
Developing Methods for
Real-time Pedestrian

Agent-Based Modelling
An Ensemble Kalman Filter Approach

Keiran Suchak
University of Leeds

School of Geography

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

November, 2022

mailto:k.suchak@leeds.ac.uk
http://www.leeds.ac.uk
https://environment.leeds.ac.uk/geography

2

Intellectual Property Statement

The candidate confirms that the work submitted is their own and that ap-
propriate credit has been given where reference has been made to the work
of others.

This copy has been supplied on the understanding that it is copyright mater-
ial and that no quotation from the thesis may be published without proper
acknowledgement.

The right of Keiran Suchak to be identified as Author of this work has
been asserted by them in accordance with the Copyright, Designs and Pat-
ents Act 1988.

©2022 The University of Leeds and Keiran Suchak.

i

Acknowledgements

The process of completing a PhD is not something that is done alone. Whilst
the work itself — the words on the page, the lines of code, the graphs and
diagrams — may be the work of an individual, the journey of the PhD is
one that is taken with a great deal of support and assistance. It is thanks
to the support of my various families and communities that I have reached
this stage.

The first of these that I would like to thank is my academic community. I
would like to thank my supervisors — Nick and Jon — for all of the support
that they have provided over the course of the PhD. The discussions that
we have had have been invaluable in my academic development. I would
also like to thank Minh for all of his advice and help, both whilst he was
with us at Leeds and since he has moved to Auckland.

I would also like to thank my friends. To the friends that I have made
over the course of the PhD — Natacha, Iain, Eugeni, Annabel, Sedar and
Debbie — you have been like family to me over the last few years. To my
friends from before the PhD — Léa, Tom, Katherine, Helena, Marco and
Kush — thank you for always being there when I needed time away from
the madness of the PhD.

And finally, I would like to thank my family. My journey up to this
point has been a long one, and you have supported me through all of it. To
my parents — from a young age, you inspired a curiosity, a desire to ask
questions and to solve problems, and a determination to see things through;
without these, this piece of work would not exist. Thank you.

ii

Abstract

This research aims to progress the development of real-time pedestrian sim-
ulation methods. Simulating pedestrian systems in close to real-time affords
us up-to-date knowledge of how a population is distributed around a city.
This may allow local authorities to react to demand for services that varies
in time and space by engaging in data-driven decision-making approaches.

One of the most popular approaches for simulating pedestrian motion is
Agent-Based Modelling. Such models are typically calibrated using histor-
ical data to ensure that they reflect the real system. Ultimately, however,
these models usually incorporate some degree of randomness to emulate
the variability of human behaviour resulting in the model diverging from
the real system. This restricts their application to predominantly offline
simulation.

Another potential approach to exploring pedestrian systems is the use of
Big Data. Data are being generated in increasing volumes at an increasing
velocity, and data regarding pedestrian flows are no exception. Such data,
however, may offer sparse coverage with regards to time, space or demo-
graphic portions of the population — an issue from which Agent-Based
Modelling does not suffer. Consequently, we seek an approach that allows
us to benefit from both simulation and data. At present, there is not a con-
sensus on how best to incorporate new observations into an Agent-Based
Model whilst it is running.

The challenge of incorporating observations into running models is fre-
quently tackled in other fields such as numerical weather prediction where
meteorologists make use of data assimilation techniques to introduce obser-
vations into their models. This thesis, therefore, focuses on adapting the
Ensemble Kalman Filter data assimilation technique to work with Agent-
Based Models of pedestrian motion. Given the differences between Agent-
Based Models and the models to which data assimilation methods are typ-
ically applied, additional challenges arise. This thesis will document some
of these challenges and propose solutions.

iii

Contents

1 Introduction 1
1.1 Aim and Objectives . 5
1.2 Thesis Outline . 5

2 Literature Review 9
2.1 Pedestrian Dynamics . 10

2.1.1 Quantitative Measures . 10
2.1.2 Qualitative Phenomena . 12
2.1.3 Modelling Approaches . 14

2.2 Agent-Based Modelling . 15
2.2.1 Offline Agent-Based Modelling 17
2.2.2 Challenges of Agent-Based Modelling 20

2.3 Online Agent-Based Modelling . 23
2.3.1 Data Assimilation . 24

2.4 Concluding Remarks . 31

3 Models 33
3.1 Toy Model . 34
3.2 StationSim GCS . 36

3.2.1 Model Description . 36
3.2.2 Model Calibration . 44
3.2.3 Model Validation and Verification 53
3.2.4 Sensitivity Analysis . 57

3.3 Concluding Remarks . 65

iv

CONTENTS

4 Data Assimilation 67
4.1 Bayesian Inference and Data Assimilation 68
4.2 Kalman Filter . 71
4.3 Ensemble Kalman Filter . 74
4.4 Other Data Assimilation Methods . 76

4.4.1 Sequential Methods . 77
4.4.2 Variational Methods . 81

4.5 Challenges of Data Assimilation with an Agent-Based Model 82
4.6 Concluding Remarks . 85

5 Data Assimilation for Location Estimation: Toy Model 87
5.1 Experimental Design . 88

5.1.1 Developing a Model Baseline . 89
5.1.2 Initial Implementation of the Ensemble Kalman Filter 91
5.1.3 Exploring the Impact of Filter Parameters 93

5.2 Results . 95
5.2.1 Developing a Model Baseline . 95
5.2.2 Initial Implementation of the Ensemble Kalman Filter 98
5.2.3 Exploring the Impact of Filter Parameters 101

5.3 Concluding Remarks . 109

6 Data Assimilation for Location Estimation: StationSim GCS 112
6.1 Experimental Design . 114

6.1.1 Developing a Model Baseline . 116
6.1.2 Exploring Ensemble Member Models 119
6.1.3 Implementing the Ensemble Kalman Filter 122

6.2 Results . 125
6.2.1 Developing a Model Baseline . 125
6.2.2 Exploring Ensemble Member Models 129
6.2.3 Implementing the Ensemble Kalman Filter 134

6.3 Concluding Remarks . 145

7 Data Assimilation for Exit Estimation 147
7.1 Proposed Solutions . 148

7.1.1 Destination Uncertainty . 149

v

CONTENTS

7.1.2 Destination Estimation . 154
7.2 Experimental Design . 163

7.2.1 Benchmarking . 164
7.2.2 Estimating Pedestrian Destinations 167

7.3 Results . 169
7.3.1 Benchmarking . 169
7.3.2 Estimating Pedestrian Destinations 181

7.4 Concluding Remarks . 188

8 Conclusions 192
8.1 Summary of Results . 194
8.2 Evaluation . 196
8.3 Recommendations for Future Work . 198
8.4 Concluding Remarks . 201

A Supplementary Calibration Figures 202

B Model Subprocesses 209

References 221

vi

List of Figures

3.1 A sample run of Station Sim showing pedestrian agents traversing the
environment from left to right. 35

3.2 The main concourse at Grand Central Station in New York (Zhou et al.,
2012). 37

3.3 Flow diagram showing StationSim GCS model process. 40
3.4 Flow diagram showing StationSim GCS model stepping process. 41
3.5 Flow diagram showing StationSim GCS agent stepping process. 43
3.6 Distribution of average speeds . 48
3.7 Distribution of instantaneous speeds . 49
3.8 Distribution of average instantaneous speeds 50
3.9 Variation of number of pedestrians in the system over time (in frames) . 51
3.10 Ridge plot showing distribution of error in the maximum number of

pedestrians in the system for different activation rates. 52
3.11 Comparison of trails from model and observations 55
3.12 Comparison of time spent in system between agents in mode and ob-

served pedestrians. 56
3.13 Variation of error in the maximum number of active pedestrians with

respect to different parameters . 61
3.14 Variation of error in the time at which the maximum number of active

pedestrians occurs with respect to activation rate. 63
3.15 Variation of error in length of time take for the model to complete with

respect to activation rate. 64

5.1 Variation in number of inter-agent collisions with population size. 96

vii

LIST OF FIGURES

5.2 Toy model benchmarking . 97
5.3 Trajectories of agents passing traversing the environment. Contains a

sample of 3 agents from a simulation containing 100 agents. Points
indicating starting location for each agent. 99

5.4 Comparison of how model errors vary over time. 100
5.5 Plots of how analysis error varies with ensemble size. 102
5.6 Plots of how analysis error varies with assimilation period. 104
5.7 Plots of how analysis error varies with observation error standard deviation.105
5.8 Contour map of variation in analysis error with ensemble size and ob-

servation error standard deviation. 107
5.9 Contour map of variation in analysis error with ensemble size and as-

similation period. 108
5.10 Contour map of variation in analysis error with assimilation period and

observation error standard deviation. 109

6.1 Graphical outline of experiments. 115
6.2 Variation in average error per agent with model time for different pop-

ulation sizes. 125
6.3 Variation in number of collisions over course of filter run with population

size. 127
6.4 Trajectories of agents passing traversing the environment. Contains a

sample of 5 agents from a simulation containing 100 agents. Points
indicating starting location for each agent. 128

6.5 Line plot of the average error per agent based on the mean state of the
benchmarking ensemble and the mean state of the filter ensemble. . . . 130

6.6 Line plot of average error per agent based on each ensemble member
model. 131

6.7 Line plot of average error per agent based on each ensemble member
model, with confidence intervals. 132

6.8 Working example — calculating error based on the ensemble mean vs.
based on taking the mean of the individual member models. 134

6.9 Comparison of prior and posterior positions of two agents. 135
6.10 Histogram of filter finish times. 136

viii

LIST OF FIGURES

6.11 Empirical cumulative distribution function (eCDF) plot of filter finish
times; dotted line represents a cumulative level of 90%. 137

6.12 Comparison of impact of measures of handling outliers. 138
6.13 Box plot of average analysis errors for all filters for all time-steps in the

truncated data; dotted line represents the mean of the data 139
6.14 Line plot of average analysis error per agent for 100 filter. 140
6.15 Comparison of average error per agent between analysis and benchmark-

ing filters . 141
6.16 Comparison of average error per agent between analysis and forecast. . . 142
6.17 Comparison of average error per agent between analysis and observations.144

7.1 Variation in average error per agent over simulation time with no data
assimilation. 170

7.2 Sample trajectories of a single agent represented in each of the bench-
marking ensemble models. Trajectory of corresponding agent in base
model provided for comparison. 171

7.3 Variation in average error per agent over simulation time when assimil-
ating data to update location. 174

7.4 Sample trajectories of a single agent represented in each of the ensemble-
member models. Trajectory of corresponding agent in base model provided
for comparison. 175

7.5 Heatmap of gain matrix for final data assimilation of simulation run. . . 178
7.6 Distributions of x- and y-location for first pedestrian before and after

the indicated observation was assimilated. 179
7.7 Variation in average error per agent over simulation time. 183
7.8 Gates Estimation with initial destination allocation randomised across

ensemble . 185
7.9 Angle Estimation with initial destination allocation randomised across

ensemble . 186
7.10 Gates Estimation with initial destination allocation randomised across

gates adjacent to the true gate. 187
7.11 Angle Estimation with initial destination allocation randomised across

gates adjacent to the true gate. 188

ix

LIST OF FIGURES

A.1 Variation of number of agents in the system over time for λ = 1.0 203
A.2 Variation of number of agents in the system over time for λ = 1.1 204
A.3 Variation of number of agents in the system over time for λ = 1.2 204
A.4 Variation of number of agents in the system over time for λ = 1.3 205
A.5 Variation of number of agents in the system over time for λ = 1.4 205
A.6 Variation of number of agents in the system over time for λ = 1.5 206
A.7 Variation of number of agents in the system over time for λ = 1.6 206
A.8 Variation of number of agents in the system over time for λ = 1.7 207
A.9 Variation of number of agents in the system over time for λ = 1.8 207
A.10 Variation of number of agents in the system over time for λ = 1.9 208
A.11 Variation of number of agents in the system over time for λ = 2.0 208

B.1 Flow diagram showing StationSim GCS agent movement process. 210
B.2 Flow diagram showing StationSim GCS agent location allocation process. 211
B.3 Flow diagram showing StationSim GCS agent speed allocation process. . 212
B.4 Flow diagram showing StationSim GCS agent activation checking process.213
B.5 Flow diagram showing StationSim GCS agent deactivation checking pro-

cess. 214
B.6 Flow diagram showing StationSim GCS agent entrance-choice process. . 214
B.7 Flow diagram showing StationSim GCS agent exit-choice process. 215
B.8 Flow diagram showing StationSim GCS agent-agent collision process. . . 216
B.9 Flow diagram showing StationSim GCS agent-wall collision process. . . 217
B.10 Flow diagram showing StationSim GCS agent initialisation process. . . . 218
B.11 Flow diagram showing StationSim GCS station set-up process. 219
B.12 Flow diagram showing StationSim GCS wiggle process. 220

x

List of Tables

1.1 Table outlining the relationship between objectives and chapters. 6

3.1 Table of state variables pertaining to agent entities. 38
3.2 Table of state variables pertaining to the environment entity. 38
3.3 Table of state variables pertaining to gate entities. 39
3.4 Table of state variables pertaining to the obstacle entity. 39
3.5 Table of parameter values used for global sensitivity analysis. 59
3.6 Table of coefficient values; response variable: error in maximum number

of pedestrians in the system. 62
3.7 Table of coefficient values; response variable: error in time of maximum

number of pedestrians in the system. 62
3.8 Table of coefficient values; response variable: error in time taken for all

pedestrians to complete journeys. 64

5.1 Table of model parameters used for estimating the baseline level of error. 91
5.2 Table of model parameters. 93
5.3 Table of filter parameters. 93
5.4 Table of filter parameter ranges . 95

6.1 Table of model parameters used for estimating the baseline level of error. 119
6.2 Table of filter parameters used for the EnKF. 123

7.1 Table of possible entrance and exit gates given a specified entrance side. 151
7.2 Table of parameter value used for experiments in this chapter. 165

xi

Abbreviations

ABM Agent-Based Modelling
DA Data Assimilation
KF Kalman Filter
EnKF Ensemble Kalman Filter
UKF Unscented Kalman Filter
PF Particle Filter
GCS Grand Central Station
FPS Frames per second
PPM Pixels per metre

xii

Chapter 1

Introduction

1

With growing numbers of connected sensors being installed in cities, local governments
are gaining access to a wealth of data (Psyllidis et al., 2015; Batty, 2019; Boeing
et al., 2021). This could allow them to make more intelligent and transparent choices
with regards to service provision for their citizens by engaging in data-driven decision-
making processes (van Veenstra and Kotterink, 2017; Maffei et al., 2020). One of the
key insights that can be gained from city-based sensors is an understanding of how
people move around their environment.

When exploring this topic, investigators often make use of modelling techniques.
At their most fundamental, models represent our understanding of the system that we
are studying — an understanding that may not be perfect (Stanislaw, 1986). There
exist modelling techniques for the simulation of how pedestrians move around urban
spaces (Vermuyten et al., 2016). Simulating pedestrian behaviour is often undertaken
at the micro-scale, with such models typically aiming to model at the individual level
or on a spatially fine-grained grid (Burstedde et al., 2001). One of the most prevalent
simulation methods in this field is that of Agent-Based Modelling. Such methods
consist of two key components: agents and environments. In an Agent-Based Model,
we prescribe sets of rules by which individuals interact with each other and their local
environments (Macal and North, 2005); as interactions take place on the micro-scale, we
typically observe the emergence of structure at the macro-scale such as crowding (Batty
et al., 2003a) or lane formation (Liu et al., 2014). The evaluation of these rules often
consists of stochastic elements aiming to emulate the variability of human behaviour.
The introduction of such randomness, in conjunction with an imperfect understanding
of the phenomena at play, however, typically results in simulation runs diverging from
the real system. Modellers may attempt to prevent (or at least delay) this divergence
by undertaking a development process that involves model verification (Xiang et al.,
2005), validation (Crooks et al., 2008) and calibration (Thiele et al., 2014), as well
as setting initial conditions based on historical data. These practices are appropriate
for offline evaluations such as testing designs of new buildings (Chen and Zhan, 2014)
or experimenting with different individual behaviours (Badham et al., 2018); however,
when aiming to simulate events in real-time, this simply delays the inevitable divergence
of the model from the real system. We may be particularly interested in the simulation
of systems in real-time (or close to real-time) for a number of reasons:

• Urban resource allocation: The presence of pedestrians in urban spaces ul-

2

timately leads to an increase in the local incidence of crime, littering and noise.
Local authorities may wish to respond to these issues, and an understanding of
the number of pedestrians present allow for a proportionate response to prob-
lems (Chen et al., 2017).

• Crowd safety: In spaces where pedestrians gather in high density, there is a
potential for stampeding and trampling which may subsequently lead to severe
injury and loss of life (Helbing et al., 2007; Still et al., 2020). An improved
understanding of how pedestrians are distributed across an urban setting may
better inform the choice of evacuation and safety protocols.

• Social distancing compliance: Recent investigations have sought to estimate
the density of pedestrians with a view to checking public compliance with social
distancing measures put in place in response to the COVID-19 pandemic (Yang
et al., 2021).

In such cases, we seek to replicate the events that occur in the real-world system within
our model; in some cases we may even seek to produce accurate forecasts such that
we can take pre-emptive actions to address issues that may occur. Given the likely
divergence of models from real-world systems and the growth of uncertainty noted
above, making such forecasts in a reliable manner is extremely challenging.

Given the demand for real-time insights, investigators may alternatively turn to
big data. Data are now being generated in higher volumes and at greater velocity
than ever before (Chen et al., 2014); however, there also exist issues with observation
data from such systems. Whilst models typically allow us to simulate a whole system,
observations are often sparse in either time or space (or both) (Zheng et al., 2014);
this is to say that observations rarely provide complete coverage of the events. Beyond
this, observations also bring their own associated uncertainties (Li et al., 2016) which
depend on the method of data collection. Although our models may offer a solution to
the problem of sparsity, they often introduce greater degrees of uncertainty as noted
above. We therefore seek a solution whereby we can integrate up-to-date observations
into our models as the models continue to simulate the system.

One of the methods by which we can combine knowledge represented by our model
with observations as they become available is through data assimilation techniques,
which are most commonly used in the field of numerical weather prediction (Kalnay,

3

2003). Such techniques are typically made up of two steps:

1. Predict: The model is run forward, estimating the state of the system,

2. Update: The model’s estimate of the system state is combined with new data
in the form of observations.

These steps are repeated iteratively in a cycle. The aim of incorporating the observa-
tions into the model is to improve the model accuracy with respect to the true system
state, thus allowing us to place greater trust in our simulations whilst acknowledging
the uncertainty in both our predictions and observations.

A large volume of work exists in which such techniques are applied to meteorological
systems where the models used are based on differential equations (Navon, 2009); other
work has focussed on the use of data assimilation schemes where real-time forecasting
is of great value such as Tsunami forecasting (Maeda et al., 2015). Significantly less
work exists in which data assimilation methods are applied to agent-based models
— in particular pedestrian models. The application of data assimilation schemes to
such models brings with it a set of challenges that may not be encountered in its
traditional fields of application. One problem that may be encountered in traditional
data assimilation fields of application is the estimation of unobserved quantities (Ruiz
et al., 2013), e.g. model parameters. Such unobserved quantities are often continuous
variables — something that data assimilation schemes are well suited to estimating.
When applying data assimilation methods to pedestrian models, we are also likely to
want to use the assimilated observations to infer unobserved quantities; however, in
Agent-Based Models of pedestrian systems, it is likely that some of these variables will
not be continuous, but instead categorical. This presents additional challenges.

The majority of the pre-existing work has focussed on implementing Agent-Based
Models in conjunction with a data assimilation method known as the Particle Fil-
ter (Wang and Hu, 2013; Rai and Hu, 2013; Wang and Hu, 2015; Lueck et al., 2019;
Malleson et al., 2020; Ternes et al., 2021). Other work has sought to apply variants of
a data assimilation method known as the Kalman Filter (Ward et al., 2016; Clay et al.,
2020, 2021). Each of these methods has their strengths and weaknesses (which will be
touched upon in Chapters 2 and 4).

This thesis will build upon this novel and growing field of work by applying a data
assimilation method known as the Ensemble Kalman Filter (EnKF) to Agent-Based
Models of pedestrian motion.

4

1.1 Aim and Objectives

1.1 Aim and Objectives

This investigation aims to define an approach for the application of the EnKF data
assimilation method to Agent-Based Models of pedestrian motion for the purposes of
simulating systems in real-time. In order to achieve this, the following objectives out
set out:

1. Review the literature around the simulation of pedestrian dynamics with a par-
ticular focus on simulation at close to real-time.

2. Describe the modelling approaches used to simulate pedestrian systems in this
investigation.

3. Describe the data assimilation approaches used to update models in this invest-
igation.

4. Apply the EnKF to improve estimates of pedestrian locations in simple Agent-
Based Models to show that such approaches can be used with systems other than
those that are described by systems of differential equations.

5. Apply the EnKF to improve estimates of pedestrian locations in more realistic
Agent-Based Models to show that such approaches are also effective when to
systems that more closely reflect reality.

6. Apply the EnKF to improve estimates of both observed and unobserved variables
in an Agent-Based Model to show that such approaches are effective in simultan-
eously performing state and parameter estimation for pedestrian systems.

1.2 Thesis Outline

This thesis is made up of 8 chapters (including this chapter). The way in which these
chapters relate to the objectives described above is outlined in Table 1.1.

Following on from this chapter, Chatpter 2 aims to introduce the relevant literature
for the investigation, providing a foundation on which to build the work contained
within this thesis. This begins with an introduction to the literature on pedestrian
dynamics and their simulation. Based on this, the chapter goes on to introduce Agent-
Based Models and their use in the simulation of pedestrian systems; this includes topics

5

1.2 Thesis Outline

Objective Chapters

O1: Review the literature around the simulation of pedestrian dynamics
with a particular focus on simulation at close to real-time.

2

O2: Describe the modelling approaches used to simulate pedestrian sys-
tems in this investigation.

3

O3: Describe the data assimilation approaches used to update models
in this investigation.

4

O4: Apply the EnKF to improve estimates of pedestrian locations in
simple Agent-Based Models to show that such approaches can be used
with systems other than those that are described by systems of differential
equations.

5

05: Apply the EnKF to improve estimates of pedestrian locations in
more realistic Agent-Based Models to show that such approaches are
also effective when to systems that more closely reflect reality.

6

O6: Apply the EnKF to improve estimates of both observed and unob-
served variables in an Agent-Based Model to show that such approaches
are effective in simultaneously performing state and parameter estima-
tion for pedestrian systems.

7

Table 1.1: Table outlining the relationship between objectives and chapters.

6

1.2 Thesis Outline

related to their calibration and the ways in which real-world data are used to inform
their design and implementation. Criticism is provided of these approaches, outlining
their shortcomings when looking to specifically simulate systems in real-time (or close
to real-time). This chapter concludes with a review of the existing work in which
data assimilation methods have been used to alleviated these shortcomings, whilst also
providing critique.

Having reviewed the literature in Chapter 2, the next two chapters focus on the
methods used in this investigation. The first of these — Chapter 3 — aims to outline
the Agent-Based Modelling aspect of the work within this investigation. This involves
describing two models which will be used in conjunction with data assimilation schemes.
The first of these models is a toy model which seeks to simulate the movement of
pedestrians across a fictitious train station concourse; when outlining this model, its
shortcomings are also included. The second model looks to provide an application case
which more closely represents a real-world setting, and therefore seeks to simulate the
movement of pedestrians around the concourse of Grand Central Station in New York.
This description includes a documentation of the model, an outline of the calibration
process and a sensitivity analysis. The purpose of using these models is twofold. The
first of these is that the models exhibit crowding phenomena — something that is
typically not captured by modelling approaches that are based on differential equations.
Furthermore, under the conditions of crowding, we are likely to find that our models
are more liable to diverge from the corresponding real-world system at an individual
level, thus justifying the case for applying data assimilation at an individual level.
Secondly, the use of these models allows us to apply the data assimilation approach to
the inference of unobserved agent parameters — a problem that, as noted previously,
it not common when using these methods in their typical fields of application.

The next chapter focussing on methods — Chapter 4 — aims to outline the data
assimilation methods used in this investigation. This starts by defining the process of
data assimilation within the context of Bayesian inference. The chapter then goes on
to describe the EnKF (and the Kalman Filter on which it was originally based). This
is contrasted with other data assimilation methods, such as those that have been used
in similar investigations. The chapter concludes by outlining the challenges of applying
such data assimilation methods in conjunction with Agent-Based Models.

The following three chapters present the experiments and results of this investig-

7

1.2 Thesis Outline

ation. These are centred around the idea of showing that the EnKF can be used in
conjunction with an Agent-Based Model of pedestrian motion to improve the accuracy
with which we can simulate the trajectories taken by pedestrians across an environment.

The first of these — Chapter 5 — looks to apply the filter to a toy model which
represents the concourse at a fictitious station (which has been detailed in Chapeter 3).
This acts as a preliminary experiment to explore the initial challenges of applying the
data assimilation method to such an Agent-Based Model.

The second results chapter — Chapter 6 — seeks to take this a step further by
applying the EnKF an Agent-Based Model that more realistically represents a real-
world scenario; the model in question, known as StationSim GCS, models the motion
of pedestrians around the concourse of Grand Central Station in New York, as was
designed based on empirical data (as outlined in Chapter 3).

The final results chapter — Chapter 7 — tackles one of the key issues that is over-
looked in previous results chapters. In Chapters 5 and 6, it is assumed that we have
perfect knowledge of pedestrians’ origins and destinations within the model environ-
ment from the outset — this is seldom the case when simulating real-world systems.
As a consequence, Chapter 7 seeks to explore the impact of relaxing this assumption,
proposes a set of solutions, and explores their effectiveness.

This thesis is then concluded by Chapter 8 which draws together the findings of
the investigation. This includes a comparison with other relevant pieces of work and
an outline of the limitation of the work contained herein. This concludes with the
suggestion for some avenues for future work.

8

Chapter 2

Literature Review

9

2.1 Pedestrian Dynamics

Having outlined the context, motivation and aim of this investigation in the previous
chapter, this chapter aims to review the literature relevant to such a piece of work. In
the previous chapter, we noted that this investigation seeks to establish a new approach
to using Agent-Based Modelling to simulate pedestrian systems in close to real-time.
In order to undertake such an investigation, we must first consider the literature sur-
rounding the modelling of pedestrian dynamics more generally. This chapter therefore
begins with a review of the literature on the general modelling of pedestrian dynamics;
this will highlight the issues with previous approaches. This is followed by a specific
focus on the use of Agent-Based Models and their use in the context of pedestrian
dynamics; this section will highlight the need for the use of real-world data when mod-
elling pedestrian systems. The chapter will conclude with a section reviewing the recent
work that has been undertaken with “online” approaches to using agent-based models
in the field of pedestrian dynamics. This will highlight the shortcomings of previous
attempts, with a view to justifying the need for this investigation.

2.1 Pedestrian Dynamics

As highlighted in Chapter 1, the investigation of pedestrian movement is of great in-
terest for many reasons; this interest may come from a number of different domains
— from urban planners and government officials to retailers and advertising agen-
cies (Kitazawa and Batty, 2004). With increasing numbers of people living in cities,
this interest is only likely to grow.

When considering the dynamics of pedestrian systems, we are able to explore them
by looking at quantitative qualities and qualitative phenomena. Each of these shall be
described in this section, along with an overview of the modelling techniques typically
used when considering pedestrian systems.

2.1.1 Quantitative Measures

In pedestrian dynamics, there are often three quantitative measures that are of interest:
pedestrian flow rate, pedestrian velocity and pedestrian density (Gupta and Pundir,
2015).

For pedestrian velocity, v, we can consider the classical definition of velocity:

v = dx
dt

, (2.1)

10

2.1 Pedestrian Dynamics

where x is the pedestrian’s position and t is time, i.e. a pedestrian’s velocity is the rate
of change in its positions with respect to time. If we are only interested in a pedestrian’s
scalar velocity, we can take the magnitude of the vector, v = ∥v∥. If we consider the
case where the pedestrian’s is defined by its location in a 2-dimensional x-y space, then
we can define the scalar velocity as:

v = ∥v∥ =
√

v2
x + v2

y, (2.2)

where vx is the x-component of the pedestrian’s velocity and vy is the y-component of
the pedestrian’s velocity.

For pedestrian density, we can also consider the classical physical definition of dens-
ity, ρ:

ρ = m

V
,

where m is mass and V is volume. This classical definition is typically applied to the
description of 3-dimensional matter; in our case, we are interested in the description of
pedestrians in 2-dimensional space and the definition is therefore adapted to:

ρ = N

A
, (2.3)

where A is the space being considered and N is the number of pedestrians present in the
space. Whilst this approach is commonly used, it only provides an average density over
a space and does not provide a spatial distribution which we are likely more interested
in. Furthermore, the result of the calculation is dependent on the geometry of the
reference area used. An alternative approach is the use of Voronoi cells (Steffen and
Seyfried, 2010). These cells represent the physical area “belonging” to each pedestrian.
A single pedestrian’s cell is defined as containing all coordinates that are closer to them
than to other pedestrians. Each cell, ci, has a respective area, Ai, from which we can
derive a density, ρi:

ρi = 1
Ai

. (2.4)

This results in a collection of cells which partition the spatial environment, each of
which pertain to a single agent in the system. Each of these cells have an associated
density which can be graphed to visualise the distribution of density by tiling the space.
Such a tiling is almost always irregular, but the respective density distribution on a
regular grid can be found by considering the weighted average of each of the Voronoi
cells which intersect with a given grid cell.

11

2.1 Pedestrian Dynamics

For pedestrian flow rate, J , we consider the scenario in which we are observing a
single point in space and counting the number of pedestrians passing by. Based on such
a situation, we define the flow rate, J , as the number of pedestrians passing the point
over a given time:

J = dN

dt
, (2.5)

where N is the number of pedestrians and t is the time.
Following the analogy with classical physical definitions for these quantities, we may

consider the relationship between the three quantities often observed in fluid dynam-
ics (Schadschneider and Seyfried, 2011):

J = ρv. (2.6)

Consequently, we may only need to measure two of the three quantities and may be
able to derive the third from this relationship. These relationships are often explored
graphically in the form of fundamental diagrams (Seyfried et al., 2005), and have been
used to explore the way in which pedestrian behaviour varies across cultures (Chattaraj
et al., 2009).

2.1.2 Qualitative Phenomena

When considering pedestrian systems, there are a number of phenomena that occur
persistently across a number of settings, both at a microscopic and macroscopic level.

When considering microscopic phenomena, Helbing et al. (2001) observed the fol-
lowing set of behaviours occurring across different settings:

• Pedestrians dislike taking detours and wish to take the most direct route to their
destination.

• Each pedestrian typically has their own desired walking speed, and the speeds
amongst a population are usually normally distributed.

• Pedestrians have a desire to maintain a certain distance between themselves and
others (as well as objects within the environment).

• Pedestrians often act “automatically” and have a tendency not to change their
behaviours.

12

2.1 Pedestrian Dynamics

Whilst their may be some variation in the extent to which each of these phenomena oc-
cur, it is important that they are incorporated on some level into modelling approaches
that seek to faithfully represent crowd dynamics.

When considering the dynamics of pedestrian systems, there often emerge a number
of different macroscopic phenomena based on the individual-level behaviours of ped-
estrians between each other and between pedestrians and their environment. Three
of the most common phenomena observed are lane formation, queuing, and density
waves (Schadschneider et al., 2009). These shall be discussed briefly in this section.

Lane Formation

When considering pedestrians systems set in narrow corridors or pedestrian crossings,
the direction of travel of the individuals becomes restricted in one of the two-dimensions
with the pedestrians seeking to cross from one side of the environment to the other. If
all of the pedestrians are starting on one side and aiming to cross to the other side, we
may consider the flow to be unidirectional. If, however, the population is split into two
groups and are initially located on opposite side, seeking to cross the environment, we
observe what is known as a bidirectional or a counterflow. When observing situations
involving bidirectional flows we often see the formation of lanes (Kretz et al., 2006). If
we consider a simple setting in which we have a long corridor spanning in the x-direction
and narrow in the y-direction with some portion of a pedestrian population starting
at each end with the goal of getting to the opposite side, we expect that ultimately
we will observe the formation of number of lanes such that at least one lane facilitates
the movement of pedestrians in the positive x-direction and at least one lane facilitates
the movement of pedestrians in the negative x-direction. Such phenomena may occur
naturally or may be aided by environmental features such as dividing barriers and
signage (e.g. Green Park underground station in London).

Queuing

Another phenomenon that occurs commonly in pedestrian systems is that of queuing.
Queuing can be framed as a demand-supply problem (Martinez-Gil et al., 2017), using
the terms defined in Section 2.1.1:

Consider a scenario in which we have a unidirectional flow of pedestri-
ans in the x-direction. As described by Helbing et al. (2001), pedestrians

13

2.1 Pedestrian Dynamics

have a set of demands — for the speed at which they walk, v, and for a
degree of personal space around them (which translates into a specific local
density, ρ). These demands govern the speed and density of a population
of pedestrians. If the stream of pedestrians encounters a narrowing of the
path that is sufficiently constricting that it violates their demands for per-
sonal space, the flow rate will fall. With the imbalance between the rate at
which pedestrians can pass through the constriction and the rate at which
pedestrians arrive at the constriction, a queue forms.

This scenario describes the demand-supply problem as one based on cross-sectional
space, but the same process can apply for supply and demand of other resources such
as ticket counters at train stations. Furthermore, the example above describes a scen-
ario based on a single resource-supplier, but this can also be extended to multiple
resource-suppliers; such a scenario may result in multiple queues, and present arriving
pedestrians with multiple choices (Wagoum et al., 2017).

Density Waves

The final phenomenon that we shall consider is that of density waves. Density waves
are common in vehicular traffic systems, and it is not uncommon to observe them in
pedestrian systems which emulate the conditions of vehicles driving on the road, i.e.
unidirectional flow with restriction in movement tangential to the flow of the crowd
(although they may also occur in other settings such as stationary crowds). We can
think of density waves in pedestrian systems as periodic oscillations of density in space
and time (Schadschneider et al., 2009), ρ(x, t).

2.1.3 Modelling Approaches

When investigating pedestrian systems, many researchers seek to define models of the
dynamics at play. When building these models, researchers need to make decisions
regarding a number of factors (Schadschneider et al., 2009; Zsifkovits and Pham, 2017):

• Microscopic or macroscopic? Do we wish to to model the system at the
individual or at the group level?

• Discrete or continuous? Do we treat the state variables of space and time as
discrete integer values or continuous real values?

14

2.2 Agent-Based Modelling

• Deterministic or stochastic? Is the future state of the system determined
precisely by the current state of the system, or is there some random variability
involved?

Two of the most common way in which to model pedestrian systems are through
mechanical models and through cellular automata models (Martinez-Gil et al., 2017).
Beyond these methods, researchers also used Agent-Based Models. This investigation
will focus on the use of Agent-Based Models, and as such a section dedicated to them
will follow this one; this section will proceed by outlining mechanical models and cellular
automata.

Mechanical models typically involve the use of mathematical equations to describe
the evolution of a system. Some of these seek to use equations to describe the time-
evolution of the macroscopic state of the system, such as fluid dynamic models (Helbing,
1992); others seek to use equations to describe the forces acting on pedestrians at an
individual level (Helbing and Molnar, 1995). Such approaches are typically determin-
istic, and often treat the state variables as continuous (by virtue of being governed by
equations using real-valued variables).

Cellular Automata model the system at a microscopic level based on discrete space
and time. They consider the environment as a grid of cells with each cell containing a
number of pedestrians, and evolving the number of pedestrians in each cell from one
time-step to another based on a set of rules (Schadschneider, 2002). The rule by which
the number of pedestrians in a cell is evolved is often stochastic (although it may be
deterministic), and aims to reflect the movement of pedestrians from one discrete space
to another. A related technique which also simulates a system at a microscopic level is
that of Agent-Based Modelling, which shall be explained in the next section.

2.2 Agent-Based Modelling

In the previous section, we touched upon the topic of Cellular Automata models which
seek to model the evolution of pedestrian systems at a microscopic level. Related to
Cellular Automata, we have Agent-Based Models. In the former, we consider space to
be our unit of analysis, modelling how discrete units of space vary over time; in the
latter, we consider individual pedestrians as our units of analysis, modelling how they
move through space over time.

15

2.2 Agent-Based Modelling

When considering social systems, we can think of them as being complex systems,
comprised of many interacting components. When looking to study such systems, we
can often think of modelling them from one of two perspectives: top-down and bottom-
up. In a top-down approach, we seek to model aggregate-level system characteristics,
which might be achieved by approaches such as the equation-based models mentioned
in Section 2.1. Such approaches, however, do not provide us with any information
regarding the status of individual components within the system. Furthermore, they
are liable to overlook individual-level heterogeneity.

The alternative approach — bottom-up — aims to model individual components,
defining rules for their interactions. This allows us to derive the macroscopic beha-
viours that we could observe from a top-down approach. Furthermore, it allows us to
incorporate heterogeneity in terms of variation in individual-level characteristics and
behaviours and explore their impact on the emergence of macroscopic states. One of the
most popular approaches to bottom-up modelling is Agent-Based Modelling in which
we characterise a system as a collection of units which interact with each other and
their environment based on a set of behaviours (which are often prescribed as rules).
Here, we take environment to include not just spatial environments but also other
factors which also mediate interactions between agents such as interaction networks.
This approach has been applied to a wide range of fields including exploring molecular
and cellular interactions in Pharmacology (Sun et al., 2008; Cosgrove et al., 2015), the
analysis of movement and habitat selection in Ecology (Railsback et al., 1999; Railsback
and Harvey, 2002), the exploration of criminological theory (Birks and Davies, 2017),
the simulation of transport networks (Bazghandi, 2012; Bazzan and Klügl, 2014) and
the exploration of market dynamics (Ghoulmie et al., 2005; Eppstein et al., 2011; Ge,
2017). With the broad array of disciplines to which Agent-Based Modelling is applied
comes an array of ways to encode the environment in which the agents exist. When
considering ecological applications, our agents exist in a spatial environment which
may be represented as either continuous or discrete space; when using an Agent-Based
Model to explore the impact of pandemic interventions, we may wish to incorporate a
network structure between our agents (Vermeulen et al., 2021).

Such an approach which allows us to simulate a system at an individual level lends
itself naturally to the modelling of pedestrians, and the simulation of pedestrian systems
using Agent-Based Models is a well established field (Burstedde et al., 2001; Hoogen-

16

2.2 Agent-Based Modelling

doorn and Bovy, 2003; Helbing et al., 2005). In applying the technique of agent-based
modelling to the study of pedestrian dynamics, we characterise individual people as
agents in the model, and define the rules of how they may interact with each other and
the environment around them (Batty et al., 2003a; Liu et al., 2014). Such an approach
allows us to explore not only the impact of different spatial environments, but also how
the dynamics of the system may change as a result of different agent characteristics
and behaviours — something that may have been much more difficult if using a top-
down approach. This allows us to apply agent-based modelling to the exploration of
scenarios such as crowding dynamics at carnivals (Batty et al., 2003a,b), the testing of
evacuation policies (D’Orazio et al., 2014; Chen and Zhan, 2014) and usability of new
building designs (Andrews et al., 2011).

In order to ensure that these models accurately reflect the real-world scenarios that
they are simulating, modellers undertake the aforementioned processes of verification,
validation and calibration. As shall be highlighted in Section 2.2.1 a number of different
approaches to calibration exist, each with their own strengths and weaknesses. These
methods typically make use of historical data regarding the system being studied in
order to find appropriate initial model states and parameters.

2.2.1 Offline Agent-Based Modelling

Traditionally, Agent-Based Models are used in the manner outlined above whereby the
model is calibrated before use. This calibration is typically undertaken once before sim-
ulating the system in question, and the model remains static from that point onwards.
Such an approach is referred to as “offline”. The alternative is an “online” approach,
which is typically used in scenarios in which researchers would like to simulate systems
in close to real-time and have their models respond to observed changes in the system
(such as when using models in smart cities applications).

The distinction regarding when to use online or offline approaches depends upon
both which approach is feasible and which is desirable.

From a feasibility perspective, we should note that online approaches place re-
quirements on both computational infrastructure and the data used. With regards to
data, online approaches require the provision of low-latency observations of the sys-
tem being modelled. With regards to to infrastructure, online approaches are likely
to incur a greater computational cost beyond what is typically found when applying

17

2.2 Agent-Based Modelling

offline approaches. This places technical restrictions upon the scenarios in which online
approaches may be applied.

Even in the situation in which we have the necessary observations and the infra-
structure to handle the computational cost, we may find that an online approach is not
appropriate and that an offline approach is more desirable. This may include situations
in which researchers wish to explore the impact of different architectural designs on the
behaviours of the individuals in a system (Wu and Chen, 2019). In such scenarios,
researchers are not aiming to make forecasts (as would likely be the case with online
approaches), but instead to use models as a test-bed to explore the impact of different
policies or individual-level behaviours.

The remainder of this section will focus on the types of calibration methods used in
offline approaches. Literature on online approaches shall be addressed in Section 2.3.

Calibrating Agent-Based Models

The process of calibrating an agent-based model involves identifying the values that
should be assigned to model parameters in order to achieve the desired model beha-
viour (Crooks et al., 2008; Crooks and Heppenstall, 2012); the desired model behaviour
is typically defined as behaviour which matches that observed in previous observations
of the system in question by some measure. Such parameters govern the ways in which
agents interact with each other and with their surrounding environment — it is, there-
fore, crucial that appropriate values are identified. In order to achieve this, there are
a wide range of approaches at our disposal (Hazelbag et al., 2020) which often require
that we evaluate model outputs against observations of the system by way of measuring
the difference between the two.

One of the most primitive methods of model calibration is known as full factorial
design, whereby a comprehensive parameter search is undertaken by running the model
for every combination of parameter values (Thiele et al., 2014), evaluating the outputs
of the model against the desired behaviour for each run. This method is appropriate
when model runs are relatively inexpensive with regards to compute time, and when
parameters take integer values; in cases where parameters take on non-integer values,
care must be taken with regards to the grid resolution of the parameters that are tested
as this may significantly change results.

As an alternative to the exhaustive search proposed in Full Factorial Design, Clas-

18

2.2 Agent-Based Modelling

sical Sampling Methods involve sampling from the set of potential parameter com-
binations. In its most simple form, this would take the form of randomly sampling
from uniform distributions for each parameter value; this is also relatively inefficient
though (Thiele et al., 2014). Alternative sampling approaches have therefore been pro-
posed such as Latin Hypercube Sampling (McKay et al., 1979), whereby the potential
range of parameter values is divided up into equally probable intervals and samples
drawn from each interval.

Optimisation Methods are a common technique for fitting models. They involve
defining a cost function relating some aspect of model behaviour with the corresponding
aspect of the observed phenomena; we then seek to minimise the difference (i.e. the
cost). These approaches can therefore be viewed as minimisation problems over the
parameter space in which we often seek the global minimum, i.e the parameter values
which minimise the difference between the model behaviour and the observed system
behaviour. Many techniques exist to achieve this goal, including simulated annealing
(from statistical physics) (Kirkpatrick et al., 1983) and evolutionary algorithms (Duboz
et al., 2010).

A final approach to calibration may be through Bayesian Methods. These methods
seek to use Bayes theorem to identify appropriate parameter values (Jabot et al., 2013).
This is achieved by making use of our prior understanding of the statistical distributions
from which each of the parameter values are drawn; running a model a large number
of times with parameter values drawn from these distributions, comparing our result-
ing model outputs with our observations with a view to inferring the true statistical
distributions of the parameters. Due to the large number of times that models must
be run, these methods can be computationally expensive; with the advent of modern
computing, bringing with it increasing levels of computational power, the methods are
gaining popularity with researchers (Beaumont, 2010; van der Vaart et al., 2015).

More generally, we may have to contend with some issues. In some cases, it is not
possible to identify unique values for parameters, and instead we are left with para-
meter sets, i.e. multiple combinations of parameters that can be used to reproduce the
desired system behaviour; this can result from over-parameterisation and/or interac-
tions between parameters (Gan et al., 2014). This process of model calibration may
also be further impeded by either a lack of data or data with high uncertainty (Thiele
et al., 2014).

19

2.2 Agent-Based Modelling

As highlighted in Section 1, however, these approaches are typically undertaken
prior to models being run. As a consequence, models employing these approaches
may attempt to make use of up-to-date observations in the calibration process prior to
running, but cannot make use of subsequent observations that arise as the model runs,
and as such are not appropriate for simulating systems in real-time.

2.2.2 Challenges of Agent-Based Modelling

Before proceeding, it should be noted that Agent-Based Modelling is not without its
shortcomings (apart from the issue of incorporating real-time observations described
above). In recent years, a number of articles have described at length the challenges
faced by those using Agent-Based Models (Crooks et al., 2008; Schulze et al., 2017; An
et al., 2021). This section, therefore, will briefly touch on a small selection of issues that
are faced which are particularly relevant to the work in this investigation. This will
include a discussion of challenges around the modelling of human behaviour, the prob-
lems arising from the computational cost of running such models, the issues of model
verification and validation and the inadequate use of data in the model development
process.

Modelling Human Behaviours

One of the most common reasons that Agent-Based Models are used to simulate systems
of humans is that they allow researchers to incorporate more complex and heterogeneous
behaviours (Macal, 2016). One way in which researchers often aim to incorporate some
aspect of human behaviour is though the use of computational randomness; this is not,
however, to represent human behaviour as random, but instead to represent the degrees
of inconsistency and noisiness associated with the behaviour (Kennedy, 2012).

Deciding how human behaviours are represented and prescribed within a model is
a challenge. In order to address this problem, a set of frameworks have been devised
to better represent human behaviour (Crooks and Heppenstall, 2012). One of the most
prominent of these is Belief-Desire-Intention (BDI) (Rao et al., 1995), in which an
individual’s beliefs, desires and intentions are encapsulated within the state of the cor-
responding agent; beliefs represent the individual’s information about the environment
in which they exist, desires represent the individual’s goals, and intentions represent
the set of actions that the individual selects in order to achieve their goals (Bandini

20

2.2 Agent-Based Modelling

et al., 2009). By encapsulating an individual’s internal state and thought process in
this way, researchers can design corresponding agents that have consistent beliefs and
respond to stimuli in a timely and orderly manner (Kinny et al., 1996).

One of the criticisms of this framework is its assumption that the individuals who
we seek to model are rational actors — an assumption which does not always hold.
In order to address this issue the PECS framework (Physical Conditions, Emotional
State, Cognitive Capabilities and Social Status) was devised in which researchers can
include emotional and social factors into the characterisation of an individual within
their model (Schmidt, 2005).

The development of such frameworks may seek to clarify and better formalise the
way in which we encode human behaviour within our computational agents. Regardless
of the choice of framework, however, models of human systems will typically fail to
perfectly reflect the system as, ultimately, we are unlikely to be able to account for
all types of behaviour in all settings (whether this arises from the finite description of
behaviour in our model, or from limitations of the data with which we calibrate the
model) (Kennedy, 2012; An et al., 2021).

Verification and Validation

The issues of verification and validation of Agent-Based Models are ones that have
been raised repeatedly (An et al., 2021). It has been suggested that this may arise
due to some confusion around their definitions (Crooks et al., 2008). When considering
Agent-Based Models, we may consider the following definitions:

• Verification: The process of ensuring the logical implementation of the model
is correct (Xiang et al., 2005).

• Validation: The process of ensuring that the model represents the system and
phenomena of interest (Crooks and Heppenstall, 2012).

When undertaking model verification, we seek to ensure that the model that has
been implemented is consistent with the researcher’s conceptual model. If constructing
the model through the writing of computer code, verification process may be achieved
by undertaking a test-driven development process (Collier and Ozik, 2013). Such testing
involves ensuring that some aspect of the model produces a prescribed set of behaviours.
Testing may be undertaken at a range of different levels including Unit, Agent and

21

2.2 Agent-Based Modelling

Integration (Nguyen et al., 2009). Reproducibility of behaviours (and by extension
model verification by testing) in Agent-Based Models can be something of a challenge,
particularly when the models incorporate some degree of stochasticity (Houhamdi,
2011).

When undertaking model validation, we seek to ensure that the model is capable
of reproducing patterns and phenomena that we observe in the real system. This in-
troduces a challenge that is intrinsically linked to one of the strengths of the approach;
Agent-Based Modelling allows us to explore the behaviour of system at both the mi-
croscopic level and the macroscopic level, but at what level should we check that a
model reproduces the behaviours of the real system? One suggested approach is that
of pattern-oriented modelling (An et al., 2020), whereby the output model behaviour
can be compared against multiple patterns at multiple scales.

Whilst some approaches are proposed for dealing with each of these challenges, there
are not yet agreed-upon solutions and as such they remain open problems. Without the
application of these processes, we may question the extent to which a model is credible
and robust.

Computational Cost

One of the most notable disadvantages of Agent-Based Models in comparison to meth-
ods such as Equation-Based Models is the computational cost. In the former approach,
we seek to evolve the state of each individual unit in our model over time — a process
that may be either deterministic (e.g. depending on some deterministic rule or equa-
tion) or stochastic (e.g. a rule or behaviour depending on some random element). In
the case of the latter approach, we may have a set of initial conditions, and propagate
them forward in time based on a set of differential equations. The dimensionality of the
latter is likely to be much smaller than the dimensionality of the former, and as such we
typically expect individual-level simulation methods such as Agent-Based Modelling to
be much more computationally expensive (Bonabeau, 2002).

In addition, we should note how we typically run Agent-Based Models. In Sec-
tion 2.2, we noted that ensembles of Agent-Based Models are often run with a view to
considering the average behaviour. This adds an additional layer of time complexity,
further increasing the computational cost of running such models. There have been
recent developments which have improved computational capacity such as novel par-

22

2.3 Online Agent-Based Modelling

allelisation approaches (An et al., 2021) and the use of GPU platforms (Lysenko and
D’Souza, 2008), but this remains a challenge.

Inadequate Use of Data-Driven Approaches

Whilst there exist a number of ways to calibrate Agent-Based Models based on empir-
ical data (as seen in Section 2.2.1), it has been noted in recent times that a large number
of Agent-Based Models still do not adequately use data to ensure that they produce
system behaviours that reflect the real-world system (Kavak et al., 2018). Such issues
may include the use of agent-behavioural rules based exclusively on theory, arbitrary
manual selection of parameters or qualitative validation (Zhang et al., 2016). The prac-
tices may be reflective of a theory- or knowledge-based modelling approach (Keller and
Hu, 2016). Whilst this may not be as much of a problem for models which aim to be
more abstract (perhaps with a view to providing test scenarios for theory development),
this likely poses a substantial problem in cases where models seek to inform decisions.
There is, therefore, a growing movement towards data-driven modelling practices. Such
practices involve using data to build the models themselves, not just calibrate them
— an idea that is common in fields like machine learning (Keller and Hu, 2019). This
has included the use of genetic algorithms to perform optimisation and sensitivity ana-
lysis (Oloo and Wallentin, 2017), the use of rich spatial data sources in conjunction with
machine learning methods to improve the quality of crime pattern prediction (Rosés
et al., 2021) and improving the fidelity with which an Agent-Based Model can emulate
phenomena observed in video data by optimising for both microscopic and macroscopic
patterns (Zhong et al., 2015).

2.3 Online Agent-Based Modelling

As touched upon in Section 2.2.1 the process of developing an Agent-Based Model
typically involves some form of model calibration and initialisation. Whilst there are
a large number of different manners in which we can calibrate such models these are
typically undertaken once prior to running the model. In some situations, we aim to
simulate events in real-time (or close to real-time). This would, however, require that
we stop the simulation, undertake the calibration and initialisation steps, and restart
the model, hoping that this might reflect our updated knowledge regarding the state

23

2.3 Online Agent-Based Modelling

of the system and the parameters governing the dynamics within it. This is often
impractical. We therefore seek an approach that allows us to incorporate observations
of the system whilst simulating the system.

One approach to dynamically incorporating observations into an Agent-Based Model
of a system is known as Dynamic Calibration.approach to dynamically incorporating
observations into an Agent-Based Model of a system is known as Dynamic Calibra-
tion. Whilst the approaches to calibration noted in Section 2.2.1 are applied once
before running, Dynamic Calibration approaches seek to update the model parameters
in question in response to new observations. This may be achieved using approaches
such as Genetic Algorithms to optimise model parameters as streamed observations are
received (Oloo and Wallentin, 2017).

Whilst Dynamic Calibration may improve on the offline static approaches outlined
in Section 2.2.1, it only seeks to obtain correct estimates for the model parameters
which characterise agent behaviour. When simulating systems in close to real-time, it
is also important that we gain improved estimates of a system’s state (Malleson et al.,
2020). Improving estimates of a system’s state is a problem often tackled with data
assimilation methods, and therefore the following section will focus on the application
of data assimilation methods to Agent-Based Models.

2.3.1 Data Assimilation

As touched upon in Chapter 1, data assimilation is an approach by which we can
combine the knowledge that we hold regarding a system in the form of a model with
knowledge that we have gained in the form of observations. The rationale behind
this is that the models that we use typically represent our incomplete knowledge of a
system, and as such these models are “incorrect” in some manner. As a consequence,
the models are expected to make predictions of the system that that diverge from
what is happening in the system. We therefore make use of observations by using data
assimilation to correct for the errors produced by the models.

We may consider, as an example, a scenario where we are modelling the motion of
a pedestrian walking along a straight pavement section in the x-direction. In such a
model, we may characterise the pedestrian’s motion based on the equation:

xi = xi−1 + v∆t,

where xi is the pedestrian’s position at the ith time-step, xi−1 is the pedestrian’s

24

2.3 Online Agent-Based Modelling

position at the previous time-step, v is the pedestrian’s velocity (a parameter of the
model), and ∆t is the length of time that passes between time-steps. Given a fixed value
for the velocity, v, this model predicts the pedestrian proceeding along the pavement
in a linear fashion. It may be, however, that the pedestrian’s velocity is not fixed and
varies over time and space (perhaps in response to obstacles on the pavement or other
pedestrians). This will result in the positions that our model predicts being incorrect.
If we are provided with observations of the pedestrian’s position at some point, we
may use these observations to update the modelled state. As a specific example, if the
model predicts that pedestrian will have moved 10 metres along the pavement by the
15th time-step and we receive an observation indicating that they have only moved
5 metres, we may update the modelled state to reflect this. There are a variety of
approaches by which we can perform this update; they are often categorised as either
sequential data assimilation approaches or variational data assimilation approaches —
these terms shall be elaborated on in Chapter 4.

Of the work that currently exists wherein investigators attempt to apply data assim-
ilation schemes to pedestrian agent-based models, most make use of sequential schemes,
particularly Kalman Filter-based approaches (Kalman, 1960; Evensen, 2003; Julier and
Uhlmann, 1997) and the Particle Filter (Arulampalam et al., 2002). Of these ap-
proaches, there is a noticeable similarity between the Ensemble Kalman Filer and the
Particle Filter: both methods maintain ensembles of the same model, but differ in how
they update the models upon receipt of new observations. It is also worth noting that
there are some differences in terminology between the two: in the context of the En-
semble Kalman filter an individual model is labelled as an ensemble member whereas
in the context of the Particle Filter it would be labelled as a particle. The internal
workings of data assimilation schemes will be discussed in full in Chapter 4.

This section will go on to explore the work that has been done with both types of
approaches and highlight potential shortcomings.

Kalman Filter-based Approaches

Kalman Filter-based approaches have sought to use two different variants of the Kalman
Filter: the Ensemble Kalman Filter (EnKF) and the Unscented Kalman Filter (UKF).

Previous work focusing on implementing the EnKF in conjunction with an urban
agent-based model has modelled pedestrians arriving and departing the city centre

25

2.3 Online Agent-Based Modelling

of Leeds, UK (Ward et al., 2016). Whilst this investigation displays that the EnKF
can be implemented in conjunction with an agent-based model to successfully improve
the model’s prediction accuracy, it suffers from a number of shortcomings. First and
foremost, it should be noted that the models used for the investigation are very simple
in comparison to the majority of agent-based models, with one of the models used
being a binary state model, with each agent either being in the city or not in the city.
Such a model may be of use in gaining a picture of how the number of people in a
city varies over time, but does not provide any additional information with regards to
their spatial distribution within the city. The inter-agent interaction governing their
transition between the two states is global — this is to say that each agent’s decisions are
based on the state of every other agent without considering more intricate mechanisms
of attraction and repulsion between agents (Helbing and Molnar, 1995) such as spatially
local ones. Whilst the second experiment seeks to include a richer set of behaviours by
further segmenting the agents, it still fails to include any spatial aspect, with agents
again able to interact in a homogeneous fashion.

One of the limitations of the EnKF is that is assumes that the probability dis-
tributions, i.e. the distributions representing the state variables and observations, are
Gaussian; under this assumption, the filter provides a exact estimate of the posterior
distribution. This assumption, however, does not always hold. One of the solutions to
this issue is the use of the Particle Filter, which is capable of providing as exact estim-
ate of the posterior distribution without relying on the Gaussian assumption. Work in
which the Particle Filter has been used will be touched upon in the next section.

The EnKF has also been applied to Agent-Based Models that aim to simulate
more realistically the individual-level spatial interactions of pedestrian by Togashi et al.
(2020). In this investigation, the researchers considered two scenarios: one in which
pedestrians travelled unidirectionally along a corridor, and another considering rotary
motion within a circular environment. This investigation, however, makes no effort to
use the filter and model in an “online” manner (i.e. it does not aim to assimilate data
in real-time), instead simply using the EnKF to perform parameter estimation and
model initialisation. Whilst this is a promising step towards a data-driven approach,
it does not endeavour to handle real-time streamed data sources. Furthermore, when
considering the accuracy of their simulations, the investigators seek to compare sim-
ulation results with observations, suggesting that they have not considered the errors

26

2.3 Online Agent-Based Modelling

associated with observations; observations are derived from the true system state by
means of measurement apparatus which produce some degree of noise.

Beyond the works outlined above, the EnKF has also been applied to epidemiolo-
gical Agent-Based Models (Cocucci et al., 2021). In this investigation the filter was
used to assimilate aggregated infection numbers into an individual-level model. As
part of this work, some novel disaggregation approaches are introduced. One of the
issues with this research, however, is its treatment of spatial interactions — the invest-
igators attempt to encode a spatial element into the interactions between agents by
assigning them neighbourhoods and using a matrix to define the level of connectivity
between neighbourhoods which influences the chances of agents interacting across dif-
ferent neighbourhoods. Whilst this may perform well on an aggregate level (the level
with which this investigation is primarily interested), it makes no guarantees about the
accuracy of simulation at an individual level.

Aside from the EnKF, another variant of the Kalman Filter — the Unscented
Kalman Filter — has been applied to Agent-Based Models of pedestrian systems in
two scenarios.

In the first of these scenarios, the Unscented Kalman Filter is applied to the toy
model outlined in Section 3.1 (Clay et al., 2020), and the filter is used to assimilate
period individual-level location data. The aims of the investigation are to explore the
effectiveness of the filter in improving simulation accuracy, and to explore whether the
filter is able to infer trajectories for all pedestrians if only provided with observations
regarding a portion of the population. This investigation showed the Unscented Kalman
Filter to be successful in both endeavours; however, the model used is rather simplistic
(as shall be discussed in Chapters 3 and 5).

In the second of these scenarios, therefore, the Unscented Kalman Filter is ap-
plied to the model described in Section 3.2, and again is used to assimilate periodic
individual-level location data regarding pedestrian trajectories as they move across the
environment (Clay et al., 2021). In this case, the primary aim is to demonstrate the ef-
fectiveness of the filter in conjunction with a more realistic model of pedestrian motion.
Furthermore, the investigation seeks to introduce a new method — the Reversible Jump
Unscented Kalman Filter. This approach is designed to consider scenarios in which we
have agent parameters that are unknown at the outset of the simulation and are not
observed over the course of the simulation. This additional aim of this investigation

27

2.3 Online Agent-Based Modelling

is, therefore, to infer both pedestrian locations (which are modelled and observed) and
pedestrian destinations (which are unknown at the outset and are not observed). Once
again, the Unscented Kalman Filter was shown to be effective on both fronts.

In both cases, it should be noted that the Unscented Kalman Filter (being a variant
of the Kalman Filter) also suffers from the assumption of Gaussian error distributions
just as with the EnKF. Furthermore, the filter requires the calculation of a matrix
square root — an operation which can be expensive. Therefore, whilst the filter was
shown to be efficient in these scenarios, issues of computational cost may be encountered
for systems with much higher dimensionality.

Particle Filter-based Approaches

Some work making use of the Particle Filter has focused on simulating a smart of-
fice environment (Wang and Hu, 2013, 2015) with a view to using real-time data in
conjunction with an agent-based simulation to provide more accurate estimates of the
occupancy of the environment. These investigations model the office environment as a
two-dimensional continuous space segmented by corridors, monitored by binary sensors
which provide observations regarding the presence of agents at given locations in the
environment. Whilst this investigation was also successful in showing that its chosen
data assimilation method could be used to improve the prediction accuracy of the
agent-based model, it was only run for small agent populations. This raises questions
regarding the scalability of such a method when compared to the EnKF (which typ-
ically requires smaller ensembles of models to successfully perform assimilation when
conditions such as the Gaussian assumption are met (Hoteit et al., 2012; Zhou et al.,
2006)).

Other work making use of the Particle Filter has focused on simulating the motion
of pedestrians across a train station (Malleson et al., 2020). This investigation similarly
modelled agents moving in two-dimensional continuous space, but with a simpler spatial
set-up; agents traverse the rectangular space from entrances on the left-hand side to
exits on the right-hand side in a largely linear fashion, with observations being provided
in the form of synthetic data regarding each agent’s coordinates in the environment.
Once again, this investigation shows the method to be successful in improving the
effectiveness with which the system can be modelled. The investigation, however, suffers
from a number of shortcomings: the model used is simplistic, and the data used are

28

2.3 Online Agent-Based Modelling

synthetic. It is, therefore, not clear whether this provides sufficient evidence regarding
whether such a method could be successfully implemented with a real-world set-up.
Furthermore, this investigation assumes greater knowledge than is reasonable: when
pedestrian models are run which allow agents a choice of destinations, we seldom know
which destination an agent intends to head towards at the outset — something which
is not considered in this work. This can have serious ramifications for the decisions
(and subsequent trajectories) of agents in scenarios where potential destinations are at
discretely different locations in the environment.

This highlights a shortcoming of the Particle Filter: considering each agent’s destin-
ation as a model parameter at the outset, the Particle Filter is unable to reliably update
such parameters, and thus relies on the correct parameter values being provided when
it is initialised. This is a result of how the Particle Filter functions. When assimilating
data, the Particle Filter produces a new collection of particles (i.e. ensemble members)
by sampling from the old collection of particles based on weightings derived from each
particle’s relation to the observations. As a consequence, when assimilating data, the
Particle Filter can only produce states which already exist in its previous collection of
particles. In cases where none of the particles contain correct information regarding an
agent’s target destination, the Particle Filter then has no chance of correctly estimating
the correct destination through sampling. This issue may extend to other parameters
which are not either not observed or not updated by the model process.

Some follow-up work based on the investigations focussing on implementing the
Particle Filter in conjunction with a model of a smart office environment (Wang and
Hu, 2013, 2015) has attempted to deal with this issue, using a Hidden Markov Model to
identify discrete agent behaviour patterns (Rai and Hu, 2013). This, however, does not
alleviate the questions that have arisen regarding scalability; in fact, the inclusion of
an additional process in the data assimilation method may result in a further increase
in computational complexity.

The most recent work focussing on the use of Particle Filter has also sought to
address this issue. In this case, the Particle Filter is applied to the model outlined
in Section 3.2, and they consider the case where the destinations and speeds of the
pedestrians are unknown at the outset of the simulation, and observations of the ped-
estrians’ locations are assimilated periodically (Ternes et al., 2021). Furthermore, this
investigations seeks to apply the filter by using real-world data whereas the preceding

29

2.3 Online Agent-Based Modelling

investigation used synthetic data (Malleson et al., 2020). In this investigation, the re-
searchers encounter the problem whereby particles with correct unobserved parameter
values are sampled out and subsequently the ensemble of particles is unable to correctly
simulate the system dynamics. They propose a solution whereby the resampling pro-
cess (explained in Section 4.4.1) only updates the locational aspect pertaining to each
agent in the particle. This was found to perform about as well as the scenario in which
the unobserved parameters where unknown with no data assimilation being performed.
Once again, this highlights the issue that the Particle Filter may sample out a desirable
particle and may not have any way to reintroduce it. Furthermore, the investigation
used ensembles containing 5000 particles, indicating that the computational cost of
achieving these results was high (although information is not provided for the impact
of varying ensemble sizes).

In contrast, the EnKF may be used to infer information such as parameters as it
functions by perturbing the model state based on the uncertainty in the prior model
state and observations (as explained in Section 4.2). Furthermore, in cases where
the Gaussian assumption hold, the Ensemble Kalman Filter typically requires smaller
ensembles and should therefore be able to achieve similar improvements when compared
to the Particle Filter, but at a lower computational cost.

Beyond the investigations mentioned thus far, there are also some other cases where
the Particle Filter has been applied to Agent-Based Models — in particular, traffic
models. These efforts, however, also suffer from issues.

In the work by Marinică et al. (2013), the investigators apply a Particle Filter to
an Agent-Based Model of traffic flow, using noisy observations; however, given the
computational costs of running a traffic model with the additional costs of using a
Particle Filter, they choose to introduce a degree of abstraction by modelling the system
based on “platoons” instead of individual agents. This approach reduces the size of the
state and results in a more efficient model. Beyond this, however, it also moves away
from the Agent-Based description of a system which provides us with the ability to
observe individual-level interactions and heterogeneity.

In the work by Feng et al. (2015), the investigators also apply a Particle Filter to
an Agent-Based Model of traffic flow. In this investigations, the observations of the
system are treated as the true system state, ignoring any sensory error. Furthermore,
the investigations uses error metrics based on quantities such as local vehicle density

30

2.4 Concluding Remarks

and local average speed at given locations within the environment. With such a measure
of success, the investigators could just as easily used a hydrodynamic model of traffic
which would likely have achieved the same results with a reduced computational cost.

Finally, in work by Kieu et al. (2020), the investigators make use of a Particle
Filter with an Agent-Based Model of a fleet of buses collecting passengers along their
route. Just as with some other previous investigations, this piece of work makes use of
synthetic psuedo-truth data and observations to present a test case for implementing
the data assimilation method with an Agent-Based Model (Malleson et al., 2020).
The investigation clearly demonstrates the value of parameter calibration and data
assimilation in improving the accuracy with which the model simulates and predicts
the system state at close to real-time. The model used is relatively simple in comparison
to some other models typically used in the field. One of the more notable simplifications
is the way in which the model considers traffic, with changes in traffic density being
applied uniformly across the transport network. This overlooks the potential spatial
heterogeneities that may occur, how this may impact individual buses on the route and
in turn how the buses may impact traffic in their local environment.

2.4 Concluding Remarks

This chapter has sought to review the literature relevant to this investigation. This has
consisted of a review of pedestrian dynamics, covering the quantitative measures used
to describe pedestrian systems, qualitative phenomena that may be observed in such
systems and some examples of typical modelling approaches. We then went on to discuss
Agent-Based Models — what they are, how they may be used in practice (particularly
focussing on their calibration), and some of their challenges and shortcomings.

Finally, we discussed the literature around the novel field of real-time pedestrian
simulation in which investigators have started implementing data assimilation methods
in conjunction with Agent-Based Models of pedestrian systems. Many of the attempts
so far have focussed on using Kalman Filter-based approaches and the Particle Filter,
both of which will be discussed in Chapter 4. Both approaches have their strengths and
weaknesses. Whilst early work focussed on unrealistic scenarios in which assumptions
were made about unobservable parameters such as pedestrian destinations within a
system, more recent investigations have examined this problem. Whilst some investig-
ations have also attempted to make use of real-world observations with data assimilation

31

2.4 Concluding Remarks

methods, many of them have considered them as representative of the ground truth of
the system of interest without acknowledging the errors introduced by the observation
process.

This work, therefore, aims to expand upon the previous attempts to apply the EnKF
to Agent-Based Models by using it in conjunction with a pedestrian model known as
StationSim (outlined in Section 3.2). The ultimate aim of this is to show that the
filter is not only capable of improving the estimations of observed variables like an
pedestrian’s location, but that it is capable of inferring unobserved parameters and
that this can be achieved at a relatively low computational cost.

32

Chapter 3

Models

33

3.1 Toy Model

In the previous chapter, we reviewed the literature relevant to the investigation at hand
in which we seek to apply the Ensemble Kalman Filter data assimilation method to and
Agent-Based Model of pedestrian motion. In order to achieve this goal, we require both
a data assimilation implementation and an Agent-Based Model to which to apply the
method. In this chapter we seek to outline the models used to demonstrate the filter’s
effectiveness. For this investigation, we make use of two models which are documented
in this chapter.

The first of these is a toy model which is described in Section 3.1. This model
portrays an idealised scenario in which we consider hypothetical quadrilateral train
station in which pedestrians enter through one of three entrances on one side and aim
to exit the environment through one of two exits on the opposite side. This toy model
acts as a preliminary test case in which to initially implement the Ensemble Kalman
Filter. The second of these is a more realistic model named StationSim GCS which
portrays pedestrians moving around the concourse of Grand Central Station in New
York. This model is described in Section 3.2. In addition to a basic model description,
a basic calibration is undertaken as well as a sensitivity analysis.

3.1 Toy Model

The first of the models used in this investigation — StationSim — is referred to
as the Toy Model1. The Toy Model is a deliberately simplified Agent-Based Model
of pedestrian motion. It simulates the motion of pedestrians across a hypothetical
train station environment, and does not necessarily accurately represent any real-world
system; the aim of this model was predominantly to provide a test case on which to
undertake preliminary tests with different data assimilation methods; as a consequence
it has already featured in several pieces of work (Malleson et al., 2020; Clay et al.,
2020).

The model consists of a rectangular environment with three entrance gates on the
left edge of the environment and two exit gates on the right edge of the environment;
a model run consists of a finite population of agents entering the environment through
the entrance gates and traversing the environment to get to the exit gates, with the sim-
ulation ending when the last agent has completed its journey (As shown in Figure 3.1).

1Code for this model can be found in Projects/ABM DA/stationsim/stationsim gcs.py in the
archive of the dust repository

34

https://zenodo.org/record/6469804

3.1 Toy Model

0 25 50 75 100 125 150 175 200
x-position

0

20

40

60

80

100

y-
po

sit
io
n

Entrance
Exit

Figure 3.1: A sample run of Station Sim showing pedestrian agents traversing the
environment from left to right.

Upon initialisation, each of the agents are allocated:

• One of the three entrance gates through which to enter;

• One of the two exit gates through which to exit;

• A time at which to enter to environment through their allocated gate;

• A target speed at which they would like to traverse the environment.

The rate at which agents can enter/exit through a gate is dependent on the gate’s size,
i.e. the flow rate, J , is dependent on the gate’s cross-sectional width. Target speeds are
drawn from a Gaussian distribution, resulting in some variation in agent target speeds
with some agents aiming to travel faster than others. With this set up, we may observe
phenomena such as crowding.

Given that there is a variation in agent speeds, it often occurs that a faster agent
is behind a slower agent and catches up to them; when this occurs, the ‘collision’
behaviour is used (Malleson et al., 2020) in which the faster agent attempts to sidestep
the slower agent blocking their path. This is achieved by randomly choosing to sidestep
left or right (i.e. tangential to the direction of travel). In some cases, this sidestep will
not be sufficient to open up a new path for the faster agent as they may be blocked
by another slower agent, resulting in them being stuck. As a consequence we may
observe crowding. Such crowding phenomena are of interest as they demonstrate that

35

3.2 StationSim GCS

the model being used is capable of exhibiting complex behaviour that may not easily
demonstrable in mathematical models (Malleson et al., 2020).

The description of this model is intentionally brief, as it is only being used as a basic
initial test case for the implementation of the data assimilation method. A greater
degree of attention will be paid to the description of the StationSim GCS model, which
will include a fuller description of the behaviours, the calibration process, some elements
of validation and verification, and a brief sensitivity analysis.

3.2 StationSim GCS

Following the outline of StaionSim in the previous section which is used in the exper-
iments in Chapter 5, this section seeks to detail the StationSim GCS model which is
used in Chapters 6 and 71.

This section consists of three parts. The first of these offers a description of the
model; this contains details of the purpose of the model, the types of entities that
make up the model and the underlying mechanisms by which it works. This is followed
by a section in which the model parameters are calibrated based on real-world data.
Finally, the section concludes with a sensitivity analysis which seeks to explore the how
the model reacts to perturbations in parameter values.

3.2.1 Model Description

StationSim GCS is an updated version of the StationSim model. The original Sta-
tionSim aimed to simulate the motion of pedestrians across a hypothetical rectangular
station with 3 entrances on one side and 2 exits on the opposite side as shown in Fig-
ure 3.1. The new StationSim GCS also aims to simulation the motion of pedestrians
across a station; however, in this case the model is based on the real-world example of
Grand Central Station in New York, focusing specifically on the concourse area high-
lighted in Figure 3.2. The environment consists of 11 gates which act simultaneously
as both entrances and exits. Each pedestrian in the simulation is assigned an entrance
and an exit and, upon entering the environment, seeks to move as directly as possible
towards their assigned exit without colliding with other pedestrians. Where collisions

1Code for this model can be found in Projects/ABM DA/stationsim/stationsim gcs.py in the
archive of the dust repository

36

https://zenodo.org/record/6469804

3.2 StationSim GCS

are more likely to occur (e.g. close to entrances/exits and around solid obstacles), we
typically observe crowding as population densities increase.

Figure 3.2: The main concourse at Grand Central Station in New York (Zhou et al.,
2012).

The StationSim GCS model is made up of 4 different types of entities:

1. Agents,

2. The environment,

3. Gates around the edge of the environment, and

4. Obstacles in the environment.

These entities aim to simulate the scenario outlined above. The agents in this model
represent pedestrians; these are portrayed as two-dimensional circular entities with
finite radius. The variables pertaining to these agents can be found in Table 3.1. The
environment in this model represents the concourse of Grand Central Station in New
York; this is portrayed as two-dimensional continuous space bounded by rectangular
walls within which agents may move. The model is designed such that the left-hand
side of the environment represents the South side of the concourse, the right-hand side
the North side, the top side the West side and the bottom side the East side. The
variables pertaining to the environment entity can be found in Table 3.2.

Along the edge of these boundaries are located gates: one gate is located on the
South side, five gates are located on the North side, two gates are located on the West
side and two gates are located on the East side. The gates are points along the boundary
of the environment at which agents may either enter or exit. These have specific fixed

37

3.2 StationSim GCS

Variable Name Description

location Agent’s x-y coordinates in 2-dimensional continuous space;
bounded by the height and width of the environment

status Agent’s status; 0 indicates agent has not started, 1 indicates agent
is active, 2 indicates agent has finished

size Radius of agent’s circular body
speed Agent’s speed; indicative of the distance covered by an agent in a

single time-step
unique id Unique numerical identifier for a specific agent in a model
gate in Number of the gate through which of the gates the agent enters the

environment (0 ≤ gate in ≤ 10)
gate out Number of the gate through which of the gates the agent exits the

environment (0 ≤ gate out ≤ 10)
loc desire x-y coordinate of the agent’s target destination; defined by taking

the x-y coordinates of gate out and adding some uniformly dis-
tributed random noise

Table 3.1: Table of state variables pertaining to agent entities.

Variable Name Description

height Environment’s height
width Environment’s width
gates in Number of gates through which agents can enter the environment
gates out Number of gates through which agents can exit the environment

Table 3.2: Table of state variables pertaining to the environment entity.

38

3.2 StationSim GCS

Variable Name Description

location Gate’s x-y coordinates; restricted to one of ten distinct locations
on the boundary of the environment

Table 3.3: Table of state variables pertaining to gate entities.

Variable Name Description

location Obstacle’s x-y coordinates
size Radius of obstacle’s circular body
speed Speed of agent characterising the obstacle; fixed value of 0

Table 3.4: Table of state variables pertaining to the obstacle entity.

x-y coordinates. Upon initialisation, each agent is provided with a start gate and end
gate, from which it draws its initial location and target destination; in defining its
target destination, the agent introduces some random noise to the x-y coordinate in
order to emulate the non-zero width of the gate. The variables pertaining to the gate
entities can be found in Table 3.3.

The environment also contains a single obstacle which represents information booth
with a clock above it. As shown in Figure 3.2, this lies in the centre of the concourse.
From a model architecture perspective, this obstacle is treated as a stationary agent;
other agents therefore treat it as they would any other agent and make efforts to
avoid colliding with it. The variables pertaining to the obstacle entity can be found in
Table 3.4.

Of the variables detailed for each of the entities in Tables 3.1, 3.2, 3.3 and 3.4, the
majority are set to fixed values upon model initialisation. The variables that change as
the model runs are the location and status variables pertaining to the agent entities.

The overall model process is relatively simple; it is outlined in Figure 3.3. This
process consists of 4 components:

1. Set up the station.

2. Initialise agents.

3. Step the model forward.

39

3.2 StationSim GCS

4. Check whether the model should be deactivated.

The process of setting up the station involves defining the state of the non-agent entities
in the model, i.e. the model boundaries, the gates and the central clock obstacle, as
outlined in Tables 3.2, 3.3 and 3.4 respectively.

Start

Set up station

Initialise agents

Deactivate
model?

Step model forward

End

Yes

No

Figure 3.3: Flow diagram showing StationSim GCS model process.

The process of initialising the agents in the model involves allocating their entrance
and exit gates (along with their target destination), their speed and the time at which
they will be activated (i.e. when they will attempt to enter the system).

The processes of stepping the model forward and checking for model deactivation
are run iteratively whilst the model is still deemed active. After having stepped the
model forward, it is checked whether the model should remain active; if so, the model
stepping process is repeated, else the model run is completed.

40

3.2 StationSim GCS

Start

Check agents for
activation

End

All agents
finished?

No

Model time
expired?

Calculate potential
collisions

Time to next
collision > 1?

Step agents for 1 unit
of time

Yes

Yes

No

No

Yes

Step agents for
0.98x(time to next

collision)

Wiggle agents

Figure 3.4: Flow diagram showing StationSim GCS model stepping process.

41

3.2 StationSim GCS

The process of stepping the model forward is displayed in Figure 3.4, which can be
summarised as follows:

1. Checking whether inactive agents should be activated.

2. Identifying all of the potential collisions that may occur between agents and
between agents and parts of the environment (i.e. the model boundaries and the
clock obstacle).

3. Moving each of the active agents for a specific time interval based on the when
the soonest collision will occur.

4. Where necessary, instruct agents to engage a sidestepping mechanic to avoid
obstacles.

Each agent is stepped sequentially as part of the model stepping process; the agent
stepping process (displayed in Figure 3.5) involves moving from its present location
towards its target destination in a linear fashion. The movement vector is the product
of the agents velocity vector and the time-step, which is dependent on the time interval
to the next expected collision. As a consequence, although the agents are stepped
sequentially and no collisions or interactions are missed.

It should be noted that whilst the stepping process may allow for agents to be
moved over non-integer time intervals, each of the model time-steps corresponds to an
integer time interval. This means that a model time-step may comprise of multiple
non-integer time-steps taken by the individual agents. As an example, when stepping
agents forward through time, the model may detect that a collision is imminent 60%
of the way through a time-step. The model will then step all of the agents through to
just short of this collision, apply the side-stepping mechanic for the agents that about
to collide and then attempt to step the agents for the remainder of the time-step; if it
does not detect any other imminent collisions, it will step them through the remaining
40% of the time-step. The model will then record the states of its agents. This ensures
that all outputs produced based on the models have time-steps that are of equal length.

Flow diagrams describing other model subprocesses in greater detail can be found
in Appendix B; this includes descriptions of how agent locations and speeds are al-
located (Figures B.2 and B.3), how agents check for activation and deactivation (Fig-
ures B.4 and B.5), and how agent-agent and agent-wall collisions are handled (Fig-
ures B.8 and B.9).

42

3.2 StationSim GCS

Start

Move agent

Agent active?

Yes

No

Check agent for
deactivation

End

Figure 3.5: Flow diagram showing StationSim GCS agent stepping process.

43

3.2 StationSim GCS

Of the design concepts outlined by Grimm et al. (2010), the following are considered
relevant to this model:

1. Emergence

2. Adaptation

3. Prediction

4. Sensing

5. Interaction

6. Stochasticity

7. Observation

As outlined in Section 3.2.1, in each time-step agents engage in collision avoidance
(both with each other and with walls and obstacles). This is achieved by predicting
the paths that agents would take if they were to continue moving towards their target
destinations; this is made possible through the use of a k-d tree which emulates a form
of sensing whereby each agent is aware of the position of other agents who are likely to
collide with them. In cases where collisions would occur, the agent paths are adapted.
Such adaptations can be considered a form of interaction between an agent and other
agents (as well as stationary objects in the environment).

Stochasticity is incorporated in the model in number of different ways. Upon initial-
isation, agents are randomly allocated an entrance gate and an exit gate; entrance gates
are sampled from a uniform discrete distribution, and exit gates are sampled from a
uniform discrete distribution excluding the gate through which the agent is entering. In
cases where pedestrians are predicted to collide, part of the avoidance process involves
the addition of normally distributed random noise to the agent’s movement vector.
Finally the time at which each agent enters the model is sampled from an exponential
distribution.

Whilst the model is running, observation is undertaken by collecting information on
the positions of each agent at each time-step for comparison with pseudo-truth data.
In scenarios where pedestrian density is sufficiently high, we observe the emergence of
crowding behaviour.

3.2.2 Model Calibration

Having described the way in which the model runs in the previous section, this section
aims to outline the process undertaken to calibrate the model. The calibration process

44

3.2 StationSim GCS

focusses on the estimation of two features: parameters pertaining to agent speeds and
the agent birth rate parameter1.

Although a number of calibration processes have been outlined in Section 2.2.1, this
investigation will make use of a much simpler approach based exclusively on empirical
data analysis. The motivation for this is that the aim of this investigation is not
to produce a well-calibrated model that simulates the motion of pedestrians around
the concourse at Grand Central Station, it is to demonstrate the effectiveness of the
Ensemble Kalman Filter in improving the accuracy with which we can simulate the
system. In order to demonstrate this, it is almost expected that the model not be
perfect.

Data

The calibration of StationSim GCS is undertaken using real-world data captured by
cameras at Grand Central Station, which was produced by a study by Zhou et al. (2012).
This data consisted of a series of trajectories, each of which consisted of a series of x-y-t
coordinates, i.e. locations within the environment with associated timestamps.

The raw data suffered from two issues, each of which were addressed by Ternes
et al. (2021). The first of these is that the trajectories were capture by a camera that
was located at an angle on the east side of the concourse, which distorted the image.
This was addressed by applying some perspective correction. Furthermore, many of
these trajectories were partial in nature, which is to say that they do not capture the
entire trip of a pedestrian across the environment but instead a subsection of this trip.
Consequently, some pre-processing was applied to these partial trajectories to produce
data which contained trajectories that were as close to complete as possible.

It should be noted that whilst this calibration makes use of real-world data, the
data assimilation experiments in Chapters 5, 6 and 7 make use of pseudo-truth data in
order to calculate errors and evaluate their effectiveness. This is a practice that has been
undertaken in a number of recent investigations in the field including those by Malleson
et al. (2020) and Clay et al. (2020, 2021). When running experiments in each of the
aforementioned results chapters, a known “ground truth” is required against which to

1The calibration processes are outlined in python notebooks in
Projects/ABM DA/experiments/stationsim gcs calibration/notebooks/ in the dust repository
archive; speed calibration is found in 01 speed estimation.ipynb and birth rate calibration is found
in 02 activation rate estimation average.ipynb

45

https://zenodo.org/record/6469804
https://zenodo.org/record/6469804

3.2 StationSim GCS

compare the outputs of the data assimilation implementations. In reality, the ground
truth of a system is not knowable — the best we can hope for is a set of observations or
estimates of the system which reflect the state with high fidelity. As a consequence, in
order to provide a ground-truth, a set of pseudo-truth states are generated by running
an instance of the calibrated model. In addition, where observations are required in
the results chapters, these are derived from the pseudo-truth states by adding noise —
a process which will be outlined in Chapter 5.

Estimating Speed Parameters

Our dataset contains the x-y locations for pedestrians in a series of frames. For each
pedestrian, there exist a series of coordinates that collectively form a trajectory which
describes the path that the pedestrian takes around the station concourse. Armed with
knowledge regarding the time interval between frames, we can calculate the speed of
individual pedestrians.

As part of this calibration process, we shall consider three separate approaches. The
first of these seeks to calculate the average speed of pedestrians based on the distance
and time between them entering the environment and exiting the environment.

For each pedestrian, we have a series of x-coordinates and a series of y-coordinates:

pi = {[x0
i , . . . , xni

i], [y0
i . . . , yni

i]} ∀i ∈ [0, N], (3.1)

where pi represents the observations of the ith pedestrian, xj
i is the ith pedestrian’s x-

coordinate in the jth frame in which the pedestrian appears, yj
i is the ith pedestrian’s

x-coordinate in the jth frame in which the pedestrian appears, N is the number of
pedestrians in the system and ni is the number of observations of pedestrian i. Based
on this, we can calculate the Euclidean distance travelled by the ith pedestrian, i.e. the
total distance between a pedestrian’s initial position and its final position:

di =
√

(xni
i − x0

i)2 + (yni
i − y0

i)2. (3.2)

If we assume that each pedestrian appears in a sequential set of frames without any
gaps, then we can define the total time between the initial observation and the final
observation of the ith pedestrian in the system as:

ti = ni, (3.3)

46

3.2 StationSim GCS

i.e. the time spent by a pedestrian in the system is equal to the number of frames over
which it is observed.

We note, at this stage, that the provided data represents distances in pixels and
times in frames; these can be rescaled based on the following ratios:

• Frames per second (fps) = 25.

• Pixels per metre (ppm) = 14.

We can then calculate the average speed of the ith pedestrian, v̄i:

v̄i = r × di

ti
, (3.4)

where r is the rescaling factor:
r = fps

ppm
. (3.5)

Based on this, we can produce a histogram showing the distribution of average
speeds for all pedestrians as shown in Figure 3.6.

With a mean speed of 1.60 and a standard deviation of 0.66 this result is largely
in agreement with average pedestrian speeds observed in the literature (Finnis and
Walton, 2006), particularly when considering speeds observed in similar contexts (Young,
1999). There is, however, an issue with this approach: it measures the distance travelled
by the pedestrian as a straight-line between the initial location and final location (Li
et al., 2012). This assumes that each pedestrian travelled in a straight-line for the
entirety of their traversal of the station concourse; this may be the case for many ped-
estrians but is unlikely to be true for all members of the population. In reality, we
are likely to have some pedestrians who have crossed the station from initial location
to final location in a straight line, some who crossed in a curve/arc, and some who
may have chosen highly non-linear paths (perhaps stopping and changing direction).
In each of the two latter scenarios, the distances travelled by the pedestrian would be
increased.

An alternative approach to exploring the speeds of pedestrians is to consider the
instantaneous velocity of a pedestrian from one frame to the next. We can do this by
considering the marginal distance travelled between frames; let us consider the distance
travelled between the jth frame and the (j + 1)th frame. We can define the marginal
distance between pedestrian’s jth position and pedestrian’s (j + 1)th position as:

dj
i =

√
(xj+1

i − xj
i)2 + (yj+1

i − yj
i)2, (3.6)

47

3.2 StationSim GCS

0 1 2 3 4 5
Pedestrian Average Speed, ms 1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
De

ns
ity

Figure 3.6: Distribution of average speeds

and the marginal time between jth observation and (j + 1)th observation of ith pedes-
trian in system:

ti = 1, (3.7)

i.e. 1 frame.
Again, these distances and times are calculated in pixels and frames respectively.

Consequently they need to be rescaled to metres and seconds. We can then calculate
the instantaneous speed of the ith pedestrian in the jth observation, vj

i :

vj
i = r × dj

i . (3.8)

We can then construct a list of these speeds for each pedestrian:

vi = [v0
i , . . . , vni−1

i], (3.9)

noting that for the ith pedestrian who was observed in ni frames, the final element
of the list will be vni−1

i as this will be based on the distance between the pedestrian’s
location in the ni − 1th frame and in the nith frame.

Based on this, we can produce a histogram showing the distribution of all instant-
aneous speeds for all pedestrians as shown in Figure 3.7. This shows that whilst a
substantial proportion of the speeds are in a sensible range (i.e. < 2ms−1), there is
also a substantial proportion of the speeds that are > 2ms−1; this is reflected by the

48

3.2 StationSim GCS

0 2 4 6 8 10
Instantaneous Pedestrian Speed, ms 1

0.00

0.05

0.10

0.15

0.20

0.25

0.30
De

ns
ity

Figure 3.7: Distribution of instantaneous speeds

median speed of 1.99ms−1. This may be a result of the dataset that has been used
for this analysis — this dataset contains modifications to the original dataset whereby
segments of pedestrian trails are joined together in order to form pedestrian trails that
are as complete as possible, i.e. as many pedestrians as possible have a full traject-
ory from an entrance gate to an exit gate. This involves interpolating a pedestrian’s
path between trail segments, which may require that the pedestrian would have move
much faster than typically expected. This may, therefore, artificially introduce some
pedestrian movements that are faster than expected.

An final approach to finding a pedestrian’s average speed is to consider the list of
speeds produced for each pedestrian in the previous section, and find the mean of that
list:

v̄i = 1
ni − 1

ni−1∑
j=0

vj
i (3.10)

Based on this, we can produce a histogram showing the distribution of average speeds
for all pedestrians as shown in Figure 3.8. As with the previous approach, this shows
a distribution of pedestrian walking speeds that are typically faster than would be
expected (with a mean of 2.63ms−1). Once again, this may be a result of the trajectory
modification/connection process that the data have undergone. It may, therefore, be
worthwhile looking at the original dataset which has not undergone any modifications

49

3.2 StationSim GCS

0 1 2 3 4 5 6
Pedestrian Average Speed, ms 1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
De

ns
ity

Figure 3.8: Distribution of average instantaneous speeds

to join up segments of pedestrian trajectories.
Ultimately, the parameter values estimated by the first approached, i.e.

vµ = 1.60ms−1, (3.11)

vσ = 0.66ms−1, (3.12)

are used for this investigation as they provide best agreement with parameter values
found in the literature.

Estimating Birth Rate

Having arrived as estimates for values for parameters pertaining to speed in the previous
section, we now move on to estimating the birth rate of agents, i.e. the number of agents
that are activated in a time-step. This is undertaken via two approaches: a visual
approach and a numerical approach. The visual approach involves plotting graphs of
how many pedestrians are active in the system according to the observed data and
according to model runs for different birth rates. The numerical approach involves
considering three error metrics:

1. Maximum number of active pedestrians in the system at any given time.

2. Time at which the maximum number of active pedestrians occurs.

50

3.2 StationSim GCS

3. Time at which all pedestrians have completed their journeys across the environ-
ment.

In each case, errors are calculated by comparing the value produced from the observed
data with the value produced from the model runs. The variation of the number of
pedestrians in the system over time can be seen in Figure 3.9. Model data is produced
by running the model with the speed parameter values found in the previous section
in conjunction with birth rates between 1.0 and 2.0 increasing in value by 0.1 each
time; the model is run 20 times for each birth rate. The visual results of this procedure
are presented in Figures A.1 — A.11. Each figure displays how the number of active
pedestrians in the system varies over time for a specific birth rate.

0 1000 2000 3000 4000 5000
Frames

0

20

40

60

80

Nu
m

be
r o

f p
ed

es
tri

an
s i

n
ob

se
rv

ed
 e

nv
iro

nm
en

t

max=85

Figure 3.9: Variation of number of pedestrians in the system over time (in frames)

When considering the plot of the observed data in Figure 3.9, we can see that the
maximum number of pedestrians in the system at any given time is 85. This occurs in
the 1454th frame after which the number of pedestrians in the system decays quickly.
By the 5687th frame, all pedestrians have left the environment.

When conducting visual inspections of the figures in Appendix A, we can see that
with lower birth rates, the model takes longer to reach its maximum number of ped-
estrians in the system, and that the maximum number of pedestrians is lower. As the
birth rate is increased, the maximum number of pedestrians in the system at any given
time increases, and the time at which this occurs falls. Based on visual inspections,

51

3.2 StationSim GCS

we can conclude that the figures produced by birth rates of 1.6 and 1.7 best fit the
observed data.

When considering the numerical metrics, it was observed that the measure con-
cerned with the time taken for all pedestrians to leave the system was of little use;
looking at Figures A.1 — A.11, we can see that for the majority of birth rates there is
little variation in the total time for all pedestrians to complete their journeys. Further-
more, it was found that, within the range of values considered, considering the time at
which the maximum number of pedestrians were in the system was also of little use;
looking at the figures in question, we can see that the instance of the maximum number
of agents in the environment occurs later than the maximum number of pedestrians in
the environment in the observed data for all birth rates. Whilst the difference in this
time falls as the birth rate is increased, it is concluded that a much higher birth rate
would be required for this metric to be considered.

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

30 20 10 0 10 20 30
n_max_active_pop

2.0

Figure 3.10: Ridge plot showing distribution of error in the maximum number of ped-
estrians in the system for different activation rates.

We may use Figure 3.10 to consider the error in the maximum number of pedestrians
in the system. This figure consists of a ridge plot showing how the error in the maximum
number of pedestrians in the system varies with agent activation rate. We can see

52

3.2 StationSim GCS

that for the lower activation rate of 1.0, the error is comparatively high and falls as
the activation rate increases. At a certain point, the error reaches zero and becomes
increasingly negative as the activation rate continues to increase. The point at which
the error is approximately zero is 1.6. We therefore conclude that the activation rate
to be used with this model shall be 1.6.

3.2.3 Model Validation and Verification

As noted in Section 2.2.2, the processes of validation and verification are often over-
looked when developing an Agent-Based Model. Whilst the aim of this investigation
is not to produce a model that simulates the pedestrian system with as much fidelity
as possible, we undertake some verification and validation to ensure that StationSim

functions as expected. This section therefore aims to outline the verification and val-
idation undertaken.

Recall from Section 2.2.2 that we define verification as the process of ensuring that
the logical implementation of the model is correct (Xiang et al., 2005), and validation
as the process of ensuring that the model represents the system and generates the
phenomena of interest (Crooks and Heppenstall, 2012).

Model Validation

Given that this investigation does not aim to produce a high-fidelity model of the
pedestrian system, the validation undertaken here will be relatively rudimentary and
will focus on the visual comparisons of outputs from the model and the observations.
Comparisons will be drawn on two fronts. The first of these will focus on the paths
taken by pedestrians in the observed data and in the model. In order for a model to
be considered valid on this front, we require that it is able to replicate the behaviours
found in the observations; this is to say that the paths taken by agents in the model
should resemble the paths taken by pedestrians in the observations, and the individual
trajectories produced by the model should not be markedly different from those ob-
served in the observations. This seeks to demonstrate that the pedestrian behaviours
have been correctly characterised within the model. These second of these will focus
on the time spent in the system by pedestrians in the observed data and in the model.
In order for a model to be considered valid on this front, we require that the agents
spend approximately the correct length of time within the environment. This seeks to

53

3.2 StationSim GCS

demonstrate that the parameter values for the pedestrian agents in the previous section
have been correctly chosen.

In Figure 3.11, we see a comparison of the paths taken by pedestrians in the ob-
served data and in the model. In drawing this comparison, we seek to ensure that the
behaviours of the pedestrians within the model reflects the behaviours observed within
the data. In both Figures 3.11a and 3.11b, pedestrians take routes between their re-
spective points of origin and destination. These origins and destinations are located
around the boundary of the environment. In Figure 3.11a, we see that the trails gen-
erated by the pedestrian agents in the model are largely linear, tracing straight lines
between origins and destinations. In some cases, we see that agents deviate from their
straight paths, attempting to avoid obstacles (other agents and the central desk). This
is, to some extent, reflected by the paths taken by the pedestrians in the observed data
in Figure 3.11b.

There are, however, some noticeable changes in direction found in the paths taken
by the pedestrians in the observed data, which are not reflected by the paths taken by
the agents in the model. Whilst some of these deviations are reflective of pedestrians
changing their direction of travel across concourse, some of them are artefacts of the
way in which the observations have been preprocessed. The initial data regarding
the paths taken across the concourse consist of partial trajectories identified in the
computer vision analysis of the footage of the concourse. The preprocessing procedure
applied to these partial trajectories sought to use them to construct full trajectories.
This was achieved by linking them based on their the spatial and temporal distance
between them, interpolating the points in-between. This interpolation results in some
noticeable changes in direction and speed which are not found in the model outputs.
Furthermore, this introduces some paths in the observed data which appear to pass
through the central obstacle — a behaviour which is not physically possible and as
such one which we should not expect to find in the model outputs. We may therefore
conclude that whilst the model does not perfectly recreate the traces found in the
observed data, this may be partly due to shortcomings in the data.

Beyond this, it should also be noted that the validation process also identifies some
of the model’s shortcomings which can be improved upon. One of these is the variation
in trail density across the environment. When Figure 3.11b, we can see that a large
proportion of pedestrian trajectories occur between a specific subset of the environment

54

3.2 StationSim GCS

entrance/exit gates (specifically between the gates on the left-hand side of the top
boundary and the centre of the right-hand side boundary, and between the gates on
in the centre of the bottom boundary and centre of the right-hand side boundary).
These distributions are not replicated in the model outputs found in Figure 3.11a. In
the model, entrance and exit gates are allocated based on uniform distributions; this
difference may be indicative of distributions that are not uniform.

0 100 200 300 400 500 600 700
x-position

0

100

200

300

400

500

600

700

y-
po

sit
io

n

(a) Model

0 100 200 300 400 500 600 700
x-position

0

100

200

300

400

500

600

700

y-
po

sit
io

n

(b) Data

Figure 3.11: Comparison of trails from model and observations

When considering Figure 3.12, we see the time spent by pedestrians in the system,
both in the model and in the observed data. In comparing the outputs of the model and
the observed data, we seek here to confirm that the rate at which pedestrians enter the
environment and speed at which they cross it in the model are reflective of the real-world
system. In Figure 3.12, we see that the most common amount of time which pedestrians
spend in the system in both the model and the observed data is approximately 800
frames, i.e. approximately 32 seconds. In comparing the distributions of the times from
the model and the data, we find that the peak of the data distribution is higher than
that of the model distribution, indicating that more pedestrians in the observed data
are in the system for a shorter duration. Just as in the case of the comparison of traces
above, this may be due to the data preprocessing approach. In particular, we note that
when the preprocessing approach links two partial traces, it may introduce points to
link the end of the first trace to the beginning of the second trace. This linking process
is constrained by not only the end location of the first trail and start location of second

55

3.2 StationSim GCS

0 1000 2000 3000 4000
Time in system

0.0000

0.0002

0.0004

0.0006

0.0008
De

ns
ity

Model
Data

Figure 3.12: Comparison of time spent in system between agents in mode and observed
pedestrians.

trace, but the respective times at which the pedestrians appear at these locations. In
order to link the two traces, a new intermediate trace is drawn in-between which may
depict the pedestrian moving much faster. As a result of this artificially increased
speed, the time spent in the system by the pedestrian may be reduced. This may result
in the increased peak we observed in the data distribution in Figure 3.12.

Model Verification

In Section 2.2.2, we note the difficulties encountered when trying to verify the im-
plementation of Agent-Based Models, and that one approach to verification may be to
apply a test-driven model development process (Collier and Ozik, 2013). Consequently,
a set of tests were developed1.

A unit testing approach was undertaken, which aimed to ensure that atomic ele-
ments of the codebase functioned as expected. To achieve this, some tests required the
creation of dummy data. As noted in Section 3.2.1, some of the elements of the model
make use of computational randomness; this presented a challenge when attempting to
ensure that model methods function as expected in a consistent manner. In order to
address this issue, some tests sought to check the results of methods in a manner that

1Tests can be found in Projects/ABM DA/tests/ in the dust repository archive; specific model tests
can be found in test stationsim gcs model.py

56

https://zenodo.org/record/6469804

3.2 StationSim GCS

was less quantitative and more qualitative.
As an example, the model includes a method which assigns an origin location to an

agent when provided with an origin gate; the origin location is generated in a fashion
that makes use of computational randomness. The respective test did not check that
the generated location was exactly correct, but instead checked that it was a valid
location in proximity to the gate in question.

When running the tests, it was found that they provided a 59% coverage of StationSim GCS,
i.e. the running of all of the test cases resulted in 59% of the lines in the model codebase
being called. This means that over 40% of the code for the model is not called by any
of the tests. Whilst this proportion may appear high, it should be noted that a portion
of the codebase is dedicated to plotting utilities which are not essential to the logic of
the model; omission of plotting utilities results in an increased coverage of 74%.

One of the shortcomings of the approach implemented is that it focuses predomin-
antly on unit testing, and does not undertake integration testing whereby tests focus on
ensuring that software components interact with each other as expected. This investig-
ation focuses on the use of Agent-Based Models in conjunction with Data Assimilation
methods and it is, therefore, crucial that the model interacts as expected with the code
developed for these methods. A more thorough verification approach would check not
only that the logic of the model was encoded correctly, but also that the model was
able interface with other parts of the codebase.

3.2.4 Sensitivity Analysis

In this section, we shall undertake a basic sensitivity analysis of the model. Sensitivity
analysis is an approach to model analysis which seeks to explore how the model be-
haviour varies with respect to changes in model parameters (Saltelli, 2002). It can be
undertaken with a view to different end-goals.

Sensitivity analysis can be used for a range of different reasons such as:

• Confirming that the parameter values arrived at through calibration
are ‘optimal’. Model calibration undertaken via an optimisation seeks to min-
imise some cost function/error, and in this situation, the introduction of per-
turbations to these parameter values should result in an increase in this cost
function/error — in this situation, sensitivity analysis would consist of introdu-
cing perturbations to the parameter values and exploring how the cost function

57

3.2 StationSim GCS

varies.

• Exploring variable importance. We can compare the extent to which model
behaviour changes in response to changes in different parameters values, ranking
variables based on which induce the greatest changes in model behaviour. In
order to explore this, a cost function/error metric would again be required to
quantify the behaviour of the model.

• Exploring model behaviour. We can explore how the model behaviour changes
in response to changes in different parameter values; this could be something more
visual.

We may wish to divide approaches to sensitivity analysis into two categories: local
approaches and global approaches. Local approaches seek to quantify the impact of
small perturbations in model parameters (Saltelli, 1999). A common approach to this
is to use a one-factor-at-a-time method (OAT) whereby small perturbations are in-
troduced to one of the model parameters in question whilst keeping all other model
parameters the same, allowing us to understand the impact of changes to a model
parameter in isolation (Thiele et al., 2014). This may, however, overlook interactions
between model parameters that may lead to non-linear responses in model behaviour.
Global approaches focus on much larger ranges of parameter values, seeking to explore
how the model behaviour varies in response to changes in the model parameters over all
parameter space (Saltelli et al., 2000). Furthermore, this may also explore the response
of the system to simultaneous changes in multiple parameter values.

In this specific case, we wish to explore the sensitivity of the model’s behaviour
with respect to the following parameters:

• Mean agent speed,

• Standard deviation of agent speed,

• Agent activation rate.

Many of the other model parameters such as environment dimensions and gate locations
are clearly measurable and fixed; these parameters were chosen for sensitivity analysis
as they are uncertain and may vary. This will consist of a global sensitivity analysis1.

1Code for this sensitivity analysis can be found in the 3 sensitivity analysis global.ipynb in

58

3.2 StationSim GCS

This will allow us to explore the way in which model behaviour responds to variations
in parameters, gauging variable importance.

Just as when undertaking the activation rate section of the model calibration, we
shall consider errors in the maximum number of pedestrians in the system, the time
at which this maximum occurs and the time take for all pedestrians to complete their
journeys across the environment.

The aim of this sensitivity analysis is to explore the way in which the overall model
behaviour responds to changes in parameter values, and ascertain the relative import-
ances of the parameters in question. The basis of this analysis will be the repeated
running of the model with a selection of parameter values. To gain the combinations
of parameter values, samples will be drawn from uniform distributions between the
respective minimum and maximum parameter values defined in Table 3.5. A sample
size of 200 runs is chosen given the trade-off between the increasing computational cost
of running many iterations of the model and the increasing reliability of any findings.

Variable Calibrated Value Minimum Maximum

Activation rate 1.6 1.0 2.0
Mean speed 0.897 0.5 1.5
Std of speed 0.372 0.2 1.0

Table 3.5: Table of parameter values used for global sensitivity analysis.

Based on the collection of model runs, a set of regression models are constructed.
With these models, we seek to fit a regression model for which we consider the following
input variables:

• Mean agent speed,

• Standard deviation of agent speed,

• Agent activation rate,

and the following output variables:

the Projects/ABM DA/experiments/stationsim gcs calibration/notebooks/ in the dust repository
archive

59

https://zenodo.org/record/6469804
https://zenodo.org/record/6469804

3.2 StationSim GCS

• Error with respect to maximum number of pedestrians in environment in envir-
onment at any given time,

• Error with respect to time taken for all pedestrians to complete their journey,

• Error with respect to the time at which the maximum number of pedestrians in
the system at a given time occurs.

For this investigation, we shall be using ordinary least squares linear regression to fit a
model to our data; whilst more advanced regression modelling approaches exist which
would likely fit the data better, we seek a model which is easily explainable.

Maximum Number of Pedestrians

For the first of these models, we fit a linear regression in which the response variable
is the error in the maximum number of active pedestrians:

Y = β0 + βarXar + βmsXms + βssXss, (3.13)

where terms with a ar subscript pertain to the activation rate, terms with a ms sub-
script pertain to the mean speed and terms with a ss subscript pertain to the standard
deviation of the speed.

Upon fitting such a model, we obtain coefficient values pertaining to each of the
model parameters as detailed in Table 3.6. When fitting the linear regression model,
each of the three parameters were found to be significant (as indicated by the p-values
in the table). Considering the results in Table 3.6, we see that all three of the para-
meters were found to be significant in influencing the error in the maximum number of
pedestrians in the system. The way in which the error varies in response to each of the
three parameters was therefore plotted in Figure 3.13.

The coefficient pertaining to the activation rate was found to be negative, indicating
a negative correlation with the error, i.e. as the activation rate increases, the error falls.
The coefficient pertaining to the mean of the speed was found to be positive, indicating
that as the mean speed increases the error increases. Finally, the coefficient pertaining
to the standard deviation of the speed was found to be positive, indicating that as the
standard deviation increases the error increases. Each of these three phenomena can
be observed in Figures 3.13a, 3.13b and 3.13c respectively.

60

3.2 StationSim GCS

1.0 1.2 1.4 1.6 1.8 2.0
birth_rate

40

20

0

20

40

n_
m

ax
_a

ct
iv

e_
po

p

(a) Variation in activation rate.

0.6 0.8 1.0 1.2 1.4
speed_mean

40

20

0

20

40

n_
m

ax
_a

ct
iv

e_
po

p

(b) Variation in mean speed.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
speed_std

40

20

0

20

40

n_
m

ax
_a

ct
iv

e_
po

p

(c) Variation in standard deviation of speed.

Figure 3.13: Variation of error in the maximum number of active pedestrians with
respect to different parameters

61

3.2 StationSim GCS

Parameter Coefficient Value Standard Error p-value

Constant 30.6 2.63 0.000
Activation Rate -45.5 1.34 0.000
Mean Speed 39.3 1.37 0.000
Std Speed 11.2 1.70 0.000

Table 3.6: Table of coefficient values; response variable: error in maximum number of
pedestrians in the system.

Time of Maximum Number of Pedestrians

For the next of these models, we fit a linear regression in which the response variable
is the error in the time of the maximum number of active pedestrians:

Y = β0 + βarXar + βmsXms + βssXss, (3.14)

where once again terms with a ar subscript pertain to the activation rate, terms with
a ms subscript pertain to the mean speed and terms with a ss subscript pertain to the
standard deviation of the speed.

Upon fitting this model, we obtain coefficient values pertaining to each of the model
parameters as detailed in Table 3.7. Considering the results in Table 3.7, we see that
only the activation rate is significant in influencing the error in the time of the maximum
number of pedestrians in the system. The way in which the error varies in response to
the activation was therefore plotted in Figure 3.14.

Parameter Coefficient Value Standard Error p-value

Constant -4399.5 384.7 0.000
Activation Rate 1432.2 195.6 0.000
Mean Speed -24.3 200.2 0.903
Std Speed 161.5 249.6 0.518

Table 3.7: Table of coefficient values; response variable: error in time of maximum
number of pedestrians in the system.

The coefficient pertaining to the activation rate was found to be positive, indicating
that as the activation rate increases the error in the time at which the maximum number

62

3.2 StationSim GCS

1.0 1.2 1.4 1.6 1.8 2.0
birth_rate

4000

3000

2000

1000

t_
m

ax
_a

ct
iv

e_
po

p

Figure 3.14: Variation of error in the time at which the maximum number of active
pedestrians occurs with respect to activation rate.

of pedestrians is observed increases. When looking at Figure 3.14, however, we can see
that the error for all activation rates used is negative. A positive error may be observed
for activations in excess of 2.0. This indicates that a higher agent activation may be
desirable in the goal of simulating the time at which the maximum active population
occurs; however, as noted in the previous section, an increased activation rate may
incur an greater error in the maximum active population.

Completion Time

Finally, for the third model, we fit a linear regression in which the response variable is
the error in the time at which all pedestrians have completed their journeys across the
environment:

Y = β0 + βarXar + βmsXms + βssXss. (3.15)

Upon fitting this model, we obtain coefficient values pertaining to each of the model
parameters as detailed in Table 3.8. Considering the results in Table 3.8, we see that
only the activation rate is significant in influencing the error in the time at which
all pedestrians have completed their journeys. The way in which the error varies in
response to the activation was therefore plotted in Figure 3.15.

The coefficient pertaining to the activation rate was found to be positive, indicating
that as the activation rate increases the error in the time at which all pedestrians have
completed their journeys increases. Just as with the previous model, when looking at

63

3.2 StationSim GCS

Parameter Coefficient Value Standard Error p-value

Constant -7048.6 457.8 0.000
Activation Rate 2915.1 232.7 0.000
Mean Speed 285.3 238.2 0.233
Std Speed 139.7 296.9 0.638

Table 3.8: Table of coefficient values; response variable: error in time taken for all
pedestrians to complete journeys.

1.0 1.2 1.4 1.6 1.8 2.0
birth_rate

14000

12000

10000

8000

6000

4000

2000

0

t_
m

ax

Figure 3.15: Variation of error in length of time take for the model to complete with
respect to activation rate.

64

3.3 Concluding Remarks

Figure 3.15, we can see that for all activation rates used is negative. Just as in the
previous section, this indicates that a higher agent activation may be desirable in the
goal of simulating the completion time; however, as noted above, the previous section, a
increased activation rate may incur an greater error in the maximum active population.

3.3 Concluding Remarks

This section has sought to outline the models used in this investigation.
The first of these (referred to as the Toy Model) was described in Section 3.1. It is an

abstract model developed for testing purposes, and as such shall be used in Chapter 5
to perform preliminary experiments to show that the Ensemble Kalman Filter can
be applied to an Agent-Based Model. The second model — StationSim GCS — was
described in Section 3.2 (which also included a basic calibration process and sensitivity
analysis for the model). This model aims build upon the Toy Model, simulating the
motion of pedestrians around the main concourse at Grand Central Station in New
York. It shall be used in Chapters 6 and 7.

The latter model was calibrated through the analysis of observed data of pedestri-
ans crossing the main concourse at Grand Central Station, which sought to identify
appropriate values for the rate at which pedestrian agents should join the system, i.e.
their activation rate, the mean speed at which they should be travel, and the standard
deviation of their speeds. The speed parameters were used to inform a normal distri-
bution from which agent speeds could be sampled in the model. The analysis found
the mean pedestrian speed to be 1.60ms−1 and the standard deviation to be 0.66ms−1.
The analysis concluded that an appropriate activation rate would be 1.6.

Following this, a global sensitivity analysis was undertaken, seeking to explore how
the model behaviour changed in response to each of these parameters, and which had
the greatest influence. It was found that model behaviour was largely unchanged by
the speed parameters, but that agent activation rate had a much larger impact. It was
found that as activation rate increased, the error in the maximum active population
decreased (changing from positive to negative), the error in the time of the maximum
active population increased (starting negative and growing closer to 0), and the error
in the system completion time increased (starting negative and growing closer to 0).
Whilst it was found that increasing the activation rate would result in improvements in
the simulation of the time at which the maximum active population occurred and the

65

3.3 Concluding Remarks

time at which the system would complete its run, this would have resulted in a growth
in the error in the maximum active population. Given that having a large number of
active agents would result in crowding — a phenomenon that we desire (see Section 3.1)
— we have chosen to make no further changes to the activation rate.

Having described the modelling aspects of the methods used for this investigation
in this chapter, the next chapter shall proceed to outline the other side of the methods:
data assimilation.

66

Chapter 4

Data Assimilation

67

4.1 Bayesian Inference and Data Assimilation

In Chapter 2, previous investigations into the use of data assimilation methods with
Agent-Based Models were reviewed; although it touched on the strengths and weak-
nesses of different methods, the chapter did not provide significant detail regarding the
way in which different data assimilation methods work. Furthermore, it only touched
on the specific data assimilation methods that had be previously used with Agent-Based
Models, and did not provided any coverage of the broader field. This chapter, therefore,
aims to provide a greater level of detail on the previously mentioned methods, as well
as providing some coverage of other methods that exist in the field

Firstly, the process of data assimilation will be explained in more detail, framing
it as a Bayesian Updating problem. The main data assimilation methods used in this
investigation will then be explained; this investigation uses a method known as the
Ensemble Kalman Filter (EnKF) which is based on the Kalman Filter — the chapter
will first cover the Kalman Filter before moving on to the EnKF. This will be followed
by a review of some of the other data assimilation methods available. The chapter will
conclude by detailing some of the anticipated challenges of applying data assimilation
methods in conjunction with Agent-Based Models.

4.1 Bayesian Inference and Data Assimilation

The process of data assimilation involves making use of observations along with prior
knowledge (which, in our case, is encoded in a model) to produce increasingly accurate
estimates of variables of interest. More formally stated, we may phrase our problem:

Having initially defined our initial knowledge of the system based on our
model, what is our updated knowledge given the provided observations?

This states the problem as one of updating our knowledge of the system conditioned
on observations. Such a process can be achieved through a Bayesian filtering ap-
proach (Jazwinski, 1970; Bar-Shalom et al., 2004).

In applying this process to a system that we are observing, we may wish to represent
knowledge as the random variables, A and B. If we consider the true system state to be
represented by the random variable, A, we may represent our initial knowledge of the
system state as the probability distribution, P (A). The use of a probability distribution
reflects the uncertainty in our knowledge regarding the system state. When producing a
set of observations of the system, we may represent them as the probability distribution

68

4.1 Bayesian Inference and Data Assimilation

P (B|A), i.e. a probability distribution representing the data that we have observed
given the true system state. We can then represent our conditional understanding,
i.e. our updated knowledge of the system when provided with observations, as the
probability distribution P (A|B). These terms can be related using Bayes Theorem.
Bayes Theorem can be derived rather simply. We first assume that P (A) and P (B)
are non-zero. We define the probability of A occurring given B, i.e. P (A|B), as:

P (A|B) = P (A ∩ B)
P (B) , (4.1)

where P (A ∩ B) is the probability of both A and B occurring, and P (B) is the prob-
ability of B occurring. Similarly, we can define the probability of B occurring given A

as:
P (B|A) = P (B ∩ A)

P (A) = P (A ∩ B)
P (A) , (4.2)

where P (B∩A) is the probability of both B and A occurring, and P (A) is the probability
of A occurring; we recall that P (A ∩ B) = P (B ∩ A). Using Equations 4.1 and 4.2, we
can write:

P (A|B)
P (B|A) =

P (A∩B)
P (B)

P (A∩B)
P (A)

, (4.3)

which can be simplified to the traditional form of Bayes Theorem (Gelman et al., 1995):

P (A|B) = P (B|A)P (A)
P (B) . (4.4)

When using Bayes Theorem, we typically refer to the 4 constituent parts in the following
way:

• Prior — P (A): This distribution represents our initial understanding of the true
system state.

• Data/likelihood — P (B|A): This distribution represents the distribution of data
given the true system state.

• Posterior — P (A|B): This distribution represents our updated understanding of
the true system state

• Marginal — P (B): This distribution is the marginal distribution of our data and
is typically a normalising constant (Wikle and Berliner, 2007) given by:

P (B) =
∫

P (B|A)P (A)dA

69

4.1 Bayesian Inference and Data Assimilation

With these definitions in mind, it should be clear that we can apply Bayes Theorem to
perform inference (indeed, Bayes Theorem has been applied in a number of fields (El-
lison, 2004; Von Toussaint, 2011; Etz and Vandekerckhove, 2018)). Here, we refer to
inference as the process of updating and improving some knowledge about a system.
This inference can seek to improve our understanding about the true system state, or
about parameters governing the behaviour of the system.

This inference process is applied in Meteorology under the banner of data assimil-
ation. Wikle and Berliner (2007) define data assimilation as:

. . . an approach for fusing data (observations) with prior knowledge (e.g.
mathematical representations of physical laws; model outputs) to obtain an
estimate of the distribution of the true state of a process.

There exist a number of different schemes for tackling this problem which are often
divided into two groups Talagrand (1997):

1. Sequential: Upon the arrival of a new observation, the model state is updated
at the time of the new observation; includes Kalman Filter (Kalman, 1960; Kal-
man and Bucy, 1961) (and variations thereof (Evensen, 2003, 2009)), Particle
Filter (Arulampalam et al., 2002).

2. Variational: Upon the arrival of a new observation, the model solutions are
updated at all times simultaneously; includes 3D-VAR, 4D-VAR.

In both cases, data assimilation schemes are applied to systems in a iterating cycle
of prediction and updating. The prediction process involves evolving the system state
forwards in time according to the model used to describe the system; the updating
process involves applying the chosen data assimilation technique to produce a better
estimate of the system state based on the most recent results of prediction and a set of
observations. Depending on how frequently observations are provided and the time-step
of the model, the prediction process may be applied multiple times between updating
steps.

The next two sections will go on to outline two sequential approaches: the Kalman
Filter and the EnKF —the latter of which is applied in this investigation. This will
be followed by an overview of some other sequential approaches and some variational
approaches.

70

4.2 Kalman Filter

In much of the remainder of this thesis, terminology will be drawn from both Met-
eorology and Bayesian Statistics. In particular, there are two terminological equival-
ences to consider. The first of these is the equivalence between the meteorological
term “forecast” and the Bayesian term “prior”; these two may be used interchangeably
as pertaining to states from a model before any form of updating; this is to say, the
forecast is the result of the prediction process. The second of these is the equivalence
between the meteorological term “analysis” and the Bayesian term “posterior”; these
two may be used interchangeably as pertaining to states from a model after updating
has taken place.

4.2 Kalman Filter

One of the earliest forms of Bayesian filtering is the sequential data assimilation scheme
known as the Kalman Filter (Kalman, 1960; Kalman and Bucy, 1961), which forms the
foundation of this piece of work. The Kalman Filter has been used in a range of fields
including aircraft tracking (Pearson and Stear, 1974), signal processing (Auger et al.,
2013) and high-energy particle physics experiments (Aggleton et al., 2017). As with
other sequential data assimilation schemes, the Kalman Filter operates on a model with
a given set of state variables and forecasting process (i.e. a process by which to step the
model state forward in time). These state variables are considered random variables —
that is to say they represent the quantities of interest as some sort of distribution. The
analysis process implemented by the Kalman Filter seeks to update both the model
state and the associated covariance matrix upon receipt of new observations. This is
undertaken as part of the predict-update cycle. The prediction process is undertaken
by applying the modelling operator to both the model state and model state covariance.
The update process is undertaken based on the uncertainty in the model forecasts and
the observation uncertainty; as seen below, this essentially consists of taking a weighted
average of the model state and the observations, with the weightings being governed
by the comparative degrees of uncertainty in each of the two sources of information.
The aim of such an approach is to minimise the posterior variance.

In a scenario where we have two state variables of interest, our state vector may be:

x = [x1, x2]T .

These state variables represent the mean of the distributions representing each quantity.

71

4.2 Kalman Filter

The error in these quantities are represented by a covariance matrix. The associated
covariance matrix would then be:

Q =

 σ2
x1 σx1x2

σx2x1 σ2
x2

 .

The diagonal matrix entries, σ2
x1 and σ2

x2 describe the variance in the state variables,
x1 and x2, respectively. The off-diagonal matrix entries, σx1x2 and σx2x1 , describe the
variance of the state variables with respect to each other; for example, σx1x2 describes
the variances in x1 with respect to x2. We therefore expect that the covariance matrix
is symmetric and as such find that:

σx1x2 = σx2x1 .

Under the Bayesian framework outlined in Section 4.1, we refer to the model state
vector and associated covariance before updating as the prior, x and Q respectively,
and to the model state and associated covariance after updating as the posterior, x̂ and
Q̂. Here, we note that the prior state, x, is a vector containing the state variables, and
Q is the covariance matrix relating to the state variables.

Given new observations, d, the posterior state vector, x̂ and posterior state covari-
ance matrix, Q̂, are given by:

x̂ = x + K (d − Hx) , (4.5)

Q̂ = (I − KH) Q, (4.6)

where K is called the Kalman gain matrix, H is the observation operator and I is the
identity matrix which has 1 along the diagonal and 0 elsewhere:

I =

1 0 · · · 0
0 1 · · · 0
...

...
0 0 · · · 1

 .

The role of the observation operator, H is to transform the state vectors between the
form in which we store state variables and the form in which they are represented in
observations. In the case where we track the x-y location of an object in our model and
we collect data regarding the x-y location of the object, we might have the following

72

4.2 Kalman Filter

scenario:

x = [x, y]T ,

d = [dx, dy]T ,

H =

1 0
0 1

 ,

where the observation operator is just the identity matrix.
In another scenario in which we are modelling the x-y location of an object as well

as the object’s velocity in the x-y plane in our model and we only collect data regarding
the x-y location of the object, we would instead have the following setup:

x = [x, y, ẋ, ẏ]T ,

d = [dx, dy]T ,

H =

1 0 0 0
0 1 0 0

 .

The Kalman gain matrix in Equations 4.5 and 4.6 is given by:

K = QHT
(
HQHT + R

)−1
(4.7)

where R is the observation covariance, which is defined by the uncertainty in the
observations. When considering Equation 4.5, we see that the Kalman gain matrix
defines the weights applied to the elements of the difference between the observations
of the system state, d, and the modelled system state, x, when updating the state. In
cases where the uncertainty in the observations is large compared to the uncertainty in
the modelled state, i.e. the elements of R are larger than the elements of Q, the weights
contained within the gain matrix are small and therefore updates to the model state
are small. In the alternative case where the uncertainty in the observations is small in
comparison to the uncertainty in the modelled state, i.e. the elements of R are smaller
than the elements of Q, the weights contained within the gain matrix, K, are large and
therefore changes to the model state are large.

The Kalman Filter assumes that errors (such as those associated with the state vari-
ables and with the observations) are normally distributed, and under these conditions
the filter provides an exact posterior estimate; over the course of this investigation, the
terms ‘normal’ and ‘Gaussian’ will be used interchangeably to refer to distributions.

73

4.3 Ensemble Kalman Filter

However, this approach suffers from two issues. The first of these is that it assumes
that the operators that are applied (namely the model transition operator and the ob-
servation operator) are linear; this is often not the case with more complex systems,
particularly when the system elements interact with each other (as is typically the case
in agent-based models). Furthermore, as the dimensionality of the model increases, the
cost of propagating forward the model state covariance may increase to the point where
it is intractable.

A number of approaches have been developed which attempt to solve these prob-
lems, one of which is the EnKF which will be discussed in the next section.

4.3 Ensemble Kalman Filter

A number of approaches have been developed which attempt to solve the above prob-
lems, one of which is the Ensemble Kalman Filter (Evensen, 2003, 2009), which acts
as an approximation of the Kalman Filter. This approximation is achieved through a
Monte Carlo approach of using an ensemble of sample state vectors to represent the
state distribution; this development mirrors the recent incorporation of Monte Carlo
methods in the field of Bayesian statistics (Wikle and Berliner, 2007). This section will
seek to outline the EnKF. The state is represented as an ensemble of state vectors, X
as follows:

X = [x1, . . . , xN] = [xi] , ∀i ∈ {1, 2, . . . , N}, (4.8)

where the state ensemble matrix, X, consists of N state vectors, xi. Considering the
scenario where were we are modelling the x-y location of an object with an ensemble
of 3 state vectors, we would have a state ensemble of:

X = [x1, x2, x3] =

x1 x2 x3

y1 y2 y3

The mean state vector, x̄, can be found by averaging over the ensemble:

x̄ = 1
N

N∑
i=1

xi. (4.9)

Similarly, the observations are represented as follows:

D = [d1, . . . , dN] = [di] , ∀i ∈ (1, N), (4.10)

74

4.3 Ensemble Kalman Filter

with each member of the data ensemble matrix, D, being the sum of the original
observation d, and a random vector, ϵi:

di = d + ϵi, ∀i ∈ (1, N). (4.11)

The random vector is drawn from an unbiased normal distribution:

ϵ ∼ N(0, R), (4.12)

where R is the data covariance matrix, just as in the case of the Kalman Filter. As
with the model state, the mean data vector, d̄, can be found by averaging over the
ensemble:

d̄ =
N∑

i=1
di. (4.13)

By implementing these adaptations, the EnKF aims to address the issues faced
by the original Kalman Filter with respect to forecasting the state covariance matrix;
more specifically, as a result of this approach the state covariance matrix no longer
needs to be forecast by applying the model operator, but instead can simply be gener-
ated as a sampling covariance (Mandel et al., 2011). Consequently, concerns over the
computational cost of forecasting the covariance matrix and over the requirement that
the forecasting process be undertaken by applying a linear operator to the covariance
matrix are greatly reduced.

Given the above framework, the data assimilation is once again made up of the
predict-update cycle, with the updating of the state ensemble, X̂, being undertaken on
the basis of the following equation:

X̂ = X + K (D − HX) , (4.14)

where H is the observation operator. Note here that we do not update our state
covariance matrix, instead generating a sample covariance matrix based on the state
ensemble, C:

C = 1
N − 1

N∑
i=1

(xi − x̄) (xi − x̄)T .

The Kalman gain matrix, K is given by

K = CHT
(
HCHT + R

)−1
. (4.15)

75

4.4 Other Data Assimilation Methods

in which C is the sample state covariance (used instead of the state covariance matrix
Q), and R is the observation covariance. We can consider (D − HX) in Equation 4.14
to be the proposed perturbation to the ensemble states, and the Kalman gain matrix,
K, to be the weight given to this perturbation (just as in Section 4.2). When the un-
certainty in the observations is low in comparison to the uncertainty in the model state,
the gain increases, and therefore the model state receives a larger perturbation from the
provided data; conversely, when the uncertainty in the observations is high in compar-
ison to the uncertainty in the model state, the gain decreases, and therefore the model
state receives a smaller perturbation from the provided data. This, therefore, allows us
to combine two separate sources of information regarding the same phenomenon — in
this case our model and the observations — whilst respecting the levels of uncertainty
associated with each of them.

Whilst the derivation of the EnKF assumes linearity of the system in question, it
has been found to perform relatively well when applied to non-linear systems (Katz-
fuss et al., 2016). Working with non-linear systems is of particular importance when
applying a data assimilation method to a complex system such as one modelled by
an Agent-Based Model. One of the ways in which we can better handle non-linearity
is through the use of the Particle Filter (PF) which will be discussed in next section,
alongside a number of other data assimilation methods. The Particle Filter additionally
handles scenarios in which the distributions are non-Gaussian.

4.4 Other Data Assimilation Methods

In the previous section, we have detailed the way in which the Ensemble Kalman Filter
works. Whilst this investigation focuses on the application of the Ensemble Kalman
Filter, there exist a broad range of other methods. Here, we discuss some of these
other methods. As noted in Section 4.1, we can divide data assimilation methods into
sequential methods (i.e. methods which update the present model state upon receipt
of new observations) and variational methods (i.e. methods which update the both
the present model states and all previous model states simultaneously). This section
will, therefore, first go on to discuss sequential methods before discussing variational
methods. The former will touch upon other variants of the Kalman Filter, as well as the
Particle Filter (which has seen popularity in application to Agent-Based Models). The
latter will touch upon methods such as 4DVAR which are commonly used in numerical

76

4.4 Other Data Assimilation Methods

weather prediction.

4.4.1 Sequential Methods

This section will outline a further selection of sequential data assimilation methods.
Two of these — the Extended Kalman Filter and the Unscented Kalman Filter — are
based on the Kalman Filter described in Section 4.2. Beyond these, we will also go on
to outline the Particle Filter which has also been applied to Agent-Based Models.

Extended Kalman Filter

The first of these sequential data assimilation methods — the Extended Kalman Filter
— is a variation on the original Kalman Filter. This filter was designed to overcome the
issue faced by the original Kalman Filter when working with non-linear systems (Smith
et al., 1962). To describe this method, let us first consider a description of the system.
If we consider situation in which we have a vector of state variables, x, which is updated
from time-step k to time-step k + 1 by the model process operator f , we can write this
as:

xk+1 = f(xk) + wk,

where wk is normally distributed noise associated with the process being modelled.
Similarly, we should consider the process of producing observations, y at time-step k

based on the observation operator h, writing it as:

yk = h(xk) + vk,

where vk is the normally distributed noise associated with the observation process. It
is assumed that whilst they may be non-linear, the operators f and h are smooth and
therefore differentiable. Based on this, the modelling and observation operators are
then linearised using the Taylor Series expansion about the state at a given time-step.
As such, the prediction and updating steps are modified (Ribeiro, 2004). The prediction
step consists of using the model process operator to step forward the model state and
the associated model state covariance matrix:

xk+1 = fk(xk), (4.16)

Pk+1 = FkPkFT
k , (4.17)

77

4.4 Other Data Assimilation Methods

where xk is the state at time-step k, fk is the model process operator at time-step k,
Pk is the state covariance matrix at time-step k and Fk is the Jacobian of the model
process operator at time-step k. The update step consists of updating both the model
state and state covariance matrix with respect to the provided observations:

x̂k+1 = xk+1 + Kk+1 [yk+1 − hk+1(xk+1)] , (4.18)

P̂k+1 = [I − Kk+1Hk+1] Pk+1, (4.19)

where x̂k+1 is the posterior state at time-step k+1, P̂k+1 is the posterior state covariance
matrix at time-step k + 1, Kk+1 is the Kalman gain matrix at time-step k + 1, yk+1

is the observed state at time-step k + 1, hk+1 is the observation operator at time-step
k + 1 and Hk+1 is the Jacobian of the observation operator at time-step k + 1. The
Kalman gain matrix at time-step k + 1, Kk+1 is given by:

Kk+1 = Pk+1HT
k+1

[
Hk+1Pk+1HT

k+1 + Rk+1
]−1

, (4.20)

where Rk+1 is the observation covariance matrix at time-step k + 1.
Whilst these adjustments help the filter to deal with non-linear systems, they only

involve the use of first-order terms and exclude higher order terms; as such, in order
for the process to be effective it is required that the model process is not dominated by
any higher order terms (Terejanu et al., 2008); the assumption underlying this is that
the systems are linear local to the point about which we are estimating and in cases
where this linearity is not observed, the filter may become unstable. Furthermore, the
Extended Kalman Filter still requires the propagation of the state covariance matrix
which is potentially computationally expensive (as noted in the case of the Kalman
Filter in Section 4.2).

Unscented Kalman Filter

Another of the sequential data assimilation methods — the Unscented Kalman Filter
— is also based on the Kalman Filter outlined in Section 4.2. Just as with the Extended
Kalman Filter above, the Unscented Kalman Filter seeks to deal with non-linear sys-
tems without the use of linearisation (and consequently overcoming the stability issues
encountered when applying the Extended Kalman Filter). This is achieved by apply-
ing the unscented transformation (Julier and Uhlmann, 1997). Given a model state, x,
with covariance matrix, P, this involves creating a set of sample points (referred to as

78

4.4 Other Data Assimilation Methods

sigma points), with the size of the set being 2n+1 where n is the dimension of the state
space (Terejanu, 2011). These points are chosen deterministically in order to ensure
that their mean is exactly equal to the model state and their covariance is exactly equal
to the covariance matrix; this assumes that, just as with the original Kalman Filter,
the error distributions are Gaussian (Wan et al., 2001). The sigma points, χi (where
0 ≤ i ≤ n), are defined as:

χ0 = x̄, (4.21)

χi = x̄ +
(√

(n + κ)P
)

i
, (4.22)

χi+n = x̄ −
(√

(n + κ)P
)

i
, (4.23)

where 1 ≤ i ≤ n and κ is a scaling variable. Each of the sigma points are assigned
weights, Wi, defined as:

W0 = κ

n + κ
, (4.24)

Wi = 1
2(n + κ) , (4.25)

Wi+n = 1
2(n + k) , (4.26)

for 1 ≤ i ≤ n.
For the prediction process, each of these points is then evolved by propagating

them forward in time based on the model process operator outlined in the case of
the Extended Kalman Filter, and the estimated model state mean, ˆ̄x, and covariance
matrix, P̂, are calculated. For the update process, the model state mean and covariance
are updated according to the process outlined in the Kalman Filter.

This improves upon the Extended Kalman Filter approach in a number of ways. By
virtue of not linearising the operators, the Unscented Kalman Filter is able to capture
non-linearity without discarding higher order terms (Jwo and Lai, 2008). Furthermore,
it removes the need to calculate the Jacobian of the operators, which results in a much
less computationally expensive algorithm (Julier et al., 1995). Just as with previous
algorithms, however, the Unscented Kalman Filter assumes Gaussian error distribu-
tions (Särkkä, 2013) — something that may not be the case.

79

4.4 Other Data Assimilation Methods

Particle Filter

Just as with the previous two data assimilation methods, the Particle Filter seeks to
improve upon the Kalman Filter by better handling non-linear systems; however, in
addition, the Particle Filter seeks to overcome the other shortcoming of Kalman Filter-
based methods — the assumption that errors are normally distributed.

The Particle Filter achieves this by undertaking an approach similar to that used in
the EnKF, i.e. maintaining an ensemble. In this case, however, the ensemble members
are referred to as particles. Each of these particles are assigned a corresponding weight.
We may represent these particles and weights as the sets (Orlande et al., 2011):{

xi
k; i ∈ {1, . . . , N}

}
(4.27)

{
wi

k; i ∈ {1, . . . , N}
}

(4.28)

where xi
k is the ith model state at time-step k, wi

k is the ith weight applied to the
corresponding model state at time-step k and N is the number of particles. The weights,
wi

k, at any given time-step are normalised such that they sum to 1:

N∑
i=1

wi
k = 1 (4.29)

Just as with other data assimilation methods outlined thus far, the Particle Filter
involves the processes of prediction and updating. As in the EnKF, the prediction
step involves predicting forward in time each of the ensemble-member models, i.e. the
particles, producing a set of samples from the prior distribution. In the case of the
Particle Filter, however, the update process is different. At the very least, the update
process may consist of reweighting the particles, and in many cases may also include
reampling the particles (Doucet et al., 2000). The process of reweighting involves
redefining the weights pertaining to each particle by comparing the particle states with
the observed states; these weights are normalised according to Equation 4.29. The case
where only reweighting is undertaken is typically referred to as Sequential Importance
Sampling.

This method may, however, suffer some issues. The most common of these is referred
to as particle degeneracy whereby a single particle dominates the distribution; this may
be evidenced by the weight pertaining to a single particle being close to 1 with other
weights being close to 0 (Elfring et al., 2021). The most common solution is to employ

80

4.4 Other Data Assimilation Methods

resampling. Having assigned new weights to each of the particles, we generate a new
population of particles by sampling from a population of particles made up of the prior
particles, xi

k, weighted by their given weights, wi
k.

The aim of this approach is that, given a large enough collection of particles, i.e. as
N → ∞, the samples exactly represent the posterior distribution (Arulampalam et al.,
2002). Whilst the Particle Filter may offer an approach that is capable of providing
an approximation of the posterior distribution, this is often limited by computational
cost; in cases where the conditions for the Kalman Filter are fulfilled, it is typically
better to use the EnKF as it requires fewer ensemble members/particles to achieve the
same result (Wikle and Berliner, 2007; Orlande et al., 2011).

4.4.2 Variational Methods

As alluded to earlier in the Chapter, sequential and variational approaches reflect two
very different ways to do data assimilation. Whilst sequential data assimilation methods
seek to best estimate the state of the system at the time of observation provision,
variational approaches seek to identify the trajectory of the model that best fits the
provide observations (Carrassi et al., 2018). This typically involves updating not only
the system state estimate at the time of data assimilation, but also updating the system
state estimates at each previous time-step. In order to achieve this, we aim to minimise
a cost function, J(x), where x is a state vector. This cost function takes different
forms depending on the variational approach. One of the most common approaches is
4DVAR, for which the cost function is (Carrassi et al., 2018):

J(x) = 1
2 ∥x(t0) − xb∥2

B−1
0

+ 1
2

T∑
t=0

∥yt − H(x(t))∥2
R−1

t

+ 1
2

T∑
t=1

∥x(t) − Mt−1,t(x(t − 1))∥2
Q−1

t
,

(4.30)

where t is the time-step in the range {0, . . . , T}, x(t) is the model system state at
time t, x is the collection of system states, {x(t0), . . . , x(T)}, xb is the prior, otherwise
referred to as the background, yt is the set of observed system states at time t, H()
is the observation operator (as used in previous data assimilation methods), Mij() is
the model process operator which transitions the state from t = i to t = j, B is the
background covariance matrix, and ∥a∥2

A−1 ≡ aT A−1a (often referred to as the L-2
norm).

81

4.5 Challenges of Data Assimilation with an Agent-Based Model

We can think of this cost function as consisting of three terms (Bannister, 2017):

J = Jb + Jo + JQ, (4.31)

with the first term pertaining to the background error, the second to the observation
error and the third to the model error. With this is cost function (and indeed any
other cost function used in variational data assimilation), we seek to find the model
trajectory that minimises it (Ide et al., 1997).

Variational approaches such as 4DVAR may have a number of advantages, such as
the ability to assimilate asynchronous observations (Kalnay et al., 2007). The method
also has some disadvantages, however; one such disadvantage is that whilst it may
provide an estimate of the model state, it does not provide an associated covariance by
default — something that may be desirable — and the calculation of such a posterior
covariance may be particularly challenging (Carrassi et al., 2018).

4.5 Challenges of Data Assimilation with an Agent-Based
Model

Having outlined the various data assimilation methods above, this section seeks to
describe some of the challenge we encounter in our attempt to apply them — the
EnKF in particular — to Agent-Based Models of pedestrian motion. In particular, we
shall highlight the challenges arising from the way in which systems are represented,
the challenges arising from the non-linearity often observed in complex systems and the
challenges arising from the way in which observations are generated for social complex
systems and how this might relate to the data assimilation process.

System Representation

When considering the literature around data assimilation, it is noticeable that it is dom-
inated by meteorological applications. There are, however, cases in which algorithms
have been applied to scenarios in which we wish to accurately track the trajectory of an
object such as aircraft or autonomous vehicles (McDougall and Moore, 2017); in fact,
when the Kalman Filter was first conceived, it was applied to the Apollo space flight
project (Grewal and Andrews, 2010). Superficially, there may appear to be some direct
analogues between the tracking problems encountered in the aerospace industry and

82

4.5 Challenges of Data Assimilation with an Agent-Based Model

the pedestrian tracking problems that we are tackling in this investigation — in both
cases, we aim to produce the best estimate of a location given the output of a model
and some observed quantity. There is, however, a fundamental difference: the way in
which the systems are modelled. In the former case, we typically model the system
based on a set of differential equations (such as those describing the laws of physics),
whereas the modelling of social systems such as pedestrian motion are typically under-
taken via rules-based methods such as Agent-Based Modelling. In some investigations,
it has been noted that way in which Agent-Based Models are defined — in terms of
rules instead of sets of differential equations — presents a challenge when applying
data assimilation methods (Wang and Hu, 2015). This is true of approaches such as
the Kalman Filter and Extended Kalman Filter which require analytical forms for the
operators; however, approaches that approximate distributions using samples such as
the EnKF and Particle Filter do not suffer from this problem (Wang, 2014). This
makes them more amenable to being applied to the micro-level simulation of complex
systems such as those considered in this investigation.

Non-linearity

Beyond the challenges presented by the way in which the systems are being represented,
i.e. equation-based vs. rule-based, there are challenges presented by the nature of the
phenomena being modelled. When considering complex systems, they are typically
characterised by numbers of units which interact with each other and these interactions
are often considered to be non-linear (Amaral and Ottino, 2004; Motter et al., 2006).
In the case of the pedestrian modelling such as the models outlined in Chapter 3, non-
linearities may be introduced through a number of manners. One the one hand, we
have the non-linearities introduced by the collision avoidance employed by pedestrians
(although when scaled up to large populations this may be much more impactful). On
the other hand, we have the discrete changes introduced by variations in destination
which result in pedestrians travelling in entirely different directions. Such non-linearity
may be a challenge for some forms of data assimilation such as the Kalman Filter.
Additionally, these non-linearities may also result in non-Gaussian error distributions,
presenting further challenges for Kalman Filter-based methods.

83

4.5 Challenges of Data Assimilation with an Agent-Based Model

Observations

When producing observations of social complex systems, we rarely have complete cov-
erage, i.e. there will be gaps in our data either spatially or temporally. This reflects
one of the key motivations of our use of data assimilation touched upon in Chapter 1
where we note the issue of data sparsity alongside the issue of growing model errors.
The result is that, when considering pedestrian systems, we may not have trace data
for a non-zero proportion of our population and may wish to infer the traces for the
remainder of the population whilst also improving our trace estimates for the propor-
tion for which we have observations. When considering systems which are described by
systems of differential equations, we may be able to assume some degree of continuity
between spatially separated points and as such, when applying data assimilation with
spatially sparse data, may be able to interpolate values in-between. In the case of com-
plex systems such as pedestrian systems, however, we are considering pedestrians as our
units, not points in space; further our pedestrian units may act in a non-linear fashion
based on interactions with other pedestrians and choice of destination. Consequently,
there may be some challenges in applying data assimilation to accurately simulate a
system with partial coverage (Clay et al., 2020).

The application of such trace data assumes that there is an obvious equivalence
between the pedestrian units in the simulation and the observed quantities; this might
reflect a scenario in which we have GPS trackers on individual pedestrians. Another way
in which individual level observations may be generated is through the use of computer
vision technologies such as that used to inform the design of StationSim GCS (as noted
in Section 3.2 whereby the calibration of the model made use of data from Zhou et al.
(2012)). In this case, we may have complete coverage of all of the pedestrians in
the system, however, drawing an equivalence between observed pedestrians and agents
inside an Agent-Based Model may be non-trivial; as noted in Section 3.2.3, the approach
used to identify pedestrian traces is not perfect, and generates partial trajectories which
have to be joined up.

Alternatively, we might consider the scenario in which we do not have trace-like
observations (either complete or incomplete), but instead have aggregated data — a
scenario which may be more likely as it may more effectively protect the privacy of
pedestrians in the system. In such a case, we may have intermittent observations of the
number of pedestrians congregated in different geographical spaces at a given time (as

84

4.6 Concluding Remarks

is the case with the data generated by Leeds City Council (Whipp et al., 2021)). When
presented with such data, we are faced with a similar challenge as with the previous
type of data but on a potentially greater scale. The challenge here lies in the issue of
disaggregating the observations and drawing equivalence between observed pedestrians
and agents in the model.

One further observation-related issue that we may wish to consider is that of unob-
served variables. When initialising a model, we typically base our initial model state on
some form of empirical data. In the case of a pedestrian Agent-Based Model, this may
involve defining the starting location of the individual pedestrian agents. When draw-
ing equivalence between observations and model states, it should be trivial to initialise
an agent with a given starting location upon first observing a pedestrian entering a sys-
tem. This does not, however, account for the set of unobserved pedestrian attributes.
This may include factors such as a pedestrians speed or their destination within the
environment. Some of these may be inferred directly by observing the pedestrians (this
may be the case with an attribute such as speed). This does not, however, account for
all attributes.

4.6 Concluding Remarks

This chapter has sought to outline the process of data assimilation, framing it as a
Bayesian updating problem. In particular, it has focussed on The Ensemble Kalman
Filter and the Kalman Filter on which it is based. In addition, some attention has
been paid to other data assimilation methods that exist, considering both sequential
and variational approaches.

Having described a range of data assimilation methods, we have outlined some of the
challenges that may be faced when applying them to Agent-Based Models in Section 4.5,
highlighting which types of filters are particularly susceptible where appropriate. When
considering issues around model representation, it was noted that ensemble-based data
assimilation methods were likely to be the most appropriate to be applied to complex
systems represented by rules-based models. When considering the issues around non-
linearity, it was noted that some Kalman Filter-based approaches, particularly the
Kalman Filter itself, may not be appropriate given their difficulties in handling non-
linear systems. Whilst this may suggest that the most appropriate data assimilation
method might be the Particle Filter, we should also consider the computational cost

85

4.6 Concluding Remarks

associated with this algorithm. As noted in Section 4.4, in many cases the EnKF
may achieved results that are almost as good as the Particle filter with much smaller
ensemble sizes/ It is on these grounds that the EnKF was chosen as the data assimilation
method to be used in this investigation.

Having outlined the data assimilation approach to be used in this investigation,
the following three chapters outline a set of experiments and associated results. The
first of these — Chapter 5 — shows that the EnKF can be applied to an Agent-
Based Model of pedestrian motion (albeit the Toy Model described in Section 3.1),
and can effectively improve the accuracy with which we simulate the trajectories of
pedestrians across a space. The second of these — Chapter 6 — takes this a step
further by applying the data assimilation method to a more realistic model of pedestrian
motion in StationSim GCS which is described in Chapter 3.2. In doing so, we expect
to demonstrate the effectiveness of the filter in handling a more realistic form of non-
linearity. Finally, Chapter 7 apples the filter to estimate not only the trajectories of the
pedestrians across the environment, but also to consider the scenario in which we have to
deal with unobserved pedestrian attributes; in particular, this will deal with unknown
pedestrian destinations, and look to estimate based on intermittent observations of
pedestrian locations.

86

Chapter 5

Data Assimilation for Location Estimation: Toy
Model

87

5.1 Experimental Design

In Chapter 4, the Ensemble Kalman Filter (EnKF) was outlined. The aim of this
chapter is to test the EnKF and show that the application of the EnKF can help to
improve the accuracy with which an ABM simulates a system. To achieve this, it
focuses on the implementation of the EnKF to the first of the models presented in
Chapter 3, referred to as the Toy Model. This model is a very simple Agent-Based
Model (ABM) which simulates the motion of pedestrians across a hypothetical train
station. Whilst the model is not a realistic reflection of any real-world scenarios is it,
instead, intended as a preliminary demonstration of the capabilities of the EnKF to
improve the simulation accuracy of an ABM.

Evaluation of simulation accuracy — a measure that will be defined in Section 5.1.1
— is achieved through the use of synthetic data generated from the Toy Model itself.
Whilst the EnKF maintains an ensemble of models, a separate instance of the model is
run in order to act as a representation of the real system, i.e. to act as a ground truth,
against which to compare. Data which are assimilated by the EnKF are generated
from snapshots of this ground truth instance of the model by adding noise; this seeks
to emulate the noise incorporated into observations by sensors.

The first of these focuses on outlining the experiments to be run with the EnKF1

and the Toy Model. In particular, this focuses on detailing how each experiment will
be set up, what parameters are provided and how each experiment is evaluated. The
second section focuses on the results of these experiments, drawing some conclusions
regarding the effectiveness of the EnKF under different parameter regimes and noting
the limitations of this set of experiments2.

5.1 Experimental Design

Under normal circumstances, an ABM seeks to simulate a scenario observed in the real-
world, and consequently is formed of components pertaining to the relevant aspects of
the real-world system; this can include the relative size and shape of the environment,
the position of any obstacles in said environment and the behaviours of the individu-

1Code for the implementation of the EnKF used in this thesis can be found in
Projects/ABM DA/stationsim/ensemble kalman filter.py in the archive of the dust repository

2The experiments run for this chapter can be found in the notebooks found in
Projects/ABM DA/stationsim/experiments/enkf experiments/results 1/noteooks/ in the archive
of the dust repository

88

https://zenodo.org/record/6469804
https://zenodo.org/record/6469804
https://zenodo.org/record/6469804

5.1 Experimental Design

als characterised in the model. Under such conditions, we are able to evaluate the
performance of the model by comparing the phenomena observed in the model to the
phenomena observed in the real-system.

This can be undertaken in a number of ways, considering metrics at an individual
level, a fully aggregate level or somewhere in-between. An individual-level metric might
involve measuring the distance between the location of individual agents in the model
and the location respective individual pedestrians in the ground truth system; a fully
aggregated metric might involve measuring the difference between the number of agents
in the system environment in the model and the number of pedestrians in the system; a
metric that lies between these two scales might involve comparing the density of agents
in the model environment with the density of pedestrians in the ground truth system.
In this case, however, the model is not based on a specific scenario in the real-world,
and so there are no observations against which to compare the outputs of the model.
A different approach, therefore, needs to be undertaken.

5.1.1 Developing a Model Baseline

The proposed solution to this problem is to consider an instance of the model as a
ground truth state against which model outputs can be compared. This is an approach
that has emerged in recent investigations that have focused on implementing data
assimilation schemes in conjunction with ABMs (Malleson et al., 2020; Clay et al.,
2020, 2021). Just as the EnKF steps each of the ensemble-member models forward
through time, the model representing the ground truth state of the system can be
stepped forward through time. This allows for the comparison of the mean state of the
models contained by the EnKF with the ground truth state at each step in model time
(as well as comparison of individual ensemble-member models with the ground truth
state if desired). Such comparison can be undertaken at both an individual-agent-level
or at greater levels of aggregation.

The first step in undertaking experiments to demonstrate the effectiveness of the
EnKF in improving the simulation accuracy of the Toy Model is to evaluate the per-
formance of the model without the EnKF. This provides us with a baseline against
which to compare the performance of the model with the EnKF. For this purpose, the
following accuracy metric is proposed: distance between agent positions in the model
and agent positions in the ground state, averaged over all agents. The distance between

89

5.1 Experimental Design

the ith agent in the model and the respective agent in the ground truth system is given
by di:

di = |x̂i − xi|, (5.1)

where x̂i is the x-y position of the ith agent estimated by the model and xi is the x-y
position of the ith agent in the ground state system. We can then calculate the average
distance, d̄ as

d̄ = 1
N

N∑
i=0

|x̂i − xi| = 1
N

N∑
i=0

di, (5.2)

where N is the total number of agents in the system. Given this metric, we can measure
the error present in the model at each time-step.

When employing Agent-Based Models to simulate social systems, it is common to
incorporate some computational stochasticity to emulate the variability of individual
social behaviours. As such, two different instances of a model are unlikely to replicate
exactly the same results (unless the simulations have the same random seed). In this
model, stochasticity is incorporated through a number of sources:

• Pedestrian choice of entrance gate;

• Pedestrian choice of exit gate;

• Pedestrian target speeds;

• Pedestrian collisions.

A pedestrian’s entrance gate is drawn at random from a uniform distribution containing
all of the entrance gates and its exit gate is drawn from at random from a uniform
distribution containing all of the exit gates. A pedestrian’s target speed is chosen at
random from a range of speeds between the minimum speed and maximum speeds,
with the maximum being drawn from a normal distribution. Finally, when pedestrians
interact, the try to avoid each other by making a random choice of whether to go to
the left or the right of the agent or obstacle obstructing them; each of the options has
an equal probability of occurring.

Given the stochasticity often involved in ABMs, individual model runs typically
diverge from what we observe in the true system (as outlined in Chapter 2). When
modelling a system using an ABM, it is, therefore, common to run a number of copies
of the model, i.e. an ensemble, and to then take the average of the ensemble as the

90

5.1 Experimental Design

Parameter Value

Population size 100
Number of entrances 3
Number of exits 2
Environment height 100
Environment width 200

Table 5.1: Table of model parameters used for estimating the baseline level of error.

output model state. This Monte Carlo-like approach allows us to gain a general idea
about the behaviour of the model. With this in mind, the process of developing baseline
against which to compare will be as follows:

1. Run a single instance of the toy model with parameters outlined in Table 5.1 —
this will represent the ground truth state;

2. Run an ensemble of instances of the toy model, each with the same model para-
meters outlined in Table 5.1, with each instance being initialised with the same
starting conditions including agent-level parameters;

3. Calculate the average model state over the ensemble for each time-step;

4. Calculate the distance between agents in the average model state and the ground
truth state for each time-step based on Equation 5.1;

5. Calculate the average distance per agent for each time-step based on Equation 5.2;

6. Plot the variation of average distance over time.

5.1.2 Initial Implementation of the Ensemble Kalman Filter

Having outlined the procedure by which to establish a baseline regarding model per-
formance in the absence of data assimilation in the previous section, this section seeks
to outline the process by which we first confirm that the addition of the EnKF results
in an improvement in model performance. This is achieved by running the EnKF in
conjunction with the Toy Model for a single set of model and filter parameters (outlined
in Tables 5.2 and 5.3 respectively). The results of this can then be compared against

91

5.1 Experimental Design

a baseline (as outlined in Section 5.1.1) with the same set of model parameters from
Table 5.2. A comparison of the results involves comparing how the model error (i.e. the
average distance between the model agent positions and pseudo-truth agent positions)
evolves over model time in each of the two cases. This allows us to evaluate whether
the inclusion of the data assimilation scheme has a positive impact with regards to the
accuracy with which the model simulates the system.

Errors are calculated for both the baseline and the EnKF at model time-steps at
which data are assimilated by the filter; in the case of the filter, the posterior model
state is used, i.e. the agent positions estimated by the model after having incorporated
the observational data. The errors calculated with the prior model state can also be
compared against the posterior model state at each data assimilation time-step to show
the impact of assimilating data in each case.

There is an expectation that at the beginning of the model time (i.e. t = 0), both
the baseline and the filter will have approximately no error; this is because in both
cases, the models are exact copies of the ground truth model. Consequently, at t = 0,
all agents are at the same entrance gates in the ground truth model, the baseline model
and the filter model. A similar scenario should be encountered when the model has
finished running. The model finishes running under the condition that all agents have
reached their pre-allocated destinations; when this occurs, all agents will once again
be at the same exit gates in the ground truth model, the baseline model and the filter
model.

The expectation is, therefore, that there will be some differences between the three
models in how the agents traverse the station concourse from their respective entrances
to the their respective exits. The baseline model will receive no updates with regards to
the ground truth between starting and finishing. The filter model, on the other hand,
will receive information on a periodic basis with the period provided in Table 5.3.
This information will be provided in the form of observations of individual agent x-y
locations for each individual agent. An observation of the ith agent’s location, yi, is
produced by adding unbiased normally distributed random noise to the location of the
agent taken from the ground-truth model:

yi = xi + N(0, σ2) (5.3)

92

5.1 Experimental Design

Parameter Value

Population size 100
Number of entrances 3
Number of exits 2
Environment height 100
Environment width 200

Table 5.2: Table of model parameters.

Parameter Value

Ensemble size 20
Assimilation period 20
Observation error standard deviation 1.0

Table 5.3: Table of filter parameters.

5.1.3 Exploring the Impact of Filter Parameters

Having established that the inclusion of the EnKF in the modelling process improves
the accuracy with which the model simulates the system in Section 5.1.2, this section
seeks to explore the extent to which different filter parameters impact the performance
of the filter. The filter parameters to be considered are:

• Ensemble size: the number of model copies maintained by the EnKF.

• Observational uncertainty: the standard deviation of the random noise used to
produce the observations from the ground-truth.

• Assimilation period: The number of model time-steps between each consecutive
incorporation of data into the model by the EnKF.

When considering the scale of the observation uncertainty used here, it is compar-
able to the scale of the side-steps taken by the agents to avoid other pedestrians; in
both cases, the deviations introduced are drawn from unbiased normal distributions
with standard deviation of 1.0. When comparing this to the scale of the environment
in Table 5.2, we can see that the majority of the deviations introduced by both the

93

5.1 Experimental Design

side-stepping mechanism and by the observation noise are on the order of magnitude
of 1% of the environment height.

In order to explore this parameter space, the model will be run in conjunction with
the filter for a range of values for each parameter outline in Table 5.4. This table
details the range of values used for the ensemble size, assimilation period and standard
deviation of the observation error used in the filter. The values used for the ensemble
size and assimilation period (i.e. [2, 5, 10, 20, 50]) have been chosen to allow us to explore
how the efficacy of the filter is impacted by the scale of these parameters. The values
for the standard deviation of the observation error, on the other hand, vary linearly in
steps of 0.5 from 0.5 to 2.5 (inclusive) to allow us to explore how the efficacy of the
filter is impacted by linear changes in the standard deviation.

Given the parameter values outlined in this table, there are 125 combinations. For
each combination, the system is run 10 times to produce a reliable average value. Each
of the 10 instances of the filter being run with a specific parameter combination are
independent, and as such do not share the same ground truths; this aims to ensure that
the results that are produced are not specific to a single ground truth, but are instead
generalisable. Exploring the parameter space in this manner allows for results to be
viewed in two manners:

1. Exploring the variation of error with a single filter parameter whilst holding the
other two filter parameters constant. In the case of exploring the impact of the
variation of ensemble size, this would involve exploring the variation of error with
ensemble size for constant values of observational uncertainty and assimilation
period. The output of this analysis is a series of box plots for each value of
ensemble size showing the distribution of error over the filter instances. This
is similar to an approach undertaken by Malleson et al. (2020) who explore the
impact of assimilation period.

2. Exploring the variation of error with two filter parameters whilst hold one fil-
ter parameter constant. This would allow for the exploration of the trade-off
between two parameters. In the case of exploring the impact of the variation
of ensemble size and observational uncertainty, this would involve exploring the
variation of error with ensemble size and observational uncertainty for a constant
value of assimilation period. The output of this analysis is a heatmap in which
the x-y location would indicate the combination of ensemble size and observa-

94

5.2 Results

Parameter Value

Ensemble size [2, 5, 10, 20, 50]
Assimilation period [2, 5, 10, 20, 50]
Observation error standard deviation [0.5, 1.0, 1.5, 2.0, 2.5]

Table 5.4: Table of filter parameter ranges

tional uncertainty, and the colour would indicate the error averaged over all filter
instances for that parameter combination. This is also similar to an approach un-
dertaken by Malleson et al. (2020) who explored the trade-off between the number
of particles used in a Particle Filter and the model population size.

5.2 Results

This section aims to outline the results arising from the experiments outlined above.
These experiments consist of developing a baseline against which to compare subsequent
results, showing that an initial implementation of the Ensemble Kalman Filter is effect-
ive in improving the accuracy with which the model simulates the system and exploring
the impact of different model and filter parameters on filter efficacy.

5.2.1 Developing a Model Baseline

This section seeks to outline the results of the process of establishing a model baseline
as described in Section 5.1.1. This is achieved by setting up a single instance of the toy
model which acts as a ground truth against which to compare. An ensemble of copies
of the ground truth model are then created. The production of the ensemble involves
copying all facets of the model and its agents. Consequently, each of the agents in
the ensemble-member models has the same entrance gate, exit gate and speeds as the
corresponding agents in the ground truth model.

The output of the ensemble of models consists of the average position of each agent
in the system taken over the ensemble. In this case, the ensemble consists of 100
models. The result of this process is a time-series of the average error per agent, where
agent error is taken as the distance between the agent position given by the average of

95

5.2 Results

the ensemble and the position of the agent in the ground truth system (as defined in
Section 5.1.1). This time-series is shown in Figure 5.2.

When considering this figure, there are a number of points to consider. At the outset
of the model (i.e at t = 0), the average error per agent is 0. This is a consequence of
each of the ensemble member models being a copy of the ground state model — at
t = 0, the location of each agent in each of the ensemble member models is the same
as it is in the ground truth model.

This is somewhat mirrored by a very low average error per agent at the end of the
model. This is, again, a consequence of each of the ensemble member models being
a copy of the ground truth model — each agent is assigned the same exit gate (and
consequently the same destination location) in the ensemble member models as they are
in the ground truth model. The error at the end of the model run is not, however, 0 as
it is at the outset of the model. This is a result of the way in which agent deactivations
are handled in the model — agents are not deactivated when they reach the exact
location of their exit gate but instead are deactivated when they are within a certain
radius of this target destination.

0 10 20 30 40 50
population_size

0

20

40

60

80

co
llis

io
ns

Figure 5.1: Variation in number of inter-agent collisions with population size.

Between these two points in time, there is an increase in the average error per agent.
At the beginning of the modelling process, each of the agent reside at their respective

96

5.2 Results

0 1000 2000 3000 4000
time

0.0

0.5

1.0

1.5

2.0

fo
re

ca
st

(a) Ensemble size = 10

0 500 1000 1500 2000 2500 3000 3500 4000
time

0.0

0.5

1.0

1.5

2.0

2.5

fo
re

ca
st

(b) Ensemble size = 20

0 500 1000 1500 2000 2500 3000 3500 4000
time

0.0

0.5

1.0

1.5

2.0

fo
re

ca
st

(c) Ensemble size = 50

0 1000 2000 3000 4000
time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

fo
re

ca
st

(d) Ensemble size = 100

Figure 5.2: Toy model benchmarking — variation in average error per agent with model
time.

entrance gates, and as model time steps forward, agents begin to enter the system
through their gates. Given that each of the ensemble member models are copies of the
ground truth model, and that the motion of the agents in this model is largely linear, we
might expect that the average error per agent would remain low over the course of the
model run. This is not, however, the case. This is a result of inter-agent interactions,
i.e. collisions between agent. Such collisions occur when an agent proceeds towards its
target destination and are obstructed by another agent in-front of them. When such a
situation arises, the moving agent attempts to side-step to avoid a collision; this side-
step is modelled as a random process, introducing stochasticity into the model. When
these random side-steps occur, models diverge from each other and from the ground
truth model, and consequently the average error per agent increases. The number of
collisions that occur in a model run are a function of the size of the population running
through the model environment. Figure 5.1 shows that as the number of pedestrian

97

5.2 Results

agents in the model increases, the number of collisions that occur over the course of
the model run increases.

As model time is stepped forward, more agent enter the system, and therefore there
are more collisions. Over the course of the model run, there is some variability in the
model error which is reflected in the oscillations in the error shown in Figure 5.2. These
oscillations reflect sudden increases and decreases in the error. Each increase pertains
to a side-step which introduces an error relative to the ground truth, with decreases
reflecting the agents returning to their original path towards their destination. In
Figures 5.2a, 5.2b, 5.2c and 5.2d, we see how the evolution of average error per agent
varies with the ensemble size, i.e. the number of models in the ensemble. In comparing
these figures, we see that whilst there is some are some differences in how the error
evolves, much of the behaviour remains unchanged by the changes in ensemble size: the
initial error is still 0, the final error is still a low non-zero value and the is an increase
in average error per agent in-between with a lot of variability.

It should be noted that each of the subfigures in Figure 5.2 pertain to experiments
which make use of their own respective ground truth, i.e. each of the experiments
in the subfigures has a different ground truth. As a result, whilst the overarching
error trajectories from the start until the end are similar, we find that there are some
differences. Furthermore, given the non-zero size of the side-steps taken by the agents,
the errors have a lower-bound as the experiments proceed; consequently, we find that
an increase in the ensemble size results in little improvement in the error.

Figure 5.3 is provided to illustrate the nature of the side-step behaviour. In this
figure, we plot the trajectories of 3 agents traversing the environment (in a simulation of
100 agents). The figure shows the difference between an agent that is able to traverse the
environment from its entrance to its exit without interacting with other agents (Agent
1) and agents that have interacted with other agents during their journey across the
environment (Agents 0 and 2). In the latter case, we observed the agents side-stepping
perpendicular to their direction of travel.

5.2.2 Initial Implementation of the Ensemble Kalman Filter

This sections seeks to outline the results of the initial implementation of the EnKF.
Having established a baseline level of performance for the model in simulating the
synthetic system, we can now compare this against the performance of the model in

98

5.2 Results

0 50 100 150 200 250 300 350 400
x location

0

25

50

75

100

125

150

175

200
y

lo
ca

tio
n

Agent 0
Agent 1
Agent 2

Figure 5.3: Trajectories of agents passing traversing the environment. Contains a
sample of 3 agents from a simulation containing 100 agents. Points indicating starting
location for each agent.

combination with the filter. This is approached with a single set of model and filter
parameters (Tables 5.2 and 5.3). Given that the previous results section shows that
the baseline performance of the model does not, to a large extent, depend on the size
of the ensemble, the same number of models is used in baseline ensemble as in the filter
ensemble.

The results for this experiment are summarised in Figures 5.4. In Figure 5.4, we
are able to compare the variation in observation error, forecast error, analysis error and
the error in the benchmark over model time. In this figure, it can be observed that the
average observation error remains approximately constant over all model time. This is
reflective of the standard deviation of the normally distributed random noise that was
added to the ground truth in order to produce the observations. Beyond this, it can
also be seen that the in each of the model errors (forecast, analysis and benchmark),
the error starts at 0 and is has a very small non-zero value at the end of the model run.
This arises for the same reasons outlined in Section 5.2.1 — at the beginning of the
model run, all models in both the filter ensemble and benchmark ensemble are copies
of the ground truth model, and given that each agent is assigned the same exit gate in

99

5.2 Results

0 1000 2000 3000 4000
time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

er
ro

r

variable
forecast
obs
analysis
vanilla

Figure 5.4: Comparison of how model errors vary over time. vanilla reflects the
error in the mean state of the benchmarking ensemble. obs reflects the error in the
observations used at each assimilation time-step. forecast reflects the error in the
mean of state of the filter ensemble before data assimilation. analysis reflects the
error in the mean state of the filter ensemble after data assimilation.

each of the models, they each arrive at the same target destination at the end of the
model.

We can see that some of the detail found in Figure 5.2 is lost in Figure 5.4. This
results from the data being sampled at different frequencies. In the benchmarking
experiment, the figure shows data for each model time-step. In this experiment, the
figure shows data only at the assimilation time-steps.

As model time progresses, the forecast error, analysis error and benchmark error
each grow. Given that the average error per agent is calculated by dividing by the total
population size, this growth is due, in part, to the increasing number of agents that are
active and that are therefore contributing to the average error (agents that are not yet
active contribute near-zero error). The growth in error is also a consequence of more
agents entering the system, agents interacting with each other and causing agents in the
ensemble member models to choose different paths to their counterparts in the ground
truth model. This growth in error is much larger in the baseline than in the forecast
or analysis. At each assimilation time-step, observation data is assimilated into the

100

5.2 Results

models contained within the filter, correcting divergences from the ground truth model
state. In spite of the introduction of observation data, the ensemble member models
still have a tendency to diverge from the ground truth state; this is reflected by the
growths in forecast error, with the forecast error consistently exceeding the analysis
error. In each case, however, the periodic introduction of observation data improves
the accuracy of the ensemble of models in the filter.

5.2.3 Exploring the Impact of Filter Parameters

Whilst the previous experiment focussed on the comparison of forecast error, obser-
vation error and analysis error with a baseline error, this experiment seeks to focus
exclusively on the analysis error of the filter, and how it is impacted by variations in
different filter parameters. The filter parameters of interest in this case are the en-
semble size, the assimilation period and the standard deviation of the error attached
to the observations. This is achieved through two approaches: a univariate approach
in which we consider how the analysis error varies in response to changes in each of
the parameters individually, and a bivariate approach in which we consider how the
analysis error varies in response to changes in pairs of parameters.

The first of these — the univariate approach — is undertaken by considering the
results in Figures 5.5, 5.6 and 5.7. Each of these figures comprise of two subfigures.
In each of the two subfigures, the data plotted reflect are the analysis errors from
all of the 125 parameter combinations (each run 10 times), but focus on highlighting
how the analysis error changes in response to one of the three filter parameters being
explore. In Figure 5.5, the subfigures show the analysis errors vary with respect to
variations in the ensemble size, and as such contain data from all of the realisations for
the different combinations segmented by ensemble size. Similarly Figures 5.6 and 5.7
show how the analysis errors vary with respect to variations in the assimilation period
and observation noise standard deviation respectively. The first subfigure in each case
is a collection of box plots which summarise the analysis error for all time-steps in
each of the realisations. As an example, consider Figure 5.5a — the first of these
box plots shows the variation in analysis error for all time steps in all realisations for
each parameter combination which has an ensemble size of 2. The second subfigure in
each case is a collection of line plots which summarise how the analysis error analysis
error varies over time for all of the realisations. As a similar example, if we consider

101

5.2 Results

Figure 5.5b, the line labelled 2 shows how the analysis error varies over time for all of
the realisations in which the ensemble size was 2. The shaded area around each of the
lines represents the 95% confidence interval.

2 5 10 20 50
ensemble_size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

an
al

ys
is

(a) Box-plot of how analysis error varies with ensemble
size.

0 500 1000 1500 2000
time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

an
al

ys
is

ensemble_size
2
5
10
20
50

(b) Line-plot of how analysis error varies with ensemble
size.

Figure 5.5: Plots of how analysis error varies with ensemble size.

In Figure 5.5, we see two plots pertaining to the variation of analysis error in re-
sponse to changes in the ensemble size of the filter. In this case, the assimilation period
has been fixed to 20, the population size has been fixed to 20 and the observation error
standard deviation has been fixed to 1.0. The ensemble size has been varied between 2
and 50 as per the values outlined in Table 5.4. The box-plot in Figure 5.5a shows how

102

5.2 Results

the analysis error varies with the ensemble size, with each box-plot pertaining to an
ensemble size capturing all data-points for the specific set of parameters (ensemble size,
assimilation period and observation error standard deviation). This shows that as the
ensemble size of the filter increases, the analysis errors decrease, whilst also becoming
less varied.

In order to ascertain whether the differences between the distribution of errors for
different ensemble sizes are significant some statistical testing is employed. First of all,
the collection of analysis errors for each of the ensemble sizes is tested for normality
using a Shapiro-Wilk test. For each of the ensemble sizes, the p-values are sufficiently
small that we can reject the null hypothesis of normality at the 5% confidence level,
concluding that there is sufficient evidence to suggest that the analysis errors are not
normally distributed in each case. This leads us to perform a Kruskal-Wallis test,
which indicates whether there is a significant difference in the median values of each of
the analysis error distributions. The p-value for this test is once again sufficiently low
that we may reject the null hypothesis that the median value of all distributions is the
same, indicating that there is a significant difference between the median values of the
analysis error distributions.

These differences are reflected in the line-plot in Figure 5.5b, which shows how
the analysis error varies over time for each of the ensemble sizes; the figure shows a
large difference between the analysis errors observed for an ensemble size of 2 and the
analysis errors observed for other ensemble sizes.

Similarly in Figure 5.6, we see plots pertaining to the variation of analysis error in
response to changes in the assimilation period. For these runs, the ensemble size has
been fixes to 20, the population has been fixed to 20 and the observation error standard
deviation has been fixed to 1.0. The assimilation period has been varied between 2 and
50 as per the values outlined in Table 5.4. The box-plot in Figure 5.6a shows how
the analysis error varies with assimilation period, with each box-plot pertaining to an
assimilation period capturing all of the data-points for the specific set of parameters.
This shows that as the assimilation period of the filter increases, the analysis errors
increase.

Again, in order to ascertain whether the differences between the distributions of
analysis errors for difference assimilation periods are different, some statistical testing
is employed. The analysis errors for each of the assimilation periods are tested for nor-

103

5.2 Results

2 5 10 20 50
assimilation_period

0.0

0.1

0.2

0.3

0.4

0.5

0.6

an
al

ys
is

(a) Box-plot of how analysis error varies with assimilation
period.

0 500 1000 1500 2000 2500
time

0.0

0.1

0.2

0.3

0.4

0.5

an
al

ys
is

assimilation_period
2
5
10
20
50

(b) Line-plot of how analysis error varies with assimila-
tion period.

Figure 5.6: Plots of how analysis error varies with assimilation period.

mality using the Shapiro-Wilk test. As with the tests run for different ensemble sizes,
the p-values returned by the tests on each of the assimilation periods are sufficiently
small that we are able to reject the null hypothesis of normality a 5% confidence level,
indicating that each of the distributions are non-normal. This leads us to perform a
Kruskal-Wallis test to explore whether there is a significant difference in the median
values of the analysis error distributions for the different assimilation periods. The
p-value for this test is once again sufficiently low that we may reject the null hypo-
thesis that the median value of all distributions is the same, indicating that there is a

104

5.2 Results

significant difference between the median values of the analysis error distributions.
These differences are reflected in the line-plot in Figure 5.6b, which shows how

the analysis error varies over time for each of the assimilation periods. The trend
observed above regarding the increase in analysis error is a direct consequence of the
increasing assimilation period — as the assimilation increases, the frequency with which
observations are integrated into the filter is reduced, allowing the models within the
filter to diverge from the ground truth state to a greater extent.

0.5 1.0 1.5 2.0 2.5
std

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

an
al

ys
is

(a) Box-plot of how analysis error varies with observation
error standard deviation.

0 500 1000 1500 2000 2500
time

0.0

0.2

0.4

0.6

0.8

1.0

an
al

ys
is

std
0.5
1.0
1.5
2.0
2.5

(b) Line-plot of how analysis error varies with observation
error standard deviation.

Figure 5.7: Plots of how analysis error varies with observation error standard deviation.

In Figure 5.7, we see plots pertaining to the variation of analysis error in response

105

5.2 Results

to changes in the standard deviation of the observational error. For these runs, each of
the ensemble size, assimilation period and population size have been fixed to 20, and
the standard deviation of the observation error has been varied linearly between 0.5 and
2.5 as per the values outlined in Table 5.4. The box-plots in Figure 5.7a show how the
analysis error varies with standard deviation, with each box-plot pertaining to standard
deviation and capturing all of the data-points for the specific set of parameters. This
shows that as the standard deviation of the observation error increases, the analysis
error increases.

Once again, we perform statistical tests to ascertain whether the differences between
the analysis error distributions for each standard deviation are significant. This begins
with testing each of the distributions for normality — in each case the p-values returned
by the Shapiro-Wilk test are sufficiently low that we may reject the null hypothesis of
normality at a 5% confidence level. We subsequently perform a Kruskal-Wallis test and
find that the p-value is sufficiently low that we can deduce that there is a significant
difference between the median values of the analysis error distributions.

These differences are reflected in the line-plot in Figure 5.7b, which shows how the
analysis error varies over time for each of the standard deviations. The trend of in-
creasing analysis error with increasing observation error standard deviation is partly
a consequence of the increasing standard deviation and partly of the way in which
the EnKF works. An increased standard deviation in the observation error indicates
a higher level of uncertainty in the observation, and consequently the noise added to
the ground truth state may be larger, pulling the agents in the model states towards
incorrect locations when observational data is introduced. Simultaneously, the EnKF
accounts for the increase in uncertainty in observation data by reducing the gain, mean-
ing that the observation data has less influence on the posterior model state; this may,
however, mean that posterior model state does not see a marked improvement over the
forecast.

Whilst the above analysis has focused on how the variation of a single filter para-
meter influences the distribution of analysis error, the following analysis with focus
on how the analysis error varies in response to changes in two parameters simultan-
eously. In order to achieve this, a certain level of data reduction is required: instead of
considering the distribution of all of the analysis errors for different parameter values,
we shall instead consider the mean analysis error for each combination of parameters,

106

5.2 Results

i.e. for each combination of ensemble size, assimilation period and observation error
standard deviation. This information is then encapsulated in the contour maps seen
in Figures 5.8, 5.9 and 5.10. These figures denote average analysis error by colour.
Contour lines on these plots indicate lines of equal analysis error. This allows us to
explore how trade-offs between two parameters may influence the performance of the
EnKF.

2 5 10 20 50
ensemble_size

0.5

1.0

1.5

2.0

2.5

st
d

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

0.80

Figure 5.8: Contour map of variation in analysis error with ensemble size and observa-
tion error standard deviation.

Considering Figure 5.8, the contour maps shows the variation of average analysis
error with filter ensemble size and observation error standard deviation. As has been
observed in the univariate analysis above, an increase in ensemble size results in a
reduction in the analysis error, i.e. as we move from left to right in the contour map,
we move from regions of high analysis error to areas of low analysis error. Similarly, we
can observe that an increase in the standard deviation of observation errors results in
an increase in the analysis error, i.e. as we move bottom to top in the contour map, we
move from regions of low analysis error to regions of high analysis error. This indicates
that the best scenario would be when we are able to run a filter with a large ensemble
size and low uncertainty observations, whilst the worst scenario would be running a
filter with a small ensemble size and high uncertainty observations. Beyond this, we
may use the contours to draw equivalences between different combinations of ensemble

107

5.2 Results

size and standard deviation, e.g. we might expect to observe a similar level of analysis
error between filter runs which use an ensemble size of 10 and a standard deviation of
0.5 and filter runs which use an ensemble size of 50 and a standard deviation of 1.0.
This, perhaps, emphasises the importance of high-quality observations.

2 5 10 20 50
ensemble_size

2

5

10

20

50

as
sim

ila
tio

n_
pe

rio
d

0.00

0.16

0.32

0.48

0.64

0.80

0.96

Figure 5.9: Contour map of variation in analysis error with ensemble size and assimil-
ation period.

Considering Figure 5.9, the contour map shows the variation of average analysis
error with filter ensemble size and filter assimilation period. Once again, we observe
an reduction in analysis error with increasing ensemble size and an increase in analysis
error with increasing assimilation period. This suggests that the best scenario would
be when we can run a filter with a large ensemble size and receive observations with a
high frequency, i.e a low assimilation period. Using the contours to draw equivalences
between different combinations of ensemble size and assimilation period, we can see that
running a filter with an ensemble size of just over 5 with very frequency observations (i.e.
an assimilation period of 2) may return similar analysis errors to a filter with a larger
ensemble size of 20 in conjunction with less frequent observations at an assimilation
period of 20.

Finally, we may consider Figure 5.10 which shows the variation of average analysis
error with filter assimilation period and observation error standard deviation. Here
we observe an increase in analysis error with increasing assimilation period and an

108

5.3 Concluding Remarks

2 5 10 20 50
assimilation_period

0.5

1.0

1.5

2.0

2.5

st
d

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Figure 5.10: Contour map of variation in analysis error with assimilation period and
observation error standard deviation.

increase in analysis error with observation error standard deviation. When provided
control over these two parameters, the best scenario would be to assimilate low un-
certainty observations on a frequent basis, i.e. a low assimilation period with a low
observation error standard deviation, whilst the worst scenario would be to assimilate
high uncertainty observations with low frequency. In the latter scenario, the ensemble
member models would go long spans of time without any updates from observational
data and so would be liable to diverge progressively more from the ground truth state.
When considering this trade-off, we may consider that infrequently assimilating obser-
vations with a standard deviation of 1.0 at an assimilation period of 50 may return
similar analysis errors to a case where slightly higher uncertainty observations with a
standard deviation of 1.5 are assimilated much more frequently with an assimilation
period of 10.

5.3 Concluding Remarks

This chapter has focused on the application of the EnKF to the Toy Model described
in Section 3.1 to demonstrate that such an application can be effective in improving
the accuracy with which an ABM can simulate a system. This has involved a series of

109

5.3 Concluding Remarks

experiments being run.
The first of these experiments sought to establish a baseline level of accuracy with

which an ensemble of models can simulate the pedestrian system without any data
being assimilated to update the models. This experiment found that at both the outset
of a simulation run and at the end, the average error per agent across the ensemble
of models was very low; this was a result of the fact that each of the models in the
ensemble was a copy of the model which represented the ground truth. Consequently,
each of the agents in the ensemble of models had the same origin and destination as their
corresponding agent in the ground truth model. Between these two times, there was a
growth in error as agents enter the system, interacting with each other. Furthermore,
it was found that this patten was not greatly impacted by the ensemble size.

The next of the experiments demonstrated the initial implementation of the EnKF
in conjunction with the Toy Model. This showed that the introduction of the EnKF
successfully improved the accuracy with which the ensemble of models could simulate
the system. Both the forecast and analysis errors observed in this experiment were an
improvement on the benchmarking ensemble error, as well as the observation error.

The final experiment in chapter focused on the impact of different filter parameters
on filter performance; in particular, it focused on the impact of filter ensemble size,
the number of time-steps between consecutive observations being assimilated into the
ensemble, i.e. the assimilation period, and the standard deviation of the noise attached
to the observations. This was split into an analysis of how each of the parameters
contribute to filter error in isolation, and an analysis of the trade-off between pairs of
parameters. In the first part, it was found that:

• As ensemble size increases, average analysis error decreases;

• As assimilation period increases, average analysis error increases;

• As standard deviation of observation noise increases, analysis error increases.

In the second part, it was found that the decline in filter performance associated with
increasing assimilation period and standard deviation of observation noise could be
offset by increases in the size of the filter ensemble. An advantage of the way in
which this analysis was undertaken is that the repeated realisations pertaining to each
combination of filter parameters were independent and as such it was ensured that the
results were not specific to an individual realisation but instead were more general.

110

5.3 Concluding Remarks

Having established that the Ensemble Kalman Filter can be applied to an Agent-
Based Model of pedestrian motion in this chapter, the next chapters seeks to expand
upon this by applying the filter to the StationSim GCS model — a model which is
founded on observations of pedestrians crossing the main concourse at Grand Central
Station in New York.

111

Chapter 6

Data Assimilation for Location Estimation:
StationSim GCS

112

In the previous chapter, preliminary results were shown which indicated that the En-
semble Kalman Filter (EnKF) could be implemented in conjunction with an Agent-
Based Model of pedestrian motion, and was effective in improving the accuracy with
which the model simulated a system. The data assimilation scheme was tested for a
range of different filter parameter values, and it was found that improvements in filter
performance resulted from increases in the ensemble size, reductions in the standard
deviation of the observation error and reductions in the number of time-steps between
successive attempts to assimilate observational data into the system.

Whilst the data assimilation scheme was shown to be effective in improving the
accuracy with which the model simulated the system, it should be noted that the
model itself was limited in a number of ways:

• Linear Movement: The manner in which agents moved through the system
was largely linear; we would typically expect to observe some pedestrians making
deviations in their trajectories.

• Agent Interactions: Agents moved along trajectories which were, more often
than not, almost parallel to other agents, limiting the types of pedestrian in-
teractions that might occur; we would expect to observe pedestrians interacting
through parallel, anti-parallel and perpendicular motion.

• Separation of Entrances and Exits: When considering the model used in the
previous chapter, it should be noted that each of the gates on the left-hand side of
the environment were used exclusively as entrances by the pedestrian agents, and
the gates on right-hand side of the environment were used exclusively as exits;
such a discrete segregation of function may occur in some scenarios, but is not
representative of all pedestrian systems, with many pedestrian systems including
co-located entrance/exit points.

• Interactions with Environmental Obstacles: The model used in the previous
chapter did not contain any form of obstacles for the agents to interact with;
whilst not an integral part of an Agent-Based Model of pedestrian motion, it
is not unusual to observe stationary obstacles in urban environments in which
pedestrians gather.

This is not representative of the majority of pedestrians systems that we would like to
model. This chapter, therefore, seeks to apply the EnKF to a more realistic Agent-

113

6.1 Experimental Design

Based Model of pedestrian motion. The EnKF is applied to the StationSim GCS model
which seeks to model the motion of pedestrian in the concourse of Grand Central Station
in New York (this model is documented in Chapter 3). The aim of this chapter is to
show that the implementation of the Ensemble Kalman Filter to a more realistic model
of pedestrian motion can still be effective in improving the accuracy with which the
model simulates the system. This is achieved through a series of experiment outlined
in Section 6.1. As in the previous chapter, this starts with a benchmarking experiment
which establishes the baseline level of error to be expected when using an ensemble
of StationSim GCS models alone to simulate the system. This is then followed by
experiments which seek to show that, just as with the Toy Model in Chapter 5, the
EnKF is effective in improving the accuracy with which we can simulate a pedestrian
system — in this case, the motion of pedestrians around the concourse at Grand Central
Station in New York. This is achieved by running multiple instances of the EnKF in
conjunction with the Grand Central Station Model multiple times for the same set of
model and filter parameters, and observing how the error across the ensemble of filters
varies over time in comparison to the corresponding benchmarking models.

6.1 Experimental Design

In this section, the experiments run using StationSim GCS in conjunction with the
EnKF are outlined1. These experiments are visually outlined in Figure 6.1.

The initial experiment seeks to establish a benchmark against which to compare
subsequent implementations of the EnKF. This is achieved by running an ensemble
of models, each initialised as duplicates of a base model which is used to generate
pseudo-truth values for the system state. This is shown in Figure 6.1a.

The second experiment seeks to explore how the accuracy with which individual
models within an ensemble Kalman Filter varies across the ensemble. This is achieved
by running a single EnKF which maintains a benchmarking ensemble of models which
provides a baseline against which to compare results, along with and ensemble of models
which are periodically updated by the EnKF assimilation process. These member
models are updated using synthetic observation data generated from the pseudo-truth

1The experiments run for this chapter can be found in the notebooks found in
Projects/ABM DA/experiments/enkf experiments/results 2/notebooks/ in the dust repository
archive

114

https://zenodo.org/record/6469804
https://zenodo.org/record/6469804

6.1 Experimental Design

states from the base model. In such a situation, we are able to compare the average
error per agent in each of the ensemble member models at each assimilation time-step.
This is shown in Figure 6.1b.

The final experiment in this chapter looks to take this exploration a step further,
seeking to capture the variation in error at an ensemble level. This involves running a
collection of EnKF for the same set of model and filter parameters, and in each case
gathering data regarding the variation in the error in the ensemble mean state over
time, comparing this with the variation in the corresponding collection of benchmark
errors. This is shown in Figure 6.1c.

Base Model
Benchmarking Model

1Benchmarking Model
1Benchmarking Model

1

(a) Experiment 1: Benchmarking

Base Model

Benchmarking Model
1Benchmarking Model

1Benchmarking Model
1

Ensemble-member
Model 1Ensemble-member

Model 1Ensemble-member
Model 1

(b) Experiment 2: Exploring Ensemble-
Member Models

Base Model

Benchmarking Model
1Benchmarking Model

1Benchmarking Model
1

Ensemble-member
Model 1Ensemble-member

Model 1Ensemble-member
Model 1

Run 3
Base Model

Benchmarking Model
1Benchmarking Model

1Benchmarking Model
1

Ensemble-member
Model 1Ensemble-member

Model 1Ensemble-member
Model 1

Run 2
Base Model

Benchmarking Model
1Benchmarking Model

1Benchmarking Model
1

Ensemble-member
Model 1Ensemble-member

Model 1Ensemble-member
Model 1

Run 1

(c) Experiment 3: Implementing the En-
semble Kalman Filter

Figure 6.1: Graphical outline of experiments.

In these figures, we see that each filter has a base model associated with it which
is used to represent the ground truth of the system in question (as alluded to in the
previous Chapter). From a computational perspective, each of these filters can be

115

6.1 Experimental Design

thought as “containing” the respective base model1. In practicality, the ground truth
of a system is not known and therefore a filter would be expected to function without a
base model. The purpose of the base model for these experiments is simply to provide
a state against which to compare the performance of filters.

6.1.1 Developing a Model Baseline

The initial experiment to be performed is to develop a model baseline, establishing the
effectiveness of StationSim GCS in modelling a system in the absence of any information
whilst running. This is approached in a similar fashion to that outlined for the Toy
Model in Section 5.1.1.

In order to evaluate the performance of a model, we once again consider the distance
between the position of an agent estimated by the benchmarking ensemble of models
and the position of the corresponding agent in the base model, di:

di =

|x̂i − xi| if ith agent is active;

0 otherwise,
(6.1)

where x̂i is the x-y position of the ith agent estimated by the benchmarking ensemble
of models and xi is the x-y position of the ith agent in the ground state system, i.e.
the base model. This expression for the distance between an agent’s position in the
base model state and in the filter ensemble mean state is conditioned on whether the
agent is active or not — in the case of inactive agents, the distance is assigned as 0.
As noted in Chapter 3, an agent is deemed to be active from the time that it enters
the environment until the time that it exits the environment, and is otherwise inactive;
this is to say that an agent is inactive until the time that it leaves its entrance gate and
after it has reached its exit gate.

An agent can be deemed to be active based on one of two sets of information:

1. Information regarding whether it is active in the base model, i.e. in the pseudo-
ground truth.

2. Information regarding whether it is active in the estimating ensemble.
1Given that the filter has been coded in an object-oriented manner to produce an

EnsembleKalmanFilter class, the base model to which a filter pertains is considered a class attrib-
ute. This can be observed in Projects/ABM DA/stationsim/ensemble kalman filter.py.

116

6.1 Experimental Design

For the purpose of this set of investigations, whether or not an agent is active will be
gauged based on information from the estimating ensemble. The justification for this
choice is that in scenarios in which we did not have access to the ground truth, we
would not have access to a base model. It is, therefore, more reasonable to based our
assessment of an agent’s status on information that would be available in the form of
the ensemble of models. In this investigation, an agent is considered active if its most
common (i.e. modal) status across the ensemble is active.

As an example, consider an ensemble of 5 models, with each model containing 1
agent. Recall from Chapter 3 that an agent status of 0 represents an agent that has not
yet been activated, an agent status of 1 represents an agent that is active in the system,
and an agent status of 2 represents an agent that has completed its journey across the
environment and has been deactivated. If we were to have the following vector of agent
statuses, s, across the ensemble of models:

s = [0, 1, 0, 1, 1] ,

we would see that the agent was yet to be activated in 2
5 of the ensemble member

models, and was active in 3
5 of the ensemble member models. We would, therefore,

conclude that most common status was 1, and that the agent was active. If, however,
we were to have the following vector of agent statuses:

s = [2, 2, 1, 2, 2] ,

we would see that the agent has completed its journey and been deactivated in 4
5 of the

ensemble member models, and was still active in 1
5 of the ensemble member models.

We would, therefore, conclude that the most common status was 2, and that the agent
was not active.

When considering active agents, we can define the calculation of distance as:

di =
√

(x̂i − xi)2 + (ŷi − yi)2, (6.2)

where x̂i is the x-position of the ith agent estimated by the model, ŷi is the y-position
of the ith agent estimated by the model, xi is the x-position of the ith agent in the
base model and xi is the x-position of the ith agent in the base model.

We can, therefore, calculate the distance, di, for each agent. To gain an idea of the
error across the whole system, we calculate the average distance over all active agents

117

6.1 Experimental Design

in the system, d̄:

d̄ = 1
N

N∑
i=1

di, (6.3)

where N is the number of active agents. This average distance, d̄, can then be used to
measure the error in an ensemble of models given the ensemble mean state for a given
time-step and the base model state at the same time-step.

Given this measure of error, we can, therefore, explore how the accuracy with which
the StationSim GCS model varies over time using the following steps:

1. Create an instance of the model to be considered the base model which provides
pseudo-truth states of the pedestrian system.

2. Create an ensemble of 100 models, each of which is a copy of the base model; this
means that each of the duplicates in the ensemble contain the same information
regarding which exits each of the agents will enter and exit through, as well as
at what time they will be activated within the model. These models, however,
are liable to diverge from the base model due to the collisions that occur between
pedestrian agents.

3. Iterate each of the base model and the ensemble of models forward for each
time-step. At each time-step, calculate average model state for each agent in the
system population, and calculate the average error per agent between this average
model state and the pseudo-truth state generated from the base model for this
time-step.

In following these steps, we create a base model which is used to generate a ground truth
and an ensemble of models from which we can obtain the average behaviour behaviour
by averaging across the ensemble. The accuracy with which this average behaviour
simulates the ground truth generated by the base model is assessed by considering
the error between the base model and the average of the ensemble. This is applied
to ensembles with increasing population sizes (as per Table 6.1) to explore how this
behaviour varies with population size.

Having followed these steps to collect data regarding how the error of an ensemble
of models varies over time without any observations being assimilated, we can then
plot this as a time-series. We expect that, whilst the initial error in the benchmarking
ensemble will be low by virtue of the ensemble-member models being copies of the

118

6.1 Experimental Design

Parameter Value

Population size [10, 20, 50, 100]
Ensemble size 100
Number of entrances 11
Number of exits 11
Environment height 700
Environment width 740

Table 6.1: Table of model parameters used for estimating the baseline level of error.

base model, this error will grow rapidly as agents enter the environment. As a growing
number of agents are present in the system, the chance of inter-agent interactions
occurring increases, and as such so does the chance that the ensemble mean state diverge
from the base model state. With no observations being assimilated into the ensemble
of models, these divergences go uncorrected. Consequently, we expect to observe an
increase in the benchmarking error. As the ensemble of models near completion, i.e.
a state where all of the agents in the ensemble member models have finished their
journeys and are deactivated, we expect to see the average error per agent to fall,
nearing 0. As with the expectation that the initial average error per agent is low, this
would be a consequence of each of the ensemble member models being a copy of the
base model, and therefore each of the agents in these member models having the same
target destination as the corresponding agent in the base model.

6.1.2 Exploring Ensemble Member Models

After having established a benchmark for the accuracy with which the StationSim GCS

model can simulate the trajectories of pedestrians moving around the concourse of
Grand Central Station in New York, the next experiment aims to explore the variation
amongst the models within the ensemble of an EnKF whilst observations are being
assimilated into the ensemble. In order to achieve this, distances are calculated not
between the ensemble mean state and the base model state, but between each of the
ensemble member model states and the base model state. If we consider dij to represent
the distance error of the jth model’s state for the ith agent compared to the ith agent

119

6.1 Experimental Design

in the base model, this can be calculated as follows:

dij =

|x̂ij − xi| if ith agent is active;

0 otherwise,
(6.4)

where x̂ij is the x-y position of the ith agent in the jth model and xi is the x-y position
of the ith agent in the ground state system, i.e. the base model; whether or not an
agent is active is dictated by the modal agent activity across the ensemble of models.
Given this expression, we can calculate the mean error per agent for each ensemble
member model, d̄j , at a given time-step:

d̄j = 1
N

N∑
i=1

dij , (6.5)

where N is the number of active agents based on the modal agent activities across the
ensemble.

Based on this, we can construct a vector containing all of the mean errors per agent
for each of the ensemble member models:

d̄ =
[
d̄1, . . . , d̄M

]
(6.6)

=
[
d̄j

]
, ∀j ∈ (1, M), (6.7)

where M is the ensemble size. A vector of average errors per agent for each ensemble
member models can then be calculated for each time-step.

Based on this error calculation process, we can explore the variation of error across
the ensemble using the following steps:

1. Create an EnKF with a population size of 20 pedestrians, containing a base
model and an ensemble of 20 duplicates (given that marginal improvements in
performance of increasing from 20 to 50 ensemble-member models in the previous
chapter was not substantial, and to reduce computational cost) of the base model.
The base model provides pseudo-truth states of the pedestrian system. As with
the ensemble of models in the benchmarking experiment, the ensemble in this
case inherits information regarding which gates each of the agents enter and exit
through, and at what time they are activated.

2. Iterate each of the base model and ensemble of models forward for each time-step.
If the time-step is an assimilation time-step, i.e. a time-step in which synthetic

120

6.1 Experimental Design

data are produced from the base model, the ensemble of models are updated using
the update procedure outlined in Chatper 4. Assimilation time-steps occur with a
fixed period of 20 time-steps between data assimilation updates — between data
assimilation updates, filter time-steps consist only of using the model to predict
the system state at the next time-step. At each assimilation time-step, errors are
calculated between the following pairs:

• The base model state and each of the ensemble member models after updat-
ing with observations.

• The base model state and the mean state of the ensemble of models after
updating with observations.

• The base model state and the mean state of the benchmarking ensemble (i.e.
the baseline error).

Having collected data regarding how each of these three types of error vary over
time, we can then plot the as time-series and compare them. It is expected that over the
course of the ensemble run, the error in the ensemble mean state, the benchmarking
ensemble mean state and each of the ensemble member models will be low at the
beginning and end of the ensemble run, with increases in error in-between; in each
case, agents in ensemble member models will enter the system and exit the system at
the same locations as in the base model as each of the ensemble member models are
copies of the base model, and error grow in-between as larger proportions of the agent
population enter the system, interacting with each and causing their respective models
states to diverge from the base model.

Whist it is expected that each of these errors will follow this pattern, it is expec-
ted that the growth in error between ensemble start and finish will be greater in the
benchmarking ensemble mean state than in the filter ensemble mean state. This is
because, whilst each of the member models of each of the ensembles are copies of the
base model and so have their agents starting and finishing at the same locations, the
benchmarking ensemble models will not benefit from the assimilation of observations,
and consequently when the locations of agents in these models diverge from those in the
base model, they will continue uncorrected whilst the corresponding agents in the filter
ensemble models will be perturbed by the observations derived from the base model.

It is expected that whilst the error time-series for each of the ensemble member

121

6.1 Experimental Design

models will follow a similar pattern to the benchmarking ensemble mean and the filter
ensemble mean, there will be some variation across the models, with some models
incurring consistently larger errors than the filter ensemble mean and others incurring
smaller errors than the filter ensemble mean. We expect, however, that the error for
the filter ensemble mean will always lie within the range of the errors for the ensemble
member models.

6.1.3 Implementing the Ensemble Kalman Filter

The experiments described in the previous section will show that, as expected, the error
in the ensemble mean state accurately reflects the variation in error over time, and that
it does not differ greatly from the error in each of the ensemble member models. On
this basis, this experiment focusses on comparing the variation in the ensemble mean
state error over time with the error in the benchmarking ensemble as well as with
the error in the observations of the pedestrians’ locations on the station concourse;
this considers both the ensemble mean state before and after assimilating observations,
i.e. the forecast error and the analysis error. The experiment will make use of the
parameters outlined in Table 6.2.

Once again, we calculate errors as the distance between the ‘estimated’ agent loca-
tion and the agent’s location in the pseudo-truth base model:

di =

|x̂i − xi| if ith agent is active;

0 otherwise,
(6.8)

where x̂i is the estimated x-y position of the ith agent and xi is the x-y position of the
ith agent in the base model. Note that in this case, an ‘estimate’ of an agent’s location
can be either the location given by the forecast ensemble mean state, the analysis
ensemble mean state, the location given by the benchmark ensemble mean state or the
observed location — in each case the distance is calculated in the same manner. As
previously, this distance depends on whether an agent is active — in the case of agents
for which the modal activity is active across the filter ensemble, the distance is given
by the expression in Equation 6.2, otherwise the distance is given as 0.

Consequently, an average error in each of the four state estimates across all pedes-
trians can also be calculated in the same manner:

d̄ = 1
N

N∑
i=1

di, (6.9)

122

6.1 Experimental Design

Parameter Value

Population size 20
Ensemble size 100
Assimilation period 20
Observation noise standard deviation 1.0

Table 6.2: Table of filter parameters used for the EnKF.

where N is the number of active pedestrians in the system (with active agents again
being defined as those for which the modal activity is active across the ensemble).

Based on this error calculation process, we can explore the variation of error across
the ensemble using the following steps:

1. Create an EnKF containing a base model and an ensemble of 20 duplicates of
the base model. The base model provides pseudo-truth states of the pedestrian
system. As with the ensemble of models in the benchmarking experiment, the
ensemble in this case inherits information regarding which gates each of the agents
enter and exit through, and at what time they are activated.

2. Iterate each of the base model and ensemble of models forward for each time-step.
If the time-step is an assimilation time-step, i.e. a time-step in which synthetic
data are produced from the base model, the ensemble of models are updated using
the update procedure outlined in Chatper 4. Assimilation time-steps occur with a
fixed period of 20 time-steps between data assimilation updates — between data
assimilation updates, filter time-steps consist only of using the model to predict
the system state at the next time-step. At each assimilation time-step, errors are
calculated between the following pairs:

• The base model state and the ensemble mean state before updating with
observations (i.e. the prior error).

• The base model state and the ensemble mean state after updating with
observations (i.e. the posterior error).

• The base model state and the observations provided to the ensemble for
updating (i.e. the observation error).

123

6.1 Experimental Design

• The base model state and the mean state of the benchmarking ensemble (i.e.
the baseline error).

This process is repeated 20 times for the same model and filter parameter values.
Having collected the aforementioned information over the course of the ensemble run, we
can then plot them as time-series and compare how they evolve. Given the repetitions
of the experiment process, the information can be summarised in the time-series plot
using the median error at each assimilation time-step (across the repetitions) along
with confidence intervals.

As previously, we wish to explore the variations in errors in two manners: how
each type of error varies over time and how the different types of error compare with
each other. Having run the previous experiment (and the benchmarking experiment),
we expect that error in the benchmarking ensemble will evolve as observed previously.
The filter ensemble mean error per agent considered in the previous experiment pertains
to the analysis error considered in this experiment, and as such, we expect that the
analysis error will evolve as observed in the previous experiment. Just as in the previous
experiment, the analysis error is expected to be lower than the benchmark error due
to the assimilation of data into the ensemble of models.

The forecast error in this experiment represents the filter ensemble mean error
per agent prior to the ensemble member model states being updated with synthetic
data from the pseudo ground truth base model state; consequently, it is expected to
evolve in a similar manner to the analysis error, although it expected to be higher; the
updating of ensemble member model states based on synthetic observations is expected
to be mostly corrective — i.e. it should reduce the average error per agent at each
assimilation time-step with respect to the base model state.

The average observation error per agent is expected to be close to constant over the
course of the filter run. This is to due the way in which observations are produced —
they are derived from the base model state by adding unbiased normally distributed
random noise with a constant standard deviation, and therefore the error should match
this standard deviation. However, due to the finite population over which these errors
are averaged, this error will experience some variations. Furthermore, as the filter nears
completion, the number of active members of the population will decrease, and as such
the number of agents over which the error is averaged will fall meaning that the average
observation error per agent may experience larger fluctuations.

124

6.2 Results

6.2 Results

6.2.1 Developing a Model Baseline

Having run the experiment outlined in Section 6.1.1, the results have been plotted in
Figure 6.2. This figure contains a series of subfigures showing the variation in error in
a benchmarking model for a series of different population sizes; Figure 6.2a shows the
evolution of average error per agent for a population of 10 agents, Figure 6.2b for 20
agents, Figure 6.2c for 50 agents and Figure 6.2d for 100 agents.

0 500 1000 1500 2000 2500 3000 3500
Time

0

10

20

30

40

M
ea

n
di

st
an

ce
 e

rro
r p

er
 a

ge
nt

(a) 10 agents

0 500 1000 1500 2000 2500 3000 3500 4000
Time

0

5

10

15

20

25

30

35

M
ea

n
di

st
an

ce
 e

rro
r p

er
 a

ge
nt

(b) 20 agents

0 500 1000 1500 2000 2500 3000 3500
Time

0

5

10

15

20

25

30

35

40

M
ea

n
di

st
an

ce
 e

rro
r p

er
 a

ge
nt

(c) 50 agents

0 1000 2000 3000 4000 5000
Time

0

5

10

15

20

25

30

35

40

M
ea

n
di

st
an

ce
 e

rro
r p

er
 a

ge
nt

(d) 100 agents

Figure 6.2: Variation in average error per agent with model time for different population
sizes.

Each of the time-series follows a similar trajectory, with the initial error per agent
being very low (near 0), but rising sharply as agents start to enter the environment
through their respective entrance gates. For each of the population sizes, this er-
ror peaks at approximately 40 within the first 500 time-steps before declining and
approaching 0 as the ensemble of benchmarking models approach completion. This

125

6.2 Results

common peak in error is likely a consequence of the activation rate parameter of the
model — this parameter controls the rate at which agents enter the environment. This
means that there is an upper limit to how many agents may attempt to enter the envir-
onment in any given time-step. In order to contextualise the scale of the average errors
seen for each population size, we should consider two sets of measurements against
which to compare. The first of these is the scale of the environment — the height and
width of the environment can be found in Table 6.1. In comparison to the scale of the
environment, the errors found in this chapter are much large than those found in the
previous chapter; in this chapter, the peak of the benchmark errors is approximately
40/700 ≈ 5.7% of the scale of the environment, whilst in previous chapter the peak of
the benchmark errors was approximately 1/100 ≈ 1%. When considering the scale of
the sidestepping motion in this model — 7 in comparison to 1 in the previous chapter
— we observe that the peak error has grown disproportionately. Within the model,
error is largely attributed to two factors — variations in the location along a gate at
which an agent enters and agent-agent interactions. At lower agent population sizes,
the latter is likely to contribute less towards the error with fewer interactions occurring
(as illustrated in Figure 6.3a). We may attribute the increased peak of the average
error to the introduction of a greater degree of uncertainty in origin and destination in
comparison to those in the previous chapter, and to the more diverse types of interac-
tions (including interactions between agents and environmental obstacles) which may
result in an increase in the level of the average error.

When considering the number of agent-agent collisions that occur based on the
population size in Figure 6.3a, we observe that the number of collisions increases as
the number of agents in the system increases. We may, therefore, expect that the error
contributed by inter-agent collisions would increase as the population size increases.
When calculating errors, however, we perform calculations on a per-agent basis. It is,
therefore, more useful to consider the average number of collisions per agent instead;
when we consider Figure 6.3b, we see that increases in population size lead to only
a small increase in the average number of collisions per agent as the population size
increases. This is, once again, likely a consequence of the activation rate which means
that only a certain number of pedestrians are present in the environment at any given
time. This means that, when consider the average error per agent, the error contribution
of agent-agent collisions does not increase much as the population size increases.

126

6.2 Results

20 40 60 80 100
Population size

0

200

400

600

800

1000

1200

Nu
m

be
r o

f c
ol

lis
io

ns

(a) Number of collisions.

20 40 60 80 100
Population size

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Av
er

ag
e

nu
m

be
r o

f c
ol

lis
io

ns
 p

er
 a

ge
nt

(b) Number of collisions normalised by population size.

Figure 6.3: Variation in number of collisions over course of filter run with population
size.

127

6.2 Results

Whilst the trajectories followed by each of these time-series may be similar, the
time at which each of the ensembles reaches completion changes. As the population size
increases, the time taken to reach completion also increases. This is also a consequence
of the constant activation rate which means that the rate at which pedestrians are
introduced into the environment is fixed.

0 100 200 300 400 500 600 700
x location

0

100

200

300

400

500

600

700

y
lo

ca
tio

n

Agent 0
Agent 1
Agent 2
Agent 3
Agent 4

Figure 6.4: Trajectories of agents passing traversing the environment. Contains a
sample of 5 agents from a simulation containing 100 agents. Points indicating starting
location for each agent.

Considering Figure 6.4, we can see the way in which agents engage in the side-
stepping behaviour in this new environment. As in the previous chapter, we see the
pedestrians engaging in the side-stepping behaviour to avoid other agents (e.g. the
trajectory of Agent 2). Comparing this to Figure 5.3 in the previous chapter, we find
the inclusion of a new behaviour: side-stepping to avoid the central information desk

128

6.2 Results

obstacle (see Agent 1). This results in a much larger deviation from the direct path
between an agent’s entrance and exit points.

Having established a benchmark for the average error per agent resulting from
running an ensemble of models without the assistance of data assimilation, the next
experiment goes on to explore how error varies within an ensemble of models when data
is assimilated, and compares this against a benchmarking ensemble of the same size.

6.2.2 Exploring Ensemble Member Models

Having run the experiment outlined in Section 6.1.2, the results have been plotted
in Figures 6.6 and 6.7. This experiment consists of running a filter consisting of an
ensemble of models and a benchmarking ensemble of models, allowing us to compare
the performance of the filter ensemble against the benchmarking ensemble, as well as
comparing the distribution of errors between the different filter ensemble models.

Prior to exploring the results displayed in each of these figures, we can discuss
the results of the benchmarking ensemble, and how this compares to the variation
in analysis error across the ensemble. As in the case of the results of the previous
experiment, it is seen in Figure 6.5 that the benchmarking error is large, particularly
when considered in comparison to the average error per agent calculated from the filter
ensemble mean state. Similarly to the previous experiment, the benchmarking error is
high at beginning of the experiment, declining over the course of the filter run. When
comparing the benchmarking error in this experiment to the benchmarking error in
the previous experiment, however, it can be seen that the benchmarking error in the
experiment oscillates much more as it declines towards 0 at the end of the filter run.
This is a result of the comparatively smaller ensemble size used for the benchmarking
ensemble in this experiment — in this experiment, an ensemble of 20 models was used
for the benchmarking ensemble whereas an ensemble of 100 models was used for the
benchmarking ensemble in the previous experiment. Furthermore, as in the previous
chapter, we may observe the impact of different frequencies with which data has been
sampled; in the previous experiment data is sampled at every time-step and as such
we have a relatively smooth line, whereas in this experiment the data are sampled at
every assimilation time-step and so we find noticeable jumps between sequential data
points. When comparing the average error in the benchmarking ensemble against the
average error in the filter ensemble mean state, the filter ensemble mean shows a much

129

6.2 Results

0 500 1000 1500 2000 2500 3000 3500
Time

0

10

20

30

40

50

60

Er
ro

r p
er

 a
ge

nt

Filter ensemble mean
Benchmark ensemble mean

Figure 6.5: Line plot of the average error per agent based on the mean state of the
benchmarking ensemble and the mean state of the filter ensemble.

130

6.2 Results

lower error; consequently, the benchmarking error will be omitted in subsequent figures
for this experiment.

0 500 1000 1500 2000 2500 3000 3500
Time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Er
ro

r p
er

 a
ge

nt

Model 0
Model 1
Model 2
Model 3
Model 4
Model 5
Model 6
Model 7
Model 8
Model 9
Model 10
Model 11
Model 12
Model 13
Model 14
Model 15
Model 16
Model 17
Model 18
Model 19
Ensemble mean

Figure 6.6: Line plot of average error per agent based on each ensemble member model.

After having explored the way in which the average error of the benchmarking
ensemble compares against the average error per agent in the filter ensemble mean
state, we can explore how the average error per agent varies across the filter ensemble
member models and how this compares to the ensemble mean state; this is shown in
Figures 6.6 and 6.7.

In Figure 6.6, the average error per agent is plotted for each individual ensemble
member model as well the average error per agent for the ensemble mean state (plotted
in bold black). In this figure, we can see that the variations in error in the individual
models largely mirror those seen in the ensemble mean state error. The error in the
ensemble mean state, however, appears to typically be lower than the errors in the
majority of the individual models. This is further supported by Figure 6.7 which also
compares the error in the ensemble mean state against the error in the individual

131

6.2 Results

0 500 1000 1500 2000 2500 3000 3500
Time

0.2

0.4

0.6

0.8

1.0

Er
ro

r p
er

 a
ge

nt

Ensemble models
Ensemble mean

Figure 6.7: Line plot of average error per agent based on each ensemble member model,
with confidence intervals.

132

6.2 Results

models; in this case, the individual models are summarised as the mean of the model
errors and the 95% confidence interval around it. Whilst we may have expected that
these two sets of errors would match each other, this is not the case, with the error in
the ensemble mean state consistently being lower than the mean error of the ensemble
member models.

In order to explain why this is the case, we may consider an example scenario
outlined in Figure 6.8. In this simple example, we consider a scenario in which we have
a single agent being modelled by an ensemble of 3 models. The ground truth location
of the agent (which would be provided by the base model) is given to be (25, 25). Each
of the ensemble member models have their own respective estimations of the agent’s
location:

• Location in model A: (24, 26)

• Location in model B: (23, 25)

• Location in model C: (24, 24)

From these estimates of the agent location, we can calculate the mean estimate of the
ensemble: (232

3 , 25). When comparing the mean estimate of the ensemble and the
ground truth, we can calculate the error in the ensemble mean:√

(x − x̂)2 + (y − ŷ)2 = 11
3 .

In a similar manner, we can calculate the error in the estimates from each of the
ensemble member models:

A =
√

(x − x̂)2 + (y − ŷ)2 =
√

2

B =
√

(x − x̂)2 + (y − ŷ)2 = 2

C =
√

(x − x̂)2 + (y − ŷ)2 =
√

2

Based on these individual errors, we can calculate the mean of the errors in the estimates
from ensemble member models, µ:

µ = A + B + C

3

=
√

2 + 2
√

2)
3

= 2
3(

√
2 + 1)

133

6.2 Results

When comparing the error in the ensemble mean state and the mean of the ensemble
member model errors, we can see that error in the ensemble mean state is lower than
the mean of the errors in the ensemble member model estimates of the agent’s location
(just as in Figure 6.7).

23.00 23.25 23.50 23.75 24.00 24.25 24.50 24.75 25.00
x

24.00

24.25

24.50

24.75

25.00

25.25

25.50

25.75

26.00

y

label
Ensemble member
Ensemble mean
Ground truth

Figure 6.8: Working example — calculating error based on the ensemble mean vs.
based on taking the mean of the individual member models.

6.2.3 Implementing the Ensemble Kalman Filter

Having established a model baseline level of error and undertaken some exploration of
the variation in error across the ensemble-member models within an EnKF, this section
seeks to implement the EnKF and explore some of the challenges associated with this
task. Before tackling these challenges, some attention is paid to the what is happening
to the individual agents, and their representations across the ensemble. In Figure 6.9,
we see the ensemble-member model representations of two individual agents (agent A
and agent B); this figure provides us with both the prior and posterior distributions
of the locations for each agent. The prior distributions for agents A and B are shown
by sections A and C respectively, and the posterior distributions are shown by sections
B and D respectively. When comparing the prior and posterior for both agents, we
see that the introduction of observations through data assimilation has resulted in the

134

6.2 Results

reduction in the spread of the ensemble-member model representations of the agents,
i.e. the uncertainty in the model estimate of the positions has been reduced. This
pattern is observed across the other agents in the system.

C

B

D

A

Figure 6.9: Comparison of prior and posterior positions of two agents (A and B). Section
A: the ensemble-member model representations of the prior position of agent A in blue.
Section B: the ensemble-member model representations of the posterior position of
agent B in pink. Section C: the ensemble-member model representations of the prior
position of agent B in blue. Section D: the ensemble-member model representations of
the posterior position of agent B in blue.

Having established the ability of the EnKF to reduced the uncertainty in our es-
timates of pedestrians’ positions in the environment, we see to tackle a number of
challenges.

135

6.2 Results

Managing Outliers

When running a large number of filters with the same filter and model parameters, there
is some variation in the results; this variation pertains to both the way in which the
average error per agent varies over time, and how long a filter takes to reach completion.

2000 3000 4000 5000 6000 7000 8000 9000 10000
Model finish time

0

5

10

15

20

25

Co
un

t

Figure 6.10: Histogram of filter finish times.

When visualising results for these collections of filter runs in aggregate form, care
must be taken — filters which take longer to reach completion are often those that
exhibit higher levels of average error per agent and consequently we may observe that,
towards latter time-steps, the aggregated picture of average error per agent shows the
error rising as a result of the filters in which the error is low are reaching completion,
and consequently no longer contributing to the aggregated results. This leaves us with
a scenario in which average error per agent appears to be rising as time proceeds. This
can be seen when considering Figures 6.10 and 6.11. Figure 6.10 shows a histogram of
the finishing times of the filters in this experiment; this shows that whilst the majority
of the filters reach completion within the first 4500 time-steps, some take longer, with
some not completing until approximately 10000 time-steps. This is corroborated by
Figure 6.11 which shows an empirical cumulative distribution function plot of the filter
finish times. This highlights that 90% of the filters reach completion within 6000 time-
steps.

136

6.2 Results

2000 3000 4000 5000 6000 7000 8000 9000 10000
Model finish time

0.0

0.2

0.4

0.6

0.8

1.0
Pr

op
or

tio
n

of
 m

od
el

s
90%

Figure 6.11: Empirical cumulative distribution function (eCDF) plot of filter finish
times; dotted line represents a cumulative level of 90%.

In this experiment, this issue is handled by only considering time-steps in which
more than 10% of the filters are still running. The impact of this measure is observable
when comparing the top row and bottom row of Figure 6.12. The top row shows the
average analysis error per agent when considering data from all time-steps. The bottom
row shows the average analysis error agent when considering only data from time-steps
in which more than 10% of the filters are still running.

When considering Figure 6.13, we can see the impact of the minority of filters which
have much larger average error per agent; Figure 6.13 shows a boxplot of the average
analysis error per agent for all time-steps in the truncated version of the data outlined
above. This figure also contains a dashed line representing the mean of the data. This
figures shows that the majority of the data points lie below 1.5. The mean value,
however, lies around 2.0 — values in this range and above are considered outliers in the
figure given their position beyond the whiskers of the boxplot. This suggests that the
mean may not be an appropriate summary statistic to plot given that is is influenced
by outliers. An alternative summary statistic may be the median.

The difference between the use of the mean and median as an estimator for the
truncated data may be observed when considering the bottom row Figure 6.12. This

137

6.2 Results

0

50

100

150

200

Av
er

ag
e

er
ro

r p
er

 a
ge

nt

Mean - No Threshold
Mean

Median - No Threshold
Median

0 2000 4000 6000 8000
Time

0

50

100

150

200

Av
er

ag
e

er
ro

r p
er

 a
ge

nt

Mean - Threshold
Mean

0 2000 4000 6000 8000
Time

Median - Threshold
Median

Figure 6.12: Comparison of impact of measures for handling outliers; the left-hand
column uses a mean estimator for the line whilst the right-hand column uses a median
estimator; the top row contains data for all run times whilst the bottom row restricts
the data to run times for which greater than 10% of the filters are still running.

138

6.2 Results

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Av

er
ag

e
er

ro
r p

er
 a

ge
nt

Mean

Figure 6.13: Box plot of average analysis errors for all filters for all time-steps in the
truncated data; dotted line represents the mean of the data

highlights the extent to which the mean estimator is skewed by poorly performing
filters, particularly as many of the better-performing filers reach completion.

The conclusion here is that it is appropriate to truncate our results as outlined
above, and to use the median as a summary statistic instead of the mean. The result
of applying these changes can be seen in Figure 6.14.

Filter Performance

Having established the issues that may arise when handling outputs from this exper-
iment, we may implement the changes to the analysis process outline in the previous
section, and explore the results. When exploring these results regarding the average
error per agent, there are three comparisons to be drawn: a comparison between the
benchmarking ensembles and the analysis of the filter ensembles, a comparison between
the forecast of the filter ensembles and the analysis of the filter ensembles, and a com-
parison of the observations and the analysis of the filter ensembles. This section goes
on to explore each of these comparison. In each case, the comparison is aided by the
use of three figures: a line plot of the average error per agent over time where the line
represents the median of the collection of filters at each time-step and the shaded area

139

6.2 Results

0 1000 2000 3000 4000
Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

er
ro

r p
er

 a
ge

nt

Figure 6.14: Line plot of average analysis error per agent for 100 filters; solid line
represents the median of active filters at each time-step and shaded region represents
the 95% confidence interval around this median.

140

6.2 Results

represents the 95% confidence interval around the line, a boxplot showing the distribu-
tion of these errors when aggregated over time, and a boxplot showing the log of these
values to highlight the differences in scale.

0 1000 2000 3000 4000
Time

0

50

100

150

200

250

300

Av
er

ag
e

er
ro

r p
er

 a
ge

nt

variable
analysis
baseline

(a) Line plot of average error per agent over time.

analysis baseline
Estimate

0

100

200

300

400

Av
er

ag
e

er
ro

r p
er

 a
ge

nt

(b) Box plot of average error per agent.

analysis baseline
Estimate

6

4

2

0

2

4

6

lo
g(

Av
er

ag
e

er
ro

r p
er

 a
ge

nt
)

(c) Box plot of log of average error per
agent.

Figure 6.15: Comparison of average error per agent between analysis and benchmarking
filters

When considering Figure 6.15, we can see the comparison of the average error per
agent observed in the collection of benchmarking model ensembles and observed in the
analysis state of the filter model ensembles. Figure 6.15a displays the comparison over
time as a line plot; in this figure, we can see that the average error per agent in the filter
analysis states is much lower over the course of the time shown. This is similarly shown
in the boxplot seen in Figure 6.15b; gaining information from this boxplot, however, is
somewhat difficult as the whiskers and box in the case of both the analysis error and

141

6.2 Results

benchmarking error are dwarfed by the presence of outliers that lie beyond the upper
whiskers of each boxplot. This is indicative of the large range in the errors observed
in each case. In order to handle this issue, Figure 6.15c contains a similar boxplot,
but with the log of the average error per agent in each case. The majority of the data
pertaining to the analysis error lies below 0, indicating that the average error per agent
for the analysis is often below 1. In the case of the benchmarking data, however, the
majority of the data lie above 0, indicating that in most cases, the average error per
agent for the benchmarking ensembles is much higher.

0 1000 2000 3000 4000
Time

0

1

2

3

4

5

Av
er

ag
e

er
ro

r p
er

 a
ge

nt

variable
forecast
analysis

(a) Line plot of average error per agent over time.

forecast analysis
Estimate

0

100

200

300

400

Av
er

ag
e

er
ro

r p
er

 a
ge

nt

(b) Box plot of average error per agent.

forecast analysis
Estimate

6

4

2

0

2

4

6

lo
g(

Av
er

ag
e

er
ro

r p
er

 a
ge

nt
)

(c) Box plot of log of average error per
agent.

Figure 6.16: Comparison of average error per agent between analysis and forecast.

When considering Figure 6.16, we can see the comparison of the average error per
agent observed in the forecast and analysis states of the filter model ensembles, i.e.
the error before and after assimilating data at each time-step. Figure 6.16a shows the

142

6.2 Results

comparison of these two error over time as a line plot. In this figure we can see that
the error in the analysis state is typically an improvement on the error in the forecast
state, with the improvements being most noticeable at the beginning of the set of time-
steps and at the end of the time-steps. The difference at the beginning is due to the
reasoning outlined in Section 6.2.1 — the entrance of multiple agents at the beginning
of the filter run time and the entry of agents at points on the gates that do not match
the entry point of corresponding agents in the base model lead to an initial growth in
error. The error in the analysis state does not suffer from this growth as it is updated
by the provided observations. This improvement is not as marked as time proceeds past
1000. This is reflected in Figure 6.16c which shows a boxplot of the log of the analysis
and forecast errors aggregated over time. In each case we find that the majority of the
data lie below 0, once again indicating that the average error per agent in each case
often lies below 1.

When considering Figure 6.17, we can compare the variation of the average error per
agent of the collection of observations of the agents and the analysis states of the filter
model ensembles. The way in which the two vary over time can be seen in Figure 6.17a.
This figure shows that the average observation error per agent over the collection of
filters is largely constant over the set of time-steps. As we near the end of the filter runs,
there in increase in the variance of this error, with the confidence intervals broadening.
This is a consequence of filters reaching completion, and this the summary statistics
being drawn over a decreasing number of filters. A similar phenomenon is observed
when considering the line for the analysis error. In comparison to the observation error,
the analysis error is typically lower for the majority of the time-steps for which the filters
are running. This is not always the case, however, as highlighted in Figure 6.17b. This
figure contains a boxplot of the errors for each dataset, aggregating over time. In each
case, the errors appear to be low; however, the boxes and whiskers for each dataset are
dwarfed by a set a outliers pertaining to the analysis error. To make the comparison
of the two datasets clearer, they are plotted on a log scale in Figure 6.17c. This
figure shows that whilst the analysis error is typically lower than the analysis error,
the dataset pertaining to the analysis error contains a number of outliers. The data
pertaining to the observation error, on the other hand, contains relatively few outliers.
This is a consequence of how the observations are produced; given that observations
are produced by adding normally distributed random noise to the base model state in

143

6.2 Results

0 1000 2000 3000 4000
Time

0

1

2

3

4

5

Av
er

ag
e

er
ro

r p
er

 a
ge

nt

variable
obs
analysis

(a) Line plot of average error per agent over time.

obs analysis
Estimate

0

100

200

300

400

Av
er

ag
e

er
ro

r p
er

 a
ge

nt

(b) Box plot of average error per agent.

obs analysis
Estimate

6

4

2

0

2

4

6

lo
g(

Av
er

ag
e

er
ro

r p
er

 a
ge

nt
)

(c) Box plot of log of average error per
agent.

Figure 6.17: Comparison of average error per agent between analysis and observations.

144

6.3 Concluding Remarks

each case, we expect that the observation error should not vary very much.

6.3 Concluding Remarks

This chapter has focussed on the application of the EnKF to a more realistic agent-based
model — StationSim GCS. In applying the filter to this model, a series of experiments
were undertaken.

The first of these aimed to develop a benchmark for the performance of an ensemble
of models in the absence of any data assimilation, measuring performance by comparing
against a pseudo-ground-truth state drawn from a single instance of the model referred
to as the “base model”. This experiment found that in the absence of any data being
provided, the ensemble of models did not perform very well, quickly diverging from the
ground truth state. This phenomenon of divergence was seen to be largely independent
of the population size of the model. The extent of the divergence was seen to be
particularly bad when considering the early stages of a model run in which many
agents are entering the system simultaneously resulting in an increased number of
agent-agent interactions. This, partnered with the variation in entry locations along a
gate amongst ensemble member models for a given agent meant that the benchmarking
ensemble performed poorly from the outset of the model run. Furthermore, the number
of interactions occurring in the system was not seen to vary much when scaling for
population size.

The next experiment compared the performance of a similar benchmarking ensemble
(which received no data) with the performance of an EnKF which received observa-
tions on as periodic basis. As in the case of the previous experiment, this experiment
measured performance by considering the error between the ground truth base model
and each of the benchmarking ensemble and the analysis state of the filter ensemble.
This showed that the ensemble mean fared much better in simulating the state of the
base model than the mean of the benchmarking ensemble by virtue of receiving peri-
odic updates in the form of observations. The performance of the EnKF was further
explored by considering how error varied within the ensemble of models over time. It
was found that, whilst there was some variation between the ensemble-member models,
they typically followed a similar trajectory over time as the error in the ensemble mean.
The error in the ensemble mean was found to typically be lower than the mean of the
errors in the ensemble member models. In previous investigations, little work has been

145

6.3 Concluding Remarks

done regarding the extent to which the ensemble mean error is representative of what
is happening within the ensemble.

The final experiment was based on running a collection of experiments for a given
set of model and filter parameters, and aggregating the results. This allowed us to
explore the average behaviour of the filter. When running this experiment, we found
that there is some variation amongst the different filters in terms of the range of values
exhibited for average error per agent, and the times at which filters reach completion.
In some cases, these variations produced outliers, potentially distorting the analysis
process. This raised the issue of how to handle such variation. The following analysis
decisions were, therefore, made:

• When producing line plots to summarise the evolution of error over time, the
median of the errors across the filters at each time-step was used instead of the
mean;

• Data pertaining to time-steps in which fewer than 10% of the filters were running
were removed from the analysis.

The first of these decisions — the use of the median when considering errors over
multiple filter runs — is one that has been mirrored by recent investigations in the
literature (Malleson et al., 2020; Clay et al., 2020, 2021). The second decision, however,
is not one that has been touched upon explicitly in other investigations and, as shown
in this chapter, can have noticeable effects with regards to the outcome of experiments.

Based on these decisions, a comparison was drawn between the analysis error exhib-
ited by the collection of filters and the benchmarking error, the forecast error and the
observation error. As was the case in the previous experiment, the filter analysis states
were found to outperform their corresponding benchmarking ensembles in simulating
the states of their corresponding base models. This was also found to be the case when
comparing against the forecast errors and the observation errors.

Up until now, we have assumed that we have knowledge of the gates to which each
agent is heading and so have made each of the ensemble member models (as well as the
benchmarking ensemble member models) copies of the base model. When simulating
real-world systems, this is not realistic. In the next chapter, we shall remove this
assumption, exploring how the benchmarking ensemble and filter ensemble perform,
and proposing some solutions to the problems that arise from this scenario.

146

Chapter 7

Data Assimilation for Exit Estimation

147

7.1 Proposed Solutions

In the previous chapter, we explored the use of the Ensemble Kalman Filter (EnKF)
when applied to an Agent-Based Model of pedestrian motion around the concourse at
Grand Central Station in New York. This showed that the filter was effective in im-
proving the accuracy with which an ensemble of models could simulate the trajectories
of pedestrians moving across the environment. This set of experiments (as well as those
undertaken in Chapter 5) suffer from a key limitation: they make the assumption that
we know the final destination of each pedestrian at the outset of the modelling process.
In real-world applications, this assumption is not realistic — whilst we may know the
location at which a pedestrian enters the system, there are a number of other attributes
which we are likely not to know. Some of these unknown attributes, such as a pedes-
trian’s scalar speed, may be observed as the pedestrian crosses the environment; others,
such as the pedestrian’s final destination, may not be directly observed. A more real-
istic simulation of the scenario should, therefore, include two further elements beyond
those included in the previous chapter: a way of encoding some degree of uncertainty
in these unobserved parameters at the outset, and some mechanism by which we can
derive these unobserved attributes over the course of the filter run. With this in mind,
this chapter will focus on ways in which uncertainty in agents’ final destinations in the
environment are represented in the EnKF and mechanisms by which we can correctly
estimate agents’ final destinations within the EnKF as we assimilate observations of
the agents’ locations. This will be approached by first describing the proposed solu-
tions to each of these problems in Section 7.1; this will be followed by an outline of
the set of experiments to be employed with these solutions; finally, the results of these
experiments will be presented.

7.1 Proposed Solutions

As outlined above, this chapter focuses on two problems. The first of these is the
development of a method within the data assimilation framework to infer the value
of agent parameters that are neither known at the outset of a simulation run, nor
directly observed over the course of the run. Although such parameters are unknown
at the outset of a simulation run, the initialisation of models requires that a value be
assigned to them. The second problem is, therefore, one of developing a method for
the initial allocation of these parameters such that it reflects a lack of knowledge, and
exploring the ramifications of the decisions made in developing such a method. Whilst

148

7.1 Proposed Solutions

there may be a number of different latent variables pertaining to pedestrian agents, this
chapter will focus the inference of pedestrian destinations within the system. Beyond
the initial problem of inferring latent variables, this also presents us with the challenge
of estimating categorical variables — a problem to which data assimilation schemes are
not typically applied.

Consequently, this section focuses on outlining the proposed solutions to two issues:

• How do we encode uncertainty regarding the final destination of agents within
the EnKF?

• How do we correctly estimate the final destination of agents within the EnKF
given unknown values for this parameter at the outset of a simulation run, and
given periodically assimilated observations of the agents’ locations over the sim-
ulation time?

In the following subsections, we propose solutions to each of these problems. When
considering the problem of encoding uncertainty in agents’ final destination, we pro-
pose that different encodings are represented through different distributions across the
ensemble of models; this is expanded upon in Section 7.1.1. When considering the
problem of correctly estimating agents’ final destinations with the EnKF, an approach
known as state augmentation is used (Katzfuss et al., 2016), whereby the unknown
parameter values are included in the state vector pertaining to each model; this is
expanded upon in Section 7.1.2.

7.1.1 Destination Uncertainty

When considering an agent at the outset of a simulation run, we may assume that its
initial location, i.e. the gate through which it enters the environment, is known. There
is some uncertainty in an agent’s initial location, which is encoded in the way in which a
model allocates agents’ initial locations; upon initialisation, agents are allocated a gate
through which to enter the environment, and subsequently are allocated a starting
location along the gate, with location along the gate being drawn from a uniform
random distribution.

At the outset of a simulation run, we may not, however, assume quite as much
knowledge about an agent’s final destination. Upon initialisation, each agent in each
ensemble-member model is allocated a destination gate. Previously (in Chapters 5

149

7.1 Proposed Solutions

and 6), when initialising a simulation, we had allocated the correct target destination
to each agent in each model of the ensemble which represented perfect knowledge of the
final destination of each agent. In this Chapter, however, we relax this assumption with
a view to exploring the implications of different initial distributions for final destinations
for agents. We therefore need to make a decision regarding how we initially allocate
destinations to agents within the model; the way in which destinations are allocated
to agents will have implications regarding the uncertainty in our knowledge of the
destinations, which in turn will have implications regarding how the EnKF treats the
prior state when updating. This Section outlines three different distributions that may
be considered:

• Uniform across ensemble

• Random across ensemble

• Adjacent gates

These distributions are described below.

Uniform Across Ensemble

Under this regime, the agents across the ensemble pertaining to a specific pedestrian
are all allocated the same destination gate, i.e. the first agents in each of the models are
allocated the same destination gate. The destination gate allocated across the ensemble
to the agents representing a specific pedestrian is drawn from a uniform distribution
of the gates which excludes the gates on the side of the environment through the
pedestrian entered.

As an example, consider a pedestrian who entered the environment through gate
2 on the top side of the environment; the initial destination for the pedestrian would
then be drawn from a uniform random distribution across the gates on each of the
boundaries excluding the top boundary, i.e. gate 0 from the left boundary, gates 3-6 on
the right boundary and gates 7-10 on the bottom boundary. If gate 7 were drawn from
the distribution, this would be allocated to the agents in each of the ensemble-member
models pertaining to the pedestrian in question. This is expanded to entrance gates
from each side of the environment in Table 7.1.

Whilst such a distribution may correctly incorporate a complete lack of knowledge
regarding each agent’s target destination, we expect that it would suffer from a key

150

7.1 Proposed Solutions

shortcoming. Given that the allocation of destination gates to the agents pertaining
to a specific pedestrian is uniform, i.e. the value is the same across the ensemble. The
issues with this are both conceptual and functional. From a conceptual standpoint, such
a distribution of values across the ensemble would indicate that there is no uncertainty
in the destination gate — this is not an accurate representation of our knowledge
of an agent’s target destination, which is likely highly uncertain at the outset of a
simulation run. From a functional standpoint, this will impact how the EnKF updates
the target destination estimate in the state vector. As outlined in Chapter 4, the
ensemble updates values in the state vector based on the uncertainties in the ensemble
and the observations; given a scenario in which there was no uncertainty in a state
vector value, we would expect that the posterior state vector would not differ from the
prior state vector in any substantial manner, indicating that little weight was placed
on the observations being assimilated.

Entrance Side Possible Entrance Gates Possible Exit Sides Possible Exit Gates

L 0 R, T, B 1 - 10
T 1 - 2 L, R, B 0, 3 - 10
R 3 - 6 L, T, B 0 - 2, 7 - 10
B 7 - 10 L, T, R 0 - 6

Table 7.1: Table of possible entrance and exit gates given a specified entrance side. In
this table, L refers to the left side of the environment boundary, T to the top side, R
to the right side and B to the bottom side. All ranges are inclusive of both upper and
lower bounds.

Random Across Ensemble

If we once again assume a complete lack of knowledge regarding a pedestrian’s tar-
get destination, we may consider another way of allocating destination gates to agents
across the ensemble-member models. In this approach, we once again consider a ran-
dom uniform distribution of destination gates across the gates around the environ-
ment excluding the gates on the side through which a pedestrian enters (as detailed in
Table 7.1).

Let us consider, as an example, a scenario in which we are simulating a system

151

7.1 Proposed Solutions

containing 1 pedestrian with a EnKF with and ensemble size of 5, i.e. there are 5
ensemble-member models each containing 1 agent. When we initialise the simulation,
we may claim to have knowledge of the gate through which the pedestrian enters the
system, but not the gate through which they will exit the system. Let us imagine that,
in this case, the pedestrian enters the environment through gate 1 on the top side of
the environment. This would mean that the agent in each of the 5 ensemble-member
models would be created such that they would also enter through gate 1; at this stage,
however, they could be allocated any of the exit gates detailed in the second row of
Table 7.1. In order to allocate an exit gate to the agent representing the pedestrian
in each of the ensemble-member models, we would draw from the random uniform
distribution across the possible exit gates outlined in the table. This might result in
an vector of exit gates for the agent across the ensemble of

[0, 4, 7, 10, 3].

Such an approach would improve upon the Uniform Across Ensemble approach out-
lined above in both a conceptual and functional manner. From a conceptual standpoint,
this more accurately represents our initial knowledge regarding the pedestrian’s final
destination — as outlined in Chapter 3, our model assumes that pedestrians will not
exit through gates on the side of the environment through which they have entered,
but beyond this we have no prior knowledge regarding which of the remaining gates
a pedestrian will exit. From a functional standpoint, this encoding of uncertainty in
a pedestrian’s target destination would allow the EnKF to update the estimate of the
target destination over the course of the simulation. It is likely, however, that a larger
ensemble size than that provided in the example above would be beneficial in practical
applications as such a small ensemble size would not be able to adequately capture the
full range of different discrete values the target destination could take on.

Adjacent Gates

Above, we have considered scenarios in which we have no prior knowledge regarding an
agent’s target destination at the outset of the simulation. There may, however, be cases
in which we have some prior knowledge regarding a pedestrian’s target destination,
but this knowledge may not be as perfect as represented in Chapter 6, i.e. there is
some non-zero degree of uncertainty in our knowledge regarding the pedestrian’s target

152

7.1 Proposed Solutions

destination. We may gain such information through an analysis of trace data (such
as that used to inform the calibration of the Grand Central Station model), which
may result in some knowledge regarding the most likely gate for a pedestrian to exit
through given its entrance gate. In such a scenario, we can once again choose to draw
destination gates for agents from a distribution; in this case, however, we choose a
distribution other than the uniform distribution over all gates from boundaries other
than that through which the agent enters.

In this case, we choose to use a uniform distribution over the correct gate and a
number of adjacent gates symmetrically distributed around the correct gate; the filter
takes as a parameter the number of gates to consider in each direction in the uniform
distribution. The aim of this approach is to use this knowledge of the correct gate as
a proxy for some sort of knowledge regarding the most likely destination for an agent
(along with some uncertainty in this knowledge) which may be obtained through some
sort of empirical analysis. As an example, consider that the correct destination for
a pedestrian is gate 5. In this case, if we wish to consider 1 adjacent gate on each
side, agent destinations would be drawn from a uniform distribution over 4, 5 and 6.
Similarly, if we wish to consider 2 adjacent gates on each side, agent destinations would
be drawn from the uniform distribution over 3, 4, 5, 6 and 7.

Given that there are a finite number of gates, we must consider what happens when
the distribution from which the gates are drawn spans beyond the limits of range of
gates, i.e. what happens if the correct gate is gate 10 and we wish to draw from the
distribution of 2 adjacent gates on either side? In such a scenario, we would not be able
to allocate to gates 11 or 12 as the gates are numbered 0-10 and, therefore, gates 11
and 12 do not exist. To resolve this situation, we use modular arithmetic. Practically,
this involves defining the upper and lower bounds of a uniform distribution from which
we may drawn offsets to be applied to the correct exit gate. These bounds are defined
by the number of adjacent gates on either side that we would like to consider; if we
would like to consider 2 gates on either side then we would drawn an offset from the
uniform distribution:

U{−2, 2}.

For each agent representing the pedestrian, we would draw an offset from this distri-
bution. We would then add it to the correct gate, and then take the modulus with
respect to the total number of gates.

153

7.1 Proposed Solutions

Consider a case in which we have a system containing 1 pedestrian being simulated
by an EnKF with an ensemble size of 5, and with the number of gate to consider
on either side of the correct gate defined as 2. In this case, suppose that the correct
destination gate for the pedestrian is gate 10. Upon initialisation the agent representing
this pedestrian in each of the ensemble-member models is allocated a destination gate
as outlined in the procedure above. This would mean first defining the upper and lower
limits of the distribution of offsets:

U{−2, 2}.

Suppose that the offsets pertaining to the 5 agents across the ensemble were

[−1, 1, 2, 0, 0].

We would then add these offsets to the correct destination gate to obtain

[9, 11, 12, 10, 10].

Finally, we would take the modulus of each prospective destination gate with respect
to the total number of gates (i.e. 11), resulting in

[9, 0, 1, 10, 10],

which are the destination gates to be allocated to the agents across the ensemble rep-
resenting the pedestrian.

7.1.2 Destination Estimation

Having outlined ways of encoding the initial uncertainty in a pedestrian’s target destin-
ation in the previous section, this section aims to outline methods that can be applied
to the EnKF to update these estimates with the aim of accurately identifying the cor-
rect destination for each agent. One candidate to achieve this goal is the use of the
EnKF to update models’ states and their parameters simultaneously. The most com-
mon approach to this is known as state augmentation (Katzfuss et al., 2016). When
applying the EnKF with state augmentation, both the model state (i.e. the agent loca-
tions) and the model parameters (i.e. the agent destinations) are included in the state
vector to be updated by the data assimilation process. If we consider a scenario in
which we are using the EnKF to estimated the observed states, x, and the unobserved

154

7.1 Proposed Solutions

model attributes, θ, we must make some adjustments to matrices used in the filter;
this section will briefly outline the adjustments made, but a more detailed version can
be found in Zhang et al. (2017). A state vector pertaining to the ith model in the
ensemble might look like

Xi = [xi, θi]

where xi is the vector of observed states pertaining to the ith model and θi is the vector
of unobserved model attributes pertaining to the ith model. With such a model state
vector, we must then update our observation operator, H:

H = [Hx, 0]

where Hx is the observation operator used in previous experiments as described in
Chapter 4/

Based on this state augmentation approach, this section will now go on to outline
two ways in which an pedestrian’s target destination can be parameterised. The first
of these approaches is to simply include the number of the gate to which the pedestrian
is heading in the state vector, and have the Ensemble Kalman Filter update the gate
number. This shall be referred to as Gate Number Estimation. When undertaking this
approach, we note that gate numbers, whilst numeric, are in fact discrete categories
which presents some challenges as the Ensemble Kalman Filter is not typically applied
to such problems; we shall elaborate upon these challenges in the following section.
The second approach is to define the pedestrian’s target destination based on the angle
between the destination location on the environment boundary and the centre of the
environment. This shall be referred to as Destination Angle Estimation. This treats the
destination estimation problem as something closer to the continuous variable estima-
tion problems for which the EnKF is appropriate; we also encounter some challenges
with this approach which shall be outlined in the following sections.

Gate Number Estimation

This section outlines the first proposed approach to estimating pedestrians’ target des-
tinations. This involves adding an extra element to the state vector for each agent
which pertains to the number of the gate through the agent will exit. In the previous
chapter, when considering the state vector for a model containing N agents, we would

155

7.1 Proposed Solutions

expect it to have the following form:

[x1, y1, x2, y2, . . . , xN , yN] ,

where xi refers to the ith agent’s x-location and yi refers to the ith agent’s y-location.
In this case, however, we are including an additional entry for pertaining to the gate
number for each agent. In this case, we would expect the state vector to have the
following form:

[x1, y1, g1, . . . , xN , yN , gN] , (7.1)

where xi refers to the ith agent’s x-location, yi refers to the ith agent’s y-location, and
gi refers to the ith agent’s gate number. For this investigation, however, the choice was
made to formulate augmented state vectors in the following manner:

[x1, . . . , xN , y1, . . . , yN , g1, . . . , gN] . (7.2)

This choice was made so as to increase the ease with which an appropriate observation
operator could be constructed in an automated manner. If we consider an EnKF with
ensemble size 3 and population size 2, we would have a state ensemble that looked like

x11 x12 x13

y11 y12 y13

g11 g12 g13

x21 x22 x23

y21 y22 y23

g21 g22 g23,

(7.3)

where xij represents the x-location of the ith agent in the jth ensemble-member model,
yij represents the y-location of the ith agent in the jth ensemble-member model and
gij represents the gate number of the ith agent in the jth ensemble-member model.
The EnKF would be assimilating observations of the form:

[x1, y1, . . . , xN , yN] . (7.4)

In such a situation, we would use an observation operator of the following form

H =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 . (7.5)

156

7.1 Proposed Solutions

In comparison, when using the state vector for in Equation 7.2, the state ensemble
would take the form of

x11 x12 x13

x21 x22 x23

y11 y12 y13

y21 y22 y23

g11 g12 g13

g21 g22 g23

, (7.6)

and consequently the observation operator would take the form of

H =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

 . (7.7)

Considering a system of N pedestrians, Equation 7.7 generalises to the row-concatenation
of two matrices: an identity matrix of size 2N and a matrix of 0s of shape 2N × N :

HN = [I2N , 02N×N] (7.8)

Both of these matrices are trivial to produce computationally at the outset of the
simulation run, given the population size N , and are easily joinable. The result is an
observation operator of shape 2N × 3N .

Using these forms for the state ensemble and observation operator, we can then use
the EnKF to update both the locations of agents and their target destinations. If we
return to the state update equation for the EnKF in Chapter 4, we may recall that the
filter produces a posterior ensemble of model states, X̂ based on the following equation:

X̂ = X + K (D − HX) , (7.9)

where X is the prior ensemble of model states, K is the Kalman Gain Matrix, D is
the ensemble of observations and H is the observation operator outlined above. The
observation operator that we have specified is designed to reflect a scenario in which we
are able to observe the location aspects of the model states (i.e. the x and y positions),
but are unable to observe the destination aspects (i.e. the g values). As we see above,
the application of the observation operator to the ensemble of model states reduces
the ensemble to just the observable parts of the state. Consequently, we are able to

157

7.1 Proposed Solutions

calculate the difference between the observations and the observable sections of the
model states, (D − HX).

As detailed in Chapter 4, this difference is applied as a weighted perturbation to
the prior model state where the weighting is defined by the Kalman Gain Matrix, K.
Recalling the definition from Chapter 4, the gain matrix is given as:

K = CHT
(
HCHT + R

)−1
, (7.10)

where C is the state covariance matrix and R is the observation covariance matrix.
The state covariance matrix contains the covariances of each of the elements in the
model state — both observable and unobservable. The observation covariance matrix
contains the covariances of each of the elements in the observations, i.e. only of the
observed quantities. Based on the example state ensemble above, we would have the
following covariance matrix:

C =

σx1x1 σx1x2 σx1y1 σx1y2 σx1g1 σx1g2

σx2x1 σx2x2 σx2y1 σx2y2 σx2g1 σx2g2

σy1x1 σy1x2 σy1y1 σy1y2 σy1g1 σy1g2

σy2x1 σy2x2 σy2y1 σy2y2 σy2g1 σy2g2

σg1x1 σg1x2 σg1y1 σg1y2 σg1g1 σg1g2

σg2x1 σg2x2 σg2y1 σg2y2 σg2g1 σg2g2

, (7.11)

where σab is the covariance between state elements a and b. Given that we are only
observing the location elements, the observation covariance matrix would be given by:

R =

rx1x1 rx1x2 rx1y1 rx1y2

rx2x1 rx2x2 rx2y1 rx2y2

ry1x1 ry1x2 ry1y1 ry1y2

ry2x1 ry2x2 ry2y1 ry2y2

 , (7.12)

where rab is the covariance between observation elements a and b.
Based on the above matrices, we can calculate CHT to be the matrix:

CHT =

σx1x1 σx1x2 σx1y1 σx1y2

σx2x1 σx2x2 σx2y1 σx2y2

σy1x1 σy1x2 σy1y1 σy1y2

σy2x1 σy2x2 σy2y1 σy2y2

σg1x1 σg1x2 σg1y1 σg1y2

σg2x1 σg2x2 σg2y1 σg2y2

. (7.13)

158

7.1 Proposed Solutions

From this, we can calculate HCHT to be the matrix:

CHT =

σx1x1 σx1x2 σx1y1 σx1y2

σx2x1 σx2x2 σx2y1 σx2y2

σy1x1 σy1x2 σy1y1 σy1y2

σy2x1 σy2x2 σy2y1 σy2y2

 . (7.14)

We may therefore conclude that the gain matrix, K is given by:

K =

σx1x1 σx1x2 σx1y1 σx1y2

σx2x1 σx2x2 σx2y1 σx2y2

σy1x1 σy1x2 σy1y1 σy1y2

σy2x1 σy2x2 σy2y1 σy2y2

σg1x1 σg1x2 σg1y1 σg1y2

σg2x1 σg2x2 σg2y1 σg2y2

σx1x1 + rx1x1 σx1x2 + rx1x2 σx1y1 + rx1y1 σx1y2 + rx1y2

σx2x1 + rx2x1 σx2x2 + rx2x2 σx2y1 + rx2y1 σx2y2 + rx2y2

σy1x1 + ry1x1 σy1x2 + ry1x2 σy1y1 + ry1y1 σy1y2 + ry1y2

σy2x1 + ry2x1 σy2x2 + ry2x2 σy2y1 + ry2y1 σy2y2 + ry2y2

−1

.

(7.15)
In essence, this provides a set of weights to be applied to the perturbation. This
differs from the gain matrix that would be used in used in Chapter 6 in that it also
includes weights to be applied to the entries in the state pertaining to the unobserved
destination variables. The weight applied to these unobserved variables will depend
on the state covariance between the unobserved variables and the other variables, e.g.
σg1x1 which is the covariance between the unobserved gate variable of the first agent
and the x-location of the first agent which is observable.

One of the issues that may arise in such an application is that of differing orders of
magnitude of variables in the state vector; x-locations can vary between 0 and 740 and
y-locations can vary between 0 and 700 whilst gate numbers can vary between 0 and 10.
This is important because the EnKF bases the weighting applied to the observations,
in part, on the covariance matrix of the state ensemble. Given these scales, it is likely
that elements of the state ensemble covariance matrix pertaining to the gate numbers
will be much smaller than those pertaining to the locational elements of the matrix; this
is not necessarily because the gate numbers do not vary with respect to the locational
elements but more so because the scale of variation in gate numbers is much smaller.

One option for resolving this issue is to rescale all of the variables in the state
ensemble prior to data assimilation (Katzfuss et al., 2016) (also, reversing the scaling
process after data assimilation). For the purpose of this investigation, variables are
scaled linearly against the range of possible values for the variable such that the upper

159

7.1 Proposed Solutions

bound is scaled to 1, the lower bound is scaled to −1 and the midpoint is scaled to 0.
This is formalised as:

ar = a − m

s
(7.16)

where ar is the rescaled value of variable a, m is the midpoint of the upper and lower
limits of a’s values and s is a scaling factor. The midpoint, m, can be calculated as

m = amax + amin

2 ,

where amax is the maximum possible value of variable a and amin is the minimum
possible value of a. The scaling factor, s is calculated as

s = amax − m.

This scaling process can be reversed by applying the inverse operation:

a = m + s × ar (7.17)

Aside from the issue of variable scaling, one further problem to consider is that
of how the EnKF estimates a discrete variable. Typically, the EnKF is applied to
problems in which the estimated quantities are continuous (Kalnay, 2003), however,
in this case, we are attempting to estimate a discrete category for each agent in the
form of exit gate. Whilst we may provide agents with discrete integer gate numbers
at the outset of the simulation run, the EnKF is likely to arrive at non-integer values
when updating these quantities based on assimilated data. In order to deal with this
problem, a relatively simple solution is proposed — Given the ensemble mean state
vector, we can apply the following steps:

• Step 1: For each estimated gate number, round it to the nearest integer.

• Step 2: For each integer gate number, apply the modulus with respect to the
total number of gates in the environment.

As an example, consider an ensemble mean state vector for a system with 3 pedestrians
in it. In this case, the elements of the mean state vector might look something like the
following after having been updated with assimilated data:

[1.25, 10.8, 5.5]

160

7.1 Proposed Solutions

Clearly, none of these estimated values can be considered valid gate numbers as they
are not integers and so the above steps are applied to each entry. In the case of the
entry relating to the first pedestrian (1.25), the rounding process rounds the estimated
gate down to 1 and the modulus step makes no difference resulting in an estimated gate
number of 1. In the case of the second entry (10.8), the rounding process rounds the
estimated gate up to 11 and the application of the modulus with respect to the number
of gates (11) results in an estimated gate number of 0. In the case of the third entry
(5.5), the rounding process round the estimated gate up to 6 despite the estimate being
halfway between 5 and 6 which may result in some incorrect estimations; the likelihood
of a gate estimate being exactly halfway between integer numbers is, however, extremely
unlikely. As in the case of the first entry, the modulus has no impact on this entry. The
result after applying this process is the following vector of estimated gate numbers:

[1, 0, 6]

This approach is also applied to the state vectors representing the individual ensemble-
member models. An alternative approach to this would be to apply the rounding
process to the gate estimates in each of the ensemble-member models, and then to
calculate the average state by taking the modal gate for each of the agents across the
ensemble.

Having estimated a destination gate for each agent, a target destination, i.e. an x-y
location along the edge of the environment, can be allocated using a method built into
the Agent class; this method provides a location by sampling from a uniform random
distribution along the length of the provided gate.

Destination Angle Estimation

Having outlined the initial approach to gate estimation using the Ensemble Kalman
Filter in the previous section, this section focuses on a different approach. One of
the issues with the previous approach is that it framed the problem as one that was
purely categorical, i.e. that of identifying the correct gate number. Whilst this is
an important facet of accurately simulating a system given unknown destinations for
the pedestrian population, it leaves the ultimate point destination up to a random
distribution. The filter is required to primarily identify the correct exit gate for each
agent, but furthermore it is required to identify the point along the length of the gate

161

7.1 Proposed Solutions

which is acting as the target destination. When choosing the point destination using
the uniform random distribution spanning the width of a gate, we acknowledge that
there is a continuous element of the problem. This section aims to frame the problem
as a continuous one, looking to estimate points around the edge of the environment
towards which a pedestrian is headed as described by the angle made between this
point and the centre of the environment.

As was the case in the previous approach, this requires that we make modification
to the EnKF. Once again, we change the way that we represent an ensemble-member
model as a state vector from

[x1, y1, . . . , xN , yN ,] ,

given a population of N pedestrians, to

[x1, . . . , xN , y1, . . . , yN , θ1, . . . , θN] ,

where θi represents the angle made between the centre of the environment and the
pedestrian’s target destination on the edge of the environment. Angles are measured
in radians relative to the x-axis extending from the environment centre, i.e. (370, 350),
to the point where it intersects on the right boundary, i.e. (740, 350). Angles range
between +π and −π, with a positive angle indicating an anti-clockwise rotation from
the reference axis and a negative angle indicating a clockwise rotation from the reference
axis. As an example, the central point on the top boundary, i.e. (370, 700), would be
pointed to by an angle of π/2, whilst the central point on the bottom boundary, i.e.
(370, 0), would be pointed to by an angle of −π/2.

Just as in the previous approach, we change our observation operator from I2N , i.e.
the identity matrix of size 2N where N is the population size, to [I2N , 02N×N].

As when using the destination gate number to determine an agent’s target des-
tination in the previous section, when using an angle, we again choose to rescale the
variables in the state vector before performing data assimilation (as we as reversing the
process after having adjusted the state vector in response to the assimilated observa-
tions). The elements pertaining to the x- and y-locations of agents in the environment
are, again, scaled as outlined in Equation 7.16 with respect to the maximum and min-
imum x and y values.

Elements of state vectors pertaining to angles around the environment are scaled
with respect to the maximum and minimum angular values — π and −π respectively.

162

7.2 Experimental Design

The result is that an angle of π would be rescaled to 1 and an angle of −π would be
rescaled to -1. Considering an example of an angle somewhere between, an angle of
θ = π/2 would be rescaled to 0.5.

When considering the previous approach, one of the issues that arose was that we
needed to allocated a target destination in 2-dimensional real space having estimated a
categorical integer value; whilst the present approach seeks to remedy this problem, it
is not without its own challenges. Using the EnKF to estimate the continuous value of
the angle around the boundary of the system environment can result in an angle ranging
between −π an π, however, not every angular value in this interval is considered a valid
target destination.

The posterior estimates of agents’ target destination angles can fall into one of
two categories: angles which point to locations along the environment boundary which
lie within a gate and those which point to locations which lie between two gates. The
former case is that which we desire and describes a valid target destination; an example
of such an angle would be θ = π which points to a location on the left edge of the
environment which lies within gate 0. The latter case, however, does not describe a
valid target destination and therefore requires some adjustments; an example of such
an angle might be θ = π/2 which points to a location which lies between gates 1 and 2.

In the case of angles which point to locations between two gates, we identify the gate
edge which is closest in angle to the angle that has been estimated, and allocate that
edge location as the target destination for the agent. If the difference angle between
the angle and the two adjacent angles is the same (which is very unlikely), we randomly
choose one of the two adjacent angled edge locations. Considering the case of θ = π/2
above, this angle points to a location which lies closer to the edge of gate 2, and as
such would be rounded to the nearest edge of gate 2.

7.2 Experimental Design

In the previous section, we outlined proposed solutions to two technical problems: how
do we encode initial uncertainty regarding a pedestrian’s target destination when they
first enter the system, and how do we modify the Ensemble Kalman Filter to allow
it to provide updates for both the pedestrian’s simulated location in the system and
their target destination in response to assimilated data. In this section, we will outline
how we plan to put these solutions into practice by describing the experiments that

163

7.2 Experimental Design

shall be undertaken to test the efficacy of the EnKF in such a setting. This comprises
of two parts. The first of these outlines the set of benchmarking experiments to be
undertaken, which aim to demonstrate the shortcomings of the model and the filter
when a pedestrian’s target destination is not known and the representation of the target
destination within the filter is not updated in response to assimilated observation. The
second of these outlines the set of experiments undertaken using the two approaches
to estimating a pedestrian’s destination outlined above — gate number estimation and
destination angle estimation.

7.2.1 Benchmarking

In this section, we outline the experiments undertaken to define a benchmark against
which to compare filter performance when updating both the locational state of the
model and the destinations of the agents within the model. This benchmarking takes
two forms. First of all, we consider the case where pedestrians’ target destinations
are unknown and no data assimilation is undertaken; in essence, this involves running
an ensemble of models without any data assimilation. This mirrors the benchmarking
that was undertaken previously in Chapters 5 and 6; however, in previous benchmarking
attempts, knowledge of pedestrians’ final destinations was assumed whilst in this case
we remove that knowledge. Following on from this, we consider a similar scenario in
which pedestrians’ target destinations are unknown, but this time we use the EnKF to
perform data assimilation with periodic observations of the pedestrians’ locations; this
data assimilation, however, is only used to update the locational state of the ensemble-
member models and not the pedestrians’ target destinations. In each case, we consider
the impact of the different ways in which we can represent unknown destinations for
the pedestrians within the EnKF as outlined in Section 7.1.1. This will provide us with
a benchmark against which to compare when we make use of observations to infer the
latent pedestrian destinations.

The first benchmarking experiment focuses on the case in which an ensemble of
models is run to simulate the motion of pedestrians across the model environment
without any observations being assimilated. Just as in Chapter 6, this is done by
instantiating an ensemble of models as copies of a base model which is used to define
the ground truth state at all times. In this case, however, the ensemble of copies differ
from the ground truth model in that the agent representations of the pedestrians in

164

7.2 Experimental Design

the system do not necessarily share the same target destination as those defined in the
base model.

This is achieved by undertaking the different randomisation approaches outlined in
Section 7.1.1; the aim of this is to emulate a more realistic scenario in which we have
either limited or no knowledge regarding the target destination of pedestrians when
they enter the system. Just as when performing benchmarking in previous chapters,
the efficacy of the ensemble of models with respect to how well they simulate the system
in question is assessed by looking at the average distance error per agent. The distance
error for pedestrian i in a population of N agents, di, are defined as the distance between
the ith pedestrians’ location in the base model, xi, and the mean of the ensemble for
active agents, x̂i:

di =

|x̂i − xi| if ith agent is active;

0 otherwise,
(7.18)

and this error is averaged over the active agent population as outlined in Chapter 6:

d̄ = 1
N

N∑
i=1

di, (7.19)

where N is the number of active agents. Here, we assess agent activity based on the
modal status across the ensemble; for a full mathematical description of how this works,
see Section 6.1.1).

The first benchmarking experiment is run using a population size of 5 and an
ensemble size of 100 (as outlined in Table 7.2). The small population size here is
chosen to ensure that the uncertainty generated in the model is predominantly due
to uncertainty in the initial allocation of pedestrian target destination as opposed to
agent-agent interactions (as was observed in previous chapters).

Parameter Value

Population size 5
Ensemble size 100
Assimilation period 100
Observation noise standard deviation 5

Table 7.2: Table of parameter value used for experiments in this chapter.

165

7.2 Experimental Design

This experiment is expected to generate a collection of three time-series datasets
of average error per agent over time, with each dataset pertaining to one of the three
randomisation approaches. These will be plotted and compared. It is expected that
given the randomisation of the pedestrian target destinations and the lack of data
assimilation, the ensemble of models will perform relatively poorly in each case. The
cases in which destinations are randomised based on the adjacent gate randomisation
approach are expected to perform better than the other two approaches as this approach
incorporates some substantive knowledge of the true pedestrian destination with some
finite noise attached.

Having run the first benchmarking experiment, the second benchmarking experi-
ment seeks to apply data assimilation, updating the ensemble of models with periodic
observations. In this case, the state vector consists of the locations of the agents in
each model, and as such only the locational aspects of the model are updated when
observations are assimilated — not the agents’ destinations. Just as in the previous
benchmarking experiment, this involves instantiating an ensemble of models as copies
of a base model, again applying different destination randomisations. The EnKF is
instantiated with a population size of 5 and an ensemble size of 100, with observations
with noise of standard deviation 5 being assimilated every 100 simulation time-steps
(as defined in Table 7.2). We also use the same measure of efficacy as in the previous
benchmarking experiment: the average distance error per agent.

This set of experiments will generate a collection of three time-series datasets of
average error per agent over time, with each dataset pertaining to one of the three ran-
domisation approaches. Each of these datasets will contain information for the average
error per agent before and after data are assimilated, i.e. the prior and posterior error.
Just as in the previous experiment, the case in which gates are randomised using the
adjacent approach is expected to perform better than cases using the other approaches
(both with respect to prior and posterior error) given the encoding of knowledge re-
garding each pedestrians’ target destination. It is expected that in the case in which
gates are allocated uniformly by agent across the ensemble will perform particularly
poorly both in terms of prior and posterior error. This is expected due to the uniform-
ity of destinations across the ensemble — the path taken by the agents pertaining to
a specific pedestrian are likely to be very similar across the ensemble of models and
consequently the uncertainty in agent position in the ensemble of models is likely to

166

7.2 Experimental Design

low in comparison to the uncertainty in the observation. As a result, the weight applied
to the observation by the EnKF will not be sufficient to adjust the path of the agents.
In the case in which gates are allocated randomly across the ensemble, it is expected
that, whilst the prior state of the filter may not perform particularly well, the posterior
will perform much better. This is because, given the destination allocation, the uncer-
tainty in the model estimate of the agent locations will be large in comparison to the
observation uncertainty and subsequently the filter will place a greater weight on the
observation when updating the filter state.

7.2.2 Estimating Pedestrian Destinations

In the previous section, we outlined the experiments that would be undertaken in order
to establish a benchmark against which to compare filter performance. This consisted
of two benchmarks: the first pertained to the worst case scenario in which pedestrians’
destinations are unknown and no observations are provided to update the system via
data assimilation, whereas the second pertained to the scenario in which pedestrians’
destinations are still unknown but observations are provided to update the locations of
agents within the ensemble of models via the EnKF. In this section, we seek to outline
a set of experiments to demonstrate that the EnKF can be used to update not only
agents’ locations, but also to determine their destinations in the case where such a
parameter is unknown at the outset of the simulation.

Estimation of agents’ destinations is undertaken through state augmentation within
the EnKF whereby destinations are incorporated into each of the state vectors for the
ensemble-member models as outlined in Section 7.1.2. The two approaches outlined
in this section focus including either the target destination gate number or the angle
between the target destination and the centre of the environment in the state vector.

Having completed the benchmarking experiments, it expected that the gate alloc-
ation approach whereby destinations are uniform across the ensemble for each agent
will perform sufficiently poorly that it can excluded from subsequent experiments. As
a result, this set of experiments considers the impact of varying the approach to des-
tination estimation (which can be either gate number estimation or angle estimation)
and initial destination allocation (which can be either random across the ensemble or
uniform across a finite number of gates adjacent to the true gate). Based on this, this
set of experiments consists of considering four different scenarios. In each scenario, the

167

7.2 Experimental Design

EnKF is instantiated with a population of size 5, an ensemble of size 100 and agent
destinations are randomised based on one of the two allocation approaches outlined.
The filter is then run forward through simulation time, assimilating observations of
pedestrians’ locations which are provided periodically every 100 time-steps, and which
are generated by taking the pseudo-truth state from the base model and adding nor-
mally distributed random noise with standard deviation 5 (as per the parameter values
in Table 7.2).

The experiments outlined in the previous section sought to demonstrate the poor
performance of an ensemble of models in the absence of knowledge regarding pedestri-
ans’ destination. In this experiment we wish to demonstrate that updating the destin-
ations via state augmentation within the EnKF improves the accuracy with which our
ensemble simulates the system. In this respect we still wish to use the average distance
error per agent as our measure of filter effectiveness; this can be demonstrated by plot-
ting the time-series dataset of the average error per agent. From this, it is expected
that (just as in the case of the second benchmarking experiment) the posterior error
will be lower than the prior error over the course of the simulation time for each of the
combinations of initial destination allocations and destination estimation approaches.

Beyond this, however, we also wish to assess whether the filter is capable of correctly
estimating the destination for pedestrians. Whilst inspection of the average distance
error per agent may give us an indication of whether destinations have been correctly
estimated, it may not necessarily be conclusive; we may, therefore, wish to employ
further measures to assess this. One of the easiest ways to verify that a destination
has been correctly estimated is by the following two plots for each pedestrian in the
population:

• A line plot of the path taken by the pedestrian; for this, we plot a lines showing the
positions representing the prior ensemble state mean, the posterior state mean,
the true path taken in the base model and points representing the observations
derived from the base model. Furthermore, we include the agent’s origin and
destination within the environment.

• A histogram showing both the initial distribution of destinations at the outset of
the simulation run and final distribution of destinations at the end of the simula-
tion run for the given pedestrian agent. Furthermore, we include a line indicating
the true destination from the base model. In cases where gate number estimation

168

7.3 Results

is employed, histograms show the distribution of estimated gate numbers and
the true destination is a single value for the gate number. In cases where angle
estimation is employed, histograms show the distribution of angles around the
environment and the true destination is a range of angles between the edges of
the true gate.

7.3 Results

Having set out the experiments to be undertaken in Section 7.2, this section seeks
to present the results of these experiments1. This consists of two section. The first
of these — Section 7.3.1 — presents the results of the two different benchmarking
experiments which show the consequences of running an ensemble of models without
knowledge of pedestrians’ destinations, both with and without location data being
assimilated into the ensemble. The second section — Section 7.2.2 — presents the
results of applying state augmentation within the EnKF to update agents’ destinations
as well as their locations when assimilating data; this considers multiple ways in which
agent destinations can be encoded when applying state augmentation.

7.3.1 Benchmarking

This section outlines the results of the benchmarking experiments undertaken in this
chapter. The first of these focuses on exploring the impact of different ways in which we
encode our lack of knowledge regarding pedestrians’ destinations in a scenario where
we simulate the system without assimilating any data. This is achieved by exploring
the way in which the average distance error per agent varies over simulated time.

This variation is shown in Figure 7.1, which consists of three sub-figures. Each of the
three sub-figures shows the variation of average distance error per agent given a specific
approach to allocating agent destinations within the ensemble of models: Figure 7.1a
shows the results of allocating destinations uniformly across the ensemble for each agent;
Figure 7.1b shows the result of allocating destination randomly across the ensemble for
each agent; Figure 7.1c shows the result of allocating destinations randomly drawn from
a uniform distribution of destinations adjacent to the true destination for each agent.

1The experiments run for this chapter can be found in the notebooks found in
Projects/ABM DA/experiments/enkf experiments/results 3/notebooks/ in the dust repository
archive

169

https://zenodo.org/record/6469804
https://zenodo.org/record/6469804

7.3 Results

0 200 400 600 800 1000 1200 1400 1600
Time

0

100

200

300

400

500

M
ea

n
di

st
an

ce
 e

rro
r p

er
 a

ge
nt

(a) Uniform Across Ensemble

0 2000 4000 6000 8000 10000
Time

0

100

200

300

400

500

M
ea

n
di

st
an

ce
 e

rro
r p

er
 a

ge
nt

(b) Random Across Ensemble

0 500 1000 1500 2000 2500 3000
Time

0

100

200

300

400

500

M
ea

n
di

st
an

ce
 e

rro
r p

er
 a

ge
nt

(c) Adjacent

Figure 7.1: Variation in average error per agent over simulation time with no data
assimilation.

170

7.3 Results

0 100 200 300 400 500 600 700
x location

0

100

200

300

400

500

600

700

y
lo

ca
tio

n

Ground truth

(a) Uniform Across Ensemble

0 100 200 300 400 500 600 700
x location

0

100

200

300

400

500

600

700

y
lo

ca
tio

n

Ground truth

(b) Random Across Ensemble

0 100 200 300 400 500 600 700
x location

0

100

200

300

400

500

600

700

y
lo

ca
tio

n

Ground truth

(c) Adjacent

Figure 7.2: Sample trajectories of a single agent represented in each of the benchmark-
ing ensemble models. Trajectory of corresponding agent in base model provided for
comparison.

171

7.3 Results

In Figure 7.1a, we see the variation in average distance error per agent when des-
tinations are allocated uniformly across the ensemble for each pedestrian. Considering
this figure, we see that the average error starts very small. This is reflective of how the
ensemble of models is created; each of the ensemble-member models is a copy of the
base model and, as such, the starting locations of the agents in each of the models is
the same as in the base model. Whilst the initial average error may be small, it quickly
grows and, unlike in Chapters 5 and 6, does not decrease over the course of the simu-
lation run. This is primarily because no data are being assimilated into the ensemble
of models and therefore the model states are not being corrected by observations of
the true system state. Beyond this, however, the random allocation of destinations for
each of the pedestrians in the system also means that agents in the ensemble-member
models do not deactivate as a result of reaching the correct destinations but instead due
to reaching other gates. As a consequence, each of the ensemble-member models may
deactivate when their agents have completed their journeys across the environment,
but this does not mean that the agents have reached the same destinations as their
counterparts in the base model. This is reflected in Figure 7.2a.

When considering Figure 7.1b, we observe a similar pattern. The initial average
distance error per agent is small at the outset of the simulation run as a result the
ensemble-member models being a copy of the base model and consequently the agents
in each of the models sharing starting locations with the corresponding agents in the
base model. The average distance error per agent quickly grows as the system evolves,
with the ensemble mean state diverging from that of the base model. Given that the
destinations for each of the pedestrians are allocated randomly across the ensemble,
there is a chance that the destination of an agent in one of the ensemble-member
models may match that of the corresponding agent in the base model; the probability
of this occurring, however, is relatively low. In the case that an agent starts on the
left side of the environment (the side with the fewest gates), the probability that each
of the gates from the other boundaries are allocated is 1/10; in the case that an agent
starts on either the right or bottom sides of the environment (the sides with the most
gates), the probability that each of the gates from the other boundaries are allocated is
1/7. In addition, given that the destinations are randomised across the ensemble, the
representations of a given pedestrian in each of the ensemble-member models is likely
to be different to each other. As a result, the paths of the agents in each of these models

172

7.3 Results

are likely to be markedly different from each other. This is reflected in Figure 7.2b.
When considering Figure 7.1c, we observe a different pattern. The initial average

distance error per agent is small at the outset of the simulation run; just as in the
previous two cases, this is a result of the ensemble-member models being copies of
the base model. Whilst we do observe an increase in the average error as the system
evolves, this growth is not as great as in the other two scenarios. This is a result of the
increased level of information regarding pedestrian destinations incorporated into the
ensemble by the gate allocation approach; the reasoning behind this was outlined in
the corresponding part of Section 7.1.1. Whilst the final average error per agent seen
in this figure is larger than that we observed in the experiments in Chapters 5 and 6,
it is less than the width of the majority of the gates, suggesting that on average the
ensemble has estimated that the pedestrians will end up in approximately the correct
location. This is reflected in Figure 7.2c.

Having defined initial benchmarks for simulating a system with an ensemble without
any data assimilation, we now turn to the results of simulating a system with an
ensemble with data assimilation where the EnKF is used to update only the locations
of agents within the ensemble-member models. This is explored using Figures 7.3, 7.5
and 7.6.

Figure 7.3 shows the variation in average distance error per agent over time, just
as was shown in Figure 7.1 for the previous benchmarking experiment. In this case,
however, we are able to show both the prior and posterior error as we are assimilating
data to update the agent locations within the ensemble-member models. Each of the
three sub-figures shows the variation of average distance error per agent given a specific
approach to allocating agent destinations within the ensemble of models: Figure 7.3a
shows the results of allocating destinations uniformly across the ensemble for each agent;
Figure 7.3b shows the result of allocating destination randomly across the ensemble for
each agent; Figure 7.3c shows the result of allocating destinations randomly drawn from
a uniform distribution of destinations adjacent to the true destination for each agent.

In each of the three cases, we observe that the posterior average errors are lower than
those observed in the respective cases in Figure 7.1. This is, unsurprisingly, a result
of the ensemble of models being updated with observations of pedestrians’ locations
derived from the base model. In each case, the posterior errors are lower over the
course of the simulation than the respective prior errors, again, reflecting the benefits

173

7.3 Results

0 2000 4000 6000 8000 10000
Time

0

20

40

60

80

100

120

140

160

M
ea

n
di

st
an

ce
 e

rro
r p

er
 a

ge
nt

analysis
forecast

(a) Uniform Across Ensemble

0 2000 4000 6000 8000 10000
Time

0

10

20

30

40

50

M
ea

n
di

st
an

ce
 e

rro
r p

er
 a

ge
nt

analysis
forecast

(b) Random Across Ensemble

0 2000 4000 6000 8000 10000
Time

0

5

10

15

20

25

30

35

40

M
ea

n
di

st
an

ce
 e

rro
r p

er
 a

ge
nt

analysis
forecast

(c) Adjacent

Figure 7.3: Variation in average error per agent over simulation time when assimilating
data to update location.

174

7.3 Results

0 100 200 300 400 500 600 700
x location

0

100

200

300

400

500

600

700

y
lo

ca
tio

n

Ground truth

(a) Uniform Across Ensemble

0 100 200 300 400 500 600 700
x location

0

100

200

300

400

500

600

700

y
lo

ca
tio

n

Ground truth

(b) Random Across Ensemble

0 100 200 300 400 500 600 700
x location

0

100

200

300

400

500

600

700

y
lo

ca
tio

n

Ground truth

(c) Adjacent

Figure 7.4: Sample trajectories of a single agent represented in each of the ensemble-
member models. Trajectory of corresponding agent in base model provided for com-
parison.

175

7.3 Results

of assimilating observations to update the model states.
These improvements are not, however, consistent across the different allocation

approaches. When comparing Figures 7.3a and 7.3b, we notice that in the case of
the former the assimilation of data results in a posterior error which consistently lies
somewhere between 80 and 100, whilst in the case of the latter the assimilation of data
results in a posterior error that is consistently below 10 — a marked improvement. The
improvement seen here is a consequence of the destination allocation method used in
each case.

In the former case, destinations are allocated uniformly across the ensemble to
agents representing a given pedestrian. As a result, the paths taken by the agents
across the environment between assimilation time-steps do not differ greatly, and so
the uncertainty in the prior positions represented by the ensemble is typically small
in comparison to the uncertainty in the observations. The EnKF therefore places less
weight on the observations when updating the state, and consequently the state does
not improve by much. This is reflected in Figure 7.4a.

In the latter case, however, destinations are allocated randomly across the ensemble
to agents representing a given pedestrian. As a result, the paths taken by the agents
across the environment between assimilation time-steps are markedly different; this
means that the uncertainty in the prior positions represented by the ensemble is large
in comparison to the uncertainty in the observations. The EnKF therefore places
much more weight on the observations when updating the state. This is reflected in
Figure 7.4b.

This difference in weighting applied to the observation can be observed in Figure 7.5.
This figure shows a heatmap for the gain matrix at the end of the simulation run for
each of the destination allocation methods. Recall from the Chapter 4 that the gain
matrix indicates the weight applied to the observations in updating the elements of
the state ensemble matrix. For example, the entry in the first column pertains to the
weight applied to updating the x-location of the first agent in the first model with the
x-location of the first observation. We expect that, in each case, elements off of the
diagonal should be 0 as it is unlikely that observations of a pedestrian would contribute
to the updating of the agents representing another pedestrian; this is confirmed by
inspecting each of Figures 7.5a, 7.5b and 7.5c. We can judge the degree to which
updates from observations are weighted by considering the values along the diagonal of

176

7.3 Results

the gain matrix. In the case of Figures 7.5b and 7.5c (i.e. cases where destinations are
allocated randomly across the ensemble and where destinations are allocated from the
true destination and the adjacent gates respectively), we observe that the values along
the diagonal are high, typically between 0.8 and 1.0. In the case of Figure 7.5c, we see
that there is some variation in value but this variation is not large.

In comparison, when we look at Figure 7.5a, we see that the values along the
diagonal are lower than in the other heatmaps. This indicates that less weight is
applied to the update from the observations than in the other two cases; indeed, some
elements along the diagonal have values close to 0, indicating that no weight is applied
to observations and therefore the specific element of the state to which that element
pertains is unchanged by the observations. Furthermore, we notice some non-zero
values off of the diagonal.

We can finally examine these scenarios by considering the impact of data assim-
ilation on the position of one of the pedestrians being simulated. This is achieved
by considering Figure 7.6. This figure shows the distribution of x- and y-locations
across the ensemble for a single pedestrian in the population, comparing the prior and
posterior distributions and also indicating the observed location.

In Figure 7.6a, we see that the distribution of x- and y-locations has a very low
uncertainty (relative to those seen in Figures 7.6b and 7.6c) indicated by the relat-
ively small spread of the distributions. Furthermore, the locations given by the state
ensemble from the models often differ substantially from the observed locations (and
subsequently from the observations). Due to the low levels of uncertainty in the en-
semble state, we find that the posterior often does not differ much from the prior
distribution; in Figure 7.6a, this is particularly noticeable in the case of the x-location.
The more noticeable difference between the prior and posterior in the y-location arises
due to the greater degree of uncertainty found in the prior y-location, allowing the state
to be updated in response to the introduction of observations.

In Figure 7.6b, we see that the range of the prior distributions of x- and y-locations
are much greater than those seen in Figure 7.6a. Just as in the previous scenario,
the lack of information regarding the destination of the pedestrian results in the prior
estimate being incorrect, and consequently not lying near the observed locations of
the true locations. Given the much larger degree of uncertainty in the x- and y-
locations, the EnKF places a much larger weight on the impact of the observation,

177

7.3 Results

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9 0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(a) Uniform Across Ensemble

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9 0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(b) Random Across Ensemble

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9 0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(c) Adjacent

Figure 7.5: Heatmap of gain matrix for final data assimilation of simulation run.

178

7.3 Results

50 0 50 100 150
x-location

0

5

10

15

20

25

Fr
eq

ue
nc

y

observation
prior
posterior

580 600 620 640 660 680 700
y-location

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Fr
eq

ue
nc

y

observation
prior
posterior

(a) Uniform Across Ensemble

550 575 600 625 650 675 700 725
x-location

0

5

10

15

20

25

Fr
eq

ue
nc

y

observation
prior
posterior

50 100 150 200 250 300 350
y-location

0

5

10

15

20

25

30

Fr
eq

ue
nc

y

observation
prior
posterior

(b) Random Across Ensemble

600 620 640 660 680 700 720 740
x-location

0

10

20

30

40

50

60

Fr
eq

ue
nc

y

observation
prior
posterior

590 600 610 620 630 640 650 660 670
y-location

0

10

20

30

40

50

60

Fr
eq

ue
nc

y

observation
prior
posterior

(c) Adjacent

Figure 7.6: Distributions of x- and y-location for first pedestrian before and after the
indicated observation was assimilated.

179

7.3 Results

and consequently this results in a marked difference between the prior and posterior
distributions; this is noticeable both with regard to the update in location and the
degree of uncertainty in the posterior compared to the prior distribution.

In Figure 7.6c, we see that the range of the prior distributions of x- and y-locations
are much smaller that those seen in Figure 7.6b, but larger than those seen in Fig-
ure 7.6a. In this case, this reduced uncertainty in the estimated locations of the ped-
estrian is a result of the increase degree of knowledge that we have incorporated in the
models of the pedestrian’s target destination. The added benefit of this increased level
of knowledge is that the prior distribution is typically closer to the true location of the
pedestrian found in the base model as well. Given the relatively low level of uncer-
tainty in the estimated locations, the impact of data assimilation is smaller than that
observed in Figure 7.6b; however, in light of the increased level of knowledge regarding
pedestrian destinations, the small update provided by the assimilated data is sufficient.
Furthermore, the update of the estimated pedestrian location results in a reduction in
the uncertainty around the location.

As a result of these two experiments, we have established a benchmark for the
degree of error that we might expect when running an ensemble of models with poor
knowledge regarding pedestrians’ destinations around the environment. However, we
also see that even in the absence of knowledge regarding pedestrians’ destinations,
applying data assimilation to the system improves the accuracy with which we can
simulate the system. In such a situation, we can conclude that a random allocation
of destinations to agents across the ensemble is beneficial over a uniform distribution
as the former introduces a larger degree of uncertainty in the estimates provided by
the ensemble of models and the EnKF therefore relies more heavily on the observations
provided. If, however, we have any prior knowledge regarding the destinations to which
pedestrians are headed (even if this information has some level of uncertainty attached
to it), this is even more beneficial.

In the next section, we shall build upon these benchmarks, applying the Ensemble
Kalman Filter with state augmentation such that when data are assimilated, we update
not only the estimated locations of the pedestrians but also the destinations. For this
set of experiments, we shall discard the first destination allocation method — Uniform
Across Ensemble — as we have seen that a more appropriate manner in which to
encode our lack of knowledge regarding pedestrian destinations is the second approach,

180

7.3 Results

i.e. Random Across Ensemble.

7.3.2 Estimating Pedestrian Destinations

Having established benchmarks in the previous section, this section seeks to outline the
results of running a state-augmented EnKF to undertake data assimilation to update
not only the estimated locations of pedestrians but also estimates of their destinations
as periodic observations become available. As outlined in Section 7.2.2, this is achieved
by running the EnKF with the same parameter values as used in the benchmarking
experiments with the addition that the destinations of pedestrians are included in the
updating process using state augmentation (as detailed in Section 7.1.2). This section,
therefore, details the results of running such experiments using two ways in which the
state vector can be augmented and two ways in which we can incorporate uncertainty in
the initial allocation of destinations; in the former case, we consider including the gate
number in the state vector, and including a target location described by an angle in
the state vector; in the latter case, we consider the Random Across Ensemble and Ad-
jacent approaches for the initial allocation of destinations as used in the benchmarking
experiments. As in the previous benchmarking experiments this is primarily achieved
by considering the variation in average error per agent over the course of a simulation
run for each scenario. In addition, however, we wish to explore whether the filter has
been able to correctly identify the destination to which a pedestrian is heading; this is
achieved by considering the distribution of destination estimates across the ensemble,
as well as examining the path taken by agents across the environment and how this is
updated in response to changing estimates of destinations.

Looking at Figure 7.7, we can see the variation in average error per agent over the
course of a simulation run. This comprises of four sub-figures.

The first of these — Figure 7.7a — shows the variation in prior and posterior error
in the scenario when the destination is estimated by estimating the number of the gate
to which pedestrians are headed and initial allocation of destinations is undertaken by
randomly allocating destinations across the ensemble. In the case of both the prior
and posterior errors, we see that over the course of the simulation run, they are lower
than the corresponding errors seen in the final benchmarking experiment; indeed, by
halfway through the simulation run, the prior error is almost as low as the posterior error
seen in the corresponding benchmarking experiment in which data were assimilated to

181

7.3 Results

update just the locations (see Figure 7.3b). This is, perhaps, indicative that despite
having started with random destinations allocated across the ensemble, the EnKF has
updated these destination and consequently the agents in the ensemble-member models
have acquired “correct” destinations (with respect to the destinations of the respective
agents in the base model) — something that shall be further explored when considering
Figure 7.8.

We next consider Figure 7.7b. In this figure, we see the variation of average error
per agent over the course of the simulation run when initial destination allocation
is undertaken by randomly allocating destinations across the ensemble, and over the
course of the simulation destinations are updated by estimating the target angle around
the environment towards which each agent is headed. As in the previous case, we
see that both prior and posterior errors represent an improvement with regards to
average error per agent in comparison to the corresponding benchmarking experiment
(Figure 7.3b).

Looking at Figure 7.7c, we see a similar pattern — the variation in both the prior
and posterior errors when applying the same form of state augmentation in conjunction
with the Adjacent approach to allocation initial destinations are relatively low. The
improvements seen here in comparison to the corresponding benchmarking experiment
(the results for which can be see in Figure 7.3c) are not as marked as those seen in
Figure 7.7a. This is, however, to be expected. In the previous case, the higher degree of
uncertainty in pedestrian destinations meant that whilst the posterior ensemble state
of the benchmark performed relatively well, time-steps between data assimilation steps
saw the ensemble of models diverging from the true system state represented by the
base model as the pedestrian destinations were not being updated and were likely very
incorrect when compared to the destination of the agents in the base model. In this case,
however, the corresponding benchmarking experiment was already able to incorporate
some prior knowledge regarding the destinations of the pedestrians and, whilst this was
not updated in the corresponding benchmarking experiment, this was sufficient for the
benchmarking ensemble with data assimilation to provide a reasonable approximation
of the path taken by the pedestrians.

This is corroborated by Figure 7.7d, in which we consider the scenario in which
initial destinations were allocated using the Adjacent approach and destinations were
updated over the course of the simulation by estimating the target angle around the

182

7.3 Results

edge of the environment. In this case, as in the previous case, both the prior and
posterior average errors per agent represent improvements in comparison to the scenario
depicted in Figure 7.3c, though these improvements are limited by the improvements
offered by the use of the EnKF to perform simple location updating in conjunction
with the Adjacent destination allocation method seen in Section 7.3.1.

200 400 600 800 1000 1200 1400 1600
Time

0

10

20

30

40

50

60

Er
ro

r i
n

en
se

m
bl

e
m

ea
n

po
sit

io
n

posterior
prior

(a) Random Across Ensemble with Gate
Number Estimation

0 500 1000 1500 2000 2500
Time

0

10

20

30

40

50

60

Er
ro

r i
n

en
se

m
bl

e
m

ea
n

po
sit

io
n

posterior
prior

(b) Random Across Ensemble with Angle
Estimation

200 400 600 800 1000 1200 1400 1600
Time

0

10

20

30

40

50

60

Er
ro

r i
n

en
se

m
bl

e
m

ea
n

po
sit

io
n

posterior
prior

(c) Adjacent with Gate Number Estima-
tion

0 250 500 750 1000 1250 1500 1750 2000
Time

0

10

20

30

40

50

60

Er
ro

r i
n

en
se

m
bl

e
m

ea
n

po
sit

io
n

posterior
prior

(d) Adjacent with Angle Estimation

Figure 7.7: Variation in average error per agent over simulation time. Subplots show
the impact of different initial destination randomisation and destination estimation
approaches within the Ensemble Kalman Filter.

When considering each of the sub-figures in Figure 7.7, we can draw two comparis-
ons:

• The impact of the method of allocating initial destinations to agents, i.e. random
across ensemble or adjacent to true destination;

• The impact of the type of state augmentation, i.e. estimating gate number or

183

7.3 Results

estimating target angle around the environment.

When considering both methods for allocating initial destinations to agents, i.e.
scenarios in which initial destinations are allocated randomly across the ensemble in
Figures 7.7a and 7.7b and scenarios in which they are allocated adjacent to the true des-
tinations in Figures 7.7c and 7.7d, we see that both prior and posterior average errors
present improvements in comparison to the corresponding scenarios when benchmark-
ing. It is noticeable, however, that these improvements are much more noticeable when
considering scenarios in which we allocate initial destinations randomly across the en-
semble. This is a consequence of the relative poor performance seen in Section 7.3.1
when applying the Ensemble Kalman Filter to update the location of agents in the
ensemble-member models. When we have an increased degree of information regarding
pedestrians’ target destination, the updating of agent locations is much more effective,
and therefore the improvement seen when including destination estimation in the EnKF
is not as noticeable.

When considering the type of state augmentation used, i.e. scenarios in which we es-
timate target gate numbers in Figures 7.7a and 7.7c and scenarios in which we estimate
target angles in Figures 7.7b and 7.7d, we see that both appear to offer improvements
with regards to the accuracy with which they simulate the paths of pedestrians as
they cross the concourse environment; over the course of simulation runs, the average
error per agent in all cases show improvements when compared to the corresponding
scenarios outline in the benchmarking experiments. When comparing the results in
Figure 7.7, it may appear that both approaches perform well. It is noticeable, however,
that upon repeated simulation runs, we find instances when the angle estimation ap-
proaches appears unable to correctly estimate the correct destinations for pedestrians.
This results in poor performance when considering the prior average error, but rarely
impacts the posterior performance; despite not correctly identifying the correct des-
tination, the inclusion of observations results in accurate estimates of the pedestrians’
locations at assimilation time-steps.

Having considered the variation in average error per agent in each of the exper-
imental scenarios outlined in Section 7.3.2, we have established that the application
of the EnKF with state augmentation to update destinations is effective in improving
the accuracy with which we can simulate pedestrians traversing the concourse environ-
ment. This, however, does not necessarily demonstrate that the method is effective in

184

7.3 Results

identifying the correct destination for pedestrians over the course of a simulation run.
In order to show this, we consider Figures 7.8—7.11. Each figure considers a single
member of the pedestrian population in each of the four scenarios explored above. In
each case, the relevant figure is divided into two sub-figures. The first of these shows
the origin and true destination of the pedestrian, the true path taken by the pedestrian
(as determined by the respective agent in the base model), the observations of the true
state used for data assimilation and the prior and posterior mean estimates from the
ensemble of models in conjunction with the EnKF. The second of these shows the ini-
tial distribution of destinations across the ensemble for the given pedestrian, the final
estimated distribution of destinations across the ensemble and the true destination;
in cases where the gate number is being estimated, the true destination constitutes a
single value, whereas in cases where the angle is being estimated the true destination
constitutes a range of angles.

0 100 200 300 400 500 600 700
x-location

0

100

200

300

400

500

600

700

y-
lo

ca
tio

n

truth_0
prior_0
posterior_0
obs_0
origin_0
destination_0

(a) Path taken by agent across environment

0 2 4 6 8 10
Target gate number

0

20

40

60

80

100

Fr
eq

ue
nc

y

truth
final
initial

(b) Gates estimated by Ensemble Kalman
Filter

Figure 7.8: Gates Estimation with initial destination allocation randomised across
ensemble

In Figure 7.8, we see the results pertaining to the scenario in which initial destin-
ations have been allocated randomly across the ensemble, and the state of the EnKF
has been augmented to include the gate numbers of each of the pedestrians. When
considering the paths shown in Figure 7.8a, we can see that the initial allocation of
destinations was incorrect; this is indicated by the first step of the prior line veering off
in a direction that would not direct the agents towards the destination (Gate 3) given
their starting location (Gate 9). Over the course of the simulation, however, we see that
both the prior and posterior lines largely match the line representing the true path of

185

7.3 Results

the pedestrian. This indicates that the EnKF has correctly estimated the destination
of the pedestrian. This is backed up by Figure 7.8b in which we see the initial and final
distributions of destinations gates across the ensemble for the given pedestrian. Given
that the initial allocation of destinations was random across the ensemble, we can see
that the initial distribution is largely uniform across the selection of valid destination
gates; gates 7, 8, 9, and 10 are excluded from the selection of valid gates as the ped-
estrian departed from the top boundary of the environment (see Table 7.1). Over the
course of the simulation run, the filter correctly identifies gate 3 as the pedestrian’s
destination; this is demonstrated by 3 being the modal value in the final distribution,
agreeing with the line representing the true gate number.

0 100 200 300 400 500 600 700
x-location

0

100

200

300

400

500

600

700

y-
lo

ca
tio

n

truth_3
prior_3
posterior_3
obs_3
origin_3
destination_3

(a) Path taken by agent across environment

3 2 1 0 1 2 3
Target angle

0

5

10

15

20

25

30

35

40
Fr

eq
ue

nc
y

truth
final
initial

(b) Gates estimated by Ensemble Kalman
Filter

Figure 7.9: Angle Estimation with initial destination allocation randomised across
ensemble

In Figure 7.9, we see the results of the experiment in which initial destinations are
allocated randomly across the ensemble and the filter state is augmented through the
addition of a target angle for each pedestrian in the population. Just as in the previous
case, the initially high degree of uncertainty in the pedestrian’s target destination
results in the first step in the prior path heading in a direction that does not align
with the true path as seen in Figure 7.9a. As observations are assimilated, however,
the path of the agent is corrected and aligns with the true path of the pedestrian to an
increasing degree. Just as in the previous case, this is indicative of the filter gaining a
correct estimate of the destination towards which the pedestrian is headed within the
environment. This is confirmed by inspecting Figure 7.9b. As a consequence of the filter
estimating an angle, the true value is a range of values lying between the two dotted

186

7.3 Results

lines in this case. The initial distribution of gates being randomly allocated across the
ensemble is shown in the figure, with angles pertaining to gates 1 and 2 on the top
boundary being excluded. By the time that the pedestrian has completed its journey
across the environment, the filter has correctly estimated the target destination, with
the majority of the angles across the ensemble lying in the range representing gate 8.

0 100 200 300 400 500 600 700
x-location

0

100

200

300

400

500

600

700

y-
lo

ca
tio

n

truth_2
prior_2
posterior_2
obs_2
origin_2
destination_2

(a) Path taken by agent across environment

0 2 4 6 8 10
Target gate number

0

20

40

60

80

100

Fr
eq

ue
nc

y

truth
final
initial

(b) Gates estimated by Ensemble Kalman
Filter

Figure 7.10: Gates Estimation with initial destination allocation randomised across
gates adjacent to the true gate.

In Figure 7.10, we see the results of the experiment for the scenario in which gates
are allocated randomly across the interval between the two gates either side of the true
destination gate, and the Ensemble Kalman Filter estimates the destination based on
the augmentation of the state to include gate numbers for each of the pedestrians in
the population. When considering Figure 7.10a, we see the true pedestrian path, the
observations of this path, and the path modelled by the ensemble of models in conjunc-
tion with the EnKF. Given the increased level of knowledge regarding the destination
of the pedestrian encoded in the initial distribution of destinations across the ensemble,
we see that the initial step of the prior path already aligns closely with the true path
taken by the pedestrian in the truth-generating base model. Consequently, the prior
and posterior paths continue to closely track the true path taken by the pedestrian;
this includes tracking the path of the pedestrian as it moves around the central clock
obstacle. This increased level of knowledge is reflected in Figure 7.10b, in which we can
see the initial distribution of target gate numbers across the ensemble is spread between
gates 1, 2 and 3; the true destination is gate 2. Over the course of the simulation run,
the EnKF correctly identifies that the pedestrian’s destination is gate 2, with this being

187

7.4 Concluding Remarks

the value arrived at for the agent in each of the ensemble member models.

0 100 200 300 400 500 600 700
x-location

0

100

200

300

400

500

600

700

y-
lo

ca
tio

n

truth_1
prior_1
posterior_1
obs_1
origin_1
destination_1

(a) Path taken by agent across environment

3 2 1 0 1 2 3
Target angle

0

20

40

60

80

Fr
eq

ue
nc

y

truth
final
initial

(b) Gates estimated by Ensemble Kalman
Filter

Figure 7.11: Angle Estimation with initial destination allocation randomised across
gates adjacent to the true gate.

In Figure 7.11, we see the results pertaining to the scenario in which the initial
distribution of destinations is undertaken based on the Adjacent approach outlined in
Section 7.1.1, and the EnKF’s state vectors are augmented to include target angles
for each pedestrian in the population. Although the Adjacent destination allocation
approach has been used in this case, there is some degree of deviation between the first
step in the prior path and the true path as seen in Figure 7.11a. This is, however, quickly
corrected through data assimilation, with the corresponding step in the posterior path
closely aligning with the true path. This continues over the course of the simulation
run, with the paths converging on the true path as the target destination identified by
the Ensemble Kalman Filter converges on the correct range of angles. In Figure 7.9b,
we see that the initial distribution of destination angles is spread relatively uniformly
across the angles pertaining to the true gate and each adjacent gate on either side. Over
the course of the simulation run, the majority of ensemble-member models converge
on angles that point to locations along the lower boundary that lie within the correct
destination gate — gate 6.

7.4 Concluding Remarks

Just as with the previous chapter this chapter has focussed on the application of the
EnKF to the StationSim GCS model of pedestrian motion around the concourse of

188

7.4 Concluding Remarks

Grand Central Station in New York. However, where Chapter 6 focussed solely on the
exercise of using the EnKF to update the locations of pedestrians in the environment
(having been provided with perfect information regarding the pedestrian destinations),
this chapter places greater responsibility on the filter. In this chapter, it is assumed
that we do not have perfect knowledge of pedestrian latent variables — in this case
pedestrians’ destinations — and tasks the EnKF with inferring the unobserved variables
whilst still updating the estimates of the observed variables, i.e. pedestrian locations,
when provided with observations.

The relaxation of the assumption of perfect knowledge regarding pedestrian latent
variables presents some new challenges that have not been faced in previous experi-
ments, as does the tasking of the EnKF with the estimation of such variables. These
raise the questions of how we go about encoding prior knowledge regarding pedestrian
destinations, and how we modify the EnKF to produce estimates of these variables.
Section 7.1 seeks to present prospective solutions to both of these questions.

Experiments in this chapter were undertaken on two fronts. The first of these fo-
cused on benchmarking, showing the impact of a lack of knowledge regarding latent
variables, i.e. pedestrian destinations, both with and without data assimilation; the
second these focused on implementing the proposed solutions outlined in Section 7.1.
When undertaking benchmarking, it was found that when a complete lack of knowledge
was encoded in the ensemble, the model ensemble performed very poorly, resulting in
increasingly large average errors between the ensemble mean and the base model; this
was reflected when applying the Uniform Across Ensemble approach and the Random
Across Ensemble approach. When considering the scenario in which we encoded some
prior knowledge (i.e. the Adjacent approach), it was found that the ensemble of models
performed much better; this was, however, still worse than the scenario in which we
have perfect knowledge of pedestrian destinations seen in the previous chapter. Sub-
sequently, the EnKF was run with each of the three approaches to representing a lack
of knowledge regarding the pedestrian destinations, but this time allowing the filter
to update the estimated locations of the pedestrians within the ensemble of models.
The improvements seen when using the Random Across Ensemble approach were much
greater than those seen when using the Uniform Across Ensemble approach. This was
attributed to the greater degree of variation between ensemble member models ob-
served when using the Random Across Ensemble approach which subsequently allowed

189

7.4 Concluding Remarks

the EnKF to make greater alterations to the ensemble state. When considering the
scenario in which the Adjacent approach was used, the prior and posterior errors re-
flected that the ensemble of models was relatively effective in simulating the system
of pedestrians as a result of the increased degree of knowledge regarding pedestrian
destinations.

Having established a benchmark of the performance with which the Ensemble Kal-
man Filter could simulate the system when presented with uncertainty regarding ped-
estrian destinations, the final experiment aimed to demonstrate that the filter could
effectively simulate the system and identify correct estimates of the destinations when
allowed to update the destinations in some way. Having established in the previous
experiment that the Uniform Across Ensemble approach to destination allocation did
not lend itself to state updates, it was discarded as an approach, and so the final exper-
iment aimed to explore the impact of the two remaining approaches (Random Across
Ensemble and Adjacent) in conjunction with the two approaches to state augmentation
(Gate Number estimation and Angle estimation). This resulted in the consideration
of four cases. In each of the four cases, the filter was found to be effective at both
updating estimates of pedestrian locations and estimating target destinations for the
pedestrians within the system. This was established by, once again considering the
average error per agent, as well as considering the changes made by the filter to the
distribution of destinations across the ensemble for the agents representing a given ped-
estrian. It was, however, found that the gate number estimation approach performed
more reliably with respect to correctly identifying destinations for the pedestrians.

Whilst this chapter has largely focused on the use of the EnKF to estimate pedes-
trian destinations, this has ramifications for the inference of latent attributes in Agent-
Based Models more generally, particularly those that are categorical. When using
Agent-Based Models, there may be features of agents that are neither known with cer-
tainty from the outset of the simulation, nor observed over the course of the simulation
run. In scenarios where such systems are run in an “off-line” manner, this may not
be a significant problem as we are more likely to consider average behaviours; when
considering “on-line” scenarios, however, this may have a much larger impact.

Having demonstrated the efficacy with which the EnKF can simulate the motion
of pedestrians across an environment and estimate unobserved parameters such as
destination gates in this chapter, the next chapter goes on to conclude this thesis. This

190

7.4 Concluding Remarks

will summarise the work undertaken here, draw comparisons with other relevant pieces
of work identified in the Literature Review, and suggest a set of future investigations
to deal with limitations of this investigation and further expand on this novel research
field.

191

Chapter 8

Conclusions

192

In Chapter 1, a set of research objectives were outlined. The objectives were as follows:

1. Review the literature around the simulation of pedestrian dynamics with a par-
ticular focus on simulation at close to real-time.

2. Describe the modelling approaches used to simulate pedestrian systems in this
investigation.

3. Describe the data assimilation approaches used to update models in this invest-
igation.

4. Apply the Ensemble Kalman Filter to improve estimates of pedestrian locations
in simple Agent-Based Models to show that such approaches can be used with
systems other than those that are described by systems of differential equations.

5. Apply the Ensemble Kalman Filter to improve estimates of pedestrian locations in
more realistic Agent-Based Models to show that such approaches are also effective
when to systems that more closely reflect reality.

6. Apply the Ensemble Kalman Filter to improve estimates of both observed and
unobserved variables in an Agent-Based Model to show that such approaches
are effective in simultaneously performing state and parameter estimation for
pedestrian systems.

The overarching theme of these objectives was the development of a method for the
integration of real-time observations into an Agent-Based Model of pedestrian motion
such that the model could be run in an ‘online’ manner. This investigation sits within
a relatively new field of research, with few other prior works seeking to address the
problems herein; as such, the results of this investigation represent a novel piece of work.
Over the course of this investigation, the Ensemble Kalman Filter (EnKF) method of
data assimilation was found to be effective in integrating real-time observations into an
Agent-Based Model of pedestrian motion, both in the case of a toy model (Chapter 5)
and a model which is grounded in a real-world setting (Chapter 6 and 7).

This chapter, acting as a conclusion to this investigation, shall summarise the res-
ults of the various efforts that have been undertaken to achieve these objectives. This
will consist of a section summarising the results of the chapters, an evaluation of these
results and some recommendations for future work which should follow this investiga-
tion.

193

8.1 Summary of Results

8.1 Summary of Results

This section aims to summarise the results of this investigation, and in doing so ad-
dresses Objectives 4, 5 and 6.

The first of these objectives — Objective 4 — was addressed in Chapter 5. In
this chapter, we sought to show that the EnKF was effective in improving estimates
of pedestrian locations over time in a simple Agent-Based Model. This involved un-
dertaking a series of experiments. The first of these aimed to establish a benchmark
for performance when an ensemble of models was used to simulate pedestrians crossing
the environment without the assimilation of data. This was carried out by considering
the average error per pedestrian across the agents in the average model state across the
ensemble. This experiment showed that, whilst the average error per pedestrian was
low at the beginning and end of the simulation run, an increase in error was observed
between these times. This resulted from the randomness of agent-agent interactions
whereby agents attempting to proceed from their origin to their destination who were
obstructed by other agents would attempt to bypass them by sidestepping perpendic-
ular to their direction of travel; the direction of the sidestep is a binomial trial-like
choice, with each direction carrying equal probability. The number of these sidesteps
(characterised as collisions in Chapter 5) was seen to grown disproportionately as the
population size grew. Following this, the EnKF was introduced. For the same ensemble
size and population size, the filter was found to improve the accuracy with which the
ensemble of models simulated the underlying system. Finally, the impact of different
filter parameters was considered. The parameters in question were the ensemble size,
the assimilation period and the standard deviation associated with the error in the
observations. As was observed in previous investigations using the EnKF, it was found
that:

• An increase in the ensemble size results in a reduction in the error;

• An increase in the assimilation period results in an increased in the error;

• An increase in the observation error standard deviation results in an increase in
the error.

Following this, the EnKF was applied to the StationSim GCS model. This model
sought to expand upon the toy model used in the previous chapter which was somewhat

194

8.1 Summary of Results

limited in the types of agent interactions that it incorporated, the way in which it
separated entrances and exits and the exclusion of any environmental obstacles. Just
as with the previous model, a set of benchmarks were established to show how an
ensemble of models performed without any data assimilation. The filter was then
applied to this model. In applying the filter to the model, two additional challenges
were considered, focussing on how outlier simulations impacted summary statistics.
Outliers were seen to occur with respect to both error magnitude and time taken for
simulations to finish running. As a consequence, the approach to processing results was
updated to account for these problems, choosing to take the median error instead of the
mean error (handling error outliers) and finishing simulations when 90% of models have
completed (handling time outliers). When applying the filter to StationSim GCS with
these adjustments, it was found that it was effective in improving the accuracy with
which the ensemble of models simulated the system, outperforming the benchmarking
ensemble of models.

The final results chapter went on to highlight a key problem with the previous two
results chapters — namely that we had assumed perfect knowledge of latent pedestrian
attributes — and sought to provide solutions to this problem. In reality, we seldom
have perfect knowledge regarding such attributes (such as pedestrian destination). We
therefore sought to use the EnKF to infer such latent variables. This introduced two
challenges.

The first of these raised the question of how we go about encoding prior knowledge
regarding such unobserved quantities in our ensemble of models. It was proposed that
we could encode the uncertainty in our knowledge by using different schemes to al-
located initial destinations to agents across the ensemble of models, either encoding a
complete lack of knowledge by choosing destinations using a uniform random distribu-
tion across all gates in the environment, or encoding an limited knowledge of pedestrians
destinations by using a random uniform distribution across the true destination gate
and a limited number of adjacent gates.

The second of these raise the question of how we go about using the filter to infer
unobserved quantities, particularly given that the quantities are discrete/categorical
variables in the case of pedestrian destinations. It was proposed that we could use
the state augmentation approach, whereby unobserved parameters are included in the
state vector. To achieve this, two approaches for encoding destinations were proposed.

195

8.2 Evaluation

The first of these opted to simply add the number of the gate to which each pedestrian
was headed to the state vector. The second opted to coerce the problem from one of
a problem of inferring categorical variables to one of inferring continuous variables —
something that is more common in typical data assimilation fields of application; this
was achieved by considering the angle between the centre of the environment and the
point on the edge of the environment towards which a pedestrian was headed.

In each of the cases, the EnKF was found to be effective in both improving the
location estimates of pedestrians within the environment and in inferring the pedestrian
destinations, showing the suitability of the method of the inference of latent parameters
in Agent-Based Models.

8.2 Evaluation

Over the course of this investigation, the EnKF has been shown to be effective in
improving the accuracy with which an ensemble of models simulate a pedestrian system,
both when considering the fictitious toy model and when considering the mode realistic
StationSim GCS. This is largely in agreement with the limited number of investigations
which have sought to apply other data assimilation schemes to similar scenarios. Of
these other investigations, some have sought to apply to Particle Filter (Malleson et al.,
2020; Ternes et al., 2021) and others have sought to apply the Unscented Kalman
Filter (Clay et al., 2020, 2021).

One of the issues noted when reviewing the literature in Chapter 2 and outlining the
data assimilation methods in Chapter 4 was the ways in which the number of ensemble-
member models/particles varied across the Particle Filter and EnKF. Typically, it has
been observed that when dealing with systems in which the transformations are linear
and in which errors are Gaussian-distributed, the EnKF requires smaller ensemble
sizes to achieve the same degree of error. Whilst this investigation has not explicitly
explored whether these conditions have been met, it is noticeable that, when comparing
the results of Chapter 5 with the results produced with the Particle Filter by Malleson
et al. (2020), the number of particles used in the Particle Filter investigation is much
larger than the ensemble sizes used in this investigation; whilst the EnKF used in
Chapter 5 uses ensemble sizes of < 100 models, the Particle Filter investigation uses up
to 10, 000 particles to produce results with comparable population sizes. This disparity
in ensemble sizes was also noticeable when comparing the investigation by Ternes et al.

196

8.2 Evaluation

(2021) which sought to apply the Particle Filter to StationSim GCS whilst also handling
latent pedestrian parameters as in Chapter 7, with the Particle Filter investigation using
5, 000 particles and our EnKF using 100 ensemble-member models. In the case of the
Particle Filter investigation, however, population sizes were much larger, and the filter
was tasked with handling uncertainty in both the pedestrian speeds and destinations
whilst this investigations only considered a single latent variable for each pedestrian —
its destination.

One of the shortcomings of this investigation is the data used. Whilst real-world
observations have been used in the model calibration process outlined in Chapter 3,
the data used in the assimilation process have been synthetic, i.e. a base model has
been used to generate a ground truth, and synthetic observations have been produced
by adding Gaussian noise to these model states. The pedestrian trajectories across the
environment in the model are largely linear except when pedestrians employ avoidance
(i.e. sidestepping); this is not always the case in the real-world. As Ternes et al. (2021)
notes, when working with real-world observations, we are likely to find some trajectories
which are distinctly non-linear.

A further shortcoming is the assumption of perfect coverage in observations at each
assimilation time-step. In this investigation, the observations generated have been at
an individual-level, and have covered all of the pedestrians being modelled; this may not
always be the case. A more common scenario is one in which we have have intermittent
observations of the locations of a portion of the population (e.g. mobile phone data) or
aggregated observations (e.g. pedestrian count data generate by cameras). The former
case has not been considered here, but has been considered in investigations using
the related Unscented Kalman Filter (Clay et al., 2020) which found the filter to be
successful in handling the lack of information.

When exploring the use of different summary statistics for calculating errors in
Chapter 6, it was noted that for that purpose, taking the median instead of the mean
was a more appropriate summary statistic as it helped to alleviate issues with ensemble-
member models which acted as outliers in the calculation of the average error. In
a similar vein, it may have been of value to explore the use of different summary
statistics when reducing an ensemble of models down to a single representative state.
In this investigation, we have defaulted to taking the mean of the ensemble-member
models. It is possible, however, that this could produced non-viable trajectories; when

197

8.3 Recommendations for Future Work

when applying the EnKF to stationsim gcs, this may produced trajectories that pass
through the obstacle in the centre of the environment. It may, therefore, be more
appropriate to use a different summary statistic such as the median to ensure that the
representative average state that is produced is, in fact, a viable state which is found
in at least one of the ensemble-member models.

A further issue regarding the summarisation of ensemble-member models into a
single representative state may also occur in the process of inferring the pedestrians’
destinations in Chapter 7. In this scenario we were attempting to infer locations around
a (topologically) circular environment. The approaches used, however, may not suf-
ficiently handle the circular nature of the environment. We may consider a scenario
where we have a single pedestrians positioned near the centre of the environment which
is represented by an EnKF containing two models which seeks to infer the pedestrian’s
destination by estimating the angle of the destination. One of the ensemble-member
models may estimate that the target destination is at an angle of θ = −3π

4 , whilst the
other may estimate the angle to be θ = 3π

4 . In such a scenario the ensemble average
would lead the pedestrian to a destination located at θ = 0 where it is more likely that
an appropriate average destination would be θ = π. One way of facilitating these types
of calculations might be the use of circular statistics (Jammalamadaka and Sengupta,
2001).

Finally, it should be noted that this investigation has largely dealt with the two
sources of uncertainty, i.e. uncertainty resulting from agent-agent interactions (Chapter 6)
and uncertainty resulting from lack of knowledge regarding agent destinations (Chapter 7),
in isolation of each other. This is evidenced by the relatively small population sizes
employed in Chapter 7.

With these points in mind, the following section seeks to outline a programme of
suggested future work which may seek to expand on the present investigation.

8.3 Recommendations for Future Work

Having offered some critique of this investigation in the previous section, this section
seeks to outline a ideas for future work which might alleviate some of these issues, and
may expand upon what has been presented herein.

In the previous section, we mention the limitation of not using real-world data in
the data assimilation process, and only in the calibration process. One of the primary

198

8.3 Recommendations for Future Work

recommendations for future work would, therefore, be to expand this suite of work to
make use of real-world trace data when performing assimilation. The introduction of
real-world data into the process may be undertaken incrementally, starting with basic
examples and expanding to situations which exhibit greater degrees of complexity as
in this investigation. As noted by Ternes et al. (2021), this brings with it substantial
challenges when we encounter pedestrians who take paths between their origin and
destination which are particularly non-linear. Such a set of experiments will likely
draw into question the validity of the model being used — does it truly capture the
behaviour of the pedestrians being simulated? In order to address this, we may wish
to undertake a more data-driven model development process.

In such a scenario, we must also address the question of how we go about assess-
ing filter performance; in this investigation, error was calculated by considering the
ensemble mean and the ground truth generated from a base model, but when dealing
with real-world traces we would not have a base model against which to compare. One
solution may be to consider the observations as the ground truth and generate data
to assimilate into the ensemble by adding noise to them (just as has been done in this
investigation).

Another way in which this investigation could be expanded upon is through a more
in-depth exploration of the different ways in which we encode our prior knowledge re-
garding latent variables. In Chapter 7, we considered a set of approaches which either
assumed no knowledge of the pedestrians’ destinations (Random Across Ensemble) or
perfect knowledge with some limited random noise attached (Adjacent). This could be
expanded upon one two fronts. Given that this investigation focused on the inference
of categorical latent variables, one extension of the investigation could be task the fil-
ter with estimating continuous unobserved variables too, as was undertaken by Ternes
et al. (2021); it is expected, however, that the inference of a continuous variable be-
ing a problem to which data assimilation schemes are more commonly applied would
mean that this would not be particularly challenging. The next extension may seek
to explore the way in which a filter’s ability to correctly infer latent variables depends
on the way in which the uncertainty in the prior knowledge is represented. In this
investigation two approaches for encoding prior uncertainty were presented — one in
which no prior knowledge was assumed, and one in which near-perfect knowledge was
assumed. Neither of these approaches have considered a way of encoding knowledge

199

8.3 Recommendations for Future Work

which was derived from empirical data analysis, which is likely to result in a scenario
which lies somewhere between the two approaches used in this investigation. Such a
representation of uncertainty in knowledge could be arrived at by analysing the ped-
estrian trace data used in the calibration phase to devise an origin-destination matrix
which would determine the random distribution used to draw pedestrian destinations
base on the gate through which they enter the system.

A further way in which this investigation could be extended is through the use
of other approaches to estimating latent variables. Whilst there may exist other ap-
proaches to using the EnKF to infer latent variables beyond state augmentation (Katz-
fuss et al., 2016), we may also wish explore approaches which help to infer these variables
outside of the filter. If considering the specific scenario presented Chapter 7 in which
we wish to infer the pedestrians’ destinations, we could consider a very simple approach
whereby we fit a straight line to the observations of each pedestrian, project the line
forwards (following the procession of time over which the observations were collected),
find the point at which this extended line meets the boundary of the environment and
identify the nearest gate to this point. This approach, however, would likely not ex-
tend well to inference of other latent variables when apply an Agent-Based Model in
conjunction with a data assimilation scheme. A more general approach which would
likely be more conducive to the inference of categorical latent variables would be to use
a Hidden Markov Model (Rabiner and Juang, 1986) — something that was attempted
by Rai and Hu (2013). Hidden Markov Models seek to learn about the dynamics of
an unobservable system using a set of observable states which are in some way influ-
enced or controlled by the underlying system. In the case of the destination inference
problem studied in this investigation, this would involve inferring the destination of
the unobserved pedestrian destinations based on the observed pedestrian locations over
time.

A final way in which this investigation could be extended is through direct com-
parison with other data assimilation methods. So far, each of the EnKF, Unscented
Kalman Filter (Clay et al., 2020, 2021) and the Particle Filter (Malleson et al., 2020;
Ternes et al., 2021) have been applied to similar pedestrian Agent-Based models. Their
comparative strengths and weaknesses are well documented; however, the situations in
which these are meaningful has not been explored in the setting of Agent-Based Models
of pedestrian systems. As an example, we may consider the assumption of Gaussian

200

8.4 Concluding Remarks

error distributions in Kalman Filter-based approaches — when this is satisfied such
filters should be optimal and as such should rival the performance of a Particle Filter
with the requirement of less computational cost. In order to test this, we would need to
assess the extent to which error distributions in our ensemble of Agent-Based Models
are Gaussian, and if they are not also explore the ramifications for the trade-off between
filter performance and ensemble size.

8.4 Concluding Remarks

This chapter has sought to provide an overview of the results of the investigation presen-
ted in this thesis, noting the limitations and offering some ideas for future work. Over
the course of the investigation, we have presented a novel approach to running Agent-
Based Models of pedestrian systems in an “on-line” manner. Running such models at
close to real-time has previously been a significant challenge due to the lack of estab-
lished methodology for incorporating streamed data into models. This investigation
offers a potential avenue by which to solve this problem in the form of the EnKF data
assimilation scheme. The application of data assimilation methods to Agent-Based
Models of pedestrian systems is still a very you and expanding field of research; this
investigation has, therefore, sought to address some of the open problems which are
faced by those in the field. Whilst this investigation has been largely successful, there
still remain challenges that need to be addressed. It is hoped that, with the resolu-
tion of such problems, “on-line” Agent-Based Models which receive streamed data from
pedestrian systems may be operationalised such that they may be used by practitioners
and policy makers to offer services in a more data-driven manner.

201

Appendix A

Supplementary Calibration Figures

202

This appendix contains all of the extra figures relating to the calibration of StationSim GCS.
This complements the analysis undertaken in Chapter 3 (specifically Section 3.2.2).

0 2000 4000 6000 8000 10000 12000
Frames

0

20

40

60

80

Nu
m

be
r o

f p
ed

es
tri

an
s i

n
ob

se
rv

ed
 e

nv
iro

nm
en

t

Birth rate = 1.0

Model
Data
max=85

Figure A.1: Variation of number of agents in the system over time for λ = 1.0

203

0 2500 5000 7500 10000 12500 15000 17500 20000
Frames

0

20

40

60

80

Nu
m

be
r o

f p
ed

es
tri

an
s i

n
ob

se
rv

ed
 e

nv
iro

nm
en

t
Birth rate = 1.1

Model
Data
max=85

Figure A.2: Variation of number of agents in the system over time for λ = 1.1

0 2500 5000 7500 10000 12500 15000 17500 20000
Frames

0

20

40

60

80

Nu
m

be
r o

f p
ed

es
tri

an
s i

n
ob

se
rv

ed
 e

nv
iro

nm
en

t

Birth rate = 1.2

Model
Data
max=85

Figure A.3: Variation of number of agents in the system over time for λ = 1.2

204

0 2500 5000 7500 10000 12500 15000 17500 20000
Frames

0

20

40

60

80

Nu
m

be
r o

f p
ed

es
tri

an
s i

n
ob

se
rv

ed
 e

nv
iro

nm
en

t
Birth rate = 1.3

Model
Data
max=85

Figure A.4: Variation of number of agents in the system over time for λ = 1.3

0 2500 5000 7500 10000 12500 15000 17500 20000
Frames

0

20

40

60

80

Nu
m

be
r o

f p
ed

es
tri

an
s i

n
ob

se
rv

ed
 e

nv
iro

nm
en

t

Birth rate = 1.4

Model
Data
max=85

Figure A.5: Variation of number of agents in the system over time for λ = 1.4

205

0 2500 5000 7500 10000 12500 15000 17500 20000
Frames

0

20

40

60

80

Nu
m

be
r o

f p
ed

es
tri

an
s i

n
ob

se
rv

ed
 e

nv
iro

nm
en

t
Birth rate = 1.5

Model
Data
max=85

Figure A.6: Variation of number of agents in the system over time for λ = 1.5

0 2500 5000 7500 10000 12500 15000 17500 20000
Frames

0

20

40

60

80

Nu
m

be
r o

f p
ed

es
tri

an
s i

n
ob

se
rv

ed
 e

nv
iro

nm
en

t

Birth rate = 1.6

Model
Data
max=85

Figure A.7: Variation of number of agents in the system over time for λ = 1.6

206

0 2500 5000 7500 10000 12500 15000 17500 20000
Frames

0

20

40

60

80

Nu
m

be
r o

f p
ed

es
tri

an
s i

n
ob

se
rv

ed
 e

nv
iro

nm
en

t
Birth rate = 1.7

Model
Data
max=85

Figure A.8: Variation of number of agents in the system over time for λ = 1.7

0 2500 5000 7500 10000 12500 15000 17500 20000
Frames

0

20

40

60

80

Nu
m

be
r o

f p
ed

es
tri

an
s i

n
ob

se
rv

ed
 e

nv
iro

nm
en

t

Birth rate = 1.8

Model
Data
max=85

Figure A.9: Variation of number of agents in the system over time for λ = 1.8

207

0 2500 5000 7500 10000 12500 15000 17500 20000
Frames

0

20

40

60

80

Nu
m

be
r o

f p
ed

es
tri

an
s i

n
ob

se
rv

ed
 e

nv
iro

nm
en

t
Birth rate = 1.9

Model
Data
max=85

Figure A.10: Variation of number of agents in the system over time for λ = 1.9

0 2500 5000 7500 10000 12500 15000 17500 20000
Frames

0

20

40

60

80

100

Nu
m

be
r o

f p
ed

es
tri

an
s i

n
ob

se
rv

ed
 e

nv
iro

nm
en

t

Birth rate = 2.0
Model
Data
max=85

Figure A.11: Variation of number of agents in the system over time for λ = 2.0

208

Appendix B

Model Subprocesses

209

Start; input time
interval

Calculate direction of
agent movement

End

Update location

Figure B.1: Flow diagram showing StationSim GCS agent movement process.

210

Calculate distance
from wall

Calculate perturbation

Get location for gate

Return x-y coordinate

Gate on left or
right wall?

Add perturbation to y-
coordinate

Add perturbation to x-
coordinate

Gate on left
wall?

Gate on top
wall?

Yes No

Input gate number

Add distance from
wall to x-coordinate

Subtract distance from
wall to x-coordinate

Subtract distance from
wall to x-coordinate

Add distance from
wall to x-coordinate

Yes

YesNo

No

Figure B.2: Flow diagram showing StationSim GCS agent location allocation process.

211

Start

End

max speed <=
model min speed?

Yes

No

Set agent max speed
to 0

Draw new random
max speed

Create array of
speeds between the
max and model min

Choose random
speed from array

Figure B.3: Flow diagram showing StationSim GCS agent speed allocation process.

212

Start

End

Agent inactive?

Generate k-d tree of
active agent locations

Model time >
activation time?

i = 0

i < 10?

Activate agent

i += 1

Generate potential
entrance location

Active
neighbouring

agents?

No

No

No

No

Yes

Yes

Yes

Yes

Figure B.4: Flow diagram showing StationSim GCS agent activation checking process.

213

Start

Yes

No

Calculate distance to
target destination

distance <
gate_space?

Deactivate agent

End

Figure B.5: Flow diagram showing StationSim GCS agent deactivation checking pro-
cess.

Start

Choose random gate

Return gate number

Figure B.6: Flow diagram showing StationSim GCS agent entrance-choice process.

214

Start

Choose random gate

Return gate number

Entrance ==
exit?

Yes

No

Figure B.7: Flow diagram showing StationSim GCS agent exit-choice process.

215

Start; input other
agent

Calculate
displacement

between agents

Calculate direction of
both agents

Yes

No

Calculate delta

Calculate collision
distance threshold

Calculate relative
velocity vector

Calculate dot product
of displacement and

velocity

Dot product <0?

Return collision time

delta > 0?

Allocate initial
collision time

Calculate new
collision time

Yes

No

Figure B.8: Flow diagram showing StationSim GCS agent-agent collision process.

216

Start

Allocate initial
collision time

Yes

No

Calculate agent
direction

Calculate vertical and
horizontal velocity

components

Travelling
upwards?

Calculate time to top
wall

Calculate time to
bottom wall

Yes No

Allocate new collision
time

Time < initial
time?

Yes

Travelling
rightwards?

No

Calculate time to right
wall

Calculate time to left
wall

Yes No

Time < previous
time?

Allocate new collision
time Return collision time

Figure B.9: Flow diagram showing StationSim GCS agent-wall collision process.

217

Start

Allocate status as
inactive

Allocate entrance
gate

Allocate exit gate

Allocate entry location

Allocate speed

Allocate activation
time

End

Figure B.10: Flow diagram showing StationSim GCS agent initialisation process.

218

Start

Define environment
dimensions

Set up gates

Set up clock obstacle

End

Figure B.11: Flow diagram showing StationSim GCS station set-up process.

219

Start

Calculate movement
agent direction

Yes

No

Construct k-d tree of
agent positions

i = 0

i < 10?

End

Calculate
perpendicular wiggle

Calculate location
after perpendicular

movement

Check location
 is inside environment

Other agents
nearby? Clock nearby?No

Yes Yes

Allocate new location
No

Figure B.12: Flow diagram showing StationSim GCS wiggle process.

220

Bibliography

Aggleton, R., Ardila-Perez, L., Ball, F., Balzer, M., Boudoul, G., Brooke, J., Caselle,
M., Calligaris, L., Cieri, D., Clement, E., et al. (2017). An fpga based track finder
for the l1 trigger of the cms experiment at the high luminosity lhc. Journal of
Instrumentation, 12(12):P12019.

Amaral, L. A. and Ottino, J. M. (2004). Complex networks. The European physical
journal B, 38(2):147–162.

An, L., Grimm, V., Sullivan, A., Turner II, B., Malleson, N., Heppenstall, A., Vincenot,
C., Robinson, D., Ye, X., Liu, J., et al. (2021). Challenges, tasks, and opportunities
in modeling agent-based complex systems. Ecological Modelling, 457:109685.

An, L., Grimm, V., and Turner II, B. L. (2020). Meeting grand challenges in agent-
based models. Journal of Artificial Societies and Social Simulation, 23(1).

Andrews, C. J., Yi, D., Krogmann, U., Senick, J. A., and Wener, R. E. (2011). Design-
ing buildings for real occupants: An agent-based approach. IEEE Transactions on
Systems, Man, and Cybernetics-Part A: Systems and Humans, 41(6):1077–1091.

Arulampalam, M. S., Maskell, S., Gordon, N., and Clapp, T. (2002). A tutorial on
particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transac-
tions on signal processing, 50(2):174–188.

Auger, F., Hilairet, M., Guerrero, J. M., Monmasson, E., Orlowska-Kowalska, T., and
Katsura, S. (2013). Industrial applications of the kalman filter: A review. IEEE
Transactions on Industrial Electronics, 60(12):5458–5471.

Badham, J., Chattoe-Brown, E., Gilbert, N., Chalabi, Z., Kee, F., and Hunter, R. F.

221

BIBLIOGRAPHY

(2018). Developing agent-based models of complex health behaviour. Health & place,
54:170–177.

Bandini, S., Manzoni, S., and Vizzari, G. (2009). Agent based modeling and simulation:
an informatics perspective. Journal of Artificial Societies and Social Simulation,
12(4):4.

Bannister, R. (2017). A review of operational methods of variational and ensemble-
variational data assimilation. Quarterly Journal of the Royal Meteorological Society,
143(703):607–633.

Bar-Shalom, Y., Li, X. R., and Kirubarajan, T. (2004). Estimation with applications
to tracking and navigation: theory algorithms and software. John Wiley & Sons.

Batty, M. (2019). Urban analytics defined.

Batty, M., DeSyllas, J., and Duxbury, E. (2003a). The discrete dynamics of small-
scale spatial events: agent-based models of mobility in carnivals and street parades.
International Journal of Geographical Information Science, 17(7):673–697.

Batty, M., Desyllas, J., and Duxbury, E. (2003b). Safety in numbers? modelling crowds
and designing control for the notting hill carnival. Urban Studies, 40(8):1573–1590.

Bazghandi, A. (2012). Techniques, advantages and problems of agent based modeling
for traffic simulation. International Journal of Computer Science Issues (IJCSI),
9(1):115.

Bazzan, A. L. and Klügl, F. (2014). A review on agent-based technology for traffic and
transportation. The Knowledge Engineering Review, 29(3):375.

Beaumont, M. A. (2010). Approximate bayesian computation in evolution and ecology.
Annual review of ecology, evolution, and systematics, 41:379–406.

Birks, D. and Davies, T. (2017). Street network structure and crime risk: An
agent-based investigation of the encounter and enclosure hypotheses. Criminology,
55(4):900–937.

Boeing, G., Batty, M., Jiang, S., and Schweitzer, L. (2021). Urban analytics: History,
trajectory, and critique. Trajectory, and Critique (May 14, 2021).

222

BIBLIOGRAPHY

Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating
human systems. Proceedings of the national academy of sciences, 99(suppl 3):7280–
7287.

Burstedde, C., Klauck, K., Schadschneider, A., and Zittartz, J. (2001). Simulation
of pedestrian dynamics using a two-dimensional cellular automaton. Physica A:
Statistical Mechanics and its Applications, 295(3-4):507–525.

Carrassi, A., Bocquet, M., Bertino, L., and Evensen, G. (2018). Data assimilation in
the geosciences: An overview of methods, issues, and perspectives. Wiley Interdis-
ciplinary Reviews: Climate Change, 9(5):e535.

Chattaraj, U., Seyfried, A., and Chakroborty, P. (2009). Comparison of pedestrian
fundamental diagram across cultures. Advances in complex systems, 12(03):393–405.

Chen, H., Cheng, T., and Wise, S. (2017). Developing an online cooperative police
patrol routing strategy. Computers, Environment and Urban Systems, 62:19–29.

Chen, M., Mao, S., and Liu, Y. (2014). Big data: A survey. Mobile networks and
applications, 19(2):171–209.

Chen, X. and Zhan, F. B. (2014). Agent-based modeling and simulation of urban
evacuation: relative effectiveness of simultaneous and staged evacuation strategies.
In Agent-Based Modeling and Simulation, pages 78–96. Springer.

Clay, R., Kieu, L.-M., Ward, J. A., Heppenstall, A., and Malleson, N. (2020). Towards
real-time crowd simulation under uncertainty using an agent-based model and an
unscented kalman filter. In International Conference on Practical Applications of
Agents and Multi-Agent Systems, pages 68–79. Springer.

Clay, R., Ward, J. A., Ternes, P., Kieu, L.-M., and Malleson, N. (2021). Real-time
agent-based crowd simulation with the reversible jump unscented kalman filter. Sim-
ulation Modelling Practice and Theory, page 102386.

Cocucci, T. J., Pulido, M., Aparicio, J., Ruiz, J., Simoy, I., and Rosa, S. (2021). Infer-
ence in epidemiological agent-based models using ensemble-based data assimilation.
arXiv preprint arXiv:2111.00073.

223

BIBLIOGRAPHY

Collier, N. and Ozik, J. (2013). Test-driven agent-based simulation development. In
2013 winter simulations conference (WSC), pages 1551–1559. IEEE.

Cosgrove, J., Butler, J., Alden, K., Read, M., Kumar, V., Cucurull-Sanchez, L., Tim-
mis, J., and Coles, M. (2015). Agent-based modeling in systems pharmacology. CPT:
pharmacometrics & systems pharmacology, 4(11):615–629.

Crooks, A., Castle, C., and Batty, M. (2008). Key challenges in agent-based modelling
for geo-spatial simulation. Computers, Environment and Urban Systems, 32(6):417–
430.

Crooks, A. T. and Heppenstall, A. J. (2012). Introduction to agent-based modelling.
In Agent-based models of geographical systems, pages 85–105. Springer.

Doucet, A., Godsill, S., and Andrieu, C. (2000). On sequential monte carlo sampling
methods for bayesian filtering. Statistics and computing, 10(3):197–208.

Duboz, R., Versmisse, D., Travers, M., Ramat, E., and Shin, Y.-J. (2010). Application
of an evolutionary algorithm to the inverse parameter estimation of an individual-
based model. Ecological modelling, 221(5):840–849.

D’Orazio, M., Spalazzi, L., Quagliarini, E., and Bernardini, G. (2014). Agent-based
model for earthquake pedestrians’ evacuation in urban outdoor scenarios: Behavi-
oural patterns definition and evacuation paths choice. Safety science, 62:450–465.

Elfring, J., Torta, E., and van de Molengraft, R. (2021). Particle filters: A hands-on
tutorial. Sensors, 21(2):438.

Ellison, A. M. (2004). Bayesian inference in ecology. Ecology letters, 7(6):509–520.

Eppstein, M. J., Grover, D. K., Marshall, J. S., and Rizzo, D. M. (2011). An agent-
based model to study market penetration of plug-in hybrid electric vehicles. Energy
Policy, 39(6):3789–3802.

Etz, A. and Vandekerckhove, J. (2018). Introduction to bayesian inference for psycho-
logy. Psychonomic Bulletin & Review, 25(1):5–34.

Evensen, G. (2003). The ensemble kalman filter: Theoretical formulation and practical
implementation. Ocean dynamics, 53(4):343–367.

224

BIBLIOGRAPHY

Evensen, G. (2009). The ensemble kalman filter for combined state and parameter
estimation. IEEE Control Systems Magazine, 29(3):83–104.

Feng, X.-w., Yan, X.-f., and Hu, X.-l. (2015). Dynamic data driven particle filter for
agent-based traffic state estimation. In International Conference on Cloud Computing
and Security, pages 321–331. Springer.

Finnis, K. and Walton, D. (2006). Field observations of factors influencing walking
speeds. Ergonomics.

Gan, Y., Duan, Q., Gong, W., Tong, C., Sun, Y., Chu, W., Ye, A., Miao, C., and Di, Z.
(2014). A comprehensive evaluation of various sensitivity analysis methods: A case
study with a hydrological model. Environmental Modelling & Software, 51:269–285.

Ge, J. (2017). Endogenous rise and collapse of housing price: An agent-based model of
the housing market. Computers, Environment and Urban Systems, 62:182–198.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (1995). Bayesian data
analysis. Chapman and Hall/CRC.

Ghoulmie, F., Cont, R., and Nadal, J.-P. (2005). Heterogeneity and feedback in an
agent-based market model. Journal of Physics: condensed matter, 17(14):S1259.

Grewal, M. S. and Andrews, A. P. (2010). Applications of kalman filtering in aerospace
1960 to the present [historical perspectives]. IEEE Control Systems Magazine,
30(3):69–78.

Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., and Railsback,
S. F. (2010). The odd protocol: a review and first update. Ecological modelling,
221(23):2760–2768.

Gupta, A. and Pundir, N. (2015). Pedestrian flow characteristics studies: A review.
Transport Reviews, 35(4):445–465.

Hazelbag, C. M., Dushoff, J., Dominic, E. M., Mthombothi, Z. E., and Delva, W.
(2020). Calibration of individual-based models to epidemiological data: A systematic
review. PLoS computational biology, 16(5):e1007893.

Helbing, D. (1992). A fluid-dynamic model for the movement of pedestrians. Complex
systems, 6(5):391–415.

225

BIBLIOGRAPHY

Helbing, D., Buzna, L., Johansson, A., and Werner, T. (2005). Self-organized pedestrian
crowd dynamics: Experiments, simulations, and design solutions. Transportation
science, 39(1):1–24.

Helbing, D., Johansson, A., and Al-Abideen, H. Z. (2007). Dynamics of crowd disasters:
An empirical study. Physical review E, 75(4):046109.

Helbing, D. and Molnar, P. (1995). Social force model for pedestrian dynamics. Physical
review E, 51(5):4282.

Helbing, D., Molnár, P., Farkas, I. J., and Bolay, K. (2001). Self-organizing pedestrian
movement. Environment and planning B: planning and design, 28(3):361–383.

Hoogendoorn, S. and Bovy, P. (2003). Simulation of pedestrian flows by optimal control
and differential games. Optimal control applications and methods, 24(3):153–172.

Hoteit, I., Luo, X., and Pham, D.-T. (2012). Particle kalman filtering: A nonlinear
bayesian framework for ensemble kalman filters. Monthly weather review, 140(2):528–
542.

Houhamdi, Z. (2011). Multi-agent system testing: A survey. International Journal of
Advanced Computer, 2.

Ide, K., Courtier, P., Ghil, M., and Lorenc, A. C. (1997). Unified notation for data as-
similation: Operational, sequential and variational (gtspecial issueltdata assimilation
in meteology and oceanography: Theory and practice). Journal of the Meteorological
Society of Japan. Ser. II, 75(1B):181–189.

Jabot, F., Faure, T., and Dumoulin, N. (2013). Easy abc: performing efficient ap-
proximate bayesian computation sampling schemes using r. Methods in Ecology and
Evolution, 4(7):684–687.

Jammalamadaka, S. R. and Sengupta, A. (2001). Topics in circular statistics, volume 5.
world scientific.

Jazwinski, A. H. (1970). Mathematics in science and engineering. Stochastic processes
and filtering theory, 64.

226

BIBLIOGRAPHY

Julier, S. J. and Uhlmann, J. K. (1997). New extension of the kalman filter to nonlinear
systems. In Signal processing, sensor fusion, and target recognition VI, volume 3068,
pages 182–193. International Society for Optics and Photonics.

Julier, S. J., Uhlmann, J. K., and Durrant-Whyte, H. F. (1995). A new approach for
filtering nonlinear systems. In Proceedings of 1995 American Control Conference-
ACC’95, volume 3, pages 1628–1632. IEEE.

Jwo, D.-J. and Lai, C.-N. (2008). Unscented kalman filter with nonlinear dynamic
process modeling for gps navigation. GPS solutions, 12(4):249–260.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.
Journal of basic Engineering, 82(1):35–45.

Kalman, R. E. and Bucy, R. S. (1961). New results in linear filtering and prediction
theory. Journal of basic engineering, 83(1):95–108.

Kalnay, E. (2003). Atmospheric modeling, data assimilation and predictability. Cam-
bridge university press.

Kalnay, E., Li, H., Miyoshi, T., Yang, S.-C., and Ballabrera-Poy, J. (2007). 4-d-
var or ensemble kalman filter? Tellus A: Dynamic Meteorology and Oceanography,
59(5):758–773.

Katzfuss, M., Stroud, J. R., and Wikle, C. K. (2016). Understanding the ensemble
kalman filter. The American Statistician, 70(4):350–357.

Kavak, H., Padilla, J. J., Lynch, C. J., and Diallo, S. Y. (2018). Big data, agents,
and machine learning: towards a data-driven agent-based modeling approach. In
Proceedings of the Annual Simulation Symposium, pages 1–12.

Keller, N. and Hu, X. (2016). Data driven simulation modeling for mobile agent-based
systems. In 2016 Symposium on Theory of Modeling and Simulation (TMS-DEVS),
pages 1–8. IEEE.

Keller, N. and Hu, X. (2019). Towards data-driven simulation modeling for mobile
agent-based systems. PhD thesis.

Kennedy, W. G. (2012). Modelling human behaviour in agent-based models. In Agent-
based models of geographical systems, pages 167–179. Springer.

227

BIBLIOGRAPHY

Kieu, L.-M., Malleson, N., and Heppenstall, A. (2020). Dealing with uncertainty
in agent-based models for short-term predictions. Royal Society open science,
7(1):191074.

Kinny, D., Georgeff, M., and Rao, A. (1996). A methodology and modelling technique
for systems of bdi agents. In European workshop on modelling autonomous agents in
a multi-agent world, pages 56–71. Springer.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated
annealing. science, 220(4598):671–680.

Kitazawa, K. and Batty, M. (2004). Pedestrian behaviour modelling.

Kretz, T., Grünebohm, A., Kaufman, M., Mazur, F., and Schreckenberg, M. (2006).
Experimental study of pedestrian counterflow in a corridor. Journal of Statistical
Mechanics: Theory and Experiment, 2006(10):P10001.

Li, S., Dragicevic, S., Castro, F. A., Sester, M., Winter, S., Coltekin, A., Pettit, C.,
Jiang, B., Haworth, J., Stein, A., et al. (2016). Geospatial big data handling theory
and methods: A review and research challenges. ISPRS journal of Photogrammetry
and Remote Sensing, 115:119–133.

Li, S., Sayed, T., Zaki, M. H., Mori, G., Stefanus, F., Khanloo, B., and Saunier, N.
(2012). Automated collection of pedestrian data through computer vision techniques.
Transportation research record, 2299(1):121–127.

Liu, S., Lo, S., Ma, J., and Wang, W. (2014). An agent-based microscopic pedes-
trian flow simulation model for pedestrian traffic problems. IEEE Transactions on
Intelligent Transportation Systems, 15(3):992–1001.

Lueck, J., Rife, J. H., Swarup, S., and Uddin, N. (2019). Who goes there? using an
agent-based simulation for tracking population movement. In 2019 Winter Simula-
tion Conference (WSC), pages 227–238. IEEE.

Lysenko, M. and D’Souza, R. M. (2008). A framework for megascale agent based model
simulations on graphics processing units. Journal of Artificial Societies and Social
Simulation, 11(4):10.

228

BIBLIOGRAPHY

Macal, C. M. (2016). Everything you need to know about agent-based modelling and
simulation. Journal of Simulation, 10(2):144–156.

Macal, C. M. and North, M. J. (2005). Tutorial on agent-based modeling and sim-
ulation. In Proceedings of the Winter Simulation Conference, 2005., pages 14–pp.
IEEE.

Maeda, T., Obara, K., Shinohara, M., Kanazawa, T., and Uehira, K. (2015). Successive
estimation of a tsunami wavefield without earthquake source data: A data assimil-
ation approach toward real-time tsunami forecasting. Geophysical Research Letters,
42(19):7923–7932.

Maffei, S., Leoni, F., and Villari, B. (2020). Data-driven anticipatory governance.
emerging scenarios in data for policy practices. Policy Design and Practice, 3(2):123–
134.

Malleson, N., Minors, K., Kieu, L.-M., Ward, J. A., West, A., and Heppenstall, A.
(2020). Simulating crowds in real time with agent-based modelling and a particle
filter. Journal of Artificial Societies and Social Simulation, 23(3):3.

Mandel, J., Cobb, L., and Beezley, J. D. (2011). On the convergence of the ensemble
kalman filter. Applications of Mathematics, 56(6):533–541.

Marinică, N. E., Sarlette, A., and Boel, R. K. (2013). Distributed particle filter for
urban traffic networks using a platoon-based model. IEEE Transactions on Intelligent
Transportation Systems, 14(4):1918–1929.

Martinez-Gil, F., Lozano, M., Garćıa-Fernández, I., and Fernández, F. (2017). Model-
ing, evaluation, and scale on artificial pedestrians: a literature review. ACM Com-
puting Surveys (CSUR), 50(5):1–35.

McDougall, D. and Moore, R. O. (2017). Optimal strategies for the control of autonom-
ous vehicles in data assimilation. Physica D: Nonlinear Phenomena, 351:42–52.

McKay, M. D., Beckman, R. J., and Conover, W. J. (1979). Comparison of three meth-
ods for selecting values of input variables in the analysis of output from a computer
code. Technometrics, 21(2):239–245.

229

BIBLIOGRAPHY

Motter, A. E., Mat́ıas, M. A., Kurths, J., and Ott, E. (2006). Dynamics on complex
networks and applications.

Navon, I. M. (2009). Data assimilation for numerical weather prediction: a review.
Data assimilation for atmospheric, oceanic and hydrologic applications, pages 21–65.

Nguyen, C. D., Perini, A., Bernon, C., Pavón, J., and Thangarajah, J. (2009). Test-
ing in multi-agent systems. In International Workshop on Agent-Oriented Software
Engineering, pages 180–190. Springer.

Oloo, F. and Wallentin, G. (2017). An adaptive agent-based model of homing pigeons:
A genetic algorithm approach. ISPRS International Journal of Geo-Information,
6(1):27.

Orlande, H., Colaço, M., Dulikravich, G., Vianna, F., Silva, W., Fonseca, H., and
Fudym, O. (2011). Kalman and particle filters. METTI V-Thermal Measurements
and Inverse Techniques.

Pearson, J. B. and Stear, E. B. (1974). Kalman filter applications in airborne radar
tracking. IEEE Transactions on Aerospace and Electronic systems, (3):319–329.

Psyllidis, A., Bozzon, A., Bocconi, S., and Bolivar, C. T. (2015). A platform for urban
analytics and semantic data integration in city planning. In International conference
on computer-aided architectural design futures, pages 21–36. Springer.

Rabiner, L. and Juang, B. (1986). An introduction to hidden markov models. ieee assp
magazine, 3(1):4–16.

Rai, S. and Hu, X. (2013). Behavior pattern detection for data assimilation in agent-
based simulation of smart environments. In 2013 IEEE/WIC/ACM International
Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies
(IAT), volume 2, pages 171–178. IEEE.

Railsback, S. F. and Harvey, B. C. (2002). Analysis of habitat-selection rules using an
individual-based model. Ecology, pages 1817–1830.

Railsback, S. F., Lamberson, R. H., Harvey, B. C., and Duffy, W. E. (1999). Movement
rules for individual-based models of stream fish. Ecological Modelling, 123(2-3):73–89.

230

BIBLIOGRAPHY

Rao, A. S., Georgeff, M. P., et al. (1995). Bdi agents: from theory to practice. In
Icmas, volume 95, pages 312–319.

Ribeiro, M. I. (2004). Kalman and extended kalman filters: Concept, derivation and
properties. Institute for Systems and Robotics, 43:46.

Rosés, R., Kadar, C., and Malleson, N. (2021). A data-driven agent-based simulation
to predict crime patterns in an urban environment. Computers, Environment and
Urban Systems, 89:101660.

Ruiz, J. J., Pulido, M., and Miyoshi, T. (2013). Estimating model parameters with
ensemble-based data assimilation: A review. Journal of the Meteorological Society of
Japan. Ser. II, 91(2):79–99.

Saltelli, A. (1999). Sensitivity analysis: Could better methods be used? Journal of
Geophysical Research: Atmospheres, 104(D3):3789–3793.

Saltelli, A. (2002). Sensitivity analysis for importance assessment. Risk analysis,
22(3):579–590.

Saltelli, A., Tarantola, S., and Campolongo, F. (2000). Sensitivity analysis as an in-
gredient of modeling. Statistical Science, pages 377–395.

Särkkä, S. (2013). Bayesian filtering and smoothing. Number 3. Cambridge University
Press.

Schadschneider, A. (2002). Cellular automaton approach to pedestrian dynamics-
theory. Pedestrian and Evacuation Dynamics, pages 75–85.

Schadschneider, A., Klüpfel, H., Kretz, T., Rogsch, C., and Seyfried, A. (2009). Funda-
mentals of pedestrian and evacuation dynamics. In Multi-Agent Systems for Traffic
and Transportation Engineering, pages 124–154. IGI Global.

Schadschneider, A. and Seyfried, A. (2011). Empirical results for pedestrian dynamics
and their implications for modeling. Networks & heterogeneous media, 6(3):545.

Schmidt, B. (2005). Human factors in complex systems: The modelling of human
behaviour. Simulation in wider Europe, 19th European Conferance on Modelling and
Simulation, pages 5–14.

231

BIBLIOGRAPHY

Schulze, J., Müller, B., Groeneveld, J., and Grimm, V. (2017). Agent-based modelling
of social-ecological systems: achievements, challenges, and a way forward. Journal
of Artificial Societies and Social Simulation, 20(2).

Seyfried, A., Steffen, B., Klingsch, W., and Boltes, M. (2005). The fundamental diagram
of pedestrian movement revisited. Journal of Statistical Mechanics: Theory and
Experiment, 2005(10):P10002.

Smith, G. L., Schmidt, S. F., and McGee, L. A. (1962). Application of statistical filter
theory to the optimal estimation of position and velocity on board a circumlunar
vehicle. National Aeronautics and Space Administration.

Stanislaw, H. (1986). Tests of computer simulation validity: what do they measure?
Simulation & Games, 17(2):173–191.

Steffen, B. and Seyfried, A. (2010). Methods for measuring pedestrian density, flow,
speed and direction with minimal scatter. Physica A: Statistical mechanics and its
applications, 389(9):1902–1910.

Still, K., Papalexi, M., Fan, Y., and Bamford, D. (2020). Place crowd safety, crowd
science? case studies and application. Journal of Place Management and Develop-
ment.

Sun, T., McMinn, P., Holcombe, M., Smallwood, R., and MacNeil, S. (2008). Agent
based modelling helps in understanding the rules by which fibroblasts support ker-
atinocyte colony formation. PloS one, 3(5):e2129.

Talagrand, O. (1997). Assimilation of observations, an introduction. Journal of the
Meteorological Society of Japan, 75(1B):191–209.

Terejanu, G. A. (2011). Unscented kalman filter tutorial. University at Buffalo, Buffalo.

Terejanu, G. A. et al. (2008). Extended kalman filter tutorial. University at Buffalo.

Ternes, P., Ward, J. A., Heppenstall, A., Kumar, V., Kieu, L.-M., and Malleson, N.
(2021). Data assimilation and agent-based modelling: towards the incorporation of
categorical agent parameters. Open Research Europe, 1(131):131.

232

BIBLIOGRAPHY

Thiele, J. C., Kurth, W., and Grimm, V. (2014). Facilitating parameter estimation and
sensitivity analysis of agent-based models: A cookbook using netlogo and r. Journal
of Artificial Societies and Social Simulation, 17(3):11.

Togashi, F., Misaka, T., Löhner, R., and Obayashi, S. (2020). Application of ensemble
kalman filter to pedestrian flow. Collective Dynamics, 5:467–470.

van der Vaart, E., Beaumont, M. A., Johnston, A. S., and Sibly, R. M. (2015). Calib-
ration and evaluation of individual-based models using approximate bayesian com-
putation. Ecological Modelling, 312:182–190.

van Veenstra, A. F. and Kotterink, B. (2017). Data-driven policy making: The policy
lab approach. In International conference on electronic participation, pages 100–111.
Springer.

Vermeulen, B., Müller, M., and Pyka, A. (2021). Social network metric-based inter-
ventions? experiments with an agent-based model of the covid-19 pandemic in a
metropolitan region. Journal of Artificial Societies and Social Simulation, 24(3).

Vermuyten, H., Beliën, J., De Boeck, L., Reniers, G., and Wauters, T. (2016). A
review of optimisation models for pedestrian evacuation and design problems. Safety
science, 87:167–178.

Von Toussaint, U. (2011). Bayesian inference in physics. Reviews of Modern Physics,
83(3):943.

Wagoum, A. K., Tordeux, A., and Liao, W. (2017). Understanding human queuing
behaviour at exits: an empirical study. Royal Society open science, 4(1):160896.

Wan, E. A., Van Der Merwe, R., and Haykin, S. (2001). The unscented kalman filter.
Kalman filtering and neural networks, 5(2007):221–280.

Wang, M. (2014). Data assimilation for agent-based simulation of smart environment.
PhD thesis.

Wang, M. and Hu, X. (2013). Data assimilation in agent based simulation of smart
environment. In Proceedings of the 1st ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation, pages 379–384. ACM.

233

BIBLIOGRAPHY

Wang, M. and Hu, X. (2015). Data assimilation in agent based simulation of smart
environments using particle filters. Simulation Modelling Practice and Theory, 56:36–
54.

Ward, J. A., Evans, A. J., and Malleson, N. S. (2016). Dynamic calibration of agent-
based models using data assimilation. Royal Society open science, 3(4):150703.

Whipp, A., Malleson, N., Ward, J., and Heppenstall, A. (2021). Estimates of the
ambient population: Assessing the utility of conventional and novel data sources.
ISPRS International Journal of Geo-Information, 10(3):131.

Wikle, C. K. and Berliner, L. M. (2007). A bayesian tutorial for data assimilation.
Physica D: Nonlinear Phenomena, 230(1-2):1–16.

Wu, C.-L. and Chen, Y. (2019). Effects of passenger characteristics and terminal
layout on airport retail revenue: an agent-based simulation approach. Transportation
Planning and Technology, 42(2):167–186.

Xiang, X., Kennedy, R., Madey, G., and Cabaniss, S. (2005). Verification and validation
of agent-based scientific simulation models. In Agent-directed simulation conference,
volume 47, page 55.

Yang, D., Yurtsever, E., Renganathan, V., Redmill, K. A., and Özgüner, Ü. (2021).
A vision-based social distancing and critical density detection system for covid-19.
Sensors, 21(13):4608.

Young, S. B. (1999). Evaluation of pedestrian walking speeds in airport terminals.
Transportation Research Record, 1674(1):20–26.

Zhang, H., Hendricks Franssen, H.-J., Han, X., Vrugt, J. A., and Vereecken, H. (2017).
State and parameter estimation of two land surface models using the ensemble kalman
filter and the particle filter. Hydrology and Earth System Sciences, 21(9):4927–4958.

Zhang, H., Vorobeychik, Y., Letchford, J., and Lakkaraju, K. (2016). Data-driven
agent-based modeling, with application to rooftop solar adoption. Autonomous
Agents and Multi-Agent Systems, 30(6):1023–1049.

234

BIBLIOGRAPHY

Zheng, Y., Capra, L., Wolfson, O., and Yang, H. (2014). Urban computing: con-
cepts, methodologies, and applications. ACM Transactions on Intelligent Systems
and Technology (TIST), 5(3):1–55.

Zhong, J., Cai, W., Luo, L., and Yin, H. (2015). Learning behavior patterns from
video: A data-driven framework for agent-based crowd modeling. In Proceedings of
the 2015 International Conference on Autonomous Agents and Multiagent Systems,
pages 801–809.

Zhou, B., Wang, X., and Tang, X. (2012). Understanding collective crowd behaviors:
Learning a mixture model of dynamic pedestrian-agents. In 2012 IEEE Conference
on Computer Vision and Pattern Recognition, pages 2871–2878. IEEE.

Zhou, Y., McLaughlin, D., and Entekhabi, D. (2006). Assessing the performance of the
ensemble kalman filter for land surface data assimilation. Monthly weather review,
134(8):2128–2142.

Zsifkovits, M. and Pham, T. (2017). Modelling and parameterizing pedestrian beha-
viour in public places: A review. International Journal of Simulation Modelling,
16(4):630–643.

235

	1 Introduction
	1.1 Aim and Objectives
	1.2 Thesis Outline

	2 Literature Review
	2.1 Pedestrian Dynamics
	2.1.1 Quantitative Measures
	2.1.2 Qualitative Phenomena
	2.1.3 Modelling Approaches

	2.2 Agent-Based Modelling
	2.2.1 Offline Agent-Based Modelling
	2.2.2 Challenges of Agent-Based Modelling

	2.3 Online Agent-Based Modelling
	2.3.1 Data Assimilation

	2.4 Concluding Remarks

	3 Models
	3.1 Toy Model
	3.2 StationSim_GCS
	3.2.1 Model Description
	3.2.2 Model Calibration
	3.2.3 Model Validation and Verification
	3.2.4 Sensitivity Analysis

	3.3 Concluding Remarks

	4 Data Assimilation
	4.1 Bayesian Inference and Data Assimilation
	4.2 Kalman Filter
	4.3 Ensemble Kalman Filter
	4.4 Other Data Assimilation Methods
	4.4.1 Sequential Methods
	4.4.2 Variational Methods

	4.5 Challenges of Data Assimilation with an Agent-Based Model
	4.6 Concluding Remarks

	5 Data Assimilation for Location Estimation: Toy Model
	5.1 Experimental Design
	5.1.1 Developing a Model Baseline
	5.1.2 Initial Implementation of the Ensemble Kalman Filter
	5.1.3 Exploring the Impact of Filter Parameters

	5.2 Results
	5.2.1 Developing a Model Baseline
	5.2.2 Initial Implementation of the Ensemble Kalman Filter
	5.2.3 Exploring the Impact of Filter Parameters

	5.3 Concluding Remarks

	6 Data Assimilation for Location Estimation: StationSim_GCS
	6.1 Experimental Design
	6.1.1 Developing a Model Baseline
	6.1.2 Exploring Ensemble Member Models
	6.1.3 Implementing the Ensemble Kalman Filter

	6.2 Results
	6.2.1 Developing a Model Baseline
	6.2.2 Exploring Ensemble Member Models
	6.2.3 Implementing the Ensemble Kalman Filter

	6.3 Concluding Remarks

	7 Data Assimilation for Exit Estimation
	7.1 Proposed Solutions
	7.1.1 Destination Uncertainty
	7.1.2 Destination Estimation

	7.2 Experimental Design
	7.2.1 Benchmarking
	7.2.2 Estimating Pedestrian Destinations

	7.3 Results
	7.3.1 Benchmarking
	7.3.2 Estimating Pedestrian Destinations

	7.4 Concluding Remarks

	8 Conclusions
	8.1 Summary of Results
	8.2 Evaluation
	8.3 Recommendations for Future Work
	8.4 Concluding Remarks

	A Supplementary Calibration Figures
	B Model Subprocesses
	References

