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Abstract

Feedback optimization (FO) is a control paradigm that is gaining popularity for the
optimal steady-state operation of complex systems through the use of optimization
algorithms in closed-loop control. FO controllers are capable of addressing control
objectives beyond simply regulating setpoints and are often used to track solution trajec-
tories of time-varying optimization problems that are not known in advance. Previous
research in this area has typically utilized simplified control dynamics, ignored model
uncertainties, and has not adequately addressed constraints or transient performance.
Additionally, traditional optimal control approaches often require prior knowledge of the
desired equilibrium point. In this thesis, we approach the FO problem from an optimal
control and model predictive control (MPC) perspective. Specifically, we propose MPC
schemes that can steer the steady-state of a linear dynamical system to the solution of a
defined static optimization problem without numerically solving the problem or relying
on external setpoints. We accomplish this by formulating the cost functional in MPC
to embed an optimization algorithm for the steady-state optimization problem, which
is driven to convergence by the implicit feedback inherent in MPC. This allows for the
system to be driven to an optimal equilibrium point following a disturbance, without
explicit knowledge of the disturbance or setpoints, while also achieving improved tran-
sient performance. Compared to direct online economic optimization (e.g., economic
MPC), our approach offers improved computational efficiency, and robustness to model
uncertainty and unmeasured disturbances. Additionally, the algorithms we develop
are only slightly more complex than conventional linear tracking MPC, so theoretical
guarantees of stability and performance can be readily derived from standard tracking
MPC results without additional assumptions. To demonstrate the effectiveness of the
proposed MPC schemes, we present several numerical examples and an application to
the challenging problem of real-time economic dispatch in load-frequency control of
power system networks. The results obtained show that our proposed MPC schemes
are indeed feedback optimizing, with good robustness properties and optimal transient
performance.
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Chapter 1

Introduction

Automatic feedback control is ubiquitous in today’s society. It is an enabling technology
behind many critical infrastructure systems such as electric power networks, chemical
processing plants, building automation systems, and communication networks, to name
but a few. For most systems, reliable and efficient operation is achieved via feedback
control and in this thesis, we develop model predictive control strategies that guarantee
stable and economically optimal steady-state operation.

In this chapter, we describe the motivation and goals of this thesis, and also set
the stage for the research presented in subsequent chapters. Firstly, we introduce the
concepts of feedback optimizing control, model predictive control and optimal load
frequency control. We then present a motivation for the research. The research aims
and objectives are then stated. Finally, the thesis outlines, contributions and the list
of publications are given.

1.1 Feedback Optimizing Control

To remain competitive, practical systems must be operated cost-effectively while
being responsive to changes that affect the system performance. Such cost-optimal
operation is for most systems associated with a steady-state (economic) optimization
problem [104]. It is therefore essential to operate at such optimal steady-states despite
uncertainties and time-varying disturbances.

Conventionally, optimal steady-state operation is achieved via a hierarchical control
approach (Fig. 1.1). Here, a system’s efficiency (e.g., economic optimality) and
reliability (e.g., stability, robustness) goals are handled separately at different timescales.
At a slow timescale, a steady-state optimization problem is numerically solved by a
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real-time optimizer based on the systems operational costs, constraints, steady-state
model, and disturbance estimates to generate optimal setpoints/references. These
setpoints are then tracked in real-time by a dynamic controller acting over faster
timescales to reject the influence of disturbances. A typical example is the management
and control of power system networks [221]. Here, power balance/frequency stability
is maintained using load-frequency control (LFC) at the faster timescales (i.e., at the
(sub)-second level). Economic dispatch then acts a much slower timescale (i.e., every
15 minutes) to generate optimal setpoints tracked by LFC. The economic dispatch
problems are solved based on forecasts of loads and renewable generation, a grid model,
and security constraints.

Although practically convenient, hierarchical approaches can have significant limi-
tations for systems with uncertainty and fast-changing disturbances. Some of these
limitations include but are not limited to the following:

1. Lack of robustness
More often than not, real-world systems lack precise models and are plagued
by unknown disturbances. Hence, the numerical solution to the steady-state
optimization problem using such imprecise data may produce setpoints that are
suboptimal or, worse infeasible for the actual physical system [150]. Although
robust [21] and stochastic [31] optimization techniques exist and could be used to
alleviate the impact of these uncertainties, they often result in overly conservative
solutions and may be computationally expensive for most real-time applications.

2. The need for timescale separation
In hierarchical approaches, a timescale separation between the real-time opti-
mizer and dynamic controller is necessary to guarantee a stable and near-optimal
system operation [82, 88]. To ensure timescale separation, the real-time optimiza-
tion setpoints are only updated after the system settles at a new steady-state
following a disturbance [118]. Also, the dynamic controller must respond faster
to disturbances relative to the frequency of setpoint updates from the real-time
optimization [88]. However, maintaining a timescale separation between the
real-time optimizer and dynamic controller becomes practically impossible for
systems with dynamics that span multiple timescales. Such systems are usually
characterised by high model uncertainty, and frequent steady-state transitions
due to fast-changing disturbances.
For instance, future power networks will have a high penetration of distributed/renewable
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generation, which are by nature highly variable and uncertain. Therefore, large
and fast disturbances will be introduced into the power network, inducing dy-
namics across the real-time optimization and dynamic control layers [37, 103].
The conventional assumptions of timescale separation will, as a result, not be
valid, leading to a breakdown of hierarchical control [56] with the possible loss of
efficiency and closed-loop stability [37, 104].

3. Higher computational complexity
Most real-time optimization algorithms are based on an explicit numerical so-
lution of a steady-state optimization problem to generate the setpoints. For
systems with frequent steady-state transitions and high uncertainty, it becomes
necessary to solve the steady-state optimization problem faster and regularly,
placing a higher computational burden on the real-time optimization layer and
creating some practical challenges. Firstly, timely convergence of the numerical
optimization algorithms to the optimal solution may not be achievable under
limited computational resources, leading to suboptimal, or at worse, infeasible
setpoints [117]. Also, a certain level of expertise and competence may be required
to implement and maintain numerical optimization solutions in real-time making
it challenging to cost-effectively maintain these applications in the real world. As
discussed in [117, 77], the performance degradation due to lack of maintenance
and support often leads to most real-time optimization applications being turned
off by operators who are often more confident working with control applications
instead. For this reason, most traditional process industries ignore real-time
optimization and instead rely on simple feedback control tools to optimize their
operations [78].

4. Need for external setpoints and references

To mitigate the limitations of hierarchical control, it is imperative to design
feedback controllers capable of implicitly tracking the optimal solution of a steady-
state optimization problem in closed-loop, without external setpoints/references using
only input/output measurements and minimal knowledge of the steady-state model
[101, 87, 129]. Feedback optimizing or self-optimizing control is the framework for
achieving this autonomous steady-state optimization.
As an alternative or complement to hierarchical control, self-optimizing [199] or feed-
back optimizing [117] control (Fig. 1.2) is a promising approach to regulate dynamical
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Fig. 1.1 Hierarchical control

systems to economically optimal operating points, which are the solution of a defined
steady-state optimization problem. In feedback optimizing control, steady-state op-
timality is achieved by directly translating the steady-state (economic) performance
objectives into robust dynamic control goals. This is nicely captured by the following
statement adapted from [162]:

in attempting to synthesize a feedback optimizing control structure, our
main objective is to translate the economic into process control objectives.
In other words, we want to find a function c of the process variables which
when held constant, leads automatically to the optimal adjustments of the
manipulated variables, and with it, the optimal operating conditions

The main idea behind feedback optimizing control is therefore to find a self-optimizing
variable or function, which implicitly achieves optimal steady-state performance for a
defined static optimization problem when driven by a dynamic controller to a constant
value. The optimality conditions associated with a steady-state optimization problem
are a good choice for the self-optimizing control function. Because these conditions
take a constant value of zero at optimality, they can be regulated to the origin using
a dynamic feedback controller to implicitly achieve steady-state optimality. Indeed,
the steady-state gradient from cost to input, an early self-optimizing control variable
proposed in [198] is also an optimality condition for a first-order optimization problem.

A critical aspect of feedback optimizing control is that, rather than relying on
a complete model of the physical system, the controller uses measurements of the
system outputs to drive the system towards efficient operating points autonomously.
As a result, feedback optimizing control has inherent robustness against unmeasured
disturbances and model uncertainties compared to conventional feedforward-based
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numerical optimization, which relies on accurate knowledge or estimates of the system
uncertainty.

For several decades, the synthesis of feedback optimizing control structures has been
of interest to researchers mainly due to its ability to address some of the limitations of
conventional hierarchical control with applications historically targeted towards process
control [162] and communication systems [110, 140]. With the current efforts towards
the integration of more renewable energy sources in power system networks, there have
been renewed interest in the development and application of novel feedback optimizing
control algorithms in power systems [160, 87]. In particular, feedback optimizing
control algorithms for real-time economic dispatch has attracted a lot of interest in
power system as efficient and fast-acting control capabilities are required to handle the
increased volatility and randomness of future power system demand.

Recently, there have been several feedback optimizing control proposal based on
the idea of directly implementing optimization algorithms as feedback controllers. This
idea which originated from the work done by economists in [107] has formed the basis
for most modern feedback optimizing control strategies. This is because this approach
opens up new opportunities for the optimization and control of dynamic systems.
In particular, it now becomes possible with this approach to study and analyse the
disturbance rejection and robustness properties of optimization systems and also design
feedback controllers with self optimizing properties using just tools from control theory.
Also, it eliminates the need for external setpoints or references. Instead, the system is
autonomously driven to steady-states that are optimal for a defined static optimization
problem. This feature is particularly powerful as it has the potential to completely
address the problem of infeasible or unreachable setpoints associated with setpoint
based control schemes.
Because feedback optimizing control translates an optimization problem into a dynamic
control problem, it opens up opportunities for applying the wealth of rigorous design
tools from control theory. This allows the benefits of feedback control design such
as dynamic optimality and robust stability to be applied to optimization problems.
Indeed, the goal of this thesis is to apply the tools from model predictive control design
in the feedback optimizing control of uncertain dynamic systems. In the next section,
we introduce the concept of model predictive control.

1Model may not always be necessary or may be very simplified
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Fig. 1.2 Feedback optimizing control.

1.2 Model Predictive Control

In this thesis, we develop feedback optimizing control algorithms using a model
predictive control (MPC) framework. MPC is one of the few advanced control methods
that has had significant impact in control engineering practice. This has been due
to the unique ability of MPC to systematically deal with constraints and optimize
performance. MPC was first developed in the late seventies for the control of complex,
constrained multi-variable systems in the process control industry [177]. The term
Model Predictive Control is not a specific control strategy but rather a collection of
control methods which make explicit use of a model of a system to obtain the control
actions by minimizing a performance objective in real-time. The basic idea behind MPC
is to predict the behaviour of the plant to be controlled N steps into the future using
the plant model and the currently measured state. Then using the N−horizon system
predictions, the optimal control inputs required to steer the predicted plant trajectories
towards a desired reference is determined by solving online, an optimal control problem
(OCP). The control action on the plant is then derived from the first element of the
optimal control sequence. At the next sampling instant, the current state is measured
and the entire process repeated to compute the next control action. This way of
implementing the optimal control input is called a receding horizon implementation
and it generates an implicit feedback in the closed-loop system. Thanks to the fact
that an explicit dynamic model is used for prediction and a performance objective
is minimized, MPC gives good control accuracy. Consequently, MPC unlike other
control algorithms such as PID can be successfully applied to plants which are difficult
to control. The core advantages of MPC over other control methods are [152]: (i)
its explicit and systematic constraint handling capabilities (ii) its intuitive appeal
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(iii) its ability to optimize arbitrary performance criteria, and (iv) its ability to yield
performance benefits of both feed-forward and feedback control.
Over the years, tremendous progress has been made in the theory and application of
MPC. Successful applications have been reported in many industrial systems such as
petrochemical, power/energy and automotive plants etc.,[180, 177]. The theory of MPC
has also been substantially developed to address a wide range of control problems such
as: setpoint tracking, economic optimization, distributed control and robust/stochastic
control.

Traditionally, economic objectives are considered in MPC via a two layer hierarchical
control approach where the economically optimal setpoints are computed by a RTO
and sent as targets/references to be tracked in real time by MPC [65, 4]. However,
inconsistency between the RTO model and the dynamic MPC model can result in
steady-state offsets. Also, in the presence of plant-model mismatch and unknown
disturbances, the RTO setpoints might not correspond to feasible operating points for
the plant. Also, uncertainty in the RTO model may results in suboptimal setpoints
[199]. To address these challenges, an offset free MPC design has been developed.
Combined with modifier-adaptation methods, offset-free MPC can be made to track
the true optimal setpoints even for systems with plant-model mismatch and unknown
disturbances. This however adds substantial complexity to the MPC algorithm. As an
alternative to offset-free MPC, the steady-state economic cost can be directly minimized
in an economic MPC formulation. Despite the recent progress in design and analysis
of economic MPC schemes, the handling of uncertainties and the asymptotic tracking
of the true optimal steady-state setpoint under plant-model mismatch still poses open
problems [17]. In this thesis, we address some of these challenges by designing feedback
optimizing offset-free MPC schemes to autonomously track the optimal RTO setpoints
for a linear dynamical system.

1.3 Optimal Load-Frequency Control

At the heart of power system operation is the load-frequency control (LFC) problem,
which involves maintaining the frequency of a power system close to its nominal value
while ensuring economically optimal steady-state operation, despite fluctuating loads
and generation. A key objective of LFC is the optimal allocation of generation and
network resources to minimize the cost of power balancing. Conventionally, tertiary
control or economic dispatch achieves this objective by solving steady-state optimization
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problems at a slower timescale to obtain set points, tracked in real-time by fast-acting
primary (droop) and secondary (Automatic Generation Control (AGC)) frequency
controllers. The economic efficiency of this approach depends on the predictability
of demand, the absence of multi-time scale dynamics, and the efficient coordination
between economic dispatch and primary and secondary frequency controllers. However,
due to increased integration of renewable energy generation, more responsive demand,
and the deregulation of power systems, the net demand (uncontrollable load minus
uncontrollable generation) is becoming less predictable. It fluctuates faster and larger
across both the slow and fast time scales. Consequently, economically efficient LFC
operations may be challenging to achieve via the conventional multi-layered control
approach [89]. Because the setpoints obtained from a feedforward-based economic
dispatch operation may become sub-optimal after a disturbance, the resulting load-
frequency control operations may become inefficient.

The optimal load-frequency control problem [160, 55] is concerned with the design of
load frequency control algorithms capable of achieving economic dispatch autonomously
(without external setpoints) while also guaranteeing frequency stability. When the
demand fluctuations are unpredictable, LFC must be designed to be self-optimizing
rather than rely on inefficient economic dispatch operations. Unlike traditional LFC,
Optimal Load-Frequency Control (OLFC) is not prediction-based. Instead, it relies on
input-output measurements to drive the power system to economically optimal operating
points while guaranteeing frequency stability despite uncertainty and variability in the
power system. As a result, optimal load-frequency control algorithms achieve a reliable
and efficient integration of renewable generation and flexible demand into the power
system. The optimal load frequency control (OLFC) problem is a much-researched
topic in the recent literature on load frequency control, and we provide a detailed
review of this problem in subsequent chapters. One of the goals of this research
is to apply the algorithms developed for feedback optimizing control to the OLFC
problem. The algorithms developed in this thesis have the potential to improve the
dynamic performance of OLFC for power systems with a rapid variation of their optimal
steady-state operating point due to the high integration of renewable generation.

1.4 Research Motivation

As discussed in the previous sections, driving a dynamic system to economically optimal
steady states is conventionally realized via a two-layer architecture comprising an RTO
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and dynamic control layer. Although this approach may work well for systems with
infrequent setpoint changes, it may fail to guarantee or achieve closed-loop stability
and convergence to the optimal economic setpoints for systems with rapidly changing
equilibria caused by unknown, time-varying disturbances. A practical example occurs
in the operation of power systems under high penetration of intermittent energy sources
such as wind and solar. Here, rapid fluctuations in the net demand resulting from
the intermittency of wind and solar results in economically sub-optimal power system
operation.

The paradigm of feedback optimizing control that integrates real-time optimization
and dynamic control has recently re-emerged to overcome the limitations of hierarchical
control. Several methods for achieving feedback optimizing control have been proposed,
differing according to the assumptions made on the problem and the features and
limitations of the resulting scheme. Most recently proposed feedback optimizing
control strategies rely on the direct implementation of the optimization algorithms
for solving an RTO problem as feedback controllers [87, 160, 55]. This approach
reduces the timescale separation between RTO and dynamic control [88] and also
possesses inherent robustness to uncertainty in the plant model due to its feedback
nature [173, 46]. However, most feedback optimizing control schemes proposed in
the literature ignore the system’s dynamic performance, assuming the system to be
pre-stabilized [128, 129]. Therefore dynamic performance is left as an offline design
exercise [87, 55]. The problem with this approach is that it becomes challenging to
guarantee performance and constraint satisfaction when the dynamic system changes
in unexpected ways. As a result, the design space of these feedback optimizing control
schemes are unnecessarily restricted, thereby making it difficult to consider much wider
control objectives such as dynamic optimality, constraint feasibility and robust control.
Also, results on the robust stability of these controllers have been difficult to establish
even though experiments have been conducted to verify their inherent robustness to
uncertainty [169, 46].
To address these limitations, in this thesis the framework of model predictive control
is utilized to synthesize novel feedback optimizing control schemes. Due to a control
law obtained via online optimization, MPC optimizes the dynamic performance of the
closed-loop system in real-time while also ensuring systematic constraint satisfaction in
the transient phase. It is also possible to achieve optimal steady-state operation under
changing disturbances with offset-free MPC schemes. Modifier adaptation approaches
have recently been combined with offset-free MPC to track the optimal solution to an
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RTO problem under plant-model mismatch. However, modifier adaptation techniques
often result in optimal control problems that are significantly more complicated to
design, analyze, and implement, making them less appealing in practice. To address
the shortcomings of modifier adaptation-based offset-free MPC while also tackling
the limitations of conventional feedback optimizing control design, we present novel
MPC schemes that integrate the design philosophy of conventional feedback optimizing
control with offset-free MPC. We propose simple and computationally efficient control
algorithms that are guaranteed to converge to the optimal solution of an RTO problem
with optimal dynamic performance and guaranteed constraint satisfaction without
needing an external setpoint or explicit online solution of the RTO problem. The control
schemes we develop in this thesis are only moderately more complex than conventional
MPC, computationally efficient, and submit to standard theoretical analysis already
established in the MPC literature. Also, the design framework presented in this thesis,
unlike conventional feedback optimizing control, can be easily adapted to design and
analyze robust feedback optimizing control solutions.

1.5 Research Aim and Objectives

The aim of this thesis is to develop computationally efficient feedback optimizing
control algorithms based on an MPC framework to regulate uncertain linear systems to
efficient steady-state equilibria for a defined steady-state optimization problem without
explicitly solving the problem. The control algorithms should utilize information about
the steady-state optimization problem and the dynamic model of the plant to generate
in a computationally efficient and straightforward manner model predictive control
laws that are self-optimizing, dynamically optimal, and recursively feasible. Also, our
proposed solutions should have quantifiable robustness to plant-model mismatch and
unmeasured disturbances.
The specific objectives of the thesis are:

1. Formulate the feedback optimizing MPC (FOMPC) problem as a generalization
of tracking MPC, where the steady-state tracking error is not available apriori
but instead derived from input/output measurements and information about the
steady-state optimization problem.
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2. Analyze the conditions for which a computable and stabilizable solution exists
to the FOMPC problem by leveraging controller existence results available for
tracking MPC.

3. Develop and implement elegant and computationally efficient solutions to the
nominal FOMPC problem, in which the plant is a disturbed linear system
with known system coefficients and the steady-state optimization problem is a
quadratic program.

4. Develop and implement computationally efficient and constructive solutions to
the robust FOMPC problem for uncertain linear systems with polytopic model
uncertainty and a quadratic steady-state optimization problem.

5. Develop and analyze scalable and computationally efficient solutions to the dis-
tributed FOMPC problem for decomposable large-scale systems with a separable
steady-state quadratic cost.

6. Analyze and characterize the convergence, recursive feasibility, and robust stability
of the developed FOMPC solutions under both nominal and uncertain conditions.

7. Apply the proposed FOMPC solutions to the optimal load-frequency control
problem for real-time economic dispatch in future power systems with high
penetration of variable generation.

1.6 Thesis Outline and Contributions

This thesis is comprised of 10 chapters. A summary of each chapter and the associated
contributions is presented next.

1.6.1 Chapter 2: Background and literature review

This chapter presents a detailed review of the current literature on feedback optimizing
control, economics optimizing MPC, and the optimal load-frequency control problem.
The review revealed the limitation of conventional feedback optimizing control and
economics optimizing MPC and sheds light on new opportunities to develop control
schemes that integrate both approaches into a single framework that builds on the
strengths of both approaches to address their combined limitations.
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1.6.2 Chapter 3: The feedback optimizing model predictive
control problem

In this chapter, the feedback optimizing control problem is formulated in the framework
of model predictive control. Here, the steady-state optimization problem is defined
for uncertain linear systems. Then a formal statement of the feedback optimizing
MPC (FOMPC) problem is stated. The Karush-Kuhn-Tucker (KKT) conditions for
optimality of the steady-state optimization problem are then stated. To construct
an optimality error that is a function of the input and output measurements rather
than a pre-computed setpoint, we express the KKT conditions in subspace form by
eliminating the equality constraint. Using this result, the FOMPC problem is then
expressed as a generalized tracking MPC problem (GTMPC) and from this we derive
conditions for solvability of the FOMPC problem.

1.6.3 Chapter 4: Deterministic feedback optimizing linear
quadratic control

In this chapter, we take the first step towards solving the FOMPC problem. To simplify
the problem, we assume the inequality constraints are inactive at all times (i.e. during
the transient phase and in steady-state). With this assumption, the FOMPC problem
reduces to a feedback optimizing linear quadratic control (FOLQC) problem. Using
the results from Chapter 3, the FOLQC problem is then translated to an equivalent
tracking linear quadratic control problem with a tracking error that is derived from the
input/output measurements. To solve the FOLQC problem, we formulate the resulting
tracking linear quadratic control problem in velocity form, and using the techniques
of dynamic programming and linear matrix inequalities, we derive explicit FOLQC
laws for the case of a steady-state quadratic program. We then analyze the robust
stability of the obtained FOLQC laws using standard results on the robust stability of
the linear quadratic regulator. Simulation results demonstrating the performance of
FOLQC are also presented.

1.6.4 Chapter 5: Robust feedback optimizing linear quadratic
control

This chapter extends the results obtained in Chapter 4 to the case of uncertain linear
systems. We consider linear dynamical systems with coefficients that are unknown and
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may be time-varying but take values from a known compact polytopic set. Using a linear
matrix inequality approach, we synthesize robust FOLQC laws by formulating and
solving semi-definite programs for a velocity form of the system dynamics. Numerical
simulation of the robust FOLQC laws are also provided to illustrate the effectiveness
of the approach.

1.6.5 Chapter 6: Nominal feedback optimizing model predic-
tive control

In this chapter, we develop centralized MPC algorithms to solve the FOMPC problem
for quadratic steady-state cost and a nominal model of the linear system (i.e. system
coefficients are known and the additive disturbance is piecewise constant). We assume
the inequality constraints are only active in the transient phase and therefore avoid
the important but difficult situation of unreachable setpoints. Using an input-to-state
stability approach, we analyse the (inherent) robust stability of the nominal FOMPC.
Results obtained show that the nominal FOMPC is robust to un-modelled dynamics if
the uncertainty satisfies a given bound. Also, it was realized that intuitively, nominal
FOMPC is more robust under stronger regulatory action i.e. higher penalty on the
control error compared to the control input. Finally, we present numerical examples
that demonstrate the efficacy of nominal FOMPC.

1.6.6 Chapter 7: Robust feedback optimizing model predictive
control

This chapter develops robust FOMPC algorithms that extend the results obtained in
Chapter 6 to the case of linear systems with unknown coefficient matrices that take
values from a known bounded polytopic set. We present two approaches to the design
of robust FOMPC algorithms. The first approach is based on the computationally
efficient but conservative tube approach to robust MPC, while the second approach uses
the less conservative but computationally inefficient min-max approach to robust MPC.
We also analyze the convergence of robust FOMPC and present numerical examples to
illustrate the performance.
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1.6.7 Chapter 8: Distributed feedback optimizing model pre-
dictive control

In this chapter, we solve the nominal FOMPC problem for the case of large-scale
linear time-invariant systems with decomposable dynamics and separable steady-state
quadratic costs. We present distributed FOMPC algorithms that approximate the
solution to the centralized nominal FOMPC presented in Chapter 6. We adopt a
tube-based MPC approach to design the associated control laws. We also present a
detailed analysis of the convergence of the proposed algorithms to a neighbourhood of
the optimal steady-state equilibrium.

1.6.8 Chapter 9: Feedback optimizing predictive load-frequency
control for real-time economic dispatch

This chapter completes the contribution of this thesis by applying the FOMPC algo-
rithms developed in the thesis to solve the vital problem of real-time economic dispatch
in power systems with high penetration of intermittent generation sources. Specifically,
we formulate the optimal load-frequency control problem in the framework of FOMPC.
We solve the optimal load-frequency control problem using the algorithms developed in
the thesis for FOMPC. Numerical simulation of the algorithm shows that FOMPC gives
superior performance to conventional algorithms developed for solving the optimal
load-frequency control problem that ignores the dynamic performance objective in the
control formulation.

1.6.9 Chapter 10: conclusion and future work

This chapter contains concluding remarks and future research directions and general-
izations of the results presented in this thesis.
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Chapter 2

Background and Literature Review

The aim of this chapter is to present a theoretical background on control and optimiza-
tion of dynamic systems and also give a detailed review of feedback optimizing control
and its application to power systems. The chapter will primarily discuss control schemes
that solve steady-state optimization problems within their feedback loop. The outline
of the chapter is as follows: Section 2.1 presents a brief introduction to a standard
centralized model predictive control algorithm. Section 2.2 reviews tracking model pre-
dictive control formulations. Section 2.3 briefly reviews steady-state optimizing model
predictive control algorithms while distributed model predictive control algorithms
are discussed in Section 2.4. In Section 2.5, the concept of feedback optimization is
introduced and a detailed review of the available techniques for achieving feedback
optimizing control is given. Section 2.6 gives a brief introduction to electric power
systems with a brief review of power system frequency control presented in Section
2.7. Section 2.8 presents a review of economically optimal frequency control schemes.
Finally, in Section 2.9, a summary of the chapter is given with conclusions.

2.1 Model Predictive Control

Model predictive control (MPC) was introduced in Chapter 1. Its basic principles and
unique advantages were explained. In this section, a detailed review of MPC is presented.
MPC was first developed for the control of complex, constrained multi-variable systems
in the process industry. However, tremendous progress has been made both in the
theory and application of MPC. There have been successful industrial applications of
MPC to the control of petrochemical, power/energy, auto-mobiles plants etc. [177, 180].
The advantages of MPC includes [182]: explicit and systematic constraint handling
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capability; intuitive appeal; ability to optimize arbitrary performance objectives and
the ability to yield the performance benefits of both feed-forward and feedback control.
MPC provides an effective and generalized approach to designing controllers for a wide
range of practically relevant control problems. The control action in MPC is obtained
in real-time by repeatedly solving online, a constrained optimal control problem and
implementing the solution for the current sampling time as the control law. Due to a
control law obtained by online optimization, MPC is computationally intensive and
therefore relies on the availability of decent computing power. Fortunately, the recent
advances in computing hardware/software has greatly reduced the cost and improved
the reliability of implementing MPC.

In [39], an interesting analogy of MPC was given where the algorithm is likened to
driving a car. While MPC represents driving based on the information gathered by
looking ahead through the wind-shield, classical feedback control such as PID is similar
to driving based on information gathered from the past like bumping into other cars in
order to figure out a safe direction to drive. A real driver uses an MPC-like approach to
safely steer a car, since the driver looks forward (i.e. makes predictions) and chooses an
ideal action (i.e. optimizes the control input) based on possible future outcomes, taking
the real characteristics (or system model) of the car into consideration. A driver using
classical control will likely steer the car blindly, basing their actions on the feedback
from the outcome of previous decisions made. Moreover, with classical control, the
driver cannot take into consideration the constraints in the system.
We can take the driver analogy further to understand how MPC actually works. Because
the driver has a mental image of how the car operates (i.e., a simple mathematical
model), in good visibility, the driver may see far ahead in the horizon and therefore
drive much faster without risking safety. However, if the visibility is bad, the horizon in
front of the driver is also short and the driver may easily make an unsafe decision. The
portion of the road the driver can see is akin to the prediction horizon in MPC. If the
prediction horizon is too short, instability might occur; this is equivalent to crashing
the car because the driver could not see far ahead of the road and was driving too fast.
In the next subsection, the formulation of a standard centralized MPC algorithm is
presented in more detail.



2.1 Model Predictive Control 23

2.1.1 Centralized Model Predictive Control

Consider a time-invariant, linear, discrete-time system described by the model

x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k) (2.1)

where x(k) ∈ Rnx is the state vector, u(k) ∈ Rnu is the input vector and the pair (A,B)
are the system coefficients assumed to be reachable. The states and inputs are both
subject to the following inequality constraints:

x(k) ∈ X ⊆ Rnx and u(k) ∈ U ⊆ Rnu . (2.2)

Let the goal be to find at time step k, the controller u(k) that regulates the states x(k)
to the origin, x = 0, as k → ∞, while satisfying the inequality constraints (2.2) at all
times. A systematic way to synthesize this controller would be by solving the following
constrained optimal control problem (OCP):

min
u(k+i)

∞∑
i=0

l(x(k + i), u(k + i))

s.t.
x(k) = x(0),
x(k + i+ 1) = Ax(k + i) +Bu(k + i)
x(k + i) ∈ X, u(k + i) ∈ U

(2.3)

where x(0) is the measured or estimated state at time step k, x(k+i) the state prediction
at time step k + i, u(k + i) the corresponding control input, and l(x(k + i), u(k + i)) a
stage cost capturing the performance objectives of the closed-loop system.
Due to an infinite number of decision variables and the presence of inequality constraints,
solving problem (2.3) for an explicit control law of the form

u(k) = −Kx(k) (2.4)

is generally difficult and may even be intractable.

Remark 1 (Linear-Quadratic Control (LQC)). [133] In the absence of inequality
constraints i.e.,

X = ∅, U = ∅, (2.5)
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and with a stage cost that is quadratic i.e.

l(x(k + i), u(k + i)) = 1
2
(
∥x(k + i)∥2

Q + ∥u(k + i)∥2
R

)
, (2.6)

the OCP (2.3) reduces to the LQC problem:

min
u(k+i)

V (x(k)) =
∞∑

i=0
l(x(k + i), u(k + i))

s.t.
x(k) = x(0)
x(k + i+ 1) = Ax(k + i) +Bu(k + i)

(2.7)

which admits an explicit solution of the form (2.4) where

K = (R +B⊤PB)−1B⊤PA, (2.8)

P is the solution of the Lyapunov equation

(A−BK)⊤P (A−BK) − P = −(Q+K⊤RK), (2.9)

and
V ∗(x(k)) = 1

2∥x(k)∥2
P (2.10)

is the optimal value of the infinite horizon cost function, V (x(k)), also known as the
value function.

The main objective of MPC is to obtain an approximate solution to problem (2.3)
by:

• approximating the problem with a tractable finite horizon OCP,

• solving the finite horizon OCP online to obtain the optimal control action at the
current time step, k, and

• implementing the optimal control action in a receding horizon fashion (i.e. im-
plementing only the current optimal control action and re-solving the OCP at
the next time step) to induce an implicit feedback control law.



2.1 Model Predictive Control 25

Given a prediction horizon equal to N ∈ I time steps, the objective of an MPC
controller at time step k is to compute the following N−horizon control sequence

uN =


u(k)

u(k + 1)
...

u(k +N − 1)

 (2.11)

that minimizes the finite horizon objective function

VN(x(k),uN) = Vf (x(k +N)) +
N−1∑
i=0

l(x(k + i), u(k + i)) (2.12)

subject to the following constraints for all i ∈ I[0,N−1]

x(k) = x(0), (2.13a)
x(k + i+ 1) = Ax(k + i) +Bu(k + i), (2.13b)

x(k + i) ∈ X, u(k + i) ∈ U, (2.13c)

and the terminal constraint,

x(k +N) ∈ Xf ⊆ X. (2.14)

Here, l(x(k + i), u(k + i)) is the stage cost at time step k + i, commonly defined as
the quadratic function (2.6) which penalizes the predicted state x(k + i) and input
u(k + i) at the time instant k + i with Q ⪰ 0 and R ≻ 0 the respective penalties on
the state and input. The function Vf (x(k +N)) is a terminal cost used to guarantee
convergence of the MPC algorithm [153]. The terminal constraint Xf is also used to
guarantee constraint satisfaction beyond the prediction horizon i.e., ∀i > N [153]. If
the cost functions l(·, ·), Vf(·) are quadratic and the sets X,U and Xf are polytopic,
then given the current value of the state x(k) = x(0), the MPC optimization problem
can be formulated as a quadratic program of the form:

min
uN

1
2u⊤

NHuN + f⊤uN + c

s.t. PuuN ≤ qu + Sxx(k).
(2.15)
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The MPC action, u(k), applied to the actual plant at time step k is then derived as
the first element of the optimal control sequence uN obtained from the online solution
of the quadratic program (2.15) at the current time step. i.e.,

u(k) = uN(0). (2.16)

At the next time step, k + 1 the quadratic program (2.15) is solved again using the
current state measurement x(k+ 1) and the MPC controller is derived in a similar way
as previously described.
Because the control input is derived from the online solution of an optimization problem
at each time step k, the MPC control law is an implicit state-feedback controller.
When analysing an MPC scheme, three properties are of importance [13]:

1. Recursive Feasibility: This is the property that guarantee the existence of
a solution to the MPC optimization problem (i.e., minimize (2.12) subject to
(2.13) and (2.14)) at all time steps i > 0 if there exists a solution to the MPC
optimization problem at i = 0.

2. Stability: This is the property that guarantee convergence of the output, y(k),
of the closed-loop system under the MPC controller, u(k), to the desired reference,
r as k → ∞.

3. Performance: This is the property that ensures the closed-loop dynamics has
the desired transient properties.

To guarantee recursive feasibility and stability of MPC, the terminal constraint (2.14)
and the terminal cost Vf(x(k + N)) are used [153]. The set Xf in (2.14) guarantees
satisfaction of the inequality constraints beyond the prediction horizon and is designed
such that:

x(k+N) ∈ Xf =⇒ x(k+N) ∈ X, u(k+N) = −Kx(k+N) ∈ U and x(k+N+1) ∈ Xf

(2.17)
where K is such that the terminal cost Vf(x(k +N)) is a Lyapunov function for the
closed-loop dynamics:

x(k +N + 1) = Ax(k +N) +Bu(k +N). (2.18)

The terminal cost Vf (x(k +N)) is generally chosen to approximate the infinite horizon
optimal cost for the unconstrained OCP i.e.,
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min
u(k+N)

∞∑
i=N

l(x(k + i), u(k + i))

s.t.
x(k + i+ 1) = Ax(k + i) +Bu(k + i).

(2.19)

Remark 2. Due to the recursive feasibility of the terminal constraint (2.14), the MPC
problem (i.e., minimize (2.12) subject to (2.13) and (2.14)) automatically satisfies the
inequality constraints beyond the prediction horizon i.e. i > N and can therefore be
treated as an unconstrained OCP equivalent to the LQC problem.

From the solution to the LQC problem in Remark 1, the terminal cost can be
chosen as the value function for the LQC problem (2.19) as,

Vf (x(k +N)) = 1
2∥x(k +N)∥2

P (2.20)

and P is given by (2.9). The dynamic performance of the closed loop system under
MPC depends on the choice of the weights/penalties on the state and inputs i.e., Q
and R respectively.

Remark 3. Although the set Xf and the function Vf are required to obtain theoretical
guarantees of recursive feasibility and stability in a MPC algorithm, they can reduce
the domain of attraction of the MPC controller thereby introducing some degree of
conservatism. However, practical asymptotic stability and feasibility can still be obtained
without these terminal ingredients (i.e., Xf = ∅ and Vf = 0) if the prediction horizon
is long enough and the tuning parameters Q and R are chosen appropriately. However,
this can come at the expense of computational efficiency as longer prediction horizon
lead to bigger online optimization problems which may be undesirable for systems with
higher dimensions and real-time computing limitations.

Putting the conceptual ideas above into an algorithm yields the MPC implementa-
tion given in Algorithm 1.
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Algorithm 1 :Basic MPC Algorithm
1: Initialize MPC: with Prediction horizon(N), Plant Model (x(k + 1) = Ax(k) +
Bu(k), y(k) = Cx(k), Tuning Parameters (Q, P, R), Constraints etc.

2: for k = 1 to N do
Input: Current Measured/Estimated Plant Behaviour/State

3: Use Plant Model to Predict system behaviour N steps into the future
4: Solve the N−horizon Optimal Control Problem (OCP) online to

obtain the N optimal control input sequence that gives the best predicted plant
performance according to a predefined cost/objective function

Output: Apply the first of the N optimal control input sequence from (4) to the
plant

5: return to Step 2

More details on the theory and design of MPC can be found in [182].

2.1.2 Robustness in MPC

The MPC algorithm previously described assume an accurate model of the system
dynamics. In reality, the true model of the system dynamics is uncertain and the
model in (2.1) is only approximate. For very small values of this uncertainty, the MPC
algorithm above can guarantee some degree of robustness [151]. However, when the
uncertainty becomes significant, a robust MPC design must be adopted. Uncertainty
in the system dynamics is commonly modelled as [40]:

• an additive disturbance, w(k), on the state equation i.e.,

x(k + 1) = Ax(k) +Bu(k) + w(k), (2.21)

• an uncertainty in the system parameters, δ , i.e.,

x(k + 1) = A(δ)x(k) +B(δ)u(k). (2.22)

• or both i.e.,
x(k + 1) = A(δ)x(k) +B(δ)u(k) + w(k). (2.23)

The most common approaches for dealing with uncertainty in MPC includes:
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1. An inherent robustness approach where the MPC is designed as previously
described for a nominal model without the uncertainty. The system is then
analyzed to obtain stability guarantees under model uncertainty. This approach
works if the uncertainty satisfies a given bound which is often very restrictive
and sometimes difficult to compute. Details of this approach can be found in
[182, 151]. In Subsection 6.3.2 of this thesis, this idea is used to design robust
feedback optimizing MPC algorithms.

2. A "min-max" MPC approach where the MPC control law is computed such that
it minimizes the worst case cost over all possible realizations of the uncertainty.
This approach is computationally expensive and can result in poor dynamic
performance. Details of this approach can be found in [40, 15]. In Sections 5.5
and 7.3 of this thesis, we apply this technique in the design of robust feedback
optimizing linear quadratic and model predictive control algorithms respectively.

3. A feedback MPC approach where a sequence of control laws are computed
which minimizes the cost function for a known nominal model of the system
while satisfying the state and input constraints for every possible realization of
the uncertainty. A popular example of this approach is the tube-based MPC
algorithm originally proposed in [154] where a linear state feedback control law
is assumed and a robust positive invaraint set is used to satisfy the constraints
for every realization of the uncertainty. Here, the online computational burden
is significantly reduced compared to the min-max approach as most of the
computations are performed offline. In Section 7.2 of this thesis, robust feedback
optimizing MPC algorithms are designed using this approach.

2.2 Tracking MPC

In a tracking MPC formulation, the goal is to steer the outputs, y(k) of a dynamic
system to a reference/setpoint, r while stabilizing the system and satisfying the
constraints. Because the setpoint/reference in a tracking MPC problem can change in
unexpected ways, the tracking MPC problem is inherently uncertain. In most cases,
tracking MPC can treated as a deterministic problem by making certain assumptions on
the future evolution of the reference. In the literature, there are two main approaches
for solving the tracking MPC problem under constant or slowly varying references.
These are the two-layer offset-free MPC and the velocity MPC algorithms [171, 144].
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2.2.1 Two-layer Offset-free MPC

In a two-layer offset-free MPC algorithm, a steady-state target optimizer (SSTO)
computes a target equilibrium point (xr, ur) for the system (2.1) that corresponds
with the reference, ysp. For systems where the inequality constraints (2.2) are inactive
in steady-state, (xr, ur) is obtained from the solution of the following steady-state
equations:

xr = Axr +Bur (2.24a)
Cxr = ysp. (2.24b)

Solving (2.24), the target equilibrium (xr, ur) is computed as,
xr

ur

 = S−1
r

 0
ysp

 , (2.25)

where the matrix, Sr is given by

Sr =
A− I B

C 0

 (2.26)

and must have full row rank for (2.25) to have a unique solution. For systems where
the inequality constraints (2.2) are active in steady-state, the following optimization
problem is solved to obtain (xr, ur):

min
(xr,ur)∈(X×U)

1
2
(
∥er∥2

Qr
+ ∥ur∥2

Rr

)
s.t. (2.24a). (2.27)

where er = Cxr − ysp is the steady-state tracking error. The problem in (2.27) is
called the steady-state target optimization problem [181]. The steady-state target
optimization problem must be solved alongside the MPC problem if the reference
changes between sample times. After computing (xr, ur), the system dynamics (2.1) is
then shifted to the new equilibrium point (xr, ur), obtaining the following translated
dynamics,

x̃(k + 1) = Ax̃(k) +Bũ(k) (2.28)

where x̃(k) = x(k) −xr and ũ(k) = u(k) −ur. A stabilizing MPC algorithm (similar to
the algorithm in Subsection 2.1.1) is then designed to stabilize the translated dynamics,
(2.28) at the origin and as a result tracking the reference, ysp for the actual system
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(2.1). To guarantee stability and recursive feasibility in a two-layer tracking MPC
algorithm will require the use of a terminal cost function, Vf and a terminal set, Xf in
a similar fashion to standard stabilizing MPC. However, for tracking MPC problems
with changing references or additive uncertainty in the system dynamics, computing a
terminal set can be challenging. This is because with changing references, the target
equilibrium (xr, ur) also changes and therefore the terminal set Xf will need to be
recomputed online alongside the MPC optimization problem. This will ultimately
lead to a computationally expensive MPC problem which is undesirable. Several
workarounds to this problem have been proposed, see for example the review in [135].
More details on the two-layer tracking MPC algorithm can be found in [144, 181]. In
Sections B.2 and B.3, the idea behind this two-layer MPC algorithm will be extended
to design tracking MPC controllers that are feedback optimizing.

2.2.2 Velocity MPC

The need to explicitly compute the steady-state targets complicates the formulation
and implementation of two-layer tracking MPC algorithms. Also, with additive distur-
bances/uncertainty, two-layer MPC always require the use of disturbance observers
even with piecewise constant disturbances. The velocity MPC algorithm first pro-
posed in [172] addresses these limitations. Velocity MPC does not require disturbance
estimation (if the disturbance is piecewise constant) and also does not rely on the
explicit computation of a steady-state target in order to track the reference [26]. The
velocity MPC algorithm works by expressing the system dynamics (2.1) in the so-called
"velocity-form", where the new state variable is composed of the state increments,
δx(k) = x(k) − x(k − 1), and the tracking error, e(k) = y(k) − ysp. The control
variable used in formulating the velocity MPC is the increment in the control action
i.e. δu(k) = u(k) − u(k − 1). For the system dynamics (2.1), the following is the
corresponding velocity form:

ϵ(k + 1) = Aϵ(k) + Bδu(k) (2.29a)
e(k) = Cϵ(k), (2.29b)

where

ϵ(k) :=
 δx(k)
e(k − 1)

 with
δx(k) := x(k) − x(k − 1),
δu(k) := u(k) − u(k − 1),
e(k) := y(k) − ysp,

(2.30)
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and

A =
A 0nx×ny

C Iny

 , B =
B

0

 , C =
[
C Iny

]
. (2.31a)

Given the velocity form (2.29), the velocity MPC controller is given by

u(k) = u(k − 1) − κN(ϵ(k)), (2.32)

where κN (ϵ(k)) is the first control move to the optimal control sequence δu∗(k) computed
at time k by solving the following OCP,

P(ϵ(k)) : min
δu(k)∈UN

VN(ϵ(k), δu(k)) (2.33)

where the decision variable is the sequence of control increments over the N -step
prediction horizon

δu(k) :=
{
δu(k), δu(k + 1) . . . , δu(k +N − 1)

}
, (2.34)

and the feasible region UN(ϵ(k)) is defined as

UN(ϵ(k)) ≜

δu(k)

∣∣∣∣∣∣∣∣∣∣
ϵ(k + i+ 1) = Aϵ(k + i) + Bδu(k + i), ∀i ∈ I[0,Np−1]

(ϵ(k + i), δu(k + i)) ∈ G, ∀i ∈ I[0,Np−1]

ϵ(k +N) ∈ Gf

 . (2.35)

The performance objective is defined as

VN(ϵ(k)) = 1
2∥ϵ(k +N)∥2

P + 1
2

N−1∑
i=0

(
∥e(k + i)∥2

Qe
+ ∥δu(k + i)∥2

R

)
, (2.36)

where Qe ⪰ 0, R ≻ 0 and P ≻ 0 is the stabilizing positive definite solution to
discrete-time algebraic Riccati equation

P = A⊤PA + C⊤QeC − A⊤PB
(
R + B⊤PB

)−1
B⊤PA. (2.37)



2.3 Steady-state (Economics) Optimizing MPC 33

The set G ensures that the velocity state δx and control increment δu both satisfy the
inequality constraints (2.2) on x and u, that is,

G :=
{
(δu, ϵ)|(u, x) ∈ U × X

}
. (2.38)

The set Gf is a terminal set constructed such that

ϵ(k +N) ∈ Gf =⇒
(
ϵ(k +N), δu(k +N)

)
∈ G and

(A − BK)ϵ(k +N) ∈ Gf ,
(2.39)

where
δu(k +N) = −Kϵ(k +N), (2.40)

and K is the infinite horizon solution to the MPC problem (2.33) without the inequality
constraints G and Gf , and is given by the linear quadratic control law (see Remark 1)

K = (R + B⊤PB)−1B⊤PA. (2.41)

A major challenge with velocity MPC algorithms is that it is very difficult to obtain
theoretical guarantees of closed-loop stability and recursive feasibility [26]. This is due
to the lack of systematic and generalized techniques for computing the set G from the
sets X and U. Also, except for the work done in [26, 28], results on how to compute
the terminal set Gf in a velocity MPC algorithm are lacking. One of the contributions
of this thesis is that we present a systematic approach for computing the set G by
simplifying the technique pioneered in [28]. Finally, most of the feedback optimizing
MPC algorithms developed in this thesis are based on the velocity MPC algorithm.

2.3 Steady-state (Economics) Optimizing MPC

In the following discussion, we will review model predictive control schemes that directly
consider economic optimization objectives in their problem formulation. We will refer
to these MPC formulations as economics optimizing MPC. It is important to emphasize
here that the economics optimizing MPC schemes reviewed in this section are not
inclusive of stabilizing or tracking MPC schemes that are merely tuned for improved
economic performance via the penalty weights.

Recently, researchers have been focused on improving the economic performance of
MPC by including economic performance objectives in the formulation of the optimal
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control problem [75, 63, 64]. In the economic MPC approach, the economic objectives
are used directly as the objective function of the MPC problem [73]. Here, the controller
optimizes directly, in real time, the economic performance of the system, rather than
tracking a set-point. Economic MPC is computationally expensive and it’s optimal
solution is not a-priori guaranteed to be a steady-state optimum of the plant. This
makes the stability analysis of economic MPC more involved. Also, economic MPC
is highly model-based and not guaranteed to achieve optimality under plant-model
mismatch. We refer the reader to the following references [75, 63, 73] for detailed review
of economic MPC. One problem with economic MPC schemes is that convergence to the
optimal steady-state is not guaranteed without explicit knowledge of the steady-state
set-points [73]. Although alternative economic MPC formulations that address this
limitation have been developed (see for example [91]), they are very restrictive and
cannot deal with unknown disturbances.

To achieve asymptotic convergence to the economically optimal steady-state equilib-
rium, without a-priori knowledge of the steady-state set-points, novel MPC techniques
have been developed [75]. These MPC schemes take a different approach from economic
MPC. Unlike economic MPC, these techniques either retain the standard tracking MPC
formulation with modifications to accommodate the steady-state economic optimization
[75] or combine the design philosophy of tracking and economic MPC [74].
In the literature, two major approaches have been used to formulate these novel eco-
nomics optimizing MPC schemes. The first approach is commonly referred to as the
one-layer MPC [75] while the second approach is called a modifier adaptation MPC. A
review of both approaches will now follow.

2.3.1 Modifier-Adaptation (economic) MPC

A limitation of standard economic MPC is that asymptotic convergence to the optimal
steady-state is not guaranteed, especially under model uncertainty [170]. To address
this, modifier-adaptation economic MPC schemes have been developed that combine
the idea of modifier-adaption [148, 150] proposed for real-time optimization, with offset-
free (economic) MPC schemes [215, 74, 170]. Modifier-adaptation [148, 150] provides
a method to steadily reduce the discrepancy between a model-based solution and
the actual (unknown) solution to an optimization problem by modifying the problem
at every iteration to incorporate plant measurements from the previous iteration.
Modifier-adaptation iteratively corrects the optimization problem by adding adaptation
terms to the cost and constraint functions. In [170], modifier-adaptation and offset-free
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MPC are combined to obtain an economic MPC scheme that achieves asymptotic
convergence to the optimal steady-state equilibrium under plant-model mismatch. This
idea was further developed in [74] where the need for a dedicated computation of the
steady-state set-points was removed by exploiting the turnpike property of economic
MPC schemes.
Major limitations of modifier-adaptation economic MPC are:- they require real-time
estimation of the true plant gradients, and disturbances; they result in unconventional
formulations of the optimal control problem; they are computationally expensive as
a dynamic economic optimization problem is still solved online; and, they rely on
the optimal control problem exhibiting turn-pike properties in order to guarantee
convergence to the optimal steady-state. Also, no formal convergence guarantees have
been presented for these algorithms.

2.3.2 One-layer MPC

In one-layer MPC schemes, the steady-state economic performance objective is included
in the tracking MPC formulation as a terminal cost. As a result, the steady-state
optimization problem is explicitly solved at the terminal stage of the tracking MPC
problem.

To illustrate the one-layer economics optimizing MPC schemes, consider the system

x(k + 1) = Ax(k) +Bu(k) + Ew(k), (2.42a)
y(k) = Cx(k). (2.42b)

Here: k denotes the sample time; x(k) ∈ Rnx , u(k) ∈ Rnu , y(k) ∈ Rny , and w(k) ∈ Rnw

denote the system states, inputs, outputs and exogenous disturbances respectively. Let
the optimal steady-state operating point of the system be determined by the solution
of the following real-time optimization (RTO) problem

(us, ys) = arg min
u,y

Φ(u, y)

s.t. x = Ax+Bu+ Ew,

y = Cx,

(2.43)

where Φ(u, y) is the steady-state economic performance objective. We assume the
problem (2.43) has a unique solution. To formulate the OCP for the one-layer MPC
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scheme, the following dynamic performance cost is defined:

VN(x,u(k)) = Φ(y(N−1), u(N−1))+
N−1∑
k=0

(
∥x(k)−x(N−1)∥2

Q +∥u(k)−u(N−1)∥2
Q

)
(2.44)

where u(k) = {u(0), . . . , u(N − 1)}.
The economics optimizing MPC control law is then derived by solving the following
OCP in real-time

min
u(k)

VN(x,u(k)) (2.45)

subject to:
∀k ∈ I[0,N−1],

x = x(0), (2.46a)
x(k + 1) = Ax(k) +Bu(k) + Ew(k), (2.46b)

y(k) = Cx(k), (2.46c)
y(N − 1) = Cx(N − 1), (2.46d)

x(N) = x(N − 1). (2.46e)

In the MPC problem above, it can be observed that the steady-state set-points
(xs, us, ys) are not required in the problem formulation. Therefore, the MPC controller
is self-optimizing. This control formulation has found wide applications in the pro-
cess control literature and a rigorous study of the algorithm is presented in [76] for
undisturbed linear systems. A detailed review can be found in [75] and the references
therein.

The one-layer economic MPC controller above has two main limitations. Firstly,
the modified terminal cost increases the complexity of the MPC problem even for a
quadratic steady-state cost, but more so for non-linear steady-state economic objectives.
This makes the MPC problem computationally more expensive to solve. Also, stability
analysis can become more complicated due to the unconventional form of the terminal
cost. Secondly, knowledge of the unknown disturbance is required to compute the
optimal control law. Although this can be addressed via state estimation, it increases the
model dependence of the algorithm making it less robust to uncertainty. Modifications
of the one-layer approach to uncertain systems have been presented in [59, 53] using
the tube MPC design from [154].



2.4 Distributed MPC 37

2.4 Distributed MPC

Due to the online solution of an optimal control problem, the application of MPC in real
systems depends to a large extent, on the accuracy and speed of computing the solution
to the OCP. To formulate the OCP, system states, outputs and inputs are required in
real-time. Also, online computational resources (e.g. memory and processing power)
are required. For certain systems, all the information and computational resources
required to solve the OCP are readily accessible from a single plant. For such systems,
it is possible and also advantageous for a single plant to solve the MPC problem
and generate all control actions for the entire system. This approach to MPC is
called centralized MPC (CMPC) and is often adopted when controlling a collection of
plants with efficient inter-plant communication and sufficient computational resources.
The access to system-wide information makes it possible to achieve the most optimal
performance in CMPC assuming no communication and computational difficulties.
There exists however a different class of dynamic systems that consists of a collection
of subsystems which are sometimes geographically dispersed with no localized access
to the dynamic information of all subsystems. These systems are called large scale
systems (LSS). A well known example of a LSS is an interconnected power network.
For large scale systems, a centralized computation of the MPC law will require the
aggregation of information from all subsystems into a single system/node and the
subsequent computation of the MPC law for the LSS from this node. Although such a
centralized solution may yield the most optimal performance obtainable, it may not be
the most feasible approach to the control of LSS. For examples, some LSS may have
very weak subsystem interactions that can be ignored without negatively impacting the
overall performance of the controller. In such a scenario, a CMPC solution may not
bring any justifiable improvements in performance relative to the added communication
and computational expense. Also, a CMPC solution may not meet the reliability needs
of a LSS as it has a single point of failure. To address these challenges, distributed
MPC (DMPC) schemes have been developed [72]. In DMPC, the LSS is decomposed to
a collection of say M subsystems, each controlled by M local controllers. For example,
the system (2.1) can be decomposed into the following M interconnected subsystems,
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each one described by the state-space model

Si : xi(k + 1) = Aiixi(k) +Biiui(k) +
M∑

j=1,j ̸=i

{Aijxj(k) +Bijuj(k)}, (2.47a)

yi(k) = Ciixi(k), (2.47b)

where xi ∈ Rnxi , yi ∈ Rnyi and ui ∈ Rnui are respectively the states, outputs and inputs
of the ith subsystem. We assume that each pair (Aii, Bii) is stabilizable and each
subsystem state, xi is locally measurable. For each subsystem Si, the following local
constraints must be satisfied:

ui ∈ Ui and xi ∈ Xi, (2.48)

where Ui and Xi are polyhedral sets containing the origin in their interior. Also, we
consider the following stage cost,

li(xi, ui) ≜
1
2
(
∥xi∥2

Qi
+ ∥ui∥2

Ri

)
, (2.49)

and terminal cost
Vfi(xi) ≜

1
2∥xi∥2

Pi
(2.50)

for each subsystem Si. The matrix Qi ∈ Rnxi×nxi is positive semi-definite while
Ri ∈ Rnui×nui and Pi ∈ Rnxi×nxi are both positive definite matrices.
Given the subsystem dynamics (2.47), the distributed MPC (DMPC) problem is
formulated via the optimal control problem

Pi(xi(k), v−i(k)) : min
ui(k)∈UN,i

VNi(xi(k),ui(k)), (2.51)

where the feasible region UNi(xi(k), v−i(k)) is defined as

UNi(xi(k), v−i(k)) ≜
ui(k)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xi(k + t+ 1) = Aiixi(k + t) +Biiui(k + t)+
M∑

j=1,j ̸=i

{
Aijxj(k + t) +Bijuj(k + t)

}
, ∀t ∈ I[0,N−1]

xi(k + t) ∈ Xi, ui(k + t) ∈ Ui ∀t ∈ I[0,N−1]

xi(k +N) ∈ Xfi



(2.52)
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and v−i(k + t) = (xj(k + t), uj(k + t)) is state and input from the neighbouring
subsystems. In this problem, the decision variable is the sequence of control inputs
over the N -step prediction horizon for subsystem i i.e.,

ui(k) :=
{
ui(k), ui(k + 1) . . . , ui(k +N − 1)

}
(2.53)

chosen to minimize the local performance objective, VNi. The set Xfi is a local
terminal constraint set for subsystem i. To solve Pi(xi(k), v−i(k)) will require complete
knowledge of the system dynamics (2.47) at subsystem i. Due to the interaction
terms v−i(k + t), this information will not be available locally at subsystem i, and the
feasible set UN,i(xi(k), v−i(k)) will therefore be uncertain. As a result, a solution to
Pi(xi(k), v−i(k)) cannot be precisely computed.
To recover as much of the performance guarantees of a CMPC solution as possible,
coordination between the local MPCs of each subsystems may be required and the
mechanism and degree of this coordination is a major feature that distinguishes various
DMPC algorithms [72]. In the following paragraphs, several DMPC schemes will be
discussed.

2.4.1 Decentralized MPC (DeMPC)

Decentralized MPC (DeMPC) is a very primitive form of DMPC where the local
MPC controllers are designed using only the locally available information about each
subsystems (i.e. xi and ui only), without any form of coordination/communication
and ignoring all subsystem interactions v−i(k + t). This is based on the assumption
that the inter-plant interactions are negligible i.e.,

∥
M∑

j=1,j ̸=i

{Aijxj(k) +Bijuj(k)}∥ ≪ 0 (2.54)

and therefore can be ignored without having significant impact on the overall perfor-
mance of the LSS. The DeMPC algorithm for each subsystem is then formulated as
the standard MPC algorithm in Section 2.1.1 using the local subsystem dynamics

xi(k + 1) = Aiixi(k) +Biiui(k), (2.55a)
yi(k) = Ciixi(k). (2.55b)

Each local MPC is designed to solve the following finite-horizon OCP:
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PDe
i (xi(k)) : min

ui(k)∈U De
N,i

VNi(xi(k),ui(k)) (2.56)

where the feasible region U De
N,i is defined as

U De
Ni (xi(k)) ≜ui(k)

∣∣∣∣∣∣∣∣∣∣
xi(k + t+ 1) = Aiixi(k + t) +Biiui(k + t) ∀t ∈ I[0,N−1]

xi(k + t) ∈ Xi, ui(k + t) ∈ Ui ∀t ∈ I[0,N−1]

xi(k +N) ∈ Xfi

 .
(2.57)

Here VNi(xi(k),ui(k)) is defined as

VNi(xi(k),ui(k)) = Vfi(xi(k +N)) +
N−1∑
t=0

li(xi(k + t), ui(k + t)). (2.58)

and depends only on local inputs ui and states xi because the subsystems interaction
term v−i(k+t) is assumed to be negligible. Therefore each DeMPC problem, PDe

i (xi(k))
is solved without relying on computations from neighbouring subsystems and as a
result no iterations are needed.

Large scale systems with strong inter-plant interactions (e.g., coupling in the
dynamics, inputs, constraints or objectives of local plants) may experience significant
degradation in stability and performance under DeMPC [146], creating a need for
coordination among the decentralized local controllers. DeMPC algorithms have been
proposed in [146, 184, 3]. A challenge with most DeMPC algorithms is that obtaining
theoretical guarantees of stability and feasibility can be very difficult as the standard
techniques used in centralized MPC are not directly applicable. For example, the
DeMPC algorithm proposed in [146] impose very conservative contractive constraints on
the local DeMPC problems in order to guarantee stability while the DeMPC algorithm
proposed in [184] adopted a robust control approach to reject dynamic interactions
and guarantee closed-loop stability. Despite its limitations, DeMPC is a very scalable,
robust and flexible way to control LSS when the dynamic interactions are negligible.

When the dynamic interactions between subsystems cannot be ignored, it becomes
necessary to coordinate the control actions of the DeMPC controllers and recover as
much of the performance guarantees of CMPC as possible. To achieve this, several
DMPC schemes have been proposed [145, 72, 187] and can be grouped into the following
categories:



2.4 Distributed MPC 41

• Non-cooperative DMPC

• Cooperative DMPC

2.4.2 Non-cooperative DMPC

In non-cooperative DMPC, each local MPC minimizes a local objective function VNi

without considering the objectives of neighbouring subsystems i.e. VNj, j ∈ Ni,
but while taking into account the dynamic interactions between the subsystems i.e.
v−i = (x̂j, ûj), where Ni is the set of all subsystems directly interacting with subsystem
i. Given a known value of the neighbours’ control input sequences, {ûj}j∈Ni

and state
predictions {x̂j}j∈Ni

, the non-cooperative DMPC controller is obtained by solving the
following OCP locally:

PNCDi
i (xi(k), v−i(k)) : min

ui(k)∈UN,i

VNi(xi(k),ui(k)), (2.59)

where the feasible region UNi(xi(k), v−i(k)) is defined as in (2.52) with v−i = (x̂j, ûj)
and the objective function, VNi is given by (2.58).

Here (x̂j, ûj) are the planned input and states obtained from the local solution to
the MPC problem (2.59) of neighbouring subsystems and communicated to subsystem
i at each sample time. Non-cooperative DMPC can be iterative or non-iterative. In
iterative schemes, local MPC controllers exchange information (such as planned state
and input trajectories) several times within a sampling interval in order to improve
the local solutions. These schemes often result in excessive communication but can
guarantee improved performance. Non-iterative schemes exchange information between
local MPCs only once in each sampling interval. As a result, these schemes trade
performance for reduced communication and often resort to robust control techniques
to compensate for the reduced access to global information. In this thesis, robust
non-iterative DMPC algorithms will be proposed for the feedback optimization of large
scale systems due to the reduced communication and computational needs of these
algorithms.

Robust DMPC

Robust DMPC algorithms are non-iterative, non-cooperative DMPC algorithms that
make use of robust control techniques to handle the unknown interactions between
subsystems. These algorithms treat the unplanned interactions (i.e, the difference
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between the actual trajectories and the communicated trajectories of neighbouring
subsystems) as disturbances and resort to several robust control techniques to handle
these disturbances. In [178], the unplanned interactions are handled using an input-
to-state stability and small gain approach. In [102], the unplanned interactions are
handled using the computationally expensive min-max approach. In [213, 71, 185, 94],
the computationally efficient tube-based robust MPC approach originally proposed
in [154] was adopted to deal with the unplanned interaction-induced disturbances.
Tube-based robust DMPC algorithms are one of the most widely adopted robust DMPC
approaches due to their simplicity (very similar in design to standard nominal MPC)
and computational efficiency. In Chapter 8 of this thesis, a tube-based robust DMPC
algorithm will be developed for achieving feedback optimization in LSS systems using
the velocity MPC algorithm.

2.4.3 Cooperative DMPC

In cooperative DMPC [204], each local MPC minimizes a common system-wide objective
function VN that is composed of the sum of all local objective functions, i.e.,

VN(x(k),u(k)) ≜
M∑

i=1
αiVNi(xi(k),ui(k), {uj(k)}j∈Ni

) (2.60)

while taking into account the dynamic interactions between the subsystems i.e. v−i =
(x̂j, ûj), where Ni is the set of all subsystems directly interacting with subsystem i.
Here αi > 0, for all i, are given scalar weights and u = (u1, . . . ,uM) is the overall
control sequence for the LSS. Given a known value of the neighbours’ control input
sequences, {ûj}j∈Ni

and state predictions {x̂j}j∈Ni
, the cooperative DMPC controller

is obtained by solving the following OCP locally:

PCDi
i (xi(k), v−i(k)) : min

ui(k)∈UN,i

VN(x(k),u(k)) (2.61)

where the feasible region UNi(xi(k), v−i(k)) is defined as in (2.52) with v−i = (x̂j, ûj).
Cooperative DMPC can be iterative or non-iterative where local MPC controllers
exchange information with neighbouring MPC controllers to improve their solutions.
A benefit of cooperative DMPC is that the local MPC actions are computed with
considerations given to the objectives and dynamics of neighbouring subsystems. This
makes it possible to recover the performance of centralized MPC in a cooperative DMPC
algorithm at the cost of excessive communication and computational requirements.
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2.5 Feedback Optimizing Control

Feedback optimizing control is the class of feedback control algorithms that use input-
output measurements to drive a closed-loop system to optimal equilibria defined by a
steady-state optimization problem. These control algorithms are also referred to as
feedback optimization [156, 117, 85], autonomous optimization [55], and self-optimizing
control [101]. The defining features of most feedback optimizing control algorithms are:

1. They do not require a-priori knowledge of the optimal steady-state set-points or
the unknown disturbances to track the optimal equilibrium [87].

2. They rely on feedback as opposed to feed-forward computations i.e. advance
information are not explicitly used to numerically compute the optimal steady-
state set-points.

3. They require little to no model information [45].

4. They rely on input-output measurements to solve the steady-state optimization
[45, 87].

Traditionally, to achieve optimal steady-state control, a feed-forward approach is often
adopted [65]. In this approach, the steady-state optimization problem is periodically
solved using advanced knowledge of the disturbances and a detailed system model to
generate steady-state set-points [87]. A tracking type controller is then designed to track
these set-points in real-time. Recently, there has been increased interest in adopting
feedback instead of a feed-forward approach to the steady-state optimization of dynamic
systems. The motivation for this paradigm shift has mainly resulted from the following
unique benefits of feedback over feed-forward optimization [87, 88, 55, 160, 200]:

1. It is inherently more robust against unmeasured disturbances and model uncer-
tainties.

2. It is computationally more efficient.

3. It does not require advance knowledge of the optimal set-points or disturbances.

4. It has lesser model dependence and can be made model-free.

5. It inherently enforces the steady-state constraints thus avoiding the problem of
unreachable set-points common in feed-forward optimization .
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In the following subsections, existing approaches in the literature for achieving feedback
optimization of dynamic systems will be discussed. The focus here will be on algorithms
that operate in real-time and make use of input-output measurements to track the
(previously unknown) optimum of a steady-state optimization problem without explicit
measurement of the disturbances. Also, the strengths and weakness of the various
approaches will be compared. To illustrate each of these approaches, the following
example problem will be considered.

Problem 1 (Feedback optimizing control (FOC) problem). Consider the scalar con-
tinuous time linear system

ẋ = ax+ bu+ w, (2.62a)
y = cx, (2.62b)

(u, y) ∈ Z

where x, u, y and w are the state, input, output and disturbance respectively, and Z are
the constraints on (u, y). At a steady-state, the following equations are satisfied

0 = ax+ bu+ w, (2.63a)
y = cx. (2.63b)

From (2.63) the steady-state input-output map for (2.62) is computed as

y = h(u,w) = guu+ gww (2.64)

where
gu = −ca−1b and gw = −ca−1. (2.65)

Although a more general convex optimization problem can be handled, for simplicity
the quadratic steady-state optimization problem

(u∗(w), y∗(w)) = arg min
u,y

Φ(u, y) = qu2 + ry2 + su+ ty subject to (2.63), (2.66)

will be considered. The goal of feedback optimzing control is to find the control law u(x),
that regulates the system (2.62) in closed-loop, to steady-states that are the solution to
the problem (2.66), without measuring the disturbance w or knowing the optimal set
point (u∗(w), y∗(w)).
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We now describe various approaches in the literature available for solving the above
problem.

2.5.1 Extremum seeking control

Extremum seeking control (ESC) is a data-driven approach to feedback optimization of
stable or pre-stabilized systems. The basic idea behind ESC is to inject a dither/probing
signal (usually a sinusoid) to the system in order to locally explore the objective function
and estimate its gradient in real-time [5]. In the ESC literature, it is generally assumed
that a static input-output relation exists between the optimizing parameter e.g the
inputs and the optimized parameter e.g the outputs. This steady-state input-output
map often characterizes the performance of the system in a steady-state equilibrium.
To illustrate the ESC design, we consider Problem 1. By replacing the system dynamics
(2.62a) with the steady-state input-output map (2.64), the optimization problem (2.66)
can be expressed as :

u∗(w) = arg min
u

Φ̂(u,w) (2.67)

where Φ̂(u,w) is obtained by substituting the steady-state input-output map, y =
h(u,w), into Φ(u, y). By first order optimality condition, the optimal solution to the
above problem can be obtained by solving the equation

∇Φ̂(u,w)) = ∇h(u,w)∇Φ(u, h(u,w)) = 0. (2.68)

To compute the value of u that satisfies the equation 2.68 above, a precise knowl-
edge of the gradient of the input-output map, ∇h(u,w), and the objective function,
Φ(u, h(u,w)) are required. Due to the uncertainty w, accurate values of ∇h(u,w) and
Φ(u, h(u,w)) are difficult if not impossible to compute numerically.
In ESC, instead of computing ∇h(u,w) and Φ(u, h(u,w)) numerically, a sinusoidal
perturbation is added to the input to generate data from which these parameters
can be learned/estimated in real time. For the problem under consideration, let the
perturbed input ũ be given as

ũ = u+ 2α sinϕt. (2.69)
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To obtain the extreme seeking controller, we connect the following control dynamics in
closed-loop with the system:

u̇ = F (u, t) := − ϵ

α
Φ(u, h(u+ 2α sinϕt, w)) sinϕt. (2.70)

Here α, ϕ and ϵ are tuning parameters.

Remark 4. A very useful fact about the extremum seeking control algorithm is that
with small α and large ϕ, the control dynamics in (2.70) behaves approximately like
the gradient descent dynamics [41]

u̇ = F (u, t) ≈ −ϵ∇Φ(u, y), (2.71)

which is feedback optimizing [47]. To implement the extremum seeking control dynamics
(2.70), a knowledge of Φ(u, h(u + 2α sinϕt, w)) is not needed, only measurements
of the inputs and outputs, (u, y) are required. For a detailed understanding of this
approximation, please refer to the excellent discussion in Section 3.2.2 of [41].

From the remark above, it is clear that ESC only relies on and does not require
knowledge of h or ∇h to achieve feedback optimization. Therefore, it is model free
and generally robust against uncertainty and unmeasured disturbances.
Although there is a large literature on extreme seeking control, it has mostly found
application in the adaptive control of dynamic systems [8, 5]. The application of
extreme seeking control to the problem of feedback optimization for general linear
and non-linear systems have only recently gained traction. In [158], extreme seeking
controllers are proposed for feedback optimization of linear systems using output
measurements. [51] presented extremum seeking controllers that achieve feedback
optimization in constrained non-linear systems. Application of extreme seeking control
to the feedback optimization of enzyme production under cellular fitness constraints was
made in [86]. In the following, we summarize the pros and cons of an extremum-seeking
control approach to feedback optimization. Refer to the articles [127, 87] for details.

Pros of extremum seeking control

• Model free and highly robust against un-modelled dynamics.

• Strong theoretical guarantees exists.

• Can incorporate inequality constraints.
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• Simple and computationally efficient.

Cons of extremum seeking control

• Only optimizes the steady-state input or output but not both [126, 128].

• Theoretical analysis can get very complicated.

• Control design is challenging for high dimensional systems [88].

• Control design ignores dynamic performance objectives [126].

• Only applicable to stable or pre-stabilized systems.

2.5.2 Optimization algorithms as dynamic (control) systems

To solve problem (2.66) numerically, the set of feasible steady-states are first computed
by solving the steady-state equation (2.63) for an estimated value of the disturbance,
w. This step usually requires complete knowledge of the system model and the additive
disturbances. It also adds to the computational expense. Upon computing the feasible
set, optimization algorithms are then designed to iteratively search through this set for
the most optimal candidate, i.e., the one that minimizes the objective function, Φ(u, y).
Most optimization algorithms rely on optimality conditions to advance through the
feasible set until convergence to the optimal solution is achieved.

However, new applications are emerging where this numerical approach may no
longer be appropriate [217]. These are applications where the computational capability
is severely limited and the system is plagued by uncertainty. Recently, the idea of
directly implementing numerical optimization algorithms online as dynamic (control)
systems in closed-loop with the plant, as opposed to a direct online numerical op-
timization has gained traction in the optimization and control literature [87]. The
main advantage of this approach results from its feedback nature where input-output
measurements are used to drive the closed-loop system to the unknown optimizer of
the steady-state optimization in response to unmeasured disturbance changes. Thanks
to their feedback implementation, these methods are generally more robust against
model uncertainty and unmeasured disturbances compared to feed-forward numerical
optimization. Also, these methods when designed properly do not result in infeasible
set-points as they implicitly drive the system to feasible steady-states for constrained
optimization problems [156].
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The idea of implementing optimization algorithms as dynamic systems was first
popularized by economists in the seminal work [107]. After largely being ignored,
problems in internet congestion control, distributed resource allocation and optimal
frequency regulation motivated the re-discovery of this idea in the recent literature
on feedback-based optimization. In the following, we review feedback optimizing
control schemes based on the closed-loop implementation of optimization algorithms
as dynamical (control) systems. We also discuss the pros and cons of the different
approaches and illustrate their application to the solution of Problem 1.

Primal-dual control

Primal-dual dynamics are well-known continuous-time algorithms for solving con-
strained optimization problems [107]. These algorithms seek the saddle points of the
Lagrangian associated with a constrained optimization problem. Under weak technical
assumptions, these saddle points coincide with the solutions of optimization problems
[33]. Primal-dual control are feedback optimizing control schemes derived from the
closed-loop implementation of primal-dual dynamics as controllers. When properly
designed, connecting the primal-dual dynamics for a defined optimization problem
in feedback with a stable plant will result in a closed-loop system that autonomously
seeks the steady-state optimizer of the associated optimization problem.

To illustrate the primal-dual control algorithm, we consider the steady-state opti-
mization (2.66) here recalled as,

u∗(w), y∗(w) = arg min
u,y

Φ(u, y) = qu2 + ry2 + su+ ty (2.72a)

subject to: y − guu− gww = 0. (2.72b)

We define the Lagrangian for the above problem as:

L(u, y, λ) = Φ(u, y) + λ(y − guu− gww) (2.73)

where λ is a Lagrange multiplier. Assuming Φ is strictly convex and strong duality holds,
then the trajectories of the following primal-dual dynamics (also called saddle-point
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dynamics)[107, 42]

ẏ = −ky∇yL(u, y, λ) = −ky(2ry + t+ λ), ky > 0, (2.74a)
u̇ = −ku∇uL(u, y, λ) = −ku(2qu+ s− λgu), ku > 0, (2.74b)

λ̇ = kλ∇λL(u, y, λ) = kλ(y − guu− gww), kλ > 0 (2.74c)

converges to a saddle point of L(u, y, λ), i.e., a point (u∗, y∗, λ∗) such that L(u∗, y∗, λ) ≤
L(u∗, y∗, λ∗) ≤ L(u, y, λ∗) for all (u, y, λ). These saddle points correspond to the KKT
points (i.e., the optimal solution) of the optimization (2.66)[33]. The primal-dual
controller is obtained from the feedback interconnection of the primal-dual dynamics
(2.74) with the dynamic system (2.62). To design the controller, the gains ky, ku and
kλ are chosen such that the resulting closed-loop system is stable. A Lyapunov stability
analysis is often used to certify the stability of the closed-loop system.
To implement the primal-dual control law in (2.74), a knowledge of the unknown
disturbance, w is often required as it explicitly appears in (2.74c). Most primal-dual
algorithms use the dynamic model (2.62) and its parameters to estimate w, see for
example the primal-dual controllers presented in [134, 228, 147] for details. This
disturbance estimation is a major limitation of primal-dual control.

The primal-dual controller is a pure feedback-based controller and does not require
explicit solution of the optimization problem to converge to the optimal steady-state.
Therefore, the controller is robust against small changes in the optimization problem
[36]. Although the above example was developed for unconstrained optimization,
primal-dual controllers can also be similarly designed for constrained optimization
problems.

In the feedback optimization literature, primal-dual control is one of the most
popular algorithm for achieving feedback optimization of dynamic systems. This is
because, the primal-dual control design is very general and can be used to handle
both constrained and unconstrained optimization problems for both linear and non-
linear dynamics. Also, primal-dual control can sometimes be easier to implement as,
for most systems the plant dynamics are themselves part of the control algorithm
[134, 226]. Indeed, in the primal-dual dynamics (2.74), the equation (2.74c) can be seen
to replicate the system dynamics (2.62) and therefore does not have to be explicitly
implemented. Also, primal-dual dynamics are easily implementable as decentralized
[218, 157] or distributed [37, 228, 231] feedback optimization controllers for large-scale
systems under sparsity assumptions.
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One of the earliest primal-dual control design for feedback optimization of dynamic
systems can be found in [104, 36]. Both works considered constrained optimization
problems in the output variable. In [104], the primal-dual controller is designed
using the so-called ‘complementary integrators’ while [36] adopted a back-stepping
approach instead. In [48], dual sub-gradient methods are leveraged to design primal-
dual controllers that steer the output of a dynamical system towards the solution of
semidefinite programs. In [227, 228], distributed primal-dual controllers are designed
for the feedback optimization of linear network systems using a reverse and forward
engineering approach. In [206, 233] distributed primal-dual controllers are presented
for achieving optimal steady-state regulation in multi-agent systems. Finally, several
applications of primal-dual control designs to problems in power systems can be found
in [160, 55] and the references therein.

In conclusion, primal-dual control is a versatile and general approach to designing
feedback optimizing control algorithms for convex optimization problems. It works for
both constrained and unconstrained optimization problems, and also applies to both
linear and non-linear dynamics. Also, it can be implemented as distributed controllers
for sparse systems. Stability guarantees are easily established using standard Lyapunov
arguments. Despite these advantages, the primal-dual control design is not without
limitations. Firstly, it requires the dynamic system to be asymptotically stable or
pre-stabilized offline [228]. As a result, the dynamics of the system are not considered
in the control design. This makes it very challenging to tune primal-dual controllers for
optimal transient response. Most primal-dual controllers produce severely under- or
over-damped transient response [87] and are prone to constraint violations during the
transient phase [85]. Finally, the need for disturbance estimation makes primal-dual
control approaches less robust against model uncertainties. Refer to the survey articles
[160, 55, 87, 127] for more details. We summarize the pros and cons of a primal-dual
control approach to feedback optimization below.

Pros of a primal-dual control

• Applies to linear, non-linear, constrained, unconstrained and distributed settings.

• Asymptotically enforces inequality constraints by design.

• Computationally efficient.

• Convergence easily established using Lyapunov arguments.
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• Plug and play capabilities.

Cons of a primal-dual control

• Optimizes the steady-state input or output but not both.

• Convergence guarantees rely on accurate knowledge of plant model.

• Knowledge of unknown disturbances required.

• Difficult to tune, oscillatory transient response [85].

• Requires system to be stable or pre-stabilized.

• Transient constraint violations, no dynamic performance guarantees [125].

Gradient flow control

The gradient descent is an optimization algorithm that finds the (local) minima of
a function by following the direction that leads to a decrease in the gradient of the
function. Gradient descent algorithms have been widely studied and applied to a
wide range of optimization problems. Implementing gradient algorithms as dynamical
systems results in gradient flows [87].

Consider the optimization problem (2.72), by eliminating the constraint (2.72b),
we obtain the unconstrained optimization problem

u∗(w) = arg min
u

Φ̂(u,w) (2.75)

where Φ̂(u,w) = Φ(u, guu+ gww). Assuming Φ̂(u,w) to be differentiable in u for all
u ∈ R and w ∈ R, then by chain rule, we have

∇uΦ̂(u,w) = (2qu+ s) + gu[2r(guu+ gww) + t]. (2.76)

To design the controller that steers the system (2.62) to the solution of the optimization
problem (2.75), we consider the following gradient descent flow

u̇ = −ku∇uΦ̂(u,w) (2.77)

where ku > 0 is a tuning gain to adjust the convergence rate. To avoid disturbance
estimation, we can replace guu+ gww in ∇uΦ̂(u,w) by y following the equation (2.72b)
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to obtain the output-feedback gradient flow

u̇ = −ku∇uΦ̂(u,w) = −kuG∇Φ(u, y) = −ku[(2qu+ s) + gu(2ry + t)] (2.78)

where G =
[
1 gu

]
.

It is well known that the strict minima of Φ̂(u,w) are stable equilibria of the gradient
flow dynamics (2.78), and that, if the level sets of Φ̂(u,w) are bounded, then the
trajectories of (2.78) converge asymptotically to the set of critical points of Φ̂(u,w)
[47]. Under suitable timescale separation [156, 88], the interconnection of the gradient
flow controller (2.78) in feedback with the stable dynamic system (2.62), will result in a
closed-loop system that is guaranteed to converge to the minimizers of the optimization
problem (2.75) in steady-state. Also if the matrix G is sparse, then the sparsity
pattern will induce algebraic structures that can be exploited to achieve a distributed
implementation of the gradient flow controller [87]. This has indeed been exploited in
the class of distributed averaging proportional integral (DAPI) controllers commonly
used to achieve distributed economic dispatch in power system load-frequency control
[160, 188].

Although the gradient flow control above is designed to solve an unconstrained
optimization problem, constraints can be easily incorporated using penalty functions,
barrier functions or projection operators [85, 156, 87]. The stability of gradient flow
control interconnected with a stable linear time-invariant dynamics has been shown
in [156]. This analysis was generalized to non-linear dynamical systems in [88]. Here,
the timescale separation needed to guarantee the stable interconnection of gradient
flow controllers with a stable non-linear dynamical system is quantified using singular
perturbation analysis. [85] incorporated input and output constraints in gradient
flow control design using a discrete-time version of projected gradient flows. The
inherent robustness of the gradient flow control algorithm is investigated in [46]. It
was unsurprisingly found that gradient control algorithms are very robust against
model uncertainty and unmeasured disturbances. Application of gradient flow control
for autonomous optimization in power systems is discussed in [55]. The optimal
load frequency control problem and various economic optimization problems in power
systems are solved using gradient flow type controllers in [87].

One of the advantages of gradient flow control is their simplicity both in design and
implementation. Also, gradient flow controllers have very minimal model dependence
requiring only a knowledge of the input-output sensitivity. As a result, these control
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algorithms have been shown both in theory [46] and experimentally [169, 173] to have
very impressive robustness against model uncertainties and unmeasured disturbances.
We summarise the pros and cons of gradient flow controllers below.

Pros of gradient-flow control

• Simple to design and implement.

• Very minimal model knowledge required.

• Very robust against model uncertainty and unmeasured disturbances.

• Can incorporate steady-state constraints.

Cons of gradient-flow control

• Optimizes the steady-state input or output but not both.

• Incorporation of constraints complicates the controller.

• No transient performance guarantees.

• Requires system to be stable or pre-stabilized.

Integrated control and optimization

The feedback optimization strategies presented so far all assume the dynamic system
to be stable or pre-stabilized. The focus has therefore been the design of feedback
optimization dynamics that do not de-stabilize the otherwise stable open-loop system
when connected in feedback with the plant. This design approach is very elegant
and practical as it does not require a redesign of the existing controllers already in
place. However, a major disadvantage of this approach is that it limits the design
scope of the feedback optimization controllers [129]. The implication of this is that
important control functionalities such as the optimization of transient performance,
the enforcement of constraints during the transients, a robustness based control design
and the dynamic stabilization of unstable systems cannot be achieved.

To address these limitations, attempts have been made in [129, 128, 167, 9, 10, 45]
to design controllers that simultaneously stabilize the system dynamics while also
guaranteeing the optimization dynamics are stable and convergent. Two distinct
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approaches have been followed with these controllers. In the first approach, the open-
loop system dynamics is no longer assumed stable. The stability of closed-loop system
is analyzed considering both the optimization dynamics and the open-loop system
dynamics. Conditions guaranteeing the stability and convergence of the closed-loop
system are then derived by resorting to a robust control analysis. These approaches
often obtain stability guarantees that are based on the solution of linear matrix
inequalities [87]. An example of this approach is presented in [45].

In the second approach, the optimization dynamics are integrated with the system
dynamics and a single controller is designed to simultaneously stabilize both dynamics
resulting in a closed-loop system that is both stable and convergent to optima of the
optimization problem. Examples can be found in [167, 129, 128, 9, 10]. In [167], the
control design is split into three distinct components. The first component estimates
the system states from the output measurements. The second component uses the
estimated state to compute a drift direction based on an optimization dynamics. The
third component designs a feedback controller to drive the system towards the optimal
steady-state. The stability and convergence of the closed-loop system is analyzed in the
presence of constant disturbances. Sufficient conditions for global exponential stability
of the closed-loop system are established based on linear matrix inequalities (LMI).
In [128, 129] an internal model approach is used. Here, the optimization dynamics (also
termed optimality model in the paper) is augmented with the system dynamics as an
additional integral state. Tracking controllers are then designed using the augmented
model and the theory of output regulation to obtain feedback optimizing controllers
that guarantee a stable and optimizing closed loop system. Unlike in [167], stability
guarantees do not rely on the solution of complex LMIs in the nominal case (i.e.,
assuming no model uncertainty). In [9, 10], the optimization dynamics is used to define
a tracking error which is then used in a tracking linear quadratic/model predictive
control formulation to regulate the closed-loop system to the optimal steady-state.
Unlike the approaches in [167] and [128, 129], the techniques developed in [9, 10]
consider transient performance objectives in the control design.

2.6 Electric power systems

Electric power systems are one of the largest and most expensive engineered machines
in the world. They are arguably one of the most important infrastructure systems in
today’s society. Their importance stems from a myriad of reasons of technical and
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Fig. 2.1 The power system network [2].

socio-economic natures. Technically, power systems are interesting as they deal with
electrical energy which requires continuous balancing and cannot be stored efficiently.
Socially, power systems provide electricity which has become an essential commodity
to the life of everyone in the planet. Economically, the electrical energy provided by
power systems are essential to the operation of major industries and firms. For these
reasons, power systems have been the subject of scientific enquiry for decades.

Structurally, power systems are complex, interconnected dynamical systems physi-
cally made up of generation systems, transmission, and distribution systems, and loads
[121] (see Fig. 2.1). Power is produced by generation systems which are mostly syn-
chronous generators with large rotating parts. Transmission and distribution systems
transport the electricity from generators over long distance networks to consumers
(loads) usually at high voltages [84]. Also, modern power systems have a cyber-physical
layer that consists of decision support systems such as sensing, communication and
computation that aid in the efficient operation of power systems and support control
centres to provide essential services such as power markets, regulation and control [98].
Most power systems consists of networks of independently managed control areas 1

1A control area is defined as a collection of generation, transmission, and loads within metered
boundaries for which a utility company integrates resource plans for that area ahead of time, maintains
the area’s demand-supply power balance, and supports the area’s interconnection frequency in real
time [20]
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interconnected by high voltage, long-distance tie-lines. Operations within a control
area are managed in real-time by utilities, often referred to as the Balance Responsible
Party (BRP). Also, to guarantee network-wide stability and economic efficiency, an
independent/transmission system operator (ISO/TSO) coordinates and manages the
interconnection of control areas [98].

Power systems are undergoing a rapid evolution, driven mostly by economic and
environmental factors. With increased demand for affordable energy, the monopoly in
traditional vertically integrated utilities (VIU) is being dismantled through deregulation
and liberalization. Access to the transmission system is now open to all utilities within
and outside a control area. This has given consumers the freedom to purchase the
most affordable power from generating systems both within and outside their control
area. The large amount of random inter-area power flows that occur as a result has
made it more challenging for transmission system operators to manage and regulate
the power network.

Global concerns about the environment is driving an increased penetration of
renewable generation and the electrification of transportation. Due to the variability
and uncertainty of renewable generation, and the random charge and discharge cycles
of electric vehicles, future power systems will become more inefficient and unstable
[166]. This will make it challenging for utilities to reliably and efficiently operate the
power system.

On a positive note, power systems are evolving into smart grids with improved
sensing, communication and computation capabilities. These advancements will allow
the adoption of more advanced algorithms that are needed to deal with the challenges
of an evolving power system. Also, smart grids will provide an enabling environment
for the deployment of novel technologies such as real-time pricing that are needed to
cost-effectively manage a more complex and uncertain power network.

2.7 Review of Frequency Control

A fundamental objective in a power system is the supply of uninterrupted power at a
rated quality and the least possible operating cost/dis-utility [84]. Whenever there is
an imbalance between the supply and demand of power, the following occurs:

1. the electrical frequency deviates from its rated/nominal value

2. the inter-area power exchange deviates from its scheduled economic value
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3. the loading of controllable generators and controllable loads changes from their
economically dispatched values

Frequency control is therefore necessary to stabilize the power system and counter the
above impacts of power imbalance by [123, 122, 121, 124]:

1. restoring the frequency to its nominal/rated value

2. restoring the inter-area power exchanges to economic values

3. asymptotically stabilize the frequency deviation and minimize inadvertent inter-
area power exchanges with good dynamic performances, and

4. minimize the operating costs of power balancing across the interconnected power
network, returning the loading of controllable nodes (generators and controllable
loads) to their economic values.

To achieve these goals, conventional frequency control is designed and implemented
in a layered way, comprising primary, secondary and tertiary control [22]. Here, the
objectives of economic optimality and frequency stability are handled separately across
different time scales. This temporal decomposition is based on the following important
characteristics of traditional power system demand [98, 96, 99, 209]:

1. the aggregate load/demand is decomposable into:

(a) a predictable slowly-varying hourly demand variation, PL[h]

(b) a predictable near real-time (5-10 minutes) demand fluctuation, PL[min]
and

(c) an unpredictable real-time (seconds) demand fluctuations with zero mean,
PL[s].

2. there is a clear timescale separation between each components of the above
demand.

In the following paragraphs we present the main components of frequency control in
conventional power systems.
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2.7.1 Tertiary Frequency Control

Tertiary frequency control comprises the unit commitment (UC) and economic dispatch
(ED) operations. The UC determines the economically optimal combination of power
generating units to keep online, in order to meet the predicted hourly demand variations
( PL[h] ). Unit commitment set-points are dispatched once, every 24 hours (daily)
and consists of 24 hourly generator on/off selection profiles. Closer to real-time (5-10
minutes), steady-state economic dispatch problems are solved using predictions of the
near real-time (5-10 minutes) demand fluctuations, PL[min], to efficiently allocate
the actual power generation between the committed units and the inter-area power
exchange schedules between control areas. The ED operation sends load-reference
set-points for committed generating units, and tie-line power exchange schedules for
each control area at intervals of 5mins to less than an hour.

A fundamental assumption underlying tertiary control operations is a power system
in steady state at the predicted demand. This justifies the use of static optimization
processes to determine tertiary control set-points as formulated in the multi-area
economic dispatch problem (2.79) [205]:

min
P tie,P m

Φ(Pm) =
∑
i∈N

Ci(Pm
i ) (2.79a)

s.t. ∀i ∈ N : (2.79b)
Pm

i − P tie
i − PL

i = 0, ∀i ∈ N , (2.79c)
Pm

i ≤ Pm
i ≤ P

m
i , (2.79d)

P tie
i ≤ P tie

i ≤ P
tie
i (2.79e)

where P tie
i is the tie-line power flow in control area i, P tie = {P tie

i }∀i∈N , Pm
i is the

aggregate power generation in control area i, Pm = {Pm
i }∀i∈N , PL

i is the near real-time
predicted demand of control area i and N is the index set of control areas. The capacity
constraints of the generators is enforced by the constraints in (2.79d) while (2.79e)
enforces the thermal limits on the interconnecting tie-lines. Ci(Pm

i ) is the variable
cost of generating Pm

i amount of aggregate power by all generators in control area i
and it depends on variables such as the fuel cost. Ci(Pm

i ) is often approximated by a
quadratic function of Pm

i [22].
The solution to the multi-area economic dispatch problem above yields the economically
optimal power generation Pm,∗

i and the tie-line power schedule P tie,∗
i to meet the

predicted near real-time power demand PL
i [min] for a pool of control areas, N .Pm,∗

i
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is dispatched as the load reference set-point, P c
i to the participating Governor-Turbine-

Generator (GTG) systems in the power network every 5-15 minutes [186].

2.7.2 Primary & Secondary Frequency control

Between economic dispatch intervals, the actual instantaneous demand may deviate
from its near real-time predicted value. This could result from unplanned load changes
or fluctuations in generation (e.g. from renewable generation, or generation/power
line outages). To ensure the matching of generation with demand, and also restore
economically optimal operation of the power system in real time, load-frequency control
is required. Load-frequency control (comprising primary and secondary control) tracks
the set-points from the most recent ED operation while rejecting the disturbances
from unpredictable components of the demand in real-time. Primary frequency control
provides the first and the fastest automated response to real-time power fluctuations.
Primary control acts at a timescale of seconds to adjust the power of generators and
controllable demand based on local frequency deviations. The control action in primary
control are localised at the generation or demand level and may stabilize the frequency
deviation at non zero values owing to its proportional action.
To eliminate the non-zero deviation of frequency from its nominal value and restore
the power system to its economically dispatched operating points, secondary frequency
control is activated after primary control. Secondary frequency control, also known
as Automatic Generation Control (AGC) acts at a timescale of tens-of-seconds to
minutes to restore the frequency and tie-line power interchanges to their respective
nominal/scheduled values. Traditional secondary control or AGC is centralized with
respect to the generators in a control area but area-wise decentralized [225].

Both primary and secondary control are feedback loops with control actions de-
rived from actual system measurements (frequency and tie-line power flow deviation),
while tertiary control are feed-forward loops with control derived from demand predic-
tions/estimates. Conventional secondary control (or AGC) actions are computed from
measurements of the area control error (ACE). The ACE is a weighted combination of
the deviation in frequency, fi and deviation in scheduled tie-line power flow, P tie

i of
each control area, i ∈ N i.e.,

ACEi = βifi + P tie
i (2.80)
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where βi is the frequency bias coefficient of control area i, obtained from numerical
studies of the frequency response characteristics of a control area.

Secondary frequency control acts to provide real-time corrections to the load-
reference set-points, P c

i fixed by a previous economic dispatch command in order to
account for unplanned disturbances. Secondary frequency control is one of the most
important control problems of interconnected power system design and operation, and
is becoming even more significant today due to the increasing size, changing structure,
emerging renewable energy sources and new uncertainties, environmental constraints,
and complexity of modern power systems [29].

2.7.3 Conventional Load-Frequency Control (LFC)

Pioneering ideas in AGC were developed in the 1950s with N. Cohn introducing
the ingenious tie-line bias control for meeting the frequency control objectives of
interconnected power networks [44]. Tie line bias control works by driving the area
control error (ACE), defined by (2.80) of individual control areas to zero. This is
conventionally achieved via the proportional integral (PI) control algorithm:

ui = −Kiei, (2.81a)
ėi = ACEi (2.81b)

where ui is the control command given to the generators in control area i that are
participating in LFC. The design of the control gain Ki was based on classical frequency
domain design techniques such as the Bode and Nyquist plots. Due to its simplicity
and decentralized implementation, conventional LFC based on tie-line bias control has
been and is still widely adopted in practice. Although simple and easy to implement,
conventional LFC algorithms have poor dynamic performance (long overshoots and
settling times) [62] especially for constrained power systems with non-linear dynamics
and uncertain parameters [190, 121]. Also, classical control techniques which are used
to design conventional LFC algorithms cannot effectively deal with multi-variable power
systems dynamics. Furthermore, they are mainly designed under nominal conditions
and without considering the system constraints which makes these techniques ineffective
during a change in operating point.

We summarize the pros and cons of conventional LFC algorithms below.
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Pros of conventional LFC

• Simple intuitive design.

• Easy to implement, computationally cheap.

• Decentralized.

Cons of conventional LFC

• Poor dynamic performance (long overshoots and settling times).

• Cannot handle multi-variable power systems dynamics.

• Constraints and non-linearities not directly considered.

• Cannot guarantee steady-state economic operation i.e., economic dispatch.

2.7.4 Model-Predictive Load Frequency Control

To improve dynamic performance, modern control techniques were applied to the
LFC problem with the linear quadratic regulator (LQR) developed in [62, 79, 123]
for achieving dynamically optimal frequency regulation in multi-area power systems.
Although LQR showed improved transient performances, and could deal with multi-
variable systems dynamics, it was mostly criticised for requiring the complete state
measurements, lacking constraint handling capabilities and lacking in robustness. The
deficiencies of LQR led to the application of more advanced modern control techniques
such as adaptive, robust, predictive and intelligent control approaches. Detailed surveys
of these and many other control methodologies to the LFC problem are reviewed in
[190, 120].

Recently, the interest in applying model predictive control to the LFC problem has
increased dramatically. This is due to the ability of MPC to systematically handle
power system constraints, as well as optimize the performance. Furthermore, develop-
ments in smart grid has increased the communication and computational capabilities of
modern power systems, motivating the application of MPC to the LFC problem. Most
MPC based LFC algorithms are designed as tracking MPC controllers (see Section 2.2)
with the tracking error defined as the area control error (ACE) as given by (2.80).
In [195, 115, 191, 155, 137, 66, 136, 196, 194], centralized MPC schemes have been
applied to the LFC problem. The use of centralized MPC for LFC is justified under the
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assumption that system-wide information from all control areas is readily accessible
by single control centre using for example, telemetry systems (e.g., Wide Area Mea-
surement Systems (WAMS)). In [195], a centralized MPC algorithm that considers the
Generation Rate Constraints (GRC) for multi-area LFC was presented. [115] proposed
a centralized MPC-based LFC scheme that achieves nominal and robust stability using
state contractive constraints. In [191], the economic cost of generation and short
term load predictions are used to formulate an economically efficient centralized MPC
algorithm for a single area power system.
In [66], a pioneering application of centralized MPC to a real world Nordic power
system is demonstrated in simulation. The algorithm is designed using a simplified
model of the real power system with complete operational constraints such as tie-line
congestion limits, generation capacity limits and GRC included in the control formu-
lation. Also, cost based tuning of the input weights is used to obtain economically
efficient generation control. LFC was achieved using hydro rather than steam turbines.
The performance of the MPC algorithm was shown to be better than PID in terms
of the frequency response, constraints satisfaction, cost efficiency and disturbance
rejection under uncertainty from renewable generation.
A further step towards testing MPC on real world systems was taken by [155] where
centralized MPC is applied to the AGC of a 1479-bus high resolution simulation model
of the single area Irish power system with significant wind generation, stochastic loads
and communication delay. A velocity MPC formulation is used for disturbance rejection
with GRC constraints considered. Also the MPC weights are tuned using the generation
cost to achieve economically efficient AGC. Effects of significant renewable generation,
stochastic loads and control delay are considered. The MPC is shown to outperform
PID and minimize generation cost. However, PID shows more robustness to time
delays. It is evident from this study that control communication plays a significant
role in the successful real-world application of MPC to the LFC problem.

Centralised MPC using system-wide information may not be feasible for large-scale
power systems due to increased communication and computational requirements; the
need for independent management of control areas by different utilities with information
sharing concerns; and the single point of failure associated with relying on one central
controller. To overcome these challenges, decentralized MPC (DeMPC) and distributed
MPC (DMPC) have been applied to the LFC of multi-area power systems. DeMPC-
based LFC schemes were studied in [159, 163, 11, 184]. A key motivation for the use
of DeMPC techniques is a weak tie-line interaction allowing the local MPC regulators
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to be based on local control area information. This significantly reduces the burden of
communication and computation.

Load frequency control using DeMPC performs better than PI control but poorer
than CMPC and DMPC based approaches [93]. This is because DeMPC uses an
incomplete/partial prediction model since information about the subsystem interactions
are ignored or rejected as disturbances. Furthermore, guaranteeing the stability of
DeMPC based LFC is difficult for systems with strong interactions and the use of
restrictive constraints to guarantee closed-loop stability further degrades the control
performance [161, 93]. To improve the performance of DeMPC, distributed MPC
(DMPC) schemes [216, 142, 161, 139, 143, 92, 138] have been applied for the LFC of
power networks. DMPC schemes are based on the exchange of dynamic interaction
information between control areas, which is then included in the design of each local
MPC for improved performance. Different DMPC schemes have been applied to the
LFC problem, differentiated mostly by the information communication requirements
and the approach used for solving the MPC problem for each control area.

We summarize the pros and cons of MPC-based LFC algorithms below.

Pros of MPC-based LFC

• Works for multivariable systems.

• Systematic constraint handling capabilities.

• Can optimize a user defined performance objective.

Cons of MPC-based LFC

• Cannot guarantee steady-state economic operation i.e., economic dispatch.

• Computationally more demanding.

• Requires knowledge of system states and disturbances.

A key contribution of this thesis is to develop novel MPC-based LFC algorithms
that can guarantee steady-state economic operation under significant variation in the
unknown demand and without the need for explicit measurement or estimation of the
demand. In the following paragraphs, we present a detailed review of LFC schemes
proposed in the literature for achieving economic dispatch (i.e., steady-state economic
optimization) in load-frequency control.
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2.8 (Steady-state) Economics Optimizing Load Fre-
quency Control

One of the objectives of load frequency control (LFC) is the optimal allocation of
generation and network resources to minimize the cost of power balancing [120].
Conventionally, this function is achieved by Economic Dispatch (ED) operating at
slower time scales using prediction-based steady-state optimization to obtain the
optimal set-points and tie-line schedules tracked by LFC at faster timescales [121, 124].
The economic efficiency of this approach depends on the predictability of demand,
absence of multi-timescale dynamics and the efficient coordination between the ED and
LFC operations; all of which are becoming increasingly difficult to guarantee with the
increased variability and loss of inertia in modern power systems. The integration of
ED into LFC is commonly achieved via participation factors calculated using the most
recent ED results or cost parameters of the generators participating in LFC [121, 221].
Although participation factors can allocate generation optimally between generators, it
is still possible to obtain economically suboptimal LFC operations. This observation
has for a long time motivated studies aimed at improving the efficiency of participation
factors in ensuring economic power allocation in LFC. In [122], the need to coordinate
ED and LFC in the same timescale as the LFC operation was emphasized for power
systems with rapidly changing loads. In [12], Optimal Power Flow (OPF) rather than
ED calculations are used to compute participation factors which ensure an economic
LFC operation within the thermal limits of the transmission lines. More recently,
the participation factor approach to coordinating ED and LFC has been improved in
[130] to ensure economic and secure LFC operations under uncertainty from loads and
renewable generation using the concept of bus dependent participation factors.

Participation factors may be suboptimal in real-time due to the inability to revise
tie-line schedules and load-reference setpoints for highly uncertain power networks.
This challenge has been taken up by recent frequency control studies [160], leading to
the development of several techniques for integrating ED into the frequency regulation
problem to ensure real-time economically efficient LFC for highly uncertain, low-inertia
power systems.
Most of these techniques are designed to achieve tertiary economic optimization and
inter-area coordination, within frequency regulation, with the objective of obtaining
optimal allocation of resources across control area boundaries in the time scale of
frequency regulation. Detailed reviews of (economically) optimal LFC studies can be
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found in [160, 120, 165]. A brief review of emerging techniques in the literature for
obtaining economically optimal frequency control will now follow.

2.8.1 Modified Hierarchical Control

These techniques retain the timescale separation of hierarchical control with modifica-
tions to improve economic efficiency. Common changes include the design of improved
interaction between the control layers and/or the remodelling of hierarchical control
to include dynamics across multiple timescales. In [224, 225], a hierarchical scheme
that unifies ED, AGC and load forecasting while retaining the area-wise decentralized
nature of tie-line bias control was proposed. In [61], ED is designed to operate at a
slower timescale and interacts with AGC to reschedule the entire generation in a way
that minimizes the operating cost. In [97, 223], the concept of minimal regulation
was introduced which minimizes the operating cost of AGC by rescheduling the entire
system generation and separating tie-line control from frequency regulation. A more
recent study in [209], redesigned conventional hierarchical ED to include information
about the real time imbalance of power (i.e. frequency deviation) in the steady-state
ED operations. The control design claimed to improve the economic efficiency of
frequency control, compared to conventional ED. However, power system dynamics
were ignored, which can adversely affect performance. In [19], the primary, secondary
and tertiary control layers were remodelled as dynamical systems with a so-called
transactive control architecture designed to coordinate tertiary level market trans-
actions with the primary and secondary frequency control using price-like signals.
Reduced LFC cost and improved social welfare was claimed compared to conventional
hierarchical control. In [37] the joint problem of ED and frequency regulation was
studied and conditions under which they can be decomposed into independent control
layers without loss of optimality are derived. It was also shown that for ED based on
a DC power flow model, the global problem of joint ED and frequency regulation is
decomposable if an estimate of the difference between the average marginal cost of
power generation in the ED and frequency regulation time-scales is available. Other
notable modifications of hierarchical control and extensions of the methods discussed
can be found in [193, 202, 54, 1].

Controllers based on a modified hierarchical design still rely on timescale separation
assumptions and therefore require steady states between control layers. Consequently,
real-time economic optimality under variable power fluctuations is still not guaranteed,
due to the possibility of a loss of time scale separation for large and fast disturbances.
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2.8.2 Optimal Load Frequency Control

Optimal load frequency control techniques dynamically stabilize the power system
at equilibrium points corresponding to the (unknown) solutions of the economic
dispatch problem. These controllers are often designed as online implementations of
the optimization algorithms for solving the economic dispatch problem. The economic
dispatch problem is often formulated to encapsulate the control design goals such as
economic optimality, frequency regulation and constraint/congestion management. A
review of optimization algorithms being implemented as dynamic control laws have been
thoroughly discussed in a previous section. In [105], optimal load frequency control is
achieved by the feedback implementation of dual decomposition algorithms for solving
a defined economic dispatch problem. Here, the Lagrange multiplier (interpreted as
dynamic nodal prices in the paper) were directly used as control signals to achieve
economically optimal frequency control with tie-line congestion management. In [134],
conventional Automatic Generation Control (AGC) was modified using a partial primal-
dual algorithm to economically dispatch generation in secondary frequency control.
By implementing a significant part of the controller via the power system dynamics,
very little modification was required to the conventional integral-control-based AGC.
Insights obtained from [134] were utilized in [157] to develop a practically oriented
approach to achieving ED in conventional AGC. In [147], a more complicated but
similar design approach to [58] was adopted in achieving economically optimal primary
and secondary frequency control with tie-line congestion management using demand
response. The work in [147] was extended to include both generation and demand
response loads in [230]. In [219], primal-dual feedback optimizing controllers that
achieve optimal load frequency control in power networks while also guaranteeing
constraint satisfaction both in steady-state and during the transient are presented.
However, the controller made use of saturation to enforce constraints which can lead
to poor control performance and integrator windup problems.

An alternative to primal-dual control that has been widely used to achieve opti-
mal load frequency control is the distributed averaging proportional integral (DAPI)
controller. This controller is a variant of gradient-based feedback optimizing control
for sparse systems. They can therefore be easily implemented as distributed load
frequency controllers. DAPI controllers work by exchanging marginal (generation
or demand response) cost information between traditional proportional-integral (PI)
secondary frequency controllers in order to achieve economically optimal frequency
control [160]. Economic optimality of DAPI is due to convergence via consensus to an
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equal incremental control cost, satisfying the unconstrained ED criteria in real-time.
DAPI controllers although optimizing and computationally efficient can only guarantee
asymptotic constraint satisfaction with the possibility of violating the constraints in the
transient phase. They have also been shown to exhibit a trade-off between performance
and robustness to communication and measurement noise [220, 189]. DAPI control has
been applied to the secondary LFC of bulk power systems using simplified [229, 188]
and complex non-linear models [203]. Micro grid secondary control applications have
been shown in [56] for simplified models and [50] with more complex micro grid models.
Other distributed averaging based methods for economically optimal frequency control
include, a discrete-time consensus based approach in [164] and an approach based on
output regulation theory in [210] for time-varying disturbances.

A major limitation of the above optimal load frequency controllers is the inability
to guarantee performance and constraint satisfaction during transient operation. This
can be detrimental to power systems with sustained operation away from the optimal
steady states due to the occurrence of persistent and time varying disturbances. Partly
addressing this limitation, optimal load frequency control algorithms are presented in
[55, 89, 87] which enforce power system constraints both in steady-state and during
transients using projected gradient descent algorithms. In [49], a projected primal-dual
algorithm is used to develop feedback optimizing algorithms that solve the optimal
power flow problem for AC power systems. Although optimal load frequency control
algorithms with projection can achieve both transient and steady-state feasibility, they
do not yield optimal transient performance as the power system is still assumed to be
stable or pre-stabilized offline.

2.8.3 Economics Optimizing Model Predictive LFC

For most MPC based LFC schemes, economic considerations are treated as secondary
objectives and are mostly achieved indirectly via economics based tuning of the MPC
controller [155, 66, 191, 196]. This approach to secondary frequency control is justified
for small power fluctuations (a common assumption in most LFC studies). However,
when the disturbances are persistent, time-varying and large, the need to include
economic objectives in the design of LFC schemes becomes vital. This is due to
the significant deviation from previously determined optimal economic loading of
generators, as well as the frequentness of LFC from expensive fast-ramping sources of
generation. The increase in renewable generation and inter-area power transactions in
future power grids will most likely result in power systems with large, time-varying and
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persistent disturbances, operating away from their predetermined economic equilibria
for most of the time. Therefore, there is need for LFC schemes to restore economic
operation rather than assume a power system close to its economic equilibrium.

An early decentralized MPC scheme with a cost minimization objective for LFC
was proposed in [183]. Economic operation was achieved through the minimization of
generator manoeuvring and reversals during LFC, rather than a direct use of generator
cost functions in choosing control actions. A reduction in the LFC cost was claimed
for a 3-area power system compared to the use of conventional MPC. The controller
however is an equilibrium stabilizing MPC, with economic improvements achieved
using a heuristic economic logic rather than the direct and systematic inclusion of
generator cost information in the MPC design. Economic reallocation of generation and
tie-line power flows is therefore not possible with the algorithm. In [201] an economic
optimizing MPC (EMPC) which directly incorporates the LFC cost in the objective
of the controller is proposed. A trade off between economic efficiency and set-point
stabilization is achieved by the MPC via a multi-objective function definition. The
economic LFC objective of the MPC scheme is defined to include the cost of wear
and tear on generators due to the input rate of change; the incremental cost of power
generation; and the cost of large frequency deviations which trigger uneconomical
critical actions such as load shedding. The superior economic and dynamic performance
of the EMPC scheme over a set-point stabilizing MPC was shown in simulation. The
study was however conducted for a single area power system and therefore does not
consider the economic benefits, nor the dynamic influence of inter-area interconnections
on control performance. Also, operational constraints such as generator capacity limits
and Generator Rate Constraints (GRC) are not directly considered in the control
formulation.

In deregulated power networks, separately managed control areas may compete,
rather than cooperate in order to optimize a local as opposed to global economic
objective. Therefore, [57] proposed a distributed economic MPC (DEMPC) scheme
for competing multi-area power networks. The controller was designed to optimize
local economic objectives while achieving convergence to a desired global network
steady-state e.g zero frequency deviation. Cooperation was required to achieve global
network control objectives such as managing tie-line power flows. An iterative dual-
decomposition optimization technique was adopted for network coordination. Also, the
sharing of confidential economic information is not required by the algorithm. Although
the control performance is locally optimal and globally stabilizing, the network-wide
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economic performance may be suboptimal due to lack of economic cooperation.
A recent application of distributed EMPC to the LFC of multi-area power systems was
demonstrated by [113, 112] where the sum of local and neighbouring subsystem’s eco-
nomic objectives are optimized using an iterative dual decomposition technique based
on Alternating Direction Method of Multipliers (ADMM) algorithm. MPC regulators
exchange local state predictions and control iterates with neighbouring controllers in
order to solve the distributed optimization problem. Premature termination of the
algorithm is possible, to meet real-time requirements with performance guarantees.
Also, tie-line coupling constraints and generation capacity limits are considered. Im-
proved economic performance compared to a state-of-the-art approach for achieving
economically optimal LFC was shown in simulation. The controller however is iterative
and based on the slow ADMM algorithm. It may therefore not be feasible for power
systems with limited communication capabilities.

The previously reviewed economics optimizing MPC schemes for LFC are based on
centralized [201], decentralized [183, 57] or iterative distributed [113] MPC approaches
and may therefore be infeasible for power systems of large scale with limited commu-
nication capabilities. Economics optimizing model predictive LFC schemes that are
computationally efficient, scalable and have reduced communication requirements have
not been reported in the literature, yet such schemes are desired for the economic
operation of future interconnected power systems with stronger inter-area coupling
due to the increased need for cooperation to reject larger, persistent and uncertain
disturbances.

2.9 Summary and Conclusion

This chapter presented theoretical background in optimization and control, and a
detailed review of the current literature on feedback optimization, economics optimizing
MPC, and optimal load-frequency control. From this review, it was found that
conventional hierarchical control cannot guarantee a stable and economically optimal
steady-state operation under uncertainty and time-varying disturbances. Alternatives
to conventional hierarchical control have also been discussed. It was observed that most
of these alternatives have limitations such as poor dynamic and constraint handling
capabilities which can be detrimental for some important applications problems such
as power system frequency control. Although MPC algorithms exists for achieving
optimal steady-state control, most MPC schemes are computationally expensive and
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rely on disturbance estimation. Also, the idea of feedback optimizing control has
been thoroughly discussed with a detailed review of existing algorithms. Feedback
optimization has been found to be computationally efficient, robust and not reliant on
disturbance measurements. However, most schemes for feedback optimization unlike
MPC lack transient performance guarantees and only enforce constraints asymptotically.

From this review, it is clear that the strength of MPC is the weakness of feedback
optimization and vice versa. Therefore, there is a strong incentive to combine the design
philosophy of both feedback optimization and model predictive control to achieve the
advantages of both while also addressing their combined limitations. In the following
chapters of this thesis, we will do exactly that by combining the design philosophy of
both control schemes to formulate and design MPC algorithms that achieve feedback
optimization in closed-loop.



Chapter 3

The Feedback Optimizing Model
Predictive Control Problem

3.1 Introduction

In this chapter, we expand the design scope of traditional feedback optimization to
include transient performance objectives and recursive constraint satisfaction. To
achieve this goal, the feedback optimization problem will be formulated using a
Model Predictive Control (MPC) framework. This will allow additional performance
objectives such as dynamic optimization and constraint enforcement during transients
to be achieved. Towards this objective, the feedback optimization problem will be posed
as a feedback optimizing model predictive control (FOMPC) problem. The benefit of
this new way of posing the feedback optimization problem is that the advantages of a
model predictive control based design are carried over to the feedback optimization
problem. This however comes at the added expense of increased model dependence
and increased computational complexity. However, one can reduce the impact of this
trade-off by designing robust and computationally efficient FOMPC algorithms.
We begin the chapter by characterizing the feasible forced equilibrium set of the
linear system and defining the steady-state optimization problem. We then define the
FOMPC problem and examine the necessary conditions for optimality of the steady-
state optimization problem. Defining the steady-state optimality error as the residual
of the Karush-Kuhn-Tucker optimality conditions for the steady-state optimization,
we show that the FOMPC problem can be reformulated as a generalized tracking
model predictive control problem, allowing conventional tracking MPC algorithms to
be adapted to solve the FOMPC problem.
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3.2 Dynamical System

Consider a constrained discrete-time uncertain linear time-invariant system described
by

P(δ) :


x(k + 1) = A(δ)x(k) +B(δ)u(k) + Ew(k),

y(k) = Cx(k),

(u(k), y(k)) ∈ Z := U × Y,

(3.1)

where

• x(k) ∈ Rnx , u(k) ∈ U ⊆ Rnu , and w(k) ∈ W ⊆ Rnw are the state, input, and
additive uncertainty (disturbance) vectors respectively. The variable y(k) ∈
Y ⊆ Rny represents the selection of measurable states to be optimized and will
hereafter be referred to as the output.

• A(δ) ∈ Rnx×nx , B(δ) ∈ Rnx×nu , E ∈ Rnx×nw , C ∈ Rny×nx are the uncertain
system coefficient matrices.

• δ = (δ1, . . . , δi, . . . , δl) ∈ Rl is a time-invariant (parametric) uncertainty vector
which takes values from the compact set ∆l.

The sets U, Y, and W are compact and convex sets of constraints on the input, output
and exogenous disturbance vectors respectively.
Consider the system represented by (3.1) and let the following assumptions be satisfied.

Assumption 1 (Basic assumptions on the system).

1. The system (3.1) is reachable and observable for every realization of δ.

2. The state x(k) is measurable at every sampling instant.

3. ny ≤ nu.

3.2.1 The steady-state optimization problem

Let the steady-state value of the unknown disturbance at time k be given by w(k →
∞) = w̄. Then from the system dynamics (3.1), a controlled equilibrium point (x̄, ū)



3.2 Dynamical System 73

of the system satisfies

[
Inx − A(δ) −B(δ)

] x̄
ū

 = Ew̄, (3.2a)

ȳ =
[
C 0ny×nu

] x̄
ū

 . (3.2b)

The steady-state input–output map can then be expressed as the affine function,

ȳ = Gu(δ)ū+ ỹ(δ, w̄) (3.3)

where Gu(δ) is the steady-state gain of the system (3.1) assumed finite (as steady-state
optimization will be meaningless otherwise), and ỹ(δ, w̄) is an (unknown) offset vector.
We denote the set of controlled equilibria, parametrized by the disturbance w̄ and the
uncertainty δ as

F(δ, w̄) :=
{
(x̄, ū) : (3.2a), (3.2b) are satisfied

}
=
{
z̄ : G(δ)z̄ = ỹ(δ, w̄)

}
, (3.4)

where

G(δ) =
[
−Gu(δ) Iny

]
, ỹ(δ, w̄) = C(Inx − A(δ))−1Ew̄, and z =

u
y

 . (3.5)

Lemma 3.2.1. For the linear system (3.1),

Gu(δ) =
[
C 0ny×nu

]
Z(δ) (3.6)

where Z(δ) ∈ R(nx+nu)×nu is the matrix whose column vectors are the unique basis for
N
( [
Inx − A(δ) −B(δ)

] )
obtained from the reduced row echelon form.

Proof. Assuming
x̄0

ū0

 is a particular solution of (3.2a), then

[
Inx − A(δ) −B(δ)

] x̄0

ū0

 = Ew̄, (3.7)
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and (3.2a) minus (3.7) yields,

[
Inx − A(δ) −B(δ)

] ( x̄
ū

−

x̄0

ū0

) = 0. (3.8)

∴

x̄
ū

 =
x̄0

ū0

+ Z(δ)v (3.9)

where v ∈ Rnu is the unique coefficient vector for the rational basis of

N
( [
Inx − A(δ) −B(δ)

] )
. (3.10)

Hence,
ȳ = Gv(δ)v + ỹ(δ, w̄) (3.11)

where,

Gv(δ) =
[
C 0ny×nu

]
Z(δ) and ỹ(δ, w̄) =

[
C 0ny×nu

] x̄0

ū0

 . (3.12)

Because equation (3.2a) is assumed consistent (i.e. always admits a solution), there
exist a unique v for every u hence,

Gv(δ) = Gu(δ). (3.13)

Remark 5 (Invertible dynamics). If (Inx − A(δ)) is non-singular, then Gu(δ) =
C(Inx − A(δ))−1B(δ).

The steady-state optimization problem for the system involves minimization of a
stationary economic performance objective Φ(·) subject to the constraint sets F(δ, w̄)
and Z. We define the problem as

RT O(δ, w̄) : z̄∗(δ, w̄) = arg min
z̄

{
Φ(z̄) : z̄ ∈ F(δ, w̄), z̄ ∈ Z

}
, (3.14)

where Φ: Rnu × Rny → R is continuous.
The RT O(δ, w̄) problem is a static optimization problem whose solution varies ac-
cording to the uncertain parameters δ and w̄. Therefore, solving RT O(δ, w̄) explicitly
with a nominal (i.e. assumed or estimated) value of δ and estimates of the disturbance
w̄, may generate setpoints (z̄∗) which when tracked by a dynamic feedback controller
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converges to a sub-optimal equilibrium with steady-state errors [65]. Also, to guarantee
closed-loop stability, the setpoints (z̄∗) must be updated at a timescale slower than the
system dynamics, consequently resulting in a slow response to set-point changes [37] .

In the remainder of this chapter, we propose a general framework that allows
the RT O(δ, w̄) problem to be solved in closed-loop while simultaneously tracking
the optimal steady-state equilibrium for changing disturbances w̄, with an inherent
(quantifiable) robustness to the uncertainty δ. Rather than solving RT O(δ, w̄) nu-
merically, we adopt a feedback-based optimization approach [45, 23, 128, 156] where
the RT O(δ, w̄) problem is implicitly solved, without knowledge or estimates of the
disturbance w̄ and with inherent robustness to uncertainty in δ. To also regulate the
system in an optimal and admissible way with respect to a transient performance
criterion and constraints, we adopt an optimal control approach where the RT O(δ, w̄)
problem is solved implicitly via the feedback loop of the optimal controller.
To develop our control framework, the following assumptions are made about the
RT O(δ, w̄) problem.

Assumption 2 (Properties of the steady-state problem).

1. The cost function, Φ(·), is differentiable and strictly convex.

2. The sets of admissible uncertainties, ∆l and W, are such that, for all w̄ ∈ W,
and δ ∈ ∆l

(a) the set F(δ, w̄) has a non-empty relative interior;

(b) the minimizer z̄∗(δ, w̄) is unique.

(c) the minimizer z̄∗(δ, w̄) exists.

Remark 6 (About the assumptions). 1. Assumption 2(2a) is required for Slater’s
constraint qualification to be satisfied implying that strong duality holds for the
optimization problem. This is a requirement for the KKT optimality conditions
to be applicable.

2. The strict convexity of Φ(·), ensures the satisfaction of Assumption 2(2b) [33].
For a quadratic program, strict convexity is easily achieved by imposing positive
definiteness on the quadratic cost.

3. Finally, Assumption 2(2c) although strong is necessary to ensure the dynamic
system is driven to a unique steady-state equilibrium. One way to ensure satisfac-
tion of Assumption 2(2c) is to assume the sets F(δ, w̄) and Z are both compact
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sets [100]. Also, choosing the cost function, Φ(·) to be coercive (see Definition 1)
can guarantee existence of a minimizer.

Please refer to Chapter 2 of [100] for details on existence and uniqueness conditions
of optimization problems.

Definition 1 (Coercive function). The continuous cost function, Φ(z̄) defined on all
of Rnu+ny is coercive if

lim
∥z∥→∞

Φ(z̄) = +∞. (3.15)

That is for any constant M > 0 there exists a constant RM > 0 such that ∥Φ(z̄)∥ > M

whenever ∥z∥ > RM .

3.3 The Feedback Optimizing Model Predictive
Control Problem

The main objective of feedback optimizing model predictive control (FOMPC) is to
regulate the inputs and/or outputs of a disturbed linear time-invariant system to an
equilibrium point that is the solution to a steady-state optimization problem. This
regulation should be achieved without knowledge of the optimal steady-state set-points
or explicit solution of the steady-state optimization problem, while also guaranteeing
optimal dynamic performance between steady-states. We define the FOMPC problem
precisely as follows.

Problem 2 (The FOMPC Problem). Design for the linear discrete-time uncertain
system (3.1) a state feedback control law

u(k) = κN(x(k), u(k − 1)) (3.16)

obtained from the solution to an optimal control problem, such that for any admissible
w̄ ∈ W and δ ∈ ∆:

1. For all feasible x(0) = x0, the point z̄∗(δ, w̄) is an asymptotically stable equilibrium
for the closed-loop system, satisfying

lim
k→∞

(u(k), y(k)) = z̄∗(δ, w̄). (3.17)

2. The feedback policy κN(·, ·) minimizes a transient performance criterion.
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3. The constraints (u(k), y(k)) ∈ Z are satisfied at all times.

Remark 7 (Disturbance assumptions). Problem 2 is a generalized formulation of the
FOMPC problem with the only restriction on the disturbance being its boundedness to
the set W i.e., w̄ ∈ W. Developing MPC solutions for this generalized problem might be
very challenging and sometimes additional simplifying assumptions on the disturbance
are necessary to obtain a more tractable control problem. In the subsequent chapters
of this thesis, the disturbance will be assumed to be constant (i.e. slowly varying) in
addition to being bounded, allowing the design of MPC solutions to solve the FOMPC
problem above.

3.4 Conditions for Steady-state Optimality

To design the FOMPC law that solves the optimization problem RT O in feedback, we
first examine the necessary conditions for optimality of the problem.

3.4.1 KKT Optimality Conditions

To handle the inequality constraints, we reformulate the RT O problem in (3.14) as
the equality constrained problem,

RT Op(δ, w̄) : z̄∗
p(δ, w̄) = arg min

z̄

{
Φ̃(z̄) : z̄ ∈ F(δ, w̄)

}
, (3.18)

where Φ̃ : Rm × Rp → R is a modified performance index defined as

Φ̃(z̄) = Φ(z̄) + p(z̄). (3.19)

The function p(z̄) : Rnc → R, where nc is the total number of output and input
inequalities, adds a penalty to the cost function Φ(z̄) [141] on violation of the constraints
that define the set Z. We define a penalty function p(z̄) as follows [141],

Definition 2 (Penalty function). A function p(z̄) : Rnc → R is a penalty function for
RT O(δ, w̄) if:

1. p(z̄) = 0, iff z̄ ∈ int(Z), and

2. p(z̄) > 0, ∀z̄ /∈ int(Z).
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A penalty function for the inequality constraints Z := U × Y :=
{
z̄ : g(z̄) ≤ 0nc

}
that is guaranteed to be differentiable is the Courant-Beltrami penalty [43],

p(z̄) = max
(
0nc , g(z̄)⊤Γg(z̄)

)
= 1

2g
+(z̄)⊤Γg+(z̄) (3.20)

where the constant

Γ = Γ⊤ =
Γu 0

0 Γy

 ∈ Rnc×nc ≻ 0 is a penalty matrix, (3.21a)

g+(z̄) = max
(
0nc , g(z̄)

)
=


max(0, g1(z̄))

...
max(0, gnc(z̄))

 , and (3.21b)

max(0, gi(z̄)) =


0 gi(z̄) ≤ 0,

gi(z̄) gi(z̄) > 0.
(3.21c)

Remark 8 (Exact Penalty). The Courant-Beltrami penalty function is not exact,
therefore the solution z̄∗

p to the equality constrained optimization problem RT Op may
not be exactly equal to the solution z̄∗ to the inequality constrained problem RT O (that
is the true solution). However it is well known that z̄∗

p will be a good approximation to
the actual solution, z̄∗ as the value of Γ increases [43].

Remark 9 (Hard constraints). The non-exact penalty method only guarantees asymp-
totic constraint satisfaction and therefore cannot handle hard inequality constraints
which must be enforced at all times. We will rely on model predictive control to enforce
these hard constraints in the transient phase of the FOMPC controller.

Remark 10 (Differentiability of the Courant-Beltrami penalty). Although max(0nc , g(z̄))
is not differentiable, the Courant-Beltrami penalty function has a continuous gradient
because

max
(
0nc , g(z̄)⊤Γg(z̄)

)
(3.22)

has a continuous first derivative: at 0nc, the derivative is 0nc from both sides. In
general the gradient of ∇p(z̄) can be obtained using backward chain rule [214] as

∇p(z̄) = ∇g(z̄)Γg+(z̄). (3.23)
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By virtue of Assumption 2 and the properties of p(z̄), problem RT Op(δ, w̄) in
(3.18) is a convex optimization problem and strong duality holds [33]. Therefore, the
Karush–Kuhn–Tucker (KKT) conditions are necessary and sufficient for its optimality.
We obtain the KKT conditions for RT Op by forming the corresponding Lagrangian,

L(z̄, λ) := Φ̃(z̄) + λ⊤
(
G(δ)z̄ − y(δ, w̄)

)
(3.24)

where λ is a multiplier of appropriate dimension. The corresponding KKT optimality
conditions are

∇L(z̄, λ) =
∇Φ̃(z̄) +G(δ)⊤λ

G(δ)z̄ − y(δ, w̄)

 = 0nu+2ny . (3.25)

3.4.2 Subspace Formulation of the KKT Conditions

By solving the KKT system of equation (3.25), we obtain the optimal solution to
the problem RT Op. However, it is impossible to obtain precisely an explicit solution
(z̄∗, λ∗) to (3.25) due to the uncertain terms G(δ) and y(δ, w̄). The goal therefore is to
obtain optimality conditions independent of these uncertain terms. We achieve this by
expressing (3.25) in the following equivalent subspace form [24]:

∇L(z̄, λ) = 0nu+2ny ⇐⇒

∇Φ̃(z̄) ∈ R
(
G(δ)⊤

)
G(δ)z̄ = y(δ, w̄)

 . (3.26)

By a fundamental theorem of linear algebra, R
(
G(δ)⊤

)
= N

(
G(δ)

)⊥
, and therefore

∇Φ̃(z̄) ∈ R
(
G(δ)⊤

)
⇐⇒ ∇Φ̃(z̄) ∈ N

(
G(δ)

)⊥
. (3.27)

Therefore, let G̃(δ) be any full-rank matrix such that,

G̃(δ)G(δ)⊤ = 0 or R
(
G̃(δ)⊤

)
= N

(
G(δ)

)
for all δ ∈ ∆. (3.28)

Remark 11. For the linear model (3.1) with the (finite) steady-state input-output map
(3.3), the matrix

G̃(δ) =
[(
Gu(δ)⊤

)†
Ip

]
(3.29)

satisfies (3.28).
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With this, the KKT optimality condition (3.25) becomes

∇L(z̄, λ) =
 G̃(δ)∇Φ̃(z̄)
G(δ)z̄ − y(δ, w̄)

 = 0nu+2ny . (3.30)

It follows that z̄ is optimal with respect to problem (3.18) if, and only if, it satisfies
(3.30). This establishes the following result, which—similar to [128]—allows the steady-
state equilibrium optimization problem to be posed as a stabilization problem.

Proposition 1. Part (1) of the FOMPC problem is solved if, from any feasible initial
state x0, any uncertainty δ ∈ ∆l and any admissible disturbance w̄ ∈ W, the control
law

u(k) = κN(x(k), u(k − 1)) (3.31)

is such that z(k) = (u(k), y(k)):

1. is regulated to a steady-state equilibrium, and,

2. satisfies limk→∞
{
e(k) := G̃(δ)∇Φ̃(z(k))

}
= 0nu+ny .

Proof. Condition (1) is satisfied if and only if G(δ)z̄ = y(δ, w̄), which is necessary and
sufficient for equilibrium. Condition (2) implies, and is implied by, the KKT conditions
(3.30) being met in the limit, which is necessary and sufficient for optimality.

3.5 Main Result

3.5.1 Reduction of FOMPC to Generalized Tracking MPC

Given Proposition 1, we define the following generalized tracking MPC (GTMPC)
problem.

Problem 3 (Generalized Tracking Model Predictive Control (GTMPC) Problem).
For the linear discrete-time uncertain system (3.1), design if possible a state feedback
controller of the form (3.31) such that for all w̄ ∈ W and δ ∈ ∆l, the closed-loop system
has the following properties:

1. For all feasible x(0), the closed-loop dynamics

x(k + 1) = A(δ)x(k) +B(δ)κN(x(k), u(k − 1)) + Ew(k) (3.32)
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are asymptotically stable with respect to the (unknown) steady-state optimizers of
(3.14).

2. All trajectories of the closed loop system are such that

lim
k→∞

e(k) = 0 and
(
u(k), y(k)

)
∈ Z ∀k ≥ 0 (3.33)

where e(k) is a steady-state tracking error.

3. The feedback policy κN(·, ·) minimizes a transient performance criterion.

With the GTMPC problem defined, we now state our main result.

Theorem 3.5.1 (Reduction of FOMPC to GTMPC). A solution to the FOMPC
problem exists for RT O if the GTMPC problem with the tracking error

e(k) := G̃(δ)∇Φ̃(z(k)) (3.34)

has a solution.

Proof. Existence of a solution to Problem 3 (i.e., the GTMPC problem) implies that a
control law

u(k) = κN(x(k), u(k − 1)) (3.35)

can be found such that, as k → ∞,

x(k) → x̄, y(k) → ȳ, u(k) → ū, (3.36)

and

x̄ = A(δ)x̄+B(δ)ū+ Ew̄,

ȳ = Cx̄,

˜G(δ)∇Φ̃(z(k)) = 0,

(3.37)

where x̄, ū, ȳ are the steady-state values of the respective variables.
Because the steady-state equations in (3.37) satisfy the conditions of Proposition 1, it
implies that Part 1 of the FOMPC problem is solved. By implication, the existence of
a solution to the GTMPC problem also solves Part 2 and 3 of the FOMPC problem
which concludes the proof.
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The tracking error in (3.34) may be computed directly from measurements of the
input-output vector z(k), provided the objective Φ̃ and the steady-state gain matrix
Gu(δ) are available a priori. This choice therefore obviates the need for knowledge of
the optimal equilibrium z̄∗(δ, w̄) and the additive uncertainty w̄. However, a knowledge
of the multiplicative (parametric) uncertainty δ may still be required to compute Gu(δ).
To circumvent this limitation, Gu(δ) can be estimated online at the current operating
point using past input-output measurements [215]. This estimation problem is non-
trivial and an in-depth discussion of this topic is out of scope for this thesis. We refer the
reader to [35, 149, 119] for details regarding the steady-state gain estimation problem
within the context of feedback-based optimization. Where online estimation of the
steady-state gain may not be feasible, a nominal value of Gu(δ) (that is Gu(δ) ≈ Gu(0))
can be adopted for all values of the parametric uncertainty, δ ∈ ∆l [46, 173]. Both
approaches cannot guarantee convergence to the true optimum without some error (i.e.
estimation and approximation errors).

Some linear systems may possess a steady-state gain Gu(δ) that is independent
of the multiplicative uncertainty δ. For these systems, the tracking error (3.34) is
invariant to both the additive and multiplicative uncertainty. We will associate such
systems with a robust steady-state gain property as defined next.

Definition 3 (Robust steady-state gain). The uncertain linear system (3.1) is said
to posses the robust steady-state gain (RSG) property if there exists a fixed matrix Gu

such that
Gu(δ) = Gu ∀δ ∈ ∆l. (3.38)

Lemma 3.5.2 (RSG Property). The RSG property is satisfied for the uncertain linear
system (3.1) if

[
C(δ) 0ny×nu

]
is independent of δ and rankZ(δ) is δ-invariant.

Proof. Based on the definition of Gu(δ) in (3.6)

(
Gu(δ) = Gu ∀δ ∈ ∆l

)
⇐⇒

(
Lemma 3.5.2

)
. (3.39)
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Example 1 (System with RSG property). Consider the uncertain LTI system (3.1)
with

A(δ) =


1 0 1 0
0 1 0 1

−δ1 −4δ1 1 − δ1δ3 0
−6δ2 −5δ2 0 1 − δ2δ4

 , B(δ) =


0 0
0 0
δ1 0
0 δ2

 , E =


5 1
2 10
3 0
0 4

 ,

C =
1 0 0 0
0 1 0 1

 .
(3.40)

The parametric uncertainty δ =


δ1

δ2

δ3

δ4

 ∈ ∆4 ⊂ R4 takes values from the interval

∆4 :=
[
−514 2014

]
.

Computing the steady-state gain Gu(δ) for arbitrary values of δ ∈ ∆4 confirms that the
above system indeed has the RSG property with

Gu(δ) =
−0.2632 0.2105

0.3158 −0.0526

 ∀δ ∈ ∆4. (3.41)

Theorem 3.5.1 enables the reduction of the FOMPC problem to a generalized track-
ing model predictive control problem (GTMPC). As a result, a tracking MPC controller
can be designed to track the unknown optimum of the the steady-state optimization
RT O, thereby bringing the benefits of feedback (such as an inherent robustness to
uncertainty) to the steady-state optimization while retaining the complexity of standard
tracking MPC.

3.6 Feedback Optimizing Model Predictive Control
with Quadratic Steady-state Cost

For certain applications (such as optimal load-frequency control [55] [211], implicit
trajectory planning [232] and optimal internet congestion control [140]), the steady-state
performance criterion is the quadratic function
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Φ(z̄) = 1
2

ū
ȳ

⊤ Quu Quy

Qyu Qyy

ū
ȳ

+
Ru

Ry

⊤ ū
ȳ

 = 1
2 z̄

⊤Qzz z̄ +R⊤
z z̄ (3.42)

and the resulting steady-state optimality error (3.34) is the piece-wise affine function,

e(k) := G̃(δ)∇Φ̃(z(k)) =


G̃(δ)∇Φ(z(k)) z(k) ∈ int(Z)

G̃(δ)∇Φ(z(k)) + G̃(δ)∇g(z(k))Γg(z(k))) z(k) /∈ int(Z)
.

(3.43)
For the polytopic constraints, U :=

{
u : Puu ≤ qu

}
and Y :=

{
y : Pyy ≤ qy

}
, g(z̄) =

Hz̄ − h and ∇g(z̄) = H⊤ where H =
 Pu 0m×p

0p×m Py

 and h =
qu

qy

.

The tracking error in (3.43) can then be written as the set-based piecewise affine
equation

e(k) = Λj,y(δ)y(k) + Λj,u(δ)u(k) + rj(δ) for z(k) ∈ Sj, j ∈ J. (3.44)

The set Sj = {S1,S2} are the set of polyhedral partitions of the state-space into inactive
and active regions respectively, where J = {1, 2} is the index set of such partitions
that is,

S1 =
{
z̄ : g(z̄) < 0nc

}
, S2 =

{
z̄ : g(z̄) ≥ 0nc

}
. (3.45)

Λj,y(δ) =


Λy(δ) if z(k) ∈ S1

Λy(δ) + Λ̃y(δ) if z(k) ∈ S2

, Λj,u(δ) =


Λu(δ) if z(k) ∈ S1

Λu(δ) + Λ̃u(δ) if z(k) ∈ S2

,

(3.46)
and

r(δ) =


r(δ) if z(k) ∈ S1

r(δ) + r̃(δ) if z(k) ∈ S2

, (3.47)
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where

Λy(δ) = 1
2[(Qyy +Q⊤

yy) + (Gu(δ)⊤)†(Quy +Q⊤
yu)], (3.48)

Λu(δ) = 1
2[(Qyu +Q⊤

uy) + (Gu(δ)⊤)†(Quu +Q⊤
uu)], (3.49)

r(δ) = Ry + (Gu(δ)⊤)†Ru, (3.50)
Λ̃u(δ) = (Gu(δ)⊤)†P⊤

u ΓuPu, (3.51)
Λ̃y = P⊤

y ΓyPy, (3.52)
r̃(δ) = −[(Gu(δ)⊤)†P⊤

u Γuqu + P⊤
y Γyqy]. (3.53)

This error may be computed directly from the input u(k) and output y(k), provided
the objective Φ̃ and the input–output DC gain matrix Gu(δ) are known. As a result,
the FOMPC problem by virtue of Theorem 3.5.1 reduces to a piece-wise quadratic
tracking control problem.

For the remainder of this thesis, we will focus on adapting conventional tracking
MPC algorithms to solve the FOMPC problem for the case of quadratic steady-state
optimization problems with inequality constraints that are inactive in steady-state. As
will become evident later in the thesis, this adaptation is not trivial and often leads to
a generalization of conventional tracking MPC beyond set-point tracking.

Relation to Tracking MPC

Because FOMPC tracks an (unknown) reference that is the minimum of a steady-
state optimization problem, we can easily show that it generalizes the classical Model
Predictive tracking control algorithms introduced in Section 2.2 for a known reference,
ysp. We define the steady-state optimization cost function as

Φ(z̄) = 1
2(ȳ − ysp)⊤(ȳ − ysp). (3.54)

The minimum is, obviously, ȳ = ysp. The resulting steady-state optimality error at
sample time k is then easily obtained as

e(k) = G̃(δ)∇Φ(z(k)) = y(k) − ysp (3.55)
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via the designs Λy = Ip, Λu = 0 and r = −ysp. The FOMPC tracking error (3.34)
reduces to a standard tracking error y(k) − ȳsp, which may be steered to zero using
conventional methods.

3.7 Conclusion

In this chapter, the feedback optimizing model predictive control problem has been
formulated for a defined steady-state optimization. Also, as a first step towards solving
the defined problem, the steady-state tracking error was expressed as a function of the
measurable inputs and outputs. From this tracking error, a generalized tracking MPC
problem has been formulated from which a solution to the feedback optimizing MPC
problem can be devised. In the following chapters, the focus will be on devising model
predictive control algorithms that solve the generalized tracking MPC problem for a
defined steady-state optimization.



Chapter 4

Deterministic Feedback Optimizing
Linear Quadratic Control

In this chapter, we consider the FOMPC problem in the absence of dynamic inequal-
ity constraints and under deterministic conditions (i.e., state is measurable and no
model mismatch is present). We call this the deterministic feedback optimizing linear
quadratic control (FOLQC) problem. We propose several solutions to the deterministic
FOLQC problem when the steady-state optimization problem is a quadratic program.
The proposed algorithms in this chapter enable the design of novel controllers that
autonomously track the optimal solution of a steady-state quadratic program with
guaranteed optimal transient performance. Also, the FOLQC algorithms proposed
reduce to the standard tracking linear quadratic regulator when the goal is to track
a known steady-state set-point. Therefore, we can alternatively view FOLQC as a
generalization of tracking linear quadratic control to cases where the reference set-points
are implicitly generated from a known steady-state optimization problem rather than
being explicitly available a-priori. A benefit of FOLQC over the standard tracking
LQ regulator is its self-optimizing capabilities. Although the FOLQC formulation
presented in this chapter is deterministic (i.e. assumes model is known and disturbance
is piece-wise constant), the control algorithm still enjoys some inherent robustness to
model uncertainty and unknown disturbances. We analyse this inherent robustness
using standard results on the robustness of the linear quadratic control. Also, unlike
most feedback optimization algorithms, the deterministic FOLQC regulator under
simple assumptions can guarantee the closed-loop convergence of a dynamic system
to its optimal equilibrium, while also optimizing the dynamic performance according
to a defined cost. This chapter is organized as follows. In Section 4.1, we formulate
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the deterministic FOLQC problem associated with a given (non-linear) steady-state
optimization problem. In Section 4.2, the FOLQC problem is specialized to the case
of quadratic steady-state optimization with linear dynamics. Also in this section, the
FOLQC problem is solved for a steady-state quadratic program using the principle
of dynamic programming and a velocity model of the system dynamics. Alternative
solutions to the deterministic FOLQC problem based on linear matrix inequalities
are proposed in Section 4.3. These alternative will be useful in the extension of the
FOLQC problem to uncertain LTI systems in Chapter 5. In Section 4.4, we present
an output feedback variant to the FOLQC regulator when the state is not available
a-priori. Section 4.5, presents a feed-forward approach to the solution of the FOLQC
problem. In Section 4.6, we study the inherent robustness of FOLQC and finally
present some numerical simulation results in Section 4.8.

4.1 Introduction

Linear quadratic control (LQC) is a well-known and widely applied approach to
achieving optimal control of dynamic systems. Not only is LQC a powerful design
method, but it also has some interesting properties. Firstly, the optimal control in
a LQC problem can be expressed as a linear state feedback control law allowing for
a simple feedback implementation, with little or no online computation. Also, the
feedback nature of the LQC law gives it good robustness properties when the state of
the system is measurable.
In the LQC problem, the goal is to find the control input that minimizes a quadratic
function of the state/output and the input, subject to linear dynamic constraints. Since
its introduction by Kalman in the 1960s, the LQC problem has played a key role in
many control design methods [132], with several extensions such as reference tracking,
disturbance rejection, integral control and stochastic control achieving functionalities
other than regulation.
Closely related to FOLQC is the linear quadratic tracking (LQT) problem. The LQT
problem is a well studied extension of LQC with the goal of finding the optimal control
input that drives the output and/or input of a linear dynamic system towards known
setpoint/reference values, while rejecting unknown disturbances. In the literature,
the infinite-horizon LQT problem is an actively studied area of the LQC problem
with several proposed solutions [16, 52, 133, 108, 80]. In the following, we extend
the LQT problem beyond the tracking of known setpoints to the tracking of the
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solution to a steady-state optimization problem under unknown but piece-wise constant
disturbances.
The plant under consideration is the discrete-time linear time-invariant dynamic system
represented as follows

x(k + 1) = Ax(k) +Bu(k) + Ew(k), (4.1a)
y(k) = Cx(k). (4.1b)

Here: k denotes the sample time; x(k) ∈ Rnx , u(k) ∈ Rnu , y(k) ∈ Rny , and w(k) ∈ Rnw

denote the system states, inputs, outputs and exogenous disturbances respectively; and,
A ∈ Rnx×nx , B ∈ Rnx×nu , E ∈ Rnx×nw , and C ∈ Rny×nx are known system matrices.
Assuming that the plant state x(0) at a given time k = 0 is known, then the objective
of feedback optimizing linear quadratic control (FOLQC) is to find a control law which
asymptotically drives the outputs y(k) and/or inputs u(k) of the LTI system (4.1) to
the solution, z̄∗(w̄) of the steady-state optimization

z̄∗(w̄) = arg min
z̄

{
Φ(z̄) | z̄ ∈ F(w̄), z̄ ∈ Z

}
(4.2)

while minimizing the transient (often quadratic) performance index or cost functional

J∞(x(0)) =
∞∑

k=0
l(e(k), u(k)), (4.3)

where
e(k) = z(k) − z̄∗(w̄) := G̃∇Φ̃(z(k))

(
see Theorem (3.5.1)

)
, (4.4)

and Φ: Rm × Rp → R is a convex steady-state (economic) cost, continuous in the
decision variable z̄ =

[
ū ȳ

]⊤
and the sets F and Z retain their previous definition

from Chapter 3 except with δ = 0.

Remark 12. Because the forced equilibrium set F(w̄) is included in problem (4.2) as a
constraint, every solution, z̄∗(w̄) is an equilibrium of the system, (4.1).

The following is a formal statement of the deterministic FOLQC problem.
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Problem 4 (Deterministic FOLQC Problem). Design for the LTI system (4.1) a state
feedback control law of the form

u(k) = fc(x(k), y(k), u(k − 1)) (4.5)

such that the following are achieved for every constant disturbance, w̄, without using
explicit knowledge of the disturbance or the solution to (4.2):

1. for all initial x(0), the closed-loop dynamics

x(k + 1) = Ax(k) +Bfc(x(k), y(k), u(k − 1)) + Ew(k) (4.6)

are asymptotically stable with respect to the (unknown) steady-state optimizers of
(4.2).

2. all trajectories of the closed loop system are such that

lim
k→∞

e(k) = 0. (4.7)

3. the feedback policy fc(x(k), yk, u(k − 1)) minimizes the transient performance
criterion

J∞(x(0)) =
∞∑

k=0
l(e(k), u(k)), (4.8)

where l(e(k), u(k)) is a non-negative instantaneous loss incurred at time k .

4.2 Quadratic Feedback-Optimizing Linear Quadratic
Control

In this section, we solve the FOLQC problem when the steady-state performance
objective, Φ, is quadratic, i.e.

Φ(z̄) = 1
2 z̄

⊤Qzz z̄ +R⊤
z z̄, (4.9)

where Qzz =
Quu Quy

Qyu Qyy

 and Rz =
Ru

Ry

.

We show that with the developed control algorithms, the system (4.1) can be steered
asymptotically to the optimal steady-state equilibrium (i.e., the solution of (4.2)),
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without explicit knowledge of this equilibrium (i.e. z∗(δ, w̄)) or knowledge of the
disturbance, w̄, and while simultaneously minimizing a transient performance criterion,
J(·, ·).

Remark 13. When the cost Φ(z̄) is convex, i.e., Qzz ⪰ 0, FOLQC tracks the global
minimum of (4.2). However, when Φ(z̄) is non-convex i.e., Qzz ̸⪰ 0, FOLQC tracks a
local minimum of (4.2) if it exists. (See [33], Section 4.2.2 for proof).

In order to keep the presentation simple and maintain intuition of the concepts,
we present the development of the FOLQC framework considering inequality (Z)
constraints that are inactive in steady-states. The tracking error, (4.4), under a
quadratic steady-state cost, and inactive Z, is an affine function of the measured output
and input, and is given by

e(k) := G̃∇Φ(z(k)) = Λyy(k) + Λuu(k) + r (4.10)

where

Λy = 1
2[(Qyy +Q⊤

yy) + (G⊤
u )+(Quy +Q⊤

yu)],

Λu = 1
2[(Qyu +Q⊤

uy) + (G⊤
u )+(Quu +Q⊤

uu)],

r = Ry + (G⊤
u )+Ru.

This error may be computed directly from the input u(k) and output y(k), provided the
objective Φ and the input–output DC gain matrix Gu is known. This obviates the need
for complete knowledge of the optimal steady-state set-points z̄∗ and the disturbances
w̄ as would otherwise have been the case using a feed-forward multi-layered approach.

Remark 14. Though the error e(k) in (4.10) appears to be independent of the additive
disturbance w(k), any change in w(k) while u(k) is constant will induce via the system
dynamics, a corresponding change in the output y(k) and hence e(k).

For the purpose of control design, we make the following assumptions

Assumption 3. The system (4.1) is reachable and observable.

Assumption 4. The matrix

S =
A− Inx B

ΛyC Λu

 (4.11)
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is such that rankS = ny + nu.

Assumption 3 is standard in the optimal control literature and Assumption 4 is
standard in the output regulation literature. We now present the following algorithms
for solving the FOLQC problem.
To design the FOLQC, we employ a velocity-model form of linear quadratic regulation,
wherein the tracking error (between the measured z(k) and the desired z̄∗(w̄)) is driven
to zero. A novel and practically significant feature of the approach is that we regulate
the tracking error without knowledge of the desired steady-state and the disturbances.

4.2.1 Velocity and Error Dynamics

To regulate the system to e = 0, we consider the velocity, or incremental, form of the
system dynamics (4.1) augmented with the tracking error dynamics, whose output is
the tracking error e(k):

ϵ(k + 1) = Aϵ(k) + Bδu(k), (4.12a)
e(k) = Cϵ(k) + Dδu(k), (4.12b)

where

ϵ(k) :=
 δx(k)
e(k − 1)

 with
δx(k) := x(k) − x(k − 1),
δu(k) := u(k) − u(k − 1),

(4.13)

and

A =
 A 0nx×ny

ΛyC Iny

 , B =
B
Λu

 , (4.14a)

C =
[
ΛyC Iny

]
, D = Λu. (4.14b)

4.2.2 FOLQC Formulation

Given the tracking error and velocity dynamics, the feedback optimizing linear quadratic
control problem is defined, for a state ϵ(k), as

min
δu(k)

J∞(ϵ(k)) (4.15)
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subject to,

ϵ(k + 1) = Aϵ(k) + Bδu(k), (4.16a)
e(k) = Cϵ(k) + Dδu(k). (4.16b)

In this problem, the decision variable is the control law

δu(k) = −Kϵ(k). (4.17)

This control law is chosen to minimize the performance index J∞(ϵ(k)), which is defined
as

J∞(ϵ(k)) = 1
2

∞∑
k=0

l(e(k), δu(k)), (4.18)

where
l(e(k), δu(k)) := e(k)⊤Qee(k) + δu(k)⊤Rδδu(k). (4.19)

The matrices Qe and Rδ are the respective penalty matrices on the squared tracking
error e(k) and input deviation δu(k).

Remark 15 (Performance index ). The performance index J∞(ϵ(k)) represents the
costs accrued during the operation of the system under the FOLQC law over the time
interval [0,∞]. This cost is a measure of how well the closed loop system performs
under the FOLQC law and can be used to indirectly influence the transient performance
of the closed loop system. The term e(k)⊤Qee(k) penalizes the distance of the tracking
error from steady-state optimality with the weight Qe used to determine how quickly the
closed loop system achieves steady-state optimality for the static optimization problem
(4.2). The term δu(k)⊤Rδδu(k) penalizes the incremental control effort needed to drive
the system to the optimal steady-state equilibrium. Therefore based on the choice of
Qe relative to Rδ, the transient performance objectives of the closed loop system under
FOLQC can be indirectly embedded in the control design.

Problem (4.15 s.t. 4.16) is a standard infinite-horizon LQ optimal control problem,
thus its solution is easily characterized and obtained. Firstly, existence of a solution is
ensured by proper assumptions on the stabilizability and observability of the augmented
velocity dynamics.

Proposition 2 (Stabilizability of augmented velocity dynamics). The pair (A,B) is
stabilizable if and only if Assumptions 3 and 4 are satisfied.
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Proof. From the PBH controllability condition, (A,B) is stabilizable if and only if,

[
A − λInϵ B

]
=
A− λInx 0nx×ny B

ΛyC Iny − λIny Λu

 (4.20)

has full rank for all λ ∈ eig A. The first set of nx rows in (4.20) are linearly independent
if (A,B) is stabilizable. The second set of ny rows are linearly independent from the
first set of nx rows except possibly at λ = 1. We therefore need to check (4.20) at
λ = 1, whence it becomes (4.11).

Observability of (C,A) can be similarly established, following from the observability
of (C,A). Secondly, uniqueness of the solution is ensured by satisfaction of regularity
conditions on the objective function.

Proposition 3 (Positive definiteness of the cost). If Rδ ≻ 0 and

Qe −QeΛu(Rδ + Λ⊤
uQeΛu)−1Λ⊤

uQ
⊤
e ⪰ 0, (4.21)

then l(e(k), δu(k)) is for all ϵ(k) a positive definite function of δu(k).

Proof. Substituting (4.12b) in (4.19),

l(e(k), δu(k)) = ϵ(k)⊤Qϵ(k) + 2ϵ⊤(k)N δu(k) + δu(k)⊤Rδu(k) = ϵ(k)
δu(k)

⊤  Q N
N ⊤ R

  ϵ(k)
δu(k)

 . (4.22)

The stage cost in (4.22) is positive definite if
 Q N
N ⊤ R

 ≻ 0 (4.23)

which is satisfied if R ≻ 0 and Q − N R−1N ⊤ ⪰ 0 resulting in the conditions of
Proposition 4.19 upon substitution of Q = C⊤QeC, N = C⊤QeD, D = Λu and
R = Rδ + D⊤QeD.

Remark 16. From (4.3), l(e(k), δu(k)) ≻ 0 implies J∞(ϵ(k), δu(k)) ≻ 0.
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4.2.3 Dynamic Programming Solution to the FOLQC problem

The finite- and infinite-horizon control laws are easily derived by applying the standard
arguments of dynamic programming and Bellman’s Principle of Optimality to the
optimal control problem [133]:

Proposition 4. The solution to (4.15 s.t. 4.16) is

δu∗(k) = −K(k)ϵ(k) k = 0, . . . , N − 1 (4.24)

where, for k = 0, . . . , N − 1,

K(k) =
(
R + B⊤P(k)B

)−1(
N ⊤ + B⊤P(k)A

)
, (4.25a)

P(k) =
(
A − BK(k)

)⊤
P(k + 1)

(
A − BK(k)

)
+ K(k)⊤RK(k) + Q − 2N K(k).

(4.25b)

Moreover, as N → ∞ then K(N) → K, and P(k + 1) → P(k) with P(N) → P where

K = (R + B⊤PB)−1
(
N ⊤ + B⊤PA

)
, (4.26a)

P = A⊤PA + Q −
(
N + A⊤PB

)
(R + B⊤PB)−1

(
N ⊤ + B⊤PA

)
. (4.26b)

Proof. In this development, we adopt a backward dynamic programming approach
starting from the time interval k ∈ [0, N ]. Let J∗

k (ϵ(k), δu(k)) denote the optimum
cost (4.15) of transferring the system (4.12) from an initial state ϵ(k) to the terminal
state ϵ(N). At the terminal state ϵ(N), let the optimal cost be given by the function

J∗
N(ϵ(N)) = 1

2ϵ(N)⊤P(N)ϵ(N), (4.27)

where P is a symmetric positive (semi) definite matrix. Let J∗
k+1(ϵ(k + 1), δu(k + 1))

be the optimal cost evaluated from time k + 1 to N . Then at any stage k, using the
principle of optimality [133],

J∗
k

(
ϵ(k), δu(k)

)
= min

δu(k)

{
l(e(k), δu(k)) + J∗

k+1(ϵ(k + 1), δu(k + 1))
}
. (4.28)
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By solving (4.28) recursively, we can compute the optimal control law u∗(k) that solves
the OCP. To begin, at k = N − 1,

JN−1(ϵ(N − 1), δu(N − 1)) = J∗
N(ϵ(N)) + l(e(N − 1), δu(N − 1)). (4.29)

Using the state equation (4.12) at k = N − 1,

ϵ(N) = Aϵ(N − 1) + Bδu(N − 1), (4.30)

we can eliminate ϵ(N) from JN−1 to obtain

JN−1(ϵ(N − 1), δu(N − 1)) = 1
2
(
Aϵ(N − 1) + Bδu(N − 1)

)⊤
P(N)

(
Aϵ(N − 1)+

Bδu(N − 1)
)

+ 1
2ϵ(N − 1)⊤Qϵ(N − 1)

+ϵ(N − 1)⊤N δu(N − 1) + 1
2δu(N − 1)⊤Rδu(N − 1).

(4.31)

The optimal control law at k = N − 1 i.e., δu∗(N − 1) can be obtained by applying
the first order necessary optimality condition,

∂JN−1

∂δu(N − 1) =
(
R + B⊤P(N)B

)
δu∗(N − 1) +

(
N ⊤ + B⊤P(N)A

)
ϵ(N − 1) = 0.

(4.32)

Solving for δu∗(N − 1), we obtain

δu∗(N − 1) = −K(N − 1)ϵ(N − 1), (4.33)

where

K(N − 1) =
(
R + B⊤P(N)B

)−1(
N ⊤ + B⊤P(N)A

)
. (4.34)

With (4.33), we can compute the corresponding optimal cost at k = N − 1 as,

J∗
N−1(ϵ(N − 1)) = 1

2ϵ(N − 1)⊤
[(

A − BK(N − 1)
)⊤

P(N)
(
A − BK(N − 1)

)
+

Q − 2N K(N − 1) + K(N − 1)⊤RK(N − 1)
]
ϵ(N − 1),

(4.35)
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which can also be expressed as

J∗
N−1(ϵ(N − 1)) = 1

2ϵ(N − 1)⊤P(N − 1)ϵ(N − 1) (4.36)

resulting in the recursion

P(N − 1) =
(
A − BK(N − 1)

)⊤
P(N)

(
A − BK(N − 1)

)
+

K(N − 1)⊤RK(N − 1) + Q − 2N K(N − 1).
(4.37)

We can repeat this procedure for k = N − 2, N − 3, . . . giving the results (4.24) and
(4.25).

The main result of this chapter—that the infinite-horizon control law characterized
by proposition 4 solves Problem 1—immediately follows.

Theorem 4.2.1. Suppose that Assumptions 1 and 2 hold, and also the hypotheses of
Proposition 2 and 3. The infinite-horizon control law δu(k) = −Kϵ(k) solves Problem
4, minimizing the infinite-horizon criterion

J∞(ϵ(0)) := 1
2

∞∑
k=0

l(e(k), δu(k)). (4.38)

Remark 17 (Finite- and receding-horizon implementations). The finite-horizon control
gains K(N),K(N − 1), . . . ,K(k), . . .K(0) (usually obtained from the online solution to
a finite-horizon formulation of the FOLQC problem in Section 4.2.2) can also solve
Problem 4 if P(N) satisfies the Lyapunov equation

(
A − BK(N)

)⊤
P(N + 1)

(
A − BK(N)

)
− P(N) + Q − 2N K(N) + K(N)⊤RK(N) = 0,

(4.39)
with some known stabilizing terminal control K(N).
In a receding-horizon (MPC) implementation, the applied control law is

δu(k) = −K(k)ϵ(k). (4.40)

The result may be suboptimal with optimality achieved if

K(N) = K, (4.41)
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where K is the infinite-horizon FOLQC gain given by (4.26a). However, such im-
plementations may be useful—indeed necessary—when constraints are present on the
system. The FOLQC problem subject to such constraints is the subject of following
chapter.

Proof. Assume at time instant k the control sequence

δu(k) =
{
δu(k), δu(k + 1), . . . , δu(k +N − 1)

}
(4.42)

transfers the system (4.12) from an initial state ϵ(k) to the terminal state ϵ(N) with
the associated finite-horizon performance cost

Jk(ϵ(k), δu(k)) = JN(ϵ(N)) + 1
2

N−1∑
i=0

l(e(k + i), δu(k + i)), (4.43)

where

JN(ϵ(N)) = 1
2ϵ(N)⊤P(N)ϵ(N) (4.44)

is a terminal cost ϵ(N) with P(N) a symmetric positive (semi) definite matrix. Let
J∗

k (ϵ(k), δu(k)) and δu∗(k) be the optimal cost and optimal control sequence respectively,
obtained by minimizing the cost (4.43) subject to the velocity dynamics (4.16). For a
receding-horizon (MPC) implementation, the optimal control law applied to the system
at time k is given by the first element of δu∗(k) i.e.,

δu∗(k) = −K(k)ϵ(k), (4.45)

where K(k) may be given (4.25a).
To establish convergence of the receding-horizon control law (4.45), we will show

that J∗
k (ϵ(k), δu(k)) is a Lyapunov function for the closed-loop system under this

control law if conditions of Remark 17 are satisfied.
Firstly, J∗

k (ϵ(k), δu(k)) is positive definite if the conditions of Proposition 3 are satisfied.
Also, J∗

k (ϵ(k), δu(k)) is zero at the origin and radially unbounded everywhere else,
since J∗

k (0,0) = 0 and J∗
k (ϵ(k), δu(k)) ≥ 1

2ϵ(k)⊤Qϵ(k), ∀ϵ(k) ∈ Rnx+ny \{0} implying
J∗

k (ϵ(k), δu(k)) → ∞ as ∥ϵ(k)∥ → ∞. After establishing that J∗
k (ϵ(k), δu(k)) is zero at

the origin and radially unbounded, the final step to proving that J∗
k (ϵ(k), δu(k)) is a
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Lyapunov function is to show that

∆J∗
k = J∗

k+1(ϵ(k + 1), δu(k + 1)) − J∗
k (ϵ(k), δu(k)) (4.46)

is negative semi-definite under conditions of Remark 17, where

δu(k + 1) =
{
δu(k + 1), δu(k + 2), . . . , δu(k +N)

}
(4.47)

is the control sequence required to transfer the system from an initial state ϵ(k + 1) to
the final state ϵ(k +N + 1). Let δu∗(k + 1) be the optimal control sequence at time
k+ 1 with the corresponding optimal cost being J∗

k+1(ϵ(k+ 1), δu(k+ 1)). However, at
time k, δu∗(k+ 1) is not available since the receding-horizon control is generated online
by minimizing (4.43) at the current time, k. But if we assume an accurate model and
a well posed optimal control problem, then the tail of u∗(k) i.e.,

δu∗
tail(k) =

{
δu∗(k + 1), δu∗(k + 2), . . . , δu∗(k +N − 1)

}
(4.48)

will be included in δu∗(k + 1). Using the following shifted optimal control input
sequence at time k,

δũ∗(k) =
{
δu∗(k + 1), δu∗(k + 2) . . . , δu(k +N)

}
(4.49)

where
δu(k +N) = −K(N)ϵ(k +N) (4.50)

is a stabilizing terminal control law for the closed-loop velocity dynamics, (i.e. K(N) is
such that the spectral radius (minimum eigenvalue) of A − BK(N) is less than unity),
the shifted optimal cost J̃∗

k+1(ϵ(k + 1), δũ∗(k)) can be obtained which will be a known
but suboptimal approximation of the true optimal cost J∗

k+1(ϵ(k + 1), δu(k + 1)) at
time k + 1. Since J̃∗

k+1(ϵ(k + 1), δũ∗(k)) is suboptimal, the inequality

J̃∗
k+1(ϵ(k + 1), δũ∗(k)) ≥ J∗

k+1(ϵ(k + 1), δu(k + 1)) (4.51)

is always true and therefore ∆J∗
k will be negative (semi) definite if we can show that

J̃∗
k+1(ϵ(k + 1), δũ∗(k)) − J∗

k (ϵ(k), δu(k)) ⪯ 0. (4.52)
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Given the cost function (4.43), the optimal cost at time k can be expressed as

J∗
k (ϵ(k), δu(k)) = JN(ϵ(N)) + 1

2

N−1∑
i=0

l(e(k + i), δu∗(k + i))

= 1
2ϵ(k +N)⊤P(N)ϵ(k +N) + 1

2

N−1∑
i=0

{
ϵ(k + i)⊤Qϵ(k + i)+

2ϵ(k + i)⊤N δu∗(k + i) + δu∗(k + i)⊤Rδu∗(k + i)
}

= 1
2ϵ(k +N)⊤P(N)ϵ(k +N) + 1

2
{
ϵ(k)⊤Qϵ(k) + 2ϵ⊤(k)N δu∗(k) + δu∗(k)⊤Rδu∗(k)

}
+

. . .+ 1
2
{
ϵ(k +N − 1)⊤Qϵ(k +N − 1) + 2ϵ(k +N − 1)⊤N δu∗(k +N − 1)

+δu∗(k +N − 1)⊤Rδu∗(k +N − 1)
}
.

(4.53)

Also, the suboptimal shifted cost at time k, J̃∗
k+1(ϵ(k + 1), δũ∗(k)), used as an approxi-

mation of the cost J∗
k+1(ϵ(k + 1), δu(k + 1)) at time k + 1 is

J̃∗
k+1(ϵ(k + 1), δũ∗(k)) = JN+1(ϵ(k +N + 1)) + 1

2

N∑
i=1

l(e(k + i), δu∗(k + i))

= 1
2ϵ(k +N + 1)⊤P(N + 1)ϵ(k +N + 1) + 1

2

N∑
i=1

{
ϵ(k + i)⊤Qϵ(k + i)+

2ϵ(k + i)⊤N δu∗(k + i) + δu∗(k + i)⊤Rδu∗(k + i)
}

= 1
2ϵ(k +N + 1)⊤P(N + 1)ϵ(k +N + 1) + 1

2
{
ϵ(k + 1)⊤Qϵ(k + 1)+

2ϵ⊤(k + 1)N δu∗(k + 1) + δu∗(k + 1)⊤Rδu∗(k + 1)
}

+ . . .+
1
2
{
ϵ(k +N)⊤Qϵ(k +N) + 2ϵ(k +N)⊤N δu(k +N) + δu(k +N)⊤Rδu(k +N)

}
.

(4.54)

From the velocity dynamics (4.12a),

ϵ(k +N + 1) = Aϵ(k +N) + Bδu(k +N), (4.55)

and substituting (4.50) in (4.55), we obtain

ϵ(k +N + 1) =
(
A − BK(N)

)
ϵ(k +N). (4.56)
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Substituting (4.56) and (4.50) in (4.54) and using the expression in (4.53), it can be
easily shown that

J̃∗
k+1(ϵ(k + 1), δũ∗(k)) − J∗

k (ϵ(k), δu(k)) = −1
2 l(e(k + i), δu(k + i))+

1
2ϵ(k +N)⊤

{(
A − BK(N)

)⊤
P(N + 1)

(
A − BK(N)

)
− P(N) + Q − 2N K(N)+

K(N)⊤RK(N)
}
ϵ(k +N).

(4.57)

If the conditions of Proposition 3 are met, then l(e(k+ i), δu(k+ i)) ⪰ 0. Also, if P(N)
is a positive definite solution to the Lyapunov equation,

P(N) =
(
A−BK(N)

)⊤
P(N+1)

(
A−BK(N)

)
+Q−2N K(N)+K(N)⊤RK(N) (4.58)

for any stabilizing K(N) as stipulated in Remark 17, then the inequality in (4.57)
reduces to

J̃∗
k+1(ϵ(k + 1), δũ∗(k)) − J∗

k (ϵ(k), δu(k)) ⪯ −1
2 l(e(k + i), δu(k + i)). (4.59)

Because l(e(k + i), δu(k + i)) ⪰ 0,

J̃∗
k+1(ϵ(k + 1), δũ∗(k)) − J∗

k (ϵ(k), δu(k)) ⪯ 0, (4.60)

hence J∗
k (ϵ(k), δu(k)) is a Lyapunov function for the closed-loop velocity dynamics

under the receding horizon control law (4.40). Therefore, the velocity dynamics (4.12)
under the receding horizon control law (4.40) asymptotically converges to the origin,
i.e., ϵ(k) → 0 and δu(k) → 0 as k → ∞. But

ϵ(k) → 0 =⇒
(
δx(k), e(k − 1)

)
→ 0 (4.61)

which implies that,

x(k) = x(k − 1), (4.62a)
e(k − 1) = 0. (4.62b)
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Equation (4.62) satisfies the conditions of Proposition 1 which shows convergence of
the closed-loop system to the optimum of the steady-state optimization problem (4.2)
thereby solving Problem 4.

Although convergence of the velocity dynamics has been shown, optimality of the
receding-horizon FOLQC law (4.40) with respect to the performance objective (4.3) is
not guaranteed. The receding horizon control law (4.40) is in-fact suboptimal. However,
if the terminal control law (4.50) is chosen to be the infinite-horizon FOLQC law in
(4.26a), i.e.,

K(N) = K, (4.63)

then the receding-horizon control laws (4.40) are optimal with respect to the dynamic
performance objective (4.3).

4.3 An LMI formulation of the deterministic feed-
back optimizing linear quadratic control

In this section, the deterministic FOLQC problem presented will be revisited in the
framework of linear matrix inequalities (LMI). This alternative formulation of the
deterministic FOLQC will form the basis for designing robust FOLQC laws under
various uncertainty scenarios later on in Chapter 5.

4.3.1 LMI Formulation of the FOLQC Problem

We here recall the FOLQC problem formulation in Section 4.3.3. Consider the deter-
ministic velocity dynamics (4.12), the problem of interest is to design a linear state
feedback control law of the form:

δu(k) = −Kϵ(k) (4.64)

which minimizes the following performance objective:

J∞(ϵ(0)) = 1
2

∞∑
k=0

(
e(k)⊤Qee(k) + δu(k)⊤Rδδu(k)

)
= 1

2

∞∑
k=0

ϵ(k)⊤
(
(C − DK)⊤Qe(C − DK) + K⊤RδK

)
ϵ(k),

(4.65)
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where Qe ⪰ 0 and Rδ ≻ 0 , so that J∞ ≻ 0 for all ϵ(k) except for ϵ(k) = 0 where
J∞ = 0. For finiteness of J , it is necessary that the system (4.12) is stable in closed
loop with the control law (4.64). To ensure this, we assume reachability of (A,B).
From the analysis done in section 4.3.3, we know that the optimal value of the cost
(4.65) is given by

J∗
∞ = 1

2ϵ(0)⊤Pϵ(0) (4.66)

where P is any symmetric positive definite matrix satisfying the algebraic Riccati
equation (ARE)

P = A⊤PA + Q − (N + A⊤PB)S−1(N ⊤ + B⊤PA), (4.67)

with S = R + B⊤PB, and ϵ(0) an arbitrary initial state. The existence of a stabilizing
solution P to the ARE (4.67) is guaranteed by the reachability of (A,B) and the
regularity assumptions on the weights (Qe, Rδ).
It can also be easily shown that

J(ϵ(k)) = 1
2ϵ(k)⊤Pϵ(k) (4.68)

is a Lyapunov function for the closed loop system with the control law (4.64).
To solve the FOLQC problem, rather than solving the ARE (4.67), we instead assume
P unknown and utilize the Lyapunov function (4.68) to formulate an LMI which
when solved yields P and the associated FOLQC control law. In order to formulate
the LMI problem, we will heavily rely on the following lemma originally proposed in
continuous-time by R. Bellman (see [111], Lemma 1).

Lemma 4.3.1 (R. Bellman). The value of the functional

V (x(0)) = 1
2

∞∑
k=0

x(k)⊤Wx(k), W ≻ 0 (4.69)

along the solutions of the system

x(k + 1) = Ax(k), x(0) = x0 (4.70)

with stable matrix A is equal to

V (x(0)) = 1
2x

⊤
0 Peqx0, (4.71)
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where the matrix Peq satisfies the Lyapunov equation

A⊤PeqA− Peq = −W. (4.72)

Proof. The solution of the system

x(k + 1) = Ax(k), x(0) = x0 (4.73)

with stable matrix A can be shown to be equal to

x(k) = Akx0. (4.74)

Therefore, the functional V (x(0)) can be equivalently expressed as

V (x(0)) = 1
2x

⊤
0

( ∞∑
k=0

(Ak)⊤W (Ak)
)
x0, W ≻ 0. (4.75)

Letting

Peq =
∞∑

k=0
(Ak)⊤W (Ak) = W + A⊤WA+ (A2)⊤W (A2) + (A3)⊤W (A3) + . . .

= W + A⊤(W + A⊤WA+ (A2)⊤W (A2) + . . .)A
= W + A⊤PeqA.

(4.76)

Then,
V (x(0)) = 1

2x
⊤
0 Peqx0 (4.77)

where the matrix Peq satisfies the Lyapunov equation (4.72).

Remark 18 (The Lyapunov inequality and equation [111, 175]). Let the matrix A be
Hurwitz and let W ≻ 0; then the Lyapunov inequality

A⊤PA− P ⪯ −W (4.78)

is feasible and any solution P satisfies

P ⪰ Peq, (4.79)

where Peq ≻ 0 is the solution of the associated Lyapunov equation (4.72). This implies
that the minimal solution (with respect to the partial order ⪯) of the Lyapunov inequality
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is the solution of the associated Lyapunov equation. Therefore, for every initial condition
x0 we have

x⊤
0 Peqx0 ⪯ x⊤

0 Px0, (4.80)

so that the value of the functional V in the Bellman lemma can be found as a solution
of the following semi-definite program (SDP):

min
0≺P =P ⊤

x⊤
0 Px0 (4.81)

subject to:

A⊤PA− P ⪯ −W. (4.82)

This is the property we will exploit to reformulate the velocity model based FOLQC
problem as a LMI.
It is important to note that although the SDP represented by the equation (4.81) and
(4.82) contain the initial condition, x0, in the objective function, (4.81), the resulting
optimal control policy is independent of x0. However, when the system matrix A

is uncertain, then the above formulation would be difficult to implement since every
specific admissible uncertainty will result in a range of values for the objective function,
(4.81),making it challenging to solve the resulting SDP.

We now present the following results on the LMI solution of the FOLQC problem.

Theorem 4.3.2 (LMI solution of FOLQC). Let Y and W be the solution of the
following SDP:

min
γ,W,0≺Y=Y⊤

γ (4.83)

subject to:

 γI ϵ(0)⊤

ϵ(0) Y

 ≻ 0, (4.84a)


−Y (AY − BW)⊤ (CY − DW)⊤ W⊤

AY − BW −Y 0 0
CY − DW 0 −Q−1

e 0
W 0 0 −R−1

δ

 ⪯ 0. (4.84b)
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Then the controller (4.64) with
K = WY−1, (4.85)

solves problem 4 (the FOLQC problem) with J(ϵ(k)) = 1
2ϵ(k)Y−1ϵ(k) a corresponding

Lyapunov function guaranteeing stability of the closed-loop system.

Proof. With the FOLQC state feedback control law (4.64), the closed loop dynamics
are

ϵ(k + 1) = (A − BK)ϵ(k). (4.86)

Using Remark 1, the minimum value of the functional J∞ in (4.65) subject to the
closed loop dynamics (4.86) is given by the solution of the problem:

min
K,0≺P=P⊤

ϵ(0)⊤Pϵ(0) (4.87)

subject to:

(A − BK)⊤P(A − BK) − P ⪯ −
(
(C − DK)⊤Qe(C − DK) + K⊤RδK

)
. (4.88)

The above problem is non-convex in the decision variables K and P. To convexify,
we perform the following manipulations on the inequality (4.88). Pre- and post-
multiplying (4.88) by the matrix

Y = P−1 (4.89)

and introducing
W = KY , (4.90)

we obtain the inequality

(AY −BW)⊤Y−1(AY −BW)−Y +(CY −DW)⊤Qe(CY −DW)+W⊤RδW ⪯ 0. (4.91)

Then applying the Schur complement, we can rewrite (4.91) as the LMI,


−Y (AY − BW)⊤ (CY − DW)⊤ W⊤

AY − BW −Y 0 0
CY − DW 0 −Q−1

e 0
W 0 0 −R−1

δ

 ⪯ 0. (4.92)

Given (4.92), the minimum of J∞ can then be obtained by solving the SDP:
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min
W,0≺Y=Y⊤

ϵ(0)⊤Y−1ϵ(0) (4.93)

subject to the LMI (4.92).
However, the cost (4.93) is non-linear in the variable Y; therefore to linearise, we
reformulate the problem above as the SDP:

min
γ,W,0≺Y=Y⊤

γ (4.94)

subject to:

ϵ(0)⊤Y−1ϵ(0) ≺ γ, (4.95a)
−Y (AY − BW)⊤ (CY − DW)⊤ W⊤

AY − BW −Y 0 0
CY − DW 0 −Q−1

e 0
W 0 0 −R−1

δ

 ⪯ 0. (4.95b)

Although linear in the objective, the above problem now contains the non-linear
constraint (4.95a) making it non-convex. To obtain a more tractable formulation, we
again make use of the Schur complement to express (4.95a) as the LMI

 γ ϵ(0)⊤

ϵ(0) Y

 ≻ 0. (4.96)

LMI-based FOLQC independent of initial conditions

The FOLQC formulation in theorem 4.3.2 appears to depend on the initial state ϵ(0)
which can make it challenging to implement for uncertain systems (see Remark 18
for details). In this section, we reformulate the LMIs above to be independent of the
initial conditions. This will be useful in Chapter 5 where the FOLQC problem is solved
under model uncertainty.

To obtain the FOLQC control gain independent of ϵ(0), we average the solution
of the FOLQC problem over all initial conditions in the unit ball [131]. Let ϵ(0) be
random, uniformly distributed on the surface of the unit ball in the Euclidean norm.
Then the FOLQC problem can be re-stated as the SDP:
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min
W,0≺Y=Y⊤

E
(
ϵ(0)⊤Y−1ϵ(0)

)
(4.97)

subject to the LMI (4.92), where E(·) is the mathematical expectation of the random
variable ϵ(0)⊤Y−1ϵ(0) given by

E
(
ϵ(0)⊤Y−1ϵ(0)

)
= 1
nϵ

tr(Y−1) (4.98)

with nϵ = nx + ny.

Remark 19. The SDP obtained by minimizing (4.97) subject to (4.98) has the following
properties [131]:

1. it is optimal in an average sense,

2. it retains many of the properties of linear systems which are optimal with respect
to the standard quadratic criterion.

Please refer to [131] for detailed analysis of this approach.

We can then obtain the FOLQC gain by minimizing tr(Y−1) subject to the LMI
constraint (4.92). This leads to the following result.

Lemma 4.3.3 (LMI solution of FOLQC II). Let Y and W be the solution of the
following SDP:

min
γ,W,0≺Y=Y⊤

γ (4.99)

subject to:

γI I

I Y

 ≻ 0, (4.100a)


−Y (AY − BW)⊤ (CY − DW)⊤ W⊤

AY − BW −Y 0 0
CY − DW 0 −Q−1

e 0
W 0 0 −R−1

δ

 ⪯ 0. (4.100b)

Then the controller (4.64) with
K = WY−1 (4.101)
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solves problem 4 (the FOLQC problem) with J(ϵ(k)) = 1
2ϵ(k)Y−1ϵ(k) a corresponding

Lyapunov function guaranteeing stability of the closed-loop system.

Proof. The result is obtained by minimizing tr(Y−1) subject to (4.92) which is equiva-
lent to the SDP:

min
γ,W,0≺Y=Y⊤

γ (4.102)

subject to the constraints tr(Y−1) ⪯ γ and (4.92).
Applying the Schur complement to the constraint γI − tr(Y−1) ⪰ 0 gives the result
obtained.

Alternatively, we can obtain an ϵ(0) independent control gain by solving the discrete
algebraic Riccati equation (4.26b) via semi-definite programming [34]. We summarize
this approach with the result below.

Lemma 4.3.4 (LMI solution of FOLQC III). Let P be the solution of the following
SDP:

max
P=P⊤

tr(P) (4.103)

subject to:

A⊤PA + Q − P N + A⊤PB
N ⊤ + B⊤PA R + B⊤PB

 ⪰ 0, (4.104a)

P ≻ 0. (4.104b)

Then the controller (4.64) with

K =
(
R + B⊤PB

)−1(
N ⊤ + B⊤PA

)
, (4.105)

solves problem 4 (the FOLQC problem) with J(ϵ(k)) = 1
2ϵ(k)Pϵ(k) a corresponding

Lyapunov function guaranteeing stability of the closed-loop system.

Proof. From the dynamic programming solution, the FOLQC gain is given by

K =
(
R + B⊤P̃B

)−1(
N ⊤ + B⊤P̃A

)
(4.106)
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where P̃ is any symmetric positive definite matrix satisfying the discrete algebraic
Ricatti equation

A⊤P̃A + Q − P̃

−
(
N + A⊤P̃B

)(
R + B⊤P̃B

)−1(
N ⊤ + B⊤P̃A

)
= 0.

(4.107)

But as shown in [34], any feasible P for the Ricatti inequality

A⊤PA + Q − P

−
(
N + A⊤PB

)(
R + B⊤PB

)−1(
N ⊤ + B⊤PA

)
⪯ 0

(4.108)

is lower bounded by the solution P̃ of the Ricatti equation (4.107) i.e.,

P ⪰ P̃ . (4.109)

By the above inequality, P̃ is the lower bound on all P that are feasible for the LMI
(4.108) and finding this lower bound would yield the optimal value of P̃ that solves the
Riccati equation (4.107). Following similar reasoning as [14] and applying the Schur
complement on the Riccati inequality, we can then formulate the SDP obtained in
Lemma 4.3.4 which concludes the proof.

4.4 Inherent robustness of the deterministic FOLQC

Under nominal conditions, the deterministic FOLQC is guaranteed closed-loop stable
if there exists a solution P to the discrete algebraic Riccati equation (4.26b) (see
Proposition 4). However, this nominal stability may not guarantee the stability of
the actual closed-loop system when there is uncertainty in the model used for the
control design. Real systems always have model uncertainty and may be plagued by
unknown external disturbances. As a result, considering the stability of FOLQC under
non-nominal conditions where there may be model uncertainties and unknown external
disturbances is vital. The robust stability of standard linear quadratic control has been
a widely studied topic with a plethora of results on the subject [133, 6]. It is common
knowledge that the guaranteed stability margins of the standard continuous-time linear
quadratic control are relatively large with a gain margin of (0.5,∞) and a phase margin
of not less than 60 degrees [133].
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Similar to other linear quadratic control algorithms, the deterministic FOLQC is
expected to show some robustness to model perturbation. Although results on the
robust stability of some feedback-based online steady-state optimization algorithms
have been presented in the literature [169, 46], an investigation of the robust stability
of feedback-optimizing algorithms that achieve optimal transient performance under
a linear-quadratic performance cost have not been made. Also, most studies on the
robust stability of feedback-optimizing control have been limited to nominal systems
with additive disturbances.
In this section, we study the robustness of the velocity model-based FOLQC algorithm
given in Proposition 4. We investigate conditions under which the nominal stability of
FOLQC is preserved when the transfer function of the LTI system (4.1) is perturbed.
Primarily, we study the sensitivity of the stable modes of the closed-loop system with
the deterministic FOLQC control law of Proposition 4 under small variations in the
model parameters. The goal is to obtain conditions under which the stable modes of the
closed-loop system under deterministic FOLQC remain inside the unit circle for small
variations in the model parameters. We suggest guaranteed stability margins (expressed
in terms of the elementary cost and system matrices) for the deterministic FOLQC by
studying the behaviour of the singular values of the controller return difference matrix.
Finally, we investigate the connections between the obtained stability margins and the
selection of the weighting matrices for the state, input and cross-product terms. We
rely heavily on the results obtained in [6] for the robust stability of discrete-time linear
quadratic regulator with cross-product terms.

Preliminaries

Consider the nominal LTI system (4.1) with the corresponding nominal velocity
dynamics for the steady-state optimality error (4.10):

ϵ(k + 1) = Aϵ(k) + Bδu(k), (4.110a)
e(k) = Cϵ(k) + Dδu(k). (4.110b)

We can express (4.110a) as the transfer function

ϵ(z)
δu(z) = G(z) = (zI − A)−1B. (4.111)

The nominal loop transfer function T (z) for the closed-loop velocity feedback system,
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G(z)K
−

ϵδu

Fig. 4.1 Closed-loop velocity feedback system

depicted in Fig 4.1, is given by

T (s) = −KG(z) = −K(zI − A)−1B. (4.112)

Due to model uncertainty, assume the model (4.10) is perturbed, and as a result
the velocity dynamics (4.110) becomes similarly perturbed by ∆T (z) resulting in the
following perturbed loop transfer function,

T̃ (z) = T (z) + ∆T (z). (4.113)

We recall the following well-known result on the robust stability of discrete-time linear
systems.

Lemma 4.4.1 (Robust stability of discrete-time LTI systems [6]). Consider a stable
discrete-time feedback system with loop transfer function T (z) and return difference
matrix I + T (z), and suppose that T (z) undergoes a stable norm-bounded additive
change ∆T (z), i.e., T̃ (z) = T (z) + ∆T (z) where ∆T (z) is bounded by some norm
(knowledge of this bound is not necessary, only that it is bounded). Then, stability of
the closed-loop system will be preserved if

σ[∆T (z)] ≤ σ[I + T (z)] (4.114)

for z that traverses the unit circle, where σ[·] and σ[·] denote, respectively, the maximum
and the minimum singular values.
Moreover, if ∃β ∈ [0, 1], such that σ[I + T (z)] ≥ β, then multivariable gain and phase
margins, GM and PM, respectively, are given by

GM =
( 1

1 + β
,

1
1 − β

)
and PM = ± arccos

(
1 − β2

2
)
. (4.115)

Remark 20. See section A.5.1 for definition of gain and phase margin.
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It is well known that the eigenvalues of the closed-loop matrix A − BK, for the
velocity dynamics are the zeros of the return difference matrix,

Ω(z) = I + T (z) = I − K(zI − A)−1B. (4.116)

The matrix Ω(z) has been shown in [6] to satisfy the following spectral factorization
equality:

Ω⊤(z−1)(R + B⊤PB)Ω(z) = R + S(z) + W(z), (4.117)

where

S(z) = B⊤(z−1I − A⊤)−1Q(zI − A)−1B, and
W(z) = B⊤(z−1I − A⊤)−1N + N ⊤(zI − A)−1B.

(4.118)

Guaranteed stability margins for the deterministic FOLQC

Using the return difference equality (4.117), we present the following results [6]

Theorem 4.4.2. Suppose
S + W ⪰ 0 (4.119)

and
R̂ = BR−1B⊤ (4.120)

is nonsingular. Then the minimum singular value of the return difference matrix
I + T (z) is bounded from below for z that traverses the unit circle, by αϵ, where

αϵ =
(

σ[R]
σ[R] + σ2[B]ϕ

)1/2

, (4.121a)

ϕ = ψ

σ2[R]σ2[B] , (4.121b)

and

ψ =
(
σ[R]σ[A] + σ[B]σ[N ]

)2

σ[R] + σ[R]σ2[B]
(
σ[R]σ[Q] + σ2[N ]

)
. (4.122)

The guaranteed gain and phase margins of the deterministic FOLQC are then given by

GMαϵ = (1 ± αϵ)−1, PMαϵ = ± arccos
(

1 − α2
ϵ

2

)
. (4.123)
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The direct consequence of Theorem 4.4.2 is the following.

Proposition 5. Suppose Q ≻ 0 and W ⪰ 0 and that det(R̂) ̸= 0. Then the lower
bound of the form (4.121a), for σ[I +T (z)], as well as the stability margins of the form
(4.123) are guaranteed for the deterministic FOLQC.

Proof. See [6] for details

Because the conditions presented above may be somewhat challenging to check
or sometimes might not hold, we present in the following, an alternative result that
submits easily to numerical verification.

Theorem 4.4.3. Suppose

Q − I ≻ 0, and R ⪰ N ⊤N ⪰ 0 (4.124)

and that det(R̂) ̸= 0. Then the minimum singular value of the return difference matrix
I + T (z) of the deterministic FOLQC is bounded from below, for z that traverses the
unit circle (i.e. ∥z∥ = 1), by b, where

b =
(
σ[R − N ⊤N ]
σ[R] + σ2[B]ϕ

)1/2

(4.125)

with ϕ given in (4.121b). The guaranteed gain and phase margins of the deterministic
FOLQC are then given by

GMb = (1 ± b)−1, and PMb = ± arccos
(

1 − b2

2

)
. (4.126)

Proof. See [6] for details.

4.5 Relation with Other Approaches

4.5.1 Optimal Steady-State (OSS) Control

In [128], an OSS control algorithm was developed for regulating an LTI system to
steady-states that solve the optimization problem (4.2) in feedback. The controller is
designed in continuous-time and is based on an optimality model γ(u, y) for problem
(4.2) that serves as a proxy for the error in steady-state optimality. The designed OSS



4.6 Illustrative Example 115

control law is given by the Proportional Integral (PI) controller,

η̇ = γ(u, y) = e, (4.127a)
u = KP e+KIη (4.127b)

where η is an integral of the error in optimality of (4.2).
We may discretize (4.127) to obtain a corresponding discrete-time PI controller

u(k) = u(k − 1) − Kpiϵ(k), (4.128)

where Kpi =
[
KPC KIδt

]
and δt is the sampling interval. The control gainsKP andKI

in [128] were chosen via trial and error to achieve a stable closed loop system. By setting
Kpi = K, optimal control gains with respect to the infinite-horizon criterion (4.38) are
obtained. The proposed FOLQC approach therefore offers a more systematic approach
to designing the (discrete-time version of the) OSS control law presented in [128].

4.6 Illustrative Example

We consider the continuous-time open-loop unstable system :

ẋ(t) =
−1 3

5 2

x(t) +
0 1
1 4

u(t) + w(t), (4.129a)

y(t) =
1 0
0 1

x(t). (4.129b)

The system is stabilizable and observable, meeting Assumption 3. The disturbance
w(t) is unknown but slowly varying as

w(t) =



[
−1 3

]⊤
0 ≤ t < 20,[

2 −3
]⊤

20 ≤ t < 40,[
1 0

]⊤
t ≥ 40.

(4.130)

The objective function (4.9) is used for the steady-state optimization problem with
Quu = 10 × I2, Quy = Q⊤

yu = 5 × 12×2, Qyy = 5 × I2, Ru = 12×1, and Ry = 12×1. For
design and implementation of the discrete-time FOLQC, the system is discretized using
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zero-order hold with a sampling time of 0.1 seconds. The corresponding input–output
DC gain matrix of the discrete-time system is,

Gu =
−0.1765 −0.5882
−0.5882 −0.5294

 . (4.131)

The velocity state for the controller can be obtained from

ϵ(k) =
 x(k) − x(k − 1)
Λyy(k − 1) + Λuu(k − 1) + r

 (4.132)

where Λy, Λu and r follow from the choices of Φ parameters as

Λy =
−35 −40

35 40

 , Λu =
−85 15

105 −25

 , and r =
−7

8

 . (4.133)

The matrix

S =


0.019 −0.3245 −0.0157 −0.1606

−0.5409 −0.3055 −0.1134 −0.4799
−35 −40 −85 15
35 40 105 −25

 (4.134)

has full rank satisfying Assumption 4. The transient performance criterion is chosen
with Qe = 500×I2 and Rδ = 1×I2; these values satisfy the hypothesis of Proposition 3.
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From the design parameters above, the FOLQC has the following parameters:

A =


0.9810 0.3245 0 0
0.5409 1.3055 0 0
−35.00 −40.00 1.00 0
35.00 40.00 0 1.00

 , B =


0.0157 0.1606
0.1134 0.4799
−85.00 15.00
105.00 −25.00


C =

−35.00 −40.00 1.00 0
35.00 40.00 0 1.00

 , D =
−85.00 15.00

105.00 −25

 ,

R =
9.125 −1.95
−1.95 0.425

× 106, N =


3.325 −0.700
3.800 −0.800

−0.0425 0.0075
0.0525 −0.0125

× 106,

Q =


1.2250 1.40 −0.0175 0.0175
1.400 1.600 −0.02 0.02

−0.0175 −0.02 0.0005 0
0.0175 0.02 0 0.0005

× 106, and

K =
0.6364 0.7273 −0.0454 −0.0273
1.2727 1.4545 −0.1908 −0.1545

 .

(4.135)

Figure 4.2 shows the result of applying FOLQC to the system while the disturbances
change in the way described.

Remark 21. The FOLQC gain implemented in this example was computed by all the
methods described in the Chapter and they all gave approximately the same solution.

It can be seen that FOLQC tracks z∗(w̄) asymptotically, and also maintains
stability and good transient performance, overcoming the issues of (i) non-existence
of stabilizing PI gains for the static OSS controller presented in [128], and (ii) poor
dynamic performance (large overshoot and slow convergence) and potential high
dimensionality of the dynamic OSS controller proposed in the same work. Moreover,
it should be noted that designing the FOLQC controller for closed-loop stability and
optimal steady-state tracking is significantly easier, and more systematic, than the
manual tuning of the PI OSS controller of [128]; indeed, for the presented example it
was not possible to find stabilizing PI gains for the system under OSS control. However,
a limitation of FOLQC is the need for full state measurement.
A benefit of the FOLQC over standard feed-forward optimization/control is its inherent
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Fig. 4.2 FOLQC: outputs (y1, y2) and input (u1, u2) plotted as a function of time. The
actual optimum (u∗, y∗) is shown using dashed lines.

robustness to model uncertainty. In the next chapter, this inherent robustness will be
demosntrated for a system with model uncertainty.

4.7 Conclusion

An LQC approach to asymptotically track the unknown optimum to a steady-state
optimization problem while minimizing a transient performance criterion has been
presented. The approach avoids the need to measure or estimate system disturbances
(if they are piecewise-constant) or set-point. Unlike related algorithms, our controller
is of a low order and can systematically guarantee a priori, the stability and dynamic
performance of the closed loop system. However, it is limited by the lack of constraint
handling capabilities. In the presence of hard inequality constraints, the performance of
the controller may be severally degraded with possible loss of stability. Future work will
focus on developing the approach in several directions: for instance, systems subject
to constraints, which pose challenges to how the optimal solution to the steady-state
problem is characterized and how the tracking error is defined and regulated. Also
dealing with model or parametric uncertainty can be challenging. These issues will be
the subject of subsequent chapters.



Chapter 5

Robust Feedback Optimizing Linear
Quadratic Control

For most feedback optimization algorithms, a knowledge of the input-output sensitivity
function is a pre-requisite. This function is often obtained from precise knowledge of
the system dynamics or via system identification. However, most real world systems
are plagued with uncertainty which makes it difficult to have access to accurate system
models. This issue of model uncertainty have not been given much attention in the
feedback optimization literature as most algorithms rely on inherent robustness to deal
with the effects of model uncertainty. In this chapter, we make pioneering efforts at
developing novel feedback optimization algorithms for linear systems with parametric
uncertainty. We develop our algorithm by extending the FOLQC algorithm presented
in the previous chapter to the case of polytopic uncertain linear systems with quadratic
steady state optimization. Firstly, we develop a model of the uncertain polytopic linear
system. Then using linear matrix inequalities (LMI), we derive robust FOLQC laws
from the solution to robust semi-definite programs.

5.1 Introduction

In the feedback optimization literature, very few results directly consider the model
uncertainty in the feedback optimizing control design. Instead, the focus has been on
analysing the inherent robustness of feedback optimization controllers. In [46, 173],
theoretical analysis of the inherent robustness of feedback optimization was made. The
obtained results indicate that feedback optimizing control is highly robust against
model inaccuracy. Also in [169], the inherent robustness of feedback optimization
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was experimentally verified. Attempts made to synthesize robust feedback optimizing
controllers have either imposed restrictive assumptions on the system (such as having
a robust feasible subspace property [127]), or adopted a data-driven approach to either
estimate the uncertain model online [169, 174, 30, 168] or directly learn the feedback
optimizing control law from the input-output data [90]. However no rigorous design of
robust feedback optimization has been made such that the controller is dynamically
optimal and purposefully robust to a pre-specified class of uncertainty in the dynamic
model. In this chapter, we propose a robust feedback optimization control algorithm
that directly utilizes information about the uncertainty to compute optimal control
laws that drive a system autonomously to the unknown optimum of an uncertain
quadratic program.

5.2 Uncertain System Model

Due to parametric uncertainties and non-linearities, a discrepancy between the math-
ematical model and the real system always exists. In the previous chapters, this
discrepancy was either ignored or captured by the additive disturbances. However,
some uncertainties may be multiplicative and therefore cannot be accurately captured
by additive disturbances. To characterise these uncertainties, we adopt the following
linear parameter varying (LPV) model

x(k + 1) = A(δ)x(k) +B(δ)u(k) + Ew(k), (5.1a)
y(k) = Cx(k), (5.1b)

δ ∈ ∆l, w(k) ∈ W. (5.1c)

Here x(k) ∈ Rnx , u(k) ∈ Rnu , y(k) ∈ Rny , and w(k) ∈ Rnw are the state, input, output
and additive uncertainty (disturbance) vectors respectively. The system matrices
A(δ) ∈ Rnx×nx , B(δ) ∈ Rnx×nu , C ∈ Rny×nx and E ∈ Rnx×nw are the uncertain system
coefficients and δ =

[
δ1 . . . δl

]⊤
∈ Rl is a vector which ensembles all uncertain

parameters in the system coefficients and is here assumed to take values from the
l−unit simplex:

∆l :=
{
δ ∈ Rl :

l∑
i=1

δi = 1, δi ≥ 0,∀i ∈ I[1:l]
}
. (5.2)
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Due to the polytopic nature of the unit simplex ∆l, the uncertain coefficient matrices
take values from the convex set Ω i.e.

(
A(δ), B(δ)

)
∈ Ω (5.3)

where Ω is defined as the polytope

Ω := Co

{(
A1, B1

)
, . . . ,

(
Al, Bl

)}
=

l∑
i=1

αi

(
Ai, Bi

)
. (5.4)

Here Co refers to the convex hull and αi are convex coefficients i.e. αi > 0 and∑l
i αi = 1.

The additive uncertainty is assumed as in the previous chapters to take values from
the bounded set W i.e., w(k) ∈ W.
For the robust control design undertaken in this chapter, the uncertain system (5.1) is
required to be quadratically stabilizable. We define quadratic stabilizability below.

Definition 4 (Quadratic stabilizability). The uncertain linear system (5.1) is said to
be quadratically stabilizable for perturbations δ ∈ ∆l if there exists matrices P ≻ 0 and
K such that the undisturbed system satisfies the inequality

(
A(δ) −B(δ)K

)⊤
P
(
A(δ) −B(δ)K

)
− P ⪯ 0 for all δ ∈ ∆l. (5.5)

Remark 22. The rationale for this definition becomes clearer when considering the
quadratic Lyapunov function

V (x(k)) = x(k)⊤Px(k) (5.6)

needed to guarantee stability of the undisturbed uncertain system

x(k + 1) = A(δ)x(k) +B(δ)u(k), δ ∈ ∆l, (5.7)

under the control law
u(k) = −Kx(k). (5.8)

Indeed if K and P ≻ 0 both satisfy (5.5), then V (x(k)) and

∆V (x(k)) = V (x(k + 1)) − V (x(k)) (5.9)
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can be easily shown to be positive definite and negative semi-definite respectively, which
ensures that (5.6) is a Lyapunov function that guarantees closed loop stability of the
undisturbed uncertain system dynamics (5.7) under the control law (5.8).

In the developments that follow, quadratic stabilizability will be assumed.

Assumption 5 (Quadratic stabilizability). The uncertain system (5.1) belongs to the
class of quadratically stabilizable systems.

5.3 The Robust Feedback-Optimizing Linear Quadratic
Control Problem

The main objective of the robust feedback optimizing linear quadratic control (FOLQC)
is to regulate the inputs and/or outputs of a disturbed linear time-invariant system
to an equilibrium point that is the solution to an uncertain steady-state optimization
problem. This regulation should be achieved without knowledge of the optimal steady-
state set-points or explicit solution of the steady-state optimization problem, while
also guaranteeing optimal dynamic performance between steady-states. We define the
FOLQC problem precisely as follows.

Problem 5 (The robust FOLQC Problem). Design for the linear discrete-time uncer-
tain system (5.1) a state feedback control law

u(k) = κN(x(k), u(k − 1)) (5.10)

obtained from the solution to an optimal control problem, such that for any admissible
w̄ ∈ W and ∀δ ∈ ∆:

1. The point z̄∗(δ, w̄) is an asymptotically stable equilibrium for the closed-loop
system, satisfying

lim
k→∞

(u(k), y(k)) = z̄∗(δ, w̄). (5.11)

2. The feedback policy κN(·, ·) minimizes a transient performance criterion.

Here, z̄∗(δ, w̄) is the solution to the uncertain steady-state optimization problem

RT O(δ, w̄) : z̄∗(δ, w̄) = arg min
z̄

{
Φ(z̄) : z̄ ∈ F(δ, w̄), z̄ ∈ Z

}
(5.12)
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where Φ: Rm × Rp → R is a continuous steady-state (economic) performance objective,
the set F(δ, w̄) is the feasible set of the uncertain system as defined in Chapter 2 and Z
is a steady-state inequality constraints on z.

5.4 Uncertain velocity model

For the purpose of control design, we can express the LPV model above in velocity
form for the steady-state optimization (5.12) and the associated optimality tracking
error (3.34) as :

ϵ(k + 1) = A(δ)ϵ(k) + B(δ)δu(k) + Eδw(k), (5.13a)
e(k) = C(δ)ϵ(k) + D(δ)δu(k), (5.13b)

where

ϵ(k) :=
 δx(k)
e(k − 1)

 with
δx(k) := x(k) − x(k − 1),
δu(k) := u(k) − u(k − 1),
δw(k) := w(k) − w(k − 1),

(5.14)

and

A(δ) =
 A(δ) 0nx×ny

Λy(δ)C Iny

 , B(δ) =
B(δ)
Λu(δ)

 , (5.15a)

C(δ) =
[
Λy(δ)C Iny

]
, D(δ) = Λu(δ), E =

 E

0ny×nw

 . (5.15b)

We characterise the uncertainty in the velocity dynamics with the following sets:

(
A(δ),B(δ), C(δ),D(δ)

)
∈ Ωδ, δw(k) ∈ D (5.16)

where

Ωδ := Co

{(
A1,B1, C1,D1

)
, . . . ,

(
Al,Bl, Cl,Dl

)}
=

l∑
i=1

αi

(
Ai,Bi, Ci,Di

)
(5.17)

and D := W + (−W).
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Remark 23 (Nominal coefficients). We can define nominal coefficients for the velocity
dynamics via the centroid of the set Ωδ i.e

(
A,B, C,D

)
:= 1

l

l∑
i=1

(
Ai,Bi, Ci,Di

)
. (5.18)

5.5 Robust FOLQC under polytopic uncertainty:
the case of piece-wise constant disturbances

In this section, we present robust formulations of the FOLQC problem under polytopic
model uncertainty. We propose a solution to the FOLQC problem where the worst-case
performance objective is minimized for the uncertainties in the system. We adopt an
LMI approach to formulating the robust FOLQC control laws due to the convenience
and elegance of LMIs in dealing with uncertainty.

Problem formulation

Consider the following velocity dynamics (5.13) for the uncertain system (5.1), the
steady-state optimization (5.12) and under piece-wise constant disturbances i.e δw(k) =
0, then the resulting velocity dynamics become:

ϵ(k + 1) = A(δ)ϵ(k) + B(δ)δu(k), (5.19a)
e(k) = C(δ)ϵ(k) + D(δ)δu(k) (5.19b)

(5.19c)

where for every instant k, δ ∈ ∆l.
Our goal is to find the control law,

δu(k) = −Ǩϵ(k) (5.20)

that minimizes the worst-case performance index

J̌(ϵ(0)) = max
δ∈∆l

J∞(ϵ(0)) (5.21)
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subject to limk→∞ e(k) = 0, where J∞(ϵ(0)) is defined as

J∞(ϵ(0)) = 1
2

∞∑
k=0

(
e(k)⊤Qee(k) + δu(k)⊤Rδδu(k)

)
, (5.22)

with Qe ⪰ 0 and Rδ ≻ 0.
Because the set ∆l contains an infinite number of points, maximizing J∞(ϵ(0)) over ∆l

is in general computationally challenging which makes the above min-max problem
computationally intractable. To address this challenge, we derive an upper bound on
the robust performance index J̌(ϵ(0)). We then instead minimize this upper bound to
obtain the robust FOLQC law (5.20).

Derivation of the upper bound

To derive an upper bound on the performance index J̌ , we first define the following
quadratic function of the velocity state ϵ(k)

V (ϵ(k)) = 1
2ϵ(k)⊤Pϵ(k), P ≻ 0. (5.23)

At sampling time k, suppose V is a Lyapunov function for the velocity dynamics (5.19)
and therefore satisfies the following inequality for any δ ∈ ∆l, k > 0:

V (ϵ(k + 1)) − V (ϵ(k)) ≤ −1
2
(
e(k)⊤Qee(k) + δu(k)⊤Rδδu(k)

)
. (5.24)

For J̌ to be finite, we must have e(k) → 0 as k → ∞ and hence V (ϵ(k)) → 0. Summing
(5.24) from k = 0 to k = ∞, we get

−V (ϵ(0)) ≤ −1
2

∞∑
k=0

(
e(k)⊤Qee(k) + δu(k)⊤Rδδu(k)

)
=⇒ −V (ϵ(0)) ≤ −J∞(ϵ(0)).

(5.25)

Therefore,
max
δ∈∆l

J∞ ≤ V (ϵ(0)). (5.26)

The equation (5.26) gives the upper bound on the robust performance objective J̌(ϵ(0))
as the quadratic function, V (ϵ(0)). This upper bound just as J̌(ϵ(0)) also depends
on the initial condition, ϵ(0). Given (5.26), the robust FOLQC problem can then
be redefined to synthesize a constant velocity state feedback control law, (5.20), to
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minimize V (ϵ(0)). In the next section, a theorem for computing this robust FOLQC
law will be presented.

Robust FOLQC law

Theorem 5.5.1 (LMI solution of robust FOLQC). Let ϵ(k) = ϵ(0) be the state of the
uncertain velocity dynamics (5.20) measured at sampling time k. Suppose the uncertain
parameter vector δ takes values from the unit simplex ∆l, then the robust state feedback
matrix Ǩ in the control law (5.20) which minimizes the upper bound V (ϵ(0)) on the
robust performance objective (5.21) at sampling time k is given by

Ǩ = WY−1 (5.27)

where Y ≻ 0 and W are obtained from the solution (if it exists) of the following SDP:

min
γ,W,0≺Y=Y⊤

γ (5.28)

subject to :

 1 ϵ(0)⊤

ϵ(0) Y

 ≻ 0,

(5.29a)
−Y

(
A(δ)Y − B(δ)W

)⊤ (
C(δ)Y − D(δ)W

)⊤
W⊤

A(δ)Y − B(δ)W −Y 0 0
C(δ)Y − D(δ)W 0 −γQ−1

e 0
W 0 0 −γR−1

δ

 ⪯ 0, ∀δ ∈ ∆l.

(5.29b)

The controller (5.27) solves problem 4 (the FOLQC problem, see chapter 4) for the
uncertain system (5.1) under constant (or slowly varying) disturbances, w(k) with
V (ϵ(k)) = 1

2ϵ(k)Pϵ(k), P = γY−1, a corresponding Lyapunov function guaranteeing
the stability (i.e., convergence to the unknown steady-state optimum) of the resulting
closed-loop system.
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Proof. Minimization of V (ϵ(0)) = 1
2ϵ(0)⊤Pϵ(0), P ≻ 0 is equivalent to the problem

min
γ,P

γ subject to: 1
2ϵ(0)⊤Pϵ(0) ≤ γ. (5.30)

Defining Y = γP−1 ≻ 0 and using the Schur complement, this minimization problem
is equivalent to

min
γ,W,0≺Y=Y⊤

γ (5.31)

subject to :
 1 ϵ(0)⊤

ϵ(0) Y

 ≻ 0. (5.32)

The quadratic function V (ϵ(0)) is also to satisfy (5.24). Substituting δu(k) = −Ǩϵ(k),
e(k) =

(
C(δ) − D(δ)Ǩ

)
ϵ(k) and ϵ(k + 1) =

(
A(δ) − B(δ)Ǩ

)
ϵ(k), the inequality (5.24)

becomes:
(
A(δ) − B(δ)Ǩ

)⊤
P
(
A(δ) − B(δ)Ǩ

)
− P +

(
C(δ) − D(δ)Ǩ

)⊤
Qe

(
C(δ) − D(δ)Ǩ

)
+Ǩ⊤RδǨ ≤ 0.

(5.33)

Performing the following change of variables:

P = γY−1 and W = ǨY , (5.34)

the following inequality is obtained
(
A(δ)Y − B(δ)W

)⊤
Y−1

(
A(δ)Y − B(δ)W

)
− Y +

(
C(δ)Y + W⊤(γR−1

δ )−1W

−D(δ)W
)⊤

(Q−1
e )−1

(
C(δ)Y − D(δ)W

)
≤ 0.

(5.35)

Applying the Schur complement, the inequality (5.35) can be expressed as the linear
matrix inequality

−Y
(
A(δ)Y − B(δ)W

)⊤ (
C(δ)Y − D(δ)W

)⊤
W⊤

A(δ)Y − B(δ)W −Y 0 0
C(δ)Y − D(δ)W 0 −γQ−1

e 0
W 0 0 −γR−1

δ

 ⪯ 0. (5.36)
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The inequality (5.36) is affine in the coefficient matrices
(
A(δ),B(δ), C(δ),D(δ)

)
, hence

it is satisfied for all
(
A(δ),B(δ), C(δ),D(δ)

)
∈ Ωδ if and only if there exists Y ≻ 0,

W = ǨY and γ such that the LMI (5.36) is satisfied for all δ ∈ ∆l which concludes
the proof.

Remark 24. Although the optimal control policy does not depend on the initial state,
ϵ(0), solving the SDP (minimize (5.28) subject to (5.29a) and (5.29b)) does require a
knowledge of ϵ(0). Because the system is uncertain, ϵ(0) will belong to a set rather
than being single valued making it challenging to properly set up and solve the SDP
above. To avoid this difficulty, the result of Lemma 4.3.3 can be utilized to reformulate
the problem as the following ϵ(0)− independent SDP:

min
γ,W,0≺Y=Y⊤

γ (5.37)

subject to :

γI I

I Y

 ≻ 0,

(5.38a)
−Y

(
A(δ)Y − B(δ)W

)⊤ (
C(δ)Y − D(δ)W

)⊤
W⊤

A(δ)Y − B(δ)W −Y 0 0
C(δ)Y − D(δ)W 0 −γQ−1

e 0
W 0 0 −γR−1

δ

 ⪯ 0, ∀δ ∈ ∆l.

(5.38b)

Remark 25 (Dynamic performance and robustness). The robust FOLQC con-
troller proposed in Theorem 5.5.1 minimizes the upper bound on the dynamic perfor-
mance cost J∞(ϵ(0)) for all δ ∈ ∆l. As a result, the robust FOLQC controller is not
guaranteed to optimize the actual performance cost for the true value of the uncertain
parameter δ. However, the robust FOLQC can guarantee the performance of the closed
loop uncertain system is better than or equal to the worst-case (optimal) performance
achievable within the uncertainty range ∆l. This means that robust FOLQC trades
performance for robustness. This is indeed not unique to the robust FOLQC algorithm
above but a fundamental limitation of all control systems. In the simulation results
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shown in the next section, this trade-off between performance and robustness will be
observed in multiple occasion. Although interesting, we will defer any investigation of
this trade-off between robustness and performance to future research and will refer the
reader to the excellent work done by [32, 58] on this topic.

Remark 26 (The curious case of no solution). One may wonder what conclusions can
be made if the semi-definite program stated in Theorem 5.5.1 has no solution. In this
case, the robust FOLQC problem cannot be solved using the LMI approach described in
the theorem for the given uncertainty interval ∆l. This would normally be the case for
uncertain systems that do not satisfy the quadratic stabilizabilty assumption made in
Assumption 5. A way to fix this would be to redefine the uncertainty interval ∆l or
adopt an alternative approach to the robust control design.

5.6 Numerical Simulation and Comparative Studies

In this section, numerical simulation and comparative studies of robust feedback
optimizing control formulations will be presented. We study the performance of a
conventional tracking linear quadratic controller, nominal FOLQC and the robust
FOLQC developed in this chapter. The following uncertain linear system will be used
for this study.

x(k + 1) = A(δ)x(k) +B(δ)u(k) + Ew(k), (5.39a)
y(k) = Cx(k), (5.39b)

where

A(δ) =
2 0.1
0 1 − 0.1δ

 , B(δ) =
 0
0.1δ

 , E =
1 0
0 1

 , and C =
[
1 0

]
(5.40)

with δ ∈ ∆l and ∆l := {δ | δ ∈ [4, 10]}.
We assume the system is quadratically stabilizable and the disturbance w(k) is unknown
and constant with the value

w(t) =
[
−1 3

]⊤
, 0 ≤ k < 500. (5.41)
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In a steady-state, the system (5.39) satisfies the following equation

0 = A(δ)x+B(δ)u+ Ew, (5.42a)
y = Cx. (5.42b)

From (5.42) the steady-state input-output map for (5.39) is computed as

y = h(u,w) = Guu+Gww, (5.43)

where

Gu(δ) = C(In − A(δ))−1B(δ) = −0.1,
Gw(δ) = C(In − A(δ))−1E =

[
−1 −δ−1

]
.

(5.44)

Note that the system has the robust steady-state gain property as Gu(δ) is independent
of δ. We define the steady-state optimization problem of interest as

z̄∗(δ, w) = arg min
z̄

Φ(z̄)

subject to: Gz z̄ = d(δ, w),
(5.45)

where

z =
u
y

 , Φ(z̄) = 1
2 z̄

⊤Qzz z̄ +R⊤
z z̄, Qzz =

Quu Quy

Qyu Qyy

 , Rz =
Ru

Ry

 , Quu = 5,

Quy = Qyu = 2, Qyy = 1, Ru = 0.1, Ry = 0.5, Gz =
[
−Gu(δ) Ip

]
, d(δ, w) = Gw(δ)w.

(5.46)

To regulate the uncertain system (5.39) to steady-state equilibria that are the solution
of problem (5.45), we adopt three approaches in this example:

1. A conventional approach where problem (5.45) is explicitly solved online for
a nominal value of the uncertain parameter δ and an estimated value of the
unknown disturbance. The set-points obtained are then used in a tracking linear
quadratic control formulation to achieve the control objective.

2. A nominal FOLQC approach based on a nominal model of the uncertain system,
and



5.6 Numerical Simulation and Comparative Studies 131

3. A robust FOLQC approach based on knowledge of the set ∆l and the piecewise-
constant nature of the disturbance i.e w(k) = w(k − 1).

5.6.1 Conventional approach: Disturbance estimation, ex-
plicit solution and tracking LQC design

Disturbance estimation

To estimate the disturbance, a nominal value of the uncertain parameter δ = δ̄ is
chosen and the following nominal dynamics are written

x̄(k + 1) = A(δ̄)x̄(k) +B(δ̄)u(k) + Ew(k), (5.47a)
ȳ(k) = Cx̄(k). (5.47b)

From (5.47) and the fact that w(k) = w(k − 1), we define the following disturbance
augmented dynamics  x̄(k + 1)

w̄(k + 1)

 = Aa(δ̄)x̄(k) +Ba(δ̄)ū(k), (5.48a)

ȳ(k) = Ca

 x̄(k + 1)
w̄(k + 1)

 (5.48b)

where

Aa(δ̄) =
A(δ̄) E

0 Inw

 , Ba(δ̄) =
B(δ̄)

0

 , and Ca =
[
C 0

]
. (5.49)

The disturbance augmented observer is then designed as the dynamical system x̂(k + 1)
ŵ(k + 1)

 =
(
Aa(δ̄) − LaCa

)  x̂(k)
ŵ(k)

+Ba(δ̄)u(k) + Lay(k). (5.50)

The observer gain La is designed such that the estimation error dynamics

ea(k + 1) =
(
Aa(δ̄) − LaCa

)
ea(k) (5.51)

is driven asymptotically to zero for any non-zero value of ea(0) where

ea(k) =
 x̄(k)
w̄(k)

−

 x̂(k)
ŵ(k)

 . (5.52)
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Remark 27. 1. The nominal value of δ can be chosen to be its most probable value.
This is usually the centroid of the uncertainty set ∆l.

2. The observer gain La should be chosen such that the poles of error dynamics are
much faster than the poles of the closed-loop system. This is to guarantee that
the estimated disturbance, ŵ, converges very fast to w (or a (hopefully) close
approximation in this case) before the linear system settles at a steady-state.

The poles of the error dynamics are placed at 0.1 + 0.3i, 0.1 − 0.3i, 0.1, and 1 to
give the observer gain matrix

La =
[
3.2 14.2 0 8.1

]
. (5.53)

Explicit solution

Given the estimated disturbance at time k, ŵ(k), and a nominal value of the uncertain
parameter, δ̄, the steady-state optimization problem (5.45) can be solved online as the
quadratic program

(ûref , ŷref ) = z̄∗(δ̄, ŵ) = arg min
z̄

Φ(z̄)

subject to:
[
−0.1 1

]
z̄ =

[
−1 −δ̄−1

]
ŵ.

(5.54)

Remark 28. Because δ̄ is only an approximation to the true value of the parameter δ,
which is assumed uncertain, the estimated disturbance, ŵ, therefore only approximates
the actual disturbance, w. As a result, the computed set-points, (ûref , ŷref), are an
approximation of the actual steady-state optimum, z̄∗(δ, w), of (5.45).

Tracking LQC design

Given the computed set-points, (ûref , ŷref), to track the optimal solution (or in this
case an approximation) of the steady-state optimization problem (5.45), we design a
tracking linear quadratic control algorithm based on the following velocity model of
the nominal dynamics

ϵ̄(k + 1) = Āϵ̄(k) + B̄δū(k), (5.55a)
ē(k) = C̄ϵ̄(k) (5.55b)
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where

ϵ̄(k) :=
 δx̄(k)
ē(k − 1)

 with
δx̄(k) := x̄(k) − x̄(k − 1),
δū(k) := ū(k) − ū(k − 1),

(5.56)

and

Ā =
A(δ̄) 0
C Iny

 , B̄ =
B(δ̄)

0

 , C̄ =
[
C Iny

]
. (5.57a)

The nominal tracking error, ē(k) is defined as

ē(k) = ȳ(k) − ŷref = Cx̄(k) − ŷref . (5.58)

Given the nominal tracking error and nominal velocity dynamics, the tracking linear
quadratic control law applied to the uncertain system is given by

u(k) = u(k − 1) − K̄ϵ̄(k), (5.59)

where K̄ is the optimal control gain obtained by minimizing the performance objective

J∞(ϵ̄(k)) = 1
2

∞∑
k=0

(
∥ē(k)∥2

Q̄e
+ ∥δū(k)∥2

R̄

)
, (5.60)

subject to the nominal velocity dynamics (5.55), with Q̄e ⪰ 0 and R̄ ≻ 0. From [133],
the linear quadratic control gain K̄ is given by

K̄ =
(
R̄ + B̄⊤P̄B̄

)−1
B̄⊤P̄Ā (5.61)

where P̄ ≻ 0 is the stabilizing positive definite solution to discrete-time algebraic
Riccati equation

P̄ = Ā⊤P̄Ā + C̄⊤Q̄eC̄ − Ā⊤P̄B̄
(
R̄ + B̄⊤P̄B̄

)−1
B̄⊤P̄Ā. (5.62)

Remark 29. To implement this controller, the nominal velocity state ϵ̄(k) at time k,
is computed from the estimated state x̂(k) and the computed output reference ŷref as

ϵ̄(k) :=
x̂(k) − x̂(k − 1)
Cx̂(k) − ŷref

 . (5.63)
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Because the disturbance is assumed constant, the output reference, ŷref will also be
constant within a sampling interval.

5.6.2 Robust FOLQC approach

For the robust FOLQC design, Λy, Λu and r follow from the choices of Φ and the
input-output sensitivity, Gu as

Λy = −15, Λu = −48, and r = −5. (5.64)

The transient performance criterion is chosen with Qe = 100 and Rδ = 25; these values
satisfy the hypothesis of Proposition 3.
From the design parameters above, the FOLQC law is computed from the following
parameters:

A(δ) =


2 0.1 0
0 1 − 0.1δ 0

−19 0 1

 , B(δ) =


0

0.1δ
−48

 , C(δ) =
[
−19 0 1.00

]
, D(δ) = −48.

(5.65)

The robust state feedback matrix Ǩ in the control law (5.20) which minimizes the
upper bound V (ϵ(0)) on the robust performance objective (5.21) at sampling time k is
given by

Ǩ = WY−1 (5.66)

where Y ≻ 0 and W are obtained from the solution of the SDP (5.28) as

W = 1.0 × 10−3 ×
[
0.0003 −0.0027 −0.3766

]
,

Y =


0.0000 −3.3 × 10−7 −3.49 × 10−5

−3.27 × 10−7 3.93 × 10−6 3.5 × 10−4

−3.5 × 10−5 0.0003 0.0815

 . (5.67)

5.6.3 Simulation results

For the simulation, the true value of the uncertain parameter is fixed at δ = 8.
The robust FOLQC law was computed using the extremal values of the uncertainty
range i.e. δ1 = 4 and δ2 = 10. A nominal FOLQC and tracking LQC controllers
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Fig. 5.1 Tracking LQC, δ̄ = 5: outputs y and input u plotted as a function of time. The
actual optimum (u∗, y∗) is shown using dashed lines.

are also implemented for the following nominal values of the uncertain parameter,
δ̄ = {5, 7, 8, 9, 10}.

Performance of tracking LQC with disturbance estimation and explicit
solution

Figure 5.1 shows the input-output performance of the tracking LQC combined with
online optimization and disturbance estimation for δ̄ = 5.
From the figure, we can see that the closed-loop system is unstable and does not
track the optimum to the steady-state optimization. This shows that the conventional
combination of a tracking controller with online steady-state optimization using distur-
bance estimates may not always guarantee the stability or convergence to the optimal
steady-state when the nominal value of the uncertain parameter is far from its true
value.

To improve the nominal accuracy, we set δ̄ = 7 and implement the tracking
LQC again. This time, the controller was stabilizing but convergence could only be
guaranteed to a neighbourhood of the optimal steady-state. Figure 5.2 shows the
obtained performance. Although a stable closed-loop system is obtained, the dynamic
performance is good but not optimal for the defined linear quadratic cost.
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Fig. 5.2 Tracking LQC, δ̄ = 7: outputs y and input u plotted as a function of time. The
actual optimum (u∗, y∗) is shown using dashed lines.

To improve the performance and accurately track the optimal steady-state, the
nominal value of the uncertain parameter must closely approximate the true value.
We see this from Figure 5.3 where the tracking LQC was implemented for a value of
δ̄ = 8, the true value. The figure shows that accurate tracking of the true optimal
equilibrium is achieved with optimal dynamic performace. Similar results were obtained
for overestimated nominal values of δ̄ = 12 (Fig. 5.4) and δ̄ = 19 (Fig. 5.5).

In conclusion, the simulation results here have shown that under model uncertainty,
a tracking LQC formulation may not guarantee the stability of the closed-loop system.
Even when stability is achieved, convergence can only be guaranteed to a neigbourhood
of the optimal steady-state equilibrium. Also, the dynamic performance of a tracking
LQC formulation deteriorates the further the nominal model is from the true model.

Performance of nominal FOLQC

Here, we investigate the performance of the nominal FOLQC from Chapter 4 under
model uncertainty. We design nominal FOLQC for the following nominal model values:
δ̄ = {5, 7, 8, 9, 10}. At δ̄ = 5, we see from Figure 5.6 that the nominal FOLQC does
not achieve closed-loop stability.
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Fig. 5.3 Tracking LQC, δ̄ = 8: outputs y and input u plotted as a function of time. The
actual optimum (u∗, y∗) is shown using dashed lines.

Fig. 5.4 Tracking LQC, δ̄ = 12: outputs y and input u plotted as a function of time. The
actual optimum (u∗, y∗) is shown using dashed lines.
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Fig. 5.5 Tracking LQC, δ̄ = 19: outputs y and input u plotted as a function of time. The
actual optimum (u∗, y∗) is shown using dashed lines.

Fig. 5.6 Nominal FOLQC, δ̄ = 5: outputs y and input u plotted as a function of time. The
actual optimum (u∗, y∗) is shown using dashed lines.
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Fig. 5.7 Nominal FOLQC, δ̄ = 7: outputs y and input u plotted as a function of time. The
actual optimum (u∗, y∗) is shown using dashed lines.

However at an improved but underestimated nominal value of δ̄ = 7, the nominal
FOLQC can be seen from Figure 5.7 to stabilize the uncertain system while also
tracking the optimal steady-state with a poor dynamic performance. In contrast
with the tracking LQC controller which only achieves robust stability but cannot
robustly track the true steady-state optimum, the nominal FOLQC achieves both
robust stability and robust convergence to the true optimal steady-state provided the
nominal parameter estimate is close to its true value. This shows that unlike tracking
LQC which only has an inherent robust stability property, the nominal FOLQC has
both inherent robust stability and inherent robust convergence to the true steady-state
optimum. This also adds to the advantage that nominal FOLQC does not rely on
online disturbance estimation.

To improve the dynamic performance of the nominal FOLQC, accurate knowledge of
the uncertain model parameter δ will be required. Figure 5.8, shows the performance of
nominal FOLQC with accurate knowledge of δ. It can be observed from the figure that
with the nominal parameter set to the true value i.e., δ̄ = 8, stability and convergence
to the true optimal steady-state is achieved with much improved dynamic performance.

At an overestimated nominal value of δ̄ = 9, the nominal FOLQC can be seen from
Figure 5.9 to stabilize the uncertain system and also track the (unknown) optimal
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Fig. 5.8 Nominal FOLQC, δ̄ = 8: outputs y and input u plotted as a function of time. The
actual optimum (u∗, y∗) is shown using dashed lines.

steady-state setpoints with a very good dynamic performance. It interesting to note
that the nominal FOMPC performs better when the nominal value is overestimated
rather than underestimated. It is not clear why this is the case. We leave any further
analysis of this observation to future investigation.

Finally at the overestimated value of δ̄ = 10, the nominal FOLQC can be observed
from Figure 5.10 to achieve closed-loop stability for the true plant but with a severely
degraded dynamic performance. The controller takes very long to settle at the optimal
steady-state setpoints and experiences very large oscillations about these setpoints.
This is a very poor performance but at least closed-loop stability is retained. At δ̄ > 10,
the nominal FOLQC becomes unstable (see Figure 5.11).

Performance of robust FOLQC

Although the tracking LQC is inherently robustly stable and the nominal FOLQC is
both inherently robustly stable and inherently robustly convergent to the true optimum,
both controllers do not guarantee these properties under model uncertainty. Exceptions
are when the uncertainty satisfies some inherent robustness bound that is always very
challenging to compute in practice. Therefore, to guarantee closed-loop stability and
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Fig. 5.9 Nominal FOLQC, δ̄ = 9: outputs y and input u plotted as a function of time. The
actual optimum (u∗, y∗) is shown using dashed lines.

Fig. 5.10 Nominal FOLQC, δ̄ = 10: outputs y and input u plotted as a function of time.
The actual optimum (u∗, y∗) is shown using dashed lines.
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Fig. 5.11 Nominal FOLQC, δ̄ = 11: outputs y and input u plotted as a function of time.
The actual optimum (u∗, y∗) is shown using dashed lines.

convergence to the true steady-state optimum under model uncertainty, the robust
FOLQC formulation is needed.

Unlike the other two control formulations, robust FOLQC can guarantee the
closed-loop stability and convergence to the true optimal steady-state as long as the
uncertainty belongs to a defined set. We can see this from Figure 5.12. Here, the
robust FOLQC is designed for all δ ∈ [4, 10], i.e., δ is assumed to take values between
4 and 10. It is clear from Figure 5.12 that the robust FOLQC is both robustly stable
and robustly convergent to the true steady-state optimum. Also, while the other two
control formulation were unstable when the uncertain parameter was set at a nominal
value less than or equal to 5 i.e. δ̄ ≤ 5, the robust FOLQC achieves a stable and
convergent closed-loop performance, with a decent dynamic performance for all values
of δ in the specified range i.e., δ ∈ [4, 10]. In fact, this range can be relaxed but at
the expense of poorer dynamic performance. Also, tightening this range will improve
the dynamic performance. This is seen in Figure 5.13 where the uncertainty range is
tightened to δ ∈ [6, 10]. The improved performance of the robust FOLQC is clearly
seen in the figure.
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Fig. 5.12 Robust FOLQC, δ̄ ∈ [4, 10]: outputs y and input u plotted as a function of time.
The actual optimum (u∗, y∗) is shown using dashed lines.

Fig. 5.13 Robust FOLQC, δ̄ ∈ [6, 10]: outputs y and input u plotted as a function of time.
The actual optimum (u∗, y∗) is shown using dashed lines.
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5.7 Conclusion

In this chapter, we have presented a robust FOLQC algorithm for the feedback
optimization of uncertain linear systems with polytopic model uncertainty and a
quadratic steady-state optimization problem. A linear matrix inequality approach was
used to formulate semi-definite programs which can be solved offline to generate robust
FOLQC laws. A limitation of the developed solution is that it requires the polytopic
system to be quadratically stabilizing. This can limit its application to only a small
class of uncertain linear systems. Future work will focus on relaxing this assumption
and developing less conservative robust FOLQC laws.



Chapter 6

Nominal Feedback Optimizing
Model Predictive Control

In this chapter, we propose feedback optimizing control laws based on a model predictive
control framework to regulate a constrained linear system to the optimum of a steady-
state optimization problem while optimizing the transient performance and satisfying
dynamic inequality constraints in the inputs and outputs, without numerically solving
the steady-state optimization problem. This is the FOMPC problem introduced in
Chapter 3 when the model is assumed free of model uncertainty i.e., a nominal FOMPC
problem. We begin with an introduction and a statement of the control problem for a
steady-state quadratic program. We then propose a solution to the FOMPC problem
based on a velocity model formulation of a standard tracking MPC algorithm. The
theoretical properties of the proposed solution is analysed and a detailed analysis of
the inherent robustness of the proposed nominal FOMPC algorithms is given. Finally,
we present illustrative simulation results and a conclusion in the final section.

6.1 Introduction

Standard MPC schemes have primarily been designed to minimize the deviation of the
states and inputs of a dynamic system from known reference values. These references
are often generated in a feed-forward manner through the solution of steady-state
optimization problems at timescales slower than the MPC regulator. These MPC
schemes are generally referred to as tracking MPC. Approaches that combine feedback
optimizing control and model predictive control (MPC) have the potential to augment
the advantages of feedback optimizing control with the desirable features of MPC:
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guaranteed constraint satisfaction and (near-)optimal transient performance. Two
recent approaches to feedback optimizing MPC achieve steady-state optimality via the
explicit online (numerical) solution to the steady-state optimization problem [75, 170].
Not only is it potentially computationally expensive to optimize steady-states online
alongside solving the conventional MPC problem, but such an approach may also lack
robustness to the effects of unknown disturbances on the steady-state solution. [74]
addressed the latter shortcoming by proposing an economic MPC (EMPC) algorithm
integrating modifier adaptation techniques with offset-free MPC. The resulting MPC
algorithm is able to track the optimal steady-state equilibrium without explicitly
computing the optimal steady-state set-points. The algorithm although simple requires
online estimation of the true plant gradients and disturbances; adopts a tailored
formulation of the optimal control problem (OCP); requires the open loop OCP
exhibiting turnpike properties; and gives no formal convergence guarantees.

In this chapter, we present results addressing some of the above limitations by
developing a new feedback optimizing model predictive control (FOMPC) algorithm.
The proposed approach integrates steady-state optimization and feedback regulation
for a linear time-invariant (LTI) system subject to linear inequality constraints and
a constant additive state disturbance. By replacing the standard tracking error with
the residual of the Karush–Kuhn–Tucker (KKT) optimality conditions of the steady-
state optimization problem and using this residual within a velocity form of MPC for
tracking, we develop an approach guaranteed to converge to the steady-state optimum
while minimizing quadratic transient performance criterion and guaranteeing constraint
satisfaction.

Compared to a two-step approach, the presented algorithm is a novel and systematic
way of integrating RTO and MPC to reduce/eliminate the dependence on timescale
separation, while also guaranteeing closed-loop convergence to the actual (unknown)
RTO set-points.



6.2 Problem statement and preliminaries 147

6.2 Problem statement and preliminaries

System description and steady-state optimization

Consider a constrained discrete-time linear time-invariant system, P, described by

x(k + 1) = Ax(k) +Bu(k) + Ew(k), (6.1a)
y(k) = Cx(k), (6.1b)

(u(k), y(k)) ∈ Z := U × Y, (6.1c)

and the steady-state optimization problem

RT O(w̄) : z̄∗(w̄) = arg min
z̄

{
Φ(z̄) | z̄ ∈ F(w̄), z̄ ∈ Z

}
, (6.2)

where

• x(k) ∈ Rnx , u(k) ∈ U ⊆ Rnu , y(k) ∈ Y ⊆ Rny , and w(k) ∈ W ⊆ Rnw are the
state, input, output and additive uncertainty (disturbance) vectors respectively
and z(k) =

[
u(k) y(k)

]⊤
.

• A ∈ Rnx×nx , B ∈ Rnx×nu , E ∈ Rnx×nw , C ∈ Rny×nx are the system coefficient
matrices.

• Φ: Rnu × Rny → R is a continuous scalar economic performance index to be
minimized in steady-state.

• F(w̄) is the set of controlled equilibria for the system (6.1) defined similarly to
(3.4) with δ = 0.

Problem (6.2) is a static optimization problem whose solution varies according to the
disturbance w̄, which is unknown a priori. Therefore, the explicit online computation
of the solution of (6.2), using estimates of the disturbances, may result in steady-
state errors and sub-optimality [65]. In the remainder of this chapter, we develop an
approach based on model predictive control that solves problem (6.2) implicitly via
feedback control, without knowledge or estimates of the disturbances, while regulating
the system in an optimal and admissible way with respect to a transient performance
criterion and constraints.
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Problem statement

For the system (6.1) we consider the problem of designing a state feedback control
law, based on model predictive control, for tracking the optimal solution z∗(w̄) of the
steady-state optimization problem (6.2), i.e., asymptotically steer the system output
y(k), and/or input u(k) to their respective steady-state optimal values z∗(w̄) while
respecting the inequality constraint (u(k), y(k)) ∈ Z at all times. Formally, the control
problem we consider is defined as follows.

Problem 6 (The FOMPC Problem). Design for the discrete linear time-invariant
system (6.1) a state feedback control law

u(k) = κN(x(k), u(k − 1)) (6.3)

obtained from the online solution to finite-horizon horizon optimal control problems,
such that for any constant admissible w̄ ∈ W:

1. for all feasible x(0), the point z̄∗(w̄) is an asymptotically stable equilibrium for
the closed-loop system, satisfying

lim
k→∞

(u(k), y(k)) = z̄∗(w̄). (6.4)

2. The feedback policy κN(·, ·) minimizes a transient performance criterion.

3. The constraints (u(k), y(k)) ∈ Z are satisfied at all times.

In the next section, we show an MPC controller can be constructed to have a
suitable tracking error e(k) that facilitates regulation of (u(k), y(k)) to the optimum
of (6.2) without knowledge of the optimal set-points z∗(w̄) or the disturbance w̄. We
consider the case where the steady-state performance objective is a quadratic function
of the outputs and inputs, and show that this results in the steady-state optimality
error e(k) as defined by (3.34) being an affine function of the measured output and
input. Using the velocity model form of the LQ optimal control problem [172], we
develop an MPC formulation that steers the system asymptotically and admissibly
to the optimal steady-state equilibrium, without knowledge of this equilibrium and
while minimizing a standard LQ transient performance criterion. For simplicity and to
maintain intuition of the concepts, we consider the case where the inequality constraints
(u(k), y(k)) ∈ Z are inactive in steady-states.
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6.3 Proposed Solution

In this section, we propose solutions to the FOMPC problem when the steady-state
performance objective is a quadratic function of the input and output variables.

Quadratic steady-state performance index

We consider that

Φ(z̄) = 1
2 z̄

⊤Qzz z̄ +R⊤
z z̄ (6.5)

where Qzz =
Quu Quy

Qyu Qyy

 and Rz =
Ru

Ry

.

Tracking error

Instead of defining and regulating the tracking error as the difference between z(k) and
the unknown optimum z̄∗(w̄), we define the tracking error as the residual of the KKT
optimality condition for problem (6.2) (see details in chapter 3, equation (3.34)) which
under inactive steady-state inequality constraints yields

e(k) := G̃∇Φ̃(z(k)) = ΛyCx(k) + Λuu(k) + r (6.6)

where Λy, Λu and r retain their meaning from previous chapters. This error may be
computed directly from the input u(k) and output y(k) measurements, provided the
objective Φ and the input–output DC gain matrix Gu are known. This choice therefore
obviates the need for knowledge of the optimal equilibrium z̄∗ and the disturbance w̄.

Basic assumptions

Concerning the system (6.1) and the steady-state cost (6.5), we make the following
assumptions

Assumption 6 (Basic system assumptions).

(i) The system (6.1) is reachable and observable.

(ii) The state x(k) is measurable.
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(iii) the number of outputs, ny is less than or equal to the number of inputs, nu.

(iv) Y and U contain the origin in their interiors; W contains the origin.

(v) U and W are compact.

(vi) rank(S) = nu + ny, where

S :=
A− Inx B

ΛyC Λu

 . (6.7)

Assumption 7 (Basic assumptions on the steady-state problem).

(i) The cost Φ(·) is differentiable and convex.

(ii) The set of admissible disturbances, W, is such that, for all w̄ ∈ W,

(a) the set F(w̄) has a non-empty relative interior.

(b) the minimizer z̄∗(w̄)exists and is unique.

Remark 30. Assumption 6(iii) refers to the number of controlled/optimized states
rather than measured outputs; the latter are not considered in this chapter since we
assume state measurements. In practice, if y(k) = Cx(k) defines a vector of measured
outputs, possibly with ny ≥ nu, it is possible to follow the common practice of defining
a controlled output ỹ(k) = Hy(k) = HCx(k) a linear combination of these measured
outputs, such that dim(ỹ(k)) ≤ nu [181].

Remark 31. Assumption 6(vi) is, as shown in Proposition 2 (chapter 4), necessary
for reachability of the velocity dynamics (4.12) required for the control design.

Velocity and tracking error dynamics

To regulate the system to e = 0, we consider the velocity form of the system dynam-
ics (6.1) augmented with the tracking error dynamics (see equation (4.12)). Conditions
for reachability and observability of the velocity dynamics have been established in
Chapter 4.
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6.3.1 Nominal FOMPC

In this section, we present an MPC algorithm based on a velocity form of the system
dynamics (6.1) that solves the FOMPC problem for systems with unknown constant
(or slowly varying) disturbances i.e., w(k) = w(k − 1), and a quadratic steady-state
performance criterion. Because the additive disturbance in the velocity model is zero
i.e., δw(k) = 0, the resulting velocity dynamics is a nominal model. To guarantee
convergence of the closed-loop nominal velocity dynamics to steady-state set-points
z̄∗ that are admissible and optimal for the actual system, we make use of suitably
derived auxiliary control laws and terminal invariant sets. Since δw(k) = 0, the velocity
dynamics (4.12) reduces to:

ϵ(k + 1) = Aϵ(k) + Bδu(k), (6.8a)
e(k) = Cϵ(k) + Dδu(k). (6.8b)

In view of the reachability of (A,B), there exists a gain K such that F = A − BK
is Schur (see Definition 36). Note that such gain is the same as the unconstrained,
feedback-optimizing linear quadratic control gain obtained in chapter 4, equation
(4.26a).
The dynamics of (6.8a), under the feedback control law

δu(k) = −Kϵ(k) (6.9)

is given by
ϵ(k + 1) = Fϵ(k). (6.10)

The maximal output admissible set (MOAS)

In the following, the velocity dynamics (6.8a) will be used to design an MPC algorithm
to track the unknown optimum of the steady-state cost (7) with guarantees of stability
and recursive feasibility for the inequality constraints U and Y. Towards this goal, we
will adopt (6.9) as an auxiliary control law to guarantee stability of the closed-loop
velocity dynamics in line with [181]. To achieve recursive feasibility of the inequality
constraints, the constraints on u and y must be reformulated in terms of the MPC
optimization variables δu and ϵ. To this end, similarly to [28], we write the relation



152 Nominal Feedback Optimizing Model Predictive Control

between these variables as (see section 6.6 for details)
 x(k)
u(k − 1)

 = C̃

ϵ(k)
r

+ D̃w(k − 1), (6.11)

where

C̃ :=
 A B

0nu×nx Inu

S−1

 Inx 0nx×ny 0nx×ny

0ny×nx Iny −Iny

 ,
D̃ :=

 E

0nu×nx

−

 A B

0nu×nx Inu

S−1

 E

0ny×nx

 .
Let G be the set which enforces the constraints (u(k), y(k)) ∈ Z on the velocity state
ϵ(k), i.e,

G :=
{
ϵ : (u, y) ∈ Z

}
.

From (6.11), the set G can be computed in terms of ϵ as,

G :=
ϵ : C̃

ϵ
r

 ∈ (X × U) ⊖ D̃W

 (6.12)

where X ⊆ Rn := {x : y ∈ Y}.
To guarantee that the system inputs and outputs u(k) and y(k), respectively, lie in the
feasibility sets U and Y, we need to compute a suitable invariant set, Gf , where ϵ(k)
must lie in order to guarantee that the constraints (u(k), y(k)) ∈ Z are verified for all
k. Assume the pair (A,B) is reachable and the set G is a closed polytope (both true if
Assumption 6 are satisfied), then the set Gf can be computed as the (projection of
the) maximal constraint admissible set [114] for the velocity dynamics (6.8a) under
the auxiliary control law, δu(k) = −Kϵ(k) and is constructed such that:

ϵ ∈ Gf =⇒ ϵ ∈ G and Fϵ ∈ Gf . (6.13)

Remark 32 (Computation of Gf ). Algorithms for computing Gf and discussions on
the computational complexity of the associated algorithms are presented in [81, 114].
Generally, the computation of Gf is more difficult for linear systems with higher
dimensions i.e. very large number of state variables.
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Optimal control problem

Given the velocity dynamics (6.8) and the sets G and Gf , the feedback optimizing
model predictive control problem is defined, for a state ϵ(k), as

min
δu(k)

VN(ϵ(k), δu(k)) = Vf (ϵ(k +N)) +
N−1∑
i=0

l(e(k + i), δu(k + i)) (6.14)

subject to:
∀i ∈ I[0,N−1],

ϵ(k + i+ 1) = Aϵ(k + i) + Bδu(k + i), (6.15a)
e(k + i) = Cϵ(k + i) + Dδu(k + i), (6.15b)
ϵ(k + i) ∈ G, (6.15c)

and

ϵ(k +N) ∈ Gf . (6.16a)

In this problem, the decision variable is the sequence of control increments over the
N -step prediction horizon:

δu(k) :=
{
δu(k), δu(k + 1) . . . , δu(k +N − 1)

}
. (6.17)

These sequences are chosen to minimize the objective VN(ϵ(k), δu(k)), which is com-
posed of a stage cost

l(e(k), δu(k)) := 1
2
(
e(k)⊤Qee(k) + δu(k)⊤Rδδu(k)

)
(6.18)

and a terminal cost

Vf (ϵ(k +N)) := 1
2ϵ(k +N)⊤Pϵ(k +N). (6.19)

The terminal cost is employed, in the usual way, towards guaranteeing stability and is
chosen to satisfy the Lyapunov equation

(A − BK)⊤P(A − BK) − P = −[C⊤QeC − 2N K + K⊤RK] (6.20)
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where N = C⊤QeD and K is such that A − BK is Schur.
This performance index (6.14) captures the transient performance objectives for the

closed-loop system: the term e(k)⊤Qee(k) penalizes the distance of the tracking error
from steady-state optimality and therefore determines the duration of the transient
phase, while the term δu(k)⊤Rδδu(k) penalizes the incremental control effort. It is
simple to verify that the following assumption ensures positive definiteness of this cost.

Assumption 8. The matrices Rδ, Qe and P satisfy Rδ ≻ 0, P ⪰ 0 and

Qe −QeΛu(Rδ + Λ⊤
uQeΛu)−1ΛuQ

⊤
e ⪰ 0. (6.21)

Solution of the optimal control problem presented above, followed by the application
of the first control in the optimized sequence, yields the control law

δu(k) = κN

(
ϵ(k), u(k − 1)

)
. (6.22)

Main result

The following result summarizes the stability and recursive feasibility of the FOMPC
algorithm, and follows directly from well established results on conventional linear
MPC [181].

Theorem 6.3.1 (Stability and feasibility). For piecewise-constant disturbances, the
FOMPC control law u(k) = u(k − 1) + κN

(
ϵ(k), u(k − 1)

)
solves Problem 6.

Remark 33 (Practical asymptotic stability). Where the set Gf cannot be efficiently
computed e.g. when the system has very high dimension, it may be possible to still
achieve asymptotic stability and feasibility in practice without these terminal ingredients.
In this case, the terminal constraint (6.16) and the terminal cost (6.19) can both be
omitted from the FOMPC formulation above without losing asymptotic stability if
the prediction horizon, N is made large enough. How big N can be to theoretically
guarantee this stability and feasibility is still an important theoretical question that may
need to be answered. In most practical settings however, a stabilizing value of N can be
determined in simulation using a trial-and-error approach. A major difficulty when
formulating a FOMPC problem using very large values of N is that the resulting online
optimization problem can get very large and therefore difficult to solve in real time.
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6.3.2 Inherent robustness of nominal FOMPC: An ISS stabil-
ity analysis

Due to the implicit feedback implementation, nominal FOMPC is expected to show an
inherent robustness to uncertainty in the system dynamics. The goal of this section is
to analyse this nominal robustness, i.e., we want to inquire if nominal FOMPC (i.e.,
FOMPC based on known system coefficients and piece-wise constant disturbances)
is sufficiently robust to uncertainty and if possible establish obtainable bounds. For
simplicity of presentation and to avoid the complications caused by the cross-term,
we express the OCP (minimize (6.14) subject to (6.15), and (6.16)) for the FOMPC
problem above in the following equivalent form:

P(ϵ(k)) : min
v(k)∈UN

VN(ϵ(k),v(k)) (6.23)

where the feasible region UN(ϵ(k)) is defined as

UN(ϵ(k)) ≜

v(k)

∣∣∣∣∣∣∣∣∣∣
ϵ(k + i+ 1) = Âϵ(k + i) + Bv(k + i), ∀i ∈ I[0,N−1]

ϵ(k + i) ∈ G, ∀i ∈ I[0,N−1]

ϵ(k +N) ∈ Gf

 , (6.24)

and the cost function VN(ϵ(k),v(k)) is given by

VN(ϵ(k),v(k)) = Vf (ϵ(k +N)) +
N−1∑
i=0

l(e(k + i), v(k + i)). (6.25)

Here,

v(k) = δu(k) + R−1N ⊤ϵ(k), l(e(k), v(k)) := 1
2
(
ϵ(k)⊤Q̂ϵ(k) + v(k)⊤Rv(k)

)
,

Â = A − BR−1N ⊤, Q̂ = Q − N R−1N ⊤ and Vf (ϵ(k +N)) = 1
2ϵ(k +N)⊤P̂ϵ(k +N),

(6.26)

and P̂ is a terminal penalty required to guarantee the closed loop stability of the
FOMPC. The computation of P̂ will be detailed later on in this analysis. The vector
v(k) is the sequence of translated control increments over the N -step prediction horizon:

v(k) :=
{
v(k), v(k + 1), . . . , v(k +N − 1)

}
. (6.27)
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The solution of P(ϵ(k)) yields the optimal control sequence v∗(k) and the corresponding
optimal cost V 0

N(ϵ(k)) which is also referred to as the value function. The nominal
FOMPC law is then given by the first element of v∗(k) i.e.

κN(ϵ(k)) = v(k) = v∗(0). (6.28)

The domain of the value function is the set of velocity states ϵ(k) for which P(ϵ(k))
has a solution:

EN ≜ {ϵ(k) ∈ Rnx+ny : UN(ϵ(k)) ̸= ∅}. (6.29)

To analyse the robust stability of the nominal FOMPC algorithm above, the following
assumptions are in order.

Assumption 9 (Continuity of velocity dynamics, stage cost and terminal cost). The
velocity dynamics ϵ(k + 1) = Âϵ(k) + Bv(k), the stage cost l(·, ·) and the terminal cost
Vf (·) are continuous. Furthermore, we assume l(0, 0) = 0 and Vf (0) = 0.

Assumption 10 (Properties of the constraint set). The set G is compact and contains
the origin

Assumption 11 (Stage cost bounds). There exists a function α1 ∈ K∞ such that

l(e(k), v(k)) ≥ α1(∥ϵ(k)∥), ∀ϵ ∈ G. (6.30)

Assumption 12 (Terminal Constraint). The set Gf is a constraint admissible positive
invariant set for ϵ(k+1) = Âϵ(k)+Bv(k) with v(k) = Kvϵ(k), where Kv = −K+R−1N
i.e.,

(Â + BKv)Gf ⊆ Gf and Gf ⊆ G. (6.31)

Remark 34. Assumption 12 is met if Gf is chosen to satisfy equation (6.13). See
Remark 32 for details on the computation of this set.

Assumption 13 (Terminal Cost). The function Vf (ϵ(k)) is a control Lyapunov function
i.e.,

Vf (ϵ(k + 1)) − Vf (ϵ(k)) ≤ −l(ϵ(k),Kvϵ(k)), ∀ϵ(k) ∈ Gf . (6.32)

Remark 35. Assumption 13 is met if the terminal penalty P̂ is chosen to satisfy the
standard discrete algebraic Riccati equation (DARE),

P̂ = Â⊤P̂Â + Q̂ − Â⊤P̂B(R + B⊤P̂B)−1B⊤P̂Â. (6.33)
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Given the above assumptions, it can be easily shown that the value function has
the following properties.

Lemma 6.3.2 (Properties of the value function). Suppose Assumptions 9, 10, 11,
12, and 13 hold, then there exists constants c2 > c1 > 0 such that the value function
satisfies:

c1∥ϵ∥2 ≤ ∥V 0
N(ϵ)∥ ≤ c2∥ϵ∥2, (6.34a)

V 0
N(ϵ+) ≤ γV 0

N(ϵ) (6.34b)

for all ϵ ∈ EN , where γ = 1 − c1
c2

and ϵ+ = Âϵ+ BκN(ϵ).

Proof. See [181] for proof of this result.

The following remarks show how to estimate the constants c1 and c2.

Remark 36 (Estimation of c1). Since the value function is, by definition, the optimal
cost

V 0
N(ϵ) = 1

2ϵ(N)⊤P̂ϵ(N) + 1
2

N−1∑
k=0

(
ϵ(k)⊤Q̂ϵ(k) + v(k)⊤Rv(k)

)
(6.35)

It follows that V 0
N(ϵ) ≥ ϵ(0)⊤Q̂ϵ(0) ≥ λmin(Q̂)|ϵ|2, hence

c1 = λmin(Q̂) = λmin(Q − N R−1N ⊤). (6.36)

Remark 37 (Estimation of c2). From [182], the terminal cost upper bounds the value
function such that

V 0
N(ϵ) ≤ ϵ(N)⊤P̂ϵ(N), ∀ϵ ∈ Gf (6.37)

and therefore, V 0
N (ϵ) ≥ λmax(P̂)|ϵ|2 = α(∥ϵ∥) is an upper bounding K∞ function within

Gf . To extend this definition to the entire region of attraction of the FOMPC, that
is the set EN , we utilize Proposition 2.18 of [182] which guarantees the existence of
c > η > 0 such that the K∞ function β(∥ϵ∥) = c

η
α(∥ϵ∥) = c

η
λmax(P̂)∥ϵ∥2 bounds the

value function within EN . Therefore,

c2 = c

η
λmax(P̂). (6.38)
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It remains to find the least conservative pair (c, η) such that c2 is the tightest upper
bounding constant. From [182], this can be computed as

η = max
ϵ∈BR

α(∥ϵ∥) (6.39)

where BR := {ϵ ∈ Rnx+ny | ∥ϵ| ≤ R} and c is defined in [182] as the constant which
implicitly defines the largest level set such that

V 0
N(ϵ) ≤ c, ∀ϵ ∈ EN . (6.40)

Refer to [182] for further details.

Lemma 6.3.3 (Lipschitz continuity of value function). The value function V 0
N(·)

satisfies
∥V 0

N(ϵ1) − V 0
N(ϵ2)∥ ≤ L∥ϵ1 − ϵ2∥ over EN (6.41)

with Lipschitz constant L ≥ 0.

Proof. The proof follows the same procedure as Theorem C.29 of [182].

Lemma 6.3.2 establishes asymptotic stability of the nominal dynamics but may fail
to guarantee the stability of the disturbed dynamics. In the next section, we analyze
the stability of the nominal FOMPC law in disturbed conditions.

Stability analysis of nominal FOMPC in disturbed conditions

Having reformulated the nominal FOMPC problem as the OCP P(ϵ(k)) above and
given the stated assumptions, we now analyse the stability properties of the nominal
FOMPC for the disturbed system:

ϵd(k + 1) = Âϵ(k) + Bv(k) + d(k) (6.42)

where d(k) is the aggregate (unknown) perturbation to the nominal velocity dynamics
i.e. parametric uncertainty and additive disturbances (See remark below).

Remark 38. Consider the uncertain linear system :

x(k + 1) = (A+ ∆A)x(k) + (B + ∆B)u(k) + Ew(k), (6.43a)
y(k) = Cx(k) (6.43b)
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where (∆A,∆B) are unknown, norm bounded perturbations to the nominal system
coefficients (A,B) and w(k) is the unknown additive disturbance at sample time k. The
uncertainty in (∆A,∆B) is propagated to the coefficient matrices of the steady-state
optimality error (6.6) resulting in the uncertain error equation

e(k) = (Λy + ∆Λy)Cx(k) + (Λu + ∆Λu)u(k) + r. (6.44)

From the equations above, the additive disturbance d(k) can be expressed as

d(k) = (Ew∆A+ Ep∆ΛyC)Cxϵ(k) + (Ew∆B + Ep∆Λu)δu(k) + EwEδw(k) (6.45)

where

δw(k) = w(k)−w(k−1), Ew =
Inx×nw

0ny×nw

 , Ep =
0nx×ny

Iny×ny

 and Cx =
[
Inx 0

]
. (6.46)

Due to the disturbance d(k), the true successor state is no longer ϵ(k + 1) but
ϵd(k + 1) and therefore Lemma 6.3.2 may no longer guarantee closed loop stability
as the inequality V 0

N(ϵd+) ≤ γV 0
N(ϵd) may not be satisfied. However, if the origin

is asymptotically stable for the nominal velocity dynamics (i.e., the system without
d), then it may be possible to find a set Ω(R̄) for which the conditions of Lemma
6.3.2 are satisfied and therefore guarantee asymptotic stability of the uncertain system
[182] with respect to the set Ω(R̄). We now present the main result which establishes
the stability properties of the uncertain velocity dynamics assuming the origin is
an asymptotically stable equilibrium for the nominal velocity dynamics. Using the
obtained results, we also establish an upper bound on the uncertainty d(k) which if
met guarantees closed-loop stability of the uncertain velocity dynamics (6.42) under
the nominal FOMPC control law:

κN(ϵ(k)) = v(k) = v∗(0). (6.47)

Theorem 6.3.4 (Robust stability of nominal FOMPC). Suppose Assumptions 9, 10,
11, 12, and 13 hold, and let

ϵ(0) ∈ Ω(R̄) ≜ { ϵ | V 0
N(ϵ) ≤ R̄} ⊂ EN (6.48)
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where Ω(R̄) denotes the largest sublevel set contained in EN .
If there exists scalars R ∈ (0, R̄] and L satisfying Lemma 6.3.3 such that for all
admissible ϵ and δw

L∥(Ew∆ACx +Ep∆ΛyCCx)ϵ∥+L∥(Ew∆B+Ep∆Λu)κN(ϵ)∥ +L∥EwEδw∥ ≤ (1 − γ)R
(6.49)

for all ϵ ∈ Ω(R̄), then

(i) the set Ω(R) ≜ { ϵ | V 0
N (ϵ) ≤ R} ⊂ Ω(R̄) is positively invariant for the uncertain

velocity dynamics (6.42).

(ii) the set Ω(R̄) is also positively invariant for (6.42). Therefore, the states ϵ remains
in Ω(R̄) for all time, and enter and remain within the set Ω(R) after some finite
time.

(iii) the actual inputs and outputs (u, y) of the uncertain system (6.43) converge to
a neighbourhood of the optimal equilibrium z̄∗ for the steady-state optimization
problem (6.2).

Proof. (i) Consider some ϵ ∈ Ω(R), then by Lemma 6.3.2, V 0
N (ϵ+) ≤ γV 0

N (ϵ) ≤ γR and
by Lipschitz continuity,

V 0
N(ϵd+) − V 0

N(ϵ+) ≤ L∥ϵd+ − ϵ+∥. (6.50)

But the optimal one step ahead prediction is

ϵ+ = Âϵ+ Bv, (6.51)

and the actual successor state is

ϵd+ = Âϵd + Bv

= Âϵ+ Bv + d.
(6.52)

Therefore, ∥ϵd+ − ϵ+∥ = ∥d∥ and the bound (6.50) becomes

V 0
N(ϵd+) − V 0

N(ϵ+) ≤ L∥d∥ (6.53)

which simplifies to
V 0

N(ϵd+) ≤ γR + L∥d∥. (6.54)
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If there exist some R ∈ (0, R̄] such that

L∥d∥ ≤ (1 − γ)R (6.55)

then
V 0

N(ϵd+) ≤ γR + (1 − γ)R ≤ R, (6.56)

which implies that ϵd+ ∈ Ω(R) and therefore the value function V 0
N(·) is an ISS

Lyapunov function for the uncertain velocity dynamics (6.42); We obtain the bound
(6.49) by substituting (6.45) in (6.55) and applying the triangle inequality.
(ii) Consider some ϵ(0) ∈ Ω(R̄) \ Ω(R). Using the ISS property of the value function
and assuming the existence of ρ ∈ (γ, 1], then

V 0
N(ϵ+) ≤ γV 0

N(ϵ) + (ρ− γ)V 0
N(ϵ) ≤ ρV 0

N(ϵ). (6.57)

Consequently,
V 0

N(ϵ(k)) ≤ ρkR̄. (6.58)

Hence V 0
N(ϵ(k)) ≤ R after some finite k′, implying ϵ(k′) ∈ Ω(R).

(iii) Finally, if each ϵ(k) → Ω(R), then (δx(k), e(k− 1)) converge to, and remain within
a neighbourhood of the origin, and as a result (u(k), y(k)) converge to and remain
within a neighbourhood of the optimal steady-state set-point z̄∗ as defined by the
steady-state optimization problem (6.2).

Discussions

The above result establishes the convergence of the uncertain system (6.43) to the
optimal solution of the steady-state optimization problem (6.2), when in closed-loop
with the nominal FOMPC law u(k) = u(k−1)+δu(k), and when the model uncertainty
and disturbances satisfy the stated conditions. Although theoretically insightful, the
condition (6.49) is somewhat abstract and may be difficult to compute in practice due
to its dependence on uncertain parameters such as ∆A, ∆B, ∆Λy and ∆Λu. Also even
if it was possible to compute the bound in (6.49), it may only be satsified for a very
limited value of the uncertainty hence a very conservative condition. However, the
condition (6.49) can in most practical circumstances be used to derive intuition on how
best to tune the FOMPC to maximize its inherent robustness. From (6.49), making
the left hand side (LHS) smaller than the right hand side (RHS) by
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• ensuring the model uncertainty and additive disturbances are sufficiently small,
or

• the decay constant γ are sufficiently small (i.e., stronger regulatory action is
required from the FOMPC controller)

can improve the robust stability of the FOMPC algorithm. This can be achieved via a
higher penalty on the steady-state optimality error and smaller penalty on the input
deviation.

If the model uncertainty is exclusive to the coefficient matrix A (i.e ∆B = 0),
the additive disturbance is constant (i.e. δw = 0) and the system has the robust
steady-state gain property defined in Definition 3 (i.e ∆Λy = 0, ∆Λu = 0), then the
condition in Theorem 6.3.4 can be simplified as given by the corollary below.

Corollary 6.3.4.1. If the system (6.43) is uncertain only in A, the additive disturbance
is piecewise constant and the robust steady-state gain property (see Definition 3 )
is satisfied, then the robust stability guarantee of Theorem 6.3.4 holds provided the
uncertainty in A i.e ∆A satisfies the following bound:

L∥Ew∆ACxϵ∥ ≤ (1 − γ)R√
R/c1

(6.59)

which simplifies to

∥∆A∥ ≤ 1√
R/c1

(
(1 − γ)R

L∥Ew∥∥Cx∥

)
(6.60)

if Ew and Cx are square matrices of equal dimension as ∆A.

Proof. With no uncertainty in B, a robust steady-state gain property and piecewise
constant disturbances,

∆B = 0, ∆Λy = 0, ∆Λu = 0, and δw = 0 (6.61)

and the condition (6.49) simplifies to

L∥Ew∆ACxϵ∥ ≤ (1 − γ)R. (6.62)

But
∥Ew∆ACxϵ∥ ≤ ∥Ew∆ACx∥∥ϵ∥ (6.63)
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and therefore (6.62) reduces to

L∥Ew∆ACx∥∥ϵ∥ ≤ (1 − γ)R. (6.64)

According to Theorem 6.3.4, ϵ ∈ Ω(R) and the lower bound of V 0
N(ϵ) implies

c1∥ϵ∥2 ≤ R =⇒ ∥ϵ∥2 ≤ R

c1
, ∴ ∥ϵ∥ ≤

√
R

c1
(6.65)

and therefore (6.62) reduces to

L∥Ew∆ACx∥ ≤ (1 − γ)R√
R/c1

. (6.66)

However if Ew and Cx are square matrices, then by the sub-multiplicative property of
matrix norms for square matrices [83] i.e.,

∥XY ∥ ≤ ∥X∥∥Y ∥ (6.67)

we can rewrite (6.66) as (6.60) which concludes the proof.

Also, in the absence of model uncertainty i.e. (∆B = 0, ∆A = 0, ∆Λy = 0, ∆Λu =
0), the condition in Theorem 6.3.4 can be further simplified as given by the following
corollary.

Corollary 6.3.4.2. If the system (6.43) has no model uncertainty but the additive
disturbance is not piecewise constant, then the robust stability guarantee of Theorem
6.3.4 holds provided the change in the additive disturbance between consecutive sample
times (i.e., δw) satisfies the following bound:

∥δw∥ ≤ (1 − γ)R
L∥EwE∥

. (6.68)

Proof. The result is obtained by substituting ∆B = 0, ∆A = 0, ∆Λy = 0, ∆Λu = 0 in
the inequality (6.49) and simplifying the resulting expression.

6.4 Numerical examples

In this section, we demonstrate the regulation and feedback-optimizing capabilities of
the proposed velocity model-based FOMPC regulator. We present two examples of
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feedback-optimizing model predictive control using numerical simulation studies of the
proposed algorithm. In the first example, we utilize a simple system to illustrate key
design elements of the FOMPC algorithm. We then present in the second example, an
application of FOMPC to a more complicated multivariable system.

6.4.1 Example 1: 2nd order system

We consider the continuous-time open-loop unstable system :

ẋ(t) =
−1 3

1 4

x(t) +
1
4

u(t) + w(t), (6.69a)

y(t) =
[
1 5

]
x(t). (6.69b)

The system is stabilizable and observable, meeting Assumption 6. The disturbance
w(t) is unknown but slowly varying as

w(t) =



[
−0.1 0.3

]⊤
0 ≤ t < 20,[

0.2 −0.3
]⊤

20 ≤ t < 40,[
0.1 0

]⊤
t ≥ 40.

(6.70)

The following inequality constraints are present on the input, output and disturbances;

U := {u : −20 ≤ u ≤ 20} , Y := {y : −10 ≤ y ≤ 10} ,

W := {w : −2 × I2 ≤ w ≤ 2 × I2} .
(6.71)

The objective function for the steady-state optimization problem is

Φ(z) = 1
2

u
y

T Quu Quy

Qyu Qyy

u
y

+
Ru

Ry

⊤ u
y

 (6.72)

where

Quu = 10 , Qyy = 5 , Quy = Q⊤
yu = 5, Ru = 1, Ry = 1.

For design and implementation of the discrete-time FOMPC, the system is discretized
using zero-order hold with a sampling interval of 0.1 seconds. The input–output DC
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gain matrix of the discrete-time system is,

Gu = −4.7143. (6.73)

The velocity state for the controller is

ϵ(k) =
 δx(k)
e(k − 1)

 =
 x(k) − x(k − 1)
Λyy(k − 1) + Λuu(k − 1) + r

 (6.74)

where Λy, Λu and r follow from the choices of Φ parameters as

Λy = 3.9394 Λu = 2.8788, r = 0.7879.

The matrix

S =


−0.0790 0.3539 0.1626
0.1180 0.5109 0.4998
3.9394 19.6970 2.8788


has full rank satisfying Assumption 6.
The transient performance criterion is chosen with Qe = 500 × I2 and Rδ = 1 × I2;
these values satisfy the hypothesis of Proposition 3. A prediction horizon of N = 5 is
used. From the design parameters above, the FOMPC has the following parameters:

A =


0.9210 0.3539 0
0.1180 1.5109 0
3.9394 19.6970 1.00

 , B =


0.1626
0.4998
2.8788

 ,
C =

[
3.9394 19.6970 1.00

]
, D = 2.8788,

R = 419.3710, N =


0.5670
2.8352
0.1439

× 103,

Q =


0.0776 0.3880 0.0197
0.3880 1.9399 0.0985
0.0197 0.0985 0.005

× 104, and

K =
[
0.9467 4.7837 0.1634

]
.

(6.75)
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From the inequality X × U given by,

X × U :=


x
u

 :


1 5 0

−1 −5 0
0 0 1
0 0 −1


x
u

 ≤


10
10
20
20




(6.76)

we compute the constraint G according to (6.12) as:

G :=


ϵ :


0.8236 3.3270 0.3004

−0.8236 −3.3270 −0.3004
0.2414 2.2893 −0.0637

−0.2414 −2.2893 0.0637

 ϵ ≤


9.7650
9.2916
19.3043
19.4047




. (6.77)

From the set G, we compute the maximum output admissible invariant set for the
velocity dynamics as:

Gf :=


ϵ :



0.8236 3.3270 0.3004
−0.8236 −3.3270 −0.3004
0.2414 2.2893 −0.0637

−0.2414 −2.2893 0.0637
−0.1853 −1.4963 −0.1345
0.1853 1.4963 0.1345


ϵ ≤



9.7650
9.2916
19.3043
19.4047
9.7650
9.2916




. (6.78)

Figure 6.1 shows the result of applying the FOMPC law designed above to the
continuous-time system (6.69) while the disturbances change according to (6.70).
We can see that the FOMPC tracks the optimal solution z∗(w̄) to the steady-state
optimization with the cost function (6.72) with a very good transient performance
(i.e. small overshoot and fast convergence). Stability is also maintained and the
inequality constraints are satisfied at all times. A benefit of the FOMPC over standard
feed-forward optimization/control is its inherent robustness to model uncertainty which
was theoretically shown in Theorem 6.3.4. In simulation, we obtained better robust
stability performance under mild model perturbations whenever Qe was significantly
larger than Rδ confirming the intuition derived from Theorem 6.3.4.



6.4 Numerical examples 167

Fig. 6.1 FOMPC: outputs y and input u plotted as a function of time. The actual optimum
(u∗, y∗) is shown using dashed lines.

6.4.2 Example 2: 4th order system

We consider here a modified (two-input) version of the continuous-time open-loop
unstable system in [128]:

ẋ(t) =


−1 −4 −1 3
1 −4 −1 −3

−1 4 −1 −9
0 0 0 1

x(t) +


0 1
1 4
4 2
1 0

u(t) + w(t), (6.79a)

y(t) =
1 −1 0 −4
1 0 2 0

x(t). (6.79b)

The system is reachable and observable. The disturbance w(t) is unknown but slowly
varying as

w(t) =



[
−1 3 1 2

]⊤
0 ≤ t < 5,[

2 3 0 1.5
]⊤

5 ≤ t < 10,[
1 0 0 5

]⊤
t ≥ 10.

(6.80)
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For design and implementation of the discrete-time controller, the system is discretized
using zero-order hold. The following inequality constraints are present on the input,
output and disturbances;

U :=
u :

−12
−15

 ≤ u ≤

12
15

 , Y :=
y :

 −3
−15

 ≤ y ≤

 3
15

 ,
W :=

{
w :

[
−1.5 −3.5 −1.5 −2.5

]⊤
≤ w ≤

[
1.5 3.5 1.5 2.5

]⊤}
.

(6.81)

The objective function for the steady-state optimization problem is

Φ(z) = 1
2

u
y

T Quu Quy

Qyu Qyy

u
y

+
Ru

Ry

⊤ u
y

 (6.82)

where

Quu = 2 × I2, Qyy =
1/2 0

0 1

 , Quy = Q⊤
yu = 12×2

Ru = 12×1, Ry = 5 × 12×1

The input–output DC gain matrix of the discrete-time system is,

Gu =
 2.5 −1.375
13.5 4.5

 . (6.83)

The velocity state for the controller is

ϵk =
 δxk

ek−1

 =
 xk − xk−1

Λyyk−1 + Λuuk−1 + r

 (6.84)

where Λy, Λu and r follow from the choices of Φ parameters as

Λy =
0.1981 −0.3019
0.1300 1.1300

 Λu =
1.3019 0.0943
1.0922 1.1677


r =

4.6981
5.1300

 .
The transient performance criterion is chosen with Qe = 25 × I2 and R = 150 × I2,
satisfying Assumption 8. Figure 4.2 shows the result of applying FOMPC to the system
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Fig. 6.2 FOMPC: outputs y and input u plotted as a function of time. The actual optimum
(u∗, y∗) is shown using dashed lines.

while the disturbances change in the way described. It can be seen that FOMPC
successfully tracks the optimal equilibrium points while maintaining stability and good
transient performance, overcoming the issues of (i) non-existence of stabilizing PI gains
for the static OSS controller presented in [128], and (ii) poor dynamic performance
(large overshoot and slow convergence) and potential high dimensionality of the dynamic
OSS controller proposed in the same work. Moreover, it should be noted that designing
the FOMPC controller for closed-loop stability and optimal steady-state tracking
is significantly easier, and more systematic, than the manual tuning of the PI OSS
controller of [128]; indeed, for the presented example it was not possible to find
stabilizing PI gains for the system under OSS control.

6.4.3 Discussion

The closed-loop performance of the FOMPC algorithm above is determined by the
following tuning parameters: the weighting matrices Qe and Rδ, and the prediction
horizon N . It was observed that larger values of N yielded much improved responses
but resulted in an MPC problem that took longer to solve. This is because larger
values of N ensures the model prediction represents a significant portion of the system
dynamics but ultimately lead to bigger online optimization problems. A prediction
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horizon of N = 5 was found to be a good compromise between performance and
computational complexity for the simulation examples presented above.

The weights Qe and Rδ are penalties placed on the magnitude of the steady-state
tracking error and the size of the control input deviation respectively. From the
simulations, we observed that larger values of Qe relative to Rδ produced input/output
responses that were under-damped with faster settling times and aggressive control
moves. This often resulted in the possibility of overshoots and oscillations in the
closed-loop response.
In the same vein, larger values of Rδ relative to Qe resulted in very cautious and
slow control moves producing input/output responses that were highly damped with
longer settling times and fewer oscillations. A good compromise between an aggressive
under-damped response and a slower highly damped response was achieved for the
simulation results above by careful selection of Qe and Rδ.

In order to obtain a cost function that is positive definite and as a result guarantee
closed-loop stability of the FOMPC algorithm, the weights Qe and Rδ had to satisfy
the condition in Proposition 3. It may be useful to note that for some steady-state
economic cost functions, finding values of Qe that meet the conditions of Proposition
3 can be non-trivial. It would be interesting to investigate more systematic ways of
tuning the FOMPC controller such that the conditions of Proposition 3 are much easier
to satisfy. For the simulation results in this thesis, a laborious trial and error approach
has been adopted.

Finally, uncertainties in the dynamic model of the linear system was observed to
degrade the stability and performance of the FOMPC controller. However, for small
values of model uncertainty, the inherent robustness of the FOMPC was adequate to
handle this uncertainty and still guarantee closed-loop stability and decent dynamic
performance. A detailed analysis of the impact of model uncertainty on the nominal
FOMPC controller will be discussed in the next chapter.

6.5 Conclusion

A model predictive control algorithm that achieves asymptotic convergence to an
unknown, optimal steady-state equilibrium while minimizing a transient performance
criterion and respecting the system inequality constraints in the transients between
optimal steady-states has been presented. The approach uses the residual of the KKT
optimality condition for the steady-state optimization as a tracking error, and employs
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this as a state in a velocity-model form of MPC for tracking. The proposed controller
is only moderately more complex than a conventional linear tracking MPC controller,
but avoids the the need to explicitly solve the steady-state optimization problem. The
results presented in this Chapter are only valid for systems with known dynamics and
unknown additive disturbances. In the next Chapter, we will relax this assumption by
considering model uncertainty in the FOMPC design. Also, future work will focus on
generalizations such as relaxing the assumptions of convexity in the cost, linearity in the
dynamics, and considering the important problem of tracking unreachable set-points.

6.6 Appendix A: Proof of Equation (6.11)

From the system dynamics,

x(k) = Ax(k − 1) +Bu(k − 1) + Ew(k − 1) (6.85)

we obtain
δx(k) = (A− Inx)x(k − 1) +Bu(k − 1) + Ew(k − 1). (6.86)

But ,
e(k − 1) = ΛyCx(k − 1) + Λuu(k − 1) + r, (6.87)

∴

 δx(k)
e(k − 1)

 = S

x(k − 1)
u(k − 1)

+
 E

0ny×nw

w(k − 1) +
0nx×ny

Iny

 r. (6.88)

Making
x(k − 1)
u(k − 1)

 the subject of the above equation yields,

x(k − 1)
u(k − 1)

 = S−1
( Inx 0nx×ny 0nx×ny

0ny×nx Iny −Iny

 ϵ(k)
r

−

 E

0ny×nw

w(k − 1)
)
. (6.89)

Also from the system dynamics, we can derive, x(k)
u(k − 1)

 =
 A B

0nu×nx Inu

x(k − 1)
u(k − 1)

+
 E

0nu×nw

w(k − 1). (6.90)
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∴

 x(k)
u(k − 1)

 =
 A B

0nu×nx Inu

S−1

 Inx 0nx×ny 0nx×ny

0ny×nx Iny −Iny

ϵ(k)
r


+
( E

0nu×nx

−

 A B

0nu×nx Inu

S−1

 E

0ny×nx

)w(k − 1).
(6.91)

We can therefore compactly express (6.91) as the equation (6.11).



Chapter 7

Robust Feedback Optimizing Model
Predictive Control

Being a model based solution, the nominal FOMPC design presented previously is
adversely affected by model uncertainty. The inherent robustness of nominal FOMPC
can only handle small perturbation to the nominal model. To deal with polytopic
model uncertainty, we present in this chapter two robust FOMPC designs. The first
approach is based on the computationally efficient but conservative tube-based MPC
while the second approach adopts the more computationally complex min-max MPC
formulation.

This chapter is organized as follows. Section 7.1 is the introduction. Section 7.2
describes the tube-based robust FOMPC design. Section 7.3 describes the min-max
robust FOMPC design. Section 7.4 presents illustrative examples. Section 7.5 is the
conclusion and Section 7.6 contains the appendix.

7.1 Introduction

Although nominal FOMPC is inherently robust against uncertainty (as shown in
Chapter 6), it cannot explicitly deal with model uncertainty. To explicitly handle
model uncertainty, there exists two broad classes of robust MPC algorithms. One is
based on a min-max formulation of the optimal control problem solved to generate
the MPC laws [116]. The other adopts the so-called tube-based MPC design where
the effect of the disturbance over the prediction horizon is handled a priori using a
robust state feedback control law and disturbance invariant sets [28, 154]. Although
the tube-based approach is simpler with a computational complexity comparable to
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nominal FOMPC, it may yield conservative performance and also the computation of
a minimal RPI set for the uncertainty can be non-trivial and sometimes impossible.
On the other hand, min-max robust MPC although computationally less efficient can
guarantee convergence to the actual steady-state optimum for quadratically stabilizable
systems without relying on the explicit computation of disturbance invariant sets.

7.2 Robust FOMPC Design: A tube-based approach

To obtain FOMPC controllers that are guaranteed stable and feasible for arbitrary but
known uncertainty bounds, a tube-based approach to FOMPC will be developed in this
section. Although tube-based FOMPC can result in more conservative performance
compared to a nominal one, it allows feasibility and convergence guarantees to be
obtained for arbitrary bounds on the uncertainty. We develop the tube-based robust
FOMPC algorithm based on a velocity model of the linear system with polytopic model
uncertainty and constant but bounded additive disturbances—i.e., w(k) ∈ W, and
w(k) = w(k − 1), where W is a known bounded set. Convergence of the closed-loop
system to an invariant set centred around the optimal steady-state set-points z̄∗ is
guaranteed by use of a suitably defined auxiliary control law, terminal and disturbance
invariant sets.

Consider the uncertain linear system (5.1) here recalled:

x(k + 1) = A(δ)x(k) +B(δ)u(k) + Ew(k), (7.1a)
y(k) = Cx(k), (7.1b)

δ ∈ ∆l, w(k) ∈ W. (7.1c)

where all parameters and quantities retain their previous interpretation. Also, for all
δ ∈ ∆l, the following inequality constraints must be enforced,

x ∈ X, y ∈ Y, and u ∈ U (7.2)

where X := {x : y ∈ Y} ⊆ Rn.
Due to the properties of the unit simplex set ∆l, the uncertain coefficients are contained
in the polytope Ω i.e., (

A(δ), B(δ)
)

∈ Ω (7.3)
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where Ω is defined as

Ω := Co

((
A1, B1

)
, . . . ,

(
Al, Bl

))
=

l∑
i=1

αi

(
Ai, Bi

)
. (7.4)

Here Co refers to the convex hull.
For the uncertain velocity dynamics (7.1), let (A,B) be nominal values of the

uncertain coefficients
(
A(δ), B(δ)

)
such that:

∆A = A(δ) − A, and ∆B = B(δ) −B. (7.5)

We can therefore rewrite (7.1) as the LTI system with the lumped additive disturbance
w̃:

x(k + 1) = Ax(k) +Bu(k) + w̃(k) (7.6)

where
w̃(k) = ∆Ax(k) + ∆Bu(k) + Ew(k) and w̃(k) ∈ W̃. (7.7)

The lumped disturbance set, W̃ is defined as

W̃ :=
{
w̃ : (A(δ), B(δ)) ∈ Ω, (x, u) ∈ X × U, w ∈ W

}
(7.8)

and explicitly computed as

W̃ = Co

( ⋃
i=1,...,l

{
(Ai − A)X ⊕ (Bi −B)U ⊕ EW

})
. (7.9)

The uncertainty in (A(δ), B(δ)) is propagated to the coefficient matrices of the steady-
state optimality error (6.6) resulting in the uncertain error equation

e(k) = Λy(δ)Cx(k) + Λu(δ)u(k) + r (7.10)

where (
Λy(δ)C,Λu(δ)

)
∈ ΩΛ, (7.11)

and
ΩΛ := Co

((
Λy1C,Λu1

)
, . . . ,

(
ΛylC,Λul

))
=

l∑
i=1

αi

(
ΛyiC,Λui

)
. (7.12)
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Let (Λy,Λu) be nominal values of the uncertain coefficients (Λy(δ),Λu(δ)), then similar
to the state equation, we can express (7.10) as the disturbed error equation:

e(k) = ΛyCx(k) + Λuu(k) + r + p̃(k), (7.13)

where

p̃(k) = ∆ΛyCx(k) + ∆Λuu(k),
∆Λy = Λy(δ) − Λy, ∆Λu = Λu(δ) − Λu, p̃(k) ∈ P̃.

(7.14)

The set P̃ is defined as

P̃ :=
{
p̃ : (Λy(δ)C,Λu(δ)) ∈ ΩΛ, (x, u) ∈ X × U

}
, (7.15)

and explicitly computed as

P̃ = Co

( ⋃
i=1,...,l

{
(Λyi − Λy)CX ⊕ (Λui − Λu)U

})
. (7.16)

Given (7.6) and (7.13), we can rewrite the uncertain velocity dynamics (5.13) as

ϵ(k + 1) = Aϵ(k) + Bδu(k) + d(k), (7.17a)
e(k) = Cϵ(k) + Dδu(k) + f(k) (7.17b)

where

d(k) =
Inx×nw

0ny×nw

 δw̃(k) +
0nx×ny

Iny×ny

 δp̃(k), f(k) = δp̃(k) (7.18)

and

ϵ(k) :=
 δx(k)
e(k − 1)

 with

δx(k) := x(k) − x(k − 1),
δu(k) := u(k) − u(k − 1),
δw̃(k) := w̃(k) − w̃(k − 1),
δp̃(k) := p̃(k) − p̃(k − 1),

(7.19)
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with the coefficients defined thus:

A =
 A 0n×p

ΛyC Ip

 , B =
B
Λu

 , (7.20a)

C =
[
ΛyC Ip

]
, D = Λu. (7.20b)

The disturbances d(k) and f(k) belong to the following sets:

d(k) ∈ D :=
Inx×nw

0ny×nw

 δW̃ +
0nx×ny

Iny×ny

 δP̃, and f(k) ∈ H := δP̃. (7.21)

Remark 39. The sets δW̃ and δP̃ can be computed from the sets W̃ and P̃ as [28]:

δW̃ = W̃ ⊕ (−W̃), and δP̃ = P̃ ⊕ (−P̃). (7.22)

To facilitate the control design, we make the following assumptions on the sets D
and H.

Assumption 14 (Properties of uncertainty sets). The sets D and H are both bounded
and contain the origin in their interior.

Tube MPC design

To deal with the non-zero but bounded disturbances d(k) and f(k) in the velocity
dynamics (7.17), we adopt an MPC approach based on tubes. The main feature of the
tube based MPC approach as originally proposed in [154] is that the actual control
action (δu(k)) is composed of a nominal control (δū(k)) derived from an MPC problem
for the following nominal (i.e., disturbance free) velocity dynamics,

ϵ̄(k + 1) = Aϵ̄(k) + Bδū(k), (7.23a)
ē(k) = Cϵ̄(k) + Dδū(k) (7.23b)

and a linear feedback control (K), designed to reject the error between the actual
and nominal velocity state predictions i.e., (ϵ(k) − ϵ̄(k)), thereby maintaining the
trajectory of the actual velocity dynamics (7.17) within a tube centred around the
nominal predictions of (7.23), despite the disturbances.
To simplify the presentation in the following paragraphs, the actual and nominal
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velocity dynamics will be expressed in terms of the extended state variable
ϵ(k)
r

,

respectively as

ϵ(k + 1)
r

 = Ã

ϵ(k)
r

+ B̃δu(k) + Ẽd(k), (7.24)

and ϵ̄(k + 1)
r

 = Ã

ϵ̄(k)
r

+ B̃δū(k) (7.25)

where

Ã :=
 A 0(nx+ny)×ny

0ny×(nx+ny) Iny

 , B̃ :=
 B
0ny×nu

 , Ẽ :=
I(nx+ny)×nw

0ny×nw

 . (7.26)

Let

ε(k) =
ϵ(k)
r

−

ϵ̄(k)
r

 , (7.27)

and according to [154] assume that, for all k, for the actual extended velocity dynamics
(7.24) the following control law is considered

δu(k) = δū(k) − K̃ε(k) (7.28)

where the gain K̃ is defined a priori such that F̃ = Ã − B̃K̃ is Schur.

Remark 40. To obtain K̃ such that F̃ is Schur, we can define K̃ as

K̃ =
[
K 0nu×ny

]
(7.29)

where K is the FOLQC gain that stabilizes the entire family of velocity dynamics
obtained from the parameter sets Ω and ΩΛ (refer to the robust FOLQC laws in Chapter
5).

From (7.24), (7.25) and (7.28), it directly follows that

ε(k + 1) = F̃ε(k) + Ẽd(k). (7.30)
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If F̃ is Schur and the set D is bounded, then there exists some set Ẽ such that ε(k) ∈ Ẽ
for all k ≥ 0. The set Ẽ is therefore a robust positive invariant (RPI) set for the error
dynamics (7.30) i.e., for any ε(k) ∈ Ẽ, ε(k + 1) ∈ Ẽ for all d(k) ∈ D.
Because (7.30) is independent of the nominal control input, δū(k), the set Ẽ can
be computed offline and used to tighten the constraints in the nominal (constant
disturbance) MPC problem to implicitly account for the disturbances omitted from
the predictions of the nominal dynamics (7.23). In view of [179], one may be able
to compute an invariant outer-approximation to the minimal RPI set Ẽ for the error
dynamics (7.30) defined in (7.31).

Ẽ =
∞⊕

i=0
F̃ iẼD. (7.31)

An algorithm for computing this invariant outer approximation to (7.31) can be devised
in line with [179, 212].

The maximal output admissible set (MOAS) with tightened constraints

In the following, the nominal velocity dynamics (7.23) will be used to design an MPC
algorithm to track the unknown optimum of the steady-state cost (7) with guarantees
of stability and recursive feasibility for the inequality constraints U and Y. Towards
this goal, we will adopt

δū(k) = −Kϵ̄(k) (7.32)

as a terminal control law to guarantee closed-loop stability of the nominal velocity
dynamics (7.23) in line with [181]. To achieve recursive feasibility of the inequality
constraints for any d(k) ∈ D, the constraints on u and y must be reformulated in terms
of tightened versions of the constraints on the MPC optimization variables δū and ϵ̄.
To this end, similarly to [28], we write the relation between these variables as (see
section 7.6 for details)

 x(k)
u(k − 1)

 = C̃

ϵ(k)
r

+ D̃q(k − 1) (7.33)
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where q(k) =
w̃(k)
p̃(k)

 ∈ (W̃ × P̃),

C̃ =
 A B

0nu×nx Inu

S−1

 Inx 0nx×ny 0nx×ny

0ny×nx Iny −Iny

 ,
D̃w̃ =

Inx×nw

0nu×nx

−

 A B

0nu×nx Inu

S−1

Inx×nw

0ny×nx

 ,
D̃p̃ = −

 A B

0nu×nx Inu

S−1

0nx×ny

Iny

 , and D̃ =
[
D̃w̃ D̃p̃

]
.

(7.34)

Let Ḡ be the set which enforces the constraints (u(k), y(k)) ∈ (U × Y) on the nominal
velocity state ϵ̄(k) for all admissible disturbances, d(k) ∈ D, i.e.,

Ḡ :=
{
ϵ̄ : (u, y) ∈ (U × Y), ∀d(k) ∈ D

}
. (7.35)

Taking the difference between (7.33) and its nominal version i.e.,
 x̄(k)
ū(k − 1)

 = C̃

ϵ̄(k)
r

 (7.36)

we obtain the following relation, x(k)
u(k − 1)

 = C̃

ϵ̄(k)
r̄

+ C̃ε(k) + D̃q(k − 1). (7.37)

From the invariance of Ẽ, ε(k) ∈ Ẽ for all k ≥ 0. Also, q(k − 1) ∈ (W̃ × P̃) and x(k)
u(k − 1)

 ∈ (X×U), therefore the following set relationship is obtainable from (7.37):

C̃

ϵ̄
r

 ∈ (X × U) ⊖ D̃(W̃ × P̃) ⊖ C̃Ẽ. (7.38)

The set Ḡ can therefore be defined in terms of ϵ̄ as,

Ḡ :=
ϵ̄ : C̃

ϵ̄
r

 ∈ (X × U) ⊖ D̃(W̃ × P̃) ⊖ C̃Ẽ

 . (7.39)
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To ensure that the system inputs and outputs u(k) and y(k), respectively, lie in the
sets U and Y, beyond the end of the prediction horizon, N , we need to compute a
terminal invariant set, Ḡf , where ϵ̄(k + N) must lie in order to guarantee that the
constraints (u(k +N), y(k +N)) ∈ (U × Y) are verified for all k.
That is, for any ϵ̄(k + N) ∈ Ḡf , it should be that F ϵ̄(k + N) ∈ Ḡf ⊆ Ḡ where
F = A − BK. Assume the pair (A,B) is reachable and the set Ḡ is a closed polytope
(both true if Assumption 6 are satisfied), then the set Ḡf can be computed as the
(projection of the) maximal constraint admissible set [114] for the nominal velocity
dynamics (7.23a) under the auxiliary control law, δū(k) = −Kϵ̄(k) and is constructed
such that:

ϵ̄ ∈ Ḡf =⇒ ϵ̄ ∈ Ḡ and F ϵ̄ ∈ Ḡf . (7.40)

Optimal control problem

Given the velocity dynamics (7.23), the sets Ḡ and Ḡf , and the current velocity state
ϵ(k) obtained from the most recent input-output and state measurements,

ϵ(k) =
 δx(k)
e(k − 1)

 =
 x(k) − x(k − 1)
Λyy(k − 1) + Λuu(k − 1) + r

 , (7.41)

the feedback optimizing model predictive control problem under bounded disturbance
is defined at each time instant k as:

min
ϵ̄(k),δū(k)

VN(ϵ̄(k), δū(k)) = Vf (ϵ̄(k +N)) +
N−1∑
i=0

l(ē(k + i), δū(k + i)) (7.42)

subject to:
∀i ∈ I[0,N−1],

ϵ̄(k + i+ 1) = Aϵ̄(k + i) + Bδū(k + i), (7.43a)
ē(k + i) = Cϵ̄(k + i) + Dδū(k + i), (7.43b)

ϵ(k) − ϵ̄(k) ∈ E, (7.43c)
ϵ̄(k + i) ∈ Ḡ, (7.43d)
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and,

ϵ̄(k +N) ∈ Ḡf . (7.44a)

In this problem, the decision variable is the sequence of nominal control increments
over the N -step prediction horizon:

δū(k) :=
{
δū(k), δū(k + 1) . . . , δū(k +N − 1)

}
(7.45)

and the nominal velocity state at each time instant ϵ̄(k). These sequences are chosen
to minimize the objective VN(ϵ̄(k), δū(k)), which is composed of a stage cost

l(ē(k), δū(k)) := 1
2
(
ē(k)⊤Qeē(k) + δū(k)⊤Rδδū(k)

)
(7.46)

and a terminal cost

Vf (ϵ̄(k +N)) := 1
2 ϵ̄(k +N)⊤P ϵ̄(k +N). (7.47)

This cost aims to capture the transient performance objective for the system: the
term ē(k)⊤Qeē(k) penalizes the distance of the tracking error from steady-state opti-
mality and therefore determines the duration of the transient phase, while the term
δū(k)⊤Rδδū(k) penalizes the incremental control effort. It is simple to verify that
Assumption 8 ensures positive definiteness of this cost. The terminal cost is employed,
in the usual way, towards guaranteeing stability where the matrix P satisfies (6.20).
Finally, the set E is a RPI set on ϵ− ϵ̄ derived from the set Ẽ as:

E :=
{
ϵ− ϵ̄ : ε ∈ Ẽ

}
. (7.48)

The solution
(
δū∗(k), ϵ̄∗(k)

)
of the optimal control problem presented above, followed

by the application of the first control, δū∗(k) in the optimized sequence, yields the
control law

δu(k) = δū∗(k) − K
(
ϵ(k) − ϵ̄∗(k)

)
. (7.49)
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Main result

The following result summarizes the stability and recursive feasibility of the FOMPC
algorithm, and follows directly from well established results on conventional linear
MPC [181].

Theorem 7.2.1 (Robust Stability and feasibility). Let the assumptions 6, 14 and
7 be verified, the design parameters Qe, Rδ,P ,K,E, Ḡ and Ḡf chosen as stipulated
above, and the uncertainties of the type specified in (7.1c). Then if at time k = 0, a
feasible solution to the optimization problem (7.42)-(7.44a) exists, the resulting MPC
control law asymptotically steers the nominal error, ē(k) in (7.23b) (not the actual
error, (7.13)) to zero, and the actual inputs and outputs (u(k), y(k)) are driven to an
invariant neighbourhood of the optimal steady-state z∗(w̄).
Moreover, δū(k) → 0 as k → ∞, and the constraints (u(k), y(k)) ∈ U × Y are fulfilled
for all k > 0.

Proof. To prove the theorem, we follow the standard robust tube-based MPC arguments
in [154].
Feasibility: Consider that, at time k, a solution to the OCP (minimize (7.42) subject
to (7.43) and (7.44)) is (ϵ̄∗(k), δū∗(k)). Then a feasible but not necessarily optimal
solution to the OCP at time k + 1 would be (ϵ̄(k + 1), δū(k + 1)) where

δū(k + 1) :=
{
δū∗(k + 1), . . . , δū∗(k +N − 1), δū(k +N)

}
(7.50)

with δū(k +N) = −Kϵ̄(k +N) and
{
δū∗(k + 1), . . . , δū∗(k +N − 1)

}
derived from the

tail of δū∗(k).
Convergence: Consider the above mentioned feasible solution at time k + 1. Following
standard arguments for the proof of the convergence of robust tube-based MPC [154]
we obtain that

VN(ϵ̄(k + 1), δū∗(k + 1)) − VN(ϵ̄(k), δū∗(k)) ≤ −l(ē(k), δū∗(k)). (7.51)

In view of the positive definiteness of VN (·, ·) and of Qe and Rδ, it holds that ϵ̄(k) → 0
and δū(k) → 0 as k → ∞.

This result guarantee that for any feasible initial input/output pair i.e (u(k), y(k)) ∈
U × Y, the FOMPC control law u(k) = u(k − 1) + δū∗(k) − K

(
ϵ(k) − ϵ̄∗(k)

)
steers the

input and output of the real system (7.1) to a neighbourhood of the optimal solution
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of Problem 6, for all w(k) ∈ W and δ ∈ ∆l.
A major challenge with the tube-based robust FOMPC algorithm above is that the
computation of the sets Ḡ and Ẽ are intertwined as they both require the set X × U
i.e to compute Ẽ requires the set D which is defined based on the set W̃ which in
turn depends on the sets X and U. This creates an interdependency problem between
the nominal FOMPC problem solved online and the offline computation of the RPI
set Ẽ, thereby complicating the design of the above FOMPC algorithm. We will not
discuss these complications here (see [95] for details on possible workarounds to this
problem). Furthermore, if the set D is large, the tightened constraint set Ḡ may be too
small thereby limiting the region of attraction of the FOMPC controller resulting in
very conservative performance. This conservatism is reduced in the absence of model
uncertainty as the set D only depends on the additive disturbance bound, W. See the
remark below.

Remark 41. In the absence of model uncertainty, i.e. ∆l = ∅, then

Ω := Co
(
(A1, B1), . . . , (Al, Bl)

)
= (A,B) (7.52)

and
ΩΛ := Co

(
(Λy1C,Λu1), . . . , (ΛylC,Λul)

)
= (ΛyC,Λu) (7.53)

resulting in the following disturbance sets

W̃ = EW and P̃ = ∅. (7.54)

7.3 Robust FOMPC Design : A Min-max Approach

In the the previous section, a robust FOMPC control algorithm based on tube-based
MPC was presented. Although very systematic, this approach has several limitations:

1. It relies on the heavy offline computation of a robust positive invariant (RPI) set,
making it more complicated to implement and limiting its application to systems
of lower dimensions.

2. It can result in very conservative performance if the RPI set is not small. Indeed
lumping parametric uncertainty into an additive disturbance is a conservative
way of dealing with the uncertainty.
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3. It guarantees robust asymptotic convergence to an RPI set with the optimal
steady-state equilibrium as centre. Although for non-persistent uncertainty,
asymptotic convergence to the steady-state optimum is achievable.

We address these issues by formulating a robust FOMPC controller using an LMI
approach. The proposed FOMPC controller minimizes the worst-case performance cost
against the polytopic model uncertainties and under piecewise constant disturbances.
The proposed algorithm also guarantees the recursive feasibility of the input and output
constraints.

7.3.1 Problem formulation

Consider the following discrete-time velocity dynamics for the polytopic uncertain
system (7.1), the steady-state optimization (5.12) and under piecewise constant distur-
bances:

ϵ(k + 1) = A(δ)ϵ(k) + B(δ)δu(k), (7.55a)
e(k) = C(δ)ϵ(k) + D(δ)δu(k), (7.55b)

δ ∈ ∆l. (7.55c)

All variables and parameters retain their previous meaning from Section 5.4.

Assumption 15. The system in (7.55) above is assumed to be quadratically stabilizable
for all δ ∈ ∆l according to Definition 4.

Let the system in (7.1) be subject to the following ellipsoidal constraints on the
inputs and outputs for all k ≥ 0:

(u(k), y(k)) ∈ E :=
{
(u, y) : ∥u(k)∥2 ≤ ū, ∥y(k + 1)∥2 ≤ ȳ

}
. (7.56)

Using the triangle inequality, we can translate the constraints (7.56) above into following
constraints in velocity form:

∥δu(k)∥2 ≤ ū− ∥u(k − 1)∥2, ∀k ≥ 0, (7.57a)
∥CCxϵ(k + 1)∥2 ≤ ȳ − ∥y(k)∥2, ∀k ≥ 0 (7.57b)
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where Cx =
[
Inx 0

]
. Given the velocity dynamics (7.55) and the constraints (7.57),

the robust FOMPC problem is defined for a state ϵ(k) as

min
δu(k+i), i>0

(
J̌(ϵ(k)) = max

δ∈∆l

J∞(ϵ(k))
)

(7.58)

subject to:
∀i ≥ 0,

ϵ(k + i+ 1) = Aϵ(k + i) + Bδu(k + i), (7.59a)
e(k + i) = Cϵ(k + i) + Dδu(k + i), (7.59b)

∥δu(k + i)∥2 ≤ ū− ∥u(k + i− 1)∥2, (7.59c)
∥CCxϵ(k + i+ 1)∥2 ≤ ȳ − ∥y(k + i)∥2. (7.59d)

In this problem, ϵ(k + i) is the predicted velocity state at sample time k + i. The
decision variable is the control action at sample time k + i, δu(k + i). The control
action is chosen to minimize the worst case performance index J̌(ϵ(k)) which is given
by (5.21), subject to the relevant constraints.
Similarly to the robust FOLQC, in order to obtain a more computationally tractable
problem, we instead minimize the upper bound on the worst-case cost J̌(ϵ(k)). This
upper bound has been derived in Chapter 5 as

J̌(ϵ(k)) ≤ V (ϵ(k)) (7.60)

where
V (ϵ(k)) = 1

2ϵ(k)⊤Pϵ(k), P ≻ 0 (7.61)

and satisfies the inequality

V (ϵ(k + 1)) − V (ϵ(k)) ≤ −1
2
(
e(k)⊤Qee(k) + δu(k)⊤Rδδu(k)

)
. (7.62)

The robust FOMPC problem ((7.58)−(7.59)) can therefore be recast as the optimization
problem

min
δu(k+i), i>0

V (ϵ(k)) (7.63)
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subject to:
∀i ≥ 0,

V (ϵ(k + i+ 1)) − V (ϵ(k + i)) ≤ −1
2
(
e(k + i)⊤Qee(k + i) + δu(k + i)⊤Rδδu(k + i)

)
,

(7.64a)

∥δu(k + i)∥2 ≤ ū− ∥u(k + i− 1)∥2,

(7.64b)

∥CCxϵ(k + i+ 1)∥2 ≤ ȳ − ∥y(k + i)∥2.

(7.64c)

Although the robust FOMPC problem has been recast in a simpler and more tractable
form, the optimization problem ((7.63)-(7.64)) is still not computationally tractable as
the decision variable δu(k + i), i > 0 is infinite dimensional. To address this challenge,
similar to [116], we parametrize the input δu(k+ i) in terms of the velocity state ϵ(k+ i)
via the feedback control law:

δu(k + i) = −Kϵ(k + i). (7.65)

Although this control parametrization makes the FOMPC control problem tractable,
it introduces some degree of conservatism. Efforts to reduce this conservatism will not
be made in this work but deferred to future research. We now present our result for
solving the robust FOMPC problem above with the following theorem.

Theorem 7.3.1 (Robust FOMPC using LMI). Let the current velocity state, ϵ(k + i),
the previous control input u(k+ i−1) and the current output y(k+ i) of the system (7.1)
be available at sample time k + i. Then, the receding horizon state feedback matrix K
which at sample time k+ i is the solution to the robust FOMPC problem ( (7.63)-(7.64))
with the control law (7.65) is given by

K = WY−1

where Y ≻ 0 and W are the solutions (if they exists) to the following semi-definite
program:

min
γ,W,0≺Y=Y⊤

γ (7.66)
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subject to :

 1 ϵ(k + i)⊤

ϵ(k + i) Y

 ≻ 0,

(7.67a)
−Y

(
A(δ)Y − B(δ)W

)⊤ (
C(δ)Y − D(δ)W

)⊤
W⊤

A(δ)Y − B(δ)W −Y 0 0
C(δ)Y − D(δ)W 0 −γQ−1

e 0
W 0 0 −γR−1

δ

 ⪯ 0, ∀δ ∈ ∆l,

(7.67b)
(
ū− ∥u(k + i− 1)∥2

)2
Inu W

W⊤ Y

 ≻ 0,

(7.67c) Y
(
A(δ)Y − B(δ)W

)⊤
C⊤

x C
⊤

CCx

(
A(δ)Y − B(δ)W

) (
ȳ − ∥y(k + i)∥2

)2
Iny

 ≻ 0, ∀δ ∈ ∆l.

(7.67d)

Also the resulting FOMPC control law u(k + i) = u(k + i − 1) − Kϵ(k + i) under
constant (or slowly varying) disturbances steers the input and output of the real system
(7.1) to the optimal solution of Problem 6, for all w(k) ∈ W and δ ∈ ∆l with (7.61) a
corresponding Lyapunov function guaranteeing the closed loop stability (i.e. convergence
to the steady-state optimum) of the uncertain system.

Proof. To minimize the upper bound for the robust performance index J̌(ϵ(k + i)), we
solve the following problem at sample time k + i:

min
γ
γ subject to: V (ϵ(k + i)) < γ, (7.68)

which is equivalent to the problem,

min
γ
γ subject to: ϵ(k + i)⊤Y−1ϵ(k + i) < 1 (7.69)
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where Y = γP−1. Using the Schur complement, ϵ(k + i)⊤Y−1ϵ(k + i) < 1 can be
written as (7.67a).
To obtain (7.67b), we substitute δu(k+i) = −Kϵ(k+i), e(k+i) =

(
C(δ)−D(δ)K

)
ϵ(k+i)

and ϵ(k + i+ 1) =
(
A(δ) − B(δ)K

)
ϵ(k + i) in (7.64a) to obtain:

(
A(δ) − B(δ)K

)⊤
P
(
A(δ) − B(δ)K

)
− P +

(
C(δ) − D(δ)K

)⊤
Qe

(
C(δ) − D(δ)K

)
+K⊤RδK ⪯ 0.

(7.70)

Therefore if the inequality (7.70) is satisfied, the closed loop system is stable. By
Schur’s lemma, substitution of

P = γY−1 and W = KY , (7.71)

and considering the uncertainty δ is affine in the coefficient matrices, the inequality
(7.70) can be rewritten as (7.67b).
Regarding the input and output constraints. Observe that if conditions (7.64a) and
(7.67a) are satisfied then:

ϵ(k + i)⊤Y−1ϵ(k + i) < 1, ∀i ≥ 1, (7.72)

that is, the ellipsoid Einv :=
{
z | z⊤Y−1z < 1

}
is an invariant ellipsoid for the predicted

values of the state ϵ(k + i). Then we may, at any instant k + i, impose the constraints
(7.57a) on all future controls. It therefore follows that:

max
i≥0

∥δu(k + i)∥2
2 = max

i≥0
∥−WY−1ϵ(k + i)∥2

2 ≤ max
z∈E

∥−WY−1z∥2
2

≤ λmax

(
Y− 1

2 W⊤WY− 1
2
)
.

(7.73)

Therefore the input constraints (7.57a) can be written as :

λmax

(
Y− 1

2 W⊤WY− 1
2
)

≤
(
ū− ∥u(k + i− 1)∥2

)2
(7.74)

Using the Schur complement, we can express (7.74) as the LMI (7.67c).
Regarding the output, at any instant k + i, we impose the constraints (7.57b) on all
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future outputs. From the output constraints we have

max
i>0

(
∥CCxϵ(k + i+ 1)∥2

)2
≤
(
ȳ − ∥y(k + i)∥2

)2
. (7.75)

Substituting ϵ(k + i+ 1) =
(
A(δ) − B(δ)K

)
ϵ(k + i) and K = WY−1, we obtain

max
i>0

∥CCxϵ(k + i+ 1)∥2
2 = max

i>0
∥CCx

(
A(δ) − B(δ)WY−1

)
ϵ(k + i)∥2

2

≤ max
z>E

∥CCx

(
A(δ) − B(δ)WY−1

)
z∥2

2

≤ λmax

(
Y− 1

2
(
A(δ)Y − B(δ)W

)⊤
C⊤

x C
⊤CCx

(
A(δ)Y − B(δ)W

)
Y− 1

2
)
.

(7.76)

We can then express the output constraint (7.57b) as the inequality

λmax

(
Y− 1

2
(
A(δ)Y − B(δ)W

)⊤
C⊤

x C
⊤CCx

(
A(δ)Y − B(δ)W

)
Y− 1

2
)

≤
(
ȳ − ∥y(k + i)∥2

)2
.

(7.77)

By the Schur complement and because the uncertainty is affine in the coefficient
matrices, the inequality (7.77) can be expressed as the LMI (7.67d).

7.4 Illustrative Example

In this section, numerical simulation and comparative studies of robust feedback
optimizing model predictive control formulations will be presented. We study the
performance of nominal FOMPC, tube-based robust FOMPC and a min-max robust
FOMPC formulation. The following uncertain linear system (same as Chapter 5) will
be used in this study.

x(k + 1) = A(δ)x(k) +B(δ)u(k) + Ew(k), (7.78a)
y(k) = Cx(k), (7.78b)

where

A(δ) =
2 0.1
0 1 − 0.1δ

 , B(δ) =
 0
0.1δ

 , E =
1 0
0 1

 , and C =
[
1 0

]
(7.79)

with δ ∈ ∆l := {δ | δ ∈ [5, 10]}.
We assume the system is quadratically stabilizable and the disturbance w(k) is unknown
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and constant with the value

w(t) =
{[

−1 3
]⊤
, 0 ≤ k < 500. (7.80)

The following inequality constraints are present on the input, output and disturbances;

U := {u : − 50 ≤ u ≤ 50} ,

Y := {y : − 50 ≤ y ≤ 50} ,

W := {w : − 20 × I2 ≤ w ≤ 20 × I2} .

(7.81)

In a steady-state, the system (7.78) satisfies the following equation

0 = A(δ)x+B(δ)u+ Ew, (7.82a)
y = Cx. (7.82b)

From (7.82) the steady-state input-output map for (7.78) is computed as

y = h(u,w) = Guu+Gww (7.83)

where

Gu(δ) = C(In − A(δ))−1B(δ) = −0.1,
Gw(δ) = C(In − A(δ))−1E =

[
−1 −δ−1

]
.

(7.84)

Note that the system has the robust steady-state gain property as Gu(δ) is independent
of δ. We define the steady-state optimization problem of interest as

z̄∗(δ, w) = arg min
z̄

Φ(z̄)

subject to: Gz z̄ = d(δ, w),
(7.85)

where

z =
u
y

 , Φ(z̄) = 1
2 z̄

⊤Qzz z̄ +R⊤
z z̄, Qzz =

Quu Quy

Qyu Qyy

 , Rz =
Ru

Ry

 , Quu = 5,

Quy = Qyu = 2, Qyy = 1, Ru = 0.1, Ry = 0.5, Gz =
[
−Gu(δ) Ip

]
, d(δ, w) = Gw(δ)w.

(7.86)
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To regulate the uncertain system (7.78) to steady-state equilibria that are the solution
of problem (7.85), we adopt three approaches in this example:

1. A nominal FOMPC designed based on a nominal value, δ̄ = 7 of the uncertain
parameter δ and relying on the inherent robustness of FOMPC to deal with the
uncertainty.

2. A robust tube-based FOMPC designed based on a nominal value, δ̄ = 7, of the
uncertain parameter δ and relying on an RPI set to deal with the uncertainty.

3. A robust min-max FOMPC designed using a knowledge of the uncertainty set
δ ∈ [5, 10], and the piecewise-constant nature of the disturbance i.e., w(k) =
w(k − 1).

7.4.1 Nominal FOMPC

The design of the nominal FOMPC is based on procedure outlined in Chapter 6. The
uncertain parameter δ is chosen as δ = δ̄ = 7. The transient performance criterion
has the following weights: Qe = 1 and Rδ = 5; these values satisfy the hypothesis of
Proposition 3.
From the design parameters above, the nominal FOMPC has the following parameters:

A =


2 0.1 0
0 0.3 0

−15 0 1.00

 , B =


0

0.7
−48

 ,
C =

[
−15 0 1.00

]
, D = −48,

R = 2309, N =


720
0

−48

× 103,

Q = 104 ×


225 0 −15
0 0 0

−15 0 1

 , and

K =
[
72.2239 4.2626 0.0105

]
.

(7.87)
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From the inequality X × U given by,

X × U :=


x
u

 :


1 0 0

−1 0 0
0 0 1
0 0 −1


x
u

 ≤


50
50
50
50




(7.88)

we compute the constraint G according to (6.12) as:

G :=


ϵ :


2.0323 0.129 0.0022

−2.0323 −0.129 −0.0022
−0.3226 −0.0403 −0.0215
0.3226 0.0403 0.0215

 ϵ ≤


49.9892
50.0108
50.1075
49.8925




. (7.89)

From the set G, we compute the maximum output admissible invariant set for the
velocity dynamics as:

Gf :=


ϵ :



−72.8377 −4.3241 −0.032
72.8377 4.3241 0.032
2.0323 0.1290 0.0022

−2.0323 −0.1290 −0.0022
−0.3226 −0.0403 −0.0215
0.3226 0.0403 0.0215


ϵ ≤



50.1075
49.8925
49.9892
50.0108
50.1075
49.8925




. (7.90)

7.4.2 Tube-based robust FOMPC

For the tube based FOMPC controller, the nominal value of δ = δ̄ = 7 is used to define
the nominal velocity dynamics, which happens to be the same nominal dynamics used
in the preceding subsection. The lumped disturbance set W̃ is computed as

W̃ :=

w̃ :


1 0

−1 0
0 −1

 w̃ ≤


20
20
0


 . (7.91)

Also the set δW is computed as

δW̃ :=
δw̃ :

 1 0
−1 0

 δw̃ ≤

40
40

 . (7.92)
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Because the system has a robust steady-state gain, the uncertainty in A and B do not
affect the steady-state error and therefore

P̃ = ∅, δP̃ = H = ∅. (7.93)

The bound on the disturbance affecting the velocity dynamics is therefore

D :=
d :

 1 0 0
−1 0 0

 d ≤

40
40

 . (7.94)

For this problem, the inequality constraints were not sufficient to compute the minimal
RPI set Ẽ. Therefore, the tube-based robust FOMPC could not be applied to this
example. Redefining the inequality constraints could be a possible way to resolve this
issue. However, this is left to future investigation.

7.4.3 Min-max robust FOMPC

To compute the robust FOMPC law based on the min-max approach described in
Section 7.3, the following ellipsoidal constraints are imposed on the system,

U :=
{
u : ∥u∥ ≤ 50

}
Y :=

{
y : ∥y∥ ≤ 50

} (7.95)

Remark 42. The ellipsoids (7.95) are the maximum volume ellipsoids contained in the
respective polytopic input and output inequalities (7.81) computed using the algorithm
described in Appendix C of [207].

For the robust FOMPC design, Λy, Λu and r follow from the choices of Φ and the
input-output sensitivity, Gu as

Λy = −15, Λu = −48, and r = −5. (7.96)

The transient performance criterion is chosen with Qe = 1 and Rδ = 5; these values
satisfy the hypothesis of Proposition 3.
From the design parameters above, the FOLQC law is computed from the following



7.4 Illustrative Example 195

parameters:

A(δ) =


2 0.1 0
0 1 − 0.1δ 0

−19 0 1

 , B(δ) =


0

0.1δ
−48

 , C(δ) =
[
−19 0 1.00

]
,

D(δ) = −48, ȳ = 50, ū = 50.

(7.97)

At sample time, k, the robust FOMPC law which minimizes the upper bound V (ϵ(0))
on the robust performance objective (7.60) subject to the constraints (7.95) is given
for all δ ∈ [5, 10] by

u(k) = u(k − 1) − Ǩϵ(k) (7.98)

where Ǩ is computed online at sample time k by solving the SDP (7.66).

7.4.4 Simulation results

For the simulation, the true value of the uncertain parameter is fixed at δ = 8. The
robust FOMPC law was computed using the extremal values of the uncertainty range
i.e δ1 = 5 and δ2 = 10. The nominal FOMPC is implemented for the following nominal
values of the uncertain parameter, δ̄ = {7, 8, 9}.

Performance of nominal FOMPC:

Here, the performance of nominal FOMPC is discussed for the uncertain example
system. The following nominal model values: δ̄ = {5, 6, 7, 8} are investigated. At
δ̄ = 5, 6, the FOMPC problem was infeasible for the uncertain system and therefore
no control law could be computed. However at an improved nominal value of δ̄ = 7,
the nominal FOMPC can be seen from Figure 7.1 to stabilize the uncertain system
while also tracking the optimal steady-state albeit with poor transient performance.
This shows that the nominal FOMPC has both inherent robust stability and inherent
robust convergence to the true steady-state optimum. Also, it can be observed from
Figure 7.1 that the nominal FOMPC satisfies the inequality constraints on the input
and output, keeping both bounded in the interval [−50, 50]. This is in contrast with
the nominal FOLQC from Chapter 5 which violated the constraints on the input (see
Figure 5.7).

To improve the dynamic performance of the nominal FOMPC, accurate knowledge
of the uncertain model parameter δ is required. Figure 7.2 shows the performance
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Fig. 7.1 Nominal FOMPC, δ̄ = 7: outputs y and input u plotted as a function of time. The
actual optimum (u∗, y∗) is shown using dashed lines.

of nominal FOMPC designed using the true value of δ. It can be observed from the
figure that with the nominal parameter set to the true value i.e., δ̄ = 8, stability and
convergence to the true optimal steady-state is achieved with much improved dynamic
performance. Also, the constraints on the input and output are enforced as opposed to
the case of nominal FOLQC in Figure 5.8 where the input can be seen to violate the
constraint by exceeding ū = 50.

Performance of robust min-max FOMPC:

Although the nominal FOMPC has some inherent robustness to uncertainty, it does
not guarantee the stability, optimal steady-state convergence and feasibility of the
closed-loop system under model uncertainty. Unlike nominal FOMPC however, the
robust FOMPC can guarantee the stability (and as a result, convergence to the true
optimal steady-state) and feasibility of the closed-loop system as long as the uncertain
parameter δ belongs to a defined set. We can see this from Figure 7.3. Here, the robust
FOMPC is designed for all δ ∈ [5, 10], i.e., δ is assumed to take values between 5 and
10. It is clear from Figure 7.3 that the robust FOMPC is robustly stable, robustly
convergent to the true steady-state optimum and enforces the inequality constraints on
the input and output. The robust FOMPC guarantees the aforementioned properties
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Fig. 7.2 Nominal FOMPC, δ̄ = 8: outputs y and input u plotted as a function of time. The
actual optimum (u∗, y∗) is shown using dashed lines.

Fig. 7.3 Robust min-max FOMPC, δ ∈ [5, 10]: outputs y and input u plotted as a function
of time. The actual optimum (u∗, y∗) is shown using dashed lines.

for all δ in the specified range i.e., δ ∈ [5, 10] while also ensuring a decent dynamic
performance. Tightening this range will improve the dynamic performance albeit at
the expense of robustness. Figure 7.4 shows the performance of the robust FOMPC
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under a much tighter uncertainty range of δ ∈ [6, 10]. The performance improvements
is apparent from the figure.

The constraint enforcing capability of robust FOMPC becomes apparent when
the robust FOMPC performance in Figure 7.3 is compared with the robust FOLQC
performance in Figure 5.12. It can be noticed here that while robust FOMPC satisfies
the inequality constraint on the input, the robust FOLQC violates it.

Fig. 7.4 Robust FOMPC, δ̄ ∈ [7, 10]: outputs y and input u plotted as a function of time.
The actual optimum (u∗, y∗) is shown using dashed lines.

7.5 Conclusion

In this chapter, we have presented robust FOMPC algorithms for the feedback opti-
mization of uncertain linear systems with polytopic model uncertainty and a quadratic
steady-state optimization problem. A linear matrix inequality (LMI) approach was
used to formulate semi-definite programs which can be solved online to generate robust
FOMPC laws. This approach requires the polytopic system to be quadratically stabi-
lizable which limits its application to a small class of uncertain linear systems. Also a
robust FOMPC algorithm based on the popular tube-based approach was presented.
A major limitation of the tube MPC approach is that computing the minimal robust
positive invariant set (mRPI) can be challenging for high dimensional systems. Also,
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where the disturbance is large, the corresponding mRPI sets can get bigger resulting in
very conservative FOMPC algorithms which satisfy the inequality constraints for very
limited range of the uncertainty. Future work will focus on developing less conservative
and computationally more efficient robust FOMPC laws.

7.6 Appendix A: Proof of Equation (7.33)

From the lumped system dynamics (7.6),

x(k) = Ax(k − 1) +Bu(k − 1) + w̃(k − 1), (7.99)

we obtain
δx(k) = (A− Inx)x(k − 1) +Bu(k − 1) + w̃(k − 1). (7.100)

But,
e(k − 1) = ΛyCx(k − 1) + Λuu(k − 1) + r + p̃(k − 1) (7.101)

∴

 δx(k)
e(k − 1)

 = S

x(k − 1)
u(k − 1)

+
Inx×nw

0ny×nw

 w̃(k − 1) +
0nx×ny

Iny

 r +
0nx×ny

Iny

 p̃(k − 1)

(7.102)

where S =
A− Inx B

ΛyC Λu

.

Making
x(k − 1)
u(k − 1)

 the subject of the above equation yields,

x(k − 1)
u(k − 1)

 = S−1
( Inx 0nx×ny 0nx×ny

0ny×nx Iny −Iny

ϵ(k)
r

−

Inx×nw

0ny×nx

 w̃(k − 1)

−

0nx×ny

Iny

 p̃(k − 1)
)
.

(7.103)

Also from the system dynamics, we can derive, x(k)
u(k − 1)

 =
 A B

0nu×nx Inu

x(k − 1)
u(k − 1)

+
Inx×nw

0nu×nx

w(k − 1). (7.104)
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∴

 x(k)
u(k − 1)

 =
 A B

0nu×nx Inu

S−1

 Inx 0nx×ny 0nx×ny

0ny×nx Iny −Iny

ϵ(k)
r


+
(Inx×nw

0nu×nx

−

 A B

0nu×nx Inu

S−1

Inx×nw

0ny×nx

)w̃(k − 1)

−

 A B

0nu×nx Inu

S−1

0nx×ny

Iny

 p̃(k − 1).

(7.105)

We can therefore compactly express (7.105) as the equation (7.33)



Chapter 8

Distributed Feedback Optimizing
Model Predictive Control

In this chapter, a distributed feedback optimization problem is formulated for large-
scale constrained linear systems subject to external disturbances. The goal is to develop
distributed feedback optimizing control laws that steer a collection of dynamically
coupled linear systems to steady-states that are optimal for a defined optimization
problem while guaranteeing feasibility and an optimal transient performance. We
leverage on the results obtained for FOMPC in the previous chapters to formulate
and solve this problem. The outline of this chapter is as follows: Section 8.1 gives
an introduction to the control problem and a brief review of existing results. Section
8.2 presents the distributed FOMPC (DFOMPC) problem. In section 8.3 we propose
solutions to the DFOMPC problem with theoretical analysis of convergence. Finally,
Section 8.4 draws conclusion on the chapter.

8.1 Introduction

Although there exists a literature on distributed model predictive control [145], achiev-
ing feedback optimization in distributed MPC has been given no attention. Most
distributed MPC schemes are designed to track known set-points and do not have any
feedback optimization capabilities [25, 68, 67, 27, 70]. On the contrary, several dis-
tributed feedback optimization controllers have been proposed [206, 228, 208, 117, 160]
mostly based on the feedback implementation of primal-dual algorithms. However,
these primal-dual approaches cannot guarantee optimal transient performance and
feasibility is only achieved for steady-state constraints. There is currently no result on



202 Distributed Feedback Optimizing Model Predictive Control

distributed feedback optimization with guaranteed transient performance and feasi-
bility. The result presented in this chapter addresses this gap by proposing feedback
optimization control algorithms using a distributed model predictive control framework.
For large-scale systems, the centralized FOMPC previously developed may not be
suitable for feedback optimization due to the higher computational demand and the
large geographical spread of such systems. Therefore, we develop in this chapter
distributed MPC algorithms to solve the FOMPC problem for large-scale systems. We
assume the large-scale system is composed of non-overlapping linear time-invariant
subsystems with piecewise constant additive disturbances and coupling in the inputs
and states. First, we remodel the large-scale system as a decentralized system with
an additive disturbance that is composed of the dynamic interactions between neigh-
bouring subsystems. Then using a velocity form of the plant model and a distributed
form of the steady-state optimality error, we reformulate the feedback-optimizing
model predictive control problem as a distributed tracking control problem for non-
overlapping LTI systems. The developed algorithm is non cooperative, relies on a
non-iterative exchange of information between neighbouring subsystems, and adopts
a tube-based approach similar to the one developed for robust FOMPC to reject
unplanned dynamic interactions between subsystems. Convergence of the proposed
controllers to a neighbourhood of the true optimal steady-state setpoints are also shown.

8.2 The DFOMPC Problem

System dynamics, assumptions and steady-state optimization

Consider a linear discrete time invariant large scale system P described by the state-
space model

P :


x(k + 1) = Ax(k) +Bu(k) + Ew(k),

y(k) = Cx(k),

(u(k), y(k)) ∈ Z := U × Y, w(k) ∈ W,

(8.1)

where x(k) ∈ Rnx , u(k) ∈ U ⊆ Rnu , y(k) ∈ Y ⊆ Rny , and w(k) ∈ W ⊆ Rnw are the
state, input, output and additive uncertainty (disturbance) vectors respectively. Let
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the system P consist of M interconnected and interacting subsystems. Letting

x(k) =


x1(k)

...
xM(k)

 , u(k) =


u1(k)

...
uM(k)

 , y(k) =


y1(k)

...
yM(k)

 , and w(k) =


w1(k)

...
wM(k)

 (8.2)

then the LTI system (8.1) can be decomposed into M dynamically coupled non-
overlapping subsystems, each one described by the following state-space model:

Pi :



xi(k + 1) = Aiixi(k) +Biiui(k) + Eiiwi(k) +
∑

j∈Ni

{
Aijxj(k) +Bijuj(k)

}
,

yi(k) = Ciixi(k),
(ui(k), yi(k)) ∈ Zi := Ui × Yi,

(8.3)
where xi(k) ∈ Rnxi , yi(k) ∈ Yi ⊆ Rnyi , ui(k) ∈ Ui ⊆ Rnui , and wi(k) ∈ Wi ⊆ Rnwi are
respectively the states, outputs, inputs and disturbances for the ith subsystem. Ni is
the index set of all subsystems neighbouring subsystem i i.e.,

Ni :=
{
j ∈ N : [Aij Bij] ̸= 0, j ̸= i

}
, (8.4)

where N = {1, . . . , i, . . . ,M} is the index set of all subsystems Pi and lastly,

ny =
M∑

i=1
nyi, nu =

M∑
i=1

nui, nw =
M∑

i=1
nwi. (8.5)

The subsystem Pj is a neighbour of the subsystem Pi if and only if the state, input
and/or output of Pj affects the dynamics of Pi i.e. iff Aij, Bij are non zero. Here it
is assumed the system P is decoupled in the output and the disturbance inputs (that
is, C and E are block diagonal matrices). The topology of the large-scale system, P

can be described elegantly using graph theoretical ideas by considering all family of
sets Ni for all i ∈ N . Refer to Appendix A for concepts on graph theory.

The main objective of DFOMPC is the design of distributed feedback control laws
ui(k) that regulate respectively, the inputs and/or outputs of each subsystems Pi

to steady-states that are collectively the solution of the following static optimization
problem

RT O(w̄) : z̄∗(w̄) = arg min
z̄

{Φ(z̄) | z̄ ∈ F(w̄), z̄ ∈ U × Y} (8.6)
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where F(w̄) is the feasible equilibrium set (i.e., F(δ̄, w̄) from chapter 3 with the
parametric uncertainty vector δ set to zero). To properly formulate the control
problem, the following assumptions are in order.

Assumption 16 (Local Reachability and Detectability). For each i ∈ N , the pair
(Aii, Bii) is reachable and the pair (Cii, Aii) is detectable.

Assumption 17 (separable cost). The steady-state performance objective Φ(z̄) is
separable i.e.,

Φ(z̄) =
∑
i∈N

Φi(z̄i). (8.7)

Assumption 18 (Decoupled inequality constraints). The constraint sets U, Y and W
are separable i.e

U :=
∏
i∈N

Ui, Y :=
∏
i∈N

Yi and W :=
∏
i∈N

Wi. (8.8)

Assumption 19 (Sparsity of steady-state input/output gain). The steady-state in-
put/output gain Gu is sparse or can be approximated by a sparse matrix.

Assumption 19 allows the centralized steady-state optimality tracking error,

e(k) := G̃∇Φ(z(k)), G̃ =
[
(G⊤

u )† Ip

]
(8.9)

to be written in the following distributed form

ei(k) := ∇yi
Φi(zi(k)) +

∑
j∈Ni

γij

{
∇ui

Φi(zi(k)) − ∇uj
Φj(zj(k))

}
, (8.10)

where zi = (ui, yi) and γij are the weights of the edge connecting the node i ∈ N to
the node j ∈ Ni. These weights can be obtained from the Laplacian matrix describing
the topology of the large-scale system.

Remark 43 (Distributed power system dynamics). Assumption 19 is not restrictive
as many practical distributed systems have steady-state input/output gain that are
sparse or can be approximated by a sparse matrix. For example, consider the following
multi-area power system dynamics [156, 222]

θ̇ = f,

ḟ = H−1P c −H−1Df −H−1P tie −H−1PL
(8.11)
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where θ is the voltage angle deviation, f the frequency deviation, PL the demand
fluctuation, P tie the inter-area power flow and P c the load-reference set-points for all
control areas. The variables H and D are the power system parameters.
For a multi-area power network with a connection topology defined by the graph G , then
P tie can be written as [222],

P tie = LG θ (8.12)

where LG is the graph Laplacian matrix of the power network. Let the input, output
and disturbance be defined respectively as: u = P c, y = θ and w = PL, then the power
system dynamics (8.11) can be written as the continuous-time dynamical system

ẋ = Acx+Bcu+ Ecw,

y = Ccx,
(8.13)

with

Ac =
 0 I

−H−1LG −H−1D

 , Bc =
 0
H−1

 , Cc =
[
I 0

]
, Ec =

 0
−H−1

 and x =
θ
f

 .
(8.14)

The steady-state gain for the power system above can be computed as

Gu = −CcA
−1
c Bc = L −1

G . (8.15)

From the steady-state gain, the matrix G̃ is defined as the following (sparse) matrix

G̃ =
[
LG Ip

]
, (8.16)

and therefore,

e(k) = G̃∇Φ =
[
LG Ip

] ∇uΦ
∇yΦ

 = LG ∇uΦ + ∇yΦ. (8.17)

From (8.7), we can express (8.17) as

e(k) = LG


∇u1Φ1(z1)

...
∇uM

ΦM(zM)

+


∇y1Φ1(z1)

...
∇yM

ΦM(zM)

 . (8.18)
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Using the properties of Laplacian matrices stated in Lemma A.5.1, we can express
(8.18) as



e1(k)
...

ei(k)
...

eM(k)


=



∑
j∈N1 γ1j

{
∇u1Φ1 − ∇uj

Φj

}
...∑

j∈Ni
γij

{
∇ui

Φi − ∇uj
Φj

}
...∑

j∈NM
γMj

{
∇uM

ΦM − ∇uj
Φj

}


+



∇y1Φ1
...

∇yi
Φi

...
∇yM

ΦM


. (8.19)

Equation (8.10) then follows easily from (8.19).

Problem statement

Given the above data, we now define the distributed feedback optimizing model
predictive control (DFOMPC) problem.

Problem 7 (The DFOMPC Problem). Design for each linear discrete-time subsys-
tem (8.3), a distributed feedback control law, ui(k), obtained from the solution to an
N-horizon optimal control problem, such that for any admissible wi ∈ Wi:

1. The point z̄∗(w) is for all feasible xi(0) and all i ∈ N , an asymptotically stable
equilibrium for the closed-loop systems, satisfying

lim
k→∞

( [
ui(k)

]
∀i∈N

,
[
yi(k)

]
∀i∈N

)
(w) = z̄∗(w), (8.20)

2. The feedback policy ui(k) minimizes a transient performance criterion for each
i ∈ N .

3. The constraints (ui(k), yi(k)) ∈ Zi are satisfied ∀i ∈ N at all times.

By regulating the steady-state optimality error (8.10) to zero, the DFOMPC problem
above can be translated into a distributed tracking model predictive control problem
that achieves optimal (or near- optimal) steady-state operation. In the following section
we present a robust model predictive control algorithm that solves the DFOMPC for a
quadratic steady-state optimization problem.
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8.3 Proposed Solution

In this section, we propose solutions to the distributed FOMPC control problem when
the steady-state performance objective, Φ, is a sum of quadratic costs, i.e.

Φ(z̄) =
∑
i∈N

Φi(z̄i) (8.21)

where

• Φi(z̄i) = 1
2 z̄

⊤
i Q

i
zz z̄i + (Ri

z)⊤z̄i,

• Qi
zz =

Qi
uu Qi

uy

Qi
yu Qi

yy

, and Ri
z =

Ri
u

Ri
y

.

The steady-state tracking error (8.10) in this case can be expressed as the distributed
affine equation

ei(k) := Λyiyi(k) + Λuiui(k) + ri +
∑

j∈Ni

(−γij)
[
Λyjyj(k) + Λujuj(k) + rj

]
(8.22)

where

• Λyi = 1
2

[(
Qi

yy + (Qi
yy)⊤

)
+∑

j∈Ni
γij

(
Qi

uy + (Qi
yu)⊤

)]
,

• Λui = 1
2

[(
Qi

yu + (Qi
uy)⊤

)
+∑

j∈Ni
γij

(
Qi

uu + (Qi
uu)⊤

)]
,

• ri = Ri
y +∑

j∈Ni
γijR

i
u,

• Λyj = 1
2

[(
Qj

uy + (Qj
yu)⊤

)]
, Λuj = 1

2

[(
Qj

uu + (Qj
uu)⊤

)]
, and

• rj = Rj
u.

This error may be computed directly from the input ui(k) and output yi(k) measure-
ments of each subsystems, and those of neighbouring subsystems (i.e uj(k) and yj(k)),
provided the steady-state objectives Φi and interaction topology (γij) of the distributed
dynamical systems are known. It is clear from (8.22) that explicit knowledge of the
steady-state set points (z∗(w̄)) or unknown disturbances (w̄) are not needed to compute
this error, and this provides opportunities to achieve robust tracking of the optimal
steady-state under unknown additive disturbances. For the purpose of control design,
we make the following assumption on the system and cost matrices
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Assumption 20. For each i ∈ N , the matrix Si =
Aii − Inxi

Bii

ΛyiCii Λui

 has full row rank

i.e, rankSi = nyi + nui.

Remark 44. Assumption 20 is standard in the output regulation literature and is
required to guarantee the FOMPC problem is solvable for each decentralized subsystem
dynamics. This assumption is independent of the connection topology of the large-scale
system when the disturbance is separable i.e., W := ∏

i∈N Wi. Please refer to [7, 109]
for further details on this assumption.

We now present the following algorithms for solving the DFOLQC problem.

Velocity and Error Dynamics

To regulate each subsystem to ei = 0, we consider the velocity, or incremental, form of
the sub-systems dynamics (8.3) augmented with the steady-state optimality tracking
error (8.22), whose output is the tracking error ei(k):

ϵi(k + 1) = Aiiϵi(k) + Biiδui(k) + Eiiδwi(k) +
∑

j∈Ni

{
Aijϵj(k) + Bijδuj(k)

}
, (8.23a)

ei(k) = Ciiϵi(k) + Diiδui(k) +
∑

j∈Ni

{
Cijϵj(k) + Dijδuj(k)

}
(8.23b)

where

ϵi(k) :=
 δxi(k)
ei(k − 1)

 with
δxi(k) := xi(k) − xi(k − 1),
δui(k) := ui(k) − ui(k − 1),
δwi(k) := wi(k) − wi(k − 1),

(8.24)

and

Aii =
 Aii 0nxi×nyi

ΛyiCii Inyi

 , Bii =
Bii

Λui

 , Aij =
 Aii 0nxi×nyi

−γijΛyiCjj 0nyi×nyi

 ,
(8.25a)

Cii =
[
ΛyiCii Inyi

]
, Dii = Λui, Eii =

 Eii

0nyi×nxi

 , (8.25b)

Cij =
[
−γijΛyjCjj 0nyi×nyi

]
, and Dij = −γijΛuj. (8.25c)

To enable the design of stablizing distributed control algorithms, the following additional
assumption is made on the velocity dynamics
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Assumption 21 (decentralized stabilizability). There exists a block diagonal matrix
K = blkdiag(K1, . . . ,KM) with Ki ∈ Rnxi+nyi , i ∈ I[1,M ] such that

(i) The matrix F = A − BK is Schur.

(ii) The matrices Fii = Aii − BiiKi are Schur

where A = blkdiag(A11, . . . ,AMM) and B = blkdiag(B11, . . . ,BMM).

Given the velocity dynamics, we can formulate the DFOMPC problem as a tracking
MPC problem that regulates the velocity dynamics (8.23) to the origin while minimizing
a dynamic performance objective for each subsystem. We achieve this by solving online,
the following optimal control problem:

Pi(ϵi(k), v−i(k)) : min
δui(k)∈UN,i

VN,i(ϵi(k), δui(k)) (8.26)

where the feasible region UNi(ϵi(k), v−i(k)) is defined as

UN,i(ϵi(k), v−i(k)) ≜
δui(k)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϵi(k + t+ 1) = Aiiϵi(k + t) + Biiδui(k + t) + Eiiδwi(k + t)+∑
j∈Ni

{
Aijϵj(k + t) + Bijδuj(k + t)

}
, ∀t ∈ I[0,N−1]

ϵi(k + t) ∈ Gi, ∀t ∈ I[0,N−1]

ϵi(k +N) ∈ Gf,i



(8.27)

and v−i(k+ t) = (ϵj(k+ t), δuj(k+ t)) is velocity state and input from the neighbouring
subsystems.
In this problem, the decision variable is the sequence of control increments over the
N -step prediction horizon for each subsystem:

δui(k) :=
{
δui(k), δui(k + 1) . . . , δui(k +N − 1)

}
. (8.28)

These sequences are chosen to minimize the local performance objective,

VN,i(ϵi(k), δui(k)) = Vf,i(ϵi(k +N)) +
N−1∑
t=0

li(ei(k + t), δui(k + t)) (8.29)
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which is composed of a stage cost

li(ei(k+ t), δui(k+ t)) := 1
2
(
ei(k+ t)⊤Qe,iei(k+ t) + δui(k+ t)⊤Rδ,iδui(k+ t)

)
(8.30)

and a terminal cost

Vf,i(ϵi(k +N)) := 1
2ϵi(k +N)⊤Piϵi(k +N). (8.31)

This cost aims to capture the transient performance objective for each subsystem: the
term ei(k+ t)⊤Qe,iei(k+ t) penalizes the distance of the ith−subsystem’s tracking error
from steady-state optimality and therefore determines the duration of the transient
phase, while the term δui(k+ t)⊤Rδ,iδui(k+ t) penalizes the incremental control effort.
The solution of Pi(ϵi(k), v−i(k)) yields the optimal control sequence δu∗

i (k) and the
corresponding optimal cost V 0

N,i(ϵi(k)) which is also referred to as the value function.
The DFOMPC law is then given by the first element of δu∗

i (k) i.e.

δui(k) = κN,i(ϵi(k)) = δu∗
i (k). (8.32)

To solve Pi(ϵi(k), v−i(k)) will require complete knowledge of the system dynamics
(8.23) at subsystem i. Due to the interaction terms v−i(k + t), this information is
not necessarily known by all subsystems, and the feasible set UN,i(ϵi(k), v−i(k)) will
therefore be uncertain. Consequently, a solution to Pi(ϵi(k), v−i(k)) cannot be precisely
computed. To workaround this limitation, inspired by [27, 25] we propose two robust
non-iterative approaches in this chapter. The first approach ignores the dynamic
interactions from neighbouring subsystems and utilizes the resulting decentralized
velocity dynamics to formulate a feedback optimizing model predictive control problem
which when solved online generates a decentralized FOMPC law that approximates the
actual distributed FOMPC law (8.32). This solution although simple, cannot guarantee
convergence to the true global steady-state optimum, z∗(w̄). The robust convergence
of this control law to some approximation of z∗(w̄) will be investigated, using the
results from the inherent robustness of centralized FOMPC from Chapter 6 albeit
applied in the context of a decentralized system. To improve upon the decentralized
FOMPC algorithm, we will exploit neighbour-to-neighbour communication to exchange
predictions of the dynamic interaction variable, v̂−i(k) between subsystems. This will
improve the accuracy of the feasible set UN,i(ϵi(k), v̂−i(k)) computations. Also, to
guarantee convergence and recursive feasibility, we will adopt a tube based approach to
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reject any uncertainty in the subsystem interactions that result from the discrepancies
between the shared dynamic predictions and the actual interaction dynamics. We will
assume this uncertainty lies within a known bounded set. We now present details of
these developments in the sections that follow.

8.3.1 Inherently robust decentralized FOMPC (DeFOMPC)

In this section we present an inherently robust decentralized feedback-optimizing model
predictive control (DeFOMPC) algorithm that regulates the distributed dynamical
systems (8.3) to steady-state equilibrium points that approximate the optimal solution
to the steady-state optimization problem (8.6). To design the control algorithm, the
dynamic interaction between the subsystems are neglected and a nominal FOMPC
regulator akin to that presented in Chapter 6 will be applied to each subsystem. As
a result, we solve M optimal control problems in parallel using only local subsystem
dynamics and local constraints.
To begin, consider the following nominal subsystem dynamics with the interactions
neglected, Pii:

x̄i(k + 1) = Aiix̄i(k) +Biiūi(k) + Eiiw̄i(k), ȳi(k) = Ciix̄i(k), (8.33a)
ēi(k) := Λyiȳi(k) + Λuiūi(k) + r̄i, (8.33b)

(ūi(k), ȳi(k)) ∈ Zi := Ui × Yi. (8.33c)

Assuming w̄i(k) is constant or slowly varying, then (8.33) can be expressed as the
following velocity dynamics

ϵ̄i(k + 1) = Aiiϵ̄i(k) + Biiδūi(k), (8.34a)
ēi(k) = Ciiϵ̄i(k) + Diiδūi(k). (8.34b)

To compute the decentralized feedback optimizing model predictive control law, δūi(k),
we solve at each sampling time, k, following the approach in Chapter 6, a FOMPC
problem for the decentralized velocity dynamics (8.34). We achieve this by solving
online, the following optimal control problem:

P̄ii(ϵ̄i(k)) : min
δūi(k)∈UN,i

VN,i(ϵ̄i(k), δūi(k)) (8.35)
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where the feasible region UN,i(ϵi(k)) is defined as

UN,i(ϵ̄i(k)) ≜

δūi(k)

∣∣∣∣∣∣∣∣∣∣
ϵ̄i(k + t+ 1) = Aiiϵ̄i(k + t) + Biiδūi(k + t) ∀t ∈ I[0,N−1],

ϵ̄i(k + t) ∈ Ḡi, ∀t ∈ I[0,N−1],

ϵ̄i(k +N) ∈ Ḡf,i


(8.36)

and the cost function VN,i(ϵ̄i(k), δūi(k)) is given by:

VN,i(ϵ̄i(k), δūi(k)) = Vf,i(ϵ̄i(k +N)) +
N−1∑
t=0

li(ēi(k + t), δūi(k + t)), (8.37)

where,

li(ēi(k+t), δūi(k+t)) := 1
2
(
ϵ̄i(k+t)⊤Qiϵ̄i(k+t)+2ϵ̄⊤

i (k+t)Niδūi(k+t)+δūi(k+t)⊤Riδūi(k+t)
)
,

(8.38)
and

Vf,i(ϵ̄i(k +N)) := 1
2 ϵ̄i(k +N)⊤Piϵ̄i(k +N). (8.39)

Here, Qi = C⊤
iiQe,iCii, Ni = C⊤

iiQe,iDii and Ri = Rδ,i + D⊤
iiQe,iDii and ϵ̄i(k) is obtained

at sample time k, from the local input/output, and state measurements at subsystem i:

ϵ̄i(k) =
 δxi(k)
ēi(k − 1)

 =
 xi(k) − xi(k − 1)
Λy,iyi(k − 1) + Λuiui(k − 1) + ri

 . (8.40)

Similar to the nominal FOMPC algorithm of Chapter 6, to guarantee positive definite-
ness of the performance objective VN,i(ϵ̄i(k), δūi(k)), we choose the matrices Rδ,i, Qe,i

and Pi to satisfy Rδ,i ≻ 0, Pi ⪰ 0 and

Qe,i −Qe,iΛui(Rδ,i + Λ⊤
uiQe,iΛui)−1ΛuiQ

⊤
e,i ⪰ 0. (8.41)

The constraints on ūi and ȳi must be reformulated in terms of the constraints on the
MPC optimization variables δūi and ϵ̄i. To this end, similarly to Chapter 6, we write
the relation between these variables as (see section 7.6 for details)

 x̄i(k)
ūi(k − 1)

 = C̃i

ϵ̄i(k)
r̄i

+ D̃iw̄i(k − 1), (8.42)
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where

C̃i =
 Aii Bii

0nui×nxi
Inui

S−1
i

 Inxi
0nxi×nyi

0nxi×nyi

0nyi×nxi
Inyi

−Inyi

 ,
D̃i =

 Eii

0nui×nxi

−

 Aii Bii

0nui×nxi
Inui

S−1
i

 Eii

0nyi×nxi

 .
(8.43)

The online solution of the OCP, P̄ii(ϵ̄i(k)) yields the optimal control sequence δū∗
i (k)

and the corresponding optimal cost V 0
N,i(ϵ̄i(k)) which is also referred to as the value

function. The standard decentralized FOMPC law is then given by the first element of
ū∗

i (k) i.e.,
κN,i(ϵ̄i(k)) = ū∗

i (k), (8.44)

and its feasible region is given by

EN,i ≜ {ϵ̄i(k) ∈ Rnxi+nyi : UN,i(ϵ̄i(k)) ̸= ∅}. (8.45)

To guarantee closed-loop stability and recursive feasibility, the design of the OCP,
P̄ii(ϵ̄i(k)) must meet the requirements summarized by the following assumptions.

Assumption 22 (Terminal cost). The matrix Pi is such that given the control law,
δūi(k) = −Kiϵ̄i(k), for all k ≥ N , the terminal cost Vf,i(ϵ̄i(k)) is a control Lyapunov
function i.e.,

Vf,i(ϵ̄i(k + 1)) − Vf,i(ϵ̄i(k)) ≤ −li(ēi(k),−Kiϵ̄i(k)), ∀ϵ̄i(k) ∈ Ḡf,i (8.46)

where the set Ḡf,i is a terminal constraint set to be defined later.

Remark 45. To meet this requirement, we select Pi to satisfy the following Lyapunov
equation:

(
Aii − BiiKi

)⊤
Pi

(
Aii − BiiKi

)
− Pi = −

(
Qi − NiKi + K⊤

i RiKi

)
(8.47)

where the matrix Ki is chosen such that Assumption 21 is satisfied.

Assumption 23 (Constraint set). The set Ḡi is compact, contains the origin and
enforces the constraints (ūi(k), ȳi(k)) ∈ Ui × Yi on the state ϵ̄i(k), i.e.,

Ḡi := {ϵ̄i : (ūi, ȳi) ∈ Ui × Yi}. (8.48)
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Remark 46. Similar to the centralized FOMPC algorithm in Chapter 6, the set Ḡi

can be computed from (8.42) as:

Ḡi :=
ϵ̄i : C̃i

ϵ̄i

r̄i

 ∈ (Xi × Ui) ⊖ D̃iW̄i

 . (8.49)

Assumption 24 (Terminal constraint set ). The set Ḡf,i is as a local constraint
admissible, positive invariant set for (8.34a) with δūi(k) = −Kiϵ̄i(k) ∀k ≥ N i.e.,

(Aii − BiiKi)Ḡf,i ⊆ Ḡf,i and Ḡf,i ⊆ Ḡi. (8.50)

The ith subsystem with the terminal constraint set Ḡf,i, the terminal cost Vf,i(ϵ̄i(k))
and the terminal control law δūi(k) = −Kiϵ̄i(k), ∀k ≥ N , is guaranteed stable without
the dynamic interactions. In DeFOMPC, the transient performance objective is local
to each subsystem and therefore does not guarantee optimal transient performance
for the actual large scale system. Infact, DeFOMPC yields very conservative transient
performance compared to its centralized counterpart. Also, due to the neglected
interaction dynamics, decentralized FOMPC may not guarantee the closed-loop stability
of the actual large-scale system. Therefore, the question of how much interaction
dynamics can be neglected without compromising the closed-loop stability of the actual
large-scale system under the decentralized FOMPC law above arises. We address this
question by applying Theorem (6.3.4) of Chapter 6 in a distributed setting.

Theorem 8.3.1 (Robust stability of DeFOMPC). Let the velocity dynamics, (8.34),
the stage cost, li(ēi(k), δūi(k)) and the terminal cost, Vf,i(ϵ̄i(k)) be continuous for all
subsystems i. Also, let li(ēi(k), δūi(k)) be bounded above by a κ∞ function, and the
Assumptions 22, 23 and 24 be true for all subsystems. Suppose,

ϵi(0) ∈ Ω(R̄i) ≜ { ϵi | V 0
N,i(ϵi) ≤ R̄i} ⊂ EN,i, (8.51)

where Ω(R̄i) denotes the largest sublevel set contained in EN,i, if there exists scalars
Ri ∈ (0, R̄i] and Li satisfying Lemma 6.3.3 such that for all admissible δvi and δpi

∥Eviδvi∥+∥Epiδpi∥ ≤ (1 − γi)Ri

Li

(8.52)

for all ϵi ∈ Ω(R̄i), then
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(i) the set Ω(Ri) ≜ { ϵi | V 0
N,i(ϵi) ≤ Ri} ⊂ Ω(R̄i) is positively invariant for the

subsystem velocity dynamics (8.34).

(ii) the set Ω(R̄i) is also positively invariant for (8.34). Therefore, the states ϵi

remains in Ω(R̄i) for all time, and enter and remain within the set Ω(Ri) after
some finite time.

(iii) the actual inputs and outputs (ui, yi) of the all subsystems (8.3) converge to
steady-state values that are a close approximation to the optimal equilibrium z̄∗

for the steady-state optimization problem (6.2).
Here,

vi(k) :=
∑

j∈Ni

{
Aijxj(k) +Bijuj(k)

}
,

pi(k) :=
∑

j∈Ni

(−γij)
[
Λyjyj(k) + Λujuj(k) + rj

]
,

Evi =
Eii

0

 , Epi =
 0
Inyi

 .
(8.53)

Proof. The proof follows directly from Theorem 6.3.4 applied to a distributed setting.

This result establishes the stability of the controlled subsystems under the assump-
tion that the interactions between the dynamics and the error, i.e., vi and pi respectively,
of each subsystem i, satisfy the condition in (8.52). Although the above condition is
somewhat abstract, it confirms the intuition that stability under decentralized control
is more likely to be guaranteed if the lumped neglected interaction terms δvi and δpi

are suitably small and the regulatory action is strong (i.e Qe,i ≫ Rδi).

8.3.2 Robust Tube-based Distributed FOMPC (tDFOMPC)

The DeFOMPC algorithm presented in the previous section relied on the inherent
robustness of nominal FOMPC to reject the interactions between the subsystems. As
a result, the closed loop system was only guaranteed stable for small range of dynamic
interactions. Also, the algorithm drives the closed-loop system to an approximation
of the true global steady-state optimum, z̄∗ with a margin of error that is often
significant if the state and error coupling are not negligible, which is more often the
case in practical systems. In an effort to improve the performance of the DeFOMPC,
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reduce the conservatism and obtain more accurate tracking of the global steady-state
optimum, we present in this section, a distributed FOMPC algorithm which extends
the DeFOMPC algorithm above by considering information about the output and
dynamic coupling transmitted between subsystems. To accommodate the unavoidable
discrepancy that exists between the shared state and error trajectories, and the actual
trajectories, we adopt a tube-based FOMPC approach to reject this uncertainty.

To begin, assume that, at any time instant k, each velocity subsystem (8.23)
transmits its state and input reference trajectories ϵ̂i(k) and δûi(k), ∀k ∈ I[0,N−1] to
its dynamic neighbours, j ∈ Ni. By adding suitable constraints to each local FOMPC
formulation, each subsystem is made to guarantee that, for all k > 0, the actual states
ϵi(k), and the actual inputs δui(k) both lie in a specified time-invariant neighbourhoods
of ϵ̂i(k) and δûi(k) respectively i.e.,

ϵi(k) − ϵ̂i(k) ∈ Mi, δui(k) − δûi(k) ∈ Ni, ∀k ≥ 0 (8.54)

where 0 ∈ Mi and 0 ∈ Ni. With this, the velocity dynamics (8.23) can be written as

ϵi(k + 1) = Aiiϵi(k) + Biiδui(k) + d̂i(k) + d̃i(k), (8.55a)
ei(k) = Ciiϵi(k) + Diiδui(k) + f̂i(k) + f̃i(k) (8.55b)

where d̂i(k) is a known state disturbance (obtained from the shared reference trajecto-
ries) given as

d̂i(k) =
∑

j∈Ni

{
Aij ϵ̂j(k) + Bijδûj(k)

}
, (8.56)

and d̃i(k) is an unknown, but bounded state disturbance (i.e., the deviation from the
planned/reference trajectories in the velocity state), given by

d̃i(k) =
∑

j∈Ni

{
Aij(ϵj(k) − ϵ̂j(k)) + Bij(δuj(k) − δûj(k))

}
, (8.57)

with d̃i(k) bounded by the set,

d̃i(k) ∈ Di :=
⊕

j∈Ni

{
AijMj ⊕ BijNj

}
. (8.58)
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Similarly, for the error (8.55b), f̂i(k) is a known disturbance on the error which is
computed from the shared trajectories and given by

f̂i(k) =
∑

j∈Ni

{
Cij ϵ̂j(k) + Dijδûj(k)

}
(8.59)

and f̃i(k) is an unknown but bounded disturbance on the error resulting from the
deviation between the planned and actual reference trajectories, and is given by

f̃i(k) =
∑

j∈Ni

{
Cij(ϵj(k) − ϵ̂j(k)) + Dij(δuj(k) − δûj(k))

}
, (8.60)

with f̃i(k) bounded by the set,

f̃i(k) ∈ Hi :=
⊕

j∈Ni

{
CijMj ⊕ DijNj

}
. (8.61)

Nominal models and control law

To formulate the control problem, in line with the tube-based robust MPC design
philosophy, we will neglect the unknown disturbances in (8.55) and define the following
nominal decentralized velocity dynamics:

ϵ̄i(k + 1) = Aiiϵ̄i(k) + Biiδūi(k) + d̂i(k), (8.62a)
ēi(k) = Ciiϵ̄i(k) + Diiδūi(k) + f̂i(k). (8.62b)

To facilitate the tube based DFOMPC design, we will rewrite the actual and nominal

velocity dynamics, respectively, in terms of the extended state variable
ϵi(k)
ri

 as

ϵi(k + 1)
ri

 = Ãii

ϵi(k)
ri

+ B̃iiδui(k) + Êid̂i(k) + Ẽid̃i(k) (8.63)

and ϵ̄i(k + 1)
r̄i

 = Ãii

ϵ̄i(k)
r̄i

+ B̃iiδūi(k) + Êid̂i(k), (8.64)
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where

Ãii :=
 Aii 0(nxi+nyi)×nyi

0nyi×(nxi+nyi) Inyi

 , B̃ii :=
 Bii

0nyi×nui

 , Ẽi :=
I(nxi+nyi)×nwi

0nyi×nwi

 .
(8.65)

Let

εi(k) =
ϵi(k)
ri

−

ϵ̄i(k)
r̄i

 , (8.66)

and according to [154] assume that, for all k, for the actual extended velocity dynamics
(8.63) the following control law is considered

δui(k) = δūi(k) − K̃iε(k) (8.67)

where the gain K̃i is defined a priori such that F̃ii = Ãii − B̃iiK̃i is Schur.

Remark 47. To obtain K̃i such that F̃ii is Schur, we can define K̃i as

K̃i =
[
Ki 0nui×nyi

]
(8.68)

where Ki is the chosen such that Assumption 21 is satisfied.

From (8.63), (8.64) and (8.67), it directly follows that

εi(k + 1) = F̃iiεi(k) + Ẽid̃i(k) (8.69)

where d̃i(k) ∈ Di. Since Di is bounded and F̃ii is Schur, there exists a robust positively
invariant (RPI) set Ẽi for (8.69) such that, for all εi(k) ∈ Ẽi, then εi(k+ 1) ∈ Ẽi. Also,
δui(k) − δūi(k) ∈ K̃iẼi, for all k ≥ 0.

Remark 48. In view of [179], it may be possible to compute an invariant outer-
approximation to the minimal RPI set Ẽi for the error dynamics (8.69) as defined in
(8.70) below.

Ẽi =
∞⊕

i=0
F̃ i

iiẼiDi. (8.70)

From the set Ẽi, we can obtain the set Ei which is a RPI set on ϵi − ϵ̄i defined as:

Ei :=
{
ϵi − ϵ̄i : εi ∈ Ẽi

}
. (8.71)
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An algorithm for computing a polytopic outer approximation to (8.70) can be devised
in line with [179].

Constraint reformulation and terminal constraint

To enforce the inequality constraints, the constraints on ui and yi must be reformulated
in terms of the constraints on the MPC optimization variables δūi and ϵ̄i. To this end,
similarly to [28], we write the relation between these variables as (see section 7.6 for
details)  xi(k)

ui(k − 1)

 = C̃i

ϵi(k)
ri

+ D̃iqi(k − 1) (8.72)

where qi(k) =
w̃i(k)
p̃i(k)

 ∈ (W̃i × P̃i), w̃i(k) = Eiiwi(k) +∑
j∈Ni

{
Aijxj(k) + Bijuj(k)

}
,

p̃i(k) = ∑
j∈Ni

(−γij)
[
Λyjyj(k) + Λujuj(k) + rj

]
, and,

C̃i =
 Aii Bii

0nui×nxi
Inui

S−1
i

 Inxi
0nxi×nyi

0nxi×nyi

0nyi×nxi
Inyi

−Inyi

 ,
D̃w̃i =

Inxi×nwi

0nui×nxi

−

 Aii Bii

0nui×nxi
Inui

S−1
i

Inxi×nwi

0nyi×nxi

 ,
D̃p̃i = −

 Aii Bii

0nui×nxi
Inui

S−1
i

0nxi×nyi

Inyi

 , and D̃i =
[
D̃w̃i D̃p̃i

]
,

(8.73)

and set W̃i and P̃i are defined as follows:

W̃i :=
⊕

j∈Ni

{
AijXj ⊕BijUj

}
⊕ EiiWi, Xi ⊆ Rn := {xi : yi ∈ Yi}, and

P̃i :=
⊕

j∈Ni

(−γij)
{
ΛyjYj ⊕ ΛujUj ⊕ Yj

}
.

(8.74)

Let Ḡi be the set which enforces the constraints (ui(k), yi(k)) ∈ (Ui × Yi) on the
nominal velocity state ϵ̄i(k) for all admissible disturbances, d̃i(k) ∈ Di, i.e,

Ḡi :=
{
ϵ̄i : (ui, yi) ∈ (Ui × Yi), ∀d̃i(k) ∈ Di

}
. (8.75)
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Taking the difference between (8.72) and its nominal version i.e.,
 x̄i(k)
ūi(k − 1)

 = C̃i

ϵ̄i(k)
r̄i

 (8.76)

we obtain the following relation, xi(k)
ui(k − 1)

 = C̃i

ϵ̄i(k)
r̄i

+ C̃iεi(k) + D̃iqi(k − 1). (8.77)

From the invariance of Ẽi, εi(k) ∈ Ẽi for all k ≥ 0. Also, qi(k − 1) ∈ (W̃i × P̃i) and xi(k)
ui(k − 1)

 ∈ (Xi × Ui), therefore the following set relationship is obtainable from

(8.72):

C̃i

ϵ̄i

r̄i

 ∈ (Xi × Ui) ⊖ D̃i(W̃i × P̃i) ⊖ C̃iẼi. (8.78)

The set Ḡi can therefore be defined in terms of ϵ̄i as,

Ḡi :=
ϵ̄i : C̃i

ϵ̄i

r̄i

 ∈ (Xi × Ui) ⊖ D̃i(W̃i × P̃i) ⊖ C̃iẼi

 (8.79)

where Xi ⊆ Rn := {x̄i : ȳi ∈ Yi}.
To guarantee that the inputs and outputs ui(k) and yi(k), of each subsystem i, re-
spectively lie in the sets Ui and Yi, beyond the end of the horizon, N , we need to
compute a terminal invariant set, Ḡf,i, where ϵ̄i(k) must lie in order to guarantee that
the constraints (ui(k), yi(k)) ∈ (Ui × Yi) are verified for all k ≥ N . Assume the pair
(Aii,Bii) is reachable and the set Ḡi is a closed polytope (which are guaranteed by
virtue of the assumptions made about the distributed system), then the set Ḡf,i can
be computed as the (projection of the) maximal constraint admissible set [114] for the
nominal velocity dynamics (8.62a) under the auxiliary control law, δūi(k) = −Kiϵ̄i(k)
and is constructed such that:

ϵ̄i ∈ Ḡf,i =⇒ ϵ̄i ∈ Ḡi and Fiiϵ̄i ∈ Ḡf,i. (8.80)
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Optimal control problem

To compute the tDFOMPC law, δui(k), we solve at each sampling time, k, following the
approach in Chapter 6, M optimal control problems for the nominal velocity dynamics
(8.62) using knowledge of the current state ϵi(0) and the future input and output state
trajectories for subsystem i and its neighbours ϵ̂j(k) and δûj(k), k = 0, . . . , N − 1 .
Starting from a knowledge of the sets Mj, Nj, Ḡi, Ẽi and Ḡf,i, the tDFOMPC law is
obtained by solving online, the following optimal control problem:

Pii(ϵi(k), d̂i(k), f̂i(k)) : min
(ϵ̄i(k),δūi(k))∈UN,i

VN,i(ϵ̄i(k), δūi(k)) (8.81)

where the feasible region UN,i(ϵi(k), d̂i(k), f̂i(k)) is defined as

UN,i(ϵi(k), d̂i(k), f̂i(k)) ≜

(ϵ̄i(k), δūi(k))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϵ̄i(k + t+ 1) = Aiiϵ̄i(k + t) + Biiδūi(k + t) + d̂i(k + t), ∀t ∈ I[0,N−1]

ēi(k + t) = Ciiϵ̄i(k + t) + Diiδūi(k + t) + f̂i(k + t), ∀t ∈ I[0,N−1]

ϵi(k) − ϵ̄i(k) ∈ Ei

ϵ̄i(k + t) − ϵ̂i(k + t) ∈ Mi ⊖ Ei, ∀t ∈ I[0,N−1]

δūi(k + t) − δûi(k + t) ∈ Ni ⊖ KiEi, ∀t ∈ I[0,N−1]

ϵ̄i(k + t) ∈ Ḡi, ∀t ∈ I[0,N−1]

ϵ̄i(k +N) ∈ Ḡf,i


(8.82)

and the cost function VN,i(ϵ̄i(k), δūi(k)) is given by

VN,i(ϵ̄i(k), δūi(k)) = Vf,i(ϵ̄i(k +N)) +
N−1∑
t=0

li(ēi(k + t), δūi(k + t)) (8.83)

where,

li(ēi(k+ t), δūi(k+ t)) := 1
2
(
ēi(k+ t)⊤Qe,iēi(k+ t) + δūi(k+ t)⊤Rδ,iδūi(k+ t)

)
(8.84)

and
Vf,i(ϵ̄i(k +N)) := 1

2 ϵ̄i(k +N)⊤Piϵ̄i(k +N). (8.85)
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Here we assume at the current sampling time,k, the velocity state ϵi(k) is measurable
from the local input/output, and the shared signal, v̂−i:

ϵi(k) =
 δxi(k)
ēi(k − 1)

 =
 xi(k) − xi(k − 1)
Λy,iyi(k − 1) + Λuiui(k − 1) + ri + v̂−i

 (8.86)

where v̂−i = ∑
j∈Ni

(−γij)Λyj ŷj(k) + Λujûj(k) + rj is obtained via communication from
neighbouring subsystems.
With regard to the OCP, Pii(ϵi(k), d̂i(k), f̂i(k)) above, the following remarks are in
order:

Remark 49. 1. To guarantee positive definiteness of the performance objective
VN,i(ϵ̄i(k), δūi(k)), the matrices Qe,i ⪰ 0 and Rδ,i ≻ 0 are chosen such that
li(ēi(k + t), δūi(k + t)) ≥ 0 with Pi ≻ 0.

2. To guarantee closed-loop convergence, the matrix Pi ≻ 0 is selected via the
terminal control law

δūi(k +N) = −Kiϵ̄i(k +N) (8.87)

such that Vf,i(ϵ̄i(k +N)) is a control Lyapunov function i.e.,

Vf,i(ϵ̄i(k+N+1))−Vf,i(ϵ̄i(k+N)) ≤ −li(ēi(k+N),−Kiϵ̄i(k+N)), ∀ϵ̄i(k+N) ∈ Ḡf,i.

(8.88)

3. The optimal control problem, Pii(ϵi(k), d̂i(k), f̂i(k)) does not yield control laws
that track the global optimum of the centralized steady-state optimization problem,
(8.6). Instead, the resulting control law regulates the system, (8.1) to an invariant
neighbourhood of such a solution. How conservative this approximation is depebds
on the size of the RPI set Ei. Making Ei as small as possible (e.g. using the
minimal RPI set instead) can improve the accuracy of the steady-state optimal
solutions.

The solution, (ϵ̄∗
i (k), δu∗

i (k)) of the OCP Pii(ϵi(k), d̂i(k), f̂i(k)) above, followed by
the application of the first control, δū∗

i (k) in the optimized sequence, yield the control
law

δui(k) = δū∗
i (k) − Ki

(
ϵi(k) − ϵ̄∗

i (k)
)
, (8.89)

and the corresponding optimal cost V 0
N,i(ϵi(k)) which is also referred to as the value

function.
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Lastly, letting ϵ̄i(k + t) be the trajectory stemming from (ϵ̄∗
i (k), δu∗

i (k)), and the
prediction dynamics (8.62), the reference trajectories to be used in the next time
instant k + 1 are incrementally updated by appending the values

ϵ̂i(k +N) = ϵ̄i(k +N), and δûi = −Kiϵ̄i(k +N) (8.90)

to the reference trajectories previously defined for k + t ≤ k +N − 1.

Convergence results

In the following presentation, the notation x(1 : N) is the column vector

x(1 : N) =


x(1)

...
x(N)

 . (8.91)

To prove the convergence properties of the proposed algorithm, we make use of results
from [70]. First the set of admissible initial conditions ϵ(k) = (ϵ1(k), . . . , ϵM(k)) and
initial reference trajectories ϵ̂j(k : k +N − 1), δ̂uj(k : k +N − 1), for all j = 1, . . . ,M
are defined as follows.
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Definition 5. Letting ϵ = (ϵ1, . . . , ϵM), we define the feasibility region, ΞN for all the
Pii optimal control problems as the set

ΞN ≜

ϵ : if ϵi(k) = ϵi for all i = 1, . . . ,M then

∃


ϵ̂1(k : k +N − 1)

...
ϵ̂M(k : k +N − 1)

 ,

δ̂u1(k : k +N − 1)

...
δ̂uM(k : k +N − 1)

 ,

ϵ̄1(k)

...
ϵ̄M(k)

 ,

δ̄u1(k : k +N − 1)

...
δ̄uM(k : k +N − 1)


such that (8.23) and the following constraints :

ϵi(k) − ϵ̄i(k) ∈ Ei

ϵ̄i(k) − ϵ̂i(k) ∈ Mi ⊖ Ei,

δūi(k) − δûi(k) ∈ Ni ⊖ KiEi,

ϵ̄i(k) ∈ Ḡi,

ϵ̄i(k +N) ∈ Ḡf,i

are satisfied for all i = 1, . . . ,M
.

(8.92)

We also denote, for each ϵ ∈ ΞN , the region of feasible initial reference trajectories as
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Ξ̂N ≜



ϵ̂1(k : k +N − 1)

...
ϵ̂M(k : k +N − 1)

 ,

δ̂u1(k : k +N − 1)

...
δ̂uM(k : k +N − 1)

 :

if ϵi(k) = ϵi for all i = 1, . . . ,M then

∃


ϵ̄1(k)

...
ϵ̄M(k)

 ,

δ̄u1(k : k +N − 1)

...
δ̄uM(k : k +N − 1)


such that (8.23) and the following constraints :

ϵi(k) − ϵ̄i(k) ∈ Ei

ϵ̄i(k) − ϵ̂i(k) ∈ Mi ⊖ Ei,

δūi(k) − δûi(k) ∈ Ni ⊖ KiEi,

ϵ̄i(k) ∈ Ḡi,

ϵ̄i(k +N) ∈ Ḡf,i

are satisfied for all i = 1, . . . ,M
.

(8.93)

Assumption 25. Letting

E =
M∏

i=1
Ei, Ḡ =

M∏
i=1

Ḡi, and Ḡf =
M∏

i=1
Ḡf,i (8.94)

it holds that

(i) Assumption 21 is satisfied.

(ii) Ḡf ⊆ Ḡ is an invariant set for ϵ̄(k + 1) = (A − BK)ϵ̄.

(iii) δū = −Kϵ̄ for any ϵ̄ ∈ Ḡf .

(iv) for all ϵ̄ ∈ Ḡf ,
Vf (ϵ̄(k + 1)) − Vf (ϵ̄(k)) ≤ −l(ē(k), δū), (8.95)

where

Vf (ϵ̄(k)) =
M∑

i=1
Vf,i(ϵ̄i(k)) and l(ē(k), δū) =

M∑
i=1

li(ēi(k), δūi(k)). (8.96)
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(v) The constraint ϵ̄ ∈ Ḡ is satisfied.

Assumption 25 (ii) and 25 (iv) are standard in stabilizing MPC algorithms, while
Assumption 25 (v) ensures the velocity dynamics satisfies the constraints on x and u.

Assumption 26. Given the sets Mi, Ni and the RPI sets Ei, there exists a real
positive constant ρ̄E > 0 such that Ei ⊕ Bρ̄E

(0) ⊆ Mi and KiEi ⊕ Bρ̄E
(0) ⊆ Ni for all

i = 1, . . . ,M where Bρ̄E
(0) is a ball of radius ρ̄E > 0 centred at the origin.

We now state the main convergence result;

Theorem 8.3.2. Let the Assumption 25 and 26 be satisfied and let Mi and Ni be
neighbourhoods of the origin. Then, for any initial reference trajectories in Ξ̂N , the
states ϵ(k + t), starting from any initial condition ϵ(k) ∈ ΞN , asymptotically converges
to the origin, and as a result the inputs and outputs (u, y) of the large scale system
(8.1) converges to a steady-state equilibrium that approximates the optimal solution
z∗(w) of the steady-state optimization problem (8.6) by a margin of error that depends
on the size of the RPI set E.

Proof. The proof can be easily adapted from [70] to the velocity formulation used in
this chapter.

8.4 Conclusion

We have presented distributed model predictive control algorithms for the feedback
optimization of large scale linear systems with unknown disturbances, and a quadratic
steady-state optimization problem. To avoid the excessive communication common to
iterative approaches, a non-iterative robust MPC approach was adopted. Theoretical
analysis have shown that the developed algorithms converge to a neighbourhood of the
optimal steady-state solution. Future work will focus on improving the performance of
the algorithms, relaxing the requirement for constant disturbances and illustrating the
algorithms with applications.



Chapter 9

Feedback Optimizing Model
Predictive Load-Frequency Control
for Real-time Economic Dispatch

In this chapter, a feedback optimizing model predictive load-frequency control (FOM-
PLFC) algorithm will be developed for real-time economic dispatch in power systems.
We begin the chapter by reviewing the problem of real-time economic dispatch in
load-frequency control. This problem is also referred to as the optimal load-frequency
control problem. We then go on to present a detailed frequency control dynamics
for a power system network. Next we formulate the optimal load frequency control
problem in the language of feedback optimizing MPC and then proceed to develop the
associated solution to the problem by applying the FOMPC algorithms developed in
earlier chapters. Lastly, the performance of the controller is evaluated using numerical
examples and comparisons to state-of-the-art control algorithms are made.
This chapter is structured as follows: Section 9.2 presents the multi-area power system
model and describes the economic dispatch problem. Section 9.3 formulates the prob-
lem of real-time economic dispatch as a feedback-optimizing model predictive LFC
(FOMPLFC) problem. Section 9.4 presents a solution to the FOMPLFC problem with
the associated theoretical guarantees discussed. In section 9.5, numerical simulation
studies of the FOMPLFC controller and other state-of-the-art LFC control algorithms
are discussed using a two-area power system example. Section 9.6 concludes the
chapter.
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9.1 Introduction

The foremost objective in a power system is the reliable and cost-efficient supply of
power to meet projected demand. Conventional power systems utilize a combination
of load-frequency control (LFC) and economic dispatch (ED) operating at different
timescales to achieve this objective. While ED numerically computes economically
optimal set-points from demand projections, LFC tracks these set-points using feedback
control. ED operates at slower timescales compared to the real-time operation of LFC.
Due to the uncertainty and variability of demand, the set-points computed by ED may
be suboptimal. In traditional power systems, the demand is predictable with small
fluctuations that only occur at the frequency control timescale. Therefore, rejecting this
fluctuation using load-frequency control results in economically optimal power system
operation using the traditional hierarchical frequency control structure [106, 22].
With increased penetration of renewable generation and demand-responsive loads,
future power systems will have reduced inertia, with faster, larger, and less predictable
power fluctuations (uncontrollable load minus intermittent generation). Also, these
fluctuations may occur across both the frequency control and economic dispatch
timescales [165]. Consequently, multi-time scale dynamics are introduced into the
power system, making it difficult to separate economic dispatch from real-time frequency
control. The operation of ED and LFC at different timescales may therefore no longer
guarantee economically efficient power system operation. As a result, novel control
schemes that simultaneously achieve economic dispatch and frequency regulation
without timescale separation are required.

In practice, this problem has been addressed by performing the economic dispatch
computations closer to the timescale of frequency control. However, this approach
can be computationally intensive, lacking in robustness, and may not guarantee the
stability of the closed-loop power system [88, 37].
Recently, the interest in developing control schemes that simultaneously satisfy the
objectives of ED and LFC without timescale separation or explicit numerical solution
to an ED problem has increased dramatically [55, 160]. This interest has been chiefly
motivated by the evolution of power systems into intelligent grids with increased
renewable generation, responsive demand, and a deregulated system operation. Indeed,
the field of optimal load-frequency control has recently emerged to classify all control
schemes addressing this issue. In recent studies, the goal has been to autonomously
solve the economic dispatch problem using the feedback loop of the load frequency
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controllers without explicit numerical computation [55, 160]. For most of the proposed
solutions, autonomous economic dispatch is achieved in the frequency control loop
by the direct implementation of the optimization algorithms for solving the economic
dispatch problem as dynamic controllers [55, 160]. One limitation of these approaches
is that the power system dynamics are not considered in the control design, assuming
a pre-stabilized power system. Therefore, the only dynamics considered by these
studies are those induced by the online optimization algorithms. With sufficient
timescale separation, these controllers have worked perfectly [156, 88]. However, as
the timescale between the optimization dynamics and the system dynamics decreases,
it has been shown in [88] that the stability of the closed-loop system can become
compromised. In particular, sudden changes might lead to drastic fluctuation in the
frequency dynamics, causing poor dynamic performance, economic losses, or even loss
of closed-loop stability.
There is currently very little literature on control algorithms that simultaneously
achieve economic dispatch and frequency regulation without explicit computation of
the ED set-points while guaranteeing feasibility and good transient performance. In
the following, we review recent efforts at addressing this gap.
The authors in [167, 128, 129] developed a feedback control algorithm that steers an
LTI system to the optimum of a steady-state optimization problem (e.g., economic
dispatch). The control algorithm provided closed-loop stability guarantees without
resorting to timescale separation assumptions. However, the authors did not consider
the dynamic performance or constraints satisfaction in transient operation. To address
this gap, [113] presented an LFC algorithm for a multi-area power system based on
distributed economic model predictive control. Although convergence to the economic
dispatch solution was guaranteed, the algorithm was computationally expensive. It also
required explicit estimation of the unknown disturbances. Also, stability guarantees
required passivity assumptions on the power system dynamics (which is hard to satisfy
for power systems with second-order turbine-governor dynamics [211]). It is worth
noting that the passivity assumptions made in [113] were used to guarantee closed-loop
stability in the economic MPC scheme and did not make the algorithm plug and play. In
[201], the author proposed an economic optimizing model predictive control algorithm
based on a multi-objective function approach incorporating both the economic dispatch
and the frequency control performance objectives. The algorithm, however, suffers
from a trade-off between economic optimality and dynamic performance. Also, the
algorithm provided no stability and recursive feasibility guarantees. It is clear from the
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literature that opportunities exist for the design of load-frequency control algorithms
that:

1. are both frequency stabilizing and economically dispatching,

2. do not explicitly compute the economic dispatch set-points,

3. achieve optimal dynamic performance with recursive feasibility for the inequality
constraints, and

4. easily establish closed-loop performance guarantees.

We propose a load-frequency control algorithm based on feedback-optimizing MPC to
address the above gaps in this chapter. The proposed controller is optimal (in the tran-
sient performance), recursively feasible and achieves economic dispatch autonomously
via the feedback loop of the load-frequency controller. No timescale separation or
explicit online economic optimization is required. We formulate our MPC algorithm by
replacing the tracking error in a standard tracking MPC algorithm with the residual
of the Karush–Kuhn–Tucker (KKT) optimality conditions of the ED problem. Our
MPC-based LFC algorithm is guaranteed to converge to the optimum of the ED
problem without advanced knowledge of the load disturbances or numerically solving
the ED problem. Also, the algorithm is guaranteed to satisfy the power system inequal-
ity constraints (thermal line and capacity limits). In the absence of hard inequality
constraints, the controller reduces to a static optimal control law (e.g., linear quadratic
control laws), altogether eliminating online optimization. Furthermore, a vital benefit
of the proposed controller compared to online dynamic economic optimal control (e.g.,
Economic MPC) is that tracking the economic dispatch set-points is possible without
measuring or estimating the disturbances.

9.2 Power System Model, Load Frequency Control
and Economic Dispatch

9.2.1 Multi-Area Power System Model [121, 22]

Consider a transmission level network with arbitrary topology described by a weighted
directed graph G = (N ,E ,W ), where N = {1, . . . , i, . . . N} is the set of nodes or
control areas and E ⊆ N × N is the set of edges or tie-line interconnection between
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the nodes. The set W contains the weights of the edges E i.e W = {Tij, ∀(i, j) ∈ E }
where Tij

[
pu MW/Hz

]
is the synchronizing coefficient of the edge/tie-line (i, j) ∈ E .

The neighbourhood set of the node i is denoted by Ni. For the transmission graph
G , the graph Laplacian LG contains the topology information in G . For a connected
graph, the reduced graph Laplacian L r

G contains as much information as the Laplacian
while being nonsingular. Each node is assumed to have a single generator, demand
responsive load, and uncontrollable load.

Assume that the power network is working around a nominal equilibrium which
is determined by an ED problem at a slower timescale. As common in power system
control at the transmission level, we make the following assumptions [22].

Assumption 27. The voltage magnitudes are fixed at all nodes, i.e. vi ∀i ∈ N
are constant. The transmission lines are of negligible resistance and reactive power
injections and flows are omitted.

With Assumption 27 in place, the power network is modelled using the swing
dynamics [22]. For all i ∈ N ,

Hiḟi = Pm
i − P dr

i −Difi − P tie
i − wi, (9.1a)

where fi [Hz], Pm
i [pu MW ], P dr

i [pu MW ] and wi [pu MW ] are respectively the
deviation in frequency, mechanical power output, controllable demand, and the net
load (uncontrollable load minus intermittent generation) in node i. The net tie-line
power flow dynamics for node i is given by

Ṗ tie
i =

∑
j∈Ni

Tij(fi − fj) (9.2)

where P tie
i is the power flow on the tie-line (i, j) ∈ E .

Remark 50 (Accuracy of swing dynamics). The swing equation in (9.1) is a popularly
adopted model used to approximate the actual non-linear power system dynamics
when the power system is operating around the vicinity of a previous economic dispatch
setpoint. This setpoint is usually obtained by solving a more complex alternating current
optimal power flow (ACOPF) problem at a much slower timescale. In [38], the validity
of the swing equation as a good approximation of the power system frequency dynamics
was investigated and it was observed that for small deviation from the ACOPF operating
points, the swing equation accurately captures the dominant frequency dynamics of the
power system under load changes.
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Turbine Dynamics

The turbine dynamics in the ith node is given for a non-reheat turbine by,

Ṗm
i = − 1

τt,i

Pm
i + 1

τt,i

P v
i (9.3)

where τt,i and P v
i [pu MW ] are the turbine charging time constant and the change in

governor valve position for the generator in node i respectively.

Governor Dynamics

The governor dynamics in the ith node is,

Ṗ v
i = − 1

τv,i

P v
i + 1

τv,i

um
i − 1

τv,iri

fi. (9.4)

Here ri

[
Hz/pu MW

]
and τ v

i are respectively the droop coefficient and speed-governor
time constant of the generator in the ith node/control area. The control input um

i is
traditionally obtained from the load-reference set-point ui for the ith control area via
the generation participation factor αm

i i.e.,

um
i = αm

i ui. (9.5)

Demand Response Dynamics

Demand response (DR) has been identified as a cost efficient alternative to generator
based spinning reserve. To simplify the integration of DR into the grid, load aggregation
companies (LAGCOs) manage and combine several DR capacity into a single aggregate
DR load. To achieve demand response in LFC, the grid operator utilizes the demand
set-point command, udr

i to modify the demand of LAGCOs in node i. Load aggregation
allows the demand response dynamics to be approximated for small time delays with a
first order model [176, 192] as shown below.

P dr
i (t+ τ dr

i ) = udr
i (9.6)
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where τ dr
i is the LAGCO time constant and is usually due to delays in computation

and communication. Using Taylor’s series, we can express (9.6) as,

P dr
i (t+ τ dr

i ) = P dr
i (t) + τ dr

i Ṗ dr
i (t) +

∑
q∈[2,∞]

(τ dr
i )q

q!
dq{P dr

i (t)}
dtq

(9.7)

and for small time delays i.e τ dr
i ≪ 1,

lim
q→∞

∑
q∈[2,∞]

(τ dr
i )q

q!
dq{P dr

i (t)}
dtq

= 0. (9.8)

Therefore (9.6) is approximated by the first order dynamics

Ṗ dr
i = − 1

τ dr
i

P dr
i + 1

τ dr
i

udr
i . (9.9)

The control input udr
i is derived from the load-reference set-point ui for the ith control

area via the demand participation factor αdr
i i.e.,

udr
i = αdr

i ui. (9.10)

Area Control Error (ACE)

To restore both the frequency and inter-area power flows in a node to their respective
nominal values, it is conventional to regulate the area control error (ACE) to zero. The
ACE for node i is given by,

ACEi = βifi + P tie
i , ∀i ∈ N (9.11)

where βi is the frequency bias coefficient of node i. The measurable output, y ∈ Rp of
the power network consists of the area control error, ACEi for all nodes in the power
network.
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System constraints

The power system network is subject to the following inequality constraints on the
generation, demand response and line flows:

Pm
i ≤ Pm

i ≤ P
m

i , (9.12a)
P dr

i ≤ P dr
i ≤ P

dr

i , (9.12b)
P tie

i ≤ P tie
i ≤ P

tie

i . (9.12c)

The control inputs um and udr are also upper- and lower-bounded.

State-space dynamics

The (centralized) state space model for the complete power system is

ẋ = Acx+Bcu+ Ecw, (9.13a)
y = Ccx (9.13b)

where

x :=
[
P tie f Pm P v P dr

]⊤
∈ RNn,

u :=
[
um udr

]⊤
∈ RNm,

y := ACE ∈ RNp,

and where a variable without subscripts denotes the vector of variables corresponding
to each node; for example, f := [fi]i∈N .

Finally, we write the constraints as

u ∈ U ⊆ Rm := {u : Puu ≤ qu},

x ∈ X ⊆ Rn := {x : Pxx ≤ qx}.
(9.14)

9.2.2 Real-time Multi-Area Economic Dispatch

Assume the power network is operating around a nominal equilibrium determined by an
ED problem solved at a slower timescale. Let a constant disturbance wi, ∀i ∈ N occur
in real-time, say due to unknown variation in renewable generation or unpredicted load
changes. Then by means of LFC, the generators and controllable loads are made to
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adjust their power generation Pm
i , ∀i ∈ N and consumption P dr

i , ∀i ∈ N respectively
in order to restore the grid frequency in the most economically efficient manner.
Traditionally, changes in wi are assumed very subtle and therefore the equilibrium from
a previous ED operation to a large extent remains economically optimal. However,
with larger and faster changes in wi, there is need to achieve economic re-dispatch in
LFC. To this end, we define the following multi-area ED problem for the LFC,

min
P tie,P m,P dr

−Φ(Pm, P dr) =
∑
i∈N

Ci(Pm
i ) −

∑
i∈N

Ui(P dr
i ) (9.15a)

s.t. Pm
i − P dr

i − P tie
i − wi = 0, ∀i ∈ N (9.15b)

where Φ(Pm, P dr) is the social welfare of the power network, Ci(Pm
i ) = 1

2qi(Pm
i )2 +

riP
m
i + si the generator cost function and Ui(P dr

i ) = 1
2 q̃i(P dr

i )2 + r̃iP
dr
i + s̃i the utility

function for controllable loads in node i. We make the following assumption about
problem (9.15).

Assumption 28. Problem (9.15) is feasible for the equality constraint (9.15b), each
Ci(Pm

i ) is a strictly convex function in Pm
i and each Ui(Pm

i ) is a strictly concave
function in P dr

i .

9.3 Problem Statement and Preliminaries

This section develops and analyzes predictive control algorithms for autonomously
driving the outputs/inputs of representative power system models to steady-states
that are both frequency regulating and equilibrium optimizing, according to a defined
economic dispatch optimization problem. The developed algorithms should be robust
to additive disturbances resulting from model and demand uncertainties while also
guaranteeing dynamic optimality and feasibility. We achieve this by applying the
feedback optimizing model predictive control algorithms developed previously to design
the load frequency control algorithms for the power system models presented above.
To proceed, we discretize the continuous-time power system model (9.13) using a
zero-order hold method with a sampling interval of 0.1 seconds to obtain the discrete
time model,

x(k + 1) = Ax(k) +Bu(k) + Ew(k), y(k) = Cx(k) (9.16)
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where A,B,E and C are the discrete-time equivalents of the continuous-time state-space
matrices Ã, B̃, Ẽ and C̃ respectively.

Remark 51. Although an exact discretization of the centralized dynamics is adopted
here, this will remove the sparsity/structure of the power system. An inexact discretiza-
tion such as the method proposed in [69] will preserve the system structure but at the
expense of accuracy. Because the FOMPC controller developed here is centralized, the
structure of the power system is not relevant to the control design and therefore the
issue of inexact discretization is beyond the scope of the present discussion.

Given the power system dynamics (9.16) and a constant disturbance w(k) = w̄, a
forced steady-state equilibrium is given by,

Ax̄+Bū+ Ew̄ = x̄, ȳ = Cx̄ (9.17)

with the steady-state input–output map

ȳ = Guū+Gww̄ (9.18)

where Gu := C(In −A)−1B and Gw := C(In −A)−1E are the DC gains of the discrete-
time system power system network (9.16) and the quantities with an over-bar represent
steady-state values.

We make the following assumption about the discrete-time dynamics (9.16).

Assumption 29 (Basic assumptions).

1. the dynamics (9.16) are reachable and observable.

2. the state x(k) is measurable at every sampling instant.

3. p ≤ m.

For the multi-area ED problem (9.15), the constraint (9.15b) is the power flow
balance for all nodes and is satisfied at any steady-state equilibrium of the power
system network. The cost function (9.15a) can also be expressed compactly as,

−Φ(ū) = 1
2 ū

⊤Qū+R⊤ū+ s (9.19)
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where

Q = Γ⊤
mQmΓm − Γ⊤

drQdrΓdr, R = Γ⊤
mRm − Γ⊤

drRdr, s = 1
⊤
Nsm − 1

⊤
Nsdr,

Γm = blkdiag(αm
1 , . . . , α

m
N), Γdr = blkdiag(αdr

1 , . . . , α
dr
N ), sm = [si]∀i∈N sdr = [s̃i]∀i∈N ,

Rm = [ri]∀i∈N , Rdr = [r̃i]∀i∈N , Qm = blkdiag(q1, . . . , qN), Qdr = blkdiag(q̃1, . . . , q̃N).
(9.20)

9.3.1 The Feedback Optimizing Model Predictive Load Fre-
quency Control (MPLFC) Problem

For a step change in w = (wi)i∈N , the power imbalance causes frequency and tie-line
deviation from the nominal values. The power imbalance due to the step changes
in w will be eliminated through the adjustment of Pm and P dr for all nodes using a
centralized LFC regulator. Precisely, the feedback optimizing model predictive load
frequency control (MPLFC) problem is defined next.

Problem 8 (The MPLFC Problem). Design for the linear time-invariant power
system (9.13), a state feedback load-frequency control law

u(k) = κLF C(x(k), u(k − 1)) (9.21)

such that for any constant admissible w̄ ∈ W:

1. the ACEi is driven to zero for all i ∈ N ,

2. the control inputs Pm and P dr maximizes the social welfare Φ(Pm, P dr) in real
time,

3. the feedback policy κLF C(·, ·) minimizes a transient performance criterion and,

4. the constraints (9.14) are satisfied at all times.

Parts (1) and (2) of the MPLFC problem are solved via the static optimization
formulation,

min
ū,ȳ

−Φ(ū) (9.22a)

s.t. ȳ −Guū−Gww̄ = 0, (9.22b)
ȳ = 0. (9.22c)
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The equality constraint (9.22c) is added to achieve zero ACE in the optimal steady-
state and therefore regulate the frequency and inter-area power flow to their respective
nominal values. If Assumption 28 is satisfied, then problem (9.22) is convex and
feasible, and a unique minimizer (ū∗, ȳ∗) exists for every disturbance w̄. The third
control goal is achieved by designing a model predictive control law to track the optimal
solution of problem (9.22) while rejecting the unknown step disturbance w̄.

Remark 52 (Optimization problem encodes AGC). Because the economic dis-
patch problem 9.22 is formulated to encapsulate the objectives of conventional automatic
generation control (AGC), the optimal closed-loop performance of the power system
frequency dynamics is expected to replicate the exact performance of AGC. This will be
seen in the simulation results.

However, if the goal is to obtain a different performance from conventional AGC,
then this should be defined in the optimization problem. For instance, if an LFC scheme
that encourages economics/price-based control is desired, the constraint y = ACE = 0
should be replaced by y = f = 0. In this case, the ACE will no longer be forced to
zero but to values that result in economically optimal flow of power between the control
areas. This will be demonstrated in the simulation studies.

9.3.2 Karush-Kuhn-Tucker (KKT) Optimality Conditions

To design the MPLFC law that solves the optimization problem (9.22) in feedback, we
first examine the necessary conditions for optimality of the problem. To handle the
equality constraint (9.22c), we reformulate (9.22) as,

min
ū,ȳ

−Φ(ū) + 1
2 ȳ

⊤Πȳ (9.23a)

s.t. ȳ −Guū−Gww̄ = 0. (9.23b)

where 1
2 ȳ

⊤Πȳ is a positive definite function of ȳ and adds a penalty to the cost Φ(ū)
on violation of the equality constraint (9.22c). Defining z̄ =

[
ū ȳ

]⊤
, the static

optimization problem (9.23) can be written compactly as,

min
z̄

Φ̃(z̄) = 1
2 z̄

⊤Qzz z̄ +R⊤
z z̄ + s (9.24a)

s.t. Gz̄ −Gww̄ = 0p. (9.24b)
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where Qzz =
 Q 0m×p

0p×m Π

, Rz =
[
R 0p

]⊤
and G =

[
−Gu Ip

]
. Problem (9.24) is

a convex optimization problem and strong duality holds [33]. Therefore, the Karush–
Kuhn–Tucker (KKT) conditions are necessary and sufficient for optimality. We obtain
the KKT conditions for (9.24) by forming the corresponding Lagrangian,

L(z̄, λ) = Φ̃(z̄) + λ⊤(Gz̄ −Gww̄) (9.25)

where λ is a multiplier of appropriate dimension. The corresponding KKT optimality
conditions are

∇L(z̄, λ) =
∇Φ̃(z̄) +G⊤λ

Gz̄ −Gww̄

 = 0m+2p. (9.26)

The optimum z̄∗ of problem (9.24) must satisfy the KKT system of equations in (9.26).
Solving (9.26) however requires a knowledge of w̄ which is assumed unknown a priori.
To circumvent this, we express (9.26) in the following subspace form [24]:

∇L(z̄, λ) = 0m+2p ⇐⇒

∇Φ̃(z̄) ∈ range(G)⊤

Gz̄ −Gww̄ = 0p

 (9.27)

By a fundamental theorem of linear algebra, range(G)⊤ = null(G)⊥, and therefore

∇Φ̃(z̄) ∈ range(G)⊤ ⇐⇒ ∇Φ̃(z̄) ∈ null(G)⊥. (9.28)

Therefore, let G̃ be any full-rank matrix such that,

G̃G⊤ = 0 or range(G̃)⊤ = null(G). (9.29)

Remark 53. For the model (9.16) with the steady-state input-output map (9.18)
( i.e., the case of non-singular (In − A), the matrix

G̃ =
[
(G⊤

u )† Ip

]
(9.30)

satisfies (9.29).

Remark 54. For the power system (9.16), (G⊤
u )† depends on the connection topology

of the nodes/control areas in the power network which is encapsulated in the Laplacian
matrix (LG ) of the power network graph G.
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With this, the KKT optimality condition (9.26) becomes

∇L(z̄, λ) =
 G̃∇Φ̃(z̄)
Gz̄ −Gww̄

 = 0m+2p. (9.31)

It follows that z̄ is optimal with respect to problem (9.24) if, and only if, it satisfies
(9.31). This establishes the following result, which—similar to [128]—allows the the
steady-state equilibrium optimization problem to be posed as a stabilization problem.

Proposition 6. Part (1) of the LFC problem is solved if, from any initial state
x(0) = x0 and any disturbance w̄, the control law

u(k) = κLF C(x(k), u(k − 1)) (9.32)

is such that z(k) = (u(k), y(k)):

1. is regulated to a steady-state equilibrium, and,

2. satisfies limk→∞ G̃∇Φ̃(z(k)) = 0m+p.

Proof. Condition (1) is satisfied if and only if Gz̄ −Gww̄ = 0, which is necessary and
sufficient for equilibrium. Condition (2) implies, and is implied by, the KKT conditions
(9.31) being met in the limit, which is necessary and sufficient for optimality.

9.4 Feedback-Optimizing Model Predictive Load
Frequency Control

In this section, based on the results of Proposition 6, we construct an MPC controller
to regulate the tracking error, G̃∇Φ̃(z(k)) to zero, and consequently solve problem 8
without knowledge of z̄∗ or w̄. Using the velocity model form of the linear quadratic
optimal control problem [172], we develop an MPC formulation that steers the power
system network asymptotically and admissibly to the economically optimal steady-state
equilibrium, without knowledge of this equilibrium and while minimizing a LQ transient
performance criterion.
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9.4.1 Tracking error

Instead of defining and regulating the tracking error as the difference between z(k) and
the unknown optimum z∗(k), we define the tracking error as the residual of the KKT
optimality condition (9.31). For the cost function Φ̃(z̄), under inactive steady-state
inequality constraints and non-singular (In − A), the tracking error G̃∇Φ̃(z(k)) is an
affine function of the measured output and input and is given by,

e(k) := G̃∇Φ̃(u(k), y(k)) = Λuu(k) + Λyy(k) + r (9.33)

where Λu = (G⊤
u )†Q, Λy = Π and r = (G⊤

u )†R.

Remark 55. In the tracking error given by (9.33), Λuu(k) + r = (G⊤
u )†(Qu + R)

is related to the marginal cost differences between neighbouring control areas while
Λyy(k) = Πy(k) is related to the area control error of the power network.

This error may be computed directly from the input u(k) and output y(k), provided
the objective Φ(u(k)) and the input–output DC gain matrix Gu is known. This choice
therefore eliminates the need for knowledge of the optimal equilibrium z̄∗ and the
disturbance w̄.

9.4.2 Feedback optimizing model predictive load-frequency
control (MPLFC) formulation

To regulate the power system (9.13) to e = 0 and therefore simultaneously achieve
frequency regulation and economic dispatch, we express the power system model (9.16)
in velocity form and formulate the model predictive load-frequency control problem
following the same design approach as the nominal feedback optimizing model predictive
control presented in Chapter 6. Solution of the optimal control problem ((6.14),(6.15)
and (6.16)), followed by the application of the first control in the optimized sequence,
yields the MPLFC control law,

u(k) = u(k − 1) + κNp(ϵ(k)).

9.4.3 Stability and Performance Guarantees

For the following analysis, we assume that the disturbance w̄ stays constant (otherwise
steady-state operation is not well defined). The following result summarizes the
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stability and recursive feasibility of the MPLFC algorithm, and follows directly from
well established results on conventional linear MPC [181] and the efforts of earlier
chapters.

Theorem 9.4.1 (Stability and feasibility). The control law u(k) = κLF C(x(k), u(k −
1)) = u(k − 1) + κNp(ϵ(k)) solves the MPLFC problem, (8).

9.5 Numerical Simulation

In this section, we present the design and simulation of the MPLFC algorithm above
for the 2-area power system model described in example 12.4 in [186] (see Figure
9.1). We compare the results obtained with a conventional MPC based LFC and a
centralized version of the distributed averaging PI (DAPI) control algorithm from [229].
All simulations are done using the linear model presented in Section 9.2.1.

G2G1

w1 w2

Pij

DR1 DR2

Area 1 Area 2

Fig. 9.1 2-area power system

Table 9.1 Power system model parameters

Area,i Hi τt,i τv,i τ dr
i αm

i αdr
i βi Tij Di

1 10 0.5 0.2 1 0.5 0.5 20.6 2 0.6
2 8 0.6 0.3 1 0.5 0.5 16.9 2 0.9

Table 9.2 Power system cost parameters

Area,i qi ri si q̃i r̃i s̃i

1 1 0.5 0 0.1 0.1 0
2 0.5 0.8 0 0.5 0.1 0
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The parameters shown in Table 9.1 result in the continuous-time linear power
system frequency dynamics in (9.13) with the following coefficient matrices,

Ac =



0 0 2.000 −2 0 0 0 0 0
−0.1 −0.06 0 0.1 0 0 0 0.1 0
0.125 0 −0.1125 0 0.1250 0 0 0 0.1250

0 0 0 −2.00 0 2.00 0 0 0
0 0 0 0 −1.667 0 1.667 0 0
0 −100 0 0 0 −5.00 0 0 0
0 0 −53.333 0 0 0 −3.333 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1.00



,

(9.34)

Bc =



0 0
0 0
0 0
0 0
0 0

2.50 0
0 1.6667

0.500 0
0 0.500



, Ec =



0 0
−1.0 0

0 −0.125
0 0
0 0
0 0
0 0
0 0
0 0



, (9.35)

and

Cc =
 1.00 20.60 0 0 0 0 0 0 0
−1.00 0 16.90 0 0 0 0 0 0

 . (9.36)

The system is stabilizable and observable, meeting Assumption 6. The disturbance
w(t) is unknown but constant (or slowly varying). The following inequality constraints
are present on the input, output and disturbances;

U := {u : −5I2 ≤ u ≤ 5I2} ,

Y := {y : −2I2 ≤ y ≤ 2I2} ,

W := {w : −2I2 ≤ w ≤ 2I2} .

(9.37)

The following disturbance scenarios will be utilized in subsequent discussions :
Scenario I (Step):

w(t) =
[
0.4 0

]⊤
, 5 ≤ k < 55 (9.38)
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Scenario II (Time-varying):

w(t) =



[
0.4 0

]⊤
5 ≤ t < 55,[

0 0.9
]⊤

55 ≤ t < 105,[
1.5 0.1

]⊤
t ≥ 105.

(9.39)

The objective function for the steady-state economic dispatch problem, derived from

the social welfare using the cost parameters in Table 9.2 and a penalty of Π =
π1 0

0 π2


on each output of the power system is expressed in the form of equation (9.24) and is
shown in (9.40) below:

Φ(z) = 1
2

u
y

T


0.2250 0 0 0

0 0.1125 0 0
0 0 π1 0
0 0 0 π2


u
y

+


0.20
0.35

0
0



⊤ u
y

 (9.40)

9.5.1 Traditional MPC based LFC design

Traditionally, the control input u for the 2-area power system in (9.13) is designed
using a tracking MPC formulation with the primary goal of regulating the output, y,
which is the area control error (ACE) to zero.
Therefore, a tracking MPC based LFC algorithm will be designed in this subsection
based on the following tracking velocity model of the power system dynamics in (9.13).

ϵ̄(k + 1) = Āϵ̄(k) + B̄δū(k), (9.41a)
ē(k) = C̄ϵ̄(k) (9.41b)

where

ϵ̄(k) :=
 δx(k)
ē(k − 1)

 with
δx(k) := x(k) − x(k − 1),
δu(k) := u(k) − u(k − 1),

(9.42)

and

Ā =
A 0
C Iny

 , B̄ =
B

0

 , C̄ =
[
C Iny

]
. (9.43a)
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Here ē(k) = ACE = y(k) and the matrices (A,B,C) are the discrete-time equivalent
of the continuous-time system matrices (Ac, Bc, Cc). A zero-order-hold method was
used to discretize the power system dynamics with a sampling interval of 0.1s.

Remark 56 (Note). To differentiate the velocity dynamics used for the tracking MPC
based LFC formulation presented in this subsection from the velocity dynamics used in
a subsequent subsection for the feedback optimizing model predictive LFC design, an
overbar has been used.

Given the tracking error and tracking velocity model, the MPC-based LFC law
applied to the power system is given by

u(k) = u(k − 1) − κ̄Np(ϵ̄(k)) (9.44)

where κ̄Np(ϵ̄(k)) is the first control move to the optimal control sequence δū∗(k)
computed at time k by solving the following OCP,

P(ϵ̄(k)) : min
δū(k)∈UNp

VNp(ϵ̄(k), δū(k)) (9.45)

where the feasible region UNp(ϵ̄(k)) is defined as

UNp(ϵ̄(k)) ≜

δū(k)

∣∣∣∣∣∣∣∣∣∣
ϵ̄(k + i+ 1) = Āϵ̄(k + i) + B̄δu(k + i), ∀i ∈ I[0,Np−1]

ϵ̄(k + i) ∈ Ḡ, ∀i ∈ I[0,Np−1]

ϵ̄(k +N) ∈ Ḡf

 (9.46)

and the performance objective is defined as

VNp(ϵ̄(k)) = 1
2∥ϵ̄(k +Np)∥2

P̄ + 1
2

Np−1∑
i=0

(
∥ē(k + i)∥2

Q̄e
+ ∥δū(k + i)∥2

R̄

)
(9.47)

where Q̄e ⪰ 0, R̄ ≻ 0 and P̄ ≻ 0 is the stabilizing positive definite solution to
discrete-time algebraic Riccati equation

P̄ = Ā⊤P̄Ā + C̄⊤Q̄eC̄ − Ā⊤P̄B̄
(
R̄ + B̄⊤P̄B̄

)−1
B̄⊤P̄Ā. (9.48)

The matrices Ḡ and Ḡf are computed following the steps outlined in Chapter 6 except
that the tracking velocity model parameters (Ā, B̄, C̄) are used in place of (A,B, C)
and the following substitution, Λy = Ip, Λu = D = 0 and r = 0 are made.
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Remark 57. One major limitation of this MPC based LFC design is that it does
not utilize economic information to improve the efficiency of load frequency control in
real-time. Therefore, it might suffer some efficiency loss under significant load changes
and model uncertainty. This will be evident in the simulation studies.

The LFC performance under the tacking MPC controller designed above is discussed
in the following subsections.

Case I: LFC using tracking MPC under step disturbance

After 5 seconds, a step disturbance of w1 = 0.4p.u was applied to control area 1. The
load-reference setpoints u for both control areas are generated at each sample time k
by solving the MPC problem (9.45) and applying the centralized control law (9.44) to
both control areas.
Figure 9.2 shows the inputs (load-reference setpoints) and outputs (area control error,
ACE) for both control areas. As seen in the figure, the tracking MPC regulates the
ACE to zero with good dynamic performance. Also, as evident from Figure 9.3, the
frequency deviation is driven to zero, also with very good dynamic performance.

From the input-output performance of the tracking MPC shown in Figure 9.2, it is
observed that although the tracking MPC was not designed to be feedback optimizing,
it still tracks the optimal economic dispatch set-points (dashed lines). A reason for
this is that the economic dispatch problem in (9.22) was formulated to achieve AGC
or tie-line bias control at optimality. Therefore, any controller designed based on the
tie-line bias control strategy (i.e., driving the ACE to zero), will result in the same
steady-state equilibrium as those obtained by solving problem (9.22). This is why
the tracking MPC controller could track the solution of the optimization problem
without being designed to be feedback optimizing. However, as will become clear later,
encoding tie-line bias control in an economic dispatch problem can lead to a loss of
economic optimality in LFC. This limitation will be addressed in a later subsection.

Case II: LFC using tracking MPC under time-varying disturbance

The performance of the tracking MPC-based LFC is also studied under time-varying
disturbances. The time-varying disturbance sequence in (9.39) was applied to the
power system. From Figure 9.4 and Figure 9.5, we see that the performance of the
controller is not significantly different from the case of step disturbances. Frequency
regulation is also achieved here with good dynamic performance. Similar to the case
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Fig. 9.2 Input and output LFC performance under tracking MPC (Q̄e = 10I2, R̄ = 50I2)
with w1 = 0.4, w2 = 0. Economically dispatched reference values for the current disturbance
are shown using dashed lines.

Fig. 9.3 Frequency regulation of LFC under tracking MPC (Q̄e = 10I2, R̄ = 50I2) with
w1 = 0.4, w2 = 0.

of a step disturbance, the tracking MPC controller was able to track the inputs and
outputs that happen to coincide with the optima of the economic dispatch problem
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in (9.22) because they were both (i.e the tracking MPC and the economic dispatch
problem ) formulated to implement the same tie-line bias control strategy of driving
the ACE to zero.

Fig. 9.4 Input and output LFC performance under tracking MPC (Q̄e = 10I2, R̄ = 50I2 Π =
50I2) with time-varying disturbance. Economically dispatched reference values for the current
disturbance are shown using dashed lines.

9.5.2 Centralized DAPI control design

To achieve real-time economic optimality in LFC, [229] proposed the distributed
averaging PI (DAPI) control algorithm. This algorithm modifies a conventional PI
control law by adding an averaging filter that encodes economic dispatch’s equal
marginal cost criterion into the PI control algorithm, thereby enabling the controller to
achieve economic dispatch in steady-state. Also, the DAPI controller is a decentralized
algorithm and gives plug and play capability for first order generation model. The
design of a centralized version of the DAPI control algorithm as used in this section is
shown in (9.49) below

ė = y = ACE,

q̇ = −LG ∇uΦ(u),
u = −Kee−Kqq

(9.49)
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Fig. 9.5 Frequency regulation of LFC under tracking MPC (Q̄e = 10I2, R̄ = 50I2) with
time-varying disturbance.

where Ke and Kq are tuning parameters that determine the rate of convergence of the
algorithm. The actual control input to the generators and demand responsive loads
are determined from u via the participation factors. For the simulation carried out in
this section,

LG =
 1 −1
−1 1

 , ∇uΦ(u) =
0.2250 0

0 0

u+
 0.2
0.35

 . (9.50)

Kp and Ke are free parameters tuned in simulation to get a desired performance.
The LFC performance under the DAPI controller designed above is discussed in the
following subsections.

Case I: LFC using DAPI under step disturbance

A step disturbance of w1 = 0.4p.u was applied to control area 1 after 5 seconds.
The control input, u for both control areas were generated in real-time by the DAPI
controller. Figure 9.6 shows the inputs (load-reference setpoints) and outputs (area
control error, ACE) for both control areas. As seen in the figure, the DAPI controller
drives the ACE to zero while tracking the economic dispatch setpoints, which in this case
happens to be the inputs and outputs that achieve tie-line bias control or AGC. Also,
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as evident from Figure 9.7, the DAPI controller drives the frequency deviation to zero,
restoring the nominal frequency of the power network. However, unlike the tracking
MPC controller, the DAPI controller has poorer dynamic performance with a transient
response that is under-damped (i.e., oscillatory) and slowly converging. Although some
performance improvements can be obtained by careful tuning, it was generally very
challenging to tune the DAPI controller for a desired transient performance.

Fig. 9.6 Input and output LFC performance under DAPI (Ke = 0.5I2, Kq = 0.01I2, Π =
400I2) with w1 = 0.4, w2 = 0. Economically dispatched reference values for the current
disturbance are shown using dashed lines.

Case II: LFC using DAPI under time-varying disturbance

The performance of the DAPI controller was also investigated for time-varying distur-
bances using the disturbance sequence in (9.39). From Figure 9.8 and Figure 9.9, we
see that the performance of the controller is not significantly different from the case
of step disturbances. It is oscillatory and slowly converging as expected. Frequency
regulation is also achieved here with a dynamic performance similar to the case of step
disturbances. Again, the DAPI controller regulates the ACE and frequency to their
nominal values using economically dispatched inputs which in this case are the same
as the inputs required for tie-line bias control or AGC.
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Fig. 9.7 Frequency regulation of LFC under DAPI (Ke = 0.5I2, Kq = 0.01I2, Π = 400I2)
with w1 = 0.4, w2 = 0.

Fig. 9.8 Input and output LFC performance under DAPI (Ke = 0.5I2, Kq = 0.01I2, Π =
400I2) with time-varying disturbance. Economically dispatched reference values for the
current disturbance are shown using dashed lines.
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Fig. 9.9 Frequency regulation of LFC under DAPI (Ke = 0.5I2, Kq = 0.01I2, Π = 400I2)
with time-varying disturbances.

9.5.3 Feedback Optimizing MPC based LFC design

Despite the real-time economic optimizing capabilities of the DAPI controller, its design
scope is severely limited. Firstly, the controller can only optimize the steady-state input
or output but not both. Also, the controller has no means of guaranteeing optimal
dynamic performance. Furthermore, the DAPI control design cannot take advantage of
model information to improve performance, and finally, there is no way of systematically
dealing with transient constraints in a DAPI controller. These limitations motivate a
FOMPC approach to optimal load-frequency control.
To design the FOMPC, the system is first discretized using zero-order hold with a
sampling time of 0.1 seconds. The input–output DC gain matrix of the resulting
discrete-time system is,

Gu =
0.5493 0.5493
0.4507 0.4507

 . (9.51)

The velocity state for the controller is

ϵ(k) =
 δx(k)
e(k − 1)

 =
 x(k) − x(k − 1)
Λyy(k − 1) + Λuu(k − 1) + r

 (9.52)
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where Λy, Λu and r follow from the choices of Φ(z) parameters as

Λy = Π, Λu =
0.2250 0

0 0

 ,
r =

0.20
0.35

 .
The matrix S satisfies Assumption 6 and together with the stabilizability of (9.1)
guarantee the existence of a solution to the FOMPC problem.
The transient performance criterion is chosen with Qe = 0.1 × I2 and Rδ = 500I2; these
values satisfy the hypothesis of Proposition 3. From the design parameters above, the
FOMPLFC is designed following the approach outline in Chapter 6 with the prediction
horizon, N = 5. In the following subsections, the performance of FOMPLFC will be
discussed.

Case I: LFC using FOMPC under step disturbance

After 5 seconds, a step disturbance of w1 = 0.4p.u is applied to control area 1. The
control input, u for both control areas are generated at each sample time k by solving
a FOMPC problem and applying the generated control law to both control areas.
Figure 9.10 shows the inputs (load-reference setpoints) and outputs (area control error,
ACE) for both control areas. As seen in the figure, the FOMPC drives the ACE to
zero and also tracks the economic dispatch setpoints (shown in dashed lines). Also, the
FOMPC regulates the frequency deviation to zero as evident from Figure 9.11. The
FOMPC has very good dynamic performance and unlike the DAPI controller, it pro-
duces a properly damped transient response with little to no oscillations. Convergence
is also much faster than the DAPI controller.

Case II: LFC using FOMPC under time-varying disturbance

The performance of FOMPC is also studied under time-varying disturbances. The
disturbance sequence is once again taken to be the time-varying disturbance in (9.39).
From Figure 9.12 and Figure 9.13, we see that the performance of the controller is
not significantly different from the case of step disturbances. Frequency regulation
is also achieved here with very good dynamic performance. Similar to the case of a
step disturbance, the economic dispatch setpoints are also tracked by the FOMPC
controller under the time-varying disturbances.
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Fig. 9.10 Input and output LFC performance under FOMPC (Qe = 1 × I2, Rδ = 50I2, Π =
400 × I2) with w1 = 0.4, w2 = 0. Economically dispatched reference values for the current
disturbance are shown using dashed lines.

Fig. 9.11 Frequency regulation of LFC under FOMPC (Qe = 10−3 × I2, Rδ = 5000I2, Π =
400 × I2) with w1 = 0.4, w2 = 0.
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Fig. 9.12 Input and output LFC performance under FOMPC (Qe = 1 × I2, Rδ = 50I2, Π =
400 × I2) with time-varying disturbance. Economically dispatched reference values for the
current disturbance are shown using dashed lines.

Fig. 9.13 Frequency regulation of LFC under FOMPC (Qe = I2, Rδ = 50I2, Π = 400 × I2)
with time-varying disturbances.

9.5.4 Real-time multi-area economic dispatch in LFC

A common observation from the simulation studies presented previously is that in
steady-state, all LFC control actions are local. That is, control resources (generators,
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demand response etc) in one control area do not ‘asymptotically’ respond to load
changes in the other control area. The word asymptotically is important here as
during the transient phase, inter-area coordination occurs but in steady-state, all LFC
actions are local to the area where the disturbance originated. This is why in all the
figures above, u1 settles to the disturbance value of w1 = 0.4 while u2 settles to zero
as no disturbance occurred in control area 2. This is the classical tie-line bias control
approach or AGC and it is realized by driving the ACE to zero [197].

The problem with conventional tie-line bias control or AGC is that it does not
encourage the asymptotic sharing of control resources between control areas and
therefore limits the scope for achieving improved economic optimality in load-frequency
control. Also, studies have shown that under significant variability and uncertainty in
the demand, conventional AGC based on tie-line bias control can be severely inefficient
[134]. The economic dispatch problem in (9.22) was defined to encode the conventional
tie-line bias control approach of LFC. Therefore, solving problem (9.22) in feedback
will merely results in controllers that implement the conventional tie-line bias control
strategy albeit in a way that is supposedly optimal. In other words, problem (9.22)
merely rediscovers AGC using an optimization approach. As a result, the controllers
designed so far do not take advantage of the interconnectedness of the power system
to achieve additional improvement in economic performance.
This limitation can be easily addressed by reformulating problem (9.22) to enforce the
constraint f = 0 rather than y = ACE = 0 (i.e., drive the frequency to zero rather than
the ACE). This simple reformulation removes the non-interaction constraint inherent
in conventional AGC by allowing the control areas to coordinate resources to jointly
regulate the frequency in steady-state, and as a result achieve economically optimal
load-frequency control.

In this subsection, we demonstrate the economic improvement possible with this
approach by solving a reformulated version of the economic dispatch problem (9.22)
with the constraint y = f = 0 instead. We will discuss simulation results obtained
from implementing the FOMPC and the DAPI control algorithms designed previously.
To put things in perspective, a comparison will be made with the standard tracking
MPC that is based on controlling the ACE. Figure 9.14 shows the performance of
the standard tracking MPC-based LFC for the time-varying disturbance sequence
in (9.39). From the figure, we can see that the standard tracking MPC achieves the
objectives of LFC by consistently driving the frequency deviation and ACE to zero for
both control areas. However, it fails to achieve this using inputs that are economically
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Fig. 9.14 Frequency regulation with economic dispatch objectives using tracking MPC
(Qe = 10 × I2, Rδ = 50I2, Π = 400 × I2) with time-varying disturbances. Economically
dispatched reference values for the current disturbance are shown using dashed lines

dispatching. This is evident from Figure 9.14 as the inputs can be seen to not track
the economic dispatch values shown using dashed lines. Therefore, tracking MPC does
not achieve economically optimal frequency control. This is because the conventional
AGC strategy implemented by the tracking MPC controller lack the mechanism to
achieve an (economics/price-based) steady-state inter-area coordination within LFC.

To achieve economically optimal LFC (in a steady-state sense), the FOMPC
algorithm was implemented to solve the reformulated economic dispatch problem. The
results obtained are shown in Figure 9.15. From the figure, it is evident that FOMPC
regulates the frequency to zero while also tracking the (unknown) economic dispatch
setpoints, without measuring the load changes or explicitly solving the economic
dispatch problem. The ACE is driven to non-zero values as the tie-line power flows are
re-allocated online rather than driven to previously scheduled values (as commonly
done in AGC). Also, it shows very good dynamic performance and like tracking MPC
enforces the constraints on the power system (during the transient phase).

Finally, the DAPI controller is implemented for the power system. Figure 9.16
shows its performance for the problem being considered with the same disturbance
sequence as previously. From the figure, it is evident that DAPI just like FOMPC
achieves both frequency regulation (i.e., drives frequency to zero) and economic dispatch



258
Feedback Optimizing Model Predictive Load-Frequency Control for Real-time

Economic Dispatch

Fig. 9.15 Frequency regulation with economic dispatch objectives using FOMPC (Qe =
1 × I2, Rδ = 50I2, Π = 400 × I2) with time-varying disturbances. Economically dispatched
reference values for the current disturbance are shown using dashed lines

Fig. 9.16 Frequency regulation with economic dispatch objectives using DAPI (Kq =
1 × I2, Ke = 0.5I2, Π = 400 × I2) with time-varying disturbances. Economically dispatched
reference values for the current disturbance are shown using dashed lines
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in closed-loop. The economic dispatch set-points can be seen in Figure 9.16 to be
tracked as the disturbance changes. From the figure, it is clear that of the three control
algorithms, the DAPI controller has the poorest transient performance. Its transient
response is under-damped and it converges slowly to the economic dispatch setpoints.
Also, tuning the DAPI controller for a desirable transient performance is a difficult
task.

From the results obtained in the above simulations, it can be concluded that
both FOMPC and DAPI can achieve LFC while simultaneously solving an economic
dispatch problem using only the feedback from input-output measurements, without
explicit knowledge of the load changes or explicitly computing the economic dispatch
setpoints. This capability can be useful for real-time economic dispatch in future power
system networks with highly variable and uncertain power fluctuations. The FOMPC
has shown superior performance compared to DAPI, with better transient response,
guaranteed constraint satisfaction and a much easier and intuitive tuning mechanism.
However, unlike DAPI, FOMPC is computationally more expensive to implement and
relies on a more detailed model of the power system dynamics.

9.6 Conclusion

This chapter has presented an MPC–based approach to the combined economic dispatch
and load–frequency control in a multi-area power system. The approach uses a form
of model predictive control that combines steady-state optimization and tracking
to provide a feedback optimizing control law that drives the system states to the
steady-state optimum, without explicitly computing this and using it as an explicit
setpoint.

Recursive feasibility and stability of the closed loop were established under mild
conditions on the system, cost, and constraints. To guarantee stability and transient
constraint satisfaction, the proposed algorithm relied on the computation of invariant
sets for the power system linear frequency dynamics. For larger power systems with a
high number of state variables, it can be computationally challenging to compute these
invariant sets. A practical approach to circumvent this difficulty will be to remove
the terminal constraints from the FOMPC problem formulation and rely instead on
very long prediction horizons. This however increases the size of the optimization
problem solved online to generate the FOMPC actions at each sample time. With the
current advancement in computing power, this may not be too much of a challenge in
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the future. Another important problem with the use of long prediction horizons to
ensure stability and feasibility in FOMPC is that it becomes very challenging to obtain
theoretical certifications of stability and feasibility over an infinite horizon. This is a
very interesting theoretical question for future research.

Finally, simulation results on a two-area network have demonstrated the capability of
the approach for frequency restoration while tracking a changing economic equilibrium.
Comparisons with standard approaches in the literature have also been made. Results
show that the FOMPC algorithm developed in this chapter shows superior performance
to the other two controllers (DAPI and tracking MPC). The results presented in this
chapter have only considered a centralized setting with states available for feedback
and a linear swing dynamics assumed. Future work will consider decentralized and
distributed implementations, and also test the algorithm using more realistic non-linear
high dimensional power system models.



Chapter 10

Conclusion and Future Work

This thesis presented techniques for achieving feedback optimization (i.e., regulating a
dynamic system in a closed-loop to the unknown solution of a steady-state optimization
problem) using model predictive control. On the one hand, solving optimization prob-
lems implicitly using feedback rather than explicitly via numerical optimization can
guarantee robust and computationally efficient solutions. On the other hand, model
predictive control can ensure optimal dynamic performance, systematic constraint
handling, and a prediction-based decision-making capability. In this thesis, we have
combined the design philosophy of feedback optimization and model predictive con-
trol to obtain a feedback-optimizing MPC algorithm capable of optimizing both the
steady-state and transient performance of a dynamic system while satisfying the system
inequality constraints. We have achieved this without unnecessarily complicating the
standard MPC algorithms. The capability of feedback optimizing MPC to achieve
optimal steady-state control while optimizing the dynamic performance and satisfying
system constraints makes it a promising approach for the optimal real-time operation of
future power systems and indeed other plants that require economic operation alongside
real-time control.
We present in this chapter a summary of the contributions of the thesis and rec-
ommendations for future work. Section 10.1 provides an overview of the significant
contributions of the relevant contributing chapters, while section 10.2 states the possible
directions for future research.
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10.1 Thesis contributions

The contributions of each chapter of the thesis are stated in the following subsections.
We split the contributions into the following key areas:

1. Contributions to Feedback Optimization

2. Contributions to Model Predictive Control

10.1.1 Contributions to Feedback Optimization

The field of feedback optimization deals with the design of feedback controllers that
steer a physical system to a steady-state that solves a predefined static optimization
problem. In feedback optimization, regulation to an optimal steady state is achieved
without explicit numerical computation of the static optimization problem or the need
for external set-points. Instead, the optimization algorithms for solving the static
optimization problem are directly implemented as feedback controllers which regulate
a dynamic system in closed-loop to the unknown optimum of the static optimization
problem. This interconnection of off-the-shelf optimization algorithms with a dynamic
system brings to bear the benefit of feedback control (i.e., robustness to unmeasured
disturbances and un-modelled dynamics, simplicity and stability guarantees) in the
solution of a static optimization problem.
However, the majority of controllers proposed for achieving feedback optimization
ignore the dynamic performance of the closed-loop system assuming instead a pre-
stabilized system with dynamic considerations made offline. Our first contribution in
this thesis is to relax this assumption by directly considering dynamic performance
objectives (such as transient optimality and recursive constraint satisfaction) within
the feedback optimizing control design. Also, by using a model predictive control
framework, we integrate model predictions into feedback optimizing control thereby
bringing together the benefits of feedback and feed-forward control design. In the
following, a chapter by chapter breakdown of our contributions to the field of feedback
optimization is detailed.

1. In Chapter 2 a comprehensive review of the various techniques for achieving
feedback optimization in dynamic systems is provided. The review in this chapter
revealed that the design scope for most algorithms for feedback optimization is
severely limited. This has resulted in the omission of important control objectives
such as dynamic optimality, recursive constraint satisfaction and robust control
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in most of the proposed algorithms. This in turn motivated the idea in this
thesis to develop novel feedback optimizing control strategies based on a model
predictive control framework.

2. Chapter 3 presented a general framework for designing feedback optimization
controllers with optimal transient performance and recursive feasibility guarantees.
This chapter poses the feedback optimization problem as a feedback optimizing
model predictive control (FOMPC) problem. The absence of pre-computed
set-points makes it challenging to solve the FOMPC problem. We addressed this
difficulty by translating the FOMPC problem to a generalized tracking MPC
problem with a tracking error derived from input-output measurements rather
than a pre-computed set-point. We achieve this translation by defining the
steady-state tracking error as the residual of the Karush-Kuhn-Tucker conditions
of optimality for solving the static optimization problem. We also gave necessary
and sufficient conditions for solvability of the FOMPC problem. A benefit of the
FOMPC problem formulation presented in this chapter is its generality which
makes it possible to develop an avalanche of MPC control laws that solve the
FOMPC problem for a wide range of circumstances. This formed the central
theme of the contributions in the subsequent chapters.

3. In Chapter 4, we proposed a novel feedback optimization algorithm that regulates
a disturbed linear time-invariant system to the unknown optimum of a steady-
state quadratic program while guaranteeing optimal transient performance. We
call this the feedback optimizing linear quadratic control (FOLQC) algorithm.
To develop this algorithm, we expressed the LTI system in velocity form. We
then used dynamic and semi-definite programming tools to derive explicit linear
quadratic control laws that are self-optimizing for a defined static quadratic
programming problem. For most feedback optimization algorithms proposed in
the literature, closed-loop stability is only established under nominal conditions
(i.e., no model uncertainty). On the contrary, we present in this chapter robust
stability results for the FOLQC under non-nominal conditions (i.e., with model
perturbation). We present robust stability margins for FOLQC in terms of its
tuning parameters i.e. the weights on the tracking error and input deviation.
Finally, we illustrated the performance of FOLQC with numerical examples.

4. Most available feedback optimization algorithms assume precise knowledge of
the system dynamics while relying on inherent robustness to reject any model
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perturbation or disturbances. In chapter 5, we made pioneering efforts to develop
a novel feedback optimization algorithm for linear systems with parametric model
uncertainty by extending the FOLQC algorithm developed in Chapter 4 to the
case of polytopic uncertain linear systems. Using linear matrix inequalities, we
formulated robust semi-definite programs which can be solved offline to generate
explicit robust feedback optimizing control laws capable of regulating uncertain
linear systems to the unknown optimum of a defined quadratic optimization
problem. This contribution is significant in the feedback optimization literature
as insufficient attention has been paid to the design of feedback optimization
algorithms that explicitly integrate uncertainty information to improve the control
performance. Indeed this is the first robust feedback optimization algorithms
with the capability to optimize the dynamic performance according to a defined
transient cost criterion. Simulation results showing the success of the developed
algorithm are also given.

5. In Chapter 6, we develop novel feedback optimization algorithms that regulate
constrained linear systems to the unknown optimum of a steady-state quadratic
program while satisfying system constraints and optimizing dynamic performance.
As previously stated, most feedback optimization algorithms lack guarantees of
transient performance and feasibility, providing only steady-state guarantees. In
this chapter, we address this limitation for the case of a quadratic steady-state
optimization by developing a novel feedback optimization algorithm based on
MPC. The proposed algorithms systematically enforce the system’s inequality
constraints during the transient phase, as against relying on saturation functions
to enforce constraints as is common with conventional feedback optimization
algorithms. As a result, both hard and soft inequality constraints are handled
without the undesirable effects of integrator windup common with saturation-
based control laws. We also established robust stability of the proposed algorithm
under model perturbation. We demonstrated the performance of the developed
algorithm via numerical simulation.

6. In Chapter 7, robust feedback optimization algorithms are proposed for uncertain
linear systems such that autonomous steady-state optimization is achieved while
guaranteeing optimal dynamic performance and recursive feasibility. Here, the
FOMPC problem is reformulated for the case of linear systems with polytopic
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model uncertainty. Simulation results have been shown to demonstrate the
performance of the proposed laws.

7. In Chapter 8, a novel distributed feedback optimizing control algorithm is pre-
sented for driving constrained large-scale systems closer to their (unknown)
optimal steady-states with transient performance guarantees and recursive fea-
sibility. The result obtained in this chapter are significant as they represent a
pioneering attempt at synthesizing distributed feedback optimization algorithms
that consider the dynamic performance objectives in the control design. We
leverage on the results developed for robust FOMPC to develop the distributed
feedback optimization algorithms presented in this chapter. Convergence analysis
of the proposed algorithm has been proved showing that distributed FOMPC is
guaranteed to converge to a neighbourhood of the optimal steady-state equilib-
rium while being recursively feasible.

8. In Chapter 9, we presented an optimal load-frequency control solution for au-
tonomous real-time economic dispatch in power systems with guarantees on
transient performance and constraint satisfaction. We posed the optimal load-
frequency control problem as a FOMPC problem solved online to generate
implicit feedback control laws that simultaneously achieve economic dispatch
and frequency regulation without knowledge of the unknown load changes or
the economic dispatch set-points. We also provided a theoretical analysis of the
performance guarantees such as feasibility, transient optimality, and asymptotic
convergence to the economic dispatch solutions. Finally, we presented simulation
results showing the superior performance of the proposed solution compared to
state-of-the-art solutions such as automatic generation control and distributed
averaging PI control.

10.1.2 Contributions to Linear Quadratic and Model Predic-
tive Control

It is conventional to adopt a tracking economic MPC formulation to achieve economically
optimal steady-state control. Here, the optimal steady-state set-point is assumed to
be available or directly computed within the MPC algorithm. A challenge with this
approach is that the direct numerical solution to a steady-state economic optimization
problem is non-robust. It requires accurate knowledge of the system model and
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unknown disturbances. Also, it is computationally expensive to solve the steady-state
optimization problem within the MPC algorithm. Recently, there have been several
techniques proposed to address these issues. One standard solution has been integrating
modifier-adaptation techniques into the design of tracking economic MPC algorithms to
improve their robustness. Compared to standard MPC, modifier-adaptation approaches
incur an additional computational expense and result in more complex algorithms
that are practically unappealing. Also, the need to know the disturbances in advance
is still not addressed. In this thesis, we have presented an alternative approach to
achieving robust asymptotically economic MPC that retains the computational and
algorithmic complexity of standard tracking MPC and achieves optimal steady-state
performance without disturbance estimation. The approach fuses the design philosophy
of feedback optimization with a tracking MPC design. The result is a tracking MPC
that achieves feedback optimization in closed-loop with the system. Here, input
and output measurements are used to track the unknown optimum to a steady-state
economic optimization problem rather than compute the optimal steady-state set-point
from disturbance estimates and within MPC. This thesis also presents novel variants of
the feedback optimizing MPC design robust to parametric uncertainty. It also applied
the technique to achieve optimal load frequency control in multi-area power systems.
In the following, a chapter by chapter breakdown of our contributions to the field of
model predictive control is detailed.

1. Chapter 2 provided a comprehensive review of techniques for achieving steady-
state economic optimization in model predictive model control. This review
showed that available steady-state economics optimizing MPC techniques are
computationally more expensive and more complex than standard tracking MPC.
Also, most algorithms rely on disturbance estimation to guarantee closed-loop
convergence to the optimal economic steady-state equilibrium. We were motivated
by these drawbacks to seek new algorithms that address some of these limitations.

2. In Chapter 3, the tracking economic MPC problem was posed as a feedback
optimization problem. We termed this problem the feedback optimzing MPC
(FOMPC) problem. It was realized in this chapter that the FOMPC problem is a
generalization of the standard tracking MPC to the case of unknown steady-state
set-points.

3. In Chapter 4, we integrated feedback optimization and linear quadratic control to
achieve a feedback optimizing linear quadratic control (FOLQC) algorithm. The
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FOLQC algorithm obtained solves the tracking economic MPC problem when
the steady-state cost is quadratic, the system is deterministic and linear, the
disturbance is piecewise constant and the inequality constraints are inactive. Our
FOLQC algorithm is the first linear quadratic controller capable of autonomous
steady-state optimization. Solutions to the FOLQC problem were devised from
first principles using dynamic programming and linear matrix inequalities. We
also presented simulation results to demonstrate the performance of the algorithm.

4. In Chapter 5, we developed a FOLQC algorithm that accounts for polytopic
model uncertainty. This is the first robust LQR controller with autonomous
steady-state optimization capabilities.

5. In Chapter 6, we proposed an MPC algorithm capable of autonomously regulating
a constrained LTI system to the unknown optimum of a steady-state quadratic
program without external set-points or online economic optimization. We achieved
this by formulating the control problem as a FOMPC problem. To solve the
FOMPC problem, we formulated optimal control problems (OCP) which solved
online generate implicit feedback laws that achieve autonomous optimization of
a quadratic program with optimal transient performance and recursive feasibility.
Also, in this chapter, we presented a detailed analysis of the convergence of
FOMPC under both nominal and uncertain conditions. The results confirm
that FOMPC is inherently robust against small perturbation in the dynamic
model. Finally, we present simulation results to illustrate the performance of the
proposed FOMPC algorithm.

6. In Chapter 7, the FOMPC algorithm was developed for uncertain linear systems
with polytopic model uncertainty and piecewise constant disturbances. This is
the first robust MPC algorithm that optimizes a steady-state cost in feedback.
Using results from tube-based robust MPC and min-max MPC, we developed
two distinct algorithms that solve the robust FOMPC problem. The tube-based
MPC algorithm is computationally efficient, adding very little complexity to the
already designed nominal FOMPC . However, it can only guarantee convergence
to a neighbourhood of the optimal steady-state solution and also results in
conservative closed loop performance due to the tightening of the feasible set. We
addressed this limitation by turning to a min-max MPC formulation. Here, the
FOMPC is formulated via LMI as a semi-definite program which is solved online
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to generate implicit feedback optimizing control laws that robustly drive the
uncertain linear system to optimal steady states for a defined quadratic program.

7. In Chapter 8, we developed distributed MPC methods for regulating large-scale
constrained linear systems to economically optimal steady-states that are the
solution of a steady-state quadratic program. The algorithms developed are
based on a distributed solution to the FOMPC problem and achieve optimal
steady-state optimization without explicitly solving the steady-state optimization
or estimating the disturbances.

10.2 Future Research Directions

Possible direction for future research include:

10.2.1 Feedback optimzing MPC for unreachable set-points

The FOMPC algorithms developed in this thesis only enforce constraints during the
transient phase, assuming inactive steady-state constraints instead. Consequently, the
presented algorithms can only solve unconstrained steady-state optimization problems.
However, economic operation for most practical systems occur at the boundary of the
feasible region. Hence, the developed FOMPC algorithms may generate unreachable and
suboptimal setpoints in the presence of active steady-state constraints. Therefore, it is
necessary to design novel FOMPC algorithms capable of handling inequality constraints
both during transients and in steady state. One possible way to achieve this will be to
formulate the steady-state optimization as a constrained problem and convert it to a
penalized unconstrained optimization problem using penalty methods. The challenge
with this approach is that the penalized unconstrained optimization may introduce
non-linearities into the FOMPC problem. Developing novel algorithms that can handle
these non-linearities without over-complicating the FOMPC algorithms presented so far
will be an exciting direction for future research. A possible way to achieve this could be
to use the Courant-Beltrami penalty function and pose the FOMPC problem as a hybrid
MPC problem. This could allow the wealth of tools available for hybrid/switching
MPC to be deployed to solve the FOMPC when the steady-state constraints are
active. Another possible solution could involve reformulating the presented FOMPC
algorithms to avoid violating the steady-state constraints. However, this approach will
not guarantee convergence to the constrained optimal steady-state equilibrium.
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10.2.2 Nonlinear feedback optimzing MPC

Although the FOMPC problem formulation is very general, the algorithms developed
in this thesis only solve the problem for linear systems with steady-state quadratic
objectives. However, most real-world systems are non-linear, and many economic
optimization problems admit non-quadratic costs. Therefore, developing efficient al-
gorithms to solve the FOMPC problem for non-linear systems with non-quadratic
steady-state costs will be interesting for future research. The key challenge here is find-
ing novel ways to solve the non-linear MPC problem while retaining the computational
and algorithmic complexity of the algorithms presented thus far. A gain scheduling
approach that uses a collection of locally linearized dynamics at different operating
points could be adopted to solve the resulting non-linear FOMPC problem. It will be
interesting to investigate how accurately such an approach can approximate the solu-
tion to the actual non-linear steady-state optimization problem. Another interesting
direction would be to investigate the use of the so-called feedback linearization methods
to linearize the non-linear system globally. Then the standard FOMPC algorithm could
be applied to the resulting linear dynamics. This approach, however, can complicate
the design of the FOMPC algorithm, especially the set computations.

10.2.3 Improved robust feedback optimizing MPC

The robust FOMPC algorithm presented in Chapter 7 has two significant drawbacks.
Firstly, the algorithm relies on the quadratic stabilizability of the uncertain system
to guarantee the closed-loop stability, which can result in very conservative closed-
loop performance. Also, the application of the robust FOMPC algorithm is limited
to the small class of quadratically-stabilizable systems. Therefore, developing novel
control algorithms that address the conservatism of the robust FOMPC will be a good
direction for future research. One way to achieve this could involve using parameter-
dependent Lyapunov functions in the problem formulation. Secondly, the robust
FOMPC algorithm developed in the thesis can be computationally costly for online
implementation. As a result, this limits its application to the control of slow systems.
It would be interesting to address this limitation by developing computationally more
efficient formulations of the presented algorithm. An excellent place to start would
be to develop offline formulations of the robust FOMPC algorithm. Here, most of the
computations happen offline to improve the computational efficiency without degrading
the control performance.
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10.3 Further applications of feedback optimizing
MPC

The need for economically optimal long-term operation while achieving real-time control
is a feature of many engineering systems. Therefore, applying the FOMPC algorithms
developed in this thesis to other engineering systems will be a good research direction.
The power system example presented in this thesis utilized a simplified power system
model. It would therefore be interesting to study the performance of FOMPC for a
detailed model of the power system example. Also, other application problems such as
power-sharing in micro-grid and economic process control would be interesting research
directions to pursue. Of course the major challenge for real world applications will be
the development of linear dynamic models that capture the dominant dynamics of the
real-world systems. Also, since the FOMPC designed requires knowledge of the state
variables, a key design challenge will be the estimation of the systems state variables
under possible model uncertainty.
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Appendix A

Mathematical Background and
Preliminaries

This section briefly recalls fundamental concepts used in the thesis.

A.1 Linear Algebra

Definition 6 (Subspace of the vector space Rn). A subspace of Rn is a subset that is
also a vector space.

Definition 7 (Linear combination, linear independence and linear dependence). For
the collection of vectors a1, . . . , an ∈ Rn and the elements α1, . . . , αn ∈ R the following
notions are introduced:

1. Linear combinations of a1, . . . , an over R are vectors of the form

α1a1 + α2a2 + . . .+ αnan (A.1)

2. The collection of vectors a1, . . . , an ∈ Rn are linearly independent if the vector
equation

α1a1 + α2a2 + . . .+ αnan = 0 (A.2)

implies α1 = α2 = . . . = αn = 0. Otherwise, a non-trivial combination of the ai

is zero and a1, . . . , an is said to be linearly dependent.

Definition 8 (Span). Given a collection of vectors a1, . . . , an ∈ Rn, the set of all linear
combinations of these vectors is a subspace referred to as the span of a1, . . . , an.
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Definition 9 (Basis ). Let the vectors a1, . . . , an belong to the subspace, S ⊂ Rn. A
basis of S is a set of vectors {s1, . . . , sm} such that:

1. S = span{s1, . . . , sm}, and

2. the vectors s1, . . . , sm are linearly independent.

Definition 10 (Dimension of a subspace, dim(S)). The dimension of a subspace S is
the number of element in the basis vector of the subspace.

Definition 11 (Range of a matrix). The range of a matrix A ∈ Rm×n is defined by

R(A) = {y ∈ Rm | y = Ax for some x ∈ Rn}. (A.3)

If A = [a1 . . . ai . . . an], where ai ∈ Rm then

R(A) = span{a1 . . . ai . . . an}. (A.4)

Definition 12 (Nullspace of a matrix). The nullspace of a matrix A ∈ Rm×n is defined
by

N (A) = {x ∈ Rn | Ax = 0}. (A.5)

Definition 13 (Rank of a matrix). The rank of a matrix A is the maximal number of
linearly independent columns (or rows) and is defined by

rank(A) = dim(R(A)). (A.6)

Definition 14 (Orthogonal complement of a subspace). The orthogonal complement
of a subspace S ⊆ Rm is defined by

S⊥ = {y ∈ Rm | y⊤x = 0 ∀x ∈ S}. (A.7)

Theorem A.1.1 (Rank-nullity theorem). Let A ∈ Rm×n be the matrix for the linear
transformation T : Rn → Rm, then

rank(A)⊥ = dim(N (A⊤)) (A.8)

and
dim(N (A)) + rank(A) = n. (A.9)

We say A ∈ Rm×n is rank deficient or not full rank if rank(A) < min{m,n}.
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A.2 Convex Analysis

Definition 15 (Ball of radius r). The ball of radius r centred at the x0 is the set

Br(x0) := {x ∈ Rn | ∥x− x0∥ ≤ r}. (A.10)

Definition 16 (Interior point). A point x0 ∈ S is an interior point in S if there is a
small ball Br(x0) centred at x0 that lies entirely in S i.e.,

x0 is an interior point if Br(x0) ⊂ S for some r > 0. (A.11)

If x0 ∈ int S, we call S a neighbourhood of x0.

Definition 17 (Boundary point). A point x0 ∈ S is a boundary point of S if any small
ball Br(x0) centred at x0 has non-empty intersections with both S and its complement,
S′. i.e.,

x0 is a boundary point if ∀ r > 0 ∃x, y ∈ Br(x0) : x ∈ S, y ∈ S′
. (A.12)

Definition 18 (Interior of a set). The interior of a set S, denoted by int S, is the set
of all interior points in S. If x ∈ int S, we call S a neighbourhood of x.

Definition 19 (Boundary of a set). The boundary of a set S, denoted by ∂S, is the set
of all boundary points of S.

Definition 20 (Closure of set). The closure of S, written as cl S, is the union of S
and its boundary ∂S i.e.,

cl S := S ∪ ∂S. (A.13)

Definition 21 (Open set). A set S is open if int S = S
Equivalently, S is open if S ∩ ∂S = ∅

Definition 22 (Closed set). A set S is closed if cl S = S. Equivalently, S is closed if
∂S ⊆ S.

Definition 23 (Bounded set). A set S is bounded if S ⊂ Br for some r > 0.

Definition 24 (Compact set). A set is compact if it is closed and bounded

Definition 25 (Limit of sequence). A point x is the limit of the sequence of points
x1, x2, . . ., written xi → x, if ∥xi − x∥ → 0 as i → ∞.
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Definition 26 (Convex set). A set S is convex if, for all elements (x, y) ∈ S, the line
segment joining x and y also lies in the set S i.e

∀α ∈ [0, 1], ∀(x, y) ∈ S × S, αx+ (1 − α)y ∈ S. (A.14)

Definition 27 (Convex combination). For a finite number of points {xi, . . . , xn} ∈
S × . . .× S, a convex combination is defined by the relation,

x =
n∑

i=1
αixi ∈ S,∀i ∈ I[1,n], αi ≥ 0,

n∑
i=1

αi = 1. (A.15)

Definition 28 (Affine set). A set S is affine if, for all elements (x, y) ∈ S, the line
segment joining x and y also lies in the set S i.e

∀α ∈ R, ∀(x, y) ∈ S × S, αx+ (1 − α)y ∈ S. (A.16)

Definition 29 (Polyhedron). A polyhedron, P is the set formed from the intersection of
a finite number of closed and/or open half-spaces. Equivalently, a set P is a polyhedron
when there exists a set of affine inequalities represented by

P = {x ∈ Rn | Pxx ≤ qx}. (A.17)

Definition 30 (Polytope). A polytope is a closed and bounded polyhedron

Definition 31 (Unit simplex). The unit simplex set of dimension n, Λn, is defined by

Λn :=
{
δ ∈ Rn :

n∑
i=1

δi = 1, δi ≥ 0,∀i ∈ I[1:n]
}
. (A.18)

Definition 32 (Ellipsoid). An ellipsoid E is defined as follows

E =
{
x ∈ Rn | (x− xc)⊤P−1(x− xc) ≤ 1, P ⪰ 0

}
(A.19)

where xc is the centre of the ellipsoid.

Definition 33 (Convex hull). The convex hull of S is defined as

Co{S} =
{

n∑
i=1

αixi | [α1, . . . , αn] ∈ Λn, xi ∈ S
}
. (A.20)

The convex hull of S is the intersection of all convex sets containing S.
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Definition 34 (Eigenvalues and eigenvectors). Let A ∈ Rn×n be a square n×n matrix.
Then any nonzero vector x ∈ Rn is referred to as an eigenvector of the matrix A if

Ax = λx (A.21)

for some value λ ∈ R called the eigenvalue of the matrix A corresponding to the
eigenvector x.

Definition 35 (Spectral radius). The spectral radius of the matrix A ∈ Rn×n is the
maximum of the absolute value of its eigenvalues.

Definition 36 (Schur matrix). The matrix A ∈ Rn×n is Schur if all of its eigenvalues
have an absolute value that is less than one.

Definition 37 (Convex function). A function Φ(z̄) : Rnu+ny → R is convex if for all
z̄1, z̄2 ∈ Rnu+ny and for all α ∈ (0, 1) the following holds:

Φ(αz̄1 + (1 − α)z̄2) ≤ αΦ(z̄1) + (1 − α)Φ(z̄2). (A.22)

Definition 38 (Strictly convex function). A convex function Φ(z̄) : Rnu+ny → R is
strictly convex if the inequality in (A.22) holds strictly, i.e.

Φ(αz̄1 + (1 − α)z̄2) < αΦ(z̄1) + (1 − α)Φ(z̄2). (A.23)

A.3 Matrix Calculus

Definition 39 (Gradient of a scalar function). The gradient of the scalar function
Φ(u, y) is defined by

∇Φ(u, y) =
[

∂Φ(.)
∂u

∂Φ(.)
∂y

]⊤
. (A.24)

where u ∈ Rm and u ∈ Rn are vectors.

Definition 40 (Vector differentiation [214]). Let x ∈ Rr be a vector and A ∈ Rm×n a
matrix of constants. Then

∂Ax

∂x
= A⊤ (A.25a)

∂x⊤Ax

∂x
= (A+ A⊤)x (A.25b)

∂x⊤Ax

∂x
= 2Ax, if A is symmetric. (A.25c)
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Theorem A.3.1 (The backward chain rule). Let x ∈ Rr, y ∈ Rs and z ∈ Rt be vectors.
Suppose z is a vector function of y, which in turn is a vector function of x, so we can
write f = z(y(x)). Then

∂f

∂x
= ∂y

∂x

∂z

∂y
.

Proof. see [214]

A.4 Convex Optimization

This section recalls basic concepts from convex theory and convex optimization adopted
throughout this thesis. The following definitions and results are standard and can
be found, e.g., in [24, 141, 33]. In optimization, we seek the best possible decision
from a set of decisions based on a given selection criterion. In mathematical terms,
an optimization problem seeks the decision variables that minimizes a defined cost
function subject to certain constraints, if any.
Mathematically, we write an optimization problem as follows:

min
x

Φ(x) (A.26a)

subject to: h(x) = 0 (A.26b)
g(x) ≤ 0 (A.26c)

where x ∈ Rn is the n−dimensional vector of decision variables, Φ : Rn → R is the
scalar objective function, h(x) : Rn → Rm the m−dimensional vector of equality
constraints, and g(x) : Rn → Rp the p−dimensional vector of inequality constraints.
The goal of the optimization problem (A.26) is to find the decision vector x that
minimizes the objective function Φ(x) while fulfilling the constraints (A.26b) and
(A.26c). The set of all possible choices for the decision variable is called the feasible
set.
With respect to the optimization problem (A.26), we introduce the following definitions.

Definition 41 (Feasible set). The feasible set, C is defined as

C := {x ∈ Rn | h(x) = 0, g(x) ≤ 0}. (A.27)

Definition 42 (Feasible point). The point x ∈ Rn is feasible for problem (A.26) if
x ∈ C.
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Definition 43 (Active and Inactive Constraints). Given x ∈ C, the set of active
inequality constraints at x is denoted by A := {i | gi(x) = 0} and the set of inactive
inequality constraints at x is denoted by Ā := {i | gi(x) < 0}.

Remark 58. Given the feasible set C, the optimization problem (A.26) can be re-stated
as:

x∗ = arg min
x∈C

Φ(x) (A.28)

where x∗ is the optimizer of problem (A.28) as defined next.

Definition 44 (Global optimizer). A feasible point x∗ ∈ C is a global optimizer of
(A.26) (equivalently (A.28)) if Φ(x∗) ≤ Φ(x) for all x ∈ C.

Definition 45 (Local Optimizer). A feasible point x∗ ∈ C is a local optimizer of
(A.26) (equivalently (A.28)) in a non-empty neighbourhood Ć ⊂ C if and only if x∗ ∈ Ć
and Φ(x∗) ≤ Φ(x) for every x ∈ Ć.

Sometimes an optimization problem has just one optimizer, in which case we
say that the problem is unique, otherwise the problem is non-unique with multiple
optimizers.

Definition 46 (Level set). A level set of Φ is any non-empty set described by

L(α) := {x ∈ Rn | Φ(x) ≤ α}. (A.29)

Definition 47 (Lagrangian). the Lagrangian associated with the optimization problem
(A.26) is defined as

L(x, λ, µ) := Φ(x) + λ⊤h(x) + µ⊤g(x) (A.30)

where λ, µ are called dual variables (or Lagrange multipliers) associated with the
constraints h and g respectively.

Definition 48 (KKT conditions). A point (x∗, λ∗, µ∗) satisfies the Karush-Kuhn-Tucker
(KKT) conditions for (A.26) if

∇L(x∗, λ∗, µ∗) = ∇Φ(x∗) + (λ∗)⊤∇h(x∗) + (µ∗)⊤∇g(x∗) = 0. (A.31)

Under linear independent constraint qualification (LICQ) (see [33] for definition),
every optimizer is a KKT point [18]. There exists weaker constraint qualifications than



296 Mathematical Background and Preliminaries

LICQ that guarantee that a minimizer satisfies the KKT conditions. For example,
in convex optimization, Slater’s condition which requires the feasible set to have
non-empty relative interior is a weaker constraint qualification.

A.5 Dynamical systems

A.5.1 Classical control

Definition 49 (Gain margin, GM). The gain margin is the maximum additional gain
that can be applied to a dynamic system without losing closed loop stability. It is a
measure of relative stability and is defined as the reciprocal of the magnitude of the loop
transfer function evaluated at z = jωπ where ωπ is the frequency at which the phase
angle is −180◦ also called the phase crossover frequency.

Definition 50 (Phase margin, PM). The phase margin is the maximum additional
phase change that can be tolerated by a dynamic system without losing closed loop
stability. It is also a measure of relative stability and is defined as 180◦ plus the phase
angle of the loop transfer function evaluated at z = jω1 where ω1 is the frequency at
which the gain is unity also called the gain crossover frequency.

A.5.2 Stability and feasibility

Definition 51 (Recursive feasibility). A discrete-time control system, S(x(k)) is said
to be recursively feasible if and only if feasibility of the system at the initial conditions
i.e. S(x(0)) implies feasibility at all subsequent evolution of the system i.e. S(x(k+ 1))
for all k > 0.

Definition 52 (Distance of point from set ). The distance of the point x ∈ Rn from the
set S denoted by d(x,S), is defined as the greatest lower bound of the set of distances
from x to a point in S i.e

d(x,S) := inf
s∈S

d(x, s) (A.32)

where d(x, s) : Rn → R is a metric function in Rn.

Definition 53 (Radially unbounded function). A function x : Rn → R is said to be
radially unbounded if ∥k∥ → ∞ implies x(k) → ∞.
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Definition 54 (Lyapunov stability of an equilibrium). The equilibrium xe is said to
be Lyapunov stable for the system x(k + 1) = f(x(k)) if ∀ε > 0, there exists δ > 0 such
that d(x(0), xe) ≤ δ implies that d(x(k), xe) ≤ ϵ, ∀k ≥ 0.

Definition 55 (Attractivity of an equilibrium ). The equilibrium xe is asymptotically
attractive for the system x(k + 1) = f(x(k)) with the domain X if, ∀x(0) ∈ X ,
xe ∈ int X , d(x(k), xe) → xe as k → ∞.

Definition 56 (Asymptotic stability of an equilibrium ). The equilibrium xe is said to
be asymptotically stable for the system x(k + 1) = f(x(k)) with the domain X if it is
Lyapunov stable and asymptotically attractive within X .

Definition 57 (Robust stability of a set R). A set R is said to be robustly stable for
the dynamics x(k + 1) = f(x(k), w(k)),w(k) ∈ W if, ∀ε > 0, there exists a δ > 0 such
that d(x(0),R) ≤ δ =⇒ d(x(k),R) ≤ ε ∀k ≥ 0 and ∀w ∈ W. Here, w is an unknown
disturbance and W a bounded set.

Definition 58 (Robust attractivity of a set R). A set R is said to be asymptotically
attractive for the dynamics x(k + 1) = f(x(k), w(k)), w(k) ∈ W if d(x(k),R) → 0 as
k → ∞ ∀w(k) ∈ W where w is an unknown disturbance and W a bounded set.

Definition 59 (K− function). A function α : R+ → R+ is said to be a K− function
if it is continuous, strictly increasing and α(0) = 0.

Definition 60 (K∞− function). A function α : R+ → R+ is said to be K∞− function
if it is a K− function and is radially unbounded.

Definition 61 (L− function). A function γ : R+ → R+ is said to be a L− function if
it is continuous, strictly decreasing and limτ→∞ γ(τ) = 0.

Definition 62 (KL− function). A function β : R+ × R → R is a KL− function if
β(·, k) ∈ K for every fixed k ∈ R+ and β(r, ·) ∈ L for every fixed r ∈ R+.

Definition 63 (Lyapunov function). A function V : Rn → R+ is said to be a Lyapunov
function for x(k + 1) = f(x(k)) if there exists functions α1(·), α2(·), α3(·) ∈ K∞ such
that for all x(k) ∈ Rn :

• α1(∥x∥) ≤ V (x) ≤ α2(∥x∥)

• V (f(x(k))) ≤ V (x) ≤ V (x) − α3(∥x∥)
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Definition 64 (Input-to-State (ISS) stability). The dynamics x(k+ 1) = f(x(k), w(k))
is ISS stable if there exists β ∈ KL and γ ∈ K such that for each input w(k) ∈ W ⊆ Rq

and each initial state x(0) = x0 ∈ Rn

∥x(k, x0)∥ ≤ β(∥x0∥, k) + γ(∥w∥) (A.33)

Definition 65 (ISS Lyapunov function). A function V : Rn → R+ is said to be
an ISS Lyapunov function for x(k + 1) = f(x(k), w(k)) if there exists functions
α1(·), α2(·), α3(·) ∈ K∞, and σ ∈ K such that for all x(k) ∈ Rn :

• α1(∥x∥) ≤ V (x) ≤ α2(∥x∥)

• V (f(x), w(k)) ≤ V (x) − α3(∥x∥) + σ(∥w∥)

A.5.3 Set invariance

Definition 66 (Positive Invariant (PI) set). A set E ⊂ Rn is a PI set for x(k + 1) =
f(x(k)) if for any x(k) ∈ E, its successor state, x(k + 1) ∈ E.

Definition 67 (Robust Positive Invariant (RPI) set). A set E ⊂ Rn is a RPI set for
x(k + 1) = f(x(k), w(k)) if for any x(k) ∈ E and for all w(k) ∈ W, its successor state,
x(k + 1) ∈ E.

A.5.4 Graph Theory

Definition 68 (Weighted directed graph). A weighted directed graph of order n is a 3-
tuple G := (V ,E ,ΓG ) where V := {1, 2, . . . , n} is the set of nodes/vertices, E ⊂ V ×V

is the set of edges, i.e., ordered pairs of nodes (i, k) and ΓG : E → R+ is a weighting
function assigning a positive value to each edge.

Definition 69 (Complete graph). A complete graph is a directed graph in which every
pair of distinct vertices is connected by a pair of unique edges i.e a graph with V 2 set
of edges.

Definition 70 (Subgraph). A subgraph SG of a graph G is a pair (V ,E ′) where E ′ ⊂ E

and its weighting function is the restriction of ΓG to E ′.

Definition 71 (Path). A path in a graph is an ordered sequence of vertices such that
any pair of consecutive nodes in the sequence is an edge of the graph. To be more
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precise, a path P in G linking the vertices v0, vk ∈ V is a subgraph of G with the vertex
set VP = {v0, v1, . . . , vk} such that the set of edges contain EP = {v0 : v1, . . . , vk−1 : vk}

Definition 72 (Connected graph). A graph is connected if there exists a path between
any two vertices. Precisely, a graph G = (V ,E ) is a connected graph if for every pair
of vertices vi, vj ∈ V , there exists a path Pij linking them.

Definition 73 (Neighbourhood set of a vertex). The neighbourhood set of the vertex
vi denoted by Ni is the set of all vertices adjacent to vi i.e.

Ni := {j ∈ V | (vi, vj) ∈ E }. (A.34)

Definition 74 (In- and out-neighbours). In a directed graph G with an edge (vi, vj) ∈ E ,
vi is called an in-neighbour of vj, and vj is called an out-neighbour of vi.

Definition 75 (Degree of a vertex). The degree of the vertex vi is the number of
neighbours of vi or the cardinality of the neighbourhood set Ni

Definition 76 (In- and out- degree). The in-degree, din(vi), and out-degree dout(vi) of
the vertex vi are the number of in-neighbours and out-neighbours of vi , respectively.
In a weighted directed graph, the weighted out-degree and the weighted in-degree of the
vertex vi are defined by, respectively,

dout(vi) =
n∑

j=1
γij (A.35)

i.e dout(vi) is the sum of the weights of all the out-edges of vi and

din(vi) =
n∑

j=1
γji (A.36)

i.e din(vi) is the sum of the weights of all the in-edges of vi.

Definition 77 (Adjacency matrix of graph G ). The adjacency matrix, AG , of the
graph G is an n× n symmetric matrix with [A ]ij = 1 when (vi, vj) ∈ E and [A ]ij = 0
otherwise.

Definition 78 (Out-degree matrix of graph G ). The out-degree matrix Dout
G of the

graph G is a diagonal matrix of the weighted out-degree of all the vertices in G .
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Definition 79 (Laplacian matrix of graph G ). The Laplacian matrix, LG of the graph
G is defined as

LG = Dout
G − AG ∈ Rn×n (A.37)

Lemma A.5.1. (Properties of the graph Laplacian matrix)[60]
The graph Laplacian LG has the following important properties

1. If the graph G is undirected, then LG is a symmetric positive semi-definite matrix
i.e. LG ⪰ 0

2. The number of zero eigenvalues of LG is equal to the number of connected graph
components.

3. For the graph G , the relation e = LG Φ can be decomposed for each vertex i to
the equation

ei = −
∑

j∈Ni

γij(Φi − Φj) (A.38)

where γij is the weight of the edge (vi, vj).

Definition 80 (Reduced Laplacian matrix). The reduced Laplacian matrix, LG r is
the matrix obtained by deleting the reference column from the Laplacian matrix.



Appendix B

Proofs and Extensions

This section presents some proofs and extensions to ideas presented in the thesis.

B.1 FOLQC problem for time-varying disturbances

To regulate the system under time-varying disturbances to steady-state equilibria where
e = 0, we consider the velocity, or incremental, form of the system dynamics (4.1)
augmented with the tracking error dynamics, whose output is the tracking error e(k):

ϵ(k + 1) = Aϵ(k) + Bδu(k) + Eδw(k) (B.1a)
e(k) = Cϵ(k) + Dδu(k) (B.1b)

where

ϵ(k) :=
 δx(k)
e(k − 1)

 with
δx(k) := x(k) − x(k − 1)
δu(k) := u(k) − u(k − 1)
δw(k) := w(k) − w(k − 1)

(B.2)

and

A =
 A 0nx×ny

ΛyC Iny

 B =
B
Λu

 , (B.3a)

C =
[
ΛyC Iny

]
D = Λu, E =

 E

0ny×nw

 . (B.3b)
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B.1.1 FOLQC Formulation

Given the tracking error and velocity dynamics, the feedback optimizing linear quadratic
control problem is defined, for a state ϵ(k), as

min
δu(k)

J∞(ϵ(k)) (B.4)

subject to,

ϵ(k + 1) = Aϵ(k) + Bδu(k) + Eδw(k), (B.5a)
e(k) = Cϵ(k) + Dδu(k). (B.5b)

In this problem, the decision variable is the control law

δu(k) = −Kϵ(k) (B.6)

This control law is chosen to minimize the objective J∞(ϵ(k)), which is defined as

J∞(ϵ(k)) = 1
2

∞∑
k=0

l(e(k), δu(k))

where
l(e(k), δu(k)) := e(k)⊤Qee(k) + δu(k)⊤Rδδu(k) (B.7)

The matrices Qe and Rδ are the respective penalty matrices on the squared tracking
error ek and input deviation δu(k).

The finite- and infinite-horizon control laws are easily derived by applying the
standard arguments of dynamic programming and Bellman’s Principle of Optimality
to the optimal control problem [133]:

Proposition 7. The solution to (4.15 s.t. 4.16) is

δu∗(k) = −K(k)ϵ(k) − Kδ(k)δw(k) k = 0, . . . , N − 1 (B.8)
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where, for k = 0, . . . , N − 1,

K(k) =
(
R + B⊤P(k)B

)−1(
N ⊤ + B⊤P(k)A

)
(B.9a)

Kδ(k) =
(
R + B⊤P(k)B

)−1
B⊤P(k)E (B.9b)

P(k) =
(
A − BK(k)

)⊤
P(k + 1)

(
A − BK(k)

)
+ K(k)⊤RK(k) + Q − 2N K(k)

(B.9c)

Moreover, as N → ∞ then K(N) → K, Kδ(N) → Kδ and P(k + 1) → P(k) with
P(N) → P where

K = (R + B⊤PB)−1
(
N ⊤ + B⊤PA

)
(B.10a)

Kδ =
(
R + B⊤PB

)−1
B⊤PE (B.10b)

P = A⊤PA + Q −
(
N + A⊤PB

)
(R + B⊤PB)−1

(
N ⊤ + B⊤PA

)
(B.10c)

Proof. In this development, we adopt a backward dynamic programming approach
starting from the time interval k ∈ [0, N ]. Let J∗

k (ϵ(k), δu(k)) denote the optimum
cost (4.15) of transferring the system (4.12) from an initial state ϵ(k) to the terminal
state ϵ(N). At the terminal state ϵ(N), let the optimal cost be given by the function

J∗
N(ϵ(N)) = 1

2ϵ(N)⊤P(N)ϵ(N) (B.11)

where P is a symmetric positive (semi) definite matrix. Let J∗
k+1(ϵ(k + 1), δu(k + 1))

be the optimal cost evaluated from time k + 1 to N . Then at any stage k, using the
principle of optimality [133],

J∗
k

(
ϵ(k), δu(k)

)
= min

δu(k)

{
l(e(k), δu(k)) + J∗

k+1(ϵ(k + 1), δu(k + 1))
}

(B.12)

By solving (4.28) recursively, we can compute the optimal control law u∗(k) that solves
the OCP. To begin, at k = N − 1,

JN−1(ϵ(N − 1), δu(N − 1)) = J∗
N(ϵ(N)) + l(e(N − 1), δu(N − 1)) (B.13)
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Using the state equation (4.12) at k = N − 1,

ϵ(N) = Aϵ(N − 1) + Bδu(N − 1) + Eδw(N − 1) (B.14)

we can eliminate ϵ(N) from JN−1 to obtain

JN−1(ϵ(N − 1), δu(N − 1)) = 1
2
(
Aϵ(N − 1) + Bδu(N − 1) + Eδw(N − 1)

)⊤
P(N)(

Aϵ(N − 1) + Bδu(N − 1) + Eδw(N − 1)
)

+ 1
2ϵ(N − 1)⊤Qϵ(N − 1)

+ϵ(N − 1)⊤N δu(N − 1) + 1
2δu(N − 1)⊤Rδu(N − 1)

(B.15)

The optimal control law at k = N − 1 i.e δu∗(N − 1) can be obtained by applying the
first order necessary optimality condition,

∂JN−1

∂δu(N − 1) =
(
R + B⊤P(N)B

)
δu∗(N − 1) +

(
N ⊤ + B⊤P(N)A

)
ϵ(N − 1)+

B⊤PEδw(N − 1) = 0
(B.16)

Solving for δu∗(N − 1), we obtain

δu∗(N − 1) = −K(N − 1)ϵ(N − 1) − Kδ(N − 1)δw(N − 1) (B.17)

where,

K(N − 1) =
(
R + B⊤P(N)B

)−1(
N ⊤ + B⊤P(N)A

)
and

Kδ(N − 1) =
(
R + B⊤P(N)B

)−1
B⊤P(N)E

With (4.33), we can compute the corresponding optimal cost at k = N − 1 as,



B.1 FOLQC problem for time-varying disturbances 305

J∗
N−1(ϵ(N − 1)) = 1

2ϵ(N − 1)⊤
[(

A − BK(N − 1)
)⊤

P(N)
(
A − BK(N − 1)

)
+

Q − 2N K(N − 1) + K(N − 1)⊤RK(N − 1)
]
ϵ(N − 1)

+ϵ(N − 1)⊤
[(

A − BK(N − 1)
)⊤

P(N)
(
E − BKδ(N − 1)

)
−2N Kδ(N − 1) + K(N − 1)⊤RKδ(N − 1)

]
δw(N − 1)+

1
2δw(N − 1)⊤

[(
E − BKδ(N − 1)

)⊤
P(N)

(
E − BKδ(N − 1)

)
+K⊤

δ (N − 1)RKδ(N − 1)
]
δw(N − 1)

(B.18)

which can also be expressed as

J∗
N−1(ϵ(N − 1)) = 1

2ϵ(N − 1)⊤P(N − 1)ϵ(N − 1)

resulting in the recursion

P(N − 1) =
(
A − BK(N − 1)

)⊤
P(N)

(
A − BK(N − 1)

)
+

K(N − 1)⊤RK(N − 1) + Q − 2N K(N − 1)
(B.19)

We can repeat this procedure for k = N − 2, N − 3, . . . giving the results (4.24) and
(4.25).

The main result of this chapter—that the infinite-horizon control law characterized
by proposition 4 solves Problem 1—immediately follows.

Theorem B.1.1. Suppose that Assumptions 1 and 2 hold, and also the hypotheses
of Proposition 2 and 3. The infinite-horizon control law δu(k) = −Kϵ(k) − Kδδw(k)
solves Problem 1, minimizing the infinite-horizon criterion

J∞(ϵ(0)) :=
∞∑

k=0

{
e(k)⊤Qee(k) + δu(k)⊤Rδδu(k)

}
. (B.20)

Remark 59 (Finite- and receding-horizon implementations). The finite-horizon control
gains K(N),K(N − 1), . . . ,K(k), . . .K(1), and Kδ(N),Kδ(N − 1), . . . ,Kδ(k), . . .Kδ(1)
can also solve Problem 1 if P satisfies the Lyapunov equation with some known sta-
bilizing K(0) = K; in a receding-horizon (MPC) implementation, the applied control
law is δu(k) = −K(k)ϵ(k) − Kδ(k)δw(k). The result is suboptimal. However, such
implementations may be useful—indeed necessary—when constraints are present on
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the system. The FOLQC problem subject to such constraints is the subject of following
chapter.

B.1.2 FOLQC with state and disturbance estimation

In the previous section, we presented control algorithms for solving the deterministic
feedback-optimizing linear-quadratic control (FOLQC) problem. To implement the
control law in (B.8), availability of the velocity state ϵ(k) and the change in distur-
bance δw(k) is assumed. If the state variables, x(k), of the original system (4.1) are
measurable, and the disturbance w(k) is piecewise constant, then δw(k) = 0 and ϵ(k)
can be computed from the state, input and output measurements via the following

ϵ(k) =
 x(k) − x(k − 1)
Λyy(k − 1) + Λuu(k − 1) + r

 (B.21)

In practice, the disturbance may be time varying (i.e., not piece-wise constant) and
obtaining measurements for all state variables may be impossible or simply impractical.
Thus, there is a need to estimate the disturbances and the system states using the
inputs and output measurements, and the system model. To this end, we present a state
estimator for the velocity state ϵ(k) and the disturbance deviation δw(k). Given the
system parameters (A,B,E,C) and a model of the disturbance w(k), it is possible to
estimate the state and disturbance of the system from input and output measurements
if the velocity system augmented with δw(k) is observable.

Velocity state and disturbance estimator

Given the velocity system (B.1) and the disturbance model,

w(k + 1) = Aww(k) (B.22)

we can write the following disturbance augmented velocity dynamics ϵ(k + 1)
δw(k + 1)

 = Aa

 ϵ(k)
δw(k)

+ Baδu(k) (B.23a)

e(k) = Ca

 ϵ(k)
δw(k)

+ Dδu(k) (B.23b)
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where

Aa =
 A E
0nw×(nx+ny) Aw

 , Ba =
 B
0nw×nu

 and Ca =
[
C 0ny×nw

]
.

We make the following assumption on the augmented system

Assumption 30. The augmented system (B.23) is observable

Proposition 8. Assumption 30 is satisfied if
(
C,A

)
is observable and the matrices E

and Aw are such that

rank
A − λInx+ny E

C 0ny×nw

 = (nx + ny) + nw ∀λ ∈ eig(Aw) (B.25)

For the (nx + ny + nw)−dimensional augmented system (B.23), we propose a linear
state estimator to also be an (nx + ny + nw)−dimensional system (B.26) that takes
δu(k) and e(k) as inputs and whose state represents an estimate of the augmented

state variable i.e.
 ϵ̂(k)
δŵ(k)

.

The proposed state estimator has the form ϵ̂(k + 1)
δŵ(k + 1)

 =
(
Aa − LaCa

)  ϵ̂(k)
δŵ(k)

+
(
Ba − LaD

)
δu(k) + Lae(k) (B.26)

which is obtained from a duplicate of the augmented dynamics (B.23) driven by the

error term
(
e(k)−Ca

 ϵ̂(k)
δŵ(k)

−Dδu(k)
)

which enters the duplicated dynamics via the

estimator gain La ∈ R(nx+ny+nw)×ny . The gain La is designed such that the estimation
error dynamics

ξ(k + 1) =
(
Aa − LaCa

)
ξ(k) (B.27)

are driven asymptotically to zero for any non-zero value of ξ(0), where

ξ(k) =
 ϵ(k)
δw(k)

−

 ϵ̂(k)
δŵ(k)

 .
Output Feedback-optimizing Linear Quadratic Control

With the disturbance augmented observer above, the FOLQC law (B.8) can be im-
plemented in an output feedback framework without explicit state and disturbance
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measurements for any arbitrary time varying disturbance w(k). By connecting the state
estimator (B.26) in feedback with the LTI dynamics (B.1), we obtain the closed-loop
system for the output FOLQC system shown in Fig. B.1 below. Due to the observ-
ability of the augmented dynamics, the controllability of the velocity dynamics and
the linearity of both dynamical systems, the principle of separation applies, allowing
independent design of the state estimator and FOLQC gains. To achieve uniform
stability of the closed-loop system, the estimator gain La must be designed such that
its eigenvalues are sufficiently faster than those of the FOLQC gain

[
−K −Kδ

]
.

x(k + 1) = Ax(k) +Bu(k) + Ew(k)
y(k) = Cx(k)

u(k)
y(k)

Λy

rΛu +

+

+

e(k)

La

z−1

Aa − LaCa

z−1 Ba − LaD

[
−K −Kδ

]

+

+
++

−

[
ϵ̂(k)
δŵ(k)

]

δu(k)

u(k − 1)

+

+

Fig. B.1 Output-feedback FOLQC
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B.2 A Feedforward Formulation of FOLQC

The FOLQC formulation based on a velocity model of the system dynamics as presented
above is just one approach to solving Problem 4. Our interest in the velocity model
formulation of FOLQC stems from its ability to be interpreted as a Proportional-Integral
(PI) controller thereby allowing a direct comparison to other feedback-optimizing control
algorithms in the literature (e.g optimal steady-state control [128]). Also, an added
benefit of a velocity model based FOLQC formulation is that for piecewise constant/
slowly varying disturbances, disturbance estimation is not required to achieve feedback-
optimizing control. In this section, we present a feed-forward formulation of FOLQC
that is not based on a velocity model of the system dynamics.

B.2.1 Problem Formulation

In this approach, an estimate of the disturbance i.e ŵ(k) is used to compute a priori,
the unknown optimal steady-states x̄ and inputs ū for the steady-state optimization
(4.2).
Let x(k) → x̄, u(k) → ū and w(k) → w̄ as k → ∞. Then the system dynamics (4.1)
and the steady-state tracking error (4.10) at an optimal equilibrium both satisfy the
following equation

x̄ = Ax̄+Bū+ Ew̄ (B.28a)
0 = ΛyCx̄+ Λuū+ r (B.28b)

Rearranging the equations and solving for
[
x̄ ū

]⊤
yields

x̄
ū

 = S−1

 E

0nu×nw

 w̄ + S−1

0nx×ny

−Iny

 r (B.29)

where S is given by (4.11). The relation above gives the optimal steady-state set-points
(x̄, ū) for the equilibrium optimization (4.2) parametrised by the unknown disturbance
w̄ and the steady-state cost parameter r. To obtain unique values of (x̄, ū), we assume
the matrix S has full rank and ny ≤ nu . Now to formulate the FOLQC problem, we
simply translate the origin of the system (4.1) to the optimal set-points (x̄, ū) and
apply the standard linear-quadratic regulator (LQR) theory on the translated system.
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Let
x̃(k) = x(k) − x̄, ũ(k) = u(k) − ū and, w̃(k) = w(k) − w̄

then if the estimated disturbance ŵ(k) approaches the actual disturbance w(k) suf-
ficiently fast and w(k) → w̄ as k → ∞ (i.e, disturbance is asymptotically constant),
then the translated system can be represented as

x̃(k + 1) = Ax̃(k) +Bũ(k) (B.30)

Regulating the translated variables x̃(k) and ũ(k) to the origin achieves tracking of the
optimal steady-state set-points (x̄, ū). We achieve this by finding a stabilizing control
law ũ(k) that minimizes the performance index

VN(x̃(k)) = 1
2 x̃(N)⊤P̃ x̃(N) +

N−1∑
k=0

l(x̃(k), ũ(k)) (B.31)

for the translated system (B.30) where

l(x̃(k), ũ(k)) := 1
2
(
x̃(k)⊤Q̃x̃(k) + ũ(k)⊤R̃ũ(k)

)
(B.32)

The matrices Q̃ ⪰ 0, R̃ ≻ 0 and P̃ ⪰ 0 are the penalties on the translated state, control
and the terminal state respectively. The solution to the FOLQC problem based on the
feedforward formulation above is summarised in theorem B.2.1 below.

Theorem B.2.1. Assume (A,B) is stabilizable and the matrix S is full rank, then the
control law,

u(k) = −Kxx(k) +Kwŵ(k) +Krr (B.33)

is a solution to the deterministic FOLQC problem (4), where,

Kx = (R̃ +B⊤P̃B)−1B⊤P̃A (B.34a)

Kw =
[
Kx Inu

]
S−1

E
0

 , Kr =
[
Kx Inu

]
S−1

 0
−Iny

 , (B.34b)

and P̃ satisfies the recursion,

P̃ = (A−BKx)⊤P̃ (A−BKx) +K⊤
x R̃Kx + Q̃

(B.34c)
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To implement the control law (B.33), an estimate of the disturbance, ŵ(k), is
required. To this end, a disturbance augmented state estimator, similar to that
presented previously for the velocity based control law is designed to estimate the state
and unknown disturbance. The design of this estimator can be easily adapted from
[171] and is therefore omitted.

B.3 A Feedforward Formulation of Nominal FOMPC

The FOMPC formulation based on a velocity model of the system dynamics as presented
in Chapter 6 is just one approach to solving Problem 6. As previously mentioned, a
benefit of the velocity formulation of FOMPC is that for piecewise constant or slowly
varying disturbances, disturbance estimation is not explicitly required. In this section,
we present a feed-forward formulation of FOMPC that is not based on a velocity model
of the system dynamics.
In this approach, an estimate of the disturbance i.e ŵ(k) is used to compute a priori,
the unknown optimal steady-states x̄∗ and inputs ū∗ for the steady-state optimization
(6.2).
Let x(k) → x̄, u(k) → ū and w(k) → w̄ as k → ∞. Then the system dynamics (6.1)
and the steady-state tracking error (6.6) at an optimal equilibrium both satisfy the
following equation

x̄∗ = Ax̄+Bū+ Ew̄ (B.35a)
0∗ = ΛyCx̄+ Λuū+ r (B.35b)

Rearranging the equations and solving for
[
x̄∗ ū∗

]⊤
yields

x̄∗

ū∗

 = S−1

 E

0nu×nw

 w̄ + S−1

0nx×ny

−Iny

 r (B.36)

The relation above gives the optimal steady-state set-points (x̄∗, ū∗) for the equilibrium
optimization (6.2) parametrised by the unknown disturbance w̄ and the steady-state
cost parameter r. To obtain unique values of (x̄∗, ū∗), we assume the matrix S has full
rank and ny ≤ nu. Now to formulate the FOMPC problem, we simply translate the
origin of the system (6.1) to the optimal set-points (x̄∗, ū∗) and apply the standard
offset-free tracking model predictive control algorithm on the translated system (see
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Chapter 2). We refer the reader to [171, 144] for details.
To implement the FOMPC law, an estimate of the disturbance, ŵ(k), is required. To
this end, a disturbance augmented state estimator, similar to that presented previously
for the velocity based control law is designed to estimate the state and unknown
disturbance. The design of this estimator can be easily adapted from [171] and is
therefore omitted.
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