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Abstract

We study a class of zero-sum games between a singular-controller and a stopper
over finite-time horizon. In the first part of the thesis, the underlying process
is a multi-dimensional (locally non-degenerate) controlled stochastic differential
equation (SDE) evolving in an unbounded domain. We prove that such games
admit a value and provide an optimal strategy for the stopper. The value of
the game is shown to be the maximal solution, in a suitable Sobolev class, of a
variational inequality of ‘min-max’ type with obstacle constraint and gradient
constraint. Although the variational inequality and the game are solved on an
unbounded domain we do not require boundedness of either the coefficients of
the controlled SDE or of the cost functions in the game. In the second part we
extend the result to two classes of games that may be referred to as "degenerate"
cases: (i) we study games with a constrained control direction and (ii) games with
degenerate diffusion coefficient. Through approximation procedures, we obtain
the existence of the value of the game and the optimal strategy for the stopper.
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Chapter 1

Introduction

The topic of this thesis is zero-sum (stochastic) games (ZSGs) between a
stopper and a controller. Here zero-sum refers to a two-player game in which the
players exchange a payoff when the game ends. The first player (the controller)
uses a control that affects the dynamics of the underlying process and the second
player (the stopper) decides when the game ends by choosing a stopping time. The
controller pays the stopper, so the controller tries to minimise the payoff while
the stopper tries to maximise it. This game is a combination of two well-known
and widely studied problems: an optimal stopping problem and a singular control
problem.

Optimal stopping was initially introduced by Wald in his theory of the sequen-
tial probability ratio test in 1945 (see [66]). Few years later, the problem was
studied from a more probabilistic perspective by Snell (see [60]) who characterised
the solution using martingale theory and showed that the value process related to
the optimal stopping problem is the smallest supermartingale that dominates the
payoff process (the so-called Snell’s envelope). Snell’s contribution led to what we
know nowadays as the martingale approach. In the same years, problems with
Markovian structure were studied by several authors, including, in particular,
Dynkin [22], Shiryaev [58] and McKean [53]. This led to the so-called Markovian
approach which has strong ties with the theory of partial differential equations.
Optimal stopping problems are encountered in several research areas and they
have received wide attention. For example, in Wald’s sequential testing problem
an optimiser wants to perform a hypothesis test on a stochastic system. After
a period of observation of the system’s dynamics, the observer should decide

1



2 Introduction

whether to keep or reject the null hypothesis. The time at which the decision is
made should be chosen as an optimal stopping time in a suitable optimal stopping
problem. Another famous application of optimal stopping theory is in mathem-
atical finance, where it is used to compute the price of American options. An
introduction to all these aspects can be found in the monographs by Shiryaev [59],
El Karoui [23] and Peskir and Shiryaev [56]. In particular Chapters 1, 6, 7 and
8 in [56] contain results obtained using both the martingale and the Markovian
approach, applications in mathematical statistics, in mathematical finance and in
financial engineering. Other applications in mathematical finance from a more
economic perspective can be found in the monograph by Dixit and Pindyck [21].
Finally, in [56] it is also shown an important connection between optimal stopping
problems and free boundary problems. Free boundary problems concern the study
of solutions of PDEs inside domains that must be determined as part of the
solution itself. It turns out that the value function V of an optimal stopping
problem is the solution U of a free boundary problem in which the free boundary
is determined via an obstacle constraint on U .

Similarly, free boundary problems arise in the study of singular control problems
in which an optimiser tries to minimise (or maximise) in expectation a functional
dependent on a singularly controlled stochastic process. The peculiarity of singular
controls is that they are stochastic processes which are not absolutely continuous
with respect to the Lebesgue measure as functions of time. In contrast the so-called
‘classical’ controls admit a density (Radon-Nikodym derivative) with respect to
the Lebesgue measure as functions of time. One of the first contribution on
singular stochastic control (SSC) problems was made by Bather and Chernoff [3]
in 1967. Later on, Beneš et al. [7] solved explicitly a problem of singular control in
1980. Singular controls have found applications in several research areas such as
aerospace engineering [4], mathematical finance [18] and [9], mathematical biology
[2], and others. The value function V of a singular control problem is the solution
U (in a suitable sense) of a free boundary problem in which the free boundary
is determined via a gradient constraint on U itself. The existence of an optimal
control is related to the solvability of a so-called Skorohod reflection problem. The
Skorohod problem is the problem of keeping an (optimally) controlled dynamics
in the domain defined by the free boundary. This problem can be solved in
some special cases (see, e.g., [51], [46], [31]) but it is a difficult task for general
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multi-dimensional setting (see Remark 5.2 in [10]). Indeed, the existence of an
optimal control in the multi-dimensional framework relies on the regularity of the
value function, the free boundary and the direction of reflection at this boundary;
there is no general theory to address the problem and we do not consider such
question in this dissertation. To conclude, it is worth mentioning a connection
between singular stochastic control and optimal stopping (see [40] and [41]). In
dimension one, such connection can be easily stated: it turns out that under
suitable assumptions the derivative with respect to the controlled state variable of
the value function of a singular control problem is the value function of a suitable
optimal stopping problem; consequently, the free boundary for the singular control
problem coincides with the optimal stopping boundary in the associated stopping
problem.

The aim of this dissertation is to combine optimal stopping and singular control
in a ZSG. Here, we introduce the framework used in Chapter 3 which leads to our
main result (variations of this formulation will be considered in Chapter 4): we
consider a class of ZSGs on a finite-time horizon [0, T ] between a controller and a
stopper. The underlying stochastic dynamics X [n,ν] is given by a d-dimensional,
singularly controlled, stochastic differential equation of the form

dX
[n,ν]
t = b(X

[n,ν]
t )dt+ σ(X

[n,ν]
t )dWt + ntdνt, (1.1)

where W is a d′-dimensional Brownian motion (with d ≤ d′) and the control
pair (nt, νt)t∈[0,T ] is given by a unitary vector nt(ω) ∈ Rd and a real valued, right-
continuous, increasing process νt(ω). The resulting dynamics is ‘singular’ because
the mapping t 7→ νt(ω) need not be absolutely continuous with respect to the
Lebesgue measure; it does not need to be even continuous. The stopper chooses a
stopping time τ deciding when the game ends and she receives

e−rτg(t+ τ,X [n,ν]
τ ) +

∫ τ

0

e−rsh(t+ s,X [n,ν]
s ) ds (1.2)

+

∫
[0,τ ]

e−rsf(t+ s,X [n,ν]
s ) ◦dνs

from the controller. Here g(t, x) is the terminal payoff, h(t, x) is the running payoff
and f(t, x) is the cost per unit of control exerted. Using a blend of analytical and
probabilistic techniques we prove that the game admits a value v which is the
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maximal solution in a suitable Sobolev space of the variational inequalities:

min
{

max
{
∂tu+ Lu− ru+ h, g − u

}
, f − |∇u|d

}
= 0,

max
{

min
{
∂tu+ Lu− ru+ h, f − |∇u|d

}
, g − u

}
= 0,

(1.3)

with terminal condition u(T, x) = g(T, x); the above equations should be under-
stood in the almost everywhere sense on [0, T ]× Rd. Here, the operator L is the
infinitesimal generator of the uncontrolled SDE, r ≥ 0 is a constant discount rate
and | · |d is the Euclidean norm in Rd. We are able to provide an optimal stopping
rule for the stopper and we can derive an ε-optimal strategy for the controller for
any ε > 0 (Remark 3.35).

The two variational problems in (1.3) have not received much attention in the
literature and they pose a number of challenges. The first obvious one is that
swapping the order of ‘min’ and ‘max’ is non-trivial and it relates in some sense to
proving the equivalence between the so-called upper and lower value of the game.
Secondly, a solution of the variational problem is subject to two hard constraints:
an obstacle constraint u ≥ g and a gradient constraint |∇u|d ≤ f . Thirdly, we
solve the problem on an unbounded domain but without imposing boundedness of
the coefficients of the SDE or of the payoff functions, and without requiring uniform
ellipticity of the matrix σσ> in the whole space. These seem important technical
improvements even when compared to variational inequalities on unbounded
domains for singular control problems (e.g., Chow et al. [17], Soner and Shreve
[61, 62], Menaldi and Taksar [54] and Zhu [69]) or optimal stopping games (e.g.,
Friedman [28] and Stettner [63]). The two hard constraints characterise the free
boundaries of the problem which can be defined as the boundaries of the sets
{(t, x) : u(t, x) > g(t, x)} and {(t, x) : |∇u(t, x)|d < f(t, x)}. A priori, we do not
know anything about these two sets, and their boundaries could be very irregular.

The study of controller-stopper ZSGs originates from work by Maitra and
Sudderth [52] in 1996. A ‘gambler’ selects a conditional distribution ς = (ς0, ς1, . . .)

from a suitable class for a discrete-time process (Xn)n∈N ⊂ S with X0 = x, and a
stopper ends the game at a stopping time τ of her choosing. The stopper pays
an amount u(Xτ ) to the gambler, for some bounded function u. We say that the
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game admits a value if the following holds

v(x) = sup
ς

inf
τ

E[u(Xτ )|X0 = x] = inf
τ

sup
ς

E[u(Xτ )|X0 = x] for all x ∈ S.

It is proven in [52] that the game admits a value and an ε-optimal Markov family
of strategies under general assumptions on the state space, the reward function,
the class of stopping times and the class of admissible controls. We will give more
details on this and next examples of problems in Chapter 2.

The above problem was later cast in a continuous-time infinite horizon frame-
work by Karatzas and Sudderth [42] who consider a one-dimensional Itô diffusion
in a interval whose drift and diffusion coefficients are chosen by the controller
from a suitable class. They obtain (almost explicit) optimal strategies for both
players using methods based on the general theory of one-dimensional linear
diffusions. Weerasinghe [67] studied a similar problem, in which the underlying
dynamics is a one-dimensional SDE whose diffusion coefficient is controlled and is
allowed to vanish, and finds that the game admits a value that is not continuously
differentiable as function of the initial state of the process.

Following those early contributions, the literature on controller-stopper ZSGs
(and to some extent also nonzero-sum games) has grown steadily. A wide variety
of methods has been deployed spanning, for example, martingale theory (Karatzas
and Zamfirescu [44]), backward stochastic differential equations (e.g., Hamadène
and Lepeltier [32], Hamadène [33], Choukroun et al. [16]) and solution of variational
problems via viscosity theory (e.g., Bayraktar and Huang [5] and Bayraktar and
Young [6]). A common denominator of those papers is that the controller uses
so-called ‘classical’ controls, i.e., progressively measurable maps (t, ω) 7→ αt(ω)

that enter the drift and diffusion coefficient, b and σ of the controlled SDE in the
form

dXα
t = b(Xα

t , αt)dt+ σ(Xα
t , αt)dWt.

From an analytical point of view, those games are connected to Hamilton-Jacobi-
Bellman (HJB) equations with obstacle constraint but without gradient constraint,
hence different from (1.3). A main difference across those contribution is that
[5] does not require the diffusion coefficient to be uniformly non-degenerate in
contrast to [33] and [44] where the condition is a crucial assumption to perform a
Girsanov transformation of the probability measure.
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Much less attention instead has been devoted to the study of games in which
the controller can adopt singular controls as in (1.1). A notable contribution to
this strand of the literature was given by Hernandez-Hernandez et al. [35] who
consider a ZSG in which X [n,ν] is real valued. They provide a general verification
theorem and explicit optimal strategies for both players in specific examples. They
also show that the value function of the game need not be smooth if the stopping
payoff is not continuously differentiable. The methods in [35] rely crucially on
the infinite horizon and one-dimensional set-up that allow to link the variational
problem with ordinary differential equations and require an educated guess on the
structure of the optimal strategies. In this thesis, instead, we develop a general
theory for multi-dimensional state-dynamics and prove the existence and the
variational characterisation of the value function. The finite time horizon and
the dimensionality of the process lead us to consider PDEs and to use a mix of
analytical and probabilistic methods. It appears that our study is the first one
involving a multi-dimensional singularly controlled underlying process.

ZSGs of controller-stopper type have been motivated by several applications.
In [43] authors show a connection with the prices of American put-options in
the presence of an ‘up-and-out’ barrier with constraints on the short-selling of
stock. In [6] the authors show another connection with a minimisation of lifetime
ruin probability for an individual who can invest in a Black-Scholes financial
market and the rate of consumption is stochastic. In [35] the authors explain
numerous other important applications of ZSGs like the ones we consider here.
Such applications include models for a central bank controlling exchange rates up
to the time of a possible political veto and models for the control of inflation.

This thesis is structured as follows. In Section 1.1 we set out the notation.
In Chapter 2, we give preliminary results and a brief review of the literature on
ZSGs.

In Chapter 3, we solve the game (1.2) in the above framework and show the
main result of this dissertation. Our method of proof builds upon penalisation
techniques that address simultaneously the two hard constraints embedded in (1.3):
u ≥ g and |∇u|d ≤ f . We find bounds on the Sobolev norm of the solution of the
penalised PDE problem, uniformly with respect to the penalisation parameters,
thanks to analytical techniques rooted in early work by Evans [24] and new
probabilistic tricks developed ad-hoc in our framework. Indeed, it turns out that
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the co-existence of two hard constraints in (1.3), the ‘min-max’ structure of the
problem, its parabolic nature and unboundedness of the domain make the use
of purely analytical ideas as in Evans [24] (see also [68] and [39]) not sufficient
to provide the necessary bounds (see also the references given in the previous
paragraph and more recent work by Hynd [38] and Kelbert and Moreno-Franco
[45], for comparison). In the process of obtaining our main result (Theorem 3.6)
we also contribute a detailed proof of the existence and uniqueness of the solution
for the penalised problem (Theorem 3.21 for bounded domain, and Theorem 3.24
and Proposition 3.25 for unbounded domain). Finally, the existence of an optimal
stopping time τ∗ is interesting in its own right as it may enable free-boundary
techniques for the study of the optimal strategy of the controller.

In Chapter 4 we use the results from Chapter 3 to extend our analysis to two
special classes of ZSGs that are not covered directly by Theorem (3.6): (i) the
class in which the minimiser is allowed to use controls in selected directions of
the state space and (ii) the class in which the diffusion of the underlying process
is allowed to be degenerate. We approximate those problems with games that
satisfy conditions of Chapter 3. Through the approximations we show that those
two types of games admit a value and provide an optimal strategy for the stopper.
In the case where the controller affects selected directions (Section 4.1) we allow
the underlying process of the approximated game to be affected by a control in
all the direction with a weight in the direction not originally affected. In the limit
we let the weight go to zero and recover the original problem formulation. In the
degenerate case (Section 4.2), we keep the same payoff as in the original game and
we add a non-degenerate independent diffusion to the original underlying process
in order to make it a non-degenerate process. We show that the value functions
of the approximated games converge uniformly to the value of the initial game as
the parameter goes to zero.

Finally, a technical appendix completes the thesis. We give a probabilistic
proof of the well-known maximum principle for PDEs (Lemma B.3). We give a
solution of [47, Exercise 10.1.14] which proves a type of Morrey’s inequality for
parabolic spaces (Lemma A.4). We present a possible choice of cut-off functions
used in Chapter 3 with their properties (Section B.1) and we also present a possible
choice of family of penalty functions based on this family of cut-off functions
(Section B.2). We prove stability results for PDE (Lemma B.1 and Section B.5).
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We prove the existence and the uniqueness of a non-explosive solution of the
ε-optimal controlled SDE (Section B.6). Finally, we extend [20, Lemma 5.1] to
semimartingales with jumps (Lemma C.1).

1.1 Notation

We conclude this introduction giving notation which is used in the whole
dissertation related to Rd, in particular we introduce parabolic Hölder spaces and
their embedding in parabolic Sobolev spaces. Fix d, d′ ∈ N and T ∈ (0,∞). Given
u ∈ Rd we let |u|d be its euclidean norm. For vectors u, v ∈ Rd their scalar product
is denoted by 〈u, v〉. Given a matrix M ∈ Rd×d′ , with entries Mij, i = 1, . . . d,
j = 1, . . . d′, we denote its norm by

|M |d×d′ :=
( d∑
i=1

d′∑
j=1

M2
ij

)1/2

and, if d = d′, we let tr(M) :=
∑d

i=1Mii.
The d-dimensional open ball centred in 0 with radius m is denoted by Bm and

the general state space in this thesis is going to be

Rd+1
0,T := [0, T ]× Rd.

Finally, given a bounded set A we denote by A its closure.
For a smooth function f : Rd+1

0,T → R we denote its partial derivatives by
∂tf , ∂xif , ∂txjf , ∂xixjf , for i, j = 1, . . . d. We will also use ft = ∂tf , fxi = ∂xif ,
ftxi = ∂txif and fxixj = ∂xixjf to simplify long expressions. By ∇f we intend
the spatial gradient, i.e., ∇f = (∂x1f, . . . ∂xdf), and by D2f the spatial Hessian
matrix with entries ∂xixjf for i, j = 1, . . . d.

As usual C∞(Rd+1
0,T ) is the space of functions with infinitely many continuous

derivatives and C∞c (Rd+1
0,T ) is the subset of C∞(Rd+1

0,T ) of functions with compact
support. Continuous functions on a domain D are denoted by C(D). For an
open bounded set O ⊂ Rd+1

0,T we let C0(O) be the space of continuous functions
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f : O → R equipped with the supremum norm

‖f‖C0(O) := sup
(t,x)∈O

|f(t, x)|. (1.4)

Analogously, C0(Rd+1
0,T ) is the space of bounded and continuous functions f :

Rd+1
0,T → R equipped with the norm ‖f‖∞ := ‖f‖C0(Rd+1

0,T ) as in (1.4) but with O
replaced by Rd+1

0,T .
For bounded O ⊂ Rd+1

0,T , we consider the following function spaces:

• C0,1(O) be the class of continuous functions with ∂xif ∈ C(O) for i = 1, . . . d;

• C1,2(O) be the class of continuous functions with ∂tf, ∂xif, ∂xixjf ∈ C(O)

for i, j = 1, . . . d;

• C1,3(O) be the class of continuous functions with

∂tf, ∂xif, ∂xixjf, ∂xixjxkf, ∂txif ∈ C(O)

for i, j, k = 1, . . . d (notice the mixed derivatives ∂txif).

The above definitions extend obviously to continuously differentiable functions on
Rd+1

0,T .
Since we are studying the finite time horizon problem, we will deal with the

so-called parabolic spaces. Let d(z1, z2) = (|t− s|+ |x− y|2d)
1
2 be the parabolic

distance between points z1 = (t, x) and z2 = (s, y) in Rd+1
0,T . For a fixed α ∈ (0, 1)

and a continuous function f : O → R we set (see [29, p. 61])

‖f‖Cα(O) := ‖f‖C0(O) + sup
z1,z2∈O
z1 6=z2

|f(z1)− f(z2)|
dα(z1, z2)

.

We say that f ∈ Cα(O) if f ∈ C0(O) and ‖f‖Cα(O) < ∞. We work with the
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following norms, defined for sufficiently smooth functions f :

‖f‖C0,1,α(O) := ‖f‖Cα(O) +
d∑
i=1

‖∂xif‖Cα(O);

‖f‖C1,2,α(O) := ‖f‖C0,1,α(O) + ‖∂tf‖Cα(O) +
d∑

i,j=1

‖∂xixjf‖Cα(O);

‖f‖C1,3,α(O) := ‖f‖C1,2,α(O) +
d∑
i=1

‖∂txif‖Cα(O) +
d∑

i,j,k=1

‖∂xixjxkf‖Cα(O).

For (j, k) ∈ {(0, 0); (0, 1); (1, 2); (1, 3)} and bounded O let us define

Cj,k,α(O) :=
{
f ∈ Cj,k(O)

∣∣ ‖f‖Cj,k,α(O) <∞
}
,

Cj,k,α
`oc (Rd+1

0,T ) := {f ∈ Cj,k(Rd+1
0,T )

∣∣ f ∈ Cj,k,α(O) for all bounded O ⊂ Rd+1
0,T }.

For B and B′ open balls in Rd and S ∈ [0, T ), let OB := [0, T )×B and OS,B′ :=

[0, S) × B′. We denote Cj,k,α
Loc (OB) the class of functions f ∈ C(OB) such that

f ∈ Cj,k,α(OS,B′) for all S < T and B′ such that B′ ⊂ B. Finally, we let

Cj,k,α
Loc (Rd+1

0,T ) :=
{
f ∈ C(Rd+1

0,T )
∣∣ f ∈ Cj,k,α

Loc (OB) for all open balls B ⊂ Rd
}
.

Notice that, the derivatives of functions in Cj,k,α
`oc (Rd+1

0,T ) are Hölder continuous
on OB for any ball B ⊂ Rd. Instead, the derivatives of functions in Cj,k,α

Loc (OB)

need not be continuous along the parabolic boundary of OB and derivatives of
functions in Cj,k,α

Loc (Rd+1
0,T ) may be discontinuous at T .

To simplify long formulae, sometimes we use the notations:

‖∇f‖C0(O) :=
( d∑
i=1

‖fxi‖2
C0(O)

) 1
2 and ‖D2f‖C0(O) :=

( d∑
i,j=1

‖fxixj‖2
C0(O)

) 1
2
. (1.5)

For p ∈ [1,∞] we say that f ∈ Lp`oc(R
d+1
0,T ) if f ∈ Lp(O) for any bounded

O ⊂ Rd+1
0,T . Denote by D1,2

O the class of functions f ∈ Lp`oc(R
d+1
0,T ) whose partial

derivatives ∂tf , ∂xif , ∂xixjf exist in the weak sense on O, for i, j = 1, . . . d, and
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let

‖f‖W 1,2,p(O) := ‖f‖Lp(O) + ‖∂tf‖Lp(O) +
d∑
i=1

‖∂xif‖Lp(O) +
d∑

i,j=1

‖∂xixjf‖Lp(O).

Then we define W 1,2,p(O) := {f ∈ D1,2
O | ‖f‖W 1,2,p(O) <∞} and

W 1,2,p
`oc (Rd+1

0,T ) :=
{
f ∈ Lp`oc(R

d+1
0,T )

∣∣f ∈ W 1,2,p(O), ∀O ⊆ Rd+1
0,T , O bounded

}
.

The first non-standard but classical result we present is a compact Sobolev
embedding for parabolic spaces. For α = 1 − d+2

p
and p > d + 2, and for any

bounded O ⊂ Rd+1
0,T , we have

C1,2(O) ⊂ W 1,2,p(O) ↪→ C0,1,α(O), (1.6)

where the first inclusion is obvious and the second one is the compact Sobolev
embedding. This result can be viewed without proof in [26, eq. (E.9)] or solving
[47, Exercise 10.1.14]. In this dissertation we give the solution of [47, Exercise
10.1.14] in Appendix A.1 using hints from the book itself.
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Chapter 2

Literature Review

This chapter provides a theoretical background and presents main results
on ZSGs from the contributions provided in the introduction. We review those
contributions, starting from the discrete time case and then moving on the
continuous time case. In the case of ‘classical’ controls we consider both the
one-dimensional and the multi-dimensional settings. Finally, we present a class of
ZSGs with singular controls in the one dimensional case. Since this dissertation
is based on the case where a controller pays a stopper, i.e., the controller is a
minimiser of an objective function and the stopper is a maximiser, we introduce
some concepts on ZSG using this set up. This framework is not the only possible:
the controller can be a maximiser and the stopper can be a minimiser, both players
can stop and control at the same time the process, the two players can only stop
(in this particular framework the game is called Dynkin game).

2.1 Preliminary Concepts

In a zero-sum game two players exchange a payoff at the of the game. The
player who receives the payoff aims at maximising her winnings. The player who
pays the payoff aims at minimising her costs. Informally we say that each player
selects a strategy in order to optimise their performance. In our framework, a
player, called stopper, decides when the game ends choosing a stopping time τ
from a suitable admissible class T and a player, called controller, chooses a control
ν from an admissible class A. In general, the admissible class T is composed by
all stopping times, but sometimes the class that we consider is a subset of T , in

13
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those cases we will specify the particular subset of T . The class A and how the
control influence the dynamics may vary depending on the specific setup. The
game’s payoff is a functional of the stopping time and the underlying process.
For example, take two measurable functions g and h representing the terminal
cost and the running cost, respectively, then the expected payoff with underlying
process Xν starting from x can be defined as

Jx(τ, ν) := Ex

[
g(τ,Xν

τ ) +

∫ τ

0

h(s,Xν
s ) ds

]
. (2.1)

We can associate to Jx(τ, ν) the lower and the upper value of the game, defined
respectively by

v(x) := sup
τ∈T

inf
ν∈A
Jx(τ, ν) and v(x) := inf

ν∈A
sup
τ∈T
Jx(τ, ν), (2.2)

so that v(x) ≤ v(x). The lower and upper value functions are always well-defined
and if equality holds for all x then we say that the game admits a value

v(x) := v(x) = v(x).

Moreover, if we find a pair (τ∗, ν∗) ∈ T ×A such that

Jx(τ, ν∗) ≤ Jx(τ∗, ν∗) ≤ Jx(τ∗, ν), (2.3)

for all (τ, ν) ∈ T ×A then this pair is called saddle point of the game and it implies
the existence of the value of the game. Indeed, considering the first inequality in
(2.3) and taking the supremum on the class of stopping times, we get

v(x) ≤ sup
τ∈T
Jx(τ, ν∗) ≤ Jx(τ∗, ν∗);

considering the second inequality in (2.3) and taking the infimum on the class of
controls, we get

Jx(τ∗, ν∗) ≤ inf
ν∈A
Jx(τ∗, ν) ≤ v(x).
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It follows that v(x) = v(x) and

Jx(τ∗, ν∗) = v(x) = v(x) = v(x).

In general, the optimal strategies may not exist and it is only possible to provide
a weaker concept. Assume that the value of the game exists, then η-optimal
strategies τη ∈ T and νη ∈ A, for η > 0 are strategies such that

inf
ν∈A
Jx(τη, ν) > v(x)− η, and sup

τ∈T
Jx(τ, νη) < v(x) + η.

2.2 Stopper vs. Controller: Discrete Time

One of the first contributions in this field is given by Maitra and Sudderth in
[52] who studied a class of ZSGs in a discrete time framework. In this setting, the
underlying process is a discrete stochastic process with values in a space S and a
payoff of the following form

Jx(τ, ν) := Ex[g(Xν
τ )],

where g is a bounded function. Differently from Section 2.1, the framework in
[52] is presented with a controller who maximises and a stopper who minimises.
We can recover the formulation from Section 2.1 replacing g with −g. Let S be
a nonempty Borel subset of a Polish space and let M(S) be the collection of
probability measures defined on the Borel subsets of S. The controller selects
at each time a transition probability from a subset ofM(S). Precisely, for each
y ∈ S, the controller can choose a transition probability only from Γ(y) ⊂M(S).
The admissible class A is then composed by strategies ν described as follows: let
(Xν

n)n∈N be the underlying process starting from Xν
0 := x0. The strategy ν is a

sequence (ν0, ν1, . . .), where ν0 ∈ Γ(x0) and νn = νn(x0, . . . , xn−1) ∈ Γ(Xν
n) with

xm = Xν
m for 1 ≤ m < n. In other words, at each time n, the controller uses the

past of the process Xν to select a transition probability from the set Γ(Xν
n). The

value function of the game (if it exists) can be written as

v(x) = sup
ν∈A

inf
τ∈T

Ex[g(Xν)] = inf
τ∈T

sup
ν∈A

Ex[g(Xν)].
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It is proved that the game admits a value using a martingale approach. It
turns out that the value of the game is the largest deficient function which is
dominated by g. Deficient function is a concept related to sub-harmonic functions
and sub-martingale processes and for further details the reader may refer to [37].
Moreover, it is proved that for all η > 0 the controller has an η-optimal Markov
family of strategies for all x ∈ S, i.e., the η-optimal strategy νn at each time n ∈ N
depends only on the state at the previous time-step νn(x0, . . . , xn−1) = νn(xn−1).

2.3 Stopper vs. Classical Controller: Continuous

Time

We start considering a so-called classical controller, i.e., a type of player who
is allowed to use only controls that are absolutely continuous with respect to the
Lebesgue measure as a function of time. We concentrate first on contributions
about one-dimensional cases and later, we present the ones in a multi-dimensional
cases. From now on, let T be a finite time horizon, (Ω,F ,P) be a filtered probability
space with filtration F = (Ft)t≥0 and equipped with a d-dimensional Brownian
motion (Wt)t. For the ease of exposition, the dimension d of the Brownian motion
agrees with the dimension of the underlying process specified in each framework.

2.3.1 One-dimensional case

Karatzas and Sudderth [42] studied a game where the underlying process X is
a one-dimension Itô diffusion

dXt = b(t)dt+ σ(t)dWt, t ∈ [0,∞)

which evolves in a bounded interval (α, β) ⊂ R with absorption at the boundary
points α, β. The coefficients b and σ are real-valued, F-progressively measurable
processes which satisfy a suitable integrability condition, which we do not specify
for the ease of exposition. The controller acts as follows: a family {A(y) : y ∈
[α, β]} with A(y) ⊂ R× (0,∞) is fixed at the beginning of the game and whenever
the underlying process X is in a given state Xt = x ∈ [α, β], the player can choose
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a local-drift volatility pair ν = (ν1(t), ν2(t)) from A(x), i.e, X = Xν is solution of

dXν
t = ν1(t)dt+ ν2(t)dWt, t ∈ [0,∞).

The admissible class A in this case is composed by all processes Xν which can
be constructed as above. In this game, (2.1) is expressed with a discount factor
r ∈ [0,∞), i.e., the expected payoff reads

Jx(τ,Xν) := Ex[e
−rτg(Xν

τ )].

The key point is that the pair (ν1, ν2) can be chosen in the form of a Markov
pair. That is, for the minimiser it is sufficient to find two functions b(x) and
σ(x), with suitable regularity, and set ν1(t) = b(Xt) and ν2(t) = σ(Xt). Then the
controlled dynamics becomes a one-dimensional stochastic differential equation
and it enables the use of concepts from diffusion theory like the scale function
and the speed measure. Using these tools, for any given pair of functions (b, σ)

the maximiser solves an optimal stopping problem for a one dimensional linear
diffusion. That determines the candidate optimal stopping time τ∗. Finally, the
controller selects the pair (b∗, σ∗) which provides the best response to τ∗ and the
proof is concluded by showing that indeed the treble [(b∗, σ∗), τ∗] forms a saddle
point.

This approach is based on two main ingredients: (i) the scale function for
one-dimensional processes and (ii) the fact that the controls affect the dynamics
in an absolutely continuous way. In our framework, both these ingredients are not
present and we allow the controller to affect the process with singular controls.

A problem more closely related to ours is given by Weerasinghe in [67]. In
this work, a one-dimensional process is considered on infinite time horizon and
the game is connected to an ordinary differential equation. A similar connection
is found in this thesis, but since we consider a multi-dimensional process on a
finite horizon the link is between the game and a partial differential equation of
parabolic type with d spatial dimensions.

In the framework of [67], the underlying process is one-dimensional and the
controller acts only on the diffusion coefficient:

dXν
t = b(Xν

t )dt+ νtdWt,
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where b satisfies standard assumptions and ν belongs to the class A of F-
progressively measurable processes uniformly bounded: 0 ≤ ν(t) ≤ σ0, for a
fixed σ0 ∈ (0,∞). The payoff (2.1) reads

Jx(τ, ν) := Ex

[ ∫ τ

0

e−rsh(Xν
s ) ds

]
,

where h is twice continuously differentiable defined on R. It is proved that the
value function of the game exists and a saddle point of the game is provided:

Theorem 2.1 ([67, Thm. 2.2]) There exist an interval (α∗, β∗) ⊇ (α, β) and a
function v such that v(α∗) = v(β∗) = 0, v(x) > 0 for all x ∈ (α∗, β∗), vxx(x) ≤ 0

for all x ∈ [α∗, β∗] and

σ2
0

2
vxx(x) + b(x)vx(x)− rv(x) + h(x) = 0, for all x ∈ (α∗, β∗). (2.4)

Moreover, the pair (τ∗, ν∗) is a saddle point, where τ∗ := inf{t ≥ 0|Xν∗
t /∈ (α∗, β∗)}

and (ν∗)t := σ01{Xν∗
t ∈(α∗,β∗)} with X

ν∗ a weak solution of

dXν∗
t = b(Xν∗

t ) dt+ (ν∗)tdWs.

Furthermore, the value of the game is v∗(x) := v(x)1{x∈(α∗,β∗)}.

It is proved first that there exist an interval (α∗, β∗) and a function v solution
of the ODE in (2.4) with such properties. Then, it is proved that the pair
(τ∗, ν∗) is a saddle point of the game. The approach of the proof is similar to the
heuristic argument we use in Chapter 3 to find the system of equations for our
variational inequality (see Problem A). Thus, we will not give here all the details.
The regularity of h implies that v composed with the controlled process Xν is
sufficiently regular to apply Itô’s formula to e−rsv(Xν

s ) for a stopping time τ ∈ T .
Taking expectations, we get

Ex[e
−rτv(Xν

τ )] = v(x) + Ex

[ ∫ τ

0

e−rs
(ν2

s

2
vxx(X

ν
s ) + b(x)vx(X

ν
s )− rv(Xν

s )
)

ds

]
.
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First we show that v(x) ≤ v(x). Letting τ = τ∗ as in Theorem 2.1, we have

0 = v(x) + Ex

[ ∫ τ∗

0

e−rs
(σ2

0

2
vxx(X

ν
s ) + b(x)vx(X

ν
s )− rv(Xν

s ) +
ν2
s−σ2

0

2
vxx(X

ν
s )
)

ds

]
= v(x) + Ex

[ ∫ τ∗

0

e−rs
(
− h(Xν

s ) +
ν2
s−σ2

0

2
vxx(X

ν
s )
)

ds

]
,

where the first inequality is by v(Xν
τ∗) = 0 and the second equality uses that v is

solution of the ODE. Arranging terms, using that vxx is non-positive and νs ≤ σ0

for all s, we have

v(x) ≤ Ex

[ ∫ τ∗

0

e−rsh(Xν
s ) ds

]
= Jx(τ∗, ν).

Similarly, we prove that v(x) ≥ v(x). Using the optimal control ν∗ defined in
Theorem 2.1, we obtain

Ex[e
−rτv(Xν∗

τ )] = v(x) + Ex

[ ∫ τ

0

e−rs
(
− h(Xν∗

s )
)

ds

]
.

Using that v(y) ≥ 0 for all y, we have

Jx(τ, ν∗) = Ex

[ ∫ τ

0

e−rsh(Xν∗
s ) ds

]
≤ v(x).

This is sufficient to obtain that (τ∗, ν∗) is a saddle point.

Remark 2.2: Notice that the terminal payoff of this problem is g ≡ 0 on R.
Theorem 2.1 implies that v∗(x) > 0 for x ∈ (α∗, β∗) and v∗(x) = 0 otherwise.
Thus, the optimal stopping time can be written as

τ∗ := inf{t ≥ 0|v∗(Xν∗
t ) = g(Xν∗

t )}.

The stopping time τ∗ is the same optimal stopping rule found in this dissertation
as optimal strategy of the stopper. �
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2.3.2 Multi-dimensional case

After those early contributions for one-dimensional problems, the focus moved
to the multi-dimensional case. In 2006, Hamadène [33] used a BSDE approach to
solve a class of ZSGs. Let TT be the subset of T composed by bounded stopping
times with τ ≤ T P-a.s. and A be the class of F-adapted processes with values
in a suitable space A. In this class of games, the two players can both choose
stopping times and controls: (τ, ν) ∈ TT × A and (ρ, µ) ∈ TT × A for the first
and second player, respectively. The underlying process is a weak solution of the
following differential path-dependent equation

dX
[ν,µ]
t = b(t,X [ν,µ]

· , νt, µt)dt+ σ(t,X [ν,µ]
· )dWt,

where b and σ satisfy standard assumptions, σ is invertible and |σ−1(t, x)|d×d has
a polynomial growth. The expected payoff is

Jx(τ, ν, ρ, µ) := Ex

[ ∫ τ∧ρ

0

h(s,X [ν,µ]
· , νs, µs) ds+G1

ρ1{ρ<τ<T}

+G2
τ1{τ=ρ<T} +G3

τ1{τ<ρ} +G1{τ=ρ=T}

]
,

where G1
s, G

2
s, G

3
s are measurable processes and h is a continuous function with

linear growth. In this work, it is shown that there exists a connection between
the value of the game and the solution of a particular BSDE with two reflecting
boundaries defined thanks to a saddle point of the game. Thus, a saddle point
(τ∗, ν∗, ρ∗, µ∗) is guessed and then it is shown that the initial value of the solution
of the correspondent BSDE system is the value of the game. The saddle point can
be described as follows: τ∗ and ρ∗ can be described as the first time that the value
process of the game hits two level functions, G1 and G3; ν∗ and µ∗ can be describe
as feedback controls, i.e., there exists a function called Hamiltonian associated
to the game and the controls are defined at each time as a saddle point of this
Hamiltonian. Thanks to these controls the authors are able to obtain the value of
the game. The Hamiltonian associated to the game is a key tool which we will
find also in the next contributions. In our case, the use of singular controls does
not allow the use of an Hamiltonian. Indeed, we are able to provide a similar
approach ‘Hamiltonian-feedback control’ when we introduce a penalised problem
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in Section 3.2 but this construction does not apply to the original game.
A problem in a similar framework but solved with a completely different

approach can be found in Karatzas and Zamfirescu [44], where a Martingale
approach is developed. The admissible classes here are T Tt and A, the subset
of T composed by τ bounded stopping times t ≤ τ ≤ T P-a.s. and the class of
predictable processes with values in some space A. The underlying process is a
solution of a path-dependent differential equation (as in [33])

dXν
t = b(t,Xν , νt) dt+ σ(t,Xν) dWt,

where b, σ satisfy standard assumptions and σ is such that |σ−1(t, x)|d×d ≤ D1 is
uniformly bounded for some real constant D1. The expected payoff of this game is

Jt,x(τ, ν) := Ex

[
g(Xν

τ ) +

∫ τ

t

h(s,Xν , νs) ds

]
. (2.5)

The main idea is similar to the one used in [42] and it is based on results from
optimal stopping and stochastic control theory when these problems are studied
separately. Fixing an admissible control in the game, an optimal stopping problem
can be associated to the payoff in (2.5) and it can be solved obtaining an optimal
strategy for the stopper. In particular, the value function of the optimal stopping
problem composed with the processXν turns out to be a sub-martingale. Moreover,
there exists a sequence of admissible controls (νk)k∈N such that(

sup
τ∈T Tt

Jt,x(τ, νk)
)
k∈N

is a decreasing sequence. The monotonicity of this sequence is reflected to the
sequence of optimal stopping times (τk)k∈N associated to the optimal stopping
problem associated to νk. Thanks to these properties, the integrability conditions
on the functions and the fact that the control does not affect the diffusion coefficient
σ, they are able to prove that the game played with (2.5) admits a value. Moreover,
necessary and sufficient conditions for a pair to be a saddle point are provided.
The optimal stopping time is the same as the one we obtain in our analysis and
it can be found in other works presented before. The optimal control instead is
similar to the one found in [33] and it is based on the Hamiltonian function: it is
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a feedback control which can be achieved only because the controller is allowed to
use controls which are absolutely continuous.

Those previous contributions ([33] and [44]) treat the multi-dimensional case,
where the diffusion coefficient is not affected from the control. A contribution where
the controller affects both the coefficient of the underlying process is presented by
Bayraktar and Huang [5]. In this framework, the admissible class A is defined as
the class of F-adapted processes with values in a suitable space A. The expected
reward for (τ, ν) ∈ T Tt ×A is

Jt,x(τ, ν) := Ex

[
e−

∫ τ
t r(s,X

ν
s ) dsg(Xν

τ ) +

∫ τ

t

e−
∫ s
t r(λ,X

ν
λ) dλh(s,Xν

s , νs)ds

]
,

where

dXν
t = b(t,Xν

t , νt) dt+ σ(t,Xν
t , νt) dWt.

Differently from previous contributions, in here the existence of the value
function is proved directly and it is not a by product of the existence of saddle
points. Thanks to the Hamiltonian function H introduced also in previous
frameworks, the value of the game is the unique viscosity solution v of the
variational inequality:

max
{
∂tv +H(t, x,∇v,D2v)− rv, v − g

}
= 0, on Rd+1

0,T ,

with terminal condition v(T, x) = g(x) for all x ∈ Rd. In our problem (see (1.3))
there are two variational inequalities with two constraints. This is the difference
between the use of ‘classical’ controls and singular controls. In the latter, the
variational inequality requires a gradient constraint on the value function of the
game. Instead, ‘classical’ controls allow the use of the Hamiltonian function
inside the variational inequality and thus it requires only an obstacle constraint
inside. Since there is only one constraint inside the variational inequality, a
comparison principle for sub-solutions and super-solutions is proved which leads
to the existence of the value of the game. In our framework, since there are two
constraints in the variational inequality then we are not able to prove a comparison
principle and indeed, we just obtain a maximal relationship between the value of
the game and the solution of the variation inequality (1.3).
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2.4 Stopper vs. Singular Controller

The common denominator of all those previous contributions is the use of
‘classical’ controls. Controls which are not absolutely continuous as functions of
time are singular controls (e.g. jump processes, local time). In this last section,
we present the main contributions to this type of ZSGs.

2.4.1 One-dimensional case

One of the first contribution in the topic of ZSG of stopper vs. controller type
with singular controls is by Hernandez-Hernandez et al. [35] (see also [36]). The
class of admissible controls A is composed by all F-adapted finite-variation càglàd
processes ν such that ν0 = 0. They consider a one-dimensional process Xν with
ν ∈ A whose dynamics is

dXν
t = b(Xν

t )dt+ σ(Xν
t )dWt + dνt, X0 = x ∈ R,

where b, σ are Lipschitz continuous functions and σ is uniformly elliptic. The
expected payoff is the following

Jx(ν, τ) := Ex

[
e−Λτ g(Xν

τ+)1{τ<∞} +

∫ τ

0

e−Λsh(Xν
s ) ds+

∫
[0,τ ]

e−Λs d|νs|
]
, (2.6)

where τ ∈ T , the functions g, h, r are continuous with r > r0 ∈ R, |νs| denotes the
total variation process of ν and Λt :=

∫ t
0
r(Xν

s ) ds. In this formulation, the game
does not instantly finish at τ but the controller is allowed to move the process
X up to time τ included, i.e., Xν

τ+ may be different from Xν
τ . Compared with

the previous contributions, the payoff herein presents an extra term, i.e., the last
one in (2.6). This term is called action cost and it gives a cost each time the
control is exerted, continuously or singularly. In particular, it is proportional to
the measure induced by the control and an action function f which is f ≡ 1 in
this case. In our frameworks, we have an action function dependent on time and
space, see Chapter 3 and only on time, see Chapter 4.

Remark 2.3: Every process ν ∈ A admits the decomposition ν = νc + νj , where
νc, νj are F-adapted finite-variation càglàd processes such that νc has continuous
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sample paths

νc0 = νj0 = 0 and νjt =
∑

0≤s<t

∆νs for all t > 0,

where ∆νs = νs+−νs for s ≥ 0. Given such decomposition, there exists F-adapted
continuous processes (νc)+, (νc)− such that

(νc)+
0 = (νc)−0 = 0, νc = (νc)+ − (νc)− and |νc| = (νc)+ + (νc)−,

where |νc| is the total variation process of νc. �

The problem is solved by a guess and verifying approach, i.e., a set of properties
for the value of the game and the structure of the optimal strategies are guessed
and it is verified that if a function satisfies these conditions then it is the value of
the game. These properties can be connected to the conditions in our problem:
variational inequalities with both an obstacle and a gradient constraint (see (3.6)).
Differently from this guess and verifying approach, we take a more ‘constructive’
approach. We prove the existence of the value function by a penalisation method
and we connect it to a solution of the set of variational inequalities. In particular
the value of the game is a maximal solution of the variational inequalities. The
system of properties in [35] ensures the existence of an optimal control which can
be described as follows: the controlled process is kept inside a region of the space,
where the gradient constraint is satisfied with strict inequality and the process is
reflected along the free boundary of this region. The optimal stopping strategy
for the stopper is the same found in our analysis. The pair constructed according
to this recipe forms a saddle point of the game which gives directly the existence
of the value of the game.

The variational inequality found in the verification theorem is similar to the
one obtained by us in Chapter 3. In our case, the variational inequality is also a
characterisation for the value function. Indeed, we show independently that the
value function exists and then, we show that it is also the maximal solution of
the variational inequality. The framework of [35], i.e., the infinite horizon of the
problem and the one-dimension of the underlying process, leads to the study of
ODEs. In our case, we deal with a multi-dimensional underlying process in finite
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time horizon and these lead us to consider PDEs of parabolic type in place of
ODEs. We do not require boundedness neither of the coefficients of the SDE nor
the functions in the payoff. We prove directly the existence of the value of the
game, we show which type of variational inequalities it satisfies and we provide
an optimal strategy for the stopper. Unfortunately, we are not able to provide an
optimal strategy for the controller. In singular control it is difficult to prove the
existence of an optimal strategy in multi-dimensional problems and we are not
able to provide it in the generality of our framework.
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Chapter 3

Zero-sum game between Controller
and Stopper

In this Chapter, we study a zero-sum game between a minimiser who controls
all the directions of an underlying process and pays at the end of a game a stopper
who has decided the terminal time. Under the Assumptions 3.4 and 3.5, we prove
our main result (Theorem 3.6) which shows that the value of the game is the
maximal solution of a variational inequality and provides an optimal strategy for
the stopper.

3.1 Setting and Main Results

Let (Ω,F ,P) be a complete probability space, F = (Fs)s∈[0,∞) be a right-
continuous filtration completed by the P-null sets and (Ws)s∈[0,∞) be a F-adapted,
d′-dimensional Brownian motion. Fix T ∈ (0,∞) and d ≤ d′. For t ∈ [0, T ], we
denote

Tt := {τ | τ is F-stopping time with τ ∈ [0, T − t], P-a.s.}

and we let At be the class of processes

At :=


(n, ν)

∣∣∣∣∣∣∣∣∣∣∣

(ns)s∈[0,∞) is progressively measurable, Rd-valued,

with |ns|d = 1, P-a.s. for all s ∈ [0,∞);

(νs)s∈[0,∞) is F-adapted, real valued, non-decreasing and

right-continuous with ν0− = 0, P-a.s., and E[|νT−t|2] <∞


.
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The notation ν0− = 0 accounts for a possible jump of ν at time zero. For a
given pair (n, ν) ∈ At we consider the following (controlled) stochastic differential
equation:

X [n,ν]
s = x+

∫ s

0

b(X [n,ν]
u ) du+

∫ s

0

σ(X [n,ν]
u ) dWu +

∫
[0,s]

nu dνu, (3.1)

for s ∈ [0, T − t], where b : Rd → Rd and σ : Rd → Rd×d′ are continuous functions.
For P-a.e. ω, the map s 7→ ns(ω) is Borel-measurable on [0, T ] and s 7→ νs(ω)

defines a measure on [0, T ]; thus the Lebesgue-Stieltjes integral
∫

[0,s]
nu(ω)dνu(ω)

is well-defined for P-a.e. ω. Under our Assumption 3.4 on (b, σ) there is a unique
F-adapted solution of (3.1) by, e.g., [48, Thm. 2.5.7]. We denote

Px
(
·
)

= P
(
·
∣∣X [n,ν]

0− = x
)

and Ex
[
·
]

= E
[
·
∣∣X [n,ν]

0− = x
]
.

We study a class of 2-player zero-sum games (ZSGs) between a (singular)
controller and a stopper. The stopper picks a stopping time τ ∈ Tt and the
controller chooses a pair (n, ν) ∈ At. At time τ the game ends and the controller
pays to the stopper a random payoff depending on τ and on the path of X [n,ν]

up to time τ . Given continuous functions f, g, h : Rd+1
0,T → [0,∞), a fixed discount

rate r ≥ 0 and (t, x) ∈ Rd+1
0,T , the game’s expected payoff reads

Jt,x(n, ν, τ) = Ex

[
e−rτg(t+ τ,X [n,ν]

τ ) +

∫ τ

0

e−rsh(t+ s,X [n,ν]
s ) ds (3.2)

+

∫
[0,τ ]

e−rsf(t+ s,X [n,ν]
s ) ◦dνs

]
,

where∫
[0,τ ]

e−rsf(t+ s,X [n,ν]
s ) ◦dνs :=

∫ τ

0

e−rsf(t+ s,X [n,ν]
s ) dνcs (3.3)

+
∑

0≤s≤τ

e−rs
∫ ∆νs

0

f(t+ s,X
[n,ν]
s− + λns) dλ.

Here νc is the continuous part of the process ν in the decomposition νs = νcs +∑
u≤s ∆νu, with ∆νu = νu − νu−.

Remark 3.1: The sum in (3.3) is well-defined. �
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Remark 3.2: If f(t, x) = f(t) the integral (3.3) reduces to the standard Lebesgue-
Stieltjes integral

∫
[0,τ ]

f(s)dνs. In general, the integral in (3.3), is different from
the definition of a Lebesgue-Stieltjes integral. We follow the approach proposed in
Zhu [69] and adopt the definition (3.3) instead of the Lebesgue-Stieltjes integral.
We take this approach because (3.3) gives a cost of exerting control that is
consistent with the gradient constraint appearing in Hamilton-Jacobi-Bellman
(HJB) equations for singular stochastic control (see, e.g., [50]). In problems where
the control is monotone (commonly called of the monotone follower type) the
Lebesgue-Stieltjes integral and the one in (3.3) can be connected by the following
argument: consider the control νn that at a given time t makes n instantaneous
jumps of size h/n for a fixed h. Taking the limit as n→∞ the classical Lebesgue-
Stieltjes integral becomes the integral in (3.3). It is shown in [1, Cor. 1] that
the control obtained in the limit, i.e., ν∞ := limn→∞ ν

n is an optimal strategy in
the sense that it optimises the functional, but it is not an admissible strategy
in the class At. We report here the example from [1, Cor. 1] which could give
a better understanding. Let ns ≡ 1 be a scalar and let νs be a non-decreasing,
right-continuous process. We focus on jumps at time zero of the control and, in
particular, we let the control νn be such that at time zero it makes n instantaneous
jumps of size h/n. We have that the Riemann-Stieltjes integral with τ = 0 can be
written as∫ [0]

0

f(Xνn

s ) dνns =
n∑
k=1

f(Xνn

k−1)(νnk − νnk−1) =
n∑
k=1

f(xk−1)(xk − xk−1),

where Xνn

k and νnk are the values of the processes Xνn and νn after k jumps of
size h/n, respectively (notice that Xνn

k = x+ kh/n =: xk). From this integral, it
is clear that if we pass to the limit as n→∞, we obtain that

lim
n→∞

∫ [0]

0

f(Xνn

s ) dνns =

∫ h

0

f(x+ λ) dλ.

On the other-hand, if we choose the definition of the integral as in (3.3) and we
consider the control νn that makes n jumps of size h/n at time zero, we get for
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all n ∈ N that∫ [0]

0

f(Xνn

s ) ◦dνns =
n∑
k=1

∫ kh/n

(k−1)h/n

f(Xνn

0− + λ) dλ =

∫ h

0

f(x+ λ) dλ.

This shows that the two integrals, in this particular setting, give the same cost. �

The game admits lower and upper value, defined respectively by

v(t, x) := sup
τ∈Tt

inf
(n,ν)∈At

Jt,x(n, ν, τ) and v(t, x) := inf
(n,ν)∈At

sup
τ∈Tt
Jt,x(n, ν, τ), (3.4)

so that v(t, x) ≤ v(t, x). If equality holds then we say that our game admits a
value

v(t, x) := v(t, x) = v(t, x). (3.5)

For a(x) := (σσ>)(x) ∈ Rd×d, the infinitesimal generator of X [e1,0] (where e1 is
the unit vector with 1 in the first entry) reads

(Lϕ)(x) = 1
2
tr
(
a(x)D2ϕ(x)

)
+ 〈b(x),∇ϕ(x)〉, for any ϕ ∈ C2(Rd).

By density arguments the linear operator L admits a unique extension L̄ to
W 2,p
`oc (Rd) and, with a slight abuse of notation, we set L̄ = L.
A heuristic use of the dynamic programming principle, suggests that the value

of the game v should be solution of a free boundary problem of the following form:

Problem A. Fix p > d+ 2. Find a function u ∈ W 1,2,p
`oc (Rd+1

0,T ) such that, letting

I :=
{

(t, x) ∈ Rd+1
0,T

∣∣ |∇u(t, x)|d < f(t, x)
}

and

C :=
{

(t, x) ∈ Rd+1
0,T

∣∣ u(t, x) > g(t, x)
}
,
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u satisfies:

(∂tu+ Lu− ru)(t, x) = −h(t, x), for all (t, x) ∈ C ∩ I;

(∂tu+ Lu− ru)(t, x) ≥ −h(t, x), for a.e. (t, x) ∈ C;

(∂tu+ Lu− ru)(t, x) ≤ −h(t, x), for a.e. (t, x) ∈ I;

u(t, x) ≥ g(t, x), for all (t, x) ∈ Rd+1
0,T ;

|∇u(t, x)|d ≤ f(t, x), for all (t, x) ∈ Rd+1
0,T ;

u(T, x) = g(T, x), for all x ∈ Rd,

(3.6)

with |u(t, x)| ≤ c(1 + |x|2d) for all (t, x) ∈ Rd+1
0,T and a suitable c > 0. �

Notice that the conditions u ≥ g and |∇u|d ≤ f hold for all (t, x) because of
the embedding (1.6). Thus, the two sets I and C are open in [0, T )× Rd.

Lemma 3.3 A function u ∈ W 1,2,p
`oc (Rd+1

0,T ) solves Problem A if and only if u solves
the variational inequalities in (1.3) a.e. on Rd+1

0,T with quadratic growth.

Proof. For simplicity of exposition, we recall that a solution of (1.3) is a function
u belonging to a suitable Sobolev space W 1,2,p

`oc (Rd+1
0,T ), it has quadratic growth and

satisfies a.e. on Rd+1
0,T

min{max{∂tu+ Lu− ru+ h, g − u}, f − |∇u|d} = 0,

max{min{∂tu+ Lu− ru+ h, f − |∇u|d}, g − u} = 0,
(3.7)

with terminal condition u(T, x) = g(T, x) for all x ∈ Rd.
We prove now that a solution of (3.7) satisfies the six conditions in (3.6). Let

u be a solution of (3.7), the sixth equation of (3.6) holds. From the first line of
(3.7) we have that

max{∂tu+ Lu− ru+ h, g − u} ≥ 0 and f − |∇u|d ≥ 0 (3.8)

hold almost everywhere on Rd+1
0,T . If one of the two inequalities is strict, then the

other must be an equality. The last part in (3.8) implies that the fifth equation in
(3.6) holds almost everywhere and it also holds everywhere by embedding (1.6).
Let (t, x) ∈ I, we have that f(t, x)− |∇u(t, x)|d > 0 is strict and we obtain from
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the left-hand side of (3.8) that

∂tu+ Lu− ru+ x ≤ 0 and g − u ≤ 0

hold a.e. on I, i.e., we have that the third equation of (3.6) holds. Similarly, we
use the second line of (3.7) in order to prove the second and the fourth equation
of (3.6). It is immediate from the previous arguments that the first equation of
(3.6) holds almost everywhere. To complete the proof, let (t, x) ∈ C ∩ I with
t 6= T ; since the intersection of open sets is open, then we can find a ρ > 0 such
that Oρ := (t− ρ, t+ ρ)× Bρ(x) ⊂ C ∩ I where Bρ(x) is the d-dimensional ball
centred in x. Thus u is a strong solution of the problem∂tv + Lv − rv = −h, on Oρ,

v(s, y) = u(s, y), for (s, y) ∈ ∂POρ,

with ∂POρ := ((t−ρ, t+ρ)×∂Bρ(x))∪({t+ρ}×Bρ(x)). By [29, Thm. 3.4.9] we have
that there exists a unique classical solution v of the boundary value problem above
because h ∈ Cα(Oρ), and L is sufficiently regular (we will specify this regularity
in Assumption 3.4). Since v is also a strong solution, then v − u ∈ W 1,2,p(Oρ) is
a strong solution of ∂tw + Lw − rw = 0 in Oρ with w = 0 at the boundary. It
follows that ‖v − u‖W 1,2,p(Oρ) = 0 by the the theory of strong solutions for linear
parabolic PDEs (see [8, 8, Thm. 2.6.5 and Rem. 2.6.4]). It follows we can choose a
C1,2,α
Loc -representative of u which satisfies (∂tu+Lu− ru+ h)(t, x) = 0 everywhere

on C ∩ I.
It is straightforward to prove that a solution of Problem A is a solution of

(3.7) thanks also to the arguments above.

In the next paragraphs, we will present the heuristic argument which lead us
to the set of equations (3.6). We start from a sufficiently regular function that
solves (3.6) and we prove that it is the value function of the game.
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The heuristic argument
Let u ∈ C1,2(Rd+1

0,T ) be a solution of Problem A, we want to prove that

u(t, x) ≤ v(t, x),

u(t, x) ≥ v(t, x).

Let (n, ν) ∈ At and consider the controlled process defined in (3.1). Apply Itô’s
formula to the function

e−rsu(t+ s,X [n,ν]
s )

up to the time τ ∈ Tt. We get

u(t, x) = e−rτu(t+ τ,X [n,ν]
τ )−

∫ τ

0

e−rs(∂t + L − r)u(t+ s,X [n,ν]
s ) ds

−
∫ τ

0

e−rsσ(X [n,ν]
s )∇u(t+ s,X [n,ν]

s ) dWs

−
∫ τ

0

e−rs〈∇u(t+ s,X [n,ν]
s ), ns〉 dνcs

−
∑

0≤s≤τ

e−rs
∫ νs

νs−

〈∇u(t+ s,X
[n,ν]
s− + λns), ns〉 dλ.

We apply the expectation to the equation above and we obtain

u(t, x) = Ex

[
e−rτu(t+ τ,X [n,ν]

τ )−
∫ τ

0

e−rs(∂t + L − r)u(t+ s,X [n,ν]
s ) ds

−
∫ τ

0

e−rs〈∇u(t+ s,X [n,ν]
s ), ns〉 dνcs (3.9)

−
∑

0≤s≤τ

e−rs
∫ νs

νs−

〈∇u(t+ s,X
[n,ν]
s− + λns), ns〉 dλ

]
,

because the stochastic integral is a martingale.
We suppose that there exists a control pair (n∗, ν∗) ∈ At such that: if the

process starts inside the region {|∇u|d < f}, the control pair acts only when the
process hits the boundary of this set. The control pair at that point is an impulse
in the opposite direction of the gradient of the value function with a force equal
to the norm of thegradient; if it starts outside, the control makes an initial jump
from outside to inside the region {|∇u|d < f} and it leaves the process evolving
as above. Notice that the control acts whenever |∇u|d = f and the process stays
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inside {|∇u|d < f} for all the interval time (0, T − t]. The existence of this control
is related to the Skorohod reflection problem which requires regularity of the value
function in order to be solved.

Using this control in (3.9) we get:

u(t, x) = Ex

[
e−rτu(t+ τ,X [n∗,ν∗]

τ )−
∫ τ

0

e−rs(∂t + L − r)u(t+ s,X [n∗,ν∗]
s ) ds

−
∫ τ

0

e−rs〈∇u(t+ s,X [n∗,ν∗]
s ), n∗s〉 dνc,∗s

−
∑

0≤s≤τ

e−rs
∫ νs

νs−

〈∇u(t+ s,X
[n,ν]
s− + λns), ns〉 dλ

]
= Ex

[
e−rτu(t+ τ,X [n∗,ν∗]

τ )−
∫ τ

0

e−rs(∂t + L − r)u(t+ s,X [n∗,ν∗]
s ) ds

+

∫ τ

0

e−rsf(t+ s,X [n∗,ν∗]
s ) dνc,∗s

+
∑

0≤s≤τ

e−rs
∫ νs

νs−

f(t+ s,X
[n,ν]
s− + λns) dλ

]
.

Using the third and fourth line of (3.6), we have from the above equation

u(t, x) ≥ Ex

[
e−rτg(t+ τ,X [n∗,ν∗]

τ ) +

∫ τ

0

e−rsh(t+ s,X [n∗,ν∗]
s ) ds

+

∫ τ

0

e−rsf(t+ s,X [n∗,ν∗]
s ) ◦dν∗s

]
= Jt,x (n∗, ν∗, τ)

The inequality holds for any choice of τ ∈ Tt, thus

u(t, x) ≥ sup
τ∈Tt
Jt,x(n∗, ξ∗, τ) ≥ v(t, x).

We prove now that u(t, x) ≤ v(t, x). Recalling the last line of (3.6), we consider
the stopping time τ∗ = τ∗(t, x, n, ν):

τ∗ := inf
{
s ∈ [0, T − t] : u(t+ s,X [n,ν]

s ) = g(t+ s,X [n,ν]
s )

}
.
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From (3.9), using the second line of (3.6), we get

u(t, x) ≤ Ex

[
e−rτ∗g(t+ τ∗, X

[n,ν]
τ∗ ) +

∫ τ

0

e−rsh(t+ s,X [n,ν]
s ) ds

−
∫ τ∗

0

e−rs〈∇u(t+ s,X [n,ν]
s ), ns〉 dνcs

−
∑

0≤s≤τ∗

e−rs
∫ νs

νs−

〈∇u(t+ s,X
[n,ν]
s− + λns), ns〉 dλ

]
.

We use now the fifth line of (3.6) and

u(t, x) ≤ Ex

[
e−rτ∗g(t+ τ∗, X

[n,ν]
τ∗ ) +

∫ τ

0

e−rsh(t+ s,X [n,ν]
s ) ds

+

∫ τ∗

0

e−rsf(t+ s,X [n,ν]
s ) dνcs

+
∑

0≤s≤τ∗

e−rs
∫ νs

νs−

f(t+ s,X
[n,ν]
s− + λns) dλ

]
= Jt,x(n, ν, τ∗)

The inequality holds for every choice of (n, ν) ∈ At and we have

u(t, x) ≤ inf
(n,ν)∈A

Jt,x(n, ν, τ∗)

≤ v(t, x).

Thus we have that u(t, x) = v(t, x) = v(t, x). �

Next we give assumptions under which we obtain our main result (Theorem
3.6).

Assumption 3.4 (Controlled SDE) The functions b and σ are continuously
differentiable and locally Lipschitz on Rd. Moreover, there is D1 > 0 such that

|b(x)|d + |σ(x)|d×d′ ≤ D1(1 + |x|d), for all x ∈ Rd.

Recalling a = σσ>, for any bounded set B ⊂ Rd there is θB > 0 such that a(·) is
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locally elliptic:

〈ζ, a(x)ζ〉 ≥ θB|ζ|2d for any ζ ∈ Rd and all x ∈ B. (3.10)

Assumption 3.5 (Functions f , g, h) For the functions f, g, h : Rd+1
0,T → [0,∞)

the following hold:

(i) f 2, g ∈ C1,2,α
`oc (Rd+1

0,T ) and h ∈ C0,1,α
`oc (Rd+1

0,T ) for some α ∈ (0, 1);

(ii) t 7→ f(t, x) is non-increasing for each x ∈ Rd and 0 ≤ f(t, x) ≤ c(1 + |x|pd)
for some c, p > 0;

(iii) there is K0 ∈ (0,∞) such that for all 0 ≤ s < t ≤ T and all x ∈ Rd+1
0,T

h(t, x)− h(s, x) ≤ K0(t− s) and g(t, x)− g(s, x) ≤ K0(t− s); (3.11)

(iv) there is K1 ∈ (0,∞) such that

0 ≤ g(t, x) + h(t, x) ≤ K1(1 + |x|2d), for (t, x) ∈ Rd+1
0,T ; (3.12)

(v) f and g are such that

|∇g(t, x)|d ≤ f(t, x), for all (t, x) ∈ Rd+1
0,T ; (3.13)

(vi) there is K2 ∈ (0,∞) such that

Θ(t, x) :=
(
h+ ∂tg + Lg − rg

)
(t, x) ≥ −K2, for all (t, x) ∈ Rd+1

0,T . (3.14)

Condition (3.11) is immediately satisfied if h and g are time-homogeneous
(as it is often the case in investment problems, see, e.g., [14], [15], [19]) or if the
maps t 7→

(
h(t, x), g(t, x)

)
are non-increasing for all x ∈ Rd. Otherwise, that

condition amounts to setting a maximum growth rate on t 7→
(
h(t, x), g(t, x)

)
as

time increases. Condition (3.12) is sufficient to guarantee that the value function
of the game has at most a quadratic growth. Intuitively, if the controller decides
to not use any control, the game evolves according the uncontrolled SDE and
the expected payoff has quadratic growth since g and h have. Condition (3.13) is
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sufficient to guarantee that the stopping payoff satisfies the gradient constraint in
(3.6) and therefore, from a probabilistic point of view, the stopper can stop at any
point in the state-space: strictly speaking, this condition is only needed in the
contact set {u = g}. However, the contact set is unknown a priori so it is difficult
in our generality to formulate an assumption involving that set’s properties; on
a more technical level, it will be shown in Lemma 3.32 that (3.13) implies that
the controller should never exert a jump at the time the stopper ends the game.
Condition (3.14) guarantees that there is no region in the state space where the
controller (minimiser) can push the process and obtain arbitrarily large (negative)
running gains.

Example: Assumption 3.5 describes conditions on the functions f, g, h. We
present now an example where these conditions are satisfied. Consider d = 1

and let (0,∞) be the state space (see Remark 3.8). Let the underlying process
be a geometric Brownian motion with b(x) = c1x and σ(x) = c2x for some c1, c2

positive constants. In singular control problems, a common function cost is a
constant function: f ≡ 1. For the terminal payoff we use g(t, x) = x, this is a
function independent of time and its derivatives are

gx(t, x) = 1 and gxx(t, x) = 0.

We obtain that (3.13) is satisfied and

(∂t + L − r)g = c1x− rx.

Thus, condition (3.14) is satisfied if r ≤ c1 or, for example, if we take a function
h with quadratic growth in x such as h(t, x) = t+ c3x

2. This function depends on
time and h(t, x)− h(s, x) ≤ (t− s).

The next theorem is the main result of the paper and its proof is distilled in
the following sections through a number of technical results and estimates.

Theorem 3.6 The game described above admits a value (i.e., (3.5) holds) and
the value function v of the game is the maximal solution to Problem A. Moreover,
for any given (t, x) ∈ Rd+1

0,T and any admissible control (n, ν) ∈ At, the stopping



38 Zero-sum game between Controller and Stopper

time τ∗ = τ∗(t, x;n, ν) ∈ Tt defined under Px as

τ∗ := inf
{
s ≥ 0

∣∣ v(t+ s,X [n,ν]
s ) = g(t+ s,X [n,ν]

s )
}
∧ (T − t), (3.15)

is optimal for the stopper.

Remark 3.7: Uniqueness of the solution to Problem A remains an open ques-
tion. Methods used in, e.g., [62], do not apply due to the presence of obstacle
and gradient constraints. Existence of an optimal control pair (n∗, ν∗) ∈ At is
also subtle and cannot be addressed in the generality of our setting. Even in
standard singular control problems (not games) abstract existence results rely on
compactness arguments in the space of increasing processes under more stringent
assumptions (e.g., convexity or concavity) on the functions f , g, h, b and σ (see,
e.g., [12], [34], [49], [64]). �

Remark 3.8: Our choice to work with X [n,ν] ∈ Rd is purely for simplicity of
exposition. It will be clear from our arguments of proof that other types of
unbounded domains as, e.g., orthants of Rd, are equally covered by our analysis,
provided that the controlled process X [n,ν] cannot leave the domain in finite time.
In particular, for d = 1 our results apply to X [n,ν] ∈ (0,∞), which is of specific
interest for economic applications with geometric Brownian motion or certain CIR
dynamics. �

3.2 Penalised Problem and A Priori Estimates

In this section we first introduce a class of penalised problems and illustrate
their connection with a class of ZSGs of control (Section 3.2.1). Then we provide
important a priori estimates on the growth and gradient of the solution of such
penalised problems (Sections 3.2.2 and 3.2.3) and, finally, we prove existence and
uniqueness of the solution (Section 3.2.4).
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3.2.1 A penalised problem

For technical reasons related to solvability of the penalised problem and the
probabilistic representation of its solution we choose to work on a sequence of
bounded domains (Om)m∈N ⊂ Rd+1

0,T . Recall that Bm ⊂ Rd is the open ball
of radius m centred in the origin and set Om := [0, T ) × Bm with parabolic
boundary ∂POm = ([0, T ) × ∂Bm) ∪ ({T} × Bm). To simplify notation, we use
‖ · ‖m = ‖ · ‖C0(Om).

Let (ξm)m∈N ⊂ C∞c (Rd) be such that for each m ∈ N we have:

(i) 0 ≤ ξm ≤ 1 on Rd, with ξm = 1 on Bm and ξm = 0 on Rd \Bm+1;

(ii) there is C0 > 0 independent of m ∈ N such that

|∇ξm|2d ≤ C0ξm on Rd. (3.16)

An example of such functions is provided in Appendix B.1 for completeness. We
define

gm(t, x) := ξm−1(x)g(t, x) and hm(t, x) := ξm−1(x)h(t, x), for (t, x) ∈ Rd+1
0,T .

Clearly gm = hm = 0 on Rd+1
0,T \ Om while gm = g and hm = h on Om−1.

We also define a version fm of the function f so that fm = f on Om−1 and the
condition

|∇gm(t, x)|d ≤ fm(t, x), for (t, x) ∈ Om, (3.17)

is preserved. For (t, x) ∈ Rd+1
0,T we let

fm(t, x) :=
(
f 2(t, x) + ‖g‖2

m|∇ξm−1(x)|2d + 2
(
gξm−1〈∇ξm−1,∇g〉

)
(t, x)

) 1
2
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and notice that on Om

|∇gm|2d =
d∑
i=1

(
ξm−1∂xig + g∂xiξm−1

)2

= ξ2
m−1|∇g|2d + g2|∇ξm−1|2d + 2ξm−1g〈∇ξm−1,∇g〉

≤ f 2
m,

where the inequality follows by the assumption |∇g|d ≤ f and |ξm| ≤ 1. Since
∇ξm−1 = 0 on Bm−1, we have fm = f on Om−1. Notice that f 2

m ∈ C0,1,α(Om) by
Assumption 3.5 but it does not vanish on the boundary of Om. By construction,
it is clear that

gm → g, hm → h and fm → f, as m→∞,

uniformly on any compact K ⊂ Rd+1
0,T .

Let us now state the penalised problem. Fix (ε, δ) ∈ (0, 1)2 and m ∈ N. Let
ψε ∈ C2(R) be a non-negative, convex function such that ψε(y) = 0 for y ≤ 0,
ψε(y) > 0 for y > 0, ψ′ε ≥ 0 and ψε(y) = y−ε

ε
for y ≥ 2ε. An example of

such functions is provided in Appendix B.2 for completeness. We also denote
(y)+ := max{0, y} for y ∈ R. In order to use the results within this chapter also
in Chapter 4 we introduce H : Rd → R as H(p) := |p|2d. Notice that ∇H(p) = 2p

and D2H(p) = 2Id×d. Indeed, H is a uniform convex function and this will be
important in Chapter 4.

Problem B. Find u = uε,δm with u ∈ C1,2,α(Om), for α ∈ (0, 1) as in Assumption
3.5, that solves:(∂t + L − r)u = −hm − 1

δ
(gm − u)+ + ψε

(
H(∇u)− f 2

m

)
, on Om,

u(t, x) = gm(t, x), (t, x) ∈ ∂POm.
(3.18)

�

There are two useful probabilistic interpretations of a solution to Problem B,
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which we are going to illustrate next. Given t ∈ [0, T ], define the control classes

A◦t :=


(n, ν)

∣∣∣∣∣∣∣∣∣∣∣

(ns)s∈[0,∞) is progressively measurable, Rd-valued,

with |ns|d = 1, P-a.s. for all s ∈ [0,∞); (νs)s∈[0,∞) is

F-adapted, real valued, non-decreasing and absolutely

continuous in time, P-a.s., with E[|νT−t|2] <∞


and

T δt :=

{
w

∣∣∣∣∣ (ws)s∈[0,∞) is progressively measurable,

with 0 ≤ ws ≤ 1
δ
, P-a.s. for all s ∈ [0, T − t]

}
.

It is obvious thatA◦t ⊂ At. For (t, x) ∈ Rd+1
0,T and y ∈ Rd we define the Hamiltonian

Hε
m(t, x, y) := sup

p∈Rd

{
〈y, p〉 − ψε

(
H(p)− f 2

m(t, x)
)}
. (3.19)

The function Hε
m is non-negative (pick p = 0). Thanks to (3.17), choosing

p = −∇gm(t, x) we have

Hε
m(t, x, y) ≥ −〈y,∇gm(t, x)〉, for all (t, x, y) ∈ [0, T ]× Rd × Rd. (3.20)

For any admissible pair (n, ν) ∈ A◦t , we consider the controlled dynamics

X [n,ν]
s = x+

∫ s

0

[
b(X [n,ν]

u ) + nuν̇u
]
du+

∫ s

0

σ(X [n,ν]
u )dWu, for 0 ≤ s ≤ T − t,

where now the process ν is absolutely continuous with respect the Lebesgue
measure of time, P-a.s. Thus for a fixed T > 0 and for almost every ω ∈ Ω there
exists a measurable function (ν̇s)s∈[0,∞) (which depends on ω) such that∫ t

0

1A dνs =

∫ t

0

1Aν̇s ds

for all measurable sets A ⊆ [0, T ]. Sometimes, ν̇ is called the Radon-Nikodym
derivative of dνs with respect to ds. We define ρm = ρOm(t, x;n, ν) as

ρm = inf{s ≥ 0 |X [n,ν]
s /∈ Bm} ∧ (T − t). (3.21)
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Instead, for w ∈ T δt , we introduce a controlled discount factor

Rw
s := exp

(
−
∫ s

0

[
r + wλ

]
dλ
)
.

For (t, x) ∈ Om and a treble [(n, ν), w] ∈ A◦t × T δt let us consider an expected
payoff:

J ε,δ,m
t,x (n, ν, w) := Ex

[
Rw
ρmgm(t+ ρm, X

[n,ν]
ρm ) +

∫ ρm

0

Rw
s hm(t+ s,X [n,ν]

s ) ds (3.22)

+

∫ ρm

0

Rw
s

[
wsgm +Hε

m(·, nsν̇s)
]
(t+ s,X [n,ν]

s ) ds

]
.

The associated upper and lower value read, respectively,

vε,δm (t, x) = inf
(n,ν)∈A◦t

sup
w∈T δt

J ε,δ,m
t,x (n, ν, w) and

vε,δm (t, x) = sup
w∈T δt

inf
(n,ν)∈A◦t

J ε,δ,m
t,x (n, ν, w),

so that vε,δm ≤ vε,δm . A solution of Problem B coincides with the value function of
this ZSG.

Proposition 3.9 Let uε,δm be a solution of Problem B. Then

uε,δm (t, x) = vε,δm (t, x) = vε,δm (t, x), for all (t, x) ∈ Om. (3.23)

Proof. For simplicity denote u = uε,δm . By definition vε,δm = vε,δm = u = gm on
∂POm. Fix (t, x) ∈ Om and an arbitrary treble [(n, ν), w] ∈ A◦t × T δt . Applying
Itô’s formula to Rw

ρmu(t+ ρm, X
[n,ν]
ρm ) we have

Rw
ρmu(t+ ρm, X

[n,ν]
ρm ) =u(t, x) +

∫ ρm

0

Rw
s (∂t + L − r)u(t+ s,X [n,ν]

s ) ds

−
∫ ρm

0

Rw
s wsu(t+ s,X [n,ν]

s ) ds

+

∫ ρm

0

Rw
s

〈
nsν̇s,∇u(t+ s,X [n,ν]

s )
〉

ds

−
∫ ρm

0

Rw
s∇u(t+ s,X [n,ν]

s )σ(X [n,ν]
s ) dWs.
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Notice that the function u belongs to C1,2,α(Om) and thus Itô’s formula applies
up to time ρm. Applying expectation to both sides on the equation above and
arranging terms we get

u(t, x) = Ex

[
Rw
ρmu(t+ ρm, X

[n,ν]
ρm )−

∫ ρm

0

Rw
s (∂t + L − r)u(t+ s,X [n,ν]

s ) ds

−
∫ ρm

0

Rw
s wsu(t+ s,X [n,ν]

s ) ds+

∫ ρm

0

Rw
s

〈
nsν̇s,∇u(t+ s,X [n,ν]

s )
〉

ds

−
∫ ρm

0

Rw
s∇u(t+ s,X [n,ν]

s )σ(X [n,ν]
s ) dWs

]
.

The last term on the right-hand side above is a martingale because the functions
inside the integral are bounded and therefore the expectation is zero. Using that
u solves (3.18) we have

u(t, x) = Ex

[
Rw
ρmgm(t+ ρm, X

[n,ν]
ρm ) +

∫ ρm

0

Rw
s hm(t+ s,X [n,ν]

s ) ds

+

∫ ρm

0

Rw
s

[
1
δ

(
gm − u

)+− ψε
(
H(∇u)− f 2

m

)]
(t+ s,X [n,ν]

s ) ds (3.24)

+

∫ ρm

0

Rw
s

[
wsu(t+ s,X [n,ν]

s )−
〈
nsν̇s,∇u(t+ s,X [n,ν]

s )
〉]

ds

]
.

We prove first that u(t, x) ≤ vε,δm (t, x). By definition of the Hamiltonian we have
(choosing p = −∇u(t+ s,X

[n,ν]
s ) in (3.19))

−
〈
nsν̇s,∇u(t+ s,X [n,ν]

s )
〉
− ψε

(
H(∇u)− f 2

m

)
(t+ s,X [n,ν]

s ) (3.25)

≤ Hε
m(t+ s,X [n,ν]

s , nsν̇s).

Moreover, choosing w = w∗ ∈ T δt defined as

w∗s :=

0 if u(t+ s,X
[n,ν]
s ) > gm(t+ s,X

[n,ν]
s ),

1
δ

if u(t+ s,X
[n,ν]
s ) ≤ gm(t+ s,X

[n,ν]
s ),

(3.26)

we also have

1
δ

(
gm − u

)+
(t+ s,X [n,ν]

s ) + w∗su(t+ s,X [n,ν]
s ) = w∗sgm(t+ s,X [n,ν]

s ). (3.27)

The process w∗ ∈ T δt if it is progressively measurable. For all λ ∈ [0, ρm], we just



44 Zero-sum game between Controller and Stopper

need to prove that the pre-image of

Dλ := {(s, ω) ∈ [0, λ]× Ω |w∗s(ω) = 0}

= {(s, ω) ∈ [0, λ]× Ω | (u− gm)(t+ s,X [n,ν]
s (ω)) > 0}

is a measurable set. Defining Yλ(s, ω;n, ν) = (u− gm)(t+ s,X
[n,ν]
s (ω)) for (s, ω) ∈

[0, λ]×Ω, we have that Yλ is continuous because it is composition of a continuous
function u− gm with a progressively measurable process X [n,ν]

λ , thus the pre-image
of an open set is a measurable set, i.e., Y −1

λ ((0,∞)) = Dλ is measurable.
Then, plugging (3.25) and (3.27) into (3.24) we arrive at

u(t, x) =Ex

[
Rw∗

ρmgm(t+ ρm, X
[n,ν]
ρm ) +

∫ ρm

0

Rw∗

s hm(t+ s,X [n,ν]
s ) ds

+

∫ ρm

0

Rw∗

s

[
w∗sg(t+ s,X [n,ν]

s ) +Hε
m(t+ s,X [n,ν]

s , nsν̇s)
〉]

ds

]
=J ε,δ,m

t,x (n, ν, w∗).

Since the pair (n, ν) was arbitrary, then we have

u(t, x) ≤ inf
(n,ν)∈A◦t

J ε,δ,m
t,x (n, ν, w∗),

and therefore u(t, x) ≤ vε,δm (t, x). Next we are going to prove that u ≥ vε,δm .
For any w ∈ T δt it is not hard to see that

1
δ

(
gm − u

)+
(t+ s,X [n,ν]

s ) + wsu(t+ s,X [n,ν]
s ) ≥ wsgm(t+ s,X [n,ν]

s ), (3.28)

since 0 ≤ ws ≤ 1
δ
for all s ∈ [0, T − t]. Assume, it is possible to find a pair

(n∗, ν∗) ∈ A◦t such that, putting X∗ = X [n∗,ν∗] we obtain

−
〈
n∗sν̇

∗
s ,∇u(t+ s,X∗s )

〉
− ψε

(
H(∇u)− f 2

m

)
(t+ s,X∗s ) (3.29)

= Hε
m(t+ s,X∗s , n

∗
sν̇
∗
s ).

Then, plugging (3.28) and (3.29) into (3.24), we have u(t, x) ≥ J ε,δ,m
t,x (n∗, ν∗, w).
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Since w ∈ T δt is arbitrary we have

u(t, x) ≥ sup
w∈T δt

J ε,δ,m
t,x (n∗, ν∗, w) ≥ vε,δm (t, x).

It remains to find the pair (n∗, ν∗). By concavity, the supremum in Hε
m(t, x, y)

is uniquely attained at a point p = p(t, x, y) ∈ Rd identified by the first-order
condition y = ψ′ε(H(p)− f 2

m(t, x))∇H(p) = ψ′ε(H(p)− f 2
m(t, x))2p. Taking

n∗s :=


− ∇uε,δm (t+s,X∗s )

|∇uε,δm (t+s,X∗s )|d
, if ∇uε,δm (t+ s,X∗s ) 6= 0,

any unit vector, if ∇uε,δm (t+ s,X∗s ) = 0,

ν̇∗s := 2ψ′ε
(
H(∇uε,δm (t+ s,X∗s ))− f 2

m(t+ s,X∗s )
)
|∇uε,δm (t+ s,X∗s )|d,

(3.30)

with

X∗s∧ρm =x+

∫ s∧ρm

0

b(X∗λ)−
(
2ψ′ε(H(∇uε,δm )− f 2

m)∇uε,δm
)
(t+ λ,X∗λ) dλ (3.31)

+

∫ s∧ρm

0

σ(X∗λ) dWλ,

for s ∈ [0, T − t], we have that (3.29) holds (we restored the notation uε,δm for
future reference). It remains to check that (X∗s∧ρm)s∈[0,T ] is actually well-defined.

Since uε,δm ∈ C1,2,α(Om) and ψε ∈ C2(R), then both the drift and diffusion
coefficients of the controlled SDE are Lipschitz in space (recall Assumption
3.4). Hence (3.31) admits a unique strong solution. Moreover, both n∗ and
ν∗ are progressively measurable and since 0 ≤ ψ′ε ≤ 1/ε then also 0 ≤ ν̇∗s ≤
2ε−1‖∇uε,δm ‖m <∞. Therefore (n∗, ν∗) ∈ A◦t .

Remark 3.10: From the proof of Proposition 3.9 we see that w∗ defined in
(3.26) is optimal for the maximiser and (n∗, ν∗) defined in (3.30) is optimal for
the minimiser in the ZSG with payoff (3.22). �

We also show that uε,δm is the value function of a control problem with a
recursive structure.
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Proposition 3.11 Let uε,δm be a solution of Problem B. Then, for (t, x) ∈ Om,

uε,δm (t, x) = inf
(n,ν)∈A◦t

Ex

[
Rδ−1

ρm gm(t+ρm, X
[n,ν]
ρm )+

∫ ρm

0

Rδ−1

s hm(t+s,X [n,ν]
s ) ds (3.32)

+

∫ ρm

0

Rδ−1

s

[
1
δ
(gm ∨ uε,δm ) +Hε

m(·, nsν̇s)
]
(t+ s,X [n,ν]

s ) ds

]
,

and the pair (n∗, ν∗) from (3.30) is optimal.

Proof. For simplicity denote u = uε,δm . Since 1
δ
(gm − u)+ + 1

δ
u = 1

δ
gm ∨ u, then

taking w ≡ 1
δ
in (3.24) and using (3.25) we get

u(t, x) ≤ inf
(n,ν)∈A◦t

Ex

[
Rδ−1

ρm gm(t+ ρm, X
[n,ν]
ρm )

+

∫ ρm

0

Rδ−1

s

[
hm + 1

δ
(gm ∨ u) +Hε

m(·, nsν̇s)
]
(t+ s,X [n,ν]

s ) ds

]
.

The equality is obtained by substituting in (3.24) the controls w ≡ 1
δ
and (n∗, ν∗)

defined in (3.30). Recalling the notation X∗ = X [n∗,ν∗] and (3.29) we obtain (3.32)
and optimality of (n∗, ν∗).

From the probabilistic representation of uε,δm in (3.23) we establish uniqueness
in Problem B.

Corollary 3.12 There is at most one solution to Problem B.

3.2.2 Quadratic growth and stability

Here we establish growth and stability results for uε,δm .

Lemma 3.13 Let uε,δm be a solution of Problem B. Then, there is a constant
K3 > 0 independent of ε, δ,m such that

0 ≤ uε,δm (t, x) ≤ K3(1 + |x|2d), for all (t, x) ∈ Om. (3.33)

Proof. Since fm, gm and hm are non-negative, then by (3.23) we get uε,δm ≥ 0. For
the upper bound we pick the control pair (n, ν) = (e1, 0) (where e1 is the unit
vector with 1 in the first entry) in (3.22) and we call X0 = X [e1,0] for simplicity.
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Notice that Hε
m(t+ s,X0

s , 0) = 0, then

uε,δm (t, x)

≤ sup
w∈T δ

Ex

[ ∫ ρm

0

Rw
s

[
hm + wsgm

]
(t+ s,X0

s ) ds+Rw
ρmgm(t+ ρm, X

0
ρm)

]
≤ sup

w∈T δ
Ex

[ ∫ ρm

0

Rw
s

[
K1(1 + ws)

(
1 + sup

0≤λ≤s

∣∣X0
λ

∣∣2
d

)]
ds+Rw

ρmK1

(
1 +

∣∣X0
ρm

∣∣2
d

)]
≤ K1 sup

w∈T δ
Ex

[[
1 + sup

0≤s≤T−t
e−rs

∣∣X0
s

∣∣2
d

][
e−

∫ ρm
0 wλdλ +

∫ ρm

0

e−
∫ s
0 wλdλ

[
1 + ws

]
ds
]]
,

where the second inequality is using the quadratic growth of hm and gm (see
(3.12)); the last inequality is using the definition of Rw with

Rw
s (1 + x) = e−

∫ s
0 wλdλe−rs(1 + x) ≤ e−

∫ s
0 wλdλ(1 + e−rsx), ∀x ∈ [0,∞).

For Px-a.e. ω we have the simple bound

e−
∫ ρm(ω)
0 wλdλ +

∫ ρm(ω)

0

e−
∫ s
0 wλ(ω)dλ

[
1 + ws(ω)

]
ds

= e−
∫ ρm(ω)
0 wλdλ +

∫ ρm(ω)

0

e−
∫ s
0 wλ(ω)dλ ds+

[
− e−

∫ s
0 wλ(ω)dλ

]ρm(ω)

0

≤T + 1.

Therefore

uε,δm (t, x) ≤ K1(T + 1)Ex

[
1 + sup

0≤s≤T−t
e−rs

∣∣X0
s

∣∣2
d

]
≤ K3(1 + |x|2d),

by standard estimates for SDEs with coefficients with linear growth ([48, Cor.
2.5.10]) and the constant K3 > 0 depends only on T , D1 and K1 in Assumptions
3.4 and 3.5.

Remark 3.14: In particular, (3.33) implies that for any m ≥ m0 ∈ N and
ε, δ ∈ (0, 1)

∥∥uε,δm ∥∥m0
≤ K3(1 + |m0|2) =: M1(m0),

where we recall ‖ · ‖m0 = ‖ · ‖C0(Om0 ). �
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The next result relies upon standard PDE arguments. Its proof is in Appendix
B.3 for completeness.

Lemma 3.15 Let uε,δm be a solution of Problem B. Let un ∈ C∞(Om) and χn ∈
C∞(R) be such that χn(0) = 0, χ′n ≥ 0, (χn)n∈N are equi-Lipschitz, and

‖un − uε,δm ‖C1,2,γ(Om) + ‖χn − (·)+‖C0(R) ≤ 1
n
, n ∈ N,

for some γ ∈ (0, α). Then, there exists a unique solution wn ∈ C1,2,α(Om) of
(∂t + L − r)wn = −hm − 1

δ
χn
(
gm − uε,δm

)
+ψε(H(∇un)− f 2

m − 1
n
), on Om,

wn(t, x) = gm(t, x), (t, x) ∈ ∂POm.

(3.34)

Moreover, wn ∈ C1,3,α
Loc (Om) and wn → uε,δm in C1,2,β(Om) as n → ∞, for all

β ∈ (0, α).

3.2.3 Gradient bounds

Our next goal is to find a bound for the norm of the gradient of uε,δm uniformly
in ε, δ. We start by considering an estimate on the parabolic boundary ∂POm
that will be later used to bound uε,δm on the whole Om.

Lemma 3.16 Let uε,δm be a solution of Problem B. Then, there isM2 = M2(m) > 0

such that

sup
(t,x)∈∂POm

|∇uε,δm (t, x)|d ≤M2, for all ε, δ ∈ (0, 1). (3.35)

Proof. For simplicity we denote u = uε,δm . If t = T we have u(T, x) = gm(T, x) for
x ∈ Bm and the bound is trivial because ∇u(T, x) = ∇gm(T, x).

Next, let t ∈ [0, T ). Notice that u|∂Bm = gm|∂Bm = 0. Fix x ∈ Bm and
y ∈ ∂Bm. Then

0 ≤ u(t, x)− u(t, y) =u(t, x)− gm(t, y) (3.36)

≤‖∇gm‖m|x− y|d + u(t, x)− gm(t, x),
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where we recall the definition ‖ · ‖m = ‖ · ‖C0(Om).
For arbitrary (n, ν) ∈ A◦t and w ∈ T δt , Dynkin’s formula gives

gm(t, x) = Ex

[
Rw
ρmgm(t+ ρm, X

[n,ν]
ρm )−

∫ ρm

0

Rw
s 〈nsν̇s,∇gm(t+ s,X [n,ν]

s )〉 ds

−
∫ ρm

0

Rw
s

[
∂tgm + Lgm − rgm − wsgm

]
(t+ s,X [n,ν]

s ) ds

]
. (3.37)

Then, setting Θm = ∂tgm + Lgm − rgm + hm and recalling (3.23), we can write

u(t, x)− gm(t, x)

= inf
(n,ν)∈A◦t

sup
w∈T δt

Ex

[ ∫ ρm

0

Rw
s

([
Θm + 〈nsν̇s,∇gm〉

]
+Hε

m(·, nsν̇s)
)

(t+ s,X [n,ν]
s ) ds

]
.

Picking (n, ν) = (e1, 0) and recalling that Hε
m(·, 0) = 0 and ρm = ρOm we obtain

the upper bound

u(t, x)− gm(t, x) ≤ sup
w∈T δt

Ex

[ ∫ ρOm

0

Rw
s Θm(t+ s,X [e1,0]

s ) ds

]
≤
∥∥Θm

∥∥
m
Ex
[
ρOm

]
.

Combining the latter with (3.36) we obtain

0 ≤ u(t, x)− u(t, y) ≤ ‖∇gm‖m|x− y|d + ‖Θm‖mEx
[
ρOm

]
.

Since ρOm = ρOm(t, x; e1, 0) is associated to the control pair (n, ν) = (e1, 0),
then

ρOm = inf{s ≥ 0 |X [e1,0]
s /∈ Bm} ∧ (T − t) =: τm ∧ (T − t),

and clearly Ex[ρOm ] ≤ Ex[τm] =: π(x). It is well-known that π ∈ C2(Bm) and it
solves

Lπ(x) = −1 for x ∈ Bm with π(x) = 0 for x ∈ ∂Bm,

by uniform ellipticity of L on Bm (see [30, Thm. 6.14]). That is sufficient to
conclude

Ex
[
ρOm

]
≤ π(x) = π(x)− π(y) ≤ Lπ,m|x− y|d,
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for some constant Lπ,m > 0 depending only on the coefficients of L and the
radius m. Then, for all t ∈ [0, T ) we have 0 ≤ u(t, x)− u(t, y) ≤M2|x− y|d,with
M2 = ‖∇gm‖m + ‖Θm‖mLπ,m. This implies (3.35) because u ∈ C1,2,α(Om).

Using Lemma 3.16 we can also provide a bound on |∇uε,δm |d in the whole domain
Om. It is useful to recall that a function ϕ ∈ C1,2(Om) attaining a maximum at a
point (t0, x0) ∈ Om also satisfies

Lϕ(t0, x0) + ∂tϕ(t0, x0) ≤ 0, (3.38)

by the maximum principle (see [29, Lemma 2.1]). Since (t0, x0) ∈ Om, then
∇ϕ(t0, x0) = 0 and, when t0 ∈ (0, T ), also ∂tϕ(t0, x0) = 0. We also provide a
probabilistic proof of the maximum principle in Appendix (see Lemma B.3).

Proposition 3.17 Let uε,δm be a solution of Problem B. Then, there isM3 = M3(m)

such that

sup
(t,x)∈Om

|∇uε,δm (t, x)|d ≤M3, for all ε, δ ∈ (0, 1). (3.39)

Proof. This proof refines and extends arguments from [69, Lemma A.2] (see also
[45, Lemma 2.8]). For simplicity we denote u = uε,δm . Let λm ∈ (0,∞) be a
constant depending on m but independent of ε, δ, which will be chosen later. Let
vλ ∈ C0,1,α(Om) be defined as

vλ(t, x) := |∇u(t, x)|2d − λu(t, x)

for some λ ∈ (0, λm]. Recalling M1 = M1(m) from Remark 3.14 we have for any
λ ∈ (0, λm]

sup
(t,x)∈Om

|∇u(t, x)|2d ≤ sup
(t,x)∈Om

vλ(t, x) + λmM1(m). (3.40)

Let (tλ, xλ) ∈ Om be a maximum point for vλ. Two situations may arise:
either (tλ, xλ) ∈ Om or (tλ, xλ) ∈ ∂POm. If (tλ, xλ) ∈ ∂POm, then by Lemmas
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3.13 and 3.16 we have

vλ(tλ, xλ) ≤ |∇u(tλ, xλ)|2d ≤M2
2 =⇒ sup

(t,x)∈Om
|∇u(t, x)|2d ≤M2

2 + λmM1,

where the implication follows by (3.40). Thus, if

Λm := {λ ∈ (0, λm] : (tλ, xλ) ∈ ∂POm} 6= ∅, (3.41)

it is sufficient to pick λ ∈ Λm and (3.39) holds.
Let us now assume Λm = ∅ (i.e., (tλ, xλ) ∈ Om for all λ ∈ (0, λm]).With no

loss of generality:

|∇u(tλ, xλ)|d > 1 and 〈∇u(tλ, xλ),∇gm(tλ, xλ)〉 − |∇u(tλ, xλ)|2d < 0. (3.42)

If either condition fails, then (3.39) trivially holds. Likewise, we assume

ψ′ε
(
H(∇u(tλ, xλ))− f 2

m(tλ, xλ)
)
> 1 (3.43)

because ψε is convex and ψ′ε(r) = 1
ε
> 1 for r ≥ 2ε. So, if (3.43) fails, it must be

|∇u(tλ, xλ)|2d = H(∇u(tλ, xλ)) < f 2
m(tλ, xλ) + 2ε and (3.39) holds because fm is

bounded on Om.
We would like to compute ∂tv+Lv but the term containing ( · )+ in the PDE for

u is not continuously differentiable and, therefore, it is not clear that |∇u|2d admits
classical derivatives. That is why we resort to an approximation procedure. Let un,
χn and wn be defined as in Lemma 3.15. Recall that wn ∈ C1,3,α

Loc (Om)∩C1,2,α(Om)

and wn → u in C1,2,γ(Om) for all γ ∈ (0, α). Define

vλ,n(t, x) := |∇wn(t, x)|2d − λu(t, x),

so that vλ,n ∈ C1,2,α
Loc (Om) ∩ C0,1,α(Om). Clearly, vλ,n → vλ uniformly on Om.

Let (tλn, x
λ
n)n∈N be a sequence with (tλn, x

λ
n) ∈ arg maxOm v

λ,n for n ∈ N. Since
Om is compact, the sequence admits a subsequence (tλnk , x

λ
nk

)k∈N converging to
some (t̃, x̃) ∈ Om. It is not hard to show that (t̃, x̃) ∈ arg maxOm v

λ (we provide the
full argument in Appendix for completeness). Then, with no loss of generality we
can assume (tλ, xλ) = (t̃, x̃). That implies that we can choose (tλnk , x

λ
nk

)k∈N ⊂ Om.
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More precisely, by continuity of vλ, for any η > 0 there exist bounded open
sets Uλ,η ⊂ Om and Vλ,η ⊂ Bm such that (tλ, xλ) ∈ Uλ,η ∪

(
{0}×Vλ,η

)
and

vλ(t, x) > vλ(tλ, xλ) − η for all (t, x) ∈ Uλ,η ∪
(
{0}×Vλ,η

)
(by convention, if

tλ 6= 0 we take Vλ,η = ∅). Moreover, for k ∈ N sufficiently large we have
(tλnj , x

λ
nj

)j≥k ⊂ Uλ,η ∪
(
{0}×Vλ,η

)
.

From now on we simply relabel our subsequence by (tλn, x
λ
n)n∈N with a slight

abuse of notation. Since (tλn, x
λ
n) is a maximum point of vλ,n from the maximum

principle (see (3.38)) we get

Lvλ,n(tλn, x
λ
n) + ∂tv

λ,n(tλn, x
λ
n) ≤ 0. (3.44)

Next we compute explicitly all terms in (3.44) and to simplify notation we drop
the argument (tλn, x

λ
n). Denoting ∂tv = vt, ∂xiv = vxi and ∂xixjv = vxixj , we obtain

vλ,nt = 2
〈
∇wn,∇wnt

〉
− λut;

vλ,nxi = 2〈∇wn,∇wnxi〉 − λuxi , 1 ≤ i ≤ d; (3.45)

vλ,nxixj = 2〈∇wnxi ,∇w
n
xj
〉+ 2〈∇wn,∇wnxixj〉 − λuxixj , 1 ≤ i, j ≤ d.

Substituting in (3.44) gives:

0 ≥
d∑

i,j=1

aij〈∇wnxi ,∇w
n
xj
〉+ 2

d∑
k=1

wnxk(∂tw
n
xk

+ Lwnxk)− λ(∂tu+ Lu). (3.46)

From uniform ellipticity (3.10) on Bm and denoting θBm = θ we have

d∑
i,j=1

aij〈∇wnxi ,∇w
n
xj
〉 =

d∑
k=1

d∑
i,j=1

aijw
n
xkxi

wnxkxj

≥
d∑

k=1

θ|∇wnxk |
2
d (3.47)

≥ θ|D2wn|2d×d.

To study the second term in (3.46) we introduce the differential operator Lxk :

(Lxkϕ)(x) = 1
2
tr
(
axk(x)D2ϕ(x)

)
+ 〈bxk(x),∇ϕ(x)〉, for ϕ ∈ C2(Rd), (3.48)
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where axk ∈ Rd×d is the matrix with entries (∂xkaij)
d
i,j=1 and bxk ∈ Rd the vector

with entries (∂xkbi)
d
i=1. Differentiating with respect to xk the PDE in (3.34) and

rearranging terms we get

∂tw
n
xk

+ Lwnxk = rwnxk + ψ′ε(ζ̄n) · (H(∇un)− f 2
m)xk − ∂xkhm (3.49)

− 1
δ
χ′n(gm − u) · (gm − u)xk − Lxkwn,

where we set ζ̄n := (H(∇un)− f 2
m)(tλn, x

λ
n)− 1

n
for the argument of ψ′ε.

In the third term of (3.46) we substitute (3.18) and, combining with (3.47)
and (3.49), we obtain

0 ≥ θ|D2wn|2d×d + 2
[
r|∇wn|2d + ψ′ε(ζ̄n)〈∇wn,∇(H(∇un)− f 2

m)〉 − 〈∇wn,∇hm〉

− 1
δ
χ′n(gm − u)〈∇wn,∇(gm − u)〉 −

d∑
k=1

wnxkLxkw
n
]

(3.50)

− λ
(
ru+ ψε(ζn)− 1

δ
(gm − u)+ − hm

)
,

where we set ζn := (H(∇u)− f 2
m)(tλn, x

λ
n) for the argument of ψε.

Let us denote ŵn = u − wn. Then ‖ŵn‖C1,2,γ(Om) → 0 as n → ∞ because
wn → u in C1,2,γ(Om), for all γ ∈ (0, α). We claim that

2
[
r|∇wn|2d − 〈∇wn,∇hm〉 − 1

δ
χ′n(gm − u)〈∇wn,∇(gm − u)〉 −

d∑
k=1

wnxkLxkw
n
]

− λ
(
ru+ ψε(ζn)− 1

δ
(gm − u)+ − hm

)
(3.51)

≥ −C1|∇u|2d − θ|D2wn|2d×d − C2 − λrM1 − λψ′ε(ζ̄n)H(∇u)−Rn,

for M1 as in Remark 3.14, constants C1 = C1(m) > 0, C2 = C2(m) > 0 depending
only on m and with

0 ≤ Rn ≤ κδ,m

(
‖ŵn‖C0,1,γ(Om) + λ

∥∥ψ′ε(ζn)− ψ′ε(ζ̄n)
∥∥
m

)
,

where κδ,m > 0 depends on δ, ‖∇u‖m and ‖∇gm‖m. Clearly Rn → 0 as n→∞.
For the ease of exposition the proof of (3.51) is given separately at the end of this
proof.
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Plugging (3.51) into (3.50) we obtain

0 ≥ 2ψ′ε(ζ̄n)〈∇wn,∇(H(∇un)− f 2
m)〉 − C1|∇u|2d − C2

− λrM1 − λψ′ε(ζ̄n)H(∇u)−Rn.

By (3.43), ψ′ε(ζ̄n) ≥ 1 for large n. Then, multiplying both sides of the inequality
by −1 we obtain

0 ≤ ψ′ε(ζ̄n)
(
λH(∇u)− 2〈∇wn,∇(H(∇un)− f 2

m)〉+ C1|∇u|2d + C2+λrM1 +Rn

)
.

That implies

0 ≤ C1|∇u|2d + λH(∇u)− 2〈∇wn,∇(H(∇un)− f 2
m)〉+ C2+λrM1 +Rn. (3.52)

We claim that

−2〈∇wn,∇(H(∇un)− f 2
m)〉 ≤ −2λH(∇u) + 2|∇u|d|∇f 2

m|d + R̃n, (3.53)

where R̃n = R̃n(m, ε, δ) goes to zero as n→∞. Again, for ease of exposition the
proof of (3.53) is given separately at end of this proof, after the one for (3.51).
Collecting C1|∇u|2d and λH(∇u) we have that (3.52) becomes

0 ≤ (C1 − λ)|∇u|2d + 2|∇u|d|∇f 2
m|d + C2 + λrM1 +Rn + R̃n. (3.54)

By definition of fm it is not hard to verify that |∇f 2
m|d ≤ C3 for a constant

C3 = C3(m) > 0 independent of ε and δ. Then from the inequality above we
obtain

(λ− C1)|∇u|2d ≤ 2C3|∇u|d + C2 + λrM1 +Rn + R̃n.

Choosing λ = λ̄ := C1 + 1 and recalling our shorthand notation ∇u = ∇u(tλn, x
λ
n),

we have

|∇u(tλ̄n, x
λ̄
n)|2d ≤ 2C3|∇u(tλ̄n, x

λ̄
n)|d + C2 + λ̄rM1 +Rn + R̃n. (3.55)

Thanks to (3.42) we have |∇u(tλ̄, xλ̄)|d > 1. Thus, with no loss of generality
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we can assume that |∇u(t, x)|d ≥ 1 for all (t, x) ∈ U λ̄,η ∪
(
{0}×V λ̄,η

)
and recall

also that (tλ̄n, x
λ̄
n)n∈N ⊂ Uλ̄,η∪

(
{0}×Vλ̄,η

)
. Thus, dividing by |∇u(tλ̄n, x

λ̄
n)|d in (3.55)

we get

|∇u(tλ̄n, x
λ̄
n)|d ≤ 2C3 + C2 + λ̄rM1 +Rn + R̃n. (3.56)

From (3.56) and the definition of Uλ̄,η ∪ ({0} × Vλ̄,η)

sup
(t,x)∈Om

vλ̄(t, x) = vλ̄(tλ̄, xλ̄)

≤ v(tλ̄n, x
λ̄
n) + η

≤ (2C3 + C2 + λ̄rM1 +Rn + R̃n)2 + η.

Letting n→∞ we obtain

sup
(t,x)∈Om

vλ̄(t, x) ≤ (2C3 + C2 + λ̄rM1)2 + η.

By the arbitrariness of η and since (3.40) holds for any λ ∈ (0, λm], taking λm = λ̄

we have

sup
(t,x)∈Om

|∇u(t, x)|2d ≤ (2C3 + C2 + λ̄rM1)2 + λ̄M1.

Hence, the proposition holds withM3 =((2C3 +C2+λ̄rM1)2 +λ̄M1)1/2 independent
of ε and δ.

Proof of (3.51). Recalling ŵn = u− wn we first notice

|∇wn|2d =
(
|∇u|2d − 2〈∇u,∇ŵn〉+ |∇ŵn|2d

)
(3.57)

≤ |∇u|2d + ‖∇ŵn‖m
(
2‖∇u‖m + ‖∇ŵn‖m

)
.

The first term on the left-hand side of (3.51) is positive. Let us look at the second
and third term on the left-hand side of (3.51). For the former we have

〈∇wn,∇hm〉 ≤ |∇wn|d|∇hm|d ≤ 1
2
|∇wn|2d + 1

2
|∇hm|2d. (3.58)
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For the latter, notice

〈∇wn,∇(gm − u)〉 = 〈∇(u− ŵn),∇(gm − u)〉

= 〈∇u,∇gm〉 − |∇u|2d − 〈∇ŵn,∇(gm − u)〉

≤ 〈∇ŵn,∇(u− gm)〉

≤ ‖ŵn‖C0,1,γ(Om)(‖∇u‖m + ‖∇gm‖m),

where the first inequality holds by (3.42) in Uλ,η ∪ ({0} × Vλ,η). Since 0 ≤ χ′n ≤ 2,
then

1
δ
χ′n(gm − u)〈∇wn,∇(gm − u)〉 ≤ 2

δ
‖ŵn‖C0,1,γ(Om)(‖∇u‖m + ‖∇gm‖m), (3.59)

and this term can be collected into Rn in (3.51).
The fourth term on the left-hand side of (3.51), recalling (3.48) we have

d∑
k=1

wnxkLxkw
n = 1

2

d∑
i,j=1

〈∇wn,∇aij〉wnxixj +
d∑
i=1

〈∇wn,∇bi〉wnxi (3.60)

≤ d2

2
Am|∇wn|d|D2wn|d×d + dAm|∇wn|2d,

where we used Cauchy-Schwartz inequality and set

Am := max
i,j

(∥∥∇aij∥∥C0(Bm)
+
∥∥∇bi∥∥C0(Bm)

)
. (3.61)

Using that d2Am|∇wn|d|D2wn|d×d ≤ θ−1d4A2
m|∇wn|2d + θ|D2wn|2d×d, with θ = θBm

as in (3.10), and combining (3.58), (3.60) and (3.57), we have

〈∇wn,∇hm〉+
d∑

k=1

wnxkLxkw
n ≤ 1

2
C1|∇wn|2d + 1

2
θ|D2wn|2d×d + 1

2
C2 (3.62)

≤ 1
2

[
C1|∇u|2d + θ|D2wn|2d×d + C2 + C1‖∇ŵn‖m

(
2‖∇u‖m + ‖∇ŵn‖m

)]
,

with

C1 = C1(m) := 1 + d4A2
mθ
−1 + 2dAm and C2 = C2(m) := ‖∇hm‖2

m. (3.63)

The expression involving ‖∇ŵn‖m can be collected into Rn in (3.51).
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It remains to find an upper bound for λ
(
ru+ψε(ζn)− 1

δ
(gm−u)+−hm

)
. Since

hm ≥ 0 and (gm − u)+ ≥ 0 and taking M1 = M1(m) > 0 as in Remark 3.14 we
have

λ
(
ru+ ψε(ζn)− 1

δ
(gm − u)+ − hm

)
≤ λ

(
rM1 + ψε(ζn)

)
. (3.64)

By convexity of ψε and since ψε(0) = 0, we have

ψε(ζn) ≤ψ′ε(ζn)(H(∇u)− f 2
m)

≤ψ′ε(ζn)H(∇u) (3.65)

≤ψ′ε(ζ̄n)H(∇u) +
∣∣ψ′ε(ζn)− ψ′ε(ζ̄n)

∣∣H(∇u)

≤ψ′ε(ζ̄n)H(∇u) +
∥∥ψ′ε(ζn)− ψ′ε(ζ̄n)

∥∥
m
‖∇u‖2

m.

Combining (3.59), (3.62), (3.64) and (3.65) we obtain (3.51).

Proof of (3.53). By Cauchy-Schwartz inequality and recalling that ŵn = u−wn

we have

−2 〈∇wn,∇(H(∇un)− f 2
m)〉

≤ −2〈∇wn,∇(H(∇un))〉+ 2|∇wn|d|∇f 2
m|d (3.66)

≤ −2〈∇wn,∇(H(∇un))〉+ 2|∇u|d|∇f 2
m|d + 2‖∇ŵn‖m‖∇f 2

m‖m.

The k-th entry of the vector ∇(H(∇un)) reads
(
H(∇un)

)
xk

= 〈∇H(∇un),∇unxk〉
and therefore the first term on the right-hand side of (3.66) can be written

wnxk
(
H(∇un)

)
xk

=wnxk〈∇H(∇un),∇unxk〉

=wnxk〈∇H(∇un)−∇H(∇u),∇unxk〉 (3.67)

+ wnxk〈∇H(∇u),∇unxk −∇uxk〉+ wnxk〈∇H(∇u),∇uxk〉

≥ − C∇H‖un − u‖C1,2,γ(Om)‖∇u‖m
(
‖D2un‖m + ‖∇u‖m

)
+ 2wnxk〈∇H(∇u),∇uxk〉,

where C∇H is the Lipschitz constant of ∇H, i.e., 2. The last term above is
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estimated as

wnxk〈∇H(∇u),∇uxk〉 =wnxk〈∇H(∇u),∇(ŵnxk + wnxk)〉

=wnxk〈∇H(∇u),∇ŵnxk〉+ wnxk〈∇H(∇u),∇wnxk〉 (3.68)

≥ − C∇H‖ŵn‖C1,2,γ(Om)‖∇wn‖m‖∇u‖m
+ wnxk〈∇H(∇u),∇wnxk〉.

For the last term above, recall that all expressions are evaluated at (tλn, x
λ
n), which is

a stationary point for vλ,n in the spatial coordinates. Thus, 2〈∇wn,∇wnxi〉 = λuxi
by (3.45). Summing over all k’s in (3.68) we get

d∑
k=1

wnxk〈∇H(∇u),∇wnxk〉 =
d∑

k=1

d∑
i=1

wnxk(∇H(∇u))iw
n
xkxi

=
d∑
i=1

(∇H(∇u))i〈∇wn,∇wnxi〉

=
d∑
i=1

(∇H(∇u))iλuxi (3.69)

=λ〈∇H(∇u),∇u〉

≥λH(∇u),

where the last inequality is justified because H(·) is a convex function such that
H(0) = 0, thus H(p) ≤ 〈∇H(p), p〉. Plugging (3.69) back into (3.66) we get

−2〈∇wn,∇(H(∇un)− f 2
m)〉

≤ − 2λH(∇u) + 2|∇u|d|∇f 2
m|+ 2‖∇ŵn‖m‖∇f 2

m‖m
− C∇Hd‖ŵn‖C1,2,γ(Om)‖∇u‖m

(
‖∇wn‖m + ‖D2u‖m

)
(3.70)

− C∇Hd‖un − u‖C1,2,γ(Om)‖∇u‖m
(
‖D2un‖m + ‖∇u‖m

)
Since wn → u and un → u in C1,2,γ(Om) as n→∞ for all γ ∈ (0, α) (Lemma

3.15), then all the terms in (3.66) and (3.70) depending on ŵn and un − u can be
collected in a remainder R̃n = R̃n(m, ε, δ) that goes to zero as n→∞. So, (3.66)
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and (3.70) give us

−2〈∇wn,∇(H(∇un)− f 2
m)〉 ≤ −2λH(∇u) + 2|∇u|d|∇f 2

m|d + R̃n,

as claimed in (3.53).

3.2.4 Solution to the Penalised Problem

In this section we prove that Problem B admits a unique solution. The proof
is based on a fixed point argument that requires the a priori estimates derived in
Sections 3.2.2 and 3.2.3 as well as the next bound.

Proposition 3.18 Let uε,δm be a solution of Problem B. For any β ∈ (0, 1) there
is M4 = M4(m, ε, δ, β) such that

‖uε,δm ‖C0,1,β(Om) ≤M4. (3.71)

Proof. Let u = uε,δm for simplicity. Then, u can be seen as the unique solution ϕ
of the linear PDE

∂tϕ+ Lϕ− rϕ = −hm − 1
δ
(gm − u)+ + ψε(H(∇u)− f 2

m), on Om

with boundary conditions ϕ(t, x) = 0 for x ∈ ∂Bm and ϕ(T, x) = gm(T, x) for all
x ∈ Bm. The theory of strong solutions for linear parabolic PDEs (see [8, Thm.
2.6.5 and Rem. 2.6.4]) gives

‖u‖W 1,2,p(Om) ≤ C
(∥∥hm + 1

δ
(gm − u)+ − ψε(H(∇u)− f 2

m)
∥∥
Lp(Om)

(3.72)

+ ‖gm‖W 1,2,p(Om)

)
for any p ∈ (1,∞), with C a constant independent of ε and δ. Denoting |Om| the
volume of the set Om, thanks to Proposition 3.17 and u ≥ 0 we have

‖u‖W 1,2,p(Om) ≤C|Om|
1
p

(∥∥hm + 1
δ
gm
∥∥
m

+ 1
ε
M2

3

)
+ C‖gm‖W 1,2,p(Om) <∞,

having also used that ψε(x) ≤ 1
ε
x for all x ≥ 0.
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Since p is arbitrary, then Sobolev embedding (1.6) guarantees that for any
β ∈ (0, 1) there exists a constant M4 = M4(m, ε, δ, β) such that (3.71) holds.

The next theorem requires two ingredients, a result on the existence and
uniqueness for linear parabolic PDE on bounded domain and a fixed point theorem
for Banach spaces. The first ingredient comes from [29, Thm. 3.3.7] whose
assumptions are:

(i) the coefficients of L and r are α-Hölder continuous in Om,

(ii) the second-order operator a is uniformly elliptic in Bm,

(iii) the right-hand side of (3.73) is α-Hölder in Om,

(iv) a so-called compatible conditions which is presented in the proof of the
theorem for clarity,

(v) for every point (t, x) ∈ ∂Bm, there exists a neighbourhood V such that all
points (s, y) ∈ V ∩ ∂Bm can be represented as

yi = h(t, y1, . . . , yi−1, yi+1, . . . , yd) for some i ∈ {1, . . . , d},

and the function h and its derivatives, ∂th, ∂xjh, ∂tth, ∂txjh, ∂xjxkh, are α-
Hölder continuous in V ∩ ({T} × ∂Bm) for all 1 ≤ j, k ≤ d with j, k 6= i.

In our case, Assumptions (i), (ii) and (iii) are satisfied by Assumption 3.5. Assump-
tion (iv) is presented in the theorem below and Assumption (v) holds because we
have that for all (s, y) ∈ [0, T ]× ∂Bm we can find i such that |yi| ≥ 1√

d
. Defining

Vy := {x ∈ Rd : |x−y|d < 1√
2d
}, we have that for (t, x) ∈ [0, T ]×(Vy ∩ ∂Bm) =: V T

y

we can use the function

xi = h(t, x1, . . . , xi−1, xi+1, . . . , xd) :=
(
1−

∑
j 6=i

x2
j

) 1
2 .

We have that h ≥
√

2d−1√
2d

everywhere in V T
y and it is independent of time. Thus, the

derivatives with respect to time are sufficiently regular, the derivatives with respect
to the space variables only are continuously differentiable because they are a ratio
of infinitely differentiable functions with a non-zero denominator everywhere.
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The second ingredient is a Banach space. Let us define the subset of C0,1,α(Om)

as:

C0,1,α
∗ (Om) :=

{
ϕ ∈ C0,1,α(Om)

∣∣∣∣∣ϕ = 0 on {T} × ∂Bm and

∇ϕ = 0 on {T} × ∂Bm

}
.

Lemma 3.19 The space (C0,1,α
∗ (Om), ‖ · ‖C0,1,α(Om)) is a Banach space.

Proof. The space C0,1,α
∗ (Om) is a subset of C0,1,α(Om) which is a Banach space

with respect to ‖ · ‖C0,1,α(Om). Thus, it is enough to show that C0,1,α
∗ (Om) is closed

under the same norm. This implies that (C0,1,α
∗ (Om), ‖ · ‖C0,1,α(Om)) is a Banach

space
Let (ϕn)n∈N be a Cauchy sequence in C0,1,α

∗ (Om) convergent to ϕ ∈ C0,1,α(Om).
Since ϕn = 0 and ∇ϕn = 0 for all n ∈ N and ϕn → ϕ in C0,1,α(Om) we have that
ϕ ∈ C0,1,α

∗ (Om).

Remark 3.20: Defining C1,2,α
∗ (Om) := (C1,2,α ∩ C0,1,α

∗ )(Om), we have that also
the pair (C1,2,α

∗ (Om), ‖ · ‖C1,2,α(Om)) is a Banach space. �

Theorem 3.21 There exists a unique solution uε,δm of Problem B.

Proof. Uniqueness is by Corollary 3.12. Existence will be proved refining argu-
ments from [45, Prop. 1.2]. Fix ε, δ ∈ (0, 1) and m ∈ N.

Given ϕ ∈ C0,1,α
∗ (Om) we consider the linear partial differential equation for

w = wϕ:∂tw + Lw − rw = −hm − 1
δ
(gm − ϕ)+ + ψε

(
H(∇ϕ)− f 2

m

)
, on Om,

w(t, x) = gm(t, x), (t, x) ∈ ∂POm.
(3.73)

For x ∈ ∂Bm the compatibility condition

lim
s↑T

(∂tgm + Lgm − rgm)(s, x) =
[
− hm − 1

δ

(
gm − ϕ

)+
+ ψε

(
H(∇ϕ)− f 2

m

)]
(T, x),

holds, with both sides of the expression being equal to zero. Indeed, on the
left-hand side, properties of the cut-off function ξm−1 ∈ C∞c (Bm) guarantee
gm = ∂xigm = ∂xi,xjgm = 0 on [0, T ] × ∂Bm, hence also ∂tgm = 0. On the
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right-hand side of the equation, we use that hm = ϕ = ∂xiϕ = 0 on {T} × ∂Bm.
Therefore (3.73) admits a unique solution in C1,2,α(Om) by [29, Thm. 3.3.7]. The
boundary condition of the PDE implies w = 0 and ∇w = 0 on {T}×∂Bm. Hence
w ∈ C1,2,α

∗ (Om).
Define the operator Γ : C0,1,α

∗ (Om)→ C0,1,α
∗ (Om) that maps ϕ to the solution

of the PDE (3.73), i.e., Γ[ϕ] = wϕ. Next, we show that Γ has a fixed point by
Schaefer’s fixed point theorem (stated in Appendix for completeness). So Problem
B admits a solution.

We have Γ[ϕ] ∈ C1,2,α
∗ (Om) =⇒ Γ[ϕ] ∈ C0,1,β

∗ (Om) for all β ∈ (0, 1) by
(1.6). We must prove that Γ is continuous and compact in C0,1,α

∗ (Om). Consider
a sequence (ϕn)n∈N ⊂ C0,1,α

∗ (Om) such that ϕn → ϕ in C0,1,α
∗ (Om). Let F :

R× Rd → R be defined as

F (q, p) := ψε
(
H(p)− f 2

m

)
− 1

δ
(gm − q)+.

Clearly |ϕ| and |∇ϕ|d are bounded on Om. Since F is locally Lipschitz, then
standard estimates for Hölder norms allow to prove F (ϕn,∇ϕn)→ F (ϕ,∇ϕ) in
Cγ(Om) as n→∞ for any γ ∈ (0, α). By Lemma B.1 in Appendix, Γ[ϕn]→ Γ[ϕ]

in C1,2,γ′
∗ (Om) for any γ′ ∈ (0, γ), as n → ∞. Sobolev embedding (1.6) implies

Γ[ϕn]→ Γ[ϕ] in C0,1,β
∗ (Om) for any β ∈ (0, 1), hence continuity of Γ.

For compactness, notice that Γ maps bounded sets of C0,1,α
∗ (Om) into bounded

sets of C1,2,α
∗ (Om) by [29, Thms. 3.2.6 and 3.3.7]. Since bounded sets in C1,2,α

∗ (Om)

are bounded in C0,1,β
∗ (Om) for all β ∈ (0, 1) (see (1.6)), then C1,2,α

∗ (Om) ↪→
C0,1,α
∗ (Om) is a compact embedding.
It remains to prove that the set

B :=
{
ϕ ∈ C0,1,α

∗ (Om)
∣∣∣ ρΓ[ϕ] = ϕ for some ρ ∈ [0, 1]

}
is bounded in C0,1,α

∗ (Om). If ρ = 0, then ϕ = 0. If ρΓ[ϕ] = ϕ for some ρ ∈ (0, 1],
then ϕ satisfies∂tϕ+Lϕ−rϕ = ρ

[
−hm− 1

δ

(
gm−ϕ

)+
+ψε

(
H(∇ϕ)−f 2

m

)]
, on Om,

ϕ = ρgm, on ∂POm.
(3.74)

The PDE in (3.74) is the same as the one in (3.18) but with hm, ψε, gm, 1
δ
replaced
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by ρhm, ρψε, ρgm, ρδ . Then, all the results from this section and Proposition 3.18
apply to ϕ. In particular, ‖ϕ‖C0,1,α(Om) ≤ M4 uniformly for all ρ ∈ (0, 1], with
M4 as in Proposition 3.18. Finally, Schaefer’s fixed point theorem guarantees
existence of the solution of Problem B, for every treble (ε, δ,m).

3.3 Penalised Problem on Unbounded Domain and

Further Estimates

We refine our a priori estimates on the solution of Problem B. First we shall
make all bounds independent of m so that we can construct a solution to a
penalised problem on unbounded domain as m→∞. Then we shall find bounds
independent of ε and δ so as to pass to the limit for ε, δ ↓ 0 and obtain a solution
to Problem A.

3.3.1 Estimates independent of m

First we bound ∇uε,δm independently of m on each compact.

Proposition 3.22 Fix m0 ∈ N and q ≥ m0 + 2. Let uε,δq be the unique solution
of Problem B on Oq. Then, there is N1 = N1(m0) independent of ε, δ and q, such
that

sup
(t,x)∈Om0

|∇uε,δq (t, x)|d ≤ N1. (3.75)

Proof. For notational simplicity set u = uε,δq , ξ = ξm0 and ‖ · ‖0 = ‖ · ‖m0+1. Since
q ≥ m0 + 2, we have fq = f , gq = g and hq = h on Om0+1. Let λ0 ∈ (0,∞) be a
constant depending on m0 but independent of ε, δ, q, which will be chosen later.
Let vλ ∈ C0,1,α(Om0+1) be defined as

vλ(t, x) := ξ(x)
∣∣∇u(t, x)

∣∣2
d
− λu(t, x), for (t, x) ∈ Om0+1 (3.76)
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for some λ ∈ (0, λ0]. We will use later that

sup
(t,x)∈Om0

|∇u(t, x)|2d ≤ sup
(t,x)∈Om0+1

ξ(x)|∇u(t, x)|2d (3.77)

≤ sup
(t,x)∈Om0+1

vλ(t, x) + λ0‖u‖0,

where we also notice that ‖u‖0 ≤M1 with M1 = M1(m0 + 1) as in Remark 3.14.
Let (tλ, xλ) ∈ Om0+1 be a maximum point for vλ. If xλ ∈ ∂Bm0+1 then

ξ(xλ) = 0 and v(tλ, xλ) = −λu(tλ, xλ) ≤ 0. If tλ = T , then vλ(T, xλ) ≤
ξ(xλ)|∇g(T, xλ)|2d ≤ ‖f‖2

0 (see Assumption 3.5). Thus, in both cases (3.75) holds
with N1 ≥ (‖f‖2

0 + λ0M1)1/2. Defining Λm0+1 as in (3.41) but with λ0 instead of
λm, if Λm0+1 6= ∅ the bound holds taking λ ∈ Λm0+1. It remains to consider the
case Λm0+1 = ∅, so that (tλ, xλ) ∈ Om0+1 for all λ ∈ (0, λ0].

As in the proof of Proposition 3.17 we use the smooth approximation wn

of u, obtained from (3.34). Analogously, let us define vλ,n := ξ
∣∣∇wn∣∣2

d
− λu in

Om0+1 and let (tλn, x
λ
n)n∈N be a sequence converging to (tλ, xλ) with (tλn, x

λ
n) ∈

arg maxOm0+1
vλ,n. For any η > 0 there exists a neighbourhood Uλ,η ∪

(
{0}×Vλ,η

)
of (tλ, xλ) such that

vλ(t, x) > vλ(tλ, xλ)− η, for all (t, x) ∈ Uλ,η ∪
(
{0} × Vλ,η

)
(3.78)

and (tλn, x
λ
n) ∈ Uλ,η ∪

(
{0} × Vλ,η

)
for sufficiently large n’s (with the convention

Vλ,η = ∅ if tλ 6= 0).
Taking derivatives of vλ,n we have, for 1 ≤ i, j ≤ d,

vλ,nt = 2ξ〈∇wn,∇wnt 〉 − λut;

vλ,nxi = 2ξ〈∇wn,∇wnxi〉 − λuxi + ξxi |∇wn|2d;

vλ,nxixj = 2ξ〈∇wnxi ,∇w
n
xj
〉+ 2ξ〈∇wn,∇wnxixj〉

− λuxixj + ξxixj |∇wn|2d + 2
(
ξxi〈∇wn,∇wnxj〉+ ξxj〈∇wn,∇wnxi〉

)
.

Since (tλn, x
λ
n) ∈ Om0+1 then (3.38) gives (∂tv

λ,n +Lvλ,n)(tλn, x
λ
n) ≤ 0. Substituting

the expressions for the derivatives of vλ,n, some tedious but straightforward
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calculations and symmetry of aij give

0 ≥ 2ξ〈∇wn, (∂t+L)(∇wn)〉 − λ(∂tu+Lu) + ξ

d∑
i,j=1

aij〈∇wnxi ,∇w
n
xj
〉 (3.79)

+(Lξ)|∇wn|2d + 2
d∑

i,j=1

aijξxi〈∇wn,∇wnxj〉,

where (∂t +L)(∇wn) denotes the vector with entries (∂t +L)wnxk for k = 1, . . . , d.

Here we omit the dependence on (tλn, x
λ
n) for notational convenience.

The expressions for (∂t + L)wnxk and (∂t + L)u are the same as in (3.49) and
(3.18), respectively. A lower bound for

∑
aij〈∇wnxi ,∇w

n
xj
〉 was also obtained in

(3.47) but with θ therein replaced by θ = θBm0+1 . Thus, from (3.79) we get

0 ≥ ξθ|D2wn|2d×d (3.80)

+2ξ
[
r|∇wn|2d+ψ′ε(ζ̄n)〈∇wn,∇(H(∇un)−f 2)〉− 1

δ
χ′n(g−u)〈∇wn,∇(g−u)〉

−〈∇wn,∇h〉−
d∑

k=1

wnxkLxkw
n
]
−λ
(
ru+ψε(ζn)−h− 1

δ
(g−u)+

)
+(Lξ)|∇wn|2d+2

d∑
i,j=1

aijξxi〈∇wn,∇wnxj〉,

where ζ̄n = (H(∇un)− f 2)(tλn, x
λ
n)− 1

n
and ζn = (H(∇u)− f 2)(tλn, x

λ
n). Up to a

factor ξ, the expression above is the analogue of (3.50) but with two additional
terms. As in (3.51) we have

2ξ
[
r|∇wn|2d − 1

δ
χ′n(g − u)〈∇wn,∇(g − u)〉 − 〈∇wn,∇h〉 −

d∑
k=1

wnxkLxkw
n
]

− λ
(
ru+ ψε(ζn)− 1

δ
(g − u)+ − h

)
(3.81)

≥ −C1ξ|∇u|2d − θ
2
ξ|D2wn|2d×d − ξC2 − λrM1 − λψ′ε(ζ̄n)H(∇u)−Rn,

where Rn → 0 as n → ∞ uniformly on Om0+1. We notice that, differently to
(3.51), we have a factor 1/2 multiplying |D2wn|2d×d. That of course is obtained
by adjusting the constant C1 = (1 + 2d4A2

m0+1θ
−1 + 2dAm0+1) (see (3.63)) with

Am0+1 as in (3.61) and C2 = ‖∇h‖0.
The last term on the right-hand side of (3.80) can be easily bounded. Set
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ā0 := maxi,j ‖aij‖0, which is finite by continuity of aij , and recall that |∇ξ|2d ≤ C0ξ

by (3.16). Then

2
d∑

i,j=1

aijξxi〈∇wn,∇wnxj〉 ≥ −2ā0d

d∑
j=1

|∇ξ|d|∇wn|d|∇wnxj |d

≥ −2ā0d
2
√
C0ξ|∇wn|d|D2wn|d×d (3.82)

≥ −C3|∇wn|2d − ξ
θ

2
|D2wn|2d×d,

where the final inequality is by |ab| ≤ pa2 + b2

p
with a = 2ā0d

2
√
C0|∇wn|d,

b =
√
ξ|D2wn|d×d and p = 2/θ, and setting C3 = 8θ−1ā2

0d
4C0. It is also easy to

check that ‖Lξ‖0 ≤ κ for some κ = κ(‖b‖0, ‖σ‖0) > 0, because the derivatives of
ξ are bounded independently of m0.

Plugging (3.81) and (3.82) into (3.80) and setting C4 = C3 + κ we have

0 ≥ 2ξψ′ε(ζ̄n)〈∇wn,∇
(
H(∇un)− f 2

)
〉 − ξC1|∇u|2d − C4|∇wn|2d (3.83)

− λψ′ε(ζ̄n)H(∇u)− ξC2 − λrM1 −Rn.

Using (3.57) we have ξC1|∇u|2d + C4|∇wn|2d ≤ C5|∇u|2d + R̃n, where R̃n → 0 as
n→∞, uniformly on Om0+1 and C5 = C1 +C4. It remains to find a lower bound
for ξ〈∇wn,∇

(
H(∇un) − f 2

)
〉. By the same arguments as in (3.66), the bound

in (3.67) continue to hold, up to the inclusion of the multiplicative factor ξ. We
have an additional term in the final expression in (3.69), because now vλ,nxk = 0

gives 2ξ〈∇wn,∇wnxk〉 = λuxk − ξxk |∇wn|2d. So, the extra term appearing in (3.69)
reads −uxkξxk |∇wn|2d and, similarly to (3.57), we get

−uxkξxk |∇wn|2d ≥ −uxkξxk |∇u|2d − |uxk ||ξxk |‖∇ŵn‖0

(
2‖∇u‖0 + ‖∇ŵn‖0

)
.

In summary, we have

ξ〈∇wn,∇
(
H(∇un)− f 2

)
〉 ≥λH(∇u)− ξ|∇u|d|∇f 2|d (3.84)

− |∇u|3d|∇ξ|d − ξR̂n,

where R̂n → 0 as n→∞, uniformly on Om0+1.
Substituting (3.84) into (3.83) and grouping together all terms that vanish as
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n→∞ we obtain

0 ≥ 2ψ′ε(ζ̄n)
[
λ
2
H(∇u)− ξ|∇u|d|∇f 2|d − |∇u|3d|∇ξ|d

]
− C5|∇u|2d − C2 − λrM1 − R̄n,

where R̄n → 0 as n → ∞. Using that ψ′ε(ζ̄n) ≥ 1 by the analogue of (3.43), for
sufficiently large n, and multiplying the above expression by −1 we arrive at

0 ≤ ψ′ε(ζ̄n)
[
− λH(∇u) + 2ξ|∇u|d|∇f 2|d + 2|∇u|3d|∇ξ|d
+ C5|∇u|2d + C2 + λrM1 + R̄n

]
.

Using H(∇u) = |∇u|2d, 2ξ|∇u|d|∇f 2|d ≤ |∇u|2d + |∇f 2|2d and |∇f 2|d ≤ ‖∇f 2‖0,
the above inequality leads to

(
λ− 1− 2|∇ξ|d|∇u|d − C5

)
|∇u|2d ≤ ‖∇f 2‖2

0 + C2 + λrM1 + R̄n.

Then, recalling that |∇ξ|2d ≤ C0ξ (see (3.16)) and setting

λ̄ = 2 + 2
√
C0

∥∥√ξ|∇u|d
∥∥

0
+ C5,

we obtain

|∇u|2d(tλ̄n, xλ̄n) ≤ ‖∇f‖2
0 + C2 + λ̄rM1 + R̄n. (3.85)

The parameter λ̄ is bounded from above independently of ∇u as follows. Let
c > 0 be a constant that varies from one expression to the next, independent of
λ̄, ε, δ, but depending on d and the C0(Om0+1)-norms of b, σ, g, h, f 2, and their
spatial gradient. From (3.76), (3.77) and (3.78), we obtain

∥∥ξ|∇u|2d∥∥0
≤ |∇u(tλ̄n, x

λ̄
n)|2d + λ̄M1 + η

≤ c(1 + λ̄+ R̄n) + η

≤ c(1 +
∥∥√ξ|∇u|d

∥∥
0

+ R̄n) + η,

where the second inequality uses (3.85) and the final one the definition of λ̄. Since
‖ξ|∇u|2d‖0 = ‖

√
ξ|∇u|d‖2

0, then ‖
√
ξ|∇u|d‖0≤max{1, c(1 + R̄n)} + η. As n ↑ ∞

and η ↓ 0 we get (3.75) from (3.77) and (3.85), choosing λ0 = 2+2(1+c)
√
C0 +C5,
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thanks to the bound on λ̄.

The bound in Proposition 3.18 depends on m. The next result instead provides
a uniform bound on any compact Om0 for m0 < m. This can be achieved thanks
to (3.75).

Proposition 3.23 Fix m0 ∈ N and q ≥ m0 + 3 and let uε,δq be the unique solution
of Problem B on Oq. For any p ∈ (d + 2,∞) and β = 1 − (d + 2)/p there is
N2 = N2(m0, ε, δ, p) such that

‖uε,δq ‖W 1,2,p(Om0 ) + ‖uε,δq ‖C0,1,β(Om0 ) ≤ N2. (3.86)

Proof. Define ϕ(t, x) := ξm0(x)uε,δq (t, x). Since uε,δq solves (3.18) and fq = f ,
gq = g and hq = h on Om0+1, then ϕ solves

∂tϕ+Lϕ− rϕ = ξm0

[
−h− 1

δ
(g−uε,δq )+ +ψε

(
H(∇uε,δq )− f 2

)]
+Q, on Om0+1,

where Q(t, x) = uε,δq (t, x)(Lξm0)(x)+2〈a(x)∇ξm0(x),∇uε,δq (t, x)〉, and with bound-
ary conditions ϕ(t, x) = 0 for x ∈ ∂Bm0+1 and ϕ(T, x) = ξm0(x)g(T, x) for
x ∈ Bm0+1. As in (3.72) we have

‖ϕ‖W 1,2,p(Om0+1) ≤ C
(∥∥ξm0

[
h+ 1

δ
(g−uε,δq )+−ψε(H(∇uε,δq )−f 2)

]
+Q

∥∥
Lp(Om0+1)

+ ‖ξm0g‖W 1,2,p(Om0+1)

)
(3.87)

for any p ∈ (1,∞) and with C > 0 independent of ε, δ and q. Denoting |Om0+1|
the volume of Om0+1 and using Proposition 3.22 we obtain

‖uε,δq ‖W 1,2,p(Om0 ) ≤‖ϕ‖W 1,2,p(Om0+1)

≤C|Om0+1|
1
p
(
‖h+ 1

δ
g +Q‖m0+1 + 1

ε
(N1)2

)
+ C‖ξm0g‖W 1,2,p(Om0+1),

where the first inequality is due to uε,δq = ϕ on Om0 . Since Q is bounded on
Om0+1 independently of q, the estimate above and Sobolev embedding (1.6) give
us (3.86).
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3.3.2 Penalised problem on unbounded domain

Combining the results obtained so far we can prove existence and uniqueness
of the solution to a penalised problem on Rd+1

0,T .

Problem C. Find u = uε,δ with uε,δ ∈ (C1,2,α
Loc ∩W

1,2,p
`oc )(Rd+1

0,T ), for any p ∈ (1,∞)

and α ∈ (0, 1) as in Assumption 3.5, that solves:(∂t + L − r)u = −h− 1
δ

(
g − u

)+
+ ψε

(
H(∇u)− f 2

)
, on [0, T )×Rd,

u(T, x) = g(T, x), for all x ∈ Rd.
(3.88)

�

Theorem 3.24 There exists a solution uε,δ of Problem C.

Proof. Fix n and take m > n + 3. From Proposition 3.23 we know that for
any β ∈ (0, 1) and p ∈ (1,∞), the norms ‖uε,δm ‖W 1,2,p(On) and ‖uε,δm ‖C0,1,β(On) are
bounded by a constant independent of m. By weak compactness in W 1,2,p and
Ascoli-Arzelá’s theorem we can then extract a sequence (uε,δmnk )k∈N and there exists
a function uε,δ;n ∈ W 1,2,p(On) (both possibly depending on the choice of On) such
that, as k →∞ (and mn

k →∞), we obtain

uε,δmnk → uε,δ;n and ∇uε,δmnk → ∇u
ε,δ;n in Cα(On),

∂tu
ε,δ
mnk
→ ∂tu

ε,δ;n and D2uε,δmnk → D2uε,δ;n weakly in Lp(On).
(3.89)

Since the sequence (uε,δmnk )k∈N is bounded also in theW 1,2,p(On+1)-norm (perhaps by
a larger constant), then up to selecting a further subsequence we have convergence
as in (3.89) but with n replaced by n+ 1. Therefore uε,δ;n = uε,δ;n+1 on On. Using
that On ↑ Rd+1

0,T as n→∞ and iterating the extraction of further subsequences (if
needed), we can uniquely define a limit function uε,δ ∈ (C0,1,α

`oc ∩W
1,2,p
`oc )(Rd+1

0,T ).
Fix n and take m > n. Multiply the PDE solved by uε,δm (see (3.18)) by a

test function supported on On. Then passing to the limit along the subsequence
constructed above, it is standard procedure to show that uε,δ satisfies the first
equation in (3.88) in the a.e. sense on On thanks to locally uniform convergence on
compacts of uε,δm and ∇uε,δm and the weak convergence of ∂tuε,δm and D2uε,δm . Since,
this can be done for any On and uε,δ(T, ·) = g(T, ·), then uε,δ solves (3.88) in the
a.e. sense (it is a strong solution). It now remains to prove it is actually a classical
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solution.
Fix an arbitrary open bounded domain O ⊂ Rd+1

0,T with smooth parabolic
boundary ∂PO. Let v ∈ C1,2,α

Loc (O) be the unique classical solution of the boundary
value problem∂tv + Lv − rv = −h− 1

δ

(
g − uε,δ

)+
+ ψε

(
H(∇uε,δ)− f 2

)
, on O,

v(t, x) = uε,δ(t, x), for (t, x) ∈ ∂PO.
(3.90)

Existence and uniqueness of such v is guaranteed by [29, Thm. 3.4.9] because

−h− 1
δ

(
g − uε,δ

)+
+ ψε

(
H(∇uε,δ)− f 2

)
∈ Cα(O),

and L is uniformly elliptic on O with continuously differentiable coefficients
(Assumption 3.4). Since v is also a strong solution, then v − uε,δ ∈ W 1,2,p(O) is a
strong solution of ∂tw + Lw − rw = 0 in O with w = 0 on ∂PO. It follows that
‖v − uε,δ‖W 1,2,p(O) = 0 by the same estimate as in (3.72). By arbitrariness of O
we can choose a C1,2,α

Loc -representative of uε,δ, as claimed.

We now give a probabilistic representation for uε,δ analogue of (3.23) but on
unbounded domain. For (n, ν) ∈ A◦t and w ∈ T δt let us denote by J ε,δ

t,x (n, ν, w) a
payoff analogue of (3.22) but with ρm, gm, hm replaced by T − t, g, h, respectively,
and with the Hamiltonian Hε

m replaced by

Hε(t, x, y) := sup
p∈Rd

{
〈y, p〉 − ψε

(
H(p)− f 2(t, x)

)}
. (3.91)

Notice that

t 7→ Hε(t, x, y) is non-increasing for all (x, y) ∈ Rd × Rd, (3.92)

because t 7→ f(t, x) is non-increasing by Assumption 3.5. Moreover, taking
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p = εy/2 in Hε gives

Hε(t, x, y) ≥ ε

2
|y|2d − ψε

(
H( ε

2
y)− f 2(t, x)

)
≥ ε

2
|y|2d − ψε

(
H( ε

2
y)
)

(3.93)

=
ε

2
|y|2d − ψε

(
ε2

4
|y|2d
)

≥ ε

4
|y|2d.

Proposition 3.25 Let uε,δ be a solution of Problem C. Then

uε,δ(t, x) = inf
(n,ν)∈A◦t

sup
w∈T δt

J ε,δ
t,x (n, ν, w) = sup

w∈T δt
inf

(n,ν)∈A◦t
J ε,δ
t,x (n, ν, w). (3.94)

Proof. Fix [(n, ν), w] ∈ A◦t × T δt . Since uε,δ ∈ (W 1,2,p
`oc ∩ C

1,2,β
Loc )(Rd+1

0,T ), its time
derivative and its spatial second order derivatives could explode at time T , we
define ρkm := ρm∧ (T − t−k−1) and ρm as in (3.21). Since the stochastic integral is
a martingale because the spatial derivatives are locally bounded, by an application
of Dynkin’s formula to Rw

ρkm
uε,δ(t+ ρkm, X

[n,ν]

ρkm
) combined with (3.88) gives

uε,δ(t, x) = Ex

[
Rw
ρkm
uε,δ
(
t+ρkm, X

[n,ν]

ρkm

)
+

∫ ρkm

0

Rw
s

[
h+ 1

δ

(
g−uε,δ

)+−ψε
(
H(∇uε,δ)−f 2

)](
t+s,X [n,ν]

s

)
ds

+

∫ ρkm

0

Rw
s

[
wsu

ε,δ−
〈
nsν̇s,∇uε,δ

〉](
t+s,X [n,ν]

s

)
ds

]
.

Since the process is localised inside the ball Bm, all the functions involved in the
expectations are bounded, thus we can send k ↑ ∞ and passing the limit under
expectation we get

uε,δ(t, x) = Ex

[
Rw
ρmu

ε,δ
(
t+ρm, X

[n,ν]
ρm

)
(3.95)

+

∫ ρm

0

Rw
s

[
h+ 1

δ

(
g−uε,δ

)+−ψε
(
H(∇uε,δ)−f 2

)](
t+s,X [n,ν]

s

)
ds

+

∫ ρm

0

Rw
s

[
wsu

ε,δ−
〈
nsν̇s,∇uε,δ

〉](
t+s,X [n,ν]

s

)
ds

]
.
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By definition of the Hamiltonian Hε in (3.91) we have

uε,δ (t, x)

≤Ex
[
Rw
ρmu

ε,δ
(
t+ ρm, X

[n,ν]
ρm

)]
(3.96)

+ Ex

[ ∫ ρm

0

Rw
s

[
h+ 1

δ

(
g − uε,δ

)+
+ wsu

ε,δ +Hε(·, nsν̇s)
](
t+ s,X [n,ν]

s

)
ds

]
.

Letting m ↑ ∞ we have ρm ↑ T − t, Px-a.s. We can take the limit inside the
second expectation by monotone convergence as all the terms under the integral
are positive. By Lemma 3.13 the term under the first expectation has quadratic
growth in X [n,ν]. Thanks to standard estimates for SDEs (see [48, Thm. 2.5.10])
there is a constant c > 0 independent of m such that

Ex
[

sup
0≤s≤T−t

∣∣X [n,ν]
s

∣∣2
d

]
≤ c
(
1 + |x|2d + Ex[|νT−t|2]

)
.

Then, dominated convergence and uε,δ(T, · ) = g(T, · ) give us

uε,δ (t, x)

≤Ex

[
Rw
T−tg

(
T,X

[n,ν]
T−t
)

(3.97)

+

∫ T−t

0

Rw
s

[
h+ 1

δ

(
g − uε,δ

)+
+ wsu

ε,δ +Hε(·, nsν̇s)
](
t+ s,X [n,ν]

s

)
ds

]
.

By arguments as in the proof of Proposition 3.9, with w∗ ∈ T δt defined as
in (3.26) but with u and gm replaced by uε,δ and g, respectively, we obtain
uε,δ(t, x) ≤ J ε,δ

t,x (n, ν, w∗). Therefore

uε,δ(t, x) ≤ sup
w∈T δt

inf
(n,ν)∈A◦t

J ε,δ
t,x (n, ν, w). (3.98)

As in Proposition 3.9, for the reverse inequality we set X∗ = X [n∗,ν∗] and
denote

n∗s :=


− ∇uε,δ(t+s,X∗s )
|∇uε,δ(t+s,X∗s )|d

, if ∇uε,δ(t+ s,X∗s ) 6= 0,

any unit vector, if ∇uε,δ(t+ s,X∗s ) = 0,

ν̇∗s := 2ψ′ε
(
H(∇uε,δ(t+ s,X∗s ))− f 2(t+ s,X∗s )

)
|∇uε,δ(t+ s,X∗s )|d.

(3.99)
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We claim here and will prove later that (n∗, ν∗) ∈ A◦t and the SDE for X∗ admits
a unique non-exploding strong solution. For (n∗, ν∗) equality holds in (3.96). As
m ↑ ∞ Fatou’s lemma gives uε,δ(t, x) ≥ Jt,x(n∗, ν∗, w), hence

uε,δ(t, x) ≥ inf
(n,ν)∈A◦t

sup
w∈T δt

Jt,x(n, ν, w). (3.100)

Combining (3.98) and (3.100) we conclude.
It remains to check that (n∗, ν∗) ∈ A◦t and X∗ is non-exploding. We use an

argument from [61, Lemma 13.7]. Let ζm = inf{s ≥ 0 : |X∗s |d ≥ m}. On the
random time-interval [0, ζm ∧ (T − t)] the process X∗ is well-defined and the pair
(n∗, ν∗) is adapted because uε,δ ∈ C1,2,α

Loc (Om) ∩ C0,1,α(Om). Notice that ζk ≤ ζk+1

and it may occur ζ∞ := limk→∞ ζk < T − t with positive probability. Moreover
ρm = ζm ∧ (T − t) in (3.95) and let us take w ≡ 0 therein. By construction, for
s ∈ [0, ζm ∧ (T − t)]

−
〈
n∗sν̇

∗
s ,∇uε,δ(t+ s,X∗s )

〉
− ψε

(
|∇uε,δ|2d − f 2

)
(t+ s,X∗s ) = Hε(t+ s,X∗s , n

∗
sν̇
∗
s ).

Then, by positivity of all remaining terms in (3.95)

uε,δ(t, x) ≥ Ex
[ ∫ ζm∧(T−t)

0

e−rsHε(t+ s,X∗s , n
∗
sν̇
∗
s )ds

]
.

By positivity of Hε and monotone convergence, we can let m ↑ ∞ and preserve
the inequality while the integral in time extends to ζ∞ ∧ (T − t). Combining with
(3.93) and Lemma 3.13 we have

ε

4
Ex
[ ∫ ζ∞∧(T−t)

0

e−rs|ν̇∗s |2 ds
]
≤ uε,δ(t, x) ≤ K3(1 + |x|2d). (3.101)

Since ν̇∗ ≥ 0 then s 7→ ν∗s is non-decreasing and

|ν∗ζm∧(T−t)|2 = 2

∫ ζm∧(T−t)

0

ν∗s ν̇
∗
s ds ≤

∫ ζm∧(T−t)

0

|ν∗s |2 ds+

∫ ζm∧(T−t)

0

|ν̇∗s |2 ds,

where we used 2ab ≤ a2 + b2. By Gronwall’s lemma and taking expectations we
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obtain

Ex
[
|ν∗ζm∧(T−t)|2

]
≤ eTEx

[ ∫ ζm∧(T−t)

0

|ν̇∗s |2 ds
]
≤ eT (1+r)Ex

[ ∫ ζm∧(T−t)

0

e−rs|ν̇∗s |2 ds
]
.

Combining with (3.101) and letting m→∞, Fatou’s lemma gives us

Ex
[
|ν∗ζ∞∧(T−t)|2

]
≤ 4eT (1+r)ε−1K3(1 + |x|2d). (3.102)

Linear growth of (b, σ) and well-posedness of X∗s∧ζm give, by Markov inequality
and standard bounds,

Px(ζm < T − t) ≤ 1

m2
Ex
[

sup
s∈[0,ζm∧(T−t)]

|X∗s |2d
]

≤ C

m2

(
1 + |x|2d + Ex

[∣∣ν∗ζm∧(T−t)
∣∣2])

≤ C

m2
c(ε)(1 + |x|2d),

where C > 0 depends only on T and D1 from Assumption 3.4, and c(ε) depends on
the constants from (3.102). Since ζm ↑ ζ∞, then Px(ζm < T − t) ↓ Px(ζ∞ ≤ T − t)
as m → ∞ and by taking limits in the expression above we conclude Px(ζ∞ ≤
T − t) = 0. Thus, X∗s is well-defined for all s ∈ [0, T − t] and Ex[|ν∗T−t|2] <∞, by
(3.102) implying (n∗, ν∗) ∈ A◦t as claimed.

Proposition 3.25 implies that Problem C admits a unique solution and that
the treble [(n∗, ν∗), w∗] is optimal in (3.94). By arguments as in the proof of
Proposition 3.11 we also obtain the next result.

Proposition 3.26 Let uε,δ be the unique solution of Problem C. Then

uε,δ(t, x) = inf
(n,ν)∈A◦t

Ex

[
Rδ−1

T−t g(T,X
[n,ν]
T−t )

+

∫ T−t

0

Rδ−1

s

[
h+ 1

δ
g ∨ uε,δ +Hε(·, nsν̇s)

]
(t+ s,X [n,ν]

s ) ds

]
,

and the pair (n∗, ν∗) from (3.99) is optimal.
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3.3.3 Refined estimates independent of ε and δ

Here we develop bounds for the penalty terms in the PDE of Problem C which
are independent of ε and δ.

Lemma 3.27 For K2 as in (3.14) we have

1
δ

∥∥(g − uε,δ)+∥∥
∞ ≤ K2. (3.103)

Proof. For any (n, ν) ∈ A◦t , the function g has the same probabilistic representation
as in (3.37) but with gm, ρm and w replaced by g, T − t and 1/δ, respectively.
Combining that with the expression for uε,δ in Proposition 3.26, and recalling Θ

defined in (3.14), we get

(uε,δ − g)(t, x) = inf
(n,ν)∈A◦t

Ex

[ ∫ T−t

0

Rδ−1

s

[
〈nsν̇s,∇g〉+Hε(·, nsν̇s)

]
(t+ s,X [n,ν]

s ) ds

+

∫ T−t

0

Rδ−1

s

[
Θ + 1

δ
g ∨ uε,δ − 1

δ
g
]
(t+ s,X [n,ν]

s ) ds

]
.

As in (3.20), [〈nsν̇s,∇g〉 + Hε(·, nsν̇s)](t + s,X
[n,ν]
s ) ≥ 0, and observing that

g ∨ uε,δ − g ≥ 0 we get

uε,δ(t, x)− g(t, x) ≥ inf
(n,ν)∈A◦t

Ex

[ ∫ T−t

0

Rδ−1

s Θ
(
t+ s,X [n,ν]

s

)
ds

]
≥ −K2

δ

rδ + 1
,

where K2 was defined in (3.14). The above implies 1
δ
(g(t, x)− uε,δ(t, x))+ ≤ K2

as needed.

Next we give an upper bound on ∂tuε,δ. In the lemma below we understand

∂tu
ε,δ(T, x) := lim

s→0

uε,δ(T, x)− uε,δ(T − s, x)

s
.

Lemma 3.28 There is K4 > 0 only depending on K0 and K2 from Assumption
3.5 such that

∂tu
ε,δ(t, x) ≤ K4, for (t, x) ∈ Rd+1

0,T . (3.104)
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Proof. Let u = uε,δ for simplicity and take T ≥ t2 > t1 ≥ 0. Let w(2) ∈ T δt2 be
optimal for the value function u(t2, x) and let (n(1), ν(1)) ∈ A◦t1 be optimal for the
value function u(t1, x). Set X(1) = X [n(1),ν(1)] and notice that w(1)

s := w
(2)
s 1{s≤T−t2}

lies in T δt1 and (n(1), ν(1)) restricted to [0, T − t2] lies in A◦t2 . To simplify notation
let us also set [∆t2,t1g](s, x) = g(t2 + s, x) − g(t1 + s, x) and analogously for
[∆t2,t1h](s, x) and [∆t2,t1H

ε](s, x, y). Then

u(t2, x)− u(t1, x)

≤J ε,δ
t2,x(n

(1), ν(1), w(2))− J ε,δ
t1,x(n

(1), ν(1), w(1))

≤Ex

[
Rw(2)

T−t2g(T,X
(1)
T−t2)−Rw(1)

T−t1g(T,X
(1)
T−t1) (3.105)

−
∫ T−t1

T−t2
Rw(1)

s

[
h+Hε(·, n(1)

s ν̇(1)
s )
]
(t1 + s,X(1)

s ) ds

+

∫ T−t2

0

Rw(2)

s

[
[∆t2,t1h] + [∆t2,t1H

ε](·, n(1)
s ν̇(1)

s ) + w(2)
s [∆t2,t1g]

]
(s,X(1)

s ) ds

]
.

By (3.92) the Hamiltonian Hε is non-increasing in time, so [∆t2,t1H
ε] ≤ 0. Next,

we apply Dynkin’s formula to Rw(1)

T−t1g(T,X
(1)
T−t1) on the time interval [T−t2, T−t1],

to obtain

Ex
[
Rw(1)

T−t1g(T,X
(1)
T−t1)

]
=Ex

[
Rw(1)

T−t2g(T − (t2 − t1), X
(1)
T−t2) (3.106)

+

∫ T−t1

T−t2
Rw(1)

s

[
∂tg + Lg − rg + 〈∇g, n(1)

s ν̇(1)
s 〉
]
(t1 + s,X(1)

s )ds

]
.

Let us plug (3.106) into (3.105), recall that Rw(1)

T−t2 = Rw(2)

T−t2 and use (3.20) with
f, g replacing fm, gm:

u(t2, x)− u(t1, x) ≤ Ex

[
Rw(2)

T−t2

(
g(T,X

(1)
T−t2)− g(T − (t2 − t1), X

(1)
T−t2)

)
−
∫ T−t1

T−t2
Rw(1)

s Θ(t1 + s,X(1)
s ) ds

+

∫ T−t2

0

Rw(2)

s

[
[∆t2,t1h](s,X(1)

s ) + w(2)
s [∆t2,t1g](s,X(1)

s )
]

ds

]
,
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where we recall Θ = ∂tg + Lg − rg + h. Thanks to condition (3.11) on h and g
and (3.14) on Θ

u(t2, x)− u(t1, x) ≤
(
K0(1 + T ) +K2

)
(t2 − t1),

by evaluating explicitly
∫ T−t2

0
w

(2)
s Rw(2)

s ds. Then, the claim holds with K4 =

K0(1 + T ) +K2.

Our next goal is to find a uniform bound for the penalty term involving ψε.

Lemma 3.29 There is M5 = M5(m), independent of ε and δ, such that

∥∥ψε(H(∇uε,δ)− f 2
)∥∥

m
≤M5, (3.107)

where we recall ‖ · ‖m = ‖ · ‖C0(Om).

Proof. For notational simplicity we set u = uε,δ and ξ = ξm. Let

v(t, x) := ξ(x)ψε
(
H(∇u(t, x))− f 2(t, x)

)
, for (t, x) ∈ Om+1. (3.108)

Since v is continuous, then it attains a maximum on Om+1. If such maximum is
attained at a point (t∗, x∗) ∈ ∂POm+1 then v(t∗, x∗) = 0 because either x∗ ∈ ∂Bm+1

and ξ(x∗) = 0 or t∗ = T and |∇u(t∗, x∗)|d = |∇g(T, x∗)|d ≤ f(T, x∗) by (3.13).
Thus, suppose the maximum is attained in Om+1.

We argue similarly to the proof of Proposition 3.17. For any η > 0 there exists
a neighbourhood Uη ∪

(
{0}×Vη

)
of (t∗, x∗) such that v(t, x) > v(t∗, x∗)− η for all

(t, x) ∈ Uη ∪
(
{0}×Vη

)
. With no loss of generality, there is S < T and B an open

ball with B ⊂ Bm+1, so that Uη∪
(
{0}×Vη

)
⊂ OS,B, where OS,B = [0, S)×B. Let

wn be the solution of a PDE as in (3.88) but with ∇uε,δ and (·)+ on the right-hand
side of that equation replaced by smooth approximations ∇un and χn, and the
function f 2 in the argument of ψε replaced by f 2 + 1

n
. By arguments analogous

to those in Lemma 3.15, wn ∈ C1,3,α
Loc (Om+1) and wn → u in C1,2,β(OS,B) and in

(C0,1,β ∩W 1,2,p)(Om) as n→∞ for all β ∈ (0, α) (see Remark B.2). Define

vn(t, x) := ξ(x)ψε
(
H(∇wn(t, x))− f 2(t, x)− 1

n

)
, for (t, x) ∈ Om+1.

We have that vn belongs to C1,2,α
Loc (Om+1) ∩ C0,1,α(Om+1), it is non-negative and
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it is equal to zero for x ∈ ∂Bm+1. Moreover vn → v in C0,1,γ(Om+1) for all
γ ∈ (0, α).

Let (t∗n, x
∗
n)n∈N be such that (t∗n, x

∗
n) ∈ arg maxOm+1

vn and, with no loss of gen-
erality, assume (t∗n, x

∗
n)→ (t∗, x∗). We also assume |∇g(t∗, x∗)|d−|∇u(t∗, x∗)|d < 0,

as otherwise f(t∗, x∗) ≥ |∇g(t∗, x∗)|d ≥ |∇u(t∗, x∗)|d implies 0 ≤ v(t, x) ≤
v(t∗, x∗) = 0. By uniform convergence of ∇wn to ∇u, we can also assume
|∇g|d − |∇wn|d ≤ 0 on Uη ∪ ({0} × Vη) for all n ∈ N.

We denote ζ̄n := (H(∇wn)− f 2 − 1
n
)(t∗n, x

∗
n) and taking derivatives of vn we

obtain

vnt = ξψ′ε(ζ̄n)
(
H(∇wn)− f 2

)
t

vnxi = ξxiψε(ζ̄n) + ξψ′ε(ζ̄n)
(
H(∇wn)− f 2

)
xi

(3.109)

vnxixj = ξxixjψε(ζ̄n) + ψ′ε(ζ̄n)
(
ξxi
(
H(∇wn)− f 2

)
xj

+ ξxj
(
H(∇wn)− f 2

)
xi

)
+ ξψ′′ε (ζ̄n)

(
H(∇wn)− f 2

)
xi

(
H(∇wn)− f 2

)
xj

+ ξψ′ε(ζ̄n)
(
〈D2H(∇wn)∇wnxj ,∇w

n
xi
〉+ 〈∇H(∇wn),∇wnxixj〉 −

(
f 2
)
xixj

)
.

By (3.38) we have 0 ≥ (∂tv
n + Lvn)(t∗n, x

∗
n). Since (t∗n, x

∗
n) is fixed, we omit it

from the calculations that follow, for notational simplicity. Then using (3.109)
and symmetry of aij

0 ≥ (Lξ)ψε(ζ̄n)− ξψ′ε(ζ̄n)
(
∂t(f

2) + L(f 2)
)

+ ξψ′ε(ζ̄n)
〈
H(∇wn), (∂t + L)(∇wn)

〉
+ 1

2
ξψ′′ε (ζ̄n)

〈
a∇(H(∇wn)− f 2),∇(H(∇wn)− f 2)

〉
+ ψ′ε(ζ̄n)

〈
a∇ξ,∇(H(∇wn)− f 2)

〉
(3.110)

+
1

2
ξψ′ε(ζ̄n)

d∑
i,j=1

aij
〈
D2H(∇wn)∇wnxi ,∇w

n
xj

〉
,

where (∂t + L)(∇wn) is the vector with entries (∂t + L)wnxk for k = 1, . . . , d.
Using that H is diagonal with entries 2, we have

1

2

〈
D2H(∇wn)∇wnxi ,∇w

n
xj

〉
=
〈
∇wnxi ,∇w

n
xj

〉
(3.111)

and recalling that ψε is non-decreasing and convex, so ψ′ε, ψ′′ε ≥ 0, the last term
on the right-hand side of (3.110) is bounded from below by ξψ′ε(ζ̄n)θ

∣∣D2wn
∣∣2
d×d as
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in (3.47) with θ equal to θBm+1 . Uniform ellipticity (3.10) on Bm+1 also gives

1
2
ξψ′′ε (ζ̄n)

〈
a∇(H(∇wn)− f 2),∇(H(∇wn)− f 2)

〉
≥ 0.

Set ām := maxi,j ‖aij‖C0(Bm+1) and recall |∇ξ|2d ≤ C0ξ (see (3.16)). Then

〈
a∇ξ,∇(H(∇wn)− f 2)

〉
≥ − āmd2|∇ξ|d

(
2|∇wn|d|D2wn|d×d + |∇f 2|d

)
(3.112)

≥ − ξ θ
4
|D2wn|2d×d −

16

θ
ā2
md

4C0|∇wn|2d − āmd2
√
C0ξ|∇f 2|d,

where we used |ab| ≤ pa2 + b2/p with p = 4
θ
, b =

√
ξ|D2wn|d×d and a =

2āmd
2
√
C0|∇wn|d. Since ∇wn → ∇u uniformly on Om+1, then by Proposition

3.22 we can assume |∇wn|d≤1 +N1 and obtain

〈
a∇ξ,∇(H(∇wn)− f 2)

〉
≥ −ξ θ

4
|D2wn|2d×d − C1,

with C1 = 16d4ā2
mC0θ

−1(1+N1)2+2āmd
2
√
C0ξ‖∇f 2‖m+1. Since Lξ and (∂t+L)f 2

are continuous on Om+1 we have |Lξ| + |(∂t + L)f 2| ≤ C2 on Om+1. Similarly
to the first inequality in (3.65), ψε(ζ̄n) ≤ ψ′ε(ζ̄n)H(∇wn) = ψ′ε(ζ̄n)|∇wn|2d ≤
ψ′ε(ζ̄n)(1 +N1)2. Thus

ψε(ζ̄n)|Lξ| ≤ ψ′ε(ζ̄n)(1 +N1)2C2 =: ψ′ε(ζ̄n)C3,

where C3 = C3(m) > 0.
We claim that, for any λ > 0 there are constants C4 = C4(m) > 0 and κδ,m > 0

such that

ξ〈∇wn, (∂t + L)(∇wn)〉 (3.113)

≥ − θ
4
ξ|D2wn|2d×d − 2ξλθψ2

ε(ζn)− C4(1 + λ−1)− κδ,mRn,

where ζn := (|∇un|2d − f 2 − 1
n
)(t∗n, x

∗
n) and Rn is independent of (t∗n, x

∗
n) and such

that Rn → 0 as n→∞. The claim is proven separately at the end of this proof,
for the sake of readability. Plugging all the above estimates into (3.110) and
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factoring out ψ′ε(ζ̄n) ≥ 1 gives us

0 ≤ − θ
2
ξ|D2wn|2d×d + 2λθξψ2

ε(ζn) + C1 + C2 + C3 + C4(1 + λ−1) + κδ,mRn.

Letting C5 = C5(m) > 0 be a suitable constant the expression simplifies to

θ
2
ξ|D2wn|2d×d ≤ 2λθξψ2

ε(ζn) + C5(1 + λ−1) + κδ,mRn.

We want to bound ξ|D2wn|d×d by ξψε(ζn). So we multiply both sides of the
inequality above by ξ, take square root and use

√
a+ b ≤

√
a +
√
b for a, b ≥ 0

and |ξ| ≤ 1. That gives

ξ|D2wn|d×d ≤ 2
√
λξψε(ζn) +

√
2θ−1C5(1 + λ−1) +

√
2θ−1κδ,mRn. (3.114)

Recall that wn solves

∂tw
n + Lwn − rwn = ψε(ζn)− h− 1

δ
χn(g − u), on [0, T )× Rd.

Multiplying by ξ we can express ξψε(ζn) in terms of the remaining functions
in the equation above. Since (t∗n, x

∗
n) ∈ OS,B, wn → u in C1,2,β(OS,B) and

χn(g − u) → (g − u)+ uniformly on compacts, we can assume with no loss of
generality that on OS,B the following hold: 1

δ
χn(g − u) ≤ (1 + K2) by (3.103),

|∇wn|d ≤ (1 + N1) by (3.75), ∂twn ≤ 1
2

+ K4 by (3.104) and rwn ≥ −1
2
because

u ≥ 0. The coefficients a and b in L are bounded on Bm+1 by a constant Am+1

(slightly abusing notation). Thus,

ξψε(ζn) = ξ∂tw
n − ξrwn + ξLwn + ξh+ ξ 1

δ
χn(g − u)

≤ 1 +K4 + Am+1(1 +N1) + 1
2
Am+1ξ|D2wn|d×d

+ ‖h‖m+1 + (1 +K2).

Substituting (3.114) and grouping together the constants we obtain, for some
C6 = C6(m) > 0,(

1−
√
λAm+1

)
ξψε(ζn) ≤ C6

√
1 + λ−1 + κδ,mRn. (3.115)

Then, choosing λ = (4A2
m+1)−1 and recalling that all expressions are evaluated at
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(t∗n, x
∗
n) we obtain

ξ(x∗n)ψε
(
H(∇un(t∗n, x

∗
n))− f 2(t∗n, x

∗
n)− 1

n

)
≤ 2C6

√
1 + 4A2

m+1 + κδ,mRn.

Taking limits as n→∞, using that (t∗n, x
∗
n)→ (t∗, x∗), Rn → 0 and ∇un → ∇u

(uniformly on compacts), we have

ξ(x∗)ψε
(
H(∇u(t∗, x∗))− f 2(t∗, x∗)

)
≤ 2C6

√
1 + 4A2

m+1 =: M5.

Recalling the definition of v in (3.108) we can conclude:

∥∥ψε(H(∇u)− f 2
)∥∥

m
≤ sup

(t,x)∈Om+1

v(t, x) = v(t∗, x∗) ≤M5,

with M5 = M5(m) independent of δ and ε.

Proof of (3.113). Recall that u = uε,δ and that wn solves

(∂t + L − r)wn = −h− 1
δ
χn
(
g − uε,δ

)
+ ψε(H(∇un)− f 2 − 1

n
), on [0, T )× Rd.

Differentiating with respect to xk, multiplying by ξ and evaluating at (t∗n, x
∗
n) we

get

ξ(∂tw
n
xk

+ Lwnxk) = − ξLxkwn + ξrwnxk − ξhxk − ξ
1
δ
χ′n(g − u)(g − u)xk (3.116)

+ ξψ′ε(ζn)(H(∇un)− f 2 − 1
n
)xk ,

where ζn = (H(∇un)− f 2 − 1
n
)(t∗n, x

∗
n). We subtract the term

vnxk = ξxkψε(ζ̄n) + ξψ′ε(ζ̄n)(H(∇wn)− f 2)xk

from both sides of (3.116), and we add and subtract ξxkψε(ζn) on the right-hand
side of (3.116). Then

ξ(∂tw
n
xk

+ Lwnxk)− v
n
xk

= − ξLxkwn + ξrwnxk − ξhxk − ξ
1
δ
χ′n(g − u)(g − u)xk

− ξxkψε(ζn) + Pn,k, (3.117)
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where

Pn,k = ξxk

(
ψε(ζn)− ψε(ζ̄n)

)
+ ξ
(
ψ′ε(ζn)

(
H(∇un)− f 2

)
xk
− ψ′ε(ζ̄n)

(
H(∇wn)− f 2

)
xk

)
.

Recall that ∇H(∇wn) = 2∇wn and that (t∗n, x
∗
n) ∈ OS,B is a stationary point for

vn in the spatial coordinates, so vnxk = 0 in (3.117) for each 1 ≤ k ≤ d. Then

ξ〈∇H(∇wn), (∂t + L)(∇wn)〉 = 2ξ
(
−

d∑
k=1

wnxkLxkw
n + r|∇wn|2d (3.118)

− 〈∇wn,∇h+ 1
δ
χ′n(g − u)∇(g − u)〉

)
− 2ψε(ζn)〈∇wn,∇ξ〉+ 2

d∑
k=1

wnxkPn,k.

Since (t∗n, x
∗
n) ∈ OS,B, then denoting ‖ · ‖S,B = ‖ · ‖C0(OS,B) we have

2
d∑

k=1

wnxkPn,k ≥ − 2‖ψε(ζn)− ψε(ζ̄n)‖S,B‖∇wn‖S,B‖∇ξ‖S,B

− 2‖ψ′ε(ζn)− ψ′ε(ζ̄n)‖S,B‖∇wn‖S,B‖∇
(
|∇wn|2d − f 2

)
‖S,B

− 2‖ψ′ε(ζn)‖S,B‖∇wn‖S,B‖∇(|∇un|2d − |∇wn|2d)‖S,B =: R̃n,

where R̃n → 0 as n→∞ thanks to C1,2,β(OS,B)-convergence of wn and un to u,
for β ∈ (0, α). By Cauchy-Schwarz inequality, recalling that 0 ≤ χ′n(·) ≤ 2 and
using arguments as in (3.59) we have

〈∇wn,∇h〉 ≤ ‖∇wn‖m+1‖∇h‖m+1 ≤ (N1 + 1)‖∇h‖m+1,

1
δ
χ′n(g − u)〈∇wn,∇(g − u)〉

≤ 2
δ
‖∇ŵn‖S,B

(
‖∇g‖m+1 + ‖∇u‖m+1

)
=: κδ,mR̃

′
n,

where N1 = N1(m + 1) is as in Proposition 3.22 and ŵn = u − wn. Recall that
‖∇ŵn‖S,B → 0 as n → ∞, therefore R̃′n → 0 too. For the penultimate term on
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the right-hand side of (3.118), recalling |∇ξ|d ≤
√
C0ξ (see (3.16)), we have

2ψε(ζn)〈∇wn,∇ξ〉 ≤ 2|∇wn|d|∇ξ|dψε(ζn)

≤ 2(N1 + 1)
√
C0ξψε(ζn)

≤ (N1 + 1)22C0

λθ
+ 2ξλθψ2

ε(ζn),

where in the last inequality we used ab ≤ a2

p
+ pb2 with a = (N1 + 1)

√
2C0,

b =
√

2ξψε(ζn), and p = λθ, with λ a constant to be chosen later and θ = θBm+1

as in (3.10). For the first term on the right-hand side of (3.118) we argue as in
(3.60) and obtain

d∑
k=1

wnxkLxkw
n ≤ θ

8
|D2wn|2d×d + C1(N1 + 1)2, (3.119)

where C1 := 8d4A2
m+1θ

−1 + 2dAm+1, the constant Am+1 is defined as in (3.61)
and, differently from (3.62), we use ab ≤ pa2 + b2

p
with p = θ

8
, a = |D2wn|d×d and

b = d2

2
Am+1|∇wn|d.

Combining these bounds we get

ξ〈∇H(∇wn), (∂t + L)(∇wn)〉 ≥ − ξ θ
4
|D2wn|2d×d − 2ξλθψ2

ε(ζn)

− C4(1 + λ−1)− κδ,mRn,

where we define C4 := 2C1(N1 + 1)2 + (N1 + 1)22C0θ
−1 + 2(N1 + 1)‖∇h‖m+1 and

we collect R̃n and 2κδ,mR̃
′
n in κδ,mRn with an abuse of notation.

The bounds on the penalty terms in the PDE for uε,δ enable the next estimate.

Theorem 3.30 For any p ∈ (1,∞), there is M6 = M6(m, p) such that

‖uε,δ‖W 1,2,p(Om) ≤M6, for all ε, δ ∈ (0, 1). (3.120)

Proof. The proof repeats the exact same arguments as in the proof of Proposition
3.23 but applied to ϕ = ξm+1u

ε,δ rather than to ϕ = ξm0u
ε,δ
q . In addition, we use

Lemmas 3.27 and 3.29 to obtain the upper bound for ‖ϕ‖W 1,2,p(Om+1) as in (3.87),
which is therefore independent of ε, δ.



84 Zero-sum game between Controller and Stopper

3.4 The Variational Inequality

In this section, we finally prove our main result, i.e., Theorem 3.6. First we
prove that Problem A admits a solution (Theorem 3.31), then we prove that such
solution is the value function of our game (Theorem 3.33) and it is the maximal
solution for Problem A.

Theorem 3.31 There exists a solution u of Problem A.

Proof. Let (εk)k∈N be a decreasing sequence with εk → 0. Fix k,m ∈ N. Thanks
to Theorem 3.30 and the compact embedding of W 1,2,p(Om) into C0,1,β(Om) for
β = 1 − (d + 2)/p, we can extract a sequence (uεk,δ

m
k,j)j∈N converging to a limit

uεk;[m] (possibly depending on Om) as j →∞, in the following sense:

uεk,δ
m
k,j → uεk;[m] and ∇uεk,δmk,j → ∇uεk;[m] in Cα(Om), (3.121)

∂tu
εk,δ

m
k,j → ∂tu

εk;[m] and D2uεk,δ
m
k,j → D2uεk;[m] weakly in Lp(Om).

Up to selecting further subsequences (if needed), we find analogous limits on
Om+1 ⊂ Om+2 ⊂ . . . so that uεk;[m] = uεk;[m+1] on Om, uεk;[m+1] = uεk;[m+2] on
Om+1 and so on. Since Om ↑ Rd+1

0,T as m → ∞, iterating this procedure we can
define a limit function uεk on Rd+1

0,T .
The sequence (uεk)k∈N satisfies the same bound as in (3.120). Therefore, by

the same argument as above we can extract a further converging subsequence,
which we denote still by (uεk)k∈N with an abuse of notation. That is, there is a
function u on Rd+1

0,T such that for any m ∈ N

uεk → u and ∇uεk → ∇u in Cα(Om),

∂tu
εk → ∂tu and D2uεk → D2u weakly in Lp(Om).

Finally, we can extract a diagonal subsequence (uεi,δi)i∈N that converges to u
locally on Rd+1

0,T in the sense above as (εi, δi)→ 0, simultaneously.
Next we prove that the limit function u is solution of Problem A. By con-

struction, u ∈ W 1,2,p
`oc (Rd+1

0,T ). Thanks to (3.103), (3.107) and C0,1,α-convergence on
compacts, in the limit as ε, δ → 0 we obtain

g(t, x)− u(t, x) ≤ 0 and |∇u(t, x)|d − f(t, x) ≤ 0,
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for all (t, x) ∈ Rd+1
0,T .

Fix (t̄, x̄) ∈ C, i.e., u(t̄, x̄) > g(t̄, x̄). By continuity of u and g there is an open
neighbourhood O of (t̄, x̄) such that u(t, x) > g(t, x) for all (t, x) ∈ O. Uniform
convergence on compacts of uεi,δi to u also guarantees that uεi,δi > g on O, for
sufficiently large i’s. Then, for large i’s (3.88) reads

∂tu
εi,δi + Luεi,δi − ruεi,δi = −h+ ψε

(
H(∇uεi,δi)− f 2

)
≥ −h, on O.

Multiplying the equation above by φ ∈ C∞c (O), φ ≥ 0 and letting i→∞ we obtain
the second equation in (3.6). Analogously, let (t̄, x̄) ∈ I, i.e., |∇u(t̄, x̄)|d < f(t̄, x̄).
Then, by continuity of ∇u and uniform convergence on compacts of ∇uεi,δi → ∇u
we find an open neighbourhood O such that |∇u|d < f on O and |∇uεi,δi|d < f

on O for sufficiently large i. In such neighbourhood (3.88) reads

∂tu
εi,δi + Luεi,δi − ruεi,δi = −h− 1

δ

(
g − uεi,δi

)+ ≤ −h,

and by the same argument as above, using test functions, we can pass to the limit
and obtain the third equation in (3.6). The case in which (t̄, x̄) ∈ I ∩ C is now
obvious and the first equation in (3.6) also holds for all (t, x) by standard PDE
theory (e.g., as in the proof of Theorem 3.24). Finally, the terminal condition is
trivially satisfied since uε,δ(T, x) = g(T, x) for all (ε, δ) ∈ (0, 1)2.

Notice that u has at most quadratic growth by Lemma 3.13.

To prove that a solution of Problem A is the value of our game, we need the
next lemma.

Lemma 3.32 Let (t, x) ∈ Rd+1
0,T . For any τ ∈ Tt we have

inf
(n,ν)∈At

Jt,x(n, ν, τ) = inf
(n,ν)∈Aτt

Jt,x(n, ν, τ),

where Aτt := {(n, ν) ∈ At | ντ = ντ−, Px − a.s.}.
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Proof. In the expression of Jt,x(n, ν, τ), for any treble [(n, ν), τ ] ∈ At×Tt we have

e−rτ g(t+ τ,X [n,ν]
τ ) +

∫
[0,τ ]

e−rsf(t+ s,X [n,ν]
s ) ◦dνs

= e−rτg(t+ τ,X
[n,ν]
τ− ) +

∫
[0,τ)

e−rsf(t+ s,X [n,ν]
s ) ◦dνs

+ e−rτ
∫ ∆ντ

0

(
〈∇g, nτ 〉+ f

)
(t+ τ,X

[n,ν]
τ− + λnτ )dλ

≥ e−rτg(t+ τ,X
[n,ν]
τ− ) +

∫
[0,τ)

e−rsf(t+ s,X [n,ν]
s ) ◦dνs,

where the final inequality is due to (3.13). Therefore, the controller attains a lower
payoff by avoiding a jump of the control at time τ . That concludes the proof.

Theorem 3.33 The game in (3.4) admits a value v which is also the maximal
solution of Problem A. Moreover, τ∗ defined in (3.15) is optimal for the stopper.

Proof. Fix (t, x) ∈ Rd+1
0,T , let [(n, ν), τ ] ∈ At × Tt and recall ρm. By regularity

of uε,δ (Theorem 3.24), letting ρkm = ρm ∧(T − t− k−1)+ Itô’s formula applies
to e−r(τ∧ρ

k
m)uε,δ(t + τ ∧ ρkm, X

[n,ν]

τ∧ρkm
). Using that uε,δ solves Problem C, taking

expectations and letting k ↑ ∞ we obtain

uε,δ(t, x) = Ex

[
e−r(τ∧ρm)uε,δ(t+τ ∧ ρm, X [n,ν]

τ∧ρm)

+

∫ τ∧ρm

0

e−rs
[
h+ 1

δ

(
g−uε,δ

)+−ψε
(
H(∇uε,δ)−f 2

)](
t+s,X

[n,ν]
s−
)
ds

−
∫ τ∧ρm

0

e−rs〈∇uε,δ(t+s,X [n,ν]
s− ), ns〉 dνcs (3.122)

−
∑

0≤s≤τ∧ρm

e−rs
∫ ∆νs

0

〈∇uε,δ(t+s,X [n,ν]
s− +λns), ns〉 dλ

]
.

We want to take limits as ε, δ → 0 and pass the limits under expectations.
To do that we notice that X [n,ν]

s− ∈ Bm for all s ∈ [0, ρm], Px-a.s. Then the terms
under the integral with respect to ‘ds’ are bounded thanks to Assumption 3.5,
Lemma 3.27 and Lemma 3.29. Since ∇uε,δ is also bounded by N1(m) (Proposition
3.22 with m0 therein replaced by m), the integrals with respect to the control are
bounded by N1(m)νT−t, which is square integrable by definition of At. Finally,
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recall that uε,δ has quadratic growth by Lemma 3.13 and notice that

Ex
[

sup
0≤s≤T−t

∣∣X [n,ν]
s

∣∣2
d

]
≤ c
(
1 + |x|2d + Ex[|νT−t|2]

)
, (3.123)

by standard estimates for SDEs [48, Thm. 2.5.10], with c > 0 independent of m, ε,
δ. Then we are allowed to use dominated convergence and it remains to evaluate
the limit.

For Px-a.e. ω ∈ Ω there is a compact Kω ⊂ Rd such that X [n,ν]
s (ω) ∈ Kω for

all s ∈ [0, ρm(ω)], by right-continuity of the process and the fact that ν is square
integrable. Then, uniform convergence of (uε,δ,∇uε,δ) to (u,∇u) on compacts
implies

lim
ε,δ→0
〈∇uε,δ(t+ s,X

[n,ν]
s− ), ns〉(ω) = 〈∇u(t+ s,X

[n,ν]
s− ), ns〉(ω),

lim
ε,δ→0
〈∇uε,δ(t+ s,X

[n,ν]
s− + λns), ns〉(ω) = 〈∇u(t+ s,X

[n,ν]
s− + λns), ns〉(ω),

for all s ∈ [0, ρm(ω)] and all λ ∈ [0,∆νs(ω)], for Px-a.e. ω ∈ Ω. Moreover, for
arbitrary η > 0, choosing τ = τη = inf{s ≥ 0 |u(t+s,X

[n,ν]
s ) ≤ g(t+s,X

[n,ν]
s )+η}

gives

lim inf
ε,δ→0

(uε,δ − g)(t+ s,X
[n,ν]
s− ) ≥ η, for all s ∈ [0, τη ∧ ρm], Px-a.s.

Using the observations above, combined with dominated convergence and
ψε ≥ 0 we obtain

u(t, x) ≤ Ex

[
e−r(τη∧ρm)u(t+ τη ∧ ρm, X [n,ν]

τη∧ρm) +

∫ τη∧ρm

0

e−rsh(t+ s,X [n,ν]
s ) ds

−
∫ τη∧ρm

0

e−rs〈∇u(t+ s,X
[n,ν]
s− ), ns〉 dνcs

−
∑

0≤s≤τη∧ρm

e−rs
∫ ∆νs

0

〈∇u(t+ s,X
[n,ν]
s− + λns), ns〉 dλ

]
.
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By |∇u|d ≤ f and the definition of τη ∧ ρm we have

u(t, x) ≤ η+Ex

[
e−rτηg(t+ τη, X

[n,ν]
τη )1{τη≤ρm} + e−rρmu(t+ ρm, X

[n,ν]
ρm )1{τη>ρm}

]
+Ex

[ ∫ τη∧ρm

0

e−rsh(t+ s,X [n,ν]
s ) ds+

∫
[0,τη∧ρm]

e−rsf(t+ s,X [n,ν]
s ) ◦dνs

]
.

Now we let m→∞. Clearly ρm ↑ T − t, Px-a.s. by (3.123). Since the bound in
(3.123) is independent of m and functions u and g have at most quadratic growth
we can apply the dominated convergence theorem to pass the limit inside the
first expectation. We can also take the limit inside the second expectation by
monotone convergence as all terms under the integral are non-negative. For Px-a.e.
ω ∈ Ω we have X [n,ν]

s (ω) ∈ Kω for all s ∈ [0, T − t]. Then

lim
m→∞

e−rρm(ω)u
(
t+ ρm(ω), X [n,ν]

ρm (ω)
)
1{τη>ρm}(ω)

= e−r(T−t)u
(
T,X

[n,ν]
T−t (ω)

)
1{τη≥T−t}(ω)

= e−r(T−t)g
(
T,X

[n,ν]
T−t (ω)

)
1{τη=T−t}(ω), Px-a.e. ω ∈ Ω,

because τη(ω) ≤ T − t and u is uniformly continuous on [0, T ]×Kω. Hence, for
m→∞ we obtain

u(t, x) ≤ η + Ex

[
e−rτηg(t+ τη, X

[n,ν]
τη ) +

∫ τη

0

e−rsh(t+ s,X [n,ν]
s ) ds

+

∫
[0,τη ]

e−rsf(t+ s,X [n,ν]
s ) ◦dνs

]
(3.124)

= η + Jt,x (n, ν, τη).

By arbitrariness of (n, ν) ∈ At and sub-optimality of τη we have u(t, x) ≤ η+v(t, x)

by definition of lower value. Letting η → 0 we get u(t, x) ≤ v(t, x).
Next we prove u ≥ v. Since 1

δ
(g − uε,δ)+ ≥ 0 that term can de dropped

from (3.122) to obtain a lower bound for uε,δ. We let δ → 0 in (3.122) along
the sequence constructed in (3.121) while keeping ε fixed. As above, dominated



The Variational Inequality 89

convergence applies, and thanks to uε ≥ g (Lemma 3.27) we obtain

uε(t, x) ≥Ex

[
e−r(τ∧ρm)g(t+ τ ∧ ρm, X [n,ν]

τ∧ρm)

+

∫ τ∧ρm

0

e−rs
[
h− ψε

(
|∇uε|2d − f 2

)](
t+ s,X

[n,ν]
s−
)

ds (3.125)

−
∫ τ∧ρm

0

e−rs〈∇uε(t+ s,X
[n,ν]
s− ), ns〉dνcs

−
∑

0≤s≤τ∧ρm

e−rs
∫ ∆νs

0

〈∇uε(t+ s,X
[n,ν]
s− + nsλ), ns〉 dλ

]
.

We can now choose a control pair (n, ν) = (nε, νε) defined as in (3.99) but with
uε,δ therein replaced by uε. Although ∇uε(t, ·) is not Lipschitz, it can be shown
by standard localisation procedure and the use of [65, Thm. 1] that the associated
controlled SDE admits a unique, non-exploding, strong solution Xε = X [nε,νε] on
[0, T − t] (the proof is given in Appendix B.6 for completeness).

By construction, the pair (nε, νε) satisfies

−
〈
nεsν̇

ε
s ,∇uε(t+ s,Xε

s )
〉
− ψε

(
H(∇uε)− f 2

)
(t+ s,Xε

s ) (3.126)

= Hε(t+ s,Xε
s , n

ε
sν̇
ε
s),

with Hε as in (3.91). Then, from (3.125) we obtain

uε(t, x) ≥ Ex

[
e−r(τ∧ρm)g(t+ τ ∧ ρm, Xε

τ∧ρm)

+

∫ τ∧ρm

0

e−rs
(
h+Hε(·, nεsν̇εs)

)
(t+ s,Xε

s )ds

]
.

Taking p = f(t+ s,Xε
s )n

ε
s in the Hamiltonian, letting m→∞ and using Fatou’s

lemma, we obtain

uε(t, x) ≥ Ex

[
e−rτg

(
t+ τ,Xε

τ

)
+

∫ τ

0

e−rsh(t+ s,Xε
s )ds

+

∫
[0,τ ]

e−rsf(t+ s,Xε
s ) ◦ dνεs

]
,

where we notice that νε is absolutely continuous so that the final integral is
obvious.
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By arbitrariness of τ we can take supremum over all stopping times. Since
(nε, νε) ∈ At, we can also take infimum over all admissible controls and continue
with the same direction of inequalities. That is, uε(t, x) ≥ v(t, x). Finally, letting
ε→ 0 we obtain u(t, x) ≥ v(t, x), as needed. Since u ≤ v was proven above, we
conclude u = v = v = v.

Next we prove optimality of τ∗. From (3.124) and the fact that u = v we
deduce that τη is η-optimal for the stopper. For an arbitrary (n, ν) ∈ At, letting
(ηm)m∈N with ηm ↓ 0, the sequence (τηm)m∈N is a non-decreasing sequence Px-a.s.
We introduce an event and its complement:

B :=
{
ω ∈ Ω : τηm(ω) < τ∗(ω),∀m ∈ N

}
and

Bc :=
{
ω ∈ Ω : ∃m ∈ N such that τηk(ω) = τ∗(ω)∀k ≥ m

}
.

Thus, we have

lim
m→∞

X [n,ν]
τηm

(ω) = 1B(ω)X
[n,ν]
τ0− (ω) + 1Bc(ω)X [n,ν]

τ∗ (ω),

where
τ0 = inf{s ≥ 0 |u(t+ s,X

[n,ν]
s− ) = g(t+ s,X

[n,ν]
s− )} ∧ (T − t).

Lettingm→∞ and applying dominated convergence to (3.124) along the sequence
τηm gives

u(t, x) ≤Ex

[
1B

(
e−rτ0g

(
t+τ0, X

[n,ν]
τ0−
)

+

∫ τ0

0

e−rsh
(
t+s,X [n,ν]

s

)
ds

+

∫
[0,τ0)

e−rsf
(
t+s,X [n,ν]

s

)
◦dνs

)
+1Bc

(
e−rτ∗g

(
t+τ∗, X

[n,ν]
τ∗

)
+

∫ τ∗

0

e−rsh
(
t+s,X [n,ν]

s

)
ds

+

∫
[0,τ∗]

e−rsf
(
t+s,X [n,ν]

s

)
◦dνs

)]
.

The above equation holds for any (n, ν) ∈ At. We now take the infimum over all
pairs (n, ν) ∈ At. Recalling Lemma 3.32, there is no loss of generality in restricting
such infimum to the class of controls such that ∆ντ∗ = 0. Since Bc ⊆ {∆ντ∗ 6= 0},
then P(Bc) = 0 and it is not hard to check that τ0 = τ∗ and X

[n,ν]
τ0− = X

[n,ν]
τ∗ , Px-a.s.
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Therefore

u(t, x) ≤ inf
(n,ν)∈At

Ex

[
e−rτ∗g

(
t+ τ∗, X

[n,ν]
τ∗

)
+

∫ τ∗

0

e−rsh
(
t+ s,X [n,ν]

s

)
ds

+

∫
[0,τ∗]

e−rsf
(
t+ s,X [n,ν]

s

)
◦ dνs

]
≤ v(t, x).

Since u = v then τ∗ is optimal for the stopper.
It remains to prove that v is indeed the maximal solution of Problem A. Let

w be another solution of Problem A. The same argument as in the proof of [27,
Thm. 4.1, Ch. VIII] can be adapted to our proof. Consider a family of mollifiers
(ζk)k∈N ⊂ C∞c (Rd+1

0,T ) and let (wk)k∈N ⊂ C∞c (Rd+1
0,T ) be the mollified family such

that wk → w and ∇wk → ∇w uniformly on compact sets, with ∂twk → ∂tw and
D2wk → D2w strongly in Lp`oc(R

d+1
0,T ) for all p ∈ [1,∞), as k →∞. For notational

simplicity, denote the operator (∂t + L − r) by L̃. We have that

(L̃w ∗ ζk)(t0, x0) =

∫
Rd+1

0,T

(
wt(t, x) +

d∑
i,j=1

aij(x)wxixj(t, x) +
d∑
i=1

bi(x)wxi(t, x)

− rw(t, x)
)
ζk(t0 − t, x0 − x) dtdx

and

(L̃wk)(t0, x0) = (∂t + L(x0)− r)
(∫

Rd+1
0,T

w(t, x)ζk(t0 − t, x0 − x) dtdx
)
.

Thanks to the properties on the derivatives of a convolution we have

(L̃wk)(t0, x0) =

∫
Rd+1

0,T

(
wt(t, x) +

d∑
i,j=1

aij(x0)wxixj(t, x) +
d∑
i=1

bi(x0)wxi(t, x)

− rw(t, x)
)
ζk(t0 − t, x0 − x) dtdx.
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Thus, we have

| (L̃w ∗ ζk)(t0, x0)− (L̃wk)(t0, x0)|

=
∣∣∣ ∫

Rd+1
0,T

( d∑
i,j=1

(aij(x)− aij(x0))wxixj(t, x)

+
d∑
i=1

(bi(x)− bi(x0))wxi(t, x)
)
ζk(t0 − t, x0 − x) dtdx

∣∣∣.
Since first and second order derivatives of w belong to Lp`oc(R

d+1
0,T ), by Hölder’s

inequality and the fact that a and b are continuous we have that for all fixed m

lim
k→∞

sup
(t,x)∈Om

|(L̃w ∗ ζk)(t, x)− (L̃wk)(t, x)| = 0. (3.127)

For η > 0, we set

Cηw = {(t, x) ∈ Rd+1
0,T : w(t, x) > g(t, x) + η};

it still holds that

lim
k→∞

sup
(t,x)∈Om∩Cηw

|(L̃w ∗ ζk)(t, x)− (L̃wk)(t, x)| = 0.

Since w is a solution of Problem A, we have that (L̃w + h)(t, x) ≥ 0 for almost
every (t, x) ∈ Cηw, therefore

((L̃w + h) ∗ ζk)(t, x) ≥ 0 (3.128)

for all (t, x) ∈ Cηw, or in other terms (L̃w ∗ ζk)(t, x) ≥ −(h ∗ ζk)(t, x) for all
(t, x) ∈ Cηw.

For fixed η > 0 and m ∈ N, we define

Nk,m := inf
(t,x)∈Om∩Cηw

|(L̃wk)(t, x) + h(t, x)|.
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By the convergence of (3.127) and thanks to (3.128) we have

lim inf
k→∞

Nk,m ≥ 0. (3.129)

Pick an arbitrary pair (n, ν) ∈ At and denote

ζη := inf{s ≥ 0|w(t+ s,X [n,ν]
s ) ≤ g(t+ s,X [n,ν]

s ) + η} ∧ (T − t).

By an application of Itô’s formula to e−rswk(t+ s,X
[n,ν]
s ) up to the stopping time

ζη ∧ ρm, we obtain

wk(t, x) = Ex

[
e−r(ζη∧ρm)wk(t+ ζη ∧ ρm, X [n,ν]

ζη∧ρm)

−
∫ ζη∧ρm

0

e−rs(∂twk + Lwk − rwk)(t+ s,X [n,ν]
s )ds

−
∫ ζη∧ρm

0

e−rs〈∇wk(t+ s,X
[n,ν]
s− ), ns〉 dνcs

−
∑

s≤ζη∧ρm

e−rs
∫ ∆νs

0

〈∇wk(t+ s,X
[n,ν]
s− + λns), ns〉 dλ

]
.

Letting k →∞, dominated convergence (up to possibly selecting a subsequence)
and reverse Fatou’s lemma (justified by (3.129)) allow us to pass the limit under
expectation. Then, exploiting the uniform convergence of (wk,∇wk) to (w,∇w)

on Om ∩ Cηw, (3.129), the definition of ζη ∧ ρm and the fact that |∇w|d ≤ f we
have

w(t, x) ≤ η + Ex

[
e−rζηg(t+ ζη, X

[n,ν]
ζη

)1{ζη≤ρm} + e−rρmw(t+ ρm, X
[n,ν]
ρm )1{ζη>ρm}

+

∫ ζη∧ρm

0

e−rsh(t+ s,X [n,ν]
s )ds

+

∫ ζη∧ρm

0

e−rsf(t+ s,X [n,ν]
s ) ◦dνs

]
.

Finally, letting m→∞, the same arguments that lead to (3.124) give w(t, x) ≤
η + Jt,x(n, ν, ζη). Hence, w(t, x) ≤ η + v(t, x) and letting η → 0 we conclude.

Remark 3.34: It is worth noticing that the proof above can be repeated verbatim
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if we replace At with A◦t everywhere. Thus we conclude that

v(t, x) = inf
(n,ν)∈A◦t

sup
τ∈Tt
Jt,x(n, ν, τ) = sup

τ∈Tt
inf

(n,ν)∈A◦t
Jt,x(n, ν, τ).

That is, the game with absolutely continuous controls admits the same value as
the game with singular controls. It is however expected, but it will not be proven
here, that an optimal control cannot be found in A◦t whereas it should be possible
to find one in At in some cases. �

Remark 3.35 (η-optimal control strategies): Theorem 3.31 proves the uniform
convergence of a subsequence uεi to the value function of the game u (see (3.125)).
This means that for any η > 0, there exists a k such that for all i ≥ k

|uεi(t, x)− u(t, x)| < η.

From the proof of the theorem, we have the explicit η-optimal strategy for the
controller in the game with value uεi , i.e., the control pair (n, ν) = (nεi , νεi)

defined as in (3.99) but with uε,δ therein replaced by uεi . �



Chapter 4

Degenerate Cases

This chapter presents extensions of our analysis to two degenerate cases of
ZSG. In Section 4.1, we study the case where the controller is allowed to use
controls in selected directions of the state-space. In Section 4.2, we study the case
where the underlying process has a degenerate diffusion.

4.1 A Restriction on the Controller

This chapter presents a similar game to the one studied in Chapter 3 but in
which the controller has a constraint on the control directions of the underlying
process. Under a new set of assumptions, we are able to prove through an
approximation procedure that the game admits a value and we provide an optimal
strategy for the stopper. The reason why the theory of Chapter 3 cannot be
applied directly can be found in Remark 4.5 after the presentation of the problem.

4.1.1 The Problem

Let (Ω,F , (Ft)t,P) be a stochastic basis on which an adapted d′-dimensional
Brownian motion (Wt)t is defined. Let T be the terminal time, and b : Rd → Rd

and σ : Rd → Rd × Rd′ be measurable functions, with d ≤ d′. Denote

Tt := {τ |τ is a stopping time, τ ≤ T − t} .

The difference with the game in Chapter 3 is that now the control affects only
some coordinates of the underlying process which we assume for simplicity of

95
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exposition to be the first ~ coordinates (~ < d) without loss of generality. We
define by A~

t the class of admissible controls as

A~
t :=


(n, ν)

∣∣∣∣∣∣∣∣∣∣∣

(ns)s∈[0,∞) is progressively measurable, R~ valued,

with |ns|~ = 1, P-a.s. ∀s ∈ [0,∞);

(νs)s∈[0,∞) is F-adapted, real valued, non-decreasing and

right-continuous with ν0− = 0, P-a.s., and E[|νT−t|2] <∞


.

Moreover, we indicate by ∇~f and ∇d−~f the gradient of a function f truncated
to the first ~ coordinates and last d− ~ coordinates, respectively.

Consider the following d-dimensional controlled stochastic differential where
we will use the notation X

[n,ν]
s to underline that the process is controlled by

(n, ν) ∈ A~
t :

dX
[n,ν]
i,t = bi(X

[n,ν]
s ) ds+

d′∑
j=1

σij(X
[n,ν]
s )dW j

s + ni,s dνs, for 1 ≤ i ≤ ~,

dX
[n,ν]
i,t = bi(X

[n,ν]
s ) ds+

d′∑
j=1

σij(X
[n,ν]
s )dW j

s , for ~ + 1 ≤ i ≤ d.

Sometimes we will use Xx,[n,ν]
t to keep track of the fact that the process is

starting in x at time 0.
Similar to Chapter 3, the controller pays a reward to the stopper when the

game ends and the two players are optimising the expectation of the reward in
which the controller now is minimising over the class A~

t . Here, we recall explicitly
the payoff from Chapter 3 where now the action cost f does not depend on the
spatial coordinates:

Jt,x(n, ν, τ) = Ex

[
e−rτg(t+ τ,X [n,ν]

τ ) +

∫ τ

0

e−rsh(t+ s,X [n,ν]
s ) ds (4.1)

+

∫
[0,τ ]

e−rsf(t+ s) ◦dνs
]
.

Since the function f depends only on time, then the integral defined in (4.1) is
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now consistent with the Riemann-Stieltjes integral, i.e.,∫
[0,τ ]

e−rsf(t+ s) ◦dνs =

∫ τ

0

e−rsf(t+ s) dνcs +
∑

0≤s≤τ

e−rsf(t+ s)∆νs (4.2)

=

∫ τ

0

e−rsf(t+ s) dνs.

We define

v(t, x) := sup
τ∈Tt

inf
(n,ν)∈A~

t

Jt,x(n, ν, τ) and v(t, x) := inf
(n,ν)∈A~

t

sup
τ∈Tt
Jt,x(n, ν, τ), (4.3)

so that v(t, x) ≤ v(t, x). If the equality holds then we say that the game admits a
value:

v(t, x) := v(t, x) = v(t, x). (4.4)

We recall that L denotes the infinitesimal generator of the uncontrolled process
X [e1,0] (where e1 is the unit vector in R~ with 1 in the first entry) and it reads

(Lϕ)(x) =
1

2
tr
(
a(x)D2ϕ(x)

)
+ 〈b(x),∇ϕ(x)〉,

with a(x) := (σσ>)(x).
Next we give assumptions under which we obtain our main result (Theorem

4.3).

Assumption 4.1 (Controlled SDE) The functions b and σ are Lipschitz with
constant D1 and continuously differentiable on Rd and σ is such that

σi(x) = σi(xi), for i = 1, . . . d,

where σi = (σi1, . . . σid′). Recalling a = σσ>, for any bounded set B ⊂ Rd there is
θB > 0 such that a(·) is locally elliptic

〈ζ, a(x)ζ〉 ≥ θB|ζ|2d for any ζ ∈ Rd and all x ∈ B.

Notice that the Lipschitz continuity of b and σ implies that there exists D2



98 Degenerate Cases

such that

|b(x)|d + |σ(x)|d×d′ ≤ D2(1 + |x|d), for all x ∈ Rd. (4.5)

Assumption 4.2 (Functions f, g, h) For the functions f, g, h : Rd+1
0,T → [0,∞) the

following hold:

(i) g ∈ C1,2,α
`oc (Rd+1

0,T ) and h ∈ C0,1,α
`oc (Rd+1

0,T ) for some α ∈ (0, 1);

(ii) f is non-increasing, positive and f 2 is differentiable;

(iii) there is K0 ∈ (0,∞) such that for all 0 ≤ s < t ≤ T and all x ∈ Rd+1
0,T

h(t, x)− h(s, x) ≤ K0(t− s) and g(t, x)− g(s, x) ≤ K0(t− s);

(iv) there is K1 ∈ (0,∞) such that

|g(t, x)− g(t, y)|+ |h(t, x)− h(t, y)| ≤ K1|x− y|d, for x, y ∈ Rd; (4.6)

(v) f and g are such that

|∇~g(t, x)|~ ≤ f(t), for all (t, x) ∈ Rd+1
0,T ; (4.7)

(vi) there is K2 ∈ (0,∞) such that

(h+ ∂tg + Lg − rg)(t, x) ≥ −K2, for all (t, x) ∈ Rd+1
0,T .

Notice that (4.6) implies that there exists K3 ∈ (0,∞) such that

0 ≤ |g(t, x)|+ |h(t, x)| ≤ K3(1 + |x|d), for (t, x) ∈ Rd+1
0,T . (4.8)

A comment on these conditions can be found in Chapter 3 below Assumption 3.5.
We can now state the main result of the chapter.

Theorem 4.3 The game described above admits a value v (i.e., (4.4) holds).
Moreover, for any given (t, x) ∈ Rd+1

0,T and any admissible control (n, ν) ∈ A~
t , the
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stopping time τ∗ = τ∗(t, x;n, ν) ∈ Tt defined under Px as

τ∗ := inf
{
s ≥ 0

∣∣ v(t+ s,X [n,ν]
s ) = g(t+ s,X [n,ν]

s )
}
∧ (T − t) (4.9)

is optimal for the stopper.

Remark 4.4: In this framework, we are not able to connect the value function
with a variational inequality as we did in Chapter 3. �

4.1.2 Approximated Problem

The theory developed in Chapter 3 does not apply directly to this new type of
game. Results proved by probabilistic arguments apply without changes to this
class of games, but the results proved by analytic arguments fail and we need an
approximation procedure in order to use them.

We explain in the next remark the main reason why some proofs stop to hold.

Remark 4.5: The theory in Chapter 3 does not apply directly because some of
the results therein (such as, Propositions 3.17 and 3.22, and Lemma 3.29) cease
to hold. Under the setting of Section 4.1, the heuristic argument and the result
obtained later through the approximated procedure lead to the following condition:
the value function of the game v should satisfy |∇~v|~ ≤ f . It means that the
penalisation term introduced in the corresponding PDE is ψε(H(∇v)− f 2) with
H(p) = |p̄|2~ and p̄ is the vector of the first ~ coordinates of p. Repeating the proof
of Proposition 3.17, we get from the corresponding (3.53) the following

−2〈∇wn,∇(H(∇un)− f 2
m)〉 ≤ −2λ|∇~un|2~ + 2|∇u|d|∇f 2

m|d + R̃n.

This inequality is not sufficient to conclude the proof of the analogue of Proposition
3.17. Indeed, the first term on the right-hand side above does not bound the terms
as in Proposition 3.17. In a similar way Proposition 3.22 does not hold. The other
result which fails is Lemma 3.29, indeed (3.111) in the proof of Lemma 3.29 does
not lead to a bound on |D2wn|2d×d but it leads only to a bound on a strict subset
of the partial derivatives included in D2wn and thus the result does not hold. �
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4.1.3 Approximation Procedure

We introduce a sequence of approximated games to which the results from
Chapter 3 apply. These games are indexed by a parameter γ and we obtain a
family of value functions associated to γ ∈ (0, 1). The existence of the value of
the original game is found through a convergent subsequence of this family.

Fix a γ ∈ (0, 1). For a given pair (n, ν) ∈ Adt we consider the following
(controlled) stochastic differential equation:

dX
[n,ν],γ
i,t = bi(X

[n,ν],γ
s ) ds+

d′∑
j=1

σij(X
[n,ν],γ
i,s )dW j

s + ni,s dνs, for 1 ≤ i ≤ ~, (4.10)

dX
[n,ν],γ
i,t = bi(X

[n,ν],γ
s ) ds+

d′∑
j=1

σij(X
[n,ν],γ
i,s )dW j

s + γni,s dνs, for ~ + 1 ≤ i ≤ d.

The term γ is a weight applied to the last d− ~ coordinates.
Let p = (p̄, p̃) ∈ R~ × Rd−~. For γ ∈ (0, 1], we introduce a function Hγ(p) :

Rd → R defined as Hγ(p) := |p̄|2~ +γ|p̃|2d−~ (it is clear that H1 is equal to H used in
Chapter 3). The gradient is ∇Hγ(p) = 2p̄+ 2γp̃ = (2p1, . . . , 2p~, 2γp~+1, . . . , 2γpd)

and the Hessian matrix D2Hγ(p) is a diagonal matrix with the first ~ entries equal
to 2 and the last d− ~ entries equal to 2γ.

We introduce an approximation of f as

fγ(t) :=
√
f 2(t) + γK2

1 for t ∈ [0, T ], (4.11)

where K1 comes from (4.6). By construction fγ → f uniformly on [0, T ] as γ → 0.
Notice that (4.7) and (4.11) imply

Hγ(∇g(t, x)) = |∇~g(t, x)|2~ + γ|∇d−~g(t, x)|2d−~
≤ f 2(t) + γK2

1

= (fγ(t))2,

for all (t, x) ∈ Rd+1
0,T .

We consider a new payoff J γ
t,x similar to the payoff defined in (4.1) with X [n,ν]

t
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and f therein replaced by X [n,ν],γ
t and fγ, respectively, i.e.,

J γ
t,x(n, ν, τ) = Ex

[
e−rτg(t+ τ,X [n,ν],γ

τ ) +

∫ τ

0

e−rsh(t+ s,X [n,ν],γ
s ) ds (4.12)

+

∫ τ

0

e−rsfγ(t+ s) dνs

]
.

We say that the game (4.12) admits a value if

uγ(t, x) = sup
τ∈Tt

inf
(n,ν)∈Adt

J γ
t,x(n, ν, τ) = inf

(n,ν)∈Adt
sup
τ∈Tt
J γ
t,x(n, ν, τ). (4.13)

The game described above satisfies Assumptions 3.4 and 3.5. The dynamics of
X [n,ν],γ has a weight γ in the last d− ~ coordinates which does not appear in the
dynamics of (3.1). The γ parameter in the dynamics allows to recover the theory
of [11]. Indeed, it leads to a different penalisation term ψε(Hγ(∇u)− (fγm)2) in
(3.18) and a different Hamiltonian (3.19) that now reads

Hε,γ
m (t, x, y) := sup

p∈Rd

{
〈ȳ, p̄〉+ γ〈ỹ, p̃〉 − ψε(Hγ(p)− (fγm(t, x))2)

}
,

where y = (ȳ, ỹ) and p = (p̄, p̃) belong to R~×Rd−~. We notice that the first-order
condition for Hε,γ

m is the same as the one for Hε
m used in the proof of Proposition

3.9. Indeed we have

yi = ψ′ε(Hγ(p)− (fγm(t, x))2)Hi(p) = ψ′ε(Hγ(p)− (fγm(t, x))2)2pi for i ≤ ~,

γyi = ψ′ε(Hγ(p)− (fγm(t, x))2)Hi(p) = ψ′ε(Hγ(p)− (fγm(t, x))2)2γpi for i > ~,

which can be expressed as y = ψ′ε(H(p)− f 2
m(t, x))2p using vectorial notation. We

now explain in detail the small changes that are required to adapt the results
from Chapter 3 to the case with dynamics (4.10).

Propositions 3.9 and 3.11 hold with Hγ in place of H. Even if Hε,γ
m is replaced

by Hε
m, they lead to the same first-order condition (as described above). Similarly,

Propositions 3.25 and 3.26 hold by the same argument with

Hε,γ(t, x, y) := sup
p∈Rd

{
〈ȳ, p̄〉+ γ〈ỹ, p̃〉 − ψε(Hγ(p)− (fγ(t, x))2)

}
,
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in place of Hε and the extension of (3.93) to Hε,γ, i.e., we have

Hε,γ(t, x, y) ≥ ε

2
(|ȳ|2~ + γ|ỹ|2d−~)− ψε

(
Hγ( ε

2
y)− (fγ(t, x))2

)
≥ ε

2
(|ȳ|2~ + γ|ỹ|2d−~)− ψε

(
Hγ( ε

2
y)
)

=
ε

2
(|ȳ|2~ + γ|ỹ|2d−~)− ψε

(
ε2

4
(|ȳ|2~ + γ|ỹ|2d−~)

)
≥ εγ

4
|y|2d.

Thus the corresponding equation of (3.102) holds with a γ−1 multiplicative factor
on the right-hand side of (3.102).

Proposition 3.17 holds with an adjustments in (3.53). That equation leads
now to

−2〈∇wn,∇(Hγ(∇un)− (fγm)2)〉 ≤ 2λHγ(∇un) + 2|∇u|d|∇(fγm)2|d + R̃n.

Since Hγ(∇un) ≥ γ|∇un|2d then the equation corresponding to (3.54) is

0 ≤ (C1 − λγ)|∇u|2d + C2 + λrM1 +Rn + R̃n.

The proof continues with the same arguments and the γ factor is maintained
until the end. It follows that the final constant M3 depends on γ. The proof of
Proposition 3.22 requires the same changes. In particular, (3.84) becomes

ξ〈∇wn,∇
(
Hγ(∇un)− (fγ)2

)
〉 ≥λHγ(∇u)− |∇u|3d|∇ξ|d − ξR̂n,

≥λγ|∇u|2d − |∇u|3d|∇ξ|d − ξR̂n,

where 2|∇u|d|∇(fγ)2|d in (3.84) disappears because fγ does not depend on the
spatial variables and we can conclude the proof in the same way.

Lemma 3.29 still holds, but in this case we have that (3.111) holds in the
following way:

1

2

〈
D2Hγ(∇wn)∇wnxi ,∇w

n
xj

〉
≥ γ

〈
∇wnxi ,∇w

n
xj

〉
.

This inequality forces us to change other inequalities in order to obtain γ as a
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multiplicative factor. In particular, (3.112) becomes

〈
a∇ξ,∇(Hγ(∇wn)− (fγ)2)

〉
≥ − ξ θγ

4
|D2wn|2d×d −

16

θγ
ā2
md

4C0|∇wn|2d

and (3.119) becomes

d∑
k=1

wnxkLxkw
n ≤ θγ

8
|D2wn|2d×d +

C1

γ
(N1 + 1)2.

The proof continues as in the proof of Proposition 3.17 and it leads to the equation
corresponding to (3.115):(

1−
√
λγ−1Am+1

)
ξψε(ζn) ≤ C6

√
1 + λ−1 + κδ,mRn.

Choosing λ = γ
4A2

m+1
we can conclude in the same way.

Finally, Theorem 3.33 holds with the same arguments using the same idea
used for Propositions 3.9 and 3.11, i.e., the use of an optimal control that satisfies
the first-order condition of the Hamiltonian Hε,γ.

The remaining results of Chapter 3 do not need any changes.

Theorem 4.6 The game described above admits a value uγ (i.e., (4.13) holds).
Moreover, for any given (t, x) ∈ Rd+1

0,T and any admissible control (n, ν) ∈ Adt , the
stopping time τ γ∗ = τ γ∗ (t, x;n, ν) ∈ Tt defined under Px as

τ γ∗ := inf
{
s ≥ 0|uγ(t+ s,X [n,ν]

s ) = g(t+ s,X [n,ν]
s )

}
∧ (T − t),

is optimal for the stopper.

Following the theory of Chapter 3, we have that the function uγ from Theorem
4.6 has the following properties.

Lemma 4.7 For any γ ∈ (0, 1), the function uγ belongs to (C0,1,β
`oc ∩W

1,2,p
`oc )(Rd+1

0,T )

and

0 ≤ uγ(t, x) ≤ K4(1 + |x|d),
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where K4 = K4(T,D2, K3) is independent of γ and comes from Lemma 3.13 proved
using the stronger assumption (4.8).

The next lemma proves that the controller has no advantage to use a control ν
with an expectation greater than a suitable constant K6. This result is crucial to
prove the main theorem of this section (Theorem 4.12), but it has also an interest
in its own right.

Lemma 4.8 There exists a constant K6 = K6(x;T, f(T ), K4, D1) independent of
γ such that

uγ(t, x) = inf
(n,ν)∈Ad,optt,x

sup
τ∈Tt
J γ
t,x(n, ν, τ) = sup

τ∈Tt
inf

(n,ν)∈Ad,optt,x

J γ
t,x(n, ν, τ),

where Ad,optt,x :=
{

(n, ν) ∈ Adt
∣∣Ex[νT−t] ≤ K6

}
.

Proof. Let (e1, 0) ∈ Adt be the null control and denote X = X [e1,0]. Following the
idea of Lemma 3.13, we have

sup
τ∈Tt

inf
(n,ν)∈Adt

J γ
t,x(n, ν, τ) ≤ sup

τ∈Tt
J γ
t,x(e1, 0, τ)

= sup
τ∈Tt

Ex

[
e−rτg(t+ τ,Xτ ) +

∫ τ

0

e−rsh(t+ s,Xs) ds

]
≤K3(1 + T )Ex

[
sup
s∈[0,T ]

(1 + e−rs|Xs|d)
]

(4.14)

≤K4(1 + |x|d),

where the second inequality is using the linear growth of g and h (see (4.8)), the
third inequality is by standard estimates for SDEs with coefficients with linear
growth ([48, Cor. 2.5.10]) and the constant K4 > 0 depends only on T , D2 and
K3 from (4.5) and (4.8), respectively. Therefore, the controller tries to minimise
over the class

Ad,optt,x :=
{

(n, ν) ∈ Adt
∣∣∣ sup
τ∈Tt
J γ
t,x(n, ν, τ) ≤ K4(1 + |x|d)

}
.
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For (n, ν) ∈ Ad,optt,x we have

Ex
[
|νT−t|

]
=Ex

[∫
[0,T−t]

dνs

]
≤Ex

[(
min

s∈[0,T−t]
fγ(t+ s)

)−1
∫

[0,T−t]
fγ(t+ s) dνs

]
(4.15)

≤ erT

fγ(T )
Ex

[
e−r(T−t)g(T,X

[n,ν],γ
T ) +

∫ T−t

0

e−rsh(t+ s,X [n,ν],γ
s ) ds

+

∫
[0,T−t]

e−rsfγ(t+ s) dνs

]
≤ erT

f(T )
J γ
t,x(n, ν, T − t)

where the first inequality is using fγ(t+s)
fγ(t+s)

inside the integral and taking the
minimum of the denominator; the second inequality is justified because g, h are
non-negative and fγ is non-increasing in time, we also multiplied by er(T−t)e−r(T−t)

and erse−rs the function g and inside the two integrals, respectively, and finally
we collected e−r(T−t) and ers in front of the expectation taking the maximum on
time of them, i.e., erT ; the third inequality is because fγ is decreasing in γ and
thus fγ(T ) ≥ f(T ).

Combining (4.15) with (4.14) and (n, ν) ∈ Ad,optt,x , we have

Ex
[
|νT−t|

]
≤ erTK4

f(T )
(1 + |x|d) =: K6,

where K6 = K6(x;T, f(T ), K4) is independent of γ.

Remark 4.9: The result in Lemma 4.8 can be extended to v(t, x) and we obtain
that

v(t, x) = sup
τ∈Tt

inf
(n,ν)∈A~,opt

t,x

Jt,x(n, ν, τ) = inf
(n,ν)∈A~,opt

t,x

sup
τ∈Tt
Jt,x(n, ν, τ),

with A~,opt
t,x = {(n, ν) ∈ A~

t |Ex[νT−t] ≤ K6} and K6 as in Lemma 4.8.
The proof follows the steps of the proof of Lemma 4.8. Indeed, (4.14) and

(4.15) hold with: f(t+ s) and Jt,x(n, ν, τ) in place of fγ(t+ s) and J γ
t,x(n, ν, τ),

respectively, and we can repeat the same steps therein which lead to the result. �
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Before we state the next result we recall the definition of local time at 0 of a
process X from [57, Sec. IV.7, p. 212].

Definition 4.10 The local time at 0 of a semimartingale X is defined as

L0
t (X) := A0

t −
∑

0<s≤t

|Xs| − |Xs−| − sign(Xs−)∆Xs,

where A0
t is the increasing process that satisfies

|Xt| = |X0|+
∫ t

0+

sign(Xs−) dXs + A0
t .

Theorem 4.11 Let t ∈ [0, T ]. For all τ ≤ T − t stopping time and (n, ν) ∈ Adt ,
there exists (n̄, ν̄) ∈ A~

t such that

Ex
[
|X [n,ν],γ

τ −X [n̄,ν̄],0
τ |d

]
≤ γK7Ex[νT−t],

where K7 = K7(D1, d, T ) with D1 from Assumption 4.1 is a constant independent
of γ.

Proof. For each pair (n, ν) ∈ Adt , with n = (n~, nd−~) ∈ R~ × Rd−~, we can define
a pair (n̄, ν̄) ∈ A~

t as

n̄i,s :=


ni,s
|n~
s |~
, |n~

s|~ 6= 0,

ē1, |n~
s|~ = 0,

for i = 1, . . . ~;

ν̄s :=

∫ s

0

|n~
r|~ dνr;

(4.16)

where ē1 is the ~-dimensional unit vector with value 1 in the first coordinate.
We have that

∫ s
0
n̄i,rdν̄r =

∫ s
0
ni,rdνr for all s ∈ [0, T − t]. The vector process

(n̄s)s∈[0,∞) is progressively measurable. Indeed, take a measurable subset U of the
~-dimensional unit ball. We need to prove that for all s ∈ [0, T − t], the set

U−1 :=
{

(r, ω) ∈ [0, s]× Ω
∣∣ n̄r(ω) ∈ U

}
is a measurable set. Let Z := {(r, ω) ∈ [0, s] × Ω : |n~

r(ω)|~ 6= 0}, we have that
U−1 = (U−1∩Z)∪ (U−1∩Zc). On the set U−1∩Z, we have that n̄s is the ratio of
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two progressively measurable processes with a denominator always different from
0 and thus the set is measurable. The other set U−1 ∩ Zc is equal to ∅ if ē1 /∈ U
and equal to Zc if ē1 ∈ U ; in both cases we have that U−1 ∩ Zc is measurable
because ∅ and Zc are. Indeed, the latter is measurable because it is the pre-image
of a closed set under a measurable function, in particular, it is the composition of
| · | (which is a continuous function and thus also a measurable function) with n
which is progressively measurable by assumption. We conclude that the set U is
measurable as it is a finite union of measurable sets.

We consider two processes, X [n,ν],γ and, X [n̄,ν̄],0, whose dynamics follow for the
coordinates i = 1, . . . ~

dX
[n,ν],γ
i,s = bi(X

[n,ν],γ
s )ds+

d′∑
j=1

σij(X
[n,ν],γ
i,s )dW j

s + ni,sdνs, (4.17)

dX
[n̄,ν̄],0
i,s = bi(X

[n̄,ν̄],0
s )ds+

d′∑
j=1

σij(X
[n̄,ν̄],0
i,s )dW j

s + n̄i,sdν̄s,

and for i = ~ + 1, . . . d

dX
[n,ν],γ
i,s = bi(X

[n,ν],γ
s )ds+

d′∑
j=1

σij(X
[n,ν],γ
i,s )dW j

s + γni,sdνs, (4.18)

dX
[n̄,ν̄],0
i,s = bi(X

[n̄,ν̄],0
s )ds+

d′∑
j=1

σij(X
[n̄,ν̄],0
i,s )dW j

s .

Let τ ∈ Tt and denote Xγ = X [n,ν],γ and X0 = X [n̄,ν̄],0 for simplicity. Define the
exit time from the ball of radius R as

τR := inf
{
s ≥ 0

∣∣|Xγ
s |d ∨ |X0

s |d ≥ R
}
.

We denote the two processes Xγ
·∧τ∧τR and X0

·∧τ∧τR by Xγ,R
· and X0,R

· , respectively;
in a similar way, we denote the difference process, stopped at the time τ ∧ τR as
J γ,R
· := Xγ,R

· −X0,R
· . The process J γ,R is a semimartingale. For any s ∈ [0, T − t],

by Meyer-Itô Formula for semimartingales (see [57, Thm. IV.70]) applied to the
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i-th coordinate of J γ,R, J γ,R
i , we have

|J γ,R
i,s | =

∫ s∧τ∧τR

0+

sign(J γ,R
i,λ−) d(J γ,R

i,λ ) + L0
s∧τ∧τR(J γ,R

i ) (4.19)

+
∑

0<λ≤s∧τ∧τR

|J γ,R
i,λ | − |J

γ,R
i,λ−| − sign(J γ,R

i,λ−)∆(J γ,R
i,λ )

for i = 1, . . . d, where sign(y) = −1 for y < 0, sign(y) = 1 for y > 0 and 0

otherwise, L0
s∧τ∧τR(J γ,R

i ) is the local time of the process J γ,R
i at 0 in the time

interval [0, s ∧ τ ∧ τR], and ∆(J γ,R
i,λ ) := J γ,R

i,λ − J
γ,R
i,λ−. Notice that J γ,R

i,λ = J γ,R
i,λ− for

i = 1, . . . ~ because we have that
∫ s

0
n̄i,rdν̄r =

∫ s
0
ni,rdνr. Thus, using the SDEs

defined above we have

|J γ,R
i,s | =

∫ s∧τ∧τR

0

sign(J γ,R
i,λ )(bi(Xγ,R

λ )− bi(X0,R
λ )) dλ

+

∫ s∧τ∧τR

0

sign(J γ,R
i,λ )(σi(Xγ,R

i,λ )− σi(X0,R
i,λ )) dWλ + L0

s∧τ∧τR(J γ,R
i )

for i = 1, . . . ~.
Taking expectation in the equation above we get

Ex
[
|J γ,R
i,s |

]
=Ex

[ ∫ s∧τ∧τR

0

sign(J γ,R
i,λ )(bi(Xγ,R

λ )− bi(X ,R0
λ )) dλ+ L0

s∧τ∧τR(J γ,R
i )

]
≤Ex

[ ∫ s

0

|bi(Xγ,R
λ )− bi(X0,R

λ )| dλ+ L0
s(J

γ,R
i )

]
(4.20)

≤Ex
[
D1

∫ s

0

|J γ,R
λ |d dλ+ L0

s(J
γ,R
i )

]
,

where D1 comes from Assumption 4.1. In order to estimate the local time, we
follow the idea of [20, Lem. 5.1] which we can apply because J γ,R

i is a continuous
semimartingale:

Ex
[
L0
s(J

γ,R
i )

]
(4.21)

≤ 4ε− 2Ex

[ ∫ s

0

(
1{J γ,Ri,λ ∈[0,ε)} + 1{J γ,Ri,λ ≥ε}

e1−
J
γ,R
i,λ
ε

)
(bi(Xγ,R

λ )− bi(X0,R
λ )) dλ

]
+

1

ε
Ex

[ ∫ s

0

1{J γ,Ri,λ >ε}e
1−

J
γ,R
i,λ
ε (σi(Xγ,R

i,λ )− σi(X0,R
i,λ ))2 dλ

]
for any ε > 0. Denote by Iε the last integral on the right-hand side above, we
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estimate it as follows: pick ζ ∈ (1
2
, 1), we have

Iε =
1

ε
Ex

[ ∫ s

0

1{J γ,Ri,λ ∈(ε,εζ)}e
1−

J
γ,R
i,λ
ε (σi(Xγ,R

i,λ )− σi(X0,R
i,λ ))2 dλ

]
+

1

ε
Ex

[ ∫ s

0

1{J γ,Ri,λ ≥εζ}
e1−

J
γ,R
i,λ
ε (σi(Xγ,R

i,λ )− σi(X0,R
i,λ ))2 dλ

]
≤ 1

ε
Ex

[
D2

1

∫ s

0

1{J γ,Ri,λ ∈(ε,εζ)}|J
γ,R
i,λ |

2 dλ

]
+

1

ε
Ex

[
e1−εζ−1

∫ s

0

1{J γ,Ri,λ ≥εζ}
(σi(Xγ,R

i,λ )− σi(X0,R
i,λ ))2 dλ

]
≤D2

1ε
2ζ−1T + κ2

Rε
−1e1−εζ−1

Ex

[ ∫ s

0

|J γ,R
i,λ |d dλ

]
where the first inequality for the first integral is by the Lipschitz property of σ

with D1 from Assumption 4.1 and e1−
J
γ,R
i,λ
ε ≤ 1 on the event 1{J γ,Ri,λ ∈(ε,εζ)}, and for

the second integral is by e1−
J
γ,R
i,λ
ε ≤ e1−εζ−1 on the event 1{J γ,Ri,λ ≥εζ}

. The second

inequality for the first integral is by |J γ,R
i,λ | ≤ εζ on the event 1{J γ,Ri,λ ∈(ε,εζ)} and the

computation of the integral, and for the second integral we use that σi is 1
2
-Hölder

with constant κR on the random time interval [0, τR].
Thus we obtain that

Ex
[
L0
s(J

γ,R
i )

]
≤ 4ε+

(
4D1+

κ2
R

ε
e1−εζ−1

)
Ex

[ ∫ s

0

|J γ,R
λ |d dλ

]
+D2

1ε
2ζ−1T, (4.22)

where 4D1 comes from the second term of the right-hand side of (4.21) and we
have also bound |J γ,R

i,λ | ≤ |J
γ,R
λ |d. Combining (4.20) and (4.22), we obtain the

following estimate:

Ex
[
|J γ,R
i,s |

]
≤ 4ε+

(
5D1+

κ2
R

ε
e1−εζ−1

)
Ex

[ ∫ s

0

|J γ,R
λ |d dλ

]
+D2

1ε
2ζ−1T, (4.23)

for i = 1, . . . ~. The remaining coordinates are estimated as follows. Let i =
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~ + 1, . . . d, we have from (4.19)

|J γ,R
i,s | =

∫ s

0

sign(J γ,R
i,λ )(bi(Xγ,R

λ )− bi(X0,R
λ )) dλ

+

∫ s

0

sign(J γ,R
i,λ )(σi(Xγ,R

i,λ )− σi(X0,R
i,λ )) dWλ (4.24)

+ γ

∫ s

0+

sign(J γ,R
i,λ−)ni,λ− dνλ + L0

s(J
γ,R
i,λ )

+
∑

0<λ≤s

|J γ,R
i,λ | − |J

γ,R
i,λ−| − sign(J γ,R

i,λ−)∆(J γ,R
i,λ ).

We notice that

|J γ,R
i,λ | = |J

γ,R
i,λ− + γni,λ∆νλ| ≤ |J γ,R

i,λ−|+ γ∆νλ

γ

∫ s

0

sign(J γ,R
i,λ )ni,λ dνcλ = γ

∫ s

0+

sign(J γ,R
i,λ−)ni,λ− dνλ −

∑
0<λ≤s

sign(J γ,R
i,λ−)∆(J γ,R

i,λ ),

where νc denotes the continuous part of ν. It is clear that

γ

∫ s

0

sign(J γ,R
i,λ )ni,λ dνcλ + γ

∑
0<λ≤s

∆νλ ≤ νs.

Thus, we get from (4.24) the inequality:

|J γ,R
i,s | ≤

∫ s

0

sign(J γ,R
i,λ )(bi(Xγ,R

λ )− bi(X0,R
λ )) dλ

+

∫ s

0

sign(J γ,R
i,λ )(σi(Xγ,R

i,λ )− σi(X0,R
i,λ )) dWλ

+ γνs + L0
s(J

γ,R
i,λ ).

Since we have a non-continuous semimartingale, then [20, Lemma 5.1] does not
apply directly. We have some extra terms, i.e, the second expectation and the last
term on the right-hand side below, similar to (4.24), in the proof of [20, Lemma
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5.1]. We give the full result in detail in C.1 in Appendix.

Ex
[
L0
s(J

γ,R
i )

]
≤ 4ε− 2Ex

[ ∫ s

0

(1{J γ,Ri,λ ∈[0,ε)} + 1{J γ,Ri,λ ≥ε}
e1−

J
γ,R
i,λ
ε )(bi(Xγ,R

λ )− bi(X0,R
λ )) dλ

]
− 2Ex

[ ∫ s

0

(1{J γ,Ri,λ ∈[0,ε)} + 1{J γ,Ri,λ ≥ε}
e1−

J
γ,R
i,λ
ε )γni,λ dνcλ

]
+

1

ε
Ex

[ ∫ s

0

1{J γ,Ri,λ >ε}e
1−

J
γ,R
i,λ
ε (σi(Xγ,R

i,λ )− σi(X0,R
i,λ ))2 dλ

]
+ 2Ex[γ

∑
0<λ≤s

∆νλ].

Repeating the same idea of [20] and the above estimates for the first ~ coordin-
ates, we get

Ex
[
|J γ,R
i,s |

]
≤ 4ε+

(
5D1 +

κ2
R

ε
e1−εζ−1

)
Ex

[ ∫ s

0

|J γ,R
λ |d dλ

]
(4.25)

+D2
1ε

2ζ−1T + 7γEx
[
νs
]
.

Combining (4.23) and (4.25) for i = 1, . . . d we have

Ex
[
|J γ,R
s |d

]
≤

d∑
i=1

Ex
[
|J γ,R
i,s |

]
≤ 4dε+ d

(
5D1 +

κ2
R

ε
e1−εζ−1

)
Ex

[ ∫ s

0

|J γ,R
λ |d dλ

]
+ dD2

1ε
2ζ−1T + 7dγEx

[
νs
]
.

Sending ε ↓ 0, we get

Ex
[
|J γ,R
s |d

]
≤ 5dD1Ex

[ ∫ s

0

|J γ,R
λ |d dλ

]
+ 7dγEx

[
νs
]
.

We can now apply Gronwall’s lemma to get

Ex

[
|J γ,R
s |d

]
≤γK7Ex

[
νT−t

]
, for any s ∈ [0, T − t],

with K7 = K7(D1, d, T ). Passing to the limit for R→∞ and by Fatou’s Lemma,
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we get

Ex

[
|J γ
s |d
]
≤ lim inf

R→∞
Ex

[
|J γ,R
s |d

]
≤ γK7Ex

[
νT−t

]
, for any s ∈ [0, T − t].

Recalling that J γ
· = Xγ

·∧τ −X0
·∧τ = X

[n,ν],γ
·∧τ −X [n̄,ν̄],0

·∧τ and picking s = T − t, we
have that

Ex
[
|X [n,ν],γ

τ −X [n̄,ν̄],0
τ |d

]
=Ex

[
|X [n,ν],γ

τ∧(T−t) −X
[n̄,ν̄],0
τ∧(T−t)|d

]
=Ex

[
|J γ
T−t|d

]
≤ γK7Ex

[
νT−t

]
,

with K7 independent of ν and γ.

4.1.4 The Value of the Game

Theorem 4.12 The game in (4.3) admits a value v. Moreover, for any compact
K ⊂ Rd+1

0,T , there exists a CK such that

sup
(t,x)∈K

|uγ(t, x)− v(t, x)| ≤ CKγ
1
2 ,

where uγ is the function described in Theorem 4.6.

Proof. Let uγ be the value of the game described in Theorem 4.6. We introduce
u := lim infγ→0 u

γ and u := lim supγ→0 u
γ. If we prove that

u(t, x) ≤ v(t, x) and u(t, x) ≥ v(t, x),

for all (t, x) ∈ Rd+1
0,T , we get that u(t, x) = u(t, x) = v(t, x) = v(t, x) = v(t, x) and

Theorem 4.12 holds.
Fix (t, x) ∈ Rd+1

0,T . We first prove that u ≥ v. Let (nγ, νγ) ∈ Adt be an η-
optimal control for uγ(t, x) and consider the associated (n̄γ, ν̄γ) ∈ A~

t constructed
as in (4.16). Consider the processes X [nγ ,νγ ],γ and X [n̄γ ,ν̄γ ],0 from (4.17) and (4.18)
with (n, ν) and (n̄, ν̄) therein replaced by (nγ, νγ) and (n̄γ, ν̄γ), respectively. For
notational simplicity, denote the two processes X [nγ ,νγ ],γ and X [n̄γ ,ν̄γ ],0 by Xγ and
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X0, respectively. Let τ ∈ Tt be an η-optimal stopping time for v(t, x). We have

uγ(t, x)− v(t, x) ≥J γ
t,x(n

γ, νγ, τ)− Jt,x(n̄γ, ν̄γ, τ)− 2η

=Ex

[
e−rτ (g(t+ τ,Xγ

τ )− g(t+ τ,X0
τ ))

+

∫ τ

0

e−rs(h(t+ s,Xγ
s )− h(t+ s,X0

s )) ds

+

∫
[0,τ ]

e−rsfγ(t+ s) dνγs −
∫

[0,τ ]

e−rsf(t+ s) dν̄γs

]
− 2η

≥ −K1Ex
[
|Xγ

τ −X0
τ |d
]
− Ex

[ ∫ T−t

0

|Xγ
s −X0

s |d ds

]
≥ −K1Ex

[
|Xγ

τ −X0
τ |d
]
−K1T sup

s∈[0,T−t]
Ex

[
|Xγ

s −X0
s |d
]
− 2η

where K1 comes from (4.6). The first inequality is by the choice of (nγ, νγ) and
τ . The second inequality is by the definition of ν̄, i.e., dν̄s(ω)

dνs(ω)
= |n~

s(ω)|~ ≤ 1 for
all ω ∈ Ω and that fγ ≥ f by (4.11). The last inequality is by Fubini’s theorem
and taking supremum inside the integral. Using Theorem 4.11 combined with
Ex[|νγT−t] ≤ K6 from Lemma 4.8 we have that

uγ(t, x)− v(t, x) ≥ −K1(1 + T )γK7K6 − 2η,

and passing to the limit inferior as γ ↓ 0 we get

u(t, x)− v(t, x) ≥ −2η.

By the arbitrariness of η, we obtain u(t, x) ≥ v(t, x).
We prove now that u(t, x) ≤ v(t, x). Let τγ ∈ Tt be an η-optimal stopping

time for uγ and let (n, ν) ∈ A~
t be an η-optimal control for v(t, x). Notice that

since (n, ν) ∈ A~
t ⊂ Adt , we have X [n,ν],γ

s (ω) = X
[n,ν],0
s (ω) for all s ∈ [0, T − t],
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almost every ω ∈ Ω. Thus

uγ(t, x)− v(t, x) ≤J γ
t,x(n, ν, τγ)− Jt,x(n, ν, τγ) + 2η

=Ex

[ ∫
[0,τγ ]

e−rs(fγ(t+ s)− f(t+ s)) dνs

]
+ 2η

≤√γK1Ex[|νT−t|] + 2η

≤√γK1K6 + 2η.

The first inequality is by the choice of τγ and (n, ν); the equality is because the
two processes are indistinguishable; the second inequality is by the definition
of fγ and thus fγ ≤ f +

√
γK1 (see (4.11)); the third inequality is by Remark

4.9. Passing to the limit superior as γ ↓ 0 and by the arbitrariness of η we get
u(t, x) ≤ v(t, x) and we have limγ→0 u

γ(t, x) = v(t, x) = v(t, x) = v(t, x).
Using that γ ∈ (0, 1), we obtain

|uγ(t, x)− v(t, x)| ≤ K1K6(1 +K7(1 + T ))γ
1
2

for all (t, x) ∈ Rd+1
0,T , with K1 from (4.6), K6 = K6(x) from Lemma 4.8 and K7 as

in Theorem 4.11. Since K6 = K6(x) is dependent continuously on x, let K ⊂ Rd+1
0,T

be a compact, we have that

sup
(t,x)∈K

|uγ(t, x)− v(t, x)| ≤ CKγ
1
2

with CK := K1(1 +K7(1 + T )) max(t,x)∈KK6(x).

We show the optimality of the stopping time defined in (4.9). We follow an
approach that can be found for example in [13, Thm. 4.12].

Theorem 4.13 For any given (t, x) ∈ Rd+1
0,T and any admissible control (n, ν) ∈

A~
t , the stopping time τ∗ = τ∗(t, x;n, ν) ∈ Tt defined under Px as

τ∗ := inf
{
s ≥ 0

∣∣ v(t+ s,X [n,ν]
s ) = g(t+ s,X [n,ν]

s )
}
∧ (T − t) (4.26)

is optimal for the stopper.
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Proof. Let (t, x) ∈ Rd+1
0,T and (n, ν) ∈ A~

t . Define

τ γ∗ := inf
{
s ≥ 0

∣∣uγ(t+ s,X [n,ν]
s ) ≤ g(t+ s,X [n,ν]

s )
}
∧ (T − t).

We first prove that

lim inf
γ→0

τ γ∗ ≥ τ∗. (4.27)

Fix ω ∈ Ω. If τ∗(ω) = 0, then (4.27) holds. If τ∗(ω) > 0, we pick δ > 0 such
that δ < τ∗(ω). By the same arguments that lead to the optimality of τ∗ in the
proof of Theorem 3.33, we have that τ0 = τ∗ for almost every ω ∈ Ω and ∆ντ∗ = 0,
i.e., X [n,ν]

τ0− = X
[n,ν]
τ∗− = X

[n,ν]
τ∗ , where

τ0 = inf{s ≥ 0|v(t+ s,X
[n,ν]
s− )− g(t+ s,X

[n,ν]
s− ) = 0}.

We have that the sequence (τη)η∈(0,1) with

τη := inf{s ≥ 0|v(t+ s,X [n,ν]
s )− g(t+ s,X [n,ν]

s ) ≤ η}

admits a strictly increasing subsequence (τηm)m∈N for almost every ω ∈ Ω, i.e.,
there exists an Ω0 ⊂ Ω with P(Ω0) = 1 where τηm(ω) ↑ τ0(ω) for all ω as m→∞.
Moreover,

lim
m→∞

X [n,ν]
τηm

= X
[n,ν]
τ0−

holds for all ω ∈ Ω0. It means that there exists a constant Cω > 0 such that

inf
0≤s≤δ

(
v(t+ s,X [n,ν]

s (ω))− g(t+ s,X [n,ν]
s (ω))

)
≥ Cω,

otherwise we would have that for all ηm > 0 from the sequence above,

inf
0≤s≤δ

(
v(t+ s,X [n,ν]

s (ω))− g(t+ s,X [n,ν]
s (ω))

)
< ηm,

and the inequality would imply that τηm ≤ δ for all m ∈ N. Since τηm ↑ τ∗ > δ,
we reach a contradiction.

Moreover (n, ν) ∈ A~
t is fixed, therefore we have that the second moment of
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the controlled process is finite and thus there exists a compact Kω ⊂ Rd+1
0,T such

that the trajectory of Xn,ν lies in it

{(t+ s,X [n,ν]
s ) : s ∈ [0, δ]} ⊂ Kω.

By Theorem 4.12, we have that there exists a γ′ such that for all 0 < γ ≤ γ′:

sup
(t,x)∈Kω

∣∣uγ(t, x)− v(t, x)
∣∣ < Cω

2
,

and it follows

inf
0≤s≤δ

∣∣uγ(t+ s,X [n,ν]
s (ω))− g(t+ s,X [n,ν]

s (ω))
∣∣ ≥ Cω

2
.

It means that τ γ∗ > δ for 0 < γ ≤ γ′, and

lim inf
γ→0

τ γ∗ ≥ δ.

Sending δ ↑ τ∗ we have that (4.27) holds and we obtain

lim
γ→0

τ γ∗ ∧ τ∗ = τ∗, (4.28)

with τ∗ as in (4.26).
Fix η > 0 and consider the stopping time

τ γη := inf{s ≥ 0|uγ(t+ s,X [n,ν]
s ) ≤ g(t+ s,X [n,ν]

s ) + η}.

Since (n, ν) ∈ A~
t , then (n, ν) is admissible for the class Adt (precisely, n 7→ n̂ :=

(n,0) ∈ R~ × Rd−~, we have that (n̂, ν) ∈ Adt ). By the arguments in proof of
Theorem 3.33 about the optimality of τ∗ therein, we have that τ γη ↑ τ γ∗ as η ↓ 0.
By the first line of (3.124) with g and τη therein replaced by uγ and τ γη ∧ τ∗,
respectively, we have

uγ(t, x) ≤ η + Ex

[
e−r(τ

γ
η ∧τ∗)uγ(t+ τ γη ∧ τ∗, X

[n,ν]

τγη ∧τ∗
) +

∫ τγη ∧τ∗

0

e−rsh(t+ s,X [n,ν]
s ) ds

+

∫
[0,τγη ∧τ∗]

e−rsfγ(t+ s) dνs

]
.
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Sending η ↓ 0, by dominated convergence theorem we obtain

uγ(t, x) ≤ Ex

[
e−r(τ

γ
∗ ∧τ∗)uγ(t+ τ γ∗ ∧ τ∗, X

[n,ν]

τγ∗ ∧τ∗
) +

∫ τγ∗ ∧τ∗

0

e−rsh(t+ s,X [n,ν]
s ) ds

+

∫
[0,τγ∗ ∧τ∗]

e−rsfγ(t+ s) dνs

]
.

Finally, sending γ ↓ 0 we have that

v(t, x) ≤ lim
γ→0

Ex

[
e−r(τ

γ
∗ ∧τ∗)uγ(t+ τ γ∗ ∧ τ∗, X

[n,ν]

τγ∗ ∧τ∗
) +

∫ τγ∗ ∧τ∗

0

e−rsh(t+ s,X [n,ν]
s ) ds

+

∫
[0,τγ∗ ∧τ∗]

e−rsfγ(t+ s) dνs

]
.

Using that (n, ν) ∈ A~
t , f is bounded, the functions g and h have linear growth,

dominated convergence theorem applies and we obtain by (4.28) that

v(t, x) ≤ Ex

[
e−rτ∗g(t+ τ∗, X

[n,ν]
τ∗ ) +

∫ τ∗

0

e−rsh(t+ s,X [n,ν]
s ) ds

+

∫
[0,τ∗]

e−rsf(t+ s) dνs

]
.

Thus, the strategy τ∗ is optimal for the stopper.

The next remark shows that the value function v of the game does not change
if we impose the controller to use only absolute continuous controls.

Remark 4.14: Remark 3.34 says that

uγ(t, x) = inf
(n,ν)∈Ad,◦t

sup
τ∈Tt
J γ
t,x(n, ν, τ) = sup

τ∈Tt
inf

(n,ν)∈Ad,◦t
J γ
t,x(n, ν, τ),

where Ad,◦t := {(n, ν) ∈ Adt |ν is absolutely continuous}. We introduce the lower
and upper value functions of the games with absolutely continuous admissible
controls:

v◦(t, x) = sup
τ∈Tt

inf
(n,ν)∈A~,◦

t

Jt,x(n, ν, τ) and v◦(t, x) = inf
(n,ν)∈A~,◦

t

sup
τ∈Tt
Jt,x(n, ν, τ).

Repeating the proof of Theorem 4.12 replacing v and v therein with v◦ and v◦,
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respectively, we get that limγ→0 u
γ = v0(t, x) and

v0(t, x) = inf
(n,ν)∈A~,◦

t

sup
τ∈Tt
Jt,x(n, ν, τ) = sup

τ∈Tt
inf

(n,ν)∈A~,◦
t

Jt,x(n, ν, τ).

Since the limit is unique, then we have that v0 = v with v as in Theorem 4.12. �

4.2 Degenerate Processes

In this section, we relax the local ellipticity condition on the diffusion coefficient
of the SDEs which we assumed in Chapter 3. We prove that stochastic games played
with this new type of processes admit a value under a new set of assumptions. We
use an approximation procedure to perturb the original process with a parametrised
non-degenerate noise. The approximated games satisfy assumptions of Chapter
3 and we can apply results therein. The family of value functions admits a a
convergent subsequence that converges to the the value of the original game.
Moreover, we provide an optimal strategy for the stopper.

4.2.1 The Problem

We consider a zero-sum game as in Chapter 3 where there are still two players,
a stopper (maximiser) and a controller (minimiser). In this new type of game we
allow the diffusion coefficient (see σ in (4.29)) to be degenerate.

We repeat briefly the model without giving the full details which can be found
in Chapter 3. Let (Ω,F , (Ft)t,P) be a stochastic basis on which an adapted
d′-dimensional Brownian motion (Wt)t is defined. Let T be the terminal time,
and b : Rd → Rd and σ : Rd → Rd × Rd′ be measurable functions. Denote

Tt := {τ |τ is a stopping time, τ ≤ T − t} .
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We define by At the class of admissible controls as

At :=


(n, ν)

∣∣∣∣∣∣∣∣∣∣∣

(ns)s∈[0,∞) is progressively measurable, Rd valued,

with |ns|d = 1, P-a.s. ∀s ∈ [0,∞);

(νs)s∈[0,∞) is F-adapted, real valued, non-decreasing and

right-continuous with ν0− = 0, P-a.s., and E[|νT−t|2] <∞


.

Consider the following d-dimensional controlled stochastic differential equation.
We will use the notation X [n,ν]

s to underline that the process is controlled by (n, ν):dX
[n,ν]
s = b(X

[n,ν]
s )ds+ σ(X

[n,ν]
s )dWs + nsdνs, 0 ≤ s ≤ T,

Xn,ξ
0− = x.

(4.29)

Since σ ∈ Rd×d′ , the resulting matrix a(x) := (σσ>)(x) ∈ Rd×d is a positive-
semidefinite matrix which means that the matrix a(x) can be singular, i.e., there
can be points x ∈ Rd and ζ ∈ Rd such that

〈ζ, a(x)ζ〉 = 0,

or, alternatively, that det(a(x)) = 0 for some x ∈ Rd.

Remark 4.15: In Chapters 3 and 4, we required that d ≤ d′ because we assumed
the diffusion coefficient to be non-degenerate. In the case where d > d′, the
diffusion coefficient is always degenerate because det(a(x)) = 0 for all x ∈ Rd. �

The players are playing the same zero-sum game introduced in (3.2) and we
show it below for completeness

Jt,x(n, ν, τ) = Ex

[
e−rτg(t+ τ,X [n,ν]

τ ) +

∫ τ

0

e−rsh(t+ s,X [n,ν]
s ) ds (4.30)

+

∫
[0,τ ]

e−rsf(t+ s) ◦dνs
]
.

In this setting, the function f is independent on the state space, and the integral
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defined in (4.30) is now consistent with the Riemann-Stieltjes integral, i.e.,∫
[0,τ ]

e−rsf(t+ s) ◦dνs =

∫ τ

0

e−rsf(t+ s) dνs,

as in (4.2).
We define

v(t, x) := sup
τ∈Tt

inf
(n,ν)∈At

Jt,x(n, ν, τ), and v(t, x) := inf
(n,ν)∈At

sup
τ∈Tt
Jt,x(n, ν, τ), (4.31)

so that v(t, x) ≤ v(t, x). If the equality holds then we say that the game admits a
value:

v(t, x) := v(t, x) = v(t, x). (4.32)

The local ellipticity condition in Assumption 3.4 does not hold anymore.
Indeed, we allow the diffusion coefficient to be degenerate and thus (3.10) fails.
This implies that some of the proofs in Chapter 3 are not valid anymore, in
particular, Propositions 3.17 and 3.22, Lemma 3.29 and the argument in Section
B.6.

We recall that L denotes the infinitesimal generator of the uncontrolled process
X [e1,0] (where e1 is the unit vector with 1 in the first entry) and it reads

(Lϕ)(x) =
1

2
tr
(
a(x)D2ϕ(x)

)
+ 〈b(x),∇ϕ(x)〉. (4.33)

Next we give assumptions under which we obtain our main result (Theorem
4.18).

Assumption 4.16 (Controlled SDE) The functions b and σ are continuously
differentiable on Rd and Lipschitz with constant D1, i.e.,

|b(x)− b(y)|d + |σ(x)− σ(y)|d×d′ ≤ D1|x− y|d, for all x, y ∈ Rd. (4.34)

The matrix σ is such that there exists D2 > 0 such that

|σ(x)|d×d′ ≤ D2(1 + |x|d)
1
2 , for all x ∈ Rd. (4.35)
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Thanks to (4.34), we can assume that there exists D2 such that

|b(x)|d ≤ D2(1 + |x|d), for all x ∈ Rd,

and without loss of generality we can assume that D2 is the same of (4.35).

Assumption 4.17 (Functions f, g, h) For the functions f, g, h : Rd+1
0,T → [0,∞)

the following hold:

(i) g ∈ C1,2,α
`oc (Rd+1

0,T ) and h ∈ C0,1,α
`oc (Rd+1

0,T ) for some α ∈ (0, 1);

(ii) f is non-increasing, positive and f 2 is differentiable;

(iii) there is K0 ∈ (0,∞) such that for all 0 ≤ s < t ≤ T and all x ∈ Rd+1
0,T

h(t, x)− h(s, x) ≤ K0(t− s) and g(t, x)− g(s, x) ≤ K0(t− s);

(iv) there is K1 ∈ (0,∞) such that

0 ≤ |h(t, x)| ≤ K1(1 + |x|2d), for (t, x) ∈ Rd+1
0,T ;

(v) there is K2 ∈ (0,∞) and β ∈ (0, 1) such that

|h(t, x)− h(t, y)| ≤ K2(1 + |x|d + |y|d)β|x− y|d, for (t, x) ∈ Rd+1
0,T ; (4.36)

(vi) f and g are such that

|∇g(t, x)|d ≤ f(t), for all (t, x) ∈ Rd+1
0,T ; (4.37)

(vii) there is K3 ∈ (0,∞) such that

(h+ ∂tg + Lg − rg)(t, x) ≥ −K3, for all (t, x) ∈ Rd+1
0,T .

Notice that (ii) and (4.37) in Assumption 4.17 imply that

|∇g(t, x)| ≤ f(0) for all (t, x) ∈ Rd+1
0,T . (4.38)
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A comment on these conditions can be found in Chapter 3 below Assumption 3.5.
We can now state the main result of the chapter.

Theorem 4.18 The game described above admits a value v (i.e., (4.32) holds).
Moreover, for any given (t, x) ∈ Rd+1

0,T and any admissible control (n, ν) ∈ At, the
stopping time τ∗ = τ∗(t, x;n, ν) ∈ Tt defined under Px as

τ∗ := inf
{
s ≥ 0

∣∣ v(t+ s,X [n,ν]
s ) = g(t+ s,X [n,ν]

s )
}
∧ (T − t)

is optimal for the stopper.

4.2.2 Approximated Problem

The theory developed in Chapter 3 does not apply directly to this new type of
game. Results proved by probabilistic arguments apply without changes to this
class of games, but the results proved by analytic arguments fail.

4.2.3 Approximation Procedure

We introduce an approximating sequence of games to which the results from
Chapter 3 apply. These games are indexed by a parameter θ and we obtain a
family of value functions of these games. The existence of the value of the original
game is found through a convergent subsequence in this family.

Fix a θ ∈ (0, 1). For a given pair (n, ν) ∈ At we consider the (controlled)
stochastic differential equation:

dX [n,ν],θ
s = b(X [n,ν],θ

s ) ds+ ns dνs + σ(X [n,ν],θ
s )dWs + θIddW̃s

where Id is the d-dimensional identity matrix and W̃ is a d-dimensional Brownian
motion independent from the original Brownian motionW . Let τ ∈ Tt, consider the
same payoff defined in (4.30) but with X [n,ν],θ in the place of X [n,ν] as underlying
process, i.e.,

J θ
t,x(n, ν, τ) = Ex

[
e−rτg(t+ τ,X [n,ν],θ

τ ) +

∫ τ

0

e−rsh(t+ s,X [n,ν],θ
s ) ds (4.39)

+

∫
[0,τ ]

e−rsf(t+ s) dνs

]
.
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We say that the game (4.30) admits a value if

uθ(t, x) = sup
τ∈Tt

inf
(n,ν)∈At

J θ
t,x(n, ν, τ) = inf

(n,ν)∈At
sup
τ∈Tt
J θ
t,x(n, ν, τ). (4.40)

Since we add a noise θIddW̃s dependent on θ, then the differential operator L
defined in (4.33) changes in Lθ. Indeed the matrix a(x) becomes aθ(x) = a(x)+θ2Id

which is non-degenerate because

〈ζ, aθ(x)ζ〉 = 〈ζ, (a(x) + θ2Id)ζ〉

= 〈ζ, a(x)ζ〉+ θ2|ζ|2d
≥ θ2|ζ|2d

for all x, ζ ∈ Rd. This game satisfies the Assumptions 3.4 and 3.5 and we are
allowed to apply Theorem 3.6 with a replaced by aθ. For simplicity we collect the
results from Chapter 3 that we need in the next two theorems.

Theorem 4.19 The game described above admits a value function uθ (i.e., (4.40)
holds). Moreover, for any given (t, x) ∈ Rd+1

0,T and any admissible control (n, ν) ∈
At, the stopping time τ θ∗ = τ θ∗ (t, x;n, ν) ∈ Tt defined under Px as

τ θ∗ := inf
{
s ≥ 0

∣∣uθ(t+ s,X [n,ν],θ
s ) = g(t+ s,X [n,ν],θ

s )
}
∧ (T − t) (4.41)

is optimal for the stopper.
If we assume that the function h is uniformly Lipschitz in x, then the theorem

still holds even if we drop (4.35) in Assumption 4.16.

Lemma 4.20 For any θ ∈ (0, 1), the function uθ belongs to (C0,1,γ
`oc ∩W

1,2,p
`oc )(Rd+1

0,T )

for γ ∈ (0, 1) and p ∈ (1,∞). Moreover

0 ≤ |uθ(t, x)| ≤ K4(1 + |x|2d),

|∇uθ(t, x)|d ≤ f(t),

where K4 = K4(T,D1, K1) with D1 and K1 from Assumptions 4.16 and 4.17,
respectively, and it is independent of θ.

The Assumptions 4.16 and 4.17 are slightly different from Assumptions 4.1
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and 4.2 in Section 4.1. Using Lemma 3.13 in order to repeat and complete the
proof of Lemma 4.8 for uθ, it is straightforward to show that:

Lemma 4.21 There exists a K6 = K6(x;T, f(T ), K4, D1) independent of θ such
that

uθ(t, x) = inf
(n,ν)∈Aoptt,x

sup
τ∈Tt
J θ
t,x(n, ν, τ) = sup

τ∈Tt
inf

(n,ν)∈Aoptt,x

J θ
t,x(n, ν, τ)

where Aoptt,x :=
{

(n, ν) ∈ At
∣∣Ex[νT−t] ≤ K6

}
and

K6 :=
erTK4

f(T )
(1 + |x|2d)

independent of θ and K4 = K4(T,D2, K1) from Lemma 4.20.

Remark 4.22: The result in Lemma 4.21 can be extended to v(t, x) and we
obtain that

v(t, x) = sup
τ∈Tt

inf
(n,ν)∈Aoptt,x

Jt,x(n, ν, τ) = inf
(n,ν)∈Aoptt,x

sup
τ∈Tt
Jt,x(n, ν, τ),

with Aoptt,x = {(n, ν) ∈ At|Ex[νT−t] ≤ K6} and K6 as in Lemma 4.21.
The proof follows the steps of the proofs of Lemmas 4.8 and 4.21. �

We state a classical inequality which will be used in the next theorem: for all
p ∈ [1,∞), the following inequality holds

( d∑
i=1

xi

)p
≤ d p−1

( d∑
i=1

|xi|p
)

(4.42)

for all x ∈ Rd.
We show in the next theorem the rate of convergence of the process with the

noise to the process without the noise.
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Theorem 4.23 Fix (t, x) ∈ Rd+1
0,T and β ∈ (0, 1). For any (n, ν) ∈ At, we have

Ex
[

sup
s∈[0,T−t]

|X [n,ν],θ
s −X [n,ν],0

s |
1

1−β
d

]
≤ θK7, (4.43)

where K7 = K7(D1, d, T, β) with D1 from Assumption 4.16. Moreover, it holds

Ex

[
sup

s∈[0,T−t]
|X [n,ν],θ

s |
]
≤ K8Ex[νT−t], (4.44)

where K8 = K8(d, T,D2) independent of θ.

Proof. For simplicity denote X [n,ν],θ, X [n,ν],0 and the difference process X [n,ν],θ −
X [n,ν],0 by Xθ, X0 and Jθ, respectively. Taking the supremum over time and the
expectation we get

Ex

[
sup
λ∈[0,s]

|Jθλ|
1

1−β
d

]
≤ 3

β
1−βEx

[
sup
λ∈[0,s]

(∣∣∣∣ ∫ λ

0

(
b(Xθ

r )− b(X0
r )
)

dr

∣∣∣∣ 1
1−β

d

+ |θIdW̃λ|
1

1−β
d

+

∣∣∣∣ ∫ λ

0

(
σ(Xθ

r )− σ(X0
r )
)

dWr

∣∣∣∣ 1
1−β

d

)]
(4.45)

where the inequality follows by the definition of Jθ and (4.42). The first term on
the right-hand side of (4.45) is bounded from above using the Hölder’s inequality
and the Lipschitz property of b (see (4.34))

Ex

[
sup
λ∈[0,s]

∣∣∣∣ ∫ λ

0

(
b(Xθ

r )− b(X0
r )
)

dr

∣∣∣∣ 1
1−β

d

]
≤Ex

[
sup
λ∈[0,s]

λ
1
β

∫ λ

0

|b(Xθ
r )− b(X0

r )|
1

1−β
d dr

]
≤Ex

[
T

1
βD

1
1−β
1

∫ s

0

sup
r∈[0,λ]

|Jθr |
1

1−β
d dr

]
;

the second term of the right-hand side of (4.45) is bounded from above using the
Doob’s maximal inequality applied to W̃

Ex

[
sup
λ∈[0,s]

|θIdW̃λ|
1

1−β
d

]
≤ Ex

[
d
(

1
β
θ|ZT |

) 1
1−β
]
≤ κ1θ

1
1−β ,

where ZT is an independent normal random variable distributed as N (0, T ) and
κ1 = dEx[(

1
β
|ZT |)

1
1−β ]; the last term on the right-hand side of (4.45) is bounded
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from above using [48, Cor. 2.5.11]

Ex

[
sup
λ∈[0,s]

∣∣∣∣ ∫ λ

0

(
σ(Xθ

r )− σ(X0
r )
)

dWr

∣∣∣∣ 1
1−β

d

]
≤ 2

1
2−2β

+2 β

1− β
s

1
2−2β

−1Ex

[ ∫ s

0

|σ(Xθ
r )− σ(X0

r )|
1

1−β
d×d′ dr

]
≤ κ2Ex

[
D

1
1−β
1

∫ s

0

sup
r∈[0,λ]

|Jθr |
1

1−β
d dr

]
,

where κ2 = κ2(T, β) = 2
5−4β
2−2β β

1−βT
2β−1
2−2β and D1 comes from (4.34). Using the three

inequalities above in (4.45) we get

Ex

[
sup
λ∈[0,s]

|Jθλ|
1

1−β
d

]
≤ 3

β
1−βEx

[
D

1
1−β
1 (1 + κ2)

∫ s

0

sup
r∈[0,λ]

|Jθr |
1

1−β
d dλ+ κ1θ

1
1−β

]
.

By Gronwall’s lemma we get for all s ∈ [0, T − t]

Ex

[
sup
λ∈[0,s]

|Xθ
λ −X0

λ|d
]

= Ex

[
sup
λ∈[0,s]

|Jθλ|d
]
≤ θ

1
1−βK7

with K7 = K7(D1, d, β, T ) independent of (n, ν) ∈ At.
Now we prove (4.44). Let (n, ν) ∈ At such that E[νT−t] ≤ K6 with K6 as in

Lemma 4.21. We have

Ex

[
sup
λ∈[0,s]

|Xθ
λ|d
]
≤ Ex

[
sup
λ∈[0,s]

( ∣∣∣ ∫ λ

0

b(Xθ
r ) dr

∣∣∣
d

+
∣∣∣ ∫ λ

0

σ(Xθ
r ) dWr

∣∣∣
d

(4.46)

+
∣∣∣ ∫ λ

0

θId dW̃r

∣∣∣
d

+
∣∣∣ ∫ λ

0

nrdνr

∣∣∣
d

)]
.

We now estimate all the terms above separately. The first term on the right-hand
side of (4.46):

Ex

[
sup
λ∈[0,s]

∣∣∣ ∫ λ

0

b(Xθ
r ) dr

∣∣∣
d

]
≤Ex

[
D2

∫ s

0

(1 + sup
r∈[0,λ]

|Xθ
r |d) dλ

]
≤TD2 + Ex

[
D2

∫ s

0

sup
r∈[0,λ]

|Xθ
r |d dλ

]
;
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the second term on the right-hand side of (4.46):

Ex

[
sup
λ∈[0,s]

∣∣∣ ∫ λ

0

σ(Xθ
r ) dWr

∣∣∣
d

]
≤Ex

[
sup
λ∈[0,s]

∣∣∣ ∫ λ

0

σ(Xθ
r ) dr

∣∣∣2
d

] 1
2

≤κ3Ex

[ ∫ s

0

|(σσ>)(Xθ
r )|d×d dλ

] 1
2

≤κ3

(
1 + Ex

[ ∫ s

0

|(σσ>)(Xθ
r )|d×d dλ

])
≤κ3

(
1 + Ex

[
D2

∫ s

0

(1 + sup
r∈[0,λ]

|Xθ
r |d) dλ

])
≤κ3

(
1 + TD2 + Ex

[
D2

∫ s

0

sup
r∈[0,λ]

|Xθ
r |d dλ

])
,

where the first inequality follows by Hölder’s inequality, the second inequality by
[48, Cor. 2.5.11] with κ3 = κ3(T ) and the last inequality follows by Assumption
4.16; the third term on the right-hand side of (4.46):

Ex

[
sup
λ∈[0,s]

∣∣∣ ∫ s

0

θId dW̃λ

∣∣∣
d

]
≤ dθ

√
8T ≤ d

√
8T (4.47)

using [48, Cor. 2.5.11]; the last term on the right-hand side of (4.46):

Ex

[
sup
λ∈[0,s]

∣∣∣ ∫ s

0

nrdνr

∣∣∣
d

]
≤ Ex[νs]

by Lemma 4.21. Combining the four inequalities we have

Ex

[
sup
λ∈[0,s]

|Xθ
λ|d
]
≤TD2(1 + κ3) +D2(1 + κ3)

∫ s

0

Ex

[
sup
r∈[0,λ]

|Xθ
r |d
]
dλ

+ κ3 + d
√

8T + Ex[νs].

By Gronwall’s lemma, we get

Ex

[
sup

s∈[0,T−t]
|Xθ

s |d
]
≤ K8Ex[νT−t],

with K8 = K8(d, T,D2). Analogously, we get the same estimates for X0 without
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(4.47), therefore we obtain:

Ex

[
sup

s∈[0,T−t]
|X0

s |d
]
≤ K8Ex[νT−t].

with the same K8.

4.2.4 The Value of the Game

Theorem 4.24 The game in (4.31) admits a value v. Moreover, for any compact
K ⊂ Rd+1

0,T , there exists a CK > 0 such that

sup
(t,x)∈K

|uθ(t, x)− v(t, x)| ≤ CKθ
1−β (4.48)

for β as in (4.36) and uθ is the value function described in Theorem 4.19.

Proof. Let uθ be the value of the game described in Section 4.2.3. We introduce
u := lim infθ→0 u

θ and u := lim supθ→0 u
θ. If we prove that

u(t, x) ≤ v(t, x) and u(t, x) ≥ v(t, x)

for all (t, x) ∈ Rd+1
0,T , we get that u(t, x) = u(t, x) = v(t, x) = v(t, x) = v(t, x) and

Theorem 4.24 holds.
We prove first that u(t, x) ≥ v(t, x). For (n, ν) ∈ At we consider the two

processes whose dynamics read

dX [n,ν],θ
s = b(X [n,ν],θ

s )ds+ σ(X [n,ν],θ
s )dWs + θIddW̃s + nsdνs,

dX [n,ν],0
s = b(X [n,ν],0

s )ds+ σ(X [n,ν],0
s )dWs + nsdνs,

where we recall that W̃ is a d-dimensional Brownian motion independent from
the original Brownian motion W and Id is the d-dimensional identity matrix.

Let (nθ, νθ) be an η-optimal control for uθ(t, x) and let τ ∈ Tt be an η-optimal
stopping time for v(t, x). Let Xθ = X [nθ,νθ],θ and X0 = X [nθ,νθ],0 for notational



Degenerate Processes 129

simplicity. We have

uθ(t, x)− v(t, x)

≥J θ
t,x(n

θ, νθ, τ)− Jt,x(nθ, νθ, τ)− 2η

=Ex

[
e−rτ (g(t+ τ,Xθ

τ )− g(t+ τ,X0
τ ))

+

∫ τ

0

e−rs(h(t+ s,Xθ
s )− h(t+ s,X0

s )) ds

]
− 2η (4.49)

≥ − f(0)Ex

[
|Xθ

τ −X0
τ |d
]

−K2Ex

[ ∫ T−t

0

(1 + |Xθ
s |d + |X0

s |d)β|Xθ
s −X0

s |d ds

]
− 2η

≥ − f(0)Ex

[
sup

s∈[0,T−t]
|Xθ

s −X0
s |d
]

−K2(T − t) sup
s∈[0,T−t]

Ex

[
(1 + |Xθ

s |d + |X0
s |d)β|Xθ

s −X0
s |d
]
− 2η,

where f(0) andK2 come from (4.38) and (4.36), respectively. The second inequality
follows by the Lipschitz property of g and h, and we extend the integral up to
time T − t. The third inequality is by Fubini’s theorem and taking supremum
inside the time integral.

The first term in the last line of (4.49) is bounded from below by Hölder
inequality:

sup
s∈[0,T−t]

Ex

[
(1 + |Xθ

s |d + |X0
s |d)β|Xθ

s −X0
s |d
]

≤ sup
s∈[0,T−t]

Ex

[
(1 + |Xθ

s |d + |X0
s |d)
]β

Ex

[
|Xθ

s −X0
s |

1
1−β
d

]1−β

.

Applying (4.43) and (4.44) in (4.49), we get

uθ(t, x)− v(t, x) ≥ −
(
f(0) +K2(T − t)(K6K8)β

)
(θK7)1−β − 2η.

It means that when we pass to the limit inferior as θ ↓ 0 we have u(t, x)−v(t, x) ≥
−2η and by the arbitrariness of η we get u(t, x) ≥ v(t, x).

Let τ θ ∈ Tt be an η-optimal stopping time for uθ and let (n, ν) ∈ At be an
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η-optimal control for v(t, x). The estimates above still hold thanks also to Remark
4.22, thus we have

uθ(t, x)− v(t, x) ≤
(
f(0) +K2(T − t)(K6K8)β

)
(θK7)1−β + 2η.

Passing to the limit superior as θ ↓ 0 and then η ↓ 0, we have u(t, x) ≤ v(t, x) and
the theorem is proved. It means that (4.48) holds with

CK := max
(t,x)∈K

(
f(0) +K2T (K6K8)β

)
K1−β

7 ,

where K6 comes from Lemma 4.21 and it depends continuously on the initial state
x ∈ K.

If we impose stronger continuity condition on h we can drop the growth
condition on σ. This is done in the next simple corollary.

Corollary 4.25 If the function h is Lipschitz in space uniformly in time, i.e.,

|h(t, x)− h(t, x)| ≤ K2|x− y|d for all x, y ∈ Rd,

with K2 independent of t, then Theorem 4.24 holds without condition (4.35).

Proof. Since the function h is Lipschitz, then the bound in (4.49) becomes

uθ(t, x)− v(t, x) ≥ −(f(0) +K2T )Ex

[
sup

s∈[0,T−t]
|Xθ

s −X0
s |d
]
− 2η.

Recalling that (4.43) is obtained using only the Lipschitz property of σ, we can
repeat all the remaining steps in the proof of Theorem 4.24 after (4.49).

We show the optimality of the stopping time defined in (4.41). We follow an
approach that can be found for example in [13, Thm. 4.12].

Theorem 4.26 For any given (t, x) ∈ Rd+1
0,T and any admissible control (n, ν) ∈ At,

the stopping time τ∗ = τ∗(t, x;n, ν) ∈ Tt defined under Px as

τ∗ := inf
{
s ≥ 0

∣∣ v(t+ s,X [n,ν]
s ) = g(t+ s,X [n,ν]

s )
}
∧ (T − t) (4.50)

is optimal for the stopper.
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If we assume that the function h is uniformly Lipschitz in x, then the statement
holds even if we drop (4.35) in Assumption 4.16.

The proof is similar to Theorem 4.13.

Proof. Let (t, x) ∈ Rd+1
0,T , (n, ν) ∈ At and for simplicity denote X [n,ν],θ

s and X [n,ν],0
s

by Xθ
s and X0

s , respectively. Define

τ θ∗ := inf
{
s ≥ 0

∣∣uθ(t+ s,Xθ
s ) ≤ g(t+ s,Xθ

s )
}
∧ (T − t).

By the convergence in (4.43), we have that there exists a strictly decreasing
subsequence (θk)k∈N ⊂ (0, 1) such that Xθk → X0 almost surely as k → ∞,
i.e., there exists an Ω0 ⊆ Ω with P(Ω0) = 1 such that for all ω ∈ Ω0 we have
Xθk(ω)→ X0(ω) uniformly as k →∞. Thus, for all Γ > 0, there exists k′ = k′(ω)

such that for all k ≥ k′ we have

|Xθk
s (ω)−X0

s (ω)|d ≤ Γ.

We prove now that

lim inf
k→∞

τ θk∗ ≥ τ∗,

with τ∗ as in (4.50). Fix ω ∈ Ω0. If τ∗(ω) = 0, then (4.27) holds. If τ∗(ω) > 0,
we pick δ > 0 such that δ < τ∗(ω). By the same arguments of the proof of the
optimality of τ∗ in the proof of Theorem 3.33, we have for almost every ω ∈ Ω0

that τ0 = τ∗ and ∆ντ∗ = 0, i.e., X0
τ0− = X0

τ∗− = X0
τ∗ , where

τ0 = inf{s ≥ 0|v(t+ s,X0
s−)− g(t+ s,X0

s−) = 0}.

We have that the sequence (τη)η∈(0,1) with

τη := inf{s ≥ 0|v(t+ s,X0
s )− g(t+ s,X0

s ) ≤ η}

admits a strictly increasing subsequence (τηm)m∈N, with ηm ↓ 0 as m → ∞,
for almost every ω ∈ Ω0, i.e., there exists an Ω′0 ⊂ Ω0 with P(Ω′0) = 1 where
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τηm(ω) ↑ τ0(ω) for all ω ∈ Ω′0 as m→∞ and

lim
m→∞

X0
τηm

= X0
τ0−.

This limit means that there exists a constant Cω > 0 such that

inf
0≤s≤δ

(
v(t+ s,X0

s (ω))− g(t+ s,X0
s (ω))

)
≥ Cω,

otherwise we would have that for all ηm > 0,

inf
0≤s≤δ

(
v(t+ s,X0

s (ω))− g(t+ s,X0
s (ω))

)
< ηm,

and the inequality would imply τηm ≤ δ for all m ∈ N. Since τηm ↑ τ∗ > δ, we
reach a contradiction.

Moreover, since (n, ν) ∈ At is fixed, we have that the second moment of the
controlled process is finite and thus there exists a compact Kω ⊂ Rd+1

0,T such that
the trajectory of X0(ω) lies in it

{(t+ s,X0
s (ω)) : s ∈ [0, δ]} ⊂ Kω.

By Theorem 4.24, we have that there exists a k′′ such that for all k ≥ k′′, we have

sup
(t,x)∈Kω

|uθk(t, x)− v(t, x)| < Cω
4
.

Thus we have that for k ≥ k′ ∨ k′′

|uθk(t+ s,Xθk
s (ω))− v(t+ s,X0

s (ω))| ≤ |uθk(t+ s,Xθk
s (ω))− uθk(t+ s,X0

s (ω))|

+ |uθk(t+ s,X0
s (ω))− v(t+ s,X0

s (ω))|

≤ f(0)|Xθk
s (ω)−X0

s (ω)|+ Cω
4

≤ f(0)Γ +
Cω
4
,

where we used |∇uθ(t, x)|d ≤ f(t) ≤ f(0) for all θ (see Lemma 4.20). Taking Γ
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such that f(0)Γ < Cω
4
, it follows

inf
0≤s≤δ

|uθk(t+ s,Xθk
s (ω))− g(t+ s,X0

s (ω)| ≥ Cω
2
.

This means that τ θk∗ > δ for k ≥ k′ ∨ k′′ and

lim inf
k→∞

τ θk∗ ≥ δ.

Sending δ ↑ τ∗ we have that (4.27) holds and we obtain

lim
k→∞

τ θk∗ ∧ τ∗ = τ∗, (4.51)

with τ∗ as in (4.26). We can repeat the same arguments of the proof of Theorem
4.13. For η > 0 we consider

τ θkη := inf{s ≥ 0|uθk(t+ s,Xθk
s ) ≤ g(t+ s,Xθk

s ) + η},

where uτk is the value of the game (4.40); we have that τ θkη ↑ τ θk∗ as η ↓ 0. By the
first line of (3.124) with g and τη therein replaced by uθk and τ θkη ∧ τ∗, respectively,
we have

uθk(t, x) ≤ η+Ex

[
e−r(τ

θk
η ∧τ∗)uθk(t+τ θkη ∧ τ∗, X

θk

τ
θk
η ∧τ∗

)+

∫ τ
θk
η ∧τ∗

0

e−rsh(t+s,Xθk
s ) ds

+

∫ τ
θk
η ∧τ∗

0

e−rsf(t+s) dνs

]
.

Sending η ↓ 0, by dominated convergence theorem we obtain

uθk(t, x) ≤ Ex

[
e−r(τ

θk
∗ ∧τ∗)uθk(t+ τ θk∗ ∧ τ∗, X

θk

τ
θk
∗ ∧τ∗

) +

∫ τ
θk
∗ ∧τ∗

0

e−rsh(t+ s,Xθk
s ) ds

+

∫ τ
θk
∗ ∧τ∗

0

e−rsf(t+ s) dνs

]
.
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Finally, sending k →∞ we have that

v(t, x) ≤ lim
k→∞

Ex

[
e−r(τ

θk
∗ ∧τ∗)uθk(t+τ θk∗ ∧ τ∗, X

θk

τ
θk
∗ ∧τ∗

)+

∫ τ
θk
∗ ∧τ∗

0

e−rsh(t+s,Xθk
s ) ds

+

∫ τ
θk
∗ ∧τ∗

0

e−rsf(t+ s) dνs

]
Using that (n, ν) ∈ At, Xθk converges uniformly to X0 almost surely, f is bounded,
the functions g and h have linear growth, we have that dominated convergence
theorem applies and we obtain by (4.51) that

v(t, x) ≤ Ex

[
e−rτ∗g(t+τ∗, X

0
τ∗)+

∫ τ∗

0

e−rsh(t+s,X0
s ) ds+

∫ τ∗

0

e−rsf(t+s) dνs

]
.

Thus, the strategy τ∗ is optimal for the stopper.
The last statement of Theorem 4.26 holds because Corollary 4.25 allows the

use of Theorem 4.24, and we have that the proof above can be repeated under
the assumptions that h is uniformly Lipschitz in x and σ does not satisfy (4.35)
in Assumption 4.16.

The next remark shows that the value function v of the game does not change
if we impose the controller to use only absolutely continuous controls.

Remark 4.27: Remark 3.34 says that

uθ(t, x) = inf
(n,ν)∈A◦t

sup
τ∈Tt
J θ
t,x(n, ν, τ) = sup

τ∈Tt
inf

(n,ν)∈A◦t
J θ
t,x(n, ν, τ),

where A◦t := {(n, ν) ∈ At|ν is absolutely continuous}. We introduce the lower
and upper value functions of the games with absolutely continuous admissible
controls:

v◦(t, x) := sup
τ∈Tt

inf
(n,ν)∈A◦t

Jt,x(n, ν, τ) and v◦(t, x) := inf
(n,ν)∈A◦t

sup
τ∈Tt
Jt,x(n, ν, τ).

Repeating the proof of Theorem 4.24 replacing v and v therein with v◦ and v◦,
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respectively, we get that limθ→0 u
θ(t, x) = v0(t, x) and

v0(t, x) = inf
(n,ν)∈A◦t

sup
τ∈Tt
J θ
t,x(n, ν, τ) = sup

τ∈Tt
inf

(n,ν)∈A◦t
J θ
t,x(n, ν, τ).

Since the limit is unique, then we have that v0 = v with v as in Theorem 4.24. �
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Appendix

In this appendix, we store results that we prefer to keep separate from the
previous chapters because they are more auxiliary tools for us than results on
ZSGs. Each section stores results from a correspondent chapter.

A Chapter 1

In this section we give the proof of the compact embedding between parabolic
Sobolev spaces and parabolic Hölder spaces (see (1.6)).

A.1 Parabolic Sobolev Embedding

Let d ∈ N and a : R → Rd be uniformly elliptic with θ as coefficient of
ellipticity, i.e., there exists a θ such that

θ−1|ζ|2d ≥ 〈ζ, a(t)ζ〉 ≥ θ|ζ|2d (A.1)

for all (t, ζ) ∈ R1+d. We also introduce three objects related to a Q ⊂ Rd:

• the diameter of Q as diam(Q) := supx,y∈Q |x−y|Q where | · |Q is the euclidean
norm on Q;

• the size of Q as |Q| :=
∫
Q

dz;

• the mean value of a function u inside Q as uQ :=
1

|Q|

∫
Q

u(z)dz.

We give now a Theorem without proof which can be found in the correspondent
book [47].
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Theorem A.1 ([47, Thm. 10.2.5]) Let p ∈ [0,∞) and let Q ⊂ Rd be a convex
bounded domain and u ∈ W 1,p(Q). Then∫

Q

∫
Q

|u(y)− u(x)|p dxdy ≤ 2d+1 diam(Q)p|Q|
∫
Q

|∇u(x)|pd dx.

The next Lemma can be found with its proof in [47, Lemma 4.2.1], we give
below the statement and its proof in detail.

Lemma A.2 ([47, Lemma 4.2.1]) Let p ∈ [1,∞), ρ ∈ (0,∞), u ∈ C∞(Rd+1),
f i ∈ C∞(Rd+1) for i = 1, . . . d and g ∈ C∞(Rd+1). Assume that the function u

satisfies

ut(t, x) +
d∑

i,j=1

aij(t)uxixj(t, x) =
d∑
i=1

f ixi(t, x) + g(t, x),

where a(t) = (aij(t))ij ∈ Rd×d is symmetric for all t and elliptic with θ as coefficient
of ellipticity (see (A.1)). Then

∫
Qρ

|u(t, x)− uQρ|p dtdx ≤ N1ρ
p

∫
Qρ

d∑
i=1

|uxi(t, x)|p + |f i(t, x)|p (A.2)

+ ρp|g(t, x)|p dtdx,

where Qρ is any cylinder of length ρ2 with basis Bρ ⊂ Rd, i.e., Qρ := (0, T )×Bρ

and N1 = N1(d, θ, p).

Proof. We first prove that the theorem holds with ρ = 1. Then we prove it for all
ρ. Let c ∈ R. Using the inequality (4.42), we have that:∫

Q1

|u(t, x)− uQ1 |p dtdx ≤ 2p−1
(∫

Q1

|u(t, x)− c|p + |c− uQ1 |pdtdx
)

(A.3)

= 2p−1
(∫

Q1

|u(t, x)− c|pdtdx+ |Q1||c− uQ1|p
)

=: A1.
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Using the definition of uQ1 and Hölder’s inequality we get

A1 = 2p−1
(∫

Q1

|u(t, x)− c|pdtdx+ |Q1|
∣∣∣ 1
|Q1|

∫
Q1

c− u(t, x)dtdx
∣∣∣p) (A.4)

≤ 2p−1
(∫

Q1

|u(t, x)− c|pdtdx+ |Q1| 1
|Q1|p |Q1|p−1

∫
Q1

|c− u(t, x)|pdtdx
)

= 2p
∫
Q1

|u(t, x)− c|pdtdx.

Consider a ξ ∈ C∞c (B1) with unit integral. We define a function ū of time
t ∈ [0, 1] as

ū(t) :=

∫
B1

ξ(x)u(t, x)dx,

it can be viewed as the mean value of u under the measure whose density is ξ.
We compute the Lp-norm of the difference between u and ū for each fixed t

and using the Hölder’s inequality we get:∫
B1

|u(t, y)− ū(t)|pdy =

∫
B1

∣∣∣∣u(t, y)−
∫
B1

ξ(x)u(t, x)dx

∣∣∣∣p dy

=

∫
B1

∣∣∣∣∫
B1

(u(t, y)− u(t, x))ξ(x)dx

∣∣∣∣p dy (A.5)

≤ |B1|
(∫

B1

|ξ(x)|
p
p−1 dx

)p−1∫
B1

∫
B1

|u(t, y)− u(t, x)|p dxdy

≤ |B1|
(∫

B1

|ξ(x)|
p
p−1 dx

)p−1

2d+12p|B1|
∫
B1

|∇u(t, y)|pd dy

=C1

∫
B1

|∇u(t, y)|pddy

where for p = 1 we consider the supremum of ξ instead of the L
p
p−1 -norm. In the

last inequality, we used Theorem A.1 and C1 = C1(ξ, d, p). From (A.3) and (A.4)
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we have

2p
∫
Q1

|u(t, x)− c|p dtdx

≤ 22p−1
(∫

Q1

|u(t, x)− ū(t)|pdtdx+ |B1|
∫ 1

0

|ū(t)− c|pdt
)

≤ 22p−1
(
C1

∫
Q1

|∇u(t, x)|pd dtdx+ |B1|
∫ 1

0

|ū(t)− c|p dt
)
.

where we used (A.5) in the second inequality. We concentrate now on the last

term above, we define c ∈ R as c :=

∫ 1

0

ū(s)ds then

∫ 1

0

|ū(t)− c|p dt =

∫ 1

0

∣∣∣∣ū(t)−
∫ 1

0

ū(s) ds

∣∣∣∣p dt

=

∫ 1

0

∣∣∣∣∫ 1

0

ū(t)− ū(s) ds

∣∣∣∣p dt

≤
∫ 1

0

∫ 1

0

|ū(t)− ū(s)|p dsdt.

Using Theorem A.1, where diam([0, 1]) = 1 and d = 1, we get∫ 1

0

|ū(t)− c|pdt ≤ 4

∫ 1

0

|ūt(s)|p ds (A.6)

= 4

∫ 1

0

∣∣∣∣∫
B1

ξ(x)ut(s, x)dx

∣∣∣∣p ds

where the equality holds because we can pass the derivative under the integral.
By assumption we can write

ut(s, x) = −
d∑

i,j=1

aij(s)uxixj(s, x) +
d∑
i=1

f ixi(s, x) + g(s, x),
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thus we can substitute the equation above in (A.6) and obtain∫ 1

0

|ū(t)− c|pdt

≤ 4

∫ 1

0

∣∣∣∣ ∫
B1

ξ(x)
(
−

d∑
i,j=1

aij(s)uxixj(s, x) +
d∑
i=1

f ixi(s, x) + g(s, x)
)

dx

∣∣∣∣pds =: A2.

Integrating by parts A2 and using that ξ has compact support on B1, we get

A2 = 4

∫ 1

0

∣∣∣∣ ∫
B1

d∑
i,j=1

aij(s)uxi(s, x)ξxj(x)−
d∑
i=1

f i(s, x)ξxi + ξ(x)g(s, x)dx

∣∣∣∣pds.
Using (4.42) and Hölder’s inequality with p and q := p

p−1
we have

A2 ≤ C2

( d∑
i,j=1

(∫
Q1

|aij(s)ξxj(x)|q dsdx

)p−1(∫
Q1

|uxi(s, x)|p dsdx

)

+
d∑
i=1

(∫
Q1

|ξxi(x)|q dsdx

)p−1(∫
Q1

|f i(s, x)|p dsdx

)
+

(∫
Q1

|ξ(x)|q dsdx

)p−1 ∫
Q1

|g(s, x)|p dsdx

)
≤C3

(∫
Q1

d∑
i=1

|uxi(s, x)|p +
d∑
i=1

|f i(s, x)|p + |g(s, x)|p dxds

)
,

where C2 := 4(d2 + d + 1)p−1 and C3 = C3(d, p, θ) is C2 multiplied by terms
independent of u, f and g. The result holds with N1 := 22p−1(C1 + |B1|C3).

We now prove the result for a generic ρ ∈ (0,∞). Consider the substitution
v(t, x) := u(ρ2t, ρx), then

vt(t, x) +
d∑

i,j=1

aij(ρ
2t)vxixj(t, x) =ρ2

(
ut(ρ

2t, ρx) +
d∑

i,j=1

aij(ρ
2t)uxixj(ρ

2t, ρx)

)

=ρ2

(
1

ρ

d∑
i=1

f ixi(ρ
2t, ρx) + g(ρ2t, ρx)

)

=
d∑
i=1

ρf ixi(ρ
2t, ρx) + ρ2g(ρ2t, ρx),
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where ũQ1 is the mean of u(ρ2t, ρx) inside Q1. Considering the left-hand side of
(A.2), we get∫

Qρ

|u(t, x)− uQρ|p dtdx = ρ(d+2)p

∫
Q1

|u(ρ2t, ρx)− ũQ1|p dtdx

= ρ(d+2)p

∫
Q1

|v(t, x)− vQ1|p dtdx =: A3

By (A.2) with ρ = 1 we get

A3 ≤ ρ(d+2)pN1

∫
Q1

d∑
i=1

|vxi(t, x)|p + |ρf i(ρ2t, ρx)|p + |ρ2g(ρ2t, ρx)|p dtdx

= ρ(d+2)pN1

∫
Q1

d∑
i=1

ρp|uxi(ρ2t, ρx)|p + ρp|f i(ρ2t, ρx)|p + ρ2p|g(ρ2t, ρx)|p dtdx

= ρ(d+2)pρpN1

∫
Q1

d∑
i=1

|uxi(ρ2t, ρx)|p + |f i(ρ2t, ρx)|p + ρp|g(ρ2t, ρx)|p dtdx

=N1ρ
p

∫
Qρ

d∑
i=1

|uxi(t, x)|p + |f i(t, x)|p + ρp|g(t, x)|p dtdx,

and the Theorem holds.

Similarly, we present [47, Lemma 4.2.2] with its straigthforward proof.

Lemma A.3 Let p ∈ [1,∞). There exists a constant N2 = N2(d, p) such that for
any ρ ∈ (0,∞) and u ∈ C∞(Rd+1) we have

d∑
i=1

∫
Qρ

|uxi(t, x)− (uxi)Qρ|p dtdx (A.7)

≤ N2ρ
p

d∑
i,j=1

∫
Qρ

|uxixj(t, x)|p + |ut(t, x)|p dtdx.

Proof. We define the auxiliary elliptic operator L :=
∑d

i,j=1 δ
i,j ∂
∂xi∂xj

and f :=
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ut + Lu. If we differentiate f with respect to xi we obtain

fxi =
(
ut(s, x) +

d∑
j=1

uxj ,xj

)
xi

=(uxi(s, y))t + L(uxi(s, x)).

We can then apply Lemma A.2 with g ≡ 0 and then (A.7) follows.

Thanks to these preliminary results we are able to solve [47, Exercise 10.1.14].
This is the Sobolev embedding for Parabolic Spaces.

Lemma A.4 ([47, Exercise 10.1.14]) The space W 1,2,p
`oc (Rd+1) is a subset of the

space C0,1,α
`oc (Rd+1) for p > d + 2 with α = 1 − d+2

p
. Moreover the inclusion is

compact for α < 1− d+2
p
.

Proof. Let u ∈ W 1,2,p
`oc (Rd+1), we have ∂tu, ∂xiu ∈ L

p
`oc(Rd+1) for i = 1, . . . d, and

it follows by standard argument that u is locally bounded and α-Hölder for
α ≤ 1 − d+1

p
with respect to the d + 1 euclidean distance, and thus it is also

locally Hölder for α ≤ 1− d+2
p

(see [25, Thm. 5.6.4]). This is sufficient to conclude
that u is also α-Hölder continuous with respect to the parabolic distance. Indeed,
consider a compact K ⊂ Rd+1, we have that for all (t, x), (s, y) ∈ K

(|t− s|
1
2 + |x− y|d) ≥

(|t− s|+ |x− y|2d)
1
2 , if |t− s| < 1,

(2 diam(K))−1(|t− s|+ |x− y|2d)
1
2 , if |t− s| ≥ 1.

For all α ∈ (0, 1), we have on the left-hand side below the α-Hölder condition
with respect to the parabolic d+ 1 norm:

sup
(t,x),(s,y)∈K
(t,x) 6=(s,y)

|u(t, x)− u(s, y)

(|t− s| 12 + |x− y|d)α

≤ sup
(t,x),(s,y)∈K
(t,x)6=(s,y)
|t−s|<1

|u(t, x)− u(s, y)

(|t− s|+ |x− y|2d)
α
2

+ sup
(t,x),(s,y)∈K
|t−s|≥1

2 diam(K)|u(t, x)− u(s, y)

(|t− s|+ |x− y|2d)
α
2

≤(1 + 2 diam(K)) sup
(t,x),(s,y)∈K
(t,x) 6=(s,y)

|u(t, x)− u(s, y)

(|t− s|+ |x− y|2d)
α
2

,
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which concludes the first part.
It remains to prove the α-Hölder continuity of the spatial derivatives uxi for

i = 1, . . . d.
Define the following cylinder Qρ(t, x) := (t, t + ρ2) × Bρ(x). First we prove

that there exists M and α ∈ (0, 1] such that for all (t, x), (s, y) ∈ Rd+1 and ρ > 0

d∑
i=1

Ai ≤M(|t− s|
1
2 + |x− y|d)2d+4+α, with

Ai :=

∫
Qρ(t,x)

∫
Qρ(s,y)

|uxi(r1, p1)− uxi(r2, p2)| dr1dp1dr2dp2 for i = 1, . . . d,

whenever ρ is such that 4ρ ≤ |t − s| 12 + |x − y|d. For notational simplicity we
denote d̄ := |t− s| 12 + |x− y|d. Notice that the volume of |Qρ| = ρd+2|B1|. Thus,
we get

Ai ≤
∫
Qρ(t,x)

∫
Qρ(s,y)

|uxi(r1, p1)− c|+ |uxi(r2, p2)− c| dr1dp1dr2dp2 (A.8)

≤ |B1|ρd+2

(∫
Qρ(t,x)

|uxi(r1, p1)− c| dr1dp1 +

∫
Qρ(s,y)

|uxi(r2, p2)− c| dr2dp2

)
,

where c ∈ R is a constant that we chose later.
We can assume with no loss of generality that t < s and we can estimate (A.8)

integrating on a bigger domain. Using Q2d̄(t, x), we have that Qρ(t, x)∪Qρ(s, y) ⊂
Q2d̄(t, x) because s + ρ2 = s − t + t + ρ2 ≤ d̄ 2 + t + ρ2 ≤ t + 2d̄ 2 and a similar
inequality holds for the spatial ball Bρ(y). We define c as

c :=

∫
Q2d̄(t,x)

uxi(r1, p1) dr1dp1.

Applying Lemma A.3 to the right-hand side of (A.8) where now we are integrating
on Q2d̄(t, x), we obtain that

d∑
i=1

Ai ≤ 2N2|B1|ρd+2(2d̄)
( d∑
i,j=1

∫
Q2d̄(t,x)

|uxixj(r1, p1)|+ |ut(r1, p1)| dr1dp1

)
.

The sum on the right-hand side above can be estimated using Hölder’s inequal-
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ity with p and p
p−1

, thus we obtain

d∑
i,j=1

∫
Q2d̄(t,x)

|uxixj(r1, p1)|+ |ut(r1, p1)| dr1dp1

≤ |Q2d̄|
p−1
p

( d∑
i,j=1

∣∣∣ ∫
Q2d̄(t,x)

|uxixj(r1, p1)|p dr1dp1

∣∣∣ 1
p

+
∣∣∣ ∫

Q2d̄(t,x)

|ut(r1, p1)|p dr1dp1

∣∣∣ 1
p
)

≤
(
|B1|(2d̄)d+2

) p−1
p ‖u‖W 1,2,p(Q2d̄(t,x))

=N3d̄
(d+2) p−1

p ‖u‖W 1,2,p(Q2d̄(t,x)),

where we denoted N3 := (|B1|2d+2)
p−1
p . It means that

d∑
i=1

Ai ≤2N2|B1|ρd+2(2d̄)N3d̄
(d+2) p−1

p ‖u‖W 1,2,p(Q2d̄(t,x)) (A.9)

=N4‖u‖W 1,2,p(Q2d̄(t,x))d̄
2d+4+1− d+2

p ,

where N4 := 4N2|B1|N3and α := 1− d+2
p

is the Hölder’s coefficient.
Now we obtain the local α-Hölder continuity of the gradient with α = 1− d+2

p
.

Consider a family of mollifiers (ϕn)n∈N and the mollified sequence (un)n∈N ⊂
C∞c (Rd+1) with un := ϕn ∗u. The family (un)n∈N preserves the property (A.9). By
properties of the family of mollifiers we have that |un| ≤ |u| and Dmun = ϕn∗Dmu

for all multi-index m but only up to one time derivative and two spatial derivatives,
because the function u is in W 1,2,p

`oc (Rd+1). Moreover the mollified functions are
smooth, this means that are α-Hölder continuous with some Kn depending on n.
Consider two points (t, x) and (s, y) in R × Rd, fix δ = δ(α) ∈ (0, 1

4
] such that

2δα ≤ 1
2
, define d̄ := |t− s| 12 + |x− y|d and ρ > 0 such that δd̄ and 4ρ ≤ d̄. For
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(r1, p1) ∈ Qρ(t, x) and (r2, p2) ∈ Qρ(s, y) it holds

|un(t, x)− un(s, y)| ≤ |un(t, x)− un(r1, p1)|+ |un(r1, p1)− un(r2, p2)|

+ |un(r2, p2)− un(s, y)|

≤Kn

(
(|t− r1|

1
2 + |x− p1|)α + (|s− r2|

1
2 + |y − p2|)α

)
+ |u(r1, p1)− u(r2, p2)|

≤ 2Knρ
α + |u(r1, p1)− u(r2, p2)|.

By definition ρ = δd̄ and we obtain

|un(t, x)− un(s, y)| ≤ 2Kn(δd̄)α + |u(r1, p1)− u(r2, p2)|. (A.10)

Integrating with respect to (r1, p1) and (r2, p2) in the two cylinders Qρ centred
in (t, x) and (s, y), we get

(δd̄) 2d+4|B1||un(t, x)− un(s, y)| ≤ 2|B1|Kn(δd̄ )α+2d+4

+N4‖u‖W 1,2,p(Q2d̄(t,x))d̄
α+2d+4,

where the second term on the right-hand side of (A.10) has been estimated using
(A.9). It means that

|un(t, x)− un(s, y)| ≤ 2Kn(δd̄ )α + N4

|B1|‖u‖W 1,2,p(Q2d̄(t,x))d̄
αδ−2d−4

= (2Knδ
α + N4

|B1|‖u‖W 1,2,p(Q2d̄(t,x))δ
−2d−4)d̄α.

Recalling the definition of d̄ = |t− s| 12 + |x− y|d and dividing by d̄α both sides
of the inequality above we get

|un(t, x)− un(s, y)|
(|t− s| 12 + |x− y|d)α

≤ 2Knδ
α +

N4

|B1|
‖u‖W 1,2,p(Q2d̄(t,x))δ

−2d−4. (A.11)

Using that 2δα ≤ 1
2
, we have from (A.11)

|un(t, x)− un(s, y)|
(|t− s| 12 + |x− y|d)α

≤ 1
2
Kn +

N4

|B1|
‖u‖W 1,2,p(Q2d̄(t,x))δ

−2d−4,
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and taking the supremum on the right-hand side above

sup
(t,x),(s,y)∈Q2d̄(t,x)

(t,x)6=(s,y)

|un(t, x)− un(s, y)|
(|t− s| 12 + |x− y|d)α

≤ 1

2
Kn +

N4

|B1|
‖u‖W 1,2,p(Q2d̄(t,x))δ

−2d−4.

The left-hand side above is the α-Hölder constant of Kn, thus

Kn ≤ 1
2
Kn + N4

|B1|‖u‖W 1,2,p(Q2d̄(t,x))δ
−2d−4,

arranging the terms in the equation above, we have

Kn ≤ 2 N4

|B1|‖u‖W 1,2,p(Q2d̄(t,x))δ
−2d−4,

which does not depend on n. We have obtain a bound on the α-Hölder constant
uniformly in n and by uniform convergence on compacts we have that the limit
function u is α-Hölder continuous with constant N5 := 2 N4

|B1|δ
−2d−4.

It remains to prove that |∇u|d is locally bounded with a constant dependent
on the W 1,2,p-norm of u in compact sets of Rd+1. Fix i ∈ (1, . . . d) and consider
the partial derivative with respect to xi of u computed at (t, x) ∈ Rd+1, then

|uxi(t, x)| ≤ |uxi(t, x)− uxi(s, y)|+ |uxi(s, y)|.

We integrate with respect to (s, y) on B1(t, x) the unit ball centred in (t, x) and
we obtain

|Bd+1
1 ||uxi(t, x)| ≤

∫
B1(t,x)

|uxi(t, x)− uxi(s, y)|+ |uxi(s, y)| dsdy,

where |Bd+1
1 | is the volume of a d + 1-dimensional unit ball. Using the Hölder

continuity property of uxi with constant N5‖u‖W 1,2,p(Q2d̄(t,x)) proved before on the
first term on the right-hand side above and the Hölder inequality on the second



148 Appendix

term on the right-hand side above we get

|Bd+1
1 ||uxi(t, x)| ≤

∫
B1(t,x)

N5‖u‖W 1,2,p(Q2d̄(t,x))(|t− s|
1
2 + |x− y|d)α dsdy

+ |Bd+1
1 |

p−1
p

(∫
B1(t,x)

|uxi(s, y)|p dsdy

) 1
p

≤N5C1‖u‖W 1,2,p(Q2d̄(t,x)) + |Bd+1
1 |

p−1
p ‖uxi‖Lp(B1(t,x))

where C1 is the integral in the first line above and it does not depend on u, and
the norm in the last term above is finite because u ∈ W 1,2,p

`oc (Rd+1). It follows that
|∇u|d is locally bounded.

Remark A.5: In order to be precise in Chapters 2 and 3, we should prove that
there exists two constants c1 > 0 and c2 > 0 such that

c1 sup
(t,x),(s,y)∈K
(t,x)6=(s,y)

|v(t, x)− v(s, y)|
(|t− s| 12 + |x− y|)α

≤ sup
(t,x),(s,y)∈K
(t,x)6=(s,y)

|v(t, x)− v(s, y)|
(|t− s|+ |x− y|2)

α
2

(A.12)

≤ c2 sup
(t,x),(s,y)∈K
(t,x)6=(s,y)

|v(t, x)− v(s, y)|
(|t− s| 12 + |x− y|)α

.

Since we have that

(|t− s|+ |x− y|2)
1
2 ≤ |t− s|

1
2 + |x− y|,

then the first inequality of (A.12) holds with c1 = 1. The other inequality is
straightforward using c2 = 2. Indeed

|t− s|
1
2 + |x− y| ≤ 2(|t− s|+ |x− y|2)

1
2 ,

using x+ y ≤ 2
√
x2 + y2. �

B Chapter 3

In this section, we give the auxiliary results for Chapter 3, i.e., the families of
cut-off functions and penalty terms used in (3.18), the stability results for PDEs,
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the well-posedness of the penalised controlled process and the statement of the
Shaefer’s fixed point theorem.

B.1 Cut-off Functions

Here we give a construction of the function defined in (3.16) indexed by m.
Let µ, σ : R→ [0, 1] be defined as

µ(z) :=

0, z ≥ 1;

exp
(

1
z−1

)
, z < 1;

σ(z) :=

0, z ≤ 0;

exp
(
− 1

z

)
, z > 0.

Notice that µ′(z) = −µ(z) 1
(z−1)2 and σ′(z) = σ(z) 1

z2 . We can now use these two
functions to define ξ : R→ [0, 1] as

ξ(z) :=
µ(z)

µ(z) + σ(z)
=


1, z ≤ 0,

0, z ≥ 1,

exp
(

1
z−1

)/[
exp

(
1
z−1

)
+ exp

(
− 1

z

)]
, 0 < z < 1.
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Figure 1: Graph of ξ(x)
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We underline that 1 − ξ(z) = σ(z)
µ(z)+σ(z)

for z ∈ (0, 1). Differentiate ξ with
respect to z, we get

ξ′(z) =
µ′(z)(µ(z) + σ(z))− µ(z)(µ′(z) + σ′(z))

(µ(z) + σ(z))2

=
µ′(z)σ(z)− µ(z)σ′(z)

(µ(z) + σ(z))2

=
µ(z)σ(z)

(µ(z) + σ(z))2

( 1

(z − 1)2
+

1

z2

)
= ξ(z)(1− ξ(z))

( 1

(z − 1)2
+

1

z2

)
,

for z ∈ (0, 1), we have that ξ′(z) = 0 for z ∈ R \ (0, 1). We show the continuity of
ξ′ at z = 0.

Notice that the function µ(z) + σ(z) = e−1 in z = 0, thus

lim
z↓0

ξ(z)(1− ξ(z))
( 1

(z − 1)2
+

1

z2

)
= lim

z↓0

σ(z)

µ(z) + σ(z)

(
1 +

1

z2

)
= e lim

z↓0
σ(z)

( 1

z2

)
(B.1)

= e lim
w→∞

e−ww2 = 0.

The continuity at z = 1 is the same because the function is symmetric respect to
1
2
.
We set ξm(x) = ξ(|x|d −m) for x ∈ Rd. Then ξm ∈ C∞c (Rd), ξm : Rd → [0, 1],

ξm = 1 on Bm and ξm = 0 on Rd \ Bm+1. It is clear that ∇ξm = 0 on Bm and
Rd \Bm+1. It can also be checked that for x ∈ Bm+1 \Bm

∂xkξm(x) =
xk
|x|d

ξ′(|x|d −m), for k = 1, . . . d,

and therefore |∇ξm(x)|2d =
(
ξ′(|x|d −m)

)2. Notice that (ξ′(z))2 can be written as

(
ξ′(z)

)2
= ξ2(z)(1− ξ(z))2

( 1

(z − 1)2
+

1

z2

)2

≤ ξ(z)ξ(z)(1− ξ(z))
( 1

(z − 1)2
+

1

z2

)2

.

It remains to prove that ζ(z) := ξ(z)(1− ξ(z))( 1
(z−1)2 + 1

z2 )2 has a maximum in
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[0, 1].
Using the same computations as in (B.1), the function ζ is continuous at

the boundary points 0 and 1. It is a product of continuous functions and it
is continuous at the points where the two denominators vanishes. It is thus
continuous on a compact and it admits a maximum. Then |∇ξm(x)|2d ≤ C0ξm(x)

for all x ∈ Rd, for a suitable C0 > 0 independent of m.
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Figure 2: Graph of ξ′(x)

B.2 Penalty Functions

On the penalty functions ψε introduced in Section 3.2.1 we have two possible
candidates. The first one is a function defined by ξ from Section B.1:

ψ1(x) :=


0 x ≤ 0,

2(1− ξ(x
4
)) 0 ≤ x ≤ 2,

x− 1, x ≥ 2,

and we define ψε(x) := ψ1(x
ε
).
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The second candidate comes from [68, Page 363]

ψ̃ε(x) :=



0, x ≤ 0,

1
6

(
x
ε

)3
, 0 ≤ x ≤ ε,

−1
6

(
x
ε
− 2
)3

+
(
x
ε
− 2
)

+ 1, ε ≤ x ≤ 2ε,

x
ε
− 1, x ≥ 2ε.
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Figure 3: Graph of ψ1(x) and ψ̃1(x)

B.3 Proof of Lemma 3.15

For existence and uniqueness of the solution to (3.34) we invoke [29, Thm.
3.3.7]. Indeed the smoothing of uε,δm and ( · )+ guarantees that

hm + 1
δ
χn(gm − uε,δm )− ψε

(
|∇un|2d − f 2

m − 1
n

)
∈ C0,1,α(Om). (B.2)

Moreover, the compatibility condition

lim
s↑T

(∂tgm + Lgm − rgm)(s, x)

=
[
− hm − 1

δ
χn(gm − uε,δm ) + ψε

(
|∇un|2d − f 2

m − 1
n

)]
(T, x),

for x ∈ ∂Bm, holds with both sides of the equation equal to zero. Indeed, given that
ξm−1 ∈ C∞c (Bm) we have gm = ∂xigm = ∂xixjgm = 0 on [0, T ]× ∂Bm. Moreover,
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gm = 0 on [0, T ]× ∂Bm also implies ∂tgm = 0 on [0, T ]× ∂Bm. So the left-hand
side of the equation is equal to zero. On the right-hand side, for x ∈ ∂Bm we have
hm(T, x) = gm(T, x) = uε,δm (T, x) = 0 and

|∇un(T, x)|2d ≤ |∇uε,δm (T, x)|2d + 1
n

= |∇gm(T, x)|2d + 1
n
≤ f 2

m(T, x) + 1
n
,

by uniform convergence of ∇un to ∇uε,δm and (3.17). The compatibility condition
follows upon recalling χn(0) = 0 and ψε(z) = 0 for z ≤ 0.

The fact that wn ∈ C1,3,α
Loc (Om) is also consequence of (B.2) and standard

interior estimates for PDEs [29, Thm. 3.5.11 and Cor. 3.5.1]. Instead, the conver-
gence result wn → uε,δm in C1,2,β(Om), as n→∞, for β ∈ (0, α), is a special case
of Lemma B.1. �

Lemma B.1 Let F : R × Rd → R be a Lipschitz continuous function. Fix
φ, ϕ ∈ C0,1,α(Om) and let u be a solution in C1,2,α(Om) of∂tu+ Lu− ru = −hm + F (φ,∇ϕ), on Om,

u(t, x) = gm(t, x), (t, x) ∈ ∂POm.
(B.3)

Let (φn)n∈N, (ϕn)n∈N ⊆ C0,1,α(Om) be such that φn → φ and ϕn → ϕ in C0,1,γ(Om)

as n→∞ for all γ ∈ (0, α). Let (Fn)n∈N be equi-Lipschitz continuous functions
Fn : R × Rd → R such that Fn → F in C0

`oc(R1+d). Finally, denote by un a
solution to (B.3) in C1,2,α(Om) with Fn(φn,∇ϕn) instead of F (φ,∇ϕ).

Then, up to possibly selecting a subsequence,

lim
n→∞

‖un − u‖C1,2,γ(Om) = 0, for all γ ∈ (0, α). (B.4)

If (ϕn)n∈N ⊆ C0,2,α(Om) and (Fn)n∈N ⊆ C1,α(R1+d), then (un)n∈N ⊆ C1,3,α
Loc (Om) ∩

C1,2,α(Om).

Proof. Define ûn := u− un. Then ûn solves∂tûn + Lûn − rûn = F (φ,∇ϕ)− Fn(φn,∇ϕn), on Om,

ûn(t, x) = 0, (t, x) ∈ ∂POm.
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By [29, Thm. 3.2.6] we have the estimate

‖ûn‖C1,2,γ(Om) ≤ K‖F (φ,∇ϕ)− Fn(φn,∇ϕn)‖C0,0,γ(Om), (B.5)

for a constant K > 0 independent of n. Notice that by equi-Lipschitz continuity,
the sequence (Fn)n∈N is compact in any Cβ(U) for β ∈ (0, 1) and bounded set
U ⊂ Rd+1. Thanks to the convergence of the functions φn, ϕn and Fn we have
that, up to possibly selecting a subsequence, Fn(φn,∇ϕn)→ F (φ,∇ϕ) in Cγ(Om)

as n→∞ for all γ ∈ (0, α). Thus, (B.4) holds.
If we also assume that (ϕn)n∈N ⊆ C0,2,α(Om) and (Fn)n∈N ⊆ C1,α(R1+d),

it turns out that Fn(φn, ϕn) ∈ C0,1,α(Om) and since the coefficients of L are
continuously differentiable then un ∈ C1,3,α

Loc (Om) for all n by [29, Thm. 3.5.11 and
Cor. 3.5.1].

Remark B.2: Thanks to [8, Thm. 2.6.5 and Rem. 2.6.4] the bound (B.5) can be
replaced by

‖ûn‖W 1,2,p(Om) ≤ K‖F (φ,∇ϕ)− Fn(φn,∇ϕn)‖Lp(Om), p ∈ (1,∞).

Hence, stability of solutions of (B.3) also holds in the space W 1,2,p(Om), i.e.,
limn un = u in W 1,2,p(Om). �

B.4 Maximum Principle

The maximum principle is a well-known result in the theory of PDE. We
give an alternative proof of the maximum principle by a probabilistic argument.
Consider the second-order differential operator L defined as

(Lϕ)(x) =
1

2
tr(a(x)D2ϕ(x)) + 〈b(x),∇ϕ(x)〉

for any ϕ ∈ C2(Rd).

Lemma B.3 (Maximum Principle) Let ϕ ∈ C1,2,α(O) for some O ⊆ Rd+1
0,T . Let
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(t, x) ∈ O be an internal point of (local) maximum for ϕ. Then

∂tϕ(t, x) + Lϕ(t, x) ≤ 0

where L is a second order differential operator locally elliptic (see (3.10)) defined
as above.

Proof. Let (t, x) be an internal of (local) maximum. There exists a δ > 0 with
t + δ ≤ T , and a Bδ(t, x) := {(s, y) ∈ [t, t + δ) × Rd : |x − y|d < δ} such that
ϕ(t, x) ≥ ϕ(s, y) for all (s, y) ∈ Bδ(t, x). Since the matrix a(x) is locally elliptic, it
is uniformly elliptic in a neighbourhood of (t, x) and thus it is positive-definite. It
means that we can decompose a(x) = σ(x)σ>(x) for some σ ∈ Rd×d (see [55, page
558]); this σ is not necessarily unique, but it would be if we required symmetry of
it. We can now consider the stochastic process

dXs = b(Xs)ds+ σ(Xs)dWs, for s ∈ [0,∞),

X0 =x,

where (Ws)s∈[0,∞) is a d-dimensional Brownian motion. Let τδ the first exit time of
the process Xs from the ball Bδ(x) := {y ∈ Rd : |x− y|d < δ}. By an application
of Dynkin’s formula, justified by the boundedness of the spatial derivatives of ϕ,
we have

Ex
[
ϕ(t+ τδ, Xτδ)

]
= ϕ(t, x) + Ex

[ ∫ τδ

0

(∂t + L)ϕ(t+ s,Xs) ds

]
.

The functions attains a maximum in (t, x), thus the left-hand side above is less or
equal than the first term on the right-hand side above and we get

Ex

[ ∫ τδ

0

(∂t + L)ϕ(t+ s,Xs) ds
]
≤ 0.

Dividing by δ and passing to the limit as δ ↓ 0, we are allow to pass the limit
under expectation by dominated convergence theorem. Thus, we have

(∂t + L)ϕ(t, x) ≤ 0,

and the lemma is proved.
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B.5 Convergence of the Sequence (tλnk, x
λ
nk

)k∈N in Proposition

3.17

Here we prove that (t̃, x̃) ∈ arg maxOm v
λ. Arguing by contradiction let us

assume (t̃, x̃) /∈ arg maxOm v
λ. Then there exists a ε > 0 such that vλ(t̃, x̃) ≤

maxOm v
λ− ε and so there exists a neighbourhood Uε of (t̃, x̃) such that vλ(t, x) ≤

maxOm v
λ − ε

2
for all (t, x) ∈ U ε. For all sufficiently large k’s we also have

(tλnk , x
λ
nk

) ∈ Uε and by uniform convergence

|vλ,nk − vλ|(t, x) ≤ ε

4
, for (t, x) ∈ Om. (B.6)

Hence

max
(t,x)∈Om

vλ,nk(t, x) = vλ,nk(tλnk , x
λ
nk

)

≤ vλ(tλnk , x
λ
nk

) +
ε

4
(B.7)

≤ max
(t,x)∈Om

vλ(t, x)− ε

4
,

where the first equality is by definition of (tλnk , x
λ
nk

), the first inequality by (B.6)
and the final inequality follows by (tλnk , x

λ
nk

) ∈ U ε.
With no loss of generality we can assume vλ and vλ,n be positive. Otherwise

we apply our argument to ṽλ = vλ −minOm v
λ + 1 and the associated sequence

ṽλ,n = vλ,n −minOm v
λ + 1. By triangular inequality and positivity of vλ and vλ,n

we have

max
Om
|vλ − vλ,nk | ≥ max

Om
|vλ| −max

Om
|vλ,nk | = max

Om
vλ −max

Om
vλ,nk ≥ ε

4
,

for all k’s sufficiently large, where the inequality is due to (B.7). This contradicts
uniform convergence and therefore (t̃, x̃) ∈ arg maxOm v

λ as claimed.

B.6 Existence of Xε in the proof of Theorem 3.33

Form ∈ N let (bm, σm) be functions Rd → Rd×Rd×d′ that are equal to (b, σ) on
Bm and extend continuously to be constant on Rd\Bm. Similarly, αm : Rd+1

0,T → Rd
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is defined as

αm(t, x) = −2ψ′ε
(
|∇uε(t, x)|2d − f 2(t, x)

)
∇uε(t, x), on Bm,

and extended continuously to be constant on Rd \ Bm. Since uε ∈ C0,1,α
`oc (Rd+1

0,T ),
then thanks to [65, Thm. 1] there exists a unique strong solution of

Xm
s = x+

∫ s

0

(
bm(Xm

u ) + αm(t+ u,Xm
u )
)
du+

∫ s

0

σm(Xm
u )dWu, s ∈ [0, T − t].

Notice that Xm = Xm;t depends on t via the time-inhomogeneous drift αm but
we omit it for simplicity. Notice also that here we should understand nms ν̇ms =

αm(t+ s,Xm
s ) and Xm = Xm;[nm,νm]. Letting ζm,k = inf{s ≥ 0 : |Xm

s |d ≥ k}, for
any m ≥ k we have Xm

s∧ζm,k = Xk
s∧ζk,k for all s ∈ [0, T − t], Px-a.s. (i.e., the two

processes are indistinguishable). Thus, setting Xε
s (ω) := Xk

s (ω) for s < ζk,k(ω)

and denoting τk = inf{s ≥ 0 : |Xε
s |d ≥ k} it is clear that, by uniqueness of strong

solutions and the definition of the pair (nε, νε), the process Xε satisfies

Xε
s∧τk = x+

∫ s∧τk

0

(
b(Xε

u) + nεuν̇
ε
u

)
du+

∫ s∧τk

0

σ(Xε
u)dWu, s ∈ [0, T − t].

By continuity of paths τk ≤ τk+1 and τ∞ := limk→∞ τk is well-defined. Moreover,
νε satisfies the same bound as in (3.102) thanks to (3.126). Therefore, linear
growth of the coefficients of the SDE and the same arguments as those at the
end of the proof of Proposition 3.25 imply that Px(τ∞ ≤ T − t) = 0. Then Xε is
well-defined on [0, T − t].

B.7 Shaefer’s fixed point theorem

Theorem B.4 (Thm. 9.2.4 in [25]) Suppose T : D → D is a continuous and
compact mapping on a Banach space D. Assume further that the set

{f ∈ D | f = ρT [f ] for some ρ ∈ [0, 1]}

is bounded. Then T has a fixed point.
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C Chapter 4

In this section, we give the auxiliary results for Chapter 4, i.e., an estimate on
the fist moment of the local time process.

C.1 Upper bound for the Local Time

We give below an extension of the result in [20, Lemma 5.1]

Lemma C.1 Let X be a real valued càdl‘ag semimartingale with jumps of bounded
variation and starting from x, let L0

t (X) be its local time at 0 in the time-interval
[0, t]. Then, for any ε ∈ (0, 1) we have

Ex[L
0
t (X)] ≤ 4ε− 2Ex

[ ∫ t

0

(
1{Xs∈[0,ε)} + 1{Xs≥ε}e

1−Xs
ε

)
dXc

s

]
+

1

ε
Ex
[ ∫ t

0

1{Xs>ε}e
1−Xs

ε d〈X〉cs
]

+ Ex
[ ∑

0<s≤t

|∆Xs|
]

where Xc
s and 〈X〉cs are the continuous parts of X and of the quadratic variation

of X, respectively, and ∆Xs := Xs −Xs−.

Proof. For ε ∈ (0, 1) and y ∈ R we define

gε(y) = 0 · 1{y<0} + y1{0≤y<ε} + ε
(
2− e1− y

ε

)
1{y≥ε}.

Following the idea from [20, Lemma 5.1] we have that gε ∈ C1(R \ {0}), it is
semi-concave, i.e., y 7→ gε(y)− y2 is concave. Moreover, gε is such that

0 ≤ gε(y) ≤ 2ε, for y ∈ R;

g′ε(y) = 1{0≤y≤ε} + e1− y
ε1{y≥ε}, for y ∈ R;

g′′ε (y) = 0, for y ∈ (−∞, 0) ∪ (0, ε);

g′′ε (y) = −ε−1e1− y
ε , for y > ε.
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Applying [57, Thm. IV.70 and Cor. IV.70.1] to gε(Xt) we get

gε(Xt)− gε(X0) =

∫ t

0

g′ε(Xs−) dXc
s +

1

2

∫ t

0

g′′ε (Xs)1{Xs 6=0}∩{Xs 6=ε} d〈X〉cs

+ L0
t (X) +

∑
0<s≤t

gε(Xs)− gε(Xs−).

Rearranging terms and multiplying by 2, using |gε(Xs)− gε(Xs−)| ≤ |Xs−Xs−| =
|∆Xs| by Lipschitz property of gε and that X has jumps of finite variation, we get

L0
t (X) ≤ 4ε− 2

∫ t

0

g′ε(Xs−) dXc
s −

∫ t

0

g′′ε (Xs)1{Xs 6=0}∩{Xs 6=ε} d〈X〉cs + 2
∑

0<s≤t

|∆Xs|

Using the properties of gε listed above (see also [20, Lemma 5.1]) and applying
expectation we get the result.
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