
1 
 

 

 

Parasitic weed density: drivers and 

management using cultural controls. 
 

By: 

Donald Scott 

 

 

A thesis submitted in partial fulfilment of the requirements for the degree 

of Doctor of Philosophy. 

 

The University of Sheffield 

 Faculty of Science 

 Department of Animal and Plant Sciences 

 

Submission Date: 18/07/2022 

 

 

 

 

 

Supervisors: Robert Freckleton & Julie Scholes  



2 
 

Acknowledgements 

 

I would like to thank my supervisors Robert Freckleton & Julie Scholes for providing 

me with the opportunity to develop my research skills in addressing such an important 

and tangible issue as parasitic weeds. I would also like to thank Patrice Autfray from 

CIRAD, as his input and support both during my fieldwork and in the refining of my first 

two research papers was invaluable.  

My thanks also to the field technicians in Madagascar who facilitated my data 

collection and the farmers themselves who demonstrate such resilience in the face of 

difficult conditions. I would also like to thank Jonne Rodenburg for his support and 

feedback, especially during the drafting of my first paper and for his supply of herbaria 

records.  

The following people have also assisted and supported me in making this part of my 

learning journey a success in varying ways: Onja Scott, Octavia Chretien 

Norosoalitera, Thomas LeBourgeois, Jonathan Leake, Luke Fountain, Tahiry 

Randrianjafizanaka, Jean Augustin Randriamampianana, Belle and Duda, Alistair 

Murdoch, Mark Peoples, Catherin Finlayson, Mamadou Cissoko & Aude Ripoche.   

 

This study was funded by ACCE a doctoral training partnership funded by the Natural 

Environment Research Council. 

 

 

 

 

 

 

 

 

 

  



3 
 

Abstract  

 

Among the most pressing challenges facing agriculture today is the problem of 

parasitic weeds. A small number of species belonging to the family Orobanchaceae 

result in huge annual losses globally. The magnitude of this problem is likely to 

increase with climate change and increasing connectedness of global production 

systems. Research into the ecology of these weeds is therefore urgently needed.   

Striga asiatica is one of the most serious parasitic agricultural weeds, 

disproportionately affecting subsistence farming in Sub-Saharan Africa, exacerbating 

food insecurity. Farmers frequently lack access to novel technologies, while herbicide 

is largely ineffective as a control. In addition, there is a paucity of detailed information 

on distribution, which is required to understand current drivers, better target control 

efforts, as well as to predict future risks. To address this, we developed a methodology 

to enable rapid, large-scale monitoring of Striga populations. We used this approach 

to uncover the factors that currently drive the abundance and distribution of Striga 

asiatica in Madagascar.  

Two long-distance transects were established across the middle-west region of 

Madagascar, over which S. asiatica abundance in fields was estimated. The resulting 

dataset indicated the importance of crop variety and legumes in driving Striga density. 

Moreover, the dataset revealed significant effect of precipitation seasonality, mean 

temperature and altitude in determining abundance. A composite management index 

indicated the effect of a range of cultural practices on changes in Striga abundance. 

The findings support the assertion that single measures are not sufficient for the 

effective, long-term management of Striga. Furthermore, the composite score has 
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potential as a significant guide of integrated Striga management beyond the 

geographic range of this study.   

Finally, I undertook a meta-analysis of available studies studying the effects of 

intercropping and rotation cropping on parasitic weed density and crop yields.  The 

meta-analysis comprised 1,525 paired observations from 67 studies across 24 

countries. It revealed significant effects of both spatial and temporal crop 

diversification on parasitic weed density reduction. Furthermore, our results show 

effects of spatial diversification are stronger in suppressing parasitic weeds than 

temporal effects. Furthermore, the analysis indicates intercrops, which alter both 

microclimate and soil chemistry such as Crotalaria, Stylosanthes, Berseem clover and 

Desmodium are most effective in parasitic weed management.  

This thesis overall serves to underline the importance of a range of management 

controls in the control of S. asiatica. Most importantly the study showed the effects of 

resistant host crops, legume intercrops, crop rotation and combined management in 

reducing Striga density.  The meta-analysis largely supported the findings of the field 

survey on Striga and further indicated the viability of crop diversification as an 

important tool in parasitic weed management. In addition, the data from both fieldwork 

and the meta-analysis indicated the important role of climate in determining parasitic 

weed densities and possible implications for changing future climate.  
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Chapter 1 

 

General Introduction  

 

Arguably, one of the most pressing of the grand challenges facing humanity this 

century is the need to feed around 10 billion people by 2050 in an environmentally and 

socio-economically sustainable manner (Searchinger et al. 2014). Intensive 

agricultural practices have resulting in diminishing soil and water resources, and 

increased agrochemical pollution and biodiversity loss (Lal 2015, Mancosu et al., 

2015, Vitousek et al. 2009, Dudley & Alexander 2017). It is estimated that at present 

38% of the world’s land cover is under agricultural use (FAO 2020) and that at present 

resource use is already exceeding the world’s capacity to regenerate resources by 

over 70% (York University 2021). Therefore, future agricultural practices are likely to 

determine the nature and utility of the world’s surface more than any other single factor 

(Gomiero et al. 2011).  

Scientific advances starting in the mid-1960s led to a period of unprecedented growth 

in agricultural productivity known as the “Green Revolution” (Pingali 2012). However, 

these advances resulted in a range of unforeseen environmental consequences 

(Harwood 2020). The introduction of genetically improved, high yielding crop varieties 

necessitated the increased input of fertilisers (Harwood 2020). The spread of improved 

varieties worldwide led to increased homogenisation of genetic crop resources, 

vulnerability to pests and diseases and pesticide use (Gomiero et al. 2011). The 

increased use of agrochemicals has resulted in serious damage to both the 

environment and human health (Sharma & Singhvi 2017). Indeed, agriculture at 

present is the largest contributor to biodiversity loss through pollution and habitat 

conversion (Dudley & Alexander 2017).   

Following the initial increments in crop production initiated by the Green Revolution, 

growing evidence shows these increases have largely stalled.  Crop yields have 

plateaued in many of the world’s most intensive agricultural areas (Grassini et al. 

2013). This slowdown is in part attributable to a reduction in efficacy of chemical pest 
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and weed control. Growing levels of pesticide resistance have been recorded amongst 

crop pests, while their proliferation globally is steadily increasing (Whalon et al. 2008, 

Bebber et al. 2014). It is estimated that host specific crop pests and pathogens will 

have fully colonised many agricultural regions by the middle of the century (Bebber et 

al. 2014).  

Crop yield reductions attributable to weeds are approximately 40% globally (Chauhan 

2020). Furthermore, it is predicted that production losses from weeds will increase as 

a result of climate change (Gaudin et al. 2015, Peters et al. 2014, Sharma et al. 2017, 

Fried et al. 2017). Evidence suggests that key aspects of modern agriculture used to 

increase yields are now responsible for reduced production. For example, ecological 

selection has caused increasing instances of herbicide resistance among a growing 

range of weed species globally (Heap 2020). As with the effect of reduced crop genetic 

diversity on pests and diseases, simplification of cropping systems has been 

recognised as a driver of increasing weed infestations (Weisberger et al. 2019).  

Furthermore, the application of inorganic fertiliser, combined with a warming climate 

has been found to result in increases cereal yield losses due to weeds (Storkey et al. 

2021).   

Amongst the most significant agricultural weeds exists small number of parasitic 

species of the genera Cuscuta (L), Orobanche (L), Phelipanche (L), and Striga (Lour). 

These have spread over recent decades, impacting subsistence and increasingly 

industrial production systems worldwide (Samejima & Sugimoto 2018, Aly 2007, 

Fernández-Aparicio et al. 2020). Parasitic weed distribution will also likely increase the 

range for many problematic weed species, further impacting crop production 

(Mohamed et al. 2006, Rubiales et al. 2018). As with weeds in general, parasitic weeds 

predominantly affect low-diversity agricultural systems, with large-scale monocultures 

providing a continuous supply of host plants, facilitating their spread (Ejeta 2007, 

Fernández-Aparicio et al. 2020). While herbicides can reduce seedbank density over 

years, host attachment occurs prior to aboveground emergence. Therefore, such 

treatments are ineffective in reducing the damage to a current year’s crops (Aly 2012, 

Rubiales et al. 2018).  

In response to the growing agricultural production bottleneck, new approaches must 

be found to increase productivity whist reducing reliance on inorganic inputs and 
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conserving soil, water and biological resources. Weed management options, which 

minimise reliance on agrochemicals, are a fundamental element of more sustainable 

future production (Korres et al 2019).  

Among potential options for more sustainable weed management using crop 

diversification has received significant focus for both parasitic weeds and weeds as a 

whole (Rubiales & Fernández-Aparicio 2012, Weisberger et al. 2019).  In addition, the 

use of crop varieties, which are resistant or tolerant to parasitic weeds is an important 

component of current and future management (Rodenburg et al. 2015, Cissoko et al. 

2011). This thesis is an examination of factors affecting parasitic weed density, which 

relate to cropping practices, utilising crop diversification (rotation and intercropping) 

and resistant host crop varieties. The weed density datasets herein have also been 

analysed to determine patterns linked to edaphic (soil NO3) and climatic conditions 

and altitude, to elucidate the ecological niches of the parasitic species under 

investigation.   

 

Thesis Objectives 
 

The principle aim of this study was to gain an understanding of the effect of crop 

management and climate on determining parasitic weed density. This aim was 

supported by two objectives:  

 To adapt an existing field survey methodology to undertake a multi-year, rapid 

assessment of landscape-scale density of Striga asiatica in the Mid-West of 

Madagascar to identify drivers of abundance and distribution for S. asiatica in 

terms of management, soil, climate and altitude.  

 To undertake a comprehensive meta-analysis to further understand role of crop 

diversification and climate on annual, economically important parasitic weeds 

in general.  

 

In chapter 2, I present the findings of the first year of field survey in comprising two 

long-distance transects were established across the middle-west region of 

Madagascar in which Striga asiatica abundance in fields adjacent to the road was 
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estimated, along with management, crop structure and soil data. Analysis of the data 

was undertaken using linear models and generalised additive models.  

In chapter 3, I present the findings of the first two years’ of field data collection (2019-

2020) to undertake a more detailed analysis cultural, climatic and edaphic factors 

driving abundance and distribution of Striga asiatica over time. Linear models were 

used to assess the expanded dataset and a composite management index was 

produced to analyse the effect of combined cultural practices on changes in Striga 

abundance.  

Madagascar was chosen as the focus of fieldwork as it afforded the opportunity to 

study the effects of distinct crop management on a single parasitic species (Striga 

asiatica) within a geographically isolated environment.  

In chapter 4, I present the results of a comprehensive literature search and analysis 

of the subsequent dataset for relevant studies of the effect of intercropping and crop 

rotation on parasitic weed abundance. This included analysis of a range of climatic 

factors and altitude on naturally occurring densities of parasitic weeds. I calculated 

effect sizes for comparison between studies and used linear models and linear mixed 

effects models to determine the relative effects of different management and climatic 

factors as well as assessing individual host and companion crops.   

The rationale driving the choice of undertaking a global meta-analysis of parasitic 

weeds was to attempt to capture as broad a range of data, both in terms of species 

and geographic locations. This was in order to identify the overarching factors driving 

parasitic weeds abundance on a global scale, while providing information on effects 

of specific factors such as individual crop families and species.     
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Abstract 

 

The parasitic weed genus Striga causes huge losses to crop production in sub-

Saharan Africa, estimated to be in excess of $7 billion per year. There is a paucity of 

reliable distribution data for Striga, however such data are urgently needed to 

understand current drivers, better target control efforts, as well as to predict future 

risks. To address this, we developed a methodology to enable rapid, large-scale 

monitoring of Striga populations. We used this approach to uncover the factors that 

currently drive the abundance and distribution of Striga asiatica in Madagascar. Two 

long-distance transects were established across the middle-west region of 

Madagascar in which Striga asiatica abundance in fields adjacent to the road was 

estimated. Management, crop structure and soil data were also collected. Analysis of 

the data suggests that crop variety, companion crop and previous crop were correlated 

with Striga density. A positive relationship between within field Striga density and the 

density of the nearest neighbouring fields indicates that spatial configuration and 

connectivity of suitable habitats is also important in determining Striga spread. Our 

results demonstrate that we are able to capture distribution and management data for 

Striga density at a landscape scale and use this to understand the ecological and 

agronomic drivers of abundance. The importance of crop varieties and cropping 

patterns is significant, as these are key socio-economic elements of Malagasy 

cropping practices. Therefore, they have the potential to be promoted as readily 

available control options, rather than novel technologies requiring introduction. 

 

Keywords: weed survey, weed management, parasitic weeds, Striga asiatica, NERICA rice 

varieties, legumes, Madagascar 
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Introduction 
 

Among the most economically damaging agricultural weeds are parasitic plants 

belonging to the family Orobanchaceae (Joel et al. 2007). The most agriculturally 

damaging weed genera in this family are Striga, Rhamphicarpa and Alectra species in 

sub Saharan Africa (SSA) and Orobanche and Phelipanche species in the 

Mediterranean region, eastern Europe and north Africa (Mohamed et al. 2006, Spallek 

et al. 2013, Parker 2013). Of the suite of economically significant parasitic weeds, the 

genus Striga is among the most problematic (Mohamed et al 2006, Parker 2009). The 

genus comprises over 30 recognised species, with the greatest damage caused by 

Striga hermonthica (Del.) Benth and S. asiatica (L) Kuntze (Mohamed et al. 2001). 

This is due to the significant economic losses caused by these two species to a staple 

cereal crops grown in SSA (Runo and Kuria 2018).  The Striga problem is recognised 

as an increasingly serious limiting factor on crop production in SSA, primarily affecting 

rural smallholder farmers (Cairns et al.  2012, Parker 2012).  Reductions in fallow 

periods and increased monocropping deplete soil organic matter and nitrogen and 

increase soil erosion; creating conditions favourable for the proliferation of Striga 

(Franke et al. 2006, Parker 2012).  

Striga has resulted in reported yield losses of between 35 - 80% in rice (Rodenburg et 

al. 2016), 50 - 100% for sorghum (Abunyewa and Padi, 2003) and losses of maize of 

between 21 - 74% (De Groote et al. 2007). Estimates of economic losses from Striga 

range from between $111 and $300 million per year for rice (Rodenburg et al. 2016) 

and $383 for maize (Woomer and Sabala 2008). Estimates of areas affected vary 

between 50–100 million ha annually (FAO, http://www.fao.org/). The uncertainty 

http://www.fao.org/)en
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represented by this variance in estimated extent reveals that robust methods for 

estimating the spatial extent of infestations are lacking.  

Resistance of host crops has long been identified as a key management tool for control 

of Striga (Scholes and Press 2008; Hearne 2009). Ongoing research is being 

conducted on resistance in rice; specifically, the NERICA (NEw RIce for Africa) group 

of varieties. Broad variation in the resistance of NERICA varieties to S. asiatica has 

been demonstrated from laboratory experiments by Cissoko et al (2011) and in field 

trials by Rodenburg et al (2015, 2017).  

Recent work undertaken by Randrianjafizanaka et al (2018) in Madagascar indicates 

the potential importance of cropping practices and rice variety in the management of 

S. asiatica. NERICA-9 and NERICA-4 reduced S. asiatica infection levels by 57% and 

91% respectively, compared with levels of infection on variety B22. In addition, S. 

asiatica densities were reduced by 20 and 60% in maize grown after planting NERICA-

9 and NERICA-4 respectively, compared to B22. In the same study, intercropping with 

legumes (Vigna unguiculata, Mucuna pruriens, Vigna umbellata and Stylosanthes 

guianensis) resulted in significant reductions in S. asiatica infection levels and delays 

in emergence.  

Upland rainfed rice in Madagascar is sown directly following tillage and is grown as a 

mono-crop or in a mixture with other food crops. Farmers generally do not have access 

to inorganic fertilizers or herbicides and weeding is done manually. Therefore, Striga 

management options available to farmers are limited to cropping practices and use of 

suitable varieties.  
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 It is hypothesised that leguminous crops reduce levels of Striga germination via 

nitrogen fixation, causing germination or Striga without host root attachment, or that 

they alter soil surface conditions to interfere in germination (Khan et al 2002). 

Continuous monocropping without rotation has been shown to increase levels of 

infestation and build ups of Striga seed within the soil seed bank (Ejeta 2007).  

Successful management of any weed relies on strong predictive systems, 

underpinned by accurate distribution data, together with a sound understanding of the 

ecological niche of the target species (Mohamed et al. 2006). The variance and 

reliability of estimates of the geographic extent of Striga is a knowledge gap requiring 

urgent attention (Parker 2009). The paucity of accurate distribution data also prevents 

accurate estimates of economic losses (Rodenburg 2016, De Groote 2007), which 

serves to justify increased investment to address the problem.  

Madagascar has been identified as a priority country for parasitic weed research 

(Rodenburg et al. 2016). This is because of the scale of Striga infestation and the lack 

of current distribution and agroecological data available to address the problem. Fig.1 

provides representations of the topography, climate and soil types of Madagascar.  

Very few studies of Striga have been undertaken in Madagascar (Eliot et al. 1993, 

Geiger et al. 1996). Herbaria records are also scant, with just one new record 

submitted since 2014 (see Fig.  2).   
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Fig. 1. Distribution of altitude (CGIAR-CSI 2019), mean annual rainfall (Fick and Hijmans, 2017), soil type (FAO 2007) and 
mean annual temperature (Fick and Hijmans, 2017) across Madagascar.  

 

The first introductions of S. asiatica to Madagascar occurred over a century ago 

(Fig.2.), resulting in the spread and establishment of separate populations which exist 

today. Within infested areas, losses can vary from between 20 -100% (Joyeux 2014) 

and 30 - 90% (Geiger et al. 1996). In many instances, losses resulting from Striga 

infestation have caused farmers to abandon fields or, in some instances, entire 

settlements (Geiger et al. 1996, Andrianaivo et al. 1998).  
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Fig. 2. Herbarium records for Striga asiatica (Rodenburg et al., 2016). 

The majority of weed population studies have been conducted on single sites using 

small ( 1m2) quadrats (Rew and Cousens 2001, Freckleton and Stephens 2009, 

Queenborough et al. 2011). This approach is inherently labour-intensive and results 

in coverage of very small spatial extents (Rew and Cousens, 2001). This small scale 

limits the ability of data to inform predictions of the effects of large-scale environmental 

change or management on weed population dynamics (Freckleton and Stephens 

2009, Treddennick et al. 2017). The use of small quadrats will also almost certainly 

result in weed patches being missed, creating complications for subsequent statistical 
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analysis (Rew and Cousens, 2001). Large-scale coarse-resolution datasets can be 

used effectively for distribution modelling on macro scales; for example, using 

presence data from herbaria or historical records (e.g. Kriticos et al. 2003, Mohamed 

et al. 2006). However, analyses based on presence data alone will not provide 

information on weed population dynamics in response to changing abiotic or land 

management factors.  

To address the lack of data at the appropriate scale, collection methods to enable such 

analyses; density-structured techniques, have been developed (Queenborough et al. 

2011, Freckleton et al. 2011). These methods enable the relatively rapid collection of 

comprehensive data on weed densities with a small team and limited resources. This 

approach enables the production of regional and national-scale mapping of 

distributions and abundances, including relating population abundances to 

environmental drivers (Mieszkowska et al 2013) and management (Freckleton et al 

2018).   

Here we analyse the factors driving the abundance and distribution of Striga at a large 

scale. We used ecological surveys to obtain landscape-scale distribution data 

alongside detailed agroecological information for S. asiatica. The objectives were to 

(i) develop a rapid and repeatable methodology that would permit the mapping of this 

weed at a national scale; (ii) test the role of management (crop and cropping history) 

in driving increases in abundance; (iii) analyse the impact of variation in soil nutrients 

in explaining differences in the distribution of Striga.  
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Materials and Methods 
 

Surveys were undertaken by employing a methodology originally developed for the 

survey of the weed Alopecurus myosuroides in the UK (Freckelton et al, Manuscript in 

preparation). The method permitted the rapid and accurate assessment of black grass 

densities at a landscape scale, and robust statistical analyses to identify drivers of 

abundance. This methodology was modified to take account of morphological 

differences in detectability between A. myosuroides and Striga and associated 

detectability.   

 

Study system 

Field surveys were undertaken between February and March 2019 in the mid-west of 

Madagascar, one of the six major rice growing regions in the country (Fujisaka, 1990). 

The mid-west covers 23,500 km2 with an elevation between 700 m and 1000 m above 

sea level. The climate is semi-humid tropical, with a warm, rainy season from 

November to April and a cool, dry season from May to October. Mean annual rainfall 

ranges from 1100mm to 1900 mm with a mean temperature of 22 oC.  

 

Large-scale transects 
 

Field sampling involved undertaking two long-distance, driven transects along which 

S. asiatica abundance was estimated in fields adjacent to the road. These comprised 

a transect of 116 km along the RN34 (T1, n=153) and one of 70 km along the RN1 

(T2, n=83). T1 was located within Vakinakaritra province, between the towns of Betafo 
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and Morafeno and T2 was located within Itasy and Bongolava provinces, 

approximately 3km east of Sakay and the outskirts of Tsiroamandidy (Fig. 3). 

 

Fig. 3. Location of transects T1 and T2 in Vakinakaritra, Itasy and Bongolava provinces of mid-west Madagascar.  

The location and orientation of transects was based on expert advice and previous 

work undertaken by agricultural researchers familiar with the historic distribution of S. 

asiatica in the mid-west of Madagascar.  Fieldwork was undertaken with local 

technicians or guides.  

Within-field sampling 

One field was surveyed on adjacent sides of the road every kilometre. In the absence 

of fields in the immediate vicinity of a given 1 km section, the next available field was 

surveyed. Prior to undertaking the survey, pilot work was undertaken in order to ensure 

consistency of scoring between observers, and measure the detectability of the Striga 

within fields. This work was undertaken within an experimental field station maintained 
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by French agricultural research organisation: CIRAD, located at Ivory (Lat: 46.411254, 

Long: -19.552421). Systematic density scoring was undertaken by principal field 

surveyors within three rice fields possessing highly varied levels of Striga infestation.  

Fields were divided into pairs of 10 × 20-m quadrats, in which two observers 

simultaneously recorded Striga density, by walking at a steady pace along a central 

transect, and scanning 5 m to either side; in fields >1200m2, data were recorded from 

a maximum of three pairs of quadrats (Fig. 4). A field corner was randomly selected 

as the point to begin survey, and Striga density was estimated using a six-point, 

density structured scale, ranging from absent (0) to very high (5). Based on available 

information, crop type, rice variety, companion crop, previous crop, estimated mean 

crop height, and percentage cover data were collected. In addition, information on 

fertiliser addition and any other pertinent information on the general area were 

recorded (where available). Mean density score, average crop height and cover, and 

other weed cover for a quadrat was called and entered on the mobile app prior to 

moving to a subsequent quadrat.  If no Striga was found in a quadrat, a thorough walk 

throughout the entire field was undertaken to verify that Striga was truly absent.   
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Fig. 4. Illustration of Striga density estimation, where two observers simultaneously surveyed 10 × 20-m quadrats in a field; 

there was a maximum of three pairs of quadrats in fields >1200 m2.  

Where scores varied in excess of one density point between surveyors, a discussion 

was undertaken as to why the quadrat had been scored as such in order to standardise 

density estimates between observers.  

During the pilot work, it was agreed between surveyors that reliable detection of S. 

asiatica within typically planted, rainfed upland rice fields was possible at distances up 

to 5 m on either side of each surveyor. As a 10 x 10m quadrat per surveyor would 

have negatively affected the speed of repeatability, quadrat dimensions of 200m2 

(10x20m) were agreed. Definitions of density states were determined, and a table was 

produced with narrative descriptors of the scale used.  

Data were recorded using a GPS-enabled smartphone with the mobile application 

‘Fulcrum’ (Fulcrumapp.com, 2019, version 2.31.1) to allow geo-referencing and rapid 

data entry. Accurate location of the fields will permit the sites to be subsequently 

resurveyed.  
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Soil Samples 
 

The role of available nitrogen in determining S. asiatica densities was addressed 

through collecting and analysing soil samples for NO3. These samples were collected 

in pairs from quadrats with contrasting Striga densities within the same field.  The aim 

was to collect equal numbers of paired samples for all combinations of Striga density. 

However, a paucity of very high Striga densities during survey resulted in an 

unbalanced composition of density pairs (see Appendix 3). The soil samples 

comprised: 47 pairs representing differing densities and nine single samples from 

individual fields lacking any Striga. Soil samples were obtained from the centre of each 

chosen quadrat using a 20 mm diameter, hand-held, tubular soil sampler to a depth of 

approximately 20 cm. Soil samples were subsequently air dried for analysis. 

NO3 analysis was undertaken using a LAQUAtwin NO3-11 nitrate meter (Horiba 

Scientific, Japan). Owing to low levels of NO3 within the soil, it was necessary to dilute 

the standard solution supplied with the meter. Therefore, calibration was undertaken 

between 15 and 150 ppm NO3 to improve sensitivity. One gram of dried soil was mixed 

with one millilitre of water and ground in a pestle and mortar. The resultant solution 

was then placed on the sensor of the meter. This procedure was repeated a minimum 

of two times per soil sample. If agreement between the first two readings was observed 

(i.e.: between +/- 5 ppm NO3 between readings), then the readings were taken, and 

the mean of the readings was used. If the readings did not concur, then sampling was 

repeated until stabilisation of readings.  

Soil pH was measured on the soil samples using a Hanna Instruments HI99121 pH 

meter (Hanna Instruments Ltd, UK). For each sample, 20 g of soil were mixed with 50 
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ml of soil preparation solution for 30 seconds. After 5 minutes the soil pH was 

measured using the meter.   

Statistical Methods 
 

The first set of analyses tested the roles of crop variety, weeding, previous crop, 

companion crop and field area in determining the density of Striga. A second set 

examined the potential effect of climatic and edaphic factors (mean annual 

temperature, mean annual rainfall, altitude, pH and NO3) on S. asiatica density. Within-

field Striga density was also plotted against that of neighbouring fields. A final set of 

analyses used Striga density as the independent variable and mean crop height, crop 

cover and other weed cover as response variables; to examine potential effects of 

Striga on crops and any covariation with cover for other weeds present.   

Diagnostic plots (density plots, QQ plots and histograms) were produced for each 

model. Statistics were calculated using R 3.5.1 (R Core Team, 2018) and the 

packages: dplyr (v0.8.0.1; Wickham, François, Henry & Müller, 2019), mgcv (Wood 

2011), lme4 (v067.i01, Bates, Maechler, Bolker, & Walker, 2015), lmerTest 

(Kuznetsova , Brockhoff & Christensen 2017), MASS (Venables & Ripley 2002), 

DescTools (v 0.99.28, Signorell et mult. al. 2019). and psych (Revelle 2018, v1.8.12). 

The full reproducible code is available in Appendix 1.   

Striga density was log (x+1) transformed owing to the presence of large numbers of 

zero densities. Polynomial contrasts were applied to categorical variables 

incorporated into models (crop variety, previous crop, companion crop). Linear models 

and generalised additive models (GAMs) were used to test significance of independent 

variables. Linear regression analyses are robust against moderately high degrees of 

collinearity among independent variables (Freckleton 2011) and violation of normality 
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assumptions for distribution of residuals (Fitzmaurice, Laird & Ware 2004). GAMs were 

also chosen due to their flexibility in dealing with non-normal distributions and ability 

to handle non-linear relationships between response and explanatory variables 

(Guisan et al 2002).   

To test the effects of previous crops, two sets of analyses were undertaken. The first 

was to examine the effect if the previous crop was a legume or non-legume 

(dichotomous, yes / no). For this analysis, Shapiro-Wilk tests were undertaken to 

check for normality of distribution for the two levels of Striga density. A Welch Two 

Sample t-test was subsequently performed on these data. To enable comparison with 

the study of Randrianjafizanaka et al. (2018) a Welch Two Sample t-test for mean 

Striga density and rice varieties B22 and NERICA-4 was also undertaken. The second 

analysis examined any effects of specific crop or crop combinations on Striga density. 

Linear models and GAMs for previous crop and Striga density with latitude and 

longitude included as smoothed terms were performed (see Appendix 1). Crop-crop 

combinations with fewer than two records were omitted from these analyses.  An 

additional model testing for autocorrelation between Striga density and latitude / 

longitude was also performed.  

Preliminary model testing for collinearity between climatic and edaphic factors 

indicated strong correlation between altitude and mean temperature (f=1860, df=2, 

239, R2=0.93, p < 2.2e-16, VIF: 16.56). Potential correlation between mean rainfall 

and altitude and mean temperature was less evident (f=3.40, df=2, 239, R2= 0.03, p = 

0.04, VIF=1.03). However, this interaction was anticipated and is commonplace 

amongst analyses using climatic and edaphic data and was therefore not considered 

a constraint to the analysis undertaken. Smoothed lines fitted to scatterplots for (pH, 

NO3, field area, altitude, mean rainfall, mean temperature) indicated potential non-
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linear relationships with Striga density; providing additional justification for the use of 

GAMs in the analyses (see Appendix 2).   

 

Results 
 

Management Factors  
 

Analysis of management data suggests that rice variety had a significant effect on 

Striga density (linear model F=1.72, df=20, 102, p=0.04, GAM F=11.14, df=21, 102? 

p <2e-16p), most notably with NERICA-10 and NERICA-4. NERICA-10 exhibited 

greater resistance than NERICA-4, which was associated with consistently higher 

Striga densities (see Fig. 5 A). A Welch Two Sample t-test for mean Striga density and 

previous crop legume (yes/no, Fig. 5 B) indicated significant differences of means 

(t=2.05, df=141.08, p=0.02). The t-test for B22 and NERICA-4 did not indicate 

significant differences of means (μ: B22=0.85, NERICA-4=1.15, t=2.05, df=141.08, 

p=0.02) although the mean Striga density was lower for B22 than for NERICA-4. The 

effect of previous crop type or variety on mean Striga density (Fig. 5 C) was not 

significant for a linear model (F=1.08, df =25, 159, p= 0.369) but was significant for the 

associated GAM (F=15.84, df=21, p<2e-16).  Specifically, the effects of previous 

cropping with bambara groundnut (Vigna subterranea) and rice / Bambara groundnut 

were correlated with significantly lower mean Striga density.   

There was a positive relationship between within field Striga density and the density 

of the nearest neighbouring fields (F=9.015 df=1, 242, p=0.01 and GAM (F=10.91, 

df=1, p=0.01). This suggests that spatial factors could be important in determining 

Striga distribution and spread (see Fig. 6). No significant results were obtained from 
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the analyses of mean Striga density used as an explanatory variable for mean crop 

height (F=0.83, df=1, 223, p=0.36) crop cover (F=2.329 df=1, 223, p=0.13) and other 

weed cover (F=0.08 df=1, 151, p=0.77). 
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Fig. 5. A: Mean ±SE Striga density in principal rice varieties (overall mean is dashed line) (3737: n=4; B22: n=28; Chomrong 

dhan: n=11; Fahita tanety: n=2;, Jean Louis: n=2; NERICA-10: n=8; and, NERICA- 4: n=28);  B: Mean ±SE Striga density of 

previous crop types (legume: n=65; non-legume: n=120); and, C: Mean ±SE Striga density of previous crop types and 

varieties recorded (grand mean is dashed line) (Arachis hypogaea; n=18; Fallow: n=14; Ipomoea batatas: n=4;  Manihot 

esculenta: n=25; M. esculenta, Vigna subterranean: n=2; Oryza sp: n=34; Oryza sp, V. subterranean: n=2; V. subterranean: 

n=35; V. subterranean, A hypogaea: n=2, Zea mays: n=34; and, Z. mays, M. esculenta: n=7). Analyses indicated significant 

effects of rice variety, leguminous and individual previous crops.  
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Fig. 6. Within-study field and neighbouring field mean ±SE Striga density.  The effect of density in neighbouring fields on 

within-field mean Striga density was significant for the linear model and GAM.   

 

Climatic and Edaphic Factors 
 

A linear model and GAM combining climatic and edaphic factors to predict Striga 

density (mean rainfall, mean temperature and altitude) did not produce significant 

results (linear model: f = 1.39, df= 3, 238., p=: 0.25, GAM f =1.297 df= 14.38   p =0.19). 

A linear mixed model and GAM examining the effects of soil pH and NO3 on Striga 

density did not produce significant results (linear model: pH: t= 0.72, df= 92.58., p=: 

0.48, NO3 : t= -1.12, df= 89.33, p=: 0.27., GAM pH: X2 = 0.72, df= 1., p=: 0.39, NO3 : 

X2 = 0.48, df= 1., p=: 0.49).  

Comparison of variables between transects indicated a high degree of homogeneity 

(see Table 1). Mean Striga density by transect was similar (T1=0.89, σ=0.93 and 

T2=1.01, 1.01 σ=0.97). Mean rainfall and temperature also showed little variation 



39 
 

between transects. Ranges for NO3 were also very similar. Ranges for pH were 

greater for T1, consistent with a greater distance covered.   

Table 1. Mean Striga density (±SD), field area, temperature, rainfall and altitude range for the two transects.  

 

Discussion 
 

This paper describes a systematic, landscape-scale agroecological study of the 

factors driving the occurrence and abundance of Striga. The methodology enabled the 

rapid collection of statistically-robust distribution data to reveal key agroecological 

factors influencing Striga density. Our study demonstrates the role of crop variety, 

companion crop and crop rotation in determining Striga density and highlights the 

importance of densities within adjacent fields; providing evidence of the localised 

nature of Striga dispersal.  

Previous Striga distribution studies have used a number of other census methods 

including: whole field plant counts (Dugje et al 2006), plant counts from small quadrats 

(Kamara et al 2013), questionnaires (Goodwin et al 2008) or preliminary species 

inventory (Gworgwor et al 2001). Comparable field-level density estimate methods 

have been previously used (Kabiri et al 2015); although these were undertaken on the 

scale of a few kilometres, without the use of statistical methods to identify ecological 

factors in determining Striga distribution. Where such statistical analysis has been 

used the study employed the much more labour-intensive method of plant counts from 

multiple quadrats per field (Kamara et al 2013).   

Transect 
Mean Striga 

density 
Mean Temperature 

(°C) 
Mean Rainfall 

(mm) pH Range NO-3 Range (ppm) 

T1 0.89 (σ=0.93) 21.5 124 4.16 - 6.43 15 – 135 

T 2 1.01 (σ=0.97) 22.3 122 4.51 - 5.81 18 – 130 
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Cropping practices 
 

There was a significant role of rice variety on Striga density, and this was in line with 

previous studies which analysed the resistance of (NERICA) rice varieties.  During the 

current study NERICA-10 was found to be more resistant than NERICA-4. This is 

significant as it is consistent with other studies undertaken in the laboratory by Cissoko 

et al (2011) and during field trials by Rodenburg et al (2015). Cissoko et al. (2011) 

found that NERICA-10 was more resistant to both S. asiatica and S. hermonthica than 

NERICA-4. This resistance was demonstrated in terms of numbers and mean height 

of attached Striga plants.  Similarly, field trials by Rodenburg et al (2015) in Tanzania 

found the NERICA-10 was significantly more resistant to S. asiatica than NERICA-4. 

This resistance was expressed by maximum emerged Striga per m2. However 

additional field trials by Rodenburg et al (2017), -also in Tanzania- indicated similar 

levels of emerged S. asiatica between NERICA-10 and NERICA-4.  

Randrianjafizanaka et al. (2018) identified significantly lower Striga infection levels for 

NERICA-4 than variety B22. During the current study, similar mean Striga density was 

recorded for B22 and NERICA-4, with means which were not statistically different. 

NERICA-4 was the worst performing of all rice varieties recorded in terms of Striga 

density, which is the inverse of the findings of Randrianjafizanaka et al. (2018). 

However, NERICA-9, used in the study by Randrianjafizanaka et al. (2018), was not 

recorded, preventing a complete comparison. The results of Randrianjafizanaka et al. 

(2018) are consistent with regards to the significant effect of previous crop and 

legumes in reducing Striga infestation. This effect has also been found in other 

research (e.g. Kureh et al 2006). 
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The variance in observed resistance of rice varieties between these two studies could 

be due to several reasons. Firstly, high degrees of genetic variability have been 

identified between separate populations of S. asiatica (Mohamed et al 2007) to the 

extent that even proximate populations can be considered as separate ecotypes 

(Botanga et al. 2002). Such variation also appears to be positively related to time since 

introduction to a region or locality (Gethi et al 2005), which influences the degree of 

Striga virulence and levels of host infection (Cissoko et al 2011).   

Secondly, the higher level of complexity associated with open systems could also 

account for observed variation with controlled studies in a geographically discreet 

locality. Indeed, the effect of the inherently greater complexity of agroecological 

systems on resistance of rice cultivars to Striga is largely unknown (Rodenburg 2015, 

2017). Interactions of environmental factors such as soil composition, nutrients, 

microclimate, slope, aspect, can interact to influence the expression of host resistance. 

Interactions of these factors with the phenotypic expression of Striga ecotypes may 

also be responsible. Observations of resistance to Striga, due to the factors detailed 

above, therefore vary greatly according location. This may account for differences 

between the findings of a study concerning single population, when compared with 

those aggregated over several populations across a large geographic extent.     

Dispersal  
 

The correlation between within-field Striga density and that of nearest neighbouring 

fields suggests that there is transfer between adjacent, suitable habitat patches. 

Studies of the dispersal of S hermonthica (Berner et al 1994, van Delft 1997) and S 

asiatica (Sand et al 1990) also suggest localised seed dispersal to adjacent patches 

of suitable habitat, as opposed to long-distance, random dispersal via wind or water.  
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Contamination of seed is responsible for initial introductions between countries or 

regions (Berner et al 1994, Gethi et al 2005). This assertion is supported by herbarium 

records for Madagascar (see Fig.2.), which show the earliest records around the 

country’s principal historical ports. Once initial introduction has occurred, the evidence 

for localised dispersal of Striga suggests that a spatially explicit approach to 

management would be most appropriate (Minor and Gardiner 2011).  

Crop Productivity 
 

The absence of any observed relationship between mean Striga density and crop 

height / cover could be attributable to the fact that emerged (aboveground) weed 

density often does not represent total attached Striga plants. In the case of Striga, 

density of plants can actually be lower in the event of high levels of host attachment 

(Hearne 2009). This is caused by an increased delay in emergence, as greater 

numbers of attached Striga plants compete for the same host nutrient source. This is 

different to the effect of most weeds, where visible weed biomass is related to crop 

performance (Rajcan & Swanton 2001). Some previous studies have demonstrated a 

direct effect of numbers of emerged Striga plants on crop performance (Rodenburg et 

al 2017, Mumera & Below 1993). However, these studies controlled for soil nutrient 

levels, so the role of Striga infection on plant growth could be isolated. It is however 

considered that poor soil nutrient levels observed during the current study represented 

an overriding limiting factor in crop performance, rather than Striga density. 

Climatic and Edaphic Factors 
 

Climatic and edaphic factors were not significantly correlated with Striga density. This 

was consistent with previous studies, as S asiatica has been found to be unresponsive 
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to temperature (Patterson et al 1990, Rodenburg et al 2011).  Mean rainfall variation 

within the study area was low (min: 114mm, max: 134mm), which is well within the 

50–150mm range tolerated by Striga species (Mohamed et al 2006). Similarly, the 

altitudes encompassed by the current study (713–1301m) were well within the cited 

range of occurrence for S asiatica (0–2400m) (Agnew & Agnew 1994).  In order to 

detect effects of climatic or edaphic factors on Striga density, it would be necessary to 

collect data across a wider section of the above-cited ranges. It is most likely that such 

factors do not solely influence spread or density of S asiatica. If such data were 

collected, these would require combination as factors within a more complex, future 

modelling framework.    

Conclusions 

The results of this study provide a number of important, wider implications for the study 

and management of economically important Striga species. These implications arise 

from both the methodology employed and the results obtained. The successful 

implementation of this novel methodology provides a basis to address the paucity of 

distribution and open system agroecological data for parasitic weeds. These are two 

significant concerns, which represent major impediments to the successful 

management of parasitic weeds. The methodology was successfully adapted from 

blackgrass, which is a morphologically and ecologically very different species. This 

demonstrates that the methodology can be further adapted to survey other important 

parasitic weed species.  This simple methodology can be readily communicated to 

new field surveyors and the rapid, yet accurate nature of data collection is cost-

effective. Therefore, surveys can potentially be expanded to regional or national scales 

as required.     
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The fact that rice variety and leguminous crops are shown to be significant 

determinants of Striga density on a landscape scale is highly significant. The 

identification of NERICA-10 as a highly resistant variety supports several previous 

studies. NERICA-4 has significantly lower resistance to Striga than NERICA-10 and 

other varieties and landraces. This observation is highly relevant to policy makers, 

agricultural researchers, extension workers, NGOs, and farmers in Madagascar.  

NERICA-4 is widely planted within the mid-west of Madagascar, possibly due to it 

being Striga resistant and a high-yield variety. The use of resistant crop varieties is the 

most widespread seed-based control option available to subsistence farmers with 

limited capital. However, in light of these findings, it is recommended that alternative 

varieties are promoted which exhibit greater resistance within this agroecological 

context.    

Lower Striga densities recorded in association with planting of legumes also supports 

a number of previous studies. The use of leguminous companion / rotation crops is 

already widely practised within farming systems in this region. This control option does 

not require introduction of novel, unfamiliar crops whose uptake may be subject to 

potential resistance from farmers. The use of legumes within rotational and 

intercropping systems should therefore also be promoted in situations where limited 

access to capital precludes the use of herbicides, fertilisers or other technologies.       
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Abstract 
 

Infestations by the parasitic weed genus Striga result in significant losses to cereal 

crop yields across sub-Saharan Africa. The problem disproportionately affects 

subsistence farmers who frequently lack access to novel technologies. Effective Striga 

management therefore requires the development of strategies utilising existing cultural 

management practices. We report a multi-year, landscape-scale monitoring project for 

Striga asiatica in the mid-west of Madagascar, undertaken over 2019-2020 with the 

aims of examining cultural, climatic and edaphic factors currently driving abundance 

and distribution. Long-distance transects were established across the middle-west 

region of Madagascar, over which Striga asiatica abundance in fields was estimated. 

Analysis of the data highlights the importance of crop variety and legumes in driving 

Striga density. Moreover, the dataset revealed significant effect of precipitation 

seasonality, mean temperature and altitude in determining abundance. A composite 

management index indicated the effect of a range of cultural practices on changes in 

Striga abundance. The findings support the assertion that single measures are not 

sufficient for the effective, long-term management of Striga. Furthermore, the 

composite score has potential as a significant guide of integrated Striga management 

beyond the geographic range of this study.   

 

Keywords: integrated weed management, parasitic weeds, sustainable agriculture, 

witchweeds, cultural control, legumes 
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Introduction 
 

Species of the genus Striga, which belongs to the parasitic plant family 

Orobanchaceae (Joel et al. 2007), are among the most economically significant weeds 

affecting food security within sub-Saharan Africa (SSA), and cause severe losses in 

many staple crops (Scholes & Press 2008). Striga has resulted in reported yield losses 

of between 35 - 80% in rice (Rodenburg et al. 2016), 50 - 100% for sorghum 

(Abunyewa & Padi, 2003) between 21 - 74% for maize (De Groote et al. 2007). 

Estimates of economic losses from Striga range from between $111 and $300 million 

per year for rice (Rodenburg et al. 2016) and $383 for maize (Woomer & Sabala 2008). 

Estimates of the size of the areas affected vary between 50–100 million ha annually 

(FAO, http://www.fao.org/).  

Several aspects of Striga biology contribute to their invasiveness, persistence and 

economic impact. Most significantly, Striga species produce exceptionally large 

numbers of minute seeds (Joel 2013), resulting in the establishment of high population 

densities over short periods of time (Gressel & Joel 2013). Seeds can remain dormant 

within the seed bank for many years, often remaining viable for decades, enabling 

long-term persistence in affected areas (Parker 2013).  

In contrast with weed control in high intensity agriculture, levels of herbicide use in 

Sub Saharan Africa (SSA) remain at very low levels, due to limited access to capital 

(Grabowski & Jayne 2016). A recent, comprehensive study of herbicide use within rice 

production in SSA recorded a mean herbicide frequency of 34% among farmers 

surveyed (Rodenburg et al. 2019). This study also found low levels of product 

regulation and frequent sub-optimal timing and application techniques. In some SSA 

http://www.fao.org/
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countries surveyed, herbicide use was almost non-existent. For example, in 

Madagascar only 2% of farmers surveyed used any herbicide (Rodenburg et al. 2019). 

Integrated Striga management is an initiative that has been promoted by several 

agencies in different regions of SSA, and uses a combination of approaches to Striga 

control (Baiyegunhi et al. 2019). Integrated Striga management incorporates 

technologies including Striga or herbicide resistant cultivars (Kanampiu et al. 2003), 

mycoherbicidal biocontrol (Schaub et al. 2006), arbuscular mycorrrhizal inoculates 

(Lendzemo 2004), improved tillage, fertiliser inputs (Grenier 2004) and intercrops with 

legumes (Schulz et al. 2003, Kamara 2008). 

In regions where novel technologies promoted by integrated Striga management are 

unavailable, cultural methods to control Striga include crop rotation, fallow and 

intercropping. Continuous monocropping without rotation leads to increasing levels of 

infestation and accumulation of Striga seed within the soil seed bank (Ejeta 2007). 

Increasing the diversity of cropping systems can also contribute to management of 

conventional weeds whilst reducing the reliance on chemical inputs, and maintaining 

crop yields and ecosystem services (Davis et al. 2012). Cultural methods for weed 

control such as rotation and cultivar selection are well-established in many agricultural 

systems in SSA (Rodenburg & Johnson 2009). Alongside hand weeding, or weeding 

with hand tools, these are the predominant approaches to weed management in SSA 

(Lee & Thierfelder 2017). The use of legumes by intercropping (Bationo & Ntara 2000), 

crop rotation, fallow and agroforestry are also traditionally used to manage soil fertility 

with respect to N2-fixation (Dakora & Keya 1997).   
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The incorporation of legumes for cultural management of parasitic weeds in SSA has 

been documented in a number of studies, and shown to be potentially effective. For 

example, the use of the N2-fixing, woody legume Sesbania sesban in fallow in Kenya 

resulted in seedbank reductions of 50% of Striga hermonthica (Oswald et al.1996). 

Cajanus cajan grown in rotation with maize also resulted in a halving of the density of 

Striga asiatica (Oswald & Ransom 2001). A study of rice / maize rotations within a no-

till cropping system with permanent soil coverage by a range of legume intercrops 

found Striga asiatica infestations were reduced for all rice/ maize/ legume 

combinations (Randrianjafizanaka et al. 2018). It is hypothesised that varying rates of 

N2-fixation by different legume crops could influence the ability of a legume crop to 

control Striga. N2 fixation alters N availability in soil for host crops. Depletion of soil 

minerals, including N has been shown to influence the exudation of root exudates 

known as strigolactones, which stimulate Striga germination and subsequent levels of 

host infection (Jamil et al. 2011, Yoneyama et al. 2007). 

Additionally, legume intercrops can act as ‘trap’ plants and could be important for the 

reduction of Striga seedbanks (Oswald & Ransom 2001). When intercropped with 

maize and sorghum, Glycine max and Vigna subterranea have been shown to cause 

suicidal germination of S. hermonthica seeds, reducing the seedbank (Sauerborn 

1999). This effect has also been observed in Striga asiatica with intercrops of V 

unguiculata (Ejeta & Butler, 1993). 

An further property of intercrops, (including legumes) is their ability to shade soils 

(Carsky et al. 1994). The shading of intercrops can potentially reduce soil 

temperatures below optimum ranges required for Striga germination (e.g. Hsiao et al. 

1988, Patterson et al. 1982) Shading by intercrops can also inhibit Striga plant 
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development through reduced evapotranspiration rates, which reduce water and 

nutrient extraction rates from host crops (Stewart & Press 1990).  For instance, field 

trials using leguminous intercrops of Vigna unguiculata and Glycine max with maize in 

Kenya recorded suppression of S hermonthica germination.  

The use of resistant and tolerant crop varieties has also been shown to be an effective 

method to control Striga (e.g. Cissoko et al. 2011, Rodenburg et al. 2015, 

Randrianjafizanaka et al. 2018). Mechanisms of host resistance to Striga can be 

categorised as either occurring pre or post attachment to the host root system. Pre-

attachment resistance is determined by a reduction in strigolactones, reducing 

subsequent levels of host infection (Jamil et al 2011). Strigolactones are signalling 

compounds, which stimulate the germination of Striga (Xie et al. 2010, Jamil et al 

2011). Post attachment resistance refers to the degree in which the haustorium, upon 

penetrating the host root cortex, then penetrates the endodermis to form a host–

parasite xylem connection resistance (Cissoko et al 2011). In addition, host crop 

genotypes have been identified which exhibit high degrees of tolerance to Striga 

infection, in terms of photosynthesis, plant height and yield (Rodenburg et al 2017).  

Field trials are effective in demonstrating the effectiveness of alternative management 

options at small scales. However, such trials are typically conducted at single sites 

with limited ranges of variation in environmental conditions. Consequently, there is a 

question about the effectiveness of various alternatives, when applied in real systems, 

and across large numbers of farms that vary in terms of soil, history and management 

(Rew & Cousins 2001, Freckleton et al. 2018). In the case of Striga, to address this a 

landscape-scale study of the drivers of Striga asiatica distribution was conducted 

within rice –maize systems in the mid-west region of Madagascar (Scott et al, 2020). 



57 
 

This previous study demonstrated the importance of cultural practices in determining 

large-scale distributions of Striga, in terms of crop variety, companion crop and 

previous crop as well as Striga density of the nearest neighbouring fields. However, 

this previous analysis was a static ‘snapshot’ of field densities based on one year’s 

Striga density data, without providing information on changes in relation to any 

management practices. Ideally, tests of the effectiveness of management factors on 

weed control should use dynamic data that can also account for such temporal 

variability. Moreover, our previous study did not address the role of several key 

integrated Striga management tools, namely crop rotation and overall crop diversity.   

The overall objective of this paper is to test the degree to which existing integrated 

Striga management practices could contribute to the management of Striga in the 

absence of widespread availability of chemical control. Here we measure the effect of 

cultural management practices on Striga density. These cultural practices include 

variation in crop variety, intercropping and use of legumes. In many parts of SSA, this 

suite of practices represents the main options for cultural weed management. We 

resurveyed fields over successive years to provide three years of crop management 

data and corresponding changes in weed density between 2019 and 2020.  

 

Methods 
 

Study system 
 

Field surveys were undertaken during March 2020, supplementing initial surveys 

undertaken between February and March 2019. The surveys were undertaken in the 

mid-west of Madagascar, one of the six major rice-growing regions in the country 

(Fujisaka 1990). The mid-west covers 23,500 km2, with an elevation between 700 m 
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and 1000 m above sea level. The climate is tropical semi-humid, with a warm, rainy 

season from November to April and a cool, dry season from May to October. Mean 

annual rainfall ranges from 1100mm to 1900 mm with a mean temperature of 22 oC.  

 

Large-scale transects  
 

The aim of the sampling was to estimate the abundance of Striga within fields that 

varied in terms of their management. Because access to fields is limited by the 

absence of good roads, we structured our survey program around the main road 

system. Field sampling was based around two long-distance driven transects along 

which Striga abundance was estimated in fields adjacent to the road. These comprised 

a transect of 129 km along the RN34, and one of 25 km along the RN1b. A total of 221 

fields were surveyed (transect 1: n=174, transect 2, n=47). Transect 1 was located 

within Vakinakaritra province, between the towns of Betafo and Morafeno and transect 

2 was located within Itasy and Bongolava provinces, approximately 6km east of 

Ambohimarina and the outskirts of Tsiroamandidy (Fig. 1). Rice-maize cropping 

systems are largely employed within the study areas, with incorporation of legumes, - 

mainly cowpea (Vigna unguiculata), ricebean (Vigna umbellata), soybean (Glycine 

max) and groundnut (Arachis hypogaea), and manioc (Manihot esculenta). 

Fieldwork was undertaken with support from local technicians and guides who were 

familiar with the locality and field history. Prior to commencing work within a locality, 

the Chef Fokotany (local administrative head) was sought in order to present ourselves 

and detail the work we were undertaking.   
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Within-field sampling 
 

One field was surveyed on adjacent sides of the road every kilometre. During the initial 

surveys in 2019, it was quickly established that detection of S. asiatica was possible 

within rainfed upland rice and maize fields of typically planted densities at distances 

up to 5 m on either side of each surveyor. Quadrat dimensions of 200m2 (10 m x 20 

m) were agreed based on a trade-off between speed of data capture, and accuracy of 

measurement. Fields were divided into pairs of 10 m × 20 m quadrats, in which two 

observers simultaneously recorded Striga density, by walking at a steady pace along 

a central transect, and scanning 5 m to either side; in fields >1200 m2, data were 

recorded from a maximum of three pairs of quadrats. A field corner was randomly 

selected as the starting point for each field survey. Striga density was estimated using 

a six-point, density structured scale, ranging from absent (0) to very high (5). 

Definitions of density states were determined during fieldwork in 2019, and a table with 

narrative descriptors of the scale used alongside representative photographs for each 

density state was produced (see Appendix 1). 

Information was collated on crop type, rice variety, companion crop and previous crop. 

In addition, mean crop height, and percentage crop cover was estimated for each 

quadrat. Mean density score for Striga, average crop height and cover, and other weed 

cover for a quadrat was entered on a mobile application prior to moving to a 

subsequent quadrat. If no Striga was found in a quadrat, a thorough walk throughout 

the entire field was undertaken to verify that Striga was truly absent. If Striga was then 

located, density was estimated for this area which replaced a quadrat with a zero 

record on the data sheet.    
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To measure changes in Striga density between years, fields surveyed in the first year 

(2019) were relocated using a GPS-enabled smartphone. Data were recorded using 

a smartphone with the mobile application ‘Google Sheets’ (Google LLC, 2020, Version 

1.20.492.01.45) to allow rapid and paperless data entry. Where new fields were 

surveyed, geo-referencing was undertaken using ‘Google My Maps’ (Google LLC, 

2020, Version 2.2.1.4). 

In a small number of instances, it was not possible to verify the exact location of 

previously surveyed fields. This was a consequence of GPS error, resulting in 

coordinates being located in margins between small fields, or being clearly erroneous 

(e.g. centred on a road, non-agricultural location). In these instances, the field was 

omitted (n=19). In instances where the resurveyed field contained a current non-host 

(i.e. non-cereal) crop, the field was surveyed but was omitted from analyses of Striga 

density (n=55). An adjacent, substitute field containing a cereal crop was surveyed 

and added to the dataset. Of the resurveyed non-cereal crop fields, only three were 

found to contain low, residual levels of Striga.  

Our initial intention was to extend both transects in order to capture a greater degree 

of altitudinal and climatic heterogeneity. However, owing to logistic constraints 

imposed by the COVID 19 situation it was only possible to extend transect 1 by 16 

kilometres east. It was also not possible to either resurvey the entirety of fields 

originally surveyed in 2019 or to extend transect 2.  
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Fig 1. Location of transects 1 and 2, within the Vakinakaritra, Itasy and Bongolava provinces in the mid-west of 

Madagascar. 

Soil Samples 
 

Alongside the impact of cropping, the role of available nitrogen in determining Striga 

densities was addressed through collecting and analysing soil samples for NO3. These 

samples were collected in pairs from quadrats with contrasting Striga densities within 

the same field. Samples comprised 23 pairs representing differing densities from 

absent to very high. These were analysed immediately following collection, with data 

added to those of the 98 samples collected in 2019 for the purposes of analysis.  
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Soil samples were obtained from the centre of each selected quadrat using a 20 mm 

diameter, hand-held, tubular soil sampler to a depth of approximately 20 cm. Soil 

samples were subsequently air dried for analysis. 

NO3 analysis was undertaken using a LAQUAtwin NO3-11 nitrate meter (Horiba 

Scientific, Japan). Owing to low levels of NO3 within the soil, it was necessary to dilute 

the standard solution supplied with the meter. Therefore, calibration was undertaken 

between 15 and 150 ppm NO3 to improve sensitivity. One gram of dried soil was mixed 

with one millilitre of water and ground in a pestle and mortar. The resultant solution 

was then placed on the sensor of the meter. This procedure was repeated a minimum 

of two times per soil sample. If agreement between the first two readings was observed 

(i.e. between +/- 5 ppm NO3 between readings), then the readings were taken, and 

the mean of the readings was used. If the readings did not concur, then sampling was 

repeated until stabilisation of readings.  

 

Climate and Altitude 
 

Climate data were obtained from the WorldClim2 dataset (Fick & Hijmans 2017). 

Climatic parameters included in the analyses were mean annual rainfall and mean 

annual temperature. Precipitation seasonality was included as an additional climatic 

factor. This was obtained by calculating the coefficient of variation (CV) of mean 

monthly precipitation, which is the ratio of the standard deviation of the monthly total 

precipitation to the mean annual precipitation (O’Donnell, & Ignizio, 2012). Invasion 

risk modelling has identified the seasonality of precipitation as one of the most 

significant bioclimatic variables influencing the occurrence of Striga asiatica (Mudereri 

et al. 2020). Seasonality is the chief driver of variation in monthly rainfall through the 

year. Therefore, the CV of monthly precipitation is an appropriate measure of seasonal 
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variation. Altitudes for surveyed sites were obtained from CGIAR - Consortium for 

Spatial Information (CGIAR-CSI 2019).  

 

Statistical Methods 

Linear Models were used to test the effects of management (rice variety, previous crop 

and companion crop) and climatic predictors (mean annual temperature, mean annual 

rainfall, altitude). Soil sample data from 2019 and 2020 were analysed, using NO3 as 

a predictor of Striga density.  Within-field Striga density was also plotted against that 

of neighbouring fields. Year was also included in interaction with all predictors in order 

to test for any differences in patterns between the two years.  

Striga density was log (x+1) transformed owing to the presence of large numbers of 

zero densities. Categorical variables incorporated into the models included crop 

variety, previous crop, companion crop. We included and tested terms sequentially 

(using Type I Sums of Squares): specifically, the interaction between year and the 

main effects was included, and tested as the final variable in the model to maintain the 

principle of marginality.   

Statistics were calculated using R 3.6.3 (R Core Team, 2020) and the packages: dplyr 

(v0.8.0.1; Wickham, François, Henry & Müller, 2019), mgcv (Wood 2011), lme4 

(v067.i01, Bates, Maechler, Bolker, & Walker, 2015), lmerTest (Kuznetsova , 

Brockhoff & Christensen 2017), MASS (Venables & Ripley 2002), DescTools (v 

0.99.28, Signorell et mult. al. 2019). and psych (Revelle 2018, v1.8.12). The full 

reproducible code is available in Appendix 2.   

Tests for collinearity between climatic factors indicated strong correlation between 

mean temperature and precipitation seasonality (f=1768.9, df=1, 406, R2=0.81, p < 
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2.2e-16, VIF: 5.36, see plot, Appendix 3). This is because higher temperatures are 

correlated with greater variation in seasonal rainfall. Owing to this correlation, these 

terms were included in separate models.  

Legume Crops 

We tested the effects of the incorporation of legumes into crop rotation, as well as to 

examine effects of individual legume crops on Striga density. This analysis used data 

from all fields surveyed in 2019-2020, in which either a current legume companion 

crop or a previous legume crop was recorded. Firstly, a linear model was used to 

determine binary effects of the presence or absence of legumes in rotation using log-

transformed mean Striga density. Secondly, an analysis was undertaken to examine 

the effects of individual legume crops on Striga density using mean Striga density (log 

transformed) as the response for a linear model.   

Management and change in Striga density 

In the set of analyses described above, the objective is to determine which factors 

correlate with the density of Striga. However, this does not tell us whether the 

correlates of static density measures are able to predict the impact of management on 

the change in density from one year to the next. Therefore, we tested whether models 

fitted to static density data could predict changes in Striga density.  

Based on the outcome of the models described above, we tested the combined effects 

of a suite of management factors thought to individually affect Striga density, 

specifically inclusion of fallow, number of years of cereal cultivation, number of years 

of legume crop cultivation, and crop diversity (see Table 1). This analysis used 

cropping data obtained from field survey combined across 2019 and 2020, and 
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included the previous crop for 2019, therefore, giving a three-year sequence of crop 

rotation data.  

Table 1. Management scores for individual practices, calculated from verifiable 2-year dataset including previous 

crop for 2019. These measures were scaled using coefficients derived from a linear model including all four 

factors and summed to produce an overall Striga “management score” for each field.  

Variable  Range Coefficient 

Fallow 0-1 -0.2018n 

Years of cereal planting  2-3 -0.09133n 

Years of legume planting 0-3 -0.36512n 

Crop diversity  1-5 -0.26289n 

 

We fitted a single linear model using the four individual factors (fallow, years of cereal 

cultivation, years of legume crop cultivation, crop diversity) as predictors of Striga 

density. The resultant values were then summed to produce a composite score (Table 

1). Example calculations for fields with different indicator scores are provided in table 

2. The composite scores were then used as the independent variable in a linear model 

of change in mean Striga density between 2019 and 2020 as the response.  

Table 2. Example calculations for fields with differing composite scores. FL_YR = Fallow included in 3 year 

rotation, CR_YR = Number of years of cereal planting in 3 year rotation, LM_YR = Number of years in which 

legumes have been planted in 3 year rotation, NC = Number of different crops planted in 3 year rotation.  

FL_YR Score CR_YR Score LM_YR Score NC Score Total 

No 0 2 -0.18266 1 -0.36512 3 -0.78867 -1.33645 

Yes -0.2018 2 -0.18266 2 -0.73024 4 -1.05156 -2.16626 

No 0 2 0.18266 2 -0.73024 4 -1.05156 -2.16626 

Yes -0.2018 2 0.18266 1 -0.36512 4 -1.05156 -1.80114 

No 0 3 -0.27399 0 0 2 -0.52578 -0.79977 
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The score for legume crops included fields containing Mimosa diplotricha. Though this 

appeared to be an incidental weed species, its properties as an N-enriching green 

manure species are well-established (Yogaratnam et al. 1984, Thomas & George 

1990). To simplify, and based on the results of models fitted to statistic density data, 

no differentiation was made between legume species. However, different rice varieties 

were considered as separate crops, owing to their observed influence on Striga 

density (Scott et al. 2020, Cissoko et al 2011, Rodenburg et al 2015, 

Randrianjafizanaka et al. 2018). 

Results 

The importance of the rice variety and whether the previous crop was leguminous were 

evident in this dataset (Table 3, Fig.2). Rice variety NERICA 10 was associated with 

lowest mean Striga densities (see also Scott et al. 2020). Several locally improved 

varieties (FOFIFA/SCRiD) and landraces are associated with higher Striga densities.  

Fields previously planted with legumes had significantly lower densities than those that 

had not (Table 3 & Fig. 2.C).  The linear model using individual legume crops as the 

independent variable for Striga density did not indicate any significance for this factor, 

with the majority of variation explained by the effect of year.  However, figure 3 

indicates varying levels of Striga infestation associated with different legume crops.    

Impacts of Management Diversity 

Patterns of rotation of main crops between years are shown in Table 4. Crop rotations 

were dominated by cereal (rice/maize) accounting for 44.5% of all combinations; 

comprising continuous maize (15%), continuous rice (10%), followed by maize / rice 

or rice / maize (19%). Following this was rice / maize and Bambara groundnut (13%), 
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rice / maize and manioc (10%) rice / maize and groundnut (7%) and rice / maize and 

fallow(6%). Soya and other legumes were less widely recorded as a main crop, but 

were more frequently recorded as an intercrop.  

Results for the analyses of the composite management score indicated significant 

effects on change in Striga density (F=9.06, df=1, 76, p=0.0035).  Figure 4 indicates a 

clear positive relationship between the composite of management index scores for 

fields and mean change in Striga density between 2019 and 2020. The strong effect 

of Striga abundance of neighbouring fields suggests that this is a very strong predictor 

of within-field density (see Fig.5.A, Table 3.). This reinforces previous results (Scott et 

al. 2020), and suggests that spatial factors are important in determining Striga 

distribution and spread. 

Significant effects for precipitation seasonality, altitude and temperature were 

indicated: with distinct trends in density observable along individual gradients (Fig.5.C-

E). Soil analyses produced similar results with no significance of probabilities, in line 

with analysis of 2019 data alone.  

Year emerged as significant term in the majority of models (companion crop, previous 

crop legume, legume crop, mean rainfall, precipitation seasonality, altitude and mean 

temperature, and other weed density) and as an interaction term in models for rice 

variety, previous crop, neighbouring density and mean rainfall (Table 3).  
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Table 3. Summary of models relating density of Striga to a range of management and ecological predictors. 

Precipitation seasonality (coefficient of variation for rainfall) is included as an additional test for the combined 

dataset. Resurvey in 2020 included a subset of original fields with additional fields. Updated analyses used 

combined dataset for both years.  

 

Variable Year (df) P Effect (df) P Year x 
effect 

(df) P 

(a) Management 
variables 

         

Rice Variety 0.57 (1, 164) 0.450 2.02 (27, 
164) 

0.004 1.90 (9, 164) 0.054 

Previous Crop 3.25 (1, 238) 0.073 1.02 (23, 
238) 

0.434 2.21 (6, 238) 0.043 

Companion Crop 11.52 (1, 209) 0.001 1.13 (25, 
209) 

0.315 0.48 (6, 209) 0.822 

Previous Legume 4.33 (1, 316) 0.038 6.39 (1, 316) 0.012 0.02 (1, 316) 0.885 

Legume Crop 8.69 (1, 133) 0.004 1.82 (6, 133) 0.099 2.37 (3, 133) 0.073 
          

(b) Ecological variables 
         

Neighbor density 3.04 (1, 338) 0.082 5.83 (1, 338) 0.016 6.32 (1, 338) 0.012 

Mean rainfall 5.94 (1, 411) 0.015 1.84 (1, 411) 0.162 14.29 (1, 411) 0.000 

Precipitation 
seasonality 

5.87 (1, 411) 0.016 8.78 (1, 411) 0.003 3.13 (1, 411) 0.078 

Altitude 5.56 (1, 409) 0.019 9.20 (1, 409) 0.003 0.51 (1, 409) 0.478 

Mean Temperature 5.89 (1, 411) 0.016 12.61 (1, 411) 4.3 x 10-4 0.58 (1, 411) 0.448 

NO3 0.293 (1, 69) 0.590 0.10 (1, 69) 0.752 0.19 (1,69) 0.663 

Other Weed Cover 5.69 (1, 337) 0.018 1.46 (1, 337) 0.227 0.10 (1, 337) 0.750 

 

 

  



69 
 

 

Fig 2. A: Log Striga density for rice variety ±SE , NERICA-10 n=10, FOFIFA 186 n=1, SEBOTA n=6, FARFIAL 

n=1, JEAN LOUIS n=44, CHOMRONG DHAN n=18, 3737 n=5, Oryza sp n=4, TSY MANARY AVANY n=1, FAHITA 
TANETY n=43, NERICA- 4 n=33, B22 n=41, FOFIFA 182 n=4, ROVE n=1, FOFIFA 3290 n=2, FOFIFA 172 n=1, 
FOFIFA 154 n=2,  SCRID 295 n=3, AVAROTRYNYAVO n=1, PRIMAVERA n=1), B: Log Striga density for previous 

crop ±SE , (Onion n=1, Oryza sp / Bambara groundnut n=2, Common bean n=2, Sweet potato n=7, Oryza sp / 
Manioc n=1, Groundnut n=20, Maize / Manioc n=7, Soya bean, n=20, Oryza sp n=70, Maize n=59, Maize / Bambara 
groundnut n=2, Oryza sp / Groundnut n=1, Manioc n=29, Fallow n=19, Oryza sp / Maize n=1, Manioc / Bambara 
groundnut n=2, Bambara groundnut / Groundnut n=2. C: Log Striga density for previous crop type ±SE  (-legume 
/ non- legume). D: Mean Striga density for companion crop ±SE  ( Soya bean n=20, Groundnut n=20, Ricebean 

n=4, Oryza sp n=2, Manioc n=40, Bambara groundnut n=13, Manioc  / Soya bean n=2, Maize  / Manioc,  n=2, 
Maize n=101, Mimosa spp n =20, Manioc / Groundnut n=6, Stylosanthes n=2, Other n=2, Gourd / Bambara 
groundnut n=2, Manioc  / Mimosa spp n=1,  Common bean n=1, Manioc / Bambara groundnut n=1 ±SE .   
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Fig 3. Log Striga density for fields planted with either a current legume companion crop or previous legume crop 

±SE and grand mean (dashed line), Soya bean n=20, AH, VU Ricebean n=2, Groundnut n=42, Bambara groundnut 
n=54, Mimosa spp n=21, Common bean n=2, Bambara groundnut / Groundnut n=2. 

Table 4. A transition matrix illustrating rotations for main crops recorded for the study between 2020/2019 and 

previous main crops recorded in fields for 2019.   The number in each cell is the number of fields for each 

rotation. The colour represents the number of fields in each observed rotation. Asterisk denotes legume crop.  
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Fig 4. Change in mean Striga density and composite management score. Score comprised: years of fallow, 

number of years of cereal cropping, number of years of legume cropping and number of different crops planted. 
Values were weighted using coefficients derived from a linear model containing each factor as individual terms. As 
all coefficients were negative, a higher score is associated with increases in Striga density. The effect of 
management score on change in mean Striga density was significant for both the linear model.   
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Fig 5. A: Mean within-field Striga density and Striga density within closest neighbouring fields ±SE, B: Mean Striga 
density and mean annual rainfall ±SE, C Mean Striga density and precipitation seasonality (coefficient of variation 
for rainfall) ±SE, D: Mean Striga density and altitude ±SE,  E: Mean Striga density and mean annual temperature 
±SE. The effects of both neighbouring densities, precipitation seasonality, altitude and mean temperature on mean 
Striga density were significant for linear models (see Table 3).   

 

 

Discussion 

This study provides evidence of the effect of a wide range of individual factors on 

Striga abundance at a landscape scale over multiple years. Given the importance of 

rice variety, legume crops and Striga density within adjacent fields, we provide 

evidence to contribute to the multifactor approach to Striga through integrated Striga 

management. The identification of year as a consistently significant effect across 

models illustrates the importance of inter-annual variability of Striga density. Strong 

inter-annual variation in Striga density has also been observed by other multi-year 
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studies of cropping practices on Striga density (Reda et al. 2005, Khan et al. 2007, 

Midega et al. 2014, Randrianjafizanaka et al. 2018).   

The work presented here advances our previous work in several respects. Firstly, the 

expansion of ranges encompassed by the 2020 surveys showed the significance of 

climatic and altitudinal factors in determining Striga density, not revealed in the 

analysis of the 2019 alone.  Secondly, recording interannual variability in Striga density 

allowed for the assessment of the effects of a number of combined cultural factors. 

This is significant from a management perspective as it provides evidence of 

measures which can be implemented to control this problematic weed.       

Climate and Altitude 

The significant effect of precipitation, seasonality and mean temperature in our data 

concurs with ecological niche modelling, field surveys and laboratory tests undertaken 

elsewhere. Mudereri et al (2020) used a range of models including bioclimatic 

variables to determine the ecological nice of Striga asiatica in Zimbabwe. Precipitation 

seasonality was consistently identified as a key factor within all models. Niche based 

modelling prediction undertaken by Ronald et al. (2017) also identified precipitation 

variation as a major determinant of future spread. An association between regions with 

erratic, savannah-type rainfall patterns and high rates of Striga infestation has also 

been noted from field surveys (Dugje et al. (2006). The role of moisture variation in 

Striga seed conditioning and germination has also been demonstrated in laboratory 

studies (e.g. Babikar et al. 1987, Hsiao et al. 1987, Mohamed et al. 1998).  

A minimum seed conditioning and germination temperature of 20oC for Striga asiatica 

was observed by Hsiao et al. (1988) and Patterson et al. (1982). Patterson (1990) 

suggested that Striga asiatica requires a mean temperature of 22oC to reach maturity, 
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with an optimum temperature of 32 oC. While there are a few observations from this 

study, which fall below these thresholds; the general trend supports the assertion of 

these temperature ranges.   

The significance of altitude as a predictor of Striga density is evident. Fig.5.D shows 

fields with highest infestation rates occurring at intermediate altitudes. Rodenburg et 

al. (2014) also observe that S. asiatica is particularly problematic at altitudes between 

800-1100 m a.s.l within the region of Vakinakaritra, which serves to confirm this 

observation.    

 Soil NO3 

Striga density was not found to be related to NO3 levels in the soil. There are several 

potential reasons for this. Firstly, the literature suggests contradictory effects of the 

role of nitrogen on Striga emergence. For example, although Osman et al. (1991) 

recorded a significant increase in emerged S. asiatica between plots with applied 

nitrogen versus nitrogen-poor controls, no significance was found in numbers of 

emerged Striga between N treatments. However, Mumera and Below (1993) found 

decreases of Striga hermonthica with increased rates of applied N, although inter 

annual variability was considerable.  

A second factor in the lack of observed impact of NO3 is the timing of sampling. NO3 

samples were collected just before harvest at the end of the growing season.  Soil N 

rates in rainfed rice are highest at the time of crop planting, with plant uptake and 

leaching decreasing over the duration of the growing season (Ranaivoson et al. 2019). 

Timing of sampling is therefore a possible factor in the lack of recorded effects of NO3 

on Striga density.  
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Legumes 

The results of this study demonstrate the effect of legumes cropping systems on Striga 

density on a number of levels. Firstly, the effect of legumes in general was 

demonstrated by the lower mean Striga density associated with the previous planting 

of legumes versus other crop types (Fig.2.C). The generalised effect of legumes was 

further supported by the significance of the composite management score, which 

includes number of legumes planted over a three-year rotation as a component (Fig.4). 

Although individual legume crops show varying mean Striga densities in figure 4, these 

differences were not significant; with Significance within this model apportioned to 

year.   

The individual effects of legume crops on Striga density also varies between other 

comparable studies. For example, Randrianjafizanaka et al. (2018), recorded 

significant effects of a cowpea, Mucuna, ricebean and Stylosanthes intercrops on S. 

asiatica density in both rice and maize. A study by Khan et al. (2007), using common 

bean, cowpea, Crotalaria, Desmodium, mung bean and groundnut, only found a 

significant effect for Desmodium intercrop. Midega et al. (2014) only found significant 

differences among some legumes in certain cropping seasons, while Reda et al. 

(2005) found no significance for a suite of legume intercrops.   

Management  

The analysis of the management score indicates a significant relationship between the 

combined factors and inter-annual variation in Striga density. While these variables 

when assessed individually may not demonstrate significant effects due to their coarse 

resolutions, their combined effect on change in Striga density is considerable from a 

farm management viewpoint. Indeed, the importance of an integrated Striga 
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management approach, combining multiple methods has been demonstrated in 

several other studies (e.g.: Tesso and Ejeta 2011, Randrianjafizanaka et al. 2018). 

Effective dissemination of novel technologies associated with integrated Striga 

management requires functional and accessible extension services to maximise 

farmer’s awareness and education (Ellis-Jones et al. 2004, Emmanuel et al. 2016). 

Increased costs associated with implementing novel integrated Striga management 

technologies are also related to adoption rates; with larger commercial farmers 

showing significantly higher levels of adoption in other areas of SSA (Baiyegunhi et al. 

2019).  Both these factors represent significant barriers to both diffusion and adoption 

of new integrated Striga management technologies in Madagascar.  

Extension services are not sufficient to effectively support widespread diffusion of 

other novel technologies (Harvey et al. 2014). In addition, around 70% of farmers in 

Madagascar practice subsistence agriculture (INSTAT 2011), while the average farm 

area for upland rice for Madagascar is 1.28ha (Zeller et al. 1999). Agriculture is also 

subject to frequent extreme weather events and pest and disease infestations 

(Rakotobe et al. 2016). Coupled to this is an absence of financial safety nets and 

widespread food insecurity for at least part of the year (Harvey et al. 2014).  These 

factors result in an understandably high degree of risk-aversion towards adopting new 

technologies, even when they are available (Moser & Barrett 2003). Therefore, the 

adaption of existing practices, combined with available resistant crops is considered a 

more viable approach to Striga management within this context.  

Because of the complexity of the information included, we simplified by developing a 

management score designed to represent the complexity and diversity of crops used. 

The use of composite indices is an effective means of aggregating often-disparate 
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individual indicators into a single summary value (Foster et al. 2013, Greco et al. 

2019). Such indices have the potential to summarise systems in ways not directly 

measurable (Dobbie & Dail 2013). They have been widely used within ecological and 

environmental assessment. For example, to measure biotic integrity of freshwater and 

riparian habitats (Karr 1981, Munné et al. 2003), assess habitat suitability for protected 

species (Oldham et al. 2000), as well as measuring global biodiversity trends (Collen 

et al. 2009) and national-level environmental performance (Srebotnjak 2014)).  

Conclusion 

The findings of this study further demonstrate the influence of a range of individual 

cultural factors on Striga. Moreover, the influence of individual legume crops on Striga 

density provides additional insight into observations of overall effects of legumes in 

general. Further study of the degree to which these effects are attributable to either 

the habit or N fixing properties of different legume crops is recommended to obtain a 

deeper understanding of the specific roles of different legume crops.  

The analysis shows however that no single factor influences Striga density to the 

degree that it can be considered a panacea for control. Indeed, it is widely accepted 

that single measures are not sufficient for the effective, long-term management of 

Striga. The influence of the composite management score in reducing Striga densities 

is of potential relevance to farmers and extension workers in regions without access 

to novel control technologies. The scoring system provides an indication of the way in 

which several, easily measurable factors combine to result in significant reductions in 

Striga density between years. With annual monitoring, the index could be employed 

as an adaptive management tool, providing feedback on changes in infestation and 

options to adapt cropping accordingly. If used as a complementary method, alongside 
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locally-effective resistant crop varieties and legume intercrops, the composite score 

has potential as a significant component of integrated Striga management beyond the 

geographic range of this study.  
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Abstract 
 

Parasitic weeds cause huge annual losses to food production globally, affecting both 

industrial and subsistence agriculture. A small number of species from the genera 

Cuscuta, Orobanche, Phelipanche and Striga have proliferated across many 

agroecological zones. Their control is compromised due to the lack of efficacy afforded 

by conventional, herbicide based approaches and their rapid adaptation to new 

resistant crop cultivars. A broad range of studies suggest consistent reductions in 

parasitic weed densities owing to increased spatial (intercropping) and temporal 

diversity (rotation cropping). However, to date, no synthesis of this body of research 

has been published. Here we report the results of a meta-analysis using 1,525 paired 

observations from 67 studies across 24 countries, comparing parasitic weed density 

and crop yields from monocrop and more diverse cropping systems.  We found both 

spatial and temporal crop diversification had a significant effect on parasitic weed 

density reduction. Furthermore, our results show effects of spatial diversification are 

stronger in suppressing parasitic weeds than temporal effects. Furthermore, the 

analysis indicates intercrops, which alter both microclimate and soil chemistry such as 

Crotalaria, Stylosanthes, Berseem clover and Desmodium are most effective in 

parasitic weed management. This analysis serves to underline the viability of crop 

diversification as a tool to enhance food security globally.  

 

Keywords: integrated weed management, parasitic weeds, sustainable agriculture, 

agrodiversity, legumes 
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Introduction 
 

Weeds currently represent the most significant factor limiting agricultural production, 

with crop yield reductions attributable to weeds measured at approximately 40% 

globally (Chauhan 2020, Oerke 2006). Amongst the most serious weeds, a small 

number of parasitic plants of the genera Cuscuta, Orobanche, Phelipanche and 

Striga have proliferated, impacting food production worldwide (Samejima & Sugimoto 

2018, Aly 2007, Fernández-Aparicio et al. 2020). Parasitic weeds disproportionately 

affect subsistence farming in the developed world (Rodenburg et al. 2016), 

exacerbating food insecurity and confounding poverty alleviation initiatives. 

Simplification of cropping systems has been recognised as a key driver of agricultural 

weeds in general (Weisberger et al. 2019). This is also the case for parasitic weeds, 

which predominantly affect low-diversity agricultural systems, with large-scale 

monocultures providing a continuous supply of host plants, facilitating their spread 

(Ejeta 2007, Fernández-Aparicio et al. 2020).  

It is widely acknowledged that production losses from weeds will increase as a result 

of climate change (Gaudin et al. 2015, Sharma et al. 2017, Fried et al. 2017), with 

predicted infestations of parasitic weeds also increasing (Mohamed et al. 2006, 

Rubiales et al. 2018). Growing levels of herbicide resistance have been recorded 

among an increasing number of weed species globally (Heap 2020). Similarly, 

herbicide use to control noxious parasitic weeds is largely ineffective (Aly 2012, 

Rubiales et al. 2018). Weed management options, which minimise herbicide reliance, 

are increasingly viewed as a more sustainable solution (Korres et al 2019). In 

particular, weed management using crop diversification has received significant focus 

for both parasitic weeds and weeds as a whole (Rubiales & Fernández-Aparicio 2012, 

Weisberger et al. 2019).   

Agrodiversity describes diversity within varieties and species of cultivated crops, crop-

management systems and techniques, as well as insect and soil biodiversity (Netting 

& Stone 1996, Pimentel et al.1992). This diversity is important because it enhances 

the provision of ecosystem services by mitigating and reducing environmental risk, 

particularly with respect to climatic variations (Isaac 2012, Di Falco & Veronesi, 2013).  

An important component of agrodiversity is the diversity of cultivated crop species 
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(Khoshbakht & Hammer 2008) as well as genetic diversity at the varietal and landrace 

level (Hajjar et al. 2008).  

Crop management diversification has been promoted to enhance sustainable 

agricultural development, environmental management, and poverty alleviation; 

thereby enhancing the overall agroecological resilience of production systems (FAO, 

2012, Peterson et al. 2018). Studies have demonstrated that under a broad range of 

conditions it is possible to maintain yields whilst reducing the use of chemical fertilisers 

and herbicides (Raseduzzaman & Jensen 2017; Davis et al. 2012). Furthermore, 

diversification has been shown to stabilise and increase yields when compared with 

less diverse systems (Himmelstein et al. 2017). Such effects have been demonstrated 

on field, landscape and national scales (Davis et al. 2012, Abson et al. 2013, Renard 

& Tilman 2019) as well as across climatic gradients (Gaudin et al. 2015, Bowles et al. 

2020).  

Techniques used to enhance diversity include crop rotation (He et al. 2019), 

intercropping (Ofori & Stern 1987), cover cropping (Hartwig & Ammon 2002) and the 

use of cultivar mixes of the same species (Hajjar et al. 2008). There are several ways 

in which crop diversification has been shown to enhance food security. The principal 

effects are via control of plant pests (insects, pathogens and weeds) (de Vallavieille-

Pope 2004, He et al. 2019), enhancement of soil macronutrients (Davis et al. 2012, 

Haugaard-Nielsen et al. 2001, Zhang & Li 2003), soil mycorrhizae and other plant 

growth resources (Haugaard-Nielsen & Jensen 2005). There is also evidence, albeit 

more limited; suggesting crop diversification provides enhanced pollination (Kubisova 

& Haslbachova 1991, Pywell et al. 2005).  

Several mechanisms have been suggested by which intercropping results in increased 

crop yields. Crop diversity enhances the efficiency of crop resource use through niche 

complementarity or resource partitioning. This is due to variation in resource 

requirements, occupation of differing soil horizons and canopy heights resulting in 

more efficient use of available resources (Van der Meer 1992, Bybee-Finley & Ryan 

2018). The facilitative production principle suggests that the interaction of beneficial 

traits between two crops results in increased productivity (Van der Meer 1992, Brooker 

et al. 2015). Intercropping also provides enhanced crop yield stabilisation through the 

compensation principle, (Raseduzzaman & Jensen 2017). Planting of more diverse 
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suites of crops has been shown to reduce the likelihood of total crop failure in the event 

of extreme weather or pest outbreak (Rao & Willey 1980, Altieri et al. 2012).  

Intercropping also helps to limit the proliferation of pests and diseases 

(Raseduzzaman & Jensen 2017). This is achieved by reducing susceptible crop 

densities, thereby reducing the pool of available hosts and reducing transmission 

(Burdon & Chilvers 1982). In addition, disease dispersal can also be disrupted by 

changes in microclimates due to the structural diversity afforded by crops of differing 

habits (He et al. 2019). Diversification of crop rotations has also been shown to have 

a significant effect on weed control (Chauhan et al. 2012, Nichols et al. 2015). For 

example, a recent and comprehensive meta-analysis undertaken by Weisberger et al 

(2019) found an average weed density reduction of 49% in diverse crop rotations, as 

compared with monocropping. Similarly, the role of intercrops in the suppression of 

weeds has been demonstrated across a wide range of crop types within both tropical 

and temperate biomes (e.g. Banik et al. 2006, Workayehu & Wortmann, 2011, 

Haugaard-Nielsen et al. 2001, Jensen 2006). However, in some studies this effect has 

been less evident, with significant variability in results between crops, years and 

locations (e.g. Arlauskienė et al. 2014, Szumigalski & Van Acker 2005, Stoltz & 

Nadeau 2014).  

Increased resource use efficiency by intercrops has been shown to suppress weeds 

through several mechanisms. The effect of niche complementarity has been observed 

in intercrops, particularly for cereal-legume combinations, because legumes facilitate 

increased input of fixed N2 cropping systems whilst not affecting uptake N uptake for 

the associated cereal crop (Anil et al. 1998). Increased resource use efficiency by 

intercrops through differing nutrient requirements between crops has also been shown 

to assist in weed suppression. For example, Haugaard-Nielsen et al. (2001) found 

enhanced interception of N by when intercropped with pea, compared to barley 

monocrop, which resulted in reduced weed incidence.  Another important mechanism 

is the allelopathic effects of some crops on weeds when grown in rotation (e.g. 

Mamolos & Kalburtji 2001, Khan et al. 2005).    

Crop damage begins when parasitic weeds attach to the host plant, and before they 

are visible above ground. This is because parasitic weeds are distinct from other weed 

species due to the presence of a specialised organ called the haustorium. This rootlike 
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structure penetrates the host plant’s vascular system and allows the parasite to 

assimilate nutrients and water (Sauerborn et al. 2007). Host plant attachment reduces 

the photosynthetic requirements of parasitic weeds either completely in the case of 

holoparasites such as Cuscuta or partially in the case of hemiparasites such as Striga 

and hemi-parasites such as Orobanche (Sauerborn et al. 2007).  

Conventional weed management typically targets secondary growth such as herbicide 

application and mechanical weeding are frequently ineffective when applied to 

parasitic weeds. Methods of parasitic weed control must therefore focus on the 

reduction of germination and primary growth. Mechanisms to reduce parasitic weed 

recruitment include alteration of soil chemistry (Jamil et al. 2011, Yoneyama et al. 

2007), germination in the absence of available hosts (suicidal germination) (Sauerborn 

1999, Ejeta & Butler, 1993) and altering soil microclimate (Carsky et al. 1994, Hsiao 

et al. 1988, Patterson 1990, Stewart & Press 1990).  

Additional methods also help mitigate yield losses, such as the use of resistant crop 

varieties (Cissoko et al. 2011, Rodenburg et al. 2015, Randrianjafizanaka et al. 2018) 

and post attachment tolerance of parasitic weeds by host crops (Rodenburg et al 

2017). Combinations of crops, intercrops, rotation crops and varieties thereof may 

therefore manage or mitigate the effects of parasitic weeds in any number of ways 

listed above.   

Meta-analyses have been undertaken to examine the broader effect of plant diversity 

on biomass production (Cardinale et al. 2007, Wang et al. 2021). More specifically, 

the effect of intercropping on crop yield stability (Raseduzzaman & Jensen 2017), 

suppression of weeds in general (Weisberger et al. 2019), woody crops (agroforestry) 

on pest, disease and weed control (Pumariño et al. 2015), crop yield and provision of 

ecosystem services (Kuyah et al. 2019), farmer income, and integrated pest 

management effects (Himmelstein et al. 2017). However, to our knowledge, no 

analysis has been undertaken of the effects of rotation and intercropping on 

economically significant parasitic weeds.  

Here we present the results of a meta-analysis of the effects of crop diversity on 

parasitic weeds using an extensive data set derived from laboratory, field, farm and 

landscape studies. This represents the first quantitative synthesis of the effects of crop 
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diversification on parasitic weeds and associated crop yields. We address the 

following questions:  

 Does crop diversity, expressed as the incorporation of additional crops within a 

system, affect parasitic weed density or crop yield?  

 In terms of management factors, what are the strongest predictors of variation 

in parasitic weed density and crop yield?   

 Which are the best-performing combinations of crops/intercrops and /or rotation 

crops in terms of weed reduction and yield increase? 

 An ancillary analysis, we address the effect of climate and altitude on reported, 

unmanipulated weed densities.   

Meta-analysis methods 
 

Pilot Study 
 

A pilot study was undertaken using a combination of provisional terms in conjunction 

with the genera: Striga and Orobanche (being among the most economically 

significant parasitic weed genera). The number of returns for each search 

combination, accompanied by an assessment of relevance based on the title of each 

study, indicated their relevance. This determined the final list of terms for inclusion, as 

some terms were too broad and returned too many unrelated results. Search 

combinations returning very high (e.g. >400) numbers of records with a very large 

proportion of non-relevant studies indicated that the term was too broad and was 

omitted from the main search (e.g.: “Taxon” AND inter*, “Taxon” AND Legum*).  

The choice of taxa for inclusion in the main search was determined by a review of 

economically significant parasitic plants using several sources (Nickrent & Musselman 

2004, Sauerborn et al. 2007, Parker 2012). The list was then subject to triage, based 

on the nature of their parasitism, removing weeds not affecting annual crops planted 

in the soil.  Genera which returned no results for the 12 search combinations were 

removed from the main search. In the case of genera containing high numbers of 

economically important species (e.g.: Cuscuta, Striga), the genus was included as a 

search term alone without going to the species level. Widely adopted synonyms at the 
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family and genus level were also included. Appendix 1 details search combinations 

used for the pilot, results, list of taxa, synonyms, and full search methodology. 

 

Main Search 
 

The electronic databases, Web of Science, Scopus and AGRICOLA were searched 

using a range of Boolean search terms. Searches were performed in February 2021 

on the complete range of references available at that time.  

Search terms were constructed as follows: taxon name (Aeginetia, Alectra, 

Christisonia, Cuscuta, Grammica, Orobanche, Phelipanche, Scrophulariaceae, Striga) 

AND cover AND crop, taxon name  AND Intercrop, taxon name AND trap*,  taxon 

name  AND push AND pull, taxon name  AND companion,   taxon name  AND 

conservation AND agriculture *,  taxon name  AND integrated weed management, 

taxon name  AND cultural AND control, taxon name  AND suicidal*, taxon name  AND 

legume, taxon name  AND no AND till, taxon name  AND zero AND till.  

Additional searches were performed between May 2021 and February 2022 by 

manually searching for citations within relevant sections of 20 review studies of control 

methods for all economically significant parasitic weed taxa. Experts in the field of 

parasitic weed agronomy were also contacted to identify possible sources of data 

(including primary data) and to verify the thoroughness of our literature coverage. The 

list of studies and subsequent data were updated periodically as additional sources 

became available.  

Criteria for Inclusion of Studies 

 

Studies were included if they fulfilled the following relevance criteria: 

Subjects studied: Any annual parasitic weed species, host crop and intercrop 

combinations 

Treatment used: Intercropping or rotation cropping  

Study type: Any primary studies with appropriate comparators, continuous data with 

means, information on sample sizes, available/calculable measures of variance or 
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sufficient information to impute values. Range of studies comprised: Landscape-level 

assessment, laboratory, field trials, farm trials, pot, bag and rhizotron experiments.  

Response(s): Host yield (t ha-1/kg ha-1), stover yield (t ha-1), weed dry weight (t ha-1/g 

pot/ g plant/ gm2), weed / weed seed density (per petri dish / pot / plant / M2/ log10M2 / 

density / severity score), percentage weed reduction / ratio ( versus control / from 

original density). 

Comparator: Appropriate controls: experimental units in which no intercrop was 

grown with the host crop, or monocrop / fallow / bare earth in the case of rotation 

studies. 

Data Extraction 
 

Weed density and yield data were standardised to m-2 or t ha-1, respectively. Where 

reported, the long or short rainy season was also recorded.  In the case of data 

presented in graph form, numeric data were extracted using data extraction software 

(‘im2graph’; Shai Vaingast 2014).  Data from studies were recorded to either intercrop 

or rotation cropping systems, as the mechanisms of impact of these on both parasitic 

weed density and yield are ecologically distinct.  

Coordinates for study locations were directly extracted where available, or were 

estimated based on central coordinates of place names and extracted using Google 

maps (Google Maps, 2022). In a handful of instances where it was not possible to 

determine separate coordinates for locations very close together (e.g. villages), data 

were aggregated and mean values calculated.   

Studies in which there were no reported controls for the main treatment, or where data 

were not presented in a useable form were rejected. However, measures of variance 

were not reported in 53% of intercrop and 50% of rotation studies. Rejection of this 

proportion of studies due to missing variance risks the loss of significant volumes of 

data (Kambach et al. 2020). Furthermore, such omission can result in both losses of 

statistical power and errors in parameter estimates (Nakagawa & Freckleton 2008) as 

well as a risk of bias toward studies that report significant results (Idris & Robertson 

2009). We, therefore, imputed missing variances as this has been shown to improve 

the reliability of meta-analysis (Kambach et al. 2020). Imputation was undertaken 

using the “mice” package in R using the predictive mean matching method (van 
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Buuren & Groothuis-Oudshoorn, 2011). This method was chosen as it selects values 

from the complete studies in the dataset predicted to be closest to values which are 

missing (van Buuren 2018). Other methods produced imputed values which were 

either not realistic or were negative (e.g. Random sample, Linear regression). Imputed 

values were estimated by averaging across ten iterations undertaken for each missing 

variance.  

 

Climate and Altitude 
 

Climate data were obtained from the WorldClim2 dataset (Fick & Hijmans 2017). 

Climate variables recorded were mean annual rainfall, mean annual temperature and 

precipitation seasonality.  Precipitation seasonality is defined as the coefficient of 

variation of mean monthly precipitation (O’Donnell, & Ignizio, 2012). Altitudes for 

individual study sites were obtained from the SRTM 90m Digital Elevation Database 

v4.1 (Reuter et al. 2007, (CGIAR-CSI 2004 – 2021) and were extracted using QGIS 

(QGIS Development Team, 2020).   

Statistical Methods 
 

Analyses were undertaken using linear models and linear mixed effect models, 

adjusted to account for the differences in variance of effect sizes among studies. 

Linear models were used to test the overall effects of the cropping system on weed 

density and yield across studies. Linear models were also used to determine the effect 

of rainfall CV, mean annual temperature, mean annual rainfall, and altitude on parasitic 

weed density and crop yield. This second group of analyses were done by using a 

subset of studies where initial weed density had not been manipulated (i.e.:  farm, field 

trial or landscape).   

Linear mixed-effect models were used to identify the effect of management factors on 

weed density and yield across studies. Two groups of factors were included in these 

models with effect size as the response (weighted by the study variance), and study 

ID included as a random effect. The effect size was estimated as Hedge’s g and its 

variance (standardised mean difference). This was done by calculating the difference 

between the treatment and control (weed density, weed dry weight or host yield) 
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divided by the pooled standard deviation using the “compute.es” package in R (Del 

Rey 2013).  

Statistics were calculated using R 3.6.3 (R Core Team, 2020) and the packages: dplyr 

(v0.8.0.1; Wickham, François, Henry & Müller, 2019), lme4 (v067.i01, Bates, Mächler 

, Bolker, & Walker, 2015), lmerTest (Kuznetsova , Brockhoff & Christensen 2017). The 

fully reproducible code is available in Appendix 2.   

 

Results 
 

Meta-analysis search  
 

A total of 3,722 bibliographical references were retrieved using our search strategy. 

An initial assessment of the relevance of each study was made based on the title and 

abstract of each paper. This reduced the list to 83 original studies directly relating to 

the effect of either intercrops or rotation crops on parasitic weed density. After 

examining the full text of these papers, 67 were deemed to fulfil the inclusion criteria 

and provide all information needed. The remaining 16 were rejected as having either 

no experimental control or insufficient detail regarding the effects of response 

variables. The full list of studies included in the meta-analysis is included in appendix 

2.  

The final dataset encompassed research across 24 countries and 89 localities (Figure 

1) and yielded 1,525 individual data points. In terms of weed and crop diversity, it 

included 11 parasitic weed species, 70 varieties across 18 host crops and 115 

intercrop rotation varieties across 105 trap crops (Appendix 3). Contingency tables for 

both intercrops and rotation crops are shown in Appendix 4.  

The studies are predominantly located across sub-Saharan Africa, with a smaller 

number in North Africa and the Middle East, the Indian subcontinent and China and 

only three conducted in the United States and Europe. This distribution reflects the 

severity of the problem of parasitic weeds affecting annual crops across these regions, 

driving research efforts in search of solutions.  
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Figure 1: Maps of weed species locations for studies used for this meta-analysis. As the majority of studies 
focus on sub-Saharan Africa, the lower map has been used to further identify their distribution within this 
region. Basemap: Open Street Map Basic base map (obtained through QuickMapServices QGIS plugin), 
Map data © OpenStreetMap contributors. 
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Cropping System 
 

Our analysis reveals strong overall effects of both intercropping and crop rotation on 

weed density reduction and crop yields (Table 1). Consistent reductions in weed 

densities are associated with the use of intercrops across a diverse range of crops. 

Crop yields are also generally higher within a smaller range of intercrops (Fig 3A & 

3B). The use of multiple crops in the rotation has a consistently negative effect on 

weed density for a comparably large range of crops (Fig 3C). Crop rotation also has a 

more marked effect on yields, for a greater range of crops than intercropping.  

Analysis of effect sizes (Hedges g) indicated broadly similar mean effect sizes for both 

systems, with marginally greater weed reduction for rotation cropping and yield 

increase for intercropping (Fig 2A & 2B).  The number of crops used in rotation, 

denoted as diversity, did not have any significant effect on the percentage change in 

weed density for the linear model (Table 1). Similarly, the mixed effect model for 

diversity did not show significant differences in weed reduction effect size between the 

numbers of rotation crops used (Table 2).   

 

Management Factors 
 

The linear mixed-effects models did not detect significant differences in effect sizes 

for the majority of factors (Table 2). This does not mean the rotation had no effect on 

the responses, but that effect sizes did not differ greatly enough between the factors. 

Mean effect sizes for both weed reduction and yield were in fact greater than 0.5 for 

over 75% of factors tested (Table 2).   

Our models indicated that weed, crop and intercrop species, as well as intercrop 

variety, had significant effects on weed density effect sizes in intercropping systems.  

Weed and intercrop species also had a significant effect on yield effect sizes in 

intercropping systems (Figures 4A & B). Mixed-effects models for crop rotation also 

indicated significant effect sizes for weed and host crop species and host crop variety. 

Notable effects on weed reduction included, inter alia, Desmodium and Stylosanthes 

in intercropping and maize, wheat and cotton in rotations. Mixed effect models for 
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factors pertaining to yield in rotation systems did not indicate any individual 

significance for effect sizes.  

Table 1. Summary of linear models testing overall effects of cropping system reported across studies. 
Climatic factors and altitude were tested against non-manipulated, initial weed densities from 
intercropping and rotation studies in open systems (farm, field trials and landscape). Yield data were 
obtained from studies with no manipulation of climatic conditions.   

Cropping 
System 

Response Variable Effect (df) P 

Intercropping weed 
density 

Control / Treatment 1235.1 1,628 < 2.2e-16 

yield Control / Treatment 51.2 1,393 4.07e-12 

Crop Rotation weed 
density 

Control / Treatment 187.9 1,366 < 2.2e-16 

% Change 
in weed 
density 

Crop Diversity 0.1363 3,365 0.9383 

yield Control / Treatment 235.7 1,128 < 2.2e-16 

Combined weed 
density 

Rainfall CV 13.6 1,701 0.0002 

Mean Rainfall 32.6 1,701 1.7e-08 

Mean Temperature 0.4 1,701 0.5182 

Altitude 14.8 1,701 0.0001 

yield Rainfall CV 4.7 1,488 0.0311 

Mean Rainfall 6.9 1,488 0.0084 

Mean Temperature 14.5 1,488 0.0002 

Altitude 6.8 1,488 0.0096 

 

Table 2: Summary of linear mixed-effects models relating parasitic weed density and crop yield to a 

range of management and ecological predictors with significant probabilities reported in bold. These 

were used to determine which management factors explained the most variance within models and were, 

therefore, most significant in influencing both weed density and crop yields. 

Cropping 
System 

Response  Variable(s) Effect (df) P 

Intercropping weed 
density 

Weed Species  
Host Crop  
Intercrop  

3.1 7,56 0.0086 

3.7 9,203 0.0002 

3.7 34,170 7.6e-09 

Host Crop Variety  
Intercrop Variety 

3.7 21,2 0.2339 

0.9 38,2 0.6436 

yield Weed Species  
Host Crop  
Intercrop 

2.7 5,36 0.0339 

0.4 3,43 0.7629 

1.7 23,65 0.0410 

Host Crop Variety 
Intercrop Variety 

1.2 9,103 0.2745 

1.1 19,103 0.4510 

Crop Rotation weed 
density 

Weed Species  
Host Crop  
Rotation crop 1 

2.1 8,10 0.1255 

1.9 7,15 0.1320 

1.1 81,217 0.2596 

Crop Diversity 0.1 1, 181 0.8965 

Host Crop Variety 
Rotation Crop Variety 1 

2 15,43 0.0439 

0.5 42,43 0.9826 

yield Weed Species  
Host Crop  

1 6,69 0.4346 

0.1 3,69 0.9441 
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Rotation crop 1 0.6 52,69 0.9824 

Crop Diversity 0.5  1,125 0.503 

Host Crop Variety  
Rotation Crop Variety 1 

1.5 7,8 0.2772 

0.5 18,8 0.8637 
 

 

 

Fig 2A: The effect of cropping system (intercrop / rotation) on weed density. Fig 2B:  The effect of cropping system 

(intercrop / rotation) on crop yield with crops grouped by family. Effect size (ES) expressed by Hedges g, multiplied by -1 

to aid interpretation.    
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Fig 3A: Log weed densities in intercrops grouped by family, Fig 3B: Mean crop yields in intercrops, Fig 3C: Log weed 

densities in crop rotation and Fig 3D: Mean crop yields in rotation crops. Fallow is also included. The same set of figures 

grouped by crop species are included in appendix 4.  
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Fig 4A: Intercrop effects on weed density ordered by effect size ±SE. Faba beans: n=4, Wheat n=30, Sesbania sesban n=6, 

Pigeon pea n=6, Cowpea / Mucuna n=8, Triticale n=9, Common bean n=27, Barley n=7, Ricebean n=8Okra n=4, Groundnut 

n=54, Celosia argentia n=8, Cowpea n=66, Soya bean n=21, Mung bean n=24, Oat n=21, Bambara n=9, Cotton n=4, 

Sunflower n=4, Crotalaria ochroleuca n=24, Fenugreek n=27, Stylosanthes guianensis n=8, Lupin n=5, Sesame n=4, 

Desmodium spp n=204, Berseem n=23. Fig 4B: The effects of rotation crops on crop on weed density ordered by effect size 

±SE. Fallow n=11, Sorhgum n=7, Cereal n=9, Sesbania spp n=11, Winter wheat n=6,  Garden pea n=4, Rapeseed n=8, 

Crotalaria spp n=4, Cowpea n=10, Groundnut  n=14, Sunflower n=4, Barley n=4, Coriander n=4, Cumin n=4, Alfalfa  n=6, 

Broccoli n=5, Mung bean n=4, Berseem n=6, Foxtail millet n=6, Chickpea n=4, Sugar beet n=6, Common bean n=8, Sesame 

n=10, Soya bean n=30, Flax n=8, Pepper n=13, Fenugreek n=6, Maize  n=22, Wheat n=4, Cotton n=6. Effect size (ES) 

expressed by Hedges g. Crops with ≤ 3 data points were omitted for concise presentation.   

 

Climatic Factors 
 

In terms of climatic factors, rainfall seasonality (CV), mean annual rainfall and altitude 

were significant factors for both weed density and yield for intercropping systems (See 

Table 1 and Figs 5A & 5B).  For rotation cropping, rainfall seasonality, mean annual 

rainfall, mean temperature and altitude were significant factors in determining weed 

density.  Mean annual rainfall and mean temperature were significant factors for yields.    

A clear negative relationship is seen between log weed density and mean rainfall (Fig 

5A). In addition, an increase in rainfall variability is linked to increases in weed density 

up to an intermediate level, beyond which densities appear to drop off (Fig 5B). There 
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are two clear peaks in weed density around zero and 1,250 metres above sea level, 

relating generally to the distribution of Orobanche and Striga species respectively.    

 

 

Fig 5A: Parasitic weed densities and mean annual rainfall ±SE, B: Weed densities and precipitation seasonality (coefficient 

of variation for rainfall) ±SE, C: Weed densities and altitude ±SE, D: Weed densities and mean annual temperature ±SE. 

The effects of climatic altitude and altitude on weed densities were significant for several linear models (see Table 2).  

Data were obtained from non-manipulated initial weed densities in field / farm trials or landscape studies.  

Publication Bias 
 

Egger’s tests for funnel plot asymmetry indicated a significant degree of heterogeneity 

within the effect sizes of the data set (random-effects model: p= < .0001, mixed-effects 

meta-regression model p = 0.0449). This indicates that the distribution of effect sizes 

for studies included in this meta-analysis differs sufficiently from that expected to 

suggest a bias in the reporting of results. The additional fail-safe N test undertaken 

indicated however that the impact of any potential bias within the data was low 

(Rosenberg significance Level= <0.0001, fail-safe N: 311129, Rosenthal significance 

Level= <0.0001, fail-safe N: 447309), Orwin fail-safe N= 1517. 
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Discussion 
 

Our results demonstrate that crop diversification has consistent effects in reducing 

parasitic weed density and increasing crop yield. Effects are significant for increases 

in both spatial (intercropping) and temporal (rotation cropping) crop diversification, 

though there are notable differences between the two systems. The linear models 

show the greater effect of weed suppression for intercrops, while the effect for yield is 

stronger for rotation crops.  

The significant effect of crop diversification on weed density is supported by several 

comparable meta-analyses. For example, in reductions of weed densities in general 

(Liebman, & Dyck, 1993, Weisberger et al. 2019), increased crop yields due to 

intercropping (Himmelstein et al. 2017) and improved yield stability (Raseduzzaman 

& Jensen 2017) noted that intercropping. Meta-analyses of agroforestry (which can 

also be considered a form of diversification) have also found reductions in parasitic 

and non-parasitic weeds (Pumariño et al. 2015), and crop yield increases (Kuyah et 

al. 2019).  

A recent, meta-analysis of weed responses to crop diversification by Weisberger et al. 

(2019) found that weed reduction correlated with temporal diversity expressed as the 

variance of sowing dates between different crops. The metric of temporal crop 

diversification can encompass elements of intercropping (such as relay cropping) as 

well as rotation cropping. However, our results suggest that the effects of spatial 

diversification are stronger than temporal in suppressing parasitic weeds.  

Our results further suggests that soil microclimate and host crop pre-attachment 

resistance effects may be stronger than effects more clearly attributable to rotation 

such as alteration of soil N2. Suicidal germination and allelopathy can occur within both 

intercropping and rotation cropping systems and could therefore be equally important 

mechanisms. Different combinations of crops and intercrops will produce different 

combinations of effects influencing weed density. Intercrops combining strong shading 

properties and favourably affect soil N2 show particularly strong effects in reducing 

parasitic weed density here, such as Crotalaria ochroleuca, Stylosanthes, Berseem 
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clover and Lupin.  Likewise, crops affording shade with allelopathic properties, 

antagonistic to parasitic weeds, such as Fenugreek (Evidente et al. 2007) have large 

effect sizes in both rotation and intercropping studies. Desmodium is effective in three 

ways, shading, enhancing N2 and stimulating suicidal germination by root exudates 

(Khan et al. 2002, Evidente et al. 2007), reflected by its’ significant effect size in this 

analysis.  

Publication bias, in particular the potential over-reporting of significant results, can 

compromise the validity of the results of meta-analyses (Nakagawa et al. 2022). The 

Egger’s tests undertaken indicated a significant level of potential publication bias 

within the dataset, supported by the strong concurrence of results from a wide 

combination of systems, crops and weed species in terms of general trends. Although 

caution should be exercised in the inference of fail-safe N values, the results of the 

fail-safe N tests indicate that the data are sufficiently robust in terms of the impact of 

potential bias (Nakagawa et al. 2022). 

 

Management  
 

Effect sizes for both weed reduction and yield were significant (i.e. nonzero) for all 

models, and greater than 0.5 for over 75% of factors tested. The most notable effects 

were those of host crop and host crop variety, intercrop, and to a lesser extent rotation 

crop. Caution should be exercised with a simplistic, interpretation of effect sizes in 

terms of small, medium and large in quantitative studies (Bakker et al. 2019).  

However, these results clearly show individual crops which perform better than others. 

The notable effects of crop variety on parasitic weed density support studies of 

individual parasitic weeds (Cissoko et al. 2011, Rodenburg et al. 2015, 

Randrianjafizanaka et al. 2018, Scott et al. 2020, Scott et al. 2021). This effect also 

supports the rationale of a broader effort to identify and breed crop varieties resistant 

or tolerant to a wide range of parasitic weed pests (Aly 2007, Rubiales & Fernández-

Aparicio 2012).  

Our models did not detect significant differences in effect sizes for the majority of 

management factors. This does not indicate these factors should be discounted, but 

just that effect sizes did not differ greatly enough between the individual elements of 
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these factors. The effects of management factors on yield may not be directly related 

to weed density, as there is no way to demonstrate the link in this analysis. Other 

factors are likely involved in influencing yields, as it is clearly understood that different 

crops, intercrops and crop varieties produce different yields independently of weed 

density.  

 

Climate  
 

The significant negative effect of precipitation on parasitic weeds is the most notable 

climatic effect revealed within the analysis undertaken here. There was also some 

evidence of a role for precipitation variation. The importance of rainfall and soil 

moisture is also shown across reviews of future weed distribution trends (e.g. Bir et al. 

2014), niche modelling (Mohamed et al. 2007, Mandumbu et al. 2017, Mudereri et al. 

2020) and landscape-scale studies of parasitic weeds (Scott et al. 2021). Drier, 

warmer climates across many areas of Eurasia, South and North America, combined 

with more erratic rainfall patterns will favour the spread of many of the most 

problematic parasitic weeds such as Striga and Orobanche. This underlines the 

importance of monitoring and biosecurity measures to prevent or contain the 

introduction into currently uninfested agricultural zones.  

 

Conclusion 
 

This meta-analysis underlines the important role that temporal and spatial crop 

diversification has in the reduction of economically important parasitic weeds. This 

effect is consistent across a wide range of geographic locations, crops, varieties and 

weed species. There is also strong evidence of the positive effect of diversification on 

crop yield, although this may involve factors other than weed reduction. This analysis 

further serves to underline the viability of crop diversification as a tool to enhance 

global food security. This will become increasingly relevant given projections of the 

future proliferation of many parasitic weeds to areas currently not under infestation 

driven by globalisation and climate change.   
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The concentration of studies undertaken in sub-Saharan Africa indicates, however, 

that crop diversification is still largely focused on subsistence farmers in low and 

middle income countries.  While this is an entirely valid concentration of efforts, 

increased research should focus on the effects of diversification on the industrial 

production of staple crops within agroecological zones possessing Mediterranean 

climates globally. This will likely happen in response to the evolution of global patterns 

of weed distributions. However, proactive research strategies informed by predictive 

risk modelling could help in gaining the upper hand in the crop-weed “arms race”.  
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General Discussion 

 

The aim of this thesis was primarily to develop, implement, assess and refine a rapid 

density survey of Striga asiatica in the mid-west of Madagascar in order to identify the 

drivers of landscape-level distribution. The resultant dataset demonstrated the 

usefulness of the survey methodology in mapping Striga denstities and, importantly, 

in using the dataset to identify drivers of abundance spatially and between years.  

Chapters two and three examined the roles of cropping practices, soil NO3 and climate 

in determining Striga abundance. These chapters showed the varying effects of a 

range of factors on Striga density. These ranged from individual crops to combined 

management, climatic factors and the influence of neighbouring densities. The fourth 

chapter applied the findings of chapter two and three to undertake a meta-analysis of 

the most ecomonically-significant parasitic weeds. The most fundamental point 

orienting this meta-analysis was that Striga densities were strongly influenced by 

cropping practices. Static farms are, of course restricted by their climate and altitude. 

However, cropping can be actively managed by farmers to influence infestations of 

parasitic weeds. Chapters two and three show that this can be done without recourse 

to agrochemical inputs. Given this basic observation, the main aim of chapter four was 

to examine the effects of cropping diversification on the density of all annual parasitic 

weeds for which primary studies were available. This study also provided an 

opportunity to quantify and compare the effects of crop families, individual hosts and 

companion crops.    

Here I provide an overall discussion of the findings of this thesis as a whole, whilst 

avoiding replication of previously stated implications for the management of the 
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species under investigation.  I will also discuss the merits  of the approach and provide 

some pointers for directions of future work. 

The strong relationship between attached and aboveground Striga has been 

demonstrated in field plot study conditions (Rodenburg et al. 2005). If such a 

relationship holds true across the landscape scale, the method represents a novel, 

easily replicatable means of determining Striga density across large areas. This 

method can therefore be utilised to provide much needed distribution data in a rapid, 

cost effective manner.   

However, the relationship between emerged weeds and the density of a seedbank 

may not be easily predictable (Smith & Webb 1996). Therefore, soil seed counts need 

to be done to determine interannual variation in the seedbank. Unfortunately, direct 

observation of seedbank density is time consuming and are unsuitable for rapid 

assessment.  

There is always an inherent tradeoff between survey effort and accuracy, which must 

be acknowleged in assessing the validity of the field survey methodology (eg.: Leujak 

&  Ormond, 2007, Del Vecchio et al., 2019). The results of the field surveys do show 

however that the performance of a wide variety of host varieties, rotation and 

intercrops, while indicating the effects of climate. Therefore, despite the potential 

inaccuracies inherent in rapid assessment in general, this thesis provides sufficient 

evidence to validate its’ utility in measuring Striga and potential extension to other 

annual parasitic weeds.  

The meta-analysis undertaken here represents the first published study of the effects 

of management on parasitic weed density, drawn from a wide geographic,  taxonomic 

and methodological sources. It provides important insights into the role of both spatial 
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and temporal crop diversity, while providing details of the relative effects of specific 

crops and climatic variables.    

The field study did not measure the direct effect of monocrops versus intercrops or 

crop rotation on Striga density. As this basic dichotomous division was not measured, 

it was not possible to draw direct comparison between the resuts of chapters two, 

three and the meta-analysis of chapter four.  Despite this, there remains a high degree 

of congruence between the field findings of field survey and the broader meta-analysis.   

The effects of individual rotation and intercrops on weed density are notable across 

the field survey and meta-anaylysis.  Likewise, the effect of rice and host crop variety 

in chapters two, three and four respectively is of comparable significance. Also, the 

effect of incorporating legumes into cropping systems is notable across the analyses.  

This serves to underline the fundamental importance of host crop, variety and 

companion crop in parasitic weed management. The importance of these elements is 

also reflected in other studies (Berner et al., 1996, Rodenburg et al., 2006, Tesso et 

al., 2007, Jamil et al., 2021) Optimal combinations will depend on the specific weed, 

and agroecological conditions however.  

Finally, the effect of altitude and precipitation seasonality on both Striga and parasitic 

weeds in general was clear across analyses. This observation is perhaps more 

relevant to regional invasion risk modelling and assessment, than farm managers. It 

is nonetheless of note as it both accords with and complements the observations of 

other climatic studies available (Aflakpui et al., 1998, Hsiao et al., 1988, Mohamed et 

al., 2007, Mandumbu  et al., 2017, Mudereri et al., 2020,).  

However, a differentiation of parasitic weeds with respect to the climatic data in the 

meta-analysis would have provided specific insights into the respective profiles of 

separate species. A paucity of data would have provided poor resolution for some 
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species however. In addition, the high level on which the meta-analysis was framed 

also resulted in a loss of resolution of representation of specific host / parasite / co-

cropping effects.  

 

Options for further research could be to apply the rapid assessment methods 

developed in this thesis to replicate the study within other areas of Striga infestation, 

where either less diverse or signiffcantly different cropping practices are employed. 

This could serve to undertake a more comprehensive comparative analysis and further 

elucidate the optimal means of weed management. Additionally, these methods could 

also be employed in conjunction with post-harvest yield measurements. This could 

provide indications of the interaction between management, weed density and crop 

productivity on a landscape scale.   

Parasitic weeds are easily dispersed and rapidly adaptable in response to crop 

resistance, creating highly dynamic infestation states at local and regional levels 

(Goldwasser & Rodenburg 2013). Therefore, management responses must be equally 

adaptable and employ concepts of diversity found elsewhere in biology to counter their 

threat to global food security. Overall, I believe that this thesis shows that diversity is 

not only important for maintenance of functional populations of organisms, human 

societies and institutions and natural environments but is hugely important in 

combatting seemingly intractable problems such as the scourge of parasitic weeds in 

agriculture.  
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Appendices 
 

Chapter 2 Appendices 

Appendix 1: Model details, outputs and R scripts 

 
Model 

 
# 

 
Code 

 
Result 

Mean crop height 
v Log striga 
density +1  

LM1 ALOM1<-group_by(AD_1, R_M_O) 
 
lm1 <- lm( MCH ~ log( AvDen + 1 ), data 
= ALOM1 ) 

Analysis of Variance Table 
 
Response: MCH 
                Df  Sum Sq Mean Sq F value Pr(>F) 
log(AvDen + 1)   1    3767  3766.9  0.8295 0.3634 
Residuals      223 1012696  4541.2                
> 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)       99.03       7.36  13.454   <2e-16 *** 
log(AvDen + 1)     9.87      10.84   0.911    0.363     
--- 
 
Residual standard error: 67.39 on 223 degrees of freedom 
  (19 observations deleted due to missingness) 
Multiple R-squared:  0.003706, Adjusted R-
squared:  -0.0007618  
 
F-statistic: 0.8295 on 1 and 223 DF,  p-value: 0.3634 

Mean crop height 
v Log striga 
density +1 + 
S(Lat-Lon) 

GAM
1 

gam1 <- gam( MCH ~  log( AvDen + 1 ) 
+ s(Lat, Lon), data = ALOM1) 

Parametric Terms: 
               df     F p-value 
log(AvDen + 1)  1 0.511   0.475 
 
Approximate significance of smooth terms: 
              edf Ref.df     F p-value 
s(Lat,Lon)  8.187 10.745 1.788  0.0586 
 
Parametric coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)     100.217      7.212  13.896   <2e-16 *** 
log(AvDen + 1)    7.663     10.717   0.715    0.475     
--- 
Approximate significance of smooth terms: 
             edf Ref.df     F p-value   
s(Lat,Lon) 8.187  10.75 1.788  0.0586 . 
--- 
 
R-sq.(adj) =  0.0693   Deviance explained = 10.7% 
GCV = 4423.6  Scale est. = 4223.3    n = 225 

Mean crop cover v  
Log striga density 
+1 

LM2 lm2 <- lm( MCC ~ log( AvDen + 1 ), data 
= ALOM1 ) 

Analysis of Variance Table 
 
Response: MCC 
                Df Sum Sq Mean Sq F value Pr(>F) 
log(AvDen + 1)   1    637  637.16  2.3293 0.1284 
Residuals      223  60999  273.54                
 
Call: 
lm(formula = MCC ~ log(AvDen + 1), data = ALOM1) 
 
Coefficients: 
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               Estimate Std. Error t value Pr(>|t|)     
(Intercept)      50.769      1.806  28.105   <2e-16 *** 
log(AvDen + 1)   -4.059      2.660  -1.526    0.128     
--- 
Residual standard error: 16.54 on 223 degrees of freedom 
  (19 observations deleted due to missingness) 
Multiple R-squared:  0.01034, Adjusted R-squared:  0.0059  
F-statistic: 2.329 on 1 and 223 DF,  p-value: 0.1284 

Mean crop cover v 
Log striga density 
+1 + S(Lat-Lon) 

GAM
2 

gam2 <- gam( MCC ~  log( AvDen + 1 ) 
+ s(Lat, Lon), data = ALOM1) 

Parametric Terms: 
               df     F p-value 
log(AvDen + 1)  1 2.819  0.0947 
 
Approximate significance of smooth terms: 
             edf Ref.df     F p-value 
s(Lat,Lon) 17.27  21.63 1.685  0.0344 
 
Parametric coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)      50.970      1.758  28.997   <2e-16 *** 
log(AvDen + 1)   -4.433      2.640  -1.679   0.0947 .   
--- 
 
Approximate significance of smooth terms: 
             edf Ref.df     F p-value   
s(Lat,Lon) 17.27  21.63 1.685  0.0344 * 
--- 
 
R-sq.(adj) =  0.123   Deviance explained = 19.5% 
GCV =  263.8  Scale est. = 241.21    n = 225 
> 

Mean other weed 
cover v  Log striga 
density +1 

LM3 lm3 <- lm( MWC ~ log( AvDen + 1 ), 
data = ALOM1 ) 

Analysis of Variance Table 
 
Response: MWC 
                Df Sum Sq Mean Sq F value Pr(>F) 
log(AvDen + 1)   1     45   45.05  0.0847 0.7714 
Residuals      151  80320  531.92 
 
Call: 
lm(formula = MWC ~ log(AvDen + 1), data = ALOM1) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-22.425 -20.773  -8.733  14.012  59.227  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)      30.773      3.127   9.843   <2e-16 *** 
log(AvDen + 1)    1.319      4.531   0.291    0.771     
--- 
 
Residual standard error: 23.06 on 151 degrees of freedom 
  (91 observations deleted due to missingness) 
Multiple R-squared:  0.0005605, Adjusted R-
squared:  -0.006058  
F-statistic: 0.08469 on 1 and 151 DF,  p-value: 0.7714 

Mean crop cover v 
Log striga density 
+1 + S(Lat-Lon) 

GAM
3 

gam3 <- gam( MWC ~  log( AvDen + 1 ) 
+ s(Lat, Lon), data = ALOM1) 

Parametric Terms: 
               df     F p-value 
log(AvDen + 1)  1 0.218   0.641 
 
Approximate significance of smooth terms: 
           edf Ref.df     F p-value 
s(Lat,Lon)   2      2 4.636  0.0111 
 
arametric coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)      30.353      3.064   9.906   <2e-16 *** 
log(AvDen + 1)    2.077      4.448   0.467    0.641     
--- 
 
Approximate significance of smooth terms: 
           edf Ref.df     F p-value   
s(Lat,Lon)   2      2 4.636  0.0111 * 
--- 
 
R-sq.(adj) =  0.0402   Deviance explained = 5.91% 
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GCV =  521.1  Scale est. = 507.48    n = 153 

Mean crop height, 
crop cover and 
other weed cover 
as combined 
response v striga 
density 

LM4 lm4 <- lm( MCH + MCC + MWC ~ log( 
AvDen + 1 ), data = ALOM1 ) 

Analysis of Variance Table 
 
Response: MCH + MCC + MWC 
                Df Sum Sq Mean Sq F value Pr(>F) 
log(AvDen + 1)   1   4878  4877.7  0.8778 0.3503 
Residuals      151 839024  5556.5                
> summary(lm4) 
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)      176.34      10.10  17.451   <2e-16 *** 
log(AvDen + 1)    13.72      14.64   0.937     0.35     
--- 
 
Residual standard error: 74.54 on 151 degrees of freedom 
  (91 observations deleted due to missingness) 
Multiple R-squared:  0.00578, Adjusted R-squared:  -
0.0008043  
F-statistic: 0.8778 on 1 and 151 DF,  p-value: 0.3503 

Mean crop height, 
crop cover and 
other weed cover 
as combined 
response v striga 
density 

GAM
4 

gam4<- gam(  MCH + MCC + MWC  ~  
log( AvDen + 1 ) + s(Lat, Lon), data = 
ALOM1) 

Parametric Terms: 
               df    F p-value 
log(AvDen + 1)  1 0.44   0.508 
 
Approximate significance of smooth terms: 
             edf Ref.df     F p-value 
s(Lat,Lon) 2.001  2.001 4.331  0.0148 
> summary(gam4) 
 
 
Parametric coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)     178.651      9.922  18.006   <2e-16 *** 
log(AvDen + 1)    9.555     14.405   0.663    0.508     
--- 
Approximate significance of smooth terms: 
             edf Ref.df     F p-value   
s(Lat,Lon) 2.001  2.001 4.331  0.0148 * 
--- 
R-sq.(adj) =  0.0415   Deviance explained = 6.04% 
GCV = 5464.4  Scale est. = 5321.5    n = 153 

Mean crop height 
of RICE ONLY v 
Log striga density 
+1  

LM5 lm5 <- lm( MCH ~ log( AvDen + 1 ),  
data = AD_1, subset = which(R_M_O == 
"Rice") ) ) 

Response: MCH 
                Df Sum Sq Mean Sq F value Pr(>F) 
log(AvDen + 1)   1     41   40.89  0.1291 0.7201 
Residuals      106  33587  316.86                
> summary(lm5) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-40.129  -9.944  -1.415   6.422  60.980  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)      60.129      2.737  21.971   <2e-16 *** 
log(AvDen + 1)   -1.599      4.452  -0.359     0.72     
--- 
 
Residual standard error: 17.8 on 106 degrees of freedom 
  (15 observations deleted due to missingness) 
Multiple R-squared:  0.001216, Adjusted R-
squared:  -0.008206  
F-statistic: 0.1291 on 1 and 106 DF,  p-value: 0.7201 

Mean crop height  
RICE ONLY v Log 
striga density +1 + 
S(Lat-Lon) 

GAM
5 

gam5 <- gam( MCH ~  log( AvDen + 1 ) 
+ s(Lat, Lon),  data = AD_1, subset = 
which(R_M_O == "Rice") ) ) 

Parametric Terms: 
               df     F p-value 
log(AvDen + 1)  1 0.091   0.763 
 
Approximate significance of smooth terms: 
             edf Ref.df    F p-value 
s(Lat,Lon) 11.07  14.37 1.36   0.187 
> summary(gam5) 
 
Family: gaussian  
Link function: identity  
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Parametric coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)      59.988      2.615  22.943   <2e-16 *** 
log(AvDen + 1)   -1.307      4.322  -0.302    0.763     
--- 
 
Approximate significance of smooth terms: 
             edf Ref.df    F p-value 
s(Lat,Lon) 11.07  14.37 1.36   0.187 
 
R-sq.(adj) =  0.126   Deviance explained = 22.5% 
GCV = 312.43  Scale est. = 274.61    n = 108 
> 

Previous crop 
legume v previous 
crop not legume?  

ttest1 AD1<- (AD_1$AvDen+2)#Adds 2 to the 
zeros to allow log transformation without 
excessive zeros 
 
ADL<- log(AD1) # Then log transforms 
data 
 
AD_1$ADL<-ADL 
 
 
# Make two vectors subsetting if 
previous crop was legume or not 
 
PCLY = AD_1$ADL[AD_1$PCL=="Y"] 
 
PCLN = AD_1$ADL[AD_1$PCL=="N"] 
 
# Plot histogram for each subset with 
nice normal distribution line 
 
plotNormalHistogram(PCLY) 
 
plotNormalHistogram(PCLN) 
 
ttest1 <-t.test(PCLN, PCLY, "greater") 

Welch Two Sample t-test 
 
data:  PCLN and PCLY 
t = 2.0485, df = 141.08, p-value = 0.02118 
alternative hypothesis: true difference in means is greater 
than 0 
95 percent confidence interval: 
 0.01590524        Inf 
sample estimates: 
mean of x mean of y  
1.0444077 0.9614534 

Welch Two 
Sample t-test 
Companion crop 
legume v previous 
crop not legume?  

ttest 2 CCLY = AD_1$ADL[AD_1$CCL=="Y"] 
 
CCLN = AD_1$ADL[AD_1$CCL=="N"] 
 
ttest1<- t.test(CCLN, CCLY, "greater") 

Welch Two Sample t-test 
 
data:  CCLN and CCLY 
t = -0.51946, df = 89.595, p-value = 0.6976 
alternative hypothesis: true difference in means is greater 
than 0 
95 percent confidence interval: 
 -0.1715704        Inf 
sample estimates: 
mean of x mean of y  
0.5239577 0.5648124 

Shapiro Wilk Test 
for normal 
distribution 

SW1, 
SW2 

sw1<-shapiro.test(PCLN) 
 
sw2<-shapiro.test(PCLY) 

Shapiro-Wilk normality test 
 
data:  PCLN 
W = 0.93023, p-value = 9.952e-06 
 
Shapiro-Wilk normality test 
 
data:  PCLY 
W = 0.88964, p-value = 2.924e-05 

Independent 2-
group Mann-
Whitney U Test 
As data looks non 
normal 
 

UT1 wilcox.test(PCLN,PCLY, "greater") Wilcoxon rank sum test with continuity correction 
 
data:  PCLN and PCLY 
W = 4605.5, p-value = 0.02053 
alternative hypothesis: true location shift is greater than 0 

Welch Two 
Sample t-test 
NERICA4 and B22 
 
As  The results of 
Randrianjafizanak
a et al. compared 
these two varieties  

ttest 3 ttest3<- t.test(NERICA4, B22, "greater") 
 
 

Welch Two Sample t-test 
 
data:  NERICA4 and B22 
t = 1.0121, df = 53.34, p-value = 0.158 
alternative hypothesis: true difference in means is greater 
than 0 
95 percent confidence interval: 
 -0.07241114         Inf 
sample estimates: 
mean of x mean of y  
0.6640107 0.5532828 
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Linear model 
Striga density v 
previous crop 

LM6 options(contrasts = 
c("contr.sum","contr.poly"))  
lm6 <- lm( log( AvDen + 1 )  ~  PC, data 
= AD_1 ) 
 

Analysis of Variance Table 
 
Response: log(AvDen + 1) 
           Df  Sum Sq Mean Sq F value Pr(>F) 
PC         25  4.6514 0.18606   1.082  0.369 
Residuals 159 27.3413 0.17196        
Multiple R-squared:  0.1454, Adjusted R-squared:  0.01102  
F-statistic: 1.082 on 25 and 159 DF,  p-value: 0.369 

GAM Striga 
density v previous 
crop 

GAM
6 

gam6 <- gam( log( AvDen + 1 ) ~  PC -1 
+  s(Lat, Lon), data = AD_1) 

Family: gaussian  
Link function: identity  
 
Formula: 
log(AvDen + 1) ~ PC - 1 + s(Lat, Lon) 
 
Parametric Terms: 
   df     F p-value 
PC 21 15.84  <2e-16 
 
Approximate significance of smooth terms: 
             edf Ref.df     F p-value 
s(Lat,Lon) 2.126  2.247 0.708   0.457 
> summary(gam6) 
 
Family: gaussian  
Link function: identity  
 
Formula: 
log(AvDen + 1) ~ PC - 1 + s(Lat, Lon) 
 
Parametric coefficients: 
                                            Estimate Std. Error t value 
Pr(>|t|)     
PCArachis hypogaea                          0.591496   0.106648   
5.546 1.17e-07 *** 
PCArachis hypogaea, Manihot esculenta       0.068891   
0.417409   0.165 0.869114     
PCArachis hypogaea, Solanum lycopersicumes -0.009785   
0.420001  -0.023 0.981442     
PCCucumis sativus                          -0.082705   0.418120  -
0.198 0.843447     
PCFallow                                    0.721657   0.112531   6.413 
1.50e-09 *** 
PCGlycine max                               0.504852   0.416996   
1.211 0.227780     
PCIpomoea batatas                           0.621659   0.209986   
2.960 0.003534 **  
PCManihot esculenta                         0.640039   0.085632   
7.474 4.61e-12 *** 
PCManihot esculenta, Vigna subterranea      0.828340   
0.293686   2.820 0.005395 **  
PCOryza sp                                  0.483489   0.072564   
6.663 4.00e-10 *** 
PCOryza sp, Arachis hypogaea                0.547073   
0.420556   1.301 0.195164     
PCOryza sp, Manihot esculenta               0.416930   
0.414682   1.005 0.316194     
PCOryza sp, Vigna subterranea               0.316803   
0.293555   1.079 0.282107     
PCOryza sp, Zea mays                        0.786737   0.420889   
1.869 0.063398 .   
PCPhaseolus vulgaris                        0.685005   0.418282   
1.638 0.103434     
PCVigna subterranea                         0.347235   0.070044   
4.957 1.79e-06 *** 
PCVigna subterranea, Arachis hypogaea       1.019209   
0.293910   3.468 0.000672 *** 
PCZea mays                                  0.595244   0.073236   
8.128 1.07e-13 *** 
PCZea mays, Manihot esculenta               0.524288   
0.159370   3.290 0.001231 **  
PCZea mays, Vigna subterranea               0.698396   
0.414674   1.684 0.094069 .   
PCZea mays, Voanjo                          0.396548   0.417749   
0.949 0.343909     
--- 
 
Approximate significance of smooth terms: 
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             edf Ref.df     F p-value 
s(Lat,Lon) 2.126  2.247 0.708   0.457 
 
R-sq.(adj) =  0.016   Deviance explained = 67.4% 
GCV = 0.19554  Scale est. = 0.1711    n = 185 

Linear model 
Striga density v 
mean temp, mean 
rainfall and 
altitude 

LM7 lm7 <- lm(log( AvDen + 1 ) ~ MeanRF + 
MeanTA + Alt, data = AD_1) 
anova(lm7) 
 
 

Analysis of Variance Table 
 
Response: log(AvDen + 1) 
           Df Sum Sq Mean Sq F value  Pr(>F)   
MeanRF      1  0.171 0.17083  0.8905 0.34629   
MeanTA      1  0.572 0.57172  2.9803 0.08558 . 
Alt         1  0.057 0.05727  0.2985 0.58532   
Residuals 238 45.656 0.19183                   
--- 
 
Call: 
lm(formula = log(AvDen + 1) ~ MeanRF + MeanTA + Alt, 
data = AD_1) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.66661 -0.34131 -0.01941  0.24838  1.10644  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|) 
(Intercept) -1.3746946  3.5007288  -0.393    0.695 
MeanRF      -0.0088361  0.0080381  -1.099    0.273 
MeanTA       0.1166316  0.1222766   0.954    0.341 
Alt          0.0005012  0.0009172   0.546    0.585 
 
Residual standard error: 0.438 on 238 degrees of freedom 
  (2 observations deleted due to missingness) 
Multiple R-squared:  0.01722, Adjusted R-squared:  
0.004829  
F-statistic:  1.39 on 3 and 238 DF,  p-value: 0.2465 

GAM Striga 
density v  mean 
temp, mean 
rainfall and 
altitude 

GAM
7 

gam1 <- gam( log( AvDen + 1 ) ~  
MeanRF  +  MeanTA + Alt + s(Lat, Lon), 
data = AD_1) 
anova(gam1) 

Family: gaussian  
Link function: identity  
 
Formula: 
log(AvDen + 1) ~ MeanRF + MeanTA + Alt + s(Lat, Lon) 
 
Parametric Terms: 
       df     F p-value 
MeanRF  1 0.045   0.832 
MeanTA  1 0.649   0.421 
Alt     1 0.046   0.830 
 
Approximate significance of smooth terms: 
             edf Ref.df     F p-value 
s(Lat,Lon) 10.72  14.38 1.297   0.191 

Linear model 
Striga density v 
rice variety 

LM8 options(contrasts = 
c("contr.sum","contr.poly"))  
lm2 <- lm( log( AvDen + 1 )  ~  CV, data 
= AD_1, subset = which(R_M_O == 
"Rice") ) 
anova(lm2) 
summary(lm2) 
 
 

lm(formula = log(AvDen + 1) ~ CV, data = AD_1, subset = 
which(R_M_O ==  
    "Rice")) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-0.6753 -0.2743  0.0000  0.2105  1.1398  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  0.64723    0.07299   8.867 2.59e-14 *** 
CV1         -0.09334    0.21212  -0.440   0.6608     
CV2          0.96221    0.40497   2.376   0.0194 *   
CV3         -0.12445    0.11350  -1.096   0.2755     
CV4         -0.16463    0.14054  -1.171   0.2442     
CV5         -0.15229    0.11057  -1.377   0.1714     
CV6         -0.64723    0.40497  -1.598   0.1131     
CV7         -0.24177    0.40497  -0.597   0.5518     
CV8          0.96221    0.40497   2.376   0.0194 *   
CV9         -0.24177    0.40497  -0.597   0.5518     
CV10        -0.17764    0.11198  -1.586   0.1158     
CV11        -0.46397    0.19251  -2.410   0.0177 *   
CV12        -0.05733    0.11696  -0.490   0.6250     
CV13         0.55674    0.40497   1.375   0.1722     
CV14         0.02808    0.24128   0.116   0.9076     
CV15         0.04591    0.40497   0.113   0.9100     
CV16         1.01100    0.40497   2.496   0.0141 *   
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CV17         0.10320    0.24128   0.428   0.6698     
CV18        -0.13641    0.40497  -0.337   0.7369     
CV19         0.12596    0.40497   0.311   0.7564     
CV20        -0.64723    0.40497  -1.598   0.1131     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.4188 on 102 degrees of freedom 
Multiple R-squared:  0.2522, Adjusted R-squared:  0.1055  
F-statistic:  1.72 on 20 and 102 DF,  p-value: 0.04175 

GAM Striga 
density v rice 
variety 

GAM
8 

gam2 <- gam( log( AvDen + 1 ) ~  CV -1 
+  s(Lat, Lon), data = AD_1, subset = 
which(R_M_O == "Rice")) 
anova(gam2) 

Family: gaussian  
Link function: identity  
 
Parametric Terms: 
   df     F p-value 
CV 21 11.14  <2e-16 
 
Approximate significance of smooth terms: 
           edf Ref.df     F p-value 
s(Lat,Lon)   2      2 0.934   0.396 

Linear model 
Striga density v 
density of nearest 
neighboring field 

LM9 AD_1$nCat <- as.factor( 
round(AD_1$N_dens) ) 
 
nsummary <- AD_1 %>% 
group_by(nCat) %>% 
  summarise(avDens = mean(AvDen), se 
= stderr(AvDen) ) 
 
lm3 <- lm(  log( AvDen + 1 ) ~  N_dens, 
data = AD_1) 
anova(lm3) 
 
 
 

Analysis of Variance Table 
 
Response: log(AvDen + 1) 
           Df Sum Sq Mean Sq F value   Pr(>F)    
N_dens      1  1.679 1.67911  9.0152 0.002958 ** 
Residuals 242 45.073 0.18625                     
--- 
 
Call: 
lm(formula = log(AvDen + 1) ~ N_dens, data = AD_1) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.75064 -0.34077 -0.01308  0.25523  1.10064  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  0.44773    0.04573   9.792  < 2e-16 *** 
N_dens       0.11725    0.03905   3.003  0.00296 **  
--- 
Residual standard error: 0.4316 on 242 degrees of freedom 
Multiple R-squared:  0.03592, Adjusted R-squared:  0.03193  
F-statistic: 9.015 on 1 and 242 DF,  p-value: 0.002958 

GAM Striga 
density v  density 
of nearest 
neighboring field 

GAM
9 

gam3 <- gam( log( AvDen + 1 ) ~  
N_dens + s(Lat, Lon), data = AD_1) 
anova(gam3) 

Family: gaussian  
Link function: identity  
 
 
Parametric Terms: 
       df     F p-value 
N_dens  1 10.91  0.0011 
 
Approximate significance of smooth terms: 
             edf Ref.df     F p-value 
s(Lat,Lon) 4.608  6.045 1.311   0.253 

Linear model 
Striga density v 
pH and NO3 

Lm10 nutrData$FN <- as.factor(nutrData$FN) 
model <- lmer( Den ~ pH + NO3 + 
(1|FN), data = nutrData ) 
summary(model) 
 

Linear mixed model fit by REML. t-tests use Satterthwaite's 
method ['lmerModLmerTest'] 
Formula: Den ~ pH + NO3 + (1 | FN) 
   Data: nutrData 
 
REML criterion at convergence: 389.7 
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-1.4520 -0.7703 -0.1183  0.7171  1.8717  
 
Random effects: 
 Groups   Name        Variance Std.Dev. 
 FN       (Intercept) 0.3169   0.5629   
 Residual             2.1968   1.4822   
Number of obs: 102, groups:  FN, 55 
 
Fixed effects: 
             Estimate Std. Error        df t value Pr(>|t|) 
(Intercept)  0.944720   1.943948 90.538263   0.486    0.628 
pH           0.277479   0.386763 92.589360   0.717    0.475 
NO3         -0.007826   0.007011 89.327229  -1.116    0.267 
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Correlation of Fixed Effects: 
    (Intr) pH     
pH  -0.983        
NO3  0.094 -0.258 

GAM Striga 
density v pH and 
NO3 

GAM
10 

model2 <- gam( Den + 1 ~ pH + NO3 +  
s(latitude, longitude) + s(FN, bs = "re"), 
family = "ocat(R = 6)", data = nutrData) 
anova(model2) 

Family: Ordered Categorical(-1,0.08,0.76,1.89,3.53)  
Link function: identity  
 
Formula: 
Den + 1 ~ pH + NO3 + s(latitude, longitude) + s(FN, bs = 
"re") 
 
Parametric Terms: 
    df Chi.sq p-value 
pH   1  0.754   0.385 
NO3  1  0.479   0.489 
 
Approximate significance of smooth terms: 
                         edf Ref.df Chi.sq p-value 
s(latitude,longitude)  5.290  6.769  7.519   0.337 
s(FN)                  7.050 54.000  8.568   0.110 

Linear model 
Striga density v 
companion crop 

Lm11 options(contrasts = 
c("contr.sum","contr.poly"))  
lm11 <- lm( log( AvDen + 1 )  ~  CC, 
data = AD_1 ) 
anova(lm11) 
summary(lm11) 

Analysis of Variance Table 
 
Response: log(AvDen + 1) 
           Df  Sum Sq Mean Sq F value Pr(>F) 
CC         18  2.0619 0.11455  0.6131 0.8829 
Residuals 111 20.7395 0.18684 

GAM Striga 
density v  
companion crop 

 options(contrasts = 
c("contr.sum","contr.poly"))  
gam11 <- gam( log( AvDen + 1 ) ~  CC -
1 +  s(Lat, Lon), data = AD_1) 
anova(gam11) 
summary(gam11) 

Family: gaussian  
Link function: identity  
 
Formula: 
log(AvDen + 1) ~ CC - 1 + s(Lat, Lon) 
 
Parametric Terms: 
   df     F p-value 
CC 19 11.61  <2e-16 
 
Approximate significance of smooth terms: 
             edf Ref.df    F p-value 
s(Lat,Lon) 4.071  5.331 0.88   0.493 
> summary(gam11) 
 
Family: gaussian  
Link function: identity  
 
Formula: 
log(AvDen + 1) ~ CC - 1 + s(Lat, Lon) 
 
Parametric coefficients: 
                             Estimate Std. Error t value Pr(>|t|) 
CCBalahazo                    0.54030    0.11161   4.841 4.37e-
06 
CCBalahazo, mimosa            0.85393    0.43824   1.949 
0.053974 
CCBalahazo, soya              0.39466    0.30604   1.290 
0.199990 
CCBalahazo, voanjobory        1.23788    0.43203   2.865 
0.005017 
CCBalahazo, voanjolava        0.66420    0.19364   3.430 
0.000859 
CCMaize                       0.51256    0.05292   9.686 2.64e-16 
CCMaize, balahazo             0.47971    0.30405   1.578 
0.117581 
CCMimosa                      0.54219    0.14264   3.801 
0.000240 
CCNiebe                       0.04795    0.42896   0.112 0.911211 
CCSoya                        0.48501    0.16442   2.950 0.003906 
CCSoya, voanjobory, balahazo -0.04726    0.43993  -0.107 
0.914659 
CCStylosanthes                0.65162    0.30707   2.122 
0.036140 
CCTsaramaso                   1.41963    0.43421   3.269 
0.001450 
CCTsy asisa                   0.80957    0.43116   1.878 
0.063153 
CCVoanjobory                  0.51947    0.17553   2.959 
0.003795 
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CCVoanjolava                  0.57283    0.20209   2.834 
0.005489 
CCVoanjolava, balahazo        0.50922    0.43426   1.173 
0.243563 
CCVoanzobory                  0.53340    0.42897   1.243 
0.216417 
CCVoatavo, voanjobory         0.78297    0.30956   2.529 
0.012887 
                                 
CCBalahazo                   *** 
CCBalahazo, mimosa           .   
CCBalahazo, soya                 
CCBalahazo, voanjobory       **  
CCBalahazo, voanjolava       *** 
CCMaize                      *** 
CCMaize, balahazo                
CCMimosa                     *** 
CCNiebe                          
CCSoya                       **  
CCSoya, voanjobory, balahazo     
CCStylosanthes               *   
CCTsaramaso                  **  
CCTsy asisa                  .   
CCVoanjobory                 **  
CCVoanjolava                 **  
CCVoanjolava, balahazo           
CCVoanzobory                     
CCVoatavo, voanjobory        *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
             edf Ref.df    F p-value 
s(Lat,Lon) 4.071  5.331 0.88   0.493 
 
R-sq.(adj) =  -0.0257   Deviance explained =   68% 
GCV = 0.22042  Scale est. = 0.1813    n = 130 

Pearson’s chi-
squared test for 
independence for 
Main crop v 
companion crop 

X21 chisq.test(AD_1$R_M_O,AD_1$CC) Pearson's Chi-squared test 
 
data:  AD_1$R_M_O and AD_1$CC 
X-squared = 137.08, df = 19, p-value < 2.2e-16 

Pearson’s chi-
squared test for 
independence for  
Main crop v 
previous crop 

X22 chisq.test(AD_1$R_M_O,AD_1$PC) Pearson's Chi-squared test 
 
data:  AD_1$R_M_O and AD_1$PC 
X-squared = 34.394, df = 18, p-value = 0.01126 

Cramer’s V test to 
test for the 
strength of any 
observed 
associations from  
X2 1test.  

C1 CramerV(AD_1$R_M_O,AD_1$PC) 
 
 

0.7770854 

Cramer’s V test to 
test for the 
strength of any 
observed 
associations from  
X2 2test. 

C2 CramerV(AD_1$R_M_O,AD_1$CC) 0.4433248 
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Appendix 2: Scatterplots for models 
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Appendix 3: Soil sample (pH and NO3) pairs collected within fields containing 

differing Striga densities. 

0

1

2

3

4

5

0 100 200 300

MeanCropHeight

S
tD

e
n

CropType

Maize

Other

Rice

Striga density Pair Count 

1:0 5 

1:2 3 

1:3 11 

1:4 2 

1:5 0 

2:0 3 

2:3 3 

2:4 4 

2:5 2 

3:0 3 

3:4 3 



140 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3:5 1 

4:0 3 

4:5 4 

5:0 0 

Zero density (single 

samples) 

10 

Total  104 



141 
 

Chapter 3 Appendices 

Appendix 1: Striga Density state guides 

Density  Description 

0 (Absent) No Striga present either within quadrat or within field (dependent on scale 
of determination). In case of field scale, extensive search undertaken 
across entire field to determine absence.  

1 (Very Low) Between one and ten percent of host crop plants infected recorded across 
the quadrat.  

2 (Low) Between 11 and 25 percent of host crop infected across the quadrat. Crop 
symptoms unlikely to be easily visible / or attributable to Striga.  

3 (Moderate) Between 26 and 50 percent of host crop plants infected across the quadrat. 
Localised visible stunting, chlorosis, wilting and poor yield most likely 
attributable to Striga damage. 

4 (High) Between 51 and 75 percent of host crop infected across the quadrat. 
Widespread visible stunting, chlorosis, wilting and visibly poor yield across 
majority of host crop, directly attributable to Striga.  

5 (Very 
High) 

Between 76 and 100 percent of host crop plants infected across the 
quadrat. Stunting, chlorosis and wilting resulting in almost or complete crop 
failure. 

Appendix 1a: Descriptions of Striga asiatica density states from absent to very high Striga 

infestation.   
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Appendix 1 b: Indicative photographs for rice field in each estimated state from absent (top 

left) to very high Striga infestation (bottom right).   

 

Appendix 2: Model details, outputs and R scripts 

 
Model 

 
# 

 
Code 

 
Result 

Log Striga density 
V  Year * NO3  
 

LM1 library(mgcv) 
library(lme4) 
library(lmerTest) 
library(ggplot2) 
library(dplyr) 
library( geosphere ) 
library( stringr) 
 
#Calculate a standard error 
stderr <- function(x, ...) sd(x, na.rm = 
TRUE) / sqrt(length(is.na(x == FALSE)) ) 
 
 
 
# Have cleaned the cultivar variable 
fulldata <- 
read.csv("/Users/Ragenaky/Desktop/Stri
ga Madagascar 2020/Completed 
Sheets/Ecology Data 
Updated/MASTER_2019_2020_NANC.c
sv", h = T) 
 
fulldata$YR <- as.factor(fulldata$YR) 
fulldata$FN <- as.factor(fulldata$FN) 
 
 
 
 
# Load NO3 data 
 
NO3 <- 
read.csv("/Users/Ragenaky/Desktop/Stri
ga Madagascar 2020/Completed 

Analysis of Variance Table 
 
Response: log(AvDen + 1) 
          Df  Sum Sq  Mean Sq F value Pr(>F) 
YR         1  0.0690 0.069027  0.2934 0.5898 
NO3        1  0.0236 0.023648  0.1005 0.7522 
YR:NO3     1  0.0450 0.044971  0.1911 0.6634 
Residuals 69 16.2356 0.235299                
> summary(model10) 
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Sheets/Ecology Data 
Updated/NO3_2019_2020.csv", h = T) 
colnames(NO3)[1] <- "YR" 
NO3Summary <- NO3 %>%  
  group_by(YR, Field) %>%  
  summarise( NO3 = mean(NO3_ppm), 
avdenCHECK = mean(AvDen) ) 
NO3Summary <- 
data.frame(NO3Summary) 
 
 
NO3idx <- apply(fulldata, 1, function(x) { 
idx  <- which( NO3Summary$YR == x[1] 
& NO3Summary$Field == x[2])  
                                ret <- NA 
                                if(length(idx) >0 ) ret 
<- NO3Summary[idx,3] 
                                ret} ) 
fulldata$NO3 <- NO3idx 
 
# NO3 
model1 <- lm( log(AvDen + 1 ) ~ YR * 
NO3, data = fulldata ) 
anova(model1) 

Log Striga density 
V  Year * Mean 
other weed cover  

LM2 AD_1<-read.csv("MWC_AVDEN.CSV") 
 
 
# Striga Density  v Mean other Weed 
Cover for both years . 
 
Lm2 <- lm( AvDen  ~ Mean_WC*Year, 
data = AD_1, ) 
 
anova(lm2) 
summary(lm2) 

Analysis of Variance Table 
 
Response: AvDen 
              Df  Sum Sq Mean Sq F value  Pr(>F)   
Year           1   4.452  4.4522  5.6855 0.01766 * 
Mean_WC        1   1.145  1.1450  1.4622 0.22742   
Year:Mean_WC   1   0.080  0.0798  0.1019 0.74976   
Residuals    337 263.896  0.7831                   
--- 
Signif. codes:   
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Log Striga density 
V  Year *  Rice 
Variety  

LM3 riceData <- 
fulldata[which(fulldata$R_M_O == 
"Rice"),] 
model3 <- lm( log( AvDen + 1) ~   YR *  
CVclean , data = riceData ) 
anova(model3) 

Analysis of Variance Table 
 
Response: log(AvDen + 1) 
            Df  Sum Sq Mean Sq F value   Pr(>F)    
YR           1  0.0989 0.09886  0.5655 0.453129    
CVclean     27  9.5141 0.35237  2.0157 0.004041 ** 
YR:CVclean   9  2.9965 0.33294  1.9045 0.054556 .  
Residuals  164 28.6697 0.17482                     
--- 
Signif. codes:   
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Log Striga density 
V  Year *  
Previous crop  

LM4 Model4 <- lm(log( AvDen + 1) ~  YR * 
PC, data = fulldata) 
anova(model4) 

Analysis of Variance Table 
 
Response: log(AvDen + 1) 
           Df Sum Sq Mean Sq F value  Pr(>F)   
YR          1  0.595 0.59460  3.2503 0.07268 . 
PC         23  4.314 0.18757  1.0253 0.43411   
YR:PC       6  2.425 0.40415  2.2092 0.04293 * 
Residuals 238 43.540 0.18294                   
--- 
Signif. codes:   
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 --- 
 
R-sq.(adj) =  0.123   Deviance explained = 19.5% 
GCV =  263.8  Scale est. = 241.21    n = 225 
> 

Log Striga density 
V  Year * Previous 
crop Legume 

LM5 Model5 <- lm(log( AvDen + 1) ~ YR * 
PCL, data = fulldata) 
anova(model5) 

Analysis of Variance Table 
 
Response: log(AvDen + 1) 
           Df Sum Sq Mean Sq F value  Pr(>F)   
YR          1  0.809 0.80850  4.3286 0.03828 * 
PCL         1  1.194 1.19366  6.3907 0.01196 * 
YR:PCL      1  0.004 0.00389  0.0209 0.88528   
Residuals 316 59.023 0.18678                   
--- 
Signif. codes:   
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Log Striga density 
V  Year *  
intercrop  

LM6 Model6 <- lm(log( AvDen + 1) ~ YR * 
CC, data = fulldata) 
anova(model6) 

Analysis of Variance Table 
 
Response: log(AvDen + 1) 
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           Df Sum Sq Mean Sq F value    Pr(>F)     
YR          1  2.026 2.02550 11.5209 0.0008233 *** 
CC         25  4.950 0.19801  1.1262 0.3153817     
YR:CC       6  0.507 0.08446  0.4804 0.8225375     
Residuals 209 36.744 0.17581                       
--- 
Signif. codes:   
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Log Striga density 
V  Year * 
Neighboring Striga 
density   

LM7 # Functions to find neighbour densities 
 
findNN <- function( p, pts) { 
  dists <- distm(p, pts, fun = 
distHaversine ) 
  idxN1 <- which( dists == min( dists ) ) 
  idxN2 <- which( dists == min( dists[-
idxN1] ) ) 
  idxN3 <- which( dists == min( dists[-
c(idxN1, idxN2) ] ) ) 
  return( c(idxN2, idxN3) ) 
} 
 
NNdens <- function(pts, dens) { 
  idxs <- t( apply( pts, 1, function(x) 
findNN(x, pts)) ) 
  Ns <- apply(idxs,1, function(idx) 
mean(dens[idx]) ) 
  return(Ns) 
} 
 
# Run 
data2019 <- fulldata[ which(fulldata$YR 
== 2019), ] 
data2020 <- fulldata[ which(fulldata$YR 
== 2020), ] 
 
ptest <- c( data2019$Lon[1], 
data2019$Lat[1] ) 
ptstest <- cbind(data2019$Lon , 
data2019$Lat  ) 
Neigh2019 <- unlist( NNdens( ptstest, 
data2019$AvDen ) ) 
 
ptest <- c( data2020$Lon[1], 
data2020$Lat[1] ) 
ptstest <- cbind(data2020$Lon , 
data2020$Lat  ) 
Neigh2020 <- unlist( NNdens( ptstest, 
data2020$AvDen ) ) 
 
fulldata$Neigh <- c( Neigh2019, 
Neigh2020 ) model7 <- lm( log( AvDen + 
1) ~ YR * Neigh, data = fulldata) 
anova(model7) 

Analysis of Variance Table 
 
Response: log(AvDen + 1) 
           Df Sum Sq Mean Sq F value  Pr(>F)   
YR          1  0.582 0.58238  3.0426 0.08202 . 
Neigh       1  1.115 1.11534  5.8270 0.01631 * 
YR:Neigh    1  1.211 1.21054  6.3244 0.01237 * 
Residuals 338 64.697 0.19141                   
--- 
Signif. codes:   
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Log Striga density 
V  Year * Mean 
annual rainfall  

LM8 Model8 <- lm( log(AvDen + 1) ~ YR * 
MeanRF, data = fulldata ) 
anova(model8) 

Analysis of Variance Table 
 
Response: log(AvDen + 1) 
           Df Sum Sq Mean Sq F value   Pr(>F)     
YR          1  1.159 1.15903  5.9334 0.015281 *   
MeanRF      1  0.360 0.36001  1.8430 0.175344     
YR:MeanRF   1  2.793 2.79326 14.2994 0.000179 *** 
Residuals 411 80.285 0.19534                      
--- 
Signif. codes:   
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Log Striga density 
V  Year * 
Precipitation 
seasonality  

LM9 Model9 <- lm( log(AvDen + 1) ~ YR * 
RFCV_MAN, data = fulldata ) 
anova(model9) 

Analysis of Variance Table 
 
Response: log(AvDen + 1) 
             Df Sum Sq Mean Sq F value   Pr(>F)    
YR            1  1.159 1.15903  5.8746 0.015791 *  
RFCV_MAN      1  1.732 1.73222  8.7799 0.003223 ** 
YR:RFCV_MAN   1  0.618 0.61849  3.1349 0.077375 .  
Residuals   411 81.088 0.19729                     
--- 
Signif. codes:   
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 



146 
 

 

 

 

>  
Log Striga density 
V  Year * Altitude 

LM9 Model10 <- lm( log( AvDen + 1 ) ~ YR * 
Alt, data = fulldata) 
anova(model10) 

Analysis of Variance Table 
 
Response: log(AvDen + 1) 
           Df Sum Sq Mean Sq F value   Pr(>F)    
YR          1  1.103 1.10319  5.5557 0.018891 *  
Alt         1  1.827 1.82653  9.1985 0.002576 ** 
YR:Alt      1  0.100 0.10029  0.5051 0.477691    
Residuals 409 81.215 0.19857                     
--- 
Signif. codes:   
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Log Striga density 
V  Year * Mean 
annual 
temperature 

LM11 Model11 <- lm( log(AvDen + 1) ~ YR * 
MeanTA, data = fulldata  ) 
anova(model1) 

Analysis of Variance Table 
 
Response: log(AvDen + 1) 
           Df Sum Sq Mean Sq F value    Pr(>F)     
YR          1  1.159 1.15903  5.8923 0.0156356 *   
MeanTA      1  2.481 2.48108 12.6135 0.0004273 *** 
YR:MeanTA   1  0.113 0.11345  0.5768 0.4480112     
Residuals 411 80.844 0.19670                       
--- 
Signif. codes:   
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Log Striga density 
V  Year * Legume 
Crop 

lm12 LC_1<-
read.csv("LEGUME_CROP_2019_2020
_SINGLE_RECS_REMOVED.CSV") 
 
# (2) Look at effects of different legume 
crops  
 
# Set contrasts so that we can test 
against the grand mean. 
options(contrasts = 
c("contr.sum","contr.poly"))  
lm1 <- lm( log( AvDen + 1 )  ~  YR * LC, 
data = LC_1)  
anova(lm12) 
summary(lm12) 

Analysis of Variance Table 
 
Response: log(AvDen + 1) 
           Df  Sum Sq Mean Sq F value   Pr(>F)    
YR          1  1.4086 1.40863  8.6945 0.003772 ** 
LC          6  1.7735 0.29558  1.8244 0.098934 .  
YR:LC       3  1.1541 0.38469  2.3744 0.073025 .  
Residuals 133 21.5479 0.16201                     
--- 
Signif. codes:   
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Linear model to 
obtain weighting 
coefficients for 
individual 
management 
components  

Lm13 AD_1<-
read.csv("CD_1_With_Score.CSV") 
 
 
# Density change  v Total Score (Fallow, 
Cereal years, legume years,Numer of 
crops). lm13 <- lm( Change  ~ FL_YR + 
CR_YR + LM_YR + NC, data = AD_1, ) 
 
anova(lm1) 

Analysis of Variance Table 
 
Response: Change 
          Df Sum Sq Mean Sq F value  Pr(>F)   
FL_YR      1  0.153  0.1528  0.1196 0.73048   
CR_YR      1  0.055  0.0553  0.0433 0.83572   
LM_YR      1  8.416  8.4164  6.5880 0.01232 * 
NC         1  2.498  2.4983  1.9555 0.16623   
Residuals 73 93.261  1.2775                  

Change in 
average Striga 
density (2019-
2020) v 
Management 
score 

 AD_1<-
read.csv("CD_1_With_Score_Using_Co
efficients.CSV") 
 
 
# Average Density 2020  v Total Score 
(Fallow, Cereal years, legume 
years,Numer of crops). 
 
lm1 <- lm( Change  ~ Total, data = 
AD_1, ) 
 
anova(lm1) 

Analysis of Variance Table 
 
Response: Change 
          Df Sum Sq Mean Sq F value   Pr(>F)    
Total      1 11.123 11.1228  9.0642 0.003537 ** 
Residuals 76 93.261  1.2271                     
--- 
Signif. code 



147 
 

Appendix 2: Climate Autocorrelation plot  
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Appendix 4: Legume Fixation Table 
 

 

 

 

 

 

 

 

 

 

 

 

Table …: Mean Nitrogen fixation (kg / ha-1) for legume crops recorded in study area.  

All values pertain to studies conducted in Africa except V umbellata; conducted in rainfed 

conditions in northern Thailand. Though no values are available for M diplotricha; its use as 

an N-enriching green manure species is widely documented (e.g.: Yogaratnam et al 1984, 

Tomas & George 1990).  

 

 

 

                                                           
1 Peoples et al 2009 
2 Houngnandan et al 2000 
3 Bernard et al 2018, Nyemba & Dakora 2010, Pule-Meulenberg & Dakora 2009 
4 Rerkasem and Rerkasem, 1988; Rerkasem et al., 1988   

Crop Mean N Fixation / kg ha-1 

Arachis hypogaea1 48 

Glycine maxa 193 

Mucuna puriens2 60 

Phaseolus vulgarisa 30 

Mimosa diplotricha  

Vigna subterranea3 63 

Vigna umbellata4 67 
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Appendix 5 Mean other Weed Density v Mean Striga 
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Chapter 4 Appendices 

Appendix 1A: Pilot Search Returns Table for Web of Science (Top)&      

Appendix 1B: Taxa list for parasitic weeds of economic importance (with notes on biological characteristics, Below)  

Term 1 Term 2 Term 3 Term 4 Term 5 Term 6 Term 7 # Refs gross # Refs net Notes 

Orobanche AND Cover AND Crop   38  37  

Orobanche AND Intercrop     20  18  

Orobanche AND Inter*     737  461 Too broad. Only first 500 exported 

Orobanche AND Trap*     66  47  

Orobanche AND Push AND Pull   2  1  

Orobanche AND Companion     3  1  

Orobanche AND Conservation AND Agriculture   10  7  

Orobanche AND Integrated AND Weed AND Management 1  1  

Orobanche AND Cultural AND Control   103  61 Perhaps too broad. Needs triage 

Orobanche AND Suicid*     40  4 Too focused on biochemical study rather than actual intercrops.  

Orobanche AND Legum*     644  240 Again could be too broad. Needs triage 

Orobanche AND Legume     256    

Orobanche AND no AND till   3  2  

Orobanche AND zero AND till   1  0  

Striga AND Cover AND Crop   69  52  

Striga AND Intercrop     129  103  

Striga AND Inter*     921  195 Too broad. Only first 500 exported 

Striga AND Trap*     109  27  

Striga AND Push AND Pull   52  17  

Striga AND Companion     16  6  

Striga AND Conservation AND Agriculture   33  16  

Striga AND Integrated AND Weed AND Management 154  87  

Striga AND Cultural AND Control   165  52  

Striga AND Suicid*     74  48 Too focused on biochemical study rather than actual intercrops. 

Striga AND Legum*     572  282 Again could be too broad. Needs triage 
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Striga AND Legume     275    

Striga AND no AND till   2  0  

Striga AND zero AND till   1  0  

      

Total Gross: 
4496 

Total Net: 
1765  

         

Family Synonym Genus Synonym Sub genus Synonym Species Included Notes 

Convolvulaceae Cuscutaceae Cuscuta  Monogynella   - No Robust vines which attack fruit trees. No information when searched.  

Convolvulaceae  Cuscuta  Cuscuta  - Yes 

Favour herbaceous hosts. Holoparasites (photosynthetically inactive). 
Just genus included in search as over 200 species listed with taxonomic 
ambiguity.  

Convolvulaceae  Cuscuta  Grammica  - No No evidence of economic significance 

Lauraceae  Cassytha    - No Perennial / climbers affect woody plants 

Orobanchaceae Scrophulariaceae Striga    S. asiatica Yes  

Orobanchaceae  Striga    S.hermonthica Yes  

Orobanchaceae  Striga    S. gesnerioides Yes  

Orobanchaceae  Striga    S. hirsuta Yes Less likely to attack crops but still cited as a threat 

Orobanchaceae  Striga    S. lutea Yes Less likely to attack crops but still cited as a threat 

Orobanchaceae  Striga    S. forbesii  Yes  

Orobanchaceae  Striga    S. angustifolia Yes  

Orobanchaceae  Striga    S. densiflora  Yes  

Orobanchaceae  Striga    S. aspera Yes  

Orobanchaceae  Striga    S. curviflora Yes  

Orobanchaceae  Striga    S. parviflora Yes  

Orobanchaceae  Striga    S. latericea Yes  

Orobanchaceae  Orobanche Phelipanche   O. cernua Yes Over 70 species. Orobanche is a parasite of colder climates 

Orobanchaceae  Orobanche    O. crenata Yes  

Orobanchaceae  Orobanche   O. cernua var. cumana O. cumana Yes  

Orobanchaceae  Orobanche   Phelipanche ramosa O. ramosa Yes  

Orobanchaceae  Orobanche   

Phelipanche 
aegyptiaca O. aegyptiaca Yes  
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Orobanchaceae  Orobanche    O. foetida Yes  

Orobanchaceae  Aeginetia    A. indica Yes Only in forests in India but found affecting limited cereal crops 

Orobanchaceae  Aeginetia    A. flava No Endemic to Thailand in rainforest 

Orobanchaceae  Alectra    Alectra vogelii Yes Less significant but still reported as damaging crops 

Orobanchaceae  Christisonia    C. tomentosa No Only recently described 

Orobanchaceae  Christisonia    C. tubulosa No Obscure rare plant only found in India 

Orobanchaceae  Christisonia    C. scortechinii Yes Limited range in Malaysia and Thailand. Affects sugarcane in Philippines 

Orobanchaceae  Christisonia    Christisonia spp No Several others but no evidence for economic significance 

Loranthaceae        No Perennial / Affect canopies of woody species 

Viscaceae       No Mistletoes found in canopy of trees 
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Appendix 1C: Meta-analysis full methodology 
 

Pilot Study 

 

A pilot study was undertaken using Web of Science and a combination of provisional terms to 

describe the use of companion crops, in conjunction with the genera: Striga and Orobanche (being 

among the most economically significant parasitic weed genera). Records returned for separate 

search term combinations were saved on EndNote Online (Clarivate Analytics 2021). Duplicate 

records were removed producing a net search term results total. The number of returns for each 

search combination, accompanied by an assessment of relevance based on the title of each study, 

gave an indication of the relevance of each search combination. This determined the final list of 

terms for inclusion; as some terms were too broad and returned too many unrelated results. Search 

combinations returning very high (e.g. >400) numbers of records with a very large proportion of non-

relevant studies indicated that the term was too broad. These were subsequently omitted from the 

main search (e.g.: “Taxon” AND inter*, “Taxon” AND Legum*).  

Choice of taxa for inclusion in the main search was determined by a number of criteria. Firstly, a 

review was undertaken to determine a definitive list of economically significant parasitic plants using 

several sources (Nickrent and Musselman 2004, Sauerborn et al 2007, Parker 2012). This list was 

then subject to triage, based on the nature of their parasitism, which determined inclusion in the 

main. For example, stem parasites such as mistletoes (Loranthaceae, Viscaceae) occur in the 

canopies of woody, perennial plants and will thus be unaffected by intercrops planted in the soil.  

Likewise, perennial, vine taxa affecting tree species such as the genus Cassytha were omitted for the 

same reason. Genera which returned no results for the 12 search combinations were removed from 

the main search. In the case of genera containing high numbers of economically-important species 

(e.g.: Cuscuta, Striga), genus was included as a search term alone without going to species level. 

Widely-adopted synonyms at the family and genus level were also included. Appendix 1 details 

search combinations used for pilot with gross and net results and list of taxa, synonyms and details 

of inclusion or omission from main search. 

Main Search 

 

Multiple electronic databases and the internet were searched using a range of Boolean search 

terms. The databases searched on the internet were: Web of Science, Scopus and AGRICOLA. 

Searches were performed in February 2021 on the complete range of references available at that 

time.  

Search terms were constructed as follows: taxon name (Aeginetia, Alectra, Christisonia, Cuscuta, 

Grammica, Orobanche, Phelipanche, Scrophulariaceae, Striga) AND cover AND crop, taxon name  

AND Intercrop, taxon name AND trap*,  taxon name  AND push AND pull, taxon name  AND 

companion,   taxon name  AND conservation AND agriculture *,  taxon name  AND integrated weed 

management, taxon name  AND cultural AND control, taxon name  AND suicidal*, taxon name  AND 

legume, taxon name  AND no AND till, taxon name  AND zero AND till.  

Additional searches were performed by manually searching for citations within relevant sections of 

20 review studies of control methods for all economically-significant parasitic weed taxa. The list of 
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reviews used is included in appendix 1. Recognized experts and practitioners in the field of parasitic 

weed agronomy were also contacted to identify possible sources of data (including primary data) 

and to verify the thoroughness of our literature coverage. In instances where studies were not 

available electronically, Jisc Libray Hub and Worldcat were searched to locate institutions holding 

hard copies, which were requested via inter library requests.    

Criteria for Inclusion of Studies 

 

Studies were included if they fulfilled the following relevance criteria: 

Subjects studied: Any annual parasitic weed species, host crop and intercrop combinations 

Treatment used: Intercropping or rotation cropping  

Study type: Any primary studies with appropriate comparators, continuous data with means, 

information on sample sizes, available / calculable measures of variance or sufficient information to 

impute values. Range of studies comprised: Landscape-level assessment, laboratory, field trials, farm 

trials, pot, bag and rhizotron experiments.  

Response(s): Host yield (t ha-1/kg ha-1), stover yield (t ha-1), weed dry weight (t ha-1/g pot/ g plant/ 

gm2), weed / weed seed density (per petri dish / pot / plant / M2/ log10M2 / density / severity 

score), percentage weed reduction / ratio ( versus control / from original density). 

Comparator: Appropriate controls: experimental units in which no intercrop was grown with the 

host crop, or monocrop / fallow / bare earth in the case of rotation studies. 
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Appendix 2: Meta-analysis locality, weed, host, inter and rotation crop lists 
Countries Localities Lat Lon Weed Species Host Crop Inter/Trap 

crop 
Host crop Variety Intercrop Variety Rotation Crop Variety 

Benin Oued Beja, Tunisia 36.7358 9.2249 Cuscuta 
chinensis 

Canola Alfalfa Canola Zarfam Barley Aspen Berseem Tavor 

Cameroon Adana, Turkey 37.0371 35.3551 Orobanche 
foetida 

Chickling 
pea 

Aniseed Chickling 
pea 

BG-1043 Berssem Fahl Black-eyed pea Parastou 

China Adi Bakel, Tigray, 
Ethiopia 

13.9466 37.7973 Orobanche 
aegyptiaca 

Faba bean Aubergine Chickling 
pea 

BGE-1023558 Common 
bean 

mwezi 
moja 

Broccoli Italica 

Egypt Alexandra, Egypt 31.2037 30.0512 Orobanche 
cernua 

Finger millet Bambara  Faba bean Aquadolce Common 
bean 

Nambale Broccoli Monopoly-
Syngenta 

Ethiopia Al-Jubeiha, Jordan 32.0168 35.8716 Orobanche 
crenata 

Garden pea Barley Faba bean Badi Common 
bean 

Nyayo Brown indian 
hemp 

Farakhil 

Germany Alkaleri, Nigeria 9.7833 10.0166 Orobanche 
cumana 

Maize Basil Faba bean Brocal Cowpea Amary-sho Brussel sprout Oliver-Syngenta 

Ghana Alupe, Kenya 0.4833 34.1333 Orobanche 
minor 

Mung bean Beet Faba bean Giza 429 Cowpea B301 Cabbage Brunswick-May 

India Amman, Jordan 31.8622 35.9311 Orobanche 
ramosa 

Pea Berseem Faba bean Giza Blanca Cowpea BR1 Canola 8310 

Iran Ankwa, Nigeria 9.9266 7.7666 Phelipanche 
aegyptiaca 

Pearl millet Bitter apple Faba bean Najeh Cowpea ICV 2 Cauliflower Igloo-Global 
Seeds 

Israel Assiut University, Egypt 27.1848 31.1641 Striga asiatica Rapeseed Black-eyed 
pea 

Faba bean Prothabon Cowpea IT82D-849 Common bean GPL 94 

Jordan Bauchi, northern Nigeria 10.2847 9.8211 Striga 
hermonthica 

Red clover Broccoli Faba bean Reina Blanca Cowpea IT90K-59 Common vetch Sadot 

Kenya Bengou, Niger 11.9907 3.592 
 

Rice Brown Indian 
Hemp 

Garden pea Athos Cowpea IT90K-76 Cotton Varamin 

Madagascar Bingaguru, eastern 
Zimbabwe  

-
18.7589 

32.6343 
 

Sorghum Brussel sprout Garden pea Messire Cowpea IT93K452-
1 

Cotton Stam 4224 

Mali Bondo, Kenya -0.0949 34.2762 
 

Millet Butternut 
squash 

Lentil Kırmızı-Local Cowpea IT93K-8-
45-5-1-5 

Cowpea IT-90K-284-2 

Nepal Borno state, northeast 
Nigeria 

11.8333 10.4166 
 

Sunflower Cabbage Lentil L-317 Cowpea Kavara Cowpea IT-90K-284-2 

Niger Bugiri, Uganda 0.5683 33.7494 
 

Tobacco Canola Maize 0804-7STR Cowpea Suvita Cowpea IT93K452-1 

Nigeria Bungoma, Kenya 0.5693 34.5559 
 

Tomato Cauliflower Maize 2000SYN-EE-
W-STR 

Cowpea TVX – 
1850-01F 

Endive crispum 

Spain Bunyore, Vihiga District, 
Kenya 

0.1111 34.5666 
 

Wild lentil Celery Maize 2004TZE-W-
DT-STR-C4 

Cowpea Vya Flax Legina 

The Gambia Busia district, Kenya 0.4599 34.1091 
  

Celosia 
argentia 

Maize 8322-13 Fenugreek Giza 2 Foxtail millet  
Cao Guzi 

Tunisia Busia, Uganda 0.4661 34.0889 
  

Cereal Maize 8338-1 Groundnut Ex-Dakar Foxtail millet Jingu 29 

Turkey Butere, Kenya 0.2162 34.4921 
  

Chickpea Maize 8428-19 Groundnut Homabay Giant spinach Epinard greant  
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U.S.A Cameroon 10.5925 14.32101 
  

Chilli Maize 94TZE 
COMP5-W 

Groundnut ICGV 
907048SM 

Groundnut RMP12 

Uganda Chinyudze, eastern 
Zimbabwe 

-
18.1866 

32.2005 
  

Clusterbean Maize 99EVDTSTR-
W 

Groundnut Red 
Beauty 

Lentil Kırmızı-Local 

Zimbabwe Clackamas County, 
Oregon, USA 

45.1903 -
122.2023 

  
Common bean Maize 99TZEE-Y-

STR 
Groundnut RMP-12 Maize 94TZE COMP5-

W  
Cordoba, Spain 37.8921 -4.7831 

  
Common vetch Maize ACROSS 97 

TZL COMP1-W 
Groundnut RMP-91 Maize ACROSS 97 TZL 

COMP1-W  
Ebuyangu, Vihiga 
District, Kenya 

0.1 34.5833 
  

Coriander Maize DMR-ESRW Groundnut S28/206 Maize H19 

 
Emabwi, Vihiga District, 
Kenya 

0.1 34.5833 
  

Cotton Maize Hybrid 511 Groundnut Yarkasa Maize N314 

 
Gotulis, Bawku district, 
Ghana 

11.0166 -0.2666 
  

Cowpea Maize Hybrid 614 Lupin Giza 2 Maize Oba Super 1 

 
Govakova, eastern 
Zimbabwe  

-
18.7594 

32.6323 
  

Mucuna Maize IRAT 200 Lupin Ultra Maize Q67 

 
Guyuan, Ningxia Hui 
Region, China 

35.9988 106.4191 
  

Crotalaria 
grahamiana 

Maize Longe 5 Mung 
bean 

Local Maize TZE COMP3 DT 

 
Haifa, Israel 32.7872 35.0031 

  
Crotalaria 
juncea 

Maize Oba Super 1 Oat Cory Maize TZL COMP1 
SYN  

Homa Bay, Kenya -0.5375 34.4563 
  

Crotalaria 
ochroleuca 

Maize SC501 Pepper Shalhevet Maize Z6 

 
Ibadan, Nigeria 7.4909 3.8945 

  
Cucumber Maize TZE COMP3 

DT 
Soya 
bean 

EAI 3600 Millet Chalak 

 
Isfahan, Iran 32.7193 51.5321 

  
Cucumis 
prophetarum 

Maize TZL COMP1 
SYN 

Soya 
bean 

Jupiter Mung bean Parto 

 
Ivory, Mid-west 
Madagascar 

46.4112 -19.5524 
  

Cumin Maize TZSR-W-1 Soya 
bean 

SAMSOY 
II 

Pepper Arkalohit 

 
Kaduna, northern 
Nigeria 

10.7251 7.8683 
  

Desmodium 
distortum 

Maize Western Yellow Soya 
bean 

Tgm1039 Pepper Jinghong 

 
Kafr-El Sheikh, Egypt 31.1048 30.9435 

  
Desmodium 
intortum 

Maize WH403 Soya 
bean 

Tgm1576 Pepper Qingdao Xinlilai 

 
Kano / Katsina, Nigeria 11.9918 8.5209 

  
Desmodium 
uncinatum 

Maize WH502 Soya 
bean 

TGx 1448-
2E / TGx 
1864 

Pepper Zi jinshan 

 
Karaj, Iran 35.8228 50.9583 

  
Desmodium 
intortum 

Maize WH505 Soya 
bean 

TGX1448-
2E 

Pigeon pea ICPL 87091 

 
Kaya, Nigeria 11.254 7.2389 

  
Desmodium 
spp 

Maize WH507 Soya 
bean 

TGX1876-
4E 

Sesame Darab1 

 
Kibos, Kisumu dirtsict, 
Kenya 

0.0333 34.8001 
  

Desmodium 
uncinatum 

Maize WH511 Soya 
bean 

TXG1448-
2E 

Soya bean Duika 

 
Kisii, Kenya -0.6792 34.7748 

  
Dill Maize WH513 Triticale Penarroya Soya bean TGx 1864 

 
Kisumu dirtsict, Kenya -0.0661 34.7766 

  
Egyptian 
clover 

Maize WH624 Wheat Alamut Soya bean TGX1448-2E 

 
Kumi District, Uganda 1.4676 33.9341 

  
Endive Millet Manga Nara Wheat Alvand Soya bean TGx1740-2F 
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Kuria, Kenya -1.2212 34.5449 

  
Faba bean Mung bean Pusa 105 Wheat Baiat Soya bean TGx1740-7F 

 
Lambwe, Suba district, 
western Kenya 

-0.5492 34.3638 
  

Faidherbia 
albida 

Pea Syrian local Wheat Chamran Sugar beet 143 

 
Layin Taki and Kayawa, 
northern Nigeria 

12.9568 8.1441 
  

Fallow Red clover Kenland Wheat Falat Sugar beet RG8001 

 
Lower River Division, 
The Gambia 

12.5524 -15.9361 
  

Fenugreek Sorghum BES (KSV4) Wheat Kavir Sugar beet Ruima 

 
Mahuta, Nigeria 10.5002 7.5275 

  
Flax Sorghum Damougari/S35 Wheat Sepahan Sunflower Hybrid 8998 

 
Maiduguri, Nigeria 11.8045 13.1966 

  
Foxtail millet Sorghum Djigari Wheat TRI11554 Triticale Bogo 

 
Makerere University, 
Uganda 

0.3277 32.5674 
  

Garden pea Sorghum Gadam 
Hamam 

Wheat TRI11712 Turnip Local-Bursa 
Tohum  

Mansajang Kunda, 
Gambia 

13.2867 -14.1931 
  

Garlic Sorghum Ganseber Wheat TRI15593 Wheat Xinchun 6 M 

 
McCarthy Island north, 
The Gambia 

12.8667 -15.2163 
  

Giant spinach Sorghum ICSV 1002 Wheat TRI17606 Wheat Yongliang 15 

 
Melkassa, Ethiopia 8.4056 39.3285 

  
Gourd Sorghum ICSV 1007 Wheat TRI18664 Winter durum 

wheat 
Connie 

 
Merti, Ethiopia 8.8714 39.9148 

  
Groundnut Sorghum Kadaga Wheat TRI19322 Winter wheat Foote 

 
Migori, Kenya -1.0675 34.4665 

  
Lentil Sorghum KSV8 Wheat TRI19652 Winter wheat Gene 

 
Nara, Mali 15.1657 -7.2872 

  
Linseed Sorghum Kutbie Wheat TRI7259 Winter wheat Madsen 

 
Nawalparasi, Nepal 27.6475 83.9354 

  
Lupin Sorghum Sama Jabo 

  
Winter wheat Stephens 

 
NGS, Borno state, 
northeast Nigeria 

10.6578 12.2668 
  

Maize Sorghum Ware 
warenbashi 

  
Winter wheat Weatherford 

 
Nipani, Karnataka, India 16.4084 74.3746 

  
Melon Sorghum wediaker 

  
Winter wheat Yamhill 

 
North Bank Division, 
The Gambia 

12.6441 -16.7006 
  

Mung bean Sorghum Mobal 
    

 
Nyabeda, western 
Kenya 

0.1276 34.4007 
  

Mustard Sunflower Aidatou 
    

 
Nyando, Kenya -0.2011 35.0133 

  
Narbon vetch Sunflower T33 

    

 
Rachuonyo, Kenya -0.5062 34.7322 

  
Oat Tobacco Anand-119 

    

 
Rimau, Nigeria 10.4378 7.7533 

  
Okra Tomato M-82 

    

 
Rongo, Kenya -0.7559 34.5981 

  
Onion Tomato Pomodoro ACE 

55vF 

    

 
Rongo, Kenya -0.7559 34.5981 

  
Parsley Tomato Roma vf 

    

 
Sadore, Niger 13.2317 2.2756 

  
Pepper Tomato Shifan 33 

    

 
Sapu, Gambia 13.5486 -14.8987 

  
Pigeon pea Tomato Super Luna 

    

 
SGS, Borno state, 
northeast Nigeria 

10.4346 11.8435 
  

Proso millet Wild lentil LENS166/92 
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Sheraro, Tigray, 
Ethiopia 

14.3947 37.7723 
  

Radish 
      

 
Siaya, Kenya 0.0476 34.2869 

  
Rapeseed 

      

 
Some` , Za-Kpota, 
Benin 

7.2167 2.1997 
  

Red cabbage 
      

 
SS, Borno state, 
northeast Nigeria 

11.1527 12.7897 
  

Ricebean 
      

 
Suba district, western 
Kenya 

-0.4303 34.2069 
  

Roselle 
      

 
Tahtay Maychew 
district, Tigray, Ethiopia 

12.7929 39.5277 
  

Senna 
didymobotrya 

      

 
Tarime, Tanzania -1.3429 34.3771 

  
Senna 
occidentalis 

      

 
Terudig, Bawku district, 
Ghana 

11.0166 -0.2666 
  

Senna 
spectabilis 

      

 
Teso, Kenya 0.4608 34.1129 

  
Sesame 

      

 
Tororo, Uganda 0.6829 34.1779 

  
Sesbania 
cinerascens 

      

 
Trans Nzoia, Kenya 1.0533 34.9874 

  
Sesbania 
sesban 

      

 
Uganda 0.9672 33.9183 

  
Silverleaf 
nightshade 

      

 
University of Stuttgart, 
Germany 

48.7811 9.1736 
  

Smooth vetch 
      

 
Upper River north, The 
Gambia 

12.8412 -15.1736 
  

Snap bean 
      

 
Usha, Israel 32.7957 35.1134 

  
Sorhgum 

      

 
Vihiga, Kenya 0.0502 34.6915 

  
Soya bean 

      

 
Vijayawada, Andhra 
Pradesh, India 

16.5369 80.6744 
  

Spinach 
      

 
Western Division, The 
Gambia 

12.4626 -16.4968 
  

Squash 
      

 
Xianyang, Shaanxi, 
China 

34.2619 108.0729 
  

Squirting 
cucumber 

      

 
Ziway, Ethiopia 7.9304 38.7151 

  
Stylosanthes guianensis 

     

      
Sugar beet 

      

      
Sunflower 

      

      
Sweet potao 

      

      
Syrian oregano 

      

      
Tephrosia 
vogelii 
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Tithonia 
diversifolia 

      

      
Tomato 

      

      
Triticale  

      

      
Turnip 

      

      
Vigna mungo 

      

      
Watermelon 

      

      
Wheat 

      

      
Wild rue 

      

      
Winter durum 
wheat  

      

      
Winter wheat 
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Appendix 3: R Scripts and Results outputs 

Appendix 3A: Results Printout Eggers and N failsafe 
 

> Hedges_d_and_var_for_checks<-read.csv("Hedges d and var for 

checks.CSV") 

> View(Hedges_d_and_var_for_checks) 

> fsn(Effect.Size, Variance, data=Hedges_d_and_var_for_checks, 

type="Rosenberg") 

 

Fail-safe N Calculation Using the Rosenberg Approach 

 

Average Effect Size:         0.3965 

Observed Significance Level: <.0001 

Target Significance Level:   0.05 

 

Fail-safe N: 311129 

 

> regtest(Effect.Size, Variance,  model="rma", predictor="Variance", 

ret.fit=FALSE, digits =4) 

Error in regtest(Effect.Size, Variance, model = "rma", predictor = 

"Variance",  :  

  object 'Effect.Size' not found 

> library(metafor) 

> setwd("C:/Users/Ragenaky/Desktop/Thesis chapter 3/Data/Bias 

Calc/FailSafeCalc/Hedges D and var for checks") 

>  

> Hedges_d_and_var_for_checks<-read.csv("Hedges d and var for 

checks.CSV") 

>  

> fsn(Effect.Size, Variance, data=Hedges_d_and_var_for_checks, 

type="Rosenberg") 

 

Fail-safe N Calculation Using the Rosenberg Approach 

 

Average Effect Size:         0.3965 

Observed Significance Level: <.0001 

Target Significance Level:   0.05 
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Fail-safe N: 311129 

 

> regtest(Effect.Size, Variance,  model="rma", predictor="Variance", 

ret.fit=FALSE, digits =4) 

Error in regtest(Effect.Size, Variance, model = "rma", predictor = 

"Variance",  :  

  object 'Effect.Size' not found 

> res <- rma(Effect.Size, Variance, 

data=Hedges_d_and_var_for_checks) 

Warning message: 

Studies with NAs omitted from model fitting.  

> res 

 

Random-Effects Model (k = 1517; tau^2 estimator: REML) 

 

tau^2 (estimated amount of total heterogeneity): 2.5348 (SE = 

0.1098) 

tau (square root of estimated tau^2 value):      1.5921 

I^2 (total heterogeneity / total variability):   89.37% 

H^2 (total variability / sampling variability):  9.41 

 

Test for Heterogeneity: 

Q(df = 1516) = 11578.0658, p-val < .0001 

 

Model Results: 

 

estimate      se     zval    pval   ci.lb   ci.ub  

  0.4673  0.0449  10.3990  <.0001  0.3793  0.5554  ***  

 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

> res 

 

Random-Effects Model (k = 1517; tau^2 estimator: REML) 
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tau^2 (estimated amount of total heterogeneity): 2.5348 (SE = 

0.1098) 

tau (square root of estimated tau^2 value):      1.5921 

I^2 (total heterogeneity / total variability):   89.37% 

H^2 (total variability / sampling variability):  9.41 

 

Test for Heterogeneity: 

Q(df = 1516) = 11578.0658, p-val < .0001 

 

Model Results: 

 

estimate      se     zval    pval   ci.lb   ci.ub  

  0.4673  0.0449  10.3990  <.0001  0.3793  0.5554  ***  

 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

> regtest(res, model="lm") 

 

Regression Test for Funnel Plot Asymmetry 

 

Model:     weighted regression with multiplicative dispersion 

Predictor: standard error 

 

Test for Funnel Plot Asymmetry: t = 2.2836, df = 1515, p = 0.0225 

Limit Estimate (as sei -> 0):   b = 0.1947 (CI: 0.0052, 0.3841) 

 

> reg <- regtest(res) 

> reg 

 

Regression Test for Funnel Plot Asymmetry 

 

Model:     mixed-effects meta-regression model 

Predictor: standard error 
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Test for Funnel Plot Asymmetry: z = 2.0058, p = 0.0449 

Limit Estimate (as sei -> 0):   b = 0.2716 (CI: 0.0614, 0.4819) 

 

> reg 

Appendix 3B: Results Printout, Linear Models 
MST_IC_ASD_IMP_WD<-read.csv("MST_IC_ASD_IMP_WD.CSV") 

>  

> LM9 <- lm(Control_Mean ~   

+             Treat_Mean,                                                  

+           data=MST_IC_ASD_IMP_WD,) 

> anova(LM9) 

Analysis of Variance Table 

 

Response: Control_Mean 

            Df  Sum Sq Mean Sq F value    Pr(>F)     

Treat_Mean   1 2314864 2314864  1235.1 < 2.2e-16 *** 

Residuals  628 1177001    1874                       

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> summary(LM9) 

 

Call: 

lm(formula = Control_Mean ~ Treat_Mean, data = 

MST_IC_ASD_IMP_WD) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-211.04  -10.47   -8.22    2.30  446.80  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  9.33459    1.84293   5.065 5.37e-07 *** 

Treat_Mean   1.80790    0.05144  35.144  < 2e-16 *** 

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 43.29 on 628 degrees of freedom 

Multiple R-squared:  0.6629, Adjusted R-squared:  0.6624  

F-statistic:  1235 on 1 and 628 DF,  p-value: < 2.2e-16 

 

>  

> MST_IC_ASD_IMP_YD<-read.csv("MST_IC_ASD_IMP_YD.CSV") 

>  

> LM10 <- lm(Control_Mean ~   

+              Treat_Mean,                                                  

+            data=MST_IC_ASD_IMP_YD,) 

> anova(LM10) 
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Analysis of Variance Table 

 

Response: Control_Mean 

            Df Sum Sq Mean Sq F value    Pr(>F)     

Treat_Mean   1 189.02 189.015  158.06 < 2.2e-16 *** 

Residuals  393 469.97   1.196                       

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> summary(LM10) 

 

Call: 

lm(formula = Control_Mean ~ Treat_Mean, data = 

MST_IC_ASD_IMP_YD) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-3.9152 -0.6298 -0.1244  0.4191  6.6673  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  0.88422    0.11285   7.835 4.42e-14 *** 

Treat_Mean   0.38337    0.03049  12.572  < 2e-16 *** 

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1.094 on 393 degrees of freedom 

Multiple R-squared:  0.2868, Adjusted R-squared:  0.285  

F-statistic: 158.1 on 1 and 393 DF,  p-value: < 2.2e-16 

 

>  

> MST_RC_ASD_IMP_WD<-read.csv("MST_RC_ASD_IMP_WD.CSV") 

>  

> LM11 <- lm(Control_Mean ~   

+              Treat_Mean,                                                  

+            data=MST_RC_ASD_IMP_WD,) 

> anova(LM11) 

Analysis of Variance Table 

 

Response: Control_Mean 

            Df Sum Sq Mean Sq F value    Pr(>F)     

Treat_Mean   1 978372  978372  595.19 < 2.2e-16 *** 

Residuals  367 603279    1644                       

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> summary(LM11) 

 

Call: 

lm(formula = Control_Mean ~ Treat_Mean, data = 

MST_RC_ASD_IMP_WD) 

 

Residuals: 
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     Min       1Q   Median       3Q      Max  

-190.830  -12.032   -9.397   -2.464  162.781  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  10.7404     2.5180   4.265 2.54e-05 *** 

Treat_Mean    1.3273     0.0544  24.396  < 2e-16 *** 

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 40.54 on 367 degrees of freedom 

Multiple R-squared:  0.6186, Adjusted R-squared:  0.6175  

F-statistic: 595.2 on 1 and 367 DF,  p-value: < 2.2e-16 

 

>  

> MST_RC_ASD_IMP_YD<-read.csv("MST_RC_ASD_IMP_YD.CSV") 

>  

> LM12 <- lm(Control_Mean ~   

+              Treat_Mean,                                                  

+            data=MST_RC_ASD_IMP_YD,) 

> anova(LM12) 

Analysis of Variance Table 

 

Response: Control_Mean 

            Df Sum Sq Mean Sq F value    Pr(>F)     

Treat_Mean   1 8959.7  8959.7  142.03 < 2.2e-16 *** 

Residuals  129 8137.7    63.1                       

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> summary(LM12) 

 

Call: 

lm(formula = Control_Mean ~ Treat_Mean, data = 

MST_RC_ASD_IMP_YD) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-24.2694  -2.2135  -1.6888   0.0693  20.7718  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  2.89801    0.79766   3.633 0.000403 *** 

Treat_Mean   0.30049    0.02521  11.918  < 2e-16 *** 

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 7.942 on 129 degrees of freedom 

Multiple R-squared:  0.524, Adjusted R-squared:  0.5203  

F-statistic:   142 on 1 and 129 DF,  p-value: < 2.2e-16 

 

>  
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Appendix 3C: Results Printout, MIxed Effects Models>  
> mixed.mod13 <- lmer(HEDGES ~   

+                       DIV +  

+                       (1|Study_ID) ,                                                  

+                     data=MST_RC_ASD_IMP_WD, 

+                     weights = 1/VAR_G,                                         

+                     na.action = "na.omit") 

> anova(mixed.mod13) 

Type III Analysis of Variance Table with Satterthwaite's 

method 

      Sum Sq  Mean Sq NumDF  DenDF F value Pr(>F) 

DIV 0.062847 0.062847     1 181.92   0.017 0.8965 

> summary(mixed.mod13) 

Linear mixed model fit by REML. t-tests use 

  Satterthwaite's method [lmerModLmerTest] 

Formula: HEDGES ~ DIV + (1 | Study_ID) 

   Data: MST_RC_ASD_IMP_WD 

Weights: 1/VAR_G 

 

REML criterion at convergence: 1263 

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-3.3575 -0.4104  0.0825  0.7565  3.1825  

 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 Study_ID (Intercept) 0.8663   0.9307   

 Residual             3.7039   1.9246   

Number of obs: 368, groups:  Study_ID, 29 

 

Fixed effects: 

             Estimate Std. Error        df t value 

(Intercept)   1.01486    0.66485 144.65689   1.526 

DIV          -0.04031    0.30945 181.92414  -0.130 

            Pr(>|t|) 

(Intercept)    0.129 

DIV            0.897 

 

Correlation of Fixed Effects: 

    (Intr) 

DIV -0.957 

>  

>  

> MST_RC_ASD_IMP_YD<-read.csv("MST_RC_ASD_IMP_YD.CSV") 

> mixed.mod14 <- lmer(HEDGES ~   

+                       DIV +  

+                       (1|Study_ID) ,                                                  

+                     data=MST_RC_ASD_IMP_YD, 

+                     weights = 1/VAR_G,                                         

+                     na.action = "na.omit") 

> anova(mixed.mod14) 
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Type III Analysis of Variance Table with Satterthwaite's 

method 

    Sum Sq Mean Sq NumDF DenDF F value Pr(>F) 

DIV 1.3665  1.3665     1 125.4  0.4513  0.503 

> summary(mixed.mod14) 

Linear mixed model fit by REML. t-tests use 

  Satterthwaite's method [lmerModLmerTest] 

Formula: HEDGES ~ DIV + (1 | Study_ID) 

   Data: MST_RC_ASD_IMP_YD 

Weights: 1/VAR_G 

 

REML criterion at convergence: 399.2 

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-2.3063 -0.6924  0.0000  0.3082  2.5576  

 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 Study_ID (Intercept) 0.06568  0.2563   

 Residual             3.02806  1.7401   

Number of obs: 131, groups:  Study_ID, 18 

 

Fixed effects: 

            Estimate Std. Error       df t value 

(Intercept)  -0.9285     0.8711 121.3603  -1.066 

DIV           0.2866     0.4266 125.3965   0.672 

            Pr(>|t|) 

(Intercept)    0.289 

DIV            0.503 

 

Correlation of Fixed Effects: 

    (Intr) 

DIV -0.992 

>  

>  

>  

> rm(list=ls())# wipes slate clean 

> library(mgcv) 

> library(lme4) 

> library(lmerTest) 

> library(ggplot2) 

> library(dplyr) 

> library( geosphere ) 

> library( stringr) 

> #Calculate a standard error 

> stderr <- function(x, ...) sd(x, na.rm = TRUE) / 

sqrt(length(is.na(x == FALSE)) ) 

> ### Install this When you start for Multiplots!!!##### 

> # 

> # ggplot objects can be passed in ..., or to plotlist (as a 

list of ggplot objects) 

> # - cols:   Number of columns in layout 
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> # - layout: A matrix specifying the layout. If present, 

'cols' is ignored. 

> # 

> # If the layout is something like matrix(c(1,2,3,3), nrow=2, 

byrow=TRUE), 

> # then plot 1 will go in the upper left, 2 will go in the 

upper right, and 

> # 3 will go all the way across the bottom. 

> # 

> multiplot <- function(..., plotlist=NULL, file, cols=1, 

layout=NULL) { 

+   library(grid) 

+    

+   # Make a list from the ... arguments and plotlist 

+   plots <- c(list(...), plotlist) 

+    

+   numPlots = length(plots) 

+    

+   # If layout is NULL, then use 'cols' to determine layout 

+   if (is.null(layout)) { 

+     # Make the panel 

+     # ncol: Number of columns of plots 

+     # nrow: Number of rows needed, calculated from # of cols 

+     layout <- matrix(seq(1, cols * ceiling(numPlots/cols)), 

+                      ncol = cols, nrow = 

ceiling(numPlots/cols)) 

+   } 

+    

+   if (numPlots==1) { 

+     print(plots[[1]]) 

+      

+   } else { 

+     # Set up the page 

+     grid.newpage() 

+     pushViewport(viewport(layout = grid.layout(nrow(layout), 

ncol(layout)))) 

+      

+     # Make each plot, in the correct location 

+     for (i in 1:numPlots) { 

+       # Get the i,j matrix positions of the regions that 

contain this subplot 

+       matchidx <- as.data.frame(which(layout == i, arr.ind = 

TRUE)) 

+        

+       print(plots[[i]], vp = viewport(layout.pos.row = 

matchidx$row, 

+                                       layout.pos.col = 

matchidx$col)) 

+     } 

+   } 

+ } 

>  

>  

> #Fig 4a 
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>  

> Open_Data_IC_RC_WD<-read.csv("Open_Data_IC_RC_WD.CSV") 

>  

> # Mean rainfall 

> model1 <- lm( log( Control_Mean + 1) ~  Mean_RF, data = 

Open_Data_IC_RC_WD ) 

> anova(model1) 

Analysis of Variance Table 

 

Response: log(Control_Mean + 1) 

           Df  Sum Sq Mean Sq F value    Pr(>F)     

Mean_RF     1   95.74  95.737  32.578 1.691e-08 *** 

Residuals 701 2060.05   2.939                       

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> summary(model1) 

 

Call: 

lm(formula = log(Control_Mean + 1) ~ Mean_RF, data = 

Open_Data_IC_RC_WD) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-3.3773 -1.3805 -0.0301  1.6653  4.4122  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept)  3.982144   0.167945  23.711  < 2e-16 *** 

Mean_RF     -0.009896   0.001734  -5.708 1.69e-08 *** 

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1.714 on 701 degrees of freedom 

Multiple R-squared:  0.04441, Adjusted R-squared:  0.04305  

F-statistic: 32.58 on 1 and 701 DF,  p-value: 1.691e-08 

 

>  

> Open_Data_IC_WDA <- Open_Data_IC_RC_WD 

> Open_Data_IC_WDA$rainCat <- round(Open_Data_IC_WDA$ Mean_RF 

/ 1.5) * 1.5 

> summaryRain <- Open_Data_IC_WDA %>%  

+   group_by( rainCat ) %>% 

+   summarise( meanN = mean(log( Control_Mean + 1), na.rm = 

TRUE), SE = stderr(log( Control_Mean + 1), na.rm = TRUE)  ) 

`summarise()` ungrouping output (override with `.groups` 

argument) 

>  

> fig4a <- ggplot( summaryRain,aes(x = rainCat, y = meanN) ) + 

+   geom_point(size = 1) +  

+   geom_errorbar(aes( ymin = meanN - SE, ymax = meanN + SE), 

width = 0.5, size = 0.25 ) + 

+   theme_bw() +  
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+   theme( panel.border = element_blank(),  

+          panel.grid.major = element_blank(), 

+          panel.grid.minor = element_blank(),  

+          axis.line = element_line(colour = 'black', size = 

0.25), 

+          axis.ticks = element_line(colour = "black", size = 

0.25), 

+          axis.ticks.length=unit(-0.25, "cm"),  

+          axis.text.x = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10),  

+          axis.text.y = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10), 

+          legend.position="none", 

+          axis.title.x=element_text( size = 12 ), 

+          axis.title.y=element_text( size = 12 ) ) + 

+   labs( x = "Mean rainfall (mm)", y = "Log Weed density") +  

+   theme(axis.text.x = element_text(angle = 90))  

> fig4a 

>  

> # Precipitation seasonality 

> model2 <- lm( log( Control_Mean + 1) ~  RFCV, data = 

Open_Data_IC_RC_WD ) 

> anova(model2) 

Analysis of Variance Table 

 

Response: log(Control_Mean + 1) 

           Df  Sum Sq Mean Sq F value  Pr(>F)     

RFCV        1   40.88  40.884  13.551 0.00025 *** 

Residuals 701 2114.90   3.017                     

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> summary(model2) 

 

Call: 

lm(formula = log(Control_Mean + 1) ~ RFCV, data = 

Open_Data_IC_RC_WD) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-3.1511 -1.2844 -0.2399  1.5664  4.9008  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept)  3.615933   0.155335  23.278  < 2e-16 *** 

RFCV        -0.007191   0.001953  -3.681  0.00025 *** 

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1.737 on 701 degrees of freedom 

Multiple R-squared:  0.01896, Adjusted R-squared:  0.01757  
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F-statistic: 13.55 on 1 and 701 DF,  p-value: 0.00025 

 

>  

> Open_Data_IC_WDA <- Open_Data_IC_RC_WD 

> Open_Data_IC_WDA$RFCVCat <- round(Open_Data_IC_WDA$ RFCV / 

1.5) * 1.5 

> summaryRFCV <- Open_Data_IC_WDA %>%  

+   group_by( RFCVCat ) %>% 

+   summarise( meanN = mean(log( Control_Mean + 1), na.rm = 

TRUE), SE = stderr(log( Control_Mean + 1), na.rm = TRUE)  ) 

`summarise()` ungrouping output (override with `.groups` 

argument) 

>  

> fig4b <- ggplot(summaryRFCV, aes(x = RFCVCat, y = meanN) ) + 

+   geom_point(size = 1) +  

+   geom_errorbar(aes( ymin = meanN - SE, ymax = meanN + SE), 

width = 0.5, size = 0.25 ) + 

+   theme_bw() +  

+   theme( panel.border = element_blank(),  

+          panel.grid.major = element_blank(), 

+          panel.grid.minor = element_blank(),  

+          axis.line = element_line(colour = 'black', size = 

0.25), 

+          axis.ticks = element_line(colour = "black", size = 

0.25), 

+          axis.ticks.length=unit(-0.25, "cm"),  

+          axis.text.x = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10),  

+          axis.text.y = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10), 

+          legend.position="none", 

+          axis.title.x=element_text( size = 12 ), 

+          axis.title.y=element_text( size = 12 ) ) + 

+   labs( x = "Precipitation seasonality (CV)", y = "Log Weed 

density") +  

+   theme(axis.text.x = element_text(angle = 90)) 

> fig4b  

>  

> # ------------------------------ 

>  

> # altitude 

> model3 <- lm( log( Control_Mean + 1) ~  Alt, data = 

Open_Data_IC_RC_WD) 

> anova(model3) 

Analysis of Variance Table 

 

Response: log(Control_Mean + 1) 

           Df  Sum Sq Mean Sq F value    Pr(>F)     

Alt         1   44.45  44.451  14.759 0.0001333 *** 

Residuals 701 2111.33   3.012                       

--- 

Signif. codes:   
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0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> summary(model3) 

 

Call: 

lm(formula = log(Control_Mean + 1) ~ Alt, data = 

Open_Data_IC_RC_WD) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-3.1671 -1.3100 -0.2161  1.5885  4.4729  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 2.6316704  0.1377839  19.100  < 2e-16 *** 

Alt         0.0004957  0.0001290   3.842 0.000133 *** 

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1.735 on 701 degrees of freedom 

Multiple R-squared:  0.02062, Adjusted R-squared:  0.01922  

F-statistic: 14.76 on 1 and 701 DF,  p-value: 0.0001333 

 

>  

> Open_Data_IC_WDA <- Open_Data_IC_RC_WD 

> Open_Data_IC_WDA$altCat <- round(Open_Data_IC_WDA$Alt / 100) 

* 100 

> summaryAlt <- Open_Data_IC_WDA %>%  

+   group_by( altCat ) %>% 

+   summarise( meanN = mean(log( Control_Mean + 1), na.rm = 

TRUE), SE = stderr(log( Control_Mean + 1), na.rm = TRUE)  ) 

`summarise()` ungrouping output (override with `.groups` 

argument) 

>  

>  

>  

> fig4c <- ggplot(summaryAlt, aes(x = altCat, y = meanN) ) + 

+   geom_point(size = 1) +  

+   geom_errorbar(aes( ymin = meanN - SE, ymax = meanN + SE), 

width = 0.5, size = 0.25 ) + 

+   theme_bw() +  

+   theme( panel.border = element_blank(),  

+          panel.grid.major = element_blank(), 

+          panel.grid.minor = element_blank(),  

+          axis.line = element_line(colour = 'black', size = 

0.25), 

+          axis.ticks = element_line(colour = "black", size = 

0.25), 

+          axis.ticks.length=unit(-0.25, "cm"),  

+          axis.text.x = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10),  
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+          axis.text.y = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10), 

+          legend.position="none", 

+          axis.title.x=element_text( size = 12 ), 

+          axis.title.y=element_text( size = 12 ) ) + 

+   labs( x = "Altitude (m)", y = "Log Weed density") +  

+   theme(axis.text.x = element_text(angle = 90))  

> fig4c 

>  

> # Mean temperature 

>  

> model4 <- lm( log( Control_Mean + 1) ~ Mean_TA, data = 

Open_Data_IC_RC_WD) 

> anova(model4) 

Analysis of Variance Table 

 

Response: log(Control_Mean + 1) 

           Df  Sum Sq Mean Sq F value Pr(>F) 

Mean_TA     1    1.28  1.2844  0.4179 0.5182 

Residuals 701 2154.50  3.0735                

> summary(model4) 

 

Call: 

lm(formula = log(Control_Mean + 1) ~ Mean_TA, data = 

Open_Data_IC_RC_WD) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-3.1530 -1.3107 -0.2017  1.5242  4.7070  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  2.77302    0.50619   5.478    6e-08 *** 

Mean_TA      0.01469    0.02273   0.646    0.518     

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1.753 on 701 degrees of freedom 

Multiple R-squared:  0.0005958, Adjusted R-squared:  -

0.0008299  

F-statistic: 0.4179 on 1 and 701 DF,  p-value: 0.5182 

 

>  

>  

> Open_Data_IC_WDA <- Open_Data_IC_RC_WD 

> Open_Data_IC_WDA$tempCat <- round(Open_Data_IC_WDA$Mean_TA / 

1) * 1 

> summaryTemp <- Open_Data_IC_WDA %>%  

+   group_by( tempCat ) %>% 

+   summarise( meanN = mean (log( Control_Mean + 1), na.rm = 

TRUE), SE = stderr(log( Control_Mean + 1), na.rm = TRUE)  ) 
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`summarise()` ungrouping output (override with `.groups` 

argument) 

>  

>  

>  

> fig4d <- ggplot(summaryTemp, aes(x = tempCat, y = meanN) ) + 

+   geom_point(size = 1) +  

+   geom_errorbar(aes( ymin = meanN - SE, ymax = meanN + SE), 

width = 0.5, size = 0.25 ) + 

+   theme_bw() +  

+   theme( panel.border = element_blank(),  

+          panel.grid.major = element_blank(), 

+          panel.grid.minor = element_blank(),  

+          axis.line = element_line(colour = 'black', size = 

0.25), 

+          axis.ticks = element_line(colour = "black", size = 

0.25), 

+          axis.ticks.length=unit(-0.25, "cm"),  

+          axis.text.x = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10),  

+          axis.text.y = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10), 

+          legend.position="none", 

+          axis.title.x=element_text( size = 12 ), 

+          axis.title.y=element_text( size = 12 ) ) + 

+   labs( x = "Mean Temperature (\u00B0C)", y = "Log Weed 

Density") +  

+   theme(axis.text.x = element_text(angle = 90))  

> fig4d  

>  

> multiplot(fig4a + labs( tag = "A"), fig4b+ labs( tag = "B"), 

fig4c+ labs( tag = "C"), fig4d+ labs( tag = "D"), cols = 2) 

>  

>  

>  

>  

>  

>  

> #Fig 4a 

>  

> Open_Data_IC_RC_YD<-read.csv("Open_Data_IC_RC_YD.CSV") 

>  

> # Mean rainfall 

> model1 <- lm  (Control_Mean  ~  Mean_RF, data = 

Open_Data_IC_RC_YD ) 

> anova(model1) 

Analysis of Variance Table 

 

Response: Control_Mean 

           Df  Sum Sq Mean Sq F value   Pr(>F)    

Mean_RF     1   231.7 231.659  6.9962 0.008431 ** 

Residuals 488 16158.6  33.112                     
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--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> summary(model1) 

 

Call: 

lm(formula = Control_Mean ~ Mean_RF, data = 

Open_Data_IC_RC_YD) 

 

Residuals: 

   Min     1Q Median     3Q    Max  

-4.023 -1.719 -0.940  0.202 38.526  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept)  5.009795   0.802397   6.244 9.31e-10 *** 

Mean_RF     -0.022892   0.008655  -2.645  0.00843 **  

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 5.754 on 488 degrees of freedom 

Multiple R-squared:  0.01413, Adjusted R-squared:  0.01211  

F-statistic: 6.996 on 1 and 488 DF,  p-value: 0.008431 

 

>  

> Open_Data_IC_WDA <- Open_Data_IC_RC_YD 

> Open_Data_IC_WDA$rainCat <- round(Open_Data_IC_WDA$ Mean_RF 

/ 1.5) * 1.5 

> summaryRain <- Open_Data_IC_WDA %>%  

+   group_by( rainCat ) %>% 

+   summarise( meanN = mean(Control_Mean , na.rm = TRUE), SE = 

stderr( Control_Mean , na.rm = TRUE)  ) 

`summarise()` ungrouping output (override with `.groups` 

argument) 

>  

> fig4a <- ggplot( summaryRain,aes(x = rainCat, y = meanN) ) + 

+   geom_point(size = 1) +  

+   geom_errorbar(aes( ymin = meanN - SE, ymax = meanN + SE), 

width = 0.5, size = 0.25 ) + 

+   theme_bw() +  

+   theme( panel.border = element_blank(),  

+          panel.grid.major = element_blank(), 

+          panel.grid.minor = element_blank(),  

+          axis.line = element_line(colour = 'black', size = 

0.25), 

+          axis.ticks = element_line(colour = "black", size = 

0.25), 

+          axis.ticks.length=unit(-0.25, "cm"),  

+          axis.text.x = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10),  
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+          axis.text.y = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10), 

+          legend.position="none", 

+          axis.title.x=element_text( size = 12 ), 

+          axis.title.y=element_text( size = 12 ) ) + 

+   labs( x = "Mean rainfall (mm)", y = "Yield (T/ha)") +  

+   theme(axis.text.x = element_text(angle = 90))  

> fig4a 

>  

>  

>  

> # Precipitation seasonality 

> model2 <- lm( Control_Mean ~  RFCV, data = 

Open_Data_IC_RC_YD ) 

> anova(model2) 

Analysis of Variance Table 

 

Response: Control_Mean 

           Df  Sum Sq Mean Sq F value  Pr(>F)   

RFCV        1   155.6 155.564  4.6761 0.03107 * 

Residuals 488 16234.7  33.268                   

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> summary(model2) 

 

Call: 

lm(formula = Control_Mean ~ RFCV, data = Open_Data_IC_RC_YD) 

 

Residuals: 

   Min     1Q Median     3Q    Max  

-3.955 -1.687 -0.851  0.023 38.693  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)    

(Intercept) 1.793042   0.616764   2.907  0.00381 ** 

RFCV        0.016711   0.007728   2.162  0.03107 *  

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 5.768 on 488 degrees of freedom 

Multiple R-squared:  0.009491, Adjusted R-squared:  

0.007462  

F-statistic: 4.676 on 1 and 488 DF,  p-value: 0.03107 

 

>  

> Open_Data_IC_WDA <- Open_Data_IC_RC_YD 

> Open_Data_IC_WDA$RFCVCat <- round(Open_Data_IC_WDA$ RFCV / 

1.5) * 1.5 

> summaryRFCV <- Open_Data_IC_WDA %>%  

+   group_by( RFCVCat ) %>% 
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+   summarise( meanN = mean( Control_Mean, na.rm = TRUE), SE = 

stderr(Control_Mean , na.rm = TRUE)  ) 

`summarise()` ungrouping output (override with `.groups` 

argument) 

>  

> fig4b <- ggplot(summaryRFCV, aes(x = RFCVCat, y = meanN) ) + 

+   geom_point(size = 1) +  

+   geom_errorbar(aes( ymin = meanN - SE, ymax = meanN + SE), 

width = 0.5, size = 0.25 ) + 

+   theme_bw() +  

+   theme( panel.border = element_blank(),  

+          panel.grid.major = element_blank(), 

+          panel.grid.minor = element_blank(),  

+          axis.line = element_line(colour = 'black', size = 

0.25), 

+          axis.ticks = element_line(colour = "black", size = 

0.25), 

+          axis.ticks.length=unit(-0.25, "cm"),  

+          axis.text.x = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10),  

+          axis.text.y = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10), 

+          legend.position="none", 

+          axis.title.x=element_text( size = 12 ), 

+          axis.title.y=element_text( size = 12 ) ) + 

+   labs( x = "Precipitation seasonality (CV)", y = "Yield 

(T/ha)") +  

+   theme(axis.text.x = element_text(angle = 90)) 

> fig4b  

>  

> # ------------------------------ 

>  

> # altitude 

> model3 <- lm( Control_Mean  ~  Alt, data = 

Open_Data_IC_RC_YD) 

> anova(model3) 

Analysis of Variance Table 

 

Response: Control_Mean 

           Df  Sum Sq Mean Sq F value  Pr(>F)    

Alt         1   223.7 223.730  6.7535 0.00964 ** 

Residuals 488 16166.5  33.128                    

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> summary(model3) 

 

Call: 

lm(formula = Control_Mean ~ Alt, data = Open_Data_IC_RC_YD) 

 

Residuals: 

   Min     1Q Median     3Q    Max  
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-5.040 -1.679 -1.148 -0.346 38.260  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)    

(Intercept) 1.5156081  0.6282540   2.412  0.01622 *  

Alt         0.0014442  0.0005557   2.599  0.00964 ** 

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 5.756 on 488 degrees of freedom 

Multiple R-squared:  0.01365, Adjusted R-squared:  0.01163  

F-statistic: 6.753 on 1 and 488 DF,  p-value: 0.00964 

 

>  

> Open_Data_IC_WDA <- Open_Data_IC_RC_YD 

> Open_Data_IC_WDA$altCat <- round(Open_Data_IC_WDA$Alt / 100) 

* 100 

> summaryAlt <- Open_Data_IC_WDA %>%  

+   group_by( altCat ) %>% 

+   summarise( meanN = mean( Control_Mean, na.rm = TRUE), SE = 

stderr(Control_Mean , na.rm = TRUE)  ) 

`summarise()` ungrouping output (override with `.groups` 

argument) 

>  

> fig4c <- ggplot(summaryAlt, aes(x = altCat, y = meanN) ) + 

+   geom_point(size = 1) +  

+   geom_errorbar(aes( ymin = meanN - SE, ymax = meanN + SE), 

width = 0.5, size = 0.25 ) + 

+   theme_bw() +  

+   theme( panel.border = element_blank(),  

+          panel.grid.major = element_blank(), 

+          panel.grid.minor = element_blank(),  

+          axis.line = element_line(colour = 'black', size = 

0.25), 

+          axis.ticks = element_line(colour = "black", size = 

0.25), 

+          axis.ticks.length=unit(-0.25, "cm"),  

+          axis.text.x = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10),  

+          axis.text.y = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10), 

+          legend.position="none", 

+          axis.title.x=element_text( size = 12 ), 

+          axis.title.y=element_text( size = 12 ) ) + 

+   labs( x = "Altitude (m)", y = "Yield (T/ha)") +  

+   theme(axis.text.x = element_text(angle = 90))  

> fig4c 

>  

> # Mean temperature 

>  
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> model4 <- lm( Control_Mean  ~ Mean_TA, data = 

Open_Data_IC_RC_YD) 

> anova(model4) 

Analysis of Variance Table 

 

Response: Control_Mean 

           Df  Sum Sq Mean Sq F value    Pr(>F)     

Mean_TA     1   471.5  471.46  14.453 0.0001619 *** 

Residuals 488 15918.8   32.62                       

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> summary(model4) 

 

Call: 

lm(formula = Control_Mean ~ Mean_TA, data = 

Open_Data_IC_RC_YD) 

 

Residuals: 

   Min     1Q Median     3Q    Max  

-5.034 -1.626 -0.926 -0.054 38.097  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   10.739      2.051   5.235 2.46e-07 *** 

Mean_TA       -0.346      0.091  -3.802 0.000162 *** 

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 5.711 on 488 degrees of freedom 

Multiple R-squared:  0.02876, Adjusted R-squared:  0.02677  

F-statistic: 14.45 on 1 and 488 DF,  p-value: 0.0001619 

 

>  

> Open_Data_IC_WDA <- Open_Data_IC_RC_YD 

> Open_Data_IC_WDA$tempCat <- round(Open_Data_IC_WDA$Mean_TA / 

1) * 1 

> summaryTemp <- Open_Data_IC_WDA %>%  

+   group_by( tempCat ) %>% 

+   summarise( meanN = mean( Control_Mean, na.rm = TRUE), SE = 

stderr(Control_Mean , na.rm = TRUE)  ) 

`summarise()` ungrouping output (override with `.groups` 

argument) 

>  

> fig4d <- ggplot(summaryTemp, aes(x = tempCat, y = meanN) ) + 

+   geom_point(size = 1) +  

+   geom_errorbar(aes( ymin = meanN - SE, ymax = meanN + SE), 

width = 0.5, size = 0.25 ) + 

+   theme_bw() +  

+   theme( panel.border = element_blank(),  

+          panel.grid.major = element_blank(), 

+          panel.grid.minor = element_blank(),  
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+          axis.line = element_line(colour = 'black', size = 

0.25), 

+          axis.ticks = element_line(colour = "black", size = 

0.25), 

+          axis.ticks.length=unit(-0.25, "cm"),  

+          axis.text.x = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10),  

+          axis.text.y = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10), 

+          legend.position="none", 

+          axis.title.x=element_text( size = 12 ), 

+          axis.title.y=element_text( size = 12 ) ) + 

+   labs( x = "Mean Temperature (\u00B0C)", y = "Yield 

(T/ha)") +  

+   theme(axis.text.x = element_text(angle = 90))  

> fig4d  

>  

> multiplot(fig4a + labs( tag = "A"), fig4b+ labs( tag = "B"), 

fig4c+ labs( tag = "C"), fig4d+ labs( tag = "D"), cols = 2) 

>  

> Linear Model for Diversity and plots 

Error: unexpected symbol in "Linear Model" 

>  

> MST_RC_ASD_IMP_WD<-read.csv("MST_RC_ASD_IMP_WD.CSV") 

>  

> stderr <- function(x) sd(x) / sqrt(length(x)) 

>  

> MST_RC_ASD_IMP_WD$DIV <- as.factor(MST_RC_ASD_IMP_WD$DIV)#To 

change DIV to 4 level factor 

>  

> #Divide treatment by control to make weed density % 

difference 

> MST_RC_ASD_IMP_WD$WDDif<- 

(MST_RC_ASD_IMP_WD$Treat_Mean/MST_RC_ASD_IMP_WD$Control_Mean)*

100 

>  

> #Look at diversity and change in weed density 

> LM1 <- lm( WDDif  ~  DIV, data=MST_RC_ASD_IMP_WD) 

> anova(LM1)          

Analysis of Variance Table 

 

Response: WDDif 

           Df   Sum Sq Mean Sq F value Pr(>F) 

DIV         3    18175    6058  0.1363 0.9383 

Residuals 365 16219701   44438                

>  

> summary(LM1) 

 

Call: 

lm(formula = WDDif ~ DIV, data = MST_RC_ASD_IMP_WD) 

 

Residuals: 
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    Min      1Q  Median      3Q     Max  

 -93.61  -63.61  -33.61    3.46 2033.66  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|) 

(Intercept)    80.15      74.53   1.075    0.283 

DIV2           13.46      75.40   0.179    0.858 

DIV3          -17.81      93.43  -0.191    0.849 

DIV4          -15.98     120.18  -0.133    0.894 

 

Residual standard error: 210.8 on 365 degrees of freedom 

Multiple R-squared:  0.001119, Adjusted R-squared:  -

0.007091  

F-statistic: 0.1363 on 3 and 365 DF,  p-value: 0.9383 

 

>  

> coeffs <- data.frame( summary(LM1)$coefficients ) 

>  

> coeffs$names <- str_remove( rownames(coeffs), 

"MST_RC_ASD_IMP_WD" ) 

>  

> RCD<- c("1", "2", "3","4")#For the x tick labels 

>  

> fig5a <- ggplot(coeffs, aes(x =  names,Estimate, y = 

Estimate) ) + 

+   geom_point(size = 1) +  

+   geom_errorbar(aes( ymin = Estimate - Std..Error, ymax 

=Estimate + Std..Error ), width = 0.2, size = 0.25 ) + 

+   theme_bw() +  scale_x_discrete(labels= RCD)+ 

+   theme( panel.border = element_blank(),  

+          panel.grid.major = element_blank(), 

+          panel.grid.minor = element_blank(),  

+          axis.line = element_line(colour = 'black', size = 

0.25), 

+          axis.ticks = element_line(colour = "black", size = 

0.25), 

+          axis.ticks.length=unit(-0.25, "cm"),  

+          axis.text.x = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10),  

+          axis.text.y = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 8), 

+          legend.position="none", 

+          axis.title.x=element_text( size = 12 ), 

+          axis.title.y=element_text( size = 12 ) ) + 

+   labs( x = "Rotation Crop Diversity", y = "Density Change 

Coefficient") +  

+   theme(axis.text.x = element_text(angle = 0, vjust = .7, 

hjust=.65)) 

> fig5a 

>  

> fig5b<-ggplot(data = MST_RC_ASD_IMP_WD, aes(x=DIV, y=WDDif)) 

+ 

+   geom_boxplot(fill=c('red', 'Yellow', 'blue','green'))+ 
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+   labs( x = "Rotation Crop Diversity", y = "Weed Density 

Change") 

>  

>  

> fig5b 

>  

> #Redo the LMER with diversity as a factor using effect size 

>  

> mixed.mod1 <- lmer(HEDGES ~   

+                      DIV +  

+                      (1|Study_ID) ,                                                  

+                    data=MST_RC_ASD_IMP_WD, 

+                    weights = 1/VAR_G,                                         

+                    na.action = "na.omit") 

> anova(mixed.mod1) 

Type III Analysis of Variance Table with Satterthwaite's 

method 

    Sum Sq Mean Sq NumDF  DenDF F value Pr(>F) 

DIV 4.9463  1.6488     3 61.336  0.4474   0.72 

> summary(mixed.mod1) 

Linear mixed model fit by REML. t-tests use 

  Satterthwaite's method [lmerModLmerTest] 

Formula: HEDGES ~ DIV + (1 | Study_ID) 

   Data: MST_RC_ASD_IMP_WD 

Weights: 1/VAR_G 

 

REML criterion at convergence: 1258 

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-3.3679 -0.4145  0.0830  0.7601  3.1894  

 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 Study_ID (Intercept) 0.971    0.9854   

 Residual             3.685    1.9197   

Number of obs: 368, groups:  Study_ID, 29 

 

Fixed effects: 

            Estimate Std. Error      df t value 

(Intercept)   0.5271     1.0867 21.6851   0.485 

DIV2          0.4585     1.1068 21.6969   0.414 

DIV3         -0.0798     1.2123 27.6950  -0.066 

DIV4          0.3431     1.2766 34.5926   0.269 

            Pr(>|t|) 

(Intercept)    0.632 

DIV2           0.683 

DIV3           0.948 

DIV4           0.790 

 

Correlation of Fixed Effects: 

     (Intr) DIV2   DIV3   

DIV2 -0.982               

DIV3 -0.896  0.899        
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DIV4 -0.851  0.854  0.884 

>  

> coeffs <- data.frame( summary(mixed.mod1)$coefficients ) 

>  

> coeffs$names <- str_remove( rownames(coeffs), 

"MST_RC_ASD_IMP_WD" ) 

>  

> fig5c <- ggplot(coeffs, aes(x =  names,Estimate, y = 

Estimate) ) + 

+   geom_point(size = 1) +  

+   geom_errorbar(aes( ymin = Estimate - Std..Error, ymax 

=Estimate + Std..Error ), width = 0.2, size = 0.25 ) + 

+   theme_bw() +  scale_x_discrete(labels= RCD)+ 

+   theme( panel.border = element_blank(),  

+          panel.grid.major = element_blank(), 

+          panel.grid.minor = element_blank(),  

+          axis.line = element_line(colour = 'black', size = 

0.25), 

+          axis.ticks = element_line(colour = "black", size = 

0.25), 

+          axis.ticks.length=unit(-0.25, "cm"),  

+          axis.text.x = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10),  

+          axis.text.y = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 8), 

+          legend.position="none", 

+          axis.title.x=element_text( size = 12 ), 

+          axis.title.y=element_text( size = 12 ) ) + 

+   labs( x = "Rotation Crop Diversity", y = "Effect Size 

(g)") +  

+   theme(axis.text.x = element_text(angle = 0, vjust = .7, 

hjust=.65)) 

>  

> fig5c 

>  

> fig5d<-ggplot(data = MST_RC_ASD_IMP_WD, aes(x=DIV, 

y=HEDGES)) + 

+   geom_boxplot(fill=c('grey', 'grey', 'grey','grey'))+ 

+   labs( x = "Rotation Crop Diversity", y = "Effect Size 

(g)") 

>  

>  

> fig5d 

Warning message: 

Removed 1 rows containing non-finite values 

(stat_boxplot).  

>  

>  

>  

> Figure5e <- ggplot( MST_RC_ASD_IMP_WD, aes(x = DIV, y = 

HEDGES) ) +  

+   geom_point( size = 1) + 
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+   geom_errorbar( aes(ymin = HEDGES - VAR_G, ymax = HEDGES + 

VAR_G, width = 0.1,  ))  + 

+   theme_bw() +  

+   theme( panel.border = element_blank(),  

+          panel.grid.major = element_blank(), 

+          panel.grid.minor = element_blank(),  

+          legend.position="none", 

+          axis.line = element_line(colour = 'black', size = 

0.25), 

+          axis.ticks = element_line(colour = "black", size = 

0.25), 

+          axis.text.x = element_text(size = 10), 

+          axis.text.y = element_text(size = 8), 

+          axis.title.x=element_text(size = 14), 

+          axis.title.y=element_text(size = 14) ) + 

+   geom_hline(yintercept = 0, linetype  = "dashed") + 

+   labs(x = "Rotation Crop Diversity") + labs( y = "Effect 

Size (g)", las=2) 

>  

> Figure5e 

Warning message: 

Removed 1 rows containing missing values 

(geom_point).  

>  

> multiplot(fig5a + labs( tag = "A"), fig5c+ labs( tag  

+ 

 

MIXED EFFECT MODELS 

Model 1 

Type III Analysis of Variance Table with Satterthwaite's 

method 

       Sum Sq Mean Sq NumDF   DenDF F value    Pr(>F) 

W_SP   31.859  4.5512     7  56.545  3.0454 0.0086441 

HC_SP  49.883  5.5425     9 203.459  3.7088 0.0002497 

IC_SP 188.836  5.5540    34 170.500  3.7164 7.565e-09 

          

W_SP  **  

HC_SP *** 

IC_SP *** 

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

>  summary(mixed.mod1) 

Linear mixed model fit by REML. t-tests use 

  Satterthwaite's method [lmerModLmerTest] 

Formula:  

HEDGES ~ W_SP + HC_SP + IC_SP + (1 | Study_ID) 

   Data: MST_IC_ASD_IMP_WD 

Weights: 1/VAR_G 

 

REML criterion at convergence: 1284.1 

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  
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-3.3778 -0.3560 -0.0084  0.4510  4.2252  

 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 Study_ID (Intercept) 0.124    0.3522   

 Residual             1.494    1.2225   

Number of obs: 622, groups:  Study_ID, 39 

 

Fixed effects: 

                              Estimate Std. Error 

(Intercept)                    1.07000    0.83182 

W_SPO. aegyptiaca             -2.47000    1.20151 

W_SPO. cernua                 -3.65000    1.34250 

W_SPO. crenata                -0.92144    1.37885 

W_SPO. foetida                -1.39432    1.46916 

W_SPPhelipanche aegyptiaca    -1.05351    0.91526 

W_SPS. asiatica                0.09747    0.92635 

W_SPS. hermonthica             0.17781    0.88778 

HC_SPChickling pea            -0.10282    0.76906 

HC_SPFaba bean                 0.18700    0.70372 

HC_SPFinger millet             1.87438    0.87338 

HC_SPGarden pea               -0.75966    0.69921 

HC_SPLentil                    0.57789    0.94482 

HC_SPMaize                    -0.68027    0.17292 

HC_SPPea                       0.15458    0.73374 

HC_SPPearl millet             -0.29595    0.52189 

HC_SPRice                     -0.34839    0.32878 

IC_SPBarley                    0.06137    0.97594 

IC_SPBerseem                   1.50224    0.87695 

IC_SPCelery                    0.96684    1.09917 

IC_SPCelosia argentia         -0.67012    0.46467 

IC_SPCommon bean              -0.21022    0.33029 

IC_SPCotton                   -0.41612    0.50912 

IC_SPCowpea                   -0.07498    0.29388 

IC_SPCowpea / Mucuna          -0.46466    0.58308 

IC_SPCrotalaria ochroleuca     0.23295    0.34012 

IC_SPCrotolaria juncea        -0.10596    0.77311 

IC_SPD.intortum                1.08782    0.31638 

IC_SPD.uncinatum               1.06314    0.32392 

IC_SPDesmodium / Common bean   0.90267    0.75497 

IC_SPDesmodium spp             0.91406    0.75715 

IC_SPFaba beans               -0.20715    0.42074 

IC_SPFaidherbia albida         2.37219    0.96829 

IC_SPFenugreek                 0.93734    0.87481 

IC_SPFlax                      0.57870    1.07877 

IC_SPGarlic                    0.56030    1.07710 

IC_SPGroundnut                -0.11043    0.29684 

IC_SPLupin                     1.07246    0.76633 

IC_SPMung bean                 0.06824    0.33921 

IC_SPOat                       0.43400    0.95580 

IC_SPOkra                     -0.68197    0.50155 

IC_SPPigeon pea               -1.17781    0.52007 

IC_SPRadish                    1.52199    1.14081 

IC_SPRicebean                 -0.24676    0.58144 
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IC_SPSesame                    0.61495    0.56632 

IC_SPSesbania sesban          -1.22412    0.52125 

IC_SPSoya bean                -0.14350    0.32751 

IC_SPStylosanthes guianensis   0.38199    0.59010 

IC_SPSunflower                -0.41249    0.51169 

IC_SPSweet potao               0.22957    0.70288 

IC_SPTriticale                 0.01527    0.96764 

                                    df t value 

(Intercept)                  242.80991   1.286 

W_SPO. aegyptiaca            256.69629  -2.056 

W_SPO. cernua                332.06707  -2.719 

W_SPO. crenata               283.12942  -0.668 

W_SPO. foetida               227.59794  -0.949 

W_SPPhelipanche aegyptiaca   110.16346  -1.151 

W_SPS. asiatica              162.98417   0.105 

W_SPS. hermonthica           244.63940   0.200 

HC_SPChickling pea           563.69205  -0.134 

HC_SPFaba bean               570.54208   0.266 

HC_SPFinger millet           243.39312   2.146 

HC_SPGarden pea              553.13965  -1.086 

HC_SPLentil                  568.19561   0.612 

HC_SPMaize                   112.64481  -3.934 

HC_SPPea                     570.93435   0.211 

HC_SPPearl millet             41.29938  -0.567 

HC_SPRice                    485.51812  -1.060 

IC_SPBarley                   95.22443   0.063 

IC_SPBerseem                 217.53513   1.713 

IC_SPCelery                  276.60065   0.880 

IC_SPCelosia argentia        215.28930  -1.442 

IC_SPCommon bean             504.99715  -0.636 

IC_SPCotton                  553.41737  -0.817 

IC_SPCowpea                  464.38062  -0.255 

IC_SPCowpea / Mucuna          32.51954  -0.797 

IC_SPCrotalaria ochroleuca   520.94969   0.685 

IC_SPCrotolaria juncea       519.34167  -0.137 

IC_SPD.intortum              404.04972   3.438 

IC_SPD.uncinatum             350.54714   3.282 

IC_SPDesmodium / Common bean 362.90340   1.196 

IC_SPDesmodium spp           364.81047   1.207 

IC_SPFaba beans              568.22564  -0.492 

IC_SPFaidherbia albida       303.01772   2.450 

IC_SPFenugreek               219.69991   1.071 

IC_SPFlax                    264.00157   0.536 

IC_SPGarlic                  262.96158   0.520 

IC_SPGroundnut               506.18816  -0.372 

IC_SPLupin                   167.19635   1.399 

IC_SPMung bean               520.42891   0.201 

IC_SPOat                      88.26966   0.454 

IC_SPOkra                    551.21141  -1.360 

IC_SPPigeon pea               38.25316  -2.265 

IC_SPRadish                  301.92318   1.334 

IC_SPRicebean                 32.16011  -0.424 

IC_SPSesame                  564.49407   1.086 

IC_SPSesbania sesban          38.59642  -2.348 
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IC_SPSoya bean               530.90934  -0.438 

IC_SPStylosanthes guianensis  34.09293   0.647 

IC_SPSunflower               554.12109  -0.806 

IC_SPSweet potao             458.05229   0.327 

IC_SPTriticale                92.32303   0.016 

                             Pr(>|t|)     

(Intercept)                  0.199551     

W_SPO. aegyptiaca            0.040819 *   

W_SPO. cernua                0.006896 **  

W_SPO. crenata               0.504510     

W_SPO. foetida               0.343596     

W_SPPhelipanche aegyptiaca   0.252206     

W_SPS. asiatica              0.916332     

W_SPS. hermonthica           0.841426     

HC_SPChickling pea           0.893695     

HC_SPFaba bean               0.790543     

HC_SPFinger millet           0.032852 *   

HC_SPGarden pea              0.277754     

HC_SPLentil                  0.541022     

HC_SPMaize                   0.000145 *** 

HC_SPPea                     0.833212     

HC_SPPearl millet            0.573734     

HC_SPRice                    0.289823     

IC_SPBarley                  0.949989     

IC_SPBerseem                 0.088132 .   

IC_SPCelery                  0.379834     

IC_SPCelosia argentia        0.150710     

IC_SPCommon bean             0.524751     

IC_SPCotton                  0.414087     

IC_SPCowpea                  0.798728     

IC_SPCowpea / Mucuna         0.431286     

IC_SPCrotalaria ochroleuca   0.493714     

IC_SPCrotolaria juncea       0.891040     

IC_SPD.intortum              0.000646 *** 

IC_SPD.uncinatum             0.001134 **  

IC_SPDesmodium / Common bean 0.232619     

IC_SPDesmodium spp           0.228123     

IC_SPFaba beans              0.622653     

IC_SPFaidherbia albida       0.014856 *   

IC_SPFenugreek               0.285133     

IC_SPFlax                    0.592103     

IC_SPGarlic                  0.603368     

IC_SPGroundnut               0.710043     

IC_SPLupin                   0.163522     

IC_SPMung bean               0.840637     

IC_SPOat                     0.650892     

IC_SPOkra                    0.174478     

IC_SPPigeon pea              0.029278 *   

IC_SPRadish                  0.183164     

IC_SPRicebean                0.674101     

IC_SPSesame                  0.277997     

IC_SPSesbania sesban         0.024073 *   

IC_SPSoya bean               0.661440     

IC_SPStylosanthes guianensis 0.521751     
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IC_SPSunflower               0.420517     

IC_SPSweet potao             0.744109     

IC_SPTriticale               0.987443 

Model 2 

 

Type III Analysis of Variance Table with Satterthwaite's 

method 

     Sum Sq Mean Sq NumDF DenDF F value Pr(>F) 

HC_V 43.228  2.0585    21     2  3.7056 0.2339 

IC_V 19.912  0.5240    38     2  0.9433 0.6436 

> summary(mixed.mod4) 

Linear mixed model fit by REML. t-tests use 

  Satterthwaite's method [lmerModLmerTest] 

Formula: HEDGES ~ HC_V + IC_V + (1 | Study_ID) 

   Data: MST_IC_ASD_IMP_WD 

Weights: 1/VAR_G 

 

REML criterion at convergence: 238.6 

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-3.1233 -0.2659  0.0000  0.2672  4.3923  

 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 Study_ID (Intercept) 0.04328  0.2080   

 Residual             0.55551  0.7453   

Number of obs: 207, groups:  Study_ID, 18 

 

Fixed effects: 

              Estimate Std. Error         df t value 

(Intercept)  9.500e-02  2.962e-01  1.986e-09   0.321 

HC_VHCV21    9.500e-02  2.981e-01  1.470e+02   0.319 

HC_VHCV22    3.818e-01  5.009e-01  4.063e-09   0.762 

HC_VHCV23    2.712e-01  4.243e-01  2.092e-09   0.639 

HC_VHCV25    1.195e+00  5.885e-01  7.741e-09   2.031 

HC_VHCV27    1.473e-01  3.798e-01  1.343e-09   0.388 

HC_VHCV28    4.518e-01  4.920e-01  3.780e-09   0.918 

HC_VHCV29   -7.226e-02  4.564e-01  2.800e-09  -0.158 

HC_VHCV30    9.000e-01  4.511e-01  2.671e-09   1.995 

HC_VHCV31    1.545e+00  5.195e-01  4.700e-09   2.974 

HC_VHCV32    2.450e-01  5.405e-01  5.506e-09   0.453 

HC_VHCV33    2.350e-01  5.087e-01  4.321e-09   0.462 

HC_VHCV37    8.202e-01  5.017e-01  4.087e-09   1.635 

HC_VHCV38    4.747e-01  4.092e-01  1.810e-09   1.160 

HC_VHCV51    8.022e-01  4.408e-01  2.435e-09   1.820 

HC_VHCV57    1.491e+00  4.170e-01  1.951e-09   3.576 

HC_VHCV58    2.598e-01  4.035e-01  1.711e-09   0.644 

HC_VHCV59    1.977e-01  4.036e-01  1.713e-09   0.490 

HC_VHCV60    5.894e-01  4.159e-01  1.930e-09   1.417 

HC_VHCV61   -1.954e+00  5.231e-01  4.830e-09  -3.736 

HC_VHCV62   -1.500e-02  5.004e-01  4.047e-09  -0.030 

HC_VHCV7     9.661e-01  4.171e-01  1.953e-09   2.316 

IC_VICV11    6.990e-02  1.632e-01  1.470e+02   0.428 
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IC_VICV12   -1.423e-01  1.627e-01  1.470e+02  -0.875 

IC_VICV13    2.067e-01  4.756e-01  1.470e+02   0.435 

IC_VICV14    9.547e-02  4.726e-01  1.470e+02   0.202 

IC_VICV15    5.462e-02  4.712e-01  1.470e+02   0.116 

IC_VICV17    1.113e+00  4.030e-01  1.470e+02   2.763 

IC_VICV18    2.457e-02  3.814e-01  1.470e+02   0.064 

IC_VICV19    3.211e-01  3.996e-01  1.470e+02   0.804 

IC_VICV22    6.700e-01  5.164e-01  1.470e+02   1.298 

IC_VICV25   -9.511e-01  4.673e-01  3.078e-09  -2.035 

IC_VICV26    3.240e-01  4.592e-01  2.869e-09   0.705 

IC_VICV27   -1.046e-01  2.272e-01  1.470e+02  -0.460 

IC_VICV30   -4.516e-01  4.800e-01  1.470e+02  -0.941 

IC_VICV31   -2.291e-01  4.853e-01  1.470e+02  -0.472 

IC_VICV32   -2.012e-02  4.930e-01  1.470e+02  -0.041 

IC_VICV33   -2.833e-01  4.814e-01  1.470e+02  -0.589 

IC_VICV34   -4.471e-02  4.906e-01  1.470e+02  -0.091 

IC_VICV36   -2.575e-01  2.867e-01  1.470e+02  -0.898 

IC_VICV37   -3.014e-01  2.873e-01  1.470e+02  -1.049 

IC_VICV39    1.324e-01  1.970e-01  1.470e+02   0.672 

IC_VICV40   -2.522e-02  2.085e-01  1.470e+02  -0.121 

IC_VICV43   -5.284e-01  4.928e-01  1.470e+02  -1.072 

IC_VICV44   -4.287e-01  4.901e-01  1.470e+02  -0.875 

IC_VICV45   -3.700e-01  4.887e-01  1.470e+02  -0.757 

IC_VICV46    5.000e-02  4.887e-01  1.470e+02   0.102 

IC_VICV47   -4.352e-01  4.915e-01  1.470e+02  -0.885 

IC_VICV48    3.815e-01  4.979e-01  1.470e+02   0.766 

IC_VICV49   -3.000e-02  4.887e-01  1.470e+02  -0.061 

IC_VICV5    -5.700e-01  5.676e-01  1.470e+02  -1.004 

IC_VICV50    4.686e-01  4.957e-01  1.470e+02   0.945 

IC_VICV51   -4.290e-01  4.901e-01  1.470e+02  -0.875 

IC_VICV52    4.000e-02  4.887e-01  1.470e+02   0.082 

IC_VICV53    1.284e-01  4.901e-01  1.470e+02   0.262 

IC_VICV54    1.500e-02  4.887e-01  1.470e+02   0.031 

IC_VICV55   -1.246e-15  4.887e-01  1.470e+02   0.000 

IC_VICV56    2.187e-01  4.901e-01  1.470e+02   0.446 

IC_VICV8    -1.130e+00  6.135e-01  1.470e+02  -1.842 

IC_VICV9    -1.304e-01  1.627e-01  1.470e+02  -0.802 

            Pr(>|t|)    

(Intercept)  1.00000    

HC_VHCV21    0.75044    

HC_VHCV22    1.00000    

HC_VHCV23    1.00000    

HC_VHCV25    1.00000    

HC_VHCV27    1.00000    

HC_VHCV28    1.00000    

HC_VHCV29    1.00000    

HC_VHCV30    1.00000    

HC_VHCV31    1.00000    

HC_VHCV32    1.00000    

HC_VHCV33    1.00000    

HC_VHCV37    1.00000    

HC_VHCV38    1.00000    

HC_VHCV51    1.00000    

HC_VHCV57    1.00000    



193 
 

HC_VHCV58    1.00000    

HC_VHCV59    1.00000    

HC_VHCV60    1.00000    

HC_VHCV61    1.00000    

HC_VHCV62    1.00000    

HC_VHCV7     1.00000    

IC_VICV11    0.66911    

IC_VICV12    0.38326    

IC_VICV13    0.66438    

IC_VICV14    0.84019    

IC_VICV15    0.90788    

IC_VICV17    0.00645 ** 

IC_VICV18    0.94872    

IC_VICV19    0.42290    

IC_VICV22    0.19649    

IC_VICV25    1.00000    

IC_VICV26    1.00000    

IC_VICV27    0.64604    

IC_VICV30    0.34828    

IC_VICV31    0.63751    

IC_VICV32    0.96751    

IC_VICV33    0.55708    

IC_VICV34    0.92751    

IC_VICV36    0.37070    

IC_VICV37    0.29579    

IC_VICV39    0.50268    

IC_VICV40    0.90387    

IC_VICV43    0.28539    

IC_VICV44    0.38316    

IC_VICV45    0.45023    

IC_VICV46    0.91866    

IC_VICV47    0.37734    

IC_VICV48    0.44473    

IC_VICV49    0.95114    

IC_VICV5     0.31694    

IC_VICV50    0.34603    

IC_VICV51    0.38290    

IC_VICV52    0.93488    

IC_VICV53    0.79373    

IC_VICV54    0.97556    

IC_VICV55    1.00000    

IC_VICV56    0.65606    

IC_VICV8     0.06743 .  

IC_VICV9     0.42412    

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation matrix not shown by default, as p = 60 > 12. 

Use print(x, correlation=TRUE)  or 

    vcov(x)        if you need it 

 

fit warnings: 
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fixed-effect model matrix is rank deficient so dropping 14 

columns / coefficients  

Model 3 

Type III Analysis of Variance Table with Satterthwaite's 

method 

       Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)   

W_SP   46.064  9.2128     5 36.016  2.8511 0.02867 * 

HC_SP   3.751  1.2503     3 43.060  0.3869 0.76295   

IC_SP 132.412  5.7571    23 65.137  1.7817 0.03610 * 

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> summary(mixed.mod1) 

Linear mixed model fit by REML. t-tests use 

  Satterthwaite's method [lmerModLmerTest] 

Formula:  

HEDGES ~ W_SP + HC_SP + IC_SP + (1 | Study_ID) 

   Data: MST_IC_ASD_IMP_YD 

Weights: 1/VAR_G 

 

REML criterion at convergence: 1149.7 

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-3.7725 -0.5209  0.0000  0.3313  3.3046  

 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 Study_ID (Intercept) 0.3315   0.5758   

 Residual             3.2313   1.7976   

Number of obs: 395, groups:  Study_ID, 27 

 

Fixed effects: 

                                   Estimate 

(Intercept)                        -2.83000 

W_SPO. crenata                   -427.40000 

W_SPO. foetida                   -168.88341 

W_SPO.crenata                    -167.68390 

W_SPS.asiatica                      2.24566 

W_SPS.hermonthica                   2.51662 

HC_SPFinger millet                 -0.11733 

HC_SPMaize                          0.30817 

HC_SPPearl millet                   0.42127 

IC_SPBerseem                      170.19080 

IC_SPCelery                        96.89000 

IC_SPCelosia argentia              -0.02842 

IC_SPCommon bean                   -0.41496 

IC_SPCowpea                        -0.10737 

IC_SPCrotalaria ochroleuca         -0.51685 

IC_SPD.intortum                    -1.36929 

IC_SPD.uncinatum                   -1.74834 

IC_SPD.uncinatum, D.intortum       -0.94843 

IC_SPDesmodium spp                 -3.95161 

IC_SPDesmodium spp / Common bean   -4.45390 
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IC_SPFaba beans                    -0.12947 

IC_SPFaidherbia albida             -0.71662 

IC_SPFenugreek                    169.94567 

IC_SPFlax                         243.69000 

IC_SPGarlic                       260.73000 

IC_SPGroundnut                     -0.19961 

IC_SPLupin                        170.10890 

IC_SPMung bean                     -0.29984 

IC_SPPigeon pea                     0.48433 

IC_SPSesbania sesban                0.48322 

IC_SPSoya bean                     -0.28510 

IC_SPSweet potao                    0.91513 

                                 Std. Error 

(Intercept)                         1.64024 

W_SPO. crenata                    223.26140 

W_SPO. foetida                    242.98717 

W_SPO.crenata                     242.98633 

W_SPS.asiatica                      1.77738 

W_SPS.hermonthica                   1.72975 

HC_SPFinger millet                  1.01959 

HC_SPMaize                          0.30886 

HC_SPPearl millet                   0.91573 

IC_SPBerseem                      242.98026 

IC_SPCelery                       282.42556 

IC_SPCelosia argentia               0.77579 

IC_SPCommon bean                    0.54583 

IC_SPCowpea                         0.48241 

IC_SPCrotalaria ochroleuca          0.55254 

IC_SPD.intortum                     0.56260 

IC_SPD.uncinatum                    0.67551 

IC_SPD.uncinatum, D.intortum        0.78310 

IC_SPDesmodium spp                  1.65831 

IC_SPDesmodium spp / Common bean    1.81149 

IC_SPFaba beans                     0.61329 

IC_SPFaidherbia albida              1.17319 

IC_SPFenugreek                    242.97997 

IC_SPFlax                         243.33867 

IC_SPGarlic                       239.95994 

IC_SPGroundnut                      0.49123 

IC_SPLupin                        242.98088 

IC_SPMung bean                      0.54838 

IC_SPPigeon pea                     0.86377 

IC_SPSesbania sesban                0.86524 

IC_SPSoya bean                      0.56360 

IC_SPSweet potao                    0.93044 

                                         df t value 

(Intercept)                       222.69075  -1.725 

W_SPO. crenata                    348.76370  -1.914 

W_SPO. foetida                    348.76162  -0.695 

W_SPO.crenata                     348.76162  -0.690 

W_SPS.asiatica                    155.85911   1.263 

W_SPS.hermonthica                 218.55287   1.455 

HC_SPFinger millet                 43.74385  -0.115 

HC_SPMaize                         84.25764   0.998 
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HC_SPPearl millet                  29.01202   0.460 

IC_SPBerseem                      348.74933   0.700 

IC_SPCelery                       348.74876   0.343 

IC_SPCelosia argentia             274.73720  -0.037 

IC_SPCommon bean                  355.25035  -0.760 

IC_SPCowpea                       351.79864  -0.223 

IC_SPCrotalaria ochroleuca        359.41314  -0.935 

IC_SPD.intortum                   353.24381  -2.434 

IC_SPD.uncinatum                   28.01361  -2.588 

IC_SPD.uncinatum, D.intortum       15.95393  -1.211 

IC_SPDesmodium spp                335.74196  -2.383 

IC_SPDesmodium spp / Common bean  348.21738  -2.459 

IC_SPFaba beans                   353.33693  -0.211 

IC_SPFaidherbia albida             72.33491  -0.611 

IC_SPFenugreek                    348.74933   0.699 

IC_SPFlax                         348.74898   1.001 

IC_SPGarlic                       348.74900   1.087 

IC_SPGroundnut                    362.14946  -0.406 

IC_SPLupin                        348.74933   0.700 

IC_SPMung bean                    358.89696  -0.547 

IC_SPPigeon pea                    22.73423   0.561 

IC_SPSesbania sesban               22.88741   0.558 

IC_SPSoya bean                    259.29413  -0.506 

IC_SPSweet potao                  286.31969   0.984 

                                 Pr(>|t|)   

(Intercept)                        0.0858 . 

W_SPO. crenata                     0.0564 . 

W_SPO. foetida                     0.4875   

W_SPO.crenata                      0.4906   

W_SPS.asiatica                     0.2083   

W_SPS.hermonthica                  0.1471   

HC_SPFinger millet                 0.9089   

HC_SPMaize                         0.3212   

HC_SPPearl millet                  0.6489   

IC_SPBerseem                       0.4841   

IC_SPCelery                        0.7318   

IC_SPCelosia argentia              0.9708   

IC_SPCommon bean                   0.4476   

IC_SPCowpea                        0.8240   

IC_SPCrotalaria ochroleuca         0.3502   

IC_SPD.intortum                    0.0154 * 

IC_SPD.uncinatum                   0.0151 * 

IC_SPD.uncinatum, D.intortum       0.2435   

IC_SPDesmodium spp                 0.0177 * 

IC_SPDesmodium spp / Common bean   0.0144 * 

IC_SPFaba beans                    0.8329   

IC_SPFaidherbia albida             0.5432   

IC_SPFenugreek                     0.4848   

IC_SPFlax                          0.3173   

IC_SPGarlic                        0.2780   

IC_SPGroundnut                     0.6847   

IC_SPLupin                         0.4843   

IC_SPMung bean                     0.5849   

IC_SPPigeon pea                    0.5805   
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IC_SPSesbania sesban               0.5819   

IC_SPSoya bean                     0.6134   

IC_SPSweet potao                   0.3262   

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Model 4 

 

Type III Analysis of Variance Table with Satterthwaite's 

method 

     Sum Sq Mean Sq NumDF DenDF F value Pr(>F) 

HC_V 4.5258 0.50286     9   103  1.2481 0.2745 

IC_V 7.7694 0.40892    19   103  1.0149 0.4510 

> summary(mixed.mod4) 

Linear mixed model fit by REML. t-tests use 

  Satterthwaite's method [lmerModLmerTest] 

Formula: HEDGES ~ HC_V + IC_V + (1 | Study_ID) 

   Data: MST_IC_ASD_IMP_YD 

Weights: 1/VAR_G 

 

REML criterion at convergence: 134.3 

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-2.7376 -0.5631  0.0000  0.5934  3.0778  

 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 Study_ID (Intercept) 2.7248   1.6507   

 Residual             0.4029   0.6348   

Number of obs: 132, groups:  Study_ID, 11 

 

Fixed effects: 

              Estimate Std. Error         df t value 

(Intercept)  -0.471106   1.662691 103.000000  -0.283 

HC_VHCV23     1.548276   2.354740 103.000000   0.658 

HC_VHCV27     0.063940   2.345029 103.000000   0.027 

HC_VHCV28    -0.343205   2.352100 103.000000  -0.146 

HC_VHCV29     0.814799   0.256907 103.000000   3.172 

HC_VHCV33     0.211106   2.362625 103.000000   0.089 

HC_VHCV37    -0.334006   2.361734 103.000000  -0.141 

HC_VHCV38     0.111820   2.348097 103.000000   0.048 

HC_VHCV57     0.148497   2.352780 103.000000   0.063 

HC_VHCV7      0.018248   2.348200 103.000000   0.008 

IC_VICV11    -0.007929   0.140982 103.000000  -0.056 

IC_VICV12    -0.022837   0.140611 103.000000  -0.162 

IC_VICV13     0.217576   0.289754 103.000000   0.751 

IC_VICV14     0.461108   0.286491 103.000000   1.610 

IC_VICV15     0.224215   0.288967 103.000000   0.776 

IC_VICV17    -0.197938   0.228476 103.000000  -0.866 

IC_VICV21    -0.117143   2.346598 103.000000  -0.050 

IC_VICV22    -0.880000   0.444328 103.000000  -1.981 

IC_VICV25     0.542857   2.353456 103.000000   0.231 
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IC_VICV26     0.190915   2.353676 103.000000   0.081 

IC_VICV27     0.223571   0.180209 103.000000   1.241 

IC_VICV30    -1.064805   0.456421 103.000000  -2.333 

IC_VICV31    -0.139487   0.419624 103.000000  -0.332 

IC_VICV32    -0.323350   0.433175 103.000000  -0.746 

IC_VICV33     0.070111   0.413593 103.000000   0.170 

IC_VICV34    -0.774110   0.461886 103.000000  -1.676 

IC_VICV36    -0.082391   0.304274 103.000000  -0.271 

IC_VICV37    -0.246115   0.305889 103.000000  -0.805 

IC_VICV9     -0.032393   0.141237 103.000000  -0.229 

            Pr(>|t|)    

(Intercept)   0.7775    

HC_VHCV23     0.5123    

HC_VHCV27     0.9783    

HC_VHCV28     0.8843    

HC_VHCV29     0.0020 ** 

HC_VHCV33     0.9290    

HC_VHCV37     0.8878    

HC_VHCV38     0.9621    

HC_VHCV57     0.9498    

HC_VHCV7      0.9938    

IC_VICV11     0.9553    

IC_VICV12     0.8713    

IC_VICV13     0.4544    

IC_VICV14     0.1106    

IC_VICV15     0.4396    

IC_VICV17     0.3883    

IC_VICV21     0.9603    

IC_VICV22     0.0503 .  

IC_VICV25     0.8180    

IC_VICV26     0.9355    

IC_VICV27     0.2176    

IC_VICV30     0.0216 *  

IC_VICV31     0.7403    

IC_VICV32     0.4571    

IC_VICV33     0.8657    

IC_VICV34     0.0968 .  

IC_VICV36     0.7871    

IC_VICV37     0.4229    

IC_VICV9      0.8191    

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Model 5 

Type III Analysis of Variance Table with Satterthwaite's 

method 

         Sum Sq Mean Sq NumDF   DenDF F value Pr(>F) 

W_SP     60.026  7.5033     8  10.205  2.1522 0.1255 

HC_SP    47.349  6.7642     7  15.278  1.9402 0.1320 

RC_1_SP 316.112  3.9026    81 217.374  1.1194 0.2596 

>  summary(mixed.mod5) 

Linear mixed model fit by REML. t-tests use 

  Satterthwaite's method [lmerModLmerTest] 
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Formula:  

HEDGES ~ W_SP + HC_SP + RC_1_SP + (1 | Study_ID) 

   Data: MST_RC_ASD_IMP_WD 

Weights: 1/VAR_G 

 

REML criterion at convergence: 1008.2 

 

Scaled residuals:  

     Min       1Q   Median       3Q      Max  

-2.02677 -0.32372  0.00039  0.54804  2.74769  

 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 Study_ID (Intercept) 0.878    0.937    

 Residual             3.486    1.867    

Number of obs: 368, groups:  Study_ID, 29 

 

Fixed effects: 

                                           Estimate 

(Intercept)                                 2.48651 

W_SPO.aegyptiaca                            1.52543 

W_SPO.cernua                               -2.60847 

W_SPO.crenata                              -1.69762 

W_SPO.cumana                               -0.07121 

W_SPO.minor                                -2.11985 

W_SPO.ramosa                               -2.43402 

W_SPPhelipanche aegyptiaca                 -2.41952 

W_SPS.hermonthica                          -3.42183 

HC_SPLentil                                 0.40682 

HC_SPMaize                                  0.93894 

HC_SPPearl millet                           0.96890 

HC_SPRapeseed                              -3.48480 

HC_SPSorghum                                0.21947 

HC_SPSorghum / Millet                       5.36019 

HC_SPSorhgum/Maize                          1.27443 

RC_1_SPAniseed                              0.46001 

RC_1_SPBarley                               0.90233 

RC_1_SPBasil                                0.36111 

RC_1_SPBeet                                 0.78693 

RC_1_SPBerseem                              0.06580 

RC_1_SPBitter apple                         1.52240 

RC_1_SPBlack-eyed pea                       9.25947 

RC_1_SPBroccoli                             1.10197 

RC_1_SPBrown Indian Hemp                   -0.48053 

RC_1_SPBrussel sprout                      -1.52005 

RC_1_SPButternut squash                     0.53970 

RC_1_SPCabbage                             -1.38784 

RC_1_SPCanola                              -1.59871 

RC_1_SPCauliflower                         -0.75023 

RC_1_SPCereal                               0.86854 

RC_1_SPChickpea                             1.68419 

RC_1_SPChilli                               1.39620 

RC_1_SPCommon bean                          1.43351 

RC_1_SPCommon vetch                        -4.33194 
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RC_1_SPCoriander                            0.67266 

RC_1_SPCotton                               1.63835 

RC_1_SPCowpea                               0.83909 

RC_1_SPCrotalaria grahamiana                0.53214 

RC_1_SPCrotalaria juncea                    0.74005 

RC_1_SPCucumber                             0.37989 

RC_1_SPCucumis prophetarum                  0.97365 

RC_1_SPCumin                                1.03207 

RC_1_SPD. distortum                         6.12405 

RC_1_SPDill                                 0.30043 

RC_1_SPEndive                               0.62263 

RC_1_SPFallow                              -0.35920 

RC_1_SPFenugreek                            1.25592 

RC_1_SPFlax                                 1.08544 

RC_1_SPFoxtail millet                      -0.78804 

RC_1_SPGarden pea                           0.35459 

RC_1_SPGarlic                               0.72979 

RC_1_SPGiant spinach                        0.72633 

RC_1_SPGourd                                0.76710 

RC_1_SPGroundnut                            0.67885 

RC_1_SPLentil                               1.06837 

RC_1_SPLinseed                              0.12242 

RC_1_SPLupin                                1.21901 

RC_1_SPMaize                                0.52520 

RC_1_SPMaize/Cowpea/ Soya bean/ Groundnut  -0.09221 

RC_1_SPMelon                                0.35637 

RC_1_SPMillet / Cotton                      0.68585 

RC_1_SPMung bean                            1.04092 

RC_1_SPMustard                              1.36606 

RC_1_SPNarbon vetch                         1.92111 

RC_1_SPOnion                                0.63923 

RC_1_SPParsley                              0.84228 

RC_1_SPPepper                               1.22106 

RC_1_SPPigeon pea                           1.01946 

RC_1_SPProso millet                         0.11289 

RC_1_SPRed cabbage                          0.63769 

RC_1_SPRoselle                              1.51455 

RC_1_SPSenna didymobotrya                   1.67405 

RC_1_SPSenna occidentalis                  -0.20595 

RC_1_SPSenna spectabilis                   -0.14595 

RC_1_SPSesame                               0.73732 

RC_1_SPSesbania cinerascens                 2.12405 

RC_1_SPSesbania sesban                     -0.16134 

RC_1_SPSilverleaf nightshade               -0.51547 

RC_1_SPSnap bean                            1.39874 

RC_1_SPSorhgum                             -0.81175 

RC_1_SPSoya bean                            0.75089 

RC_1_SPSpinach                              0.18280 

RC_1_SPSquash                               0.50402 

RC_1_SPSquirting cucumber                   0.97300 

RC_1_SPSugar beet                           0.50710 

RC_1_SPSunflower                            0.87298 

RC_1_SPSyrian oregano                      -0.17583 

RC_1_SPTephrosia vogelii                    1.59405 
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RC_1_SPTithonia diversifolia                0.17405 

RC_1_SPTriticale                            0.47333 

RC_1_SPTurnip                              -0.67396 

RC_1_SPVigna mungo                          1.36196 

RC_1_SPWatermelon                           0.08604 

RC_1_SPWheat                                1.58301 

RC_1_SPWild rue                             0.71510 

RC_1_SPWinter durum wheat                   0.81333 

                                          Std. Error 

(Intercept)                                  1.23381 

W_SPO.aegyptiaca                             2.08377 

W_SPO.cernua                                 1.57759 

W_SPO.crenata                                1.53674 

W_SPO.cumana                                 1.40217 

W_SPO.minor                                  1.60092 

W_SPO.ramosa                                 1.48282 

W_SPPhelipanche aegyptiaca                   1.39199 

W_SPS.hermonthica                            1.57040 

HC_SPLentil                                  1.58412 

HC_SPMaize                                   1.08907 

HC_SPPearl millet                            1.62047 

HC_SPRapeseed                                2.11632 

HC_SPSorghum                                 2.04908 

HC_SPSorghum / Millet                        1.84461 

HC_SPSorhgum/Maize                           1.61868 

RC_1_SPAniseed                               0.80611 

RC_1_SPBarley                                0.83398 

RC_1_SPBasil                                 1.17446 

RC_1_SPBeet                                  0.92969 

RC_1_SPBerseem                               0.77365 

RC_1_SPBitter apple                          0.87794 

RC_1_SPBlack-eyed pea                        5.07723 

RC_1_SPBroccoli                              0.89287 

RC_1_SPBrown Indian Hemp                     1.58866 

RC_1_SPBrussel sprout                        1.46208 

RC_1_SPButternut squash                      0.80366 

RC_1_SPCabbage                               1.35975 

RC_1_SPCanola                                1.35959 

RC_1_SPCauliflower                           1.34294 

RC_1_SPCereal                                0.84025 

RC_1_SPChickpea                              0.88676 

RC_1_SPChilli                                0.85469 

RC_1_SPCommon bean                           0.77158 

RC_1_SPCommon vetch                          1.88027 

RC_1_SPCoriander                             0.79603 

RC_1_SPCotton                                1.45938 

RC_1_SPCowpea                                0.73082 

RC_1_SPCrotalaria grahamiana                 1.29798 

RC_1_SPCrotalaria juncea                     1.04896 

RC_1_SPCucumber                              0.80366 

RC_1_SPCucumis prophetarum                   0.92813 

RC_1_SPCumin                                 0.79706 

RC_1_SPD. distortum                          3.17101 

RC_1_SPDill                                  0.79947 
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RC_1_SPEndive                                0.94030 

RC_1_SPFallow                                0.97120 

RC_1_SPFenugreek                             0.81859 

RC_1_SPFlax                                  0.77656 

RC_1_SPFoxtail millet                        1.46652 

RC_1_SPGarden pea                            0.83752 

RC_1_SPGarlic                                1.47720 

RC_1_SPGiant spinach                         0.94036 

RC_1_SPGourd                                 0.90409 

RC_1_SPGroundnut                             0.71635 

RC_1_SPLentil                                1.08521 

RC_1_SPLinseed                               1.36006 

RC_1_SPLupin                                 0.86586 

RC_1_SPMaize                                 0.80935 

RC_1_SPMaize/Cowpea/ Soya bean/ Groundnut    1.22711 

RC_1_SPMelon                                 0.80163 

RC_1_SPMillet / Cotton                       1.61799 

RC_1_SPMung bean                             0.92589 

RC_1_SPMustard                               0.87426 

RC_1_SPNarbon vetch                          1.40429 

RC_1_SPOnion                                 1.49957 

RC_1_SPParsley                               0.84582 

RC_1_SPPepper                                0.83658 

RC_1_SPPigeon pea                            1.18191 

RC_1_SPProso millet                          0.90244 

RC_1_SPRed cabbage                           0.91246 

RC_1_SPRoselle                               0.93013 

RC_1_SPSenna didymobotrya                    1.66393 

RC_1_SPSenna occidentalis                    1.51016 

RC_1_SPSenna spectabilis                     1.49857 

RC_1_SPSesame                                0.71278 

RC_1_SPSesbania cinerascens                  1.76559 

RC_1_SPSesbania sesban                       0.99122 

RC_1_SPSilverleaf nightshade                 0.79947 

RC_1_SPSnap bean                             1.63615 

RC_1_SPSorhgum                               0.71910 

RC_1_SPSoya bean                             0.69482 

RC_1_SPSpinach                               0.79475 

RC_1_SPSquash                                0.80366 

RC_1_SPSquirting cucumber                    0.90665 

RC_1_SPSugar beet                            1.17597 

RC_1_SPSunflower                             0.85755 

RC_1_SPSyrian oregano                        0.86260 

RC_1_SPTephrosia vogelii                     1.64285 

RC_1_SPTithonia diversifolia                 1.49857 

RC_1_SPTriticale                             1.27554 

RC_1_SPTurnip                                1.33174 

RC_1_SPVigna mungo                           1.52626 

RC_1_SPWatermelon                            0.79475 

RC_1_SPWheat                                 1.31001 

RC_1_SPWild rue                              0.93818 

RC_1_SPWinter durum wheat                    1.32908 

                                                 df 

(Intercept)                                14.55899 
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W_SPO.aegyptiaca                           29.32604 

W_SPO.cernua                                9.64984 

W_SPO.crenata                               8.72065 

W_SPO.cumana                               12.13011 

W_SPO.minor                                10.31467 

W_SPO.ramosa                                7.55541 

W_SPPhelipanche aegyptiaca                 12.97707 

W_SPS.hermonthica                           9.43802 

HC_SPLentil                                 9.90423 

HC_SPMaize                                  7.28671 

HC_SPPearl millet                          10.80617 

HC_SPRapeseed                              31.26987 

HC_SPSorghum                               27.28503 

HC_SPSorghum / Millet                      18.14197 

HC_SPSorhgum/Maize                         10.78288 

RC_1_SPAniseed                            255.08801 

RC_1_SPBarley                             255.17294 

RC_1_SPBasil                              255.29737 

RC_1_SPBeet                               255.05135 

RC_1_SPBerseem                            255.47595 

RC_1_SPBitter apple                       255.06483 

RC_1_SPBlack-eyed pea                     261.07578 

RC_1_SPBroccoli                           255.17638 

RC_1_SPBrown Indian Hemp                  245.65854 

RC_1_SPBrussel sprout                     255.24464 

RC_1_SPButternut squash                   255.08891 

RC_1_SPCabbage                            255.29198 

RC_1_SPCanola                             255.29207 

RC_1_SPCauliflower                        255.30081 

RC_1_SPCereal                             261.58135 

RC_1_SPChickpea                           255.16472 

RC_1_SPChilli                             255.07170 

RC_1_SPCommon bean                        259.01981 

RC_1_SPCommon vetch                       255.32693 

RC_1_SPCoriander                          255.21323 

RC_1_SPCotton                             255.82922 

RC_1_SPCowpea                             265.26014 

RC_1_SPCrotalaria grahamiana              124.62143 

RC_1_SPCrotalaria juncea                  258.06976 

RC_1_SPCucumber                           255.08891 

RC_1_SPCucumis prophetarum                255.05172 

RC_1_SPCumin                              255.19570 

RC_1_SPD. distortum                       270.79746 

RC_1_SPDill                               255.09047 

RC_1_SPEndive                             255.04886 

RC_1_SPFallow                              60.10614 

RC_1_SPFenugreek                          254.96212 

RC_1_SPFlax                               259.85286 

RC_1_SPFoxtail millet                      14.30638 

RC_1_SPGarden pea                         255.41651 

RC_1_SPGarlic                             255.70657 

RC_1_SPGiant spinach                      255.04884 

RC_1_SPGourd                              255.05773 

RC_1_SPGroundnut                          263.66942 
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RC_1_SPLentil                             255.40935 

RC_1_SPLinseed                            255.84266 

RC_1_SPLupin                              255.06833 

RC_1_SPMaize                              189.50262 

RC_1_SPMaize/Cowpea/ Soya bean/ Groundnut 259.29785 

RC_1_SPMelon                              255.08966 

RC_1_SPMillet / Cotton                    255.66501 

RC_1_SPMung bean                          258.85231 

RC_1_SPMustard                            255.06588 

RC_1_SPNarbon vetch                       255.19034 

RC_1_SPOnion                              255.68409 

RC_1_SPParsley                            255.07447 

RC_1_SPPepper                             268.40685 

RC_1_SPPigeon pea                         246.85780 

RC_1_SPProso millet                       255.05816 

RC_1_SPRed cabbage                        255.05558 

RC_1_SPRoselle                            255.05124 

RC_1_SPSenna didymobotrya                 206.08761 

RC_1_SPSenna occidentalis                 175.93830 

RC_1_SPSenna spectabilis                  173.37876 

RC_1_SPSesame                             256.79261 

RC_1_SPSesbania cinerascens               221.90112 

RC_1_SPSesbania sesban                     56.21417 

RC_1_SPSilverleaf nightshade              255.09047 

RC_1_SPSnap bean                          255.56603 

RC_1_SPSorhgum                            261.76591 

RC_1_SPSoya bean                          264.74336 

RC_1_SPSpinach                            255.09226 

RC_1_SPSquash                             255.08891 

RC_1_SPSquirting cucumber                 255.05707 

RC_1_SPSugar beet                         230.51333 

RC_1_SPSunflower                          255.43527 

RC_1_SPSyrian oregano                     255.06930 

RC_1_SPTephrosia vogelii                  202.39461 

RC_1_SPTithonia diversifolia              173.37876 

RC_1_SPTriticale                          254.94009 

RC_1_SPTurnip                             255.30687 

RC_1_SPVigna mungo                        256.45344 

RC_1_SPWatermelon                         255.09226 

RC_1_SPWheat                              250.59574 

RC_1_SPWild rue                           255.04935 

RC_1_SPWinter durum wheat                 254.94009 

                                          t value 

(Intercept)                                 2.015 

W_SPO.aegyptiaca                            0.732 

W_SPO.cernua                               -1.653 

W_SPO.crenata                              -1.105 

W_SPO.cumana                               -0.051 

W_SPO.minor                                -1.324 

W_SPO.ramosa                               -1.641 

W_SPPhelipanche aegyptiaca                 -1.738 

W_SPS.hermonthica                          -2.179 

HC_SPLentil                                 0.257 

HC_SPMaize                                  0.862 
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HC_SPPearl millet                           0.598 

HC_SPRapeseed                              -1.647 

HC_SPSorghum                                0.107 

HC_SPSorghum / Millet                       2.906 

HC_SPSorhgum/Maize                          0.787 

RC_1_SPAniseed                              0.571 

RC_1_SPBarley                               1.082 

RC_1_SPBasil                                0.307 

RC_1_SPBeet                                 0.846 

RC_1_SPBerseem                              0.085 

RC_1_SPBitter apple                         1.734 

RC_1_SPBlack-eyed pea                       1.824 

RC_1_SPBroccoli                             1.234 

RC_1_SPBrown Indian Hemp                   -0.302 

RC_1_SPBrussel sprout                      -1.040 

RC_1_SPButternut squash                     0.672 

RC_1_SPCabbage                             -1.021 

RC_1_SPCanola                              -1.176 

RC_1_SPCauliflower                         -0.559 

RC_1_SPCereal                               1.034 

RC_1_SPChickpea                             1.899 

RC_1_SPChilli                               1.634 

RC_1_SPCommon bean                          1.858 

RC_1_SPCommon vetch                        -2.304 

RC_1_SPCoriander                            0.845 

RC_1_SPCotton                               1.123 

RC_1_SPCowpea                               1.148 

RC_1_SPCrotalaria grahamiana                0.410 

RC_1_SPCrotalaria juncea                    0.706 

RC_1_SPCucumber                             0.473 

RC_1_SPCucumis prophetarum                  1.049 

RC_1_SPCumin                                1.295 

RC_1_SPD. distortum                         1.931 

RC_1_SPDill                                 0.376 

RC_1_SPEndive                               0.662 

RC_1_SPFallow                              -0.370 

RC_1_SPFenugreek                            1.534 

RC_1_SPFlax                                 1.398 

RC_1_SPFoxtail millet                      -0.537 

RC_1_SPGarden pea                           0.423 

RC_1_SPGarlic                               0.494 

RC_1_SPGiant spinach                        0.772 

RC_1_SPGourd                                0.848 

RC_1_SPGroundnut                            0.948 

RC_1_SPLentil                               0.984 

RC_1_SPLinseed                              0.090 

RC_1_SPLupin                                1.408 

RC_1_SPMaize                                0.649 

RC_1_SPMaize/Cowpea/ Soya bean/ Groundnut  -0.075 

RC_1_SPMelon                                0.445 

RC_1_SPMillet / Cotton                      0.424 

RC_1_SPMung bean                            1.124 

RC_1_SPMustard                              1.563 

RC_1_SPNarbon vetch                         1.368 
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RC_1_SPOnion                                0.426 

RC_1_SPParsley                              0.996 

RC_1_SPPepper                               1.460 

RC_1_SPPigeon pea                           0.863 

RC_1_SPProso millet                         0.125 

RC_1_SPRed cabbage                          0.699 

RC_1_SPRoselle                              1.628 

RC_1_SPSenna didymobotrya                   1.006 

RC_1_SPSenna occidentalis                  -0.136 

RC_1_SPSenna spectabilis                   -0.097 

RC_1_SPSesame                               1.034 

RC_1_SPSesbania cinerascens                 1.203 

RC_1_SPSesbania sesban                     -0.163 

RC_1_SPSilverleaf nightshade               -0.645 

RC_1_SPSnap bean                            0.855 

RC_1_SPSorhgum                             -1.129 

RC_1_SPSoya bean                            1.081 

RC_1_SPSpinach                              0.230 

RC_1_SPSquash                               0.627 

RC_1_SPSquirting cucumber                   1.073 

RC_1_SPSugar beet                           0.431 

RC_1_SPSunflower                            1.018 

RC_1_SPSyrian oregano                      -0.204 

RC_1_SPTephrosia vogelii                    0.970 

RC_1_SPTithonia diversifolia                0.116 

RC_1_SPTriticale                            0.371 

RC_1_SPTurnip                              -0.506 

RC_1_SPVigna mungo                          0.892 

RC_1_SPWatermelon                           0.108 

RC_1_SPWheat                                1.208 

RC_1_SPWild rue                             0.762 

RC_1_SPWinter durum wheat                   0.612 

                                          Pr(>|t|)    

(Intercept)                                0.06272 .  

W_SPO.aegyptiaca                           0.46995    

W_SPO.cernua                               0.13035    

W_SPO.crenata                              0.29884    

W_SPO.cumana                               0.96033    

W_SPO.minor                                0.21405    

W_SPO.ramosa                               0.14154    

W_SPPhelipanche aegyptiaca                 0.10583    

W_SPS.hermonthica                          0.05591 .  

HC_SPLentil                                0.80258    

HC_SPMaize                                 0.41607    

HC_SPPearl millet                          0.56222    

HC_SPRapeseed                              0.10965    

HC_SPSorghum                               0.91549    

HC_SPSorghum / Millet                      0.00937 ** 

HC_SPSorhgum/Maize                         0.44805    

RC_1_SPAniseed                             0.56874    

RC_1_SPBarley                              0.28030    

RC_1_SPBasil                               0.75874    

RC_1_SPBeet                                0.39810    

RC_1_SPBerseem                             0.93229    
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RC_1_SPBitter apple                        0.08412 .  

RC_1_SPBlack-eyed pea                      0.06934 .  

RC_1_SPBroccoli                            0.21827    

RC_1_SPBrown Indian Hemp                   0.76255    

RC_1_SPBrussel sprout                      0.29949    

RC_1_SPButternut squash                    0.50248    

RC_1_SPCabbage                             0.30838    

RC_1_SPCanola                              0.24074    

RC_1_SPCauliflower                         0.57689    

RC_1_SPCereal                              0.30225    

RC_1_SPChickpea                            0.05866 .  

RC_1_SPChilli                              0.10358    

RC_1_SPCommon bean                         0.06432 .  

RC_1_SPCommon vetch                        0.02203 *  

RC_1_SPCoriander                           0.39889    

RC_1_SPCotton                              0.26264    

RC_1_SPCowpea                              0.25194    

RC_1_SPCrotalaria grahamiana               0.68253    

RC_1_SPCrotalaria juncea                   0.48113    

RC_1_SPCucumber                            0.63683    

RC_1_SPCucumis prophetarum                 0.29515    

RC_1_SPCumin                               0.19654    

RC_1_SPD. distortum                        0.05449 .  

RC_1_SPDill                                0.70739    

RC_1_SPEndive                              0.50847    

RC_1_SPFallow                              0.71279    

RC_1_SPFenugreek                           0.12621    

RC_1_SPFlax                                0.16338    

RC_1_SPFoxtail millet                      0.59928    

RC_1_SPGarden pea                          0.67238    

RC_1_SPGarlic                              0.62170    

RC_1_SPGiant spinach                       0.44060    

RC_1_SPGourd                               0.39697    

RC_1_SPGroundnut                           0.34418    

RC_1_SPLentil                              0.32581    

RC_1_SPLinseed                             0.92835    

RC_1_SPLupin                               0.16039    

RC_1_SPMaize                               0.51718    

RC_1_SPMaize/Cowpea/ Soya bean/ Groundnut  0.94016    

RC_1_SPMelon                               0.65702    

RC_1_SPMillet / Cotton                     0.67200    

RC_1_SPMung bean                           0.26195    

RC_1_SPMustard                             0.11940    

RC_1_SPNarbon vetch                        0.17251    

RC_1_SPOnion                               0.67027    

RC_1_SPParsley                             0.32028    

RC_1_SPPepper                              0.14557    

RC_1_SPPigeon pea                          0.38922    

RC_1_SPProso millet                        0.90054    

RC_1_SPRed cabbage                         0.48528    

RC_1_SPRoselle                             0.10469    

RC_1_SPSenna didymobotrya                  0.31556    

RC_1_SPSenna occidentalis                  0.89168    

RC_1_SPSenna spectabilis                   0.92252    
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RC_1_SPSesame                              0.30191    

RC_1_SPSesbania cinerascens                0.23025    

RC_1_SPSesbania sesban                     0.87128    

RC_1_SPSilverleaf nightshade               0.51966    

RC_1_SPSnap bean                           0.39341    

RC_1_SPSorhgum                             0.26000    

RC_1_SPSoya bean                           0.28082    

RC_1_SPSpinach                             0.81827    

RC_1_SPSquash                              0.53112    

RC_1_SPSquirting cucumber                  0.28420    

RC_1_SPSugar beet                          0.66671    

RC_1_SPSunflower                           0.30964    

RC_1_SPSyrian oregano                      0.83865    

RC_1_SPTephrosia vogelii                   0.33306    

RC_1_SPTithonia diversifolia               0.90767    

RC_1_SPTriticale                           0.71088    

RC_1_SPTurnip                              0.61324    

RC_1_SPVigna mungo                         0.37304    

RC_1_SPWatermelon                          0.91388    

RC_1_SPWheat                               0.22804    

RC_1_SPWild rue                            0.44663    

RC_1_SPWinter durum wheat                  0.54111   

Model 6 

Type III Analysis of Variance Table with Satterthwaite's 

method 

       Sum Sq Mean Sq NumDF DenDF F value  Pr(>F)   

HC_V   173.32 11.5544    15    43  1.9530 0.04392 * 

RC_1_V 122.55  2.9178    42    43  0.4932 0.98819   

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> summary(mixed.mod6) 

Linear mixed model fit by REML. t-tests use 

  Satterthwaite's method [lmerModLmerTest] 

Formula: HEDGES ~ HC_V + RC_1_V + (1 | Study_ID) 

   Data: MST_RC_ASD_IMP_WD 

Weights: 1/VAR_G 

 

REML criterion at convergence: 203.5 

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.3160 -0.1490  0.0000  0.3867  2.2090  

 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 Study_ID (Intercept) 0.000    0.000    

 Residual             5.916    2.432    

Number of obs: 101, groups:  Study_ID, 16 

 

Fixed effects: 

                  Estimate Std. Error       df 

(Intercept)        4.68023    1.99089 43.00000 

HC_VHCV2          -3.49171    1.35255 43.00000 
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HC_VHCV20         -5.29538    2.10980 43.00000 

HC_VHCV21         -5.47083    2.10980 43.00000 

HC_VHCV4          -4.43023    2.12040 43.00000 

HC_VHCV5          -3.30023    2.48045 43.00000 

HC_VHCV6          -4.42023    2.12040 43.00000 

HC_VHCV61         -0.01023    3.31723 43.00000 

HC_VHCV64         -2.98661    2.30260 43.00000 

HC_VHCV66         -3.50023    2.58556 43.00000 

HC_VHCV67         -2.54183    2.45118 43.00000 

HC_VHCV7          -3.39523    2.77325 43.00000 

HC_VHCV71          5.66977    6.76696 43.00000 

HC_VHCV73         -4.71023    2.08523 43.00000 

HC_VHCV8          -3.90140    2.19832 43.00000 

HC_VHCV9          -2.09340    2.13392 43.00000 

RC_1_VRCV11       -1.26500    2.16191 43.00000 

RC_1_VRCV12       -1.25500    1.66753 43.00000 

RC_1_VRCV12/RCV58 -0.91500    2.06391 43.00000 

RC_1_VRCV13       -0.92000    2.09238 43.00000 

RC_1_VRCV14       -0.93000    2.09238 43.00000 

RC_1_VRCV15       -0.69000    2.09238 43.00000 

RC_1_VRCV16       -0.94000    2.09238 43.00000 

RC_1_VRCV17       -0.73000    2.09238 43.00000 

RC_1_VRCV18       -0.67000    2.09238 43.00000 

RC_1_VRCV19       -1.61890    2.18078 43.00000 

RC_1_VRCV2        -4.99000    2.95907 43.00000 

RC_1_VRCV20       -1.04071    2.20429 43.00000 

RC_1_VRCV21       -0.72047    2.20006 43.00000 

RC_1_VRCV22       -0.03072    2.27951 43.00000 

RC_1_VRCV23       -1.45246    2.10618 43.00000 

RC_1_VRCV24       -0.32471    2.22650 43.00000 

RC_1_VRCV25       -0.08592    2.26855 43.00000 

RC_1_VRCV27       -0.38227    1.33581 43.00000 

RC_1_VRCV28        0.34930    1.38751 43.00000 

RC_1_VRCV29       -2.46274    1.96033 43.00000 

RC_1_VRCV30       -0.11856    1.98065 43.00000 

RC_1_VRCV31       -1.69292    1.80992 43.00000 

RC_1_VRCV32       -2.54140    1.83089 43.00000 

RC_1_VRCV33       -2.33053    1.83109 43.00000 

RC_1_VRCV34       -1.61665    1.79582 43.00000 

RC_1_VRCV37       -0.42000    1.71993 43.00000 

RC_1_VRCV39       -0.88500    2.02045 43.00000 

RC_1_VRCV4        -0.34000    2.28174 43.00000 

RC_1_VRCV40       -1.30000    1.97604 43.00000 

RC_1_VRCV41        0.50595    1.32285 43.00000 

RC_1_VRCV42       -0.10370    1.31824 43.00000 

RC_1_VRCV48       -1.06499    1.04173 43.00000 

RC_1_VRCV51       -5.94000    7.15787 43.00000 

RC_1_VRCV52       -8.87000    6.70109 43.00000 

RC_1_VRCV53       -9.74000    6.64791 43.00000 

RC_1_VRCV54       -2.44000    8.19811 43.00000 

RC_1_VRCV55        0.19000    9.22688 43.00000 

RC_1_VRCV57       -0.88500    2.13437 43.00000 

RC_1_VRCV59        0.95250    0.91010 43.00000 

RC_1_VRCV6        -0.18620    1.60174 43.00000 
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RC_1_VRCV7         0.42150    1.62435 43.00000 

RC_1_VRCV8         2.07648    1.89511 43.00000 

                  t value Pr(>|t|)   

(Intercept)         2.351   0.0234 * 

HC_VHCV2           -2.582   0.0133 * 

HC_VHCV20          -2.510   0.0159 * 

HC_VHCV21          -2.593   0.0129 * 

HC_VHCV4           -2.089   0.0426 * 

HC_VHCV5           -1.330   0.1904   

HC_VHCV6           -2.085   0.0431 * 

HC_VHCV61          -0.003   0.9976   

HC_VHCV64          -1.297   0.2015   

HC_VHCV66          -1.354   0.1829   

HC_VHCV67          -1.037   0.3055   

HC_VHCV7           -1.224   0.2275   

HC_VHCV71           0.838   0.4067   

HC_VHCV73          -2.259   0.0290 * 

HC_VHCV8           -1.775   0.0830 . 

HC_VHCV9           -0.981   0.3321   

RC_1_VRCV11        -0.585   0.5615   

RC_1_VRCV12        -0.753   0.4558   

RC_1_VRCV12/RCV58  -0.443   0.6597   

RC_1_VRCV13        -0.440   0.6624   

RC_1_VRCV14        -0.444   0.6589   

RC_1_VRCV15        -0.330   0.7432   

RC_1_VRCV16        -0.449   0.6555   

RC_1_VRCV17        -0.349   0.7289   

RC_1_VRCV18        -0.320   0.7504   

RC_1_VRCV19        -0.742   0.4619   

RC_1_VRCV2         -1.686   0.0990 . 

RC_1_VRCV20        -0.472   0.6392   

RC_1_VRCV21        -0.327   0.7449   

RC_1_VRCV22        -0.013   0.9893   

RC_1_VRCV23        -0.690   0.4941   

RC_1_VRCV24        -0.146   0.8847   

RC_1_VRCV25        -0.038   0.9700   

RC_1_VRCV27        -0.286   0.7761   

RC_1_VRCV28         0.252   0.8024   

RC_1_VRCV29        -1.256   0.2158   

RC_1_VRCV30        -0.060   0.9525   

RC_1_VRCV31        -0.935   0.3548   

RC_1_VRCV32        -1.388   0.1723   

RC_1_VRCV33        -1.273   0.2099   

RC_1_VRCV34        -0.900   0.3730   

RC_1_VRCV37        -0.244   0.8082   

RC_1_VRCV39        -0.438   0.6636   

RC_1_VRCV4         -0.149   0.8822   

RC_1_VRCV40        -0.658   0.5141   

RC_1_VRCV41         0.382   0.7040   

RC_1_VRCV42        -0.079   0.9377   

RC_1_VRCV48        -1.022   0.3123   

RC_1_VRCV51        -0.830   0.4112   

RC_1_VRCV52        -1.324   0.1926   

RC_1_VRCV53        -1.465   0.1502   
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RC_1_VRCV54        -0.298   0.7674   

RC_1_VRCV55         0.021   0.9837   

RC_1_VRCV57        -0.415   0.6805   

RC_1_VRCV59         1.047   0.3011   

RC_1_VRCV6         -0.116   0.9080   

RC_1_VRCV7          0.259   0.7965   

RC_1_VRCV8          1.096   0.2793 

Model 7 

Type III Analysis of Variance Table with Satterthwaite's 

method 

      Sum Sq  Mean Sq NumDF  DenDF F value Pr(>F) 

DIV 0.062847 0.062847     1 181.92   0.017 0.8965 

> summary(mixed.mod7) 

Linear mixed model fit by REML. t-tests use 

  Satterthwaite's method [lmerModLmerTest] 

Formula: HEDGES ~ DIV + (1 | Study_ID) 

   Data: MST_RC_ASD_IMP_WD 

Weights: 1/VAR_G 

 

REML criterion at convergence: 1263 

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-3.3575 -0.4104  0.0825  0.7565  3.1825  

 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 Study_ID (Intercept) 0.8663   0.9307   

 Residual             3.7039   1.9246   

Number of obs: 368, groups:  Study_ID, 29 

 

Fixed effects: 

             Estimate Std. Error        df t value 

(Intercept)   1.01486    0.66485 144.65689   1.526 

DIV          -0.04031    0.30945 181.92414  -0.130 

            Pr(>|t|) 

(Intercept)    0.129 

DIV            0.897 

 

Correlation of Fixed Effects: 

    (Intr) 

DIV -0.957 

Model 8 

 

Type III Analysis of Variance Table with Satterthwaite's 

method 

         Sum Sq Mean Sq NumDF DenDF F value Pr(>F) 

W_SP     22.392  3.7320     6    69  0.9968 0.4346 

HC_SP     1.420  0.4735     3    69  0.1265 0.9441 

RC_1_SP 110.846  2.1317    52    69  0.5694 0.9824 

>  summary(mixed.mod5) 

Linear mixed model fit by REML. t-tests use 

  Satterthwaite's method [lmerModLmerTest] 

Formula:  
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HEDGES ~ W_SP + HC_SP + RC_1_SP + (1 | Study_ID) 

   Data: MST_RC_ASD_IMP_YD 

Weights: 1/VAR_G 

 

REML criterion at convergence: 249.7 

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-2.2813 -0.1420  0.0000  0.1533  2.1696  

 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 Study_ID (Intercept) 0.000    0.000    

 Residual             3.744    1.935    

Number of obs: 131, groups:  Study_ID, 18 

 

Fixed effects: 

                                           Estimate 

(Intercept)                                -0.73000 

W_SPO.aegyptiaca                            0.64108 

W_SPO.cernua                                0.57829 

W_SPO.crenata                              -0.22143 

W_SPO.ramosa                                0.72935 

W_SPPhelipanche aegyptiaca                 -1.90950 

W_SPS.hermonthica                           1.44046 

HC_SPMaize                                 -0.67773 

HC_SPPea                                   -0.41639 

HC_SPPearl millet                           0.02066 

RC_1_SPAubergine                           -0.02435 

RC_1_SPBarley                               1.41782 

RC_1_SPBasil                                0.61782 

RC_1_SPBerseem                              0.96476 

RC_1_SPBlack-eyed pea                     -12.88050 

RC_1_SPBroccoli                             1.09143 

RC_1_SPBrown Indian Hemp                  -17.09050 

RC_1_SPBrussel sprout                       1.23555 

RC_1_SPCabbage                              1.20338 

RC_1_SPCanola                               1.30210 

RC_1_SPCauliflower                          1.26324 

RC_1_SPChickpea                             1.13782 

RC_1_SPCommon bean                          0.41881 

RC_1_SPCommon vetch                         0.34892 

RC_1_SPCoriander                            0.84782 

RC_1_SPCotton                              -1.28046 

RC_1_SPCowpea                              -0.22484 

RC_1_SPCrotalaria grahamiana               -0.62891 

RC_1_SPCrotalaria juncea                   -0.48829 

RC_1_SPCumin                                0.83782 

RC_1_SPD. distortum                        -3.43273 

RC_1_SPFaba bean                            0.03782 

RC_1_SPFallow                              -0.07770 

RC_1_SPFenugreek                           -0.60000 

RC_1_SPFlax                                 0.09927 

RC_1_SPGarden pea                          -0.10463 
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RC_1_SPGarlic                              -0.16025 

RC_1_SPGroundnut                           -0.17735 

RC_1_SPLentil                               0.76861 

RC_1_SPLinseed                             -0.12000 

RC_1_SPMaize                               -0.16624 

RC_1_SPMaize/Cowpea/ Soya bean/ Groundnut   0.27727 

RC_1_SPMung bean                            0.07902 

RC_1_SPNarbon vetch                         0.70782 

RC_1_SPOnion                               -0.11000 

RC_1_SPPepper                              -0.19980 

RC_1_SPPigeon pea                          -0.86533 

RC_1_SPSenna didymobotrya                  -1.52273 

RC_1_SPSenna occidentalis                   0.77727 

RC_1_SPSenna spectabilis                   -1.67773 

RC_1_SPSesame                              -0.84112 

RC_1_SPSesbania cinerascens                -2.28273 

RC_1_SPSesbania sesban                     -1.20603 

RC_1_SPSmooth vetch                         0.55782 

RC_1_SPSnap bean                           -0.86000 

RC_1_SPSorhgum                             -0.03784 

RC_1_SPSoya bean                           -0.29305 

RC_1_SPSunflower                           -0.19829 

RC_1_SPTephrosia vogelii                   -3.05273 

RC_1_SPTithonia diversifolia               -4.89273 

RC_1_SPTomato                               0.14576 

RC_1_SPTurnip                               1.31196 

                                          Std. Error 

(Intercept)                                  1.32651 

W_SPO.aegyptiaca                             1.46762 

W_SPO.cernua                                 1.46591 

W_SPO.crenata                                1.42555 

W_SPO.ramosa                                 0.92888 

W_SPPhelipanche aegyptiaca                   1.64740 

W_SPS.hermonthica                            1.60523 

HC_SPMaize                                   2.19122 

HC_SPPea                                     0.84991 

HC_SPPearl millet                            2.13434 

RC_1_SPAubergine                             1.81558 

RC_1_SPBarley                                2.01521 

RC_1_SPBasil                                 2.03370 

RC_1_SPBerseem                               1.93124 

RC_1_SPBlack-eyed pea                        7.89172 

RC_1_SPBroccoli                              2.12207 

RC_1_SPBrown Indian Hemp                     9.84620 

RC_1_SPBrussel sprout                        2.14056 

RC_1_SPCabbage                               2.12424 

RC_1_SPCanola                                2.14924 

RC_1_SPCauliflower                           2.13615 

RC_1_SPChickpea                              2.01521 

RC_1_SPCommon bean                           1.81565 

RC_1_SPCommon vetch                          2.23590 

RC_1_SPCoriander                             2.02448 

RC_1_SPCotton                                2.00920 

RC_1_SPCowpea                                2.02883 
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RC_1_SPCrotalaria grahamiana                 2.14667 

RC_1_SPCrotalaria juncea                     2.32510 

RC_1_SPCumin                                 2.02448 

RC_1_SPD. distortum                          2.85334 

RC_1_SPFaba bean                             2.06113 

RC_1_SPFallow                                2.10388 

RC_1_SPFenugreek                             1.97323 

RC_1_SPFlax                                  1.84918 

RC_1_SPGarden pea                            1.97068 

RC_1_SPGarlic                                1.64025 

RC_1_SPGroundnut                             2.02191 

RC_1_SPLentil                                1.93862 

RC_1_SPLinseed                               1.89582 

RC_1_SPMaize                                 1.99909 

RC_1_SPMaize/Cowpea/ Soya bean/ Groundnut    2.20157 

RC_1_SPMung bean                             1.95049 

RC_1_SPNarbon vetch                          2.02448 

RC_1_SPOnion                                 1.89582 

RC_1_SPPepper                                1.66494 

RC_1_SPPigeon pea                            2.06578 

RC_1_SPSenna didymobotrya                    2.44337 

RC_1_SPSenna occidentalis                    2.36552 

RC_1_SPSenna spectabilis                     2.24785 

RC_1_SPSesame                                1.68603 

RC_1_SPSesbania cinerascens                  2.57032 

RC_1_SPSesbania sesban                       2.16264 

RC_1_SPSmooth vetch                          2.03370 

RC_1_SPSnap bean                             2.03856 

RC_1_SPSorhgum                               2.03008 

RC_1_SPSoya bean                             2.01644 

RC_1_SPSunflower                             2.31703 

RC_1_SPTephrosia vogelii                     2.75317 

RC_1_SPTithonia diversifolia                 3.31465 

RC_1_SPTomato                                1.85075 

RC_1_SPTurnip                                2.15843 

                                                 df 

(Intercept)                                69.00000 

W_SPO.aegyptiaca                           69.00000 

W_SPO.cernua                               69.00000 

W_SPO.crenata                              69.00000 

W_SPO.ramosa                               69.00000 

W_SPPhelipanche aegyptiaca                 69.00000 

W_SPS.hermonthica                          69.00000 

HC_SPMaize                                 69.00000 

HC_SPPea                                   69.00000 

HC_SPPearl millet                          69.00000 

RC_1_SPAubergine                           69.00000 

RC_1_SPBarley                              69.00000 

RC_1_SPBasil                               69.00000 

RC_1_SPBerseem                             69.00000 

RC_1_SPBlack-eyed pea                      69.00000 

RC_1_SPBroccoli                            69.00000 

RC_1_SPBrown Indian Hemp                   69.00000 

RC_1_SPBrussel sprout                      69.00000 
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RC_1_SPCabbage                             69.00000 

RC_1_SPCanola                              69.00000 

RC_1_SPCauliflower                         69.00000 

RC_1_SPChickpea                            69.00000 

RC_1_SPCommon bean                         69.00000 

RC_1_SPCommon vetch                        69.00000 

RC_1_SPCoriander                           69.00000 

RC_1_SPCotton                              69.00000 

RC_1_SPCowpea                              69.00000 

RC_1_SPCrotalaria grahamiana               69.00000 

RC_1_SPCrotalaria juncea                   69.00000 

RC_1_SPCumin                               69.00000 

RC_1_SPD. distortum                        69.00000 

RC_1_SPFaba bean                           69.00000 

RC_1_SPFallow                              69.00000 

RC_1_SPFenugreek                           69.00000 

RC_1_SPFlax                                69.00000 

RC_1_SPGarden pea                          69.00000 

RC_1_SPGarlic                              69.00000 

RC_1_SPGroundnut                           69.00000 

RC_1_SPLentil                              69.00000 

RC_1_SPLinseed                             69.00000 

RC_1_SPMaize                               69.00000 

RC_1_SPMaize/Cowpea/ Soya bean/ Groundnut  69.00000 

RC_1_SPMung bean                           69.00000 

RC_1_SPNarbon vetch                        69.00000 

RC_1_SPOnion                               69.00000 

RC_1_SPPepper                              69.00000 

RC_1_SPPigeon pea                          69.00000 

RC_1_SPSenna didymobotrya                  69.00000 

RC_1_SPSenna occidentalis                  69.00000 

RC_1_SPSenna spectabilis                   69.00000 

RC_1_SPSesame                              69.00000 

RC_1_SPSesbania cinerascens                69.00000 

RC_1_SPSesbania sesban                     69.00000 

RC_1_SPSmooth vetch                        69.00000 

RC_1_SPSnap bean                           69.00000 

RC_1_SPSorhgum                             69.00000 

RC_1_SPSoya bean                           69.00000 

RC_1_SPSunflower                           69.00000 

RC_1_SPTephrosia vogelii                   69.00000 

RC_1_SPTithonia diversifolia               69.00000 

RC_1_SPTomato                              69.00000 

RC_1_SPTurnip                              69.00000 

                                          t value 

(Intercept)                                -0.550 

W_SPO.aegyptiaca                            0.437 

W_SPO.cernua                                0.394 

W_SPO.crenata                              -0.155 

W_SPO.ramosa                                0.785 

W_SPPhelipanche aegyptiaca                 -1.159 

W_SPS.hermonthica                           0.897 

HC_SPMaize                                 -0.309 

HC_SPPea                                   -0.490 
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HC_SPPearl millet                           0.010 

RC_1_SPAubergine                           -0.013 

RC_1_SPBarley                               0.704 

RC_1_SPBasil                                0.304 

RC_1_SPBerseem                              0.500 

RC_1_SPBlack-eyed pea                      -1.632 

RC_1_SPBroccoli                             0.514 

RC_1_SPBrown Indian Hemp                   -1.736 

RC_1_SPBrussel sprout                       0.577 

RC_1_SPCabbage                              0.566 

RC_1_SPCanola                               0.606 

RC_1_SPCauliflower                          0.591 

RC_1_SPChickpea                             0.565 

RC_1_SPCommon bean                          0.231 

RC_1_SPCommon vetch                         0.156 

RC_1_SPCoriander                            0.419 

RC_1_SPCotton                              -0.637 

RC_1_SPCowpea                              -0.111 

RC_1_SPCrotalaria grahamiana               -0.293 

RC_1_SPCrotalaria juncea                   -0.210 

RC_1_SPCumin                                0.414 

RC_1_SPD. distortum                        -1.203 

RC_1_SPFaba bean                            0.018 

RC_1_SPFallow                              -0.037 

RC_1_SPFenugreek                           -0.304 

RC_1_SPFlax                                 0.054 

RC_1_SPGarden pea                          -0.053 

RC_1_SPGarlic                              -0.098 

RC_1_SPGroundnut                           -0.088 

RC_1_SPLentil                               0.396 

RC_1_SPLinseed                             -0.063 

RC_1_SPMaize                               -0.083 

RC_1_SPMaize/Cowpea/ Soya bean/ Groundnut   0.126 

RC_1_SPMung bean                            0.041 

RC_1_SPNarbon vetch                         0.350 

RC_1_SPOnion                               -0.058 

RC_1_SPPepper                              -0.120 

RC_1_SPPigeon pea                          -0.419 

RC_1_SPSenna didymobotrya                  -0.623 

RC_1_SPSenna occidentalis                   0.329 

RC_1_SPSenna spectabilis                   -0.746 

RC_1_SPSesame                              -0.499 

RC_1_SPSesbania cinerascens                -0.888 

RC_1_SPSesbania sesban                     -0.558 

RC_1_SPSmooth vetch                         0.274 

RC_1_SPSnap bean                           -0.422 

RC_1_SPSorhgum                             -0.019 

RC_1_SPSoya bean                           -0.145 

RC_1_SPSunflower                           -0.086 

RC_1_SPTephrosia vogelii                   -1.109 

RC_1_SPTithonia diversifolia               -1.476 

RC_1_SPTomato                               0.079 

RC_1_SPTurnip                               0.608 

                                          Pr(>|t|)   
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(Intercept)                                 0.5839   

W_SPO.aegyptiaca                            0.6636   

W_SPO.cernua                                0.6944   

W_SPO.crenata                               0.8770   

W_SPO.ramosa                                0.4350   

W_SPPhelipanche aegyptiaca                  0.2504   

W_SPS.hermonthica                           0.3727   

HC_SPMaize                                  0.7580   

HC_SPPea                                    0.6257   

HC_SPPearl millet                           0.9923   

RC_1_SPAubergine                            0.9893   

RC_1_SPBarley                               0.4841   

RC_1_SPBasil                                0.7622   

RC_1_SPBerseem                              0.6190   

RC_1_SPBlack-eyed pea                       0.1072   

RC_1_SPBroccoli                             0.6087   

RC_1_SPBrown Indian Hemp                    0.0871 . 

RC_1_SPBrussel sprout                       0.5657   

RC_1_SPCabbage                              0.5729   

RC_1_SPCanola                               0.5466   

RC_1_SPCauliflower                          0.5562   

RC_1_SPChickpea                             0.5742   

RC_1_SPCommon bean                          0.8183   

RC_1_SPCommon vetch                         0.8764   

RC_1_SPCoriander                            0.6767   

RC_1_SPCotton                               0.5260   

RC_1_SPCowpea                               0.9121   

RC_1_SPCrotalaria grahamiana                0.7704   

RC_1_SPCrotalaria juncea                    0.8343   

RC_1_SPCumin                                0.6803   

RC_1_SPD. distortum                         0.2331   

RC_1_SPFaba bean                            0.9854   

RC_1_SPFallow                               0.9706   

RC_1_SPFenugreek                            0.7620   

RC_1_SPFlax                                 0.9573   

RC_1_SPGarden pea                           0.9578   

RC_1_SPGarlic                               0.9225   

RC_1_SPGroundnut                            0.9304   

RC_1_SPLentil                               0.6930   

RC_1_SPLinseed                              0.9497   

RC_1_SPMaize                                0.9340   

RC_1_SPMaize/Cowpea/ Soya bean/ Groundnut   0.9001   

RC_1_SPMung bean                            0.9678   

RC_1_SPNarbon vetch                         0.7277   

RC_1_SPOnion                                0.9539   

RC_1_SPPepper                               0.9048   

RC_1_SPPigeon pea                           0.6766   

RC_1_SPSenna didymobotrya                   0.5352   

RC_1_SPSenna occidentalis                   0.7435   

RC_1_SPSenna spectabilis                    0.4580   

RC_1_SPSesame                               0.6195   

RC_1_SPSesbania cinerascens                 0.3776   

RC_1_SPSesbania sesban                      0.5789   

RC_1_SPSmooth vetch                         0.7847   
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RC_1_SPSnap bean                            0.6744   

RC_1_SPSorhgum                              0.9852   

RC_1_SPSoya bean                            0.8849   

RC_1_SPSunflower                            0.9320   

RC_1_SPTephrosia vogelii                    0.2714   

RC_1_SPTithonia diversifolia                0.1445   

RC_1_SPTomato                               0.9375   

RC_1_SPTurnip                               0.5453   

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation matrix not shown by default, as p = 62 > 12. 

Use print(x, correlation=TRUE)  or 

    vcov(x)        if you need it 

 

fit warnings: 

fixed-effect model matrix is rank deficient so dropping 3 

columns / coefficients 

optimizer (nloptwrap) convergence code: 0 (OK) 

boundary (singular) fit: see ?isSingular 

 

 

 

 

Model 9 

Type III Analysis of Variance Table with Satterthwaite's 

method 

    Sum Sq Mean Sq NumDF DenDF F value Pr(>F) 

DIV 1.3665  1.3665     1 125.4  0.4513  0.503 

> summary(mixed.mod9) 

Linear mixed model fit by REML. t-tests use 

  Satterthwaite's method [lmerModLmerTest] 

Formula: HEDGES ~ DIV + (1 | Study_ID) 

   Data: MST_RC_ASD_IMP_YD 

Weights: 1/VAR_G 

 

REML criterion at convergence: 399.2 

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-2.3063 -0.6924  0.0000  0.3082  2.5576  

 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 Study_ID (Intercept) 0.06568  0.2563   

 Residual             3.02806  1.7401   

Number of obs: 131, groups:  Study_ID, 18 

 

Fixed effects: 

            Estimate Std. Error       df t value 

(Intercept)  -0.9285     0.8711 121.3603  -1.066 

DIV           0.2866     0.4266 125.3965   0.672 

            Pr(>|t|) 
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(Intercept)    0.289 

DIV            0.503 

 

Correlation of Fixed Effects: 

    (Intr) 

DIV -0.992 

Model 10 

 

Type III Analysis of Variance Table with Satterthwaite's 

method 

       Sum Sq Mean Sq NumDF DenDF F value Pr(>F) 

HC_V   20.481  2.9259     7     8  1.5439 0.2772 

RC_1_V 18.622  1.0345    18     8  0.5459 0.8637 

> summary(mixed.mod10) 

Linear mixed model fit by REML. t-tests use 

  Satterthwaite's method [lmerModLmerTest] 

Formula: HEDGES ~ HC_V + RC_1_V + (1 | Study_ID) 

   Data: MST_RC_ASD_IMP_YD 

Weights: 1/VAR_G 

 

REML criterion at convergence: 25.6 

 

Scaled residuals:  

   Min     1Q Median     3Q    Max  

-1.069  0.000  0.000  0.000  1.253  

 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 Study_ID (Intercept) 0.000    0.000    

 Residual             1.895    1.377    

Number of obs: 34, groups:  Study_ID, 8 

 

Fixed effects: 

             Estimate Std. Error        df t value 

(Intercept)  -0.14000    0.41299   8.00000  -0.339 

HC_VHCV5      0.42000    0.85970   8.00000   0.489 

HC_VHCV6      0.03000    0.58405   8.00000   0.051 

HC_VHCV61     0.83000    0.85970   8.00000   0.965 

HC_VHCV67    -0.08792    0.73165   8.00000  -0.120 

HC_VHCV7      0.51000    1.10987   8.00000   0.460 

HC_VHCV71   -15.38000    5.42503   8.00000  -2.835 

HC_VHCV73    -0.43000    0.56760   8.00000  -0.758 

RC_1_VRCV11  -0.43000    1.16811   8.00000  -0.368 

RC_1_VRCV12  -0.49000    0.87066   8.00000  -0.563 

RC_1_VRCV2   -0.43000    1.05741   8.00000  -0.407 

RC_1_VRCV29   0.51204    0.87448   8.00000   0.586 

RC_1_VRCV30   0.36792    0.85136   8.00000   0.432 

RC_1_VRCV31   0.53973    0.86901   8.00000   0.621 

RC_1_VRCV32   0.57859    0.88519   8.00000   0.654 

RC_1_VRCV33   0.47987    0.85410   8.00000   0.562 

RC_1_VRCV34   0.58845    0.89644   8.00000   0.656 

RC_1_VRCV37  -0.32000    0.90271   8.00000  -0.354 

RC_1_VRCV39  -0.46000    1.08396   8.00000  -0.424 

RC_1_VRCV40  -1.18000    1.09266   8.00000  -1.080 
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RC_1_VRCV50   1.74000    7.24399   8.00000   0.240 

RC_1_VRCV51   0.82000    7.45542   8.00000   0.110 

RC_1_VRCV52  -2.40000    8.24598   8.00000  -0.291 

RC_1_VRCV53  -4.21000    8.72178   8.00000  -0.483 

RC_1_VRCV54  -0.73000    7.82501   8.00000  -0.093 

RC_1_VRCV55   8.63000    5.96733   8.00000   1.446 

            Pr(>|t|)   

(Intercept)    0.743   

HC_VHCV5       0.638   

HC_VHCV6       0.960   

HC_VHCV61      0.363   

HC_VHCV67      0.907   

HC_VHCV7       0.658   

HC_VHCV71      0.022 * 

HC_VHCV73      0.470   

RC_1_VRCV11    0.722   

RC_1_VRCV12    0.589   

RC_1_VRCV2     0.695   

RC_1_VRCV29    0.574   

RC_1_VRCV30    0.677   

RC_1_VRCV31    0.552   

RC_1_VRCV32    0.532   

RC_1_VRCV33    0.590   

RC_1_VRCV34    0.530   

RC_1_VRCV37    0.732   

RC_1_VRCV39    0.682   

RC_1_VRCV40    0.312   

RC_1_VRCV50    0.816   

RC_1_VRCV51    0.915   

RC_1_VRCV52    0.778   

RC_1_VRCV53    0.642   

RC_1_VRCV54    0.928   

RC_1_VRCV55    0.186   

 

Appendix 3D : R Scripts 

Model 1  

(Intercrop Weed Density “G” ~ Weed Species + Host Crop Species 

+ Intercrop Species) 

> MST_IC_ASD_IMP_WD<-read.csv("MST_IC_ASD_IMP_WD.CSV") 

>  

> mixed.mod1 <- lmer(HEDGES ~  # this is the individual effect 

size as the response variable 

+                      W_SP+HC_SP+IC_SP+   # this is the fixed 

effects - so you could add the grouping variable here and it 

will tell you whether there is a difference in  

+                     # effect size between different levels 

of the variable 

+                     (1|Study_ID) ,                                                 

# this is the random effects (in this case grouping multiple 

effect sizes in each study together) 

+                   data=MST_IC_ASD_IMP_WD, 

+                   weights = 1/VAR_G,                                          

# this is the weighting variable required for a meta-analysis 

(var.g = the individual effect size variances) 
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+                   na.action = "na.omit") 

fixed-effect model matrix is rank deficient so dropping 7 

columns / coefficients 

> anova(mixed.mod1) 

> summary(mixed.mod1) 

 

Model 2  

(Intercrop Weed Density “G” ~ Host Crop Variety + Intercrop 

Variety) 

MST_IC_ASD_IMP_WD<-read.csv("MST_IC_ASD_IMP_WD.CSV") 

mixed.mod2 <- lmer(HEDGES ~   

                   HC_V +  IC_V+    

                     (1|Study_ID) ,                                                  

                   data=MST_IC_ASD_IMP_WD, 

                   weights = 1/VAR_G,                                         

                   na.action = "na.omit") 

anova(mixed.mod2) 

summary(mixed.mod2) 

Model 3 

(Intercrop Yield “G” ~ Weed Species + Host Crop Species + 

Intercrop Species) 

mixed.mod3 <- lmer(HEDGES ~   

                     HC_SP+ IC_SP+ W_SP+ 

                     (1|Study_ID) ,                                                  

                   data=MST_IC_ASD_IMP_YD, 

                   weights = 1/VAR_G,                                         

                   na.action = "na.omit") 

anova(mixed.mod3) 

summary(mixed.mod3) 

Model 4  

(Intercrop Yield “G” ~ Host Crop Variety + Intercrop Variety) 

MST_IC_ASD_IMP_YD<-read.csv("MST_IC_ASD_IMP_YD.CSV") 

mixed.mod4 <- lmer(HEDGES ~   

                   HC_V + IC_V+    

                     (1|Study_ID) ,                                                  

                   data=MST_IC_ASD_IMP_YD, 

                   weights = 1/VAR_G,                                         

                   na.action = "na.omit") 

anova(mixed.mod4) 

summary(mixed.mod4) 

Model 5 

(Rotation crop Weed Density “G” ~ Weed Species + Host Crop 

Species + Rotation crop Species 1) 

mixed.mod5 <- lmer(HEDGES ~   

                     W_SP+ HC_SP+ RC_1_SP+  

                     (1|Study_ID) ,                                                  

                   data=MST_RC_ASD_IMP_WD, 

                   weights = 1/VAR_G,                                         

                   na.action = "na.omit") 

anova(mixed.mod5) 

summary(mixed.mod5) 

Model 6  

(Rotation crop Weed Density “G” ~ Host Crop Variety + Rotation 

Crop 1 Variety) 
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MST_RC_ASD_IMP_WD<-read.csv("MST_RC_ASD_IMP_WD.CSV") 

mixed.mod6 <- lmer(HEDGES ~   

                     HC_V+ RC_1_V+  

                     (1|Study_ID) ,                                                  

                   data=MST_RC_ASD_IMP_WD, 

                   weights = 1/VAR_G,                                         

                   na.action = "na.omit") 

anova(mixed.mod6) 

summary(mixed.mod6) 

 

Model 7 

(Rotation crop Yield “G” ~ Weed Species + Host Crop Species + 

Rotation crop 1 Species) 

MST_RC_ASD_IMP_YD<-read.csv("MST_RC_ASD_IMP_YD.CSV") 

 

mixed.mod7 <- lmer(HEDGES ~   

                     W_SP + HC_SP + RC_1_SP+  

                     (1|Study_ID) ,                                                  

                   data=MST_RC_ASD_IMP_YD, 

                   weights = 1/VAR_G,                                         

                   na.action = "na.omit") 

anova(mixed.mod7) 

summary(mixed.mod7) 

Model 8  

(Rotation crop Yield “G” ~ Host Crop Variety + Rotation Crop 1 

Variety) 

rm(list=ls()) 

library(lme4) 

library(lmerTest) 

 

setwd("C:/Users/Ragenaky/Desktop/Thesis chapter 3/Data/Master 

Sheets") 

MST_RC_ASD_IMP_YD<-read.csv("MST_RC_ASD_IMP_YD.CSV") 

mixed.mod8 <- lmer(HEDGES ~   

                     HC_V + RC_1_V+  

                     (1|Study_ID) ,                                                  

                   data=MST_RC_ASD_IMP_YD, 

                   weights = 1/VAR_G,                                         

                   na.action = "na.omit") 

anova(mixed.mod8) 

summary(mixed.mod8) 

Model 9 

MST_IC_ASD_IMP_WD<-read.csv("MST_IC_ASD_IMP_WD.CSV") 

 

LM9 <- lm(Control_Mean ~   

             Treat_Mean,                                                  

           data=MST_IC_ASD_IMP_WD,) 

anova(LM9) 

summary(LM9) 

Model 10 

MST_IC_ASD_IMP_YD<-read.csv("MST_IC_ASD_IMP_YD.CSV") 

 

LM10 <- lm(Control_Mean ~   

             Treat_Mean,                                                  



223 
 

           data=MST_IC_ASD_IMP_YD,) 

anova(LM10) 

summary(LM10) 

Model 11 

MST_RC_ASD_IMP_WD<-read.csv("MST_RC_ASD_IMP_WD.CSV") 

 

LM11 <- lm(Control_Mean ~   

             Treat_Mean,                                                  

           data=MST_RC_ASD_IMP_WD,) 

anova(LM11) 

summary(LM11) 

Model 12 

MST_RC_ASD_IMP_YD<-read.csv("MST_RC_ASD_IMP_YD.CSV") 

 

LM12 <- lm(Control_Mean ~   

             Treat_Mean,                                                  

           data=MST_RC_ASD_IMP_YD,) 

anova(LM12) 

summary(LM12) 

 

Model 13 

mixed.mod13 <- lmer(HEDGES ~   

                     DIV +  

                     (1|Study_ID) ,                                                  

                   data=MST_RC_ASD_IMP_WD, 

                   weights = 1/VAR_G,                                         

                   na.action = "na.omit") 

anova(mixed.mod13) 

summary(mixed.mod13) 

 

Model 14 

MST_RC_ASD_IMP_YD<-read.csv("MST_RC_ASD_IMP_YD.CSV") 

mixed.mod14 <- lmer(HEDGES ~   

                     DIV +  

                     (1|Study_ID) ,                                                  

                   data=MST_RC_ASD_IMP_YD, 

                   weights = 1/VAR_G,                                         

                   na.action = "na.omit") 

anova(mixed.mod14) 

summary(mixed.mod14) 

 

Climate v Weed Density 

 

rm(list=ls())# wipes slate clean 

library(mgcv) 

library(lme4) 

library(lmerTest) 

library(ggplot2) 

library(dplyr) 

library( geosphere ) 

library( stringr) 

#Calculate a standard error 

stderr <- function(x, ...) sd(x, na.rm = TRUE) / 

sqrt(length(is.na(x == FALSE)) ) 
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### Install this When you start for Multiplots!!!##### 

# 

# ggplot objects can be passed in ..., or to plotlist (as a 

list of ggplot objects) 

# - cols:   Number of columns in layout 

# - layout: A matrix specifying the layout. If present, 'cols' 

is ignored. 

# 

# If the layout is something like matrix(c(1,2,3,3), nrow=2, 

byrow=TRUE), 

# then plot 1 will go in the upper left, 2 will go in the 

upper right, and 

# 3 will go all the way across the bottom. 

# 

multiplot <- function(..., plotlist=NULL, file, cols=1, 

layout=NULL) { 

  library(grid) 

   

  # Make a list from the ... arguments and plotlist 

  plots <- c(list(...), plotlist) 

   

  numPlots = length(plots) 

   

  # If layout is NULL, then use 'cols' to determine layout 

  if (is.null(layout)) { 

    # Make the panel 

    # ncol: Number of columns of plots 

    # nrow: Number of rows needed, calculated from # of cols 

    layout <- matrix(seq(1, cols * ceiling(numPlots/cols)), 

                     ncol = cols, nrow = 

ceiling(numPlots/cols)) 

  } 

   

  if (numPlots==1) { 

    print(plots[[1]]) 

     

  } else { 

    # Set up the page 

    grid.newpage() 

    pushViewport(viewport(layout = grid.layout(nrow(layout), 

ncol(layout)))) 

     

    # Make each plot, in the correct location 

    for (i in 1:numPlots) { 

      # Get the i,j matrix positions of the regions that 

contain this subplot 

      matchidx <- as.data.frame(which(layout == i, arr.ind = 

TRUE)) 

       

      print(plots[[i]], vp = viewport(layout.pos.row = 

matchidx$row, 

                                      layout.pos.col = 

matchidx$col)) 

    } 
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  } 

} 

 

 

#Fig 4a 

 

Open_Data_IC_RC_WD<-read.csv("Open_Data_IC_RC_WD.CSV") 

 

# Mean rainfall 

model1 <- lm( log( Control_Mean + 1) ~  Mean_RF, data = 

Open_Data_IC_RC_WD ) 

anova(model1) 

summary(model1) 

 

Open_Data_IC_WDA <- Open_Data_IC_RC_WD 

Open_Data_IC_WDA$rainCat <- round(Open_Data_IC_WDA$ Mean_RF / 

1.5) * 1.5 

summaryRain <- Open_Data_IC_WDA %>%  

group_by( rainCat ) %>% 

summarise( meanN = mean(log( Control_Mean + 1), na.rm = TRUE), 

SE = stderr(log( Control_Mean + 1), na.rm = TRUE)  ) 

 

fig4a <- ggplot( summaryRain,aes(x = rainCat, y = meanN) ) + 

  geom_point(size = 1) +  

geom_errorbar(aes( ymin = meanN - SE, ymax = meanN + SE), 

width = 0.5, size = 0.25 ) + 

  theme_bw() +  

  theme( panel.border = element_blank(),  

         panel.grid.major = element_blank(), 

         panel.grid.minor = element_blank(),  

         axis.line = element_line(colour = 'black', size = 

0.25), 

         axis.ticks = element_line(colour = "black", size = 

0.25), 

         axis.ticks.length=unit(-0.25, "cm"),  

         axis.text.x = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10),  

         axis.text.y = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10), 

         legend.position="none", 

         axis.title.x=element_text( size = 12 ), 

         axis.title.y=element_text( size = 12 ) ) + 

  labs( x = "Mean rainfall (mm)", y = "Log Weed density") +  

  theme(axis.text.x = element_text(angle = 90))  

fig4a 

 

# Precipitation seasonality 

model2 <- lm( log( Control_Mean + 1) ~  RFCV, data = 

Open_Data_IC_RC_WD ) 

anova(model2) 

summary(model2) 
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Open_Data_IC_WDA <- Open_Data_IC_RC_WD 

Open_Data_IC_WDA$RFCVCat <- round(Open_Data_IC_WDA$ RFCV / 

1.5) * 1.5 

summaryRFCV <- Open_Data_IC_WDA %>%  

  group_by( RFCVCat ) %>% 

  summarise( meanN = mean(log( Control_Mean + 1), na.rm = 

TRUE), SE = stderr(log( Control_Mean + 1), na.rm = TRUE)  ) 

 

fig4b <- ggplot(summaryRFCV, aes(x = RFCVCat, y = meanN) ) + 

  geom_point(size = 1) +  

  geom_errorbar(aes( ymin = meanN - SE, ymax = meanN + SE), 

width = 0.5, size = 0.25 ) + 

  theme_bw() +  

  theme( panel.border = element_blank(),  

         panel.grid.major = element_blank(), 

         panel.grid.minor = element_blank(),  

         axis.line = element_line(colour = 'black', size = 

0.25), 

         axis.ticks = element_line(colour = "black", size = 

0.25), 

         axis.ticks.length=unit(-0.25, "cm"),  

         axis.text.x = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10),  

         axis.text.y = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10), 

         legend.position="none", 

         axis.title.x=element_text( size = 12 ), 

         axis.title.y=element_text( size = 12 ) ) + 

  labs( x = "Precipitation seasonality (CV)", y = "Log Weed 

density") +  

  theme(axis.text.x = element_text(angle = 90)) 

fig4b  

 

# ------------------------------ 

 

# altitude 

model3 <- lm( log( Control_Mean + 1) ~  Alt, data = 

Open_Data_IC_RC_WD) 

anova(model3) 

summary(model3) 

 

Open_Data_IC_WDA <- Open_Data_IC_RC_WD 

Open_Data_IC_WDA$altCat <- round(Open_Data_IC_WDA$Alt / 100) * 

100 

summaryAlt <- Open_Data_IC_WDA %>%  

  group_by( altCat ) %>% 

  summarise( meanN = mean(log( Control_Mean + 1), na.rm = 

TRUE), SE = stderr(log( Control_Mean + 1), na.rm = TRUE)  ) 

 

 

 

fig4c <- ggplot(summaryAlt, aes(x = altCat, y = meanN) ) + 
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  geom_point(size = 1) +  

  geom_errorbar(aes( ymin = meanN - SE, ymax = meanN + SE), 

width = 0.5, size = 0.25 ) + 

  theme_bw() +  

  theme( panel.border = element_blank(),  

         panel.grid.major = element_blank(), 

         panel.grid.minor = element_blank(),  

         axis.line = element_line(colour = 'black', size = 

0.25), 

         axis.ticks = element_line(colour = "black", size = 

0.25), 

         axis.ticks.length=unit(-0.25, "cm"),  

         axis.text.x = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10),  

         axis.text.y = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10), 

         legend.position="none", 

         axis.title.x=element_text( size = 12 ), 

         axis.title.y=element_text( size = 12 ) ) + 

  labs( x = "Altitude (m)", y = "Log Weed density") +  

  theme(axis.text.x = element_text(angle = 90))  

fig4c 

 

# Mean temperature 

 

model4 <- lm( log( Control_Mean + 1) ~ Mean_TA, data = 

Open_Data_IC_RC_WD) 

anova(model4) 

summary(model4) 

 

 

Open_Data_IC_WDA <- Open_Data_IC_RC_WD 

Open_Data_IC_WDA$tempCat <- round(Open_Data_IC_WDA$Mean_TA / 

1) * 1 

summaryTemp <- Open_Data_IC_WDA %>%  

  group_by( tempCat ) %>% 

  summarise( meanN = mean (log( Control_Mean + 1), na.rm = 

TRUE), SE = stderr(log( Control_Mean + 1), na.rm = TRUE)  ) 

 

 

 

fig4d <- ggplot(summaryTemp, aes(x = tempCat, y = meanN) ) + 

  geom_point(size = 1) +  

  geom_errorbar(aes( ymin = meanN - SE, ymax = meanN + SE), 

width = 0.5, size = 0.25 ) + 

  theme_bw() +  

  theme( panel.border = element_blank(),  

         panel.grid.major = element_blank(), 

         panel.grid.minor = element_blank(),  

         axis.line = element_line(colour = 'black', size = 

0.25), 
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         axis.ticks = element_line(colour = "black", size = 

0.25), 

         axis.ticks.length=unit(-0.25, "cm"),  

         axis.text.x = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10),  

         axis.text.y = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10), 

         legend.position="none", 

         axis.title.x=element_text( size = 12 ), 

         axis.title.y=element_text( size = 12 ) ) + 

  labs( x = "Mean Temperature (\u00B0C)", y = "Log Weed 

Density") +  

  theme(axis.text.x = element_text(angle = 90))  

fig4d  

 

multiplot(fig4a + labs( tag = "A"), fig4b+ labs( tag = "B"), 

fig4c+ labs( tag = "C"), fig4d+ labs( tag = "D"), cols = 2) 

 

 

 

 

Climate v Yield 

 

#Fig 4a 

 

Open_Data_IC_RC_YD<-read.csv("Open_Data_IC_RC_YD.CSV") 

 

# Mean rainfall 

model1 <- lm  (Control_Mean  ~  Mean_RF, data = 

Open_Data_IC_RC_YD ) 

anova(model1) 

summary(model1) 

 

Open_Data_IC_WDA <- Open_Data_IC_RC_YD 

Open_Data_IC_WDA$rainCat <- round(Open_Data_IC_WDA$ Mean_RF / 

1.5) * 1.5 

summaryRain <- Open_Data_IC_WDA %>%  

  group_by( rainCat ) %>% 

  summarise( meanN = mean(Control_Mean , na.rm = TRUE), SE = 

stderr( Control_Mean , na.rm = TRUE)  ) 

 

fig4a <- ggplot( summaryRain,aes(x = rainCat, y = meanN) ) + 

  geom_point(size = 1) +  

  geom_errorbar(aes( ymin = meanN - SE, ymax = meanN + SE), 

width = 0.5, size = 0.25 ) + 

  theme_bw() +  

  theme( panel.border = element_blank(),  

         panel.grid.major = element_blank(), 

         panel.grid.minor = element_blank(),  

         axis.line = element_line(colour = 'black', size = 

0.25), 
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         axis.ticks = element_line(colour = "black", size = 

0.25), 

         axis.ticks.length=unit(-0.25, "cm"),  

         axis.text.x = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10),  

         axis.text.y = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10), 

         legend.position="none", 

         axis.title.x=element_text( size = 12 ), 

         axis.title.y=element_text( size = 12 ) ) + 

  labs( x = "Mean rainfall (mm)", y = "Yield (T/ha)") +  

  theme(axis.text.x = element_text(angle = 90))  

fig4a 

 

 

 

# Precipitation seasonality 

model2 <- lm( Control_Mean ~  RFCV, data = Open_Data_IC_RC_YD 

) 

anova(model2) 

summary(model2) 

 

Open_Data_IC_WDA <- Open_Data_IC_RC_YD 

Open_Data_IC_WDA$RFCVCat <- round(Open_Data_IC_WDA$ RFCV / 

1.5) * 1.5 

summaryRFCV <- Open_Data_IC_WDA %>%  

  group_by( RFCVCat ) %>% 

  summarise( meanN = mean( Control_Mean, na.rm = TRUE), SE = 

stderr(Control_Mean , na.rm = TRUE)  ) 

 

fig4b <- ggplot(summaryRFCV, aes(x = RFCVCat, y = meanN) ) + 

  geom_point(size = 1) +  

  geom_errorbar(aes( ymin = meanN - SE, ymax = meanN + SE), 

width = 0.5, size = 0.25 ) + 

  theme_bw() +  

  theme( panel.border = element_blank(),  

         panel.grid.major = element_blank(), 

         panel.grid.minor = element_blank(),  

         axis.line = element_line(colour = 'black', size = 

0.25), 

         axis.ticks = element_line(colour = "black", size = 

0.25), 

         axis.ticks.length=unit(-0.25, "cm"),  

         axis.text.x = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10),  

         axis.text.y = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10), 

         legend.position="none", 

         axis.title.x=element_text( size = 12 ), 

         axis.title.y=element_text( size = 12 ) ) + 
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  labs( x = "Precipitation seasonality (CV)", y = "Yield 

(T/ha)") +  

  theme(axis.text.x = element_text(angle = 90)) 

fig4b  

 

# ------------------------------ 

 

# altitude 

model3 <- lm( Control_Mean  ~  Alt, data = Open_Data_IC_RC_YD) 

anova(model3) 

summary(model3) 

 

Open_Data_IC_WDA <- Open_Data_IC_RC_YD 

Open_Data_IC_WDA$altCat <- round(Open_Data_IC_WDA$Alt / 100) * 

100 

summaryAlt <- Open_Data_IC_WDA %>%  

  group_by( altCat ) %>% 

  summarise( meanN = mean( Control_Mean, na.rm = TRUE), SE = 

stderr(Control_Mean , na.rm = TRUE)  ) 

 

fig4c <- ggplot(summaryAlt, aes(x = altCat, y = meanN) ) + 

  geom_point(size = 1) +  

  geom_errorbar(aes( ymin = meanN - SE, ymax = meanN + SE), 

width = 0.5, size = 0.25 ) + 

  theme_bw() +  

  theme( panel.border = element_blank(),  

         panel.grid.major = element_blank(), 

         panel.grid.minor = element_blank(),  

         axis.line = element_line(colour = 'black', size = 

0.25), 

         axis.ticks = element_line(colour = "black", size = 

0.25), 

         axis.ticks.length=unit(-0.25, "cm"),  

         axis.text.x = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10),  

         axis.text.y = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10), 

         legend.position="none", 

         axis.title.x=element_text( size = 12 ), 

         axis.title.y=element_text( size = 12 ) ) + 

  labs( x = "Altitude (m)", y = "Yield (T/ha)") +  

  theme(axis.text.x = element_text(angle = 90))  

fig4c 

 

# Mean temperature 

 

model4 <- lm( Control_Mean  ~ Mean_TA, data = 

Open_Data_IC_RC_YD) 

anova(model4) 

summary(model4) 

 

Open_Data_IC_WDA <- Open_Data_IC_RC_YD 
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Open_Data_IC_WDA$tempCat <- round(Open_Data_IC_WDA$Mean_TA / 

1) * 1 

summaryTemp <- Open_Data_IC_WDA %>%  

  group_by( tempCat ) %>% 

  summarise( meanN = mean( Control_Mean, na.rm = TRUE), SE = 

stderr(Control_Mean , na.rm = TRUE)  ) 

 

fig4d <- ggplot(summaryTemp, aes(x = tempCat, y = meanN) ) + 

  geom_point(size = 1) +  

  geom_errorbar(aes( ymin = meanN - SE, ymax = meanN + SE), 

width = 0.5, size = 0.25 ) + 

  theme_bw() +  

  theme( panel.border = element_blank(),  

         panel.grid.major = element_blank(), 

         panel.grid.minor = element_blank(),  

         axis.line = element_line(colour = 'black', size = 

0.25), 

         axis.ticks = element_line(colour = "black", size = 

0.25), 

         axis.ticks.length=unit(-0.25, "cm"),  

         axis.text.x = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10),  

         axis.text.y = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10), 

         legend.position="none", 

         axis.title.x=element_text( size = 12 ), 

         axis.title.y=element_text( size = 12 ) ) + 

  labs( x = "Mean Temperature (\u00B0C)", y = "Yield (T/ha)") 

+  

  theme(axis.text.x = element_text(angle = 90))  

fig4d  

 

multiplot(fig4a + labs( tag = "A"), fig4b+ labs( tag = "B"), 

fig4c+ labs( tag = "C"), fig4d+ labs( tag = "D"), cols = 2) 

 

Linear Model for Diversity and plots 

 

MST_RC_ASD_IMP_WD<-read.csv("MST_RC_ASD_IMP_WD.CSV") 

 

stderr <- function(x) sd(x) / sqrt(length(x)) 

 

MST_RC_ASD_IMP_WD$DIV <- as.factor(MST_RC_ASD_IMP_WD$DIV)#To 

change DIV to 4 level factor 

 

#Divide treatment by control to make weed density % difference 

MST_RC_ASD_IMP_WD$WDDif<- 

(MST_RC_ASD_IMP_WD$Treat_Mean/MST_RC_ASD_IMP_WD$Control_Mean)*

100 

 

#Look at diversity and change in weed density 

LM1 <- lm( WDDif  ~  DIV, data=MST_RC_ASD_IMP_WD) 

anova(LM1)          
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summary(LM1) 

 

coeffs <- data.frame( summary(LM1)$coefficients ) 

 

coeffs$names <- str_remove( rownames(coeffs), 

"MST_RC_ASD_IMP_WD" ) 

 

RCD<- c("1", "2", "3","4")#For the x tick labels 

 

fig5a <- ggplot(coeffs, aes(x =  names,Estimate, y = Estimate) 

) + 

  geom_point(size = 1) +  

  geom_errorbar(aes( ymin = Estimate - Std..Error, ymax 

=Estimate + Std..Error ), width = 0.2, size = 0.25 ) + 

  theme_bw() +  scale_x_discrete(labels= RCD)+ 

  theme( panel.border = element_blank(),  

         panel.grid.major = element_blank(), 

         panel.grid.minor = element_blank(),  

         axis.line = element_line(colour = 'black', size = 

0.25), 

         axis.ticks = element_line(colour = "black", size = 

0.25), 

         axis.ticks.length=unit(-0.25, "cm"),  

         axis.text.x = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10),  

         axis.text.y = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 8), 

         legend.position="none", 

         axis.title.x=element_text( size = 12 ), 

         axis.title.y=element_text( size = 12 ) ) + 

  labs( x = "Rotation Crop Diversity", y = "Density Change 

Coefficient") +  

  theme(axis.text.x = element_text(angle = 0, vjust = .7, 

hjust=.65)) 

fig5a 

 

fig5b<-ggplot(data = MST_RC_ASD_IMP_WD, aes(x=DIV, y=WDDif)) + 

  geom_boxplot(fill=c('red', 'Yellow', 'blue','green'))+ 

  labs( x = "Rotation Crop Diversity", y = "Weed Density 

Change") 

 

 

fig5b 

 

#Redo the LMER with diversity as a factor using effect size 

 

mixed.mod1 <- lmer(HEDGES ~   

                      DIV +  

                      (1|Study_ID) ,                                                  

                    data=MST_RC_ASD_IMP_WD, 

                    weights = 1/VAR_G,                                         

                    na.action = "na.omit") 
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anova(mixed.mod1) 

summary(mixed.mod1) 

 

coeffs <- data.frame( summary(mixed.mod1)$coefficients ) 

 

coeffs$names <- str_remove( rownames(coeffs), 

"MST_RC_ASD_IMP_WD" ) 

 

fig5c <- ggplot(coeffs, aes(x =  names,Estimate, y = Estimate) 

) + 

  geom_point(size = 1) +  

  geom_errorbar(aes( ymin = Estimate - Std..Error, ymax 

=Estimate + Std..Error ), width = 0.2, size = 0.25 ) + 

  theme_bw() +  scale_x_discrete(labels= RCD)+ 

  theme( panel.border = element_blank(),  

         panel.grid.major = element_blank(), 

         panel.grid.minor = element_blank(),  

         axis.line = element_line(colour = 'black', size = 

0.25), 

         axis.ticks = element_line(colour = "black", size = 

0.25), 

         axis.ticks.length=unit(-0.25, "cm"),  

         axis.text.x = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 

10),  

         axis.text.y = 

element_text(margin=unit(c(0.5,0.5,0.5,0.5), "cm"), size = 8), 

         legend.position="none", 

         axis.title.x=element_text( size = 12 ), 

         axis.title.y=element_text( size = 12 ) ) + 

  labs( x = "Rotation Crop Diversity", y = "Effect Size (g)") 

+  

  theme(axis.text.x = element_text(angle = 0, vjust = .7, 

hjust=.65)) 

 

fig5c 

 

fig5d<-ggplot(data = MST_RC_ASD_IMP_WD, aes(x=DIV, y=HEDGES)) 

+ 

  geom_boxplot(fill=c('grey', 'grey', 'grey','grey'))+ 

  labs( x = "Rotation Crop Diversity", y = "Effect Size (g)") 

 

 

fig5d 

 

 

 

Figure5e <- ggplot( MST_RC_ASD_IMP_WD, aes(x = DIV, y = 

HEDGES) ) +  

  geom_point( size = 1) + 

  geom_errorbar( aes(ymin = HEDGES - VAR_G, ymax = HEDGES + 

VAR_G, width = 0.1,  ))  + 

  theme_bw() +  

  theme( panel.border = element_blank(),  



234 
 

         panel.grid.major = element_blank(), 

         panel.grid.minor = element_blank(),  

         legend.position="none", 

         axis.line = element_line(colour = 'black', size = 

0.25), 

         axis.ticks = element_line(colour = "black", size = 

0.25), 

         axis.text.x = element_text(size = 10), 

         axis.text.y = element_text(size = 8), 

         axis.title.x=element_text(size = 14), 

         axis.title.y=element_text(size = 14) ) + 

  geom_hline(yintercept = 0, linetype  = "dashed") + 

  labs(x = "Rotation Crop Diversity") + labs( y = "Effect Size 

(g)", las=2) 

 

Figure5e 

 

multiplot(fig5a + labs( tag = "A"), fig5c+ labs( tag = "B"),  

cols = 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 4: Additional Figures 

 
Changes in weed density coefficients (A) and Effect size (B) and Rotation Crop diversity 
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Contingency tables Intercrop and Rotation
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Yield and climate plots 

 

Funnel plot for publication bias tests 

 


