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Abstract

While 21st-century society is shifting towards eco-friendly infrastructures, the main

interest of the automotive industry has been transferring to electric vehicles. This

transformation is dependent on the development of reliable battery management sys-

tems (BMSs). A BMS in electric cars provides vital information about the battery

states including the state of charge (SoC). Optimal and robust SoC estimation algo-

rithms to deploy with minimal effort are vital for the future electric car industry.

The equivalent circuit model (ECM) based SoC estimation algorithms are widely used

in practice. These algorithms suffer from two dominant error sources, i.e., inaccurate

SoC-OCV relationship and input current measurement noise. In the ECM-based SoC

estimation, these error sources have not been fully mitigated. Firstly, we present a

novel technique to construct the SoC-OCV relation, which is eventually converted to a

single parameter estimation problem. The Kalman filter is implemented to estimate the

SoC and the related battery states using the proposed parameter estimation and the

SoC-OCV construction technique. Secondly, we develop a novel technique to mitigate

the error in the current input measurement. The error is calculated based on difference

between the calculated output and the measured output. Correcting the current input

measurement significantly reduces the SoC estimation error.

We validate the proposed algorithms through computer simulations and battery ex-

periments. The numerical simulations and the battery experiment demonstrate that

the SoC-OCV relationship is accurately constructed in real-time. The SoC estimation

error remains below 2% in numerical simulations whereas the SoC estimation error

remains within 2.5% in the battery experiment. The current noise mitigation algo-

rithm reduces the SoC error from 11.3% to 0.56% in the numerical simulations. In the

battery experiment, the SoC error is reduced from 1.74% to 1.12%.
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Chapter 1

Introduction

1.1 Introduction

In the last few years, there has been a significant technology conversion in the au-

tomotive industry towards electric vehicles (EVs) (Macioszek 2020). The number of

EV owners has increased rapidly during the last decade and the global EV stock has

surpassed 10 million in 2020 (Shi et al. 2022). There were 3.125 million EVs sold in

2020, which is equal to 4% of the total annual vehicle sales (Shijian Zhang et al. 2022).

Although there is a 14% monotonous decreasing trend in the annual number of vehicles

sold, the EV sales went up 41% against this trend in 2020 (Shijian Zhang et al. 2022).

This trend is expected to keep increasing in the upcoming decades depending on the

development of EVs’ performance.

The EV’s performance is very much dependent on the development of battery technolo-

gies and battery management systems (BMSs). In the last few decades, new battery

technologies have been introduced, which has contributed to the expansion of the EV

sector. Using batteries in EVs brings a challenge in making the driver comfortable

about the EV in terms of range anxiety, safety, maintenance cost, and reliability. This

challenge can be significantly overcome by developing efficient BMSs.

Considering batteries are a vital component of an EV powertrain, it requires accurate

control and monitoring in real-time. In EVs, this requirement is fulfilled via a BMS.

This is an electronic system designed to manage a rechargeable battery. This could be

a single battery cell or a battery pack consisting of multiple battery cells depending

1
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upon the application (Pastor-Fernández et al. 2016). One of its functions is to monitor

the battery states using the observed data to ensure the battery or the battery pack

operates safely and efficiently. A BMS provides the estimation of important parameters

including the state of charge (SoC).

Existing EVs have a significantly lower driving range when compared to traditional

internal combustion engine-based vehicles. Another concern regarding EVs is to mis-

calculate the remaining power, leaving passengers stranded. These are due to the lack

of an efficient BMS that can accurately estimate the remaining power of a battery.

Recent developments in the automotive industry have increased the need for more effi-

cient BMSs (Hu et al. 2021). Providing the driver with a piece of reliable information

regarding the available driving range is one of the several challenges in EVs. The SoC

is a key parameter to ensure the driving range and remaining power are reliable. Thus,

accurate information on the SoC is vital for EVs. The SoC cannot be directly mea-

sured by sensors, however, it could be estimated based on the observed data with a

suitable method. Thus, the development of an accurate battery SoC estimation is one

of the hot topics. The development of the real-time SoC estimation algorithm requires

several steps to be addressed. Figure 1.1 shows these steps.

Figure 1.1: Overview of the real-time SoC estimation algorithm

The SoC is defined as the ratio of the remaining capacity to the maximum capacity

given by the battery manufacturer (Cui et al. 2022).

z =
Qr

Qmax
(1.1)

2
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where z represents the SoC, Qr is the remaining capacity and Qmax is the maximum

capacity. There are various methods to calculate the SoC. Each one of these methods

has its advantages and disadvantages subject to the application, required precision,

type of battery, and computational availability. In general, these methods can be

classified according to whether the battery model is used or not. If the SoC is estimated

based on a battery model, it is called the model-based estimation method. Otherwise,

it is called the model-free estimation method.

One of the most common model-free estimation methods is the Coulomb counting

(CC) method. It is a very simple method that relies on the measurement of the load

current and the initial estimation of the SoC (Ko et al. 2022).

z(t) = z(t0)−
∫ t

t0

Ĩdt

Qmax
(1.2)

where z(t0) is the initial SoC, Ĩ is the measured load current, Qmax is the maximum

battery capacity. In the CC method, even when z(t0) is known accurately and the

current measurement sensor has very high precision, the CC method continues inte-

grating the noises. Eventually, this method provides an inaccurate SoC estimation,

which generates a lack of reliability in the CC method.

Another model-free estimation method is the open circuit voltage (OCV) measurement

method. This method correlates the OCV of the battery with the SoC through a look-

up table that is predefined by a battery drop-test experiment. It is not applicable

in practice because the OCV can only be measured when the battery reaches the

equilibrium state which may take up to a few hours depending on the battery type

(M. Hannan et al. 2017).

On the other hand, model-based methods adopt a battery model. The two most

common battery models are electrochemical models and empirical models which are

usually in the form of equivalent circuit models (ECMs). These methods firstly predict

the SoC based on the battery model and Ĩ. Then, the predicted SoC is corrected based

on the measured terminal voltage Ṽt that is the measured voltage difference between

the battery poles. This feedback loop makes model-based methods more reliable by

considering the modelling inaccuracies, the system noise, and the measurement noise.

Electrochemical battery modelling utilises electrochemical kinetics and transport phe-

3
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nomena. Therefore, these models include several coupled differential equations to

describe the chemical reactions taking place in the battery (Doyle et al. 1993). The

pseudo-two-dimensional (P2D) and the single-particle model (SPM) are the most com-

mon electrochemical battery models (Hashemzadeh et al. 2022). The P2D model is

a physics-based model that represents the electrochemical reactions, mass transport,

and thermodynamics inside a lithium-ion battery (Newman et al. 2004). The SPM has

been introduced to reduce the modelling complexity of the P2D model (Baba et al.

2014). Although the SPM is the simplified version of the P2D model, the challenges of

the solution of the differential equations and parametric uncertainties remain. These

models are not preferred in practice due to their modelling complexity but they are

commonly used for the optimisation of battery designs in laboratories.

ECMs are usually adopted to reflect the battery behaviour in the context of a larger

system. ECMs describe the response of the battery to different usage scenarios. These

models are extensively used in EV applications due to their easy implementation in

real-time applications (X. Liu et al. 2020). There are various kinds of ECM and they

all have at least a voltage source, an internal resistor (ohmic resistor), and a load or

a source. They are named according to other circuit elements utilised in the ECM.

For example, the ECM that has a serially connected internal resistor and parallel

resistor-capacitor (RC) branch is called the first-order Thevenin model. If there are

two RC branches are connected serially to the ohmic resistor, these models are called

the second-order Thevenin model. To estimate the SoC, ECMs are used with optimal

state estimation algorithms (H. He et al. 2011), (R. Xiong et al. 2013), and (X. Wu

et al. 2018).

Using a battery model requires the identification of the battery model parameters to

prepare the state estimation algorithm to be executed. Compared to the electrochem-

ical models, ECMs have a smaller number of parameters to be tuned. The battery

parameters vary according to the operational conditions and battery aging in real-time

applications. Therefore, the calculation of the model parameters is challenging. There

are two main methods to calculate the model parameters: an offline method and an

online method. The offline method is a battery experiment. Therefore, the model

parameters acquired through the battery experiment are constant during the battery

operation. Moreover, these identified parameters are only accurate under the condi-

4
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tions of the battery experiment (Tang et al. 2011). Thus, using the offline method to

identify the model parameters leads to an erroneous SoC estimation in EV applica-

tions. On the other hand, the online parameter identification method tunes the battery

parameters according to the operational conditions and battery aging. Therefore, it is

more appropriate to use in practice (Partovibakhsh et al. 2015), (X. Liu et al. 2020),

and (Q. Ouyang et al. 2020).

ECM-based SoC estimation algorithms firstly estimate the OCV of the battery accord-

ing to the previously identified model parameters (C. Zhang et al. 2015). They then

convert the estimated OCV into the SoC by using a nonlinear OCV-SoC relationship.

Therefore, the nonlinear relationship between the OCV and the SoC must be previ-

ously identified. Similar to the parameter estimation, the SoC-OCV relation could be

obtained through a battery experiment. However, this relation is unique for a specific

battery used during the battery test and cannot apply to different batteries and con-

ditions. Moreover, Jokić et al. 2018, Aung et al. 2015, and Shehab El Din et al. 2018

showed that the relationship is vulnerable to a change in operational conditions and

battery ageing. The inaccurate SoC-OCV relationship reduces the accuracy of SoC

estimation. Therefore, an online method is required to calculate the SoC-OCV char-

acteristic during the battery operation. This leads to more reliable SoC estimations

as well as an increase in the trust in EVs.

The SoC is estimated using two measurable signals in batteries: the terminal voltage

and the load current. The measurement noises in these signals are inevitable. The

input signal in the SoC estimation problem is the measured current input. Zheng et

al. 2018 showed that the current measurement is corrupted by the current bias (also

known as current drift noise) and the white noise. The corrupted current measurement

reduces the accuracy of the SoC estimation, which causes overcharging/discharging

of the battery in real-time applications. The majority of available SoC estimation

algorithms do not consider the noisy current input measurement. The development of

a more realistic SoC estimation algorithm taking into account the impact of the noisy

input current remains challenging.

The standard Kalman filter (KF) has been widely used in SoC estimation due to its

simplicity and powerful estimation ability. The KF can only provide a good estimation

when the input signal is noiseless (Ma et al. 2019). However, the input measurement

5
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is also corrupted by a sensor noise in batteries. Therefore, the standard KF-based SoC

estimation algorithms provide unreliable estimation results. Different dynamic loading

profiles are used to assess the performance of the SoC estimation algorithms used in

EVs. The dynamic stress test (DST) profile and hybrid pulse power characterisation

(HPPC) profile are commonly used for this purpose Rui Xiong, J. Huang, et al. 2022a.

These profiles along with constant discharge and sinusoidal discharge profiles are used

to assess the performance of the algorithms proposed in this research.

In conclusion, the popularity of EVs is on an increasing trend. This increase brings

some challenges to be addressed in the development of more reliable EVs. The SoC es-

timation is one of the most important tasks to be fulfilled by a BMS in EVs. Therefore,

developing an SoC estimation algorithm is a popular research topic in the development

of EVs. The SoC estimation methods have several steps including battery modelling,

model parameter identification, and the SoC-OCV relationship calculation. Further-

more, there are error sources that reduce the accuracy of the SoC estimation. These

error sources need to be mitigated to develop more realistic SoC estimation algorithms.

In this research, we clarified the gaps in the available SoC estimation methods found

in the literature and provided our novel methods to contribute to the literature.

1.2 Research questions

Rechargeable batteries are being more common as a primary power source in practical

applications. This presents technical challenges to be addressed. One of the challenges

is the robust real-time estimation of the SoC. Thus, this research answers the following

points:

1. Real-time calculation of the battery model parameters and their impact on the

SoC estimation accuracy, as well as the implementation steps of an online pa-

rameter identification technique.

2. Real-time construction of the SoC-OCV nonlinear relationship for ECM-based

SoC estimation algorithms based on the battery boundary conditions (cut-off

voltages) and current sensor measurement.

3. Mitigation of the SoC estimation error due to the corrupted current measurement

by developing a more realistic current sensor measurement model and modifica-
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tion of the standard KF based on the proposed current sensor model.

1.3 Aim and objectives

The objective of this research is to develop a real-time KF-based SoC estimation algo-

rithm for rechargeable batteries based on an adaptive SoC-OCV model to environmen-

tal changes. Further, a new current measurement sensor model is to be derived and an

engineering framework is proposed to mitigate the error source due to the corrupted

current measurement in the SoC estimation problem. Finally, the results are compared

to state-of-the-art SOC estimators in the literature.

1.4 Contributions and organisation of this thesis

This work is based on the optimal adaptive estimation theory and the objectives includ-

ing the development of the methodologies for the real-time SoC estimation algorithm.

Firstly, the adaptive law-based parameter estimation method is used to calculate the

model parameters. Secondly, a novel method to construct the nonlinear SoC-OCV

relationship in real-time is proposed and the SoC is estimated using the EKF. Finally,

the effect of current measurement bias on the accuracy of the SoC estimation is inves-

tigated. A mitigation method is proposed to eliminate the error in the SoC estimation

due to the current input measurement bias. Research gaps in the SoC estimation prob-

lem are addressed to provide a more realistic SoC estimation algorithm for real-time

applications. The contributions are as follows:

1. Adaptive law based battery model parameter identification to guarantee the

convergence of the parameter estimation

2. A novel real-time OCV-SoC nonlinear curve construction based on the boundary

conditions and measurements

3. A novel method to correct the current input measurement by calculating the

current input bias noise in real-time

4. Modification of the standard KF considering the white noise and the current

measurement bias to increase the accuracy in the SoC estimation

The organisation of the thesis is as follows:
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Chapter 2 covers the work has been done in the literature.

Chapter 3 introduces the battery model and the online parameter identification method

based on the adaptive law.

Chapter 4 develops a new methodology for the SoC-OCV curve construction in real-

time.

Chapter 5 introduces a mitigation method for the noisy current input measurement

for batteries.

Chapter 6 shows the conclusion and the future work.
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Chapter 2

Literature review

This chapter firstly introduces the review of the battery modelling techniques and the

battery model parameter identification techniques found in the literature. Secondly,

the state of the art of SoC estimation algorithms and the construction techniques for

the nonlinear SoC-OCV relationship and its behaviour depending on the operational

conditions and battery ageing are reviewed. Finally, the literature review on the impact

of the noisy current input on the SoC estimation error is undertaken.

2.1 Battery modelling

Battery modelling is significant in predicting battery behaviour to ensure the safe

and efficient operation of the battery. The model is used to estimate the battery

states including the SoC, which is vital to avoid abnormal operations. Modelling the

battery is the starting point to develop an efficient BMS. Numerous battery modelling

techniques have been introduced in the literature with different complexities. These

techniques can be useful in different application areas. According to the physical

interpretation, Seaman et al. 2014 fundamentally separated the battery models into

two groups: electrochemical models and ECMs.

2.1.1 Modelling strategies

A wide variety of battery models are adopted to interpret the battery dynamical be-

haviour in the BMS design of EVs. Complicated battery models are unsuitable to

implement in real-time applications; besides very simple battery models cannot pre-
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Chapter 2. Literature review 2.1. Battery modelling

cisely replicate the battery’s dynamic behaviour under different operational conditions.

Hence, modelling the battery is of great importance without compromising model ac-

curacy and ease of implementation. There are three sub-steps in battery modelling:

battery model selection, model parameter identification, and model performance vali-

dation. The primary stage of battery modelling is the selection of the battery model.

In this chapter, two fundamental battery models are introduced and discussed with

their advantages and disadvantages.

2.1.2 Electrochemical modelling of a battery

Yonghuang Ye et al. 2012 summarised the discharge process of Lithium-ion (Li-ion)

batteries as follows: electrons (e−) move from the negative electrode (cathode) to

the positive electrode (anode) via the external circuit. This consequently causes an

electrical potential difference between the anode and the cathode. On the other hand,

the Li-ions move from the anode to the cathode through the electrolyte. This is to

make the sum of the negative electric charges on Li-ions equal to the sum of the positive

electric charges on Li-ions. This process is reversed by applying an external source to

the battery, which is called the charging process. The battery models built based

on the theoretical aspect of this electrochemical process are called electrochemical

battery models. There are two common types of electrochemical battery models: the

P2D model and the SPM.

Pseudo two-dimensional model

Doyle et al. 1993 developed the original P2D electrochemical model. The evolution of

Li-ions concentration in the two electrodes is shown in Figure 2.1 where LixC6 is the

lithiated carbon, Li1-xMO2 is the lithium metal oxide, Li+ represents the Li-ions, c−ss

and c+ss are the concentration at particle surface in cathode and anode, respectively. c−s

and c+s are Li concentration in the cathode solid and the anode solid, respectively. ce

is the Li concentration in the electrolyte. L− and L+ are the thickness of the cathode

and anode electrodes, respectively.

Electrochemical modelling describes the battery chemistry that relies on electrochem-

ical reactions occurring in the electrodes and the electrolyte. These chemical reactions

are depicted by using a set of coupled partial differential equations (PDEs). Doyle

10



Chapter 2. Literature review 2.1. Battery modelling

et al. 1993 modelled the galvanostatic charge and discharge behaviour of a lithium

anode/solid polymer separator/insertion cathode cell based on a concentrated solution

theory. It is concluded that the model is generic enough to consider a large range of

polymeric separator materials, composite insertion materials, and lithium salts. The

solution of this model requires powerful computational tools and theoretical knowledge

of computational fluid dynamics (Tamilselvi et al. 2021).

Figure 2.1: Electrochemical model by (Doyle et al. 1993)

Single particle model

Atlung et al. 1979 introduced the SPM as shown in Figure 2.2 where V (t) is the voltage

and I(t) is the current. R−
s and R+

s represent the particle radius in the cathode and

anode, respectively. The SPM assumes that electrodes are formed by identical size

spherical particles. Guo et al. 2011 highlighted the main simplification compared to

the P2D model as follows: the SPM does not consider the electrolyte dynamics and

thus assumes a constant reaction rate for each electrode. The SPM is relatively simple

compared to the P2D battery model but it is also not common due to its availability

for only low current densities (Guo et al. 2011).

To sum up, electrochemical models are very complicated battery models including

several coupled PDEs. Therefore, their onsite applications are restricted. These two

models are generally used for the optimisation of the battery design in laboratories

(Corno et al. 2015).
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Figure 2.2: Single particle model by (Park et al. 2017)

2.1.3 Equivalent Circuit-based models

In contrast with electrochemical battery modelling, ECMs are widely employed in

practice (Rui Xiong, J. Huang, et al. 2022b). These models use electrical circuit

elements to reflect the charging and discharging behaviour of batteries. They remove

the difficulty of understanding the details of the electrochemical reactions taking place

inside a battery. In addition to that, it only requires fewer model parameters to be

identified for the state estimation. Therefore, complicated mathematical and numerical

calculations are avoided, which leads to a fast calculation of results.

ECM describes the battery’s voltage-current characteristic that appears very simple.

They also relate the battery’s OCV to the SoC with a nonlinear relationship shown in

Figure 2.3. Designing an accurate ECM provides a practical way to estimate the SoC

with relatively less effort compared to the electrochemical model-based techniques. A

generic ECM includes three major parts (Yann Liaw et al. 2004): a static part that

represents the battery’s thermodynamic properties such as the battery capacity and the

OCV, a dynamic part that represents the battery’s internal impedance behaviour, and

a source or a load is the third part to complete the circuit for charging/discharging

regimes. There is various kind of ECMs to be discussed with their advantages and
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Figure 2.3: Typical relationship between the SoC and the OCV

disadvantages.

The battery model which is defined by the OCV is the simplest battery modelling

found in the literature and it is given as follows (Tamilselvi et al. 2021):

Vt(t) = Voc (2.1)

where Vt is the terminal voltage and Voc is the OCV, which is a function of the SoC.

The SoC is 100% when the battery is fully charged and the SoC is 0% when the battery

is fully discharged.

Rint battery model

Johnson 2002 described the Rint model as the internal resistance model shown in Figure

2.4. It has an ideal voltage source to describe the battery’s OCV (Voc). Additionally,

it has an internal resistor (R0) which is serially connected to Voc. Voc is assumed to

be equal to the terminal voltage (Vt) in the equilibrium state when the battery is not

loaded. I is the charge/discharge current.

The measurement equation of the Rint model is expressed as follows:

Vt(t) = Voc(z)− I(t)R0 (2.2)

13



Chapter 2. Literature review 2.1. Battery modelling

Figure 2.4: Rint battery model

where z represents the SoC.

z(t) = z(t0)−
∫ t

t0

I(t)dt

Qmax
(2.3)

where Qmax is the battery capacity. The Rint battery model is not an accurate battery

model because the load transfer polarisation and diffusion polarisation are ignored.

Therefore, it is not a preferred battery model for the SoC estimation problem.

Resistor-capacitor battery model

X. Zhang et al. 2016 described the RC battery model consisting of two capacitors

(Cs, Ce) and three resistors (Rt, Re, Rs) as shown in Figure 2.5. The capacitor Cs has

a small capacitance compared to Ce. Cs represents the surface capacity of the battery,

therefore it is also called a surface capacitor. The capacitor Ce is the bulk capacitor,

which represents the electric-charge-storage capability of the battery. Rs, Rt, and Re

are the surface resistance, the terminal resistance, and the end resistance, respectively.

The state-space representation of the RC battery model is as follows:

Figure 2.5: RC battery model (Hongwen et al. 2011)
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V̇ce
V̇cs

 =

−
1

(Rs +Re)Ce

1

(Rs +Re)Ce
1

(Rs +Re)Cs
− 1

(Rs +Re)Cs


Vce
Vcs

+


Rs

(Rs +Re)Ce
Re
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 I (2.4)

and Vt is given by

Vt =

[
Rs

Re+Rs

Re
Re+Rs

]Vce
Vcs

+

(
ReRs

Re +Rs
+Rt

)
I (2.5)

where Vce and Vcs are the voltages across the capacitor Ce and Cs, respectively. I is the

terminal current flowing between the battery terminals and Vt is the terminal voltage.

In this model, Vce and Vcs are the system states, I is the measured input and Vt is the

measured output. This battery model is used to describe the dynamics of the lead acid

battery by Loukil et al. 2017. Having five model parameters to be identified restricts

its use in practice. Moreover, it does not have an ideal voltage source that remains its

voltage output without depending on the current drawn from the battery. This makes

building the relationship between the SoC and the OCV impossible. Therefore, it is

not commonly used in practice.

Thevenin battery model

Ding et al. 2019 describe the Thevenin model. It connects the RC pair to the Rint

model in series as shown in Figure 2.6. Compared to the Rint model, it takes into

account the load transfer polarisation and diffusion polarisation. It consists of three

parts; the OCV as a static part, the internal resistance and the RC pair as a dynamic

part, and the load. R0 is the internal resistance similar to the Rint model. Rp is

commonly called the polarisation resistance which is the resistance between the plate

and electrolyte. Cp is the equivalent capacitance of the electrode plate, which describes

the transient response of the battery for charging and discharging processes. Vt is

the terminal voltage. The Thevenin model dynamic characteristic is defined by the

following equations:

Vt = Voc − IR0 − Vp (2.6a)

V̇p = − Vp
RpCp

+
I

Cp
(2.6b)

Thevenin ECMs could have more than one RC branch. If the number of the RC pair is
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Figure 2.6: Thevenin battery model

n, the model is called nth order Thevenin model. Hong et al. 2022 performed a battery

modelling validation test for the first order Thevenin ECM. The results indicated that

the ECM achieved a 95% accuracy in representing the actual battery. In consequence

of its comparable simplicity and capability to fulfil the basic requirements of batteries,

it has been extensively adopted in BMSs in practice (Gholizadeh et al. 2014).

PNGV battery model

Xiangyong Liu et al. 2018 explained the PNGV battery model shown in Figure 2.7. It

is achieved by adding a capacitor C0 to the Thevenin model in series. The capacitor

describes the change in the OCV generated in time due to the accumulation of the

load current.

Figure 2.7: PNGV battery model

The integral change of the Voc is described by using a large capacitance, which describes

the relationship between the Voc and the battery capacity.

V̇c0
V̇cp

 =

0 0

0 − 1
RpCp


Vc0
Vcp

+

 1
C0

1
Cp

 I (2.7a)

Vt =

[
1 1

]Vc0
Vcp

+R0I + Voc (2.7b)
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The battery capacity degradation happens in a long term. Therefore, its simultaneous

calculation with the battery states increases the computational cost. Thus, this battery

model is not commonly used in the SoC estimation.

Compared to electrochemical battery models having several partially differential equa-

tions to mimic the battery dynamics, ECMs use relatively simple equations based on

the circuit theory. Moreover, ECMs have fewer parameters to be calculated. Therefore,

ECMs significantly reduce the computational cost in practical applications. Consid-

ering all the advantages and disadvantages of the aforementioned battery models, the

first-order Thevenin model is a good candidate for battery modelling (J. Kim et al.

2012).

2.2 Battery estimation

The first step in the battery SoC estimation is to calculate the model parameters.

The SoC is then estimated based on the calculated model parameters. Thus, this

section first undertakes the literature review regarding the battery model parameter

calculation. After that, different SoC estimation techniques are introduced with SoC-

OCV curve construction techniques.

2.2.1 Parameter identification

Adopting a battery model requires the identification of the battery model parame-

ters. These parameters must be identified before the execution of the SoC estimation

algorithm. There are two main methods found in the literature for parameter identifi-

cation. The first one is the offline method (Barsali et al. 2002). This method includes

a battery experiment under a pulse input. The essential disadvantage of this method

is that the calculated model parameters remain constant during the battery operation.

However, these parameters vary with the operational conditions and battery ageing.

Furthermore, identical batteries may have different model parameter values. For ex-

ample, Barcellona et al. 2022 showed the different internal resistances for different

temperatures, SoC levels and battery ageing in Figure 2.8, where Rs represents the

internal resistance. The internal resistance decreases exponentially as the temperature

increases. The battery’s internal resistance is greater in higher SoC regions. It is also

observed that the internal resistance increases as the battery ages. This is due to the
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Figure 2.8: Ohmic resistance variations for different SoC levels, temperatures and
battery ageing (Barcellona et al. 2022)

increase in the residual products of the electrochemical reactions taking place inside

the battery. Thus, the battery model parameters need to be updated during the bat-

tery operation to capture these variations. The second method is the online method

(Tran et al. 2017). In online parameter identification, the parameters are updated at

each calculation step. Hence, variations in the model parameters are considered as the

operational conditions change and the battery ages.

Reliable parameter identification methods play an important role in the accuracy of

the SoC estimation. Different model identification algorithms are proposed in the

literature. Xia et al. 2017 estimated the battery model parameters based on a forget-

ting factor recursive least squares (FFRLS), Yu et al. 2017 utilised H-infinity filter,

Li et al. 2020 used the RLS algorithm, and Fang et al. 2021 proposed an adaptive

genetic algorithm (AGA). Zhao et al. 2020 and Gao et al. 2017 estimated the first

order Thevenin ECM parameters using the FFRLS algorithm. The voltage difference

between Vt and Voc is firstly written in the linear parametric model (LPM) form. Then

the FFRLS algorithm is used to solve the voltage difference equation. Partovibakhsh

et al. 2015 used the FFRLS method to estimate the parameters of the RC battery

model. Adaikkappan et al. 2022 showed that the FFRLS method is used to estimate

the model parameters of various types of battery models. Hicham Chaoui et al. 2015

adopted the adaptive strategy for the model parameter estimation.

In real-time applications, the FFRLS and the RLS algorithms are commonly used
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in the parameter identification of the battery models. FFRLS method reduces the

effect of the old data on the current estimate so that the bias due to the old data is

significantly removed from the current estimates. In comparison with the RLS, the

FFRLS improves the convergence speed. AGA is a popular method for the optimisation

of the model parameters, yet it is not applicable in real-time due to its iterative process.

The adaptive law guarantees the stability of the parameter convergence based on a

Lyapunov direct method (Hicham Chaoui et al. 2015). Furthermore, measurement

errors in the current input and voltage output cause identification biases. Zhu et al.

2020 showed that the RLS suffers from current and voltage measurement errors, which

leads to a bias in calculated parameters. To reduce the identification bias, the recursive

restricted total least squares method is introduced. In the model-based SoC estimation

methods, model parameter identification methods draw great attention because the

accuracy of the model parameters is the basis of the accurate SoC estimation.

Offline parameter identification

The offline method is based on laborious experimental work. These tests are usually

performed under HPPC cycles (H. Zhang et al. 2014). Figure 2.9 shows the dynamic

response of the first order Thevenin battery model to the HPPC discharge cycle. (D.

Deng et al. 2021) presents the following procedure:

• To identify the battery’s model parameters, the HPPC input cycle is applied to

a battery. Once the pulse input is injected/removed to/from the system, the

voltage jump/drop takes place due to R0. In Figure 2.10, the battery’s terminal

voltage changes suddenly from V1 to V2 and V3 to V4. The internal resistance

R0 mainly causes these sudden voltage changes. Therefore, it can be calculated

based on the average of the two voltage differences divided by the load current.

The expression to calculate R0 is given as follows:

R0 =
1

2
· (V1 − V2) + (V4 − V3)

I
(2.8)

• The relaxation periods of the battery can be seen in Figure 2.10, which take place

between V2-V3 and V4-V5. These periods are a zero input stage of the voltage. In

Figure 2.10, the terminal voltage drops slowly from V2 to V3. This is due to the
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Figure 2.9: HPPC discharge test

polarisation dynamic of the RC branch. The expression to calculate Rp is given

as follows:

Vt(t) = V2 − IRp

1− e
−
t

τ

 (2.9)

where V2 is the initial voltage when the relaxation period starts. The collected

data is curve-fitted to the expression given in (2.9). Once Rp and the battery’s

time constant τ are calculated, Cp can be calculated by diving τ by Rp.

• Let the battery rest for some time until it reaches the equilibrium state. The

measured battery voltage does not vary after the battery reaches the equilibrium

state. In this state, the potential difference between the positive and negative

poles of the battery can be considered to be the OCV. Therefore, V1 in Fig-

ure 2.10 is assumed to be approximately equal to the battery OCV under the

corresponding SOC value. The pair OCV and SoC data can be similarly col-

lected for different SoC regions. The nonlinear relationship is then constructed

by curve-fitting the appropriate model to the data.
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Figure 2.10: Magnified plot of Figure 2.9 iii)

Online parameter identification

Model parameter identification is a challenging task in the development of the real-time

SoC estimation algorithm. The model parameters varying under different conditions

have a significant effect on the SoC estimation. Thus, parameter estimation methods

are widely investigated in the literature. One of the most common parameter identifi-

cation methods is the RLS-based method. The performance of the RLS-based method

is increased by employing the forgetting factor (Ciochina et al. 2009). Hence, the ef-

fect of the old data on the parameter estimation is reduced. An alternative to the

RLS-based methods is the adaptive law-based parameter identification method. The

adaptive law-based parameter estimator firstly expresses the unknown parameters in a

parametric model. Secondly, the estimation model is built using the same parametric

model. The estimation error is then calculated using the estimated output and the

measured output. This error is used to derive the adaptive parameter estimator. Com-

pared to the RLS methods, the adaptive law-based parameter estimation algorithm

guarantees the convergence of the model parameters (Ioannou et al. 2006). Therefore,

it is commonly used to in the model parameter estimation of the adaptive systems

(Aburakhis et al. 2022), (Tao et al. 1995).
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The first-order Thevenin model is commonly used in real-time SoC estimation algo-

rithms. One of the reasons for its common use is that the online estimation of its model

parameters requires a small amount of a priori information (W. Zhang et al. 2022). Xia

et al. 2018, J. Wei et al. 2020, and Prashant et al. 2021 applied RLS to estimate the

model parameters of Thevenin based battery model. To apply the RLS, the battery

measurement equation must be converted into the LPM form given as follows:

yk = θTk ϕk (2.10)

where yk is the terminal voltage of the battery, θk is the parameter vector to be

calculated and ϕk is the observation matrix. W.-Y. Kim et al. 2019 and Shu et al.

2020 converted the measurement equation into the LPM form and then employed the

RLS method to estimate the 1st order Thevenin ECM parameters. They used the one-

step voltage difference equation to derive the LPM form. However, the performance

of the RLS method decreases with an increase in the number of similar or repetitive

data. Moreover, the effect of the old data needs to be reduced by using the forgetting

factor.

The online parameter identification can be used as an indicator regarding battery

ageing. For example, Topan et al. 2016 estimated the first order Thevenin ECM

parameters using the RLS method. It is explained that the change in the battery’s

internal resistance can be used as an indicator of the battery’s state of health. After

many charging/discharging cycles, an increase in the internal resistance is a sign of

battery ageing.

The performance of the parameter identification methods is not always satisfying.

Therefore, there are different approaches to improve the performance of the parameter

identification algorithms. For example, T. Ouyang et al. 2021 used the RLS method

to calculate the model parameters of the first order Thevenin battery model. They

highlighted the data saturation phenomenon in the RLS method. This phenomenon

is briefly explained as follows: the capability of the RLS method to reduce the error

in the parameter estimation decreases with an increase in the number of similar or

irregular samples. This problem was mitigated by introducing a variable forgetting

factor (VFF). This improved the performance of the RLS method by eliminating the
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effect of the old data. Ping et al. 2018 also used the forgetting factor RLS method to

improve the accuracy of the model parameter identification. The battery tests showed

that increasing the accuracy in the calculated model parameters decreases the error in

the SoC estimation. However, choosing the optimal forgetting factor is ambiguous.

The performance of the model parameter identification algorithms is attempted to in-

crease by separating the linearity of the battery model and the nonlinear characteristic

of the batteries. The model parameter estimation process is facilitated by combining

the linear ECM and the static nonlinear output block by Naseri et al. 2022. They intro-

Figure 2.11: Wiener configuration by Naseri et al. 2022

duced a new battery modelling to better capture the nonlinearities of Li-ion batteries.

The Wiener configuration shown in Figure 2.11 is utilised to enhance the nonlinear

mapping capacity of the linear ECM. This contributes to the decomposition of the

nonlinear input-output relationship into linear and nonlinear segments. The output

signal Vt is expressed as follows:

Vt = f [x(k)] + Voc (2.11)

where x(k) is the intermediate signal and f [·] is the nonlinear function in the Wiener

configuration. The second order polynomial model is chosen for f [·], i.e., vf (k) =

γ1x(k)+γ2x
2(k). After that, the regression model including both linear and nonlinear

segments is derived and the extended kernel iterative recursive least-squares (EKIRLS)
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algorithm is implemented to calculate the model parameters. The EKIRLS algorithm

removes the estimation difficulty due to the unavailability of the intermediate signal

x(k). However, the ECM-based battery models are not highly nonlinear systems and

the nonlinearity originates from the nonlinear mapping relationship between the SoC

and OCV. In the literature, it is shown that the EKF-based SoC estimation algorithms

can successfully tackle the nonlinearity without making any difference in the battery

model.

The majority of the online parameter estimation algorithms calculate the model pa-

rameters based on the terminal voltage. Therefore, the more accurate prediction of the

terminal voltage would increase the accuracy of the model parameter estimation. It is

found that the fractional order battery models simulate the variations in the terminal

voltage more precisely. The fractional-second-order Thevenin ECM for Li-ion batteries

is established by Ling et al. 2021. The battery parameters are modelled as a constant

that is disrupted by the state noise only because the model parameters vary slowly

compared to the battery states. Fractional order EKF is used to calculate the model

parameters. Hu et al. 2018 also used the fractional-second-order Thevenin ECM for

Li-ion batteries. In various driving cycle tests, the voltage response of the model is

predicted with a root-mean-squared error of less than 10 mV. The model parameters

are identified by an AGA-based parameter estimation method. The accuracy of the es-

timated terminal voltage also suffers from the corrupted current measurement. Thus,

considering the realistic current sensor model would significantly increase the accu-

racy of the estimated terminal voltage. This would lead to more accurate parameter

estimation.

There are different battery modelling approaches to improve the model parameter ac-

curacy. Pang et al. 2020 presented a new enhanced temperature-dependent equivalent

circuit model (eTECM). An integrated RC branch is structured by combining a series

RC branch and a parallel RC branch. The static hysteresis and temperature compen-

sation voltages are introduced to establish eTECM. The forgetting factor least square

(FFLS) method is used to calculate the model parameters to overcome a large accu-

mulated error due to a big amount of test data. Modelling the RC branch considering

the impact of ambient temperature on the dynamics of the LIBs increased the model

parameter estimation accuracy in the battery experiments conducted under different
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temperatures. Online parameter estimation algorithms adopt the model parameters

to operational conditions automatically and adding temperature modelling is not nec-

essary. Hence, adding the temperature modelling needs to be decided according to

the trade-off between the computational cost and the improvement in the parameter

estimation accuracy.

Meng et al. 2019 proposed a dynamic linear battery model which enables the use

of standard KF for SoC estimation and removes the need of using online parameter

estimation methods. The relationship between the voltage and current is assumed

piecewise linear for a sufficiently short time period so that the battery model can

be linearised. This makes the model parameters automatically updated and reduces

the order of the state-space function to one. The linear piecewise battery model is

established based on a partial least squares (PLS) and the moving window method

whose window width is denoted as M. The PLS battery model is given as follows:

Vt = BPLSXPLS = b1 + b2 · z + b3 · I (2.12)

where BPLS = [b1 b2 b3] is the coefficient matrix and XPLS = [1 z I]T . The first PLS

model is calculated based on M samples collected in advance. The next PLS model is

calculated based on samples collected according to the estimation results during the

previous moving window. Once the collection of M samples is completed, the PLS

model is updated. Therefore, the moving window method allows the battery model to

be updated with a small number of samples.

Another approach to estimating the model parameters is to augment the state vector

by adding model parameters. Therefore, the model parameters and the battery’s

actual states are estimated simultaneously. W. Zhang et al. 2022 added the ECM

parameters into the state vector along with the battery’s actual states. However,

the adaptive battery state estimation (ABSE) method does not consider the effect

of the load current in the parameter’s control equations. Consequently, the ABSE

may provide erroneous parameter estimates when the load current is high. W. Zhang

et al. 2022 proposed an improved version of ABSE to estimate the model parameters

simultaneously with the battery states. They defined Rsum as a sum of resistors in the
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ECM. The relation between Rsum and the measured signals are given as follows:

Rsum =
Vt − Voc

I
(2.13)

Rsum is used as a feedback element to reduce the error in the parameter estimations

regarding the ECM modelling error. It is concluded that the improved ABSE identifies

the ECM parameters more precisely thanks to the control equation of the improved

ABSE. Increasing the number of elements in the state vector increases the computa-

tional cost. Thus, the model parameters and the battery states must be calculated

separately.

Finally, different parameter estimation algorithms are used to compare the parameter

estimation accuracy. For example, Jarrraya et al. 2022 compared the hybrid Nelder-

Mead particle swarm optimization (PSO-NM) and open circuit voltage-recursive least

square (OCV-RLS) for the battery parameters estimation. The PSO-NM technique re-

quires a long period, i.e., around 2 hours, to calculate the model parameter accurately

under dynamic working conditions. On the other hand, the OCV-RLS technique can

momentarily provide fast and robust parameter estimation. Both methods show excel-

lent performance in battery experiments by predicting the battery model parameters

with less 2% error. In conclusion, these two techniques can be used to identify the

model parameters on different current ranges and at different temperatures. C. Huang

et al. 2018 investigated the robustness analysis of the EKF and UKF for SoC estima-

tion under unknown initial SoC, current noise, and various temperature conditions.

A new model parameter estimation algorithm called multi-swarm particle swarm op-

timization (MPSO) is proposed to estimate the model parameters of the first-order

Thevenin ECM. ∆Vt is defined as the difference between two consecutive Vt, which

is eventually expressed as the LPM. The model parameters R0, Rp, and Cp are for-

mulated as an optimisation problem by minimizing the mean squared error between

the measured ∆Vt and calculated ∆V̂t. ∆V̂t is calculated based on R̂0, R̂p, and Ĉp

previously calculated using the RLS method. The results show that the MPSO-based

method can accurately estimate the battery model parameters.
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2.2.2 State of charge estimation

The load current and the terminal voltage are the measurable signals in BMSs. How-

ever, the SoC is not a measurable signal. A reliable BMS must accurately estimate

the SoC using these measurements. The definition of the SoC is the ratio of the re-

maining capacity to the maximum capacity (Plett 2004a). The SoC estimation is a

challenging task since different error sources may contribute to the error in the SoC

estimation. For example, the current input sensor measurement has a great influence

on the SoC estimation accuracy and imprecise current sensor measurements cause

false SoC estimation. Another error source might be inaccurate model parameters

and the SoC-OCV characteristic if the SoC estimation algorithm is model based. The

operational conditions including ambient temperature have an impact on the model

parameters and the SoC-OCV characteristic. Therefore, SoC estimation algorithms

must be adaptive to the changes in the operational conditions.

In EV applications, a reliable SoC estimation prevents unwanted incidents including

running out of available energy due to the wrong estimation, and the explosion of

the batteries due to overcharging. An accurate SoC estimation provides the driver

with the optimal use of the battery pack in EVs. Thus, there is a wide variety of

SoC estimation algorithms grouped into two main groups: model-free methods and

model-based methods. Model-free methods include the OCV method (Piller et al.

2001) and the Coulomb counting (CC) method (Ng et al. 2009), (Z. Deng et al. 2016).

Model-based methods include the KF, the extended Kalman filter (EKF), the uncented

Kalman filter (UKF), the fading Kalman filter (FKF), the cubature Kalman filter

(CKF), the particle filter (PF), the H-infinity observer algorithms (L. He et al. 2022),

(Ren et al. 2022), (Ali et al. 2022), (Adaikkappan et al. 2022), (Bian et al. 2020), (Zou

et al. 2014), and artificial neural network (ANN) methods (M. A. Hannan et al. 2020).

Model-free methods:

Coulomb counting method

The CC method measures the battery’s charging/discharging current and integrates

it over time to estimate the SoC (Ng et al. 2009). The main advantage of the CC

method is that it can be easily applied to any type of battery (J. Zhang et al. 2010).

However, it is not only sensitive to the unknown initial SoC value but also accumu-
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lates errors from the current measurement sensor over time because of the integration

process (Wadi et al. 2019). The CC technique can be used to calculate an acceptable

SoC estimation when additional information is added, such as current sensor fault,

charge/discharge efficiency, and capacity degradation due to battery ageing. Never-

theless, regular calibration must be performed by conducting completely charged and

discharged scenarios, which limits its use in practice. Ng et al. 2009 proposed an

enhanced CC method. Their method eliminates the effect of charge losses and takes

charging/discharging efficiency into account. In the proposed method, maximum avail-

able capacity is also calculated by a state of health estimation technique. In order to

remove the initial guess error, the initial SoC is calculated based on Vt calculated

through a constant current constant voltage curve.

Open circuit voltage measurement method

In this method, the SoC is estimated based on the battery OCV since there is a one-to-

one nonlinear relationship between SOC and OCV. The Vt is measured after the battery

reaches the equilibrium state where the battery’s OCV is assumed to equal to Vt. The

OCV measurement method provides accurate SoC estimations but it requires a look-up

table for the SoC-OCV relationship (Farmann et al. 2015). Once the OCV is measured,

the corresponding SoC can be easily found from the look-up table. However, accurate

measurement of the OCV requires a long relaxation time in the range of hours and this

is not suitable for online applications (J.-N. Shen et al. 2019). Furthermore, the SoC-

OCV relationship is assumed not to vary depending on the various temperatures and

different C-rates (the unit to measure the charging/discharging speed of the battery),

which is not realistic in practical applications.

Model-based methods:

The generic flowchart of the model-based SoC estimation methods is shown in Figure

2.12. The standard KF has been developed for linear systems. When the dynamic

system is nonlinear, an additional linearisation of the system is required to implement

KF. This KF version is called the EKF and Zhi et al. 2017 developed an SoC esti-

mation algorithm based on the EKF. However, if the system’s nonlinearity increases,

the linearisation approximation fails, which causes the failure of the EKF. In case of

high non-linearity, the UKF may be an alternative to the EKF by eliminating the lin-
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Figure 2.12: Flowchart of the model-based state of charge estimation method

earisation problem (Wan et al. 2001). However, the selection of the sigma points may

deteriorate the performance of the UKF (S. Liu et al. 2020). KF family algorithms

assume the measurement and system noises to be Gaussian noise. In case these noises

are non-Gaussian, the PF can be implemented for the SoC estimation (Tulsyan et al.

2016). If the goal is the reduce the modelling error, adopting an H-infinity filter could

be another solution (Z. Chen et al. 2021). The ANN methods are also used in SoC

estimation. Piao et al. 2010 developed a real-time SoC estimation method based on

ANN, which is validated by simulations and battery experiments. ANNs are math-

ematical models that can learn and recognise patterns similar to human brains. In

brief, these models manage to map the input to output based on interconnected neu-

rons with different weights. In SoC estimation based on the ANN method, the input

data include the load current, the terminal voltage, and the temperature. The output

signal is the SoC. ANN based SoC estimation algorithms are applicable to any battery

chemistry but it necessitates specific data set to train the battery model.

Considering all these advantages and disadvantages, Figure 2.13 shows that the KF

family algorithms are the most favored SoC estimation method based on the literature

results according to the Institute of Electrical and Electronics Engineers (IEEE) Data

given by Shrivastava et al. 2019.

The performance of the KF in SoC estimation is extensively investigated and different

approaches are proposed to upgrade it. To improve the performance of the SoC es-

timation accuracy, the combination of two different SoC estimation methods is used.

D. Liu et al. 2019 combined the deep belief network with the KF algorithm. T. Wu

et al. 2011 combined the CC method with the EKF algorithm. However, combining
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Figure 2.13: The percentage of commonly used SoC estimation algorithms by (Shri-
vastava et al. 2019)

two algorithms would increase the computational time and cost. Çelikten et al. 2022

introduced a hybrid SoC estimation method combining the CC method and sigma

point Kalman Filter (SPKF) method. However, both methods do not run simultane-

ously. Therefore, the hybrid method reduces the execution time and complexity. The

SoC and the output voltage (Vt) estimations start using the SPKF. The estimated Vt

is compared to the measured Vt. Root mean squared error (RMSE) in Vt is calculated

with a sliding window. In detail, the RMSE is calculated for each data for 60 s which

is called the window length. If the RMSE is less than 5 mV, the CC method is used

to calculate the SoC. For the next 60 s, the RMSE is calculated based on the esti-

mate from the CC method. If it is greater than 20 mV, the SoC estimation becomes

inaccurate and the SoC method is switched to the SPKF method. The inaccuracy in

the SoC estimation using the CC method is expected due to its open-loop structure.

The SPKF is more reliable and used to readjust the accuracy in the SoC estimation

because of its closed-loop structure.

Yuanmao Ye et al. 2022 proposed a new online model-based SoC estimation technique

for Lithium-ion batteries. The second order ECM based battery modelling is used due

to the high compatibility and low complexity. The SoC-OCV relationship is obtained

offline by a battery test. The collected data is then curve-fitted to the 6th order

polynomial function. The extended stochastic gradient (ESG) method is adopted for

the parameter estimation based on a gradient search (Xiao et al. 2010). ESG method

propagates the parameter vector by the following equation:

θ̂k = θ̂k−1 +
ek
rk
ϕk (2.14)
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where θk is the unknown parameter vector, ϕk is the measured input vector, ek is the

innovation and rk is the gradient coefficient expressed as follows: rk = rk−1 + ||ϕk||2

where the initial r0 = 1 and ||ϕk|| is the norm of ϕk. The measurement equation is

written as follows: Vt,k = Voc,k − ϕTk θk. This measurement equation is then used in

the SoC estimation algorithm. The model parameters are firstly calculated using the

ESG method based on the initial values. Once the model parameters are calculated,

the parameter matrices are constructed to prepare the state estimation. The adaptive

EKF is then utilised to estimate battery states based on the online estimated model

parameters. The parameter estimation and state estimation algorithms are combined

into one closed-loop algorithm. The root mean squared error (RMSE) in the SoC

estimation under the dynamic stress test cycle is 1.96%. This work did not fully

consider the model parameters including the SoC-OCV nonlinear model parameters.

Therefore, it is not a fully online SoC estimation algorithm and it cannot be used in

practical cases.

Another approach to improving the performance of the KF algorithms is filter modifi-

cation. The KF algorithms are modified to eliminate their disadvantages and improve

their performance in the SoC estimation. For example, L. He et al. 2022 introduced a

central difference Kalman Filter (CDKF) for the SoC estimation. The first and second

derivatives in Taylor expansion are replaced by the central difference transformation

(CDT). The CDT is defined as follows:

f(x) = f(x̄) + D̄∆xf +
1

2!
D̄2

∆xf (2.15)

where

D̄∆xf = ∆x
f(x̄+ h)− f(x̄− h)

2h
(2.16)

and

D̄2
∆xf = ∆x2

f(x̄+ h) + f(x̄− h)− 2f(x̄)

h2
(2.17)

where x is the state, x̄ is the mean of the state, f is the nonlinear function, ∆x =

x − x̄ and h is the half of the length from the central difference that implies the

sigma points’ distribution around the mean. The maximum SoC estimation error

is around 2%. The existing EKF-based SoC estimation error has similar estimation

performance so the proposed transformation technique does not increase the accuracy
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of the SoC estimation. However, the complicated derivations are avoided, which is one

of the disadvantages of the EKF. This modification allows the use of more complicated

nonlinear models for the SoC estimation based on the EKF.

Finally, the system uncertainties due to the battery model and sensor measurements

vary according to the operational conditions. Therefore, predetermined fixed noise

parameters deteriorate the KF performance in SoC estimation. Z. He et al. 2020

proposed a new adaptive EKF for the SoC estimation that can track the system noise,

making it adapted to priori error covariance. The new method is based on the feature of

slowly changing Lithium-ion battery system parameters during the battery operation.

Therefore, it is proved that the priori state error covariance Pk|k−1 is convergent. Note

that Pk|k−1 is defined as follows:

Pk|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)
T ] (2.18)

where E is the expectation operator, x(k) is the true state, x̂k|k−1 is the priori estimated

state. Assuming Pk|k−1 as a constant is unrealistic in practice, which may deteriorate

the filtering effect and lead to filtering divergence. However, the assumption is asymp-

totically efficient and used to estimate Pk|k−1 based on a maximum likelihood method

and the innovation data set gathered from the initial time step to k − 1.

In BMS, the estimated OCV can be transformed into the SoC through lookup tables.

An alternative approach is to shift between linear models, each linearly fitted to the

corresponding region of the SoC-OCV relationship. Haus et al. 2020 proposed a model-

adaptive EKF, which uses a single fit with state-dependent coefficients but a higher-

order polynomial equation for the SoC-OCV relationship. This relaxes the Taylor-

based linearisation tool in EKF. The higher-order polynomial fit has 3 coefficients to

be estimated. The coefficients of the polynomial equation are considered as states and

estimated by the KF. It is concluded that the SoC estimation is stable and proved

by the experimental results. Analysing the work of Haus et al. 2020 from a critical

perspective, the SoC-OCV relationship is modelled with a 11th degree polynomial

equation. This would increase the sensitivity of the model to small changes in the

states and would deteriorate the robustness of the algorithm.

In the majority of the SoC estimation problems, the model parameters are commonly
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assumed to slowly vary over time, i.e., θk+1 ≈ θk, where θ is the model parameters

vector. The model parameter vector can be implemented into the state vector, and

it is jointly estimated with the battery states, i.e., x = [z Vp θ]
T . Beelen et al. 2021

collectively estimated the battery model parameters and SoC using EKF based on

a single-parameter tuning approach. It is found that the dynamic system becomes

unobservable or poorly observable when both the system input and the polarisation

voltage (Vp) become 0. Therefore, the robust-observer approaches cannot be used for

the joint estimation of the SoC and model parameters. This may prevent the SoC

estimate from converging. The joint EKF can be used as an alternative way on the

condition that EKF must consider cross-correlated noise and have a forgetting factor

to ensure that the state and model parameter is estimated based on recent data. The

forgetting factor is added to the KF steps. The tuning procedure of the forgetting factor

is as follows (Beelen et al. 2021): the algorithm execution starts with the forgetting

factor of 1, which implies ”no forgetting”. Then, the forgetting factor is gradually

decreased until the algorithm reaches satisfactory performance in terms of the state

estimation error. The proposed method is validated using the battery experimental

drive cycles. When the system input and the polarisation voltage are zero, the battery

is in the steady-state resting. Therefore, the estimation of the battery SoC can be

directly calculated from the terminal voltage measurement.

Different filtering algorithms are utilised in SoC estimation. W. Xu et al. 2019 pro-

posed a multi-timescale SoC and state of energy estimator based on an H-infinity filter

that is a developed form of KF. It is very effective to restrict the unknown input distur-

bances on the system output. The main goal of H-infinity filtering is to find the linear

combinations of the states. The following standard linear discrete system is used:

xk+1 =Akxk + wk

yk =Ckxk + vk

ψk =Lkxk

(2.19)

where xk, yk, Ak and Ck are the state vector, output vector, and nonlinear system func-

tions, respectively. wk and vk are the noises. ψk is a linear combination of states and Lk

is the matrix chosen by the user. The battery states are calculated at micro-timescale

whereas the slowly-varying model parameters are calculated at macro-timescale. This
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reduces the computational cost in BMS applications. The accuracy and stability are

dependent on the coefficient matrices which are dependent on the timescale (Lts) of the

parameter identification. It is found that a small Lts reduces the parameter estimation

error by increasing the frequency of the parameter update. Although this is reported

in a positive context, the increases in computational cost are overlooked. More specif-

ically, the optimal value of Lts must be calculated according to the trade-off between

the computational cost and the estimation accuracy. Moreover, using the H-infinity

filtering, the predicted terminal voltage is found very close to the measured terminal

voltage by the battery experiment. Therefore, the model parameters and the states

are calculated with high accuracy. The SoC estimation error is within 1.5% under

dynamic loading profiles.

J.-N. Shen et al. 2019 introduced a joint moving horizon estimation (MHE) approach

to simultaneously estimate the model parameters and the battery states. The battery

is modelled as the first order Thevenin ECM. The model parameters are modelled as

a polynomial function of SoC. According to the sensitivity analysis of the polynomial

coefficients, it is concluded that slight changes in the high-order polynomial coefficients

cause drastic variations in the model parameters, which may lead to an unstable Vt

estimation. Additionally, the model parameters are of the same order of magnitude

as the constant terms in the polynomial functions. Thus, if these constant terms are

updated in real-time, it would be accurate enough to update the model parameters

in real-time. The state vector is augmented by adding the constant coefficients of

the model parameters. However, the battery model parameters are slowly changing

with time. They can be modelled as a constant parameter to reduce computational

complexity. Moreover, treating the parameters as a state increases the computational

cost. It is less costly to calculate model parameters before the execution of the SoC

estimation algorithm. This approach provides an update for the circuit parameters

that may vary due to the operational conditions and battery ageing. The optimal state

estimation is transformed into the maximisation of the conditional probability density

function through the Bayesian rule, which is an optimisation problem. The MHE is

used to solve the optimisation problem to prevent the increase in the computational

cost with the sampling time. The horizon length (Lh) is introduced and the time

interval is separated into two parts, i.e., [0, . . . , tT−Lh
] and [tT−Lh+1, . . . , tT ] where tT
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is the sampling time. The optimisation problem is solved according to this separation

of the sampling interval.

In practice, the system states may not be normally distributed due to the hysteresis

phenomenon. The complicated OCV characteristic may cause a nonlinear and non-

Gaussian error distribution of the states. This may restrict the use of the methods

derived based on the Gaussian distribution assumption of the states. Dong et al.

2019 proposed a novel method to estimate the SoC and the model parameters based

on a sequential Monte Carlo filter (SMCF) and an auto-regressive exogenous model

(ARXM). The SMCF calculates the system states based on a set of random samples

with associated weights. In ARXM, the past input and output data are used to build

a linear model to be used in the current time (Jiang et al. 2020). However, each

battery has unique model parameters and the SoC-OCV relationship. Calculating

these parameters and the relationship according to the previously collected data for

a specific battery restricts the use of this method for different batteries. The battery

model adopts a nonlinear voltage source to mimic the OCV characteristic. The ARXM

is utilised to mimic the battery’s transient response. It is concluded that the proposed

algorithm can estimate the states under non-Gaussian noises. Ren et al. 2022 proposed

a forgetting factor dual particle filter (FFDPF) algorithm for the SoC estimation. The

performance of the PF-based SoC estimation algorithm depends on the accuracy of the

parameter identification. In order to prevent the data saturation leading to large errors

in model parameters, a forgetting factor recursive least square method is introduced.

The performance of the FFDPF is compared to the EKF, UKF, and PF algorithms. In

all simulations, the FFDPF algorithm showed superiority in terms of SoC estimation

accuracy.

Rahimifard et al. 2021 modelled the Li-ion battery by utilising the third-order Thevenin

ECM. It is highlighted that the internal resistance R0 indicates the ageing and power

capability. Thus, R0 is the only model parameter taken into account as one of the state

elements to be estimated. The CC method is combined with a model-based technique

to eliminate the error sources in the CC method. The calculated SoC using the CC

method is treated as a measurement reflecting the current sensor measurement. The
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SoC bias is assumed to be a slowly-varying state and it is expressed as follows:

ebk+1 = ebk + webk
(2.20)

where webk
is a white noise. Therefore, the SoC measurement includes this bias as

follows:

SoCm,k = SoCk + ebk (2.21)

The generic state space form is then defined with the following state vector and mea-

surement signals: xk = [V1,k V2,k V3,k SoCk R0,k e
b
k]

T and yk = [Vt,k SoCm,k]
T . How-

ever, the other parameters including Rp and Cp are equally important because the

measurement equation is the summation of terms calculated based on these parame-

ters. Therefore, only estimating R0 reduces the accuracy of the SoC estimation.

Eddahech et al. 2012 estimated the SoC of the Lithium-polymer cell using an ANN

based method. In their work, an ANN was used to consider the previous input signals

along with the current ones to calculate the SoC estimate, which is called a recurrent

ANN. The SoC-OCV characteristic is dependent on the battery chemistry, operational

conditions, and battery ageing. Considering these factors in the model training, an

SoC estimation method based on an ANN is proposed by Grewal et al. 2001. A three

layered ANNs is utilised to map the input data to the output signal. The ANNs are

trained using the back propagation algorithm by optimising the number of neurons

to estimate the SoC accurately. However, the back propagation algorithm may have

a local minima problem. To prevent this, Bo et al. 2008 trained the ANN based

on an evolutionary algorithm. Five different input data including the load current,

the battery terminal voltage, the battery terminal voltage first derivative, the battery

terminal voltage second derivative, and the temperature are used.

There are several standard drive cycles to assess the performance of the SoC estima-

tion algorithms in EV applications. DST and HPPC cycles are widely used in the

performance assessment of the SoC algorithms (Hongwen et al. 2012). Hongwen et al.

2011 estimated the SoC using an ECM-based EKF. Additional RC brach is adopted

to increase modelling accuracy representing the concentration polarisation and the

electrochemical polarisation. The model parameters are calculated using a genetic al-

gorithm. DST and the federal urban driving schedules (FUDS) are used to evaluate the
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performance of the proposed technique. Xiaosong et al. 2012 presented a comparison

study of twelve ECMs for Li-ion batteries. The performance of each ECM is evaluated

using an HPPC test.

The SoC-OCV relationship

The majority of the model-based SoC estimation algorithms firstly calculate the OCV.

When the OCV estimate is available, the estimated OCV is converted to the SoC

estimate. The nonlinear relationship between the SoC and the OCV is required for

this conversion. The nonlinear SoC-OCV relationship can be calculated by either bat-

tery experiments or real-time estimation methods. However, using an experimentally

calculated SoC-OCV relationship reduces the accuracy of the SoC estimation due to

its fixed property. This relationship varies depending on the ambient temperature,

battery ageing, and the current rate. To capture these variations in the relationship,

the SoC-OCV relationship must be either updated or constructed in real-time.

C. Chen et al. 2022 investigated the SoC-OCV characteristic of different batteries

considering different battery ageing, current rates, and temperatures. The results are

shown in Figure 2.14. It is observed that the shape of the curve does not significantly

change due to the battery ageing. The relationship is very similar between the SoC of

98% and the SoC of 8%. The maximum OCV difference at the same SoC value is less

than 2.3mV. The maximum OCV difference in the same SoC range is 2.9 mV for the

different current rates whereas it increases to 7.6 mV due to the ambient temperature.

The greatest difference in the OCV is observed among different batteries. When a

different battery is used, the maximum OCV difference in the same SoC range increases

to 10 mV. It is concluded that the SoC-OCV characteristic can be used as an indicator

of battery health. It is recommended that the effect of the current rate, the ambient

temperature, and the inconsistency among different batteries should be considered in

the SoC estimation.

Yuan et al. 2022 investigated the effect of the current rate on the SoC-OCV relationship

conducting a battery experiment. In Figure 2.15, OCV1 indicates the OCV when the

battery is charged with 0.5A and 1A whereas OCV2 is the OCV under 2A of constant

charging current. Finally, OCV3 shows the OCV under 2A of constant discharging

current. It is observed that the battery OCV changes fast in low SoC regions whereas
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Figure 2.14: Variations in the SoC-OCV relationship depending on the battery ageing,
current rate, temperature and using different batteries by (C. Chen et al. 2022)

Figure 2.15: The effect of current rate on the SoC-OCV characteristic by (Yuan et al.
2022)

it changes slowly in high SoC regions as the SoC changes. The OCV at the same SoC

is different at the charging and discharging cycles.

R. Zhang et al. 2018 investigated the effect of the ambient temperature on the SoC-

OCV characteristic. The battery drop test is conducted at different temperatures and

the results are shown in Figure 2.16. When the ambient temperature is lower, the OCV

becomes higher or vice versa. However, this behaviour is not significant at high SoC

regions, i.e. SoC > 90%. However, Z. Wang et al. 2022 expressed the opposite impact

of the ambient temperature on the SoC-OCV curve. As the ambient temperature

increases, the OCV at the same SoC increases as shown in Figure 2.17. The difference

in the battery experiment results show that the real-time estimation of the SoC-OCV

relationship is required. The SoC-OCV data is curve-fitted to the 5th order SoC and
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Figure 2.16: Variations in the SoC-OCV characteristic with respect to the ambient
temperature by (R. Zhang et al. 2018)

1st order temperature polynomial function. J. Shen et al. 2021 modelled the battery

Figure 2.17: The SoC-OCV variations at different ambient temperatures by (Z. Wang
et al. 2022)

OCV as a function of the SoC and the ambient temperature. They conducted a

battery experiment in a wide range of temperatures, i.e., from -20oC to 60 oC. It is

found that the OCV decreases with an increase in the ambient temperature in low

SoC regions. However, this trend is the opposite in the SoC regions which is greater

than 60%. The maximum absolute error (MAAE) in SoC estimation is 1.75% under

laboratory conditions. However, this error would be greater in practice depending on

the variations in the SoC-OCV relationship due to real-world conditions. As a result,

the battery can be overcharged or over-discharged. Choi et al. 2020 also investigated
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the temperature impact on the SoC-OCV characteristic. The experimental SoC-OCV

characteristics are determined in the laboratory using the HPPC cycle including 20

discharge pulses at the rate of C/10. The same procedure is repeated to completely

charge the battery as well. After completing these two cycles, the average of the charge

and discharge curves are calculated to consider the hysteresis characteristics. The

results indicate that the OCV increases as the ambient temperature decreases as shown

in Figure 2.18. The SoC-OCV relationship is dependent on many aforementioned

factors. Therefore, its online calculation is required to increase the SoC estimation

accuracy in practice.

Figure 2.18: The SoC-OCV characteristic depending on the ambient temperature by
(Choi et al. 2020)

Shuzhi Zhang et al. 2022 partially constructed the SoC-OCV relationship without

conducting a battery drop test. It is expressed that the difficulty in the relationship’s

construction is the calculation of the SoC. The SoC is calculated using the CC method

by neglecting the current drift. The battery’s OCV is calculated along with the first-

order Thevenin ECM parameter using the RLS method. When the SoC and OCV data

are available, the SoC-OCV relationship is partially constructed around the sampling

point. The RMSE in the SoC estimation is calculated to be 0.63% when the fresh

battery is used. The RMSE increased to 1.02% when the aged battery is used in the

battery experiment. In practice, the error is likely to increase due to the CC method.
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Furthermore, this method is vulnerable to the current measurement noise and it always

requires the correct initial guess of the SoC estimate.

Long 2022 highlighted the difficulties in the OCV drop test to acquire the SoC-OCV

relationship. It is expressed that the relaxation period of the battery to reach a steady

state is uncertain. Therefore, building the SoC-OCV relation experimentally may be

erroneous. To prevent this, the OCV is estimated in real-time. The corresponding SoC

values are calculated using the CC method. The coupled SoC-OCV data are curve-

fitted to the nonlinear model. The average SoC estimation error is 2.617%. However,

this error would be greater in practice due to the lack of initial SoC guess and noisy

current sensor measurement.

Siva Suriya Narayanan et al. 2022 utilised the machine learning (ML) technique to

construct the SoC-OCV relationship. The static SoC-OCV relationship is built based

on experimental data at different temperatures using the proposed ML technique. 201

experimental data points are collected in total. 141 data points are used to train

the ML algorithm whereas 30 data points are used to test the algorithm. The other

30 data points are used to validate the algorithm. This work aims to eliminate the

error in the curve-fitting techniques. The proposed method showed superiority over

existing techniques adopting different nonlinear functions. The SoC-OCV relationship

is unique for every battery. Therefore, constructing this relationship according to a

specific battery does not propose a general technique that can be used for every battery.

Its application to practical cases is limited.

Jibhkate et al. 2022 used a rational polynomial function to model the SoC-OCV rela-

tionship. The function is expressed as follows:

Voc(z) =
N1 +N2z +N3z

2 +N4z
3

1 +D1z +D2z2 +D3z3
(2.22)

where z is the SoC,Ni for i = 1, . . . , 4 and andDj for j = 1, 2, 3 are coefficients. Firstly,

the experimental data are curve-fitted to the model to calculate the coefficients. In

order to assess the deviations in the coefficients, the battery’s remaining useful life

(RUL) is used. As the RUL decreases, the OCV at the same SoC decreases at the low

SoC regions. The inverse function of (2.22) is calculated. It is plotted over the range

of RUL from 0%RUL to 100% RUL and changes in the coefficients are compared. The
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coefficients N4, D1, D2, and D3 remained almost constant whereas N3 varied linearly

over the lifetime of the battery. N1, and N2 showed a reverse trend during the entire

range of the RUL. These coefficients are modelled by using a 2ndorder polynomial

functions. The coefficient of these functions are calculated as a function of RUL. The

model is given in (2.22) now considers the changes in the SoC-OCV relationship with

respect to the battery’s RUL. The SoC-OCV curve estimation error is 3.4481% at 50%

of SoC, which is the maximum error observed in this work. It is concluded that the

error range is under the usable range.

B.-C. Chen et al. 2017 approximated the SoC-OCV relation with a local linearisa-

tion. The nonlinear SoC-OCV relation around the operating point is constructed by

a straight line with 2 unknown modelling parameters. The linear relation is expressed

as follows:

Voc = Voc(z
∗) +

∂Voc
∂z

∣∣∣∣
z∗
(z − z∗) (2.23)

where z∗ is the operating SoC point. The estimated OCV is converted into the SoC

value using this relationship. X. Chen et al. 2019 investigated the reconstruction

of the SoC-OCV relationship. The SoC is calculated using the CC method. The

OCV is chosen as one of the battery model parameters and estimated using an online

parameter identification algorithm. Once the OCV estimate is calculated, the SoC and

OCV couple data is curve-fitted by the SoC-OCV nonlinear model that is chosen as

nth order polynomial function.

Figure 2.19: The SoC-OCV variations for different batteries by (Han et al. 2014)

In Figure 2.19, Han et al. 2014 showed the difference in the SoC-OCV curve for three

batteries manufactured from the same production line. Lee et al. 2008 explained

that each battery with the same capacity has a different SoC-OCV characteristic even
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though these characteristics are measured under the same conditions. In order to pre-

vent the variations in the SoC-OCV relationship, a new capacity concept is introduced

with respect to the OCV. The SoC is then recalculated based on the new capacity.

They choose the lower cut-off OCV value arbitrarily, i.e., 3.6 V. This voltage value

is used to calculate the new SoC-OCV relationship for each battery. Each battery’s

SoC-OCV characteristic shows similarities after the procedure is completed.

C.-S. Huang et al. 2021 investigated the observability problem when the slope of the

SoC-OCV curve is close to zero. The battery is modelled as the first order Thevenin

model. The nonlinear SoC-OCV relation is approximated by a piece-wise linear func-

tions:

Voc(z) =



a1,oz + b1,o for z0 ≤ z ≤ z1

a2,oz + b2,o for z1 ≤ z ≤ z2
...

ai,oz + bi,o for zi−1 ≤ z ≤ zi

(2.24)

where ai,o and bi,o are the coefficients of the linear equation, i is the particular section

of the relation, o represents the charging or discharging regime of the battery. The dif-

ferent piece-wise linear functions for the same particular sections are used with respect

to the charging or discharging regime due to the hysteresis effect. The coefficients ai,o

and bi,o are continuously calculated. In the derivations, the subscript o is skipped for

the simplicity purpose. Firstly, the state space model of the first order Thevenin model

is formulated as follows:

ẋ = Ax+Bu

y = Cx+Du

(2.25)

where

x =

[
z Vp

]T
, y = Vt, u = I

A =

0 0

0
−1

RpCp

 , B =


1

Qmax
1

Cp

 , C =

[
ai 1

]
, D = R0,

(2.26)

The estimation error is defined as follows:

e =

 ez
eVp

 = x̂− x (2.27)
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It is proved that the SoC estimation error is vulnerable to the slope of the SoC-OCV

curve. This dependence is prevented by replacing z by Voc in the state vector. The

estimated Voc is then used to calculate the coefficients. The results demonstrated that

the SoC estimation accuracy increased with the proposed method.

2.3 Current sensor noise & its estimation

In batteries, the input signal is the current measurement. Since it is a measured sig-

nal, it is corrupted by the sensor noises. The error in the current input is challenging

because the amount of noise may cause the divergence of the state estimations. There-

fore, the effect of the current input noise must be investigated thoroughly and it must

be considered in the SoC estimations.

The error analysis of the SoC observer was carried out by P. Shen et al. 2018. The

second order Thevenin model is utilised to model a Lithium-ion battery. It is found

that the current measurement error is one of the error sources deteriorating the SoC

estimation. This error can be defined as the summation of the bias error and noise

in the current measurement process. Thus, the true current I can be expressed by

subtracting the bias noise and the white noise from the measured current Ĩ, i.e., I = Ĩ−

β−vi where β is the bias noise, vi is the white noise. Using an appropriate feedback gain

is proposed to mitigate the SoC estimation error by claiming the voltage correction in

the update part can cancel out the error caused by the current measurement. However,

the voltage measurement equation is as follows:

Vt = Voc + ĨR0 + Ia,1Rp,1 + Ia,2Rp,2. (2.28)

where Ia,i is the current flowing over Rp,i for i = 1, 2. According to the current

measurement equation, the error in the current measurement is directly added to

the voltage estimation therefore the difference between the measured voltage and the

estimated voltage will be biased due to the error in the current measurement. This

leads to erroneous SoC estimation.

Y. Xu et al. 2020 proposed a dual Kalman Filter (DKF) algorithm to filter the SoC

twice to reduce the current measurement error and battery modelling error. The DKF

based SoC estimation algorithm combines the Ampere-hour (Ah) counting method
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with the EKF. Another KF is used to suppress the estimation error by the EKF. The

SoC is initially estimated using the EKF depending on the difference between the

measured output voltage and the model output voltage. This is to surpass the battery

modelling error. Secondly, the SoC is estimated and updated using the KF algorithm

depending on the difference between the SoC estimated using the Ah counting method

and the SoC previously estimated by the EKF. The second estimation of the SoC is

to surpass the current measurement error accumulated in the Ah counting method. It

is found that the dual KF suppresses the current measurement error. However, the

standard KF is derived for the system with noiseless input. Since the current input is a

measured signal in the battery-powered systems, the standard Kalman filter estimation

algorithm must be rearranged considering the noisy input current. Moreover, the error

in the current measurement is not explicitly defined. Therefore, it cannot be claimed

that dual KF can reduce the error without defining the type of the error since KF

derivation depends on the Gaussian noise assumptions.

The effect of the current measurement accuracy on the state prediction error is high-

lighted by Tingting et al. 2011. They explained that the impact of the current mea-

surement error is reflected in the state propagation step. However, the current input

measurement is also used in the update equation. Therefore, it is expected to see the

impact in the update step as well. It is also found that the Gaussian white noise with

zero means does not affect the results of the entire SoC estimation algorithm. However,

it is emphasised that the input current measurement has a current bias in practice. In

order to see the effect of the current bias on the SoC estimation, computer simulations

are performed by adding the current bias to the current input measurement. The simu-

lation results show that the accuracy of the SoC estimation decreases with the increase

in the current bias. Similarly, Z. Wei et al. 2021 scrutinises the effect of sensor noise

on the estimation of physical model parameters and SoC. The first-order Thevenin

equivalent circuit is used to model the battery. The sensor noises are assumed to be

zero-mean, ergodic, and random. It is concluded that the solution of the LPM based

on the least squares technique is asymptotically biased due to the corrupted system

input and output measurements. The current bias is modelled as a constant in this

work, which is not a realistic bias modelling. There is no information about the bias

noise. Thus, modelling the bias noise as a random walk is a more suitable approach
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to tackle the current measurement problem.

Z. Liu et al. 2015 tested the effect of the current measurement bias on the SoC es-

timation. The current sensor bias of ∓10 A was injected into the SoC estimation

algorithm in the middle of the simulation. Once the bias was added to the current

measurement, a significant deterioration in the SoC estimation was observed. Under

the faulty current sensor measurement, the SoC estimation error is out of the tolerable

range by 5%. It is concluded that this error may cause overcharging/over-discharging

of the battery in real-time applications. The EKF-based fault diagnosis algorithm was

proposed to prevent an error due to the current sensor measurement bias. The bias

noise is a random walk. Therefore, its magnitude cannot be limited to a certain value.

In practice, the error in SoC estimation can be greater than 5%.

J. Xu et al. 2016 estimated the current sensor fault by using the proportional integral

observer (PIO) based method. The current sensor fault is designed as the integral

of the difference between the measured output and the estimated output, i.e., it is

expressed as follows:

˙̂
fc = Ki(ỹ − ŷ) (2.29)

where fc is the estimated current sensor fault, ỹ is the output measurement, ŷ is

the estimated output, and Ki is the integral gain. Once the current sensor fault

is calculated, it is subtracted from the current measurement to estimate the current

input. The estimated current input is then used to estimate the battery states. Firstly,

the proposed algorithm is tested for the scenario that the current sensor measurement

does not have the current sensor bias. The experimental result indicates that the SoC

estimation error is within 0.01%. Secondly, the current bias of −20 A is intentionally

added to the current measurement at 2500 s. However, the current fault estimator is

not used. The estimated SoC accurately traces the reference SoC before the current

bias is injected into the current measurement. After this point, the SoC estimation

diverges from the reference SoC and the error in the SoC estimation keeps increasing.

The latter scenario is then repeated by utilising the current bias estimator. The SoC

estimation error is less than 2%. However, bias modelling is not explicitly shown in

this work. Furthermore, the proposed algorithm is executed under a constant bias.

The performance of the algorithm is not tested with variable bias noise.
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Chun et al. 2016 developed a method to estimate the SoC without sensing the current

measurement. The method only uses the filtered Ṽt measurements of each cells in the

battery pack. The current applied to the battery is estimated by using the filtered Ṽt.

The simple RC battery model is adopted to model the battery. Its Voc is calculated

based on the specifications given by the manufacturer as follows:

Voc = Cn
dSoC

dVoc
(2.30)

where Cn is the nominal capacity given by the manufacturer and the SoC-OCV relation

is also given by the manufacturer. Therefore, the estimated current and estimated SoC

are expressed by the followings:

Î(k) = (1− fs)

{
Î(k − 1)− [Vt(k)− Vt(k − 1)]

R

}
(2.31a)

ẑ(k) = ẑ(k − 1)− Î(k)

Cn
∆t (2.31b)

where fs = ∆t/(∆t+RC) is the smoothing factor, R is the resistor, C is the equivalent

capacitor and ∆t is the sampling time. The proposed algorithm is validated by a

battery experiment. In the battery experiment, the current estimation error is around

+5 mA and the error in the SoC estimation is within 3%. However, the current

estimation model is built based on the simple RC battery model. This battery model

is not good enough to capture the transient response of the battery under dynamic

loading. Therefore, it cannot be applicable to practical applications including EVs.

Lin 2018 analysed the SoC estimation error due to the sensor noises. The sensor is

modelled by taking into account the bias and the variance as follows:

Ĩk = Ik −∆I − δIk (2.32)

where ∆I is the current bias and δI is the random noise identically distributed with

zero mean and constant variance. ∆I is assumed to slowly vary over time. The least-

square estimation method is defined to minimise the residual between the measured

Ṽt and estimated V̂t. The partial derivative of the residual with respect to the SoC is

equalised to zero and solved for SoC. This yields the estimated SoC. However, a more

realistic approach is to model the bias noise as a random walk. In this case, the bias
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noise is expected to change fast.

Hong et al. 2022 highlighted that the accuracy of the BMS is dependent on the precision

of the sensors and the state estimation algorithms. It is also added that the biased

sensor data is possible due to the malfunction of the sensors and communication errors.

The current sensor bias reaches up to 2% according to the actual EV experiments.

Mohammadi 2022 expressed the current input measurement as the summation of the

actual current input and the current input uncertainty. It is noted that the actual

current flows from one battery’s terminal to the other one and the current uncertainty

is a fault in the measurement process.

Yan et al. 2013 designed an improved fuzzy adaptive KF to estimate the SoC of EVs

working under poor sensor measurements. The filter monitors the variations in the

residual, utilises its mean and variances as an input of the fuzzy controller and finally

adjusts the weight of noises using fuzzy logic. This reduces the estimation error in

SoC in real-time. However, the system noise and the measurement noise are assumed

to be zero mean white noise, and the proposed method only updates their statistical

properties. In practice, current measurement is corrupted by two stochastic noises,

i.e., white noise and bias noise. Therefore, considering the bias noise in the current

measurement would be a more realistic approach for SoC estimation for EVs. Y. Wang

et al. 2021 investigated the effect of the current sensor accuracy on the SoC estimation.

The results show that the error of the current sensor must be controlled within 4% to

maintain the SoC error within 5%.

2.4 Discussion

This chapter undertakes the literature review regarding the battery modelling, the

model parameter identification methods, the SoC estimation methods, the SoC-OCV

curve construction and its variations, and the current sensor measurement noises.

The most common battery models are discussed and the most suitable one is chosen

comparing their reliability and applicability in practice. A reliable battery model

should have low complexity yet be able to describe the battery dynamics. Various

battery technologies including lithium-ion battery technologies use and adopt Thevenin

ECMs for real-time utilisation. To prevent large matrix operations, the first-order
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Thevenin ECM is a good candidate to accurately represent the battery dynamics.

The ECM consists of basic circuit elements including resistors, capacitors, and voltage

sources. The majority of SoC estimation algorithms are based on a battery model

whose parameters are initially unknown. This implies that a parameter identification

procedure is necessary to prepare the model for SoC estimation. The battery model

parameters can be identified through either offline or online methods. The offline

parameter identification method is a heavily laborious experimental task. Although a

set of batteries can originate from the same production line, deviations in parameter

values between these batteries are natural. Thus, the experiment has to be conducted

for each battery. Moreover, the experimental conditions and battery ageing also affect

the parameter values. These aforementioned reasons make the model parameters need

to be updated in real-time. Therefore, the online parameter estimation is the only

appropriate way to estimate model parameters. There are different approaches to

estimating the model parameters online. The RLS methods are commonly used in the

literature. However, the convergence and the stability of the proposed RLS techniques

have not been guaranteed. An alternative to the RLS-based parameter estimation is

the adaptive law-based method. This method guarantees the convergence and stability

of the parameter estimation based on the Lyapunov stability theory. Consequently,

the adaptive law-based parameter estimation method is found more appropriate in the

model parameter estimation.

The nonlinear SoC-OCV relation is used to map the OCV to its corresponding SoC

value. The SoC-OCV relation could be obtained through an offline method or an online

method. Similar to the parameter estimation, the SoC-OCV relationship is unique

for a specific battery used during the test and cannot apply to different batteries.

Furthermore, it is vulnerable to a change in the operational conditions and battery

ageing. For example, an increase in the ambient temperature either increase or decrease

the OCV at the same SoC for different batteries. Therefore, empirical modelling of

the SoC-OCV curve would provide an erroneous SoC-OCV relationship in practice.

This error is directly reflected as an error in SoC estimation. Therefore, real-time

construction of the SoC-OCV relationship is required. This increases the accuracy

in the SoC estimation considering the variations in the SoC-OCV characteristic and

different battery types.
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The current measurement is corrupted by the current bias and the white noise. The

impact of these noises is considerably different. The white noise does not have a

significant effect on the SoC estimation error. The EKF can accurately estimate the

SoC based on the current sensor measurement with random white noise. However, it is

found that the current bias significantly increases the error in the SoC estimation. In

the literature, the majority of available SoC estimation algorithms do not realistically

consider the bias noise in the current input measurement. For example, most of them

consider a constant current bias noise, which does not reflect the actual bias noise

characteristic. Moreover, it is commonly concluded that the KF can estimate the SoC

under noisy current input measurement. However, the bias noise has a random walk

characteristic and it may reach large values. In the case of larger bias noise, the KF

is expected to fail. Therefore, the development of a more realistic SoC estimation

algorithm is required taking into account these two current measurement noises with

a correct current sensor modelling.

The standard KF has been widely used in many engineering applications due to its

simplicity and powerful estimation ability, especially for linear systems. The EKF and

UKF are developed for nonlinear systems based on the idea of the standard KF. The

KF provides an accurate estimation when the input signal is noiseless. In literature,

the majority of the SoC estimation algorithms are based on the standard KF without

considering the current input measurement noises. In battery systems, the current

input measurement is corrupted by two sensor noises. Therefore, the standard KF

is expected to provide unreliable SoC estimation. To increase the SoC estimation

accuracy, the standard KF needs to be modified based on the current sensor model.

There are still gaps in the real-time SoC estimation algorithms. Firstly, more realis-

tic SoC estimation algorithms have to be adaptive to the changes in the operational

conditions and battery ageing. Therefore, the model parameters and the SoC-OCV

relationship have to be calculated together in real-time using robust estimation algo-

rithms. Secondly, the current sensor bias has a significant effect on the SoC estimation

error. Thus, the current input measurement needs to be corrected by estimating the

bias noise modelled as a random walk. Considering the noisy current input requires

the modification of the standard KF. Therefore, the standard KF algorithm must be

modified based on the current sensor model.
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Chapter 3

Battery modelling and

parameter identification

Battery models are used to reflect the battery’s dynamic behaviour. An appropriate

battery model should be chosen according to the trade-off between the computational

cost and model accuracy. Adopting a battery model requires the identification of the

model parameters that change slowly with time. Therefore, these parameters need to

be calculated online.

This chapter introduces the first-order Thevenin ECM. It summarises the battery

model parameters identification method based on the adaptive law and its stability

analysis. Additionally, the battery test rig is introduced, which is designed to validate

the battery model and the preferred parameter identification method. Finally, sim-

ulation and experimental results are presented along with a discussion regarding the

battery model and the proposed parameter estimation method.

3.1 Battery modelling

The essential strategy used for selecting a suitable battery model is as follows: the

potential candidate should accurately simulate the charge/discharge process and dy-

namic response of the battery with a minimum computational cost. The first order

Thevenin model given in Figure 3.1 robustly mimics the dynamic behaviour of the

battery. It also associates the OCV with the SoC using a nonlinear SoC-OCV charac-
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Figure 3.1: 1st order Thevenin battery model

teristic. Besides, it reduces the calculation effort compared to the high order Thevenin

models. Consequently, the first order Thevenin model is used to model the battery in

this work.

Firstly, the relationship between the load current I and the terminal voltage Vt is

required. It can be calculated by distributing I to the RC branch components. Based

on the Kirchhoff’s current law:

I = Ia + Ib (3.1)

where Ia is the current flows over Rp, and Ib is the current flows over Cp. The polari-

sation voltage Vp across the RC branch is obtained by the Ohm’s law as follows:

Vp = IaRp (3.2)

The differential equation of the voltage across Cp is given by

dVc
dt

=
Ib
Cp

(3.3)

As Cp and Rp are connected in parallel, the voltage across Rp (Vp) and the voltage

across Cp (Vc) are equal to each other, i.e., Vc = Vp. Rearranging (3.2) and (3.3)

substituting into (3.1) yield the continuous-time dynamic equation of Vp

V̇p = −Vp
τ

+
I

Cp
(3.4)

where ˙(·) = d(·)/dt and τ = RpCp. Divide both sides of (3.4) by Rp

İa = −Ia
τ

+
I

τ
(3.5)
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Equation (3.5) is the governing differential equation for Ia and it reflects the battery’s

polarisation behaviour depending on variations in I. The terminal voltage Vt is given

by

Vt = Voc − IR0 − Vp (3.6)

where Voc = f(z) and f(z) is the SoC-OCV function, which is known to be a nonlinear

function. Equations (3.5) and (3.6) define the voltage-current characteristic of the

battery.

The OCV is assumed to vary slowly therefore the dynamic equation for the OCV is

approximated by

V̇oc ≈ 0 (3.7)

Discrete-time expressions of (3.5), (3.6), and (3.7) are of the form:

Ia,k+1 = αIa,k + (1− α)Ik (3.8a)

Voc,k+1 = Voc,k (3.8b)

Vt,k = Voc,k − IkR0 − Vp,k (3.8c)

where (·)k is the kth sample of (·), α = e−∆t/τ , and ∆t is the sampling time for the

discrete-time equations.

For the SoC estimation, the nonlinear SoC-OCV relationship, Voc = f(z), needs to be

identified to convert the estimated OCV to the SoC after the OCV estimate is available.

To prepare the battery model for the SoC estimation, the nonlinear relationship and

the model parameters R0, Rp, and Cp must be calculated first. The following section

introduces the identification method of the model parameters.

3.2 Model parameter identification

As it is highlighted in Chapter 2, the battery model parameters can be identified by

two fundamental methods; offline method and online method. These parameters vary

depending on the operational conditions including temperature and battery aging.

Hence, parameters calculated using the offline method are constant values and they

do not adapt to changes in the operational conditions. This disadvantage leads to

erroneous identification of model parameters for different operational conditions. The
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error in the estimated parameter may cause large errors in the SoC estimation. On-

line methods are more suitable to identify and update these parameters in real-time.

Therefore, an online parameter identification method is adopted in this work. The

online parameter estimation of the battery model parameters includes the following

three steps:

1. Derivation of the linear parametric model

2. Setting up the estimation model

3. Presenting the convergence condition

3.2.1 Linear parametric model derivation

The above three steps are followed in order to derive the online parameter estimation

algorithm. First of all, the LPM form of the battery model needs to be derived. The

one sampling step difference of (3.8c) can be used to derive the LPM.

Discretise (3.4)

Vp,k+1 = αVp,k + (1− α)RpIk (3.9)

Rewrite (3.8c) for step k + 1

Vt,k+1 = Voc,k+1 − Vp,k+1 −R0Ik+1 (3.10)

Substituting (3.9) into (3.10)

Vt,k+1 = Voc,k+1 − αVp,k − (1− α)RpIk −R0Ik+1 (3.11)

Rearrange (3.8c) for Vp,k and substitute into (3.11)

Vt,k+1 =αVt,k −R0Ik+1 + [αR0 + (α− 1)Rp] Ik

+Voc,k+1 − αVoc,k

(3.12)

Define

∆Vt,k+1 = Vt,k+1 − Vt,k (3.13)
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Substitute (3.12) into (3.13) for k and k + 1 sampling time

∆Vt,k+1 = α∆Vt,k −R0αIk+1 + ϱ∆Ik

+∆Voc,k+1 − α∆Voc,k (3.14)

where ∆(·)k+1 = (·)k+1 − (·)k and ϱ = αR0 + (α − 1)Rp. Voc is known to vary slowly

compared to Vt, and the change in Voc is assumed to be negligible during the sampling

interval (H. Chaoui et al. 2017). Equation (3.14) is approximated as

∆Vt,k+1
∼= α∆Vt,k −R0∆Ik+1 + ϱ∆Ik (3.15)

and it is written in a linear parametric model as follows:

yk+1 = θT
k+1ϕk+1 (3.16)

where

θk+1 =

[
α −R0 ϱ

]T
(3.17)

which is the unknown to be estimated, and the state vector is given by

ϕk+1 =

[
∆Vt,k ∆Ik+1 ∆Ik

]T
(3.18)

Once the estimation, θ̂k+1, is available, the parameters in the model are obtained by

R̂0 = −θ̂
(2)

k+1 (3.19a)

R̂p =
θ̂
(3)

k+1 + θ̂
(1)

k+1R̂0

1− θ̂
(1)

k+1

(3.19b)

Ĉp =
−∆ts

R̂p log θ̂
(1)

k+1

(3.19c)

where (·)(i) for i = 1, 2, 3 is the ith element of (·). As the terminal voltage is mea-

sured, the terminal voltage difference is obtained from two measurement samples. The

measurement equation for the parameter estimation is defined by

ỹk+1 = ∆Vt,k+1 + ek+1 (3.20)
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where ek+1 is the measurement noise.

3.2.2 Online parameter estimator design

In this section, we summarize one of the standard parameter estimation algorithms

(Ioannou et al. 2006). The majority of the dynamic systems are continuous-time sys-

tems, which are represented with continuous-time expressions. However, the measured

signals are in discrete time. Therefore, the implementation of the online parameter

identification algorithm needs to be in discrete time. Consequently, the online parame-

ter estimation algorithm can be derived based on the continuous-time system equations

first, and then it can be transformed into the discrete-time version.

Consider a system defined by the following algebraic equation

y(t) = θT (t)ϕ(t) (3.21)

where ϕ(t), y(t), and θ(t) are the input vector, the output scalar, and an unknown

parameter vector, respectively. Note that ϕ(t) and y(t) are measured signals and θ(t)

is to be calculated at each time step.

This section attempts to derive a recursive online method to calculate θ. It is therefore

necessary to estimate the output using an equation based on the input signals and the

estimated parameters. The estimate of the output is given by

ŷ(t) = θ̂
T
(t)ϕ(t) (3.22)

where θ̂(t) is the estimate of θ(t). Now the estimation error in the output can be

calculated as follows:

ϵ = y − ŷ = y − θ̂
T
ϕ (3.23)

Substitute (3.21) into (3.23)

ϵ = θTϕ− θ̂
T
ϕ = −θ̃

T
ϕ (3.24)

where θ̃ = θ̂ − θ. Minimizing the cost criteria of ϵ with respect to θ̂ yields the

differential equation to generate θ̂. The following quadratic cost function is a common
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choice:

J(θ̂) =
ϵ2

2
=

(
y − θ̂

T
ϕ
)2

2
(3.25)

Assume that θ̂k is the estimate of θ at instant k. Then the gradient of J(θ̂), ▽J(θ̂)

at θ̂k+1 is approximated by the Taylor’s series expansion.

▽J(θ̂k+1) ≃ ▽J(θ̂k) +
∂

∂θ
▽ J(θ̂)|θ̂=θ̂k

(
θ̂k+1 − θ̂k

)
(3.26)

Solving (3.26) for θ̂ = θ̂k+1 by setting the right hand side of (3.26) equal to zero

provides θ̂k+1 of θ at k + 1, i.e.,

θ̂k+1 = θ̂k −H−1(θ̂k)▽ J(θ̂k) (3.27)

where H(θ̂k) =
∂
∂θ ▽ J(θ̂k) = ▽2J(θ̂k) refers to the invertible Hessian matrix. Note

that J is continuously differentiable function, i.e., all first and second order partial

derivatives of J exist for each θ and all are continuous function of θ. The Hessian of

J(θ) is defined to be 3-by-3 symmetric matrix as follows:

▽2J(θ̂) ≜

[
∂2J(θ)

∂θ(i)∂θ(j)

]
3×3

(3.28)

where ∂2J(θ)/(∂θ(i)∂θ(j)) is the ith row and jth column element of the Hessian. A

domain S is a convex set if for all θ(i), θ(j) ∈ S and ϑ ∈ [0, 1], ϑθ(i) + (1− ϑ)θ(j) ∈ S.

Furthermore, J is convex over the domain S if the following is satisfied:

J
(
ϑθ(i) + (1− ϑ)θ(j)

)
≤ ϑJ

(
θ(i)

)
+ (1− ϑ)f

(
θ(j)

)
(3.29)

If the above condition is satisfied, the Hessian of J is said to be invertible. Assuming

θ(t) as a differentiable function in continuous time, the continuous version of (3.27)

can be developed by taking the time derivative of ▽J(θ̂(t)) as follows:

d

dt
▽ J(θ̂(t)) =

∂

∂θ̂
▽ J(θ̂)

˙̂
θ = H(θ̂)

˙̂
θ (3.30)

If
˙̂
θ is chosen as

˙̂
θ = −ρH−1(θ̂)▽ J(θ̂) where ρ is a positive-definite matrix, the time
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derivative of ▽J(θ̂(t)) can be written as follows:

d

dt
▽ J(θ̂(t)) = −ρ▽ J(θ̂) (3.31)

or

▽J(θ̂(t)) = e−ρ(t−t0) ▽ J(θ̂0) (3.32)

For ρ > 0, it is clear that e−ρ(t−t0) part of (3.32) implies that this solution will converge

to the root of ▽J = 0 as t → ∞, if the solution exists for ∀t ≥ t0 ≥ 0. Note that ▽J

is equal to zero at any global minimum θ∗, i.e.,

▽J(θ∗) = 0 (3.33)

The recursive scheme for θ̂ is now obtained, which can be written in a general form as

follows:

˙̂
θ = −Γ▽ J(θ̂) = Γ(y − θ̂ϕ)ϕ = Γϵϕ (3.34)

where Γ is a positive-definite adaptive gain matrix. The discrete-time version of (3.34)

is in the form of :

θ̂k+1 = θ̂k + Γ∆tϵk+1ϕk+1 (3.35)

where

ϵk+1 = ỹk+1 − θ̂
T
kϕk+1 (3.36)

Equations (3.35) and (3.36) describe one of the standard online parameter estimation

algorithms (Ioannou et al. 2006).

3.2.3 Stability analysis using Lyapunov method

The stability analysis of the adaptive law based parameter estimation is summarised

in this section (Ioannou et al. 2006). The stability properties of (3.34) can be analysed

by defining the continuous-time parameter error, i.e.,

˙̃
θ =

˙̂
θ − θ̇ = Γϵϕ− θ̇ (3.37)

58



Chapter 3. Battery modelling & identification 3.2. Model parameter identification

where the true parameter θ is assumed to be constant, therefore, θ̇ = 0. Rewrite (3.37)

as follows:

˙̃
θ = Γϕϵ (3.38)

The error ϵ is defined as follows:

ϵ = θTϕ− θ̂
T
ϕ = −θ̃

T
ϕ = −ϕT θ̃ (3.39)

The following function is selected as the Lyapunov function:

V (θ̃) =
θ̃
T
Γ−1θ̃

2
(3.40)

Take the time derivative of V (θ̃)

V̇ (θ̃) = θ̃
T
ϕϵ = −ϵ2 < 0 (3.41)

In conclusion, V (t) has a limit because V > 0 and V̇ < 0, i.e.,

lim
t→∞

V [θ̃(t)] = V∞ <∞ (3.42)

Stability means that the initial θ0 approaches the equilibrium point and always remain

close to the equilibrium point. However, this does not imply that θ̂ converges to θ.

The sufficient and necessary condition for this convergence is that the input signal

must be persistently exciting (PE).

The input signal is PE if it satisfies the following (Ioannou et al. 2006):

∫ t0+T0

t0

ϕ(t)ϕT (t)dt ≥ α0T0I (3.43)

for ∀t0 ≥ 0 and for some α0 & T0 > 0. Under the PE input signal, the model

parameters converges to their actual values.

This parameter estimation method is commonly called the adaptive law in literature

(Ioannou et al. 2006). It is important to highlight that the design of the adaptive

law ensures the stability of the adaptive estimator. The combination of an online

parameter estimation algorithm based on the adaptive law and the state estimation
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algorithm may be considered as an adaptive state estimator.

3.3 Simulations

This section describes the parameter estimation simulation based on the adaptive

law. Different types of dynamic loading conditions are simulated to assess the per-

formance of the proposed algorithm. For this purpose, four different current input

profiles including standard cycles DST and HPPC, constant-current discharge profile,

and sinusoidal-current discharge profile are used. The capacity of the simulated battery

is 0.85 Ah. The adaptive gain matrix Γ is set to different values for each current input

profile. It is adjusted according to the frequency of the input current and its values for

each simulation are given in Table 3.1 in where I3×3 is the 3-by-3 identity matrix. For

example, the current input profile with the higher frequency requires using a smaller

Γ. This is because the input signal excites the system better with high frequency. As

a result, the estimated parameters converge to the actual parameters faster. However,

the adaptation speed (the rate of change in
˙̂
θ) decreases with time and eventually

approaches zero. The time interval between two sampling points is 0.01s. The mea-

surement noise variance is 0.1 for both the load current and the terminal voltage. The

battery’s initial SoC is 100% in every simulation and it is completely discharged at

the end of each simulation. Note that the standard DST cycle initially charges the

battery for 7 seconds. Only in the DST cycle simulation, the initial SoC is 99.95% not

to overcharge the battery. The time duration to complete each simulation is different

due to the different charge/discharge rates and profiles. For simulation purposes, the

battery has the following true model parameters:

θ =

[
α −R0 ϱ

]T
=

[
0.99 −0.1Ω 0.2960

]T
(3.44)

The initial values for the parameters are chosen as follows:

θ̂0 =

[
α0 −R0,0 ϱ0

]T
=

[
0.5 −0.01Ω 0.01

]T
(3.45)

where initial parameters are intentionally chosen with large errors to assess if the

parameter estimation algorithm is dependent on the initial value.
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Table 3.1: The adaptive gain, Γ, for each simulation scenario

Current input profile in the simulation Γ

CC discharge 500 I3×3

Sinusoidal discharge 100 I3×3

HPPC 0.15 I3×3

DST 0.1 I3×3

3.4 Results

The following results show that the adaptive law-based parameter estimation algorithm

can accurately determine the battery’s parameters for various charge/discharge rates

and profiles. One of the main findings from the simulation results is that increasing

Γ increases the rate of parameter convergence and reduces the impact of the current

input frequency on the parameter convergence speed.

Figure 3.2: ECM model parameter estimation results under 1C constant current dis-
charge

Figures 3.2, 3.3, 3.4, and 3.5 illustrate the convergence of the battery model parameters
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under different charge/discharge current profiles. The convergence time is slightly

different for each current input profile due to using different Γ and different input signal

frequencies. For example, parameters converge almost instantly within 10 seconds

under a constant current discharge profile as shown in Figure 3.2. This is because Γ

is set to a large value. The estimation of R0 exhibits a persistent trend of around the

actual R0. On the other hand, Rp fluctuates due to the noisy input current.

Time [min]

Figure 3.3: Physical parameter estimation results under sine discharge

Using a large Γ increases these fluctuations in Rp. The reverse trend is observed in

Cp compare to Rp. The reason for this is that the battery’s time constant persists

to stay constant throughout the whole simulation. Thus, Cp decreases to compensate

for the increase in Rp or vice versa. The optimum Γ can be chosen considering the

trade-off between tiny fluctuations and the time duration required for the parameter

convergence.

When the sinusoidal current input is applied to the algorithm, the convergence time
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Figure 3.4: Physical parameter estimation results under HPPC current profile

does not change significantly as shown in Figure 3.3. Even though Γ is reduced, the

convergence time is almost the same due to the higher frequency of the sinusoidal input

profile. Moreover, fluctuations due to the noisy current input almost disappeared.

The trend in the input current profile is softly reflected in the estimated Rp. Decreasing

Γ may prevent the estimated Rp from having the same trend as the input current.

However, this would make the initial convergence time longer.

Figure 3.4 shows the parameter estimation results under HPPC current profile. When

the input current profile is switched to more complicated profiles similarly to HPPC

and DST cycles, Γ is significantly reduced. Therefore, sudden fluctuations and sig-

nificant reflection of the current profile trend in estimated parameters are avoided.

Furthermore, the input current frequency is greater in these simulations, therefore

adopting a lower Γ would not significantly affect the convergence speed. Although Γ

is 1.5 times greater in the HPPC cycle than that in the DST cycle, the convergence

speed is higher under the DST cycle as shown in Figure 3.5. This is also explained by

the input current frequency. Hence, it can be concluded that the input with a higher
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Figure 3.5: Physical parameter estimation results under dynamic stress test

frequency increases the parameter convergence speed.

3.5 Battery experiment

Figure 3.6 shows a battery test rig with three DC motors powered by a fresh LiPo

battery whose capacity is 1 Ah. During battery operation, I and Vt are the measurable

signals and they are acquired via NI 9505 and NI 9215 devices. CompactRio is the

microprocessor used in the test rig. A graphical user interface is designed on LabVIEW

software to control the speed of DC motors. Using a constant-current constant-voltage

mode, the battery has been charged via the commercial battery charger. The charger

can also discharge the battery under a constant current. In order to prevent electrodes

from being overcharged, a 8.4V upper cut-off voltage is set. In the same manner, when

the terminal voltage reaches 6.4V, the battery is considered fully discharged. The

room temperature is at 25◦C ±3◦C and remains constant during the experiment. The
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Li-Po Battery

DC Motors

NI 9505
NI 9215

Data Logging

Figure 3.6: Battery test rig

motor speed is set to 50 rpm (revolutions per minute) and it remains constant during

the experiment. Data is saved every 0.01 seconds.

Figure 3.7 shows the experimental results of the parameter estimation algorithm. The

model parameters of the actual battery converge fast. The internal resistance R0

almost remains constant during the experiment. However, Rp slightly decreases until

the moderate SoC regions, and then it starts increasing. In low SoC regions, it increases

drastically as the SoC decreases. Similar to the simulation results, Cp has the reverse

trend to balance the battery’s time constant.

To sum up, the model parameter identification algorithm based on the adaptive law

is a reliable candidate for SoC estimation since its stability is proved in the sense

of Lyapunov stability. Furthermore, the PE input guarantees the convergence of the

model parameter to their actual values. The results indicate that the adaptive law-

based parameter identification method can be implemented to accurately calculate

battery model parameters in practice.
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Figure 3.7: Battery model parameter estimation results by a battery experiment

3.6 Discussion

This chapter provides the details of the first order Thevenin ECM and the designing

procedure of an online parameter estimation algorithm based on the adaptive law. It

also explains the design of the battery test rig. The first-order Thevenin ECM is widely

used in practical applications including EVs. It successfully mimics the polarisation

characteristic of the battery by adopting a parallel RC branch. The battery model is

validated by the battery experiment. In order to design an online parameter estimation

algorithm, the battery model is firstly converted into the LPM form. This allows us

to build an online parameter estimation algorithm by correcting the estimated param-

eters based on the difference between the measured output and the estimated output.

The adaptive law-based parameter identification method is designed to estimate the

battery model parameters in real-time. The designing procedure also includes the sta-

bility analysis of the parameter identification algorithm based on the Lyapunov direct

method.
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The stability analysis shows that the proposed method guarantees that the estimated

output converges to the measured output. However, the convergence of the model

parameters to their actual values can be guaranteed only if the system is persistently

excited by the input signal. In most of the practical situations, the input vector is

PE if the battery is charged or discharged. In detail, the measured ϕ usually carries

sufficient information to the parameter estimation algorithm. Therefore, the model

parameters usually converged to the actual values in the simulations. However, the

convergence speed varies depending on the current input profile and Γ.

In conclusion, the proposed battery model and the parameter identification method

are validated by the simulations and the battery experiment. Simulation and exper-

imental results show that the first-order Thevenin ECM can accurately reflect the

battery dynamics. The results also demonstrate the effectiveness of the online param-

eter estimation algorithm under noisy sensor measurements. Especially, if stability

is the requirement to meet in any state estimation algorithm, the adaptive law gains

more importance to calculate the model parameters. The first-order Thevenin model

with the adaptive law-based parameter estimation algorithm can be used for the SoC

estimation algorithms in real-time applications including EVs.
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Chapter 4

The SoC and OCV Relationship

A relationship between the SoC and the OCV is essential for all ECM-based SoC esti-

mation algorithms. This relationship must be predefined to execute the SoC estimation

algorithm. It is challenging to define an accurate relationship because the relationship

changes due to operational conditions, battery ageing, and battery hysteresis. Battery

hysteresis is a complex phenomenon that causes OCV voltage differences between the

charging and discharging cycles. Battery ageing and the ambient temperature signifi-

cantly affect the SoC-OCV characteristic. Despite the relationship is affected by these

aforementioned factors, it is commonly obtained by an offline SoC drop test. After SoC

and OCV data points are collected, the nonlinear model is determined by applying a

curve fitting to the data. The most widely used nonlinear model is the polynomial

function, but there are other types of functions used to model the relationship. For

example, a combination of a linear function, a power function, and a logarithmic func-

tion is proposed to describe the OCV model by Plett 2004b. Rui Xiong, Sun, et al.

2013 modified Plett’s SoC-OCV model by adding a polynomial function. Tong et al.

2015 proposed another SoC-OCV model by removing the power functions from the

model proposed by Plett 2004b.

The nonlinear SoC-OCV relation is commonly assumed to be known and is used to

map a value of OCV to its corresponding SoC value. However, the true SoC-OCV

relation changes due to battery ageing and temperature change. This difference is

directly reflected as an error in SoC estimation by Zheng et al. 2018. Similar to the

parameter estimation, the SoC-OCV relation could be obtained through an experimen-
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tal procedure explained by Shehab El Din et al. 2018, which is vulnerable to a change

in operational conditions. The effect of the SoC-OCV model and characterisation tests

on the accuracy of SoC estimation is investigated by Knap et al. 2021. Different types

of tests are performed to acquire the SoC-OCV characteristic depending on various

operational conditions. Nonetheless, this relationship can only be applied to a specific

battery and condition used during the test. The SoC-OCV curve at different tempera-

tures is identified offline and mapped by using the polynomial electrochemical equation

by Shu et al. 2020. The equation does not consider the effect of battery ageing on the

SoC-OCV curve, which deteriorates the accuracy of SoC estimation eventually. Song

et al. 2019 obtained the curve by sorting the estimated OCV according to SoC calcu-

lated using the CC technique. However, it is expected that the accuracy of the curve

decreases with time since the CC technique stores the error at each calculation step.

Dewangga et al. 2018 modelled the relation by using piece-wise linear functions and

it is assumed that the SoC-OCV relation is fixed, which does not take into account

the changes in the true relation. We propose an adaptive estimation algorithm for the

SoC with a new nonlinear SoC-OCV curve. The algorithm estimates the parameters

describing the SoC-OCV curve based on the battery boundary conditions and current

measurement. Unlike other algorithms, the proposed method does not require hybrid

methods and high experimental labour. In our work, the average SoC estimation error

is calculated as less than 1.53% in computer simulations and 2.48% in battery exper-

iment. To the best of the authors’ knowledge, these results show superiority over the

results in the literature.

The error in the curve fitting or the error due to the change in the actual relationship

degrades the SoC estimation accuracy. These foreknown error sources can be mitigated

by estimating the nonlinear relationship in real time. This chapter introduces a novel

technique to obtain the relationship online. Thus, the estimated SoC-OCV relationship

considers the changes in operational conditions, battery ageing, and battery hysteresis.

4.1 The SoC-OCV relationship modelling

A novel online method is proposed to establish the SoC-OCV relationship in real-time.

The proposed method obtains the SoC-OCV relationship by establishing a param-

eter estimation problem. Firstly, the OCV estimation is required for the real-time
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SoC-OCV curve construction. Therefore the KF based OCV estimation algorithm is

introduced in the following section.

4.1.1 OCV Estimation Using Kalman Filter

As OCV slowly varies in most of the practical cases, it is assumed to be a piece-wise

constant, hence

Voc,k+1 = Voc,k + wVoc,k (4.1)

where Voc is the OCV, wVoc,k is the zero-mean Gaussian random process noise. The

propagation of the current, Ia, is given by

Ia,k+1 = α̂kIa,k + (1− α̂k) Ik + wIa,k (4.2)

where α̂k = θ̂
(1)
k , wIa,k is the zero-mean Gaussian random process noise. wVoc,k and

wIa,k are independent to each other. Equations (4.1) and (4.2) are the governing

state-space equations. The measurement equation is given by

Ṽt,k = Voc,k − Ia,kR̂p − IkR̂0 + vy,k (4.3)

where Ṽt,k is the measured terminal voltage, Ik is the charging or discharging terminal

current at k-th sample and vy,k is the measurement noise. In a compact form,

xk+1 = Akxk +Bkuk + wx,k

yk = Ckxk +Dkuk + vy,k

(4.4)

where

xk =

[
Ia,k Voc,k

]T
, yk = Ṽt,k, uk = Ik

Ak =

α̂k 0

0 1

 , Bk =

1− α̂k

0

 , Cwx,k =

wVoc,k

wIa,k


Ck =

[
−R̂p 1

]
, Dk = −R̂0,

(4.5)

the covariance of wx,k is Q and the variance of vy,k is r. Note that the measurement

noise is independent from the process noise.
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4.1.2 Model construction in real-time

In general, the slopes of the SoC-OCV curve change drastically from the low values

to the high values. The nonlinear function must be a one-to-one increasing nonlinear

function as SoC increases. Firstly, the potential candidate model of the SoC-OCV

relationship must meet these two requirements. Secondly, the number of model pa-

rameters to be identified must not be more than three. The latter requirement allows

us to estimate the model parameters in real-time based on the boundary conditions

and measurements.

Considering these two requirements, we establish the following novel nonlinear model

to capture these characteristics with three modelling parameters:

Voc = a log(z) + bez
3
+ c (4.6)

where a, b and c are the coefficients to be estimated, which are different for every

battery and vary for each condition, z is the SoC in [δ, 1] and δ is a small positive

number. The SoC below δ is considered to be zero. This nonlinear equation expresses

the typical shape of the SoC-OCV curve and their variations. The logarithmic term

is to capture relatively fast change in the OCV in low SoC regions. The exponential

term is to capture the OCV change in the rest of the SoC regions. The constant

term describes the nominal OCV value. By estimating the three parameters, the esti-

mated SoC-OCV curve in real-time adapts to the variations caused by the operational

condition and battery condition.

In electronics, the lower cut-off voltage is the voltage at which the battery is fully

discharged. At this voltage, the battery SoC is equal to 0 as follows:

Vlow = Voc|z=0 ≈ Voc|z=δ ≈ a log δ + b+ c (4.7)

where Vlow is the lower cut-off voltage of the battery, which is given in the battery

specifications. Similarly, Voc is equal to the higher cut-off voltage, Vhigh, when the

battery is fully charged, as follows:

Vhigh = Voc|z=1 = be+ c (4.8)
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Subtract (4.7) from (4.8)

Vhigh − Vlow = b(e− 1)− a log δ (4.9)

Solve for b as follows:

b = b(a) =
∆Vhl + a log δ

e− 1
(4.10)

where ∆Vhl = Vhigh − Vlow. Substitute (4.10) into (4.8), and solve for c as follows:

c = c(a) = Vhigh − b(a)e (4.11)

The derivative of (4.6) with respect to z is

dVoc
dz

=
a

z
+ 3bez

3
z2 (4.12)

Solve the equation for a

a =
f(dVoc/dz, z)

g(z, δ)
=

(dVoc/dz) z (e− 1)− 3∆Vhle
z3z3

(e− 1) + 3ez3z3 log δ
(4.13)

The number of the parameter to be estimated for the SoC-OCV curve is reduced to 1,

i.e., estimating a given by (4.13). The denominator of (4.13), g(z, δ), may approach

zero depending upon z and δ and it would cause the numerical problem.

Algorithm 1 is to prevent the numerical problem to calculate a. The current value of

b is assumed to be constant for the neighbourhood of the singular point and (4.12)

is used directly to calculate a. The calculated a in the algorithm denoted by ãk, is

treated as the measurement in the estimation algorithm presented later.

Algorithm 1 Calculation of ãk

1: Set ϵ1 > 0, a small positive number
2: Calculate g(ẑk, δ) = (e− 1) + 3eẑ

3
k ẑ3k log δ

3: if |g(ẑk, δ)| < ϵ1 then
4: Let b̂k = b̂k−1

5: Calculate ãk from (4.12)
6: ãk = ẑk(dVoc/dz)k − 3b̂ke

ẑ3k ẑ3k
7: else
8: Calculate ãk using (4.13)

To calculate (4.12) or (4.13), the OCV derivative with respect to the SoC is required.
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Providing the estimates of the OCV, V̂oc, the following difference is calculated:

∆V̂oc,k+1 = V̂oc,k+1 − V̂oc,k (4.14)

where V̂oc,k+1 and V̂oc,k are provided by the KF designed in Algorithm 2. In addition,

as the SoC propagation equation is given by T. Ouyang et al. 2021

zk+1 = zk −
Ik∆t

Qmax
(4.15)

where Qmax is the battery capacity constant and ∆ts is the sampling time, the differ-

ential z at step k + 1 is calculated as follows:

∆zk+1 = − Ik∆t

Qmax
(4.16)

where ∆zk+1 = zk+1 − zk. Therefore, the derivative can be approximated by the

first-order difference as follows:

dVoc
dz

∣∣∣∣
k+1

≈
∆V̂oc,k+1

∆zk+1
= −

∆V̂oc,k+1Qmax

Ik∆t
(4.17)

and the approximation with the current z are substituted into (4.13). Equation (4.6)

is now written as a function of z only. Therefore, the estimation of z leads to the

estimation of SoC-OCV curve.

The SoC estimation problem has the linear state propagation equation, (4.15), and

the nonlinear measurement equation, (4.6). The EKF for estimation z, i.e., ẑ, is given

in Algorithm 2, where the observation matrix is defined by the following Jacobian

Hk =
∂Voc
∂z

∣∣∣∣
z=ẑk,a=âk

=
âk
ẑk

+ 3b(âk)e
ẑ3k ẑ2k (4.18)

where âk is to be estimated.

The direct substitution of ãk in Algorithm 1 into (4.18), however, would amplify unde-

sirable noises in the measurements and the estimated values. Additional KF is designed

for estimating a, where it is assumed that a varies slowly in each sampling interval,

i.e.,

ak+1 = ak + wa,k (4.19)
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where wa,k is the process noise with the zero-mean and the variance equal to qa. To

apply the KF design procedure, ãk from Algorithm 1 is treated as the measurement

and assumed to have the following measurement noise characteristic:

ãk = a+ va,k (4.20)

where ãk is the measurement of the true a. va,k is the zero mean Gaussian measurement

noise, which is independent to the process noise, wa,k. To calculate the variance of

va,k, z
(i)
k samples are generated as follows:

z
(i)
k = ẑk + v

(i)
z,k (4.21)

where i = 1, 2, . . . , Ns, Ns is the number of samples and viz,k is the zero-mean Gaussian

with the variance equal to rz,k. The ã
(i)
k particles are calculated by substituting z

(i)
k

samples into Algorithm 1. The variance of va,k+1 is then calculated by the samples as

follows:

ra,k =

Ns∑
i=1

[
ã
(i)
k − āk

]2
Ns − 1

(4.22)

where āk =
∑
ã
(i)
k /Ns. Finally, the algorithm to estimate SoC is summarized in

Algorithm 2, where (·)k+1|k is the priori prediction of (·) and (·)k+1|k+1 is the posteriori

estimation of (·). Using separate KF algorithms to estimate OCV, coefficient a and

SoC is recommended in order to reduce computational cost.

Algorithm 2 includes three separate KF algorithms. The standard KF algorithm is

used to estimate the OCV and a separately and the EKF is utilised to estimate the

SoC.

4.2 Simulations

A battery with 100% SoC is discharged under different current profiles including con-

stant current profile, sinusoidal current profile, HPPC current profile and DST cycle

current profile. Note that the battery’s SoC is 99.95% in the DST cycle simulation

not to overcharge the battery at the start. These testing profiles are adopted to assess

the performance of the SoC-OCV curve construction algorithm under various dynamic
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Algorithm 2 Adaptive SoC estimation algorithm

1: Initialise: θ̂0, x̂0, P0, ẑ0, pz,0, â0 and pa,0
2: while true do
3: Obtain the measurement and input: Ṽt,k, Ik
4: Run the parameter estimation using (3.35), (3.36) & (3.19)
5: Run Algorithm 1 to obtain ãk
6: Calculate the variance of ãk using (4.21) & (4.22)
7: Propagate
8: x̂k+1|k = Akx̂k|k +Bkuk
9: Pk+1|k = AkPk|kA

T +Q
10: z using (4.15)
11: pz,k+1|k = pz,k|k + qz
12: âk+1|k = âk|k
13: pa,k+1|k = pa,k|k + qa
14: Update
15: Lk+1 = Pk+1|kC

T
k /

[
CkPk+1|kC

T
k + r

]
16: x̂k+1|k+1 = x̂k+1|k + Lk+1

(
Ṽt − V̂t,k+1|k

)
17: Pk+1|k+1 = (1− Lk+1Ck)Pk+1|k
18: Kz,k+1 = pz,k+1|kH

T
k /(Hpz,k+1|kH

T
k + rz)

19: Ka,k+1 = pa,k+1|k/(pa,k+1|k + ra,k+1)
20: âk+1|k+1 = âk+1|k +Ka,k+1

(
ã− âk+1|k

)
21: pa,k+1|k+1 = (1−Ka,k+1)pa,k+1|k

22: ẑk+1|k+1 = ẑk+1|k +Kz,k+1

(
Ṽoc − V̂oc,k+1|k

)
23: pz,k+1|k+1 = (1−Kz,k+1H)pz,k+1|k
24: Repeat

loading conditions. The battery’s maximum capacity is 0.85 Ah. The battery model

parameters are estimated online based on the adaptive law and fed into the algorithm.

For the simulation purpose, the actual SoC-OCV curve is modelled by a rational func-

tion given by

Voc(z) =

∑4
j=0 kjz

j∑4
j=0 qjz

j
(4.23)

where k0 = 16.65, k1 = 516.2, k2 = 519.9, k3 = 5.696, k4 = −4.523, q0 = 2.591,

q1 = 70.68, q2 = 61.26, q3 = 14.07, q4 = −24.92. The initial values of Voc, Ia, a,

and z are 7V, 0A, 0.1, and 0, respectively. The covariance and the variance of OCV

estimation are Q = 0.01I2×2 and r = 0.1, where I2×2 is the 2-by-2 identity matrix.

Vhigh is 8.4756V and Vlow is 6.4735V. δ is set to 0.001 and ϵ1 is set to 0.1. The initial

pz, pa, rz and ra are set to 0.001. Ns is set to 100.
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Chapter 4. SoC & OCV relationship 4.3. Battery experiment

Figure 4.1: Voc and Ia estimation under constant current discharge

4.3 Battery experiment

The battery test rig introduced in the previous chapter is used to validate the SoC-OCV

curve construction algorithm. The LiPo battery’s actual capacity is firstly calculated.

The SoC-OCV data points are then collected to acquire the relationship experimentally.

The experimental SoC-OCV relationship is compared to the SoC-OCV relationship

estimated using the proposed algorithm.

4.3.1 Battery capacity calculation

Battery specifications include the capacity of the battery along with the lower and

upper cut-off voltages. The real capacity may, however, differ slightly from the one

stated by the manufacturer. Consequently, the accuracy of the SoC estimation may be

affected. Therefore, the battery capacity needs to be experimentally calculated before

the estimation algorithm is executed. The experimental battery capacity is calculated

by drawing a constant current, i.e. 1C, from the fully charged battery. A battery

is considered fully discharged when it reaches the lower cut-off voltage value. This

process involves measuring how much current is drained from the battery and how

long it takes. In other words, the experimental capacity can be calculated from the
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Chapter 4. SoC & OCV relationship 4.3. Battery experiment

Figure 4.2: SoC and SoC-OCV curve coefficients estimation under constant current
discharge

area under the time versus the current graph. This procedure is repeated 5 times and

the average capacity is calculated as 0.96 Ah.

4.3.2 The SoC-OCV relationship calculation

The fully charged battery is discharged by 5% intervals until SoC reaches 80% to

establish the experimental SoC-OCV relation. After that, the SoC drop interval is

increased to 10% until the SoC reaches 20%. The SoC drop rate is again reduced to

5% until the battery is completely discharged. The SoC drop rate was changed to

better capture non-linearity at low and high SoC regions.

After each discharging step, the battery is left for resting for an hour. This is because
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the battery needs to reach the steady-state so that the measured terminal voltage can

be treated as Voc measurement. In the meanwhile, the corresponding SoC is calculated

using Coulomb counting method. The same process is repeated by charging the battery

with the same SoC drop rates to consider the Voc variations between charging and

discharging due to hysteresis. Finally, mean Voc and SoC values are calculated and

given in Table 4.1.

Table 4.1: SoC-OCV relation obtained from SoC drop test

z 0 0.05 0.1 0.15 0.2
Voc [V] 6.5688 7.2294 7.365 7.4088 7.4625

z 0.3 0.4 0.5 0.6 0.7
Voc [V] 7.5363 7.5813 7.6401 7.7304 7.8663

z 0.8 0.85 0.9 0.95 1
Voc [V] 8.0011 8.1325 8.2151 8.3038 8.3801

4.4 Results

Figure 4.3: Voc and Ia estimation under sinusoidal current discharge

Figure 4.1 shows the estimation result of Voc and Ia under constant current discharge

profile. In the parameter estimation results, it is observed that the estimate of the

model parameter Rp has tiny fluctuations due to the noise in the input current es-

78



Chapter 4. SoC & OCV relationship 4.4. Results

Figure 4.4: SoC and SoC-OCV curve coefficients estimation under sinusoidal current
discharge

pecially when the large Γ is used. Therefore, these fluctuations have been observed

in the Voc and Ia estimation. However, this does not have a serious impact on the

convergence of the state vector. As it is seen in Figure 4.1, estimated states converge

to their actual values around 15s, and the convergence is maintained to the end of the

simulation.

Figure 4.2 shows estimation results of the SoC and the coefficients a, b, and c under

constant current discharge. The SoC converges to its true value within 15s as shown

at the top of Figure 4.2. The coefficient a converges to the constant value which is

around 0.27 whereas b and c converge to constant values that are around 0.47 and

7.25, respectively.
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The slight fluctuations in the estimated coefficients are observed in the middle SoC

region, i.e. around 52% of SoC. In this neighborhood, the denominator of (4.13)

approaches zero. Algorithm 1 mitigates the singular issues. However, these fluctuations

do not affect the convergence of the SoC. Once the singular point is passed, these

fluctuations disappeared.

Figure 4.3 demonstrates the Voc and Ia estimation results under the sinusoidal current

input profile. These two states converge to their true values very fast within 10s. The

sinusoidal current excites the system better compared to the constant current discharge

profile. Thus, the model parameters converge faster compared to the constant current

discharge scenario. This improves the convergence performance of the Voc estimation

algorithm. Compared to the Voc convergence under the constant current discharge

profile, the estimated Voc converges to true Voc faster under sinusoidal input current

profile as it is in Figure 4.3.

Figure 4.4 illustrates the estimation results of the SoC and the coefficients a, b and

c under sinusoidal input current discharge. The coefficients converged to the same

constant values as the coefficients calculated in the constant current discharge case.

Relatively faster convergence of Voc increased the SoC-OCV curve algorithm perfor-

mance as well. As shown in Figure 4.4, the SoC converges less than 15s and the

coefficients converge relatively faster compared to the result under constant current

discharge. Moreover, when the denominator of (4.13) approaches zero, the estimated

coefficients show smaller fluctuations compared to the fluctuations in the coefficients

in the constant current discharge case.

The proposed algorithm is performed under more complicated dynamic loading profiles.

Firstly, the battery is discharged under the DST current profile. Figure 4.5 shows the

Voc estimation result along with the current input profile. Figure 4.6 demonstrates

the estimated Ia. These two states converge to their true values within 10s. The high

frequency in the DST current profile causes tiny fluctuations in the estimated Voc and

Ia values. However, the proposed algorithm robustly estimated the states until the

end of the simulation.
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Figure 4.5: Dynamic stress test Voc estimation

Figure 4.6: Dynamic stress test Ia estimation

Figure 4.7 demonstrates the SoC and the coefficient a, b, and c estimation result

under the DST current profile. The coefficients converged to the same constant values
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Figure 4.7: SoC and SoC-OCV curve coefficients estimation under DST cycle discharge

same as the constants in the constant current discharge and the sinusoidal discharge

cases. The convergence speed of SoC is almost the same as the convergence speed of

Voc. The coefficients a, b, and c converge faster compared to those under constant

current and sinusoidal current input discharging profiles. This is due to the faster

convergence of the model parameters under DST current profile. The fluctuations in

the coefficients around the singular point are more obvious in this case. However, these

tiny fluctuations do not have a significant effect on the SoC estimation accuracy.
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Figure 4.8: HPPC Voc estimation

Figure 4.9: HPPC Ia estimation

Figures 4.8 and 4.9 show the convergence of Voc and Ia under HPPC current profile.

These two states converged to their true values and remained converged until the end
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Figure 4.10: SoC and SoC-OCV curve coefficients estimation under HPPC cycle dis-
charge

of the simulation. The pulses in the current input do not cause any jumps in the

estimated states. Figure 4.10 shows the convergence of the SoC and the coefficients

a, b, and c. The SoC and the coefficients converge fast under HPPC current profile

similarly to the previous cases. The proposed algorithm can accurately estimate the

battery states under different dynamic loading conditions.

The new nonlinear SoC-OCV model is tested to assess its performance in terms of

capturing the variations in the actual SoC-OCV relationship. The SoC-OCV charac-

teristic is dependent on the ambient temperature. When the ambient temperature is

lower, the OCV becomes higher or vice versa, however, this behavior is not observed

at high SoC regions, i.e. SoC > 80%, (R. Zhang et al. 2018), (Choi et al. 2020). Figure
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4.11 shows that the proposed model adequately represents the nonlinear SoC-OCV

relation and adapts to the curve variations at different temperatures.

Figure 4.11: Estimated & True SoC-OCV curves at different temperatures

Figure 4.12: Real battery’s Voc estimation in comparison with the experimental Voc

The battery experiment is conducted to validate the proposed algorithm. Figure 4.12
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Figure 4.13: Real battery’s SoC estimation in comparison with the experimental SoC
& Real battery’s SoC-OCV curve coefficients

shows the estimated Voc in a solid red line whereas the experimental Voc is in the

dashed black line. The experimental Voc is obtained from the data given in Table 4.1.

The estimated Voc converges to the experimental Voc less than 1s. The accuracy in Voc

estimation is requisite for the accurate estimation of SoC.

The estimates of SoC-OCV curve coefficients are shown in Figure 4.13 (i-iii) and Figure

4.13 (iv) illustrates the SoC convergence. The SoC converges to its experimental value

in less than 1s. It is vital to accurately estimate the SoC at low and high SoC values

because it is necessary to know when to stop charging or discharging the battery. In

these nonlinear regions, the estimated SoC agrees well with the experimental SoC as

shown in Figure 4.13 (iv).

4.5 Discussion

The real-time SoC estimation algorithm is proposed based on a new SoC-OCV model.

The OCV is estimated using the KF, the SoC is estimated using the EKF and an-

other KF is used to develop the nonlinear curve estimation algorithm. The proposed

algorithm is validated by performing the computer simulation under different dynamic

loading conditions. All results show that the proposed algorithm can accurately con-

struct the SoC-OCV relationship in real-time. In all cases, the SoC is accurately
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estimated. The proposed algorithm is also validated by the battery experiment. The

experimental results validate that the proposed method provides an accurate estima-

tion of SoC. According to the experimental results, the SoC estimation error is less

than 2.5%, which is given in Figure 4.14 iii).

Figure 4.14: Errors in OCV and SoC

The simulation results demonstrated that the proposed algorithm also captures the

variations in the SoC-OCV relationship. The proposed algorithm has two major ben-

efits: The first benefit is that using the proposed algorithm in real-time application

eliminates the requirement of preliminary laborious lab work. The second one is that

it mitigates one of the error sources in the SoC estimation. To be more precise, the

actual relationship is expected to change with the operational conditions and battery

ageing. The proposed algorithm updates the nonlinear relationship according to the

available measurements. Therefore, any changes in the actual relationship are reflected

in the estimated relationship. This reduces the SoC estimation error due to the bias

in the relationship. These results show that the proposed algorithm is a promising

candidate to develop a real-time SoC estimation algorithm. The proposed method

could be directly implemented for many applications including EVs.
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Current measurement noise

mitigation

Although various SoC estimation algorithms have been developed to design a reliable

BMS, an insufficient effort has been made to mitigate the error sources in SoC estima-

tion methods in the literature. One of these error sources is the noisy current input

measurement corrupted by two stochastic noises: zero-mean Gaussian white noise and

the current bias noise. This error source needs to be mitigated to develop a more

realistic and reliable battery SoC estimation algorithm.

Xingtao Liu et al. 2014 found that the bias noise can reach up to 1% in the battery

experiments. It can reach up to 200 mA in practice due to the electromagnetic envi-

ronment and temperature. However, the maximum value of bias noise depends on the

application. Xingtao Liu et al. 2014 treated the bias noise as a constant parameter

to be estimated with battery model parameters. The convergence of battery model

parameters to their actual values is not guaranteed. Therefore, the bias convergence

to its actual value cannot be guaranteed. Incorrect bias estimation would lead to er-

roneous SoC estimation. The maximum SoC error is calculated as 7.25% with 0.15A

bias noise. Y. Xu et al. 2020 proposed a dual KF algorithm to filter the SoC twice

to reduce the current measurement error and battery modelling error. The SoC esti-

mation error is calculated to be within 2%. Despite the increased computational cost,

this method cannot provide certain mitigation of the bias noise. Chun et al. 2016 de-

veloped a method to estimate the SoC without sensing the current measurement. The
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method only uses the filtered terminal voltage measurements of each cell in the battery

pack. To estimate the load current based on terminal voltage sensor measurements, it

is necessary to use a high-quality but costly voltage sensor; otherwise, the current esti-

mate is likely to be less accurate. An improved fuzzy adaptive KF is designed by Yan

et al. 2013 to estimate the SoC of EVs working under poor sensor measurements. The

system noise and the measurement noise are assumed to be zero-mean white noise and

the proposed method only updates their statistical properties. However, the current

sensor is also corrupted by the bias noise and it is neglected. To the best of the authors’

knowledge, our work is the first direct attempt to consider two stochastic noises in the

current measurement in the SoC estimation. Our proposed method reduced the SoC

estimation error from around 11.3% to 0.56% in computer simulations. In the battery

experiment, the SoC error is reduced from 1.74% to 1.12%. These results show that

our proposed method reduces the SoC estimation error more compared to the methods

in the literature.

The majority of the SoC estimation algorithms neglect the noise in the current input.

This allows the use of the standard KF and its nonlinear filtering versions to estimate

SoC. The standard KF provides an optimal estimation of the system states when the

input signal includes the zero-mean Gaussian white noise with a known variance or it

is noiseless. Considering noisy current input with non-Gaussian noises restricts the use

of standard KF and its different versions. Therefore, the mitigation of the error source

generated by the current sensor has two requirements: estimation of the current bias

and modification of the standard KF considering the current measurement model.

5.1 Current sensor model

The current sensor measurement is modelled as follows:

Ĩ = I + β + vi (5.1)

where Ĩ is the current sensor measurement, I is the true current, β is the random walk

current measurement bias and vi is the zero-mean Gaussian white noise with variance

rvi .
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5.1.1 Gaussian white noise with zero mean

The Gaussian white noise is a typical sensor noise with zero mean and the fundamental

property given as follows:

E[vi,k] = 0 (5.2a)

E[vi,k1v
T
i,k2 ] = σ2vδ∆t (5.2b)

where for all k and any k1 and k2 are in [0,∞), σ2v is the noise variance. The direct

delta function fdd(δ, k1, k2) = δ∆t is defined as follows:

fdd(δ, k1, k2) =


1, only if k1 = k2

0, otherwise

5.1.2 Current bias noise

The second stochastic noise corrupting the current measurement is the bias, β. The

bias is the random walk, which means the difference between two adjacent sample

points is the independent random increment that follows the normal distribution. Its

mean and variance are given as follows:

E[βk − βk−1] = 0 (5.3a)

E{[βk − βk−1][βk − βk−1]
T } = σ2β∆t (5.3b)

where σ2β is a positive constant. β is propagated by the following equation:

βk = βk−1 +∆βk (5.4)

where ∆βk is the random increment. ∆βk is expressed by

∆βk = ηk∆t (5.5)

where ηk is a random number generated from the normal distribution. The properties

given in (5.3) must be separately satisfied. Rearrange (5.4) and substitute into (5.3a)

as follows:

E[βk − βk−1] = E[∆βk] = E[ηk∆t] = E[ηk]∆t = 0 (5.6)
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Therefore the mean value of ηk must be zero, i.e., E[ηk] = 0. Secondly, the random

increment property given in (5.3b) must be satisfied. Thus, rearranging (5.4) and

substituting into (5.3b) yield

E{[βk − βk−1][βk − βk−1]
T } = E[ηk∆tη

T
k ∆t] = E[ηkη

T
k ](∆t)

2 = σ2β∆t (5.7)

Hence the variance of ηk can be calculated by

E[ηkη
T
k ] = σ2β/∆t (5.8)

It is expected that estimating the SoC based on the corrected current input increases

the accuracy of the estimated SoC. The measured current can be corrected by calcu-

lating its estimate based on (5.1). The estimated current input can be expressed as

follows:

E[I] =E[Ĩ − β − vi] = E[Ĩ]− E[β]− E[vi]

Î =Ĩ − β̂ (5.9)

Equation (5.9) implies that the estimation of β is required to calculate Î. Therefore, the

current bias estimation algorithm is firstly introduced in this chapter. Afterward, the

KF algorithm given in Algorithm 3 is modified taking into account the aforementioned

noises.

5.2 Battery modelling for bias estimation

The current bias β is modelled as follows:

βk = βk−1 +∆βk (5.10)

where ∆βk is the variation in β between two sampling points. The calculation of

β requires ∆βk. Therefore, the expression of ∆βk is sought based on the one step

difference of the measurement residual.
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The measured Ṽt at sampling time k is written as follows:

Ṽt,k = Voc,k − IkR0 − Ia,kRp + vVt,k (5.11)

where unadorned symbols represents the true values and vk is a zero-mean white noise.

Rewrite (5.11) for sampling time k − 1

Ṽt,k−1 = Voc,k−1 − Ik−1R0 − Ia,k−1Rp + vVt,k−1 (5.12)

Subtract (5.12) from (5.11)

∆Ṽt,k = ∆Voc,k −∆IkR0 −∆Ia,kRp +∆vVt,k (5.13)

where ∆[·]k+1 = [·]k+1 − [·]k and ∆vVt,k = vVt,k − vVt,k−1.

The estimate of Vt,k is calculated according to the noisy current input measurement

as follows:

V̂t,k = V̂oc,k − ĨkR̂0 − Îa,kR̂p (5.14)

Similarly, the estimate of Vt at sampling time k − 1 can be written as follows:

V̂t,k−1 = V̂oc,k−1 − Ĩk−1R̂0 − Îa,k−1R̂p (5.15)

Subtract (5.15) from (5.14)

∆V̂t,k = ∆V̂oc,k −∆ĨkR̂0 −∆Îa,kR̂p (5.16)

In (5.16), to calculate the difference of OCV at two sampling points, we could use the

estimated SoC at two sampling points and convert them to the corresponding OCV

using the SoC-OCV relationship. However, two estimated SoC could have inconsistent

values to charging (increasing SoC) or discharging (decreasing SoC) of the battery.

Instead, firstly, the previous value of SoC is calculated using the following Coulomb
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Figure 5.1: Beta estimatior
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counting equation:

ẑk−1 = ẑk +
[Ĩk − β̂k]∆t

Qmax
(5.17)

where zk is substituted by the estimated zk from the KF. Then, the calculated ẑk−1 is

transformed into the estimated V̂oc,k−1 through the SoC-OCV relationship. The OCV

difference is calculated by subtracting V̂oc,k−1 from V̂oc,k, i.e., ∆V̂oc,k = V̂oc,k − V̂oc,k−1.

The one sampling step difference of the measurement residual can be calculated by

subtracting (5.16) from (5.13) as follows:

∆[∆Vt,k] =∆Ṽt,k −∆V̂t,k

=∆Voc,k −∆IkR0 −∆Ia,kRp +∆vVt,k −∆V̂oc,k −∆ĨkR̂0 −∆Îa,kR̂p

=(∆Voc,k −∆V̂oc,k) + (∆Ik −∆Ĩk)R̂0 + (∆Ia,k −∆Îa,k)R̂p +∆vVt,k

=−∆βkR̂0 −∆vi,kR̂0 +∆vVt,k (5.18)

The difference ∆βk can be calculated as follows:

∆βk = −
∆[∆Vt,k]

R̂0

+ es,k (5.19)

where es,k = ∆vVt,kR̂0 −∆vi,k is a zero-mean white noise. Directly substituting ∆βk

into (5.10) would amplify undesired noises in the estimated β values. Thus, the stan-

dard KF is designed for estimating βk and provided in the Algorithm 5. Figure 5.1

shows the block diagram of the beta estimation algorithm.

5.3 Modification of standard Kalman filter for batteries

The standard Kalman filter given in Algorithm 3 is widely used to solve linear optimal

estimation problems. Consider the following generic model for a battery system:

xk+1 = Axk +Buk + wk (5.20a)

yk = Cxk +Duk + vk (5.20b)
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where

xk =

[
Ia,k zk

]T
, yk = Ṽt,k, uk = Îk

A =

α̂k 0

0 1

 , B =

 1− α̂k

−∆t/Qmax

 , wk =

wIa,k

wz,k


C =

∂Vt
∂x

∣∣∣∣
x=x̂k

D = −R̂0,

(5.21)

xk is the state vector, yk is the Vt measurement and u is the input. A is the system

matrix, B is the control matrix, C is the measurement-system matrix and D is the

measurement-control matrix. wk and vk are the process and measurement Gaussian

noises with zero mean and known covariance matrices Q and R, respectively. Note

that wk is independent of vk and they are assumed to be stationary over time. The

covariance of the process noise model and that of the measurement noise model are

assumed to be stationary over time.

Algorithm 3 Standard Kalman Filter Algorithm (Crassidis et al. 2004)

1: Initialise: x̂−0 = E[x0], P
−
0 = E[(x0 − x̂0) (x0 − x̂0)

T ].
2: while true do
3: Update:
4: Kk = P−

k C
T (CP−

k C
T +R)−1

5: x̂k = x̂−k +Kk[yk − (Cx̂−k +Duk)]
6: Pk = (I−KkC)P

−
k

7: Propagate:
8: x̂−k+1 = Ax̂k +Buk
9: P−

k+1 = APkA
T +Q

10: Repeat

The input u in (5.20) is replaced with Ĩ in battery systems to modify the KF to

consider the aforementioned two stochastic noises in the input. The derivation of the

noisy input Kalman filter (NiKF) starts with updating the priori prediction of the

state vector as follows:

x̂k = x̂−k +Kk(yk − ŷk) (5.22)

where Kk is the Kalman gain and the (yk − ŷk) term is the measurement residual.

Similar to the propagation part, the derivation of the updated part starts with defining
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the posterior state estimation error given as follows:

ek = xk − x̂k

= xk − x̂−k −Kk(Cxk +DIk + vk − Cx̂−k −DÎk)

= xk − x̂−k −Kk[Cxk +D(Ĩk − βk − vi,k) + vk − Cx̂−k −D(Ĩk − β̂k)]

= (I−KkC)e
−
k −Kkvk +KkDvi,k +KkD(β̂k − βk) (5.23)

where KkD(β̂k −βk) term is neglected since lim
t→∞

β̂ → β in most of the practical cases.

The approximation of (5.23) is given by:

ek = (I−KkC)e
−
k −Kkvk +KkDvi,k (5.24)

The posterior state estimation error covariance matrix is as follows:

Pk = E[eke
T
k ]

= E[((I−KkC)e
−
k +KkDvi,k −Kkvk)((I−KkC)e

−
k +KkDvi,k −Kkvk)

T ]

= (I−KkC)P
−
k (I−KkC)

T +KkDrvi,kD
TKT

k +KkRkK
T
k (5.25)

where E[·] represents the expectation operator, Rk is the covariance of vk, rvi,k is the

variance of vi,k. Note that vk, vi,k and e−k are independent of each other.

The Kalman gain matrix is derived by minimising the trace of Pk. The trace of Pk is

the sum of the mean squared errors. Expand (5.25) as follows:

Pk =P−
k −KkCP

−
k − P−

k C
TKT

k +Kk(CP
−
k C

T +Drvi,kD
T +Rk)K

T
k (5.26)

Taking the trace of (5.26) gives

T [Pk] =T [P
−
k ]− 2T [KkCP

−
k ] + T [Kk(CP

−
k C

T +Drvi,kD
T +Rk)K

T
k ] (5.27)

Differentiate (5.27) with respect to Kk

dT [Pk]

dKk
= −2(CP−

k )T + 2Kk(CP
−
k C

T +Drvi,kD
T +Rk) (5.28)
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Equalising (5.28) to zero and solving for Kk yield

Kk = (P−
k C

T )(CP−
k C

T +Rk +Drvi,kD
T )−1 (5.29)

The state is propagated as follows:

xk+1 = Axk +BĨk (5.30)

The posterior error covariance matrix is propagated as follows:

e−k+1 =xk+1 − x̂−k+1

=Axk +BIk + wk −Ax̂−k −BÎk

=Axk +B(Ĩk − βk − vi,k) + wk−1 −Ax̂−k −B(Ĩk − β̂k)

=A(xk − x̂−k ) + wk −Bvi,k −B(β̂k − βk) (5.31)

where (·)−k represents the priori prediction of (·)k. In (5.31), B(β̂k − βk) term is

neglected because the estimated β̂ converges to its actual value β in most of the

practical cases, i.e., lim
t→∞

β̂ → β. The final expression of the priori state prediction

error is given as follows:

e−k+1 = Aek + wk −Bvi,k (5.32)

The prior covariance matrix is expressed as follows:

P−
k+1 =E[e−k+1e

−
k+1

T
]

=E[(Aek + wk −Bvi,k)(Aek + wk −Bvi,k)
T ]

=APkA
T +Brvi,kB

T +Q (5.33)

where rvi,k is the variance of vi,k. Note that ek, wk, and vi,k are independent of each

other.

The summary of the NiKF is given in Algorithm 4 where the covariance of wk is Q

and the variance of vk is r. Note that the measurement noise is independent from the

process noise.
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Algorithm 4 NiKF Algorithm

1: Initialise:
2: x̂−0 = E[x0] , P

−
0 = E[(x0 − x̂0) (x0 − x̂0)

T ]
3: while true do
4: Update:
5: Kk = (P−

k C
T )(CP−

k C
T +Rk +Drvi,kD

T )−1

6: x̂k = x̂−k +Kk[yk − (Cx̂−k +DÎk)]
7: Pk = (I−KkC)P

−
k (I−KkC)

T +KkDrvi,kD
TKT

k +KkRkK
T
k

8: Propagate:
9: x̂−k+1 = Ax̂k +BÎk

10: P−
k+1 = APkA

T +Brvi,kB
T +Q

11: Repeat

5.4 Simulation

The fully charged battery with 0.85Ah capacity is discharged under different current

profiles to assess the performance of the bias estimator algorithm. The battery sensor

bias is generated according to the theoretical aspect introduced in 5.1.2. The bias β

is generated and added to the true current input I along with the Gaussian

Figure 5.2: Current bias estimation under constant current discharge
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Figure 5.3: SoC estimation under constant current discharge

white noise. The available voltage sensors can measure Ṽt with the error of 1–2 mV

(Zheng et al. 2018). Therefore, we assume the ±3σV = ±1.5mV and the standard

deviation in Vt, σV , is calculated to be σV = 0.05mV. We also tested the algorithm

with larger σV values such as σV = 1mV, σV = 2mV, σV = 5mV, and σV = 10mV.

In comparison with the current bias noise, Zheng et al. 2018 concluded that the white

noise in the current measurement does not have a significant effect on the SoC estima-

tion. Therefore, the standard deviation in vi, σi, is chosen as same as the one in σV .

The sampling period is 0.01s. The true battery physical parameters are as follows:

R0 = 0.3Ω, Rp = 0.1Ω, and Cp = 10F. The standard deviation in β, σβ, is set to 0.001.

To initialise the beta estimation algorithm, the initial β is randomly produced within

the sample space of β which is Ωβ = [0, 100mA] The initial pβ is set to 0.001. The

initial state Ia is set to 0 whereas the initial estimate z is randomly drawn from the

uniform distribution in [0,1]. Note that the initial true z is 1 or 0.995.
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Algorithm 5 SoC estimation algorithm with current input noise mitigation

1: Initialise: x̂−0 , P
−
0 , β̂−0 , p

−
β,0

2: Generate β0 using a random number generator
3: while 0 < z < 1 do
4: Generate true β:
5: ηβ ∼ N(0, σ2β/∆t)
6: ∆βk = ηk∆t
7: βk+1 = βk +∆βk
8: Add noise to the true current:
9: Ĩk = Ik + βk +N(0, σ2i )

10: Update β
11: Kβ,k = p−β,k(p

−
β,k + rβ)

−1

12: β̂k = β̂−k +Kβ,k∆βk
13: pβ,k = (1−Kβ,k)p

−
β,k

14: Propagate β̂ and pβ:

15: β̂k+1 = β̂k
16: pβ,k+1 = pβ,k + qβ
17: Estimate SoC using NiKF
18: Update:
19: Kk = (P−

k C
T )(CP−

k C
T +Rk +Drvi,kD

T )−1

20: x̂k = x̂−k +Kk[yk − (Cx̂−k +DÎk)]
21: Pk = (I−KkC)P

−
k (I−KkC)

T +KkDrvi,kD
TKT

k +KkRkK
T
k

22: Propagate:
23: x̂−k+1 = Ax̂k +BÎk
24: P−

k+1 = APkA
T +Brvi,kB

T +Q
25: Repeat

The initial priory error covariance matrix is given as follows:

P−
0 =

10−3 0

0 10−3


The nonlinear SoC-OCV curve model introduced in Chapter 4 is used to convert the

estimated V̂oc into the estimated ẑ. The nonlinear equation has the following coeffi-

cients: a = 0.2539V, b = 0.4566V, c = 7.245V and δ = 0.008. The variance qβ is set

to 0.001 and Q is set to Q = [10−3 0; 0 10−3].

5.5 Results

The bias estimation algorithm was tested under four different current input profiles,

including constant current profile, sinusoidal current profile, DST cycle current profile,

and HPPC cycle current profile. The results show that our input current bias noise

mitigation algorithm corrects the input current measurement so that it increases the
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Figure 5.4: Bias estimation under sinusoidal current discharge

Figure 5.5: SoC estimation under sinusoidal current discharge
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accuracy of the SoC estimation.

Figures 5.2, 5.4, 5.6, and 5.8 show the added true bias noise to the current measurement

and its estimation under different dynamic loading conditions. In these figures, the

true β is shown in a dashed black line and the estimated β̂ is shown in a red solid

line. These figures also show the true current input in a dashed blue line with a

marker ’o’ and the estimated current input in a solid green line with a marker ’*’. The

Figure 5.6: Bias estimation under HPPC current discharge

estimation result of β under constant current discharge profile is given in Figure 5.2.

The current bias β has the maximum value of around 90mA which is equal to 11% of

the true current input. In the simulation, the bias changes significantly. The proposed

algorithm manages to calculate β and corrects the current input measurement. The

estimated current and the true current signals are shown at the bottom of Figure 5.2.

The SoC estimation result under constant current discharge profile using the current

input measurement is shown in blue dash-dotted in Figure 5.3. The estimated SoC

using the estimated current measurement is shown in a red solid line whereas the true

SoC is shown in a black-dashed line. The SoC estimation using the current input

measurement directly shows large errors because of the current bias.
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Figure 5.7: SoC estimation under HPPC current discharge

Figure 5.8: Bias estimation under DST current discharge
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On the other hand, the SoC estimation using the estimated current input converges

to the true SoC reasonably close. It shows that the proposed algorithm accurately

calculates the estimated β and corrects the current input measurement during the

entire simulation.

Figure 5.9: SoC estimation under DST current discharge

Figure 5.5 shows the SoC estimation result according to the current input measure-

ment along and corrected current input along with the true SoC under the sinusoidal

current input profile. Figure 5.4 shows the true β and the estimated β. The true β

reached almost 100mA at the beginning and the end of the simulation. Therefore, the

error in the SoC estimation calculated according to the current input measurement is

high at the beginning and the end of the simulation. However, the proposed algorithm

accurately corrected the current input measurement. Thus, the SoC estimation based

on the estimated current input is accurately calculated using the NiKF. The conver-

gence of β required a longer time due to the higher initial error in β compared to the

time required in the constant current discharge simulation.
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Figure 5.6 shows β estimation result under HPPC current profile. The bias β reaches

around 200mA at the end of the simulation. Therefore, the error is increased in the

SoC estimation when it is calculated according to the current input measurement as

shown in Figure 5.7. However, the estimated β converged to its true value very fast.

Hence, the corrupted current input measurement is corrected and the SoC estimation

error due to the corrupted current measurement is significantly removed as shown in

Figure 5.7.

Figure 5.10: The SoC and β estimation when σVt = 0.01 and σi = 0.01

The DST current profile is also adopted to assess the accuracy of β estimation as shown

in Figure 5.8. In this simulation, β reaches the maximum value of 120mA. When the

bias in the current input measurement is the maximum, the SoC estimation according

to the measured current input has the largest error as shown in Figure 5.9. Similar to

previous results, our algorithm corrects the current input measurement by estimating

β accurately and subtracting it from the current input measurement. Therefore, the

SoC estimation calculated according to the estimated current input is well aligned with

the true SoC until the battery is fully discharged as shown in Figure 5.9.
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Figure 5.11: The SoC and β estimation when σV = 0.005 and σi = 0.005

Figure 5.12: The SoC and β estimation when σV = 0.002 and σi = 0.002
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Figure 5.13: The SoC and β estimation when σV = 0.001 and σi = 0.001

Figure 5.14: The SoC and β estimation when σVt = 0.0005 and σi = 0.0005

The effect of the noise in measured Vt on the robustness of the proposed algorithm
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is also investigated. To assess the performance of the proposed algorithm, 5 different

standard deviation values of the white noises in Vt and I are used. Figure 5.10 shows

the SoC and β estimation when the white noise standard deviation in Vt and I is 0.01,

i.e., σVt = 0.01 and σi = 0.01. Note that the white noise in the input current does

not significantly affect the SoC estimation accuracy (Zheng et al. 2018). Therefore,

σi is chosen similar to σVt . As it is seen in Figure 5.10, β estimation has fluctuations

due to the white noise in Vt. However, this does not change the accuracy of the SoC

estimation using the estimated current input. σVt and σi are then decreased to 0.005

and β and SoC estimation results are given in Figure 5.11. As expected, fluctuations

in the estimated β become smaller compared to the previous β estimation result when

σVt and σi are decreased. The fluctuations in the SoC estimation are also reduced due

to the smaller white noise in Vt measurement and smaller fluctuations in β estimates.

Moreover, σVt and σi values are set to 0.002, 0.001, and 0.0005. The estimation results

are given in Figure 5.12, 5.13, and 5.14. It is observed that as σVt and σi get smaller,

the fluctuations in the β estimates and SoC estimates get smaller. However, the change

in the fluctuations in the estimated β and SoC is more obvious when σVt and σi are

decreased from 0.01 to 0.005 and from 0.005 to 0.002. When σVt and σi are decreased

to 0.001 from 0.002, the estimation of β and SoC have slightly smaller fluctuations.

Therefore, current measurement and voltage measurement sensors with σVt = 0.002

and σi = 0.002 accuracy would provide a reasonably accurate SoC estimation using

the proposed algorithm.

The proposed algorithm is also validated by the battery experiment. Figure 5.15

shows the β and SoC estimation results according to the experimental data. Around

20mA bias noise is calculated during the battery experiment. The value of calculated

bias shows that he significant bias is not generated due to the short duration of the

battery experiment. Once the β estimate is available, the measured current input

is corrected. The SoC is calculated based on the measured current input and the

estimated current input. The true SoC is calculated using the CC method and the

estimated current input. The results show that the accuracy in the SoC estimation

is increased with respect to the reference SoC values calculated using the corrected

current measurement.
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Figure 5.15: The experimental β estimation result

5.6 Discussion

The SoC estimation algorithm considering the input current measurement noise is

proposed. The input current sensor is modelled as the summation of I, β and vi. The

β is estimated based on the difference between the one-step sampling step difference in

the measured Vt and that in the estimated Vt. Additionally, the standard KF algorithm

is modified according to the current input model. The proposed algorithm is validated

by computer simulations and the battery experiment. The computer simulations are

conducted under 4 different dynamic loading profiles including the constant current

profile, sinusoidal current profile, HPPC current profile, and DST current profile. The

proposed algorithm is also tested under 5 different standard deviation values in the

white noises in Vt and I to assess the robustness of the proposed algorithm.

The current input measurement is then corrected by subtracting the estimated β from
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the measured I. The estimated I is used in the NiKF to estimate the SoC. The

results show that the proposed algorithm can accurately estimate β in the current

input measurement. The SoC is also calculated using the measured current input.

The comparison plots of the SoC estimation demonstrate that correcting the current

measurement significantly reduces the SoC estimation error.

The proposed algorithm removes one of the error sources in the SoC estimation prob-

lem. This is an important development in the BMS design. It is the first successful

attempt to mitigate the current sensor noise with an accurate bias noise modelling.
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Conclusion and future work

6.1 Conclusion

To date, available SoC-OCV calculation methods have severe limitations. The most

common method is to calculate the relationship offline, which restricts its use for dif-

ferent operational conditions and different batteries. Alternate methods construct this

relationship using hybrid techniques (where the OCV and SoC are estimated using

KF-based state estimators and the CC method, respectively). The major shortcoming

in this context is that the CC method requires a perfect initial guess and a noise-free

current measurement, making these methods inapplicable in practice. In addition, the

majority of these algorithms neglect the current measurement bias. We introduce our

solutions to both issues in this research.

The presented research is the first attempt to estimate SoC in real-time based on bat-

tery boundary conditions (cut-off voltages) and current and voltage measurements. It

also presents the first direct attempt at current noise mitigation by considering the

corrupted current measurement including white noise and random-walk bias noise.

The real-time SoC estimation algorithm presented in Chapter 4 is based on a new SoC-

OCV model, where the physical battery parameters are estimated using the adaptive

law (as this guarantees parameter convergence). The OCV is estimated using the KF,

the SoC is estimated using the EKF and another KF is used to develop the nonlinear

curve estimation algorithm. Estimating the SoC-OCV relationship not only removes

the laborious preliminary laboratory work but also makes the SoC estimation algo-

rithm adaptive to the changes in operational conditions, battery ageing and different
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batteries. The proposed algorithm is validated by performing the use of computer sim-

ulation and battery experiments. The battery experiments show that the maximum

SoC estimation error is less than 2.5%. In computer simulations, the error is within

1.8% under the DST current profile whereas it is 1.53% under the HPPC current pro-

file. Both results confirm that the proposed method provides an accurate estimation

of SoC in real-time.

Current measurement bias is estimated based on the difference between ∆Ṽt and ∆V̂t.

The current sensor output is then corrected by subtracting the estimated bias from the

measured current. Moreover, the standard KF is modified according to the input cur-

rent model and SoC is estimated using the modified KF. Correcting the current input

measurement significantly reduces the SoC estimation error. The proposed algorithm

is assessed by computer simulations and the battery experiment. In the simulations,

the maximum SoC estimation error is reduced from 7.2% to 0.78% under the DST cy-

cle. The error in the SoC estimation using measured current is calculated as 11.3% in

the HPPC cycle simulations. By using the corrected current measurement input, this

error is reduced to 0.56%. In the battery experiment, the error in the SoC estimation

using measured current is calculated to be 1.74%. It is reduced to 1.12% using the cor-

rected current measurement input. It can be concluded that one of the error sources in

the SoC estimation problem is significantly eliminated by the proposed method. Our

current bias mitigation algorithm provides a more realistic SoC estimation under the

noisy current measurement taking place in practice.

In summary, there are two novel methods added to the current SoC estimation litera-

ture. In the first method, changes in the SoC-OCV curve by operational condition and

battery ageing are automatically reflected in the SoC estimation in real-time. In the

second method, the current input measurement is corrected by estimating the noise

added by the current measurement sensor. The proposed methods reduce the SoC es-

timation error due to the inaccuracy in the SoC-OCV nonlinear curve obtained offline

and the inaccurate current input measurement. These methods are validated by com-

puter simulations and the battery experiment. These results show that the proposed

algorithms can be implemented in real-time applications.
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6.2 Future work

This research has developed an engineering practice and a theoretical framework that

are essential in advancing the current SoC estimation techniques. Two methods have

been developed that tackle the real-time calculation of the SoC-OCV relationship and

corrupted current measurement. Both of these advancements are essential in making

the long-awaited leap of estimation algorithms from ideal setups to real-time applica-

tions. Equally, this work alludes to further questions that must be addressed in order

to see the industrial implementation of these algorithms. These points are outlined as

follows:

1. The model parameter convergence to true model parameters under different dy-

namic loading conditions will be investigated to see if the model parameters

always converge to the true ones.

2. The effect of the variations in the battery cut-off voltages on constructing the

SoC-OCV relationship will be investigated. Intentionally inaccurate battery

boundary conditions will be used to see the effect on the SoC-OCV curve con-

struction algorithm.

3. The proposed SoC-OCV nonlinear model will be assessed for different battery

types to see if the proposed model captures different battery characteristics.

Different batteries in terms of battery chemistry will be chosen and their SoC-

OCV relationship will be calculated by a battery drop test. Then, the calculated

data will be curve-fitted by the proposed nonlinear model.

4. The observability of the SoC estimation problem and the behaviour of the SoC

estimation error when the slope of the SoC-OCV curve gets closer to zero will

be investigated.

5. The behaviour of the SoC estimation error due to the difference between the

model and the truth will be investigated by realistic and extreme condition ex-

periments.

6. The impact of the small positive constant (δ) on the SoC estimation accuracy

and the optimal online calculation of δ will be investigated. The idea of collecting

data in 4 calculation steps will be investigated to calculate the optimal δ.
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7. The effect of the time interval (∆t) on the accuracy of the calculation of dVoc/dz

along with the behaviour of the SoC estimation error will be investigated.

8. The influence of the parameter estimation accuracy on the bias noise estimation

will be investigated. Additionally, the effect of the different types of voltage

measurement noises on the bias noise estimation accuracy will be investigated.

9. In order to observe larger bias noises in the current measurement, longer battery

experiments in terms of the time duration are needed. Further experimental

analysis of the bias noise estimation algorithm will be conducted.
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Appendix A

Appendix Chapter

A.1 Battery model algorithm

1 %% Simulation parameter

2 clear all;

3 dt = 10^-2;

4 t = 0:dt:60*112;

5 N = length(t);

6 A = 0.425;

7 f = 0.0005;

8 I = A*sin(f*2*pi*t) + A*ones(1,N);

9 plot(I);

10 %% battery design

11 Q_max = 0.85*60*60;

12 R0 = 0.3;

13 Rp = 0.1;

14 Cp = 10;

15 tau = Rp*Cp;

16 z(1) = 1;

17 Vp(1)= 0;

18 a = 0.2539;

19 b = 0.4566;
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20 c = 7.245;

21 delta = 0.008;

22 Voc(1) = a*log((z(1)+delta))+b*exp((z(1)+delta).^3)+c;

23 %I = I + normrnd(0,5*10^-3,550001,1);

24 Vt(1) = Voc(1) - Vp(1) - I(1)*R0;

25 i = 1;

26 while z(i) > 10^-3

27 z(i+1) = z(i) - I(i)*dt/Q_max;

28 Vp(i+1) = exp(-dt/tau)*Vp(i) + (1 - exp(-dt/tau))*Rp*I(i);

29 Voc(i+1) = a*log((z(i+1)+delta))+b*exp((z(i+1)+delta).^3)+c;

30 Vt(i+1) = Voc(i+1) - Vp(i+1) - I(i+1)*R0;

31 i = i+1;

32 end

33 save('battery.mat','Vt','I','z','Voc','Vp','dt','a','b',...

34 'c','delta','Q_max');

A.2 Parameter estimation algorithm

1 clear all;

2 load 'battery.mat'

3 %% adaptive parameter estimation

4 N = length(Vt);

5 %I = I + normrnd(0,10^-3,length(I),1);

6 %theta = [alpha1, alpha2, alpha3]'

7 theta = [0.990, -0.1, (0.9980*0.1-(1-0.990)*0.05)]';

8 dVt(1) = Vt(1);

9 dVt(2) = Vt(2) - Vt(1);

10 dI(1) = I(1);

11 dI(2) = I(2) - I(1);

12 Gamma = 5000*eye(3);

13 R0_hat(1) = -theta(2,1);

14 R0_hat(2) = -theta(2,1);
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15 Rp_hat(1) = (-theta(1)*theta(2)-theta(3))/(1-theta(1));

16 Rp_hat(2) = (-theta(1)*theta(2)-theta(3))/(1-theta(1));

17 Cp_hat(1) = -dt/(Rp_hat(2)*log(theta(1)));

18 Cp_hat(2) = -dt/(Rp_hat(2)*log(theta(1)));

19 for k=2:N-1

20 dVt(k+1) = Vt(k+1) - Vt(k);

21 dI(k+1) = I(k+1) - I(k);

22 phi = [dVt(k) dI(k+1) dI(k)]';

23 epsilon(k+1) = dVt(k+1) - theta'*phi;

24 theta = theta + Gamma*epsilon(k+1)*phi;

25 R0_hat(k+1) = -theta(2);

26 Rp_hat(k+1) = (-theta(1)*theta(2) - theta(3))/(1-theta(1));

27 Cp_hat_2(k+1) = -dt/(Rp_hat(k+1)*log(theta(1)));

28 Rp_hat_2(k+1) = 1/Cp_hat_2(k+1);

29 end

30 save ('para_out.mat','R0_hat','Rp_hat','Cp_hat');

31 figure(1);

32 subplot(4,1,1);hold on;axis([0 N 0 0.6]);

33 plot(R0_hat,'r');plot(0.3*ones(N,1),'k--');

34 xlabel('Time [min]');ylabel('R_0 [\Omega]');

35 legend('Estimated R_0','True R_0');

36 subplot(4,1,2);hold on;axis([0 N 0 0.6]);

37 plot(Rp_hat_2,'r');plot(0.1*ones(N,1),'k--');

38 xlabel('Time [min]');ylabel('R_p [\Omega]');

39 legend('Estimated R_p','True R_p');

40 subplot(4,1,3);hold on;axis([0 N 0 100]);

41 plot(Cp_hat_2,'r');plot(10*ones(N,1),'k--');

42 xlabel('Time [min]');ylabel('C_p [F]');

43 legend('Estimated C_p','True C_p');

44 subplot(4,1,4);hold on;

45 plot(I);axis([0 N -1 3]);

46 legend('Sinusodial current')
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47 xlabel('Time [min]');ylabel('I [A]');

A.3 SoC-OCV curve construction algorithm

1 clear all;

2 load 'para_out.mat';

3 load 'battery.mat';

4 I = I - 0.1;

5 SoC=z;

6 clear z;

7 %load 'Voc.mat'

8 Voc_true = Voc;

9 tau_hat = Rp_hat.*Cp_hat;

10 N = length(R0_hat);

11 Ns = 1000;

12 C_max = 0.85*60*60;

13 Q_max = 0.85*60*60;

14 V_l = 6.4412;

15 V_h = 8.5028;

16 dV = V_h - V_l;

17 delta = 8*10^-3;

18 l = log(1+delta) - log(delta);

19 e = exp((1 + delta)^3) - exp(delta^3);

20 a_hat(3) = 0.5;

21 b_hat(3) = 0.75;

22 c_hat(3) = 7.5;

23 P(3) = 0;

24 Q = 10^-6;

25 R = 10^-1;

26 r_noise = 10^-3;

27 q_noise = 10^-3;
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28 Ia = zeros(Ns,1);

29 Voc = 6.4 + 2*rand(Ns,1);

30 z(3) = 0.5;

31 H(3) = 0.2539.*log(z(1)+8*10^-3) +...

32 0.4566.*exp((z(1)+8*10^-3).^3) + 7.245;

33 r_z = 10^-1;

34 q_z = 10^-6;

35 i = 1;

36 x_hat(:,3)=[0;7];

37 P_hat = [10^-3 0;0 10^-3];

38 Qx = [10^-6;10^-6];

39 rx = 10^-6;

40 % z(177920) = 0.5;

41 % a_hat(177920) = 0.5;

42 for k=3:N-1

43 beta = exp(-dt/(Rp_hat(k).*Cp_hat(k)));

44 A = [beta 0;0 1];

45 B = [1-beta;0];

46 %% Propagation

47 x_hat(:,k+1) = A*x_hat(:,k)+B*I(k);

48 P_hat = A*P_hat*A' + Qx;

49 z(k+1) = z(k) - I(k)*dt/Q_max;

50 a_hat(k+1) = a_hat(k);

51 %% Kalman filter for a

52 P = R + Q;

53 S = P + R;

54 C = [-Rp_hat(k) 1];

55 L = P_hat*C'/(C*P_hat*C'+rx);

56 Vt_hat = x_hat(2,k+1) - x_hat(1,k+1)*Rp_hat(k)...

57 - I(k)*R0_hat(k);

58 x_hat(:,k+1) = x_hat(:,k+1) + L*(Vt(k+1) - Vt_hat);

59 P_hat = (1 - L*C)*P_hat;
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60 Voc_hat(k+1) = abs(x_hat(2,k+1));

61 K(k+1) = (Voc_hat(k+1) - Voc_hat(k))/(- I(k)*dt/Q_max);

62 deno(k) = mean((1 - 3*l*exp(z(k+1).^3).*z(k+1).^3/e));

63 if deno(k)<0.3 & deno(k)>-0.1

64 a = K(k+1)*z(k+1)-3*b_hat(k)*exp((z(k+1))^3)*...

65 ((z(k+1))^3);

66 else

67 a = (K(k+1).*z(k+1) - 3*dV/e*exp(z(k+1).^3).*...

68 z(k+1).^3)./(1 - 3*l*exp(z(k+1).^3).*z(k+1).^3/e);

69 end

70 b = (dV - a*l)/e;

71 c = V_l - a*log(delta) - b*exp(delta^3);

72 a_mean(k+1) = a;

73 Ka = P*S;

74 ya(k) = a_mean(k) - a_hat(k);

75 a_hat(k+1) = a_hat(k) + Ka*ya(k);

76 P = (1 - Ka)*P;

77 %%

78 b_hat(k+1) = (dV - a_hat(k+1)*l)/e;

79 c_hat(k+1) = V_l - a_hat(k+1)*log(delta) -...

80 b_hat(k+1)*exp(delta^3);

81 H(k+1) = a_hat(k+1).*log(z(k+1)+8*10^-3) + b_hat(k+1).*...

82 exp((z(k+1)+8*10^-3).^3) + c_hat(k+1);

83 p_z = r_z + q_z;

84 s_z = p_z + r_z;

85 kz = p_z*s_z;

86 y_z = Voc_hat(k) - H(k+1);

87 z(k+1) = z(k) +kz*y_z;

88 p_z = (1-kz*K(k+1))*p_z;

89 end

90 plot(x_hat(2,:));hold on;plot(Voc_true);

91 figure(2);
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92 plot(SoC);hold on;plot(z)

A.4 Bias estimation algorithm

1 clear all

2 load 'battery.mat'

3 N = length(Vt);

4 R0 = 0.3;

5 Rp = 0.1;

6 Cp = 10;

7 tau = Rp*Cp;

8 alpha = exp(-dt/tau);

9 A = [alpha 0 ; 0 1];

10 B = [1-alpha ; -dt/Q_max];

11 %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

12 Vt = Vt + normrnd(0,10^-6,1,N);

13 %Terminal voltage added white noise

14 %% initialisation

15 x_hat(:,1) = [0 ; rand];

16 Voc_hat(1) = a*log((x_hat(2,1)+delta))...

17 +b*exp((x_hat(2,1)+delta).^3)+c;

18 P = [10^-3 0 ;0 10^-3];

19 Q = [10^-3 0 ; 0 10^-6];

20 r = 10^-3;

21 %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

22 % Drift Generator

23 a_beta = 0;

24 b_beta = 0.1;

25 sigma_beta = 10^-3;

26 P_b = 10^-3;

27 q_b = 10^-1;
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28 r_b =10^-6;

29 % initial beta (t)

30 beta(1) = (b_beta-a_beta)*rand + a_beta;

31 % creates a random initial value for beta within [a,b]

32 I_meas(1) = I(1) + beta(1)+ normrnd(0,10^-6);

33 beta_hat(1) = (b_beta-a_beta)*rand + a_beta;%(b-a)*rand + a;

34 % creates a random initial value for beta within [a,b]

35 %%

36 for k=1:N-1

37 beta(k+1) = f_beta(sigma_beta,dt,beta(k));

38 %Beta function to produce random walk bias

39 %in the current measurement

40 I_meas(k+1) = I(k+1) + beta(k+1)+ normrnd(0,10^-6);

41 % True current + Drift noise + White noise

42 x_hat(:,k+1) = A*x_hat(:,k) + B*(I_meas(k)-beta_hat(k));

43 P = A*P*A' + Q;

44 %%Drift noise

45 beta_hat(k+1) = beta_hat(k);

46 P_b = P_b + q_b;

47 C2 = (a + 3*b*exp(x_hat(2,k+1).^3).*x_hat(2,k+1).^3)...

48 ./x_hat(2,k+1);

49 C = [-Rp C2];

50 K = P*C'/(C*P*C' + r);

51 Voc_hat(k+1) = a*log((x_hat(2,k+1)+delta))...

52 +b*exp((x_hat(2,k+1)+delta).^3)+c;

53 Vt_hat(k+1) = Voc_hat(k+1) - (I_meas(k+1)...

54 -beta_hat(k+1))*R0 - x_hat(1,k+1)*Rp;

55 x_hat(:,k+1) = x_hat(:,k+1) + K*(Vt(k+1) - Vt_hat(k+1));

56 P = (eye(2) - K*C)*P;

57 z_star(k) = x_hat(2,k);

58 z_star(k+1) = z_star(k) - (I_meas(k)-beta_hat(k))*dt/Q_max;

59 Voc_star(k+1) = a*log(z_star(k+1)+delta)...
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60 +b*exp((z_star(k+1)+delta).^3)+c;

61 Voc_star(k) = a*log(z_star(k)+delta)...

62 +b*exp((z_star(k)+delta).^3)+c;

63 deltaVoc_star(k+1) = Voc_star(k+1) - Voc_star(k);

64 deltaVt(k+1) = Vt(k+1) - Vt(k);

65 deltaVp_hat(k+1) = (x_hat(1,k+1) - x_hat(1,k))*Rp;

66 deltaVt_hat(k+1) = deltaVoc_star(k+1) - (I_meas(k+1)...

67 -I_meas(k))*R0 - deltaVp_hat(k+1);

68 delta_beta(k+1) = (deltaVt(k+1) - deltaVt_hat(k+1))/R0;

69 L_b(k+1) = P_b/(P_b + r_b);

70 beta_hat(k+1) = beta_hat(k+1) ...

71 + L_b(k+1)*(delta_beta(k+1));

72 end

73 z_hat = x_hat(2,:);

74 for k=1:N-1

75 x_hat(:,k+1) = A*x_hat(:,k) + B*(I_meas(k));

76 P = A*P*A' + Q;

77 %%Drift noise

78 C2 = (a + 3*b*exp(x_hat(2,k+1).^3)...

79 .*x_hat(2,k+1).^3)./x_hat(2,k+1);

80 C = [-Rp C2];

81 K = P*C'/(C*P*C' + r);

82 Voc_hat(k+1) = a*log((x_hat(2,k+1)+delta))...

83 +b*exp((x_hat(2,k+1)+delta).^3)+c;

84 Vt_hat(k+1) = Voc_hat(k+1) - (I_meas(k+1))*R0...

85 - x_hat(1,k+1)*Rp;

86 x_hat(:,k+1) = x_hat(:,k+1) + K*(Vt(k+1) - Vt_hat(k+1));

87 P = (eye(2) - K*C)*P;

88 end

89 save('bias_simulation.mat','beta','beta_hat'...

90 ,'z_hat','x_hat','z','I','I_meas');

91 figure(1);
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92 hold on;plot(beta_hat,'r');plot(beta,'k--');

93 axis([0 N -0.1 0.15]);

94 xlabel('Time [ms]');ylabel('\beta [A]')

95 yyaxis right;plot(I_meas - beta_hat,'y');axis([0 N -3 15]);

96 ylabel('I [A]');hold on;plot(I(1:length(beta)),'b')

97 legend('Estimated \beta','True \beta','Estimated I','True I');

98 figure(2);

99 subplot(2,1,1);xlabel('Time [min]');ylabel('z')

100 hold on;plot(abs(x_hat(2,:)),'g');

101 plot(z_hat,'r');plot(z,'k--');axis([0 N 0 1]);

102 legend('Estimated z based on measured I'...

103 ,'Estimated z based on estimated I','True z')

104 subplot(2,1,2);xlabel('Time [min]');ylabel('I [A]')

105 hold on;plot(I_meas,'g');plot((I_meas-beta_hat)...

106 ,'r');plot(I,'k--');axis([0 N 0 1.7]);

107 legend('Measured I','Estimated I','True I')
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