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Abstract. Croda is one of the largest chemical companies in the United Kingdom,
producing and distributing products across the globe. It is the aim of this research to
provide Croda a means for determining the similarity and therefore interchangeabil-
ity of their products between manufacturing sites. To do this, numerous analytical
approaches including the Bhattacharyya distance, Mahalanobis distance, hierarchical
clustering, distribution modelling and separation are investigated. Novel approaches
to outlier detection and exploratory analysis are also examined. These analyses are
applied to three data sets, each corresponding to a chemical product - Tween20, Bri-
jCS20 and Glycerox HE. These data sets consist of the mass charge ratios and their
abundance obtained via MALDI-TOF mass spectrometry.

Of the analyses conducted, hierarchical clustering as well as distribution fitting
yielded the most promise, although both methods were susceptible to outliers. The
Gaussian model, for example, fits the data for the products quite accurately but is
less accurate for higher masses. In conclusion, it is found that finding the desired
similarity measure is extremely challenging.
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1. Introduction

Headquartered in the United Kingdom, Croda International plc is a major chemicals
company manufacturing a range of speciality chemical products sold across the globe
[1]. Originally founded in 1925 by George Crowe and Henry Dawe, Croda has grown
rapidly from a struggling lanolin producer to one of the most profitable chemical com-
panies in the UK [2]. As such, Croda now has manufacturing sites scattered around
the world, which were previously small, independent chemical companies with their own
recipes for products. Generally, Croda have not standardised recipes across sites after
acquisition and have kept the production process unchanged at the acquired sites. As a
result, some sites will have slightly di↵erent recipes (ingredients used, ratio of ingredi-
ents and catalysts used are di↵erent) and clearly this can lead to di↵erences in the final
products between sites. Another possible cause for this discrepancy between products
from di↵erent sites is likely due to Croda’s ethical environmental policy of sourcing
product ingredients local to each site [3]. For example, animal product used in some
of Croda’s products is always sourced local to each factory and not from one central
location [3]. Hence, the aim of this project is to develop a similarity measure which
can successfully determine the “sameness” (similarity) of products between the Croda
manufacturing sites. This will allow us to determine which sites are interchangeable
for certain products, and help us to understand why di↵erences occur. With this aim
in mind, a number of similarity measures and data analysis techniques including the
Bhattacharyya distance, the Mahalanobis distance, curve fitting (Gaussian, Weibull and
Fréchet), and hierarchical clustering are investigated.

The data from which this investigation is conducted on is that obtained by matrix-
assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-
MS) of three chemical products from across various Croda manufacturing sites. Previous
work including [4] and [5] suggest that it is possible to find practical similarity mea-
sures for chemical data of this type. Therefore, we hypothesise that it is plausible and
desirable to develop such a measure for this data; however, this optimistic view must
be cautioned with the caveat that data, especially mass-spectrometry data, is often
notoriously challenging [6] [7].
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2. Experimental Methods

In this project, the MALDI-TOF-MS data of three Croda chemical products manu-
factured globally are analysed; these products are Tween20, BrijCS20, and Glycerox
HE. Tween20 is the brand name for polysorbate20, and it consists mostly of fatty acids
(precisely: stearic, palmitic, myristic, and lauric acids) [8] [9] . This product has many
commercial uses; in particular, as an oil in water emulsifier, solubiliser for essential
oils and perfumes, and wetting agents [9]. Tween20 is a complex product with ap-
proximately 20 di↵erent compounds involved in its composition, which will allow for
method testing. BrijCS20, on the other hand, is an alkyl polyglycol ether, and is made
by reacting a fatty alcohol mixture of stearyl and cetyl alcohol (and some other minor
components) with 20 moles of ethylene oxide [10]. Primarily found in hair and skin
care products, this simpler product, with just two main constituents, acts as dispers-
ing agents, emulsifiers and surfactants / detergents [11], and will be used to facilitate
method development. Finally, Glycerox HE is a mixture of glycerin, coconut oil and
approximately 21 moles ethylene oxide [12]. It is used in an array of skin and hair
care products, acting as oil in water emulsifiers, superfatting agents, solubilisers and
as dispersing agents. This product is simpler than both Tween20 and BrijCS20, and
therefore provides additional data for method development and testing.

As aforementioned the method of data acquisition is the soft ionisation technique
MALDI-TOF-MS. Mass spectrometry is regarded as one of the best methods for accu-
rately determining the molar mass of molecules [13]. Accurately measuring molar mass
is the best-known approach for identifying molecules (and their amount) in a substance.
All molecules and substances have mass (measured in grams); however, these masses
are extremely small. Therefore, the SI base unit, the mole, which is a measure of the
amount of a substance is needed for comparing particles of a substance and its mass.
When the number of moles is known, the concept of molar mass can be applied to cal-
culate the number of grams of the substance. Hence, Molar mass, measured in grams
per mole, is the total mass of all atoms in a mole of a molecule. Mathematically then,
the molar mass M is simply given by:

M = m

n

where m is the mass of the sample substance in grams, and n is the number of moles of
the sample substance being analysed.

During mass spectrometry, the samples are vaporised (transformed into a gaseous state)
and then bombarded with electrons in a process known as ionisation. The mass/charge
(m/z) ratio can then be calculated for all ions. Mass/charge ratio is an extremely
important measure in chemistry which allows one to find the relative abundance of an
element or molecule in a compound. This will be important in our analysis since it will be
used to determine the chemical composition of samples of products. One major challenge
which arises during traditional mass spectrometry techniques is the fragmentation of
large molecules during vaporisation; MALDI-TOF-MS, however, largely overcomes this
challenge. Another useful property of MALDI-TOF-MS from an analytical viewpoint
is that the charge is always one, so we do not need to be concerned with charge.

In MALDI-TOF mass spectrometry, the samples to be analysed are embedded in a solid
matrix, 1 vaporised and then ionised. These ions are then accelerated across an electric
field for a distance dE , and then drift across a region for a distance dD before reaching
a detector. Ions with the smallest m/z ratio will reach the detector before those with
larger m/z ratios.

1In chemistry, this refers to the surface upon which samples are placed in mass spectrometry.
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An ion of mass m undergoing MALDI-TOF mass spectrometry will have a charge of ze,
where z is the charge number of the ion, and e is the elementary charge (electric charge
carried by a single proton). This ion accelerates across an electric field of strength E for
a distance dE , and then drifts a distance dD, until it arrives at the detector. Therefore,
the kinetic energy EK of the ion is given by:

EK = 1

2
mv

2

= zeEdE

where v is the speed, in metres per second (ms−1), of the ion.

Since the time of flight t for an ion to travel from the solid matrix to the detector and
the distance dD are su�ciently small, the acceleration can be ignored, so that v = dDt−1.
Substituting this into eqn. 1, we obtain,

1
2m

d
2
D
t2
= zeEdE

Which can be rearranged to give the mass/charge ratio:

m

z
= 2eEdE

t
2

d
2
D

In this experiment, each sample is analysed three times (these are technical replicates) so
that the consistency (and variation) of the mass spectrometry analysis can be assessed.
This means, for example, that if a product has 50 samples then it has 150 replicates (3
for each sample).

Example (Example MALDI-TOF Mass Spectrum). Figure 1 shows the mass spectrum
(relative abundance against m/z values) obtained by MALDI-TOF-MS of a sample of
BrijCS20 from the Atlas Point manufacturing site. Clearly, two completely overlapping
distributions, corresponding to the two major components within the product, are vis-
ible in Figure 1. These distributions are related peaks, which are 44 Daltons apart in
their m/z values, of the same compound. The reason for the two di↵erent distributions
is that the EO units (number of ethylene oxide molecules) added to each is di↵erent.
That is, the spectral peaks correspond to the same compound but are polymers of di↵er-
ent lengths. The peaks show the relative abundance of their corresponding m/z values;
that is, the height of a given peak represents the relative abundance of the polymer
associated with it and is proportional to the abundance of said peak. It appears that
these distributions may be approximately Gaussian; this intriguing observation is inves-
tigated in detail in section 5.6.
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Figure 1. MALDI-TOF Mass Spectrum of a sample of Bri-
jCS20 obtained from the Atlas Point Manufacturing Site. Dis-
tributions of related peaks of the same compound from BrijCS20 are
shown as an example of a mass-spectrum.
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3. Data

There are three data sets in this analysis, one for each product.

For Tween20, the raw data consists of 2100 variables (the masses obtained from MALDI-
TOF-MS) and 48 observations from across six Croda sites. Two of these sites are located
in the USA: Atlas Point and Mill Hall; two are in Europe: Rawcli↵e Bridge (UK) and
Chocques (France); and two are in Asia: Singapore and Thane (India).

With BrijCS20, the raw data consists of 2800 variables and 50 observations. In this
data set the BrijCS20 product is produced across five Croda sites: Rawcli↵e Bridge,
Singapore, Thane, Atlas Point and Mevisa (Spain).

Raw data for Glycerox HE consists of 1200 variables and 50 observations. This data set
is constructed from observations from four Croda sites: Atlas point, Mill Hall, Rawcli↵e
Bridge, and Singapore.

A useful summary of the data is provided in Table 1.

Table 1. Table 1 shows the number of observations from each site for
the Tween20, BrijCS20 and Glycerox HE products. In total there are 48
observations of Tween20, 50 of BrijCS20, and 39 of Glycerox HE acquired
from various Croda sites. Each site producing BrijCS20 has provided 10
observations. For Tween20 two sites, Atlas Point and Rawcli↵e Bridge
provided less observations (4 each) than the rest (10 observations each).
Glycerox HE has 10 observations for each site except for Atlas Point
which has 9.

Site Samples of Tween20 Samples of BrijCS20 Samples of Glycerox
Atlas Point 4 10 9
Chocques 10 − −
Mevisa − 10 −
Mill Hall 10 − 10
Rawcli↵e 4 10 10
Singapore 10 10 10
Thane 10 10 −
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4. Statistical Methods

4.1. Important Definitions.

Definition 1. A distance metric (simply a metric and sometimes a distance function)
is a function d which outputs a distance between each pair of observations of a set X.
For a distance to be classed as a metric, a collection of well-defined axioms must be
satisfied. That is, a metric d on X is a function d ∶X ×X → [0,∞), if for all x, y, z ∈X
axioms A1-to-A3 hold:

A1 d(x, y) ≥ 0 and d(x, y) = 0⇐⇒ x = y non-negativity
A2 d(x, y) = d(y, x) symmetry
A3 d(x, y) ≤ d(x, z) + d(z, y) triangle inequality

Definition 2. A metric space is a set which has a metric. [14]

Euclidean and squared Euclidean distance are perhaps the most common and straight-
forward similarity measures used in cluster analysis, as well as many other branches of
mathematics. The Euclidean distance is a metric, whereas the squared Euclidean dis-
tance is not since it does not satisfy the triangle inequality; it is, however, still a useful
distance measure. The Euclidean distance between two vectors x = (x1, x2, x3, ..., xn)
and y = (y1, y2, y3, ..., yn) is denoted d(x,y) and is given by:

d(x,y) =
�

n∑
k=1(xk − yk)2

Derivation of 2-Dimensional Euclidean Distance:

Consider two points A and B with coordinates (x1, y1) and (x2, y2) respectively.
Let d be the distance between them, so that d = dist(A, B).
Join the points A and B by a line segment.
Construct a right angled triangle with the line segment joining A to B as the hy-
potenuse. The points A and B join a point C as shown in Figure 2 to form the right
angled triangle ABC.

Applying Pythagoras’ theorem to triangle ABC gives:

AB
2 = AC2 +BC

2

d
2 = (x2 − x1)2 + (y2 − y1)2

�⇒ d =�(x2 − x1)2 + (y2 − y1)2
Remark. Not taking the final step gives the squared Euclidean distance.

Proof. Euclidean Distance is a Metric

To prove that the Euclidean distance is a metric, we must show that it satisfies all
axioms A1, A2 and A3 from definition 1.

Proof of A1 (non-negativity):

By definition

d(x,y) =
�

n∑
k=1(xk − yk)2
13



Figure 2. Diagram to Illustrate the Derivation of the 2-
Dimensional Euclidean Distance. The right angled triangle ABC

with hypotenuse d is shown. In order to illustrate the derivation of
the 2-dimensional Euclidean Distance, the length of the line segments
(excluding the hypotenuse) of the triangle are shown in terms of their
coordinates of the points A,B and C.

where xk, yk ∈ R.
Firstly, since (xk − yk)2 ≥ 0, we have

n∑
k=1(xk − yk)2 ≥ 0 and therefore

d(x,y) =
�

n∑
k=1(xk − yk)2 ≥ 0.

Secondly, when x = y we have:

d(x,y) = d(x,x)
=
���� n�

k=1
(xk − xk)2

=√02
= 0
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Similarly for d(x,y) = 0; if
n∑

k=1(xk − yk)2 = 0, then (xk − yk)2 = 0 which implies that

xk = yk ∀ k = 1,2, ..., n. Hence, d(x,y) = 0⇐⇒ x = y and A1 holds.

Proof of A2:

d(x,y) =
���� n�

k=1
(xk − yk)2 by definition.

=
���� n�

k=1
(yk − xk)2

= d(y,x) by definition

Hence, A2 holds.

Proof of A3 is beyond the scope of this work. ⇤
For the comparison of distances, it is often more practical to use the squared Euclidean
distance because it removes the square root step and thus reduces the cost in time
complexity of calculation. Squaring the distance can also give more weight to the e↵ect
of larger distances between observations.

Definition 3. The squared Euclidean distance for two vectors x = (x1, x2, x3, ..., xn)
and y = (y1, y2, y3, ..., yn) is defined by the formula:

d
2(x,y) = n∑

k=1(xk − yk)2

Proof. Squared Euclidean distance is not a metric by counter-example.

Let y = 2x and z = 3x for some real-valued non-zero vector x.
Substituting into the triangle inequality gives:

d(x,y)2 = n�
i=1(xi − 3xi)

2

= 4 n�
i=1x

2
i

and

d(x,y)2 + d(y,z)2 = n�
i=1x

2
i + n�

i=1x
2
i

= 2 n�
i=1x

2
i .

∴ we have a counter-example that demonstrates that the triangle inequality does not

hold, since 4
n∑
i=1x

2
i
> 2 n∑

i=1x
2
i
. Hence, it is shown by counter-example that Squared Eu-

clidean distance is not a metric. ⇤
The Manhattan distance is another commonly-used distance metric. It is di↵erent to the
Euclidean distance and is classed as a taxicab metric. This metric works by calculating
the absolute di↵erence between coordinate pairs in a data set, and is defined in definition
4.
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Definition 4. The Manhattan distance between two real-valued vectors x =(x1, x2, x3, ..., xn) and y = (y1, y2, y3, ..., yn) is defined as:

d(x,y) = ��x − y��
= n∑

i=1 �xi − yi�

4.2. Principal Component Analysis. Principal Component Analysis2 (PCA) is
a dimensionality reduction technique, which is often used when handling large sets of
multivariate data. This is because large data sets can be (and usually are) di�cult
to explore and analyse; since visualising such data can become near-impossible when
the number of variables involved is too large. PCA aims to overcome this challenge by
constructing new variables, called principal components (PCs), which are uncorrelated,
linear combinations of the original variables. These principal components provide a far
smaller, and thus practical, set of underlying or characteristic variables whilst retaining
enough information to describe the data accurately. Ideally then, it is desirable for the
few first principal components to account for the majority of the variance in the analysis.
However, it is important to note that even if this is the case, it does not necessarily
result in variables that can be interpreted.

Remark. PCA is classed as an unsupervised technique since it does not assume any-
thing about the groupings in the data.

Derivation of Principal Components via Eigenvector Decomposition:

This derivation is based on the derivation found in [16], which in turn is based on
Hotelling’s approach [17].

Consider the random vector x = x1, ..., xn as the set of original variables and let the
random vector y = y1, ..., yn be linear combinations of the original variables such that

yi = m∑
j=1aijxj , i = 1, ..., n
or y =ATx

where A is the matrix of coe�cients.

We want to find the A generating new variables, yj , with stationary values of their
variance; that is, with constant variance over time.

The first new variable is given by

y1 = m∑
j=1a1jxj

Choosing a1 = (a11, a12, ..., a1n)T maximises the variance of yj under the constraint that
aT1 a1 = �a1� = 1. Hence,

var(y1) = E[y21] −E[y1]E[y1]
= E[aT1 xxTa1] −E[aT1 x]E[xTa1]
= aT1 (E[xxT ] −E[x]E[xT ])a1
= aT1�a1

2Karl Pearson originally introduced the concept of principal component analysis in his 1901 paper:
On Lines and Planes of Closest Fit to Systems of Points in Space, which can be found in reference [15].
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where ∑ denotes the covariance matrix of x.

To find the stationary value of aT1 such that �a1� = 1 we solve an equivalent problem,
which is to find the stationary value of

aT1∑a1 −LaT1 a1
where L is a Lagrange multiplier. Then by equating to zero and di↵erentiating with
respect to the components of a1 we have ∑a1 − La1 = 0. We want to find a solution,
other than the null vector, for a1. Therefore, we want to find the eigenvector of ∑
with the eigenvalue L. The n eigenvalues, �1, ...,�n, associated with ∑ can be ordered
such that �1 ≥ �2 ≥ ... ≥ �n ≥ 0. The variance of yi is L, so we want L = � to maximise
variance as desired. Therefore, the first PC will be y1 and will have the greatest
variance of all the PCs. We can then obtain the 2nd PC y2 = aT2 x as follows: select
a2i for i = 1, ..., n such that var(y2) is maximised under the constraints �a2� = 1 and
y2 and y1 are uncorrelated. Therefore, E[y2y1] − E[y2]E[y1] = 0 or, equivalently,
aT2∑a1 = 0 �⇒ aT2 a1 = 0 (a2 and a1 are orthogonal) since a1 is an eigenvector of ∑. To
maximise we use the Lagrange multipliers L1 and L2 so that aT2∑a2−L1aT2 a2−L2aT2 a1.
Di↵erentiating with respect to a2 and setting to zero we obtain: 2∑a2−2L1a2−L2a1 = 0.
Then multiply by aT1 to get: 2a1∑a2 − L2 = 0 �⇒ ∑a2 = L2a2. Hence, a2 is an
eigenvector of ∑ too, and is orthogonal to a2. It is the eigenvector corresponding to
the second largest eigenvalue. This argument repeats and extends to the k-th case.

Thus, we can determine the PCs via eigenvector decomposition. We have that y =ATx,
where the columns of the matrix A correspond to the eigenvectors of ∑.
Next, to produce an accurate dimensionally reduced representation of a given data set,

we observe that
n∑
i=1 var(yi) =

n∑
i=1�i and then that the first k PCs account for

k∑
i=1�i

n∑
i=1�i

. Since

the new components have to account for a minimum percentage of the total variance,

say p, then k is chosen such that
k∑
i=1�i ≥ p

n∑
i=1�i ≥ k−1∑

i=1 �i and transform the data such

that yk =AT
k x.

4.3. Normalising Data. To ensure that the data is found on a consistent range
of values for each observation, it is common practice to normalise the data [18]. To do
this, the sum of variables for each observation in the data set are set to the same value.

4.4. Squared Mahalanobis Distance Measure. One similarity measure
investigated in this analysis is the Squared Mahalanobis distance metric [19]. It is a
popular data-driven similarity measure and is commonly used for cluster analysis to
evaluate the distance between two points (or group means) [19]. As such, it is a good
candidate for a similarity measure for this data.

The Squared Mahalanobis distance between two points x = (xi, xj) and y = (yi, yj) with
covariance matrix S in 2-dimensional space is given by:

D
2
M
(x,y) = (x − y)TS−1(x − y)

The sample covariance matrix S can be used to determine the correlation between data
points. This is extremely useful because any important correlation between variables
of data points which may otherwise have seemed quite distant from each other can be
identified with this measure.
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Furthermore, taking into account the Within Groups variance, the Squared Maha-
lanobis distance between two group means C = (ci, cj) and E = (ei, ej) is given by:

D
2
M
(C,E) = (C −E)TS−1(C −E)

where the sample covariance matrix S is calculated as the mean of the covariance
matrices of each group. That is, for groups i and j

S = (ni−1)Si+(nj−1)Sj

ni+nj−2
Where ni and nj are the number of observations from groups i and j, respectively.

4.5. Bhattacharyya Distance Measure. Another distance metric that could
potentially act as a successful similarity measure for this data is the Bhattacharyya
distance metric. This metric is used to measure the relative closeness (similarity) of two
probability distributions [20]. It is a common distance measure applied to multivariate
data (examples include the many works by Ron Wehrens such as [21] amongst others)
and it is an extension of the multivariate Mahalanobis distance and therefore is a mea-
sure worth investigating. This measure assumes the data is normally distributed, and
in the multivariate case is given by the equation:

DB = 1
8(µ2 − µ1)T ∑−1(µ2 − µ1) + 1

2 ln
det(∑)�

det(∑1)det(∑2)
where, for i = 1,2, µi and ∑i are respectively the mean and covariances for distribution
i, and ∑ = ∑1 +∑2

2 .

4.6. Within Groups Variance, Between Groups Variance and Separation.
Before detailing Within Groups Variance, Between-Groups Variance, and Separation it
is important to first define some key concepts as follows.

Definition 5. The Sample mean is the best-known measure for identifying the centre
of a data set and is computed with the formula:

x = 1
n
∑n

i=1 xi
where n is the number of observations in the data set.

Example (Calculating the Sample Mean). Consider the heights, in metres, of the last
five di↵erent Olympic Mens 100m gold medallists:

1.88,1.95,1.85,1.76,1.85.

∴ x = x1 + x2 + x3 + x4 + x5
n

= 1.88 + 1.95 + 1.85 + 1.76 + 1.85
5= 1.858 metres.
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Similarly, using the heights, in metres, of the last five unique Olympic Womens 100m
gold medallists, we obtain:

x2 = 1.67 + 1.52 + 1.73 + 1.6 + 1.7
5= 1.644 metres.

Definition 6. The Sample Variance provides a means of quantifying the variance
across the observations in a data set. It is defined by the formula:

S
2
n = 1

n−1 ∑n

i=1(xi − xn)2

Example (Calculating the Sample Variance). Using the same data set as that in ex-
ample 2, the sample variance for the Mens 100m gold medallists is:

S
2 = 1

n − 1((x1 − x)2 + (x2 − x)2 + (x3 − x)2 + (x4 − x)2 + (x5 − x)2)
= 1

5 − 1((1.88 − 1.858)2 + (1.95 − 1.858)2 + (1.85 − 1.858)2 + (1.76 − 1.858)2 + (1.85 − 1.858)2)= 0.00467 metres squared.

Similarly, for the womens data,

S
2
2 = 1

4
((1.67 − 1.644)2 + (1.52 − 1.644)2 + (1.73 − 1.644)2 + (1.6 − 1.644)2 + (1.7 − 1.644)2)

= 0.00713 metres squared.

Definition 7. The Grand mean is the mean of means of groups within a data set, and
is defined by:

XGM =
k∑

i=1nixi

k∑
i=1n

for unequally sized groups and

XGM = 1
k

k∑
i=1xi

for equally sized groups.

Where k is the number of groups within the data set, ni is the sample size of group i

and xi is the sample mean for group i.

Example (Calculating the Grand Mean). Using the same data set, the grand mean for
the Male-Female 100m runner groups is:

XGM = x + x2
k

= 1.858 + 1.644
2= 1.751
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As the name suggests, Within Group variance is a measure of the variance within
individual groups in a data set. This statistic is often used in the analysis of variance
(ANOVA) and has the general formula:

V arWG = g∑
j=1

kj∑
i=1
(xij−xj)2

kj−1

Similarly, the definition of between groups variance is self-evident; it is a measure of the
variance between distinct groups. It achieves this by quantifying how the group means
di↵er from one another. This is also commonly used in ANOVA and is calculated using
the following general formula:

V arBG = g∑
j=1

nj(xj−XGM )2
g−1 ,

where g is the number of groups.

Separation is a measure of similarity derived from both within and between groups
variance. It is simply calculated as:

Separation = Between-Groups variance
Within Groups variance

4.7. Hierarchical Clustering. Hierarchical clustering analysis (HCA) is a
commonly used [22] method for analysing clusters of multivariate data. As the name
suggests, HCA works by creating a hierarchy of clusters from data. There are two
main approaches to HCA, namely: Agglomerative, which is a bottom-up method, and
Divisive clustering, which is a top-down method. In the agglomerative approach, each
observation is initially its own cluster (from the full spectrum of product data); pairs
of clusters then merge to form new clusters as they move up the hierarchy. Divisive
clustering is the opposite approach, where there is initially one cluster consisting of all
observations, this single cluster then splits as it moves down the hierarchy.

In this analysis, only agglomerative hierarchical clustering is implemented for the
creation of dendrograms (discussed later in this section) and for the measure of distance
and similarity. This is because divisive clustering is computationally far less e�cient
than agglomerative clustering for multivariate data [24]. As such, agglomerative
clustering is used frequently and divisive is not for such data [24]. Thus, we will only
use agglomerative clustering in this analysis.

The first step in agglomerative hierarchical clustering is to link single observations into
a cluster, and then merge to other clusters and so on up the hierarchy. To determine
the distance between an observation and the members of the other clusters, a linkage
function is employed. There are a number of di↵erent linkage methods that could be
used; however, four stand out as the most widely used and practiced in cluster anal-
ysis [22]. As such, this analysis is restricted to just these four and are detailed as follows:

1. Single Linkage
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Single linkage [22] clustering takes the minimum distance between two observations, one
from each cluster, as the distance between them. This linkage function is also known as
the nearest neighbour method and is defined as:

D(X,Y ) =minx∈X,y∈Y d(x, y)
where X and Y are two clusters, and x and y are elements of X and Y respectively.
One important criticism of this linkage method is that long thin clusters are often
generated since observations further away in a cluster are not evaluated.

2. Complete Linkage

Complete linkage [22] is another easily understood linkage method. Here, the distance
between two observations is the maximum distance between them. It is also known as
the farthest neighbour linkage method and is defined as:

D(X,Y ) =maxx∈X,y∈Y d(x, y)
Generally, this method produces tighter and more compact clusters (often approxi-
mately equally sized) than single linkage [22].

3. Average Linkage

The average linkage [22] method involves calculating the mean distance of all possible
pairs of observations between two clusters. Also known as the unweighted pair group
method (UPGMA), this method is defined as:

D(X,Y ) = 1
NX ,NY

∑x∈X ∑y∈Y d(x, y)
where NX and NY is the size (total number of observations) of cluster X and Y

respectively.

An important remark is that this is an unweighted method, and therefore all the
calculated distances contribute in an equal proportion to the final average.

4. Ward’s Method

First presented by Joe H. Ward in 1963, Ward’s linkage method [23] is an algorithm
which recursively minimises the within group variance. As such, clusters are formed
according to variance. This is a distinctly di↵erent approach compared to the other
three linkage methods discussed since, unlike those, Ward’s method does not use a
distance measure for linkage.

The distance between clusters by Ward’s method is the squared Euclidean distance
between points:

dij = d({Xi},{Xj}) = �Xi −Xj�2
Ward’s method often leads to clusters of roughly equal size and is highly sensitive to
outliers [22].
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Once HCA is complete and the numerical output is obtained, it can then be represented
diagrammatically using a dendrogram. This is often more informative since it provides
a clear and concise picture of how separate the data clusters are. A dendrogram consists
of branches and leaf nodes. The branches in a dendrogram join clusters together; the
height at which they merge represents the distance between observations or clusters;
while, the leaf nodes are the individual observations themselves.

Example. Dendrogram using the inbuilt USArrests data in R.
The USArrests data set in R consists of the arrests per 100,000 in each of the 50 States
in the year 1973. The percentage of the population registered as living in urban regions
is also included. From this data the following dendrogram (Figure 3) is produced:

Figure 3. Illustration of a Dendrogram using the inbuilt US-
Arrests data set in R. Dendrogram using Euclidean distance for US-
Arrests data which consists of the arrests per 100,000 in each of the 50
States in the year 1973. The percentage of the population registered as
living in urban regions is also included. The diagram highlights the key
features of a dendrogram - nodes, clusters, branches and leaves.

The height of the dendrogram where two observations, and therefore two branches,
join to form a cluster is known as the cophenetic distance (dissimilarity between
observations). For example, the cophenetic distance between “Iowa” and “Virginia” in
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Figure 3 (see observations circled in red) is approximately 4.4 as shown. A distance
matrix and a cophenetic dissimilarity matrix are therefore created from the clustering
algorithm. To measure the extent to which the dendrogram accurately represents
the original data, the cophenetic correlation coe�cient is used. We will combine two
di↵erent approaches of calculating the cophenetic distance in order to derive a practical
similarity measure. We have the asymmetric (and thus not a metric) cophenetic dis-
tance and the symmetric version which uses the average Within Groups similarity (so
can generate values greater than 1). To obtain the similarity measure we simply invert
the values obtained in the cophenetic matrices; that is, similarity = 1/dissimilarity= 1/(cophenetic distance). The asymmetric element of the measure tells us how similar
the products are between manufacturing sites, whereas the symmetric element is used
only for within sites measurements - it gives us an indication of how consistent the
product is internally for each manufacturing site.

4.8. Methods for Detecting Outliers.
4.8.1. Boxplots. Perhaps the most common approach when attempting to identify

outliers is to use a boxplot. Invented in 1970 by John Tukey [25], the box-and-whiskers
plot as it is formally known provides a visual summary of the spread of ones’ data.

Figure 4. Boxplot taken directly from Figure 16.3 from page 237 of “A
Modern Introduction to Probability and Statistics” by F.M. Dekking et
al (Springer). [26]

In this work (see section 5.5.1) outliers are classed as observations found outside the
fences defined by w1 = q1 − 1.5(q3 − q1) and w3 = q3 + 1.5(q3 − q1), or when appropriate
w1 = q1 − 3(q3 − q1) and w3 = q3 + 3(q3 − q1), where q1 is the lower quartile and q3 is
the upper quartile. Figures 14 and 15 in section 5.5.1 include both “inner” (green) and
“outer” (red) fences calculated using these formulae. These formulae are chosen since
they are commonly used for outlier identification [26] and can be visualised easily on a
boxplot.
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4.8.2. Bagplots. First published in 1999 by Rousseeuw, Ruts and Tukey, the Bag-
plot [27] (occasionally called starburst plot) is a bivariate extension to the univariate
boxplot (also Tukey). It provides a visualisation of the spread and nature of bivariate
data, and is used for identifying outliers in such data sets. In Figure 5, up to half of
the data is found in the dark blue segment, known as the bag. In the construction
of this bagplot, and all others, there is also a fence, so in total the bagplot has three
nested polygons. Although the fence is never actually plotted it is used to construct
the bagplot. Observations, highlighted as red lines, between the bag and the fence are
marked by a light blue segment, known as the loop. Anything that goes beyond the
loop is classed as an outlier. The asterisk in Figure 5 represents the depth median;
that is, the point where the Tukey depth is highest.

Figure 5. An Example of a Bagplot. A Simple Bagplot showing
weight against displacement for car data Chamber/Hastie 1992, taken
directly from [28].

Remark. Code for bagplots obtained and adapted from Rousseeuw, Ruts and Tukey’s
original work (see[27]).

4.9. Distributions and Curve Fitting. A number of possible distributions
were considered for modelling the three data sets, with the likeliest best-fits (and
practical) distributions investigated and discussed in this report. These distributions
include Gaussian (described as below), Weibull and Fréchet (these were considered and
experimented with but it soon become clear that these distributions were not suitable
and thus further details have been omitted).
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The Gaussian3 or normal distribution is one of, if not, the most important distributions
in probability and statistics. This distribution is described by two parameters: the mean
µ and the standard deviation �. Formally, we can define the Gaussian by its probability
density function f:

Definition 8. If a continuous random variable follows a Gaussian distribution param-
eterised by µ and �, then it must have the probability density function:

f(x) = 1
�
√
2⇡
e
− 1

2
�x−µ

�
�2 for x,µ ∈ R and � ∈ R0+.

To calculate the parameters µ and � a variety of methods are examined. One approach
is to calculate µ using the following algorithm:

For each distribution:
(1) Find the three m/z values with the highest intensities. Call these I0, I1, I2,

where I0 has the largest intensity and I1, and I2 have, respectively, the next
largest, and are found either side of I0 in the distribution plots (such as those
in Figure 1).

(2) Calculate I0 − I1 = di↵1 and I1 − I2 = di↵2.
(3) If di↵1/di↵2 ≥ 1 then take MZ corresponding to I0 as µ. That is, µ =MZI0 .
(4) Else if di↵1/di↵2 < 1 then take the MZ value corresponding to the midpoint

between I0 and I1 as µ. That is, µ = MZI0
+MZI1
2 .

Then, to estimate � for each distribution a more complex procedure is required. To
do this we first calculate the Full Width at Half Maximum (FWHM) for each of the
selected distributions. The FWHM is simply the width of a peak at half its height. For
mass spectrums and distributions such as ours the FWHM is a commonly used concept
(see [30], for example) and provides a means of estimating parameters, in this case �,
since the extrema of such distributions tend to be heavily a↵ected by noise whereas the
central bulk does not.

If our data does in fact follow a Gaussian then we can use extracted features like
the FWHM along with maximum height of the distribution, the ratio between two
distributions’ maximum heights and the centre of the distribution as variables in
further analyses. This is extremely beneficial since these extracted features are clearly
more practical and easy to understand than 100s of M/Z values. Using extracted
features - a smaller set of variables that accurately summarise given data - is common
practice and PCA is in fact an example of this.

The extracted features mentioned above are used in section 5.5 (The Hierarchical
Clustering Approach) and in section 5.6 (Distribution Modelling).

Figure 6 illustrates FWHM and other important features of the Gaussian distribution.

3Named after the great German Mathematician and Physicist Carl Friedrich Gauss, who made one
of the first applications of the distribution in 1809 [29]
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Figure 6. Illustration of Full Width at Half Maximum of a
Gaussian Distribution. Figure 6 illustrates the FWHM of a Gaussian
curve with height A.

FWHM is calculated as follows:

For each distribution:

(1) Find the maximum intensity in the distribution and call this H.
(2) Define the constant h = H

2 as the half height of the distribution.
(3) Find the first and last peak in the distribution with an intensity greater than

h, and record their corresponding MZ values. Call these MZ values P1 for the
first peak and P2 for the last peak.

(4) Find the intersection of the straight line joining the intensity of P1 and the
intensity of the peak 44 Daltons to the left of it, with the line y = h. Similarly,
for P2, find the intersection of the straight line joining its intensity and the
intensity of the peak 44 Daltons to the right of it, with the line y = h. Call
these points of intersection A and B. The corresponding MZ values for the
points A and B (call these MZA and MZB) are then recorded. The diagrams
in Figure 7 illustrate the concept.

Figure 7. Illustration of the Intersection of Points for FWHM
Calculation. The left diagram shows the peak points for the actual
data and how the intersection between the two points is more accurate
than the di↵erence between P1 and P2, which would give a narrower
FWHM than it should be. The right diagram shows how a straight line
can be used to find the intersection with the line y = h, and how the
FWHM can be calculated more accurately.

26



(5) FWHM is calculated as the di↵erence between MZB and MZA. That is,
FWHM =MZB −MZA.

The standard deviation � is derived as follows:

The probability density function of a Gaussian distribution can be expressed as:

f(x) = Aexp �−x2

2�2 �
Where, A is the maximum height of the distribution.

The mean µ is set to 0.

Remark. This is legal as a Gaussian is a symmetric distribution and the nature of the
distribution does not change by shifting it (and thus its mean) along the x-axis. That
is, its position changes, but its nature and shape does not.

At half maximum height of the distribution, f(x) = A

2 . Therefore, we have

A

2
= Aexp�−x2

2�2
�

�⇒ 1

2
= exp�−x2

2�2
�

By taking the natural logarithm and applying the laws of logarithms, we obtain

ln
1

2
= − x

2

2�2

�⇒ − ln 1

2
= x

2

2�2

�⇒ ln 2 = x
2

2�2

�⇒ x = ±√2�2 ln 2

Since the Gaussian curve is symmetric, the FWHM, which is simply the distance between
x and −x (as demonstrated in the diagram - Figure 6) is clearly given by

FWHM = 2�x�
= 2√2�2 ln 2

= 2�√2 ln 2
Finally, rearranging we see that

� = FWHM

2
√
2 ln 2

,

which is used to calculate the standard deviation for each distribution.

All these parameter values are stored as a matrix from which the Gaussian curves are
fitted to each distribution.
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5. Results and Discussion

In this section the results of the analysis are discussed in detail. The first step in the
analysis is the exploratory data analysis stage, where PCA and normalising the data are
investigated using the techniques described in sections 4.2 and 4.3. This initial phase of
the analysis provides a visual representation of, and insight into, the data from which
we can progress from. It also allows us to determine whether or not the data should
be normalised. Once the exploratory analysis is complete we investigate various simi-
larity measures, starting with two commonly used measures: the Squared Mahalanobis
distance (see 4.4 for details) and the Bhattacharyya distance (described in section 4.5).
Then, by using the Within-Groups and Between-Groups variances, the Separation (de-
scribed in section 4.6) is investigated as a measure. A novel approach which employs
the use of hierarchical clustering and cophenetic distances is also examined (methods
for hierarchical clustering are discussed in 4.7). The final approach examined in this
work is to use a Gaussian fit to model the data and use extracted features (see section
4.9) from this model in a potential similarity measure. Of course, the accuracy of the fit
is crucial to this approach. In summary, this section provides discussion on the validity
of all these measures and analyses used to determine such.

5.1. Exploratory Analysis. For the raw Tween 20 data, PC1 accounts for
83.58% of the variance, and PC2 accounts for a further 8.17%. Combined, these first
two PCs account for over 90% of the total variance and therefore only PC1 and PC2
are required in the analysis.

Figure 8 shows the PCA Scores Plot, for the first two principal components, of the raw
Tween20 data.

Figure 8 shows that Thane is the most separate cluster; suggesting that there is a
noticeable di↵erence between the final product produced there and the rest of the
Croda sites. However, Singapore, Mill Hall and Rawcli↵e Bridge are all extremely close
together with visibly overlapping data points, which indicates an exceptionally similar
final product is produced by these sites. Finally, Chocques appears to be somewhat
separate from the main cluster; however, there is still some overlap, and thus there
appears to be some similarities between the final product produced there and those
produced at Mill Hall, Rawcli↵e Bridge and Singapore.
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Figure 8. PCA Scores Plot showing PC1 against PC2 for the
raw Tween20 data. A clear clustering of the data points for Singa-
pore, Mill Hall and Rawcli↵e Bridge can be seen. Thane and Chocques
data points both exhibit large within group variance with Thane clearly
the most separate site cluster. The labelled points 141, 142 and 143
are replicates of the same sample and demonstrate that variance in the
MALDI-TOF-MS analysis has an important and undesired impact on
PCA. The labelled point 120 shows how much variation there is within
the Thane data. Observation 61, 62, 63 appear to di↵er from the rest of
the Mill Hall observations.

Table 2. Sum of variables for selected observations. Table 2
demonstrates the variance in the sum of variables (total ion count) for
the raw Tween20 data. Clearly, there is a large variation in the total ion
count; in particular, replicates (141, 142, 143) of the same observation
have notably di↵erent total ion counts. As these replicates are of the
same observation, they should have the same total ion count and these
di↵erences must be due to the experimental method. Therefore, this is a
great source of unwanted variation in the analysis. Normalising the data
overcomes this by ensuring the sum of variables is the same (10,000) for
all observations.

Observation Sum of Variables (Total Ion Count) in Billions
39 21.60
61 2.25
62 1.96
63 2.42
141 10.130
142 16.53
143 23.57

Table 2 shows that the sum of variables (total ion count) for the raw Tween20 data
points varies largely. For example, observation 143 has a sum of variables that is
twelve times greater than that of observation 62 for the raw data. This large variation
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in the sum of the variables for the raw data suggests that certain variables may be
dominating the analysis for some observations. This could lead the analysis in the
wrong direction, likely skewing results and missing out important inferences from
underestimated variables. Whereas, the sum of variables for the normalised data is
the same for each observation and thus avoids any issues arising from certain overly
influential variables distorting the analysis. Moreover, observations 141, 142 and 143
are replicate measurements of the same sample and should therefore have the same
total ion count. However, since there is a substantial di↵erence for the total ion count
between these observations for the raw data, it is clear that this is a great source of
variation in the analysis. Hence, normalising the data results in the total ion count
being the same for all three replicates and thus the variance is reduced between them,
as desired.

By comparing the PCA scores plot for normalised data (Figure 9) with Figure 8, it is
possible to determine whether or not normalisation is better for this analysis.

From Figure 9 it is observed that normalising the data leads to a better visualisation
of the di↵erence between sites than the original, non-normalised data (see Figure 8 for
comparison). This infers that identifying di↵erences between the sites’ final products
and their potential causes will be easier and more informative using normalised data.
As a result, future analyses will use normalised data.

Other key observations from Figure 9:

● Relatively good separation of data by manufacturing site.● As with Figure 8, we observe that Thane is the most separate cluster (clearly,
the most separate along PC1 and quite separate along PC2) and thus likely
producing a final product which is the most dissimilar to the other sites.● Chocques, Rawcli↵e Bridge and Atlas Point demonstrate a clear clustering and
overlap of data points, and are therefore likely outputting a near indistinguish-
able final product.● Atlas Point and Rawcli↵e Bridge appear to be the most similar producers of
Tween20. Rawcli↵e Bridge and Chocques are then the next two most similar
producers, with Atlas Point and Chocques marginally less similar.● Mill Hall and Singapore are seen to be quite separate from the main cluster of
Chocques, Rawcli↵e Bridge and Atlas Point. Hence, there could be noticeable
dissimilarity between these two sites and the main cluster’s final product.● There appears to be three potential outliers associated with Mill Hall: points
61, 62, and 63. These all come from the same original sample; therefore, it is
possible that this particular original sample is an outlier. Before removing any
data points as outliers it is important to investigate why they are di↵erent and
are therefore retained.● There is a clear pattern followed by all site clusters. Each site cluster follows
a near straight-line correlation along PC1 and 2. These patterns or correla-
tion lines likely represent a hidden and non-random variation in the original
Tween20 data (the patterns are less clear in Figure 8, but are present for most
site clusters there too). It is possible that this hidden variation could be due to
the experimental set-up; for example, biases caused by the placement of sam-
ples in the matrix. It should be noted that a common misconception that can
arise here is that such patterns within clusters implies that PC1 and PC2 are
not orthogonal. However, this is not the case since the PC vectors, which are
linear combinations of the original variables, are by construction orthogonal to
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Figure 9. PCA Scores Plot showing PC1 against PC2 for the
Normalised Tween20 data. Better visualisation of the separation of
the data seen here than in Figure 8; which is better for future analyses
since identifying di↵erences between sites will be simpler. Generally,
there is a clear separation between the manufacturing sites and Thane
is seen to be distinctly distant from the other sites; implying the final
products produced at Thane will likely be markedly di↵erent to those
produced at the other sites. There is clear overlap between Atlas Point,
Chocques and Rawcli↵e Bridge, indicating that the final products at
these sites will likely be exceptionally similar. Mill Hall and Singapore
appear to produce final products which are somewhat di↵erent to the
main cluster. Mill Hall does appear to have three potential outliers
(61, 62, 63); however, they are not removed since it is important to
investigate why they are di↵erent before confidently removing them as
outliers. Observations 141, 142 and 143 are labelled because they are
replicates of the same sample and comparing with Figure 8 the di↵erence
between them appears to be less (which is what one would expect as they
are the same sample).

each other. PCA scores plots show the magnitude of PC1 against PC2 across
the di↵erent samples not the orthogonality of the linear combinations of the
original variables.

5.2. Squared Mahalanobis Distance. In Table 3, we see the between groups
squared Mahalanobis distance, calculated using the first two principal components, for
Tween20. This measure takes into account the covariances between observations and,
since the PCs are uncorrelated, only the diagonal elements of the covariance matrix
(that is, the variances) will be non-zero.
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Table 3. Between Sites Mahalanobis Distance with Weighted Covari-
ance for Tween 20.

Atlas Point Chocques Mill Hall Rawcli↵e Bridge Singapore Thane
Atlas Point 0 4.79 4.63 0.28 30.36 675.99
Chocques 0 8.10 3.16 33.25 370.07
Mill Hall 0 8.15 17.14 77.30

Rawcli↵e Bridge 0 39.65 472.37
Singapore 0 334.37
Thane 0

Key observations from Table 3 are:

● Thane is identified as the site producing the least similar product to the other
sites. This agrees with the PCA scores plot in Figure 9. However, the measure
appears to misjudge the magnitude of this dissimilarity; that is, it suggests the
distance between Thane is far greater than we would expect it to be from what
is observed in Figure 9.● Atlas Point and Rawcli↵e Bridge are correctly identified as the most similar lo-
cations, producing the most similar final product. This seems quite reasonable
since it compares well with Figure 9.● These results also indicate that Atlas Point and Chocques produce similar
final products, in agreement with Figure 9. However, the magnitude of this
similarity between these sites according to this metric appears to be somewhat
larger than we would have expected from the visual interpretation of the data
provided by Figure 9. This is especially obvious when we consider that Atlas
Point and Mill Hall are, according to this metric, more similar than Atlas Point
and Chocques are, which does not agree with Figure 9. Mill Hall should be a
much greater distance from Atlas Point than Chocques; however, this metric
has completely failed to recognise this and is therefore inaccurate here.● Rawcli↵e Bridge and Chocques are correctly measured to be the second most
closely matched sites by this metric.● The magnitude of this similarity between Mill Hall and the other sites in par-
ticular, appear largely inaccurate when compared to Figure 9. For example,
the metric seems to have overestimated the di↵erence between the final prod-
ucts produced by Mill Hall and Singapore and underestimated its di↵erence
with Chocques to a considerable degree. Also, the similarity between Mill Hall
and Atlas Point appears to be far too small, especially when compared to the
similarity between Atlas Point and Chocques (which is greater according to
this metric, when in fact the PCA plot clearly shows Atlas Point is substan-
tially more similar to Chocques than Mill Hall). Possibly the potential outliers
have caused the issues with Mill Hall since outliers are known to adversely
a↵ect the performance of this measure [31]. For this reason, outliers must be
investigated further.

Although this metric does appear to be somewhat successful when comparing the more
closely matched sites (Atlas Point, Chocques, and Rawcli↵e Bridge), results in Table 3
fail to fully reflect Figure 9, indicating that the measure is not reliable for this data
set. Other similarity measures must be experimented with for comparison.
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5.3. Bhattacharyya Distance. In Table 4, the between groups squared Bhat-
tacharyya distance, calculated using the first two principal components, for Tween20
is provided.

Table 4. Between Sites Bhattacharyya Distance with Weighted Covari-
ance for Tween20.

Atlas Point Chocques Mill Hall Rawcli↵e Bridge Singapore Thane
Atlas Point 0 0.70 1.26 0.09 3.99 84.65
Chocques 0 1.48 0.48 4.30 46.31
Mill Hall 0 1.49 2.52 10.35

Rawcli↵e Bridge 0 5.06 59.25
Singapore 0 42.01
Thane 0

Important remarks from Table 4 are:

● Thane is identified as the most separate site cluster and Singapore as the second
most (as was the case with the Mahalanobis equivalent). This agrees with the
visualisation in the PCA scores plot shown in Figure 9.● The overall order of similarity (Rawcli↵e Bridge and Atlas have the smallest
non-zero distance and are most similar, then it is Atlas Point and Chocques,
and so on) appears to mostly reflect what is observed in Figure 9; however, it
is clear that this measure is vastly overestimating the di↵erences between the
sites. This is similar to how the Mahalanobis measure performed.● The measure correctly identifies Atlas Point and Rawcli↵e Bridge as
the most similar sites and appears quite accurate compared with Figure 9
for the relationship between Atlas Points, Chocques and Rawcli↵e Bridge sites.

Overall, this metric o↵ers a more reliable measure than the Mahalanobis distance.
For example, it correctly identifies that Chocques is more similar to Atlas Point
than it is to Mill Hall, whereas the Mahalanobis distance did not. However, it is
still inaccurate; especially, in terms of the magnitude of dissimilarity between the
Croda sites. It is also notably unsuccessful at accurately measuring the di↵erence
between the most separate site clusters and the rest. That is, the distances in
Table 4 for Thane, for example, are far larger than one would expect from the vi-
sualisation of the data shown in Figure 9. Therefore, this measure is not practical to use.

Remark. The Hellinger distance was also considered; however, it readily become ap-
parent during initial findings that this measure merited no further investigation or
discussion.

5.4. Within Group Variance, Between Group Variance, and Separation.
To account for the percentage of the variance in the Tween20 data due to each of the
first two PCs, ↵ values are used.

We can simply calculate the ↵ values as:

↵i = varPCi
varPCi+varPCj

for i ≠ j, i = 1,2 and j = 1,2.
Where varPCi and varPCj are the percentage of the variance in the analysis along PCi
and PCj, respectively.

Hence, for the first two PCs we have:
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↵1 = 49.73
49.73+20.43 ≈ 0.7,↵2 = 20.43

20.43+49.73 ≈ 0.3
This gives greater weighting to PC1 as desired.

Using the concept of covariance and linear combinations we can apply the following for-
mulae for within and between groups variances (an extension of the formulae discussed
in section 4.6),

V arWG( n∑
i=1↵iXi) = ∑

i,j

↵i↵jcovWG(XiXj) and V arBG( n∑
i=1↵iXi) = ∑

i,j

↵i↵jcovBG(XiXj)
where covWG(XiXj) =

g∑
k=1(nk−1)S2

i,j,k

∑
i
ni−g and covBG(XiXj) =

g∑
k=1nk(xi,k−xi)(�→x i,k−xj)

∑
i
ni−g , to the

Tween20 data to obtain the following tables.

Given in Tables 5, 6 and 7 are the weighted Within Groups Variance, weighted Between
Groups Variance and the Separation, respectively, for Tween20 data. Here, Separation
is a natural similarity measure since it provides a means of measuring the similarity
between sites. It does this by accounting for both the internal (within groups) variance
and external (between groups) variance. The smaller the Separation, the greater the
similarity.

Table 5. Within Groups Variance for Tween20 Weighted for PCs 1 and 2.

Atlas Point Chocques Mill Hall Rawcli↵e Bridge Singapore Thane
Atlas Point 63731.15 72614.20 50692.93 54192.74 29539.73 86234.89
Chocques 75983.64 60865.52 67368.08 46277.10 85377.22
Mill Hall 45747.40 45446.81 31158.99 70259.10

Rawcli↵e Bridge 44654.33 24293.61 80988.77
Singapore 16570.57 55670.68
Thane 94770.79

Between Group Variance for Tween20 Weighted for PCs 1 and 2 is given in Table 6.

Table 6. Between-Groups Variance for Tween20 Weighted for PCs 1 and 2.

Atlas Point Chocques Mill Hall Rawcli↵e Bridge Singapore Thane
Atlas Point 0 10063.55 74429.83 3815.58 322978.90 165482.10
Chocques 0 168036.37 2076.05 539561.80 113362.10
Mill Hall 0 107303.36 105382.20 557434.30

Rawcli↵e Bridge 0 388211.20 123933.10
Singapore 0 1147558.00
Thane 0

Separation for Tween20 Weighted for PCs 1 and 2 are given in Table 7.
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Table 7. Separation for Tween20 Weighted for PCs 1 and 2.

Atlas Point Chocques Mill Hall Rawcli↵e Bridge Singapore Thane
Atlas Point 0 0.14 1.47 0.07 10.93 1.92
Chocques 0 2.76 0.03 11.66 1.33
Mill Hall 0 2.36 3.38 7.93

Rawcli↵e Bridge 0 15.98 1.53
Singapore 0 20.61
Thane 0

Tables 5,6 and 7 show that both the between and within groups variances are somewhat
accurate; however, it appears that separation is not useful as a similarity measure for
this data. A di↵erent approach is needed.

5.5. The Hierarchical Clustering Approach. Hierarchical clustering can be
used to derive a similarity measure in a number of di↵erent ways. Although not
strictly a metric, the best approach found was to use an asymmetric distance. This
distance is informative since it describes the interchangeability of sites in the sense
that Site A can replace Site B fully, but Site B may not be able to replace Site A. For
example, we can examine Table 8, which shows the Asymmetric Similarities for the raw
Tween20 data. The bottom row shows how dispersed the data is within a site using a
symmetric distance since a greater understanding of within site similarity is achieved.
Here, greater than one (> 1) means it is less dispersed than average, less than one (< 1)
means more dispersed than average. It is important to take into consideration that
this measure is a↵ected by variance within a site.

The asymmetric similarity is calculated by first finding the maximum cophenetic dis-
tance between observations within group i and then the maximum cophenetic distance
between observations within groups i and j; then, dividing the maximum cophenetic
distance between observations within groups i and j by the maximum cophenetic dis-
tance between observations within group i and invert to obtain the similarities. The
process is the same for symmetric similarity except that the mean of the maximum
cophenetic distances within each group is used as the divisor instead (the code for both
the asymmetric and symmetric similarities are given in appendix A).

Table 8. Table of Asymmetric Similarities for Raw Tween20 Data.

Atlas Point Chocques Mill Hall Rawcli↵e Bridge Singapore Thane
Atlas Point 1 0.70 0.49 1 0.58 0.44
Chocques 1 1 0.71 1 0.84 0.63
Mill Hall 1 1 1 1 1 0.9

Rawcli↵e Bridge 1 0.70 0.49 1 0.58 0.44
Singapore 0.55 0.55 0.46 0.55 1 0.41
Thane 0.53 0.53 0.53 0.53 0.53 1

1.27 0.88 0.63 1.27 1.35 1.05

Inferences from Table 8:

● All sites have 100% similarity with themselves, so are assumed to be internally
consistent by the asymmetric measure. Which is not unreasonable.
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● CH to AP, RB to AP, CH to RB, and MH to SI are the joint most similar
between sites (100%). However, MH to SI appears to be very di↵erent to what
we would expect, whereas the others do not.● Sites which are very similar but not 100% according to this measure are: RB
to CH (85%), MH to AP (84%), MH to CH (84%), MH to RB (84%), AP to
RB (78%).● Least similar sites: SI to TH (33%), AP to TH (34%), SI to AP (41%), SI to
CH (41%), SI to RB (41%), AP to MH (42%), AP to SI (42%), RB to TH
(44%), SI to MH (49%), CH to TH (51%).● MH’s low value in the bottom row suggests outliers could be present.

Table 8 can be compared with its corresponding dendrogram shown in Figure 10.
Figure 10 provides a visualisation of what is observed from Table 8. AP, CH and RB
all appear to produce highly similar final products which would be interchangeable
between the sites. The separation between the rest of the site clusters is also clear to
see here, matching what is described in the inferences from Table 8. The potential
presence of one or more outliers in MH cluster (observed from Table 8) is shown
quite clearly in Figure 10; observation 21 is clearly di↵erent to the rest of the cluster
(noticeable since the cophenetic distance is clearly much greater between 21 and the
other MH observations) and is likely to be an outlier.

Figure 10. Dendrogram using Euclidean Distance and Average
Linkage for Raw Tween20 data.

To investigate the viability of extracted features (as described in methods, section 4.9,
these are FWHM, Maximum Height, Ratio of Heights and Centre of the Gaussian model)
we examine Figures 11 and 12 which show the dendrograms for raw and extracted
features BrijCS20 data respectively. For ease of comparison, both dendrograms use
Euclidean Distance and Average Linkage. Clearly, these Figures indicate that it is
possible to use extracted features for this analysis (this is also important for distribution
modelling as will be seen in section 5.6).

Tables 9 and 10 show the Asymmetric Similarities for Raw BrijCS20 Data and for
Extracted Features BrijCS20 Data, respectively. Like Figures 11 and 12 these tables
indicate that it is possible to use extracted features for this analysis since they produce
similar results. However, outliers (see observation 2 in Figure 12, for example) are a
concern for extracted features that will be investigated.
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Figure 11. Dendrogram using Euclidean Distance and Average
Linkage for Raw BrijCS20 data.

Figure 12. Dendrogram using Euclidean Distance and Average
Linkage for Extracted Features BrijCS20 data.
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Table 9. Table of Asymmetric Similarities for Raw BrijCS20 Data.

Atlas Point Mevisa Rawcli↵e Bridge Singapore Thane
Atlas Point 1 1 0.24 0.24 0.55
Mevisa 1 1 0.24 0.24 0.55

Rawcli↵e Bridge 0.18 0.18 1 1 0.18
Singapore 0.18 0.18 1 1 0.18
Thane 0.62 0.62 0.27 0.27 1

0.92 0.92 1.25 1.25 0.82

Table 10. Table of Asymmetric Similarities for Extracted Features Bri-
jCS20 Data.

Atlas Point Mevisa Rawcli↵e Bridge Singapore Thane
Atlas Point 1 0.92 0.22 0.22 0.50
Mevisa 0.92 1 0.22 0.22 0.50

Rawcli↵e Bridge 0.22 0.22 1 1.25 0.22
Singapore 0.22 0.22 0.25 1 0.22
Thane 0.50 0.50 0.22 0.22 1

0.61 1.19 1.52 1.34 0.91

5.5.1. Identifying Outliers. Univariate boxplots using PC1 scores as input is the
first method investigated for detecting outliers. The whiskers for these boxplots are
calculated as w1 = q1−1.5(q3−q1) and w3 = q3+1.5(q3−q1), where q1 is the first quartile
of the data and q3 is the third quartile. Hence, q3−q1 is the interquartile range. w1 and
w3 are shown as the long horizontal lines in the boxplots and any data points outside
these limits are defined to be outliers. Figure 13 shows the univariate boxplot for the
Mill Hall data from Tween20.

Figure 13. Univariate Boxplot for Mill Hall Data from Tween20

This boxplot (Figure 13) indicates that observation 16 is an outlier, which does
not make sense and is not reflective of what is seen in the PCA scores plot or the
dendrogram. This univariate boxplot method produced reasonable results for the other
sites; however, the Mill Hall data is crucial since it contains the outlier observed in the
dendrogram. Since this boxplot does not correctly identify the outlier and, in fact,
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misclassifies observation 16 as such, it is concluded that this method is ine↵ective.

The second approach tried in outlier detection uses the first two PCs with the Maha-
lanobis Distance. Figure 14 shows the boxplot produced under this method for Mill
Hall and Figure 15 shows the boxplot for the Singapore data.

Figure 14. Mahalanobis Boxplot for Mill Hall Data from Tween20

Figure 15. Mahalanobis Boxplot for Singapore Data from Tween20

As Figures 14 and 15 show, this approach is close. It correctly identifies observation
21 as an outlier for Mill Hall, but unfortunately observation 16 from Mill Hall and
observation 32 from Singapore are misidentified as outliers too. This means that this
method is likely too sensitive.

A novel approach to this problem was to examine the use of bivariate Bagplots using
PC1 and PC2 scores as input. Figure 16 gives the bagplots produced for each site of
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the Tween20 data.

Figure 16. Bagplots for Tween20 data by site. From top left
to bottom right: Atlas Point, Chocques, Mill Hall, Rawcli↵e
Bridge, Singapore, Thane.

Though somewhat successful for larger groups of data this method (Figure 16) ulti-
mately fails as it does not perform adequately for the small data subsets; in particular,
it fails to work for Rawcli↵e Bridge and Atlas point data (both only having four data
points each).

A fourth approach uses decision boundaries or fences to discriminate between outliers
and valid data. This method involves using PC1 and PC2 scores as input and constructs
the fences as follows:

Inner fences: w1 = q1 − 1.5(q3 − q1) and w3 = q3 + 1.5(q3 − q1).
Outer fences: w1 = q1 − 3(q3 − q1) and w3 = q3 + 3(q3 − q1)
Where all variables are as defined in the univariate boxplot method.
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Figures 17 and 18 demonstrate how this method performs for Chocques and Mill Hall,
respectively.

Figure 17. Decision Boundary Boxplot for Chocques Data from
Tween20

Figure 18. Decision Boundary Boxplot for Mill Hall Data from
Tween20

Clearly, an outlier is found where there should be none for Chocques (Figure 17),
meaning that this method is overly sensitive. It does perform well for Mill Hall,
finding observation 21 to be an outlier as we would have expected. This is yet another
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approach which came close; however, it is ultimately still unsuccessful.

Unfortunately, after numerous ideas and attempts, no perfect solution was found for
this crucial issue. All four methods discussed here come close; however, the lack of data
for some of the manufacturing sites is problematic. With more data in the future, this
problem may be solved.

5.6. Distribution Modelling.
5.6.1. Gaussian Model. All parameter values (µ and �) are calculated as described

in Methods and then stored in a matrix from which the model Gaussian curves are
fitted to each distribution. A selection of these fitted curves are shown in Figure 19, to
illustrate how well the fitted model works for BrijCS20 data. Here, the two largest and
therefore important distributions are plotted with overlaying Gaussian fits along their
peaks. These distributions are related peaks from the same compound (the BrijCS20
product). They di↵er in shape due to the number of ethylene oxide molecules (also
known as EO units) added to them. To identify the distributions we can use the
consistent di↵erence of 44 Daltons, which correspond to the EO units, in their m/z
values.

Figure 19. Gaussian Fits for BrijCS20 data. From top left to
bottom right: Observation from Atlas Point, Observation from Mevisa,
Observation from Rawcli↵e, Observation from Singapore, Observation
from Thane. Plot of the data for observations from the di↵erent sites
with the fitted Gaussian curves overlaid. Two largest distributions in
the BrijCS20 data are fitted with Gaussian curves. The curves appear
to fit the data reasonably well in each case; therefore, it is possible to
cautiously assume the data is Gaussian. There is some error, especially
for the higher masses, which may indicate that there could be some right
skew in the distribution.
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Figure 19 demonstrates that the Gaussian models fit the data quite well. Thus, we
can cautiously use the assumption that the data is Gaussian for these two selected
distributions. This means that we can use properties of the Gaussian distribution to
analyse the data. For example, we extract the maximum height, FWHM, the ratio
between the two distributions‘ maximum heights and the centre of the distribution,
and use them as variables in further analyses.

To verify how accurate the Gaussian fit is for this data, the di↵erence between the
actual (experimental) data and calculated or modelled Gaussian data is calculated. An
example of these calculated errors are provided in Table 11, which includes a sample of
the calculated errors for the first distribution for observation 1 from Atlas Point (plot
is given in Figure 19).

Table 11. An Example of calculated errors for the Gaussian
Fit. Table 11 shows a selection of the errors for the Gaussian fit. Ob-
servation 1 from Atlas Point is used in this example, and, although less
accurate for larger masses, it demonstrates that the fitted model appears
reasonably accurate for this data.

m/z value Error between Gaussian Fit and Actual Data
882 0.48
1014 0.91
1146 0.57
1278 0.32
1410 0.64
1542 1.98
1674 2.72
1806 2.46

Table 11 demonstrates a common trend for the Gaussian fit errors; namely, that for
higher masses the accuracy of the model decreases. The slight decrease of accuracy in
the model for these higher masses is not substantial and is likely to be attributed to
the greater variance often observed for large masses in mass spectrometry. This fact,
coupled with the small error observed between the fitted Gaussian distribution and the
actual data for all masses, indicates that the data can be modelled as Gaussian.

Continuing under the assumption that the Gaussian model is suitable, the PCA scores
plot for the extracted variables (FWHM, MZ centre, distribution ratio and maximum
intensity) for BrijCS20 data is provided in Figure 20(A). 20(B) shows the PCA scores
plot for the original normalised Brijcs20 data and is used for comparison with 20(A).

The most important observation from Figure 20(A) is that it closely resembles Figure
20(B). This key insight tells us that the extracted variables provide a similar overall
representation of the data as the original data; meaning that the analysis can be
simplified in this way without a significant loss of information from the data. Since the
same overall pattern is observed in both Figure 20(B) and 20(A), the key observations
are similar. That is, the separation observed between the di↵erent clusters is extremely
similar in 20(B) and 20(A). Arguably, the potential Thane outlier appears somewhat
less prominent in Figure 20(A); however, this is marginal and thus not a concern.

When used in similarity measures such as Bhattacharyya and Mahalanobis the ex-
tracted features data and Gaussian model failed, this is likely due to the issues caused
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(a) PCA Scores Plot for Extracted Features BrijCS20 data.

(b) PCA Scores Plot for Original BrijCS20 data.

Figure 20. Showing the PCA Scores Plot for Extracted Fea-
tures BrijCS20 data (A) and the PCA Scores Plot for Original
BrijCS20 data (B) for comparison (that is, to see whether ex-
tracted features can be used).

by outliers (see section 5.5.1). Other distributions including Fréchet and Weibull were
also experimented with, but they failed to fit the data any better than the Gaussian
model.
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For additional insight and analysis we also investigate the Glycerox HE product. In
Figure 21 the peaks of the distributions are joined to form the distributions of the
samples for Atlas point. Clearly, the data points (observations 1 to 9 from the Glycerox
data) do not follow a normal distribution fully since there is some right-skewness for
all samples. This again highlights that the data, although close, does not fully follow
the normal distribution and as such extracted features from the distribution may not
be as useful as hoped. The data is far more skewed for Glycerox and this is likely due
to the products composition.

Figure 21. Figure 21, showing the peaks of the distributions
using joined lines for each sample of Glycerox from Atlas Point.
A clear right-skew is seen in the distribution, indicating that the Glycerox
HE data does not follow the Gaussian distribution.

Future analyses could look at other novel distributions or combinations of distributions
to produce a more viable and practical model.
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6. Conclusion

This research showed that finding a suitable similarity measure for Croda’s chemical
products is challenging. However, numerous approaches yielded promise, and it is
probable that a practical solution can be found. Distribution fitting, as well as the
hierarchical clustering approach, are particularly encouraging. The Gaussian curve
nearly fits the data and with further investigation another distribution or combination
of distributions that better fits the data may be found. Similar promise is shown with
the asymmetric similarity measure from hierarchical clustering, especially with regard
to the accuracy of internal consistency of products. However, the issues with outliers
need to be resolved for both of these approaches. If they are, then either of these
methods may provide a practical similarity measure for Croda. It is also clear that
more data would help substantially in this research, especially for developing a means
for identifying outliers. Perhaps, bagplots or a variation of the boxplots tried may then
result in an e↵ective outlier detection algorithm.

Other approaches, investigated in the early stages, did not produce much promise. The
Bhattacharyya and Mahalanobis distances seemed, intuitively, to be prime candidates
as measures for this data; however, the results were unexpectedly worse than hoped.
These measures did not align well with the data and the separation observed in principal
component analysis. Separation was investigated as the next best candidate. Again,
the results were not accurate enough and separation, despite the within and between
groups variances showing reasonable accuracy, was dismissed as an option for Croda’s
similarity measure. More novel and complex approaches were then investigated, these
include distribution fitting and the hierarchical clustering approaches discussed above.

Overall, no approach investigated in this project produced the similarity measure, the
simple decision boundary, from which Croda could confidently and easily determine
whether or not a sample of a product was consistent enough to use. Yet, this research
is not in vain since avenues for further progress have appeared with both distribution
fitting and hierarchical clustering. One such avenue is to model the data with another
distribution or a combination of distributions and use the properties of that distribution
to find a more suitable and informative measure.
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Appendices

Since there is a vast amount of extremely similar code in this project, the appendices
are used wisely, containing the key segments of code that represents the work in this
project.

A. R Code for Cophenetic Distances and Derived Similarity Measure

# Script for the asymmetric version coph = function (data, groups, ngroups){
var < − matrix(0, ncol = ngroups, nrow = ngroups)
cophw < − rep(0, ngroups)
for (i in 1:ngroups) {
cophw[i] = max(data[which(groups == i), which(groups == i)])
for (j in 1:ngroups){
var[i,j] = max(data[which(groups == i), which(groups == j)])/ cophw[i]}}
# Convert distance to similarity
return(1/var);}
# Script for the symmetric version. This uses the average within group similarity;
therefore it can give values greater than 1.
coph3 = function (data, groups, ngroups){
var < − matrix(0, ncol = ngroups, nrow = ngroups)
cophw < − rep(0, ngroups)
for (i in 1:ngroups) {
cophw[i] = max(data[which(groups == i), which(groups == i)])}
for (i in 1:ngroups) {
for (j in 1:ngroups) {
var[i,j] = max(c[which(groups == i), which(groups == j)])/ mean(cophw)}}
# Convert distance to similarity
return(1/var);}
B. R Code for PCA Scores Plot PC1 v PC2 for Raw Replicates Tween20

Data

Tween1 = read.csv(“Tween20data.csv”, header = FALSE)
View(Tween1)
Tween info = read.csv(“Tween20info.csv”, header = TRUE)
View(Tween info)
pcaTween1 = prcomp(Tween1, scale = FALSE)
summary(pcaTween1)
plot(pcaTween1$x[,1], pcaTween1$x[,2], xlab = “PC1”, ylab = “PC2”, pch = 19, col
= Tween info$location)
legend(“bottomleft”, legend = unique(Tween info$location), pch = 19, col =
unique(Tween info$location))
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C. R Code for Figure 9 - PCA Scores Plot for Normalised Replicates
Tween20 Data

Tween2 = read.csv(“Tween20data.csv”, header = FALSE)
View(Tween2)
pcaTween2 = prcomp(Tween2, scale = FALSE)
plot(pcaTween2$x[,1], pcaTween2$x[,2], xlab = “PC1”, ylab = “PC2”, pch = 19, col
= Tween info$location)
legend(“bottomright”, legend = unique(Tween info$location), pch = 19, col =
unique(Tween info$location))
summary(pcaTween2)

D. MATLAB Code for Distribution Fitting Section

databrij = ‘BrijCS20mzs.csv’;
BrijCS20mzs1 = readtable(databrij);
datacs20 = ‘BrijCS20data.csv’;
BrijCS20data1 = readtable(datacs20);

tiledlayout(2,3);
nexttile
title(‘Atlas Point Sample’);
plot(BrijCS20mzs1{:,:}, BrijCS20data1{1,:});
hold on;
FWHM1 = 510;
sigma1 = FWHM1/(2*sqrt(2*log(2)));
mu1 = 1214;
x lim = 0:2800;
fit Gaussian = normpdf(x lim, mu1, sigma1);
max height = 116.74;
lambda = max height/(max(fit Gaussian));
z = fit Gaussian.*lambda;
plot(x lim,z);
hold on;
FWHM2 = 530;
sigma2 = FWHM2/(2*sqrt(2*log(2)));
mu2 = 1190;
fit Gaussian2 = normpdf(x lim, mu2, sigma2);
max height2 = 230;
lambda2 = max height2/(max(fit Gaussian2));
z2 = fit Gaussian2.*lambda2;
plot(x lim,z2);

nexttile
title(‘Mevisa Sample’);
plot(BrijCS20mzs1{:,:}, BrijCS20data1{13,:});
hold on;
FWHM1 = 540;
sigma1 = FWHM1/(2*sqrt(2*log(2)));
mu1 = 1240;
x lim = 0:2800;
fit Gaussian = normpdf(x lim, mu1, sigma1);
max height = 119.48;
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lambda = max height/(max(fit Gaussian));
z = fit Gaussian.*lambda;
plot(x lim,z);
hold on;
FWHM2 = 545; sigma2 = FWHM2/(2*sqrt(2*log(2)));
mu2 = 1220.02;
fit Gaussian2 = normpdf(x lim, mu2, sigma2);
max height2 = 206.8;
lambda2 = max height2/(max(fit Gaussian2));
z2 = fit Gaussian2.*lambda2;
plot(x lim,z2);

nexttile
title(‘Rawcli↵e Sample’);
plot(BrijCS20mzs1{:,:}, BrijCS20data1{23,:});
hold on;
FWHM1 = 510;
sigma1 = FWHM1/(2*sqrt(2*log(2)));
mu1 = 1220;
x lim = 0:2800;
fit Gaussian = normpdf(x lim, mu1, sigma1);
max height = 242; lambda = max height/(max(fit Gaussian));
z=fit Gaussian.*lambda;
plot(x lim,z);
hold on;
FWHM2 = 490;
sigma2 = FWHM2/(2*sqrt(2*log(2)));
mu2 = 1199;
fit Gaussian2 = normpdf(x lim, mu2, sigma2);
max height2 = 97.32;
lambda2 = max height2/(max(fit Gaussian2));
z2 = fit Gaussian2.*lambda2;
plot(x lim,z2);

nexttile
title(‘Singapore Sample’);
plot(BrijCS20mzs1{:,:}, BrijCS20data1{33,:});
hold on;
FWHM1 = 495.75;
sigma1 = FWHM1/(2*sqrt(2*log(2)));
mu1 = 1210;
x lim = 0:2800;
fit Gaussian = normpdf(x lim, mu1, sigma1);
max height = 234.07;
lambda = max height/(max(fit Gaussian)); z = fit Gaussian.*lambda;
plot(x lim,z);
hold on;
FWHM2 = 495.02;
sigma2 = FWHM2/(2*sqrt(2*log(2)));
mu2 = 1190;
fit Gaussian2 = normpdf(x lim, mu2, sigma2);
max height2 = 121.42;
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lambda2 = max height2/(max(fit Gaussian2));
z2 = fit Gaussian2.*lambda2;
plot(x lim,z2);
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