
Hypersweeps, Convective Clouds

and Reeb Spaces

Petar Hristov

School of Computing

University of Leeds

A thesis submitted for the degree of

Doctor of Philosophy

June 2022

mailto:mm16pgh@leeds.ac.uk
https://eps.leeds.ac.uk/computing
http://www.leeds.ac.uk

This thesis is dedicated to my grandfather Petko Hristov. He taught me
how to windsurf.

Тази дисертация е посветена на дядо ми Петко Христов. Той ме научи
как да карам уиндсърф.

Acknowledgements

First and foremost, I would like to thank my supervisor Hamish Carr. He
was not only a mentor, but also a friend. Hamish, thank you teaching me
how to read and write and for supporting me all the way through.

I also want to thank my second supervisor Marc de Kamps for teaching me
how to teach and for the many talks about the beauty of mathematics.

This thesis would not have been possible without my close collaborators -
Daisuke Sakurai, Leif Denby, Gunther Weber and Oliver Rübel. You have
all taught me how to collaborate and helped me become a better researcher.
Gunther, thank you for inviting me to Berkley and mentoring me.

I would also like to thank my external assessor Ingrid Hotz and internal
assessor Karim Djemame for the valuable feedback and fruitful discussions
during my thesis defence.

My deepest gratitude to Lucy Godson. You have always believed in me and
supported me one care package at a time. Thank you for all the memories
and all the domats we shared.

To all the academics and PhD students and friends that were there for me -
Jake Horsfield, Judith Clymo, Noleen Köhler, Samuel Wilson, Lukas Deutz
and Ryan Ly. You have all made this journey worthwhile. It would not
have been the same without all the board games, pints at the Library, the
Ilkley school problem and talks about dissecting monkey brains.

I would like to thank my friends in the UK who have helped me so much
along the way - Hristina Tsolova, Merlin Doherty, Robert Wakefield, Teodora
Byanova, Martin Metodiev, Kaloyan Simeonov, Damyana Bojinova, Boyan
Dimitrov, Ilko Ambarev and Diana Sofronieva. You have made Leeds feel
like a home away from home.

Thank you to my friends in Bulgaria - Lyudmil Iliev, Atanas Angelov, Pavel
Petrov, Rosen Stoyanov and Hristo Georgiev. You have made my trips back
home feel truly special.

Finally, I’d like to thank my grandmother Atanaska Hristova, my father
Georgi Hristov, my uncle Vladimir Hristov and my cousin Andrei Hristov.
I did this in no small part for you and because of you.

Abstract

Isosurfaces are one of the most prominent tools in scientific data visuali-
sation. An isosurface is a surface that defines the boundary of a feature
of interest in space for a given threshold. This is integral in analysing
data from the physical sciences which observe and simulate three or four
dimensional phenomena. However it is time consuming and impractical to
discover surfaces of interest by manually selecting different thresholds.

The systematic way to discover significant isosurfaces in data is with a topo-
logical data structure called the contour tree. The contour tree encodes the
connectivity and shape of each isosurface at all possible thresholds. The
first part of this work has been devoted to developing algorithms that use
the contour tree to discover significant features in data using high perfor-
mance computing systems. Those algorithms provided a clear speedup over
previous methods and were used to visualise physical plasma simulations.

A major limitation of isosurfaces and contour trees is that they are only
applicable when a single property is associated with data points. However
scientific data sets often take multiple properties into account. A recent
breakthrough generalised isosurfaces to fiber surfaces. Fiber surfaces define
the boundary of a feature where the threshold is defined in terms of mul-
tiple parameters, instead of just one. In this work we used fiber surfaces
together with isosurfaces and the contour tree to create a novel application
that helps atmosphere scientists visualise convective cloud formation. Using
this application, they were able to, for the first time, visualise the physical
properties of certain structures that trigger cloud formation.

Contour trees can also be generalised to handle multiple parameters. The
natural extension of the contour tree is called the Reeb space and it comes
from the pure mathematical field of fiber topology. The Reeb space is not
yet fully understood mathematically and algorithms for computing it have
significant practical limitations. A key difficulty is that while the contour
tree is a traditional one dimensional data structure made up of points and
lines between them, the Reeb space is far more complex. The Reeb space
is made up of two dimensional sheets, attached to each other in intricate
ways. The last part of this work focuses on understanding the structure
of Reeb spaces and the rules that are followed when sheets are combined.
This theory builds towards developing robust combinatorial algorithms to
compute and use Reeb spaces for practical data analysis.

Publications

Hristov, P., Weber G., Carr, H., Rübel, O. & Ahrens, J. (2020). Data Par-
allel Hypersweeps for In-Situ Computation. Proceedings of the 10th Sym-
posium on Large Data Analysis and Visualization (LDAV), 12-21. IEEE.

Hristov, P., & Carr, H. (2021). W-structures in contour trees. Topological
Methods in Data Analysis and Visualization VI 3-18. Springer.

Contents

I Introduction and Background 1

1 Introduction 2
1.1 Isosurfaces and Contour Trees . 3
1.2 Hypersweeps for Contour Tree Simplification 5
1.3 Trivariate Visualisation of Convective Cloud Formation 6
1.4 Generating Reeb Spaces Neighborhoods 7
1.5 Overview . 8

2 Background 9
2.1 Point Set Topology . 9
2.2 Morse Theory . 12
2.3 Fiber Topology . 14
2.4 Piecewise Linear Topology . 15

3 Literature Review 18
3.1 Scalar Field Methods . 18
3.2 Scalar Field Topology . 19
3.3 Reeb Graph algorithms . 21
3.4 Contour Tree Algorithms . 23
3.5 Topological Simplification . 24
3.6 Multvariate Field Methods . 26
3.7 Fiber Surfaces . 27
3.8 Jacobi Sets . 29
3.9 Reeb Space . 31
3.10 Mapper . 32
3.11 Join Contour Net . 34
3.12 Pareto sets . 35
3.13 Multivariate Topological Simplification 36
3.14 Time-varying Visualisation and Feature Tracking 37
3.15 Scientific Visualisation in Atmosphere Science 38

6

CONTENTS

II Hypersweeps 40

4 Data Parallel Hypersweeps for in Situ Topological Analysis 41
4.1 Introduction . 41
4.2 Background . 42

4.2.1 Contour Tree Hyperstructure . 42
4.2.2 Simplification and Branch Decomposition 43
4.2.3 Parallel Tree Operations . 44
4.2.4 The Cinema In Situ Database . 46

4.3 Hypersweeping Geometric Measures . 46
4.3.1 Branch Decomposition and Subtree Height 48
4.3.2 Simplification . 50
4.3.3 Feature Extraction . 50

4.4 Implementation . 52
4.5 Evaluation . 53

4.5.1 Application Example - WarpX 53
4.5.2 Performance . 57
4.5.3 Feature Significance . 59

III Convective Clouds 62

5 Cartesian Fiber Surfaces for Trivariate Visualisation 63
5.1 Introduction . 63
5.2 Convective Clouds in Earth’s atmosphere 65

5.2.1 Domain Science Related Work 67
5.3 Cartesian Fiber Surfaces . 68

5.3.1 General Cartesian Fiber Surfaces 70
5.3.2 Computation . 71

5.4 Tracer Visualiser Application . 73
5.4.1 Application Requirements . 73
5.4.2 Application Design . 73
5.4.3 Application Implementation . 75

5.5 Case Study: Convective Triggering . 76

IV Reeb Spaces 82

6 Reeb Space Local Neighborhood Classification 83
6.1 Introduction . 83
6.2 Background . 84
6.3 Method Overview . 86
6.4 Assumptions and Stability . 87

7

CONTENTS

7 Local Fibers 88
7.1 Local Fibers in a Tetrahedron . 88
7.2 Local Edge Fiber Classification . 91

7.2.1 Domain and Range Neighborhood Structure 91
7.2.2 Choosing a Walk . 92
7.2.3 Local Edge Fiber Classification 92

7.3 Local Vertex Fiber Classification . 99
7.3.1 Structure of the Vertex Neighborhood in the Domain 100
7.3.2 Structure of the Vertex Neighborhood in the Range 102
7.3.3 Walks Around Vertices . 103
7.3.4 Local Fibers via Regular-like DTP Expressions 103

8 Reeb Space Computation 109
8.1 Global Fiber Pairing for Local Reeb Space Neighborhoods 109

8.1.1 Reeb Space Generating Diagrams 109
8.1.2 Global Fibers of a Single Edge 110
8.1.3 Global Fibers of of Two Intersecting Edges 111
8.1.4 Global Fibers of a Vertex . 112

8.2 Generating Reeb Space Neighborhoods 114
8.2.1 Generating Outer Fiber Arrangements 114
8.2.2 Dihedral Symmetry for Edges . 114
8.2.3 Generating Edge Neighborhoods 116
8.2.4 Generating Vertex Neighborhoods 116
8.2.5 Reeb Space Data Structure . 116

9 Results 119
9.1 Reeb Space Application Suite . 119

9.1.1 Fiber Visualiser . 119
9.1.2 Generate Local Reeb Space Neighborhoods 121

9.2 Results . 121
9.2.1 One Edge Neighborhoods . 122
9.2.2 Two Edges Neighborhoods . 124
9.2.3 Vertex Neighborhoods . 125

V Conclusions and Future Work 127

10 Conclusions 128
10.1 Hypersweeps . 128
10.2 Convective Clouds . 128
10.3 Reeb Spaces . 129

8

CONTENTS

11 Future Work 130
11.1 Hypersweeps . 130
11.2 Convective Clouds . 130
11.3 Reeb Space Neighbourhoods . 131

References 151

9

List of Figures

1.1 The contour lines of a topographic map tell us how the terrain is struc-
tured. The contour tree is a compact representation of the topology of
that structure. 3

1.2 The points of constant value in scalar field over a three dimensional
domain are called isosurfaces. An isosurface is a surface in three dimen-
sional space. Usually they are computed by a method from computer
graphics called Marching cubes Lorensen & Cline (1987). These isosu-
faces come from a simulation of the spatial probability distribution of
the electron in an hydrogen atom. Notice that to understand that field
we need to plot multiple isosurfaces, but they are nested and occlude
each other. To view all of them we can do a cutaway b) or reduce their
opacity c). 4

1.3 Isosurfaces from real world data sets often contain noise and sampling
error which prevents coherent visualization. Our method removes that
and automatically identifies significant features. This data set is an x-
ray scan of the arteries of the right half of a human head featuring an
aneurysm which can be identified with our method. 5

1.4 Given an isosurface a) and a Fiber surfaces (b) in green, the Cartesian
fiber surface is the boundary of the volume contained in the two. The
Cartesian fiber surface is used to refine features defined with one method
(isosurfaces) by subfeatures defined in another method (Fiber surfaces). 6

1.5 An example of the increase in complexity from contour trees to Reeb
spaces. In contour tree a) the middle vertex has two neighbours above it
and one below it. In general when describing the neighbourhoods we can
specify the number above and below. For example in contour tree b) the
middle vertex has three above and three below. The structure of a Reeb
space is more complex as you can see in in c) and d). In Reeb spaces
we have quadrants each with a different number of sheets. Furthermore,
more the sheets can attach in different ways and appear, disappear and
merge in different configurations. 7

10

LIST OF FIGURES

4.1 A simplicial mesh (a), that generates a contour tree (b) and the cor-
responding join (c) and split trees (d). The vertices are labeled with
their height values. The thicker edges in the contour tree represent a
W-structure Hristov & Carr (2019) which complicates the branch de-
composition. 43

4.2 Branch decomposition of the contour and two merge trees from Figure
4.1 with the edges of the master branches in thicker lines. Each branch
represent a feature in the data set. 44

4.3 On the left is a contour tree whose vertices are annotated based on how
and when they’re processed by the parallel tree contraction algorithm.
On the right is a hypersweep of the same contour tree annotated with
the hyperstructure. While the two methods are similar, differences arise
because PPP Carr et al. (2019) alternates upper and lower leaves, and
because only monotone chains can be compressed. 45

4.4 Hypersweep computation of geometric measures based on the parallel
tree contraction Miller & Reif (1989). For volume approximation (Left),
we initialize each supernode to the number of regular nodes on its su-
perarc, then propagate towards the root with a prefix-sum. For sub-tree
minimum and maximum (Centre and Right), we re-root the tree to the
global minimum (maximum), initialize to the supernode’s data value (us-
ing simulation of simplicity), then propagate by prefix minimum (maxi-
mum). 47

4.5 The minimum and maximum subtree values computed using the hyper-
sweep values from Figure 4.4. 49

4.6 The branch decomposition of the same contour tree using the geometric
measures of volume (a) and height (b). Notice that the two geomet-
ric measure produce two slightly different branch decompositions. The
master branch (in red) in the two decompositions is different. 51

4.7 a) Isosurface visualization of the transverse electric field Ex of a WarpX
laser plasma particle accelerator simulation Carr et al. (2019). b) Vi-
sualization of the ten most-significant contours detected automatically
using a branch decomposition of the contour tree using our data-parallel,
height-based simplification method that correctly captures the topology
of the data set. c) For interactive, post-hoc visualization, we compute
and store features in a Cinema image database in situ and reconstruct
them via a web interface. We store features individually and this allows
us to manipulate their properties such as color, scale, opacity, etc. . . . 54

4.8 Subtree height branch decomposition (red) and hypersweep (blue) on
Pawpawsaurus. While the scaling plateaus after 8 cores, the performance
is overall good especially compared to contour tree computation (see
Table 1). 57

11

LIST OF FIGURES

4.9 Scaling of 3D data for up to 64 cores and TBB on Haswell (log/log). The
black line shows the ideal strong scaling. Hypersweep (HS) and branch
decomposition (BD) are related and have similar scaling patterns: it is
possible that the cause is external (VTK-m). 58

4.10 Scaling using 1 to 64 threads on the 2D Scaled GTOPODatasets (log/log).
The grayed out polygon is perfect weak scaling. 59

4.11 W-structures in the Backpack data set. Because of a W-structure ending
in 0b, the left subtree at 934 has a larger overall height than the right
subtree, giving a different branch decomposition than Pascucci’s Pas-
cucci et al. (2004a). On the right: the top 20 features chosen with each
method. While the standard branch decomposition detects the box as
feature 39 in order of significance. The subtree height decomposition
works better than the persistence based decomposition in this instance. 61

5.1 Top Left: an isosurface of a derived scalar field tracking air movement,
color-coded to indicate the connected components of the super-level sets.
Right: the scatterplot shows the probability distribution function of two
other variables. The individual connected components of the super-level
set (contained in the isosurface) are projected onto it, showing how re-
gions on the top left map to the variables on the right. Bottom Left:
fiber surfaces can then be defined via a control polygon and compared
to the isosurfaces to examine the properties of parts of the objects. In
this example we’ve defined a control polygon over an area in the scat-
terplot where data points have low moisture and high temperature. The
Cartesian fiber surface is the boundary of the intersection of the volume
contained in the fiber surfaces and the isosurface. 64

5.2 State of the art visualizations of cloud convection triggering Denby et al.
(2022). Top left: horizontal cross-section of water-vapour concentration
at height z = 300m. Top right: Maximum altitude at each horizontal
location where the tracer field exceeds a threshold value with cloud con-
densate regions (black outlines). The marked region contains a boundary
layer structure about to trigger a cloud. Bottom: Contour lines of wa-
ter vapour and temperature by altitude in the data domain, with air
entering clouds at cloudbase (red dotted line). Bottom left: the entire
data set with isosurfaces of the tracer. Bottom right: The same data
set restricted to an isosurface of the passive decaying tracer, showing
a linear development and suggesting that isosurfaces identify structures
triggering convection. 66

12

LIST OF FIGURES

5.3 We intersect the volume contained in the isosurface (sublevel set) of the
scalar function h and the volume contained in the fiber surface (inner-
level set) of the bivariate combination of two other scalar functions (f, g).
To perform the intersection we take another fiber surface with respect
to the combined trivariate function (f, g, h). We define the control poly-
hedron in R3 as the boundary of the Cartesian product of the interval
defining the sublevel set of h and the inside of the polygon defining the
inner-level set of (f, g). The resulting shape in three dimensions is an
extrusion of the polygon, and its distance fields can be easily computed
component wise. 68

5.4 The user interface of the tracer visualiser application. It is based on a
main (domain) view (A), a data (range) view (B), and ancillary controls
(C)-(E). 74

5.5 Characterising the environment in which cloud-triggering features (red
surface in a) and c) in scatterplot b)) form based on the projection
of the feature in the scatterplot of vertical velocity and water vapour
concentration (the product of which is vertical moisture transport). The
projection of the feature (in b)) shows that it mainly contains rising moist
air. A fiber surface (green surface in c)) of the area of the scatterplot
with similar properties, the moistest air parcels which are also rising,
shows that the structure is embedded within and at the nodal-point of
three horizontal segments of rising moist air. 78

5.6 Characterising the environment in which cloud-triggering features form
based on the projection of the feature in the scatterplot of temperature
and water vapour (both of which contribute to density). The projection
of the feature (red surface in a)) in scatterplot b)) shows that it is com-
prised of moist-cold and moist-warm linear segments. Rendering a fiber
surface (green surface in a)) of the warmest and driest part of the scat-
terplot distribution demonstrates how the surface of constant density
in the environment is curved towards the bottom part of the domain,
inhibiting formation of cloud-triggering structures there. 79

5.7 Decomposing a cloud triggering feature (super-level set component) us-
ing the volume contained in a fiber surface using Cartesian fiber surfaces
a) and c) of two concentric fiber surface polygons in the scatterplot b).
The Cartesian fiber surface intersections (blue in a) and c)) reveals that
the top of the feature is cool and moist (fiber surface control polygon in
b)), with cooler and moister regions (fiber surface polygon in d)) located
concentrically towards the topmost edge of the feature. 80

6.1 A diagram of how a local Reeb space neighbourhood is computed. . . . 86

13

LIST OF FIGURES

7.1 The possible ways in which a fiber can intersect a tetrahedron. We
consider as our domain a single tetrahedron and its mapping onto the
plane by a PL map. The PL map is defined on the vertices and linearly
interpolated along the edges, triangles and tetrahedra. We construct
the fiber by determining which faces of the tetrahedron contain the fiber
point in the range, then connect them in the domain. 89

7.2 An example of when a fiber passes through the face of one tetrahedron
onto another. The fiber is regular - locally a line segment. 90

7.3 The neighbourhood of an edge in domain (left) and in the range (right).
The link of the edge in the domain is the circle consisting of the points
v1, . . . , v6, and the closed star consists of all tetrahedra is of the form
(a, b, vi, v(i+1)) for all i ∈ 1, . . . , 6. In the range we’ve aranged the edge
ab to be horizontal and all other vertices to be above or below it. Their
exact location does not matter, only whether they are above or below
the edge. 91

7.4 The fibers we need to talk to fully describe a walk around a point on an
edge of the input mesh. 93

7.5 Computing a fiber in the star of an edge one tetrahedron at a time. The
tetraheron shaded in gray (in the domain and in the range) is the current
one being examined. In exit tetraherons the image of one vertex is above
the adge ab, the other is below. Exit tetrahedra are always active, while
nonexit tetrahedra are only active either above or below the edge. . . . 94

7.6 The fibers at the edge and below the edge. The fiber at the edge connects
the exit points directly to the edge, while passing only through the exit
tetrahedra. The active tetrahedra of the fiber below the edge are the
exit tetrahedra and all nonexit tetrahedra which were not active in the
fiber above the edge. The only active non-exit tetrahedron below the
edge is abv5v6. 95

7.7 These are all possible Jacobi edge types for an edge of degree up to six.
We have shown the transition of the fiber components as they move from
above to at to below the edge. 96

7.8 In every subfigure we have shown a simplified view of three fibers, one
above, one at and one below a Jacobi edge. We classify the edge based
on the behaviour of the fiber as it crosses the edge - it’s either a regular,
a definite or indefinite edge. Indefinite edges can be of type 2, 3, 4, . . .,
but we have only shown 2 and 3 here, the rest are analogous with more
fiber components and exit points (see Lemma 7.3). 99

7.9 The structure of the star of a vertex C is the following. The link of
C is a triangulation of a sphere. The star of C consists of tetrahedra
whose base is a triangle on the link. As per our assumptions (see Section
6.4) the images of the vertices in the range are arranged so that no two
vertices are on a line passing through C. 100

14

LIST OF FIGURES

7.10 An example of determining the Jacobi type of the edges adjacent to the
vertex C. For every edge Ci where i ∈ {0, 1, 2, 3, 4, 5} we consider the
line defined by the edge and the link of that edge. The number of edges
from the link that cross the line determines the Jacobi type of the edge
(see Subsection 7.2.3). 101

7.11 Diagram of how to read the dihedral top permutation (DTP) of the
image of the star of a vertex in the range. The DTP tells us how the
vertices located on the link of the central vertex are arranged after they
are mapped to the plane. 104

7.12 In a walk around a vertex there are multiple regions - one for every
adjacent Jacobi edge and one for the region between two consecutive
Jacobi edges. These are the regular and Jacobi regions of the DTP shown
in Figure 7.9. In order to describe the walk it’s enough to compute the
combinatorial fiber for each one of the regular and Jacobi regions. . . . 105

7.13 Recognizing whether particular points on the walk around c are in image
of a triangle from the star of c. Above each image in the diagram is a
subsequence of the DTP of the vertex, which we can match as a regular
expression onto the DTP to determine whether the triangle is active.
The first case is used to determine which triangles from the link of c
are active. They will be active for every region on the walk, so we
only need to compute them once. The second and third case are used
to determine whether an inner triangle is active in a Jacobi or regular
region respectively. 106

7.14 The local fiber arrangement diagram for the example from Figure 7.9.
This table shows the local fiber pairings in all regular and Jacobi regions
of the walk. In the Jacobi regions the pairs (pi, s) means a singular fibber
connecting the exit point to a point on the Jacobi edge which defines the
Jacobi region. 107

7.15 Showing the fibers in all four regular regions from Figure 7.9. The fiber
connectivity gives us the exit point pairs in every region. 108

8.1 This diagram depicts the global connectivity of a fiber as a combination
of the local and outer fiber pairings. On the left, is a simple visualisation
of the star of an edge, where the edge is reduced to a point. On the right,
the exit points are connected outside of the star in ther rest of the mesh. 110

8.2 A walk around a point on a Jacobi edge in the range with outer fiber
diagrams in each of the regions. On the bottom we’ve shown the Reeb
space of the neighbourhood of the point and the Reeb graph of the walk. 111

15

LIST OF FIGURES

8.3 On the left we have the range, where the images of the two edges in-
tersect. This divides the walk around the point of intersection into four
regular regions and four Jacobi regions. The Jacobi regions are the Ja-
cobi edges and the regular regions are the space between them. In each
regular and Jacobi region in the range we have shown the global fiber
(from the domain). Each of the fibers contains local fibers, inside the
star of the edge and global fibers, the parts of the fiber outside the star.
The singular fibers cross either one of the edges, or both (in the center).
On the right we have shown the Reeb space neighbourhood of this case
as well as the Reeb graph of the walk. 112

8.4 Showing the change in fiber connectivity over a walk around the central
vertex from Figure 7.9. Each of the nine combinatorial fibers on the left
hand side of the diagram consists of exit points, arranged horizontally;
inner fibers in the star of the central vertex, arranged below the exit
points; and global fibers arranged above the exit points. In the transition
between the regions in the diagram the interior fibers change as they go
though the singular points (shown in blue) on the Jacobi edges. Note
that the central fiber is at the image of the central vertex. We have
omitted labeling all the edges and exit points, since that is not significant
for understanding this example. On the right hand side we have shown
the Reeb space of the whole neighbourhood. In each region there is one
sheet per fiber component. We have also shown the Reeb graph of the
fibers on the walk. 113

8.5 An example of three equivalent global pairings. Each row shows the
global fibers above, at and below an indefinite edge of type three. The
first global fiber pairing is {(1, 2), (3, 4), (5, 6)} where those are the ids
of the exit points. The second row is a rotation of that case, which
yields a different global pairing, but an equivalent case. The third row
is obtained by two rotations and is again equivalent to the first one. . . 115

8.6 The data structure we use to represent Reeb space neighbourhoods is
called a Reeb space signature graph. Black vertices represent regular
classes of fibers and the white vertices represent singular classes of fibers.
The vertices are grouped into regular and Jacobi regions. The starting
region has been repeated at the end to allow a linear visualisation. Reg-
ular and Jacobi regions alternate as we move around in a walk around
the center point. Regular regions are annotated as R1, R2, R3, R4 and
Jacobi regions as J1, J2, J3, J4. Equivalent Reeb space neighbourhoods
can be obtained via rotation or mirror of the signature graph or by per-
muting the vertices within each region. 117

16

LIST OF FIGURES

9.1 The fiber visualiser application as it is used to visualiser fibers at a
particular fiber point. Left: a view of the geometry in the domain and
the fiber (in red). Right: a view of the geometry in the range and the
fiber point (in the crosshair). Bottom: controls for setting opacity and
other utilities. 120

9.2 This is an example of a Reeb space data file. In includes information
about the coordinates of the vertices in the domain and in the range as
well as the connectivity of the mesh in the domain. 121

9.3 All possible Reeb space neighbourhoods for a single edge of degree up to
six (up to six adjacent tetrahedra in the mesh). We compute the Reeb
space by taking three fibers - one at the Jacobi edge (at edge) and two
on either side of the Jacobi edge (above and below edge). The number
of sheets in the Reeb space corresponds to the number of connected
components in each of the three fibers. We have split the classification
into orientable - those that can only be realised in orientable meshes,
and non-orientable - those that can be realised in non-orientable meshes
as well. To recognize the orientable cases we place any orientation on
the regular fiber in the above case and see if the orientation remains
consistent after passing through the singular fiber into the below case
Levine (1988). Follow the arrows on the fiber (the orientation) for non-
orientable fibers to see that it is is no longer consistent. The cases where
more than two fibers meet at a Jacobi edge as well as the non-orientable
cases have not been described in the literature previously. 123

9.4 The possible Reeb space neighbourhoods for when the images of two
indefinite Jacobi edges of type three intersect in the range. In this work
we extend the indefinite edge type to indefinite edge of type n where
n ∈ {2, 3, . . . ,∞}. An indefinite Jacobi edge of type n is when n fiber
component merge/split apart at that edge (much like saddles in the scalar
case). Previous work which had identified two cases for edge intersection
for orientable cases under strict conditions on the PL mapping. When we
relax the condition of the PL map to be more practical for data analysis
we get a much more varied number of cases. The ID of each case lists
the number of fiber components in each quadrant. 124

17

LIST OF FIGURES

9.5 All realisable Reeb space neighbourhoods for a generic piecewise linear
mapping (See Definition 6.1) over a closed piecewise linear 3-manifold
with maximum vertex degree six. All cases are labeled with the Jacobi
edge type of all incident edges in a clockwise order. In this notation
0 stands for a definite edge (extrema, a curve appears or disappears)
and 2 for an indefinite edge of type two (saddle, two fiber components
meet at that edge). Only the first two cases in the first row have been
described for vertex neighbourhoods in the PL case in previous litera-
ture. Note that the next two cases (2, 2, 2, 2) a) and (2, 2, 2, 2) b) have
been described, but only for the neighbourhoods of the intersection of
two edges in the range, not for vertex neighbourhoods. All cases are
orientable besides (2, 2, 2, 2) c) and (2, 2, 2, 2) d) because they include a
1−1 transition which is not realisable in orientable meshes for indefinite
edges of type two. 125

11.1 A diagram of how we can use the enumeration of Reeb graph neighbour-
hood to perform local sheet simplification. When a sheet is remove the
diagram shows us which other local case we transition to. When there
is no such case, removing that is not permitted. 132

18

Part I

Introduction and Background

1

Chapter 1

Introduction

Scientific data obtained through measurements and computational simulations has to
be analysed and visualised in order to be understood. Analysing data is a difficult
task because data is massive, noisy, multiscale and multivariate. In order to tackle
these challenges we need efficient algorithms which are based on rigorous mathematical
theory. The output of these algorithms then needs to be visualised in a suitable format
that facilitates the user’s understanding.

Topology studies qualitative geometric properties such as the connectivity of areas
of interest in data or features. By using algorithms from the fields of Topological
Data Analysis or Computational Topology we can retrieve and visualise those features.
Furthermore we can attribute a metric of significance to them in order to rank and
discard all but the most important ones. This allows scientists to reduce the vast size
of the data and focus their attention on what is significant to them.

Topological methods have found numerous applications in the field of scientific
visualisation due to topology’s close relation to geometry and analysis. The current
state of the art has mostly focused on methods for analysing scalar, vector and tensor
fields Heine et al. (2016), but few for multivariate fields.

Multivariate fields are an extension of scalar fields in the case where multiple scalar
functions are defined on a common domain. The importance of multivariate fields has
grown considerably in recent years with an increasing need to understand the structure
and interactions of different properties of data. The goal of this thesis is to build towards
the development of topological methods for multivariate topological data analysis.

Since multivariate topological methods build on scalar topological methods and are
used to assist in multivariate visualisation, we must first be familiar with those. In this
thesis we first contribute to scalar topological methods by scaling them to high perfor-
mance computing systems. Then we contribute to multivariate visualisation methods
by introducing a novel way of combining them with scalar visualisation methods and
applying them to the study of convective cloud formation. Finally, we use what we have
learned from those two contributions to build on the initial theory of a multivariate
topological data structure called the Reeb space.

2

1.1 Isosurfaces and Contour Trees

1.1 Isosurfaces and Contour Trees

The primary focus of this work is on scalar field and multi-field data. A scalar field
attributes a single real value to each point in space. Mathematically, this is written as
f : Rn → R where Rn is the domain and R is the range. A multi-field is a collection
of scalar fields (f1, . . . , fm) : Rn → Rm such that each component function fi is scalar.
Scalar fields and multi-fields are used for example in atmosphere science to model prop-
erties such as temperature, humidity and vertical velocity. They are used in numerical
simulations to predict the weather and climate.

In two dimensions we can visualise the structure of a scalar field with its contour
lines. Contour lines are curves in the plane where all the points on the curves have
constant value. These are for example the lines we are familiar with on topographic
maps. In a topographic map, the scalar field is the elevation of points in physical
terrain.

We give an example of visualising the scalar field of elevation on a terrain in Figure
1.1. On the left we have shown the terrain in three dimensions by using an additional
dimensions for the elevation. In the middle we have visualised the same terrain via
some of its contours. Notice that the contours are concentric and never intersect. On
the right we have the shown the relationships of the contours more abstractly with a
graph called the contour tree.

The contour tree is a topological data structure that is obtained by shrinking all
contours to single points. Thus all the contours on the left peak become points along
the edge ab and all the contours on the right peak become points on the edge cb. The
vertices on the contour tree are called critical points. This is where topological change
happens as contours emerge (such as the peaks a and c) or where contours merge (such
as the saddle b).

Saddle

Extremum
a

b

c

(a) Terrain in 3D.

a
b c

(b) Terrain via contours.

a

b

c

(c) Terrain via con-

tour tree.

Figure 1.1: The contour lines of a topographic map tell us how the terrain is structured.

The contour tree is a compact representation of the topology of that structure.

3

1.1 Isosurfaces and Contour Trees

In three dimensional domains the points of constant value are no longer curves, they
are surfaces. These surfaces are called isosurfaces and they are extracted and rendered
using computer graphics. You can see an example of this in Figure 1.2.

(a) Isosurface. (b) With Cutaway. (c) With Opacity.

Figure 1.2: The points of constant value in scalar field over a three dimensional domain

are called isosurfaces. An isosurface is a surface in three dimensional space. Usu-

ally they are computed by a method from computer graphics called Marching cubes

Lorensen & Cline (1987). These isosufaces come from a simulation of the spatial prob-

ability distribution of the electron in an hydrogen atom. Notice that to understand

that field we need to plot multiple isosurfaces, but they are nested and occlude each

other. To view all of them we can do a cutaway b) or reduce their opacity c).

Visualising and understanding the structure of a three dimensional scalar field is
significantly more challenging. Unlike with contour lines we do not have the extra
dimension in which to see all isosufaces at the same time. Furthermore, visualising
multiple isosufaces is not always helpful, since they can be nested inside each other.
We can deal with this to some extent by working with opacity or cutting through them,
but that is time intensive and laborious (see Figure 1.2).

The contour tree provides a robust and systematic way to understand the structure
of three or higher dimensional scalar fields because it always remains a one dimensional
data structure. Since every line in the contour tree represents a connected contour in
the data, we can attribute those with additional information. For example geometric
information such as surface area, or volume or statistical information such as mean value
or variance of a parameter. Then we can automatically extract the contours with user
chosen properties and visualise them with a process called contour tree simplification.

4

1.2 Hypersweeps for Contour Tree Simplification

1.2 Hypersweeps for Contour Tree Simplification

(a) Noisy isosurface. (b) Most significant contours.

Figure 1.3: Isosurfaces from real world data sets often contain noise and sampling error

which prevents coherent visualization. Our method removes that and automatically

identifies significant features. This data set is an x-ray scan of the arteries of the right

half of a human head featuring an aneurysm which can be identified with our method.

Contour tree computation and simplification is well established in the literature,
however current algorithms for simplification are not scalable. By not scalable we mean
that they are not designed to utilise multiple cores in modern day high performance
computing systems such as supercomputing clusters. The scalability of these contour
tree simplification algorithms is crucial because otherwise we cannot apply them to the
large data sets produced by these supercomputers.

Our first contribution is to introduce parallel algorithms for simplifying the contour
tree to discover significant features in scalar field data. We developed a method we call
a hypersweep to compute the geometric and statistical measures over the contour tree.
Then we replaced the serial method of using those measures to simplify the contour
tree called branch decomposition. We implemented those algorithms in the open source
VTK-m library for public use.

Using our open source implementation, we developed the first fully parallel pipeline
that uses contour tree analysis. The first part of the pipeline runs on the computing
cluster along with the numerical simulations. We compute the contour tree, simplify it

5

1.3 Trivariate Visualisation of Convective Cloud Formation

and extract the most significant contours. In order to save bandwidth we store images
of those contours for visualisation purposes with a database called Cinema.

In the second part of the pipeline the user downloads the images and reconstructs
the original surfaces. This can be done on commodity hardware to enable use of access.
We evaluated our application on various real world data sets, you can see on example
in Figure 1.3.

1.3 Trivariate Visualisation of Convective Cloud Forma-

tion

(a) Isosurface (b) Cartesian Fiber surface

Figure 1.4: Given an isosurface a) and a Fiber surfaces (b) in green, the Cartesian fiber

surface is the boundary of the volume contained in the two. The Cartesian fiber surface

is used to refine features defined with one method (isosurfaces) by subfeatures defined

in another method (Fiber surfaces).

In real world data there is an increasing need to understand the structure of multi-
fields as opposed to the structure of multiple individual scalar fields. For example
the process of convective cloud formation is governed by multiple physical variables
such as temperature, humidity and vertical velocity. This process cannot be described
entirely by any one of those individual variables, but only by their join contribution
to the phenomenon. The need to analyse multi-field data has led to the generalisation
of isosurfaces to bivariate (two scalar fields) fields via fiber surfaces and to general
multifields via feature level sets.

For bivariate fields the range is no longer the real line like for isosurfaces, but a two
dimensional plane. Hence we define fiber surface with a polygon, not a single value.
Then the fiber surface is the surface in the domain that separates the points which
take values inside the polygon from the ones that take values outside. Feature level
sets generalise this to any multi-field, and we can define any high dimensional piece of
geometry in the range, not just a polygon.

As the dimension of the range increases, it is difficult to define high dimensional

6

1.4 Generating Reeb Spaces Neighborhoods

geometry that captures the areas of interest in data. Furthermore there isn’t an efficient
way to combine multiple areas of interest, defined by the various methods of isosurfaces,
fiber surfaces and feature level sets. Our second contribution is to develop a solution to
both of these issues with Cartesian fiber surfaces and apply that to analysing convective
cloud formation.

Using Cartesian fiber surfaces we collaborated with scientists from the University
of Leeds to develop an application for analysing the process of convective cloud for-
mation. Convective clouds are significant in predicting the weather and climate, but
their formation is not yet fully understood. The difficulty lies in determining the exact
relationship based on interactions of temperature, vertical velocity and moisture that
produces clouds.

By combining isosurfaces and fiber surfaces via Cartesian fiber surfaces we helped
atmosphere scientists visualise two novel findings. The first one is about areas in the
environment that encourage and inhibit cloud formation and the second is about the
internal structure of features that trigger convective cloud formation. You can see an
example of using the application in Figure 1.4.

1.4 Generating Reeb Spaces Neighborhoods

(a) Contour tree. (b) Contour tree with

more nodes.

(c) Reeb space. (d) Reeb space with a dif-

ferent sheet arrangement.

Figure 1.5: An example of the increase in complexity from contour trees to Reeb

spaces. In contour tree a) the middle vertex has two neighbours above it and one

below it. In general when describing the neighbourhoods we can specify the number

above and below. For example in contour tree b) the middle vertex has three above

and three below. The structure of a Reeb space is more complex as you can see in in

c) and d). In Reeb spaces we have quadrants each with a different number of sheets.

Furthermore, more the sheets can attach in different ways and appear, disappear and

merge in different configurations.

As we have seen so far, isosurfaces and their accompanying data structure the Con-
tour tree are well established as a key tool in scientific visualisation for understanding
the structure of a scalar field. We saw that we can extend isosurfaces to bivariate
fields via fiber surfaces and to general multifields via feature level sets. However, the

7

1.5 Overview

accompanying data structure that would enable better fiber surfaces selection is not as
well understood as the Reeb graph. This data structure is called the Reeb space.

The Reeb space is a polyhedron made up of vertices, edges connecting the vertices
and two dimensional sheets, which connect the edges. In Figure 1.5 we have shown why
the structure of the Reeb space is more difficult to describe that of the contour tree. Al-
gorithms exist for computing low-dimensional Reeb spaces, but a complete analysis of
their structure for practical data has to date been absent. We propose a fully combina-
torial method of computing all possible local structures in a Reeb space, parametrised
by the edge and vertex degree of the input mesh. Unlike previous methods, our method
makes no assumptions about the input mesh aside from simple conditions on the data
values on the vertices, which can be guaranteed by standard perturbation techniques
such as simulation of simplicity. We demonstrate our method by giving a full classifi-
cation of all Reeb spaces neighbourhoods where the input mesh has maximum vertex
degree six.

1.5 Overview

This thesis is divided into several parts. Part I introduces the research topics and
major contributions, reviews the mathematical background and provides a review of
the relevant academic literature. Part II introduces the first contribution of this work,
which is data-parallel contour tree operations via hypersweeps. Part III covers our
second contribution, that of combining isosurfaces and fiber surfaces via Cartesian
fiber surfaces for visualising convective cloud formation. Party IV describes our third
contribution - algorithms for generating and classifying Reeb space neighbourhoods of
PL maps. Finally, Part V gives our conclusions and future work.

8

Chapter 2

Background

In this chapter we will present the relevant mathematical theory for understanding the
rest of the thesis. We assume that the reader has a good understanding of multivariate
calculus and linear algebra. Otherwise we refer the reader to Spivak (2018) for a modern
and concise introduction to both subjects. Beyond this we will introduce any notions
we use from topology, geometry, and abstract algebra.

2.1 Point Set Topology

Topology is the framework on top of which mathematicians build continuous spaces and
functions that are used in analysis and linear algebra. The topology of a set defines a
structure that tell us when two elements are close or near to one another. The structure
defined by topology is given in terms of open sets - elements which are close to one
another are part of an open set.

Definition 2.1. Let X be a set and τ be a set of subsets of X. The set τ is a topology

on X when the following holds:

• X and ∅ ∈ τ .

• If U and V ∈ τ then U ∩ V ∈ τ .

• If {Uλ}λ∈Λ is a family of subsets of X, where Uλ ∈ τ for all λ ∈ Λ, then
⋃

λ∈Λ Uλ ∈
τ .

The elements of X are called points and the elements of τ are called open sets, or
simply open. The complement of an open set is called a closed set, or simply closed.
The topology of a set X is by no means unique. For example the topology of X can
consist of all subsets of X or just X and the empty set.

The standard topology in Euclidean space Rn is given in terms of open balls. Given
a point x = (x1, x2, . . . , xn) in Rn the open ball around x of radius ϵ is defined as

9

2.1 Point Set Topology

Bϵ(x) = {y ∈ Rn : d(x, y) < ϵ} where d is the standard Euclidean distance d(x, y) =√∑n
i=1 (xi − yi)2. Then the topology of Rn is then given by all the open balls around

all points will all possible radii, as well as their unions and finite intersections.
The open sets in a topology however can be difficult to describe. This is why it’s

useful to describe them with a smaller subset of the open sets. This is called a base of
the topology, and is analogous to a base for a vector space in linear algebra.

Definition 2.2. A base for a topology τ is a collection of subsets β ⊂ τ such that every

element in τ s equal to a union of elements in β.

A topological space that has a countable base is said to be second countable. This
is useful property since many of the more well understood topological spaces such as
Euclidean space are second countable. Another useful property is that a topological
space is Hausdorff.

Definition 2.3. A topological X space is Hausdorff if for any two distinct elements

x, y ∈ X there exist neighbourhoods x ∈ U and y ∈ V such that U ∩ V = ∅.

Euclidean space is also Hausdorff since for any two distinct points we can pick two
balls around them whose radius is smaller than the distance between the points divided
by two.

Next we will define the class of functions that preserve topological properties of
spaces. Those are continuous functions.

Definition 2.4. A function f : X → Y is said to be continuous when the preimage of

an open set in Y is an open set in X.

When we apply this definition to the topology of Euclidean space we obtain the
standard definition of continuity we have from calculus. Furthermore if f is a bijection
and its inverse is continuous then f is called a homeomorphism. Homeomorphisms play
a central role in topology because when there exists a homeomorphisms between two
spaces, that means they have the same topological properties. Those spaces are called
homeomorphic and topologists as usually interested in studying topological spaces up
to homeomorphisms.

A key idea in calculus and analysis is that of limits and convergence. Limits and
convergence can be defined more generally for topological spaces as follows:

Definition 2.5. Let X be a topological space, let x ∈ X and let {xn}n∈N be a sequence

of points in X. The sequence converges to x and we call x the limit of the sequence

when for every neighbourhood U of x there exists N ∈ N such that xn ∈ U for all

n ≥ N .

The idea behind this definition is that all points in the sequence become closer to
the limit. In a Euclidean space we substitute the neighbourhoods with open balls to
obtain the usual definition from analysis. An important use of limits is to approximate
the elements of a set via the elements of one of its subsets.

10

2.1 Point Set Topology

Definition 2.6. Given a set X and a subset of X called Y , the closure of Y in X

consists of the points in Y as well as all the points in X that all sequence in Y converge

to. The set Y is said to be dense in X.

Dense subsets play an important role in mathematics because you can use them
to study complicated objects via a more well understood subset of those objects. For
example real numbers can be defined using an equivalence class on the converging
sequence of rational numbers using Cauchy sequences. Another example is studying
the class of all differentiable functions by a restricted class of differentiable functions
which are well understood called Morse functions (see 2.2).

A topological invariant is a property of a topological space that is preserved under
continuous functions. One such topological property is path-connectedness. A path-
connected topological space is one where any two points can be connected with a path.

Definition 2.7. Let X be a topological space and let x, y ∈ X be any two points. A

path between x and y in X is a continuous function f : [0, 1] → X such that f(0) = x

and f(1) = y.

Definition 2.8. A topological space X is said to be path-connected if there exists a path

between any two points x, y ∈ X.

Another important topological invariant is compactness. For a topological space
X and a subset A ⊂ X, we define an open cover of A as the indexed family {Uα} for
which A ⊂ ∪{Uα}.

Definition 2.9. A topological space X is called compact when every open cover of an

any subset of X has a finite subcover.

Compactness is important because it captures the idea of infinite sets which are not
”too big”. For example, in Euclidean space any compact set is closed and bounded.
That means that those sets have a boundary and they can be contained in an open ball
with finite raidus.

One way to obtain new topological spaces is through quotient spaces, which are
defined via an equivalence relation. An equivalence relation ∼ on a topological space
X partitions the points of X into equivalence classes. The equivalence class of a point
x ∈ X is defined as the set [x] = {y ∈ X : x ∼ y}. The set of equivalence classes is the
quotient of X by ∼ and is written as as X/ ∼.

Definition 2.10. Let X be a topological space and ∼ be an equivalence relation defined

on X. The quotient topology of X/ ∼ is formed by the sets U ⊆ X/ ∼ such that π−1(U)

is open in X.

For an example of how a quotient space changes the topology of a space consider the
closed diskD = {x2+y2 ≤ 1} and its subset the circle S1 = {x2+y2 = 1}. The quotient

11

2.2 Morse Theory

space D/S1 is homeomorphic to the three dimensional sphere S2 = {x2+ y2+ z2 = 1}.
This is because D/S1 identifies all points on S1 as a single point and glues them
together. This closes the boundary of D and turns it into a sphere.

One of the most important types of topological spaces are manifolds - a mathemat-
ical generalisation of curves and surfaces.

Definition 2.11. A topological space X is a manifold of dimensions n (or a d-manifold)

if:

• Every point in X has an neighbourhood that is homeomorphic to Rd.

• X is Second countable.

• X is Hausdorff.

Zero dimensional manifolds are points; one dimensional manifolds are lines, circles
and curves; two dimensional manifolds are the surfaces we are familiar from geometry
such as the sphere and the torus.

A manifold with a boundary is a manifold with both interior and exterior points.
The interior points are homeomorphic to Rn and the exterior points (the ones on the
boundary) are homeomorphic to half of Rn which we can express as {(x1, . . . , xn)|xi ≥
0}. The boundary of a manifold M is written as ∂M and is itself an n− 1 dimensional
manifold. A compact manifold without a boundary is called closed.

An example of a manifold with a boundary is the closed interval [0, 1] where the
boundary is the endpoints {0, 1}. Another example is the closed ball Bϵ(x) = {y ∈ R3 :
d(x, y) ≤ ϵ} whose boundary is the 2-sphere.

It is often difficult to analyse the topology of a space by just considering its open
sets. This is why in the following two sections we will employ additional tools from
other fields of mathematics to aid in our analysis of the topology of a space. These tools
are differentiable functions over differentiable spaces and combinatorial approximations
of topological spaces.

2.2 Morse Theory

Morse theory is the study of differentiable manifolds via differentiable maps defined
on them Matsumoto (2002a); Milnor (2016). A core idea in Morse theory is to study
the critical values of a scalar map f : M → R where M is a differentiable manifold.
However this is very complex to do in general for smooth maps because some critical
points can be degenerate and have complicated behaviour. Therefore we restrict our
attention to a special class of differentiable functions called Morse functions.

Definition 2.12. A function f : M → R is a Morse Function if f is smooth and at

critical points the Hessian (matrix of second partial derivatives) is full rank.

12

2.2 Morse Theory

The points in M where the first derivative is equal to zero are called critical points,
other points are called regular. We use the critical points of M to decompose it into
a family of path-connected submanifolds with equivalent topology. These are the level
sets, sublevel sets and superlevel sets.

Definition 2.13. A level set at a value h of a Morse function f : M → R is the set

f−1({h}) = {x ∈ M : f(x) = h}

Sublevel sets are are defined as the preimage of an interval instead of a single value
f−1((−∞, a]) = {x ∈ M : f(x) ∈ (−∞, a]} and superlevel sets are defined analogously
as preimages of intervals of the form [a,∞).

Morse functions ensure the following properties hold:

• None of the critical points are degenerate.

• Changes in the topology of level sets, sublevel sets and superlevel sets only happen
at critical points.

• A Morse function defined on a surface has a finite number of critical points.

Morse functions allow us to decompose a manifold into its level sets. We will use the
theory we have developed so far to introduce the principal tool that allows us to analyse
how the connectivity of level sets f−1({h}) changes as we vary the input parameter h.

The Reeb graph is a tool that encapsulates the evolution of the topology of level
sets of a continuous function. When the function is Morse, an edge in the Reeb graph
corresponds to a sequence of contours in the level sets whose topology does not change.
The vertices correspond to critical points where the topology of those components
does changes. An example of a topological change is when connected components in
the level sets appear or dissapear or when two connected components split or merge.
Morse theory ensures that critical points occur at distinct values of the parameter and
are isolated. This removes ambiguities that may arise in the construction of the Reeb
graph.

Definition 2.14. Given a topological space X and a continuous function f : X → R
we can define an equivalence relation ∼ such that two points x, y in X are equivalent

when there exists a path between them in a level set f−1({h}) for some h ∈ R. The

Reeb graph is the quotient space X
/
∼ together with the quotient topology.

We can think of the Reeb graph of a space X as the quotient space where the
connected components of all level sets are contracted to a single point. The result-
ing topological graph can also be though of as a discrete graph. To do so, we must
enumerate the vertices and record all edges between them.

In the next section we will take a look at certain tools from Algebraic Topology
that allows us to translate the continuous mathematical results we have obtained so far
into the realm of finite combinatorial structures that would allow us to perform actual
computation.

13

2.3 Fiber Topology

2.3 Fiber Topology

Studying more than one scalar function at the same time, instead of individually with
Morse theory, becomes more complex. This is the subject of study of Fiber Topology.
For a comprehensive introduction to the subject we refer the reader to Saeki (2004)
and for a more concise introduction we refer the reader to Saeki (2017). In this section
we will outline some of the main definitions and results.

Let N be a smooth manifold and let f : N → Rn be a multi-field. By a multi-field
we mean a set of scalar maps fi : N → R for i ∈ {1, . . . , n} such that f = (f1, . . . , fn). A
smooth map is called stable when there exists a neighbourhood of the map in the space
of smooth maps such that the map is equivalent to all those maps up to diffeomorphism.
That means that if the map is perturbed slightly the resulting map behaves the same up
to diffeomorphism on the domain and the range. Furthermore for the case of a bivariate
field (f, g) the space of smooth maps is dense in the space of stable maps (Recall
Definition 2.1). That means that any smooth map can be approximated arbitrarily
well by a stable map.

The differential of a multi-field (f, g) is the linear map associated with the Jacobian
matrix of (f, g) at a particular point p. If the rank of the Jacobian is less than the
dimension of the domain manifold or of the range, then the point is called singular.
This is analogous to critical points for Morse functions. The structure of the set of
singular points for a bivariate field consists of a set of curves in the domain called folds,
connected by points called cusps.

The preimage of a single point in the range is called a fiber, and it is denoted as
(f, g)−1(p) where p ∈ R2. When p is a regular point we call the fiber regular, and when
p is a singular point we call the fiber singular. This is analogous to the definition of
level set in Morse Theory. In Fiber Topology two fibers are considered equivalent when
we can establish a diffeomorphism on neighbourhoods of the fibers, not just the fibers
themselves. Fiber topology is concerned with classifying fibers up to equivalence, which
is why the term fiber itself carries more information than just the preimage.

One key result that describes the behaviour of fibers is the Ehresmann Fibration
Theorem. A corollary of that theorem is that the equivalence type of a fiber only change
at the singular set of the bivariate field. Suppose we split the range into singular regions,
the image of the singular set and regular regions, all other points. The singular regions
will be a set of curves that overlap and regular regions will be two dimensional regions
segmented by the singular regions. All fibers in a regular region are equivalent and
they change their equivalence type as they pass through a singular region.

The generalisation of the Reeb graph for a multi-field is called the Reeb space.
The Reeb space is the quotient space (recall Section 2.1) obtained by contracting the
connected components of all fibers to a single point. The Reeb space is also called the
Stein factorizaion and it has played an important role in the global study of stable maps.
The Reeb space can be obtained from a classification of singular fibers by considering
the connected components of the regular fibers in their equivalence region.

The Reeb space is no longer one dimensional like the Reeb graph. For example for

14

2.4 Piecewise Linear Topology

a bivariate function the Reeb space is a two-dimensional complex. That means that it
is comprised of a number of surfaces glued together by singular curves. More generally
the Reeb space is stratification of manifolds, but it has been shown for stable maps the
Reeb space is a polyhedron.

A polyhedron can be represented as a combinatorial structure called a triangulation.
This is essential for the purposes of computation, which is the ultimate goal of this work.
In our next section we move from away smooth mathematics to discrete mathematics.

2.4 Piecewise Linear Topology

In the previous sections of this chapter we presented the smooth mathematical theory
that underlies our investigation. However, in order to compute anything in practise we
are going to need a combinatorial representation. For a comprehensive introduction
we refer the reader to Rourke & Sanderson (1972) and for a more concise modern
introduction we refer the reader to Edelsbrunner & Harer (2022). Here we will outline
the main definitions and results.

Simplical Complexes are one of the first combinatorially flavoured topological spaces
one encounters in Piecewise Linear Topology. A simplicial complex is a subset of Rn

that consists of points, line segments, triangles and their higher dimensional analogues
attached to one another in a single geometric object. In order to understand simplicial
complexes we must first define their basic building blocks.

Definition 2.15. Let {v1, . . . , vk} be k points in Rn. A convex combination of the

points is a sum
∑k

i=1 λivi where λi ≥ 1 and
∑n

i=1 λi = 1.

If we decide to take the subset of Rn covered by all possible convex combinations
we obtain the convex hull of the points. Another way to construct simplices is to
inductively build them up of simplices of lower dimesion using the cone operation. The
cone operation takes two sets in Euclidean space and all line segments between them.

Definition 2.1 (Cone). Given two sets A and B in Euclidean space, the cone(AB) =

{ta+ (1− t)b | t ∈ [0, 1], a ∈ A and b ∈ B} consists of all line segments between every

point in A and every point in B including the endpoints of the line segments endpoints.

Definition 2.16. Let {v1, . . . , vk} be points in Rn in general position. The set of all

convex combination of those points is called the k− simplex defined by the points. We

will write that simplex as [v1, . . . , vk] ⊂ Rn

The coefficients in the convex combination are called barycentric coordinates. The
number k is also called the dimension of the simplex. We will call the simplices of
dimension 0, 1, 2 and 3 vertices, edges, triangles and tetrahedron respectively.

A face of a simplex is the convex hull of a non-empty subsets of its points. For
example the faces of the tetrahedron are the four triangles, six edges and four vertices.

15

2.4 Piecewise Linear Topology

To construct a simplical complex all we have to do is take the union of a number of sim-
plices and ”glue” them together along common faces without allowing self-intersection.

Definition 2.17. A simplical complex K is a finite collection of simplices, such that

if τ is a simplex K then all faces of τ must be simplicies in K. Furthermore the

intersection of two simplicies in K is either empty or a common face of both.

Most of the data sets we will consider in this work will be simplicial complexes. In a
simplicial complex we need to define the neighbourhoods of points, these are analogous
to the open sets in the smooth case.

Given a simplicial complex K we use |K| to denote the underlying geometric space
which is defined as |K| = ∪σ∈K(σ) equipped with the subspace topology (Recall 2.1). A
subcomplex M of K is a simplicial complex such that every simplex of M is a simplex of
K. The k-skeleton of a simplicial complex is the subcomplex that includes all simplices
of dimensions k or lower. We write the k-skeleton of a simplicial complex K as Kn. In
this notation K0 is the set of vertices, K1 is the set of edges and so on.

Definition 2.2 (Star, Link, Closed Star). The star of a simplex σ consists of all

simplices which have σ as a face. In general the star is not a simplicial complex, so we

also define the closed star to include the faces of the simplices in the star. The link of

an simplex consists of the simplices in the closed star which have an empty intersection

with the simplex σ.

We will not differentiate between the terms star and the closed star, we assume
that the star contains all its faces. We say that a simplicial complex triangulates
its underlying geometric space. The analogous topological spaces to manifolds in PL
topology are combinatorial manifolds.

Definition 2.3 (Combinatorial Manifold). A combinatorial d-manifold is a triangula-

tion of a d-manifold such that the link of very vertex triangulates the (d-1)-sphere and

is itself a combinatorial (d-1)-manifold.

Another more general type of PL space is a polyhedron.

Definition 2.4 (Polyhedron). A subset of Rn is a polyhedron P when every point p ∈ P

has a cone neighbourhood N = cone(p, L) where L ⊂ P and L is compact.

Analogously to simplicial complexes N is called the star of p and L is called the
link. All simplicial complexes are polyhedrons and all polyhedrons are triangulable.

In differential topology the natural maps between spaces were infinitely differen-
tiable, or smooth maps. In PL topology the natural maps are PL maps.

Definition 2.5. A map f : K → Rn where K is a simplicial complex is a PL map if

each point a ∈ K has a star N = cone(a, L) such that f(αa + βx) = αf(a) + βf(x)

where x ∈ L and α and β are a convex combination.

16

2.4 Piecewise Linear Topology

In a sense PL maps are locally conical, straight lines from the local cone structure
are mapped linearly. For simplicial complexes it is enough to define the values of a PL
map on the vertices, or on the 0-skeleton. The value for all other points on all other
simplices are taken via their barycentric coordinates.

Given a function defined on the vertices of the complex f : K0 → R we can define
a PL function on the whole of the simplicial complex h : K → R as follows. Any point
in any simplex can be written as a convex combination of the vertices of that simplex.
For example for a point in a simplex x =

∑i=n
i=1 βivi spanned by [v1, . . . , vn] we define

the PL function on the simplicial complex as h(x) =
∑

βif(vi). This satisties the PL
definition of a function 2.4.

When a PL map is defined on simplicial complex we can also define the lower
an upper link of a vertex. The upper link consists of all simplices in the link whose
spanning vertices have a larger function value than the vertex. Analogously the lower
link is defined as all simplices in the link whose spanning vertices have a lower function
value than the vertex.

17

Chapter 3

Literature Review

In this chapter we give an overview on the topic of topological data analysis in Scientific
visualisation. The aim is to broadly cover the relevant theory, concepts, and methods
that have been developed in the field so far. We present algorithms, where they are
available, as well as their asymptotic analysis and practical implementations. For each
method we also outline the applications it has found in analysing and visualising real
world data.

3.1 Scalar Field Methods

In this section we will introduce one of the primary visualisation techniques for scalar
fields called an isosurface. Formally, a scalar field is a real valued continuous function
f : Rn → R. It assigns a real number to every point in n dimensional Eucledian space.
A level set of a scalar field f at an isovalue c ∈ R is the set of points in Rn that are
mapped to the same constant value c. Analogously we define the sublevel set as the
set a points which are mapped to a value less than c and the superlevel set as the set
points mapped to values bigger than c. An isosurface is then defined as a level sets of
a three dimensional domain.

In practise we cannot work with the entire domain and scalar function because they
are continuous. Instead, we use a discrete approximation, built on top of a finite set of
sampled points. If we assume that the points are sampled at the vertices of a regular
grid we can interpolate to ”fill” the missing function values at the edges, faces and
interiors of the grid. If the grid is made of tetrahedra the standard method is barycen-
tric interpolation and if it is made up of cubes we often use trilinear interpolation.
Computational considerations for irregular grids are outside the scope of this work.

Once we have produced an approximation of the underlying real valued function
we note that a level set f−1(c) separates the domain into two disjoint sets Wenger
(2013a). They consists of the points that take a higher value and the points that take a
lower value. This property enables one of the first and most widely used algorithms for
isosurface extraction called Marching Cubes Lorensen & Cline (1987). Marching Cubes

18

3.2 Scalar Field Topology

works by dividing the domain into cubes and constructing a triangulated approximation
of the intersection of the isosurface with each cube independently. We inspect the
vertices of every cube to determine whether their value is bigger or smaller than the
isovalue. If one vertex of an edge has a bigger isovalue and the other one smaller, then
we know that the isosurface intersects that edge. If we assume that every vertex is
either bigger or smaller there are 28 = 256 possible configurations. Each configuration
corresponds to a specific isosurface construction pattern within that cube. The number
of distinct configurations can be reduced down to 24 by considering rotational, reflective
and mirror symmetries van Gelder & Wilhelms (1994). Finally, in order to construct
the isosurface patch within the cube we compute the point of intersection along the
edge via linear interpolation.

The original Marching Cubes paper Lorensen & Cline (1987) is one of the most
cited papers in computer graphics and visualisation and there have been numerous
extensions to improving its computational efficiency, extending the output and input
and ensuring correctness and consistency of the geometry and topology of the output
Newman & Yi (2006). One of the most relevant extension is Marching Tetrahedra
Shirley & Tuchman (1990). Marching Tetrahedra subdivides each cube in the rectilinear
grid into multiple tetrahedra. As a tetrahedron has only four vertices, there are 24 = 16
possible configurations which are reduced down to 3 when we consider reflection and
rotation Treece et al. (1999a). The tradeoff of having less cases and simpler geometrical
objects is that the choice of subdivision scheme produces geometric artifacts Carr et al.
(2001) and increases computation time by a factor of at least five or more (depending
on how many tets are used for each cube). In Section 3.7 we will present an extension
of isosurfaces to the bivariate case called Fiber surfaces and show how a variant of
Marching Tetrahedra is used to compute them accurately and efficiently.

3.2 Scalar Field Topology

The core idea of Topological Data Analysis is to use topological structures to define
and extract features of interest in data. In this section we will consider the three major
topological structures that have found the widest use in scientific visualisation. Those
are Persistent homology, the Morse-Smale complex and the Reeb graph.

Persistent homology Edelsbrunner & Harer (2008) captures the evolution of the
Homology Groups of a filtration of a simplicial complex. Homology groups are studied
in Algebraic Topology as a means of describing the connectivity of a topological space.
Elements of the homology groups represent the connected components, holes, voids
and their high dimensional equivalents. Within this framework they are referred to
as 0-cycles, 1-cycles, 2-cycles, and n-cycles respectively. A filtration of a simplicial
complex is a sequence of complexes that start from the empty set and iteratively build
up to the final complex by attaching simplicies at every step. For example when we
attach new simplices new connected components may appear and when two connected
components are bridged together they become one and one of them disappears. The
same goes for the higher dimensional cycles - they appear at certain points in the

19

3.2 Scalar Field Topology

filtration, they persist for a certain number of steps and if they are filled in at any point
they disappear. An element that persists for a large number of steps in the filtration is
called persistent and deemed significant, while an ephemeral element is considered noise
and can be discarded. Persistent homology is computed with a procedure that amounts
to Gaussian elimination on the boundary matrix of the filtration. Using the boundary
matrix, one sums up simplices to track the birth, persistence and death of cycles as
they are formed and subsequently filled. The computational complexity of Persistent
Homology is shown to be equivalent to matrix rank computation Edelsbrunner & Parsa
(2014). Persistent homology has found various applications in neuroscience Reimann
et al. (2017), computational biology Verovšek & Mashaghi (2016) and astrophysics
J. Adler et al. (2017).

The Morse-Smale Complex is a topological data structure that is made by consid-
ering integral lines, or maximal curves along a manifold whose tangent vectors match
the gradient. In Morse Theory these curves are obtained as the solution to a first order
differential equation using the gradient field of the manifold. From the theory of differ-
ential equations we know that these integral lines exist and that they do not intersect,
and that their origin and destination are critical points. The Morse-Smale complex
is a partition of the manifold into regions where the integral lines share a common
origin and destination. Algorithms that compute the Morse-Smale complex rely either
on piecewise-linear Morse Theory or the combinatorial reformulation of Morse Theory
called Discrete Morse Theory Scoville (2019). Methods based on the piecewise-linear
case obtain the cells of the Morse-Smale complex by tracing out paths of steepest as-
cent and descent along the edges of the input mesh Edelsbrunner et al. (2003a,b) These
algorithms are computationally intensive and not well parallelisable. An improvement
on this are algorithms based on Discrete Morse theory. They compute the cells of
the Morse-Smale complex explicitly either by growing maximal regions from seeds in
cells containing minima and maxima Gyulassy et al. (2007) or by a divide and conquer
approach that computes the discrete gradient vector field for parts of the data and com-
bines them appropriately Gyulassy et al. (2008). Such algorithms achieve an average
case running time of O(nlogn). The Morse-Smale complex has been applied to molec-
ular shape analysis Cazals et al. (2003), automated segmentation in histopathology
Robins et al. (2011) and terrain modeling Danovaro et al. (2007).

The Reeb graph Reeb (1946) represents the topological skeleton of an object. It was
initially introduced in the field of Differential Topology Milnor (2016) to study mani-
folds via real valued functions defined on them. The Reeb graph is the quotient space
obtained by contracting the connected components of the level sets of the function to a
single point. The nodes of the Reeb graph correspond to critical points in the domain
where topological events occur, while the edges correspond to features which are sepa-
rated by these topological events. Examples of topological events are local minima and
maxima where connected components of level sets appear and disappear and saddle
points where connected components of level sets merge together or split apart. The
Reeb graph was introduced in the field of Computer Graphics in 1991 as a discrete data
structure for surface coding Shinagawa et al. (1991). Since then it has found numerous

20

3.3 Reeb Graph algorithms

applications in the fields of computer graphics, scientific visualisation and computer
vision. Those include shape matching and encoding Attene et al. (2006); Hilaga et al.
(2001a), compression Biasotti et al. (2000), surface segmentation Sorgente et al. (2018)
and parametrisation Steiner & Fischer (2001); Zhang et al. (2005), isosurface remesh-
ing Wood et al. (2000) and simplification Wood et al. (2004), feature extraction Bajaj
et al. (1997), transfer functions for volume rendering Weber et al. (2007b) and topo-
logical simplification Weber et al. (2007b); Wood et al. (2004). A survey on its further
application is Biasotti et al. (2000).

From these three approaches only the Reeb graph has been successfully generalised
to higher dimensions. The output of one dimensional Persistent Homology is complete
in the mathematical sense in that it gives a full description all topological information
within a filtration. A similar result is not possible for a filtration described by multiple
parameters, or a multifiltration Carlsson & Zomorodian (2009). This negative result
is partially offset by the definition of an two alternative invariants - the rank invariant
Carlsson et al. (2009b) and persistent Betti numbers Cerri & Landi (2013). However,
they are not complete, and only approximate the Betti numbers of the multidimensional
filtration. This is further complicated by the fact that computing multidimensional
persistence has a worst case running time of O(n4m3) Carlsson et al. (2009b). To our
knowledge there is no extension of the Morse-Smale complex to higher dimensions. The
Reeb graph, on the other hand, has been generalised to the Reeb space, which we will
descibe in detail in Section 3.9.

3.3 Reeb Graph algorithms

The first algorithm for Reeb graph computation on 2-manifolds is due to Shinagawa
and Kunii Shinagawa & Kunii (1991). The algorithm takes as input cross sections
(or level sets) of an object as well as the number of handles the object is known to
have. The edges of the Reeb graph are generated as the areas where the contours
do not change. Edges at saddle points which correspond to contours which are close
together are connected to complete the Reeb graph by making sure not to contradict
the known number of handles. The running time of the algorithm is O(n2) where n is
the number of edges in the triangulation. An improvement on the running time of this
algorithm was the suggested in Hilaga et al. (2001a) by introducing Multiresolution
Reeb graphs. The key idea proposed in the paper is to sacrifice accuracy in order to
speed up computation by computing a quantised version of the Reeb graph at various
levels of details. A more efficient algorithm for Reeb graphs of 2-manifolds was given
in Cole-McLaughlin et al. (2004). The algorithms uses a result from Morse Theory
which states that changes of the topology of level sets can only occur at the critical
points of the input mesh. Since these can be recognised via a local test for criticality
the algorithm first finds all critical points and sorts them in descending order. The
algorithms then proceeds to create, destroy, cut and glue together components of level
sets as it sweeps through them. The resulting running time is O(nlog(n)) where n is
the number of edges in the triangulation.

21

3.3 Reeb Graph algorithms

The first on-line Reeb graph computation Pascucci et al. (2007) was introduced in
2007. While its running time is quadratic, it can handle arbitrary meshes, it has small
memory footprint and good performance in practice (especially on 2D meshes). The
algorithm works by dynamically creating and updating the Reeb graph as it reads the
input of vertices, edges and faces in a stream. Note that we do not need to read the
higher dimensional simplices because the Reeb graph only depends on the 2-skeleton
of the domain Pascucci et al. (2007). For each new vertex a new node is created in the
Reeb graph and for each new triangle we add a new edge. Adding the face of a triangle
then connects disjoint contours and corresponds to merging two paths of the Reeb
graph. In the end of the computation all degree two vertices are removed by merging
their adjacent arcs. In 2009 Tierny et. al Tierny et al. (2009) presented an algorithm
that takes as input 3-manifolds with boundary, embeded in three dimensional space.
While it is not general, the algorithm is efficient with running time O(nlogn + hn)
where h is the number of loops in the Reeb graph. The algorithm introduces the key
concept of loop surgery and decomposes the domain into simply connected regions
where the Reeb graph has no loops. Reeb graphs of such regions are a special case
that is called the contour tree because they are connected and acyclic. Unlike with the
Reeb graph there are general case efficient algorithm for contour tree computation with
running time of O(nlogn) Carr et al. (2000) that work by computing and combining
the connectvity of the sublevel and the superlevel sets (see Section 3.1) of the domain.
The contour trees of the simply connected regions are joined together at the point of
surgery to create the loops of the Reeb graph.

Consequently Doraiswamy and Natarajan produce a number of papers Doraiswamy
& Natarajan (2009, 2012, 2013). Their first algorithm borrows the idea of tracking level
set components during an isovalued sweep of the input mesh Doraiswamy & Natarajan
(2009). They adapt it to the three dimensional case by computing the Reeb graph
incrementally and use a more complex tracking procedure. The running time for 3-
manifolds is O(nlogn+nlog(g)(log(log(g)))3) and O(nlogn(log(logn))3) for d-manifolds
where g is the maximum number of loops in any level set. Their following paper
Doraiswamy & Natarajan (2012) is based on an alternative definition of the Reeb graph
where nodes and arcs are mapped to components of critical level sets and equivalence
classes of regular level sets respectively. As with the previous algorithm the critical
points in the domain are located via a local criticality test and sorted by value. The
algorithm uses the alternative definition to identify pairs of critical points that have a
cylinder between them and inserts the corresponding nodes and arc in the Reeb graph.
The overall running time of this algorithm is O(n+m+ tlogt) where m is the number
of critical points and t is the size of the critical level sets. Their final algorithm uses
an idea similar to loop surgery Tierny et al. (2009) to divide the input into subvolumes
whose Reeb graphs are loop free and then computes and combines contour trees to
obtain the final Reeb graph. The improvement they have made is that their approach
applies to simplicial complexes of any number of dimensions. The overall running time
is O(mlogm+ sn) where m is the number of vertices, n is the number of triangles and
s is the number of saddles.

22

3.4 Contour Tree Algorithms

The first two near optimal algorithms are Harvey et al. (2010); Parsa (2013). The
first algorithm Harvey et al. (2010) is randomised with expected running time of
O(mlogn) where m is the size of the 2-skeleton and n is the number of edges. The
algorithm works by iteratively collapsing triangles in the input mesh until the Reeb
graph is obtained. Collapsing all triangles around a vertex is a systematic way to col-
lapse the entire contour that passes through that vertex. This operation is performed
on all vertices which are first randomly permuted. The second algorithm Parsa (2013) is
deterministic and has running time of O(mlogm) where m is the size of the 2-skeleton.
It works in two phases; first it detects and sorts all critical vertices based on their
value; then it reduces the problem to maintaining connected components of a graph
through insertion and deletion of arcs. The authors use domain specific knowledge
to solve that problem with optimal timebounds using the offline graph connectivity
problem Eppstein (1994). Furthermore they go as far as to show the inverse reduction
from the offline graph problem to the Reeb graph construction, thus showing that the
two computations are equivalent. What both algorithms Harvey et al. (2010); Parsa
(2013) have in common is that they leave the continuous cases behind and work with
graphs and abstract simplicial complexes instead of their geometric realisations. This
yields combinatorial algorithms that borrow more from graph theory than previous
algorithms.

3.4 Contour Tree Algorithms

Often in scientific visualisation the domain is a connected volume. In those cases the
Reeb space is also connected and it does not have cycles. This restricted case of the
Reeb space is called the contour tree. The contour tree is useful in practise because
there are more efficient algorithms to compute it and it applies to many real life data
sets.

The standard contour tree algorithm Carr et al. (2003) is based on the idea of an
isovalued sweep - i.e. processing the vertices of the mesh in sorted order from high
to low. As each vertex u is processed, any edge (u, v) to a higher-valued vertex v is
also processed. At each step there is a subgraph representing the super-level set, whose
connectivity can be tracked with an incremental version of the union-find data structure
Tarjan (1975).

In the first stage of the algorithm we construct the join tree, then repeat with a
low-to-high sweep to compute the split tree. In the second stage, we construct the
contour tree iteratively by transferring leaves and their adjacent edge from the merge
trees, using induction on a simple invariant to guarantee correctness. As a result, this
algorithm is sometimes referred to as the sweep and merge algorithm.

There have been several approaches to scaling the sweep and merge algorithm.
Some of them have focused on distributed computation Landge et al. (2014); Morozov
& Weber (2013, 2014); Pascucci & Cole-McLaughlin (2004). We will not consider them
because they focus more on minimising communication between nodes than efficient
utilisation of individual nodes. Other methods focus on vector Carr et al. (2016), thread

23

3.5 Topological Simplification

Gueunet et al. (2016); Gueunet et al. (2017) or hybrid Acharya & Natarajan (2015);
Maadasamy et al. (2012); Rosen et al. (2018) shared memory parallelism.

The parallel peak pruning algorithm Carr et al. (2016) is the only shared memory
algorithm which parallelises the merge phase. Other algorithms introduce a novel way
of computing the join and split tree, but combine them in serial. Note that the merge
phase has linear complexity and it is faster to compute than the join and split trees.
Nonetheless, parallelising the merge phase is important for resource utilisation and
parallel speed up according to Amdahl’s law Gueunet et al. (2017).

In the merge phase of the serial contour tree algorithm Carr et al. (2003) we transfer
the leaves and their adjacent edge from the merge trees to the contour tree. Since this
is a local operation all leaves can be batched and transferred in a single parallel step.
The algorithm alternates between transferring leaves from the join and split tree until
the contour tree is fully constructed. In the ideal case, each batch transfers at least half
of the vertices, guaranteeing logarithmic performance. In a tree with no vertices with
degree two half of the vertices are leaves. Thus we can achieve logarithmic collapse if
we remove degree two vertices in a post process for each batch.

Removing a degree two vertex is straightforward when its neighbouring vertices have
values spanning the value of the vertex. This is the case when the vertex is connected
by a chain of such vertices to a leaf. In effect, these vertices are regular at this stage
(although they may not have been in earlier stages), and can be removed. For vertices
of degree two whose value is smaller or bigger than the value of both neighbours, this
is not so easy to perform. We call these vertices forks.

A W-structure consists of repeated forks zigzagging between upwards and down-
wards, as illustrated Hristov & Carr (2019). In order to collapse the W-structure com-
pletely we can only prune from an endpoint of the W-structure to a fork. The internal
vertices cannot be process until we have pruned all forks. Therefore computation is
effectively serialized along the largest W-structure in the contour tree. This prevents
logarithmic collapse and complicates the parallel complexity analysis of the algorithm.

3.5 Topological Simplification

Simplification is motivated by the practical need to deal with noise in real life data.
In other fields like scientific computation, image processing and geometry processing
simplification is better known as data denoising or smoothing. Essentially simplifica-
tion is used to remove things such as statistical noise and measurement error in order
to highlight important features. Topological simplification specifically refers to a sim-
plification technique that removes small scale topological features without interfering
with large scale ones. Methods for topological simplification usually remove critical
points which in turn simplifies topological features. These methods either simplify the
function directly, which in turn simplifies the topological structures derived from it;
or they simplify the topological structures and they in turn correspond to a simplified
function on the domain.

First, we will look at techniques that simplify the input function. Morse theory

24

3.5 Topological Simplification

provides a method for cancelling critical points in pairs via the Morse Cancellation
Theorems Matsumoto (2002b). The Morse Cancellation Theorems state that for certain
pairs of critical points we can perturb the input function slightly in the region around
the critical points to obtain a simpler Morse function that contains all critical points
except for the chosen pair. An approach that simplifies critical points in pairs directly
for scalar fieds is Lukasczyk et al. (2021).

Since in the theory behind critical point cacellation uses the flow of gradient-like
vector fields in practise this can be done using the Morse-Smale complex. A number
of methods take this approach Bremer et al. (2004); Gyulassy & Natarajan (2005);
Günther et al. (2014); Jacobson et al. (2012); Ni et al. (2004); Weinkauf et al. (2010).
They compute the Morse-Smale complex, find critical points whose index differs by one
and are connected by a common arc and then apply a simplification based on topological
persistence or some other geometric measure like volume or surface area. One issue
with this approach is that it does not directly give rise to a simplified function, but to a
simplified Morse-Smale complex and a simplified gradient vector field. This is why these
methods usually involve some sort of numerical computation like nonlinear optimization
Günther et al. (2014); Jacobson et al. (2012); Ni et al. (2004); Weinkauf et al. (2010)
or solving partial differential equations to apply partial Laplacian smoothing Bremer
et al. (2004) to simplify the actual input function. These methods are computationally
intensive and lead to issues with numerical instability. An alternative combinatorial
approach that does not rely on the Morse-Smale complex is referred to as ϵ-closeness
Edelsbrunner et al. (2006). It uses Persistent homology to produce a function whose
distance from the original is no more than ϵ and has no pairs of critical points with
persistence less than ϵ. This work was further improved by Attali et al. (2009); Bauer
et al. (2012) and a more general scheme that does not rely on persistent homology is
given by Tierny & Pascucci (2012).

The direct approach on the other hand applies simplification to the topological
structure directly. There are several similar techniques for contour tree simplification
which are based on pairing maxima and minima with saddle points. One technique is
called Leaf pruning Carr et al. (2010a) and it involves removing a leaf from the tree
and reducing the saddle it connects to to a regular point. This technique is always
applicable because a tree has at least one more leaf edge than it has interior points. A
similar technique to this is Branch decomposition Pascucci et al. (2004b). It involves
partitioning the contour tree into monotone paths called branches and then removing
those that do not disconnect the tree in order of persistence. We must note that
when these methods use persistence, their output is not the same as that of persistent
homology as show by Petar Hristov Hristov (2017). In the general case, these techniques
cannot directly be applied to the Reeb graph because we are not always guaranteed
to have leafs due to the presence of cycles. The only available technique to handle
this is extended persistence Agarwal et al. (2006) which pairs all points on a closed
manifold. It pairs minima and maxima to saddles, and merge saddles to split saddles
which correspond to loops in the Reeb graph. Pairs of minima, maxima and saddles
can be removed similarly to leaf pruning and loops can be cancelled by gluing the

25

3.6 Multvariate Field Methods

two paths of the loop and eliminating their endpoints as they become regular points
Pascucci et al. (2007).

3.6 Multvariate Field Methods

One of the first methods for comparing multiple scalar fields was introduced in Hilaga
et al. (2001b). The authors use a coarse representation of the Reeb graphs of different
surfaces to compare them by determining an index of similarity. This coarse repre-
sentation is based on computing multiple quantised versions of the Reeb graph jointly
called the Multi-Resolution Reeb graph. The method is implemented as a comparison
function in a 3D geometric shape database with satisfactory results. This approach was
extended by Zhang et al. (2004) to comparing scalar functions of simply connected three
dimensional domains. The authors compute a quantised approximation of the contour
tree at multiple resolutions similar to Hilaga et al. (2001b) and apply a graph matching
algorithm that directly compares the similarity of the attributes of the contour tree
nodes. They use their method to compare proteins using their electron density and
electrostatic potential. An alternative to computing a quantised version of the Reeb
graph and Contour tree is given by Schneider et al. (2008a). The authors propose
to compute and simplify the Contour trees of two scalar fields use them to construct
the two largest contour segmentations Manders et al. (1996) where the largest contour
segmentation is defined as the largest surface containing only one local maximum. The
next step is to compute the spacial overlap of the largest contours of both scalar fields
and present them as nodes in a weighted bipartite graph where the weights of the
edges represent the similarity of the overlapping contours. To enable interactive explo-
ration, the authors provide a linked view of the contour trees and the domain where
the user can select contour pairs form the Contour tree and study their relationship in
the domain.

While these papers have shown that Reeb graphs and contour trees can be used for
comparing scalar fields, they merely identify similarities between individual fields rather
than giving the overall structure of their topological correlation. A more advanced
idea is that of layered Reeb graphs Strodthoff & Jüttler (2015). Layered Reeb graphs
were first defined in Strodthoff & Jüttler (2013) for two Morse functions f and g on
a common d-manifold. The idea is to compute the Reeb graph of the first function
and then the Reeb graphs of the second function, restricted to the level sets of the
first function. The authors do not compute the Reeb graphs of all level sets, only
at isovalues where their topology changes. As we will see in Secition 3.8 the change
in topology happens in level sets which cross a generalisation of critical points called
Jacobi edges. To visualise this construction, the multiple Reeb graphs of the second
function are displayed next to the parts of the edges of the Reeb graph of the first
function where all level sets have the same Reeb graph.

Another set of approaches compare the gradients at every point in the domain
and compute an index of correlation. In the first approach Nagaraj et al. (2011) the
authors compute the biggest length of any unit vector multiplied by the Jacobian.

26

3.7 Fiber Surfaces

This induces a new scalar field which provides information about the interactions of
the different fields with one another. It has been applied to data from climate science
and combustion simulations. There are two main issues with the approach; the first
one is that it is sensitive to scaling of the fields and the second is that it is difficult to
identify which isovalue of the measure is useful for producing isosurfaces. The second
method is used for visualising correlations in 3D scalar data fields Sauber et al. (2006).
The authors compute and visualise the amount of minimum local correlation at every
point in the data set. One of the main drawback of this method is that if two fields are
not correlated we lose information about all other fields. Another drawbacks is that
correlation is a linear measure, so it may not detect complex non-linear relationships.
A similar approach has been studied in Gosink et al. (2007), as the authors compute
the dot product of the gradients of the fields. However this method can only be used
for comparing two scalar fields at a time. An issue with all of these methods is that
they are too reductive. That is, they describe the local relationship of the interaction of
multiple fields using a correlation indicator. We argue that more complex topological
structures are needed to give a more complete and detailed description. In Section 3.8
we will describe how we can use gradients of the functions to obtain richer information
about the topological correlation of scalar fields using the Jacobi sets.

3.7 Fiber Surfaces

Fiber surfaces Carr et al. (2015) extend the notion of isosufaces by considering two
scalar functions f1 and f2 combined in a single bivariate function f : R3 → R2. The
inverse image of a point (x, y) is well defined as a fiber f−1(x, y) = f−1

1 (x)∩ f−1
2 (x). A

fiber is the intersection of two isosurfaces, or a one dimensional curve in the domain.
In order to obtain a surface instead of a curve we further extend fibers to fiber surfaces
by taking the inverse image of a path instead of a single point. This way the fibers of
every point on the path sweep out a set of continuous surfaces. Fiber surfaces share
two important properties with isosurfaces. One is that each connected component of
a fibre surface is a continuous surface. This guarantees a coherent visualisation. The
second one is that the Fiber surface of a path, which disconnects the range, disconnects
the domain. This enables enables an algorithm for efficient computation.

Fiber surface computation as described in Carr et al. (2015) is an extension of
the Marching Cubes algorithm. The input is a regular rectilinear mesh where data
values are sampled at the vertices and interpolated otherwise and a closed path in the
range that is approximated by a polygon. For the purposes of this computation we
will refer to this polygon as a Fiber surface Control Polygon (FSCP). The first step
in the computation is to label all the vertices in the cubes of the mesh as black or
white depending on whether they are mapped to the inside or the outside of the FSCP.
We then use the cases provided by Marching Cubes so long as we find the point of
intersection between the Fiber surface and the edges of the cubes. This can be done
with a line intersection test of the projection of the edge in the range and the FSCP.
Instead of depending on slow geometric intersection tests we can speed up computation

27

3.7 Fiber Surfaces

by observing that the Fiber surface for the FSCP is the zero level set of the FSCP’s
signed distance field. We can then take an isosurface from this derived scalar field.

There have been several improvements and extensions to this approach. Firstly
we will discuss issues with the original algorithm we just described Klacansky et al.
(2017a). They come in part from the underlying Marching Cubes algorithm and from
the nontrivial details of how the signed distance field of the FSCP is constructed. In
practise the signed distance field is computed on a rasterisation of the range. Even for
large resolutions of the rasterisation, the Fiber surface can still fail to capture small
details and sharp features. Another issue is that vertex classification fails when the
image of the tetrahedron is contained in the FSCP. This incorrectly produces an empty
zero level set. Finally in the case where the FSCP is not convex, it may cross the
images of the edge multiple times. This causes incorrect classification which leads to
inaccurate topology and can even miss out some connected components of the Fiber
surface.

To solve these problem the authors of the paper Klacansky et al. (2017a) introduce
an extension of marching tetrahedra for Fiber surfaces. To compute fibers the authors
intersect two isosurfaces with respect to the two components of the field. In the case
of hexahedral cells with trilinear interpolation fibers become intersection of hyperbolic
sheets. This arbitrary complexity makes adapting this approach impractical so the
authors use tetrahedra instead. Since barycentric interpolation is assumed, the isosur-
faces are the intersections of parallel planes in the tetrahedron. The intersection two
isosurfaces corresponding to a fiber therefore results in a line segment. Consequently
any two fibers in a tetrahedrons are co-planar and parallel within that plane. To com-
pute a fiber in practise we extract the isosurface of the first component function using
Marching Tetrahedra, then interpolate the value of the second function and use march-
ing triangles to extract the fiber. To compute the Fiber surfaces we split the FSCP
into line segments, compute their Fiber surface and clip them at the endpoints of the
line. The Fiber surface of each line is computed as a derived scalar field using signed
distance and the normal form of a line n.p = c, where n is a normal vector to the line
and c is the distance to the line scaled by the length of n. To clip the Fiber surface at
the endpoints of the line segment we determine whether the endpoints of the triangle
that is the intersection of the tetrahedron with the zero level set are between the clip
points or not. The algorithm inherits its running time and available parallelism from
the underlying marching tetrahedra algorithm. One of the advantages of using this
algorithm is that the fibers and Fiber surfaces of the line segments from the FSCP can
be textured using different colours. This enables better visual analytics by identifying
points on the FSCP with their corresponding fiber in the domain.

Another improvement is a generalisation to any number of dimensions for the range
and the domain with the paper Jankowai & Hotz (2018a). The paper studies functions
f : Rn → Rm. It defines traits as geometries or sets of points in the range and feature
level sets as their preimages. These two concepts generalise FSCP and Fiber surfaces
respectively. Feature level sets are computed as the isosurface of the zero level set of
the trait’s distance field. The paper not only introduces this generalisation, but it also

28

3.8 Jacobi Sets

provides an implementation in a workflow as well as a suggestion for a visualisation
system. The visualisation system consists of a trait design interface and a linked view.
Picking traits requires an appropriate visualisation of the range where potential traits
are identifiable using domain specific knowledge. The linked view allows the user to
pick traits from the range in real time and get the feature level set as feedback. This
interactivity enables dynamic exploration of the data set. The authors demonstrate this
by applying their system to numerical simulations of solids, vortices and hurricanes.

Lastly we present the application of direct volume ray casting to Fiber surfaces Wu
et al. (2017). Volume ray casting offers a number of benefits when applied to Fiber
surfaces. One is that volume data can be rendered with pixel-exact accuracy which
allows for correct rendering of details and sharp features. The other one is that since it
does not extract any geometry it is fast and efficient and enables real time interactive
exploration of the data set. Rays are intersected with the Fiber surface by projecting
them into the range and determining the point of intersection with the FSCP. To speed
this up the authors compute the signed distance field of the FSCP and find intersections
by interpolating between points in the ray which have opposite signs. One limitation of
this approach is that if there are multiple FSCP their distance fields cannot be merged,
they have to be computed and tested for intersection separately. Another issue is that
the method assumes that there is only one intersection point between the FSCP and the
image of the ray and that causes some rays to miss the Fiber surface if their sampling
step is too big.

In practise polygons in the range are not chosen blindly. One approach is to use a
continuous scatterplot to project the data to the plane Bachthaler & Weiskopf (2008a).
We can then pick out areas of interest in the scatterplot and enclose them in a FSCP to
extract the corresponding area in the domain. The continuous scatterplot allows us to
visualise how the two functions are related in the codomain and the Fiber surface allows
us to see how they are related in the domain. This allows for better understanding of
the structure and relationship of the two scalar fields. One interesting application of
Fiber surfaces is in the study of Fiber Topology by mathematicians. In this example
a system was create to help identify and visualise critical fibers Sakurai et al. (2016).
Another application is to covalent and non-covalent interaction within molecules Carr
et al. (2015) as well as combustion simulation Wu et al. (2017). An implementation of
fiber surfaces is included in the TTK plugin for Paraview Tierny et al. (2018).

3.8 Jacobi Sets

Jacobi sets Edelsbrunner & Harer (2002a) are the first topological insight into the
correlation of the components of multivariate functions. They extend the notions of
critical points for k > 1 Morse function simultaneously defined on a common d-manifold.
In the case of two functions, the Jacobi set is the set of critical points of one function
restricted to the level sets of the other. The definition is symmetric so it does not
matter which function we take the level sets of. An equivalent definition is one where
the Jacobi set is the set where the gradients of the two functions are linearly dependent.

29

3.8 Jacobi Sets

This results in a smoothly embeded 1-manifold in domain, or a subset of the edges for
a combinatorial manifold. It partitions the domain into regions based on the relative
orientation of the gradients of the two functions. An important note is that the Jacobi
set is well defined only when the number of functions is less than or equal to the
dimension of the domain.

The algorithm for Jacobi set computation Edelsbrunner & Harer (2002a) relies on a
local test for determining whether an edge is critical or not. The local test for criticality
is based on computing the Betti numbers of the lower link of the vertices incident to the
edge. Once the critical edges are found they are assembled together to form the Jacobi
sets. In the general case of k > 2 functions we test every k − 1 simplex for criticality
by computing the Betti numbers of its lower link. This algorithm is efficient only when
the dimension of the domain is less than 5. To see why we first note that since the
domain is assumed to be a triangulation of a d-manifold the link of a vertex is in turn a
triangulation of the d−1 sphere Edelsbrunner et al. (2008b). This is the combinatorial of
equivalent of the manifold property - every point on the manifold has a neighbourhood
that is isomorphic to Rd. There are efficient algorithms for computing the Betti numbers
of simplicial complexes on the 3-sphere Delfinado & Edelsbrunner (1995), but none in
the general case. In higher dimensions, using homology with coefficient modulo two,
the computation is equivalent to Gaussian elimination on the incident matrices of the
lower stars. Another way to compute the Jacobi set of meshes and points clouds is to
approximate the gradients Luo et al. (2009).

The mathematical theory behind Jacobi sets is not fully understood in the general
case. Jacobi sets are related to the study of singularities in a generalisation of Morse
Theory that is called Singularity Theory Bhatia et al. (2015). Singularity Theory
extends Morse Theory and studies functions to higher dimensional manifolds. One of
the major results in Morse Theory is the Morse lemma which allows us to completely
understand the differential topological behaviour of a function at critical points. This
leads to a characterisation of different types of critical points - local minima, local
maxima and different kinds of saddles. A consequence of this is that the topology of
sublevel and level sets only changes at critical points. In singularity theory we consider
pairs (m,n), where m is the dimension of the manifold domain and n is the dimension
of the codomain, usually Rn. There are no strong results that are similar to the Morse
Lemma in the general case, but there are certain results for low dimensional pairs.
We can generalise the notion of Morse functions and critical points in low dimensional
cases where n = 2, 3 to stable functions and critical fibers and we can characterise the
singular fibers in the (3, 2) and (4, 3) cases. Higher dimensional cases are an active area
of mathematical research.

Singularity theory has provided valuable valuable information about the classifica-
tion and computation of singularities and singular fibers for use in visualisation and
computational topology. On the other hand multivariate visualisation methods have
been applied by specialists in singularity theory to better understand R3 → R2 functions
Sakurai et al. (2016). The authors develop an application that interactively visualises
fiber singularities to enable analytical investigation through manual visualisation. The

30

3.9 Reeb Space

user of the application iteratively selects fibers to visualise until they have explored the
fiber topology of the function. Then they perturb the function and repeat the process to
gain understand how the topology has changed. Jacobi sets have found other practical
applications in feature tracking of combustion analysis Bremer et al. (2007); estima-
tion of interrelationships between geophysical multifields Artamonova et al. (2017);
combinatorial ridge detection Norgard & Bremer (2013); multivariate topological sim-
plification Bhatia et al. (2015); N & Natarajan (2011) and generating a map between
triangulated meshes of arbitrary genus Bennett et al. (2007). Open research questions
in this area are how we can simplify and compute Jacobi sets efficiently in the general
case, how we can visualise them in higher dimensions and how they can be used to
interpret data.

3.9 Reeb Space

The Reeb space Edelsbrunner et al. (2008b) is a generalisation of the Reeb graph in
the case where two or more scalar functions are defined on a common domain. Analo-
gously to the Reeb graph, the Reeb space is constructed by contracting the connected
components of all fibers to a single point. Unlike the Reeb graph, the Reeb space does
not even have to be manifold and its Betti numbers can be arbitrarily large compared
to the domain Basu et al. (2018). This makes the Reeb space difficult to interpret
and understand. However, for certain functions the Betti Numbers are bounded by
the algebraic complexity of the function and we can decompose the Reeb space into
multiple disjoint manifolds that are glued together in possibly complicated ways (this
is called a stratification). A similar construction to the Reeb space, called the Stein
Factorisation, is studied in Singularity Theory Burlet (1974). For f : M → N a map
between two manifolds we define Wf as the quotient space of connected components of
fibers. We also define the quotient map qf : M → Wf and the natural quotient map
and we define nf : Wf → N such that f = nf ◦ qf . The Stein Factorisation is used to
the study the function and its singularities as well as the topology of the domain. A
number of important results have been obtained for the Stein Factorisation Emeristo.
Mata-Lorenzo (1986). For example the Stein Factorisation of topologically stable maps
are triangulatable, and thus their quotient spaces are polyhedrons. This fundamental
result enables us to study the Reeb space by analysing the polyhedral structures in it.

The triangulation and stratification of the Reeb space of a combinatorial manifold
equipped with k generic piecewise linear functions can be computed in polynomial
time Edelsbrunner et al. (2008b). The first step of the computation is to use the
k + 1 skeleton of the combinatorial manifold to decompose the domain into polytopes
which are aligned with the fiber of the functions. This is analogous to keeping track of
sublevel sets in the Reeb graph computation. Those aligned subsets are then merged
together in the cases where topological change does not occur or glued together along
their shared faces when topological change does occur. Once we triangulate the merged
and glued together polytopes we readily obtain the complex that is the Reeb space.
To stratify the Reeb space we group simplicies together to form manifolds. To do this

31

3.10 Mapper

we first take the simplices of dimension k as separate pieces since they are already
manifold. We then add simplicies of lower dimension to merge and enlarge those pieces
as long as they remain manifold. The routine that determines whether two pieces can
be merged relies on a subroutine that determines whether two triangulated spaces are
homeomorphic. This problem is known to be undecidable for dimensions bigger than
four Markov (1958). The authors do not provide an implementation or an asymptotic
analysis of the running of the algorithm.

The first practical Reeb space algorithm was given in the special case of a bivariate
function defined on a 3-manifold Tierny & Carr (2017a). The algorithm relies on the
property that topological changes in the fibers of the function can only occur near the
Jacobi sets of the domain. The authors project the Jacobi Edges to the range and then
construct the so called Jacobi Fiber surfaces as the preimage of the image of the Jacobi
set, using know methods from Fiber surface computation. The Jacobi Fiber surfaces
segment the domain into regions and allow us to compute the Reeb space by taking
the connected components of the segmented domain and gluing them together where
they have an adjacent Jacobi Fiber surface. The components of the Reeb space are
two dimensional sheets glued along one dimensional edges. The Reeb space is then pre-
sented visually with a novel technique called Scatterplot Peeling. With this technique
the components of the Reeb space are layered on top of the continuous scatterplot of
the data and the user is allowed to select sheets of the Reeb space for inspection in
decreasing order of projection area. The algorithm is trivially parallelisable and has
quadratic running time due to the Jacobi Fiber surface computation. In addition to
this, there are two approximate algorithms that construct structures which converge to
the Reeb space. They are called the Join Contour Net and Mapper and we will discuss
them in more detail in Section 3.10 and Section 3.11.

As we have already seen, the Jacobi sets is where the topological change of fiber
happens. However the relationship between the Jacobi set and the Reeb space is harder
to understand. A first step towards understanding that relationship was made by
introducing Jacobi Structures Chattopadhyay et al. (2014). Jacobi Structures are the
projection of the Jacobi set into the Reeb space. They are equivalent to the critical
nodes in a Reeb graph. We can use them to parametrise the singular fibers of the
domain to detect where topological change happens in the Reeb space. The major
open areas of research regarding Reeb spaces are in developing efficient algorithms
for computation and simplification and developing understanding of how the Reeb
space can be used in identify and visualise correlations and the topological structure of
multivariate functions.

3.10 Mapper

Mapper Singh et al. (2007) is a discrete representation of the high dimensional topo-
logical structure of a space. In order to construct Mapper we need to define a function
f on the domain and a number of open sets {U1, U2, ..., Un} whose union is equal to
the codomain of f . In the terminology of this method the function is called a filter and

32

3.10 Mapper

the open sets are called a cover. Mapper is the simplicial complex that describes the
connectivity of the preimages of these open sets {f−1(U1), f

−1(U2), ..., f
−1(Un)}. The

vertices of Mapper are the set {1, 2, 3, ..., n} and it contains the k dimensional simplex
{i1, i2, ..., ik} whenever f−1(Ui1) ∩ f−1(Ui2) ∩ ... ∩ f−1(Uik) ̸= ∅. This general idea is
put into practise by analysing point cloud domains via Eucledian codomains. The goal
is to understand the topological structure of the underlying continuous space that we
assume the point cloud is sampled from via the function and the decomposition of
the codomain. The topological notion of connected components does not make sense
for point clouds, so the authors substitute it with the statistical notion of clustering.
While the authors do no explicitly derive the computational complexity of Mapper we
can observe that it depends on the number of samples in the point cloud, the number of
sets in the open cover of the codomain and on the complexity of the chosen clustering
method. The relation of Mapper to the Reeb space can be explained when we consider
their categorical representation. The image of the categorical Mapper converges to
the image of the categorical Reeb space for increasingly refined covers Munch & Wang
(2015). What this means in practise is that Mapper is equivalent to the Reeb space for
a cover of sufficiently high resolution.

One of the main practical issues with using Mapper is that its output is highly
dependent on the choice of filter and cover. While this flexibility allows us to gain
insight into specific aspects of the data, recognising which functions and covers work
best is highly non trivial. In the worst case one needs to already know something about
the topological structure of the domain before making an educated guess. Furthermore,
there are no strong guarantees on the stability of Mapper under slight pertubartions
of the filter and the cover Cohen-Steiner et al. (2007). A different choice of either can
make the result of Mapper very different and it is not easy to see how we can reconcile
the different results. There have been several notable improvements on the Mapper
algorithm. By imposing certain conditions on Mapper we can obtain structural and
stability theorems. The structure and stability of one dimensional Mapper has been
studied in Carrière & Oudot (2017). The one dimensional case is less useful since in this
special case Mapper approximates the Reeb graph for which we have efficient and exact
algorithms. Mapper has been used as a clustering method for gene expression analysis
Jeitziner et al. (2018). The authors call this extension Two-Tier Mapper and use it to
obtain stability theorems for their particular choice of filter derived from computing
gene deviation. Another improvement is Multiscale Mapper Dey et al. (2015). The idea
there is to construct multiple covers of the codomain of increasing resolution and to
show that the Mapper output with respect to each cover gets refined as a result of the
increasing resolution. The authors demonstrate that we can construct a filtration using
the outputs of Mapper and use Persistent homology to extract topological information
about how Mapper changes with cover refinement. Another important result from that
work is that Mapper may not admit a simple notion of stability such as the one that
researchers have obtained for other tools like the Reeb graph and Persistent homology.
Other notable improvements of Mapper give insight into parameter selection Carrière
et al. (2018); present a similar construction, based on Vietoris-Ripps complexes, that is

33

3.11 Join Contour Net

parameter free Liu et al. (2012); an algorithm for distributed computation Hajij et al.
(2017) and a study on the one dimensional homology of Mapper Dey et al. (2017).

Mapper has been used to identify a subgroup of breast cancers with a unique mu-
tation profile and excellent survival rate Nicolau et al. (2011); to detect patterns that
predict long-term recovery for various drugs in preclinical spinal cord injury and trau-
matic brain injury Nielson et al. (2015); to characterize transient cellular states in
RNA-seq analysis Rizvi et al. (2017); to visualise the overall organization of whole-brain
activity maps Saggar et al. (2018) and to analyse gene fusion across different tumor
types Frattini et al. (2018). Other applications include simulation data for biomolecu-
lar folding pathways Yao et al. (2009), head and neck cancer subtypes De Cecco et al.
(2015), mesoscale network dynamics in neuroscience Khambhati et al. (2018), detect-
ing divergent subpopulations in phenomics data Kamruzzaman et al. (2018), heart rate
data Carlsson et al. (2009a), network analysis Coudriau et al. (2016); Khambhati et al.
(2017) and biomechanical gait analysis Phinyomark et al. (2018).

3.11 Join Contour Net

The Joint Contour Net is a quantised generalisation of the Reeb graph Carr & Duke
(2014). It expresses the connectivity of regions with common properties with respect
to multiple parameter functions. In JCN terminology a join level sets is the preimage
not of a single point, but of a quantised area around the point, which is equivalent
to rounding. A slab is then a single connected component similar to a contour, and
a fragment is a part of a slab inside a single cell from the domain. To construct the
JCN we first construct the Joint Contour Graph. In this graph vertices correspond to
fragments and an edge between two fragments indicates that they are adjacent via a
cell boundary. Upon contracting all fragments of the same joint level set, we effectively
contract all slabs and obtain the Joint Contour Net. The overall running time of the
algorithm is O(rNe+Neα(Ne)) where r is the dimension of the range andNe depends on
the product of the levels of quantisation for each function and the number of simplices
and α is the inverse Ackermann function. In practise this upper bound is shown to
rarely be achieved because most cells only have a few quantisation levels.

The Join Contour Net is a special case of the more general Mapper where the
domain is a simplicial mesh as opposed to a point cloud. The quantisation can be
seen as a partition of the range and instead of clustering the preimage of the quantised
cells we are able to directly obtain the connected components geometrically because
the domain is a simplicial mesh instead of a point cloud. The convergence of Mapper
to the Reeb space also applies to the JCN. The Joint Contour Net is computable even
the number of functions exeeds the dimension of the domain. In that case the JCN
retessellates the function with respect to range properties instead of domain properties.

The Joint Contour Net has been applied in practise to visualising nuclear scission,
nuclear fission, hurricane data and lattice quantum chromodynamics Thomas et al.
(2017). In Duke et al. (2012) the JCN was used to detect the spontaneous fission
of fermium nuclei and identify that scision is not a single combinatorial event, but a

34

3.12 Pareto sets

process that occupies a whole region within collective space. The paper Thomas et al.
(2017) on the other hand presents a potential use of the JCN in Lattice Quantum
Chromodynamics which are used by physicists to model strong nuclear force. The
JCN is used as a compact descriptor of data sets which are so large as to prohibit
manual visual inspection. The paper determines that some patterns observed that
using persistence derived from the JCN corresponds to physical observations.

3.12 Pareto sets

Pareto optimality was initially developed by Vilfredo Pareto in the 19th century Rossi
(1840) in the field of multiobjective optimisation Miettinen (2012). The idea was fur-
ther developed and found applications in Optimisation Theory, Statistics and Genetic
Programming. It was later applied Huettenberger et al. (2013) in the multivariate
piecewise linear setting as a method to identify regions in the domain where all the
functions ”agree” on the ascending and descending paths from a point. More formally,
we say that points in the input mesh are comparable when all scalar functions either
increase or decrease when we go from one point to the other. When they all increase
we say x dominates y and when they all decrease we say that x is dominated by y.
Regions of the mesh where all points are incomparable are called Pareto optimal, points
that have a neighbourhood such that all points in that neighborhood are either incom-
parable or dominate them are called Pareto minima and points with a neighborhood
inside which all other points are either incomparable or are dominated by them are
called Pareto minima. The Pareto optima, minima and maxima are collectively called
Pareto extrema. To compute the Pareto set the authors of Huettenberger et al. (2013)
use marching triangles and marching tetrahedra for 2 and 3 dimensions respectively
to compute ascending and descending sets inside the simplicies. These are the sets of
points where all points have a bigger or smaller function value for all functions. The
algorithm has worst case complexity of O(dn) where d is the dimension of the domain
and n is the size of the input, however the authors claim that this can be reduced to a
solving a linear system to obtain a running time of O(n3.5 ·N · d!) where N number of
simplices of higher order Huettenberger et al. (2017a).

An extension of Pareto sets is the Reachability graph Huettenberger et al. (2014).
The authors extend the idea of ascending and descending paths between simplices to
global connections between the Pareto extrema. The resulting structure is a directed
graph where nodes are connected components of the pareto set and directed edges indi-
cate the there is a strictly ascending path from one node to another. The Reachability
graph can be used to simplify pareto sets by deriving a local comparison measure and
reducing the problem to contour tree simplification. A recent paper Huettenberger
et al. (2017b) demonstrates a relation between the Pareto sets and the Joint Contour
Net. It shows that in a directed version of the Joint Contour Net, the Pareto sets
appear as critical slabs with both incoming and outgoing edges in the directed JCN.
This result only holds in the limit where the JCN converges to the Reeb space and in
any practical case the directed JCN can be used to approximate Pareto sets and speed

35

3.13 Multivariate Topological Simplification

up their computation. A subsequent paper explores subset and equivalence relations
between Jacobi sets and Pareto sets Huettenberger & Garth (2015). Pareto sets are
a relatively new concept that has found few practical applications so far including at-
mospheric vortex visualisation Huettenberger et al. (2013) and quality control of series
production in car manufacturing Huettenberger et al. (2015).

3.13 Multivariate Topological Simplification

In this section we will discuss current methods for simplification of Jacobi sets and Reeb
spaces. Jacobi sets are simplified by reducing the number of their components with
minimal change to the relationships between the functions. One of the first approaches
to Jacobi set simplification Snyder (2004) outlines some the difficulties involved. For
one, it is not obvious how one can construct a measure of persistence for Jacobi edges
or cycles because once they are discovered by the algorithm they persist and never die.
The paper proposes two global metrics for measuring the persistence of components of
the Jacobi set. The first metric computes the maximum range interval between any
two adjacent vertices within a component. The second metric computes the sum of the
distances between the endpoints of all edges in a component. Both metrics are applied
to each function separately and the final metric for the components is the maximum of
the two. A major issue with this approach is that it can only remove whole components
and cannot simplify components themselves. Another problem is that the metrics are
computed for each function separately and thus only give indication of the persistence
of the components relative to one of the functions. A subsequent approach Bremer
et al. (2007) that deals with time varying Reeb graphs computes the Morse-Smale
complex of the time function in order to pair critical points. It then cancels pairs
bellow a persistence threshold and removes small loops in the Jacobi set which lie in
successive time steps. While this approach can attribute persistence to Jacobi sets
because of the time component, it is limited to time varying data and cannot remove
components which span more than one time frame. A more general method is given by
N & Natarajan (2011) with a gradient-based measure that computes the cross product
of the two gradient vectors. This induces a derived scalar field whose zero level set is
the Jacobi set. Simplification is then applied by using the Reeb graph of the derived
scalar field to locate and remove components of the Jacobi set in order of the volume.
The issue with this approach is that it is not generalisable as it only works for two
functions, it can only remove whole components and it cannot remove noise in large
components.

A more sophisticated study of Jacobi set simplification is given by Bhatia et al.
(2015). The authors outline the shortcomings of previous methods for Jacobi simplifi-
cation and note that applying scalar simplification to two fields independently would
not necessarily preserve their joint topological structure. They propose a hybrid method
that uses both approaches with a persistence based metric similar to Edelsbrunner et al.
(2004b). In order to generalise the concept of critical point simplification they modify
the first function with respect to the level sets of the other by canceling critical points

36

3.14 Time-varying Visualisation and Feature Tracking

in level sets. To avoid creating discontinuities with these cancellations the authors
cancel whole connected regions that contain multiple level sets. These regions are then
assembled together into sequences of cancellations that ensure that the resulting func-
tions are Morse. The authors demonstrate that for a simply connected domain they
can simplify the Jacobi set to a single loop after performing all possible cancellations
and they call this the Minimal Jacobi set.

While it is plausible to think that simplifying the Jacobi set would result in a
simplified Reeb space, the link between the two has not been formally addressed. A
limited method for Reeb space simplification has been introduced in Chattopadhyay
et al. (2016). This method is an extension of the contour tree leaf pruning procedure
Carr et al. (2010a) to higher dimensions. It identifies detachable components in the
Reeb spaces of simply connected domains called lip components. These detachable
components resemble hanging sheets that can be removed without tearing the Reeb
space. We are guaranteed that we can simplify these lip components because the
Reeb space of a simply connected space is itself simply connected. This however does
not guarantee the existence lip components and does not prevent the Reeb space from
having 2-cycles or voids. Currently there is no solution to simplifying 2-cycles, like there
is for example for simplifying for 1-cycles or loops in Reeb graphs Pascucci et al. (2007).
Clearly, the simplification of high dimensional Reeb spaces would require a general way
of collapsing n-cycles and reattaching their adjacent components back together.

3.14 Time-varying Visualisation and Feature Tracking

Time-varying fields are a key issue in visualisation. The additions of a time component
increases the dimensionality of the domain and complicates direct visualisation. For
visualisation of time-varying vector fields and flow we refer the reader to Post et al.
(2004) and for time-varying scalar fields to Lu & Shen (2008); Wang et al. (2008); Yu
et al. (2013). For scalar fields we define features in terms of geometric concepts like
isosurfaces or topological concepts like contour trees and Reeb graphs. In extending
these approaches to time-varying data we are interested in tracking the development
of these features over time. Tracking involves a procedure for deciding whether two
features at different time frames are related or not. This relationship structure can be
captured by a directed acyclic graph called the tracing graph Samtaney et al. (1994).

We will first examine methods which track level sets over time Mascarenhas &
Snoeyink (2009) by computing isosurfaces for a given range of values and then varying
the time parameter to see how they evolve Samtaney et al. (1994). Feature tracking
in this case is usually based on volume or special overlap of the interior and exterior
of pairs of contours from adjacent time frames Sohn & Bajaj (2006). Some of these
methods compute the contour trees of adjacent time steps Szymczak (2005); Widanaga-
maachchi et al. (2012) and find contours corresponding to contour tree edges and how
they intersect certain subdomain of interest. Other methods rely on computing merge
trees and annotating them with geometric measures that are used to determine corre-
spondence Bremer et al. (2011) While the output of these algorithms can be captured

37

3.15 Scientific Visualisation in Atmosphere Science

by tracing graphs, each tracing graph is limited to single threshold for the level sets.
This means that picking a new threshold requires recomputing the whole tracking pro-
cedure. The authors of Lukasczyk et al. (2017) propose a nested tracking graph as a
hierarchy of tracking graphs, based on the observation that level sets are nested inside
each other, in order to avoid recomputing for different thresholds.

A different class of methods track critical points over time. Jacobi sets are used in
Bremer et al. (2007) to study porous materials and simplification of time-varying data.
Another method Reininghaus et al. (2012) uses Discrete Morse Theory to track critical
points in two dimensional time-varying scalar fields by transforming adjacent time slices
into a 3D combinatorial vector field and computing critical lines between the critical
points of each time slice. This reduces the problem of tracking critical points to a path
search. Persistent homology is applied to tracking critical points Cohen-Steiner et al.
(2006) by showing that that smooth changes in the function imply smooth changes to
the persistence diagrams. The authors implement this as a technique called vineyards
and apply it to the study of protein folding trajectories. A more recent method Soler
et al. (2018) computes Persistence homology pairs of all time frames and then uses the
classical optimisation problem of assigning workers to tasks to select correspondence
between pairs of critical points.

More advanced methods track the change not only in critical points but in Contour
trees and Reeb graphs. This line of research was initiated with a method that uses
Jacobi sets to extend Reeb graphs to varying domains Edelsbrunner et al. (2004a).
Given a scalar function on a time-varying domain we define a new function whose
output is the time component. With this definition the preimages of the second function
are all points in the domain which have a constant time component. If we compute
the Reeb graph of the restriction of the original function to the level sets of the second
function we will obtain the Reeb graph of every time frame. Using the two functions
defined on the domain we can then compute the Jacobi set which will form a continuous
curve that goes through the critical points of the Reeb graphs. This construction is
used to track the birth and death of nodes in the Reeb graphs as time varies, which
corresponds to the appearance and disappearance of topological features. According to
Mascarenhas & Snoeyink (2005) this algorithm is difficult to implement and it requires
simplification in order to be practical. The method was later extended with heuristics
for fast isosurface extraction and annotations on the Reeb graph of the changes in
homology Edelsbrunner et al. (2008a). Another improvement Keller & Bertram (2007)
tracks topological handles to accomplish smooth topological transitions. A more recent
variation on this method Oesterling et al. (2017) computes time-varying merge trees
instead. This avoids complicated cases and makes the method applicable in arbitrary
number of dimensions.

3.15 Scientific Visualisation in Atmosphere Science

Atmosphere sample is a data intensive field that relies on large scale numerical simu-
lations for making weather predictions and evaluating climate models. Visualisation is

38

3.15 Scientific Visualisation in Atmosphere Science

a key part of the workflow of the domain scientists, but it is usually limited to simple
methods such as diagrams, function plots, scatterplots and other statistical plots. Al-
though 3D visualisation software tools like Vapor Norton & Clyne (2012) and Paraview
Ayachit (2015) are sometimes used, their applicability is limited and most visualisation
solutions tend to be custom, highly specific and limited in scope. In this section we
will focus on feature-based visualisation in meteorology and outline the application of
topology based methods in the field. For a comprehensive survey on the subject we
refer the reader to Rautenhaus et al. (2018) and Tominski et al. (2011).

An important topic in Meteorology is cloud formation and evolution. It requires
the identification of clouds as features and tracking them through a simulation or a
number of observations. Methods in the literature related to this are flow visualisa-
tion techniques Post et al. (2004), tracking clouds in VR Griffith et al. (2005); Heus
et al. (2009a,b), as well vortex detection Kasten et al. (2012); Orf et al. (2007) and
the generalisation of Fiber surfaces to traits and feature level sets Jankowai & Hotz
(2018a) (Section 3.7). A number of topology based methods have also been proposes
such as Kuhn et al. (2017) and Doraiswamy et al. (2013). In Kuhn et al. (2017) the
authors analyse pollutant clouds that emerge from volcanic eruptions. They make use
of extremal graphs Kuhn et al. (2017) which are a sparse subsets of the Morse-Smale
complex that encodes the spatial relationships of the extrema of the scalar field. The
extremal graphs are tracked over time and used to detect major events of interest such
as volcano eruptions and the formation of SO2 clouds. Combining techniques from
topology and computer vision Doraiswamy et al. (2013) introduces a framework for vi-
sualising the movement of cloud systems. They detect clouds as sublevel sets of infrared
brightness temperature and precipitation over a region. Clouds of interest are picked
out based on their persistence and tracked over time using an optical flow computation
from computer vision. This is used to design a query system for cloud interactions and
cloud tracking over various timescales.

39

Part II

Hypersweeps

40

Chapter 4

Data Parallel Hypersweeps for in

Situ Topological Analysis

4.1 Introduction

Computational scientists use massive numerical simulations to study physical phenom-
ena. As these simulations increase in size, techniques for analyzing and displaying the
data are increasingly important. However, due to limited bandwidth to disk and in the
human visual system, this increasingly depends on running analytics and visualization
tools in situ during a simulation rather than post hoc.

The contour tree (see Section 3.4) can be annotated with geometric measures, such
as volume and intensity, that are of significance to the science behind the data. In
order to apply these tools at scale, recent work has built parallel algorithms and data
structures for computing and using contour trees, first in data parallel environments,
and in the future in hybrid clusters with on-node data parallelism. Data parallel algo-
rithms to compute and augment the contour tree have been reported Carr et al. (2019);
Carr et al. (2021b), but not the secondary computations such as geometric measures,
branch decomposition, simplification and single isocontour extraction.

The first contribution of this part is to introduce data parallel algorithms for those
secondary computations. To compute geometric measures we develop a method we call
a hypersweep that is a modification of the parallel tree contraction algorithm Miller
& Reif (1989). The hypersweep method arises naturally from the computation of
the contour tree and unlike parallel tree contraction it respects the semantics of the
contour tree as a data structure. For branch decomposition and simplification we
replace the standard inherently serial priority queue computation with a local and
trivially parallelisable algorithm. The second contribution is an implementation of
those secondary measures in the open source VTK-m library. The final contribution
is to link the resulting code with the existing in situ Cinema database to demonstrate
viable data-parallel contour algorithms for the entire analysis and visualization pipeline.

41

4.2 Background

We review the background literature in Section 4.2, then introduce the hypersweep
in Section 4.3, showing how to adapt branch decomposition to data-parallel computa-
tion. Then we report our VTKm implementation and how we integrated it with the
Cinema database in Section 4.4. Finally we evaluate the performance and show an
application to the WarpX laser plasma particle accelerator simulation in Section 4.5.

4.2 Background

In this section we will expand the general background given in Part 3. We will add
some more detail regarding parallel algorithms for computing contour trees and for tree
operations. We will also discuss contour tree simplification in more detail.

4.2.1 Contour Tree Hyperstructure

Recall the Parallel peak prunning (PPP) algorithm from Section 3.4. The PPP algo-
rithm batches superarc transfers from the merge trees to the contour tree, alternating
between maxima and minima. In every stage leaves can be transfered in parallel be-
cause that is a local operation. To speed up computation long chains of degree two
vertices are transfered in a single stage. Due to the specifics of the computation those
chains need to be monotone in the function values at the vertices.

The original PPP algorithm has been recently extended to compute the augmented
contour tree efficiently Carr et al. (2021b). The extension was to record the monotone
chains from the merge phase to guarantee the ability to search for regular nodes in
logarithmic time. The endpoints of the monotone chains are recorded as hyperarcs,
similary to the already existing superarcs and regular arcs. The hyperarcs of the contour
tree form what we call the hyperstructure Carr et al. (2021b).

We illustrate the idea of the hyperstructure with the right hand subfigure of Figure
4.3. The supernodes of the contour tree are labeled with the number of the iteration
they are transfered in the merge phase of the algoritm. The supernodes in the tree
are connected by superarcs and hyperarcs with small and large arc widths respectively.
The hyperarcs store a monotone path of supernodes (sorted by value) that are collapsed
in a single iteration of the merge phase.

We can think of hyperarcs as shortcuts for more efficient computation. Since the
supernodes in a hyperarc are in monotone order we can insert regular nodes by com-
paring against the endpoints of the hyperarc. If the regular node’s value is not in
that interval, we move along the next hyperarc and skip a potentially large number
of supernodes. Otherwise we use binary search on the supernodes in the hyperarc. In
this paper we will describe how we can use the hyperstructure to speed up secondary
computations such as geometric measures and contour extraction.

Since the merge phase of the contour tree algorithm and the hyperstructure process
monotone paths an issue emerges with non-monotone paths. Non-monotone paths in
the contour tree are referred to as W-structures Hristov & Carr (2019) because of the
way they zig-zag up and down. We refer to the size of a w-structure as the number

42

4.2 Background

of maximal monotone paths. W-structures are significant because they serialize the
computation of the merge phase and can be used to show that persistent homology
differs from branch decomposition Hristov & Carr (2019).

4.2.2 Simplification and Branch Decomposition

Figure 4.1: A simplicial mesh (a), that generates a contour tree (b) and the correspond-

ing join (c) and split trees (d). The vertices are labeled with their height values. The

thicker edges in the contour tree represent a W-structure Hristov & Carr (2019) which

complicates the branch decomposition.

Once the contour tree has been computed, it can be simplified so that only signif-
icant features are represented. This is usually done by removing the least significant
leaf edge in the contour tree, collapsing regular nodes if necessary, and iterating until
only one master branch remains Pascucci et al. (2004a). Note that this is an inherently
serial computation.

This simplification process forms a hierarchy of branches called the branch decompo-
sition. For this purpose, “least significant” can be interpreted by computing the differ-
ence in function value between an extremum and a saddle, or by computing geometric
measures Carr et al. (2010b) such as volume or integrated function value (hypervolume)
for the set of contours corresponding to a given superarc or subtree.

A related idea is present in persistent homology Edelsbrunner et al. (2000), where
the difference between a peak and a saddle in the sort order of the mesh vertices gives
the persistence, and is used to pair, or cancel, peaks and saddles (or pits and saddles), or
alternately, the difference in function value between peak and saddle. Recent work has
confirmed Hristov & Carr (2019) however that the cancellation pairs from persistent

43

4.2 Background

Figure 4.2: Branch decomposition of the contour and two merge trees from Figure 4.1

with the edges of the master branches in thicker lines. Each branch represent a feature

in the data set.

homology are only guaranteed to match branches in the branch decomposition if no W-
structures are present. In practical data, W-structures exist (as we will see in Section
4.5) and persistent homology gives a different result from branch decomposition. We
use the term height of a feature to refer to the difference in value along a superarc to
avoid confusion with the formal definition of persistence.

Given a simplified contour tree, visualization interfaces can be built that show
only the most significant features or contours, and allow visual manipulation Carr
et al. (2010b) of the remaining features, or extraction for subsequent processing with
other algorithms. In essence, our goal is to replace the previous serial algorithms
for geometric measure computation, simplification, branch decomposition and single
isosurface extraction with data-parallel equivalents so that they can be run in an in
situ environment efficiently.

4.2.3 Parallel Tree Operations

A fundamental parallel tree algorithm is parallel tree contraction Gibbons et al. (1994);
Miller & Reif (1989). Parallel tree contraction is a bottom up technique where we start
at the leaves of a rooted tree and move inwards in stages. In every stage all leaves with
a different parent are processed independently in parallel. Once all leaves are processed

44

4.2 Background

they are discarded (raked) and new vertices become leaves. If the tree is unbalanced the
rake operation serializes the computation along chains of vertices of degree two. Those
chains can be contracted using pointer doubling or a prefix scan. After a logarithmic
number of rake and contract operations the whole tree is contracted to its root. At the
end every vertex accumulates the value that corresponds to evaluating the expression
over the subtree whose root is that vertex.

PARALLEL CONTRACTION:
R0 R0

R1

R2R0

R0 R0

R1

R1

R0 R0

C1

C1

C1

C1

R0 R2

R1

R0 R0

R0

R0

R0

C0

R0

R0

C0

C0

R0

R0

R0

0U 0U

2U

41L

0U 0U

2U

2U

0U 0U

3L

3L

3L

3L

1L 3L

3L

1L 1L

0U

0U

0U

2U

1L

1L

2U

2U

0U

0U

1L

R0 Rake 0

HYPERSWEEP:

Contraction 0

R1 Rake 1

Contraction 1

C0

C1

R2 Rake 2

Root of Tree

0U Iteration 0 (Upper)

1L Iteration 1 (Lower)

2U Iteration 2 (Upper)

3L Iteration 3 (Lower)

4 Iteration 4 (Final)

Figure 4.3: On the left is a contour tree whose vertices are annotated based on how

and when they’re processed by the parallel tree contraction algorithm. On the right is

a hypersweep of the same contour tree annotated with the hyperstructure. While the

two methods are similar, differences arise because PPP Carr et al. (2019) alternates

upper and lower leaves, and because only monotone chains can be compressed.

As we have noted above, the merge phase of the PPP algorithm Carr et al. (2016)
is a variation of parallel tree contraction, but with several differences. First, the hyper-
structure only collapses chains whose vertices are monotone in value: this property is
required to support binary search for data values along a path in the tree. Second, due

45

4.3 Hypersweeping Geometric Measures

to the need to keep intermediate results updated, the hyperstructure transfers upper
leaves and lower leaves in alternating passes. While it is tempting to view each pair
of upper and lower iterations in the hyperstructure as equivalent to the contraction
phases, variations are visible even in small trees, as shown in Figure 4.3.

4.2.4 The Cinema In Situ Database

Advances in processing power for extreme scale scientific computation have greatly
outpaced data bandwidth and I/O, impeding visualization and analysis. The Cinema
database Ahrens et al. (2014) is a large collection of images which are sampled based
on time, visualization object and camera position, and stored along with metadata that
allows interactive querying O’Leary et al. (2016). Cinema is used with image process-
ing techniques to combine images to obtain new camera and time locations or even to
reconstruct the original object using Depth Image Based Rendering Lukasczyk et al.
(2018). Cinema has been implemented in ParaView as well as the open source Topol-
ogy Toolkit TTK Tierny et al. (2017). However, since the images and the metadata
are orders of magnitude smaller than simulation raw output they can be transfered for
post hoc analysis and visualization. This requires sophisticated techniques for identi-
fying features of interest, hence the interest in contour trees for analysis at scale. Our
approach allows us to compute the triangles of connected components in situ and, by
storing them as Cinema image collections, reduce their size and visualize large-scale
simulation runs interactively on commodity hardware.

4.3 Hypersweeping Geometric Measures

In this section we will describe data-parallel computation of geometric measures such
as volume and height (if not persistence), and to use them to construct branch de-
compositions. Geometric measures describe properties of a region bounded by a given
contour, i.e. a region corresponding to a subtree of the original tree. For example
volume is determined by all superarcs in the subtree, not just the final superarc at
which the subtree is rooted. Hence we evaluate arithmetic expressions over subtrees of
the contour tree and so we look to the parallel tree processing technique from Section
4.2.3.

Since parallel contraction is well-established, we will not illustrate the process in
detail, restricting ourselves to the computations of interest, and commenting on how the
variation of the hypersweep from parallel contraction affects the algorithmic analysis.
The hypersweep algorithm as a variation on parallel tree contraction that follows the
hyperstructure (see Figure 4.3 right) of the contour tree and we illustrate this in the
left-hand column of Figure 4.4, where we compute an approximation of contour volume
by counting the number of contained regular nodes Schneider et al. (2008b).

We know Carr et al. (2010b) that the number of regular nodes in a subtree approxi-
mates the volume of the regions represented by branches of the contour tree. While we
could do a hypersweep with regular nodes rather than supernodes, it is less efficient.

46

4.3 Hypersweeping Geometric Measures

VOLUME:
3 6

9

12

3 3

6

39

14 1

30

3

14

71

1 48

61

44 7

7

5

1

23

1

2

36

1

1

6

1

Initialised to Node Count

Propagation by Addition

3 6

20

4502

3 3

12

55

14 1

417

380

372

357

1 285

112

44 7

7

5

1

125

1

2

101

57

1

6

1

86 60d

55

3052

56 60c

47

609b

869 762

4

3a

1a

0f

0e 0d

0c

0a 0b

34

36

1b

60b

60a

144

147

152a

152b

549

609a

SUBTREE MINIMUM:

Tree Rerooted to Global Minimum
Initialised to Value + Tiebreak

Propagation by Minimum

86 60d

52

3052

56 60c

47

609a

869 762

4

3a

1a

0e

0e 0d

0b

0a 0b

34

36

1b

60a

60a

144

144

152a

152b

549

609a

SUBTREE MAXIMUM:
86 60d

55

3052

56 60c

47

609b

869 762

4

3a

1a

0f

0e 0d

0c

0a 0b

34

36

1b

60b

60a

144

147

152a

152b

549

609a

86 60d

86

8652

56 60c

60c

762

869 762

86

86

86

86

0e 86

0c

0a 0b

34

36

1b

86

60a

144

549

549

152b

549

609a

Tree Rerooted to Global Maximum
Initialised to Value + Tiebreak

Propagation by Maximum

3 Iteration 0 1 Iteration 1 20 Iteration 2 112 Iteration 3 450 Iteration 4 869 Iteration 5

Redirected Hyperarc to Global Minimum Redirected Hyperarc to Global Maximum

Figure 4.4: Hypersweep computation of geometric measures based on the parallel tree

contraction Miller & Reif (1989). For volume approximation (Left), we initialize each

supernode to the number of regular nodes on its superarc, then propagate towards the

root with a prefix-sum. For sub-tree minimum and maximum (Centre and Right), we

re-root the tree to the global minimum (maximum), initialize to the supernode’s data

value (using simulation of simplicity), then propagate by prefix minimum (maximum).

47

4.3 Hypersweeping Geometric Measures

We therefore use prefix sum operations to compute the number of regular nodes
on each superarc as the initial value at each supernode, as shown in the left column
of Figure 4.4. We use shading to indicate the iteration in which these values are
propagated inwards by prefix sums, resulting in the final tree sizes visible in the lower
register.

In the absence of W-structures Hristov & Carr (2019), the chains in each pair
of sweeps will remove the same supernodes as a single iteration of the parallel tree
contraction: since this is a constant factor, the overall analysis is unchanged. In the
presence of W-structures the hypersweep cannot be bounded by O(lg t) time complexity
and O(t lg t) work where t is the tree size. In practice the work is still bounded by
O(t lg t), and the time complexity is typically better than O(lg t) Carr et al. (2021b).

4.3.1 Branch Decomposition and Subtree Height

Once we have established subtree volume, we build branches by having each vertex
choose locally the superarc with the highest ascent and descent. The branches are
groups of adjacent superarcs that greedily maximize subtree volume or any geometric
measure we have defined. We demonstrate this in Figure 4.6 with black dots on the
edge adjacent to the best up and best down of each supernode. After each vertex
chooses the “best” ascent and descent, we use pointer-doubling to collect the branches.

Building the standard branch decomposition Pascucci et al. (2004a) based on branch
height is more difficult. When there are no W-structures in the contour tree each vertex
can select the highest (or lowest) reachable maxima (or minima). In the presence of
W-structures we need to compute the longest branch in every subtree. This makes the
existing branch height decomposition difficult to compute in parallel. We will deal with
this in more detail in Section 4.5.3. Now we will introduce an alternative geometric
measure that is readily parallelizable.

Instead of branch height, we consider subtree height for the branch and all child
branches. We define subtree height as the difference in function value between the
maxima and the minima of a subtree. This means that we need the minimum and
maximum values in every subtree from the root outwards. As we will see later Figure
4.11, this gives a slightly different branch decomposition than previous definitions, but
only in the presence of W-structures.

We can now frame this in terms of a hypersweep operation: to find the minimum
value in each subtree, we re-root the hyperstructure at the global minimum, then
apply a hypersweep with the minimum operator. Re-rooting the hyperstructure is
fairly straightforward: we select the global minimum m, and identify the hyperarcs
along the path P between it and the previous root r, at a cost of at most |P |.

All paths from the leaves to the root terminate at the root r or at this path P . We
convert this path to a new hyperarc (which may not be monotone) with at most the
same number of iterations as before. This new hyperac is shown in the upper register of
the middle column in Figure 4.4 as a thick red edge. We then hypersweep to propagate
minima through the tree towards the minimum m, as shown. The right column of

48

4.3 Hypersweeping Geometric Measures

52

0a

0a

86 60d 56 60c

0a 0a 0a

0a

4752

0a

0a

0a

0a

0a

0a 0a

0d

34

0a

0a

0e

0a

0a

36

1b

30

4

3a

1a

0e

0a

0a 0a

0a

869

0a

0a

0a

0a

0a
60a

0a0b

0b0a

60a

144

549

152b

609a

762

0a

0a
144

152a

609b

86 60d

55

3052

56 60c

47

609b

869 762

4

3a

1a

0f

0e 0d

0c

0a 0b

34

36

1b

60b

60a

144

147

152a

152b

549

609a

Hyperstructure orients towards global minimum, so

Value outside subtree is global minimum

Value inside subtree comes from minimum tree

(a) Minimum subtree values.

52

869

869

86 60d 56 60c

869 869 869

869

60c86

869

869

869

869

869

869 86

869

34

869

869

0e

869

869

36

1b

86

86

86

86

86

0c

609b 869

549

869

869

869

869

869

869
869

869
869

0b0a

60a

144

549

152b

609a

762

549

86
869

869

869

86 60d

55

3052

56 60c

47

609b

869 762

4

3a

1a

0f

0e 0d

0c

0a 0b

34

36

1b

60b

60a

144

147

152a

152b

549

609a

Hyperstructure orients towards global maximum, so

Value outside subtree is global maximum

Value inside subtree comes from maximum tree

(b) Maximum subtree values.

Figure 4.5: The minimum and maximum subtree values computed using the hypersweep

values from Figure 4.4.

49

4.3 Hypersweeping Geometric Measures

Figure 4.4 shows the re-rooting and hypersweep to compute subtree maxima.
In the next stage of the computation, shown in Figure 4.5, we annotate every edge

in the tree with two values: the minimum in the direction of the hypersweep, and the
minimum in the other direction. Of these, the minimum in the hypersweep direction
is set to the value just computed. The minimum in the other direction will always be
the global minimum, since it is the new root of the tree.

For example, in the left top corner, the vertex with value 86 forms a subtree, and
the propagated minimum value, 86, is the value we use when pruning towards the root:
the global minimum value, 0, is the value when pruning away from the root. Now,
for each possible pruning (i.e. at each end of the superarc), we add the value of the
supernode itself, then take the maximum and minimum of the three values: thus, if the
supernode value is the lowest, it replaces the minimum, if the highest, it replaces the
maximum. Finally, we subtract minimum from maximum to get the subtree range.

Considering vertex 86 once more, pruning at the lower end of superarc 86−55 gives
a subtree minimum of 86 and maximum of 86. We substitute 55 for the minimum, and
compute a subtree height of 31. Further in, at the lower end of superarc 30 − 4, the
maximum is 86 in the upwards subtree and the minimum 30. Replacing 30 with 4, we
compute an upwards subtree height of 82.

4.3.2 Simplification

Having computed our geometric measures and branch decomposition, simplifying to a
threshold amounts to ignoring branches of the contour tree that fail a logical test. For
example, suppose we want to ignore all branches that involve less than 1% of the data.
This is achieved by testing all superarcs to see whether their volume (or height) is over
the threshold, which is trivial to do in parallel. If desired, the “weight” of the pruned
branch can be retained by keeping the terminal superarc as an augmenting node in the
simplified tree.

4.3.3 Feature Extraction

Once the contour tree has been computed, decomposed and simplified, visualization
interfaces extract contours corresponding to selected superarcs. In prior work Carr et al.
(2010b), the user interactively selected contours and manipulated them visually. While
this is still possible with the data-parallel contour tree, one goal of in situ visualization is
to defer user interaction until later. We adopt an alternate solution - local contours Carr
et al. (2010b), where we choose a relative isovalue on each branch - normally 50%, or
halfway along it.

Previous work Carr et al. (2010b) adapted the continuation method Wyvill et al.
(1986) to extract single contours, but this approach is essentially serial. Instead we
extract a contour for a branch using marching cubes and a method based on searching
the contour tree Weber et al. (2007a). First we use a parallel implementation of
marching cubes to extract an isosurface for the isovalue of that branch. Next we filter
out the triangles produced by marching cubes that do not belong to the branch.

50

4.3 Hypersweeping Geometric Measures

2

449

449

3 6 3 3

449 449 449

443

1220

438

417

380

372

357

285 351

394

7

449

449

44

449

449

5

1

62

83

85

164

213

112

449 449

433

14

449

449

449

449

449
125

449449

1

7

1

2

6

1

1
1

393

384
101

57

55

3

3

6

6

20

9

450

1

2

2

3

3

3

3

12

6

55

39

14

14

1

1

417

30

380

3

372

14

357

72

1

1

285

48

112

61

44

44

7

7

7

7

5

5

1

1

125

23

1

1

2

2

101

36

57

1

1

1

6

6

1

1

Size t of subtree comes from regular node count

Size s comes from # of regular nodes on superarcs

Priorities are t and (V - 1) - (t - s)

t - subtree count
s - superarc count

(a) Volume branch decomposition. (b) Height branch decomposition.

Figure 4.6: The branch decomposition of the same contour tree using the geometric

measures of volume (a) and height (b). Notice that the two geometric measure produce

two slightly different branch decompositions. The master branch (in red) in the two

decompositions is different.

51

4.4 Implementation

To determine if a triangle belongs to a branch consider a mesh edge u, v that
intersects the triangle. Since the path from u to v in the mesh is monotone there
is monotone path from u to v in the contour tree. Therefore along that path there is
a superarc whose endpoints’ values contain the isovalue for the branch. We search for
that superarc with the hyperstructure because it supports efficient search for regular
points at logarithmic cost Carr et al. (2021b). If that superarc belongs to the branch
we keep the triangle, otherwise we discard it.

Each such contour can be extracted in O(k lg T) time, where k is the size of the
entire isosurface, and O(lg T) is the cost of searching the hyperstructure to find the
corresponding superarcs. For a small number of contours (e.g. 10 or 20), we iterate
over their superarcs and values to generate them, with the advantage that we will
extract them as separate surfaces and can render them accordingly. For large numbers
of contours, each mesh cell (or mesh edge) can search for the corresponding path(s) in
the contour tree and compare them all at once, but we have not yet implemented this
variation.

4.4 Implementation

To demonstrate integrating our parallel methods into a full visualization pipeline, we
developed the “contour visualizer” application prototype. Our goals in developing this
application were: (i) to extract a representative set of contours from the scalar field
with minimal user interaction; (ii) utilize high-performance computing to handle large-
scale data sets; (iii) to use standard scientific visualization libraries for easy integration
into existing project.

We implemented the hypersweeps described in Section 4.3 as part of the VTK-m
project, and integrated them with the existing Cinema database application, using a
two stage visualization pipeline. In the first stage, we extract, compress and store
features from scalar fields in a Cinema database. In the second stage, we read images
from this database, reconstruct features from depth images and visualize them. All of
the methods developed have been contributed to the development branch of VTK-m,
and are available for use.

Our input is assumed to be a standard VTK image format. While our current
implementation works with regular, rectilinear grids, the underlying algorithms employ
the topology graph abstraction referred to in Section 4.2, and are valid for any simply
connected mesh, subject to writing suitable adaptor classes.

We compute the contour tree of the scalar field, assuming marching cubes connec-
tivity, using the VTK-m Moreland et al. (2016) implementation of the parallel peak
pruning algorithm Carr et al. (2019); Carr et al. (2021b). Subsequently, we compute the
branch decomposition (as described in Section 4.3) either using subtree height or vol-
ume as the simplification measure and simplify the branch decomposition to a specified
number of branches.

As described in Subsection 4.3.3, we then simplify the contour tree to the top 10
most important branches, and extract one representative contour per branch in local

52

4.5 Evaluation

contour mode. At present, we usually choose the 50% isovalue on each branch, but we
have also used the 1% isovalue to select contours very close to the critical point: in
future we expect to choose multiple contours along each branch.

After single contour extraction in situ, the first stage is complete, and we save depth
images from varying camera positions for later reconstruction Lukasczyk et al. (2018)
based on a TTK Tierny et al. (2017) implementation in order to avoid saving large
meshes of millions of triangles.

The second stage supports post hoc exploration of the data artifacts stored in the
Cinema database. We read all depth images in the cinema database and reconstruct
each feature individually using the TTK Tierny et al. (2017) implementation of the
VOIDGA algorithm Lukasczyk et al. (2018). The quality of the reconstruction de-
pends on image resolution, camera placement and number of viewpoints in the Cinema
database.

As with the Cinema database in general, our project can use different front ends.
For some purposes, we use ParaView and TTK, but for others, we implemented a
simple web server and web interface to reduce the learning curve for end users. We
implemented this using node.js for the server and Three.js for the front end.

The quality of the reconstruction can vary but does not need to be perfect, only
good enough for the user to get a general idea of the data. Should the user require the
original features they can be retrieved at a higher bandwidth and time cost, and we
will explore the best parameter choices for in situ visualization in the future.

This visualization pipeline is an improvement upon previous ones such as Biedert &
Garth (2015). Every step in our pipeline is fully data-parallel and it is implemented us-
ing popular open source visualization libraries such as VTK-m and TTK. Furthermore
our pipeline adds the additional step of reconstructing the depth images in 3D.

4.5 Evaluation

In this section we will discuss the evaluation of our application. We will consider some
example data sets, discuss the quality of contour selection and present performance
timings.

4.5.1 Application Example - WarpX

Figure 4.7 shows the application of the automatic contour selection to the transverse
electric field (Ex) of a WarpX laser plasma particle accelerator simulation. Plasma-
based accelerators use short (≤ 100fs) ultrahigh intensity (≥ 1018W/cm2) laser pulses
to drive waves in a plasma. Electrons that become trapped in the plasma (or externally
injected electron or positron beams) are then—much like a surfer riding a wave—
accelerated by the wave to high energy levels. Understanding the structure of the
electric forces generated by the plasma wave is critical to the design and optimization
of plasma-based particle accelerators and understanding of the fundamental physical
phenomena. In this context, the difference in function value (i.e., height of arcs in the

53

4.5 Evaluation

contour tree) is an important measure of the strength of the electric forces generated
by the corresponding feature (i.e., contour) in the electric field.

As Figure 4.7 b) shows, using height as an importance metric allows us to automat-
ically identify the features with the largest focusing gradients in the transverse electric
field Ex, describing the primary structures of the electric field generated by the plasma
wave driving particle acceleration. By rendering the contours in situ and storing for
each contour a separate depth-image in a Cinema database, users can interactively ex-
plore, visualize, and compose the features post-hoc. By storing the additional metrics
computed from the contour tree (e.g., volume and persistence of contours) alongside
the generated depth images, enables quantitative analysis of the contour-based features
and interactive query of the Cinema database to search for relevant contours.

b) Top ten features using a parallel height branch decomposition.

c) Compressed, reconstructed and individually colored features via Cinema.a) Original WarpX Data set.

Figure 4.7: a) Isosurface visualization of the transverse electric field Ex of a WarpX laser

plasma particle accelerator simulation Carr et al. (2019). b) Visualization of the ten

most-significant contours detected automatically using a branch decomposition of the

contour tree using our data-parallel, height-based simplification method that correctly

captures the topology of the data set. c) For interactive, post-hoc visualization, we

compute and store features in a Cinema image database in situ and reconstruct them

via a web interface. We store features individually and this allows us to manipulate

their properties such as color, scale, opacity, etc.

Next we evaluate the compute performance of our implementation (Sec. 4.5.2) and
how well it picks out significant contours (Sec. 4.5.3).

54

4.5 Evaluation

Table 4.1: The dimensions of our test data sets and timings for contour tree computa-

tion. Note that the number of supernodes and timings for all data sets differ from the

ones reported in Carr et al. (2021b) because we are using marching cubes connectivity.

Contour Tree Compute Tree

Dataset Dimensions Supernodes seconds

Hydrogen Atom 128x128x128 13,038 0.399

Aneurism 256x256x256 65,625 2.793

Bonsai 256x256x256 192,067 3.153

WarpX E x 6791x371x371 288,807 317.191

Asteroid 500x500x500 881,831 23.160

Backpack 512x512x373 7,441,922 27.990

Spathorhynchus 1024x1024x750 44,554,912 330.926

Kingsnake 1024x1024x795 55,778,125 268.833

Pawpawsaurus 958x646x1088 89,117,386 352.491

GTopo30 at 0.03125 675x1350 72,276 0.236

GTopo30 at 0.0625 1350x2700 271,772 0.735

GTopo30 at 0.125 2700x5400 991,480 2.571

GTopo30 at 0.25 5400x10400 3,579,117 10.387

GTopo30 at 0.5 10800x21600 12,688,670 44.054

GTopo30 at 1.0 21601x43201 36,912,523 172.301

55

4.5 Evaluation

Table 4.2: Once the contour tree and hyperstructure have been computed, hypersweeps

to compute secondary properties are highly efficient, adding less than 1% extra time.

Our modified branch decomposition, which uses multiple hypersweeps, is a negligible

additional cost. The last two columns present the ratio of the time it takes to compute

the hypersweep (HS) to the time to compute whole contour tree (CT) and the time it

takes to compute the branch decomposition (BD) to the time to compute the contour

tree (CT).

Hypersweep Branch Decomp Ratio Ratio

Dataset seconds seconds HS / CT BD / CT

Hydrogen Atom 0.001 0.025 0.33% 6.47%

Aneurism 0.003 0.039 0.12% 1.39%

Bonsai 0.007 0.072 0.23% 2.30%

WarpX E x 0.005 0.055 0.01% 0.01%

Asteroid 0.018 0.258 0.08% 1.11%

Backpack 0.118 1.431 0.42% 5.11%

Spathorhynchus 0.459 7.299 0.13% 2.20%

Kingsnake 0.589 8.887 0.21% 3.30%

Pawpawsaurus 0.979 13.841 0.27% 3.92%

GTopo30 at 0.03125 0.002 0.014 0.98% 6.21%

GTopo30 at 0.0625 0.004 0.036 0.65% 4.95%

GTopo30 at 0.125 0.004 0.036 0.18% 1.41%

GTopo30 at 0.25 0.012 0.108 0.12% 1.04%

GTopo30 at 0.5 0.038 0.353 0.08% 0.80%

GTopo30 at 1.0 0.381 3.981 0.22% 2.31%

56

4.5 Evaluation

1 2 4 8 16 32 64

0

10

20

30

40

50

60

70

80

90

Pawpawsaurus Timings

Branch Decomposition Time

Hypersweep Time

Cores

T
im

e
 (

s
)

93

Figure 4.8: Subtree height branch decomposition (red) and hypersweep (blue) on Paw-

pawsaurus. While the scaling plateaus after 8 cores, the performance is overall good

especially compared to contour tree computation (see Table 1).

4.5.2 Performance

As noted above, our implementation is freely available in the open source VTK-m
library Moreland et al. (2016). However there is no implementation of branch de-
composition in any other actively maintained visualization library (TTK and VTK).
To ensure consistency between methods, we re-implemented branch decomposition in
serial. It performed with about the same running time as the parallel branch decom-
position on a single core. We have not included those specific running times because
our serial branch decomposition was implemented as reference for comparison not with
performance in mind.

We ran tests on standard data sets well known in the visualization community or
that we have used previously Carr et al. (2019); Carr et al. (2021b), and refer the
reader to the appendices of those papers for full details. The Asteroid dataset is freely
available courtesy of LANL, the WarpX dataset is not freely available at present.

Our primary test system is the NERSC Cori supercomputer at Lawrence Berkeley
National Laboratory, whose Haswell compute nodes have two 16-core Intel® Xeon TM

E5-2698 v3 CPUs with two hyperthreads per core, clocked at 2.3 GHz and with 128GB
DDR4 main memory at 2133Mhz. We compiled and used the VTK-m library with
Intel’s Thread Building Blocks (TBB) threading API.

We first computed the augmented contour tree for each data set using VTK-m’s
contour tree filter Carr et al. (2021b). Next we compute the branch decomposition of

57

4.5 Evaluation

1 2 4 8 16 32 64

1

10

Strong Scaling

Pawpawsaurus HS

Spathorhynchus HS

Kingsnake HS

Pawpawsaurus BD

Spathorhynchus BD

Kingsnake BD

Cores

S
p
e
e
d

u
p
 (

c
o
m

p
a
re

s
 t
o
 s

e
ri

a
l)

64

6.8

3.1

Figure 4.9: Scaling of 3D data for up to 64 cores and TBB on Haswell (log/log). The

black line shows the ideal strong scaling. Hypersweep (HS) and branch decomposition

(BD) are related and have similar scaling patterns: it is possible that the cause is

external (VTK-m).

every data set with a range of 1, 2, 4, 8, 16, 32 and 64 cores. Finally we compute the
branch decomposition over the GTOPO30 data set with 64 cores, but with different
scales of the data. This way we can study scaling on a set of related data sets.

In Figure 4.8, we show timings for the Pawpawsaurus data set. We have chosen
Pawpawsaurus because it is one of the largest data sets we have available in terms of
regular and super node count. We therefore expect to see the scaling of the hypersweeps,
rather than the cost of initialising parallel data structures. Here, we see the most
performance gain in going from 1 to 2 cores and then to 4 cores and 8 cores. This is also
visible in Figure 4.9 where the speedup of the hyperswep and the branch decomposition
is 3.1 and 6.8 respectively.

Similarly Figure 4.10 suggests that while the scaling is not linear (gray area in the
plot) the performance is still good in practice. This is further supported by Table 4.2
where we can clearly see that the hypersweep and branch decomposition are only a
small fraction of the computation time of the contour tree. On average the branch
decomposition is only 1.76% of the contour tree computation time, so we do not yet
see the need for further optimization.

An important reason for the good practical performance of our methods is the
topological complexity of the data sets. Remember that our methods do not scale with
size of the input mesh, but rather the number of supernodes of the contour tree of the

58

4.5 Evaluation

Figure 4.10: Scaling using 1 to 64 threads on the 2D Scaled GTOPO Datasets (log/log).

The grayed out polygon is perfect weak scaling.

mesh, As we can see in Table 4.2 the number of supernodes in most tests is roughly
an order of magnitude smaller than the number of regular nodes. Even though a
serial method would have sufficed in some tests the need for parallelization will become
even more apparent in the future with data sets with more topological complexity or
sampling noise.

Furthermore (as pointed out by a reviewer) there are many practical situations,
such as time varying domains or ensemble runs, where multiple contour trees need to
be computed. For each contour tree we may need multiple branch decompositions if
we do not know which geometric measure would be most useful beforehand. Those
computations add up and any speedup over a serial implementation with optimal work
complexity is valuable. Finally when accelerator devices such as GPUs are used for
contour tree computation our parallel implementation allows us to avoid the high cost
of inter-device data transfers to CPU for secondary computations.

4.5.3 Feature Significance

In this section we will consider how the difference between our subtree height decom-
position and the standard branch height decomposition impacts feature selection. In
Table 4.3 the two branch decompositions typically differ in only a small number of
branches. Moreover, we know from Section 4.3 that the two are identical in contour
trees with no W-structures (i.e. those with W diameter of 2 or less. In the table,

59

4.5 Evaluation

Dataset Branches W Diam Difference

shockwave 333 3 0 0.0000%

marschner lobb 810 4 0 0.0000%

neghip 976 4 0 0.0000%

hydrogen atom 6,532 4 0 0.0000%

aneurism 33,139 4 0 0.0000%

bonsai 96,993 5 8 0.0082%

tooth 151,302 5 4 0.0026%

statue leg 223,469 6 13 0.0058%

foot 444,616 7 44 0.0099%

mri ventricles 1,159,963 6 77 0.0066%

skull 1,130,490 7 155 0.0137%

backpack 3,813,085 7 315 0.0098%

Table 4.3: Differences from the standard branch decomposition Pascucci et al. (2004a).

Both decompositions have the same number of branches, but some leaves can be paired

differently. This is due to differences between branch height and persistence in the

presence of W-structures Hristov & Carr (2019).

we see that this is the case, and that in fact, the smallest W-diameter where different
decompositions emerge is 5.

In some data sets, the standard branch decomposition is less effective than our new
parallel-friendly subtree height decomposition. In Figure 4.11 we show the result of
choosing the top 20 features with the two methods. A large boxy object is visible when
subtree height is used, but not when branch height is used. The relevant structures in
the contour tree are the six illustrated branches (out of over 3, 000, 000 total branches).
Notice that the W-structure rooted at 0bmeans that the standard branch decomposition
treats this feature as less important, but the new subtree height decomposition, which
looks at the height of the entire subtree, displays it.

This does not indicate that the branch height decomposition is invalid, merely that
it is imperfect, and that the subtree height is similar and similarly imperfect. However,
the new height decomposition is easier to compute in parallel, which is worth having.

60

4.5 Evaluation

Branch Height
Decomposition
(after Pascucci)

Subtree Height
Decomposition

(new)

Top 20 By Branch Height Top 20 By Subtree Height

26912691

393
530

3137
31371372

4071
- 995

4071
- 1129

1522
- 1129

1525
- 995

1372
- 0

4071
- 934

4071
- 0

4071
B

4071
A

4071
C

1129

0 A

995

1380

1525
1522

934

1372

0 B

4071
B

4071
A

4071
C

1129

0 A

995

1380

1525
1522

934

1372

0 B

Figure 4.11: W-structures in the Backpack data set. Because of a W-structure ending

in 0b, the left subtree at 934 has a larger overall height than the right subtree, giving a

different branch decomposition than Pascucci’s Pascucci et al. (2004a). On the right:

the top 20 features chosen with each method. While the standard branch decomposition

detects the box as feature 39 in order of significance. The subtree height decomposition

works better than the persistence based decomposition in this instance.

61

Part III

Convective Clouds

62

Chapter 5

Cartesian Fiber Surfaces for

Trivariate Visualisation

5.1 Introduction

Convective clouds play a vital role in regulating our weather and climate, but their for-
mation and transport is not fully understood. Convection is governed by the dynamics
and thermodynamics of the atmosphere which are based on interactions of tempera-
ture, vertical velocity and moisture. The exact relationship between these variables
and convective cloud formation is yet unknown. The lack of an accurate physical rep-
resentation of clouds reduces the reliability of numerical atmospheric simulations and
impacts both short term weather prediction for flight coordination and agriculture as
well as long term prediction of human activity on climate.

In this part, we describe a tool developed in collaboration with atmospheric scien-
tists to study convective cloud formation in and above the planetary boundary layer of
the atmosphere. At present, a common technique employed by atmospheric scientists
is to simulate a surface-released decaying passive tracer in numerical atmospheric sim-
ulations Couvreux et al. (2010). This tracer enables study of the bulk movement of air
without affecting the simulation (passive) or building up over time (decaying). However
this has not yet led to a fundamental understanding of the relationship between the
underlying physical variables such as water content, temperature, and vertical velocity
in convective cloud formation.

In this part we present an application for trivariate visualization that takes as input
three scalar fields defined on a common three dimensional regular grid. We define the
main features as the volumes contained in an isosurface of a scalar field derived from the
concentration of the passive tracer gas in the system. This identifies spatially where
convective clouds are triggered. The next step is to study the physical properties
(temperature, humidity, buoyancy) of those regions. We enable this by projecting
those volumes onto the continuous scatter plot of pairs of those physical properties.

63

5.1 Introduction

Cartesian Fiber Surface (orange)

Isosurface

Projected

super-level

set volumes

(colour coded)

Fiber surface

control polygon

Fiber surface (green)

Continuous Scatterplot

Figure 5.1: Top Left: an isosurface of a derived scalar field tracking air movement,

color-coded to indicate the connected components of the super-level sets. Right: the

scatterplot shows the probability distribution function of two other variables. The

individual connected components of the super-level set (contained in the isosurface)

are projected onto it, showing how regions on the top left map to the variables on

the right. Bottom Left: fiber surfaces can then be defined via a control polygon and

compared to the isosurfaces to examine the properties of parts of the objects. In this

example we’ve defined a control polygon over an area in the scatterplot where data

points have low moisture and high temperature. The Cartesian fiber surface is the

boundary of the intersection of the volume contained in the fiber surfaces and the

isosurface.

This facilitates hypothesis formation about the relationship between the three scalar
fields by comparing the shape and distribution of features and their projections.

The application allows the user to brush areas of interest in the projections of the
features and inversely map back to a spatial representation via fiber surfaces. This
refines scientists’ understanding of the phenomenon in two key ways. Firstly, the fiber
surface includes all other areas in the domain (not in the features) which have similar
properties. This has allowed scientists to identify areas which inhibit convective cloud
formation. Secondly the intersection of the volume contained in the fiber surface and
the volume contained in the isosurface allows the user to refine their features and
study their inner structure. To avoid costly geometric intersection tests we use a novel
technique for isosurface and fiber surface contained volume intersection called Cartesian
fiber surfaces.

64

5.2 Convective Clouds in Earth’s atmosphere

Using this tool, domain scientists were able to formulate mechanistic hypotheses
on how the physical variables, describing temperature, moisture content and vertical
velocity combine to trigger convective clouds. Specifically, cloud-triggering structures
appear to be embedded in the nodal intersections of horizontal segments of rising moist
air and away from surfaces of low environmental density aloft (which form barriers to
the rising structures). And second, cloud-triggering structures appear to be constituted
by concentric regions of increasingly cool and moist air.

We begin our discussion with background on convective cloud formation in Section
5.2. We describe our approach for volume intersection called Cartesian fiber surfaces
in Section 5.3 and discuss the implementation of the application in Section 5.4. Section
5.5 then gives a case study of how this application supported reasoning in atmosphere
science, and the insights derived through its use.

5.2 Convective Clouds in Earth’s atmosphere

Convective clouds form when rising air with adequate moisture cools below the satura-
tion point (dew-point temperature). The excess moisture then condenses into droplets
releasing latent heat of condensation that increases the buoyancy and causes the air to
rise further, in turn leading to further cooling and condensation. The formation of con-
vective clouds thus requires triggering through initial condensation and then becomes
self-sustaining.

The buoyant and moist parcels causing the onset of convection primarily originate
from the Earth’s surface where they are created through fluxes of moisture and heat
by processes occurring at the surface (plant respiration, evaporation, radiative heating,
etc). To represent the triggering of convection in contemporary weather prediction and
climate models (which have inadequate spatial and temporal resolution to explicitly
represent the formation of convection) it is necessary to formulate simplified mathe-
matical models which are able to predict when clouds form. This in turn necessitates
a physical model of the coherent structures that trigger clouds. The study of the for-
mation of convective clouds therefore amounts to quantifying the transport of moisture
and heat from the Earth’s boundary layer into the cloud layer, and identifying exactly
which air-parcels in the sub-cloud layer trigger the formation of clouds.

Identification and (quantification) of cloud-triggering coherent boundary structures
is complicated by the fact that: 1) vertical transport is carried out by more besides
these coherent structures and 2) both moisture and heat contribute to the buoyancy
which make air-parcels rise. Specifically, vertical transport of moisture and heat (inter-
nal energy) in the boundary layer can be decomposed into two contributions. First, the
local or down-gradient turbulent transport by small eddies (flow opposing the main cur-
rent) causes diffusion into regions of lower concentration. Second, non-local transport
by individual coherent structures (localised air parcels) carries larger perturbations in
moisture and heat, and provides the impetus for triggering convective clouds.

Although the first diffusive processes for local transport can easily be modelled, (as
a function of the mean vertical gradient) a firm physical understanding of the properties

65

5.2 Convective Clouds in Earth’s atmosphere

of the coherent boundary layer structures providing non-local transport is still missing,
limiting our ability to model evolution and transport by these structures. By enabling
analysis where the spatial structures of scalar co-variances inside and outside of cloud-
triggering coherent structures can be identified, the tool presented in this work enables
the formulation of a conceptual physical model of convective cloud triggering. This in
turn will enable better representation of convective triggering in weather and climate
models.

Figure 5.2: State of the art visualizations of cloud convection triggering Denby et al.

(2022). Top left: horizontal cross-section of water-vapour concentration at height z =

300m. Top right: Maximum altitude at each horizontal location where the tracer field

exceeds a threshold value with cloud condensate regions (black outlines). The marked

region contains a boundary layer structure about to trigger a cloud. Bottom: Contour

lines of water vapour and temperature by altitude in the data domain, with air entering

clouds at cloudbase (red dotted line). Bottom left: the entire data set with isosurfaces

of the tracer. Bottom right: The same data set restricted to an isosurface of the passive

decaying tracer, showing a linear development and suggesting that isosurfaces identify

structures triggering convection.

66

5.2 Convective Clouds in Earth’s atmosphere

5.2.1 Domain Science Related Work

One of the current techniques for tracking non-local transport is a decaying passive
tracer (as in Couvreux et al. (2010)) released from the surface to track how air ag-
gregates horizontally and rises vertically. Regions where there is a high-concentration
of the passive tracer (compared to the variability in the horizontal plane) thus indi-
cating that the airmass originated from the surface. By using the decaying tracer
to define the coherent structures we avoid a priori assumptions about the values of
physical state variables (temperature, vertical velocity, moisture content, etc) within
coherent structures. This method has been shown Denby et al. (2019) to track air with
properties necessary to trigger convective clouds, further supporting its use to define
coherent boundary layer structures. However, this method relies on a tracer which is
passively transported with the flow and does not use the physical properties of air to
predict which air masses will trigger clouds, and so cannot in itself be used to produce
a physical model of the triggering of clouds.

Previously, these structures have been studied in numerous ways, all characterised
by the fact that they principally visualise at maximum two spatial dimensions of the
underlying data, and when viewing more than one scalar field often trade the number
of spatial dimensions visualised with the number of scalar fields (see for example Denby
et al. (2019)). Specifically, 2D cross-sections and aggregations along a single dimension
in 3D (to create a 2D field) are often used, together with joint distributions of the
scalar values as a function of height (visualised by density contours), and finally once
identified the structures are studied by measuring their shape, orientation and size, and
plotting distributions of these.

Figure 5.2 shows examples of visualisations commonly employed. Specifically, Fig-
ure 5.2 (top left) shows a horizontal cross-section of water vapour concentration below
cloud and (right) the vertical height at which the tracer concentration exceeds a height-
dependent threshold (the threshold corrects for the vertical gradient and the horizontal
variability in the tracer concentration, see Couvreux et al. (2010) for details). These
subfigures firstly exemplify the challenge in defining cloud-triggering structures using
the physical fields themselves, given the diffuse distribution of water vapour and sec-
ondly serve to demonstrate how clouds and boundary layer structures are typically
co-located (this visualisation was used to select subdomains to study as will be detailed
in Section 5.5).

As an example from Denby et al. (2019) Figure 5.2 (bottom) displays the joint
distributions of water vapour concentration and potential temperature (absolute tem-
perature corrected for cooling due to adiabatic expansion) at increasing heights in the
boundary layer with and without the use of the passive tracer to pick out coherent
rising structures. For each height two contours are plotted, the innermost contains 5%
highest density of points and the outermost the 95% points. Using these contours it
is thus possible to visualize the mean and spread of the joint distribution and to com-
pare them at different heights. As well as the distributions in the boundary layer, the
distribution of air entering individual recently formed clouds at cloud-base is shown in
red. Comparing the subfigures, it is clear that by using the decaying tracer air that

67

5.3 Cartesian Fiber Surfaces

has properties necessary to trigger cloud is identified as the distributions in the latter
converge onto the cloud-base distributions. This allows for the analysis of transport
by coherent structures in bulk, but understanding the internal structure (answering
how is this structure carrying out vertical transport?) and environment (answering
why is cloud-triggering structure forming in this specific location?) of these coherent
structures is very challenging due to number of scalar fields combining to drive vertical
transport.

As regards visualizing the spatial extent of these structures this paper presents the
first time the spatial extent and physical fields of these structures have been stud-
ied in 3D simultaneously. This problem, of understanding the properties of coherent
structures defined in one variable (tracer) but understood in other variables (moisture,
vertical velocity, &c.) is what drives the current application. In the end result, we
anticipate formulation of new physical models describing convection triggering, helping
to understand the process and providing better predictions of weather and climate.

5.3 Cartesian Fiber Surfaces

Isovalue

C
ontrol Polygon

Control Polyhedron

gf

hFiber surface (Green)

Isosurface (Red)

Cartesian Fiber

surface (Blue)

a) Isosurface, ber surface and Cartesian ber surface with opacity. b) Extrusion of the ber surface control polygon.

Figure 5.3: We intersect the volume contained in the isosurface (sublevel set) of the

scalar function h and the volume contained in the fiber surface (inner-level set) of the

bivariate combination of two other scalar functions (f, g). To perform the intersection

we take another fiber surface with respect to the combined trivariate function (f, g, h).

We define the control polyhedron in R3 as the boundary of the Cartesian product of

the interval defining the sublevel set of h and the inside of the polygon defining the

inner-level set of (f, g). The resulting shape in three dimensions is an extrusion of the

polygon, and its distance fields can be easily computed component wise.

From Section 3.7 we know that fiber surfaces can be computed with the signed
distance field of arbitrary geometry in any dimension. However, when the range of
a multivariate function is high dimensional, it is difficult to create an interface for
setting the fiber surface’s control geometry explicitly. We present a method called

68

5.3 Cartesian Fiber Surfaces

Cartesian fiber surfaces, in which we form the control geometry of fiber surfaces from
lower dimensional primitives for which we have efficient and robust tools. Furthermore,
Cartesian fiber surfaces give us a novel way of rephrasing the problem of geometric
intersection for volumes contained in isosurfaces and fiber surfaces.

We will begin our discussion with two base case examples that illustrate the process
and then present the general theory. In the first example consider a scalar function
f1 : R3 → R and an isovalue h1 ∈ R. The isovalue separates the range of f1 in two
sets (−∞, h1] and [h1,∞) whose preimages separate the domain into the well known
sublevel and super-level sets. Next, consider a second function f2 with isovalue h2 and
the intersection of the preimages of the intervals [h1,∞] = I1 and [h2,∞) = I2 defining
the super-level sets.

The intersection of the preimage of I1 and the preimage of I2 consists of all points
in the domain which satisfy the condition that f1(x) ∈ I1 and f2(x) ∈ I2. We can
combine f1 and f2 into a bivariate function with two scalar components (f1, f2)(x) =
(f1(x), f2(x)) and evaluate the ”and” condition component wise as (f1, f2)(x) ∈ (I1, I2).
The set of all points (I1, I2) is equivalent to the Cartesian product of I1 and I2 which is
a filled rectangle in the plane. Instead of computing a geometric intersection in R3 we
can compute the fiber surface of the boundary of the rectangle as a control polygon.
We call that fiber surface a Cartesian fiber surface.

In the next example consider the bivariate function (f, g) and the scalar function h.
From previous work we know that we can extract the fiber surface of arbitrary line seg-
ments or subsets of the plane. However, here we’re interested in intersecting the volumes
contained in separating surfaces. In practice this means fiber surfaces of polygons be-
cause those separate the range. Their preimage separates the domain into what we call
an inner-level set (all point which are mapped inside the polygon) and an outer-level
set (all points mapped outside). The inner and outer level sets are generalizations of
the sub and superlevel sets.

As shown in Figure 5.3 we can intersect the super-level set of h and inner-level set
of (f, g) with a Cartesian fiber surface. This operation extrudes the polygon in a third
dimension in a new R3 range of a trivariate function (f, g, h). We can apply this more
generally to any two multivariate functions and any two separating hypersurfaces in
the range. We discuss this in detail in the following section.

We will compute the Cartesian fiber surface using a signed distance field by com-
bining the distance fields of the component isosurfaces and fiber surfaces. Since the
distance metric in the Cartesian product space is defined component wise we can com-
pute the signed distance field component wise as well. This means that we can use the
Euclidean norm and take the square root of the sum of squared distances given by the
component spaces. Once we have the distance field we give it a sign based on whether
the point is inside all of the component polytopes or not. This method applies to any
metric where combining the minimum distance in every component space yields the
minimum distance in the Cartesian product space.

The signed distance field of a Cartesian fiber surface can be computed in linear time,
given the signed distance fields of the input fiber surfaces. Then we can use marching

69

5.3 Cartesian Fiber Surfaces

cubes to extract the required geometry. When we’re not considering contained volume
our method can be used in conjunction with feature level sets Jankowai & Hotz (2018b)
to combine multiple traits.

5.3.1 General Cartesian Fiber Surfaces

Working more generally we will expand some of the definitions from Fiber surfaces.
First we’d like to define a fiber surface and a fiber surface control polygon when the
dimension of the range is higher dimensional than R2.

Definition 5.1 (Fiber Surface Control Polyhedron (FSCP)). We define a fiber surface

control polyhedron in Rn where n ≥ 2 to be the triangulation of the continuous image

(n-1) dimensional sphere.

Given a FSCP S we know that Rn − S has two path-connected components by
the Jordan–Brouwer separation theorem. Since S is compact that means that it is a
closed and bounded (recall from Section 2.1). Therefore one of the regions in Rn − S
is bounded by S, we will call that region the inner level set of S denoted as S−. The
other region in Rn−S is not bounded and we will call it the outer level set of S denoted
as S+. Note that since S is closed then Rn−S is open, but we’ll consider both S− and
S+ to include S so ∂S− = ∂S+ = S.

Now we will show that the preimage of a fiber surface control polyhedron is closed
surfaces that separates the point that map onto the inner and outer level sets.

Lemma 5.1. Suppose we have a continuous mapping f : Rn → Rm and an FSCP

S ⊂ Rm in the range. Then f−1(S) is closed surface that separates R3 in two connected

components, namely f−1(S−) ∪ f−1(S+) = R3 and f−1(S−) ∩ f−1(S+) = S.

Proof. We will reduce this to the scalar case and use what we know about isosurfaces

to complete the proof. Let us define the signed distance field of S as g : Rn → R
such that d(x) = miny∈S(d(x, y)) if x ∈ S+ and d(x) = −miny∈S(d(x, y)) if x ∈ S−.

Then the composition (g ◦ f) : R3 → R is a scalar field. Given how we’ve defined

g we have that g(S) = 0, g(S−) ≤ 0 and g(S+) ≥ 0. Therefore (g ◦ f)−1(0) is an

isosurface and so it is a separating surface between the sets (g ◦ f)−1((−∞, 0)) and

(g ◦ f)−1((0,∞)) Wenger (2013b). However (g ◦ f)−1((0,∞)) = f−1(S+ − S) and

(g ◦ f)−1((−∞, 0)) = f−1(S− − S) which completes the proof.

As a corollary we have that f−1(∂S−) = f−1(S) = ∂f−1(S−) for any FSCP S.
This analogously applies to S+ as well. Using this corollary we can finally show how
Cartesian fiber surfaces are defined in general using the following lemma.

Lemma 5.2. Suppose we have a continuous mapping f : R3 → Rm and a continuous

mapping a continuous mapping g : R3 → Rn. Further suppose we have two fiber surface

70

5.3 Cartesian Fiber Surfaces

control polyhedrons A ⊂ Rm and B ⊂ Rn. Then we have that ∂(f−1(A) ∩ g−1(B)) =

(f, g)−1(∂(A×B)).

Proof. First we will show that f−1(A) ∩ g−1(B) = (f, g)−1(A × B) with the following

series of equalities.

f−1(A) ∩ g−1(B) =

= {x ∈ R3 | f(x) ∈ A} ∩ {x ∈ R3 | g(x) ∈ B} =

= {x ∈ R3 | f(x) ∈ A and g(x) ∈ B} =

= {x ∈ R3 | (f, g)(x) ∈ A×B, where A×B ⊂ Rm+n} =

= (f, g)−1(A×B)

Once we take the boundary of both sides we have that: ∂(f−1(A) ∩ g−1(B)) =

∂((f, g)−1(A×B)) Since the Cartesian product of the two closed balls is a closed ball in

Rn+m, the corollary of Lemma 5.1 implies that (f, g)−1(∂(A×B)) = ∂(f, g)−1((A×B)).

Finally we have obtained that ∂(f−1(A)∩g−1(B)) = (f, g)−1(∂(A×B)) which completes

the proof.

In general we can take the intersection of the inner level sets of more than two fiber
surfaces by combining them into a single Cartesian fiber surface. This introduces a
way of querying data where we can easily chain together multiple ”and” conditions and
evaluate them. Each condition defines a feature via the inner level set of an isosurface
or a fibers surface. Next we are going to show that we can compute Cartesian fiber
surfaces efficiently.

5.3.2 Computation

To compute a fiber surface we consider the signed distance field of the FSCP and
compute an isosurface at zero. Here we will show how to compute a Cartesian fiber
surface by combining the signed distance fields of two other fiber surfaces. The signed
distance field of a Cartesian fiber surface can be computed in linear time, given that
we have the signed distance fields of the fiber surfaces.

Consider the two multivariate functions from we have been using so far f : R3 → Rn

and g : R3 → Rm and their combination (f, g) : R3 → Rn+m. We can compute the
distance between two points x = (x1, .., xn+m) and y = (y1, .., yn+m) in Rn+m using the
two distances of their projections in Rn and Rm. We have that

d(x, y) =

√√√√n+m∑
i=0

(xi − yi)2 =

√√√√ n∑
i=0

(xi − yi)2 +

m+n∑
i=n+1

(xi − yi)2 (5.1)

71

5.3 Cartesian Fiber Surfaces

where the two sums in the square root are the squared distance in projection.
In order to compute a signed distance field using this we introduce the following

lemma.

Lemma 5.3. Given the two signed distance fields dA and dB of two FSCP A ⊂ Rn

and B ⊂ Rm their combined signed distance field dA×B can be expressed as:

dA×B(x1, . . . xn+m) =

√
dA(x1, . . . , xn)

2 + dB(xn+1, . . . , xn+m)2.

Proof. Given (x1, . . . , xn+m) we define πA : Rn+m → Rn as the projection πA((x1, . . . , xn+m)) =

(x1, . . . , xn) and πB : Rn+m → Rm as the projection πB((x1, . . . , xn+m)) = (xn+1, . . . , xn+m).

We present the following equalities and then explain why they hold. The Cartesian

product of two compact sets is also compact. All the inf values in the equations below

exists because we assume all our sets are compact.

dA×B(x) = inf
y∈A×B

{dA×B(x, y))} =

= inf
πA(y)∈A and πB(y)∈B

{√
dA(πA(x), πA(y))

2 + dB(πB(x), πB(y))
2

}
= (5.2)

=

√
inf

πA(y)∈A and πB(y)∈B

{
dA(πA(x), πA(y))

2 + dB(πB(x), πB(y))
2
}
= (5.3)

=

√
inf

πA(y)∈A

{
dA(πA(x), πA(y))

2
}
+ inf

πB(y)∈B

{
dB(πB(x), πB(y))

2
}

(5.4)

=

√{
inf

πA(y)∈A
dA(πA(x), πA(y))

}2

+

{
inf

πB(y)∈B
dB(πB(x), πB(y))

}2

(5.5)

=

√
dA(πA(x))

2 + dB(πB(x))2.

Equation 5.2 comes from Equation 5.1. Equation 5.3 commutes the square root

with the inf because the square root is a monotonely increasing function. Equation 5.4

uses the basic property of inf that inf (A+B) = inf (A) + inf (B). The last equation

(Equation 5.5) commutes the square with the inf because the square is a monotonely

increasing function on the positive numbers where distance is defined. The result then

follows from the definition of a distance field in the two factor spaces.

72

5.4 Tracer Visualiser Application

5.4 Tracer Visualiser Application

In this section we will discuss the application we have implemented to aid scientists in
visualising convective cloud formation by understand the physical properties of cloud
triggering objects defined by tracer (recall Section 5.2). We call the application the
Tracer Visualiser. First we pose the following application requirements.

5.4.1 Application Requirements

The key issue for domain scientists is to understand how to define cloud triggering
coherent structures in the planetary boundary layer directly from the physical fields
available (such as moisture, velocity, temperature). In order to continue their research
experts require a tool that supports the following requirements:

R1) Spatial visualization of features, defined by the tracer.

R2) Visualization of moisture, heat and velocity in features.

R3) Interactive exploration of features and their attributes.

R4) Attribute based spacial queries and feature refinement.

R5) Suppression of small scale features such as noise.

R6) Geometric export of features for further quantification.

5.4.2 Application Design

From our literature review in Part 3 we know that tools for scalar fields are now well
understood, while tools for bivariate fields are in development. We propose to combine
those tools in a trivariate visualisation application to study relationships between fea-
tures defined in one variable and features defined in two others. The features defined
in one variable will be based on a decaying passive tracer scalar field resulting from a
numerical simulation. As we have shown in Subsection 5.2.1 the tracer field is accepted
by the domain experts as a good approximation of cloud triggering air structures. We
will study the attributes of those features in relation to the underlying physical scalar
fields of temperature, moisture and vertical velocity.

The first requirement (R1, refer to Subsection 5.4.1) of our application is to render
the features (or air parcels) defined by the tracer scalar field. Those features are the
connected components of the super-level set of the domain at a user-defined threshold.
We render the boundary of the super-level set using an isosurface and identify the
connected components using the join tree (recall Section 3.4). In order to suppress
small scale features and noise (R5) we use topological simplification based on persistence
(recall Section 3.5) or contained volume.

The second requirement is to visualise the moisture, heat and vertical velocity of
those features (R2). We visualise the joint distribution of those scalar attributes in

73

5.4 Tracer Visualiser Application

Figure 5.4: The user interface of the tracer visualiser application. It is based on a main

(domain) view (A), a data (range) view (B), and ancillary controls (C)-(E).

pairs with three continuous scatterplots (recall Section 3.7). We use the scatterplots of
the whole domain as a canvas on which we project the features to study their shape in
attribute space. The features are projected by computing their individual continuous
scatterplots (as subvolumes of the domain) and compositing them together, much like
a collage.

To enable interactive exploration of the features and their attributes (R3) we allow
for brushing and linking via fiber surfaces. The user can brush the scatterplot with a
fiber surface control polygon to highlight an area of interest and then link back to the
domain by rendering the fiber surface of the polygon. The fiber surface reveals other
parts of the spatial domain, outside the features, which have similar properties. This
is useful in investigating hypotheses about the environment in which convective clouds
are triggered.

It is important to the user to study the internal structure of their features - how
they’re composed of the physical attributes. To enable this we support feature refine-
ment (R4) by rendering the parts of features that have particular properties inside
the highlighted area in the scatterplot. Determining this geometrically is equivalent
to taking the intersection of the volume contained in the isosurface and the volume
contained in the fiber surface. In order to avoid the costly computation of a geometric
intersection we use the novel technique we introduced called Cartesian fiber surfaces
(recall Section 5.3).

74

5.4 Tracer Visualiser Application

5.4.3 Application Implementation

The design of the user interface flows from the following: a shared spatial representa-
tion of features in the domain, supported by secondary views displaying data attributes.
This means a secondary view for a continuous scatterplot or an equivalent representa-
tion of bivariate data, and a separate view for a histogram for the single scalar field. Our
input data consists of three scalar fields defined over a time-varying three dimensional
rectilinear grid. See an example of our user interface in Figure 5.4.

Domain View

In our main spatial view, we show the domain of the function, the isosurface, represent-
ing the boundary of the super-level set and the fiber surface, representing the boundary
of areas that correspond to specific range attributes. Displaying both the isosurface
and the fiber surface at the same time often results in excessive visual clutter, making
it difficult to determine the relationship between two. Even with opacity controls it is
not aways possible to identify the intersection between the volumes contained in both
surfaces. This is why we also render a third surface, the boundary of the intersection
of those volumes, using Cartesian fiber surfaces (described in detail in Section 5.3).

To support interactive exploration, we use the color channel to distinguish between
the connected components of the isosurface, the fiber surface and the Cartesian fiber
surface. Since our domain experts are not color-blind, we have not at present imple-
mented colormap selection, but this is clearly important if we wish to distribute the
tool for others to use, and we expect to support it at a later date. Our application
also supports feature selection via a left mouse click. The selected object is highlighted
in the domain view and its projection is highlighted in the range view. Upon object
selection we focus the camera on the centroid of its triangles across all timesteps to
ensure smooth transition between frames.

We also know that many features are too small to be of interest, so we support
simplification based on topological persistence. The user selects an isovalue of interest
and a simplification threshold. The main view then shows all isosurfaces whose asso-
ciated super-level sets have persistence greater than the threshold, using the standard
merge tree computation Carr et al. (2003). Fiber surfaces and Cartesian fiber surfaces
are simplified by contained volume.

Attribute View

In the attribute view, we show the probability distribution function of the two secondary
variables with the continuous scatterplot, which we compute using the Topology Toolkit
ttk (2020). The continuous scatterplot is like a canvas on which we render the pro-
jections of the connected components of the super-level set. In order to compute the
projections we remesh the domain along the isosurface boundary; identify connected
components using the join tree; compute their individual continuous scatterplots and
finally composite them onto the continuous scatterplot of the whole domain. For con-

75

5.5 Case Study: Convective Triggering

sistency between the domain and the attribute view we use the same colour for the
features and their projection.

At this stage, an additional problem arises - choosing an appropriate colour map
for the scatterplot and the projected features. If we use a coloured heatmap (as the
original continuous scatterplot approach Bachthaler & Weiskopf (2008b)) it would be
difficult to distinguish between the features and especially their boundary. Additionally
if a feature is small, its scatterplot will have low density relative to the overall plot. In
that case only the feature’s highest density regions will have enough color contrast for
visibility. We therefore chose a simple binary colormap (grey-white) for the continuous
scatterplot and colored binary colormaps for projecting individual features.

In practice there is a high degree of overlap between the projected features, so we
allow the user to render them with some transparency and bring them to the top when
they are selected in the domain view. The shape of the projections allows the user to
form hypotheses about the attributes of features. We allow brushing via a fiber surface
control polygon for the user to verify those hypotheses and link to the domain view
with a fiber surface. The user can modify the fiber surface control polygon by adding,
removing and translating points.

Performance and Design Considerations

The most computationally expensive part of our application was rendering the contin-
uous scatterplot and the feature projections. This prohibited interactive exploration of
high resolution data sets with many timesteps. For some scatterplots the binary col-
ormap was not sufficient and we needed lower opacity for low density areas. However
that required that the user be familiar with the continuous scatterplot algorithm and
the opacity function design.

Therefore we also supported the use of the discrete scatterplot for the whole data
and feature projections. The two main reasons were efficiency and reducing the user’s
overhead with a familir visualisation that is more intuitive for them. In practice, we
typically worked with the discrete scatterplot, but periodically cross-checked the results
against the correct continuous scatterplot to ensure that our conclusions were accurate.

The speed and smoothness of transitions between timesteps is of key importance for
interactive visualisation. Analogous to key-frame animation the user would like to be
able to quickly flip through the timeslices and observe the change in features’ geometry,
their projection, the fiber surface and Cartesian fiber surface. When the user changes a
parameter, like the isovalue or fiber surface control polygon, we recompute the resulting
meshes, projections and intersections for all timesteps in parallel using OpenMP.

5.5 Case Study: Convective Triggering

In this section we describe the workflow and insight gained from using the applica-
tion. We are interested in guiding the development of a physical model describing the
properties and evolution of individual cloud-triggering features. We give two examples.

76

5.5 Case Study: Convective Triggering

The first example is focussed on understanding the structure of the environment in
which a feature forms and rises, enabling the formulation of hypotheses around why
features form in specific regions. The second is focussed on understanding the internal
structure of a cloud-triggering feature, which enables formulation of a physical model
of how vertical transport is carried out by these structures.

We examine three fields relevant to triggering convective clouds: the vertical velocity
w, the specific concentration of water vapour q measuring the mass of water vapour per
mass of mixture and the potential temperature θ, which is the absolute temperature
corrected for the drop in temperature under adiabatic expansion, allowing for easy
comparison of temperatures at different heights in the boundary layer. For convenience,
we will refer to θ as “temperature”. Both the q and θ fields display the physical
characteristic that in the absence of mixing (and condensation, which does not occur
below cloud base) they will both be conserved, meaning that the value will not change
as a volume of air rises.

77

5.5 Case Study: Convective Triggering

a) Top down view of the isosurface (red) and ber surface (green).

Shows three parts of the ber surface meeting at the isosurface.
b) Discrete scatter plot (gray) with feature projection (red) and a ber

surface control polygon.

c) Side view of the isosurface (red) and ber surface (green). Shows the vertical contribution of the ber surface to the isosurface.

Histogram of vertical velocity

Figure 5.5: Characterising the environment in which cloud-triggering features (red

surface in a) and c) in scatterplot b)) form based on the projection of the feature in the

scatterplot of vertical velocity and water vapour concentration (the product of which

is vertical moisture transport). The projection of the feature (in b)) shows that it

mainly contains rising moist air. A fiber surface (green surface in c)) of the area of

the scatterplot with similar properties, the moistest air parcels which are also rising,

shows that the structure is embedded within and at the nodal-point of three horizontal

segments of rising moist air.

The test case shows the development of shallow convection over ocean based on
the RICO campaign vanZanten et al. (2011) modified to remove ambient windshear
and to fix surface moisture and heat fluxes to Fl = 150W/m2 and Fs = 7W/m2. The
UCLALES Large-Eddy model Stevens et al. (1999) was used to model the case on
a double-periodic domain of 20km × 20km × 4km at an isotropic grid resolution of

78

5.5 Case Study: Convective Triggering

a) Isosurface of the cloud-triggering feature (red) and ber surface (two components in green). b) Continous scatter plot (gray) and feature projection (red).

This area inhibits cloud formation.

Figure 5.6: Characterising the environment in which cloud-triggering features form

based on the projection of the feature in the scatterplot of temperature and water

vapour (both of which contribute to density). The projection of the feature (red surface

in a)) in scatterplot b)) shows that it is comprised of moist-cold and moist-warm linear

segments. Rendering a fiber surface (green surface in a)) of the warmest and driest

part of the scatterplot distribution demonstrates how the surface of constant density in

the environment is curved towards the bottom part of the domain, inhibiting formation

of cloud-triggering structures there.

∆x = 25m, with 3D fields of water vapour concentration, potential temperature and
vertical velocity output every ∆t = 1min. Instead of considering the value of moisture
(q) and temperature (θ) at every point in the boundary layer we may instead consider
the deviation from the horizontal mean, e.g. θ′(x, y, z) = θ(x, y, z)−θ(z). This corrects
for the fact that the moisture and heat sources are at the ocean surface and thus
both fields have a larger horizontal mean value near the ocean. From the simulation
output 2km× 2km regions where individual boundary layer structures rise and trigger
isolated convective clouds were identified using visualisations of the tracer field height
and clouds (Figure 5.2 top right). These smaller 3D regions were then extracted into
individual data-files which were fed into the visualiser application.

In the first example we focus on characterising the environment in which cloud-
triggering features form. We examine the vertical velocity and moisture (water vapour)
concentration variables. The product of water vapour specific concentration and verti-
cal velocity (together with mixture density which varies much less) gives the moisture
flux and so looking at the covariance of these variables enables us to examine the
vertical moisture transport, which is necessary for triggering convective clouds. Pro-
jecting the features identified by the existing (isosurface) method into the scatterplot
of vertical velocity and moisture reveals that the cloud-triggering structures contain
the moistest air masses and mainly air that is rising, but also some subsiding (negative
vertical velocity) air. This is overturning air in vortex rings that is embedded in the
features (Figure 5.5). The features exist primarily inside an isolated peak of positive

79

5.5 Case Study: Convective Triggering

a) Isosurface (red) and cartesian ber surface (blue, top part of the isosurface). b) Discrete scatterplot and feature projection

d) Discrete scatterplot and feature projectionc) isosurface (red, with opacity) and cartesian ber surface (blue, inside the ber surface).

Subvolume of the feature that

maps to the polygon in the scatterplot.

Extremal values of the feature.

Figure 5.7: Decomposing a cloud triggering feature (super-level set component) using

the volume contained in a fiber surface using Cartesian fiber surfaces a) and c) of two

concentric fiber surface polygons in the scatterplot b). The Cartesian fiber surface

intersections (blue in a) and c)) reveals that the top of the feature is cool and moist

(fiber surface control polygon in b)), with cooler and moister regions (fiber surface

polygon in d)) located concentrically towards the topmost edge of the feature.

vertical velocity and large moisture content in the scatter-plot, a peak which is not
visible when looking only at the histogram of vertical velocity (see inset of Figure 5.5)
due to the large number of points where air is hardly moving vertically. Drawing a
fiber surface control polygon around this peak we see that the cloud-triggering features
are completely embedded within regions which contain rising moist air, even though
the features locally contain subsiding air. We also see that the cloud-triggering fea-
ture has formed at the nodal-point of three horizontal segments of rising moist air,
this was observed across several examples suggesting these nodal intersections of rising
moist air are favourable for creating cloud-triggering structures. Using fiber surface
control polygons to segment the projected feature we found it to be comprised of two
discrete components, below-cloud tracking the moistest rising datapoints and in-cloud
decreasing with vertical velocity and water vapour concentration. This suggests that
a combination of vertical velocity and water vapour concentration may form a way to
identify cloud-triggering structures.

Further examining the environment of a cloud-triggering feature we look at the

80

5.5 Case Study: Convective Triggering

potential temperature and water vapour concentration fields as these together define
the density, and regions with lighter environment air form a barrier for a rising feature
as the lighter environment necessitates that the feature be even lighter to continue rising
(Figure 5.6 b)). Above the height at which clouds form there is a monotonic relationship
between temperature and water vapour with height, so that potential temperature
increasing with height and water vapour decreasing. Drawing a fiber-surface control
polygon across this region of monotonic relationship in the scatter plot we see that
as cloud-base height is approached the fiber-surfaces transition from being at near-
constant height across the domain to being pulled downwards toward the ground in
the region where no cloud-triggering structures have formed. This demonstrates how
surfaces of constant density in the environment inhibit cloud-formation in regions of
the horizontal domain.

In the second example we examine the internal structure of a cloud-triggering fea-
ture (Figure 5.7) by considering the local anomaly of potential temperature and water
vapour relative to the horizontal mean. By subtracting the horizontal mean we can
examine how the feature is doing transport against the vertical mean gradient in both
temperature and moisture. The cloud-triggering feature (as identified by the existing
isosurface technique) is seen to contain both air masses that are cold and moist relative
to the environment and warm and dry relative the environment. By drawing fiber-
surface control polygons in the scatter plot we can build up a structural representation
of the cloud-triggering feature. The fiber-surface and the isosurface feature indicates
(not shown) that the top of the cloud-triggering feature is embedded in an elevated
region with high moisture content, which may help the feature avoid dissipating by
mixing with dry air. By using the Cartesian fiber surface intersection with the isosur-
face we can see that the top of the feature consists of concentric layers increasingly cold
and moist regions, with the top-most disc-like region of the feature being the moistest
and coolest. Elucidating this internal structure is key to forming a mathematical model
of these cloud-triggering features.

These insights enable us to develop hypotheses for the mechanisms and the necessary
environmental conditions for clouds to be formed. Specifically, they help us guide
how to define a cloud-triggering feature and what aspect of these features to track
when developing further algorithms to carry out quantitative analysis. In addition
the example feature examined in this section is that of an isolated cloud-triggering
feature leading to the formation one cloud with a single buoyant core, however clouds
often appear to form from multiple cloud-triggering features in quick succession with a
number of convective growths within the same cloudy area. Having the tool described
in this work will enable the study of the spatial interactions in this more complicated
case in further work, allowing us to build hypothesis for the necessary conditions for
these more complicated multi-core clouds to form.

81

Part IV

Reeb Spaces

82

Chapter 6

Reeb Space Local Neighborhood

Classification

6.1 Introduction

In previous chapters we introduced an important tool for scalar field visualisation called
an isosurface and its associated topological data structure called the Reeb graph. How-
ever, in analysing real world data there is usually more than one property of interest.
Hence, we introduced a bivariate visualisation tool called the fiber surface. The topo-
logical data structure associated with the fiber surface is a generalisation of the Reeb
graph called the Reeb space. The Reeb space is far less studied and understood than
the Reeb graph and it is the object of investigation of this part.

Given a scalar function over a three dimensional volume, the Reeb graph is a one
dimensional topological object. The Reeb graph is made up of vertices and edges that
connect them. Given a bivariate function over a three dimensional volume, the Reeb
space is a two dimensional object. The Reeb space is a polyhedron made up of vertices,
edges connecting the vertices and two dimensional sheets connecting the edges.

The Reeb space is far more complex to understand and visualise than the Reeb
graph because of the intricate ways in which sheets can attach to one another. Fully
understanding the structure of the Reeb space is key to developing efficient algorithms
for computing, simplifying and using it. Previous work has laid the foundation of
understanding the local structure of the Reeb space, but only for a restricted case of
PL maps. This limits the applicability to practical data analysis.

The key contribution of this part is a fully combinatorial method for computing all
possible local structures in a Reeb space, parametrized by the degree of the vertices
and edges of the input mesh. Our method makes no assumptions about the input mesh
aside from simple conditions on the data values which can be guaranteed by standard
perturbation techniques such as simulation of simplicity. We demonstrate our method
by giving a full classification of all Reeb spaces neighbourhoods of input meshes with

83

6.2 Background

low vertex and edge degree.
We begin with a literature review of the previous work done related Reeb spaces in

Section 6.2. Then we present the methodology we will use for describing Reeb space
neighbourhoods in Section 6.3. After that we give our assumptions in Section 6.4. The
main theoretical contributions are given in Sections 7.1, 7.2 and 7.3 where we describe
the local topology of PL fibers. In Section 8.1 we discuss the global topology of PL fibers
and present the intuition behind computing Reeb space neighbourhoods. Following that
in Section 8.2 we present our algorithms for enumerating and generating all possible
Reeb space neighbourhoods for meshes with bounded vertex and edge degree. In Section
9.1 we describe our implementations of those algorithms. Finally we present the results
of our Reeb space neighbourhood classification in Section 9.2.

6.2 Background

One of the first papers that investigates the singularities of mappings beyond the scalar
case is by Whitney (1955). Whitney studied smooth mappings of the plane into the
plane called generic maps. The paper showed that generic maps (which is another form
of stability Section 2.3) have simple behaviour depending on the rank of the Jacobian.
That behaviour is described by the singularities (or set of singular points) of the stable
maps, which consists of one dimensional curves called folds and isolated points called
cusps, which can connect some folds. Furthermore these generic maps are dense (see
Definition 2.1) in the set of all smooth maps from the plane to the plane.

The results of Whitney were later extended by Levine Levine (1966) by examining
mappings of manifolds to the plane. Furthermore Èliašberg (1970) generalised these
results further by looking at mappings between manifolds, but only their folding singu-
larities (see Section 2.3). The following book is a comprehensive modern introduction
on Fiber Topology Saeki (2004). An introduction for computer scientists can be found
in Saeki (2017).

Stable maps and their singularities are often studied using a quotient space known as
the Stein factorization, which we know as the Reeb space. One of the first descriptions
of the Reeb space and its local neighbourhoods is given in Levine (1988). The author
describes the local connections of sheets by studying singular fibers. However, the
author only presents results for orientable manifolds. An important results about the
Reeb space is that it can be triangulated for a large class of functions Hiratuka & Saeki
(2013). Triangulation is important because it ensures that computing the Reeb space is
computationally feasible. There have also been results concerning the local Reeb space
neighbourhoods and simplification for manifolds with boundary Saeki & Yamamoto
(2016a,b).

In the PL setting the singular set of a mappings has been defined as the Jacobi
set Edelsbrunner & Harer (2002b). The Reeb space for PL maps has been defined
in Edelsbrunner et al. (2008c) where the authors give a method for the description of
Reeb space neighbourhoods and a generic Reeb space algorithm. However the authors
do not provide a practical implementation of the algorithm. The first implementation

84

6.2 Background

for the R3 → R2 case is given in Tierny & Carr (2017b). In the next sections we will
expand the details of these works on PL Reeb spaces.

Smooth Reeb Space Neighborhood

In fiber topology the study of singular fibers is closely related to the study of local
Reeb space neighbourhoods. The way that local neighbourhoods of the Reeb space are
described is by first classifying the singular fibers of a mapping Saeki (2004). The first
step in classifying singular fibers is to describe the local neighbourhood of a singular
fiber around the singular point. Then we extend the curves in that local neighbourhood
to the whole domain to connect them globally. The way that the curves connect, with
restrictions enforced from the stability of the mapping, tells us how the singular fiber
changes the connected components of the regular fibers in its neighbourhood. Since
the Reeb space encodes the connectivity of those fibers, this also completely describes
the Reeb space neighbourhood as well.

Jacobi Sets

The Jacobi set is the PL analogue of the singular set of points of a smooth function
Edelsbrunner & Harer (2002b). For the approximation of two Morse function by a
bivariate PL map the Jacobi set is a set of connected edges. To determine whether
an edge of the combinatorial manifold is Jacobi we apply a local test. Since this is an
integral part of our further investigation we will describe the test in the particular case
of 3-manifolds (a similar description can also be found in Tierny & Carr (2017b)).

Given an edge ab, the link of the edge is a triangulation of a circle on n vertices.
For a bivariate PL map (f, g) we consider the line defined by the image of the edge
(f, g)(ab) in R2. We then count the connected components of the upper and lower link
of ab. The upper link is defined by all vertices and edges and are entirely on one side
of the line defined by (f, g)(ab). The lower link is defined likewise for all vertices and
edges of the link on the other side of the line defined by (f, g)(ab).

If both the lower and upper link have one connected components the edge is regular,
the fiber does not change as it crosses the edge. If the lower link has zero components
and the upper link has one component, then the fiber around the edge is a circle, which
shrinks to a point. If both the lower link and upper link have more than one component,
then locally multiple fiber components merge and immediately split when crossing the
edge.

PL Reeb Space Neighborhood

The key result from Edelsbrunner et al. (2008c) that enables the description of Reeb
space neighbourhoods is the Cone Neighborhood theorem. According to the Cone
Neighborhood theorem every point in the Reeb space has a neighbourhood that is a
cone over a Reeb space of one dimension less. Given a point in the Reeb space p we take

85

6.3 Method Overview

a small closed disk D around p. We describe the neighbourhood of p by investigating
the boundary of the disk ∂D, which is a circle. We call that a walk around p.

Let (∂D)−1 be the connected component that contains p of the preimage of ∂D
which is (f, g)−1(∂D). Then we can take the restriction (f, g)(∂D)−1 of the bivariate
function (f, g), which is a scalar function to the unit circle. The cone of the Reeb graph
of the restricted function and the center point p gives us the local Reeb space structure
around p. Therefore the local Reeb space structure of p is entirely described by the
Reeb graph of the circle.

In practise the authors of Edelsbrunner et al. (2008c) describe Reeb space neigh-
bourhoods of PL functions by describing the number of connected components over the
course of a walk around the point p. We show how we extend that methodology in the
following section.

6.3 Method Overview

The methodology we going to us for describing Reeb space neighbourhoods follows
previous methods from the smooth Levine (1988) and PL Edelsbrunner et al. (2008c)
cases. We present our two step process in Figure 6.1

Domain Arrangement

Range Arrangement

Outer Fiber Arrangement

Local Reeb SpaceInner Fiber Arrangement

Figure 6.1: A diagram of how a local Reeb space neighbourhood is computed.

In the first step we describe the local behaviour of fibers within a neighbourhood of
the point of interest. The way we describe their behaviour is by tracking their connected
components and how they appear, disappear, merge and split over the course of a small
enough walk around that point. In order to describe the fibers locally we use the domain
arrangement and the range arrangement.

The domain arrangement is a description of the neighbourhood of the point in the
domain. In the PL setting by neighbourhood we mean the star of the simplex that the
point belongs to. In our case that would be a vertex or an edge. Recall (Section 2.4)
that we not differentiate between the terms star and closed star, we assume that the
star contains all its faces. By range arrangement we mean a combinatorial description
of how the image of the vertices of the link of the simplex are arranged around the
image of the simplex in the plane.

The second step is to describe the global behaviour of the fiber by extending the
local fiber behaviour via the outer fiber arrangement. The outer fiber arrangement
describes all the possible ways in which the fiber can be connected outside the star,
in the rest of the mesh. Once we have the global fiber behaviour we can compute the
Reeb space neighbourhood by tracking the fiber components over the walk.

86

6.4 Assumptions and Stability

6.4 Assumptions and Stability

We will assume the domain is a closed (without a boundary and compact) combinatorial
3-manifold and call it M . We will also refer to M as the mesh. Assume we have a
bivariate PL map from the mesh onto the plane (f, g) : M → R2 where f and g are
scalar PL maps.

The only paper in the literature so far that describes Reeb space neighbourhoods
of PL maps is Edelsbrunner et al. (2008c). In order to describe the neighbourhoods
however the authors impose certain restrictions on the PL map that make them less
suitable for practical data analysis.

The first restriction is that all Jacobi edges are simple - that means only two fiber
components can meet there. More than two fiber components meeting at a Jacobi
edge is analogous to monkey saddles in the scalar case Edelsbrunner & Harer (2010).
This requirement is resolved as in Edelsbrunner & Harer (2002b) where the authors
note that we can break up non-simple Jacobi edges into multiple simple Jacobi edges.
However this requires the input mesh to be modified.

The second requirement is that the Jacobi set is a set of PL curves. This is a
restriction on the topological structure derived from the data, not directly on the data
itself. In practise when we first obtain a dataset, we cannot know a priori what the
resulting topological structure will be without computing it. Instead it would be more
practical to work with restrictions which are based entirely on the data values. Hence
we use the following definition of generic.

Definition 6.1. A generic bivariate PL map (f, g) is a bivariate PL map such that:

• The mapping is injective on the vertices, edges and triangles of the input mesh

(analogous to generic Edelsbrunner et al. (2008c)) .

• No more than two edges meet at a point (unless it’s a vertex).

• No more than two vertices meet at an edge.

All three requirements follow the general idea that no small perturbations in the
data should change the structure of the Jacobi set or the Reeb space. Indeed, if three
edges meet at a point any small perturbation on any of the vertices or any of the edges
changes that configuration. The same holds for three vertices meeting on an edge.

Finally, an important question is how we guarantee this condition on any type of
input data. In the scalar case we apply symbolic perturbation of the data with the
technique simulation of simplicity Edelsbrunner & Mücke (1990). We can do the same
in the bivariate case by perturbing the two scalar fields individually Tierny & Carr
(2017a).

87

Chapter 7

Local Fibers

7.1 Local Fibers in a Tetrahedron

We will start our investigation by demonstrating the properties of a fiber in a single
tetrahedron and consequently in two tetrahedra sharing a triangle. These cases are
regular, which means that no topological change happens to the fibers. they are topo-
logically equivalent to a line segment. However we use these regular cases as building
blocks to understand the more complex singular cases. Let us begin with two definitions
that will simplify our discussion.

Definition 7.1 (Fiber Point). A fiber is the inverse image of a point in the range. For

convenience we will call the point of which we take a fiber of a fiber point.

Definition 7.2 (Active Simplex). We call a simplex active when its intersection with

a fiber is not empty.

Next we will investigate the behaviour of a fiber within a single tetrahedron. A
fiber can be expressed as the intersection of the isosurfaces of the component functions
(f, g)−1(u, v) = f−1(u) ∩ g−1(v). In a tetrahedral mesh we know the intersection of
an isosurface and a tetrahedron is either empty, a single point, or a planar segment
(the intersection of a plane and a tetrahedron) Treece et al. (1999b). Therefore, the
intersection of a fiber and a tetrahedron is either empty, a single point or a line segment
(see Figure 7.1). Furthermore all fiber line segments in a tetrahedron are parallel to one
another. This can also be demonstrated using the ”Generic Preimage Lemma” from
Edelsbrunner et al. (2008c).

A direct consequence of this is that we can determine whether a simplex is active
based entirely on the location of the fiber point in the range. If the image of a simplex
contains the fiber point, then that simplex is active. Furthermore due to the linear
interpolation of the PL map, the barycentric coordinates of the fiber point in relation
to the image of an active simplex are the same as the barycentric coordinates of the
point in relation to the simplex in the domain.

88

7.1 Local Fibers in a Tetrahedron

This allows us to compute a fiber in a tetrahedral mesh in a style similar to marching
tetrahedra for isosurfaces Treece et al. (1999b). For each tetrahedron determine whether
two of its proper faces are active by computing the barycentric coordinates of the fiber
point with respect to the images of the simplices in the plane. If the simplices contain
the fiber point use the same barycentric coordinates in the domain and draw the line
segment between those two points of intersection. To compute the fiber in the whole
mesh we apply this to every tetrahedron individually.

fiber a

1

1

2

3

4

2

3

4

Domain Range

1

1

2

3

4

2

3

4

Domain Range

1

1

2

3

4

2

3

4

Domain Range

1

1

2

3

4

2

3

4

Domain Range

Empty Point

Line Parallel

fiber

fiber

fiber

fiber b

Figure 7.1: The possible ways in which a fiber can intersect a tetrahedron. We consider

as our domain a single tetrahedron and its mapping onto the plane by a PL map. The

PL map is defined on the vertices and linearly interpolated along the edges, triangles

and tetrahedra. We construct the fiber by determining which faces of the tetrahedron

contain the fiber point in the range, then connect them in the domain.

Based on this we will define two ways of thinking about fibers - geometric and
combinatorial.

Definition 7.3 (Geometric Fiber). By a geometric fiber we mean the preimage of a

point, or the fiber as computed with its corresponding geometry.

89

7.1 Local Fibers in a Tetrahedron

Definition 7.4 (Combinatorial Fiber). By a combinatorial fiber we mean a graph where

the vertices are the active faces for a fiber and an edge connects two vertices if their

corresponding simplices are faces of the same tetrahedron.

We make the difference between the two because in our discussion we often won’t be
interested in the exact geometry of the fiber. We will only be interested in the number
of connected components of a fiber and how that changes, which we can obtain from
the combinatorial description.

So far we have shown the behaviour of a fiber in a single tetrahedron and how
to compute the fiber geometrically and combinatorially. The next step is to build on
that to determine how a fiber behaves in adjacent tetrahedra. No topological change
of the connectivity of the fiber can happen outside the edges and vertices of the mesh
Edelsbrunner & Harer (2002b). Thus, when two tetrahedra meet at a triangle and
the fiber point is outside the image of the 1-skeleton of the mesh the fiber in the two
tetrahedra consists of the two line segments meeting at a point on the shared face 7.2.

u

v
z

x y

1 1

2

3

4
5

2

3

4
ber

5

(f,g)

Figure 7.2: An example of when a fiber passes through the face of one tetrahedron onto

another. The fiber is regular - locally a line segment.

There are two types of points in the domain and in fibers - regular and singular.

Definition 7.5 (Regular and Singular Points). A regular point is one where if we take

a small neighbourhood of the fiber going through that point, the intersection of the fiber

and the small neighbourhood is topologically equivalent to a line segment. Otherwise

the point is called singular.

Definition 7.6 (Regular and Singular Fibers). If all points on a fiber are regular, the

fiber is called regular Otherwise it is called a singular fiber.

The cases where topological change in the connectivity of the fiber happens is at
the vertices and edges of the mesh. We will examine those two cases in the following
two sections.

90

7.2 Local Edge Fiber Classification

7.2 Local Edge Fiber Classification

So far we have looked at what happens to a fiber in a single tetrahedron and in two
tetrahedra sharing a triangle. The next case is when multiple tetrahedra share an edge.
This is where we can observe a topological change in the fiber, or the number of fiber
components. In this section we will give a combinatorial description of all possible
topological changes of a fiber near points on an edge of the mesh.

We can classify edges into a number of distinct types based on the behaviour of the
fibers in a small neighbourhood around the edge. To demonstrate that we will take
a walk around a point on the edge as discussed in Section 6.2. Before classifying the
local behaviour of the fibers we will first describe the local neighbourhood of an edge
in the domain and in the range. Those are the domain and range arrangement of the
edge (recall Section 6.3).

7.2.1 Domain and Range Neighborhood Structure

a
b

v1
v2

v3

v4

v5
v6

v1

a

v2 v3 v4

v5

b

v6

b) image of the closed star
in the range

a) closed star of the edge ab
in the domain

xy

z

u

v

(f,g)

Figure 7.3: The neighbourhood of an edge in domain (left) and in the range (right).

The link of the edge in the domain is the circle consisting of the points v1, . . . , v6, and

the closed star consists of all tetrahedra is of the form (a, b, vi, v(i+1)) for all i ∈ 1, . . . , 6.

In the range we’ve aranged the edge ab to be horizontal and all other vertices to be

above or below it. Their exact location does not matter, only whether they are above

or below the edge.

Given an edge ab of the mesh in the domain, by the neighbourhood of ab we mean
the star of ab. In this work we consider the star of an edge to be closed - to contain all
its faces. The star of an edge consists of at least three tetrahedra, all arranged around
the edge as shown in Figure 7.3. The link of ab consists of a triangulation of a circle
based on the vertices adjacent to ab. We will label those vertices as v1, . . . , vn. There

91

7.2 Local Edge Fiber Classification

is a topologically unique triangulation of a circle on n vertices so the structure of the
star of an edge is entirely described by that single number n.

The neighbourhood of ab in the range is described by the image of the star of
ab. From the work on Jacobi edges Edelsbrunner & Harer (2002b) we know that we
can determine whether an edge is Jacobi entirely based on the images of the vertices
(f, g)(v1), . . . , (f, g)(vn) and how they are arranged around the line defined by the image
of the edge (f, g)(ab). Geometrically there are infinitely many ways in which they can
be mapped onto the plane. However Edelsbrunner & Harer (2002b) demonstrates that
an edge can be classified as either a Jacobi or a regular edge, solely based on the
connectivity its upper and lower link (recall Section 6.2).

Note that we will sometimes omit using (f, g)(a) when we mean the image of a
simplex a in the range. We will just write the simplex a in the domain or in the range,
or it will be understood from context.

7.2.2 Choosing a Walk

Next we will describe how we choose the fiber point on the edge and the walk around
it. It does not matter which which fiber point we pick on the edge, we will see later
that this will not change the local behaviour of the fibers. For any point on the edge we
pick the radius of the walk to be small enough so that it does not intersect any of the
images of the edges of the star. If the point happens to be on the point of intersection
of the central edge (ab) and another edge, that intersection is unavoidable, but does
not change our local classification.

We can split the circle of the walk into three regions, each region having fibers with
uniform topology Figure 7.4. The first region is the open half circle above the edge, the
second region is the half circle in the region below the edge. Both regions are regular
and therefore the fiber connectivity does not change for all points on the walk in them.
The last region consists of the two points on the edge, those are singular, but still have
the same topology.

7.2.3 Local Edge Fiber Classification

In order to determine the local fiber behaviour we need three fibers, two regular - one
above and one below the edge, and one singular, at the edge. In order to compute
the combinatorial fibers in the three regions we need to determine which triangles are
active. We will group the triangles into two types - inner and outer triangles.

Definition 7.1 (Inner and Outer Triangles). In the star of an edge, an inner triangle

is a face that is shared by two of the tetrahedra in that star. Every tetrahedron in the

star has two inner triangles. All other triangles are called outer triangles.

An inner triangle is a common face between two of the tetrahedra of the star of
the edge. An outer triangle is a triangle on the boundary of the star of the edge. It

92

7.2 Local Edge Fiber Classification

v1

a

v2 v3 v4

v5

b

v6

(a) A walk around a point on

the edge ab.

v1

a

v2 v3 v4

v5

b

v6

(b) Regions where fibers have

the same topology.

v1

a

v2 v3 v4

v5

b

v6

(c) The three fibers we need to

describe the walk.

Figure 7.4: The fibers we need to talk to fully describe a walk around a point on an

edge of the input mesh.

connects the star to the rest of the mesh. For example in Figure 7.3 all triangles abvi
for i ∈ [1, 6] are inner triangles and all triangles avivi+1 are outer triangles.

We draw the distinction between the two types of triangles because is allows us to
describe the fibers in the three regions around an edge. If a fiber passes through an
inner triangle that means that it remains in the star, if a fiber passes through an outer
triangle, that means it leaves the star and escapes into the rest of the mesh.

We give an example of computing a fiber above the edge ab in Figure 7.5. To
compute the fiber we step through each of the tetrahedra in the closed star of ab one
at a time (see Section 7.1). Each tetrahedron is either active or nonactive based on
whether a fiber passes through that tetrahedron or not. Using the same method we
can compute the fiber when the fiber point is on the edge or below the edge in Figure
7.6.

Next we are going to further classify each tetrahedron as either exit or nonexit
based on the behaviour of the fiber inside that tetrahedron.

Definition 7.2 (Exit Tetrahedron). An exit tetrahedron is one where a fiber passes

through one inner triangle and one outer triangle. Otherwise the tetrahedron is non

exit.

In non-exit tetrahedra the fiber comes in from an adjacent tetrahedron via an inner
face and then exits to another adjacent tetrahedron via the other inner face. We can
recognize these tetrahedra based on their image in the range. Both of the link vertices
of a non-exit tetrahedron are on the same side of the line defined by ab. These are for
example the tetrahedra abv1v2, abv2v3, abv3v4 and abv5v6 in Figure 7.5.

In exit tetrahedra the fiber comes through one of the inner faces and exits through
one of the outer faces. The link vertices of an exit tetrahedron are on different sides
of the line defined by ab. These are for example the tetrahedra abv1v6 and abv4v5
(Figure 7.6 and Figure 7.5). At the edge the fiber is entirely contained in the exit

93

7.2 Local Edge Fiber Classification

v1

v3

v4

v5

v6

v2

b
a a

b

v1
v2

v3

v4

v5

v6

a) Active nonexit tetrahedron b) Active nonexit tetrahedron

a
b

v1
v2

v3

v4

v5

v6

a
b

v1
v2

v3

v4

v5

v6

c) Active nonexit tetrahedron d) Active exit tetrahedron

a
b

v1
v2

v3

v4

v5

v6

a
b

v1
v2

v3

v4

v5

v6

e) Nonactive nonexit tetrahedron f) Active exit tetrahedron

fiber point

v3 v4

v5v6

b

v4

v5v6

v1

v3

v6

v1 v2

v3 v4

v5

v2

v5v6

a

v1 v2

b

v3 v4v1 v2

v1 v2

a

v3v2

a b

v3 v4

v4

b

v5

a

v5v6

a b

v1

a

v6

b

Figure 7.5: Computing a fiber in the star of an edge one tetrahedron at a time. The

tetraheron shaded in gray (in the domain and in the range) is the current one being

examined. In exit tetraherons the image of one vertex is above the adge ab, the other

is below. Exit tetrahedra are always active, while nonexit tetrahedra are only active

either above or below the edge.

tetrahedra (Figure 7.6 a)). Below the edge the same tetrahedra are exit tetrahedra,
however the nonexit tetrahedra that were active in the fiber above the edge are no
longer active (Figure 7.6 b)) and vice versa. Furthermore the nonexit tetrahedra that
were not active in the fiber above the edge are active below the edge. In particular the
only active nonexit tetrahedron below the edge is abv5v6.

Knowing about the two types of tetrahedra in the star of an edge we can now work
on determining the types of Jacobi edges. As we mentioned before this will involve
us taking three combinatorial fibers - above, at and below the edge. However we are
not going to pick a specific fiber point for those combinatorial fibers. This is because
all fiber points close enough and above the edge are contained in exactly the same
images of triangles, and they all have the same combinatorial fibers. The only thing

94

7.2 Local Edge Fiber Classification

a
b

v1
v2

v3

v4

v5

v6

v1

a

v2 v3 v4

v5

b

v6

a) Fiber at the edge

a
b

v1
v2

v3

v4

v5

v6

v1

a

v2 v3 v4

v5

b

v6

b) Fiber bellow the edge

Figure 7.6: The fibers at the edge and below the edge. The fiber at the edge connects

the exit points directly to the edge, while passing only through the exit tetrahedra. The

active tetrahedra of the fiber below the edge are the exit tetrahedra and all nonexit

tetrahedra which were not active in the fiber above the edge. The only active non-exit

tetrahedron below the edge is abv5v6.

that can change is that by moving the fiber point along the edge the fiber may move
from one outer triangle of an exit tetrahedron into another. That does not change the
combinatorial fiber topologically. This holds for all points close enough and below the
edge and all points at the edge.

Notice that for non-exit tetrahedra if we pick a fiber point above (assume that the
images of both link vertices are above) that is close enough, it will always intersect
all interior triangles. If we also pick it close enough it will not intersect the exterior
triangles. In an exit tetrahedron if we pick a close enough fiber point anywhere along
the edge it will always intersect exactly one interior and one exterior triangle. We will
call the point of intersection with an outer triangle an exit point.

Definition 7.3 (Exit Point). We call the point in the exit tetrahedron where the fiber

exits the star of the edge an exit point.

The edge we have considered so far is a regular edge because the fiber does not
change its connectivity as it passes through the edge. In the star of a regular edge
there are only two exit tetrahedra and therefore only one fiber component. We see fibers
exhibiting singular behaviour when there are zero or more than two exit tetrahedra in
the star of an edge. Next we will investigate the behaviour of the fibers based on the
number of the exit tetrahedra. This will give us a full classification of the behaviour of
singular fibers in the star of an edge.

95

7.2 Local Edge Fiber Classification

a
b

v1
v2

v3

v4

v5

v6

a) Definite

v1

a

v2 v3 v4 v5

b

v6

b) Indefinite Type 2

v1

a

v2 v3 v5

b

v4 v6

c) Indefinite Type 3

v1 v3 v5

v4v2 v6

ba

a
b

v1
v2

v3

v4

v5

v6

Top Fiber Edge Fiber

a
b

v1
v2

v3

v4

v5

v6

Bottom Fiber

a
b

v1
v2

v3

v4

v5

v6

Bottom Fiber

a
b

v1
v2

v3

v4

v5

v6

Edge Fiber

a
b

v1
v2

v3

v4

v5

v6

Top Fiber

a
b

v1
v2

v3

v4

v5

v6

Edge Fiber

a
b

v1
v2

v3

v4

v5

v6

Bottom Fiber

a
b

v1
v2

v3

v4

v5

v6

Top Fiber

a) Regular

v1

a

v2 v3

v5

b

v4

v6

a
b

v1
v2

v3

v4

v5

v6

Top Fiber

a
b

v1
v2

v3

v4

v5

v6

Edge Fiber

a
b

v1
v2

v3

v4

v5

v6

Bottom Fiber

Figure 7.7: These are all possible Jacobi edge types for an edge of degree up to six.

We have shown the transition of the fiber components as they move from above to at

to below the edge.

Lemma 7.1 (Definite Edge). If the star of an edge has zero exit tetrahedra, then the

fiber above the edge is a triangulation of a circle and it is entirely contained in the star.

The fiber at the edge is a single point and the fiber below the edge is empty.

96

7.2 Local Edge Fiber Classification

Proof. If there are no exit tetrahedra then the images of all vertices on the link are on

the same side of the line defined by (f, g)(ab). Therefore the fiber passes through all

inner faces. The fiber is a triangulation of a circle and it is entirely contained in the

star. The fiber at the edge is single point and the one below is empty. The edge is then

called a definite edge and you can see an example of this in Figure 7.7 a).

In the other case there are more than two exit tetrahedra in the star of the edge.
Let us first label all vertices on the link v1, . . . , vn as they appear clockwise on the link,
and label all tetrahedra T1, . . . , Tn as they appear clockwise as well. Tetrahedron Ti is
made up of the vertices abvivi+1. We will consider the list of vertices and tetrahedra to
be circular, that is when we write Ti+1 we mean T1 when i = n+ 1 and when we write
Ti−1 we mean Tn when i = 1. We are now going to use this new notation to show some
important properties about exit tetrahedra.

Lemma 7.2 (Exit Point Parity). There is an even number of exit tetrahedra in the

star of an edge.

Proof. Consider the case of a definite edge where there are no exit tetrahedra. Assume

without loss of generality that the images of all vertices are above the line defined by

(f, g)(ab). If we move the image of one vertex, say vi below then the two edges vi−1vi

and vivi+1 now cross the line defined by (f, g)(ab). Therefore the tetrahedra Ti−1 and

Ti are now exit tetrahedra. If we move any vertex adjacent to vi below, the number of

edges crossing the line (and therefore the number of exit tetrahedra) stays the same. If

we move any vertex non-adjacent to vi below the line then there are four edges crossing

the line and therefore four exit tetrahedra. Inductively the rest follows.

The way we describe fibers combinatorially requires us that we list all active trian-
gles in the star and connect them together. However we can simplify this by connecting
pairs of exit points directly.

Definition 7.7 (Exit Point Pairs). When a fiber connects two exit points in the star

of an edge we say that the exit points are paired.

Exit point pairs are a concise representation of combinatorial fibers in the star of
an edge. Instead of listing all active triangles we consider a fiber just by the exit point
it pairs. The following lemma tells us how exactly exit points pair with one another
and how that pairing changes on the other side of the Jacobi edge. This is crucial for
understanding the local behaviour of fibers.

Lemma 7.3 (Exit Point Pair Swap). Let Tk1 , Tk1 , . . . , Tkm be the circular list of exit

tetrahedra. Then a regular fiber above either pairs Tki with the previous tetrahedron

Tki−1
or the next tetrahedron Tki+1

. Furthermore if the tetrahedron Tki pairs with the

97

7.2 Local Edge Fiber Classification

previous one, then in the regular fiber below the edge the pairs flip and it pairs with the

next one. Analogously if the tetrahedron Tki pairs with the next one, then in the regular

fiber below the edge the pairs flip and it pairs with the previous one. This holds for all

tetrahedra with the same index parity (odd or even).

Proof. Let us examine the fiber that enters the star at the exit point in Tk1 . Suppose

without loss of generality that we are considering the regular fiber above the edge

and that the fiber goes on into the next tetrahedron in the circular list (and not the

previous). If the next tetrahedron is a non-exit tetrahedron then the fiber moves on to

the one after that. This goes on until the fiber reaches an exit tetrahedron where the

fiber exits the star. Since there is a only one fiber segment in every active tetrahedron

there is nowhere else the fiber can go. Therefore the exit point pk1 from tetrahedron

Tk1 pairs with the exit point pk2 from tetrahedron Tk2 .

All nonexit tetrahedra from Tk2 to Tk3 are inactive because the images of both of

their inner triangles are below the edge. Therefore by the same reasoning the fiber that

comes in the tetrahedron Tk3 pairs it with the next tetrahedron Tk4 . The same holds

for all following tetrahedra.

The pairs of exit points then are {(p1, p2), (p3, p4), . . . (pm−1, pm)}. When we take

the regular fiber below the edge all active non exit tetrahedra become inactive and vice

versa so the exit points flip and become {(pm−1, p1), (p2, p3), . . . (pm−2, pm−1)}

The Exit Point Pair Swap lemma completely describes the behaviour of local fiber
components when the number of exit tetrahedra is greater than two. In Figure 7.7 we
have shown the three types of Jacobi edges that can happen in meshes with edges of
degree up to six. The first case is the definite edge, where there are no exit tetrahedra
and hence the fiber above the edge is a circle. The fiber then shrinks to a point at the
edge as it disappears below the edge. This is analogous to local minima and maxima
in Reeb graphs where contours appear and disappear. This case is characterised by the
fact that all link vertices are on the same of the line defined by ab.

The next possible case is the indefinite edge of type two, where we have two fiber
components in the regular fibers. Above the edge one of the fibers pairs the tetrahedron
v1v6ab with the tetrahedron v2v3ab since the images of the triangles abv1, abv2 and abv3
are all above the line defined by the image of the edge ab. Similarly the tetrahedron
v5v6ab is paired with v4v5ab since the image of the triangle abv5 is below the line defined
by the image of the edge ab. Below the edge the pairs swap as per Lemma 7.3 and
v1v6ab pairs with v5v6ab and v2v3ab pairs with v4v5ab.

For the case of the indefinite edge of type three we have three fiber components in
the regular fibers above and below. Same as before above the edge the fibers pair the
exit tetrahedra via the inner triangles which are above the edge. At the edge we have

98

7.3 Local Vertex Fiber Classification

a) Regular fiber

e1

e4

e2

e3

e1 e2

e3e4
e4

e1 e2

e3

Above At Bellow

e1

e2

e1

e2e2

e1

Above At Bellow

e1 e2

e3

e4e5

e6

e1 e2

e3

e4e5

e6

e1 e2

e3

e4e5

e6

Above At Bellow

Above At Bellow

b) Definite fiber

c) Indefinite fiber of type 2 d) Indefinite fiber of type 3

Figure 7.8: In every subfigure we have shown a simplified view of three fibers, one above,

one at and one below a Jacobi edge. We classify the edge based on the behaviour of the

fiber as it crosses the edge - it’s either a regular, a definite or indefinite edge. Indefinite

edges can be of type 2, 3, 4, . . ., but we have only shown 2 and 3 here, the rest are

analogous with more fiber components and exit points (see Lemma 7.3).

a singular fiber, where all fiber components meet. Then they split again as the exit
point pairs swap.

It’s precisely the swap of exit points when we cross an indefinite edge that enables
the topological change in connectivity. When we consider the connections of the fiber
outside of the star of the edge, in the rest of the mesh, this swap may change the number
of fiber components. We will describe this global process in more detail in Section 8.1.
First we will describe the local behaviour of fibers around vertices of the mesh.

7.3 Local Vertex Fiber Classification

In this section we will use what we’ve learned so far about edge neighbourhoods to
describe vertex neighbourhoods. Vertex neighbourhoods are more difficult to describe
because multiple Jacobi edges can meet at a vertex. For example all types of edges
such as regular, definite and indefinite can all meet at a vertex in various combinations.

In order to describe local vertex neighbourhoods we will use the same method as for
the edges (recall Section 6.3). First we describe the structure of the star and the link
of a vertex in the domain (the domain arrangement). Then we describe the structure
of the image of the star of the vertex in the range (the range arrangement).

The key contribution of this section is to describe the range arrangement via a
discrete combinatorial structure we call a dihedral top permutation (DTP). By gener-

99

7.3 Local Vertex Fiber Classification

Star of C in the domain

0

1

2

3

5

4

C

xy

z

u

v

(f,g)

4

0

2

1

5

3

C

Image of the star of C in the range

Figure 7.9: The structure of the star of a vertex C is the following. The link of C is a

triangulation of a sphere. The star of C consists of tetrahedra whose base is a triangle

on the link. As per our assumptions (see Section 6.4) the images of the vertices in the

range are arranged so that no two vertices are on a line passing through C.

ating all DTPs we exhaust all possible range arrangements and we can thus generate
all possible Reeb space neighbourhoods.

7.3.1 Structure of the Vertex Neighborhood in the Domain

In a combinatorial 3-manifold without boundary the link of a vertex C is a triangulation
of the sphere. We will call the vertex C the central vertex and the other vertices link
vertices. The star of C consists of all tetrahedra of the form CT where T ranges over
all triangles in the link (see Figure 7.9). The product CT referes to the cone operation
of taking all line segments between C and T .

This is already a significant departure from the case of edge neighbourhoods where
the link was a triangulation of a circle. While there is a unique triangulation of a circle
on n vertices, there are many different triangulations of a 2-sphere on n vertices. By
topologically different we mean graph isomorphic on the 1-skeleton of the triangulation.

In the star of a vertex we will differentiate between two types of simplices.

Definition 7.4 (Inner and Outer Simplices). We call the vertices which are entirely

contained in the link of a vertex outer simplices. The other simplices in the star of a

vertex will be referred to as inner.

Throughout the rest of this section we will consider the triangulation of a sphere on
six vertices that is given in Figure 7.9. Note however that the methods we present will
be able to work with any given triangulation of a sphere on any number of vertices.

100

7.3 Local Vertex Fiber Classification

4

0

2

1

5

3

C

4

0

2

1

5

3

C

0

2

1

5

3

C

4

2

1

5

3

C

4

2

1

5

3

C

4

0

2

1

5

3

C

(a) Indefinite edge of type 2 (b) Indefinite edge of type 2

(c) Indefinite edge of type 2 (d) Indefinite edge of type 2

(e) Regular edge (f) Regular Edge

Figure 7.10: An example of determining the Jacobi type of the edges adjacent to the

vertex C. For every edge Ci where i ∈ {0, 1, 2, 3, 4, 5} we consider the line defined by

the edge and the link of that edge. The number of edges from the link that cross the

line determines the Jacobi type of the edge (see Subsection 7.2.3).

101

7.3 Local Vertex Fiber Classification

7.3.2 Structure of the Vertex Neighborhood in the Range

Geometrically, there are infinitely many ways in which the images of the link vertices can
be arranged around the image of the central vertex. However we want a combinatorial
description that reduces the number of cases to a discrete set. The question we are
going to answer is which types of arrangements of the link vertices in the range give us
equivalent Reeb space neighbourhoods and which give us potentially different ones.

The key to understanding the local structure of the image of the vertex neighbour-
hood is to consider all the edges adjacent to the central vertex. The star of each of the
adjacent edges is contained in the star of the vertex and we can use it to examine the
edge’s Jacobi type. You can see an example of this in Figure 7.10 where we examine
the Jacobi type of each edge adjacent to the central vertex from Figure 7.9.

We can define the Jacobi type of a vertex based on the arrangement of the Jacobi
edges around it. The Jacobi type consists of an ordered list of the Jacobi types of
the adjacent edges of the vertex. In describing the Jacobi type of a vertex we use 0
for definite edges and n ≥ 2 for indefinite edge of type n. We omit the regular edges
because they do not contribute to the Reeb space structure. The Jacobi type of the
vertex from our running example (see Figure 7.9) is [2, 2, 2, 2] since the vertex has four
adjacent indefinite edges of type two.

The Jacobi type of a vertex exhibits rotational and mirror symmetry. A vertex with
Jacobi type [2, 0, 2, 3] is equivalent to another vertex with Jacobi type [3, 2, 0, 2] via a
single rotation or a single a mirror operation.

While the Jacobi type of a vertex is easy to describe and useful in initially classifying
vertices, it is difficult to determine which vertex Jacobi types are realisable and which
ones are not. By realisable we mean whether a mesh and a PL map exist that have that
particular Jacobi type. Therefore we will assume a bottom up approach of computing
all realisable Jacobi vertex types first.

Another way to describe the local structure of the vertex in the range is to list the
vertices from the link of the central vertex which are above and below for each edge
individually. From this representation we can directly compute the Jacobi types of
all the edges. However this representation results in multiple lists of vertices that is
cumbersome to work with because there is a lot of redundancy. Instead we propose an
alternative representation called a dihedral top permutation (DTP).

In the term dihedral top permutation (see Figure 7.11) top means that some of the
vertices have bars on top that signify which side of the line defined by their edge we
encounter them as we do a clockwise scan. If the vertex is on the same side of the
line as the edge it does not have a bar, if it is on the opposite side, it does have a
bar. We use the term permutation because each vertex and its top counterpart appear
exactly once and the order matters. We call it dihedral because it exhibits rotational
and mirror symmetry. For example the DTP [v0, v̄2, v1, v̄0, v2, v̄1] is equivalent to the
DTP [v1, v̄2, v0, v̄1, v2, v̄0] via two unit rotations and a mirror flip.

For convenience we will not always write out the full DTP, we can in fact only
write half of it. Note that for example in the DTP [v1, v̄2, v0, v̄1, v2, v̄0] once we reach v̄1
which is the half turn point, the vertices repeat in inverse order and with opposite bars

102

7.3 Local Vertex Fiber Classification

(the ones that had a bar don’t and vice versa). Therefore we can only write [v1, v̄2, v0]
and the rest of the DTP is implicit. The second is that out of all equivalent DTPs
we can pick a unique representative by always starting out with v0 (this excludes the
rotational symmetry) and picking the DTP in which we see v1 before v̄1 (this excludes
the mirror symmetry).

We will demonstrate the first use of the DTP notation by showing how we can
compute the Jacobi type of a vertex.

Lemma 7.4. We can use the DTP of a vertex to compute the Jacobi type of that vertex.

Proof. Suppose that we are interested in computing the Jacobi type of the edge cvi.

Starting at vi in the DTP we move along the list until we reach v̄i. All vertices which we

encounter with a bar are on one side of cvi (above) and all vertices which we encounter

without a bar are on the other side (below). Once we have the vertices above and below

we can count the number of edges from the link of cvi which cross the line defined by

cvi. This gives us the Jacobi type of edge cvi. Computing the Jacobi type of all edges

in order gives us the Jacobi type of the vertex.

The key thing that we need to show now is that any two arrangements of the link
vertices in the plane with the same DTP are equivalent. By equivalent we mean that
they generate the same Reeb space neighbourhoods up to rotational and mirror. We
can do so by showing the we can use a DTP to compute the combinatorial fibers in
the star of the central vertex over a walk around it. Therefore any two arrangements
with equivalent DTPs will generate equivalent combinatorial fibers in the regions of the
walk and therefore produce equivalent Reeb space structures.

7.3.3 Walks Around Vertices

Given our assumptions (see Definition 6.1) we know that we can always pick a small
enough walk (or circle) around the central vertex such that it only intersects inner edges.
Since all the exit points of the vertex star are triangles on the link, those triangles do
not contain central edges. Therefore over a small enough walk the exit points will
remains constant in their triangles (even if they move around by a small amount).

We will segment the points on the walk around the central vertex into regions
(see Figure 7.12). Jacobi regions represent adjacent Jacobi edges and regular regions
represent the regular space between them. Over the walk around the central vertex we
will compute a combinatorial fiber for each one of those regions. This will give us a full
description of the inner fiber arrangement.

7.3.4 Local Fibers via Regular-like DTP Expressions

For computing the combinatorial fiber of a region on the walk around a vertex we need
to know which the active triangles are for any point within that region. We won’t have

103

7.3 Local Vertex Fiber Classification

4

0

2

1

5

3

C

0

4

5

1

3

2

0 3

5

2

4

1

(a) Example of a range arrangement with a dihedral

top permutation (DTP) v0, v̄4, v̄5, v1, v̄2, v3.

4

0

1 5

3

0

4

5
1

3

2

0
3

5

2

4

1

2

C

(b) A geometrically different arrangement of the

link vertices with an equivalent DTP (rotated and

mirrored).

Figure 7.11: Diagram of how to read the dihedral top permutation (DTP) of the image

of the star of a vertex in the range. The DTP tells us how the vertices located on the

link of the central vertex are arranged after they are mapped to the plane.

to do any geometric calculations to obtain the active triangles we can compute them
entirely using the domain arrangement and the DTP (which is derived from the range
arrangement).

We will determine whether a triangle is active by taking its vertices and matching
them as a pattern onto the DTP. Since that is similar to how you would match a regular
expression to a string we call this technique regular-like DTP expressions.

Regular-like DTP Expressions

In this section we will separate the triangles of the star of a vertex into three types.
The outer triangles, the inner triangles for a Jacobi region and the inner triangles for a
regular region. The outer triangles are significant because that’s where the exit points
are. The inner triangles are significant because they may contain exit points for the
stars of individual edges. Those inner exits points then lead to exit points on outer
triangles through the other tetrahedra in the star of the vertex.

First we will discuss detecting whether an outer triangle is active for any of the
regular or Jacobi regions of the walk (Figure 7.13 a)). The outer triangles consists of
three vertices from the link of the vertex. Suppose without loss of generality that those
vertices are labeled as v0, v1, v2 When we write that a DTP contains the subsequence

104

7.3 Local Vertex Fiber Classification

C

S2

R1
R4

R3

S1

S3

S2

R2

Figure 7.12: In a walk around a vertex there are multiple regions - one for every adjacent

Jacobi edge and one for the region between two consecutive Jacobi edges. These are

the regular and Jacobi regions of the DTP shown in Figure 7.9. In order to describe

the walk it’s enough to compute the combinatorial fiber for each one of the regular and

Jacobi regions.

(. . . , v0, . . . , v1, . . . , v2 . . .) we will just write it as (v0, v1, v2), but keep in mind they do
not to be consecutive.

Lemma 7.5. Given a triangle v0v1v2 in the link of the central vertex c, the image of

that triangle contains the image of the central vertex when the DTP of the arrangement

contains the subsequence (v0, v̄2, v1).

Proof. Throughout this proof refer to Figure 7.13 a) for a diagram. Fix the positions

of v0 and v2 in the plane. The line defined by the vector cv0 separates the plane into

two half-planes. Let us call those P+
cv0 which is the one clockwise of cv0 and P−

cv0 which

is counter clockwise of cv0. In general for any two vectors ab and ac we have that if

c ∈ P+
ab then b ∈ P−

ac. In other words if c is counter clockwise of ab then b is clockwise

of ac. Without loss of generality assume that c ∈ P+
v0v1 . Then if we show that c ∈ P+

v1v2

and c ∈ P+
v2v0 by the half-plane test c is in the triangle v0v1v2. We have that c ∈ P+

v1v2

whenever v2 ∈ P−
v1c. This means that v2 must be in the lower half-plane with respect

to the line defined by v1c. Furthermore c ∈ P+
v2v0 whenever v2 ∈ P−

cv0 . This means that

v2 must be in the left half-plane of the line defined by cv0. Therefore v must be in the

lower left quadrant, so v̄ must be in the top right quadrant, which corresponds to the

DTP subsequence (v0, v̄2, v1).

The second technique is used to determine whether the image of an inner triangle
has a non-empty intersection with the image of a particular edge (Figure 7.13 b)). Due

105

7.3 Local Vertex Fiber Classification

2

0

C 1

v0, v2, v1
0

2

1

v0, v2, v1 v0, v1, v2, v3
0

1

2

3

v0, v1, v3, v2
0

1

2

3

a) Center Vertex C in Triangle b) Edge C2 in Triangle c) Region 01 in triangle

C CC

Figure 7.13: Recognizing whether particular points on the walk around c are in image

of a triangle from the star of c. Above each image in the diagram is a subsequence

of the DTP of the vertex, which we can match as a regular expression onto the DTP

to determine whether the triangle is active. The first case is used to determine which

triangles from the link of c are active. They will be active for every region on the

walk, so we only need to compute them once. The second and third case are used to

determine whether an inner triangle is active in a Jacobi or regular region respectively.

to how we have chosen our walk in Subsection 7.3.3 any such triangle must be active
for that Jacobi region. The regular-like DTP expression we use to match this case is
(v0, v2, v1). We will omit the proof since as you can see in Figure 7.13 b) the only
case when the edge cv2 intersects the triangle v0v1c is when v2 is in the upper right
half-plane.

The final technique is used to determine whether a regular region on a walk has
a non-empty intersection with an interior triangle (Figure 7.13 c)). Similarly to the
previous two cases, if there is a non-empty intersection then we can always choose a
walk small enough such that that triangle is active for all points in the regular region
of the walk. In this case the regular region is defined by two vertices, say v0 and v1
so we match either of the expressions (v0, v1, v2, v̄3) or (v0, v1, v3, v̄2). Since we define
regular regions to be regions between consequitive edges, we can assume that v0 and v1
are consequitive in the DTP. Therefore we reduce the proof of this case to the previous
case, that of Figure 7.13 b).

Inner Fiber Arrangement

Given that we can compute the active triangles in each region of the walk using the
DTP, this means that we can compute the combinatorial fibers in each region. Therefore
any two geometric arrangements of the images of the link vertices in the range with
the same DTP are indeed equivalent. This means that they have equivalent inner fiber
arrangements (up to symmetry and relabeling).

We express the inner fiber arrangement as a list of exit point pairs (see Figure
7.14). Each pair represents a combinatorial fiber via its exit points on the link of the

106

7.3 Local Vertex Fiber Classification

central vertex. You can see an example of the geometric fibers of the regular regions in
Figure 7.15. When the central vertex has adjacent definite edges some regular regions
will have combinatorial fibers which are entirely contained in them (circles around the
edge). We cannot express those as pairs of exit points so we add some auxiliary points
pi for each circle fiber and pair them with themselves (pi, pi).

R1 S1 R2

(p1, p2)

(p3, p4)

(p5, p6)

(p1, s)

(p2, s)

(p5, p6)

(p3, s)

(p4, s)

(p1, p4)

(p2, p3)

(p5, p6)

S2

(p1, p2)

(p3, s)

(p6, s)

(p4, s)

(p5, s)

R3 S3 R4

(p1, p2)

(p3, p4)

(p5, p6)

(p1, s)

(p2, s)

(p5, p6)

(p3, s)

(p4, s)

(p1, p4)

(p2, p3)

(p5, p6)

S4

(p1, p2)

(p3, s)

(p6, s)

(p4, s)

(p5, s)

Figure 7.14: The local fiber arrangement diagram for the example from Figure 7.9.

This table shows the local fiber pairings in all regular and Jacobi regions of the walk.

In the Jacobi regions the pairs (pi, s) means a singular fibber connecting the exit point

to a point on the Jacobi edge which defines the Jacobi region.

107

7.3 Local Vertex Fiber Classification

p1

p2

p3

p5
p6

p4

p1

p2

p3

p5
p6

p4

p1

p2

p3
p5

p6
p4

p1

p2

p3

p5

p6p4

a) Fibers in Regular Region 1 b) Fibers in Regular Region 2

c) Fibers in Singular Region 3 d) Fibers in Singular Region 4

Figure 7.15: Showing the fibers in all four regular regions from Figure 7.9. The fiber

connectivity gives us the exit point pairs in every region.

108

Chapter 8

Reeb Space Computation

8.1 Global Fiber Pairing for Local Reeb Space Neighbor-

hoods

So far we have examined the local behaviour of fibers around a point that is on an
edge or a vertex of the mesh. We categorized the possible ways in which fibers change
their connectivity and described that with the local fiber arrangement. In this section
we will consider how to extend the local behaviour of the fibers globally, so that we
obtain their global connectivity. We will describe how the fibers connect outside the
closed star of an edge or a vertex with a structure we call the outer fiber arrangement.
Combining the outer fiber arrangement with the inner fiber arrangement gives us the
global connectivity of fibers. This will allows us to infer the structure of the local Reeb
space neighbourhood.

In this section we will work with some concrete examples to illustrate the process
of obtaining the outer fiber connectivity and the local Reeb space neighbourhood. We
will focus on the intuition behind the process and later use that to develop general
algorithms for computing all possible local Reeb space neighbourhoods in Section 8.2.

8.1.1 Reeb Space Generating Diagrams

In the inner fiber arrangement each pair of exit points represents a fiber component
inside the star in a particular region of the walk around the point. In order to study
the structure of the local Reeb space, however we need to understand the change in
global connectivity of the fibers. To understand this we need to know how the fiber
components are connected in the rest of the mesh, outside the star.

From our assumptions we know that the input mesh is compact and it does not
have a boundary and from basic topology we also know that the preimage of a point is
a closed curve. Therefore when a fiber exits the closed star via one of the exit points,
then it must travel around in the mesh and come back through one of the other exit

109

8.1 Global Fiber Pairing for Local Reeb Space Neighborhoods

exit points

link of the
singular edge

Outer Fiber
Components

inner Fiber
Components

2-singular
edge

e1
e1

e2

e4 e3

Local Fiber Pairing
{(e1, e2), (e3, e4)}

Global Fiber Pairing
{(e1, e2), (e3, e4)}

e2

e4 e3

a) Simplified view of the
local edge neighbourhood

b) Extending the local fiber
components to the mesh

Figure 8.1: This diagram depicts the global connectivity of a fiber as a combination of

the local and outer fiber pairings. On the left, is a simple visualisation of the star of an

edge, where the edge is reduced to a point. On the right, the exit points are connected

outside of the star in ther rest of the mesh.

points. This means that a list of pairs of exit points is enough to completely describe
the global connectivity of fiber components outside of the star.

We combine the inner and outer fiber arrangements to get the global fiber compo-
nents visually with a global fiber diagram diagram. You can see an example of this in
Figure 8.1, where we present a stripped down visualisation of the components of a fiber
as made up of its inner and outer fiber components.

8.1.2 Global Fibers of a Single Edge

We will now demonstrate how to combine the inner and outer fiber arrangements to
the get the global connectivity of a fiber over a walk. We will do so by visualising the
outer fiber as a combination of the inner and outer fiber pairings in each of the regular
and Jacobi regions of the walk. We give an example in Figure 8.2. Both possible inner
fiber pairings are given on either side of the edge (see Figure 7.8). Along the edge we
have singular fibers where all exit points are connected to a point on the Jacobi edge.
Outside the closed star we’ve selected a particular outer fiber pairing, which as we’ve
discussed remains constant over the walk.

In the resulting diagram (Figure 8.2), we have three fiber components in the left,
which merge at the edge into a single fiber component on the right hand side of the
diagram. The merge happens because of the how the exit point pairs swap due ot
the Exit Point Pair Swap Lemma (see Lemma 7.3). The resulting local Reeb space
neighbourhood has one sheet on one side of the singular edge and three sheets on the
other.

110

8.1 Global Fiber Pairing for Local Reeb Space Neighborhoods

Fibers on one
side of the edge
(in the domain)

Fibers on the other
side of the edge
(in the domain)

Singular Fibers
on the edge

Local Reeb Space

Point around which
we take a walk

Local Reeb Graph

Figure 8.2: A walk around a point on a Jacobi edge in the range with outer fiber

diagrams in each of the regions. On the bottom we’ve shown the Reeb space of the

neighbourhood of the point and the Reeb graph of the walk.

8.1.3 Global Fibers of of Two Intersecting Edges

The global fiber could possibly intersect two singular points. This happens when the
images of two edges intersect in the range and the fiber point is the point of intersection.
Due to our assumptions (see Section 6.4) we know that no more than two edges can
cross in the range. Therefore the fiber can intersect at most one other singular point
on one other edge. Note that the fiber cannot intersect another vertex because that
violates our other assumption.

When two edges intersect in the range the walk around the point of intersection will
contain eight regions, instead of three (see Figure 8.3). There are four Jacobi regions
which correspond to the edges, each appearing twice. There are also four regular regions
in between the Jacobi edges. Over the course of the walk the inner fiber pairs of both
stars flip, alternating, one at a time, as we cross each edge twice.

In the case of taking a walk around the point of intersection of two edges we have
twice the number of exit points. In Figure 8.3 we give an example of a particular global
pairing of the exit points of both stars. In all four regular regions we have all the

111

8.1 Global Fiber Pairing for Local Reeb Space Neighborhoods

possible combinations of the exit point flips of both edges. For all Jacobi regions we
have one edge being intersected by the fiber and the other one not. At the center point
both edges are intersected by the fiber which has two singular points.

Local Reeb Space

Walk Reeb Graph

Figure 8.3: On the left we have the range, where the images of the two edges intersect.

This divides the walk around the point of intersection into four regular regions and four

Jacobi regions. The Jacobi regions are the Jacobi edges and the regular regions are the

space between them. In each regular and Jacobi region in the range we have shown the

global fiber (from the domain). Each of the fibers contains local fibers, inside the star

of the edge and global fibers, the parts of the fiber outside the star. The singular fibers

cross either one of the edges, or both (in the center). On the right we have shown the

Reeb space neighbourhood of this case as well as the Reeb graph of the walk.

8.1.4 Global Fibers of a Vertex

When we examined the global fiber behaviour of edges we considered a special case,
where the global fiber may have more than one singular point. This happens then the
images of two edges intersect in the range. One of our initial assumptions (see Definition
6.1) was that no three vertices meet at an edge. Furthermore we have chosen our walk
(see Subsection 7.3.3) to only intersect the images of the edges adjacent to the central
vertex. Therefore the global fibers of vertex neighbourhoods contain one singular point.

In Figure 8.4 we have given an example of a Reeb space diagram for a particular
global exit pairing for the vertex neighbourhood given in Figure 7.9. In the diagram we
have given the combinatorial fibers of the four regular and four Jacobi regions. We have

112

8.1 Global Fiber Pairing for Local Reeb Space Neighborhoods

also given the combinatorial fiber at the vertex in the center. In each combinatorial
fiber we have arranged the exit points horizontally. The fiber components below the exit
points represent the part of the fiber in the star of the vertex and the fiber components
above the exit points represent the part of the fiber outside the star, in the rest of the
mesh. At the Jacobi regions we have denoted the singular point in blue. On the right
we have given the Reeb space of this example, as well as the Reeb graph of the walk.

Local Reeb Space

Walk Reeb Graph

Figure 8.4: Showing the change in fiber connectivity over a walk around the central

vertex from Figure 7.9. Each of the nine combinatorial fibers on the left hand side of

the diagram consists of exit points, arranged horizontally; inner fibers in the star of the

central vertex, arranged below the exit points; and global fibers arranged above the exit

points. In the transition between the regions in the diagram the interior fibers change

as they go though the singular points (shown in blue) on the Jacobi edges. Note that

the central fiber is at the image of the central vertex. We have omitted labeling all the

edges and exit points, since that is not significant for understanding this example. On

the right hand side we have shown the Reeb space of the whole neighbourhood. In each

region there is one sheet per fiber component. We have also shown the Reeb graph of

the fibers on the walk.

113

8.2 Generating Reeb Space Neighborhoods

8.2 Generating Reeb Space Neighborhoods

In Sections 7.2 and 7.3 we introduced the theory behind inner fiber connectivity and
in Section 8.1 we introduced the idea behind global connectivity. Then in Section 8.1
we showed how we can combine the two to manually construct a local Reeb space
neighbourhood. However we can only manually enumerate the possible local Reeb
space neighbourhoods when the edge or vertex degree is small enough. Otherwise going
through all possible arrangements manually quickly become prohibitive. In this section
we will introduce algorithms to generate all possible Reeb Space neighbourhoods for
meshes with bounded vertex and edge degree.

In order to generate Reeb space neighbourhoods we require the domain arrangement
and the range arrangement to generate all possible inner fiber arrangements (see Section
6.3). Then we combine all possible inner fiber arrangements with all possible global
fiber arrangements to obtain all possible Reeb space neighbourhoods.

8.2.1 Generating Outer Fiber Arrangements

To generate all possible global arrangements we first generate all pairs of exit points,
then we select n/2 pairs such that every exit point is in exactly one pair and the order
of the pairs in the selection does not matter. The total number of global arrangements
on n exit points is:(

n
2

)
×
(
(n−2)

2

)
× . . .×

(
2
2

)
(n/2)!

=
n!

2n/2 × (n/2)!
=

n× (n− 1)× . . .× n/2

2n/2

.
The total number of global pairings is quite large. Therefore we will consider some

symmetry to reduce the total number of cases.

8.2.2 Dihedral Symmetry for Edges

Consider Figure 8.5 where we have shown three distinct global pairings which are in
fact equivalent. In the middle row we have shown the singular fiber along with the
labeled exit point. All three cases can be expressed as a rotation or mirror of one
another. More generally if we take the set of all global combinations we can define an
equivalence relation based on rotational and mirror symmetry.

In the case of indefinite edges of type n we have 2n exit points points, so we take
the Dihedral group of the hexagon D2n. For the case of two intersecting edges of type
n and m we consider the product of all their possible symmetries D2n ×D2m.

Note that this dihedral symmetry is only exhibited in the case of edge neighbour-
hoods. This is because the exit points of edges can be arranged consecutively in the
edge star and because of how the inner fibers transition via the Exit Point Pair Swap
Lemma (see Lemma 7.3).

114

8.2 Generating Reeb Space Neighborhoods

1 2

3

45

6

(a) Computing the Reeb space of an indefinite edge of type three with global pairing

{(1, 2), (3, 4), (5, 6)}

1 2

3

45

6

(b) Computing the Reeb space of an indefinite edge of type three with global pairing

{(1, 4), (2, 3), (5, 6)}

1 2

3

45

6

(c) Computing the Reeb space of an indefinite edge of type three with global pairing

{(1, 2), (3, 4), (5, 6)}

Figure 8.5: An example of three equivalent global pairings. Each row shows the global

fibers above, at and below an indefinite edge of type three. The first global fiber pairing

is {(1, 2), (3, 4), (5, 6)} where those are the ids of the exit points. The second row is

a rotation of that case, which yields a different global pairing, but an equivalent case.

The third row is obtained by two rotations and is again equivalent to the first one.

115

8.2 Generating Reeb Space Neighborhoods

8.2.3 Generating Edge Neighborhoods

For edges we have completely described the possible inner arrangements via the Exit
Point Pair Swap Lemma (see Lemma 7.3) so we only need to generate all possible
global arrangements. Our algorithm first generates all possible global arrangements,
then reduces them by symmetry. For each global arrangement we compute the number
of connected components in each region of the walk using the Exit Point Pair Swap
Lemma 7.3. Finally we group all cases with equivalent Reeb spaces neighbourhoods.
We recognize whether two cases have equivalent Reeb space neighbourhoods based on
whether they have the same number of connected components in each region. This iden-
tifies the Reeb space neighbourhood of an edge uniquely because all fiber components
merge in one singular components at the edge.

8.2.4 Generating Vertex Neighborhoods

For vertices we first need to generate all domain arrangements and all range arrange-
ments. The domain arrangement consists of a triangulation of a sphere. For generating
all topologically different triangulations of the sphere see Bowen & Fisk (1967).

Since all range arrangements can be described by a dihedral top permutation (DTP)
all we have do is generate those. In order to generate all possible DTPs we generate
all permutations on n − 1 vertices. Since we know we can always start with v0 we
only need to permute the rest of the vertices. Then we generate all combinations and
pick 1, 2, . . . , n− 2 elements from the permutation to have bars or not. We exclude the
element v1 (as well as v0) because we always choose it to not have a bar to eliminate
mirror symmetries. In total for n vertices we have (n− 1)!× 2(n−2) distinct DTPs.

8.2.5 Reeb Space Data Structure

In Figure 8.4 we gave two possible representations of a Reeb space neighbourhood. The
first one is the collection of sheets along with the information of how they attach to one
another, the second is the Reeb graph of the walk. The issue with both of those data
structures is that it’s difficult to use them to compare two Reeb space neighbourhoods
for equivalence. We need to add some additional information and segment them into
regions.

We propose an alternative representation for local Reeb space neighbourhoods called
a Reeb space signature graph, which we’ve demonstrated in Figure 8.6. Every node
represents an equivalence class of fiber components either in regular or Jacobi regions
(see Subsection 7.3.3). Black nodes stand for classes of regular fibers and white nodes
for classes of singular fibers. Note that in Jacobi regions not all fiber components are
singular, only one of them. The edges between nodes indicate how fiber components
meet at a singular fiber, or how a component passes through a Jacobi edge without
becoming singular.

Note that in some cases the regular Jacobi regions can be omitted to speed up
computation. This is for example when there is no change in the fiber components with

116

8.2 Generating Reeb Space Neighborhoods

a 1− 1 Jacobi edge (see Figure 9.3 fourth column) or when the change is unambiguous
like in a 1− 2 or 1− 3 Jacobi edge (see Figure 9.3 first and second column). However
in a case like 2 − 2 (see Figure 9.3 third), we would lose information about how the
sheets attach together if we omit the Jacobi region.

R1 J1 R2 J2 R3 S3 R4 J4 R1

R1 J1 R2 J2R3 J3 R4 J4 R3

b) Reeb Space Signature Graph

c) Equivalent Reeb Space Signature Grapha) Local Reeb Space

Figure 8.6: The data structure we use to represent Reeb space neighbourhoods is called

a Reeb space signature graph. Black vertices represent regular classes of fibers and the

white vertices represent singular classes of fibers. The vertices are grouped into regular

and Jacobi regions. The starting region has been repeated at the end to allow a linear

visualisation. Regular and Jacobi regions alternate as we move around in a walk around

the center point. Regular regions are annotated as R1, R2, R3, R4 and Jacobi regions

as J1, J2, J3, J4. Equivalent Reeb space neighbourhoods can be obtained via rotation

or mirror of the signature graph or by permuting the vertices within each region.

Computing the Reeb Space Signature Graphs

In order to compare two Reeb space signature graphs we can can define an equivalence
based symmetry and relabeling (see Figure 8.6 b)). Clearly any rotation or mirroring
of the regions of a Reeb space signature graph gives us an equivalent one. Only their
relative order matters. Additionally all the vertices within their respective regions
can be permuted to obtain another equivalent signature graph. In order to compare
two Reeb space signature graph we use the brute force technique of trying all possible
rotations and mirrors as well as all possible permutations within each of the regions.

In order to compute the inner fiber arrangement we compute the combinatorial
fibers in every region of the walk. We compute the combinatorial fibers by computing
the active triangles using the regular-like DTP expressions (see Subsection 7.3.4). When
we match a regular-like DTP expression we also consider its rotational and mirror
symmetries. We match expressions to DTPs with a linear scan along the DTP. We find

117

8.2 Generating Reeb Space Neighborhoods

the positions of each of the required vertices, determine if they are in the correct order
and then determine whether they have a bar or not. This is done in time linear in the
size of the DTP, but since we only consider meshes with bounded vertex degree that
complexity is constant.

We only need to compute the combinatorial fibers of the regular regions. We can
infer the connectivity of the fibers in the Jacobi regions based on which exit points pairs
have changed. The ones that have changed have all their fiber components merged into
a single component in the Jacobi region. For definite edges we consider the fiber born
in the adjacent regular region, not in the Jacobi region where it is a point.

Once we have the combinatorial fibers in each region we build up the Reeb space
signature graph by considering all adjacent regions. Using the union find data structure
we can determine which fiber components have merged/split with which other compo-
nents. This gives us the edges between the regular and Jacobi regions in the Reeb space
signature graph.

Overall the computation of each Reeb space signature graph is linear in the number
of regions, which is bounded by the vertex degree. The computational bottleneck is
considering all possible cases and reducing them. That means considering all combina-
tions of domain, range and global fiber arrangements and then reducing all Reeb space
signature graphs to a unique set with a single representative using all possible mirror
and relabeling symmetries.

118

Chapter 9

Results

9.1 Reeb Space Application Suite

In Section 8.2 we discussed methods to generate all possible Reeb space local neighbour-
hoods. Those methods involved generating all possible domain and range arrangements
to obtain the local arrangement, then combining that with the outer fiber arrangement
to obtain the global fiber arrangement and thus the local Reeb space neighbourhood.
In this section we will discuss the applications we’ve developed to implement those
methods.

We have developed two key applications in the course of this research. The first
one is for visualising the local neighbourhoods of vertices and edges in the range and
in the domain. The application allows us to select fiber points and visualise their
fiber components. This application was useful in obtaining intuition when developing
the theory presented in this part as well as manually debugging the algorithms for
generating local neighbourhoods. The second application generates all possible local
Reeb space neighbourhoods by generating and combining all the domain and range
arrangements as well as the inner and outer fiber arrangements.

9.1.1 Fiber Visualiser

The goal of the fiber visualiser application is to visualise the geometry of fibers. You
can see an example of this application in Figure 9.1. The left hand view is of the
simplicial complex in the domain as well as the selected fiber components in red. The
fiber is computed geometrically per tetrahedron as discussed in Section 7.1. The left
hand view can be rotated as well as zoomed in/out. The right hand view is the image
of the simplicial complex in the range, where the images of all vertices are labeled by
their ID. The controls at the bottom have to do with opacity of the vertices, edges,
triangles and fibers in the domain.

As input, the Fiber Visualiser takes a Reeb space data file, of which we’ve shown an
example in Figure 9.2. The Reeb space data file consists of the domain 3D coordinates

119

9.1 Reeb Space Application Suite

Figure 9.1: The fiber visualiser application as it is used to visualiser fibers at a particular

fiber point. Left: a view of the geometry in the domain and the fiber (in red). Right:

a view of the geometry in the range and the fiber point (in the crosshair). Bottom:

controls for setting opacity and other utilities.

of the vertices, the 2D coordinates of where they map to in the range, as well as a
list of all tetrahedra with their vertex IDs. In the examples we use we set the domain
coordinates and list of tetrahedra manually. In the case of vertex neighbourhoods we
generate the vertex range coordinates by setting them on the unit circle around the
center vertex using a particular dihedral top permutation. For the case of edges, we
also set them on a circle around the diameter ab and we also use a DTP to set which
vertices are above and which are below the edge.

The fiber visualiser application has been an integral part of this research for multiple
reasons. The first one is that it allows us to obtain a basic visual understanding behind
how fibers of PL functions behave. Using the application we can identify active triangles
and construct combinatorial and geometric fibers. This allows us to manually construct
local Reeb space neighbourhoods for any domain and range configuration. This has
been important in developing our intuition and in debugging and testing our application
for automatically generating Reeb space signature graphs.

A tool like the Fiber Visualiser can also be useful for a guided introduction to the
theory of PL Reeb space data analysis. The application is written in C++ using QT
5.4 and OpenGL.

120

9.2 Results

Figure 9.2: This is an example of a Reeb space data file. In includes information about

the coordinates of the vertices in the domain and in the range as well as the connectivity

of the mesh in the domain.

9.1.2 Generate Local Reeb Space Neighborhoods

The second application generates all unique local Reeb space neighbourhoods for a
given domain and range arrangement using the methods we discussed in Section 8.2.
The first stage in the computation is to use the domain and range arrangement to
generate the inner fiber pairings of the walk. The next step is to generate all the outer
exit point pairings based on the number of exit points. Then we compute the local
Reeb space signature graphs for each outer point pairing. Finally we reduce the local
Reeb space signature graphs based on rotational, mirror and permutation symmetry.

9.2 Results

Finally we present a classification of Reeb space neighbourhoods for low degree meshes
as a proof of concept to illustrate how our method differs from previous ones. This
section discusses our findings for meshes with maximum edge and vertex degree six.
By vertex degree we mean the number of adjacent edges and by edge degree we mean

121

9.2 Results

number of adjacent tetrahedra. We use the algorithms we described in Chapter 8.2
and implemented in Section 9.1 to generate all possible Reeb space neighbourhoods
and then reduce them by mirror and relabeling symmetry (see Subsection 8.2.5) to a
unique set.

First we will discuss our findings for the Reeb space neighbourhood of a single
edge. We categorise the cases into those that can be realised in orientable meshes and
those that cannot - orientable and non-orientable. Then we describe the Reeb space
neighbourhoods of two intersecting edges and finally for vertices. We categorise those
as orientable or not based on the types of edges they contain.

9.2.1 One Edge Neighborhoods

We first show the results for the Reeb space neighbourhoods of a single edge in Figure
9.3. The table shows the transition of the fibers as we cross a Jacobi edge as well
as the resulting Reeb space. Recall that the fiber above the edge transitions to the
singular fiber at the edge and then to the regular fiber below the edge. At the bottom
of the table we have shown the Reeb space neighbourhood. Only the first column of
the orientable cases has been previously described in the PL literature Edelsbrunner
et al. (2008c).

In Figure 9.3 not all Reeb spaces are unique. For example there are two ways
we can obtain the Reeb space where one sheet splits off into two sheets (the first
and last column). However in the first column this happens for an orientable mesh
and an indefinite edge of type two and in the last column this cannot happen in an
orientable mesh for an indefinite edge of type three. We see that knowing about the
orientability and the edge degree of edges in the mesh tell us about the realisable Reeb
space neighbourhoods. Considering only orientable meshes reduces reduces the number
of cases we need to consider.

122

9.2 Results

Above
edge

Orientable Cases

At edge

Below
edge

Local
Reeb Space

Non-orientable Cases

Figure 9.3: All possible Reeb space neighbourhoods for a single edge of degree up to

six (up to six adjacent tetrahedra in the mesh). We compute the Reeb space by taking

three fibers - one at the Jacobi edge (at edge) and two on either side of the Jacobi

edge (above and below edge). The number of sheets in the Reeb space corresponds

to the number of connected components in each of the three fibers. We have split

the classification into orientable - those that can only be realised in orientable meshes,

and non-orientable - those that can be realised in non-orientable meshes as well. To

recognize the orientable cases we place any orientation on the regular fiber in the above

case and see if the orientation remains consistent after passing through the singular fiber

into the below case Levine (1988). Follow the arrows on the fiber (the orientation) for

non-orientable fibers to see that it is is no longer consistent. The cases where more

than two fibers meet at a Jacobi edge as well as the non-orientable cases have not been

described in the literature previously.

Another observation we can make is about the cases where a single sheet remains a
single sheet as we cross the edge. For indefinite edges of type two this cannot happen
in orientable meshes, but for indefinite edges of type three this can happen in both
orientable and non-orientable meshes. This highlights the value of grouping the cases
by dihedral symmetry, otherwise we would not have discovered this behaviour.

123

9.2 Results

5 3 1 3

3 1 3 1

4 4 2 2

3 3 3 1

4 2 2 2

3 3 1 2

3 3 3 3

3 1 1 1

2 2 2 2 a)

3 3 1 1a)

2 2 2 2 b)

3 3 2 2

3 2 1 1

3 1 2 1

3 2 1 2 3 2 2 2

2 2 1 1 a)

4 2 1 2

3 3 1 2

2 1 1 1 2 1 2 1

3 2 2 2

2 2 1 1 b)

4 3 1 2

2 2 2 1 a) 2 2 2 1 b)

3 3 1 1 b)

2 2 2 2 c)

Orientable Non-Orientable

Figure 9.4: The possible Reeb space neighbourhoods for when the images of two in-

definite Jacobi edges of type three intersect in the range. In this work we extend the

indefinite edge type to indefinite edge of type n where n ∈ {2, 3, . . . ,∞}. An indefinite

Jacobi edge of type n is when n fiber component merge/split apart at that edge (much

like saddles in the scalar case). Previous work which had identified two cases for edge

intersection for orientable cases under strict conditions on the PL mapping. When we

relax the condition of the PL map to be more practical for data analysis we get a much

more varied number of cases. The ID of each case lists the number of fiber components

in each quadrant.

9.2.2 Two Edges Neighborhoods

When the images of two indefinite edges intersect in the range there are several possible
cases. It could be either two indefinite edges of type two, two indefinite edges of type
three or one of each type. In Figure 9.4 we have shown all the possible configurations
for when the images of two indefinite edges of type three intersect.

We note that the Reeb space neighbourhoods in Figure 9.4 also include the other
two cases of indefinite edges of type two and three intersecting. The only difference
is whether some cases are orientable or not. This is because when one of the edges
is indefinite edge of type two we can have the 2 − 1 transition of fiber components.

124

9.2 Results

The 2− 1 case (see Figure 9.3) is orientable for indefinite edges of type two, but non-
orientable for indefinite edges of type three. Likewise for the edges of type 1− 1 as we
discussed in the previous subsection.

(0, 2)

(0, 2, 0, 2)

(0, 2, 2, 0) (2, 2, 2, 2) b

(0, 0, 2, 0) (0, 0, 2, 2, 0, 0)

(2, 2, 2, 2) a (2, 2, 0, 2) a

(2, 2, 0, 2) b

(2, 2, 2, 2) c (2, 2, 2, 2) d

Figure 9.5: All realisable Reeb space neighbourhoods for a generic piecewise linear

mapping (See Definition 6.1) over a closed piecewise linear 3-manifold with maximum

vertex degree six. All cases are labeled with the Jacobi edge type of all incident edges

in a clockwise order. In this notation 0 stands for a definite edge (extrema, a curve

appears or disappears) and 2 for an indefinite edge of type two (saddle, two fiber com-

ponents meet at that edge). Only the first two cases in the first row have been described

for vertex neighbourhoods in the PL case in previous literature. Note that the next two

cases (2, 2, 2, 2) a) and (2, 2, 2, 2) b) have been described, but only for the neighbour-

hoods of the intersection of two edges in the range, not for vertex neighbourhoods. All

cases are orientable besides (2, 2, 2, 2) c) and (2, 2, 2, 2) d) because they include a 1− 1

transition which is not realisable in orientable meshes for indefinite edges of type two.

9.2.3 Vertex Neighborhoods

The results for Reeb space vertex neighbourhoods are shown in Figure 9.5. We note that
while there are two topologically different triangulation of the sphere on six vertices,
but that both generate the same Reeb space neighbourhoods. In the top row we have
shown the cases that have appeared previously in the PL literature Edelsbrunner et al.
(2008c).

125

9.2 Results

The IDs of the cases list the Jacobi types of the edges adjacent to the vertex. We
use 0 for definite edges and 2 for indefinite edges of type two. Previous we identified
cases by the number of fiber components, but it’s more indicative to list the Jacobi
edge types for vertices. This is because various types of Jacobi edges can meet at a
vertex and that determines the Jacobi type of the vertex.

Traditionally in the literature Saeki (2017) the case where an indefinite and definite
edge meet is called a cusp. In our notation this would be the (0, 2) case in Figure 9.5.
However with our method we can have many combinations of edge types meeting at a
vertex and we obtain case such as (0, 2, 0, 2) or (0, 0, 2, 0). Hence with our definition of
generic the term cusp isn’t as indicative and it isn’t clear whether it should be used or
generalised.

We note that that cases (2, 2, 2, 2) a)-d) also appear as Reeb space neighbourhoods
for the intersections two edges. Intuitively this makes sense since (2, 2, 2, 2) is like an
intersection of two indefinite edges of type two. However with the vertex case those
edges are all adjacent and the vertex star has only six exit points. By contrast the edge
case has eight exit points and the two edges are not adjacent in the mesh.

126

Part V

Conclusions and Future Work

127

Chapter 10

Conclusions

This thesis has made three contributions to the field of topological data analysis for
scientific visualisation. These contributions range from algorithmic, in improving the
scalability of algorithms for computing scalar topological data structures; to applied,
in developing tools and techniques to visualise bivariate and scalar data; to theoretical,
in developing the mathematics behind bivariate topological data structures.

10.1 Hypersweeps

The first contribution of this thesis is the implementation scalable techniques to utilise
the contour tree in data-parallel on a single computer. These techniques include com-
puting geometric measures, simplification, branch decomposition and single contour
extraction. Previous work had only focused on parallelising contour tree computation,
but not these secondary operations. This limited the applicability of the contour tree
for real world data analysis.

To enable our scalable solution, we introduced the hypersweep - a data-parallel
method for computing properties in contour trees, based on parallel tree contraction.
We implemented the hypersweep in the open source VTK-m library and used it to
develop an in situ visualisation pipeline using the Cinema database. We achieved a
speedup on up to 7x against serial code on data sets of up to one billion elements.

10.2 Convective Clouds

The second major contribution is the development of a visualisation application to
assist atmospheric scientists in understanding convective cloud triggering in the Earth’s
atmosphere. The novelty of this application is in updating link and brush techniques
by combining scalar and bivariate visualisation tools. We decompose features based on
the intersection of the volume contained in a fiber surface and the super-level set of an
isosurface with a novel technique we called Cartesian Fiber Surfaces.

128

10.3 Reeb Spaces

The tool we developed has been used extensively by a domain scientist from the
School of Earth of Environment at the University of Leeds and it is now a standard
part of their workflow. Up until then the workflow of the scientist involved analysing
their features of interest using multiple two-dimensional non-interactive plots. Our tool
not only speeds up the scientist’s workflow but it also allowed them for the first time to
see their features authentically, in three dimensiosn. In addition to this, the use of the
tool has lead to findings about areas of the environment which encourage and inhibit
cloud formation and about the internal structure of cloud triggering features.

10.3 Reeb Spaces

The third and final major contribution is the introduction of algorithms for generating
and classifying the local structure of the higher dimensional generalisation of the con-
tour tree called the Reeb space. Describing that structure is important in developing
more efficient algorithms for computing and utilising the Reeb space. Previous methods
either do not describe the possible Reeb space structure explicitly or describe it for a
limited type input data. Our method relaxes the assumptions about the type of input
data to be more in line with practical data analysis considerations.

To describe the local structure of Reeb spaces we developed combinatorial algo-
rithms that exhaust all possible configurations, while considering geometric symmetry.
In addition to the previously considered in the literature Jacobi edges we introduced
Jacobi vertices as meeting points of multiple Jacobi edges. We showed that we can gen-
erate all types of Jacobi edges and vertices and presented a classification algorithm for
meshes with bounded edge and vertex degree. Finally, we presented a full classification
for meshes with maximum vertex and edge degree six.

129

Chapter 11

Future Work

In this chapter we will describe over ideas for future work for the three topics of this
thesis. We will go over some of the main limitations and how they can be addressed.

11.1 Hypersweeps

The main limitation of the work on parallelising the secondary contour tree operations
is that it only scales on a single computer. This becomes an issue because many
data sets nowadays are approaching petascale and exascale sizes, where they cannot
be stored on a single node in a computing cluster. Since the hypersweep is designed
with shared memory parallelism in mind it would be difficult to apply to those data
sets directly. One major direction of future work will be to work a distributed version
of the hypersweep based on the already existing distributed contour tree computation
Carr et al. (2021a).

The second major research direction would be to adapt the hypersweep to compute
the full suite of geometric and statistical measures as described in Carr et al. (2010c).
Those include volume, persistence, surfaces, integrated function value (hypervolume),
mean value and variance. Furthermore, if it is not feasible to compute persistence as
originally described in Pascucci et al. (2004a) and Carr et al. (2010c), then we would
like to perform an extensive evaluation on our proposed height measure. Identifying
the differences between the two and outlining general guidelines about which metric to
use is vital for practical contour tree data analysis.

11.2 Convective Clouds

In our work with atmosphere scientists on understanding structures in the atmosphere
that trigger convective cloud formation we could not describe the scientist’s workflow in
enough detail. This is important in evaluating the software tool we have developed and
determining what next steps to take in improving it. We aim to describe the scientists’

130

11.3 Reeb Space Neighbourhoods

workflow before and after introducing the tool and documenting how and why the tool
improves that.

Additionally, using the tool we only studied a single cloud triggering feature in
isolation. The next step in this line or work is to extend the software tool we have
developed to study multiple features over time. This would be greatly aided by tools
that compare topological structures of the scalar and the bivariate field. Those tools
rely on the further development of higher dimensional topological data structures such
as the Reeb Space in order to identify and track features defined in more than one
scalar field.

11.3 Reeb Space Neighbourhoods

A practical extension to our work on describing Reeb space neighbourhoods would be
to describe those for meshes with a boundary. First, this would involve describing
fiber behaviour of the neighbourhoods of vertices and edges in the input mesh where
those vertices and edges are part of the boundary of the mesh. This can be done with
the same method we have described, as long as we enumerate all types of boundary
edge and vertex neighbourhoods. Secondly, this would involve extending local fibers to
global fibers by pairing exit points with boundary points. An example of such global
pair would be {(1, B), (2, 3), (4, 5), (6, B)} where B means that the fiber intersects the
boundary.

Another extension would be to describe the Reeb space neighbourhoods of meshes
which are not tetrahedral. This work was outside of the scope of this thesis because
the fiber behaviour in meshes with hexahedral cells Klacansky et al. (2017b) becomes
increasingly complex. Under a trilinear interpolant fibers are the intersection of two
isosurfaces which are hyperbolic sheets. This further increases the complexity of our
approach because we also have to combinatorially describe the behaviour of fibers
withing each individual cell.

The major limitation of our approach is that it relies on the combinatorial enumer-
ation of all possible neighbourhoods in the range and in the domain to generate all
possible Reeb spaces. As we have seen the number of possible neighbourhoods is much
larger than the resulting number of possible Reeb spaces. We would like to investigate
a way of deriving the possible Reeb spaces directly in a more efficient way. This would
involve describing a pattern that relates the possible Reeb spaces to the mesh vertex
and edge degree. A first step in doing so would be go generate Reeb space neighbour-
hoods of higher degree meshes, work out some relations by hand and then attempt to
prove a generalisation of those.

Furthermore, we would like to investigate the question of how our combinatorial
description of Reeb space neighbourhoods can be used towards to Reeb space compu-
tation algorithm. The first step in contour tree computation is to apply simulation of
simplicity to differentiate vertices with equal function value by giving them a unique
integer index. The algorithm then proceeds using the index of each vertex and is en-
tirely combinatorial. For a bivariate case we cannot directly sort all vertices by function

131

11.3 Reeb Space Neighbourhoods

value, but we can use the dihedral top permutation of each vertex to disambiguate the
order of all vertices. Our next step would be determine how to extend the local ar-
rangement of vertices and how their DTPs can be extended to a global arrangement to
enable more efficient combinatorial algorithms.

Figure 11.1: A diagram of how we can use the enumeration of Reeb graph neighbour-

hood to perform local sheet simplification. When a sheet is remove the diagram shows

us which other local case we transition to. When there is no such case, removing that

is not permitted.

Finally, our work also lays the foundation for developing combinatorial algorithms
for Reeb space and simplification. In fact the tables we presented in the results section
(see Chapter 9.2) can be used for reference for Reeb Space simplification. We can only
simplify (or remove a sheet) from a local Reeb space neighbourhood if that sheet leaves
us in another case that is in the table. Otherwise that simplification operation should
be prohibited, because such a Reeb space neighbourhood is not realisable. We give an
example of how such local simplification can be applied in Figure 11.1.

132

References

(2020). The Topology TooKit. https://topology-tool-kit.github.io/, accessed:
2020-12-04. 75

Acharya, A. & Natarajan, V. (2015). A parallel and memory efficient algorithm
for constructing the contour tree. In 2015 IEEE Pacific Visualization Symposium
(PacificVis), 271–278. 24

Agarwal, P.K., Edelsbrunner, H., Harer, J. & Wang, Y. (2006). Extreme
elevation on a 2-manifold. Discrete & Computational Geometry , 36, 553–572. 25

Ahrens, J., Jourdain, S., O’Leary, P., Patchett, J., Rogers, D.H. & Pe-
tersen, M. (2014). An Image-Based Approach to Extreme Scale in Situ Visualiza-
tion and Analysis. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, 424–434. 46

Artamonova, I.V., Alekseev, V.V. & Makarenko, N.G. (2017). Gradient mea-
sure and jacobi sets for estimation of interrelationship between geophysical multi-
fields. Journal of Physics: Conference Series, 798, 012040. 31

Attali, D., Glisse, M., Hornus, S., Lazarus, F. & Morozov, D. (2009).
Persistence-sensitive simplification of functions on surfaces in linear time. Presented
at TOPOINVIS , 9, 23–24. 25

Attene, M., Biasotti, S., Mortara, M., Patanè, G., Spagnuolo, M. & Falci-
dieno, B. (2006). Computational methods for understanding 3d shapes. Computers
& Graphics, 30, 323 – 333. 21

Ayachit, U. (2015). The ParaView Guide: A Parallel Visualization Application. Kit-
ware, Inc., USA. 39

Bachthaler, S. & Weiskopf, D. (2008a). Continuous scatterplots. IEEE Transac-
tions on Visualization and Computer Graphics, 14, 1428–1435. 29

Bachthaler, S. & Weiskopf, D. (2008b). Continuous Scatterplots. IEEE Transac-
tions on Visualization and Computer Graphics, 14, 1428–1435. 76

133

https://topology-tool-kit.github.io/

REFERENCES

Bajaj, C.L., Pascucci, V. & Schikore, D.R. (1997). The contour spectrum. In
Proceedings. Visualization ’97 (Cat. No. 97CB36155), 167–173. 21

Basu, S., Cox, N. & Percival, S. (2018). On the reeb spaces of definable maps.
ArXiv e-prints. 31

Bauer, U., Lange, C. & Wardetzky, M. (2012). Optimal topological simplification
of discrete functions on surfaces. Discrete & Computational Geometry , 47, 347–377.
25

Bennett, J., Pascucci, V. & Joy, K. (2007). Genus oblivious cross parameteriza-
tion: Robust topological management of inter-surface maps. In 15th Pacific Confer-
ence on Computer Graphics and Applications (PG’07), 238–247. 31

Bhatia, H., Wang, B., Norgard, G., Pascucci, V. & Bremer, P.T. (2015).
Local, smooth, and consistent jacobi set simplification. Computational Geometry ,
48, 311 – 332. 30, 31, 36

Biasotti, S., Falcidieno, B. & Spagnuolo, M. (2000). Extended reeb graphs for
surface understanding and description. In G. Borgefors, I. Nyström & G.S. di Baja,
eds., Discrete Geometry for Computer Imagery , 185–197, Springer Berlin Heidelberg,
Berlin, Heidelberg. 21

Biedert, T. & Garth, C. (2015). Contour Tree Depth Images For Large Data Visu-
alization. In C. Dachsbacher & P. Navrátil, eds., Eurographics Symposium on Parallel
Graphics and Visualization, The Eurographics Association. 53

Bowen, R. & Fisk, S. (1967). Generation of triangulations of the sphere.Mathematics
of Computation, 21, 250–252. 116

Bremer, P.., Hamann, B., Edelsbrunner, H. & Pascucci, V. (2004). A topo-
logical hierarchy for functions on triangulated surfaces. IEEE Transactions on Visu-
alization and Computer Graphics, 10, 385–396. 25

Bremer, P., Bringa, E., Duchaineau, M., Gyulassy, A., Laney, D., Mas-
carenhas, A. & Pascucci, V. (2007). Topological feature extraction and tracking.
In Journal of Physics: Conference Series, vol. 78, 012007, IOP Publishing. 31, 36,
38

Bremer, P., Weber, G., Tierny, J., Pascucci, V., Day, M. & Bell, J. (2011).
Interactive exploration and analysis of large-scale simulations using topology-based
data segmentation. IEEE Transactions on Visualization and Computer Graphics,
17, 1307–1324. 37

Burlet, O. (1974). Sur certaines applications génériques d’une variété close à 3 di-
mensions dans le plan. Enseign. Math., 20, 275–292. 31

134

REFERENCES

Carlsson, G. & Zomorodian, A. (2009). The theory of multidimensional persis-
tence. Discrete & Computational Geometry , 42, 71–93. 21

Carlsson, G., Danciger, J. & Morton, J. (2009a). Mapping geometry in heart
rate data. 34

Carlsson, G., Singh, G. & Zomorodian, A. (2009b). Computing multidimensional
persistence. In Y. Dong, D.Z. Du & O. Ibarra, eds., Algorithms and Computation,
730–739, Springer Berlin Heidelberg, Berlin, Heidelberg. 21

Carr, H. & Duke, D. (2014). Joint contour nets. IEEE Transactions on Visualization
and Computer Graphics, 20, 1100–1113. 34

Carr, H., Snoeyink, J. & Axen, U. (2000). Computing contour trees in all dimen-
sions. Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms,
918–926. 22

Carr, H., Moller, T. & Snoeyink, J. (2001). Simplicial subdivisions and sampling
artifacts. In Proceedings Visualization, 2001. VIS ’01., 99–547. 19

Carr, H., Snoeyink, J. & Axen, U. (2003). Computing Contour Trees in All Di-
mensions. Computational Geometry: Theory and Applications, 24, 75–94. 23, 24,
75

Carr, H., Snoeyink, J. & van de Panne, M. (2010a). Flexible isosurfaces: Simpli-
fying and displaying scalar topology using the contour tree. Computational Geometry ,
43, 42 – 58, special Issue on the 14th Annual Fall Workshop. 25, 37

Carr, H., Snoeyink, J. & van de Panne, M. (2010b). Flexible Isosurfaces: Sim-
plifying and Displaying Scalar Topology Using the Contour Tree. Computational
Geometry: Theory and Applications, 43, 42–58. 43, 44, 46, 50

Carr, H., Snoeyink, J. & Van De Panne, M. (2010c). Flexible isosurfaces: Simpli-
fying and displaying scalar topology using the contour tree. Computational Geometry ,
43, 42–58. 130

Carr, H., Geng, Z., Tierny, J., Chattopadhyay, A. & Knoll, A. (2015). Fiber
surfaces: Generalizing isosurfaces to bivariate data. Computer Graphics Forum, 34,
241–250. 27, 29

Carr, H., Weber, G.H., Sewell, C. & Ahrens, J. (2016). Parallel Peak Pruning
for Scalable SMP Contour Tree Computation. In 6th IEEE Symposium on Large
Data Analysis and Visualization (LDAV), 75–84. 45

Carr, H., Weber, G.H., Sewell, C., Rübel, O., Fasel, P. & Ahrens, J.
(2019). Scalable Contour Tree Computation by Data Parallel Peak Pruning. IEEE
Transactions on Visualization and Computer Graphics, 1–1. 11, 41, 45, 52, 54, 57

135

REFERENCES

Carr, H., Rübel, O. & Weber, G.H. (2021a). Distributed Hierarchical Contour
Trees. In 12thth IEEE Symposium on Large Data Analysis and Visualization (LDAV).
130

Carr, H., Rubel, O., Weber, G.H. & Ahrens, J. (2021b). Optimization and
augmentation for data parallel contour trees. IEEE transactions on visualization and
computer graphics. 41, 42, 48, 52, 55, 57

Carr, H.A., Weber, G.H., Sewell, C.M. & Ahrens, J.P. (2016). Parallel peak
pruning for scalable SMP contour tree computation. In 2016 IEEE 6th Symposium
on Large Data Analysis and Visualization (LDAV), 75–84. 23, 24

Carrière, M. & Oudot, S. (2017). Structure and stability of the one-dimensional
mapper. Foundations of Computational Mathematics. 33

Carrière, M., Michel, B. & Oudot, S. (2018). Statistical analysis and parameter
selection for mapper. Journal of Machine Learning Research, 19, 1–39. 33

Cazals, F., Chazal, F. & Lewiner, T. (2003). Molecular shape analysis based upon
the morse-smale complex and the connolly function. In Proceedings of the Nineteenth
Annual Symposium on Computational Geometry , SCG ’03, 351–360, ACM, New
York, NY, USA. 20

Cerri, A. & Landi, C. (2013). The persistence space in multidimensional persistent
homology. In R. Gonzalez-Diaz, M.J. Jimenez & B. Medrano, eds., Discrete Geometry
for Computer Imagery , 180–191, Springer Berlin Heidelberg, Berlin, Heidelberg. 21

Chattopadhyay, A., Carr, H., Duke, D. & Geng, Z. (2014). Extracting jacobi
structures in reeb spaces. Eurographics Conference on Visualization (EuroVis). 32

Chattopadhyay, A., Carr, H., Duke, D., Geng, Z. & Saeki, O. (2016). Multi-
variate topology simplification. Computational Geometry , 58, 1 – 24. 37

Cohen-Steiner, D., Edelsbrunner, H. & Morozov, D. (2006). Vines and vine-
yards by updating persistence in linear time. In Proceedings of the twenty-second
annual symposium on Computational geometry , 119–126, ACM. 38

Cohen-Steiner, D., Edelsbrunner, H. & Harer, J. (2007). Stability of persis-
tence diagrams. Discrete & Computational Geometry , 37, 103–120. 33

Cole-McLaughlin, K., Edelsbrunner, H., Harer, J., Natarajan, V. & Pas-
cucci, V. (2004). Loops in reeb graphs of 2-manifolds. Discrete & Computational
Geometry , 32, 231–244. 21

Coudriau, M., Lahmadi, A. & François, J. (2016). Topological analysis and visual-
isation of network monitoring data: Darknet case study. In 2016 IEEE International
Workshop on Information Forensics and Security (WIFS), 1–6. 34

136

REFERENCES

Couvreux, F., Hourdin, F. & Rio, C. (2010). Resolved Versus Parametrized
Boundary-Layer Plumes. Part I: A Parametrization-Oriented Conditional Sampling
in Large-Eddy Simulations. Boundary-Layer Meteorology , 134. 63, 67

Danovaro, E., Floriani, L.D. & Vitali, M. (2007). Multi-resolution morse-smale
complexes for terrain modeling. In 14th International Conference on Image Analysis
and Processing (ICIAP 2007), 337–342. 20

De Cecco, L., Nicolau, M., Giannoccaro, M., Daidone, M.G., Bossi, P., Lo-
cati, L., Licitra, L. & Canevari, S. (2015). Head and neck cancer subtypes with
biological and clinical relevance: Meta-analysis of gene-expression data. Oncotarget ,
6, 9627–9642. 34

Delfinado, C.J.A. & Edelsbrunner, H. (1995). An incremental algorithm for betti
numbers of simplicial complexes on the 3-sphere. Computer Aided Geometric Design,
12, 771 – 784, grid Generation, Finite Elements, and Geometric Design. 30

Denby, L., Böing, S., Parker, D. & Tobias, S. (2019). The effect of ambient
shear on coherent boundary layer structures. Journal of Atmospheric Sciences, To
appear. 67

Denby, L., Böing, S.J., Parker, D.J., Ross, A.N. & Tobias, S.M. (2022).
Characterising the shape, size, and orientation of cloud-feeding coherent boundary-
layer structures.Quarterly Journal of the Royal Meteorological Society , 148, 499–519.
12, 66

Dey, T.K., Mémoli, F. & Wang, Y. (2015). Mutiscale mapper: A framework for
topological summarization of data and maps. CoRR, abs/1504.03763. 33

Dey, T.K., Memoli, F. & Wang, Y. (2017). Topological analysis of nerves, reeb
spaces, mappers, and multiscale mappers. ArXiv e-prints. 34

Doraiswamy, H. & Natarajan, V. (2009). Efficient algorithms for computing reeb
graphs. Computational Geometry , 42, 606–616. 22

Doraiswamy, H. & Natarajan, V. (2012). Output-sensitive construction of reeb
graphs. IEEE Transactions on Visualization and Computer Graphics, 18, 146–159.
22

Doraiswamy, H. & Natarajan, V. (2013). Computing reeb graphs as a union of
contour trees. IEEE Transactions on Visualization and Computer Graphics, 19, 249–
262. 22

Doraiswamy, H., Natarajan, V. & Nanjundiah, R.S. (2013). An exploration
framework to identify and track movement of cloud systems. IEEE Transactions on
Visualization and Computer Graphics, 19, 2896–2905. 39

137

REFERENCES

Duke, D.J., Carr, H.A., Knoll, A., Schunck, N., Nam, H.A. & Staszczak,
A. (2012). Visualizing nuclear scission through a multifield extension of topological
analysis. IEEE Trans. Vis. Comput. Graph., 18, 2033–2040. 34

Edelsbrunner, Harer & Zomorodian (2003a). Hierarchical morse—smale com-
plexes for piecewise linear 2-manifolds. Discrete & Computational Geometry , 30,
87–107. 20

Edelsbrunner, H. & Harer, J. (2002a). Jacobi sets of multiple morse functions.
Foundations of Computational Mathematics, Minneapolis, 37–57. 29, 30

Edelsbrunner, H. & Harer, J. (2002b). Jacobi sets of multiple Morse functions.
Foundations of Computational Mathematics, Minneapolis, 37–57, publisher: Cam-
bridge Univ. Press. 84, 85, 87, 90, 92

Edelsbrunner, H. & Harer, J. (2008). Persistent homology-a survey. Contemporary
mathematics, 453, 257–282. 19

Edelsbrunner, H. & Harer, J. (2010). Computational topology: an introduction.
American Mathematical Soc. 87

Edelsbrunner, H. & Harer, J.L. (2022). Computational topology: an introduction.
American Mathematical Society. 15

Edelsbrunner, H. & Mücke, E.P. (1990). Simulation of Simplicity: A Technique
to Cope with Degenerate Cases in Geometric Algorithms. ACM Transactions on
Graphics, 9, 66–104. 87

Edelsbrunner, H. & Parsa, S. (2014). On the computational complexity of betti
numbers: Reductions from matrix rank. In Proceedings of the Twenty-fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’14, 152–160, Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA. 20

Edelsbrunner, H., Letscher, D. & Zomorodian, A. (2000). Topological Persis-
tence and Simplification. In Proceedings 41st Annual Symposium on Foundations of
Computer Science, 454–463. 43

Edelsbrunner, H., Harer, J., Natarajan, V. & Pascucci, V. (2003b). Morse-
smale complexes for piecewise linear 3-manifolds. In Proceedings of the Nineteenth
Annual Symposium on Computational Geometry , SCG ’03, 361–370, ACM, New
York, NY, USA. 20

Edelsbrunner, H., Harer, J., Mascarenhas, A. & Pascucci, V. (2004a). Time-
varying reeb graphs for continuous space-time data. In Proceedings of the Twentieth
Annual Symposium on Computational Geometry , SCG ’04, 366–372, ACM, New
York, NY, USA. 38

138

REFERENCES

Edelsbrunner, H., Harer, J., Natarajan, V. & Pascucci, V. (2004b). Local
and global comparison of continuous functions. In Proceedings of the Conference on
Visualization ’04 , VIS ’04, 275–280, IEEE Computer Society, Washington, DC, USA.
36

Edelsbrunner, H., Morozov, D. & Pascucci, V. (2006). Persistence-sensitive
simplification functions on 2-manifolds. In Proceedings of the Twenty-second Annual
Symposium on Computational Geometry , SCG ’06, 127–134, ACM, New York, NY,
USA. 25

Edelsbrunner, H., Harer, J., Mascarenhas, A., Pascucci, V. & Snoeyink,
J. (2008a). Time-varying reeb graphs for continuous space–time data. Computational
Geometry , 41, 149 – 166. 38

Edelsbrunner, H., Harer, J. & Patel, A.K. (2008b). Reeb spaces of piecewise
linear mappings. In Proceedings of the Twenty-fourth Annual Symposium on Com-
putational Geometry , SCG ’08, 242–250, ACM, New York, NY, USA. 30, 31

Edelsbrunner, H., Harer, J. & Patel, A.K. (2008c). Reeb Spaces of Piecewise
Linear Mappings. In Proceedings of the Twenty-fourth Annual Symposium on Com-
putational Geometry , SCG ’08, 242–250, ACM, New York, NY, USA, event-place:
College Park, MD, USA. 84, 85, 86, 87, 88, 122, 125

Emeristo. Mata-Lorenzo, L. (1986). The stein factorization for stable maps and
pi-stable arcs of maps from 3-manifolds into the plane. 31

Eppstein, D. (1994). Offline algorithms for dynamic minimum spanning tree problems.
J. Algorithms, 17, 237–250. 23

Frattini, V., Pagnotta, S.M., Tala, Fan, J.J., Russo, M.V., Lee, S.B.,
Garofano, L., Zhang, J., Shi, P., Lewis, G., Sanson, H., Frederick, V.,
Castano, A.M., Cerulo, L., Rolland, D.C.M., Mall, R., Mokhtari, K.,
Elenitoba-Johnson, K.S.J., Sanson, M., Huang, X., Ceccarelli, M., La-
sorella, A. & Iavarone, A. (2018). A metabolic function of fgfr3-tacc3 gene
fusions in cancer. Nature, 553, 222. 34

Gibbons, J., Cai, W. & Skillicorn, D.B. (1994). Efficient Parallel Algorithms for
Tree Accumulations. Science of Computer Programming , 23, 1 – 18. 44

Gosink, L., Anderson, J., Bethel, W. & Joy, K. (2007). Variable interactions
in query-driven visualization. IEEE Transactions on Visualization and Computer
Graphics, 13, 1400–1407. 27

Griffith, E.J., Post, F.H., Koutek, M., Heus, T. & Jonker, H.J.J. (2005).
Feature tracking in vr for cumulus cloud life-cycle studies. In Proceedings of the 11th
Eurographics Conference on Virtual Environments, EGVE’05, 121–128, Eurograph-
ics Association, Aire-la-Ville, Switzerland, Switzerland. 39

139

REFERENCES

Gueunet, C., Fortin, P., Jomier, J. & Tierny, J. (2016). Contour Forests: Fast
Multi-threaded Augmented Contour Trees. In IEEE Symposium on Large Data Anal-
ysis and Visualization, Baltimore, United States. 24

Gueunet, C., Fortin, P., Jomier, J. & Tierny, J. (2017). Task-based Augmented
Merge Trees with Fibonacci Heaps. In 2017 IEEE 7th Symposium on Large Data
Analysis and Visualization (LDAV), 6–15. 24

Gyulassy, A. & Natarajan, V. (2005). Topology-based simplification for feature
extraction from 3d scalar fields. In VIS 05. IEEE Visualization, 2005., 535–542. 25

Gyulassy, A., Natarajan, V., Pascucci, V. & Hamann, B. (2007). Efficient
computation of morse-smale complexes for three-dimensional scalar functions. IEEE
Transactions on Visualization and Computer Graphics, 13, 1440–1447. 20

Gyulassy, A., Bremer, P., Hamann, B. & Pascucci, V. (2008). A practical
approach to morse-smale complex computation: Scalability and generality. IEEE
Transactions on Visualization and Computer Graphics, 14, 1619–1626. 20

Günther, D., Jacobson, A., Reininghaus, J., Seidel, H., Sorkine-Hornung,
O. & Weinkauf, T. (2014). Fast and memory-efficienty topological denoising of 2d
and 3d scalar fields. IEEE Transactions on Visualization and Computer Graphics,
20, 2585–2594. 25

Hajij, M., Assiri, B. & Rosen, P. (2017). Distributed Mapper. ArXiv e-prints. 34

Harvey, W., Wang, Y. & Wenger, R. (2010). A randomized o(m log m) time
algorithm for computing reeb graphs of arbitrary simplicial complexes. In Proceedings
of the Twenty-sixth Annual Symposium on Computational Geometry , SoCG ’10, 267–
276, ACM, New York, NY, USA. 23

Heine, C., Leitte, H., Hlawitschka, M., Iuricich, F., De Floriani, L.,
Scheuermann, G., Hagen, H. & Garth, C. (2016). A survey of topology-based
methods in visualization. Computer Graphics Forum, 35, 643–667. 2

Heus, T., Jonker, H.J.J., Van den Akker, H.E.A., Griffith, E.J., Koutek,
M. & Post, F.H. (2009a). A statistical approach to the life cycle analysis of cumulus
clouds selected in a virtual reality environment. Journal of Geophysical Research:
Atmospheres, 114. 39

Heus, T., Jonker, H.J.J., Van den Akker, H.E.A., Griffith, E.J., Koutek,
M. & Post, F.H. (2009b). A statistical approach to the life cycle analysis of cumulus
clouds selected in a virtual reality environment. Journal of Geophysical Research:
Atmospheres, 114. 39

Hilaga, M., Shinagawa, Y., Kohmura, T. & Kunii, T.L. (2001a). Topology
matching for fully automatic similarity estimation of 3d shapes. In Proceedings of the

140

REFERENCES

28th Annual Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’01, 203–212, ACM, New York, NY, USA. 21

Hilaga, M., Shinagawa, Y., Kohmura, T. & Kunii, T.L. (2001b). Topology
matching for fully automatic similarity estimation of 3d shapes. In Proceedings of the
28th Annual Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’01, 203–212, ACM, New York, NY, USA. 26

Hiratuka, J.T. & Saeki, O. (2013). Triangulating Stein factorizations of generic
maps and Euler characteristic formulas: Dedicated to Professor Masahiko Suzuki on
the occation of his sixtieth birthday (Singularity theory, geometry and topology).
RIMS Kôkyûroku Bessatsu B38 . 84

Hristov, P. (2017). W-Structures in Contour Trees. Ph.D. thesis, School of Comput-
ing, University of Leeds. 25

Hristov, P. & Carr, H. (2019). W-Structures in Contour Trees. In Proc. of
TopoInVis. 11, 24, 42, 43, 48, 60

Huettenberger, L. & Garth, C. (2015). A comparison of pareto sets and jacobi
sets. In J. Bennett, F. Vivodtzev & V. Pascucci, eds., Topological and Statistical
Methods for Complex Data, 125–141, Springer Berlin Heidelberg, Berlin, Heidelberg.
36

Huettenberger, L., Heine, C., Carr, H., Scheuermann, G. & Garth, C.
(2013). Towards multifield scalar topology based on pareto optimality. In Proceedings
of the 15th Eurographics Conference on Visualization, EuroVis ’13, 341–350, The
Eurographs Association., Chichester, UK. 35, 36

Huettenberger, L., Heine, C. & Garth, C. (2014). Decomposition and simpli-
fication of multivariate data using pareto sets. IEEE Transactions on Visualization
and Computer Graphics, 20, 2684–2693. 35

Huettenberger, L., Feige, N., Ebert, A. & Garth, C. (2015). Application of
pareto sets in quality control of series production in car manufacturing. In 2015 IEEE
Pacific Visualization Symposium (PacificVis), 135–139. 36

Huettenberger, L., Heine, C. & Garth, C. (2017a). A comparison of joint contour
nets and pareto sets. In H. Carr, C. Garth & T. Weinkauf, eds., Topological Methods
in Data Analysis and Visualization IV , 51–65, Springer International Publishing,
Cham. 35

Huettenberger, L., Heine, C. & Garth, C. (2017b). A comparison of joint contour
nets and pareto sets. In H. Carr, C. Garth & T. Weinkauf, eds., Topological Methods
in Data Analysis and Visualization IV , 51–65, Springer International Publishing,
Cham. 35

141

REFERENCES

J. Adler, R., Agami, S. & Pranav, P. (2017). Modeling and replicating statis-
tical topology, and evidence for cmb non-homogeneity. Proceedings of the National
Academy of Sciences, 114. 20

Jacobson, A., Weinkauf, T. & Sorkine, O. (2012). Smooth shape-aware functions
with controlled extrema. Computer Graphics Forum, 31, 1577–1586. 25

Jankowai, J. & Hotz, I. (2018a). Feature level-sets: Generalizing iso-surfaces to
multi-variate data. IEEE transactions on visualization and computer graphics. 28,
39

Jankowai, J. & Hotz, I. (2018b). Feature Level-Sets: Generalizing Iso-surfaces to
Multi-variate Data. IEEE Transactions on Visualization and Computer Graphics. 70

Jeitziner, R., Carrière, M., Rougemont, J., Oudot, S., Hess, K. & Brisken,
C. (2018). Two-Tier Mapper: a user-independent clustering method for global gene
expression analysis based on topology. ArXiv e-prints. 33

Kamruzzaman, M., Kalyanaraman, A. & Krishnamoorthy, B. (2018). Detect-
ing divergent subpopulations in phenomics data using interesting flares. In Proceed-
ings of the 2018 ACM International Conference on Bioinformatics, Computational
Biology, and Health Informatics, BCB ’18, 155–164, ACM, New York, NY, USA. 34

Kasten, J., Hotz, I., Noack, B.R. & Hege, H.C. (2012). Vortex merge graphs in
two-dimensional unsteady flow fields. EuroVis-Short Papers, 1–5. 39

Keller, P. & Bertram, M. (2007). Modeling and visualization of time-varying topol-
ogy transitions guided by hyper reeb graph structures. In Proceedings of the Ninth
IASTED International Conference on Computer Graphics and Imaging , CGIM ’07,
15–20, ACTA Press, Anaheim, CA, USA. 38

Khambhati, A.N., Sizemore, A.E., Betzel, R.F. & Bassett, D.S. (2017). Mod-
elling and interpreting network dynamics. bioRxiv . 34

Khambhati, A.N., Sizemore, A.E., Betzel, R.F. & Bassett, D.S. (2018). Mod-
eling and interpreting mesoscale network dynamics. NeuroImage, 180, 337 – 349,
brain Connectivity Dynamics. 34

Klacansky, P., Tierny, J., Carr, H. & Geng, Z. (2017a). Fast and exact fiber
surfaces for tetrahedral meshes. IEEE Transactions on Visualization and Computer
Graphics, 23, 1782–1795. 28

Klacansky, P., Tierny, J., Carr, H. & Geng, Z. (2017b). Fast and Exact Fiber
Surfaces for Tetrahedral Meshes. IEEE Transactions on Visualization and Computer
Graphics, 23, 1782–1795. 131

142

REFERENCES

Kuhn, A., Engelke, W., Flatken, M., Hege, H.C. & Hotz, I. (2017). Topology-
based analysis for multimodal atmospheric data of volcano eruptions. In H. Carr,
C. Garth & T. Weinkauf, eds., Topological Methods in Data Analysis and Visualiza-
tion IV , 35–50, Springer International Publishing, Cham. 39

Landge, A.G., Pascucci, V., Gyulassy, A., Bennett, J.C., Kolla, H., Chen,
J. & Bremer, P. (2014). In-situ feature extraction of large scale combustion sim-
ulations using segmented merge trees. In SC ’14: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
1020–1031. 23

Levine, H. (1988). Stable mappings of 3-manifolds into the plane. 20, 279–289. 17,
84, 86, 123

Levine, H.I. (1966). Mappings of manifolds into the plane. 88, 357–365, publisher:
JSTOR. 84

Liu, X., Xie, Z. & Yi, D. (2012). A fast algorithm for constructing topological
structure in large data. Homology Homotopy Appl., 14, 221–238. 34

Lorensen, W.E. & Cline, H.E. (1987). Marching cubes: A high resolution 3d surface
construction algorithm. SIGGRAPH Comput. Graph., 21, 163–169. 10, 4, 18, 19

Lu, A. & Shen, H. (2008). Interactive storyboard for overall time-varying data visu-
alization. In 2008 IEEE Pacific Visualization Symposium, 143–150. 37

Lukasczyk, J., Weber, G., Maciejewski, R., Garth, C. & Leitte, H. (2017).
Nested tracking graphs. Comput. Graph. Forum, 36, 12–22. 38

Lukasczyk, J., Kinner, E., Ahrens, J., Leitte, H. & Garth, C. (2018).
VOIDGA: A View-Approximation Oriented Image Database Generation Approach.
In 8th IEEE Symposium on Large Data Analysis and Visualization (LDAV), 12–22.
46, 53

Lukasczyk, J., Garth, C., Maciejewski, R. & Tierny, J. (2021). Localized
topological simplification of scalar data. IEEE Transactions on Visualization and
Computer Graphics, 27, 572–582. 25

Luo, C., Safa, I. & Wang, Y. (2009). Approximating gradients for meshes and point
clouds via diffusion metric. Computer Graphics Forum, 28, 1497–1508. 30

Maadasamy, S., Doraiswamy, H. & Natarajan, V. (2012). A hybrid parallel
algorithm for computing and tracking level set topology. In 2012 19th International
Conference on High Performance Computing , 1–10. 24

Manders, E.M.M., Hoebe, R., Strackee, J., Vossepoel, A.M. & Aten, J.A.
(1996). Largest contour segmentation: A tool for the localization of spots in confocal
images. Cytometry , 23, 15–21. 26

143

REFERENCES

Markov, A.A. (1958). Insolubility of the problem of homeomorphy. In Dokl. Akad.
Nauk SSSR, vol. 121, 8. 32

Mascarenhas, A. & Snoeyink, J. (2005). Implementing time-varying contour trees.
In Proceedings of the 21st Annual Symposium on Computational Geometry, SCG’05 ,
370–371. 38

Mascarenhas, A. & Snoeyink, J. (2009). Isocontour based Visualization of Time-
varying Scalar Fields, 41–68. Springer Berlin Heidelberg, Berlin, Heidelberg. 37

Matsumoto, Y. (2002a). An Introductino to Morse Theory , vol. 208 of Translation
of Mathematical Monograms. American Mathematical Society, 1st edn. 12

Matsumoto, Y. (2002b). An introduction to Morse theory , vol. 208. American Math-
ematical Soc. 25

Miettinen, K. (2012). Nonlinear multiobjective optimization, vol. 12. Springer Science
& Business Media. 35

Miller, G.L. & Reif, J.H. (1989). Parallel Tree Contraction Part 1: Fundamen-
tals. In S. Micali, ed., Randomness and Computation, 47–72, JAI Press, Greenwich,
Connecticut, vol. 5. 11, 41, 44, 47

Milnor, J. (2016). Morse Theory.(AM-51), vol. 51. Princeton university press. 12, 20

Moreland, K., Sewell, C., Usher, W., Lo, L.T., Meredith, J., Pugmire,
D., Kress, J., Schroots, H., Ma, K.L., Childs, H., Larsen, M., Chen,
C.M., Maynard, R. & Geveci, B. (2016). VTK-m: Accelerating the Visualiza-
tion Toolkit for Massively Threaded Architectures. IEEE Computer Graphics and
Applications, 36, 48–58. 52, 57

Morozov, D. & Weber, G. (2013). Distributed merge trees. 23

Morozov, D. & Weber, G.H. (2014). Distributed contour trees. In P.T. Bremer,
I. Hotz, V. Pascucci & R. Peikert, eds., Topological Methods in Data Analysis and
Visualization III , 89–102, Springer International Publishing, Cham. 23

Munch, E. & Wang, B. (2015). Convergence between categorical representations of
reeb space and mapper. CoRR, abs/1512.04108. 33

N, S. & Natarajan, V. (2011). Simplification of Jacobi Sets, 91–102. Springer Berlin
Heidelberg, Berlin, Heidelberg. 31, 36

Nagaraj, S., Natarajan, V. & Nanjundiah, R.S. (2011). A gradient-based com-
parison measure for visual analysis of multifield data. Computer Graphics Forum,
30, 1101–1110. 26

Newman, T.S. & Yi, H. (2006). A survey of the marching cubes algorithm. Computers
& Graphics, 30, 854–879. 19

144

REFERENCES

Ni, X., Garland, M. & Hart, J.C. (2004). Fair morse functions for extracting the
topological structure of a surface mesh. ACM Trans. Graph., 23, 613–622. 25

Nicolau, M., Levine, A.J. & Carlsson, G. (2011). Topology based data analysis
identifies a subgroup of breast cancers with a unique mutational profile and excellent
survival. Proceedings of the National Academy of Sciences, 108, 7265–7270. 34

Nielson, J.L., Paquette, J., Liu, A.W., Guandique, C.F., Tovar, C.A., In-
oue, T., Irvine, K.A., Gensel, J.C., Kloke, J., Petrossian, T.C., Lum,
P.Y., Carlsson, G.E., Manley, G.T., Young, W., Beattie, M.S., Bresna-
han, J.C. & Ferguson, A.R. (2015). Topological data analysis for discovery in
preclinical spinal cord injury and traumatic brain injury. Nature Communications,
6, 8581 EP –, article. 34

Norgard, G. & Bremer, P.T. (2013). Ridge–valley graphs: Combinatorial ridge
detection using jacobi sets. Computer Aided Geometric Design, 30, 597 – 608, foun-
dations of Topological Analysis. 31

Norton, A. & Clyne, J. (2012). The vapor visualization application. High Perfor-
mance Visualization, 415–428. 39

Oesterling, P., Heine, C., Weber, G.H., Morozov, D. & Scheuermann, G.
(2017). Computing and visualizing time-varying merge trees for high-dimensional
data. In H. Carr, C. Garth & T. Weinkauf, eds., Topological Methods in Data Analysis
and Visualization IV , 87–101, Springer International Publishing, Cham. 38

O’Leary, P., Ahrens, J., Jourdain, S., Wittenburg, S., Rogers, D.H. &
Petersen, M. (2016). Cinema Image-based in situ Analysis and Visualization of
MPAS-ocean Simulations. Parallel Computing , 55, 43 – 48, visualization and Data
Analytics for Scientific Discovery. 46

Orf, L.G., Semeraro, B.D. & Wilhelmson, R.B. (2007). Vortex detection in a
simulated supercell thunderstorm. Atmospheric Science Letters, 8, 29–35. 39

Parsa, S. (2013). A deterministic o(mlog(m) time algorithm for the reeb graph. Dis-
crete & Computational Geometry , 49, 864–878. 23

Pascucci, V. & Cole-McLaughlin, K. (2004). Parallel computation of the topology
of level sets. Algorithmica, 38, 249–268. 23

Pascucci, V., Cole-McLaughlin, K. & Scorzell, G. (2004a). Multi-Resolution
Computation and Presentation of Contour Trees. In Proceedings of the IASTED
conference on Visualization, Imaging and Image Processing (VIIP 2004), 452–290.
12, 43, 48, 60, 61, 130

Pascucci, V., Cole-McLaughlin, K. & Scorzelli, G. (2004b). Multi-resolution
computation and presentation of contour trees. In Proc. IASTED Conference on
Visualization, Imaging, and Image Processing , 452–290, Citeseer. 25

145

REFERENCES

Pascucci, V., Scorzelli, G., Bremer, P.T. & Mascarenhas, A. (2007). Robust
on-line computation of reeb graphs: Simplicity and speed. ACM Trans. Graph., 26.
22, 26, 37

Phinyomark, A., Petri, G., Ibáñez-Marcelo, E., Osis, S.T. & Ferber, R.
(2018). Analysis of big data in gait biomechanics: Current trends and future direc-
tions. Journal of Medical and Biological Engineering , 38, 244–260. 34

Post, F.H., Vrolijk, B., Hauser, H., Laramee, R.S. & Doleisch, H. (2004).
The state of the art in flow visualisation: Feature extraction and tracking. Computer
Graphics Forum, 22, 775–792. 37, 39

Rautenhaus, M., Böttinger, M., Siemen, S., Hoffman, R., Kirby, R.M.,
Mirzargar, M., Röber, N. & Westermann, R. (2018). Visualization in meteo-
rology—a survey of techniques and tools for data analysis tasks. IEEE Transactions
on Visualization and Computer Graphics, 24, 3268–3296. 39

Reeb, G. (1946). Sur les points singuliers d’une forme de pfaff completement integrable
ou d’une fonction numerique [on the singular points of a completely integrable pfaff
form or of a numerical function]. Comptes Rendus Acad. Sciences Paris, 222, 847–
849. 20

Reimann, M.W., Nolte, M., Scolamiero, M., Turner, K., Perin, R., Chin-
demi, G., D lotko, P., Levi, R., Hess, K. & Markram, H. (2017). Cliques of
neurons bound into cavities provide a missing link between structure and function.
Frontiers in Computational Neuroscience, 11, 48. 20

Reininghaus, J., Kasten, J., Weinkauf, T. & Hotz, I. (2012). Efficient compu-
tation of combinatorial feature flow fields. IEEE Transactions on Visualization and
Computer Graphics, 18, 1563–1573. 38

Rizvi, A.H., Camara, P.G., Kandror, E.K., Roberts, T.J., Schieren, I., Ma-
niatis, T. & Rabadan, R. (2017). Single-cell topological rna-seq analysis reveals
insights into cellular differentiation and development. Nature biotechnology , 35, 551.
34

Robins, V., Wood, P.J. & Sheppard, A.P. (2011). Theory and algorithms for con-
structing discrete morse complexes from grayscale digital images. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 33, 1646–1658. 20

Rosen, P., Tu, J. & Piegl, L.A. (2018). A Hybrid Solution to Parallel Calculation
of Augmented Join Trees of Scalar Fields in any Dimension. Computer-Aided Design
and Applications, 15, 610–618. 24

Rossi, P. (1840). Cours d’économie politique, vol. 1. Société typographique belge. 35

Rourke, C.P. & Sanderson, B. (1972). Introduction to Piecewise-Linear Topology .
Springer-Verlag, Berlin; Heidelberg; New York. 15

146

REFERENCES

Saeki, O. (2004). Topology of singular fibers of differentiable maps. Springer. 14, 84,
85

Saeki, O. (2017). Theory of Singular Fibers and Reeb Spaces for Visualization. In
H. Carr, C. Garth & T. Weinkauf, eds., Topological Methods in Data Analysis and
Visualization IV , 3–33, Springer International Publishing, Cham. 14, 84, 126

Saeki, O. & Yamamoto, T. (2016a). Cobordism group of morse functions on surfaces
with boundary. In XIII International Workshop, Real and Complex Singularities,
Universidade de Sao Paulo; Contemporary Mathematics, vol. 675, 279–297. 84

Saeki, O. & Yamamoto, T. (2016b). Singular fibers of stable maps of 3–manifolds
with boundary into surfaces and their applications. Algebraic & Geometric Topology ,
16, 1379–1402, publisher: Mathematical Sciences Publishers. 84

Saggar, M., Sporns, O., Gonzalez-Castillo, J., Bandettini, P.A., Carls-
son, G., Glover, G. & Reiss, A.L. (2018). Towards a new approach to reveal
dynamical organization of the brain using topological data analysis. Nature Commu-
nications, 9, 1399. 34

Sakurai, D., Saeki, O., Carr, H., Wu, H., Yamamoto, T., Duke, D. & Taka-
hashi, S. (2016). Interactive visualization for singular fibers of functions. IEEE
Transactions on Visualization and Computer Graphics, 22, 945–954. 29, 30

Samtaney, R., Silver, D., Zabusky, N. & Cao, J. (1994). Visualizing features
and tracking their evolution. Computer , 27, 20–27. 37

Sauber, N., Theisel, H. & Seidel, H. (2006). Multifield-graphs: An approach to
visualizing correlations in multifield scalar data. IEEE Transactions on Visualization
and Computer Graphics, 12, 917–924. 27

Schneider, D., Wiebel, A., Carr, H., Hlawitschka, M. & Scheuermann,
G. (2008a). Interactive comparison of scalar fields based on largest contours with
applications to flow visualization. IEEE Transactions on Visualization and Computer
Graphics, 14, 1475–1482. 26

Schneider, D., Wiebel, A., Carr, H., Hlawitschka, M. & Scheuermann, G.
(2008b). Interactive Comparison of Scalar Fields Based on Largest Contours with Ap-
plications to Flow Visualization. IEEE Transactions on Visualization and Computer
Graphics, 14, 1475–1482. 46

Scoville, N.A. (2019). Discrete Morse Theory , vol. 90. American Mathematical Soc.
20

Shinagawa, Y. & Kunii, T.L. (1991). Constructing a reeb graph automatically from
cross sections. IEEE Computer Graphics and Applications, 11, 44–51. 21

147

REFERENCES

Shinagawa, Y., Kunii, T.L. & Kergosien, Y.L. (1991). Surface coding based on
morse theory. IEEE Computer Graphics and Applications, 11, 66–78. 20

Shirley, P. & Tuchman, A. (1990). A polygonal approximation to direct scalar
volume rendering. SIGGRAPH Comput. Graph., 24, 63–70. 19

Singh, G., Memoli, F. & Carlsson, G. (2007). Topological methods for the analysis
of high dimensional data sets and 3d object recognition. In M. Botsch, R. Pajarola,
B. Chen & M. Zwicker, eds., Eurographics Symposium on Point-Based Graphics, The
Eurographics Association. 32

Snyder, D.F. (2004). Topological persistence in jacobi sets. Tech. rep., Technical
report, Technical Report July 29. 36

Sohn, B.. & Bajaj, C. (2006). Time-varying contour topology. IEEE Transactions
on Visualization and Computer Graphics, 12, 14–25. 37

Soler, M., Plainchault, M., Conche, B. & Tierny, J. (2018). Lifted Wasserstein
Matcher for Fast and Robust Topology Tracking. ArXiv e-prints. 38

Sorgente, T., Biasotti, S., Livesu, M. & Spagnuolo, M. (2018). Topology-
driven shape chartification. Computer Aided Geometric Design, 65, 13 – 28. 21

Spivak, M. (2018). Calculus on manifolds: a modern approach to classical theorems
of advanced calculus. CRC press. 9

Steiner, D. & Fischer, A. (2001). Topology recognition of 3d closed freeform objects
based on topological graphs. In Proceedings of the Sixth ACM Symposium on Solid
Modeling and Applications, SMA ’01, 305–306, ACM, New York, NY, USA. 21

Stevens, B., Moeng, C.H. & Sullivan, P.P. (1999). Large-eddy simulations of ra-
diatively driven convection: Sensitivities to the representation of small scales. Journal
of the Atmospheric Sciences, 56, 3963–3984. 78

Strodthoff, B. & Jüttler, B. (2013). Layered reeb graphs of a spatial domain. 26

Strodthoff, B. & Jüttler, B. (2015). Layered reeb graphs for three-dimensional
manifolds in boundary representation. Computers & Graphics, 46, 186 – 197, shape
Modeling International 2014. 26

Szymczak, A. (2005). Subdomain aware contour trees and contour evolution in time-
dependent scalar fields. In International Conference on Shape Modeling and Appli-
cations 2005 (SMI’ 05), 136–144. 37

Tarjan, R.E. (1975). Efficiency of a good but not linear set union algorithm. Journal
of the ACM , 22, 215–225. 23

Thomas, D.P., Borgo, R., Carr, H. & Hands, S. (2017). Joint contour net anal-
ysis of lattice qcd data. arXiv preprint arXiv:1703.02488 . 34, 35

148

REFERENCES

Tierny, J. & Carr, H. (2017a). Jacobi fiber surfaces for bivariate reeb space compu-
tation. IEEE Transactions on Visualization and Computer Graphics, 23, 960–969.
32, 87

Tierny, J. & Carr, H. (2017b). Jacobi Fiber Surfaces for Bivariate Reeb Space
Computation. IEEE Transactions on Visualization and Computer Graphics, 23, 960–
969. 85

Tierny, J. & Pascucci, V. (2012). Generalized topological simplification of scalar
fields on surfaces. IEEE Transactions on Visualization & Computer Graphics, 18,
2005–2013. 25

Tierny, J., Gyulassy, A., Simon, E. & Pascucci, V. (2009). Loop surgery for
volumetric meshes: Reeb graphs reduced to contour trees. IEEE Transactions on
Visualization and Computer Graphics, 15, 1177–1184. 22

Tierny, J., Favelier, G., Levine, J.A., Gueunet, C. & Michaux, M. (2017).
The Topology ToolKit. IEEE Transactions on Visualization and Computer Graphics
(Proc. of IEEE VIS), https://topology-tool-kit.github.io/. 46, 53

Tierny, J., Favelier, G., Levine, J.A., Gueunet, C. & Michaux, M. (2018).
The topology toolkit. IEEE Transactions on Visualization and Computer Graphics,
24, 832–842. 29

Tominski, C., Donges, J.F. & Nocke, T. (2011). Information visualization in
climate research. In Information Visualisation (IV), 2011 15th International Con-
ference on, 298–305, IEEE. 39

Treece, G., Prager, R. & Gee, A. (1999a). Regularised marching tetrahedra:
improved iso-surface extraction. Computers & Graphics, 23, 583 – 598. 19

Treece, G.M., Prager, R.W. & Gee, A.H. (1999b). Regularised Marching Tetra-
hedra: Improved Iso-surface Extraction. Computers And Graphics, 23, 583–598. 88,
89

van Gelder, A. & Wilhelms, J. (1994). Topological considerations in isosurface
generation. ACM Trans. Graph., 13, 337–375. 19

vanZanten, M.C., Stevens, B., Nuijens, L., Siebesma, A.P., Ackerman, A.,
Burnet, F., Cheng, A., Couvreux, F., Jiang, H., Khairoutdinov, M. et al.
(2011). Controls on precipitation and cloudiness in simulations of trade-wind cumulus
as observed during RICO. Journal of Advances in Modeling Earth Systems, 3. 78

Verovšek, S.K. & Mashaghi, A. (2016). Extended topological persistence and con-
tact arrangements in folded linear molecules. Frontiers in Applied Mathematics and
Statistics, 2, 6. 20

149

https://topology-tool-kit.github.io/

REFERENCES

Wang, C., Yu, H. & Ma, K. (2008). Importance-driven time-varying data visualiza-
tion. IEEE Transactions on Visualization and Computer Graphics, 14, 1547–1554.
37

Weber, G., Dillard, S., Carr, H., Pascucci, V. & Hamann, B. (2007a).
Topology-Controlled Volume Rendering. IEEE Transactions on Visualization and
Computer Graphics, 13, 330–341. 50

Weber, G.H., Dillard, S.E., Carr, H., Pascucci, V. & Hamann, B. (2007b).
Topology-controlled volume rendering. IEEE Transactions on Visualization and
Computer Graphics, 13, 330–341. 21

Weinkauf, T., Gingold, Y. & Sorkine, O. (2010). Topology-based smoothing of
2d scalar fields with c1-continuity. In Proceedings of the 12th Eurographics / IEEE -
VGTC Conference on Visualization, EuroVis’10, 1221–1230, The Eurographs Asso-
ciation., Chichester, UK. 25

Wenger, R. (2013a). Isosurfaces: geometry, topology, and algorithms. AK Pe-
ters/CRC Press. 18

Wenger, R. (2013b). Isosurfaces: geometry, topology, and algorithms. AK Pe-
ters/CRC Press. 70

Whitney, H. (1955). On singularities of mappings of euclidean spaces. i. mappings of
the plane into the plane. In J. Eells & D. Toledo, eds., Hassler Whitney Collected
Papers, 370–406, Birkhäuser Boston. 84

Widanagamaachchi, W., Christensen, C., Pascucci, V. & Bremer, P. (2012).
Interactive exploration of large-scale time-varying data using dynamic tracking
graphs. In IEEE Symposium on Large Data Analysis and Visualization (LDAV),
9–17. 37

Wood, Z., Hoppe, H., Desbrun, M. & Schröder, P. (2004). Removing excess
topology from isosurfaces. ACM Trans. Graph., 23, 190–208. 21

Wood, Z.J., Desbrun, M., Schroder, P. & Breen, D. (2000). Semi-regular
mesh extraction from volumes. In Proceedings Visualization 2000. VIS 2000 (Cat.
No.00CH37145), 275–282. 21

Wu, K., Knoll, A., Isaac, B.J., Carr, H. & Pascucci, V. (2017). Direct mul-
tifield volume ray casting of fiber surfaces. IEEE Transactions on Visualization and
Computer Graphics, 23, 941–949. 29

Wyvill, G., McPheeters, C. & Wyvill, B. (1986). Data Structure for Soft Ob-
jects. Visual Computer , 2, 227–234. 50

150

REFERENCES

Yao, Y., Sun, J., Huang, X., Bowman, G.R., Singh, G., Lesnick, M., Guibas,
L.J., Pande, V.S. & Carlsson, G. (2009). Topological methods for exploring low-
density states in biomolecular folding pathways. The Journal of Chemical Physics,
130, 144115. 34

Yu, L., Lu, A. & Chen, W. (2013). Visualization and analysis of 3d time-varying
simulations with time lines. Journal of Visual Languages & Computing , 24, 402 –
418. 37

Zhang, E., Mischaikow, K. & Turk, G. (2005). Feature-based surface parameter-
ization and texture mapping. ACM Trans. Graph., 24, 1–27. 21

Zhang, X., Marcos, Bajaj, C.L. & Baker, N. (2004). Fast matching of volumetric
functions using multi-resolution dual contour trees. 26

Èliašberg, J.M. (1970). ON SINGULARITIES OF FOLDING TYPE. Mathematics
of the USSR-Izvestiya, 4, 1119–1134, publisher: IOP Publishing. 84

151

	I Introduction and Background
	1 Introduction
	1.1 Isosurfaces and Contour Trees
	1.2 Hypersweeps for Contour Tree Simplification
	1.3 Trivariate Visualisation of Convective Cloud Formation
	1.4 Generating Reeb Spaces Neighborhoods
	1.5 Overview

	2 Background
	2.1 Point Set Topology
	2.2 Morse Theory
	2.3 Fiber Topology
	2.4 Piecewise Linear Topology

	3 Literature Review
	3.1 Scalar Field Methods
	3.2 Scalar Field Topology
	3.3 Reeb Graph algorithms
	3.4 Contour Tree Algorithms
	3.5 Topological Simplification
	3.6 Multvariate Field Methods
	3.7 Fiber Surfaces
	3.8 Jacobi Sets
	3.9 Reeb Space
	3.10 Mapper
	3.11 Join Contour Net
	3.12 Pareto sets
	3.13 Multivariate Topological Simplification
	3.14 Time-varying Visualisation and Feature Tracking
	3.15 Scientific Visualisation in Atmosphere Science

	II Hypersweeps
	4 Data Parallel Hypersweeps for in Situ Topological Analysis
	4.1 Introduction
	4.2 Background
	4.2.1 Contour Tree Hyperstructure
	4.2.2 Simplification and Branch Decomposition
	4.2.3 Parallel Tree Operations
	4.2.4 The Cinema In Situ Database

	4.3 Hypersweeping Geometric Measures
	4.3.1 Branch Decomposition and Subtree Height
	4.3.2 Simplification
	4.3.3 Feature Extraction

	4.4 Implementation
	4.5 Evaluation
	4.5.1 Application Example - WarpX
	4.5.2 Performance
	4.5.3 Feature Significance

	III Convective Clouds
	5 Cartesian Fiber Surfaces for Trivariate Visualisation
	5.1 Introduction
	5.2 Convective Clouds in Earth's atmosphere
	5.2.1 Domain Science Related Work

	5.3 Cartesian Fiber Surfaces
	5.3.1 General Cartesian Fiber Surfaces
	5.3.2 Computation

	5.4 Tracer Visualiser Application
	5.4.1 Application Requirements
	5.4.2 Application Design
	5.4.3 Application Implementation

	5.5 Case Study: Convective Triggering

	IV Reeb Spaces
	6 Reeb Space Local Neighborhood Classification
	6.1 Introduction
	6.2 Background
	6.3 Method Overview
	6.4 Assumptions and Stability

	7 Local Fibers
	7.1 Local Fibers in a Tetrahedron
	7.2 Local Edge Fiber Classification
	7.2.1 Domain and Range Neighborhood Structure
	7.2.2 Choosing a Walk
	7.2.3 Local Edge Fiber Classification

	7.3 Local Vertex Fiber Classification
	7.3.1 Structure of the Vertex Neighborhood in the Domain
	7.3.2 Structure of the Vertex Neighborhood in the Range
	7.3.3 Walks Around Vertices
	7.3.4 Local Fibers via Regular-like DTP Expressions

	8 Reeb Space Computation
	8.1 Global Fiber Pairing for Local Reeb Space Neighborhoods
	8.1.1 Reeb Space Generating Diagrams
	8.1.2 Global Fibers of a Single Edge
	8.1.3 Global Fibers of of Two Intersecting Edges
	8.1.4 Global Fibers of a Vertex

	8.2 Generating Reeb Space Neighborhoods
	8.2.1 Generating Outer Fiber Arrangements
	8.2.2 Dihedral Symmetry for Edges
	8.2.3 Generating Edge Neighborhoods
	8.2.4 Generating Vertex Neighborhoods
	8.2.5 Reeb Space Data Structure

	9 Results
	9.1 Reeb Space Application Suite
	9.1.1 Fiber Visualiser
	9.1.2 Generate Local Reeb Space Neighborhoods

	9.2 Results
	9.2.1 One Edge Neighborhoods
	9.2.2 Two Edges Neighborhoods
	9.2.3 Vertex Neighborhoods

	V Conclusions and Future Work
	10 Conclusions
	10.1 Hypersweeps
	10.2 Convective Clouds
	10.3 Reeb Spaces

	11 Future Work
	11.1 Hypersweeps
	11.2 Convective Clouds
	11.3 Reeb Space Neighbourhoods

	References

