and derive existence of various bounded variants.

The new model structures are established in the following theorems whose proofs follow in much the same way as
in [CELW19]. For a set S with maxS = r we begin by defining generating sets IS and JS which are the usual Ir and
Jr with extra the acyclic morphisms Js added to both for each s ∈ S.

Theorem 3.1.0.2. For every r ≥ 0 and every subset S ⊆ {0, 1, . . . , r} including r, the category fC admits a right proper
cofibrantly generated model structure, which we denote (fC)S , where:

1. weak equivalences are Er-quasi-isomorphisms,

2. fibrations are morphisms of filtered chain complexes f : A → B such that Zs(f) is bidegree-wise surjective for each
s ∈ S, and

3. IS and JS are the sets of generating cofibrations and generating trivial cofibrations respectively.

Further (fC)S is a finitely generated model category.

IS and JS are similarly defined for bicomplexes, noting however that JS must contain the morphisms of J0.

Theorem 3.2.0.2. For every r ≥ 0 and every subset S ⊆ {0, 1, . . . , r} including both 0 and r, the category bC admits a right
proper cofibrantly generated model structure, which we denote (bC)S , where:

1. weak equivalences are Er-quasi-isomorphisms,

2. fibrations are morphisms of filtered chain complexes f : A → B such that ZWs(f) is bidegree-wise surjective for each
s ∈ S, and

3. IS and JS are the sets of generating cofibrations and generating trivial cofibrations respectively.

Further (bC)S is a finitely generated model category.

We show that these model structures are indeed distinct in Corollaries 3.3.0.4 and 3.3.0.9 by constructing morphisms
with specific cycle surjectivity properties.

Propositions 3.1.0.6 and 3.5.0.2 establish some Quillen equivalences between all of the S-model categories on
fC, Proposition 3.2.0.6 establishes Quillen equivalences between some of the S-model structures on bC, and Proposi-
tion 3.4.0.2 establishes a Quillen adjunction between the S-model structures on fC and bC when {0, r} ⊆ S.

We then consider the poset denotedN whose elements are the S-model structures on fC and with the≤ relation
given by existence of a left adjoint constructed by identity maps and the shift functor. We show this poset has a
distributive lattice structure whose join and meet operations are given by the initial model structure amongst the (fC)S
admitting left adjoints of these forms and the terminal model structure amongst the (fC)S admitting left adjoints of these forms.
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Corollary 3.6.0.16. The lattice structure onN is a distributive lattice.

We then turn to demonstrating properties of an individual (fC)S or (bC)S . These model structures are right
proper automatically since all objects are fibrant. For left properness we make use of a proof technique of a theorem of
Lack, [Lac02, Theorem 6.3], which on finitely cofibrantly generated model categories. We study s-cycles in the model
structures and prove the following theorems.

Theorem 3.7.1.7. The model categories (fC)S of Theorem 3.1.0.2 are left proper.

Theorem 3.7.2.8. The model categories (bC)S of Theorem 3.2.0.2 are left proper.

We also demonstrate that they are cellular model categories:

Proposition 3.8.1.5. The model categories (fC)S of Theorem 3.1.0.2 are cellular.

Proposition 3.8.2.2. The model categories (bC)S of Theorem 3.2.0.2 are cellular.

And by computing pullbacks of fibrations from an acyclic object (the r-loops on the r-cone) to an A along the 0
morphism 0→ A give a description of the loop and suspension functors and that the model categories are stable.

Proposition 3.9.1.2. The model categories (fC)S of Theorem 3.1.0.2 are stable model categories whose loops and suspension
functors are given by Ωr and Σr .

Proposition 3.9.2.4. The model categories (bC)S of Theorem 3.2.0.2 are stable model categories whose loops and suspension
functors are given by Ωr and Σr .

Using the adjunction L a TotΠ of Proposition 2.1.0.2 and the cellularization principle of Greenlees and Shipley,
Theorem 3.10.0.3, we show that the adjunction is in fact a Quillen equivalence.

Theorem 3.10.0.4. For S containing both 0 and r there is a Quillen equivalence between the S-model structure on filtered chain
complexes and the S-model structure on bicomplexes given by the L a TotΠ adjunction:

L : (fC)S (bC)S :TotΠ .

We show that one cannot left Bousfield localise from an S-model structure on either fC or bC with weak equiva-
lences the r-weak equivalences and obtain a model category with weak equivalences the (r + 1)-weak equivalences.

Proposition 3.11.0.1. LetMS be one of the model structures of either poset, whereM is either fC or bC whose weak equivalences
are the r-weak equivalences. Then there is no left Bousfield localisationMnew ofMS whose weak equivalences are the (r+ 1)-
weak equivalences.

Lastly we construct some bounded model structures on fC. The categories fC≥ and fC≤ denote the categories of
filtered non-negatively graded chain complexes and filtered non-positively graded chain complexes respectively.

Corollary 3.12.1.2. There is a cofibrantly generated model structure denoted
(
fC≥

)
S

on fC≥ whose weak equivalences are the
r-quasi isomorphisms and with generating cofibrations τIS and generating acyclic cofibrations τJS .

Theorem 3.12.2.1. For every r ≥ 0 and every subset S ⊆ {0, 1, . . . , r} including r, the category fC≤ admits a right proper
cofibrantly generated model structure, which we denote

(
fC≤

)
S

, where:

1. weak equivalences are Er-quasi-isomorphisms,

2. fibrations are morphisms of filtered chain complexes f : A → B such that Z∗,∗+ns (f) is bidegree-wise surjective for
n ≤ −1 and s ∈ S, and

3. κIS and κJS are the sets of generating cofibrations and generating acyclic cofibrations respectively.

Furthermore
(
fC≤

)
S

is a finitely generated model category.

Lastly we define S-model structures on the category of non-negatively filtered chain complexes f≥C.

Theorem 3.12.3.15. For every subset S ⊆ {0, 1, 2, . . . , r} containing r the category f≥C admits a right proper cofibrantly
generated model structures, which we denote (f≥C)S , whose:
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1. weak equivalences are the Er-quasi-isomorphisms,

2. fibrations are morphisms that for all s ∈ S are Zp,p+ns -surjective for p ≥ s and all n, and

3. generating cofibrations and generating acyclic cofibrations are given by I≥S and J≥S respectively.

Furthermore (f≥C)S is a finitely generated model category.

Due to the di�erence in representing objects used in generating cofibrations and acyclic cofibrations between the
0-model structure and the r-model structure (r ≥ 1) on bicomplexes, Theorem 1.7.0.10, many of the proofs of this
chapter do not work as written for the 0-model structure. However due to Remark 1.7.0.13 many of the results of
this chapter regarding the 0-model structure are already known from [CH02], in particular stability [CH02, Lemma
2.16], properness [CH02, Proposition 2.18] and (finite) cofibrant generation [CH02, Theorem 5.7]. Henceforth for
bicomplexes whilst we write our results for all r ≥ 0 our proof may only apply for r ≥ 1 and we rely on the above for
the case r = 0.

3.1 Construction of new model structures on filtered chain complexes

The original model structures of [CELW19] on either bicomplexes or filtered chain complexes for a fixed r can be seen
to di�er by the descriptions of their fibrations. For convenience we use the descriptions for filtered chain complexes in
the following discussion. In the first model structure we only require surjections on the r-cycles and in the second we
require surjections on all s-cycles for 0 ≤ s ≤ r. There should be intermediate model structures with r-weak equivalences
and where fibrations are characterised as being surjective on all s-cycles for a fixed subsetS ⊆ {0, 1, . . . , r} containing
r and indeed this section proves existence of such model structures. Originally the author attempted to show existence
of these model structures by mixing the model structures (fC)s for each s ∈ S. There are various results in the literature
on mixing model structures.

Cole in [Col06, Theorem 2.1] shows that for two model structures on C with weak equivalencesW1 andW2, and
fibrations Fib1 and Fib2 respectively such thatW1 ⊆ W2 and Fib1 ⊆ Fib2 then there is a mixed model structure on
C with weak equivalencesW2 and fibrations Fib1. There is a dual result replacing the inclusion of fibrations by an
inclusion of cofibrations. The r-model structures of [CELW19] do not satisfy the fibration or cofibration inclusions
along with the weak equivalence inclusion so we cannot apply this result here. One could also attempt to use [HHR21,
Proposition 5.2.34] however their conditions are not satisfied in our setting either.

The author in fact shows existence of such intermediate model structures by explicitly giving the generating cofir-
bations and generating cofibrations from which the model structures follows easily from results already established
in [CELW19]. These new model structures on fC and bC are in fact examples of intermediate model structures of [Bal21,
Proposition 4.9.4], although for this proposition one still needs to exhibit a weak factorisation system (see [Bal21, Defini-
tion 2.1.12]) to apply the result which we obtain from the small object argument.

Definition 3.1.0.1. We fix an r ≥ 0, and denote by S a subset of {0, 1, . . . , r} which must include r. We define
IS and JS as follows:

IS := Ir ∪
⋃

s∈S\{r}

Js ,

JS :=
⋃
s∈S

Js .

Theorem 3.1.0.2. For every r ≥ 0 and every subset S ⊆ {0, 1, . . . , r} including r, the category fC admits a right proper
cofibrantly generated model structure, which we denote (fC)S , where:

1. weak equivalences are Er-quasi-isomorphisms,

2. fibrations are morphisms of filtered chain complexes f : A → B such that Zs(f) is bidegree-wise surjective for each
s ∈ S, and

3. IS and JS are the sets of generating cofibrations and generating trivial cofibrations respectively.

Further (fC)S is a finitely generated model category.

The cases S = {r} and S = {0, 1, . . . , r} are the model structures constructed in [CELW19]. The proof proceeds
by the same method as in [CELW19], i.e. we verify conditions 3,4 and 5 of Theorem 1.4.2.9.
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Proposition 3.1.0.3. We have IS-Inj = Er ∩ JS-Inj.

Proof. The third equality in the following is the result Ir-Inj = Er ∩ Jr-Inj for the model structure of Theo-
rem 1.6.0.5.

IS-Inj =

Ir ∪ ⋃
s∈S\{r}

Js

 -Inj

= Ir-Inj ∩
⋂

s∈S\{r}

Js-Inj

= (Er ∩ Jr-Inj) ∩
⋂

s∈S\{r}

Js-Inj

= Er ∩ JS-Inj .

The proof of the following is also identical to its counterpart in [CELW19]. Recall the r-loops functor Ωr of
Definition 1.2.1.18 and r-cone functor Cr of Definition 1.6.0.12.

Proposition 3.1.0.4. For every r ≥ 0 and every subset S ⊆ {0, 1, . . . , r} including r we have JS-Cof ⊆ Er .

Proof. Let f : A→ B be a JS-Cof so that it has the left lifting property with respect to those morphisms g that are
Zs(g) bidegree-wise surjective for all s ∈ S. Consider then the lifting problem:

A A⊕ ΩrCr(B)

B B

f (f,π1)

id

.

The morphism (f, π1) is a Zs-surjection for all s ∈ S, by Lemma 1.6.0.14 so there exists a lift. Since ΩrCr(B) is
r-acyclic, again by Lemma 1.6.0.14, applying Er+1 to the diagram gives f ∈ Er .

Proof of Theorem 3.1.0.2. It remains to prove conditions 3, 4 and 5 of Theorem 1.4.2.9 hold. Conditions 4 and 5 are
Proposition 3.1.0.3. The inclusion J-Cell ⊆ W of condition 3 follows from Proposition 3.1.0.4 and the inclusion
J-Cell ⊆ I-Cof as follows: by Proposition 3.1.0.3 we have IS-Inj ⊆ JS-Inj, hence JS-Cof ⊆ IS-Cof. Right
properness follows since every object is fibrant. Lastly it is finitely generated since the domains and codomains of IS
and JS are finite relative to the cofibrations (in fact relative to the entire category) by Lemma 1.2.1.16.

Theorem 3.1.0.2 then gives for a fixed r, 2r cofibrantly generated model structures indexed by the powerset of
{0, 1, . . . , r − 1} or alternatively as described above by those subsets of {0, 1, . . . , r} including r.

Notation 3.1.0.5. ForS ⊆ {0, 1, . . . , r} containing r we write (fC)S for the model structure given by Theorem 3.1.0.2.
The special cases of S = {r} and S = {0, 1, . . . , r} will be denoted by (fC)r and (fC)r′ respectively in agreement
with [CELW19]. We also refer to the cofibrations of the S-model structure as S-cofibrations and similarly refer to the
fibrations as the S-fibrations.

Proposition 3.1.0.6. For a fixed r and subsets S′ ⊆ S ⊆ {0, 1, . . . , r} both containing r there is a Quillen equivalence:

id : (fC)S′ (fC)S : id .

Proof. We check the right adjoint sends (acyclic) fibrations to (acyclic) fibrations. A fibration on the right hands
side is a morphism f with Zs(f) bidegree-wise surjective for all s ∈ S. This also then satisfies Zs(g) bidegree-wise
surjectivity for all s ∈ S′ since S′ ⊆ S, hence the right adjoint preserves fibrations. Preserving acyclic fibrations
follows since weak equivalences are the same on both sides and the right adjoint is an identity functor. This gives the
identity-identity adjunction is a Quillen adjunction. Quillen equivalence follows since the functors are the identity
and weak equivalences are the same on both sides.
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3.2 Construction of new model structures on bicomplexes

Definition 3.2.0.1. We fix an r ≥ 0, and denote by S a subset of {0, 1, . . . , r} which must include 0 and r. We define
IS and JS as follows:

IS := Ir ∪
⋃

s∈S\{0,r}

Js ,

JS :=
⋃
s∈S

Js .

Theorem 3.2.0.2. For every r ≥ 0 and every subset S ⊆ {0, 1, . . . , r} including both 0 and r, the category bC admits a right
proper cofibrantly generated model structure, which we denote (bC)S , where:

1. weak equivalences are Er-quasi-isomorphisms,

2. fibrations are morphisms of filtered chain complexes f : A → B such that ZWs(f) is bidegree-wise surjective for each
s ∈ S, and

3. IS and JS are the sets of generating cofibrations and generating trivial cofibrations respectively.

Further (bC)S is a finitely generated model category.

The proof proceeds by the same method as in [CELW19], i.e. we verify conditions 3, 4 and 5 of Theorem 1.4.2.9.

Proposition 3.2.0.3. We have IS-Inj = Er ∩ JS-Inj.

Proof. The third equality in the following is the result Ir-Inj = Er ∩ J0 inf ∩Jr-Inj for the model structure of
Theorem 1.7.0.10.

IS-Inj =

Ir ∪ ⋃
s∈S\{0,r}

Js

 -Inj

= Ir-Inj ∩
⋂

s∈S\{0,r}

Js-Inj

= (Er ∩ J0-Inj ∩ Jr-Inj) ∩
⋂

s∈S\{0,r}

Js-Inj

= Er ∩ JS-Inj .

Recall the r-loops functor Ωr of Definition 1.2.2.8 and r-cone functor Cr of Definition 1.7.0.14.

Proposition 3.2.0.4. For every r ≥ 0 and every subset S ⊆ {0, 1, . . . , r} including 0 and r we have JS-Cof ⊆ Er .

Proof. Let f : A→ B be a JS-Cof so that it has the left lifting property with respect to those morphisms g that are
ZWs(g) bidegree-wise surjective for all s ∈ S. Consider then the lifting problem:

A A⊕ ΩrCr(B)

B B

f (f,ψr)

id

.

The morphism ψr is Ωr applied to the morphism of Lemma 1.7.0.15 so that (f, ψr) is a ZWs-bidegree-wise surjection
for all s ∈ S so there exists a lift. Since ΩrCr(B) is r-acyclic by Lemma 1.7.0.15, applying Er+1 to the diagram gives
f ∈ Er .

Proof of Theorem 3.2.0.2. This is the same as for filtered chains noting that finite objects in (bC)S are the bounded
bicomplexes which in each bidegree are finitely presented R-modules, Lemma 1.7.0.16.

Notation 3.2.0.5. For S ⊆ {0, 1, . . . , r} containing both 0 and r we write (bC)S for the model structure given
by Theorem 3.2.0.2. The special cases of S = {0, r} and S = {0, 1, . . . , r} will be denoted by (bC)r and (bC)r′
respectively in agreement with [CELW19]. Again we call the cofibrations and fibrations of the S-model structure the
S-cofibrations and S-fibrations.
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Proposition 3.2.0.6. For a fixed r and subsets S′ ⊆ S ⊆ {0, 1, . . . , r} containing 0 and r there is a Quillen equivalence

id : (bC)S′ (bC)S : id .

3.3 Distinctness of model structures

We verify that all these model structures defined in Theorems 3.1.0.2 and 3.2.0.2 are indeed distinct model structures.
We do so by showing that the fibrations are di�erent for which we show existence of morphisms satisfying specific Zk
or ZWk surjectivity conditions.

Definition 3.3.0.1. The morphisms αp,p+ns and βp,p+ns of filtered chain complexes are given by:

• αp,p+ns : Zs+1(p + 1, p + 1 + n) −→ Zs(p, p + n) whose underlying maps of R-modules are the identity
wherever possible: (

Rnp+1 Rn+1
p−s
)

(
Rnp Rn+1

p−s
) .

• βp,p+ns : Zs−1(p, p + n) ⊕ Rn+1
(p−s) −→ Zs(p, p + n) whose underlying maps of R-modules are the identity

or fold maps wherever possible: (
Rnp Rn+1

p−s+1 ⊕R
n+1
(p−s)

)
(
Rnp Rn+1

p−s
)∇ .

Lemma 3.3.0.2. We have the following surjectivity results:

• the morphisms α∗,∗s are Zk-surjective for all k ≥ s+ 1 and not Zk-surjective otherwise,

• the morphisms β∗,∗s are Zk-surjective for all k ≤ s− 1 and not Zk-surjective otherwise.

Remark 3.3.0.3. We can easily form a morphism of filtered chain complexes that is Zk-surjective for all k 6= s by taking
the composition of the direct sum of the α and β with the fold map:

γp,p+ns := ∇ ◦
(
αp,p+ns ⊕ βp,p+ns

)
.

Existence of such morphisms then immediately proves the following distinctness result by the classification of the
fibrations.

Corollary 3.3.0.4. The model structures of Theorem 3.1.0.2 are all distinct.

We construct similar morphisms δ, ε and ζ for bicomplexes to show distinctness for the bicomplex model structures.
Firstly we define a corner bicomplex.

Definition 3.3.0.5. The bicomplex CW (p, p+n) has a copy ofR in bidegrees (p, p+n), (p− 1, p− 1 +n+ 1) and
(p, p+ n+ 1) whose di�erentials are the identity morphism whenever possible.

In Figures 3.1 and 3.2 of the following definition all • denote a copy of R with a bidegree indicated and all
di�erentials are identities except the ones labelled i1 and i2 which are inclusions into either the first or second copy
R of the R-module R⊕R denoted by ••.

Definition 3.3.0.6. The morphisms δp,p+ns and εp,p+ns of bicomplexes are given by:

• δp,p+ns : ZWs+1(p+ 1, p+ 1 +n) −→ ZWs(p, p+n) whose underlying maps ofR-modules are the identity
whenever possible and is depicted in Figure 3.1.
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(p, p+ n)

. .
.

. .
.

(p, p+ n)

. .
.

. .
.

δp,p+ns

Figure 3.1: The morphism δp,p+ns

(p, p+ n)

i1
i2

. .
.

. .
.

(p, p+ n)

. .
.

. .
.

εp,p+ns

Figure 3.2: The morphism εp,p+ns

• εp,p+ns : ZWs−1(p, p+ n)⊕CW (p− s+ 1, p− s+ 1 + n) −→ ZWs(p, p+ n) whose underlying maps of
R-modules are the identity or fold maps whenever possible and is depicted in Figure 3.2.

Lemma 3.3.0.7. We have the following surjectivity results:

• the morphisms δ∗,∗s are ZWk-surjective for all k ≥ s+ 1 or k = 0 and not ZWk-surjective otherwise,

• the morphisms ε∗,∗s are ZWk-surjective for all k ≤ s− 1 and not ZWk surjective otherwise.

Remark 3.3.0.8. We can also form a morphism of bicomplexes that is ZWk-surjective for all k 6= s by taking the
composition of the direct sum of the δ and ε with the fold map:

ζp,p+ns := ∇ ◦
(
δp,p+ns ⊕ εp,p+ns

)
.

Existence of these morphisms proves the following distinctness result.

Corollary 3.3.0.9. The model structures of Theorem 3.2.0.2 are all distinct.

3.4 Quillen adjunctions between (fC)S and (bC)S
We show that for S a subset of {0, 1, . . . , r} containing 0 and r there is a Quillen adjunction

L : (fC)S (bC)S :TotΠ ,

by showing that TotΠ is a right adjoint. By definition of the r-weak equivalences of (bC)S the functor TotΠ already
preserves weak equivalences. We just need to check then that TotΠ sends fibrations to fibrations.

Lemma 3.4.0.1. Let f : Y → X be a morphism of bicomplexes that is bothZW0-surjective andZWs-surjective, then TotΠ(f)
is Zs-surjective.
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Proof. Let (xi)i≤p ∈ FpTotΠXn where xi ∈ Xi,i+n and such that dTotΠX(xi)i≤p ∈ Fp−sXn. Recall the di�eren-
tial dTotΠX : (ki)i 7→ (d0ki + (−1)nd1ki+1)i so that d0xp = 0 and d0xp−i−1 = −(−1)nd1xp−i for 0 ≤ i ≤ s−2.
The sequence

(
xp, (−1)n+1xp−1, xp−2, (−1)n+1xp−3, . . . ,±xp−s+1

)
is then an element of ZW p,p+n

s X and since
f is ZWs-surjective we can find a lift (yp, . . . , yp−s+1). By ZW0-surjectivity of f we can also find lifts yp−i of xp−i
for i ≥ s + 2. The element

(
yp, (−1)n+1yp−1, yp−2, (−1)n+1yp−3, . . . ,±yp−s+1, yp−s, yp−s−1, . . .

)
is then a

Zs-lift as required.

The lemma shows that TotΠ sends S-fibrations of (bC)S to S-fibrations of (fC)S . Hence we have shown the
following.

Proposition 3.4.0.2. For S a subset of {0, 1, . . . , r} containing both 0 and r there is a Quillen adjunction

L : (fC)S (bC)S :TotΠ .

In fact the model structures on (bC)S is a right transferred model structure along this adjunction since its weak
equivalences and fibrations are determined by the functor TotΠ.

3.5 Quillen equivalences between the (fC)S
For S′ ⊆ S with maxS′ = maxS = r there were the identity-identity Quillen equivalences of Propositions 3.1.0.6
and 3.2.0.6 for filtered chains and bicomplexes respectively. For the category fC there are in fact more Quillen equiva-
lences. Recall the shift-décalage adjunction of Lemma 1.3.3.2 which gave Quillen equivalences of the form

Sk : (fC)r (fC)r+k :Deck .

Notation 3.5.0.1. For a set S and l ∈ N we denote by S + l the set {s+ l | s ∈ S}.

Proposition 3.5.0.2. There are Quillen equivalences given by the shift-décalage adjunction:

S : (fC)S (fC)S+1 :Dec .

Proof. This follows from the proof in the case Sk : (fC)r
−→←− (fC)r+k :Deck . See [CELW19, Theorem 3.22].

3.6 Quillen zig-zags and a distributive lattice

Remark 3.6.0.1. The shift-décalage and identity-identity adjunctions do not give that all model structures in the posets
are Quillen equivalent, only that there are zig-zags of Quillen equivalences between any two. Consider the following
diagram

(fC){3}

(fC){2} (fC){1,2}

DecS

id

id

.

There is a Quillen equivalence between (fC){2} and the other two model categories but not between (fC){3} and
(fC){1,2} (at least if we only use the shift-décalage and identity-identity adjunctions).

We now assemble for all r the posets of model structures of filtered chain complexes together into one larger poset.
The underlying set of the poset is then finite non-empty subsets of the power set of N0 and we generate the partial
order < as follows: for two model structures indexed by T and S we have T < S if either

1. T ⊂ S, with maxT = maxS,

2. S = T + 1.

These generating inequalities of the poset are respectively the left adjoints of the identity-identity adjunctions and the
shift-décalage adjunctions.

Definition 3.6.0.2. Denote byN the poset with the above definition for <.
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{0} {1}

{0, 1}

{2}

{1, 2}
{0, 2}

{0, 1, 2}

{3}

{2, 3}
{1, 3}

{1, 2, 3}

{0, 3}

{0, 2, 3}
{0, 1, 3}

{0, 1, 2, 3}

. . .

Figure 3.3: The posetN

For those elements of N whose maxima are 3 or less the poset is displayed in Figure 3.3 with an arrow a → b
denoting the relation a ≤ b.

Given that not all these model structures are Quillen equivalent via composites of these two adjunctions it is worth
finding for any two model structures indexed by T andS the ‘terminal model structure admitting a left Quillen functor
to these’ and the ‘initial model structure admitting a left Quillen functor from these’. We will show such operations
give the join and meet operations respectively for a distributive lattice structure onN . We recall now the definition
of a distributive lattice. It can be found for instance as [DP02, Definition 4.4].

Definition 3.6.0.3. A lattice (Λ,∨,∧) is a partially ordered set Λ with binary operations ∨, called join, and ∧, called
meet, on its elements such that

1. a ≤ a ∨ b = b ∨ a, and

2. a ∧ b = b ∧ a ≤ a.

It is further a distributive lattice if for all a, b, c ∈ Λ we have:

1. a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c), and

2. a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

We will abuse notation and denote a poset and distributive lattice over that poset by the same symbol. The meet
and join operations we will define onN will form the structure of a distributive lattice which will not be easy to write
down a proof of, so we instead prove this indirectly by showing such structure is isomorphic to another distributive
lattice by virtue of Birkho�’s Representation Theorem 3.6.0.6.

Definition 3.6.0.4. Given a distributive lattice Λ an element a ∈ Λ is said to be join-irreducible if it is neither:

1. the least element of the lattice, nor

2. the join of two smaller elements.

Definition 3.6.0.5. A lower set L of a lattice Λ is a subset L ⊂ Λ such that if a ≤ l for all l ∈ L then a ∈ L too.

Theorem 3.6.0.6 (Birkho�’s Representation Theorem [DP02, Theorem 5.12]). Any finite distributive lattice Λ is isomorphic
to the distributive lattice on the set of lower sets of the partial order on the join-irreducible elements with meet and join operations
usual set theoretic intersection and union.

The correspondence between elements of the two lattices of Theorem 3.6.0.6 is given by sending an element λ ∈ Λ
to the set of join-irreducible elements of Λ less than or equal to λ and by sending a lower set L to the join of all
elements of L (note this is a finite join since Λ is finite). Our proof of a distributive lattice structure onN will procede
as follows:

1. define the meet and join operations onN ,
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2. find the join-irreducible elements ofN (we do not need a distributive lattice structure to define these elements),

3. restricting to those elements of N with largest element less than or equal to some n show that our meet and
join elements we defined onN correspond to the union and intersection operations on the set of lower sets of
the partial order of the join-irreducible elements.

Definition 3.6.0.7. Given two elements S and T ofN we define the join and meet operations as follows:

• S ∨ T = (S + max{S ∪ T} −maxS) ∪ (T + max{S ∪ T} −maxT ), and

• S ∧ T = (S −max{S ∪ T}+ maxT ) ∩ (T −max{S ∪ T}+ maxT ).

The intuition behind these join and meet operations with respect to two indexing sets S and T for the model
structures is as follows: for join, we apply repeated shift functors to the set with the smaller maximum so that the
maxima of the two sets agree and then we take the union, for meet we apply décalage repeatedly to the set with the
larger maximum so the maxima agree and then take intersections. The unions and intersections here are encoding
repeated applications of either the left or right Quillen identity functors. An alternate way of viewing this is the meet
operation gives the ‘largest’ or ‘terminal’ model structure in the poset admitting left adjoints (of the form composites
of identity-identity and shift-décalage) to S and T , and the join operation the ‘smallest’ or ‘initial’ model structure
admitting left adjoint from S and T to it.

Lemma 3.6.0.8. The join-irreducible elements of N equipped with the join operation of Definition 3.6.0.7 are those of the form
{n} or {0, n} where n ≥ 1.

Proof. Note {0} is not a join-irreducible element since it is the least element of the posetN . Suppose U is not of the
form of {n} or {0, n} with n ≥ 0 so that there is a second greatest element of U which is non-zero. Say {m,n} ⊂ U
with n = maxU andm = max(U \ {n}). Then we have that U = {m− 1, n− 1}∨ (U \ {m}). Note that we have
both {m− 1, n− 1} < U and U \ {m} < U and that m− 1 ≥ 0 so that U cannot be join-irreducible.

Now consider an element of the form {n} with n ≥ 1, it is clearly join-irreducible since the join is defined as the
union of two sets and so for S ∨ T = {n} we must have either (or both) (S + max{S ∪ T} −maxS) = {n} and
(T + max{S ∪ T} −maxT ) = {n} so that at least one of S or T is {n}. But this does not exhibit {n} as the join
of two smaller elements, hence {n} is join-irreducible.

Lastly consider an element of the form {0, n} with n ≥ 1. Again either we have one of the two sets (S+max{S∪
T} −maxS) = {n} and (T + max{S ∪ T} −maxT ) = {n} is {0, n} which doesn’t exhibit {0, n} as the join of
two smaller sets, or we have one of (S + max{S ∪ T} −maxS) = {n} and (T + max{S ∪ T} −maxT ) = {n}
is {0} and the other {n}. But one of these sets has been shifted so that their maxima agree which is not the case since
0 < n hence {0, n} is join-irreducible.

The poset of join-irreducible elements ofN is depicted in Figure 3.4. For the proof thatN is a distributive lattice

. . .

. . .

{1}

{0, 1}

{2}

{0, 2}

{3}

{0, 3}

{4}

{0, 4}

{5}

{0, 5}

{6}

{0, 6}

Figure 3.4: The poset of join-irreducibles ofN

we will restrict to the sub-lattices Nr consisting of those sets whose maximum element is at most r. The poset of
join-irreducibles ofNr is then the obvious truncation of Figure 3.4 consisting of {n} and {0, n} with n ≤ r.

Definition 3.6.0.9. The poset of join-irreducible elements ofN will be denotedJ IN and the poset of join-irreducibles
of the truncationNr by J IN r .

Example 3.6.0.10. The poset J IN 3 of join-irreducible elements ofN3 is depicted in Figure 3.5. The set of lower sets
of this poset are

{∅} {{1}, {0, 1}, {2}} {{1}, {0, 1}, {2}, {0, 2}}
{{1}} {{1}, {0, 1}, {2}, {3}} {{1}, {0, 1}, {2}, {0, 2}, {3}}
{{1}, {2}} {{1}, {2}, {0, 2}} {{1}, {0, 1}, {2}, {3}, {0, 3}}
{{1}, {2}, {3}} {{1}, {2}, {0, 2}, {3}} {{1}, {2}, {0, 2}, {3}, {0, 3}}
{{1}, {0, 1}} {{1}, {2}, {3}, {0, 3}} {{1}, {0, 1}, {2}, {0, 2}, {3}, {0, 3}}
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{1}

{0, 1}

{2}

{0, 2}

{3}

{0, 3}

Figure 3.5: The poset of join-irreducibles ofN3

The particularly simple structure of the posets J IN r make it easy to classify the set of lower sets of the join-
irreducible elements ofNr . One can see the following easily from the structure ofNr .

Lemma 3.6.0.11. The lower sets of the join-irreducible elements ofNr are of the form ∅, or

{{1}, {2}, . . . , {s}} ∪ {{0, t1}, {0, t2}, . . . , {0, tk}}

where the first set contains all elements i for 1 ≤ i ≤ s and maxi ti ≤ s.

We now show a bijection between the set of lower sets of the partial order on the join-irreducible elements ofNr
and elements ofNr .

Lemma 3.6.0.12. There is a set bijection fromNr to the set of lower sets of join-irreducible elements ofNr .

Proof. Lower set toNr : We send a lower set to the join of its elements inNr . This maps ∅ to the element {0}. Given a
non-empty lower set of the form

{{1}, {2}, . . . , {s}} ∪ {{0, t1}, {0, t2}, . . . , {0, tk}}

where s ≤ r we send it to the join of its elements. Accordingly we have to shift all the subsets up so that their maxima
agree and take union by the definition of the join operation. This gives the set

{s− t1, s− t2, . . . , s− tk, s} .

Nr to lower set: We send an element ofNr to the lower set of all join-irreducible elements ofNr less than or equal
to it. This maps {0} to ∅. Given an element S = {t1, t2, . . . , tk, s} the singleton join-irreducibles less than S are
{{0}, {1}, {2}, . . . , {s}}. For a join-ireducible of the form {0, a} this is less than S if and only if {0, a}∧S = {0, a}.
This holds if and only if a ≤ s and ti = s− a for some ti ∈ S.

These operations are easily seen to be inverse to each other.

Definition 3.6.0.13. Denote by α the set morphism sending an element of Nr to a lower set of the bijection of
Lemma 3.6.0.12 and β its inverse.

Lemma 3.6.0.14. We have the following identities:

α(A ∨B) = (αA) ∪ (αB)

α(A ∧B) = (αA) ∩ (αB) ,

i.e. α and β preserve the join and meet operations.

Proof. Let the elements A and B ofNr be given by:

A = {s1, s2, . . . , sn, s}
B = {t1, t2, . . . , tm, t}

where without loss of generality t ≤ s and s1 < s2 < . . . sn < s and similarly for the ti. We then have

α(A ∨B) = α ({s1, s2, . . . , sn, s} ∪ {t1 + s− t, t2 + s− t, . . . , tm + s− t, s})
= α ({s1, s2, . . . , sn, t1 + s− t, t2 + s− t, . . . , tm + s− t, s})
= {{1}, {2}, . . . , {s}} ∪ {{0, s− si} | 1 ≤ i ≤ n} ∪ {{0, t− ti} | 1 ≤ i ≤ m}
= (αA) ∪ (αB)
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where we have used the definition of α from Lemma 3.6.0.12. Similarly for compatibility with the meet operations we
have:

α(A ∧B) = α ({s1 + t− s, s2 + t− s, . . . , sn + t− s, t} ∩ {t1, t2, . . . , tm, t})
= {{1}, . . . , {t}} ∪ {{0, a} | a = t− ti for some 1 ≤ i ≤ m,

and a = t− (sj + t− s) = s− sj for some 1 ≤ j ≤ n}

α(A) ∩ α(B) = {{1}, {2}, . . . , {s}} ∩ {{0, s− si} | 1 ≤ i ≤ n}
∩ {{1}, {2}, . . . , {t}} ∩ {{0, t− ti} | 1 ≤ i ≤ m}

These two descriptions of α(A ∧B) and α(A) ∩ α(B) are equal and so we have shown α commutes with the meet
and join operations. By replacing A and B in the equations of Lemma 3.6.0.14 with β(C) and β(D) and applying β
to the same equations we obtain β preserves the meet and join operations too.

Corollary 3.6.0.15. The lattice structure onNr is a distributive lattice.

Proof. Since J IN r is a distributive lattice since its join and meet operations are union and intersection so too then
isNr by Lemma 3.6.0.14.

Corollary 3.6.0.16. The lattice structure onN is a distributive lattice.

Proof. The meet and join operations on S and T can be computed inNr where r is the larger of the maxima of S and
T . The distributive equations hold inNr hence they hold too inN .

3.7 Left properness

In this section we prove all model structures (fC)S and (bC)S constructed are left proper, i.e. the cobase change of a
weak equivalence along a cofibration is a weak equivalence. The author learnt the following technique from [Lac02]
where a model structure on the category of (small) 2-categories with morphisms the 2-functors is constructed and
shown to be left (and right) proper. We reproduce it here adding a couple of details. Recall the notion of a finitely
cofibrantly generated model category Definition 1.4.2.8.

Proposition 3.7.0.1. LetM be a finitely cofibrantly generated model category with generating cofibrations I such that whenever
we have a double pushout diagram of the form

S A B

D C P

i

p

∼
p

f

p
p′

(3.1)

with i a generating cofibration and p a trivial fibration then p′ is a trivial fibration too, thenM is a left proper model category.

Proof. We follow the proof given in [Lac02] which proceeds in three steps. We consider diagrams of the form

A B

C P

∼
p

f

p
p′

(3.2)

starting with the assumptions of the proposition and proceed as follows: firstly we upgrade f to be a relative I-Cell
morphism, secondly we upgrade the relative I-Cell complex to a cofibration, and lastly we remove the requirement
that p be a fibration. As noted in [Lac02] the first of these steps requires the finitely generated assumption and the
second & third steps are general facts about model categories.

Step 1: Suppose in Equation (3.2) that f is a relative I-Cell complex so that it is a transfinite composition of
pushouts of generating cofibrations and that p is a trivial fibration. We want to show p′ is also a trivial fibration.
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Suppose the transfinite composition is indexed by a limit ordinal λ and that by induction the result holds for all
smaller ordinals α, then each vertical map with domain an Aα is a trivial fibration.

A A1 A2 . . . C

B B1 B2 . . . P

∼p
p

f

p p p
p′

Then by [Hov99, Lemma 7.4.1] the colimit is a trivial fibration since M is finitely cofibrantly generated and the
Aα → Bα are trivial fibrations. The case of λ being a successor ordinal is taken care of by the assumptions on
Diagram 3.1.

Step 2: Suppose now f is a cofibration in Equation (3.2) and p a trivial fibration. Factorise f using the small object
argument into a relative I-Cell complex u : A� Q followed by a trivial fibration v : Q

∼
� C , so f = v ◦ u. We

then have the following diagram:

A Q

C C

u

f ∼ v

id

h

which admits a lift h. We can now form the following diagram:

A C Q C

B P P1 P

f

∼p
p p

h

p

v

p′

noting that v ◦ h = id so too is the pushout composite P −→ P1 −→ P . The composite h ◦ f = u and is therefore
a relative I-Cell complex, then by step 1 the pushout of p along h ◦ f is a trivial fibration. Hence the morphism
Q → P1 is a trivial fibration. But since v ◦ h = id and so too its pushout we have that C −→ P is a retract of the
trivial fibration Q −→ P1 hence p′ : C −→ P is a trivial fibration.

Step 3: Suppose now f is a cofibration and p merely a weak equivalence. We factorise p into a relative I-Cell
complex s : A� K followed by a trivial fibration t : K

∼
� B, so that p = t ◦ s and note that by the two out of three

property s is also a weak equivalence. We then have the following diagram in which the composite of the top row is p:

A K B

C P2 P

s
∼

f

p

t
∼

p
.

Pushouts of (trivial) cofibrations are (trivial) cofibrations so C −→ P2 is a trivial cofibration and K −→ P2 a
cofibration. But since the right hand square is a pushout, t is a trivial fibration and K −→ P2 a cofibration, by step
2 we have that P2 −→ P is a trivial fibration. Hence the composite C −→ P2 −→ P is the composite of a trivial
cofibration followed by a trivial fibration and so is a weak equivalence.

Our next aim is then to use Proposition 3.7.0.1 to verify that the model categories (fC)S and (bC)S satisfy the
conditions of Proposition 3.7.0.1, i.e. that they are finitely generated model categories and that in the diagram of
Diagram 3.1 the morphism p′ is a trivial fibration, and therefore that they are all left proper.

3.7.1 Left properness of (fC)S
Recall the notation R{a} of Section 1.8 denoting the generator 1 ∈ R of the R-module R{a} := R by a. We also
abuse notation and use it to denote the image of the generator under a map R{a} ∼= R→ A.
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We first calculate, for a filtered chain complex A, the pushout of A with a generating cofibration Zr+1(p, n) −→
Br+1(p, n). (

Rn(p){a} Rn+1
(p−r−1)

)
A

(
Rn−1

(p+r){γ} Rn(p) ⊕R
n
(p−1){α} Rn+1

(p−r−1)

)
A′

∆

p

1

0

 (
0 1

) (3.3)

Recall that one computes colimits in (fC)S by first passing to CZ+

R via the inclusion functor, computing the colimit
there and then passing back via the reflector, Lemma 1.2.1.9. The pushout can then be described as follows. The
underlying chain complex of A′ is A with an extra summand R{α} in homological degree n and an extra summand
R{γ} in homological degree n− 1, with filtration given by:

Fq(A
′)m = FqA

m m 6= n− 1, n,

Fq(A
′)n =

{
FqA

n q < p− 1,
FqA

n ⊕R{α} q ≥ p− 1,

Fq(A
′)n−1 =

{
FqA

n−1 q < p+ r,
FqA

n−1 ⊕R{γ} q ≥ p+ r.

and where the di�erentials of the two new elements α and γ are given by dα = da and dγ = a−α. We now compute
the s-cycles in A′ for s ≤ r. Note that Zq,q+ms (A′) will be equal to Zq,q+ms (A) when either m 6= n, n − 1 or if
m = n when q < p − 1, or lastly if m = n − 1 when q < p + r. The proof of the following lemma concerns the
remaining cases.

Lemma 3.7.1.1. For the filtered chain complex A′ of the pushout Equation (3.3), and s ≤ r the following describes the s-cycles:

Zq,q+ns (A′) =

{
Zq,q+ns (A) q < p− 1,
Zq,q+ns (A)⊕R{α} q ≥ p− 1,

Zq,q+n−1
s (A′) =

{
Zq,q+n−1
s (A) q < p+ r,

Zq,q+n−1
s (A)⊕R{γ} q ≥ p+ r,

Zq,q+ms (A′) = Zq,q+ms (A) m 6= n, n− 1.

Proof. In homological degree n with q ≥ p− 1, we have an element (x, kα) ∈ FqAn ⊕R{α} = Fq(A
′)n, for some

k ∈ R, is in Zq,q+ns (A′) if and only if dx + kdα ∈ Fq−s(A′)n or equivalently when dx + kda ∈ Fq−sAn since
dα = da and a ∈ A ⊂ A′. But if q ≥ p− 1 and s ≤ r then since kda ∈ Fp−r−1A

n we have

kda ∈ Fp−r−1A
n ⊆ Fq−rAn ⊆ Fq−sAn ,

so that in fact dx ∈ Fq−sAn and then that x ∈ Zq,q+ns (A). Hence for q ≥ p− 1 the s-cycles in question are given
by:

Zq,q+ns (A′) = Zq,q+ns (A)⊕R{α} .

In homological degree n − 1 with q ≥ p + r we have an element (x, kγ) ∈ FqAn−1 ⊕ R{γ} = Fq(A
′)n−1 is

in Zq,q+n−1
s (A′) if and only if dx + kdγ ∈ Fq−s(A′)n−1 or equivalently when dx + ka − kα ∈ Fq−s(A′) since

dγ = a−α. Since s ≤ r we have q−s ≥ p+r−s ≥ p so that ka and kα are both inFq−s(A′) so that dx ∈ Fq−s(A)
and then that x ∈ Zq,q+n−1

s (A). Hence for q ≥ p+ r the s-cycles for s ≤ r are given by:

Zq,q+n−1
s (A′) = Zq,q+n−1

s (A)⊕R{γ} .

We also have need for a description of the (r + 1)-cycles of the pushout A′. For most (r + 1)-cycles we have a
similar classification as for the s-cycles with s ≤ r, the exceptions being Zp−1,p−1+n

r+1 (A′) and Zp+r,p+r+n−1
r+1 (A′).
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Lemma 3.7.1.2. For the filtered chain complex A′ of the pushout of Equation (3.3), the following describe the (r + 1)-cycles:

q < p− 1,

Zq,q+nr+1 (A′) =


Zq,q+nr+1 (A){

(x, kα) | dx+ kda ∈ Fp−r−2A
n+1
}

Zq,q+nr+1 (A)⊕R{α}
q = p− 1,

q ≥ p,
q < p+ r,

Zq,q+n−1
r+1 (A′) =


Zq,q+n−1
r+1 (A)

{(x, kγ) | dx+ ka− kα ∈ Fp−1(A′)n}
Zq,q+n−1
r+1 (A)⊕R{γ}

q = p+ r,

q ≥ p+ r + 1,

Zq,q+mr+1 (A′) = Zq,q+ms (A) m 6= n, n− 1.

Proof. The first case in each cohomological degree is clear, the third cases in cohomological degrees n and n− 1 are
similar to the proof of Lemma 3.7.1.1. We calculate then the second cases in degrees n and n− 1.

In homological degree n with q = p − 1 we have an element (x, kα) ∈ FqA
n ⊕ R{α} = Fq(A

′)n is in
Zq,q+nr+1 (A′) = Zp−1,p−1+n

r+1 (A′) if and only if dx + kdα ∈ Fq−r−1(A′)n+1 = Fp−r−2(A′)n+1, or equivalently
dx+ kda ∈ Fp−r−2A

n+1. The case for homological degree n− 1 with q = p+ r is similar.

Note if we further have a morphism A −→ B and form the iterated pushout

Zr+1(p, n) A B

Br+1(p, n) A′ B′
p

p

p

p′

thenB′ takes a similar form toA′ in that since each square is a pushout so too is the composite square soB′ is obtained
from the pushout square

Zr+1(p, n) B

Br+1(p, n) B′
p

where the top horizontal morphism is the composite of Zr+1(p, n) −→ A with p. We denote the new elements by β
(instead of α) and δ (instead of γ), which appear in the same filtration and homological degrees as α and γ respectively,
and whose di�erentials are dβ = db where b = pa, and dδ = b− β. Note too that p′α = β and p′γ = δ.

Proposition 3.7.1.3. For a morphism of filtered chain complexes p : A −→ B we have the following surjectivity results on cycles:

1. if p is such that Zs(p) is bidegree-wise surjective for some s ≤ r, then the pushout p′ : A′ −→ B′ also satisfies Zs(p′)
is bidegree-wise surjective,

2. suppose p is such that Zr(p) is bidegree-wise surjective and is an r-weak equivalence, then the pushout p′ : A′ −→ B′

also satisfies Zr+1(p′) is bidegree-wise surjective.

Proof. Most cycle surjectivity conditions on p′ follow directly from our description of the cycles of A′ (and the equiva-
lent descriptions for B′) from Lemmas 3.7.1.1 and 3.7.1.2 along with p(α) = β and p(γ) = δ. The missing cases are
bidegree-wise surjectivity of Zp−1,p−1+n

r+1 (p′) and Zp+r,p+r+n−1
r+1 (p′).

For the former case ofZp−1,p−1+n
r+1 (p′) we consider an element of (y, kβ) ∈ Zp−1,p−1+n

r+1 (B′) so that dy+kdβ =

dy + kdb ∈ Fp−r−2B
n+1 by Lemma 3.7.1.2 so then we have an element of Bp−r−1,p−r−1+n+1

r+1 (B) given by:

(
Rn(p−1){−y} Rn+1

(p−r−1) ⊕R
n+1
(p−r−2){dy + kdb} Rn+2

(p−2r−2)

)
B

1

0

 (
0 1

)
(3.4)

which gives a commutative diagram of the form:

Zr+1(p− r − 1, p− r − 1 + n+ 1) A

Br+1(p− r − 1, p− r − 1 + n+ 1) B

kda

i p∼
h
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where the morphismBr+1(∗, ∗)→ B is given by Equation (3.4). Since i is a generating r-cofibration and p an r-acyclic
fibration there exists a lift h and we let x = hy. We then have h(dy+kdb) = dx+kda, so that (x, kα) ∈ Fp−1(A′)n

withdx+kdα = dx+kda = h(dy+kdb) ∈ h
(
Fp−r−2B

n+1
)
⊆ Fp−r−2A

n+1 and so (x, kα) ∈ Zp−1,p−1+n
r+1 (A′)

is the required lift.
The latter case of Zp+r,p+r+n−1

r+1 (p′) is near identical, we consider an element (y, kδ) ∈ Zp+r,p+r+n−1
r+1 (B′) so

that dy+ kdδ = dy+ kb− kβ ∈ Fp−1(B′)n by Lemma 3.7.1.2 or equivalently that dy+ kb ∈ Fp−1B
n. Again then

we have a boundary element of Bp,p+nr+1 (B) given by:

(
Rn−1

(p+r){−y} Rn(p) ⊕R
n
(p−1){dy + kb} Rn+1

(p−r−1)

)
B

1

0

 (
1 0

)
(3.5)

again giving a commutative diagram of the form:

Zr+1(p, p+ n) A

Br+1(p, p+ n) B

ka

i p∼
h

whose morphism Br+1(∗, ∗) → B is given by Equation (3.5) and for which a lift h exists. Define x = hy so that
h(dy+kb) = dx+ka. Now (x, kγ) ∈ Fp+r(B′)n−1 maps to (y, kδ) under p′ and we have d(x, kγ) = dx+kdγ =

dx+ka−kα = h(dy+kb)−kα ∈ h (Fp−1B
n)+Fp−1(A′)n = Fp−1(A′)n so that (x, kγ) ∈ Zp+r,p+r+n−1

r+1 (A′)
is the required lift.

These then show the remaining cases of part 2 of the lemma.

Lemma 3.7.1.4. The kernel of the pushout p′ : A′ −→ B′ is K = ker(p : A −→ B).

Proof. This is clear from the description of A′ and B′ and that kernels are computed filtration degree-wise and
cohomological degree-wise in fC.

Recall the map wr+1 : Br+1(−)→ Zr+1(−) of Definition 1.6.0.2.

Proposition 3.7.1.5. For p an r-weak equivalence which isZr-bidegree-wise surjective, the morphismE∗,∗r+1(p′) : E∗,∗r+1(A′) −→
E∗,∗r+1(B′) on the (r + 1)-pages of the associated spectral sequences is injective.

Proof. Consider a cycle z representing some class of E∗,∗r+1(A′) whose image under Er+1(p′) is 0. We then have a
boundary (c0, c1), where we write c0 and c1 for the two r-cycles, inB∗,∗r+1(B′) such that p′(z) = wr+1 ((c0, c1)). Since
p isZr-surjective so too is p′ by Proposition 3.7.1.3 so we can lift c0 and c1 to r-cycles e0 and e1 ofA′. We then have that
z−wr+1 ((e0, e1)) is an (r+1)-cycle ofA′ which is in the kernel of p′. By Lemma 3.7.1.4 the kernel of p′ isK = ker(p)
which is r-acyclic, since pullbacks of acyclic fibrations are acyclic fibrations, so the cycle z−wr+1 ((e0, e1)) is in fact
an (r + 1)-boundary say (k0, k1), hence the cycle z is an (r + 1)-boundary z = wr+1 ((e0 + k0, e1 + k1)), proving
injectivity of Er+1(p′).

Corollary 3.7.1.6. Let p : A −→ B be an S-trivial fibration for the model structure (fC)S (whose weak equivalences are the
r-weak equivalences) of Theorem 3.1.0.2 and A −→ A′ the pushout of A along a generating cofibration. The pushout p′ of p
along A −→ A′ is an S-trivial fibration.

Proof. If the generating cofibration is of the form 0 −→ Zs(∗, ∗) then p′ is of the formA⊕Zs(∗, ∗) −→ B⊕Zs(∗, ∗)
and the result is clear.

If the generating cofibration is of the form Zr+1(∗, ∗) −→ Br+1(∗, ∗) and if s ∈ S with s ≤ r so that p is
Zs-surjective then so too is p′ by part 1 of Proposition 3.7.1.3. Since p is Zr-surjective and also an r-weak equivalence
the pushout is Zr+1-surjective by part 2 of Proposition 3.7.1.3, and hence Er+1(p′) is surjective by Lemma 1.6.0.11.
Lastly by Proposition 3.7.1.5 since p is an r-weak equivalence andZr-bidegree-wise surjectiveEr+1(p′) is bidegree-wise
injective. Hence p′ is an S-trivial fibration.

Theorem 3.7.1.7. The model categories (fC)S of Theorem 3.1.0.2 are left proper.
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Proof. By Proposition 3.7.0.1 it su�ces to show that (fC)S is a finitely cofibrantly generated model structure and that
in the double pushout

S A B

D C P

i

p

∼
p

f

p
p′

(3.6)

where i is a generating cofibration of (fC)S and p a trivial fibration of (fC)S that p′ is also a trivial fibration of (fC)S .
The model structure is finitely cofibrantly generated by Lemma 1.2.1.16, and the double pushout condition follows
from Corollary 3.7.1.6.

3.7.2 Left properness of (bC)S
We follow a similar procedure here for bicomplexes, we show the double pushouts maintain the various surjectivity
conditions required and then show injectivity of the (r + 1)-page.

ZWp,p+n
r+1 A B

BWp,p+n
r+1 A′ B′

p

p
∼

p
(3.7)

We begin by describing the pushoutA′. We denote by (a0, . . . , ar) the (r+1)-cycle ofA determined by Equation (3.7)
and its image under p by p(a0, . . . , ar) = (b0, . . . , br). The pushout can be computed bidegree-wise, we denote by
(α0, . . . , αr−1) the generators of the r-cycle ZWp+r,p+r+n

r of BWp,p+n
r+1 and by γ the generator of ZWp,p+n−1

0 of
BWp,p+n

r+1 , so that the image a0 is identified with d1αr−1 + d0γ in the pushout.

Lemma 3.7.2.1. The pushout A′ is given by the quotient of A⊕ ZWp+r,p+r+n
r ⊕ ZWp,p+n−1

0 , where the new generating
elements of ZWp+r,p+r+n

r are given by the αi and d1αi and the generators of ZWp,p+n−1
0 by γ, d0γ, d1γ and d0d1γ, by

the relation d0γ = a0 − d1αr−1.

Next we classify the s-cycles of the pushout A′ for s ≤ r + 1. Clearly in bidegrees (p, p+m) with m 6= n, n− 1
the s-cycles will be the same as those of A, we then need to understand them on the n − 1 and n diagonals. We
do not give as explicit a description as for filtered chain complexes but only enough so as to prove cycle surjectivity
results. For the n diagonal we have new elements the d1α∗ and d1γ to consider. We also have d0γ but note that
a0 = d0γ + d1αr−1 so it does not introduce new elements not already introduced by the d1α∗. Note next that the
d1α∗ all satisfy d1d1α∗ = 0 = d0d1α∗ so we can ignore all d1α∗ when computing whether a sequence is an s-cycle
or not. Consider now we have an s cycle in which d1γ appears in some component say:

(x0, x1, . . . , xi−1, xi + κd1γ, xi+1, . . . , xs−1) (3.8)

in which the xi are elements of A and we have removed any d1α∗. For this to be an s-cycle we need

1. d0x0 = 0,

2. d1xj = d0xj+1 when j 6= i− 1, s− 1, and

3. d1xi−1 = d0(xi + κd1γ), which since d0d1γ = d1a0 amounts to having d1xi−1 = d0xi + κd1a0.

So Equation (3.8) is an s-cycle of A′ if and only if the following is an s-cycle of A:

(x0, x1, . . . , xi−1 − κa0, xi, xi+1, . . . , xs−1)

since d0a0 = 0. For those s-cycles that involve the bidegree of d1γ the s-cycles of A′ without any of the d1α∗ are
then in bijection with the s-cycles of A via the above translation. We summarise this in the following lemma which
requires a certain degree of sensible interpretation with regard to in which degrees the d1γ and d1α∗ can appear. For
example for q ≤ p− 2 all the coe�cients κ and κ∗ must be 0 in the following lemma.

Lemma 3.7.2.2. The s-cycles of A′ in bidegrees (q, q + n) are of the form:

(x0, x1, . . . , xi−1 + κa0, xi + κd1γ, xi+1, . . . , xs−1) + (0, . . . , 0, κ0d1α0, . . . , κr−1d1αr−1, 0, . . . , 0)

for some κ, κ∗ ∈ R and where the xi are in appropriate bidegrees and the sequence (xi)i is an s-cycle of A.
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Consider now s-cycles along the (n− 1)-diagonal. The new elements of the pushoutA′ are γ and the α∗. Suppose
an s-cycle of A′ has in some component a non-zero mutiple of an α∗, say xi + κjαj . Then d0 of this must equal d1

of the (i − 1)-component of the s-cycle and so the (i − 1)-component must be of the form xi−1 + κjαj−1 where
the coe�cients of the α∗ are equal. Iterating up our s-cycle must have a κα∗ in each component for ∗ ≤ i and where
κ = κj , this also shows i ≥ j. Iterating down instead any subsequent components of the s-cycle must also be of the
form x∗ + κα∗+j−i for ∗ ≤ r − 1. If a component has a non-zero γ summand, xi + λγ then the (i− 1)-component
must have non-zero αr−1 summand xi−1 + καr−1 since

d0(xi + λγ) = d1(xi−1 + καr−1)

which gives d0xi − d1xi−1 = κd1αr−1 − λd0γ and since the left hand side is in A so too is the right hand side
but this can only happen if λ = −κ so that d0xi − d1xi−1 = κd1αr−1 + κd0γ = κa0. So for an s-cycle of A′ to
have component with summand −κγ it must have all previous components having summands of the form κα∗ and
the γ summand appears in a component of index r or higher so that the s-cycle is an (r + 1)-cycle (or longer). These
descriptions are summarised in the following lemma. We denote the datum of a j-cycle given by (κα0, κα1 . . . , καj)
by R(α0, α1, . . . , αj) which is isomorphic to the R-module R which determines the coe�cient κ.

Lemma 3.7.2.3. For s ≤ r the s-cycles ofA′ along the (n−1)-diagonal are of the formZWs(A)⊕R(α0, α1, . . . , αj) where
the moduleR(α0, α1, . . . , αj) denotes a single copy ofR determining the coe�cient κ and where αj shares a bidegree with the
final component of the s-cycle. For s = r+ 1 the r+ 1 cycles are either of the above form ZWr+1(A)⊕R(α0, α1, . . . , αj)
or of the form ZWr+1(A) ⊕ R(α0, α1, . . . , αr−1, γ) where again the module R(α0, α1, . . . , αr−1, γ) determines the
coe�cient κ and λ = −κ, with γ sharing a bidegree with the final component of the (r + 1)-cycle.

Given these descriptions of the s-cycles we now show given ZWs-surjectivity conditions on a map of bicomplexes
p : A→ B the induced map on pushouts A′ → B′ is also ZWs-surjective where B′ is the double pushout in

ZWr+1(p, p+ n) A B

BWr+1(p, p+ n) A′ B′
p

p
∼

p

p′

and note that the pushout B′ has a similar description as A does. We write a∗ = p(b∗) and let B have new elements
β∗ and δ where the induced map satisfies p(α∗) = β∗ and p(γ) = δ. The preceeding two lemmas give the following
surjectivity results.

Lemma 3.7.2.4. Suppose p : A −→ B satisfies ZWs-surjectivity for some s ≤ r + 1, then so too does p′.

Proof. This is apparent from our descriptions of s-cycles ofA′. We can lift s-cycles ofB into s-cycles ofA by assumption
and replace β∗ and δ with α∗ and γ respectively. This finds an s-cycle preimage of any s-cycle of B′ under p′.

Lemma 3.7.2.5. The kernel of p′ : A→ B is K = ker(p : A→ B).

Recall the map wr+1 : BWr+1(−) −→ ZWr+1(−) of Definition 1.7.0.7.

Lemma 3.7.2.6. Suppose p : A −→ B is an r-weak equivalence which is also surjective on 0-cycles and r-cycles, i.e. an
acyclic fibration in (bC)r , then the induced morphism on the (r+ 1)-page of the spectral sequenceE∗,∗r+1(p′) : E∗,∗r+1(A′) −→
E∗,∗r+1(B′) is injective.

Proof. Consider a cycle [z] ∈ E∗,∗r+1(A′), represented by an (r+ 1)-cycle z, such that its image underEr+1(p′) is 0, so
that the p′(z) is a boundary of B′. Hence p(z′) = wr+1 ((c0, c1, c2)) where c0 and c2 are the r-cycles, and c1 the 0-
cycle making up an (r+ 1)-boundary. By assumption p is surjective on 0-cycles and r-cycles so by Lemma 3.7.2.4 so too
is p′. Hence we can lift c0 and c2 to r-cycles e0 and e2 ofA′ and c1 to a 0-cycle e1 ofA′. Consider now the (r+1)-cycle
z−wr+1 ((e0, e1, e2)) ofA′, each component is in the kernel of p′ which isK = ker(p) by Lemma 3.7.2.5 hence, since
K is r-acyclic we have that the (r+ 1)-cycle z −wr+1 ((e0, e1, e2)) is an (r+ 1)-boundary, say wr+1 ((k0, k1, k2)).
Hence z too is an (r + 1)-boundary, z = wr+1 ((e0 + k0, e1 + k1, e2 + k2)). This shows Er+1(p′) is injective.

Corollary 3.7.2.7. Let p : A −→ B be an S-trivial fibration for the model structure (bC)S (whose weak equivalences are the
r-weak equivalences) of Theorem 3.2.0.2 and A −→ A′ the pushout of A along a generating cofibration. The pushout p′ of p
along A −→ A′ is an S-trivial fibration.
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Proof. If the generating cofibration is of the form 0 −→ ZW∗,∗s then p′ is of the form A⊕ZW∗,∗s −→ B ⊕ZW∗,∗s
and the result is clear.

If the generating cofibration is of the formZWr+1(∗, ∗) −→ BWr+1(∗, ∗) and if s ∈ S so that p is surjective on
s-cycles then so too is p′ by Lemma 3.7.2.4. Since p is surjective on 0-cycles, r-cycles and also on the (r+ 1)-page of the
spectral sequence it is surjective on (r + 1)-cycles too by Lemma 1.7.0.12 and so again by Lemma 3.7.2.4 we have p′ is
also surjective on (r+1)-cycles and again by Lemma 1.7.0.12 p′ is surjective on the (r+1)-page of the spectral sequence.
Lastly, by Lemma 3.7.2.6, since p is an r-weak equivalence and ZW0 and ZWr-bidegree-wise surjective Er+1(p′) is
bidegree-wise injective. Hence p′ is an S-trivial fibration.

Theorem 3.7.2.8. The model categories (bC)S of Theorem 3.2.0.2 are left proper.

Proof. By Proposition 3.7.0.1 it su�ces to show that (bC)S is a finitely cofibrantly generated model structure and that
in the double pushout

S A B

D C P

i

p

∼
p

f

p
p′

(3.9)

where i is a generating cofibration of (bC)S and p a trivial fibration of (bC)S that p′ is also a trivial fibration of (bC)S .
The model structure is finitely cofibrantly generated by Lemma 1.7.0.16, and the double pushout condition follows
from Corollary 3.7.2.7.

3.8 Cellularity

3.8.1 Cellularity of (fC)S
The smallness conditions of Definition 1.4.10.1 have already been established so our main task here is to verify the
e�ective monomorphism condition. We will do so by instead showing that cofibrations are regular monomorphisms
and use Proposition 1.4.10.3 to obtain they are e�ective monomorphisms. To show a cofibration f : A −→ B is a
regular monomorphism we would like to show that f is the equaliser of some pair of morphisms, the obvious choice
being the equaliser of the pair 0, q : B −→ B/Awhere q is the map fromB to the cokernelB/A. This is in general not
true for any morphism of filtered chain complexes however it will be true for the strict morphisms (Definition 1.2.1.7)
so we will demonstrate that any cofibration in (fC)S is a strict morphism of filtered chain complexes.

Definition 3.8.1.1. For an R-module N we denote by Dn
p (N) the filtered chain complex whose underlying chain

complex isDn(N) and such that Fp−1D
n
p (N) = 0 and FpDn

p (N) = Dn
p (N). We also writeDn(N) for the filtered

chain complex whose underlying complex is Dn(N) and which is in all filtration degrees.

Lemma 3.8.1.2. The filtered chain complexesDn(N) andDn
p (N) are acyclic and fibrant in the model structures (fC)S .

Lemma 3.8.1.3. Cofibrations in (fC)S are inclusions.

Proof. Let i : A −→ B be a cofibration in (fC)S and consider the lifting problem

A Dn−1(An)

B 0

i

where the disc object is in all filtration degrees and the map from A to the disc is the identity in degree n and the
composite of the di�erential and identity in degree n − 1. Since i is a cofibration and the disc an S-acyclic fibrant
object a lift exists. Since the map from A to the disc object is an inclusion in degree n so too is i.

In fact we have the stronger result that cofibrations are strict inclusions by taking appropriate disc objects.

Lemma 3.8.1.4. Cofibrations in (fC)S are strict inclusions of filtered chain complexes.
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Proof. We let f : A −→ B be a cofibration of (fC)S , take N = An/Fp−1A
n, and consider the diagram

A Dn−1
p (N)

B 0

f ∼h

where the morphism from A to the disc is given by the inclusion of FqAn −→ An followed by the quotient An −→
An/Fp−1A

n in degree n which fully determines the morphism. A lift h exists in the diagram since f is a cofibration
and the disc object is acyclic and fibrant in (fC)S . Consider then an element a ∈ FpAn. If f(a) ∈ Fp−1B

n then
hf(a) = 0 since the (p − 1)-filtered part of the disc object is 0, hence the image of a in the disc object is 0 by
commutativity of the diagram and so a ∈ Fp−1A

n. This shows the morphism f is strict.

Proposition 3.8.1.5. The model categories (fC)S of Theorem 3.1.0.2 are cellular.

Proof. We need to show the three conditions of Definition 1.4.10.1 hold. By Lemma 1.2.1.16 the domains and codomains
of the generating cofibrations are all small, as are the domains of the generating acyclic cofibrations hence they are small
relative to the generating cofibrations. This shows the first two conditions. For condition 3 we need to demonstrate
all cofibrations are e�ective monomorphisms. By Proposition 1.4.10.3 we need only check the cofibrations are regular
monomorphisms. The cofibrations are certainly monomorphisms by Lemma 3.8.1.3 and by Lemma 3.8.1.4 they are strict
morphisms of filtered chain complexes, hence by Lemmas 1.2.1.9 and 1.2.1.10 we can compute cokernels of cofibrations
cohomological degree-wise and filtration degree-wise. This gives the cofibration A −→ B is the kernel of its cokernel
and so A −→ B is the equaliser of the pair 0, q : B −→ B/A and hence a regular monomorphism. This shows any
cofibration is a regular monomorphism and hence an e�ective monomorphism.

3.8.2 Cellularity of (bC)S
Lemma 3.8.2.1. Cofibrations in (bC)S are (degreewise split) monomorphisms.

Proof. The proof is similar to that for chain complexes [Hov99, Proposition 2.3.9].

Proposition 3.8.2.2. The model categories (bC)S of Theorem 3.2.0.2 are cellular.

Proof. We need to show the three conditions of Definition 1.4.10.1 hold. By Lemma 1.7.0.16 the domains and codomains
of the generating cofibrations are all finite, as are the domains of the generating acyclic cofibrations hence they are small
relative to the generating cofibrations. This shows the first two conditions. For condition 3 we need to demonstrate
all cofibrations are e�ective monomorphisms. By Proposition 1.4.10.3 we need only check the cofibrations are regular
monomorphisms. The cofibrations are certainly monomorphisms by Lemma 3.8.2.1 and since bC is an abelian category
any monomorphism A −→ B is a kernel of some morphism f : B −→ C and hence the equaliser of the pair
f, 0: B −→ C , so A −→ B is regular. This shows any cofibration is a regular monomorphism and hence an e�ective
monomorphism.

3.9 Stability

3.9.1 Stability of (fC)S
We show that the model structures of (fC)S on filtered chain complexes are stable model categories. Recall the
definition of a stable model category, Definition 1.4.9.3. Recall too that in a pointed model category the loop functor
on A can be computed by a homotopy pullback of the diagram

ΩA ∗

∗ A

yh

and that such a homotopy pullback, in a right proper model category, can be computed by replacing the map ∗ −→ A
by an acyclic fibration and taking a standard pullback as in Lemma 1.4.9.2.

For filtered chain complexes recall the notion of the r-suspension Σr , r-loops Ωr and r-cone Cr functors of
Definitions 1.2.1.18 and 1.6.0.12 and that there is a projection π : Cr(A)� ΣrA which by Lemma 1.6.0.14 is surjective
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on all s-cycles with s ≤ r so in particular is a fibration for all model structure (fC)S with maxS = r and such
that Cr(A) is r-acyclic. Applying the r-loops functor to this map we obtain a map Ωrπ : ΩrCr(A) → A which is
surjective on all s-cycles for s ≤ r. Note too that the kernel of π is simply ΩrA. By Lemma 1.4.9.2 we can then give a
model for the loop functor on Ho (fC)S on the level of the model category (fC)S by the pullback diagram:

ΩrA ΩrCr(A)

∗ A

y

from which the following is immediate.

Lemma 3.9.1.1. The loop functor on an object A in the model category (fC)S is given by ΩrA.

Note that in any pointed model category the loop functor is always right adjoint to the suspension functor. Since
our loop functor, Ωr , is an automorphism of fC its adjoint must be its inverse which is given by Σr . We have then
proved the following.

Proposition 3.9.1.2. The model categories (fC)S of Theorem 3.1.0.2 are stable model categories whose loops and suspension
functors are given by Ωr and Σr .

3.9.2 Stability of (bC)S
We now wish to show a similar result for (bC)S The proof of (bC)S being stable is similar to that of (fC)S , we compute
a pullback of a projection from a cone object, however this gives an object more unwieldy then a simple shift by an
expected bidegree, however this pullback is weakly equivalent to the shift.

For bicomplexes recall the notion of the r-suspension and r-loops functors Σr and Ωr given in Definition 1.2.2.8,
and the r-cone functorCr of Definition 1.7.0.14 and that the r-coneCr(A) on a bicomplexA is equivalent to tensoring
the bicomplex byZWr(r, r−1). There is a projection ofZWr(r, r−1) onto the bicomplexRr,r−1 and this induces
a projection, by tensoring by A, of Cr(A) onto the r-suspension of A, i.e. we have a morphism π : Cr(A) → ΣrA
which we can apply the r-loop functor to to obtain Ωr : ΩrCr(A) → A. Note too that ΩrCr(A) is r-acyclic since
Cr(A) is r-acyclic by Lemma 1.7.0.15. By Lemma 1.4.9.2 we can then give a model for the loop functor on Ho (bC)S
on the level of the model category (bC)S by the pullback diagram:

P ΩrCr(A)

∗ A

y

which is so far the same method we used for (fC)S . Now however we must identify P . The bicomplex ΩrCr(A) is
equivalent to tensoring by ZWr(0, 0). We introduce the following notation.

Notation 3.9.2.1. The bicomplexNWr(p, q) is given by the pullback of the projection ZWr(p, q)→ Rp,q along the
0 map 0→ Rp,q .

The pullback P is then the bicomplexNWr(0, 0)⊗A. We wish to show this is r-weakly equivalent to ΩrA. Note
there is an inclusion i : ΩrA→ NWr(0, 0)⊗A.

Lemma 3.9.2.2. The inclusion i : ΩrA→ NWr(0, 0)⊗A is an r-weak equivalence.

Proof. Let α1, α2, . . . , αi, . . . , αr−1 denote the generators ofNWr(0, 0) in bidegrees (−i,−i) and similarly β0, β1,
. . . , βi, . . . , βr−1 denote the generators ofNWr(0, 0) in bidegrees (−i,−i+1) so thatd0αi = βi−1 for 0 ≤ i ≤ r−1
and d1αi = βi−1. The inclusion i : ΩrA→ NWr(0, 0)⊗A is then just the map a 7→ βr−1 ⊗ a.

We consider the 0-page of the spectral sequence of NWr(0, 0) ⊗ A. No element of the form Σiαi ⊗ ai are
0-cycles since d0αi 6= 0. We then need only consider elements of the form Σiβi ⊗ ai in the kernel of d0 so that
each ai ∈ ker dA0 . Note however that Σi≤r−2βi ⊗ ai = d0Σi≤r−1αi ⊗ ai hence those elements are in the image
of the di�erential and become 0 on the 0-page of the associated spectral sequence. Note too that no new elements
are introduced with image under d0 given by βr−1 ⊗ ar−1 (unless ar−1 were already in the image of d0). Hence the
inclusion i : ΩrA → NWr(0, 0)⊗ A induces an isomorphism on the 0-page of the spectral sequence and so on all
subsequence pages of the spectral sequence.
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We then have a model for the loops functors on the level of the model category (bC)S given by Ωr and again since
suspension is adjoint to the loops functor and we have modelled the loop functor by an auto-equivalence of bC the
suspension functor can be modelled by Σr .

Lemma 3.9.2.3. The loop functor on an object A in the model category (bC)S is given by ΩrA.

And we have shown the following result.

Proposition 3.9.2.4. The model categories (bC)S of Theorem 3.2.0.2 are stable model categories whose loops and suspension
functors are given by Ωr and Σr .

3.10 Quillen equivalences between the posets

We consider the L a TotΠ adjunction of Proposition 2.1.0.2 which was shown to be a Quillen adunction between
appropriate model structures

L : (fC)S (bC)S :TotΠ .

Recall from Definitions 1.4.12.5 and 1.4.12.6 the notion of a right Bousfield localisation and from Theorem 1.4.12.7 the
existence of right Bousfield localisations of right proper cellular model categories at the K-cellular equivalences for
some set of objects K. These definitions and results can also be found in [GS13]. Since both model structures are right
(and left) proper and cellular they admit right (and left) Bousfield localisations at any set of objectsK (and morphisms
C) by Theorems 1.4.12.3 and 1.4.12.7. We also have the following result of Dugger.

Proposition 3.10.0.1 ([Dug01, Proposition A.5]). ForM a left proper, cofibrantly generated model category there exists a set
W of cofibrant objects detecting weak equivalences, i.e. that X → Y is a weak equivalence if and only if the induced map on
homotopy function complexes

map(A,X)→ map(A, Y )

is a weak equivalence for all A ∈ W . Further the set W can be taken to be a set of cofibrant replacements for the domains and
codomains of the generating cofibrations.

We will make use of these results along with the cellularization principle of Greenlees-Shipley to show that the
L a TotΠ adjunction is in fact a Quillen equivalence. We likely do not have need for such a powerful result as we
will show the particular cellularizations we take do not in fact alter the model categories. The following is Greenlees
and Shipley’s definition of smallness required to state the cellularization theorem which is a notion of smallness in the
homotopy category. To avoid confusion we shall refer to it as homotopically small.

Definition 3.10.0.2. An objectK is homotopically small if for any set of objects {Yα}we have, in the homotopy category,
the natural map

⊕
α [K,Yα]→ [K,∧αYα] is an isomorphism.

Recall the notion of the K cellularization ofM given in Definition 1.4.12.8.

Theorem 3.10.0.3 (The Cellularization Principle, [GS13, Theorem 2.7]). LetM and N be right proper, stable, cellular
model categories with a left Quillen functor F : M→N and adjoint U . WriteQ for a cofibrant replacement functor inN and
R for a fibrant replacement inN .

1. LetK = {Aα} be a set of objects inM with FQK = {FQAα} the corresponding set inN . Then F and U induce a
Quillen adjunction:

F : K-cell-M FQK-cell-N :U

between the K-cellularization ofM and the FQK-cellularization ofN .

2. If K = {Aα} is further a stable set of homotopically small objects inM such that for each A ∈ K we have FQA
is small in N and the derived unit QA → URFQA is a weak equivalence inM, then F and U induce a Quillen
equivalence between the cellularizations:

K-cell-M'Q FQK-cell-N .
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There is a third part to the theorem instead using a set of homotopically small objects ofN we have no need of here.
Our goal now is to use the celullarization principle to show that the adjunctions L : (fC)S −→←− (bC)S :TotΠ are
Quillen equivalences. We will takeM = (fC)S ,N = (bC)S andK will be the set obtained from Proposition 3.10.0.1
which consists of the domains and codomains of the generating cofibrations of (fC)S (they are already cofibrant
objects). We take the functors to be F = L and U = TotΠ. Note that in this setting we already knowM and N
are right proper, stable and cellular. The first part of Theorem 3.10.0.3 is then immediate. To obtain the result of the
second part we need to check the following:

1. K is a stable set of homotopically small objects,

2. for each A ∈ K that FQA is homotopically small (the A are already cofibrant so we needn’t apply Q here),

3. the derived unit QA→ URFQA = TotΠLA is a weak equivalence for all A ∈ K (A is already cofibrant and
every object is fibrant).

This will establish the Quillen equivalence between theK-cellulatizationK-cell- (fC)S and theFQK-cellularization
FQK-cell- (bC)S . The former is just (fC)S since theK-cellular equivalences are simply r-quasi-isomorphisms and
the fibrations are unchanged by right Bousfield localisations — the definition of K-cellular equivalence was given in
Definition 1.4.12.5 and that these are the r-quasi-isomorphisms follows from Proposition 3.10.0.1. It will then remain
to show that:

4. right Bousfield localising (bC)S at FQK doesn’t change the model structure.

Theorem 3.10.0.4. For S containing both 0 and r there is a Quillen equivalence between the S-model structure on filtered chain
complexes and the S-model structure on bicomplexes given by the L a TotΠ adjunction:

L : (fC)S (bC)S :TotΠ .

Proof. We will show the conditions 1–4 above hold. Note 1 is immediate since the generating cofibrations are closed
under the loop and suspension functors. For condition 2 we already have that the A are cofibrant so we need only
show that the LA are homotopically small for all A ∈ K. Such an A is some t-cycle where t ≤ r + 1 and from
Lemma 2.2.1.1LZt(∗, ∗) is isomorphic to the direct sum of a witness t-cycle and an infinite number of witness 0-cycles.
In the homotopy category this is isomorphic to just the constituent t-cycle and by [Hov99, Theorem 7.4.3] we have
that this is homotopically small.

Condition 3 was shown in Proposition 2.2.1.2. For condition 4 we compute LK. The set K consists of some of
the t-cycles for t ≤ r + 1. Applying the functor L to this set we obtain some bicomplexes, which by Lemma 2.2.1.1,
are each isomorphic to a witness t-cycle and an infinite direct sum of witness 0-cycles. Applying the same result,
Proposition 3.10.0.1, used to obtain K to the model category (bC)S we obtain a set J of objects detecting weak
equivalences and such that right Bousfield localising (bC)S at J does not change the model structure. Note then the
e�ects of localising at the sets LK and J are the same since (up to direct sums) they both consist of the same witness
t-cycle objects, noting too that the functorL introduces intoK witness 0-cycles which are always present as generating
acyclic cofibrations of the bicomplex model structures.

We have then shown that the conditions of the second part of the cellularization principle, Theorem 3.10.0.3, are
satisfied and that the K and FQK-cellularisations do not change the model structure, therefore we have a Quillen
equivalence:

L : (fC)S (bC)S :TotΠ .

A priori one might not expect the model structures (fC)S and (bC)S to be Quillen equivalent. The reason being
that the category of filtered chains ‘contains much more information’, e.g. the filtrations associated to the totalisation of
a bicomplex is always Hausdor� and exhaustive which are not required of our filtered chain complexes. An explanation
for this Quillen equivalence despite the descrepancy is that the S-model structure of filtered chain complexes ‘only
sees’ the filtration within (r + 1) filtration degrees of any finite filtration stage.

3.11 Non-existence of certain Bousfield localisations

Consider in either filtered chain complexes or bicomplexes one of the model structures of the posetMS whose weak
equivalences are the r-weak equivalences. A natural question is: “Does this model structure admit a (left or right)
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Bousfield localisation with weak equivalences the (r + 1)-weak equivalences?”. We will show here that no such left
Bousfield localisations exist, the issue being that the S-generating cofibrations are contained in the (r + 1)-weak
equivalences.

Proposition 3.11.0.1. Let MS be one of the S-model structures of either poset, where M is either fC or bC whose weak
equivalences are the r-weak equivalences. Then there is no left Bousfield localisationMnew ofMS whose weak equivalences are
the (r + 1)-weak equivalences.

Proof. Suppose for contradiction such a left Bousfield localisationMnew exists, so that the cofibrations, fibrations
and weak equivalences satisfy Cnew = CS ,Fnew ⊂ FS andWnew =Wr+1 ⊃ Wr =WS respectively. Note that the
Mnew at least has a set of generating cofibrations Inew = IS and that Inew ⊂ Wnew . We will show as a consequence
that all cofibrations Cnew ⊂ Wnew .

By assumptionMnew is a model structure so that pushouts of acyclic cofibrations are acyclic cofibrations, hence
pushouts along elements of Inew are acyclic cofibrations inMnew . All IS-Cell morphisms are now also acyclic
cofibrations inMnew . Indeed we can take such a transfinite compositionX : λ→M of morphisms that are pushouts
along elements of IS which is a composition of (r+1)-weak equivalences and consider it in the model categoryMr+1.
This model structure is finitely generated by either Lemma 1.2.1.16 or [Hov99, Lemma 2.3.3] and the domains and
codomains of Ir are finite relative to the whole category, so transfinite compositions of (r + 1)-weak equivalences are
(r + 1)-weak equivalences by [Hov99, Corollary 7.4.2]. Hence inMr+1 the morphism X0 → colimX is an (r + 1)-
weak equivalence and so too then is a weak equivalence of the model structure Mnew since Wnew = Wr+1. By
Proposition 1.4.2.10 all cofibrations Cnew are retracts of elements of IS-Cell and since the latter are all (r+ 1)-weak
equivalences so too are all Cnew since retracts preserve weak equivalences.

Now consider any morphism f inMnew and factor it as a cofibration followed by an acyclic fibration, by the
above the cofibration is necessarily an (r + 1)-weak equivalence and so too is the acyclic fibration since its acyclic.
Hence so too is f which shows any morphism ofM is an (r+ 1)-weak equivalence which gives the contradiction.

3.12 Bounded model structures on (fC)S
Given a model categoryM and a category C one can often construct new model category structures by means of a
transfer along an adjunction either of the form F : M −→←− C :U or U : C −→←− M :F , e.g. Theorem 1.4.4.1 applies
in the former case when suitable conditions are satisfied and more generally one has the results of [BHK+15, GKR20]
which give existence results for model structures transferred along adjunctions (the latter paper contains a corrected
proof of a result of the former). One of the main results stated is the following theorem.

Theorem 3.12.0.1 ([BHK+15, Theorem 2.23]). For an adjunctionU : C −→←−M :F of locally presentable categories withM
cofibrantly generated by a pair of sets with cofibrations Cof and weak equivalencesW such that

(
U−1Cof

)
-Inj ⊆ U−1W

then there is a left induced model structure on C cofibrantly generated by a pair of sets with cofibrations U−1Cof and weak
equivalences U−1W .

This is shown by an application of [MR14, Theorem 3.2] which asserts that the 2-category of combinatorial categories
have pseudopullbacks computed in the 2-category of cellular categories and as explained in [CR14, Remark A.3] one com-
putes the transferred model structure by a pseudopullback of Ctriv → Mtriv alongM → Mtriv where the triv
subscripts denote a trivial weak factorisation system in which all morphisms are cofibrations.

Definition 3.12.0.2. Given an adjunction U : C −→←−M :F withM a model structure with weak equivalencesW and
cofibrations Cof if there exists a model structure on C whose weak equivalences are U−1W and cofibrations U−1Cof
then this model structure on C is said to be a left induced model structure.

These then are some of the tools we have to transfer model structures along adjunctions and note all these more
general results on transferred model structures involve checking some acyclicity condition.

As examples and to motivate what follows one has adjunctions involving the inclusion of non-negatively or non-
positively graded cochain complexes into cochain complexes and one can induce, from the projective model structure
on unbounded chain complexes, model structures on the bounded variants which for the non-positively graded cochain
complexes is the usual bounded projective model structure. This bounded projective model structure can be found
for instance in the discussion following [GJ09, Corollary 2.12]. In the following the functor i denotes the inclusion of
bounded variants of a category into the full category.

First recall that from the unbounded projective model structure on chain complexes that there is a truncation
functor τ : CR → C≥R which is the identity on positive degrees and in degree 0 is the quotient by the the image of
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the di�erential d : X−1 → X0. This functor is left adjoint to the inclusion functor of non-negatively graded chain
complexes into chain complexes:

τ : CR C≥R : i .

The Kan transfer theorem, Theorem 1.4.4.1, can then be used to obtain a cofibrantly generated model structure on
non-negatively graded chain complexes.

To induce the projective model structure on non-positively graded cochain complexes note that one can’t apply
the Kan transfer theorem. The adjunction that one would try to use is of the form

n : CR C≤R : i

where the functor n is the naïve truncation which simply forgets the portion of the cochain complex in positive degrees.
Note then however that this adjunction does not satisfy the conditions of Theorem 1.4.4.1 since, for J the generating
cofibrations of CR, i does not send relative nJ-Cell complexes to weak equivalences: the morphism from 0 to the
disc with components in degrees 0 and 1 is in J , applying n to it gives the relative nJ-Cell morphism 0→ R0 which
is not a weak equivalence after applying i.

Instead then one can apply Theorem 3.12.0.1 to a di�erent adjunction. The functor i is also a left adjoint with
right adjoint given by κ which forgets the portion of the cochain complex in positive degrees and in degree 0 takes the
kernel of the di�erential.

κAn :=

{
ker
(
d : A0 → A1

)
, n = 0

An, n ≤ −1

The acyclicity condition is not hard to check here since bounded cofibrant objects are just the degreewise projective
chain complexes. Furthermore we have that κI and κJ are generating sets for the bounded projective model structure.

We give existence of various bounded model structures obtained from those of (fC)S by a transfer theorem.

Note 3.12.0.3. In the following subsections imposing any of the boundedness conditions loses stability and shift-décalage
functors so we don’t necessarily have equivalences of the homotopy categories when we vary S.

3.12.1 S-Model structures on fC≥

In [FGLW22, Proposition 5.11] the authors use the Kan transfer theorem in a similar way to obtain for each r ≥ 0
cofibrantly generated model structures on their bounded n-truncated multicomplexes, bounded in the sense that
Ap,q = 0 whenever p ≥ 0. The case n = 2 gives bounded model structures on bC which easily generalises to bounded
model structures on the (bC)S , bounded in the same sense. We give here analogous bounded model structures on (fC)S
again by application of the Kan transfer theorem. There is an adjunction we also denote τ a i between the categories
fC and fC≥ where the latter denotes the category of filtered objects in C≥R . The right adjoint i is inclusions of a filtered
bounded complex into filtered complexes and the left adjoint τ is given as

τAn :=


An, n > 1

A0/ im d, n = 0

0, otherwise

where the filtration on τA0 is FpτA0 := (FpA
0)/ im d. We then verify this adjunction τ : fC −→←− fC≥ : i satisfies

the conditions of the Kan transfer theorem where we equip (fC)S with one of the S-model structures.

Lemma 3.12.1.1. The adjunction τ : (fC)S −→←− fC≥ : i satisfies the conditions of Theorem 1.4.4.1.

Proof. All objects of fC≥ are small by a similar proof to Lemma 1.2.1.16 which proves condition 1. For condition 2 note
that the set τJ consists of s-cycles Zs(p, n) for n ≥ 0; the ones of the form Zs(p, 0) become 0 under the functor τ .
Hence applying i to a relative τJS-Cell is a weak equivalence.

Applying the Kan transfer theorem we then obtain the following corollary.

Corollary 3.12.1.2. There is a cofibrantly generated model structure denoted
(
fC≥

)
S

on fC≥ whose weak equivalences are the
r-quasi isomorphisms and with generating cofibrantions τIS and generating acyclic cofibrations τJS .
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3.12.2 S-Model structures on fC≤

For the same reason as above with n : CR −→←− C≤R : i we cannot apply the same method to equip fC≤ with an S-model
structure. Observe that the left adjoint to the inclusion functor i : fC≤ → fC is given by naïve truncation:

n : fC fC≤ : i

which simply forgets the portion of the filtered chain complex in positive cohomological degree. However then condition
2 of Theorem 1.4.4.1 is not satisfied: nZs(p, p+0) is an nJ-Cell complex but i does not send it to a weak equivalence
in (fC)S .

Instead then we would like to apply Theorem 3.12.0.1 to the adjunction

i : fC≤ fC :κ .

as before where here κ does the same kernel truncation ignoring filtration. The issue here however is that checking the
acyclicity condition is not an option since our study of cofibrations of Chapter 4 is not complete enough. However
recall that κI and κJ gave generating (acyclic) cofibrations for the bounded projective model structure on cochain
complexes and we can ask do κIS and κJS give generating (acyclic) cofibrations for a model structure on fC≤.

Theorem 3.12.2.1. For every r ≥ 0 and every subset S ⊆ {0, 1, . . . , r} including r, the category fC≤ admits a right proper
cofibrantly generated model structure, which we denote

(
fC≤

)
S

, where:

1. weak equivalences are Er-quasi-isomorphisms,

2. fibrations are morphisms of filtered chain complexes f : A → B such that Z∗,∗+ns (f) is bidegree-wise surjective for
n ≤ −1 and s ∈ S, and

3. κIS and κJS are the sets of generating cofibrations and generating acyclic cofibrations respectively.

Furthermore
(
fC≤

)
S

is a finitely generated model category.

Proof. For S = {r} one verifies that [CELW19, Propositions 3.12 & 3.13] still hold for I and J replaced by κI and κJ .
This gives the model structures for S = {r}. One then applies the same method for the proof of Theorem 3.1.0.2 to
obtain the remaining model structures.

3.12.3 Bounded model structures on f≥C

We’d similarly like to bound the filtration, we consider then the subcategory of fC consisting of those objects A with
F−1A = 0. We denote this subcategory by f≥C and note that there is an adjunction q : fC −→←− f≥C : i where again i
is inclusion and the left adjoint q is given by qAn := An/F−1A

n with filtration FpqAn := FpA
n/F−1A

n for p ≥ 0
and obvious induced di�erentials. This adjunction q a i has the same defects as that of n a i when trying to apply the
Kan transfer theorem if r > 1; the relative qJS-cell complex given by 0→ qZr(0, 0) is just 0→ R0

(0) which is not
sent to a weak equivalence by i. However we can apply Kan transfer for the case r = 0.

Theorem 3.12.3.1. For r = 0 the category f≥C admits a right proper cofibrantly generated model structure, which we denote
(f≥C)0, where:

1. weak equivalences are the Er-weak-equivalences,

2. fibrations are morphisms of filtered chain complexes f : A→ B such that Zp,p+n0 (f) is bidegree-wise surjective, and

3. qI0 and qJ0 are the sets of generating cofibrations and generating acyclic cofibrations respectively.

Proof. All objects of f≥C are small by a similar proof to Lemma 1.2.1.16. A relative qJ0-Cell complex is of the form
A→ A⊕

⊕
Z0(p, p+ n) where the direct sum is over some number of copies of 0-cycles with p ≥ 0. The functor i

then sends this morphism to a 0-weak equivalence in fC. This shows the 2 conditions of Theorem 1.4.4.1 are satisfied
so we apply the Kan transfer theorem to q : fC −→←− f≥C : i.
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There are other adjunctions between f≥C and fC. We can exhibit i, the inclusion functor, as the left adjoint.

i : f≥C fC :ζ .

The functor ζ simply forgets the filtration information in filtration degrees p < 0 so that the composite functor iζ on
a filtered chain complex A is setting F−1iζA = 0 and FpiζA = FpA for higher p with the same underlying chain
complex. The e�ect of ζ on a cycle Zr(p, p+ n) ∈ fC is the identity if p ≥ r or a shortening (or concertina) of the
cycle to Zp(p, p+ n) otherwise where we interpret these latter cycles in f≥C.

The functor ζ is also a left adjoint to the functor η which given an A ∈ f≥C has ηA ∈ fC as having the same
underlying chain complex with the same filtration in non-negative degrees and where FpηA = F0A for all p ≤ 0.

Lastly η is also left adjoint to a functor we denote ν : fC → f≥C. On an A ∈ fC the functor ν has the same
filtration for positive filtration degrees however F0νA = ∩p<0FpA.

We then have a chain of adjunctions filtered chain complexes and non-negatively bounded filtered chain complexes:

q a i a ζ a η a ν.

The author has been unable to show that the S-model structure on fC transfers, either by Theorem 1.4.4.1 or Theo-
rem 3.12.0.1, along any of these adjunctions. Instead then to show existence of the remaining model structures (f≥C)S
we follow the proof method of [CELW19] with an appropriate choice of generating cofibrations and acyclic cofibrations.
We do so first for S = {r} and then construct all S-model structures as was done for the (fC)S .

Definition 3.12.3.2. We denote by I≥r and J≥r the sets of morphisms given by:

I≥r := q {Zr+1(p, n)→ Br+1(p, n)}
J≥r := {0→ Zr(p, n)}p≥r

We have then restricted our set of r-cycles by taking those which live in filtration degree 0 or greater and truncated
the generating cofibrations. For those generating cofibration with p ≥ r + 1 this has no e�ect. Otherwise they are
altered so as to introduce instead morphisms of the form: (

Rn(p)

)
(
Rn−1

(p+r) Rn(p) ⊕R
n
(p−1)

)∆

i1

when r + 1 > p ≥ 1. When we have p = 0 we obtain the new generating cofibration:(
Rn(p)

)
(
Rn−1

(p+r) Rn(p)

)1
i1

and for 0 > p ≥ −r we obtain simply:
0

(
Rn−1

(p+r)

) .

All smaller p result in the morphism 0: 0→ 0. As for the r-model structure these are easily seen to be the representing
objects for the r-cycles and r-boundaries whose quotient gives the r-page of the associated spectral sequences. We now
need to show a similar sequence of lemmas as in [CELW19] used to prove a model category structure hold. Recall the
morphism ϕr : Zr(p, n)→ Br(p, n) representing the inclusion of boundary elements into cycle elements.

Definition 3.12.3.3. We writeZ≥r (p, n) := qZr(p, n) andB≥r (p, n) := qBr(p, n). We also abuse notation and denote
by ϕr the morphism qϕr .
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Lemma 3.12.3.4. Pushouts of the generating cofibrations yield either 0 → Zr+1(p, n) for p ≥ r + 1 or the morphism
0→ Rn(p) for 0 ≤ p ≤ r.

Definition 3.12.3.5. We say a morphism f : A → B of f≥C is Kp,p+n-surjective if there exist all lifts of diagrams of
the form:

0 A

Rn(p) B

f .

Corollary 3.12.3.6. Any morphism f ∈ I≥r -Inj satisfies Zp,p+∗r+1 -surjectivity for p ≥ r + 1 and Kp,p+∗-surjectivity for
r ≥ p ≥ 0.

Definition 3.12.3.7. For A ∈ f≥C we define the R-modules ZKp,p+n
r+1 (A) := Hom(Z≥r+1(p, n), A) where we take

the Hom objects as R-modules. Similarly we define the R-modules BKp,p+n
r+1 (A) := Hom(B≥r+1(p, n), A)

These give the (r + 1)-cycle and boundary objects in the bounded context of f≥C whose quotient gives the
(r + 1)-page of the associated spectral sequence. Explicitly then these are given by

ZKp,p+n
r+1 (A) =

{
Hom(Zr+1(p, n), A), for p ≥ r + 1
Hom(Rn(p), A), for 0 ≤ p ≤ r

for the former and for the latter we have

BKp,p+n
r+1 (A) =


Hom(Br+1(p, n), A), for p ≥ r + 1

Hom(Rn−1
(p+r)

i1−→ Rn(p) ⊕R
n
(p−1), A), for 1 ≤ p ≤ r

Hom(Rn−1
(p+r)

1−→ Rn(p), A), for p = 0.

Lemma 3.12.3.8 ([CELW19, Lemma 2.8]). For r ≥ 0 and f : A→ B a morphism of f≥C the following are equivalent:

1. the maps ZKr(f) and ZKr+1(f) are bidegree-wise surjective, and

2. the maps ZKr(f) and Er+1(f) are bidegree-wise surjective.

Proof. This is shown in much the same way as in [CELW19].

Proposition 3.12.3.9 ([CELW19, Proposition 3.11]). A morphism f of f≥C is J≥r -Inj if and only ifZp,p+nr (f) is surjective
for all p ≥ r and all n.

Proposition 3.12.3.10 ([CELW19, Proposition 3.12]). We have I≥r -Inj = J≥r -Inj ∩ Er .

Proof. The proof is much the same as in [CELW19] with care taken for those cycle and boundary objects which have
become truncated.

Take an f : A → B which is I≥r -Inj and therefore satisfies Zp,p+∗r+1 -surjectivity for p ≥ r + 1 and Kp,p+∗-
surjectivity for 0 ≤ p ≤ r by Corollary 3.12.3.6. In the following diagram:

A

Z≥r+1(p, n) B≥r+1(p, n) B

f
γ

g

ψ

the lift γ exists by Corollary 3.12.3.6, and then so too does the lift ψ by I≥r -injectivity. This shows that f ∈ J≥r -Inj.
Since f is Zp,p+∗r+1 -surjectivity for p ≥ r+ 1 andKp,p+∗-surjectivity for 0 ≤ p ≤ r by Corollary 3.12.3.6 it is then also
Er+1-bidegree-wise surjective. We check that Er+1(f) is also bidegree-wise injective. Let [a] be a class in Er+1(A)
represented by an a ∈ ZKr+1(A) such that Er+1(f)([a]) = 0 i.e. that [fa] = 0 so there is a boundary element
of BKr+1(B) whose image under ϕr is f(a). Write b and c for the cycle components of this boundary image of
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BKr+1(B) noting that for b we might have either db = 0 if 1 ≤ p ≤ r or b = 0 when p = 0 so that f(a) = b+ dc
There is then a commuative diagram of the form

Z≥r+1(p, n) A

B≥r+1(p, n) B

ϕr+1

a

f

b+dc

b′+dc′ (3.10)

for which a lift exists since f is I≥r -Inj with b′ again perhaps having db′ = 0 or b′ = 0 for the same filtration indices.
This shows injectivity of Er+1(f).

We now wish to show that if f ∈ J≥r -Inj ∩ Er then f ∈ I≥r -Inj. Given a solid diagram of the form of
Equation (3.10) we demonstrate existence of a lift. Take a, b and c as above with similar restrictions according to
filtration degree. Since f ∈ Er we have by injectivity on the (r + 1)-page that [a] = 0 so that a ∈ BKp,p+n(A) and
we write a = b′ + dc′ as before although note these are not necessarily lifts of b and c yet. We then have the equation
b−f(b′) = d(f(c′)−c) which shows the element f(c′)−c is an element ofZKp+r,p+r+n−1(B). By Lemma 3.12.3.8
we can lift this to an element u of ZKp+r,p+r+n−1

r+1 (A) so that f(u) = f(c′)− c and b− f(b′) = df(u) = f(du).
Setting β = b′ + du and γ = c′ − u gives a lift of the element of BK .

Proposition 3.12.3.11 ([CELW19, Proposition 3.13]). For all r ≥ 0 and all 0 ≤ k ≤ r we have J≥r -Cof ⊆ Er .

Proof. The proof is identical to that of [CELW19] noting that their functorMr restricts to an endo-functor on f≥C
which enjoys the same properties as that on fC.

Theorem 3.12.3.12 (Theorem 3.14). For every r ≥ 0 the category f≥C admits a right proper cofibrantly generated model
structures whose:

• weak equivalences are the Er-quasi-isomorphisms,

• fibrations are morphisms that are Zp,p+nr -surjective for p ≥ r and all n, and

• generating cofibrations and generating acyclic cofibrations are given by I≥r and J≥r respectively.

Proof. We verify conditions 1–5 of Theorem 1.4.2.9. Condition 1 is clear, condition 2 follows since all elements of f≥C
are small via a similar proof as in Lemma 1.2.1.16, condition 3 follows from Proposition 3.12.3.11 and J≥r -Cell ⊆
J≥r -Cof ⊆ I≥r -Cof where the last inclusion follows since I≥r -Inj ⊆ J≥r -Inj by Proposition 3.12.3.10. Conditions
4 and 5 follows from Proposition 3.12.3.10. This gives a right proper (since every object is fibrant) cofibrantly generated
model category as claimed.

From these we can, as in the unbounded filtration setting, obtain S-model structures on f≥C.

Definition 3.12.3.13. Let S be a subset of {0, 1, 2 . . . , r} containing r. We define the sets I≥S and J≥S of morphisms of
f≥C as follows:

I≥S := I≥r ∪
⋃
s∈S

J≥s ,

J≥S :=
⋃
s∈S

J≥s .

Lemma 3.12.3.14. We have I≥S -Inj = J≥S -Inj ∩ Er .

Proof. The third inequality in the following is the result I≥r -Inj = J≥r -Inj ∩ Er for the r-model structure on f≥C.

I≥s =

(
I≥r ∪

⋃
s∈S

J≥s

)
-Inj

= I≥r -Inj ∩
⋂
s∈S

J≥s -Inj

= (J≥r -Inj ∩ Er) ∩
⋂
s∈S

J≥s -Inj

= J≥S -Inj ∩ Er .
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The proof of the following is then much the same as for the S-model structure on fC.

Theorem 3.12.3.15. For every subset S ⊆ {0, 1, 2, . . . , r} containing r the category f≥C admits a right proper cofibrantly
generated model structures, which we denote (f≥C)S , whose:

1. weak equivalences are the Er-quasi-isomorphisms,

2. fibrations are morphisms that for all s ∈ S are Zp,p+ns -surjective for p ≥ s and all n, and

3. generating cofibrations and generating acyclic cofibrations are given by I≥S and J≥S respectively.

Furthermore (f≥C)S is a finitely generated model category.
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CHAPTER 4
Cofibrancy in (fC)r

In this section we consider cofibrancy primarily in the model structure (fC)r with some interpretations for (fC)S
more generally. Whilst we do not classify all cofibrant objects and cofibrations owing to di�culties involving the
filtration we do classify those whose filtration is bounded in a suitable sense. We briefly recall how cofibrations in
the projective model structure on unbounded chain complexes are classified. The full details of this can be found in
[AFHnt] or [Hov99, §2.3] for a published account.

1. Firstly one considers for a cofibrant object lifts against the acyclic surjection of chain complexes from a disc
object on N to a disc object on M coming from a surjection of R-modules N �M . Necessary existence of a
lift shows the cofibrant chain complex is degreewise projective.

2. Secondly one has, for any acyclic complexK , an acyclic surjection from the cone onK toK which the cofibrant
object necessarily lifts against.

3. Thirdly these two restrictions on an object X , i.e. degreewise projective and has all lifts against C(K)→ ΣK
for any acyclic K can be shown to be su�cient for X to be cofibrant: for a lifting problem of X against an
acylic surjection E

∼
� B one forms lifts degreewise irrespective of compatibility with the di�erential using

the degreewise projective assumption and then by considering the di�erence of such a lift with the di�erentials
dh − hd which lands in the shift of the kernel K of E → B one can correct for the discrepancy of dh − hd
not being 0 using the second condition that X lifts against C(K)→ ΣK .

This then gives a classification of cofibrant objects. In the bounded setting one can completely remove the second
condition involving all lifts against C(K)→ ΣK for acyclic K since the homotopical correction can be acheived via
an inductive argument starting in homological degree 0. We can then continue the classification to all cofibrations as
follows.

4. By considering lifting problems of a cofibration, A→ B, against the surjection from a disc on N to 0 one can
show that the cofibration is necessarily a degreewise split inclusion of R-modules.

5. Next note that the pushout of a cofibration is a cofibration hence the cokernel C of A → B is cofibrant and
necessarily satisfies the classification conditions above.

6. By the degreewise split inclusion condition we can rewrite the cofibration as the inclusion of A into the twisted
direct sum A⊕τ C ∼= B for some twisted di�erential τ : C → A.

7. Given then a morphism of the form of the inclusion of a chain complex A into A⊕τ C where C is cofibrant
one can constuct a lift against an acyclic fibration Y → X ; since C is cofibrant it can be lifted against the
acyclic fibration irrespective of the twist di�erential τ to some morphism h, note one already has a lift of the A
portion of A⊕τ C and there is no choice in the matter. Next consider the di�erence of this lift of C and the
di�erential, i.e. dXh− (jτ +hdC) where j is the map fromA to Y . Again this lands in the (shift of the) kernel
K of Y → X and one uses existence of lifts of C against C(K)→ ΣK to provide a homotopical correction
for the incompatibility of the lift with the di�erential.
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This then classifies all cofibrations in the projective model structure on unbounded chain complexes. In this section we
follow this structure of proof to classify those cofibrations whose cokernel has a bounded assumption on the filtration.
The author has been unable to remove this assumption in general however note there are cofibrant objects that don’t
satisfy this assumption. The reader should notice obvious replacements of disc objects to analogous r-disc objects, cones
to r-cones and surjectivity conditions toZr-surjectivity conditions. The classification of such cofibrant objects is given
as Proposition 4.1.0.16 where all but condition 5 are neccessary conditions to be cofibrant. Note the key di�erences
when a filtration is involved for the (fC)r model structures where we now have that the graded pieces are projective
and that the di�erential suppreses the filtration by r.

The main results (analogous to those in chain complexes) are listed below. We show conditions required of a
cofibrant object in (fC)r .

Lemma 4.1.0.1. A cofibrant filtered chain complex A in the r-model structure on fC satisfies the following conditions:

1. An

FpAn
is a projective R-module for all p, n ∈ Z,

2. An is a projective R-module for all n ∈ Z,

3. the filtration on A is exhaustive, and

4. for a pure element a ∈ FpAn we have da ∈ Fp−rAn+1.

Following this we show that with an added assumption on the boundedness of the filtration that this is su�cient
to be cofibrant.

Proposition 4.1.0.16. Given a filtered chain complex A such that the following conditions hold:

1. the graded pieces GrpAn are projective for all p, n ∈ Z,

2. for a pure element a ∈ FpAn we have da ∈ Fp−rAn+1 for all p, n ∈ Z,

3. the filtration on A is exhaustive, and

4. whenever we have an r-acyclic filtered chain complex K and a morphism A → ΣrK there is a lift in the following
diagram:

Cr (K)

A ΣrK

,

5. and further such that for all n there is a p(n) ∈ Z such that Fp(n)A
n = 0 (i.e. the filtration is bounded below but not

necessarily uniformly),

then A is cofibrant in the r-model structure on fC.

We also note that this added condition is not necessary of a cofibrant object of (fC)r . In Chapter 5 we give a
cofibrant replacement of the unit which does not satisfy this boundedness assumption. As in chain complexes we can
show that cofibrations are degreewise split inclusions which are also strict giving an inclusion into a twisted direct
sum interpretation of cofibrations.

Lemma 4.2.0.3. An r-cofibration i : A→ B is such that B is isomorphic to a twisted direct sum of A and the cokernel of i as
filtered chain complexes.

With an added condition of the twist map τ of the twisted direct sum above being an r-suppressive di�erential,
called an r-supressive inclusion, we can give a subclass of the r-cofibrations.

Lemma 4.2.0.6. An r-supressive inclusion i : A −→ B whose cokernel C is cofibrant and such that for any n there is a p(n)
with Fp(n)C

n = 0 is an r-cofibration.

We also give a result on the s-pages of a cofibrant A ∈ (fC)S for s ≤ r by considering the cellular objects and
using the fact that all cofibrations are retracts of cellular cofibrations.

Proposition 4.1.0.14. Let A be a cofibrant object of (fC)S . Then for k < r and k /∈ S the k-page di�erential dk of A is 0.
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This result then says for a cofibrant object A of (fC)S and k /∈ S with k < r that EkA ∼= Ek+1A. Lastly
we show that the décalage functor preserves cofibrant objects for appropriate S-model structures. The shift functor
automatically does so as it is a left Quillen functor.

Lemma 4.3.0.5. Let B be a cofibrant object of (fC)S+l, then DeclB is a cofibrant object in (fC)S .

4.1 Cofibrancy in filtered chain complexes

We give necessary conditions for an object to be cofibrant in the r-model structure on fC and show, with an added
boundedness assumption on the filtration, that these conditions are su�cient to be cofibrant. Our list of necessary
conditions is given in the following lemma. Unless stated otherwise all morphisms are morphisms of filtered chain
complexes.

Lemma 4.1.0.1. A cofibrant filtered chain complex A in the r-model structure on fC satisfies the following conditions:

1. An

FpAn
is a projective R-module for all p, n ∈ Z,

2. An is a projective R-module for all n ∈ Z,

3. the filtration on A is exhaustive, and

4. for a pure element a ∈ FpAn we have da ∈ Fp−rAn+1.

We know of no such condition regarding the filtration being Hausdor�. Recall the notation of Notation 1.3.2.6.
We will make use of the following fibrations.

Definition 4.1.0.2. Given a surjection of R-modules π : N −→M we define σp,p+ns to be the morphism given by

σp,p+ns : Zs+1(p+ s+ 1, p+ s+ 1 + n− 1)(N) −→ Zs(p+ s, p+ s+ n− 1)(M)

which is given in homological degree n by π at and above filtration degree p and 0 otherwise, and in homological
degree n− 1 by 0 in filtration degree p+ s and π in all higher filtration degrees.

(
Nn−1

(p+s+1) Nn
(p)

)
(
Nn−1

(p+s) Nn
(p)

)π π

Remark 4.1.0.3. These are similar to the morphisms αp,p+ns of Definition 3.3.0.1 with R-modules M and N instead of
R.

Lemma 4.1.0.4. For 0 ≤ s < r the morphims σp,p+ns are r-acyclic fibrations.

Proof. The domain and codomain are s+ 1 and s-cycles respectively on some R-module so are r-acyclic when s < r
hence the morphism is a weak equivalence. It is also an r-fibration since all elements in homological degree n are
r-cycles and π is surjective, and in homological degree n− 1 there are no r-cycles except 0 until the (p+ r)-filtered
part, but since s+ 1 ≤ r any r-cycle of the codomain is in the image of an r-cycle of the domain.

We also have the following result.

Lemma 4.1.0.5. For 0 ≤ s ≤ r and surjection π : N −→M the morphism

ρp,p+ns := Zs(p+ s, p+ s+ n− 1)(π) : Zs(p+ s, p+ s+ n− 1)(N) −→ Zs(p+ s, p+ s+ n− 1)(M)

is an r-acyclic fibration.
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Lemma 4.1.0.6. A morphism A→ Zs(p+ s, p+ s+ n− 1)(N) is equivalent to a morphism of R-modules

An

Fp−1An + dFp+s−1An−1
−→ N .

In particular when s = 0 we have A→ Zs(p+ s, p+ s+ n− 1)(N) is equivalent to a morphism of R-modules

An

Fp−1An
−→ N .

Proof. Such a map is of the formA −→ (Nn−1
(p+s) → Nn

(p)). In cohomological degreen this is then a mapAn/Fp−1A
n →

N . In cohomological degreen−1 we have the image ofF(p+s−1)A
n−1 is 0 inNn−1

(p+s) and so the image ofdF(p+s−1)A
n−1

is 0 in Nn
(p). Together these imply the lemma.

Lemma 4.1.0.7. If A is cofibrant in the r-model structure on fC then An

FpAn
is projective for all p, n ∈ Z.

Proof. Given a surjection π : N →M of R-modules we consider diagrams of the form:

Z0(p, p+ n− 1)(N)

A Z0(p, p+ n− 1)(M)

ρp,p+n
0

which necessarily have a lift since ρp,p+n0 is an r-acyclic fibration by Lemma 4.1.0.5 andA is cofibrant. By Lemma 4.1.0.6
this diagram is then equivalent to one of the form

N

An

Fp−1An
M

π

which given π was an arbitrary surjection shows that the An

Fp−1An
are projective.

Lemma 4.1.0.8. If A is cofibrant in the r-model structure on fC then An is projective for all n ∈ Z.

Proof. The proof is the same as that of Lemma 4.1.0.7 except we take p = −∞, so the 0-cycles live in all filtration
degrees.

Lemma 4.1.0.9. If A is cofibrant in the r-model structure on fC then the filtration on A is exhaustive.

Proof. Given the filtered chain complexAwe let Ā = ∪pFpA, i.e. the union of all filtered pieces so that Ā is exhaustive.
Note that the inclusion Ā → A is an r-acyclic fibration, indeed the definiton of being an r-weak equivalence and
r-fibration only rely on the filtered parts, never on any element of A\Ā. We then consider the lifting problem

Ā

A A
id

for which the lift must exist sinceA is cofibrant. This factorises the identity map through the union of its filtered parts
and so A = Ā.

The following sequence of lemmas show which di�erentials of a cofibrant object of (fC)S must be 0.

Lemma 4.1.0.10. Given a filtered chain complex (or bicomplex)B whose k-page di�erential is 0 and a filtered chain complex (or
bicomplex) A which is a retract of B then the k-page di�erential of A is also 0.
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Proof. Given A is a retract of B we have the diagram

A B A

id

from which we obtain the diagram of k-pages

EkA EkB EkA

EkA EkB A

dAk dBk dAk

whose horizontal composites are the identity and di�erential dBk = 0. A diagram chase shows that dAk = 0 too.

Lemma 4.1.0.11. SupposeA has dk = 0 with k < r, then so too does the pushout ofA by a morphism of the formZr+1(p, p+
n)→ Br+1(p, p+ n).

Proof. This can be seen by considering the s-cycle description ofA′ of Lemma 3.7.1.1. By commutativity of the diagram:

Zp,p+n
k (A)

Bp,p+n
k (A)

Zp−k,p−k+n+1
k (A)

Bp−k,p−k+n+1
k (A)

Zp,p+n
k (A′)

Bp,p+n
k (A′)

Zp−k,p−k+n+1
k (A′)

Bp−k,p−k+n+1
k (A′)

dk

dk

δk remains 0 on those k-cycles of A in A′ we need only consider new k-cycles. The pushout introduces α and γ,
when considered as k-cycles representing a class of Ep−1,p−1+n

k (A′) and Ep+r,p+r+n−1
k (A′) respectively for k < r

one observes that under the di�erential dk these classes become 0 since for example dα ∈ Zp−s,p−s+n+1
s−1 (A) ⊆

Bp−s+1,p−s+1+n+1
s (A′) and similarly for dγ with the appropriate indexing.

Lemma 4.1.0.12. Suppose A has dk = 0, then so too does the pushout of A by a morphism of the form 0→ Zs(p, p+ n) for
s 6= k.

Lemma 4.1.0.13. Suppose A has dk = 0 and we work in a model category (fC)S with k /∈ S and k ≤ r, then so too does a
relative IS-cell whose domain is A.

Proof. By Lemmas 4.1.0.11 and 4.1.0.12 we know that the pushout of a filtered chain complex with dk = 0 by a generating
cofibration in IS also has trivial k-page di�erential. It now remains to show a transfinite composition of such pushouts
preserves this property. We do so by transfinite induction [Sup60, §7.1], the base case is the statement that the filtered
chain complex A has trivial dk, the successor ordinal case is Lemmas 4.1.0.11 and 4.1.0.12 and it remains to show the
limit ordinal case. Suppose then λ is a limit ordinal and we have a λ sequence of filtered chain complexes such that
for each α < λ the filtered chain complex indexed by α has dk = 0. Given an element [x] of the k-page of the colimit
of the λ sequence we can represent this by some k-cycle in the colimit of the λ sequence. There are indexing ordinals
β, γ < λ with elements y and z respectively such that the image of y in the colimit is x, and is in the same filtration
degree, and that of z in the colimit is dx and of the same filtration degree. Taking the larger of these two ordinals we
have that (the image of) y is a k-cycle and since the k-page di�erential on this stage of the λ-sequence is 0 so too then
is that of [x] in the colimit, this proves the statement for limit ordinals.

Proposition 4.1.0.14. Let A be a cofibrant object of (fC)S . Then for k < r and k /∈ S the k-page di�erential dk of A is 0.

Proof. Any relative IS-cell object has dk = 0 for k /∈ S by Lemma 4.1.0.13. Since any cofibrantA in (fC)S is a retract
of an IS-cell object by Proposition 1.4.2.10 then the k-page di�erential of A is also 0 by Lemma 4.1.0.10.

Lemma 4.1.0.15. IfA is cofibrant in the r-model structure on fC then for a pure element a ∈ FpAn we have da ∈ Fp−rAn.
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Proof. By Proposition 4.1.0.14 the di�erentials ds = 0 for 0 ≤ s < r so that

GrpA
n = Ep,p+n0 A = Ep,p+n1 A = . . . = Ep,p+nr−1 A = Ep,p+nr A

and the first non-zero di�erential is on the r-page

δr : Ep,p+nr A = GrpA
n −→ Grn+1

p−r = Ep−r,p−r+n+1
r

and hence the di�erential d on A induces a morphism

d :
FpA

n

Fp−1An
−→ Fp−rA

n+1

Fp−r−1An+1

showing that the di�erential d maps a pure element a ∈ FpAn into Fp−rAn+1.

Proof of Lemma 4.1.0.1. The preceeding lemmas show the condition of Lemma 4.1.0.1.

Similar results of have already been observed in the work of Cirici [Cir12, Lemma 4.3.15] but only in the restricted
sense of their Er-cofibrant dgas [Cir12, Definition 4.3.14] built as colimits of KS-extensions of [Cir12, Definition 4.3.13].
TheseEr-cofibrant dgas are shown to have the left lifting property with respect to a class of r-acyclic fibrations, [Cir12,
Proposition 4.3.17].

With these necessary conditions on cofibrant objects of (fC)r established we show now that with an extra assump-
tion on the boundedness of the filtration, condition 5 in the following, that this is su�cient to be cofibrant. This is
then not a full classification of the cofibrant objects of fC. Indeed the cofibrant replacement of Definition 5.1.0.1 does
not satisfy condition 5 but is still cofibrant.

Recall the r-cone Cr construction Definition 1.6.0.12 and the r-suspension Σr of Definition 1.2.1.18.

Proposition 4.1.0.16. Given a filtered chain complex A such that the following conditions hold

1. the graded pieces GrpAn are projective for all p, n ∈ Z,

2. for a pure element a ∈ FpAn we have da ∈ Fp−rAn+1 for all p, n ∈ Z,

3. the filtration on A is exhaustive,

4. whenever we have an r-acyclic filtered chain complex K and a morphism A → ΣrK there is a lift in the following
diagram:

Cr (K)

A ΣrK

,

5. and further such that for all n there is a p(n) ∈ Z such that Fp(n)A
n = 0 (i.e. the filtration is bounded below but not

necessarily uniformly)

then A is cofibrant in the r-model structure on fC.

The proof of this is very similar to the classification of cofibrant objects in the (unbounded) projective model
structure of chain complexes. We obtain a lift of graded (filtered) R-modules using assumptions 1–3 and 5 and then
use the remaining assumption to correct this lift so it is compatible with the di�erentials.

We will use the following lemma implicitly for the proof.

Lemma 4.1.0.17. Given a morphism f : B −→ Y restricting to a map fA : A −→ X and short exact sequences

0 A B C 0

0 X Y Z 0

fA f f̃

with C and Z projective then for any splittings the map f is isomorphic to one of the form(
fA τ

0 f̃

)
: A⊕ C −→ X ⊕ Z

for some twist map τ : C −→ X and where fC is the induced map between the quotients C and Z .
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Proof. We consider a lifting problem of the form

Y

A X

π

f

(4.1)

where the morphism π is an r-acyclic fibration.
For each homological degree nwe splitAn into its graded pieces as follows. There is a p(n) such thatFp(n)A

n = 0
and we set p = p(n) + 1. There is then a short exact sequence of the form

0 −→ FpA
n −→ Fp+1A

n −→ Fp+1A
n

FpAn
−→ 0

in which the graded pieces are projective by assumption so we have a splitting

Fp+1A
n ∼= FpA

n ⊕ Fp+1A
n

FpAn

and inducting up we obtain for each k

Fp+kA
n ∼= FpA

n ⊕ Fp+1A
n

FpAn
⊕ Fp+2A

n

Fp+1An
⊕ . . .⊕ Fp+k−1A

n

Fp+k−2An
⊕ Fp+kA

n

Fp+k−1An

and further since the filtration is exhaustive we have

An ∼=
∞⊕
k=0

Fp+kA
n

Fp+k−1An
.

Consider then the di�erential d : An −→ An+1 between this graded piece presentation ofAn and a corresponding one
for An+1. By (repeated application of ) Lemma 4.1.0.17 the di�erential restricted to the pieces representing Fp+kAn

must have image in the graded pieces representing Fp+kAn+1, and by the second assumption a pure element in the
Fp+kA

n/Fp+k−1A
n has image in Fp+k−rAn+1/Fp+k−r−1A

n+1 so combining these two results we have that the
image of a graded piece Fp+kAn/Fp+k−1A

n has image in the graded pieces FqAn+1/Fq−1A
n+1 for q ≤ p+ k− r.

Consider then f restricted to a graded piece Fp+kAn/Fp+k−1A
n. Since elements of this graded piece thought of

as elements of A are r-cycles, in Zp+k,p+k+n
r A, so then too are their images under f . Since π is an r-fibration it is

Zr-bidegree-wise surjective so we can lift this restriction of the graded piece into Y using projectivity of the graded
piece and Zr-surjectivity. We do this for all graded pieces of the decomposition in all homological degrees irrespective
of each other. This gives a lift of graded R-modules compatible with filtration but not necessarily with the di�erential.
We denote this lift of filtered graded modules by G.

We now correct for the di�erential. Consider now the morphism

t := dYG−GdA : A −→ ΣY

which is indeed a morphism of filtered chain complexes, not just of graded filtered modules, since

tdA = dYGdA −GdAdA = dYGdA = −dΣYGdA = dΣY dYG− dΣYGdA = dΣY t .

Note too that since G is a lift (of graded filtered modules) we have πt = 0 and also since we have lifted using the
surjectivity of r-cycles everywhere we in fact have

t : A −→ ΣrK

where K is the kernel of π. Since π is an r-acyclic fibration its kernel is r-acyclic therefore so too is ΣrK and so, by
the final assumption, we have a lift in the following diagram:

Cr (K)

A ΣrK

T

t

.
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Unwrapping the definition of the cone object, Definition 1.6.0.12, we have that T is a morphism given (on the p-filtered
part) by

T =

(
t
T2

)
: FpA→ FpCr (K) = Fp−rK

n+1 ⊕ FpKn

and where the di�erential on the far right is given by

dCr(K) =

(
dΣrK 0

1 dK

)
=

(
−dK 0

1 dK

)
and so, since T is a morphism of filtered chain complexes, we have that:(

tdA

T2d
A

)
= TdA = dCr(K)T =

(
−dK 0

1 dK

)(
t
T2

)
=

(
−dKt

t+ dKT2

)
. (4.2)

We finally define our lift in Equation (4.1) to be g := G+ T2, where we interpret the image of T2 in Y since K ⊂ Y ,
which is certainly a morphism of graded filtered modules and the second equation in Equation (4.2) shows it commutes
with di�erentials. We have then shown that the object A with these assumptions lifts against any r-acyclic fibration
and so is r-cofibrant.

We include here an example demonstrating that a disc object in all filtration degrees is not cofibrant.

Example 4.1.0.18. By Z(−∞, n) we mean the chain complex Rn −→ Rn+1 whose R-modules are in all filtration
degrees. The filtered chain complexes Z(−∞, n) are not cofibrant in any of the model structures (fC)S . To see this
consider the lifting problem: ⊕

p∈ZZ0(p, n)

Z(−∞, n) Z(−∞, n)

ε∼

id

in which the horizontal morphism is the identity and the morphism ε is the idenity whenever possible. The morphism
ε is a 0-weak equivalence since its domain and codomain are both 0-acyclic and is also Zk-bidegree-wise surjective for
all k ≥ 0 so is therefore an acylic fibration in all (fC)S . The only morphism from Z(−∞, n) to

⊕
p∈ZZ0(p, n) is

the 0 morphism however so there is no lift and hence Z(−∞, n) is not cofibrant in any of the (fC)S .

4.2 Cofibrations in filtered chain complexes

We will show the class of maps of filtered chain complexes which are (cohomologically) degreewise split inclusions
A→ A⊕τ C with cofibrant cokernel C with a bounded filtration and such that the di�erential τ supresses filtration
by r are cofibrations. This is an imperfect characterisation due to the requirement that C have a bounded filtration.

Recall that we have already shown that cofibrations are strict inclusions, Lemmas 3.8.1.3 and 3.8.1.4. A consequence
of this then is that for an element of A the pure filtration degree cannot be decreased by the map i but only by the
di�erential of A.

Definition 4.2.0.1. The twisted direct sum of filtered chain complexes A and C , denoted A ⊕τ C , is a filtered chain
complex whose underlying filtered graded modules is the direct sum A⊕ C but whose di�erential is given by:

dA⊕τC :=

(
dA τ
0 dC

)
: A⊕ C −→ A⊕ C

and we call τ : C −→ A the twist map.

Note that since dA⊕τC is a di�erential we must have dA⊕τC◦dA⊕τC = 0 which holds if and only ifdAτ+τdC = 0.
This is, up to sign and shift, the r-cone of a morphism of filtered chain complexes given as [CELW19, Definition 3.5].
There is an inclusion of filtered chain complexes i : A −→ A⊕τ C and projection A⊕τ C → C .

Lemma 4.2.0.2. An r-cofibration, i : A −→ B, is a degree-wise split inclusion, after forgetting filtration, with cofibrant cokernel.
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Proof. LetC be the cokernel of i. The cokernel being cofibrant follows since the pushout of a cofibration is a cofibration.
For the spliting we have that Cn is projective so the following short exact sequence splits:

0 −→ An −→ Bn −→ Cn −→ 0 .

From this we have an isomorphism of filtered chain complexes between B and the twisted direct sum of A and C
over some maps τ : C −→ A (which shift degree).

B ∼= A⊕τ C ,

where the filtration on the twisted direct sum is induced from that of B.

Lemma 4.2.0.3. An r-cofibration i : A→ B is such that B is isomorphic to a twisted direct sum of A and the cokernel of i as
filtered chain complexes.

Proof. Write C for the cokernel, as a filtered chain complex, of i. Since C is cofibrant Cn is a projective R-module for
each n and so each short exact sequence of Lemma 4.2.0.2:

0 An B Cn 0
in qn

sn

splits, as R-module morphisms, so that Bn ∼= An ⊕ Cn as R-modules.

Bn A⊕ C

b (b− snqnb, qnb)

ina+ snc (a, c)

∼=

We can then equip An ⊕ Cn with a filtration induced from Bn by this isomorphism making an isomorphism of
filtered R-modules. This new filtration agrees with that on An: consider an (a, 0) ∈ Fp(An ⊕ Cn) ∼= Bn which
corresponds via the isomorphism to some b ∈ FpBn via b 7→ (b − snqnb, 0) = (b, 0) so that ina = b. Note that a
cofibration cannot decrease the pure filtration degree of an element since they are strict inclusions by Lemma 3.8.1.4
so that a ∈ FpAn and therefore the filtration on An agrees with that on An ⊕ Cn.

We then have an induced di�erential d : An⊕Cn → An+1⊕Cn+1 from that ofB which preserves the filtration
and squares to zero, since dB does. Writing ψn : Bn → An⊕Cn for this isomorphism and ϕn for its inverse we have:

d(a, c) = ψn+1(dB(ϕn(a, c)))

= ψn+1(dB(ina+ snc))

=
(
dB(ina+ snc)− sn+1qn+1dB(ina+ snc), qn+1dB(ina+ snc)

)
=
(
in+1dBa+ dBsnc− sn+1qn+1in+1dBa− sn+1qn+1dBsnc, qn+1in+1dBa+ qn+1dBsnc)

)
=
(
in+1dBa+ dBsnc− sn+1qn+1dBsnc, qn+1dBsnc

)
.

However both i and q are morphisms of filtered chain complexes so in particular

dCc = dCqnsnc = qn+1dBsnc

so that we have d(a, c) =
(
dAa+ dBsnc− sn+1qn+1dBsnc, dCc

)
and defining τ by

τn : Cn −→ An+1

c 7−→ dBsnc− sn+1qn+1dBsnc

we have that as filtered chain complexesB is isomorphic to a twisted direct sumA⊕τ C of the filtered chain complexes
A and C .

Definition 4.2.0.4. A (cohomologically) degree-wise split inclusion i : A −→ B is an r-supressive inclusion if the maps
τ suppress filtration by r.
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Definition 4.2.0.5. An r-cofibration i is an r-suppressive cofibration if i is an r-supressive inclusion.

Note that since all cofibrations are strict inclusions this is really just requiring the splitting with the additional
condition on τ . We will show the following which provides a subclass of the class of r-cofibrations.

Lemma 4.2.0.6. An r-supressive inclusion i : A −→ B whose cokernelC is r-cofibrant and such that for any n there is a p(n)
with Fp(n)C

n = 0 is an r-cofibration.

We do not know whether all r-cofibrations are necessarily r-suppressive. The obvious choices of r-acyclic fibrations
to use to prove such a statement, involving either path objects or cone objects, do not appear to impose the suppressive
condition on the cofibration. We also do not have a counterexample to this statement. The author suspects that all
r-cofibrations are necessarily suppressive.

Proof. Given such an i and an r-acyclic fibration f : Y −→ X we consider a lifting problem of the form:

A Y

A⊕τ C X

i

ϕ

f .

As for the proof of Proposition 4.1.0.16 since C is cofibrant we can write each Cn as a direct sum of its graded pieces
starting at some filtration level p = p(n) + 1:

Cn ∼=
∞⊕
k=0

Fp+kC
n

Fp+k−1Cn
. (4.3)

Since C is cofibrant dC suppresses filtration by r and so too does the twist map τ by the suppressive inclusion
assumption, so the di�erential dA⊕τC applied to an element (0, c), where c is an element of one of the graded pieces
of Equation (4.3), also suppresses filtration by r. So such a c ∈ FqCn/Fq−1C

n has image in Zq,q+nr (X). By r-cycle
surjectivity of f we can lift the image of each graded piece (for each filtration and cohomological indexing) of C using
these decompositions into r-cycles of Y . Denote this lift by G and note it is only a lift of filtered R-modules and is
not necessarily compatible with any di�erentials. We next define tn : Cn → Y n+1 by:

t := dYG−GdC − ϕτ .

As in the proof of Proposition 4.1.0.16 the image of t is in the kernel K = ker(f : Y → X) and dKt + tdC = 0
so that it is a map into the suspension of K , we need to check it is a map into the r-suspension of K however. This
follows since every c ∈ Cn is an r-cycle, G lifts r-cycles, and τ supresses filtration by r. Since dC and τ both suppress
filtration by p we have t is a map of filtered chain complexes fromC into ΣrK . By cofibrancy ofC the lifting problem

Cr (K)

C ΣrK
t

has a solution T =

(
t
T2

)
. The required lift of A ⊕τ C is then given by h :=

(
ϕ G+ T2

)
. We have G + T2

is a morphism of filtered R-modules which is a lift of A ⊕τ C → X since T2 has image in the kernel, and using
T2d

C = t+ dKT2 we can show it commutes with di�erentials:

dY h = dY
(
ϕ G+ T2

)
=
(
dY ϕ dY (G+ T2)

)
=
(
ϕdA dYG+ dKT2

)
=
(
ϕdA (t+GdC + ϕτ) + (T2d

C − t)
)

=
(
ϕdA GdC + ϕτ + T2d

C
)

=
(
ϕ G+ T2

)(dA τ
0 dC

)
=
(
ϕ G+ T2

)
dA⊕τC ,

which shows this lift is indeed a lift of filtered chain complexes.
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4.3 Shift-décalage adjunction on cofibrant objects

In [Cir12, Lemma 4.3.16] Cirici shows that the shift-décalage adjunction restricts to functors between their notions of
Er-cofibrant and Er+1-cofibrant objects. In this section we show a similar results holds for the cofibrant objects of
the model categories (fC)S .

Consider the shift-décalage adjunction of Lemma 1.3.3.2 and recall the terminology of an object being l-supressive
Definition 1.6.0.15. The shift functors Sl are inclusions of filtered chain complexes into the full subcategory of filtered
chain complexes consisting of the l-supressive objects. The décalage functor conversely is not an inclusion on filtered
chains, for example we have

Dec (Z0(p, p+ n)) ∼= Dec (Z1(p+ 1, p+ 1 + n)) ,

whilst Z0(p, p + n) � Z1(p + 1, p + 1 + n) so that the adjunction is not an equivalence of categories. However
restricting to the full subcategory of l-supressive objects the adjunction becomes an equivalence.

Definition 4.3.0.1. The full subcategory of fC consisting of the l-supressive objects is denoted by Suppl-fC.

Slightly more generally we have the categories of l-supressive objects and (l+ k)-supressive objects are equivalent.

Lemma 4.3.0.2. There is an equivalence of categories:

Sl : Suppk-fC Suppk+l-fC :Decl .

Proof. Given a k-supressive objectA we have for any a ∈ FpAn that da ∈ Fp−kAn+1. Applying Sl toA we have that
a ∈ FpAn = Fp−lnS

lAn and da ∈ Fp−kAn+1 = Fp−k−l(n+1)S
lAn+1 = Fp−ln−(k+l)S

lAn+1. So that every
element of SlAn is now a (k + l)-cycle, hence (k + l)-supressive.

Similarly suppose B is (k + l)-supressive so that for any b ∈ FpBn we have that db ∈ Fp−(k+l)B
n+1.

b ∈ FpBn = Zp,p+nl (B)

= Fp+lnDeclBn

and we have

db ∈ Fp−(k+l)B
n = Z

p−(k+l),p−(k+l)+n+1
l (B)

= Fp+l(n+1)−(k+l)DeclBn

= Fp+ln−kDeclBn

which shows that any element of DeclBn is a k-cycle, hence DeclB is k-supressive.
We already know that Decl ◦ Sl = id we now check that Sl ◦Decl = id. Take B to be (k + l)-supressive, then:

FpS
l ◦DeclBn = Fp+lnDeclBn

= Zp+ln−ln,p+ln−ln+n
l Bn

= Zp,p+nl Bn

= Bn

where the last equality follows since B is (k + l)-supressive and so l-supressive. So then Sl and Decl are inverse
functors on these full subcategories and we have an equivalence of categories.

Corollary 4.3.0.3. There is an equivalence of categories between filtered chain complexes and l-supressive objects.

An l-supressive filtered chain complex is then precisely a filtered chain complex which is in the image of the functor
Sl. Recall now that cofibrant objects in (fC)S are at least l-supressive where l is the smallest element of S. We’d now
like to establish a similar result showing an equivalence of categories between the cofibrant objects of two of the model
categories of Theorem 3.1.0.2. We know the shift functors already preserve cofibrants objects so we must show that so
too does décalage to some extent.

Lemma 4.3.0.4. Suppose a morphism ρ of filtered chain complexes is Zs-surjective. Then Slρ is Zs+l-surjective.
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Proof. Consider Slρ : SlA→ SlB and an element b ∈ Zp,p+ns+l (SlB), so that

b ∈ FpSlBn = Fp+lnB
n

db ∈ Fp−(s+l)S
lBn+1 = Fp−(s+l)+l(n+1)B

n+1 = Fp+ln−sB
n+1

but since ρ is Zs-surjective we can find a Zs-lift of b ∈ B and this gives a Zs+l-lift of b in SlB.

Recall the notation S + l of Notation 3.5.0.1 for S a set and l ∈ N.

Lemma 4.3.0.5. Let B be a cofibrant object of (fC)S+l, then DeclB is a cofibrant object in (fC)S .

Proof. Consider the lifting problem
Y

DeclB X

ρ∼ (4.4)

where p is an acyclic fibration of (fC)S . Applying Sl to the diagram gives

SlY

B SlX

Slρ∼ (4.5)

where we have used Lemma 4.3.0.2 with SlDeclB = B sinceB is l-supressive. Further the morphism Slρ is an acyclic
fibration now of (fC)S+l; it is a fibration since Sl sends Zk-surjections to Zk+l-surjections by Lemma 4.3.0.4 and
an (r + l)-weak equivalence by [CELW19, Lemma 3.27] which shows Sl sends r-weak equivalences to (r + l)-weak
equivalences. Hence since B is cofibrant in (fC)S+l there is a lift in Equation (4.5). Applying Decl to this lift gives a
lift in Equation (4.4).
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CHAPTER 5
S-Model Structure of Filtered Chain

Complexes is Monoidal

In this chapter we study the interaction of the S-model category structures (fC)S of Theorem 3.1.0.2 with the
monoidal product on filtered chain complexes Definition 1.2.1.11. We will show that they satisfy the conditions, the
pushout-product axiom and the unit axiom, of a monoidal model category structure of Definition 1.4.5.2 on (fC)S .
Hence we obtain an induced monoidal structure on the homotoy category Ho (fC)S with unit given by a cofibrant
replacement of the unit. The pertinent results for establishing this are listed below.

Example 5.1.0.7. The monoidal unit in (fC)S is not cofibrant.

Corollary 5.1.0.6. A cofibrant replacement of the monoidal unit in (fC)S , with r = maxS, is given by

QrI :=

 ∞⊕
i=0

R0
(−i) −→

∞⊕
j=1

R1
(−r−j)

 .

where the di�erential is given by mapping each R0
(−i) diagonally onto the copies of R indexed as R1

(−r−i) and R1
(−r−i−1) for

i ≥ 1 and by the identity map from R0
(0) to R1

(−r−1).

Proposition 5.2.0.2. The composite function QrI ⊗ A −→ I ⊗ A −→ A is an r-weak equivalence for all (not necessarily
cofibrant) A.

Our characterisation of a subclass of cofibrations of Lemma 4.2.0.6 is su�cient to show that pushout-products of
generating r-cofibrations are also r-cofibrations. This result constitutes most of this chapter and verifying pushout-
products of a generating r-cofibration with a morphism of the form 0 → Zs(∗, ∗) are cofibrations is comparitively
straightforward.

Lemma 5.3.2.1. The pushout-product of i : Zr+1(p, n) → Br+1(p, n) and j : Zr+1(q,m) → Br+1(q,m) in (fC)S
where maxS = r is a cofibration.

Theorem 5.3.2.2. Each of the model categories (fC)S of Theorem 3.1.0.2 is a monoidal model category.

Following work of Schwede and Shipley [SS00] we will then in Section 5.4 use the monoidal model structure
in combination with an additional axiom, the monoid axiom Definition 1.4.6.1, to show that the category of filtered
di�erential graded algebras can be equipped with an S-model structure. One can also inferS-model category structures
on modules over a filtered di�erential graded algebra from the same monoid axiom.

Corollary 5.4.0.4. The model categories (fC)S satisfy the monoid axiom.
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This implies existence of various model categories of module objects, Theorems 5.4.0.5 and 5.4.0.6. Furthermore
we have the following theorem in which forA a filtered di�erential graded-commutative algebra we let TA denote the
free A-algebra functor.

Theorem 5.4.0.7. For a fixed r, subset S ⊆ {0, 1, . . . , r − 1, r} containing r and filtered di�erential graded-commutative
algebra A there is a cofibrantly generated model category structure on A-algebras whose weak equivalences are the r-quasi-
isomorphisms and fibrations those morphisms that are surjective on all s-cycles with s ∈ S. The generating cofibrations are given
by TAIS and generating acyclic cofibrations by TAJS .

We conclude with a section using the work of Muro, [Mur15], to show that the r-model structures can be adapted,
to Quillen equivalent ones, in which the unit is cofibrant Section 5.5.

Corollary 5.5.0.6. For every r ≥ 0 and every subset S ⊆ {0, 1, . . . , r} including r, the category fC admits a left and right

proper cofibrantly generated monoidal model structure, which we denote
(
f̃C
)
S

, satisfying the monoid axiom where:

1. weak equivalences are Er-quasi-isomorphisms,

2. ĨS := IS ∪ {0 → R0
(0)} and J̃S := JS ∪ {j ◦ iQrI : QrI → D} are the sets of generating cofibrations and

generating trivial cofibrations respectively.

One can also make a more symmetrical constrution via the same proof of Muro by forcing all Rn(p) to be cofibrant.

Corollary 5.5.0.9. For every r ≥ 0 and every subset S ⊆ {0, 1, . . . , r} including r, the category fC admits a left and right

proper cofibrantly generated monoidal model structure, which we denote
(
f̂C
)
S

, satisfying the monoid axiom where:

1. weak equivalences are Er-quasi-isomorphisms,

2. ÎS := IS ∪ {0 → Rn(p)}p,n∈Z and ĴS := JS ∪ {j ◦ iQrRn(p)
: QrR

n
(p) → Dn

(p)} are the sets of generating
cofibrations and generating trivial cofibrations respectively.

5.1 A cofibrant replacement for the unit

In this section we show that the monoidal unit R0
(0) is not cofibrant and construct a cofibrant replacement for it. In

the model categories of bicomplexes a cofibrant replacement for the unit was given in [FGLW22, Proposition 6.7] as
an infinite staircase. The cofibrant replacement is similar to that for bicomplexes however depends on r unlike the
case for bicomplexes.

Definition 5.1.0.1. We denote by QrI the filtered chain complex given by:

QrI :=

 ∞⊕
i=0

R0
(−i) −→

∞⊕
j=1

R1
(−r−j)

 ,

where the di�erential is given by mapping each R0
(−i) diagonally onto the copies of R indexed as R1

(−r−i) and
R1

(−r−i−1) for i ≥ 1 and by the identity map from R0
(0) to R1

(−r−1).

We will first show that this is a cofibrant replacement for the unit in one of the model categories, (fC)S , of
Theorem 3.1.0.2 and then show R0

(0) is indeed not cofibrant. The object QrI can be more easily pictured as follows
where all arrows denote identity morphisms, the summands in cohomological degree 0 are displayed in the first column
and those of degree 1 in the second column:

R0
(0) R1

(−r−1)

R0
(−1) R1

(−r−2)

R0
(−2) R1

(−r−3)

...
...

.
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Example 5.1.0.2. We provide a description of the pages of the associated spectral sequence ofQrI . The E0 page to the
Er page are isomorphic with a copy of R in each bidegree (p, p+ n) with p ≤ 0 and n = 0 as well as a copy of R in
each bidegree (p, p + n) with p ≤ −r − 1 and n = 1. The di�erentials dk are all 0 for k ≤ r − 1 and the r-page
di�erentials dr are the identities between bidegrees (−p,−p) and (−p − r,−p − r + 1) for p ≥ 1, Figure 5.1. We
then have E∞(QrI) = Er+1(QrI) with a single copy of R in bidegree (0, 0) and 0 elsewhere.

R

R

R

..
.

R

R

R

..
.

0

R

R

..
.

Figure 5.1: The r-page of the spectral sequence associated to QrI .

Notation 5.1.0.3. We will denote by 10
(−k) and 11

(−r−1−k) generators of the summandsR0
(−k) andR1

(−r−1−k) ofQrI .

Before we prove this is an r-cofibrant replacement of the unit note the following change of basis (displayed vertically)
between two filtered chain complexes (displayed horizontally):(

Rn(p) Rn+1
(p) ⊕R

n+1
(p−1)

)

(
Rn(p) Rn+1

(p) ⊕R
n+1
(p−1)

)

∆

1

1 0

1 −1


1

0



. (5.1)

We prove that QrI is an r-cofibrant replacement for the unit for r = 0 and then appeal to the shift-décalage
adjunction to obtain the result for all other S-model structures.

Proposition 5.1.0.4. The filtered chain complex Q0I of Definition 5.1.0.1 is a 0-cofibrant replacement for the unit.

Proof. There is an obvious morphism of filtered chain complexes Q0I −→ R0
(0) projecting onto the R0

(0) summand.
This morphism is a 0-quasi-isomorphism; the copy ofR0

(0) inQ0I is a 1-cycle and not a 1-boundary. Any other 1-cycle
in cohomological degree 0 must be a finite sum of the 10

(−k) whose coe�cient of 10
(0) is non-zero, all other 10

(−k) for
k > 0 become 0 on the 1-page. Similarly all finite sums of cohomological degree −1 generators can be seen to be
1-boundaries. Hence the morphism Q0I −→ R0

(0) is a 0-quasi-isomorphism.
We now wish to show Q0I is 0-cofibrant, i.e. given a 0-acylic fibration f : E −→ B we can construct a lift in the

diagram:
E

Q0I B

f∼ .
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We proceed by induction down the staircase, note that by Lemma 1.6.0.7 the morphism 0 −→ Z1(0, 0) is a 0-cofibration
so that we can lift the top of the staircase R0

(0) → R1
(−1) against f .

The induction step lifts a step of the staircase against f subject to knowing where the top of the step is mapped to. I.e.
we lift the following portion of Q0I

R1
(−k)

R0
(−k) R1

(−k−1)

,

subject to already knowing where the R1
(−k) summand is lifted to. This is equivalent to finding a lift in the diagram:

(
R1

(−k)

)
E

(
R0

(−k) R1
(−k) ⊕ R1

(−k−1)

)
B

(1
0) f∼

∆

,

or equivalently, by the change of basis of Equation (5.1), a lift in the following diagram:(
R1

(−k)

)
E

(
R0

(−k) R1
(−k) ⊕ R1

(−k−1)

)
B

∆ f∼

(1
0)

. (5.2)

This lifting problem is then just a special case of a lift of Z1(−k, 1) −→ B1(−k, 1) in which the images of two of the
di�erentials are 0 in E and B respectively. Since f is a 0-acyclic fibration there is then a lift in Equation (5.2).

Lemma 5.1.0.5. Applying the r-shift functor to Q0I gives QrI , i.e. SrQ0I = QrI .

Corollary 5.1.0.6. The filtered chain complex QrI is an S-cofibrant replacement for the unit.

Proof. By the shift-décalage adjunction a lift of QrI = SrQ0I against an S-acyclic fibration f is equivalently a lift
of Q0I against Decr(f). The lift in the latter exists since Decr takes S-acyclic fibrations to 0-acyclic fibrations by
Proposition 3.5.0.2, and Q0I is 0-cofibrant.

Example 5.1.0.7. The filtered chain complex R0
(0) is not cofibrant in any of the model structures (fC)S of Theo-

rem 3.1.0.2. We have the projection π : QrI → R0
(0) onto the unit which is the identity on the component given by

R0
(0) and 0 otherwise. We’ve seen that this is a 0-weak equivalence for r = 0 and applying the shift functor Sr shows

π is an r-weak equivalence. It is further a Zs-bidegree-wise surjection for all s ≤ r since π is just projection onto one
of it’s components. We then consider the lifting problem:

QrI

R0
(0) R0

(0)

π ∼

id

.

If the unit were cofibrant a lift would exist in this diagram. The image of the generator 1 of R0
(0) under such a lift

would firstly have to have di�erential 0 and secondly have image in only a finite number of the
⊕∞

i=0R
0
(−i). Let q

be greatest such that the image of the generator under the lift has non-zero image in the R0
(−q) component. We can

then see that the di�erential of the lift of this generator is non-zero as there is a non-zero di�erential from the R0
(−q)

component with image in R−1
(−q−r−1) which cannot be cancelled by a di�erential from R0

(−q−1) by maximality of q.
This shows no such lift can exist and therefore that R0

(0) cannot be cofibrant.
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5.2 Verification of the unit axiom

We would now like to verify the unit axiom, Definition 1.4.5.2 condition 2, withQrI as the choice of cofibrant replace-
ment for the unit. We begin by identifying the (r+1)-cycles and (r+1)-boundaries in the tensor productQrI⊗A for
some filtered chain complex A. Using the generators of Notation 5.1.0.3 we can write an element q ∈ Fp(QrI ⊗A)n

as a finite sum of tensors:

q =
∑
k≥0

10
(−k) ⊗ a

n
(p+k) +

∑
j≥0

11
(−r−1−j) ⊗ a

n−1
(p+r+1+j) ,

with am(q) ∈ FqA
m. Note that there are no issues in this case arising from the definition of the filtered tensor product

as we can view the underlying filtered graded module of QrI ⊗ A as being a direct sum of shifts of A (the shifts
corresponding to the filtration and cohomological indexing of the R components of QrI). Further applying the
di�erential of QrI ⊗A to q we obtain:

dq =
∑
k≥0

10
(−k) ⊗ da

n
(p+k) +

∑
j≥0

11
(−r−1−j) ⊗

(
−dan−1

(p+r+1+j) + an(p+j) + an(p+j+1)

)
.

Lemma 5.2.0.1. An element q ∈ Fp(QrI⊗A)n is an (r+ 1)-cycle, i.e. q ∈ Zp,p+nr+1 (QrI⊗A), if and only if the following
hold:

1. an(p) ∈ Z
p,p+n
r+1 (A),

2. an(p+k) ∈ B
p+k,p+k+n
r+1 (A), for each k ≥ 1, and

3. an(p+j) − da
n−1
(p+r+j) ∈ Fp−1+jA

n, for each j ≥ 1.

Note that the third condition of the lemma is giving an explicit representation of an(p+k) as an (r + 1)-boundary,
and in fact (3)⇒ (2).

Proof. Assume q is an (r + 1)-cycle, so then dq ∈ Fp−r−1(QrI ⊗A)n+1 and we have:

1. 10
(−k) ⊗ da

n
(p+k) ∈ Fp−r−1(Qr ⊗A)n+1, for k ≥ 0, and

2. 11
(−r−1−j) ⊗

(
−dan−1

(p+r+1+j) + an(p+j) + an(p+j+1)

)
∈ Fp−r−1(QrI ⊗A)n+1, for j ≥ 0.

The first condition of the proof then says, for k = 0, that dan(p) ∈ Fp−r−1A
n+1 giving the first condition of the

lemma. For k ≥ 1 it says that dan(p+k) ∈ Fp−r−1+kA
n+1. The second condition gives us that

−dan−1
(p+r+1+j) + an(p+j) + an(p+j+1) ∈ Fp+jA

n

which can be rewritten as
−dan−1

(p+r+1+j) + an(p+j+1) ∈ Fp+jA
n .

Combined with the first condition we thus obtain a diagram of the form of Equation (5.3) which demonstrates the
remaining two conditions. (

Rn(p+j+1){a
n
(p+j+1)} Rn+1

(p+j−r)

)
(
Rn−1

(p+j+1+r){a
n−1
(p+r+1+j)} Rn(p+j+1) ⊕R

n
(p+j) Rn+1

(p+j−r)

)∆

(1
0) (0 1)

(5.3)

The reverse direction is similarly obtained.

Using this classification of (r + 1)-cycles and (r + 1)-boundaries we can obtain a result slightly stronger than the
unit axiom for a monoidal model category. Since Z∗,∗∗ (−) is functorial we have a morphism Zp,p+nr+1 (QrI ⊗A) −→
Zp,p+nr+1 (A), and this is given by projection onto the 10

(0)⊗− component followed by the isomorphismR0
(0)⊗A ∼= A.

This functoriality argument also shows condition 1 of the preceeding lemma. It also shows however that for the (r+1)-
cycle q above, if the image is a boundary then so too is an(p) in A.
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Proposition 5.2.0.2. The composite function QrI ⊗ A −→ I ⊗ A −→ A is an r-weak equivalence for all (not necessarily
cofibrant) A.

Proof. We will show the following map is both injective and surjective for all p, n ∈ Z,

Ep,p+nr+1 (QrI ⊗A) =
Zp,p+nr+1 (QrI ⊗A)

Bp,p+nr+1 (QrI ⊗A)
−→

Zp,p+nr+1 (A)

Bp,p+nr+1 (A)
= Ep,p+nr+1 (A) .

Surjectivity: Surjectivity of the map is clear since for an a ∈ Zp,p+nr+1 (A) we can take the element given by 10
(0)⊗a ∈

Zp,p+nr+1 (QrI⊗A), which is an (r+1)-cycle by the classification of Lemma 5.2.0.1, whose image is a under the composite
QrI ⊗A −→ A.

Injectivity: For injectivity we consider an (r + 1)-cycle q ∈ Zp,p+nr+1 (QrI ⊗ A) with image in Bp,p+nr+1 (A). By
Lemma 5.2.0.1 for k ≥ 1 and the preceeding discussion for k = 0 this means that an(p+k) ∈ Bp+k,p+k+n

r+1 (A).
Lemma 5.2.0.1 also gives an explicit representation of an(p+k) as a boundary for k ≥ 1 and we choose one for k = 0

and write these as

an(p+k) = dan−1
(p+r+k) + bn(p+k−1)

Bp+k,p+k+n
r+1 (A) = dZp+k,p+k+n−1

r (A) + Zp+k+r−1,p+k+r−1+n
r (A) .

We can then rewrite the 10
(−k) ⊗ a

n
(p+k) components as:

10
(−k) ⊗ a

n
(p+k) =d

(
10

(−k) ⊗ a
n−1
(p+k+r)

)
+ 10

(−k) ⊗ b
n
(p+k−1)

− 11
(−k−r) ⊗ a

n−1
(p+k+r) − 11

(−k−r−1) ⊗ a
n−1
(p+k+r) ,

where the penultimate term is interpreted as 0 when k = 0. Rearranging the previous and summing over k ≥ 0 gives:

q =
∑
k≥0

(
10

(−k) ⊗ a
n
(p+k) + 11

(−k−r) ⊗ a
n−1
(p+k+r)

)
=
∑
k≥0

(
d
(

10
(−k) ⊗ a

n−1
(p+k+r)

)
+ 10

(−k) ⊗ b
n
(p+k−1)

−11
(−k−r−1) ⊗ a

n−1
(p+k+r)

)
,

and we now identify terms on the right as belonging to constituent r-cycles of (r + 1)-boundaries. The term with
di�erential applied to, 10

(−k) ⊗ a
n−1
(p+k+r), is an element of Zp+r,p+r+n−1

r (QrI ⊗ A) since an−1
(p+k+r) is an r-cycle

as are all 10
(−k), and hence its di�erential is in Bp,p+nr+1 (QrI ⊗A). Similarly bn(p+k−1) is an r-cycle and the final two

terms of the right side sum are elements of Fp−1(QrI ⊗A)n, hence are also elements ofBp,p+nr+1 (QrI ⊗A). We have
then written q as a sum of boundary elements proving injectivity.

The proof of Proposition 5.2.0.2 demonstrates the following result which is identical to that of Lemma 5.2.0.1 except
we replace the remaining cycles with boundaries.

Corollary 5.2.0.3. An element q ∈ Fp(QrI ⊗ A) is an (r + 1)-boundary, i.e. q ∈ Bp,p+nr+1 (QrI ⊗ A), if and only if the
following hold:

1. an(p) ∈ B
p,p+n
r+1 (A),

2. an(p+k) ∈ B
p+k,p+k+n
r+1 (A), for each k ≥ 1, and

3. an(p+k) − da
n−1
(p+r+k) ∈ Fp−1+jA

n, for each j ≥ 1.

In fact existence of a cofibrant replacement for the unit satisfying the unit axiom implies all cofibrant replacements
of the unit satisfy the unit axiom [Mur15, Lemma 7].

5.3 Verification of the pushout-product axiom

With the unit axiom established it remains to show the pushout-product axiom holds for the (acyclic) cofibrations
of (fC)S . We will demonstrate this by verifying the pushout-product axiom of the generating (acyclic) cofibrations
of (fC)S and bootstrapping the result to hold for all cofibrations with the aid of Lemma 1.4.5.5. We have su�cient
knowledge regarding the cofibrations to show, using Lemma 4.2.0.6, that the pushout-products are cofibrations too.
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5.3.1 Decompositions of certain tensor products

Recall the notations of Notation 1.2.1.13 and Section 1.8 and consider the tensor product Zs(p, n)⊗Zt(q,m), where
w.l.o.g. s ≤ t. This can be depicted as the filtered chain complex:

R
(n)+(m)
(p)+(q) {d} R

(n+1)+(m)
(p−s)+(q) {c}

R
(n)+(m+1)
(p)+(q−t) {b} R

(n+1)+(m+1)
(p−s)+(q−t) {a}

(−1)n (−1)n+1

where we have given names a, b, c and d to the generator 1 of each copy of R. There is a change of basis compatible
with the filtration to the filtered chain complex with generators a, (−1)nb, (−1)nb + c and d. Note that if s < t
there is not a change of basis to a, (−1)nb+ c, c and d as we can no longer refer to the element b in filtration degree
p+ q − t unless we use both (−1)nb+ c and b which both live in filtration degree p− s+ q which is greater than
p− t+ q.

Our change of basis to a, b,(−1)nb + c and d is such that the di�erentials of d and b are (−1)nb + c and a
respectively and both d and b are therefore s-cycles. We have then shown the following lemma.

Lemma 5.3.1.1. For s ≤ t, there is an isomorphism of filtered chain complexes

Zt(q,m)⊗Zs(p, n) ∼= Zs(p+ q, n+m)⊕Zs(p+ q − t, n+m+ 1) .

Corollary 5.3.1.2. In the model category (fC)S with s, t ∈ S the pushout-product of 0 → Zt(q,m) and 0 → Zs(p, n) is
an acyclic cofibration.

Proof. By Lemma 5.3.1.1 the pushout-product is isomorphic to 0→ Zs(p+ q, n+m)⊕Zs(p+ q − t, n+m+ 1)
which is the direct sum of two acyclic cofibrations, since s ∈ S, hence is an acyclic cofibration.

We now wish to show a similar decomposition for the tensor product ofZr+1(p, n)→ Br+1(p, n) withZs(q,m),
for s ≤ r, which is the pushout-product of Zr+1(p, n)→ Br+1(p, n) and 0→ Zs(q,m). This morphism of filtered
chain complexes can be depicted as in Figure 5.2 with generators as indicated. We now compute a change of basis, for the
domain we use as a basis:A,B,B+(−1)nC andD. For the codomain we use a, b, b+(−1)nc, b+(−1)nc+(−1)nd,
e, e + f , f + (−1)n−1g and h. We have written each list of generators so that for those of the same cohomological
degree they appear in ascending filtration order. This makes it clear that this change of basis is compatible with the
filtration so we have an isomorphism of filtered chain complexes, not just of chain complexes. We now observe that
under this new basis the morphism is the direct sum of the following four morphisms with the dashed arrows indicating
the morphisms of filtered chain complexes:

0 0 0 0

R{h} R{f + (−1)n−1g} R{e} R{b+ (−1)nc}

R{B} R{(−1)n+1A} R{D} R{B + (−1)nC}

R{b} R{(−1)n+1a} R{e+ f} R{b+ (−1)nc+ (−1)nd}

which exhibits the pushout product of Zr+1(p, n) → Br+1(p, n) and 0 → Zs(q,m) as the direct sum of four
S-acyclic cofibrations, since s ∈ S, two of which are in fact isomorphisms. We have then proved the following lemma.

Lemma 5.3.1.3. For s ≤ r, there is a change of basis exhibiting the pushout-product of Zr+1(p, n) → Br+1(p, n) and
0→ Zs(q,m) as the direct sum of morphisms: 0

↓
Zs(p+ q + r, n+m− 1)

⊕
 0

↓
Zs(p+ q − 1, n+m)


⊕

Zs(p+ q − r − 1, n+m+ 1)
↓

Zs(p+ q − r − 1, n+m+ 1)

⊕
Zs(p+ q, n+m)

↓
Zs(p+ q, n+m)

 .
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R
(n)+(m)
(p)+(q) {D} R

(n+1)+(m)
(p−r−1)+(q){B}

R
(n)+(m+1)
(p)+(q−s) {C} R

(n+1)+(m+1)
(p−r−1)+(q−s){A}

R
(n−1)+(m)
(p+r)+(q) {h} R

(n)+(m)
(p)+(q) {f} ⊕R

(n)+(m)
(p−1)+(q){e} R

(n+1)+(m)
(p−r−1)+(q){b}

R
(n−1)+(m+1)
(p+r)+(q−s) {g} R

(n)+(m+1)
(p)+(q−s) {d} ⊕R

(n)+(m+1)
(p−1)+(q+s){c} R

(n+1)+(m+1)
(p−r−1)+(q−s){a}

1

1

1

(−1)n

1

(−1)n+1

1

i1

(−1)n−1 (−1)nid

π2

(−1)n+1

i1 π2

1

1

 1

Figure 5.2: Pushout-product of Zr+1(p, n)→ Br+1(p, n) and 0→ Zs(q,m)
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As an immediate corollary we have the following:

Corollary 5.3.1.4. In the model category (fC)S with s ∈ S and r = maxS, the pushout-product of Zr+1(p, n) →
Br+1(p, n) and 0→ Zs(q,m) is an acyclic cofibration.

5.3.2 Pushout-product of generating cofibrations of (fC)r
Recall the construction of Lemma 1.2.1.9 which computed a colimit of a diagram X : I −→ fC as the composite
r colimI iX . I.e. we interpret a filtered chain complex as an object of CZ+

R via i, compute the colimit degreewise in
CZ+

R and then apply the reflector r. We will make use of this for computation of the pushouts in the pushout-products.
We now consider the case of the pushout-product of two generating cofibrations of (fC)r . Let i be the morphism

ϕr+1 : Zr+1(q,m) −→ Br+1(q,m) and j be the morphism ϕr+1 : Zr+1(p, n) −→ Br+1(p, n). Recall that i can
be displayed as follows where the components of i are diagonal or identity maps:(

Rm(q) Rm+1
(q−r−1)

)
(
Rm−1

(q+r) Rm(q) ⊕R
m
(q−1) Rm+1

(q−r−1)

)im im+1

(1
0) (0 1)

,

and similarly for j: (
Rn(p) Rn+1

(p−r−1)

)
(
Rn−1

(p+r) Rn(p) ⊕R
n
(p−1) Rn+1

(p−r−1)

)jn jn+1

(1
0) (0 1)

.

Recall too the notation of Notation 1.2.1.13. Our first goal is to compute the domain of the pushout-product i� j
which is given by the pushout:

Zr+1(q,m)⊗Zr+1(p, n) Br+1(q,m)⊗Zr+1(p, n)

Zr+1(q,m)⊗ Br+1(p, n) dom(i� j)
p

. (5.4)

The three components of this pushout are depicted in Figure 5.3 as Zr+1(q,m) ⊗ Br+1(p, n), Zr+1(q,m) ⊗
Zr+1(p, n) and Br+1(q,m) ⊗ Zr+1(p, n) respectively. The demarcated boxes illustrate the maps in the pushout
Figure 5.3; a demarcated box of the centre Zr+1(q,m)⊗Zr+1(p, n) maps via the identity or diagonal as appropriate
into the demarcated boxes of the same type in the other two subdiagrams of Figure 5.3.

Similarly the tensor product of the codomain Br+1(q,m)⊗ Br+1(p, n) can be depicted as in Figure 5.4. We give
names to each of the R-modules of these figures to simplify the notation. The R-modules of Figure 5.3 correspond to
those of Figure 5.5 and similarly those of Figure 5.4 correspond with those of Figure 5.6. This change of notation will
be used in the diagrams in CZ∞R . Converting the three filtered chain complexes of Figure 5.3 to Z∞-diagrams of chain
complexes via the reflector-inclusion adjunction of Lemma 1.2.1.9 gives Figures 5.7 to 5.9.

Under this new labelling of Figure 5.5 the maps of the pushout become:

∆: I −→ B ⊕ C 1: J −→ E ∆: K −→ F ⊕G 1: L −→ H (5.5)
∆: I −→ N ⊕ P ∆: J −→ Q⊕ T 1: K −→ S 1: L −→ U

and with reference to this labelling we compute the pushout in Z∞-chains of Figures 5.8 and 5.9 over Figure 5.7. We
also list the defining maps from the three components of the pushout in Figure 5.5 to Figure 5.6.

∆: A→ C ⊕ E ∆: B → F ⊕ I ∆: C → H ⊕K 1: D → J

∆: E → L⊕N 1: F →M 1: G→ O 1: H → P

∆: I → F ⊕ I ⊕H ⊕K ∆: J → L⊕N ∆: K →M ⊕O 1: L→ P (5.6)
∆: M → B ⊕D ∆: N → F ⊕H 1: O → G ∆: P → I ⊕K
1: Q→ L ∆: S →M ⊕O 1: T → N 1: U → P
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R
(n−1)+(m)
(p+r)+(q) R

(n−1)+(m+1)
(p+r)+(q−r−1)

R
(n)+(m)
(p)+(q) R

(n)+(m+1)
(p)+(q−r−1)

R
(n)+(m)
(p−1)+(q) R

(n)+(m+1)
(p−1)+(q−r−1)

R
(n+1)+(m)
(p−r−1)+(q) R

(n+1)+(m+1)
(p−r−1)+(q−r−1)

R
(n)+(m)
(p)+(q) R

(n)+(m+1)
(p)+(q−r−1)

R
(n+1)+(m)
(p−r−1)+(q) R

(n+1)+(m+1)
(p−r−1)+(q−r−1)

R
(n)+(m−1)
(p)+(q+r) R

(n)+(m)
(p)+(q) ⊕ R

(n)+(m)
(p)+(q−1) R

(n)+(m+1)
(p)+(q−r−1)

R
(n+1)+(m−1)
(p−r−1)+(q+r) R

(n+1)+(m)
(p−r−1)+(q) ⊕ R

(n+1)+(m)
(p−r−1)+(q−1) R

(n+1)+(m+1)
(p−r−1)+(q−r−1)

(−1)n−1

i1 i1

⊕ ⊕

π2 π2

(−1)n+1

(−1)nid

(−1)n

(−1)n+1

(−1)ni1 (−1)nπ2

id

(−1)n+1i1 (−1)n+1π2

Figure 5.3: Components of the pushout

Recall that in a diagram category of an abelian category colimits are computed index-wise, so we can compute
colimits coordinate-wise in these figures. Despite the Z∞ indexing not necessairly inducing inclusions from one stage
to the next we shall still refer to it in the following as a filtration indexing for convenience.

In homological degree n+ 1 +m+ 1: all filtration degrees, above p− r− 1 + q − r− 1, have the same pushout of
the form

L H

U L

1

1

p

whose pushout can be taken to be L. Also note all induced maps from the filtration indexing are the identity between

98



R
(n−1)+(m−1)
(p+r)+(q+r) R

(n−1)+(m)
(p+r)+(q) R

(n−1)+(m)
(p+r)+(q−1) R

(n−1)+(m+1)
(p+r)+(q−r−1)

R
(n)+(m−1)
(p)+(q+r) R

(n)+(m)
(p)+(q) R

(n)+(m)
(p)+(q−1) R

(n)+(m+1)
(p)+(q−r−1)

R
(n)+(m−1)
(p−1)+(q+r) R

(n)+(m)
(p−1)+(q) R

(n)+(m)
(p−1)+(q−1) R

(n)+(m+1)
(p−1)+(q−r−1)

R
(n+1)+(m−1)
(p−r−1)+(q+r) R

(n+1)+(m)
(p−r−1)+(q) R

(n+1)+(m)
(p−r−1)+(q−1) R

(n+1)+(m+1)
(p−r−1)+(q−r−1)

(−1)n−1i1

i1

⊕ (−1)n−1π2

i1

⊕

⊕

⊕ ⊕ ⊕

π2

⊕

π2

(−1)n+1i1 ⊕ (−1)n+1π2

id

(−1)nid (−1)nid

id

Figure 5.4: Codomain of the pushout-product i� j

A D

B
⊕
C

F
⊕
G

E H

I K

J L

M N ⊕ P S

O Q⊕ T U

(−1)n−1

(−1)n

(−1)n+1

(−1)n

(−1)n+1

(−1)ni1 (−1)nπ2

(−1)n+1i1 (−1)n+1π2

Figure 5.5: Named components of the pushout

these pushouts.
In homological degree n + 1 + m: we have in filtration degree p − 1 + q − r − 1 the pushout of T and G over 0

which is G⊕ T . In filtration degrees p+ q − r − 1 and above we have the pushouts are of the form

J ⊕K E ⊕ F ⊕G

Q⊕ S ⊕ T F ⊕G⊕Q⊕ T
p
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A C ⊕ E J

B
⊕
D

F ⊕ I
⊕ ⊕
H ⊕ K

M
⊕
O

G L ⊕ N P

(−1)n−1i1

i1

(−1)n−1π2

i1

π2 π2

(−1)n+1i1 (−1)n+1π2

Figure 5.6: Named codomain of the pushout-product i� j

n+1+
m+1

n+1+
m

n+m

p-r-1+q-r-2

p-r-1+q-r-1

...

p+q-r-1

...

p+q

...

0

...

...

I

...

0

...

...

J ⊕K

...

J ⊕K

...

0

L

...

L

...(
1

(−1)n

)

(
(−1)n+1 1

)

Figure 5.7: Representation in Z∞ chains of Zr+1(q,m)⊗Zr+1(p, n)

which, under the maps of Equation (5.5), identifies E with the diagonal of Q ⊕ T via J , and identifies S with the
diagonal of F ⊕G. We can then take F ⊕G⊕Q⊕ T as the pushout. The induced maps from Z∞ are the inclusion
of G⊕ T into F ⊕G⊕Q⊕ T from p− 1 + q − r − 1 to p+ q − r − 1 and identity maps above this.

In homological degree n+m: we have in filtration degree p+ q− 1 the pushout of C ⊕D andO⊕P over 0 giving
C ⊕D ⊕O ⊕ P . In filtration degrees p+ q and above the pushout is of the form

I B ⊕ C ⊕D

N ⊕O ⊕ P B ⊕ C ⊕D ⊕O ⊕ P
p

where the maps of Equation (5.5) identifies the diagonal of B ⊕ C with the diagonal of N ⊕ P via I . The pushout is
isomorphic to B ⊕C ⊕D⊕O⊕ P , since we can express 1N as 1B + 1C − 1P under the identification from I . The
induced maps from Z∞, as before, are inclusions of submodules or the identity as appropriate.

In homological degree n− 1 +m: the pushout is simply A⊕M in filtration degree p+ r + q and above.

We can then depict this pushout inZ∞-chains as Figure 5.10 where we have also calculated the induced di�erentials
of the pushout. We now apply the reflector functor of the adjunction between Z∞-indexed chains and filtered chain
complexes which finishes the computation of the pushout in filtered chains.
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n+1+
m+1

n+1+
m

n+m
n-1+

m

p-r-1+q-r-2

p-r-1+q-r-1

...

p-1+q-r-1

p+q-r-1

...

p+q-1

p+q

...

p+r+q

...

0

...

...

M

...

0

...

...

O ⊕ P

N ⊕O ⊕ P

...

N ⊕O ⊕ P

...

0

...

...

T

Q⊕ S ⊕ T

...

Q⊕ S ⊕ T

Q⊕ S ⊕ T

...

...

0

U

...

U

U

...

...


(−1)n

1
0



1 (−1)n+1 0
0 0 (−1)n

0 0 1



(−1)n+1 0
0 (−1)n

0 1



(
0 1 (−1)n+1

)

(−1)n+1

Figure 5.8: Representation in Z∞ chains of Br+1(q,m)⊗Zr+1(p, n)

In the notation of A,B, . . . the pushout is of the form:

A D

M
B ⊕ P
⊕
C

F
⊕
G

O Q ⊕ T L

A C ⊕ E J

B
⊕
D

F ⊕ I
⊕ ⊕
H ⊕ K

M
⊕
O

G L ⊕ N P

(−1)n−1

α i1

β

1

ε

γ π2

(−1)n+1i1 (−1)n+1π2

i�j

(−1)n−1i1

i1

(−1)n−1π2

i1

π2

(−1)n (−1)n

π2

(−1)n+1i1 (−1)n+1π2

(5.7)
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n+1+
m+1

n+1+
m

n+m
n-1+

m

p-r-1+q-r-2

p-r-1+q-r-1

...

p-1+q-r-1

p+q-r-1

...

p+q-1

p+q

...

p+r+q

...

0

...

...

A

...

0

...

...

C ⊕D

B ⊕ C ⊕D

...

B ⊕ C ⊕D

...

0

...

...

G

E ⊕ F ⊕G

...

E ⊕ F ⊕G

E ⊕ F ⊕G

...

...

0

H

...

H

H

...

...


1
0

(−1)n−1




0 1 0

(−1)n 0 1
0 (−1)n 0




1 0
0 1

(−1)n 0



(
(−1)n+1 0 1

)

1

Figure 5.9: Representation in Z∞ chains of Zr+1(q,m)⊗ Br+1(p, n)
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n+1+
m+1

n+1+
m

n+m

n-1+
m

p-r-1+q-r-2

p-r-1+q-r-1

...

p-1+q-r-1

p+q-r-1

...

p+q-1

p+q

...

p+r+q

...

0

...

...

A⊕M

...

0

...

...

C ⊕D ⊕O ⊕ P

B ⊕ C ⊕D ⊕O ⊕ P

B ⊕ C ⊕D ⊕O ⊕ P

...

0

...

...

G⊕ T

F ⊕Q⊕G⊕ T

...

F ⊕Q⊕G⊕ T

F ⊕Q⊕G⊕ T

...

0

L

...

L

L

...

...



1 (−1)n

0 (−1)n

(−1)n−1 0
0 1

0 (−1)n+1




(−1)n 0 1 0 (−1)n

0 1 0 (−1)n+1 0
0 (−1)n 0 0 (−1)n

0 1 0 0 1




0 1 0 (−1)n

1 0 (−1)n+1 0
(−1)n 0 0 (−1)n

1 0 0 1


(
0 0 1 (−1)n+1

)

(
1 (−1)n+1

)

Figure 5.10: Representation in Z∞ chains of the pushout
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The maps in Equation (5.7) α, β, γ and ε are given as follows:

α =

1
0
0

 : A −→ B ⊕ C ⊕ P

β =

 (−1)n

(−1)n

(−1)n+1

 : M −→ B ⊕ C ⊕ P

γ =

(
0 1 0
0 1 1

)
: B ⊕ C ⊕ P −→ Q⊕ T

ε =

(
(−1)n 0 (−1)n

0 (−1)n (−1)n

)
: B ⊕ C ⊕ P −→ F ⊕G

We also describe the induced map

i� j : Zr+1(q,m)⊗ Br+1(p, n)
∐

Zr+1(q,m)⊗Zr+1(p,n)

Br+1(q,m)⊗Zr+1(p, n) −→ Br+1(q,m)⊗ Br+1(p, n) .

With reference to Equation (5.6) we can describe this map by:

∆: A −→ C ⊕ E 1: O −→ G 1: G −→ O ∆: B −→ F ⊕ I
∆: M −→ B ⊕D 1: F −→M 1: T −→ N ∆: C −→ H ⊕K
1: D −→ J 1: Q −→ L 1: L −→ P ∆: P −→ I ⊕K

One can easily verify that these maps of theR-modules commute with the di�erentials and so assemble to a map of fil-
tered chain complexes. We also provide the translation back to the sub/superscript notation displaying the homological
and filtration degrees in Figure 5.11.

It remains to show that the pushout product is indeed a generating cofibration for which we apply Lemma 4.2.0.6.

Lemma 5.3.2.1. The pushout-product of i : Zr+1(p, n) → Br+1(p, n) and j : Zr+1(q,m) → Br+1(q,m) in (fC)S
where maxS = r is a cofibration.

Proof. By Lemma 4.2.0.6 it is enough to show that i� j is an r-supressive inclusion whose cokernelC is cofibrant with
for all n a p(n) such that Fp(n)C

n = 0.
The cokernel is given, up to signs, by

R
(n−1)+(m−1)
(p+r)+(q+r) R

(n−1)+(m)
(p+r)+(q−1)

R
(n)+(m−1)
(p−1)+(q+r) R

(n)+(m)
(p−1)+(q−1)

−1

which decomposes into the direct sum of two representing r-cycles by Lemma 5.3.1.1, hence is cofibrant. Further
writing dom(i � j) and cod(i � j) for the domain and codomain of i � j we must have that, under the twisted
direct sum decomposition of Lemma 4.2.0.3 of i� j into i� j : dom(i� j)→ dom(i� j)⊕τ C , that the twist τ
surpresses filtration by r. Finally we have that the filtration on C is bounded below. Hence the pushout-product i� j
is a cofibration in (fC)r and so too then in (fC)S .

We have then shown the following theorem.

Theorem 5.3.2.2. Each of the model categories (fC)S of Theorem 3.1.0.2 is a monoidal model category.

Proof. The unit axiom was proved in Proposition 5.2.0.2 and the pushout-product axioms were proved in Lemma 5.3.2.1
and Corollaries 5.3.1.2 and 5.3.1.4 for the generating (acyclic) cofibrations, we can now apply Lemma 1.4.5.5 to obtain
the result.
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Rn+m−1
(p+r)+(q) Rn+m

(p+r)+(q−r−1)
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(p)+(q+r)

Rn+m
(p)+(q) ⊕ Rn+m

(p)+(q−1)

⊕
Rn+m

(p−1)+(q)
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⊕
Rn+m+1
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Rn+m
(p−r−1)+(q+r)

Rn+m+1
(p−r−1)+(q) ⊕ Rn+m+1

(p−r−1)+(q−1) Rn+m+2
(p−r−1)+(q−r−1)

R
(n−1)+(m−1)
(p+r)+(q+r) R

(n−1)+(m)
(p+r)+(q) ⊕ R

(n−1)+(m)
(p+r)+(q−1)

R
(n−1)+(m+1)
(p+r)+(q−r−1)

R
(n)+(m−1)
(p)+(q+r)

⊕
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R
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(p)+(q) ⊕ R
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(p)+(q−1)

⊕ ⊕
R

(n)+(m)
(p−1)+(q) ⊕ R

(n)+(m)
(p−1)+(q−1)

R
(n)+(m+1)
(p)+(q−r−1)

⊕
R

(n)+(m+1)
(p−1)+(q−r−1)

R
(n+1)+(m−1)
(p−r−1)+(q+r) R

(n+1)+(m)
(p−r−1)+(q) ⊕ R

(n+1)+(m)
(p−r−1)+(q−1)

R
(n+1)+(m+1)
(p−r−1)+(q−r−1)

(−1)n−1

α i1

1

β ε

γ π2

(−1)n+1i1 (−1)n+1π2

i�j

(−1)n−1i1

i1

(−1)n−1π2

11

(−1)n

π2

(−1)n

π2

(−1)n+1i1 (−1)n+1π2

Figure 5.11: The pushout-product of generating cofibrations

As a consequence we can infer the internal hom object preserves acyclic fibrations when its first component is
cofibrant. Recall from Definition 1.2.1.14 that we have an internal Hom object right adjoint to the tensor product.
Fixing the first object as a t-cycle we have a special case given by

FqHom (Zt(p, n), Y )
m

= Fp+qY
n+m ⊕ Fp−t+qY n+1+m

with di�erential
Fp+qY

n+m ⊕ Fp−t+qY n+1+m 3 (x, y) 7→ (dx− (−1)my, dy) .

Lemma 5.3.2.3. Let (fC)S be one of the model structures of Theorem 3.1.0.2 with s ∈ S. Then the functor Hom (Zs(p, n),−)
preserves acyclic fibrations in (fC)S .

Proof. Let π : Y → X be an acyclic fibration in (fC)S . We must show that

Hom (Zs(p, n), π) : Hom (Zs(p, n), Y ) −→ Hom (Zs(p, n), X)

is an acyclic fibration, i.e. that it has the right lifting property with respect to all cofibrations i : A→ B of (fC)S in

A Hom (Zs(p, n), Y )

B Hom (Zs(p, n), X)

i Hom(Zs(p,n),π)

or equivalently by the tensor hom adjunction that π : Y → X has the right lifting property in all diagrams of the form

A⊗Zs(p, n) Y

B ⊗Zs(p, n) X

i⊗Zs(p,n) π .
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All of the morphisms (A→ B)⊗Zs(p, n) are cofibrations in (fC)S by Theorem 5.3.2.2 hence a lift exists.

More generally one could replace Zs(p, n) by any cofibrant object A and the functor Hom(A,−) would preserve
acyclic fibrations. And further if A were acyclic Hom(A,−) would preserve all fibrations.

5.4 Model structures from the monoid axiom

With monoidal model structures established for filtered chain complexes by proving the unit and pushout-product
axioms we now also demonstrate the monoid axiom which yields a model structure on algebra objects in the monoidal
category of filtered chain complexes, i.e. model structures of filtered di�erential graded algebras. This then enhances
previous work of Halperin and Tanré, [HT90], to equip filtered di�erential graded algebras with fully fledged model
structures with r-weak equivalences.

Recall from Lemma 1.4.6.2 that in a cofibrantly generated monoidal model categoryM with generating acyclic
cofibrations J thatM satisfies the monoid axiom if every morphism of (J ⊗M)-Cofreg is a weak equivalence, where
the notation J-Cofreg is of Notation 1.4.2.3.

Lemma 5.4.0.1. Any map in JS ⊗ fC is an r-weak equivalence.

Proof. Any map is of JS ⊗ fC is of the form 0→ Zs(p, p+ n)⊗A for some A ∈ fC and s ∈ S, so is some shift of
the s-cone, Definition 1.6.0.12, of A which is s-acyclic and hence r-acyclic.

Lemma 5.4.0.2. A pushout of a filtered chain complex A by an element of J ⊗ fC is a weak equivalence.

Proof. The pushout is of the formA→ A⊕Zs⊗B for someB ∈ fC which is a weak equivalence since 0→ Zs⊗B
is a weak equivalence.

Proposition 5.4.0.3. Every map of (J ⊗ fC)-Cofreg is a weak equivalence.

Proof. Since the model category (fC)S is a finitely cofibrantly generated model category by Lemma 1.2.1.16 then by
[Hov99, Corollary 7.4.2] it su�ces to show each pushout in the construction of a map of (J ⊗M)-Cofreg is a weak
equivalence. This is the result of Lemma 5.4.0.2.

Corollary 5.4.0.4. The model categories (fC)S satisfy the monoid axiom.

Proof. By [SS00, Lemma 3.5 (2)] it su�ces to show that maps in (J ⊗ fC)-Cofreg are weak equivalences. This is the
result of Proposition 5.4.0.3.

Each of the following results is immediate from Theorem 1.4.6.3, the fact that (fC)S is cofibrantly generated
with all objects being small, and that (fC)S satisfies the monoid axiom. The statements about the sets of generating
cofibrations and acyclic cofibrations follows from the proof of Theorem 1.4.6.3.

Theorem 5.4.0.5. For a fixed r, subset S ⊆ {0, 1, . . . , r − 1, r} containing r and filtered di�erential graded algebra A
there is a model category structure on leftA-modules whose weak equivalences are the r-quasi-isomorphisms and fibrations those
morphisms that are surjective on all s-cycles with s ∈ S. The generating cofibrations are given byA⊗ IS and generating acyclic
cofibrations by A⊗ JS .

Theorem 5.4.0.6. For a fixed r, subset S ⊆ {0, 1, . . . , r − 1, r} containing r and filtered di�erential graded-commutative
algebra A there is a cofibrantly generated model category structure on A-modules whose weak equivalences are the r-quasi-
isomorphisms and fibrations those morphisms that are surjective on all s-cycles with s ∈ S. The generating cofibrations are given
by A⊗ IS and generating acyclic cofibrations by A⊗ JS . Further this model category satisfies the monoid axiom

In the following for A a filtered di�erential graded algebra we let TA denote the free A-algebra functor.

Theorem 5.4.0.7. For a fixed r, subset S ⊆ {0, 1, . . . , r − 1, r} containing r and filtered di�erential graded-commutative
algebra A there is a cofibrantly generated model category structure on A-algebras whose weak equivalences are the r-quasi-
isomorphisms and fibrations those morphisms that are surjective on all s-cycles with s ∈ S. The generating cofibrations are given
by TAIS and generating acyclic cofibrations by TAJS .

In particular takingA = R0
(0) the monoidal unit in this last result we obtain a model category of filtered di�erential

graded algebras.
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Corollary 5.4.0.8. For a fixed r, subset S ⊆ {0, 1, . . . , r − 1, r} containing r there is a cofibrantly generated model cate-
gory structure on filtered di�erential graded algebras whose weak equivalences are the r-quasi-isomorphisms and fibrations those
morphisms that are surjective on all s-cycles with s ∈ S. The generating cofibrations are given by IS and generating acyclic
cofibrations by JS .

5.5 Forcing the unit to be cofibrant

In Example 5.1.0.7 we showed that the unitR0
(0) is not cofibrant in any of the model structures (fC)S . Having a cofibrant

unit does not seem an unreasonable requirement and is the case in many model structures of interest, most relevantly
in the projective model structure on chain complexes the unitR0 is cofibrant. Muro’s paper [Mur15] provides a method
of adapting a monoidal model category, by changing its fibrations and cofibrations but preserving weak equivalences,
so that the unit becomes cofibrant. This method is in fact controlled in the sense that it is still a cofibrantly generated
model category, with added generating cofibrations and generating acyclic cofibrations.

Definition 5.5.0.1. A model category with the structure of a closed symmetric monoidal category satisfies the very
strong unit axiom if there exists a cofibrant replacement QI of the unit I of the tensor product such that for all X the
morphism QI ⊗X → X is a weak equivalence.

This strengthing of the unit axiom removes the requirement thatX be cofibrant. Recall that in Proposition 5.2.0.2
we showed that the model categories (fC)S satisfy not just the unit axiom but also the very strong unit axiom. Whilst
existence of a cofibrant replacement of the unit satisfying the unit axiom implies all cofibrant replacements of the
unit satisfy the unit axiom, Muro remarks the same does not necessarily hold for the very strong unit axiom if either
the monoidal structure is not symmetric or it doesn’t satisfy the monoid axiom. Since the model structures (fC)S are
symmetric and satisfy the monoid axiom, Corollary 5.4.0.4, any cofibrant replacement of the unit satisfies the very
strong unit axiom. One of Muro’s theorems asserting existence of a modified model category with cofibrant unit states
the following.

Theorem 5.5.0.2 ([Mur15, Theorem 3]). LetM be a cofibrantly generated monoidal category with generating cofibrations I
and generating acyclic cofibrations J satisfying the very strong unit axiom for a cofibrant replacement π : QI ∼→ I of the unit I.
Let

QI
∐
I�
j
D
∼→
q
I

be a factorisation of (π, id) : QI
∐
I → I into a cofibration followed by a weak equivalence inM. Let iQI : QI → QI

∐
I

be the inclusion of QI. Assume further that the domains of I are small relative to Ĩ-Cell for Ĩ := I ∪ {∅ → I} and that QI
and the domains of J are small relative to J̃-Cell for J̃ := J ∪ {j ◦ iQI : QI→ D}. Then there is a cofibrantly generated
monoidal model category M̃ with sets of generating cofibrations Ĩ and generating acyclic cofibrations J̃ with the same underlying
category and weak equivalences. Further ifM is left (resp. right) proper so too is M̃ and ifM is symmetric and satisfies the
monoid axiom so too does M̃ .

Muro also notes that there is then a monoidal Quillen equivalenceM−→←− M̃, i.e. the left adjoint id is a monoidal
functor and id(QI) → id(I) is a weak eqivalence. We wish to apply this theorem withM = (fC)S , I = IS and
J = JS so for the unit I = R0

(0) and cofibrant replacement QrI of R0
(0) we must construct a factorisation of the

morphism
(π, id) : QrI

∐
R0

(0) → R0
(0) .

into a cofibration followed by a weak equivalence. We construct such aD and factorisation required of Theorem 5.5.0.2
as follows. We first introduce a shifted degree 1 projection map.

Definition 5.5.0.3. We denote by ρr the composite (degree 1) morphism

ρr := id1
−r ◦ Σrπ : ΣrQrI

∼−→ ΣrR0
(0)
∼= R−1

(r) −→ R0
(0)

where the degree 1 morphism id1
−r is the identity map that decreases filtration by r.

We denote by D the filtered chain complex given by:

D :=
(
QrI ⊕R0

(0)

)
⊕τ ΣrQrI
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where the twist morphism τ is given in the first component as the degree 1 morphisms shifting filtraion by r that
maps the components of ΣrQrI identically onto the corresponding components ofQrI and in the second component
by the morphism −ρr . The first morphism j of the factorisation of the Theorem 5.5.0.2 is simply the inclusion of
QrI ⊕R0

(0) into the first component of the twisted direct sum. We will show shortly that is indeed a cofibration. The
second morphism q is given by, on the first component of the direct sum, the morphism π : QrI → R0

(0) on the first
component and the identity on the second, and on the second component of the twisted direct sum by 0. We will also
show that this second map q is a weak equivalence.

Lemma 5.5.0.4. The morphism j : QrI ⊕R0
(0) → D is a cofibration in (fC)S .

Proof. The cokernel of the morphism is the filtered chain complex ΣrQrI . Note that the proof of Lemma 4.2.0.6 can
be used here depsite the condition on a bounded filtration of the cokernel not being satisfied since we have a good
decomposition of ΣrQrI (the obvious one) into a direct sum in each cohomological degree. Using this decomposition
one then applies the rest of the proof of Lemma 4.2.0.6 to show this morphism lifts against acyclic fibrations.

Lemma 5.5.0.5. The morphism q : D → R0
(0) is an r-weak equivalence.

Recall the notion of an r-cone from Definition 1.6.0.12.

Proof. One can identify the chain complex D with the r-cone of the morphism QrI → QrI ⊕ R0
(0) which is the

identity onto the first component and the map π onto the second. One can then identify the r-page of this filtered
chain complex, by [CELW19, Remark 3.6], from which one deduces that the (r + 1)-page is isomorphic to that of the
associated spectral sequence of R0

(0). Hence the morphism q : D → R0
(0) is an r-weak equivalence.

These two lemmas then provide a factorisation of (π, id) : QrI ⊕R0
(0) → R0

(0) into a cofibration followed by a
weak equivalence as required by Theorem 5.5.0.2.

Corollary 5.5.0.6. For every r ≥ 0 and every subset S ⊆ {0, 1, . . . , r} including r, the category fC admits a left and right

proper cofibrantly generated monoidal model structure, which we denote
(
f̃C
)
S

, satisfying the monoid axiom where:

1. weak equivalences are Er-quasi-isomorphisms,

2. ĨS := IS∪{0→ R0
(0)} and J̃S := JS∪{j◦iQrI : QrI → D} are the sets of generating cofibrations and generating

trivial cofibrations respectively.

Proof. The model categories (fC)S of Theorem 3.1.0.2 are right proper, since all objects are fibrant, left proper by The-
orem 3.7.1.7 and monoidal by Theorem 5.3.2.2. Furthermore the morphism π : QrI → R0

(0) is a cofibrant replacement
of the unit which satisfies the very strong unit axiom by Proposition 5.2.0.2 and by Lemmas 5.5.0.4 and 5.5.0.5 has a
factorisation into a cofibration followed by a weak equivalence. All objects of fC are small relative to the whole cate-
gory by Lemma 1.2.1.17, hence all conditions of Theorem 5.5.0.2 are satisfied so the corrollary follows with generating
cofibrations and acyclic cofibrations given by:

ĨS := IS ∪
{

0→ R0
(0)

}
,

J̃S := JS ∪
{
j ◦ iQrI : QrI →

(
QrI ⊕R0

(0)

)
⊕τ ΣrQrI

}
.

Note 5.5.0.7. These model categories
(
f̃C
)
S

are not finitely cofibrantly generated since the objects QrI are not finite
objects in fC.

One apparent disadvantage to this construction in our setting is we lose our particularly nice description of the
fibrations. They still must satisfy Zs-bidegree-wise surjectivity but now with an added condition coming from the
newly added morphisms of J̃ .

Muro also provides a characterisation of cofibrant objects in M̃. Firstly an objectX ofM is said to be cofibrant mod
I if it is a retract of an object Y which admits a cofibration

∐
T I→ Y for some indexing set T . The characterisation

is then given by the following result of Muro.
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Proposition 5.5.0.8 ([Mur15, Corollary 11]). ForM satisfying the conditions of Theorem 5.5.0.2, an objectX is cofibrant mod
I inM if and only it is cofibrant in M̃.

The generating cofibrations ĨS and generating acyclic cofibrations J̃S given by Corollary 5.5.0.6 are not stable
sets under the suspension Σr and loop Ωr functors. We can make all Rn(p) cofibrant by adding appropriate generating

cofibrations and acyclic cofibrations as for ĨS and J̃S .

Corollary 5.5.0.9. For every r ≥ 0 and every subset S ⊆ {0, 1, . . . , r} including r, the category fC admits a left and right

proper cofibrantly generated monoidal model structure, which we denote
(
f̂C
)
S

, satisfying the monoid axiom where:

1. weak equivalences are Er-quasi-isomorphisms,

2. ÎS := IS ∪ {0 → Rn(p)}p,n∈Z and ĴS := JS ∪ {j ◦ iQrRn(p)
: QrR

n
(p) → Dn

(p)} are the sets of generating
cofibrations and generating trivial cofibrations respectively.

Proof. The proof is identical to that of Corollary 5.5.0.6 noting that the proof of [Mur15, Theorem 3] does work by adding
more of the 0→ Rn(p) to the generating cofibrations so long as we add the corresponding acyclic cofibrations.

One of the consequence of [Mur15, Theorem 3] was that the monoid axiom still holds in the newly constructed
model categories. We can then deduce as before model categories of modules and algebras where the unit is now
cofibrant.
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APPENDIX A
Cylinder Objects and Cosimplicial Frames

A.1 Cylinder objects in (fC)S
Recall the definition of cylinder and path objects, Definition 1.4.1.11, and the notion of left and right homotopy, Defini-
tion 1.4.1.13, and that for cofibrantX and fibrantY the notion of left and right homotopy is the same, [Hov99, Corollary
1.2.6], so that to compute the homotopy classes of maps from X to Y we can equivalently quotient HomM (X,Y ) by
either the left or right homotopy relation.

In the model categories (fC)S fibrations are generally easier to work with and understand, and constucting path
objects is straightforward. Indeed the following gives a path object:

X
∼−→ Hom(Ir, X) −→ X ×X .

Construction of a cylinder object is not so simple. Consider the fold map on the unit of fC, R0
(0)

∐
R0

(0) → R0
(0).

A first guess at a factorisation of this map to give a cylinder object might be a filtered generalisation of the interval
object in chain complexes taking account of the r = maxS, i.e.

R0
(0)

∐
R0

(0) −→ Ir −→ R0
(0) ,

however whilst the second map is indeed a weak equivalence the first map is not a cofibration; its cofibre isR−1
(r) which

is not cofibrant. In Section 5.1 we constructed a cofibrant replacement of the unit so we consider now replacing the
R−1

(r) portion of Ir by something weakly equivalent which is in addition cofibrant. Recall the cofibrant replacement

of the unit denoted QrI of Section 5.1 and projection map π : QrI
∼→ R0

(0). Recall the shifted projection map ρr of
Definition 5.5.0.3.

Definition A.1.0.1. We define the filtered chain complex QrCylr to be:

QrCylr :=
((
R0

(0) ⊕R
0
(0)

)
⊕τ ΣrQrI

)
,

where the twist map τ is given by
(
ρr
−ρr

)
.

Note we have an inclusion of the first component of the twisted direct sum and a fold map Qr∇ which is the fold
map on the first component of the twisted direct sum R(0) ⊕ R(0) and 0 on the second ΣrQrI . We can now give a
factorisation of the fold map∇ : R0

(0) ⊕R
0
(0) → R0

(0) into a cofibration followed by a weak equivalence.

∇ : R0
(0) ⊕R

0
(0) QrCylr R0

(0)i

∼
Qr∇

. (A.1)
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Lemma A.1.0.2. The factorisation of Equation (A.1) factorises the fold map R0
(0) ⊕R

0
(0) → R0

(0) into a cofibration followed
by an acylic fibration in (fC)S with maxS = r.

Proof. The first map being a cofibration follows (almost) from Lemma 4.2.0.6 with a slight modification since the
cokernel C is ΣrQrI does not satisfy the bounded filtration result; we do not have for each n a p(n) such that
Fp(n)C

n = 0. The issue is the decomposition of C into a direct sum of its filtered parts however note since QrI is
defined as a direct sum of shifts of the unit there is no issue with applying the method of the proof to find a lift, hence
the first morphism is indeed a cofibration.

The second map is Zk-surjective for all 0 ≤ k ≤ r hence is a fibration in (fC)S . To see that it is an r-weak
equivalence note that the twisted direct sum is isomorphic to

R0
(0) ⊕

(
R0

(0) ⊕τ ΣrQrI
)

(A.2)

where the twist map τ is now simply ρr ; the change of basis here has the first R0
(0) component of Equation (A.2) as

the first R0
(0) appearing in Definition A.1.0.1 and the R0

(0) component of the twisted direct sum is the anti-diagonal,
generated by (1,−1), of R0

(0) ⊕R
0
(0) in Definition A.1.0.1. Consequently Equation (A.1) becomes

∇ : R0
(0) ⊕R

0
(0) R0

(0) ⊕
(
R0

(0) ⊕τ ΣrQrI
)

R0
(0)

1 1

0 −1

0 0


∼(

1 0 0
) .

The twisted direct sum component is isomorphic to the r-cone of Definition 1.6.0.12 on the morphism π : QrI →
R0

(0), and so by Lemma 1.6.0.13 is r-acyclic since π is an r-weak equivalence by Corollary 5.1.0.6. This completes the
lemma.

We want to use this factorisation as foundation for a more general factorisation of the fold map∇ : K ⊕K → K ,
where K is a cofibrant object of (fC)S . We have shown that (fC)S is a monoidal model category in Theorem 5.3.2.2
hence we can tensor the first map of Equation (A.1) by the cofibrant K and still have a cofibration. If the morphism
Qr∇ : QrCylr → R0

(0) remains an r-weak equivalence after tensoring by K then a cylinder object of K can be
obtained by tensoring Equation (A.1) by K .

Recall that for a short exact sequence of R-modules

0→ A→ B → C → 0

if B and C are flat so too is A; one sees this by considering the associated long exact sequence to the functor −⊗X
for some R-module X .

Lemma A.1.0.3. LetA be a filtered chain complex such thatAn andAn/FpAn are flat for all n, p ∈ Z, then−⊗A preserves
kernels.

Proof. Let Z be the kernel of a morphism f : Y → X of filtered chain complexes and recall the definition of the
tensor product in filtered chain complexes Definition 1.2.1.11. For the tensor product of G and H we write ϕ for the
morphism:

ϕ :
⊕
q∈Z

⊕
i∈Z

Fp−qG
n−i ⊗ FqHi −→ (G⊗H)n

or the restriction to some of its components. We now want to show the filtration on Z ⊗A is the expected one, so we
consider now an element α of Fp(Y ⊗A)n so that α = ϕ(Σyj ⊗ aj) for some yj ⊗ aJ ∈ Fp−q ⊗ FqA for some q
such that (f ⊗ A)(α) = 0. We restrict to consider the component Xn−i ⊗ Ai of (X ⊗ A)n and similarly for Y in
place of X . We are then supposing that the yj are elements of Y n−i for a fixed n and i and that aj are elements of Ai

for the same fixed i. Takem1 to be the max filtration degree of the yj andm2 to be the max filtration degree of the aj .

Fm1X
n−i ⊗ Fm2A

i Xn−i ⊗Ai ⊂ (X ⊗A)n

Xn−i ⊗ Fm2A
i

ϕ
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The morphism Fm1
Xn−i ⊗ Fm2

Ai → Xn−i ⊗ Fm2
Ai is an inclusion since it is the tensor product of the inclusion

of a filtered piece by the flat module Fm2
Ai. The morphism Xn−i ⊗ Fm2

Ai → Xn−i ⊗Ai is also an inclusion; to
show this we consider the short exact sequence

0 −→ Fm2A
i −→ Ai −→ Ai

Fm2
Ai

from which we obtain a long exact sequence from the left derived functors of Xn−i ⊗−:

. . . −→ Tor1

(
Xn−i,

Ai

Fm2
Ai

)
−→ Xn−i ⊗ Fm2

Ai −→ Xn−i ⊗Ai −→ Xn−i ⊗ Ai

Fm2
Ai
−→ 0

of which the Tor1 term is 0 since Ai/Fm2A
i is flat by assumption, hence Xn−i ⊗ Fm−2A

i → Xn−i ⊗ Ai is an
inclusion.

We can then see that forϕ(Σfyj⊗aj) to be 0 we must have that Σfyj⊗aj = 0. Since we have an exact sequence
of R-modules

0 −→ Fm1
Zn−i −→ Fm1

Y n−i −→ Fm1
Xn−i

we also have an exact sequence after tensoring by the flat Fm2A
i

0 −→ Fm1
Zn−i ⊗ Fm2

Ai −→ Fm1
Y n−i ⊗ Fm2

Ai −→ Fm1
Xn−i ⊗ Fm2

Ai

and so by exactness Σyj ⊗ aj = Σzk ⊗ ak .

Counterexample A.1.0.4. We list some counterexamples to show that the conditions An and An/FpAn are flat are
necessary. For simplicity we work in filtered R-modules instead of chain complexes as the di�erentials play no role in
flatness.

1. Take R = Z/4Z and I = 2Z/4Z as an R-module. Note too that R/I ∼= I , I ⊗ I ∼= I and that the natural
map I ⊗ I → I ⊗ A ∼= I is the zero map. We let A be the filtered module with F−1A = 0, F0A = I and
F1A = A = R. Take Z = I , Y = R and X = I where the filtration on Z has F−1Z = 0 and F0Z = Z and
similarly for Y and X so that there is a pullback diagram in filtered R-modules:

Z Y

0 X

y .

We now tensor this diagram D := (Z → Y → X) by A. The first two rows of the following diagram depicit
the filtration of this tensor product in filtration degrees 1, 0 and the third the tensor product by F0A:

D ⊗A : I ⊗A A⊗A I ⊗A

F0(D ⊗A) : 0 A⊗ I 0

F0D ⊗ F0A : I ⊗ I A⊗ I I ⊗ I

where the first row is the tensor product of the underlying modules, and the second row is obtained by calculating
the map ϕ which takes the image of the third row in the first. We can rewrite this as

F1(D ⊗A) : I A I

F0(D ⊗A) : 0 A⊗ I 0

and we can see that tensoring by A has not preserved the pullback diagram since in filtration degree F0 we do
not have that 0 is the kernel of the map I → 0.
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2. Similarly one can show that just the requirement that An and FpAn be flat are not su�cient either. Take Z, Y
and X filtered Z-modules whose −1st filtration is 0, and 0th filtration is the full module, respectively Z, Z and
Z/2Z so that there is a pullback diagram of the form

Z Y

0 X

y ,

and take A to be the filtered Z-module with F−1A = 0, F0A = Z and F1A = A = Z however such that the
inclusion F0A→ F1A is multiplication by 2. One can check similarly to the previous example that tensoring
the pullback diagram by A does not preserve the pullback property.

Lemma A.1.0.5. Let A be a filtered chain complex such that either An is not flat for some n or An/FpAn is not flat for some
n and p, then tensoring by A does not preserve kernels in general.

Proof. The lemma is clear if An is not flat for some n. The di�erentials play no role so we show the lemma for
filtered R-modules instead and suppose that A/FpA is not flat for some p. Take a short exact sequence of R-modules
0→ Z → Y → X → 0 such that−⊗A/FpA does not preserve left exactness of this short exact sequence. We make
Z, Y and X into filtered R-modules as before, by letting their −1st filtration piece by 0 and the 0th piece be the full
R-module. We then compute Fp (A⊗ Z) and similarly with Y and X in place of Z .

Fp (A⊗ Z) = im (FpA⊗ F0Z −→ A⊗ Z)

= im (FpA⊗ Z −→ A⊗ Z)

and we can compute the latter by the long exact sequence of the left derived functor of − ⊗ Z applied to the short
exact sequence 0→ FpA→ A→ A/FpA→ 0. This gives

Fp (A⊗ Z) = im (FpA⊗ Z −→ A⊗ Z)

= ker (A⊗ Z −→ A/FpA⊗ Z) .

We can assemble the following commutative diagram in which the rows are exact, any two composable vertical mor-
phisms compose to 0 and the middle vertical complex is exact.

0 0 ?

0 Fp(A⊗ Z) A⊗ Z A/FpA⊗ Z 0

0 Fp(A⊗ Y ) A⊗ Y A/FpA⊗ Y 0

0 Fp(A⊗X) A⊗X A/FpA⊗X 0

0

where ? is the kernel of A/FpA ⊗ Z → A/FpA ⊗ Y and is non-zero by assumption. Computing the long exact
sequence associated to this short exact sequence of chain complexes we get, using that the middle complex is exact,
that the vertical homology at Fp(A ⊗ Z) is non-zero so that Fp(A ⊗ Z) → Fp(A ⊗ Y ) is not an inclusion which
shows that A⊗ Z is not the kernel of A⊗ Y → A⊗X .

Corollary A.1.0.6. For a filtered chain complex A the functor −⊗ A preserves kernels if and only if An and An/FpAn are
flat for each p and n.

Corollary A.1.0.7. Let K be cofibrant, then −⊗K preserves kernels.

Proof. Recall from Lemma 4.1.0.1 that for a cofibrantK thatKn andKn/FpK
n are projective for all p, n ∈ Z. Since

projective R-modules are flat the corollary now follows from Lemma A.1.0.3.
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Lemma A.1.0.8. The tensor product of Qr∇ : QrCylr → R0
(0) with a cofibrant K is an r-weak equivalence.

Proof. We rewrite the morphism firstly using the change of basis of Equation (A.2) so it again becomes:

R0
(0) ⊕

(
R0

(0) ⊕τ ΣrQrI
)

R0
(0)

∼(
1 0 0

) , (A.3)

where the second component, R0
(0) ⊕τ ΣrQrI , is isomorphic to the r-cone on π, Cr(π). Note that Cr(π) is a kernel:

Cr(π) QrR
−1
(r+1)

0 R−1
(r+1)

∼
y

π∼ ,

and so tensoring this diagram by a cofibrant K preserves the pullback by Corollary A.1.0.7. Further π ⊗K is still a
weak equivalence by Proposition 5.2.0.2 and also a fibration, so that the pullback Cr(π)⊗K → 0 is also an acyclic
fibration, in particular an r-weak equivalence.

Cr(π)⊗K QrR
−1
(r+1) ⊗K

0 R−1
(r+1) ⊗K

∼
y

π⊗K∼

This shows that tensoring Equation (A.3) by K is still a weak equivalence.

We have then shown the following construction of a cylinder object on a cofibrant K in (fC)S , (this cylinder
object only depends on r = maxS).

Corollary A.1.0.9. There is a factorisation of the fold map ∇ : K
∐
K → K in (fC)S into a cofibration followed by an

acyclic fibration:

Qr∇ : K
∐

K −→ QrIr ⊗K −→ K .

This then gives a way of computing homotopy classes of maps from a cofibrantX to a fibrant Y via left homotopies.

A.2 Higher factorisations and cosimplicial frames

In the previous section we gave a factorisation of the fold map∇ : R0
(0)

∐
R0

(0) → R0
(0) into a cofibration followed

by a weak equivalence. This factorisation is the analogue in (fC)S of the factorisation of the fold map of simplicial
sets ∆[0]

∐
∆[0] → ∆[1] → ∆[0] into a cofibration followed by weak equivalence. We could have written this

instead as ∂∆[1] → ∆[1] → ∆[0]. In simplicial sets we can also factorise the collapse maps ∂∆[n] → ∆[0] as
∂∆[n]→ ∆[n]→ ∆[0] and we now sketch analogues to these ‘higher dimensional factorisations’ in (fC)S . Recall to
construct ∂∆[n+ 1] from ∆[n] one takes n+ 2 copies of ∆[n] and identifies various boundaries (explicitly pushouts
of coproducts of ∆[n] over ∆[n − 1] subobjects). To then obtain ∆[n + 1] from ∂∆[n + 1] one needs only add an
(n + 1)-dimensional cell whose boundary is ∂∆[n + 1]. For the analogues in (fC)S we perform similar pushouts
and to add an (n+ 1)-dimensional cell we use instead iterated suspensions of the cofibrant replacement of the unit.
We introduce new notation to elicit the factorisations in simplcial sets. Denote by R∆[0] the filtered chain complex
R0

(0) and byR∆[1] the filtered chain complexQrCylr . Consider the quotient of three copies ofR∆[1] where the end
subobjects given by the R∆[0] are identified as in the construction of ∂∆[2] from three copies of ∆[1]. We denote

115



this filtered construction by R∂∆[2]. Explicitly this filtered chain complex R∂∆[2] is given by:

R0
(0)

ΣrQrI

R0
(0)

ΣrQrI R0
(0)

ΣrQrI

−ρ

ρ

−ρ ρ

ρ

−ρ

R0
(0)

ΣrQrI

R0
(0)

ΣrQrI R0
(0)

ΣrQrI

Σr2QrI−ρ

ρ

−ρ ρ

ρ

−ρ

−ρ

ρ

ρ

and one can obtain higher dimensional versions in much a similar way.
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APPENDIX B
Right Adjoint to Coproduct Totalisation

This appendix proves that the functorR of Definition 2.3.0.1 is right adjoint to the coproduct totalisation functor
Tot⊕. We need to describe natural maps between the hom sets HomfC

(
Tot⊕(K), C

)
and HombC (K,R(C)) and

show they are bijections.
We write π2 for the projection onto the second component of any direct sum of two R-modules. Given a map

f : K → R(C) of bicomplexes we obtain a map of filtered chain complexes f̃ : Tot⊕(K) → C by the following
diagram: ⊕

iK
i,i+n C

⊕
iR(C)i,i+n

⊕
i FiC

n

⊕
fi,i+n

f̃n

⊕
π2

Σ

Note by constructionFiTot⊕(K)n is mapped by f̃ intoFiCn, so that f̃ degreewise is a map of filteredR-modules.
We check that f̃ commutes with di�erentials. First note the following equation, for an (x, y) ∈ Fi−1C

n+1 ⊕ FiCn:

dπ2(x, y) = dy = π2d0(x, y) + (−1)nπ2d1(x, y) . (B.1)

Now in the following series of equalities we have the first follows from the definition of d on Tot⊕, the second by
definition of f̃ , the third by commuting d0 and d1 past f∗,∗ using f is a map of bicomplexes, the fourth reindexes the
last part as we are summing over all i, the fifth by collecting terms, the sixth using equation B.1, and the last again by
definition of f̃ .

f̃n+1d(ki)i = f̃n+1(d0ki + (−1)nd1ki+1)i

=
∑
i

π2f
i,i+n+1(d0ki + (−1)nd1ki+1)

=
∑
i

π2d0f
i,i+nki + (−1)nπ2d1f

i+1,i+1+nki+1

=
∑
i

π2d0f
i,i+nki + (−1)nπ2d1f

i,i+nki

=
∑
i

π2(d0 + (−1)nd1)f i,i+nki

=
∑
i

dπ2f
i,i+nki

= df̃n(ki)i

This then shows f̃ is a map of filtered chain complexes.
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Now suppose we are given a map, g : Tot⊕(K)→ C of filtered chain complexes. We define a map, ĝ : K → R(C),
of bicomplexes. We write ηi,i+n : Ki,i+n → Tot⊕(K)n for the inclusion of the ith summand.

ĝi,i+n : Ki,i+n → R(C)i,i+n

k 7→
(
(−1)n+1gηi−1,i−1+n+1d1k, gη

i,i+nk
)

We check that the maps ĝi,i+n commute with the di�erentials d0 and d1. The first equality in the following
follows from the definition of ĝ, the second from the definition of d1 on R(C), the third from d1d1 = 0 and
(−1)n+1(−1)n+1 = 1, and the last again from the defintion of ĝ.

d1ĝ
i,i+n(k) = d1

(
(−1)n+1gηi−1,i−1+n+1d1k, gη

i,i+nk
)

=
(
0, (−1)n+1(−1)n+1gηi−1,i−1+n+1d1k

)
=
(
(−1)ngηi−2,i−2+n+2d1d1k, gη

i−1,i−1+n+1d1k
)

= ĝi−1,i−1+n+1(d1k)

We will make use of the following equation relating di�erentials and the inclusion maps η:

dηi,i+nk = ηi,i+n+1d0k + (−1)nηi−1,i−1+n+1d1k . (B.2)

We show too that ĝi,i+n commutes with d0. In the following we then have the first equality follows from the definition
of ĝ, the second from the definition of d0 on R(C), the third commutes d and g using g is a map of filtered chain
complexes, the fourth uses equation B.2 on the first component, the fifth uses equation B.2 on the second component,
the sixth cancels the term involving d1d1 in the first component and the terms of opposite sign in the second, the
seventh commutes d0 and d1, and lastly we use the definition of ĝ.

d0ĝ
i,i+n(k) = d0

(
(−1)n+1gηi−1,i−1+n+1d1k, gη

i,i+nk
)

=
(
(−1)ndgηi−1,i−1+n+1d1k, dgη

i,i+nk + (−1)n+1gηi−1,i−1+n+1d1k
)

=
(
(−1)ngdηi−1,i−1+n+1d1k, gdη

i,i+nk + (−1)n+1gηi−1,i−1+n+1d1k
)

=
(
(−1)ngηi−1,i−1+n+2d0d1k + (−1)n+1(−1)nηi−2,i−2+n+2d1d1k,

gdηi,i+nk + (−1)n+1gηi−1,i−1+n+1d1k
)

=
(
(−1)ngηi−1,i−1+n+2d0d1k + (−1)n+1(−1)nηi−2,i−2+n+2d1d1k,

gηi,i+n+1d0k + (−1)ngηi−1,i−1+n+1d1k + (−1)n+1gηi−1,i−1+n+1d1k
)

=
(
(−1)ngηi−1,i−1+n+2d0d1k, gη

i,i+n+1d0k
)

=
(
(−1)ngηi−1,i−1+n+2d1d0k, gη

i,i+n+1d0k
)

= ĝi,i+n+1(d0k)

We now verify that ˆ̃
f = f : K → R(C). The first equality in the following follows from the definition of ĝ, the

second by definition of f̃ , the third uses the equation π1(x, y) = (−1)n+1π2d1(x, y) when (x, y) ∈ R(C)n and we
take (x, y) = f i,i+nk, the fourth equality is cancelling signs, and the last uses the definition of the projections π∗.

ˆ̃
f i,i+n(k) =

(
(−1)n+1f̃ηi−1,i−1+n+1d1k, f̃η

i,i+nk
)

=
(
(−1)n+1π2f

i−1,i−1+n+1d1k, π2f
i,i+nk

)
=
(
(−1)n+1(−1)n+1π1f

i,i+nk, π2f
i,i+nk

)
=
(
π1f

i,i+nk, π2f
i,i+nk

)
= f i,i+n(k)
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Finally we verify that ˜̂g = g : Tot⊕(K)→ C . The first equality in the following follows from the definition of f̃ ,
the second by definition of ĝ, the third from applying π2, and the last by linearity of g.

˜̂gn(ki)i =
∑
i

π2ĝ
i,i+nki

=
∑
i

π2

(
(−1)n+1gηi−1,i−1+n+1d1ki, gη

i,i+nki
)

=
∑
i

gηi,i+nki

= g(ki)i

We have proven now the following proposition.

Proposition B.0.0.1. There is an adjunction of categories Tot⊕ : bC −→←− fC :R.
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APPENDIX C
Questions

We discuss here some questions the author has regarding model structures related to spectral sequences. They are
potential future directions of work.

Question C.1. The projective model structure on (bounded) chain complexes can be obtained via the Dold-Kan
adjunction from transferring the Quillen model structure on simplicial sets along the free-forgetful adjuntion between
simplicial sets and simplicial R-modules. Can the bounded model structures on filtered chain complexes be obtained
by transfer along a filtered Dold-Kan adjunction in a similar way? What would such a model structure on filtered
simplicial sets be describing?

Question C.2. Can we perform a series of left and right Bousfield localisations to pass from one of the r-model
structures to an (r + 1)-model structure? Or perhaps more simply are there non-trivial Bousfield localisations of any
of the model structures in the posets?

Question C.3. Can we construct an model structure whose weak equivalences are those maps of filtered chain complexes
that are isomorphisms on the∞-page of the associated spectral sequence or those maps that are eventually isomorphisms
on some page of the spectral sequences? We refer to such a tentative model structure as an∞-model structure. The
immediate problem is that the∞-boundaries are not representable however they are still pro-representable. Perhaps
then the question is better asked as “is there an∞-model structure on the category of pro-filtered chain complexes”?

We first recall for a category C the category of pro-objects of C denoted pro-C and then give a brief overview of
homotopy theories related to categories of pro-objects (or similar).

Definition C.0.0.1. A category I is said to be cofiltering if it is small, non-empty and satisfies:

1. for all i, j ∈ I there exists a k ∈ I with maps k → i and k → j, and

2. for any pair of maps f, g : i⇒ j there exists a k ∈ I and arrow h : k → i such that fh = gh.

Definition C.0.0.2. The category of pro-objects in C denoted pro-C has objects all functors X : I → C where I is a
cofiltered category and has as morphisms between X : I → C and Y : J → C the class

Hompro-C(X,Y ) := lim
j

colim
i

HomC(Xi, Yj) .

We have omitted the definition of composition which can be found explicitly in [EH76, Definition 2.1.1]. When
I = J natural transformations between X and Y are examples of morphisms of pro-C but there are many more
morphisms than just the natural transformations (even when I = J ). The category pro-C can be thought of as having
objects the formal cofiltered limits of C. This category is complete, essentially by definition, and further cocomplete
whenever C is, see [Isa02] for constructions of limits and colimits in the category pro-C. These constructions can be
dualised to give a category of ind-objects of C using filtered diagrams. We relax the notion of model category/structure
for this discussion to mean whatever it means in each of the following papers considered.

Artin and Mazur in [AM69] consider, without reference to any model structure, the pro-homotopy category i.e. pro
objects in the usual homotopy category of spaces. They use this to define homotopy invariants of a locally noetherian
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scheme, using the étale topology, they refer to as the étale homotopy type. They further observe that this homotopy theory
is “amenable to the techniques of classical algebraic topology” in that it admits Hurewicz and Whitehead theorems
and one can work with Postnikov decompositions. Further one has good pro-finite and p-adic completions. The
consequences to geometry this theory entails is considerable but we focus only on the good properties this homotopy
theory has, see for instance [Fri82] as well.

Grossman, in [Gro75], considers a restriction of pro-objects and only considers the subcategory of towers, i.e. pro-
objects of the form

. . .→ Xs+1 → Xs → . . .→ X0 .

Grossman then develops a model category structure on the category of towers of simplicial sets (although they remark
that the definitions and proofs are not combinatorial).

Seperately homotopy theories of pro-objects were used in [EH76] where, under suitable restrictions on a model
category C, a model category structure on pro-C exists too and they study the homotopy theory comparing Ho(pro-C)
with pro-Ho(C) and discuss the homotopy and homology groups thereof. They also apply this to generalized Steenrod
homology in shape theory.

Isaksen develops the homotopy theory of pro-objects further and equips categories of pro-objects with model
structures (under assumptions on C). In [Isa01] the category of pro-simplicial sets, used in the étale homotopy theory
in [AM69] and shape theory of [MS82], is given a model category structure (with non-functorial factorisations) which
Isaksen notes is closely related to the “strict structure” of [EH76]. The weak equivalences in this model structure are
appropriately the weak equivalences of [AM69]. This then generalises the model structure of [Gro75] on towers and
puts the homotopy theory of [AM69] on a stronger footing; one can now work on the level of pro-simplicial sets so can
work with strictly commutative diagrams rather than those commutative only up to homotopy for instance, although
note that morphisms in the two di�erent homotopy categories do not in general agree, see [Isa01, §8]. The construction
of this model structure is somewhat involved in that firstly local systems are used to discuss weak equivalences in
pro-sSets instead of basepoints, since points of pro-simplicial sets may not exist, and secondly the model structure is
not cofibrantly generated, [Isa01, Corollary 19.3], hence the non-functorial factorisations so the proof is not as simple
as demonstrating a result like Theorem 1.4.2.9. Isaksen also remarks that the functoriality of the skeletal filtration on
simplicial sets is vital to their proof so does not easily extend to pro-topological spaces for example.

In [Isa04] Isaksen extends the results of [EH76] to show existence of a strict model structure on pro-C whenever C
is a proper model category. To describe this further we state some terminology found in [Isa04]. A level representation
of a morphism of pro-objects X → Y is an isomorphic morphism, i.e.:

X Y

X̂ Ŷ

f

∼= ∼=

f̂

in the pro-C such that X̂ and Ŷ are indexed by the same indexing set I and f̂ is a natural transformation of the
functors X : I → C and Y : I → C. A morphism of pro-objects then satisfies a property essentially levelwise if there
is a level representation for which all morphisms f̂i satisfy the property. In the strict model structure on pro-C the
strict weak equivalences are then the essentially levelwise weak equivalences and the strict cofibrations the essentially levelwise
cofibrations. Again these model categories are not cofibrantly generated and despite every object of every pro-category
being cosmall [CI04, Corollary 3.5] the strict model category of pro-simplicial sets is not fibrantly generated either,
although adapting to pro-(κ-bounded simplicial sets) or relaxing to Chorny’s notion of class fibrantly generated, [Cho06],
one can obtain a form of fibrant generation. A similar result holds for the model structure of [Isa01].

In [CI04] Christensen and Isaksen consider localisations of the strict model structure of [Isa04]. Existence of these
localisations is provided by [CI04, Theorem 4.4] and they use it to construct a model structure, [CI04, Theorem 6.5],
on pro-spectra whose weak equivalences are isomorphisms on the colimits of the cohomotopy, [CI04, Definition 6.2].
Here the cohomotopy of a pro-spectrum X is given by:

πnX := colim
s

πnXs .

They refer to this as the π∗-model structure. Their main result is that this π∗-model structure on pro-spectra is Quillen
equivalent to the opposite of the usual stable model structure on spectra, [CI04, Corollary 8.6].

In [Isa05] Isaksen constructs two model categories on pro-spaces for each ring R. The cofibrations are those of
the strict model structure and the weak equivalences are respectively the R-cohomology weak equivalences and the R-
homology weak equivalences given as [Isa05, Definitions 5.2 & 5.4] which they remark, [Isa05, Remark 5.3], are distinct
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notions. Here the cohomology of a pro-spectrum X with M coe�cients is given by:

Hn(X;M) := colim
s

Hn(Xs;M) ,

and the homology of a pro-spectrum X with M coe�cients is the pro-group given by:

Hn(X;M) = {Hn(Xs;M)}s .

They also shows that the R-homology weak equivalences are in fact those morphisms which are M -cohomology weak
equivalences for all R-modules M , see [Isa05, Proposition 5.5].

In the paper [FI07] of Fausk and Isaksen the authors define the notion of a filtered model category, [FI07, Definition
4.1], on a category C which must satisfy a list of model structure like axioms, [FI07, Axioms 4.2–4.6], which is further a
proper filtered model category if it in addition satisfies [FI07, Axioms 4.9 & and 4.10]. One of the conditions is that there
are classesWa for each a ∈ A for some directed set A such thatWb ⊆ Wa whenever b ≥ a. Given a proper filtered
model category on a category C there is then proper model structure on pro-C, [FI07, Theorem 5.15], whose weak
equivalences are those morphisms of pro-objects that are essentially levelwiseWa for all a ∈ A. This in fact recovers
the model category of [Isa01], see [FI07, Example 7.2].

Some other model structures appearing on pro-categories are listed below.

• The model structures of Quick of pro-finite spaces, [Qui08, Theorem 2.12 ] and [Qui11, Theorem 2.3], pro-finite
G-spaces, [Qui11, Theorem 2.20], and pro-finite G-spectra, [Qui11, Theorem 2.20].

• The Z/p-model structure of Morel, [Mor96], on pro-finite spaces whose weak equivalences are those morphisms
incuding isomorphisms on Z/p-cohomology and where the Bousfield-Kan completion functor of [BK72] is a
fibrant replacement functor.

With this overview of the literature regarding model structures on categories of pro-objects we provide now some
commentary on the question of existence of an∞-model structure on pro-fC. We suggested an∞-model structure
on pro-fC in place of fC since the ∞-boundary functor is not representable but instead pro-representable. The
motivation for having (pro-)representable objects is so that one can use them as domains and codomains for generating
cofibrations and acyclic cofibrations for a model structure. However in each of the papers briefly reviewed above the
model structures on pro-C have been seen to be not cofibrantly generated. This recurring shortcoming of model
structures on pro-C suggests we should not expect a potential ∞-model structure on pro-fC to be cofibrantly
generated either but perhaps constructed along lines similar to that of one of the preceeding model structures.

Note however that we can immediately deduce strict model structures on pro-fC (resp. pro-bC) coming from
the (fC)S (resp. (bC)S) model structures which we record here.

Theorem C.0.0.3. For r ≥ 0 and S ⊆ {0, 1, 2, . . . , r} containing r the category pro-fC can be equipped with a proper
model structure (with non-functorial factorisations), which we denote (pro-fC)S , whose weak equivalences are the essentially
levelwise r-weak equivalences and cofibrations are the essentially levelwise S-cofibrations.

Proof. Given such an S there is the (fC)S model structure of Theorem 3.1.0.2 which is right proper since every object
is fibrant and left proper by Theorem 3.7.1.7. The result now follows by [Isa04, Theorem 4.15].

Theorem C.0.0.4. For r ≥ 0 and S ⊆ {0, 1, 2, . . . , r} containing both 0 and r the category pro-bC can be equipped with
a proper model structure (with non-functorial factorisations), which we denote (pro-bC)S , whose weak equivalences are the
essentially levelwise r-weak equivalences and cofibrations are the essentially levelwise S-cofibrations.

Proof. Given such an S there is the (bC)S model structure of Theorem 3.2.0.2 which is right proper since every object
is fibrant and left proper by Theorem 3.7.2.8. The result now follows by [Isa04, Theorem 4.15].

Note the last paper [FI07], whilst sounding ideal for our setup, does not yield a candidate∞-model structure as
the containment of r-weak equivalences is the wrong way:

W0 ⊂ W1 ⊂ W2 ⊂ . . . .

Question C.4. The L a TotΠ adjunction can likely be generalised to an adjunction from filtered chain complexes
to n-truncated multicomplexes but perhaps not from multicomplexes with all di�erentials. It is then feasible such
adjunctions would form yet more Quillen equivalences between model structures on n-truncated multicomplexes and
filtered chain complexes.
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Question C.5. Perhaps related to Question C.1 is, given some category and a method of constructing a filtered chain
complex from that category with the aim of running a spectral sequence, what conditions does one obtain on morphisms
in that category to construct an r-(co)fibration or r-weak equivalence once one takes the associated filtered object. E.g.
in an (subcategory of an) arrow category of spaces whose objects are fibrations of CW complexes/simplicial sets, to
such an object one can associate a filtered chain complex whose spectral sequence is the Leray-Serre spectral sequence
associated to the fibration. Given then a morphism between fibrations, what conditions on this morphism does one
require to obtain an r-(co)fibration or r-weak equivalence on the filtered chain complexes?

And further can one transfer the S-model structures to these categories?

Question C.6. It would be informative to see to what extent one could formalise issues relating to convergence within
the framework of these model categories (potentially the tentative∞-model category). When spectral sequences are
employed one wants to know the spectral sequence converges (and to what extent it converges, see [Boa99]). Frequently
convergence is automatic from some boundedness conditions on the filtration, i.e. for each n there exists p1(n) and
p2(n) such that Fp1(n)A

n = 0 and Fp2(n)A
n = An. Restricting to such a category of filtered chain complexes

with bounded filtrations will be neither complete nor cocomplete so we cannot define a model structure on such a
subcategory without relaxing what we mean by model category. However as seen in Section 3.12 if we impose a fixed
filtration degree where boundedness must occur we can define model category structures.

Question C.7. The interaction between the various model structures, by which we mean the various inclusions of
weak equivalences, fibrations or cofibrations across the model structures of fC and bC, is worth further study (this
also relates to the Question C.2). Of note in the literature where similar examples occur are Beke’s model structures on
simplicial sets. [Bek10, Propostion 2.1 & Theorem 2.2] gives a model structure on simplicial sets for each n ≥ 0 whose
weak equivalences are the usual weak equivalences of simplicial sets and satisfy the following proper inclusions:

Fib0 ⊂ Fib1 ⊂ . . . ⊂ Fibn ⊂ . . . ,
Cof0 ⊃ Cof1 ⊃ . . . ⊃ Cofn ⊃ . . . .

Question C.8. All model structures considered in this thesis on filtered chain complexes or bicomplexes can be viewed
as projective model structures in some sense. In analogy with chain complexes which have both a cofibrantly generated
projective model structure and cofibrantly generated injective model structure (this is cofibrantly generated and not
fibrantly generated, [Hov99, Theorem 2.3.13]) we ask are there analogous injective S-model structures on fC and bC
and what is the analogous intepretation for the various S with fixed r of Proposition 4.1.0.14?

Such injective S-model structures are also likely to be Quillen equivalent to the ones considered within as there is
a Quillen equivalence induced by the identity-identity adjunction; weak equivalences are the same on both sides and
the projective cofibrations are a subclass of the injective monomorphisms which are simply the degreewise inclusions:

i : CprojR CinjR : i .

Question C.9. Does the adjunction Tot⊕ a R of Proposition 2.3.0.2 left induce one model structures from fC to a
model structure on bC?
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