Rhiplishertations of marroids

by

Norman Elliott Fenton

A thesis presented in support of an application for the degree of Doctor of Fhilosophy at the University of Shefficld.

Department of Ture hethematics, The University of Chefriela, October, 1981.

CONTENTS

Introduction iii
Chapter 1. Preliminaries 1

1. Algebra 1
2. Projective geometry 4
3. Graph theory 8
4. Matroid theory 9
Chapter 2. Projective equivalence of matrices 21
Applications of the projective canonical form 34
Chapter 3. Characterization of atomic matroids 44
A-graphs 47
Chapter 4. Projective spaces and their matroid representations 53
Geometric addition and multiplication 54
Generalised projective equivalence 67
Geometrical and algebraic characterizations of generalised projective equivalence 76
Maximal k-ares and representations of uniform matroids 82
Chapier 5. Vamos rings 89
The simplifica Vámos ring 100
The canonical Vámos ring 113
Examples 123
Relationship to White's bracket ring 129

INTRODUCTION

The concept of matroids was originally introduced by Whitney and Van der Waerden in the 1930's to generalise the notion of linear dependence in a vector space; certain axioms satisfied by this relation were observed to be satisfied by other types of 'dependence' relations, such as algebraic dependence and 'cycle' dependence in a graph. Consequently a matroid was defined to be a set with an abstract dependence relation satisfying these axioms. One of the most natural questions to ask is whether every such 'matroid' is representable in the obvious sense in a vector space. The answer is of course no (otherwise natroid theory would be equivalent to Iinear algebra) although in the early years of the subject examples of non-representable matroids were not easily obtainable. In this thesis we continue the work of Inglcton (in [20]) and Vamos (in [35,36]) on the representation problem, buiding up to an algebraic treatment in the important last chapter.

Chapter one is essentially preliminary material and is subdivided into four sections mich, broadly speaking, reflect the subject contert of the rest of the thesis :-

1) Algebra in which the basic set notation and algebraic conventions are listed. Since the main body of the thesis is in matroid theory rather than algebra, we have listod here without proof as many as possible of the algebraje definitions ard theorers which we will be using to avoid cluttering up the text later on. However, because of the specialised nature of sone of the algebraic machinery (notaily in $\delta 5$) some has had to ve deferred until the relevant stage in the thesis. Standard texts which adocuately cover all the necessary alecora hore are $[2,8,14,1,2]$.
2) Frojective geometry. This is a constantly recurring theme throughout and thici prelimirary account mepares the reader for the more substantial

we refer to $[3,24,25]$.
3) Graph Theory, We shall assume a familiarity with the basic notions of graph theory but list here sone particularly relevant definitions and results. A good account of the subject may be found in [17].
4) Matroid Theory. Being a relatively new development in mathematics, matroid theory has even fewer universally accepted definitions and notation than other more established branches of the subject, and consequently it is a prerequisite to lay these down from the outset. In doing this it should be noted that for my own purposes it has been inconvenient to follow exactly the notation of any one standard work, although [37] is the closest approximation for definitions and conventions. The texts $[1,10,15 ; 34,37]$ adequately cover most results listed here and are a continual source of reference throughcut the rest of this work.

In chaptcr two we make a detailed study of the notion of projective equivalence of matrices. Although labourious and technical in places, the work here is of fundamental importance for this thesis since projectively equivalent matrices represent the same iscmorphism class of matroids. We show by construction (Thecrem (2.8)) the existence of a 'canonieal'form with resnect to the relation of projective equivalence. This is achieved by introducing the notion of s-projective equivalence ard the atomic entries of a matrix. Once the atomic eritries of a matrix are known, the proof of (2.8) provides an algorithm for determining the projective canonical form. Using the projective canonical form vie provide a new proof of the 'second fundamental thearem of rrojective geonetry', and proofs of the uniqueness of representability of binary and ternary matroids (Theoremis (2.13) and (2.18)). In [12], brylawsi ard Lucas have also studied this problem (from a different angle) and we describe the connection between the two different approaches (Theorem (2.19) being the important 'link'), although it must be stressed that the work here was achicved without the aid of [12]. We corclude the chaptcr by describing
the 'step diagonal Corm' of a matrix (definition (2.24)) and show in (2.25) that every matrix is permutation equivalent to a matrix in step diagonal form. The relevance of this result is indicated by proposition (2.26) which has important implications for later chapters.

In chapter three we study a class of matroids (which I call 'atomic matroids') arising naturally from the work in §2. In Theorem (3.6) we show that atomic malroids are precisely binary fundamental transversal matroids (described in $[6,9]$). In (3.7) we introduce a class of graphs called Λ-graphs, and prove that atomic matroids are precisely the cycle matroids of A-graphs (Theorem (3.12)), thus providing a complete graphical characterization of binary fundamental transversal matroids.

In chapter four we return to the main theme of the thesis; we are primarily intercsted here in the representations of matroids defined by dependence of points from a projective space. We describe a method for . constructing matroids which are in an important sense 'uniquely representable' (Theorem (1.10)) and this leads to a procedure for constructing matroids with certain predetermined characteristic sets. (examples ($4_{4} .1_{4}$)).

The notion of generalised projective equivalence is introduced (definition (4.15)) and we show that from both an algeuraic and geonetric viewpoint (iheorems $(4.21),(1,23)$) this notion is essentially the same as projective equivalence. In Theoren (4.17) we prove that any two representations of a rull projective geometry (over an arbitrary field) are generally projectively equivalent, thus gereralising a result in [12] which states that full projcctive geometries over finite prime ficlds are uniquely ropresentable.

The chapter concludes with a section on the representation of uniform matroids; the significant problem is to determine the smallest field over which a unifom matroia is renresentable, and we show (proposition (t.26)) that this is essentialy equivalcht to deternining the maximum value k for
which k-arcs exist in a cextain projective space. The latter problem has been studied extensively by geometers, and we show how considerable simplifications of the proofs of some of their important results ((4.27)-(1.31)) can be achieved by using (4.26) together with straightforward matroid arguments.

In chapter five, which forms a substantial proportion of the thesis, we reduce the whole problem of matroid representation to an algebraic problem. The main result of Vámos in [35] (given here as Theorem (5.5)) leads fairly naturally to the construction of a ring A_{M} (which I have called the Vános ring) associated with each matroid M. This ring is a polynomial type ring based on a generic matrix X of indeterminates, and is non-zero precisely when M is representable (Proposition (5.7)). Theorems (5.8) and (5.15) show that $A^{\prime} M$ is a 'universal object' with respect to rep. resentations of M, and there is a natural correspondence (although not a bijection) between the prime ideals of $A M$ and the representations of M (Corollary (5.9)). Consequently by using only some well knom results from commutative ring theory ve are able to cieauce results about representability which were previously very difficult to prove (for example (5.11) and (5.13)). Although the ring f_{M} has some very nice properties, it is based on too many indeterminates to be explicitly described easily even for the simplest matroids $!.$. Consequently by a two stage process of simplification which corresponis to reducing the matrix X first to column echelon form and then to yrojective canonical form, we are able to define new rings R_{M}, V_{M} with successively fower indeterminates, such that both rings retain all the important properties of A_{M}. It the same time we are able to determine the exact algeoraic relationship between the three rings (Theorens (5.22) and (5.26)) so that we are justified in restricting our attention to the simplest of the rings V_{W}. The most remarkable by-mroduct of this simpIirication is thocrem (5.24); that the natural correspondence between the prine ideals of V_{H} and the representations 05 k in projective canonical
form is actually a bijection. Thus the representation problem is reduced to the study of the prime ideal structure of V_{M} and on this we can bring the full weight and sophisticated machinery of conmutative algebra to bear. We are thus able to determine explicitly. (in (5.28)) the ring V_{M} for many important classes of matroids, the most satisfing of these results being, that V_{M} is equal to the ring of integers if and only if M is regular. We also provide a partial solution to the problem of determining which rings can arise as Vámos rings of matroids (5.28.7)).

In theorems $(5.19),(5.29),(5.21)$, we determine the effect on V_{h} of performing matroid operations on M, and the chapter concludes by exhibiting a relationship (Iheorem(5.29)) between the Vamos ring and lihite's bracket ring (dessoribed in $[38,39,40,41]$).

Apart from chapter one, all results appearing in the text which are not attributed to any author or which have no reference provided, are to the best of my knowledge new.

I am indebted to my supervisor Peter Vános for his very generous assistance with this thesis, and also to the Science Research Council for their financial support.

I would also like to thank the referce of my article entitled 'Characterization of atomic matroids' (submitted to the Quarterly Journal of Mathematics, Oxford) whose comments I believe have greatly improved the contents of chapter three, and J.W.P. Hirschfeld, who provided me with the historical background to the problem of finding maximal k-arcs (in chapter four).

In addition to those above I would also like to thank a number of people whose interest and help have influenced the contents of this thesis ; these are Victor Bryant, Haya Freedman, David Jordan, Hazel Perfect, Rodney Sharp, and Andy Wiscman.

REPRESENTATIONS OF WATROIDS

by
Norman Elliott Fenton

SUMMARY

Chapter one is preliminary material subdivided into the four main sections which reflect the subject content of the thesis, 1) algebra, 2) projective geometry, 3) graphs, 4) matroid theory.

In chapter two we make a detailed study of the notion of projective equivalence of matrices, showing by construction the existence of a canonical form with respect to this relation. The relevance of this is that projectively equivalent matrices represent the same isomorphism class of matroids.

In chapter three we study a class of matroids which arises naturally fron the work. of the previous chapter, showing that these are precisely binary fundamental transversal matroids. We provide a complete gaphical characterization of these matroids.

In chapter four we are interested in the representations of matroids def'ined by dependence of points from a projective space. We establish the uniqueness of representability of certain matroids including all full projective geonetries. The representation of uniform matroids is also tackled from a geonetrical viewpoint.

In chapter five we show that wo can asscciate a ring with each matroid H irs such a way that this ring is a universal object with respect to representations of M. There is a natural bijection between the prime ideals of this ring and the projective equivalence classes or representations of k.

1. Algebra

The usual set thcoretic notation is adojeted throughout. The symbol C denotes containment but not necessarily strict containment. The empty set is denoted by ϕ; the expression $X \backslash Y$ denotes the set difference of X and Y, and the cardinality of a set X is denoted by $|X|$.

Unless otherwise stated all rings are commutative with identity and by a ring homomorphism we shall mean a homomorphism which preserves the identity. A ring isomorphism is a homomorphism which is both injective (one -to-one) and surjective (onto). An automorphism of a ring A is an isomorphism of A onto itself. The ring of integers is denoted by \mathbb{Z}, and the ring of rational numbers is denoted by Q.

The orly rings to be considered which are not assumed to be commutative are division rings ; a division ring is a ring in which every non-zcro elcment has a multiplicative inverse. A (non-zero) division ring which is also commutative is a field. A ring without zero-divisors is an integral dorajn ; every integral domain possesses a quotient field which is unique up to isomorphism. An judeal a of A is prime if for any $x, y \in A, x y \in \underline{a}$ implies x c \underline{a} or $y \subset \underline{a}$ - The collection of prime ideals on h is deroted by Spec A. An ideal of A is maxinal if it is not properly contained in any other idcal of k. For any ideal a, the quoticrt ring $A(\underline{a}$ is an integral domain if and only if a ϵ Spec A, and is a field if ard only if a is a maximal idcal. Every maximal ideal is prime and every ring: (\ddagger ($)$ coritains at least one maximal ideal. Tne ring A is loctherian if every ideal is finitely generated.

Let A, B be rings. Then B is said to be an A-algebra if there is a honomorphism $f: A \rightarrow B$ for which B is an A-module with respect to 'multiplication' derimed by

$$
a b=f(a) b \text { for } a \in k, b \in B
$$

In particular, cvary ring is a Z-algevra (via the mapring $n \rightarrow n . i$) and if

A contains a field F as a subring, then A is an F-algebra (via the inclusion mapping). These are the only examples of algebras we shall need.

For any two rings A, B, by a product (C, γ, \downarrow) of Λ, B (over 2) we mean a ring C and homomorphisms $Y: A \rightarrow C, \forall: B \rightarrow C$, such that C is generated by $\{\gamma(A), \psi(B)\}$. In particular the tensor product of A and B (over 2), which always exists, is denoted by $A \theta_{2} B$ and is characterized by the following
(1.1)Proposition (Universal mapping property of tensor products). T.F.A.E. (the following are equivalent)
i) The product (C, γ, ψ) of A and B (over Z) is a tensor product of A and B. ii) Given any two homomorphisus g and h of A and B respectively into a ring D, there exists a homomorphism $r: C \rightarrow D$ such that $f=g \gamma^{-1}$ on $\gamma(\Lambda)$ and $\mathrm{f}=\mathrm{h} \psi^{-1}$ on $\psi(\mathrm{B})$.

Analagous results hold when $A \otimes_{R} B$ is the tensor product over R of two R-algebras A,B.

For any ring A and abelian group G, the group ring of G over A is denoted by $A(G)$. If H is the free abelian group on t generators x_{1}, \ldots, x_{t} (so that H consists of all elements of the form $x_{1}{ }^{n} \ldots x_{t}{ }^{n}$, where the $n_{i} \in \not Z$), the group ring $A(H)$ is usually denoted by $\left.A<x_{1}, \ldots, x_{t}\right\rangle$.

For any integer $q=p^{t}$ where p is a positive prime and t is a positive integer, there is (up to isomorphism) a unique ficld of q elements; this field is denoted by $G F(G)$. Conversely every finite field is isomorphic to sone $G F(q)$. (1.2)Proposition: The f'ield GF'(q) possesses non-identity automorphisms if and only if q is non-prime.

For any field F the prime subfield of F is the smallest subfield contained in F. Up to isomorphisn the prine subficld is always either or GF(p) for some prime p. The characteristic of F, denoted char (F), is defined to be zero if the prime subfield of F is s, and p if the prime subficld of F is $G F(p)$.

For any fields E, F, the field E is called an extension of F (written E / F) if $E \supset F$. If $\alpha_{1}, \ldots, \alpha_{n} \in E$ we write $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ for the subficld of E generated by $\alpha_{1}, \ldots, \alpha_{n}$ over F. An element $\alpha \in E$ is algebraic over F if $f(\alpha)=0$ for some non-zero polynomial $f(X) \in F[X]$. If α is not algebraic over F, α is transcendental over F. The extension E / F is an algebraic extension if every element in E is algebraic over F, and is a transcendental extension otherwise.

Given any field extension L / F, let $\alpha_{1}, \ldots, \alpha_{n}, \beta \in E$. Then β is algebraically dependent on $\alpha_{1}, \ldots, \alpha_{n}$ over F if β is algebraic over $F\left(\alpha_{1}, \ldots, a_{n}\right)$. If $X \subset E$, the elements of X are said to be algebraically independent over F if each finite subset of X consists of elements which are algebraically independent over F. Such a set X is called a transcendence set (over F); a transcendence set X in E is called a transcendence basis of E / F if it is maximal, that is, if X is not a proper subset of another transcendence set.
(1.3) Proposition Transcendence bases tor E/F always exist, and any two have the same cardinality. Moreover a transcendence set X is a transcendence basis of E / F if sind only if $E / F(X)$ is ar algebraic extension.

The common cardinality of the various transcendence bases of F / F is called the transcendence degree of E / F, written trod (E/F).

$$
\text { (1.4) Proposition Suppose } F \subset F \subset K \text { are successive field extensions. Then } \quad \underset{\operatorname{tr} \cdot d(K / F)=\operatorname{tr} \cdot d(K / L)+\operatorname{tr} \cdot d(E / F)}{ }
$$

A field is algebraically closed if it possesses no proper algeoraic extensions. If $K / F i s$ an algebraic extension, then K is sajd to be the algebraic closure of F if i) K / F^{\prime} is algebraic, and ii) K is algebraically closed.
(1.5) Mheorem If is a field then thexe exists ari algebraic closure of F , and any two algebraic closures of F are isomorphic ficlas.

The following well known theorem can be found in [38] p. 107
(1.6) Theorem Let K be an algebraically closed field and let E / F be an algebraic
extension. If $\sigma: \mathrm{F} \rightarrow \mathrm{K}$ is a monomorphism (injective homomorphism), then σ can be extended to a monomorphism $\sigma^{1}: \mathrm{E} \rightarrow \mathrm{K}$. (1.7)Corollary Suppose $\mathrm{F}_{1}, \mathrm{~F}_{2}$ are fields with the same algebraic closure K. If $\sigma: F_{1} \rightarrow F_{2}$ is an isomorphism then there is an automorphism σ^{\prime} of K which extends σ.

Proof Take $E=K$ and $F=F_{1}$ in (1.6). Certainly then σ is a monomorphism of F_{1} into K which can be extended to a monomorphism $\sigma^{\prime}: K \rightarrow K$. But σ^{\prime} must be surjective (and hence an automorphism) for otherwise $\sigma^{\prime}(K)$ is an algebraic closure of F_{2} strictly contained in K and this is impossible since $K / \sigma^{\prime}(K)$ is then a proper algebraic extension.

A basic knowledge of linear algebra will be assumed. A vector will mean a row vector and will be denoted by \underline{v}. The transpose of a matrix Λ will be denoted by A^{T}. The $(r \times r)$ identity matrix is denoted by I_{r}, and a diagonal $\operatorname{matrix}\left[\begin{array}{lll}a_{1} & & 0 \\ & \ddots & \\ 0 & & a_{r}\end{array}\right]$ is denoted by $\operatorname{diag}\left(a_{1}, \ldots, a_{r}\right) \quad$.

2. Projective Geometry

A projective space (or projective geonetry) is a systern consisting of a set \mathcal{O} of points together with cortain subsets \mathcal{L} of \mathcal{O} called lines such that $\left(0^{\pi}, \mathcal{L}\right)$ satisfics the following axioms:-
(i) any two distinct points are on exactly one line
(ii) if x, y, z, w are four distinct points, no three of which are collinear (on the spme Jine) and if $x y$ (the urique line containing x and y) intersects $z w$ then $x z$ intersects $y w$.
(iii) each line contains at least three points.

A subset $\Pi \subset \mathcal{D}$ is called a subspace if for any two distinct points of Π it contains the whole line determined by them. It follows from (ii) that subspaces can also be introduced inductively using the concept of dimension (which in the event of possible confusion will be specified as projective dimension) :- A point is a subspace of dimension O, a line is a subspace of dimension 1. If Π is a subspace of dimension d and if the point $x \notin \Pi$, then Π together with all the lines joining x to points of Π is a subspace of dimension $d+1$. If for some integer n, ∞ has dimension n, we say that the projective space $(\mathscr{D}, \mathscr{L})$ has dimension n, otherwise $(\mathscr{D}, \mathscr{L})$ is called an infinite dimensional projective space. If $(\mathcal{O}, \mathcal{L})$ has dimension $n \geqslant 1$, a hyperplane of $(\mathscr{O}, \mathscr{L})$ is an ($n-1$)-dimensional subspace of $(\mathscr{O}, \mathcal{L})$. Projective spaces of dinension 2 are usually called projective planes; we shall be generally only considering projective spaces of finite dimension $n=2$. For any subspace Π of a projective space we define rank $\Pi=$ dimension $\Pi+1$
(1.8) Definition Suppose $\Gamma=(\mathscr{D}, \mathscr{L})$ is a projective space of dimersion n. A simplex in Γ is a set of $n+2$ points, no $n+1$ of which are contained in a hyperplane of Γ. when $n=2$, a simplex of r is called a quaùrangle.
(1.9) Derinition Sunpose $\Gamma=(\mathscr{P}, \mathcal{L}), I^{\prime}=\left(\mathcal{N}^{\prime}, \mathscr{L}^{\prime}\right)$ are two projective spaces. A projectivity (or isomorphism) from r^{\prime} to r^{\prime} is a one-to-one, order preserving mapping of the partially ordered set of all subspaces of r upon the partially ordered set of all subspaces of Γ^{\prime}.

Given a collection of points x_{1}, \ldots, x_{m} in a projective space it is easily seen that there iss a unique smallest subspace containing $\left\{x_{1}, \ldots, x_{m}\right\}$, called the subspace sparned by $x_{1}, \ldots, x_{\mathrm{m}}$ and denoted by $\left\langle x_{1}, \ldots, x_{m}\right\rangle$. The set of points x_{1}, \ldots, x_{m} is said to be dependent if for some $1<i<m$, $x_{i} \&\left\langle x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n i}\right\rangle$. A set of points which is not dependent is said to be independent.

Suppose F is a field and F^{m} the collection of ordered m-tuples of F, so that F^{m} is a vector space over F of (vector space) dimension m. Let \mathfrak{O} be the collection of one-dimensional subspaces of F^{m} and let \mathcal{L} be the collection of two-dimensional subspaces (planes) of F^{m}. The full projective geometry of rank m (or (projective) dimension $m-1$) is (\mathcal{D}, \mathscr{L}) where a 'point' P is on the 'line' ℓ if and only if $P \subset \ell$ in F ' Thus the 'points' of $P G(\mathbb{I n}, F)$ have the form $P=F \underline{y}$ where $O f \underline{v} \in F^{m}$, and we shall call \underline{v} a coordinate vector of P; if $|F|=q<\infty$, there are $q-1$ distinct coordinate vectors of P, but it is easily seen (in all cases) that there is a unique coordinate vector whose first non-zero coordinate is equal to 1 , and we shall call this the natural coordinate vector of P. If we identify the points of $P G(m, F)$ with their natural coordinate vectors in F^{m} then for $k=0,1, \ldots, m-1$ the subspaces of $P G(m, F)$ of (projective) dimension k (or rank $k+1$) correspond precisely to the $(k+1)$-dimensional subspaces of F^{m}.

In $\mathrm{PG}(\mathrm{m}, \mathrm{F})$ the notion of dependence corresponds corresponds to linear dependence over F if again we identify points with their coordinate vectors. For most of our purposes F will be finite, hence a field of $q=p{ }^{t}$ elements for some prime p and integer tal. In this case $F G(m, F)$, alternatively denoted $P G(m, q)$, is a finite projective geometry with $q^{m-1} \ldots \ldots+q+1$ points. Whe projective plane $\mathrm{PG}(3,2)$ (of 7 elements) is the smallest non-trivial example of a projective space and is called the Fano mane. It should be noted that some authors write $\operatorname{PG}\left(\left[\begin{array}{l}-1, F) \text { for our } \operatorname{PG}(m, F) \text {. Also the full projective geomm }-1 .\end{array}\right.\right.$ etry $P G(\pi, D)$ is defined in an analagous way when D is a division ring.

The foliowing classical result may be found in [3] p. 302
(1.10)Theorem Any projective georetry of rank $m \geqslant 4$ is isonorphic: to $P G(m, 1)$)
for some division ring D; a projective plane is isomorphic to $\operatorname{lG}(3, D)$ for
some division ring D if and only if the plane is Desarguesian (see [24,p.14,0 for derinition).

By hedderburn's theorem (see for example [14]) every finite division ring is a field, hence by (1.10) we deduce that every finite projective geometry of rank $m \geqslant 4$ is isomorphic to $P G(m, F)$ for some field F, and that every finite Desarguesian plane is isomorphic to $P G(3, F)$ for some field F.
(1.11) Definition Let V, W be vector spaces over fields F, K respectively. A semi-linear transformation of V upon W is a pair $\sigma=\left(\sigma^{\prime}, \sigma^{\prime \prime}\right)$ consisting of an isomorphism σ^{\prime} of the additive group of V upon the additive group of W, and a field isomorphism of F upon K subject to

$$
\sigma^{\prime}(\alpha \underline{v})=\sigma^{\prime \prime}(\alpha) \sigma^{\prime}(\underline{v}) \quad \text { for each } \quad \alpha \in F, \quad \underline{v} \in V
$$

If $F=K$ and $\sigma^{\prime \prime}=i d_{F}$, then σ is a linear transformation. When we are considering a vector space V of dimension m over F we shall usually take $V=F^{m}$.
(1.12) Procosition Suppose $\sigma=\left(\sigma^{\prime}, \sigma^{\prime \prime}\right)$ is a semi-linear transformation of F^{m} upon K^{m}. Then σ induces a projectivity between $P G(m, F)$ and $P G(m, K)$.

Proof Suppose S is a subspace of $F(m, F)$ of rank k for some $0 \leqslant k<m-1$, so that (by the above mentioned convention) S corresponds to a k-dimensional subspace of the vector space F^{m}. The set $\sigma(s)$ of all elements $\sigma^{\prime}(s)$ with $s c S$ is clearly a subspace of K^{m}. Hence the mapping of the subspace S of $P G(m, F)$ upon the subspace $\sigma(S)$ of $P G(m, K)$ is the desired projectivity.

The converse to the above result for projective geometries of rank $m \geqslant 4$ is the foliowing 'first fundamental theorem of projective geometry'.
(1.13) Fheorem For $m \geq 3$ any projectivity of $P G(m, F)$ upon $P B(m, K)$ is induced by a semi-linear transformation of i^{m} upon K^{m}.

Proof Sec [3], p 4 $4+-2$

A projectivity of $I(m, F)$ upon itself is called an automprojectivity of
$P G(n, F)$. By (1.13) any auto-projectivity is irduced by a semi-linear transformation of F^{m}. Consequently we have:-
(1.14) Definition An auto-projectivity which is induced by a linear transformation is called a collineation.
(1.15) Theorem ('Second Fundamental Theorem of Projective Geometry') In $P G(m, D)$ (where D is a division ring, $m \geqslant 2$) there is one and only one collineation mapping any given simplex on to another given simplex if and only if D is a field.

Proof See [3] pp.66-68.
3. Graphs

All graphs considered will be finite, that is, if $G(V, E)$ (or more simply G) is a graph then the vertex set V and the edge set E are both rinite. The notions of loop, parallel edge, simple graph, sulgraph, isomorphism, homeomorphism, tree, forest, connected component, path, cycle, contraction, deletion are all defincd as in [17]. With these definitions we have the following well known resul.t:-
(1.16) Proposition If the graph $G(V, E)$ has k connected components then any spaming forest for G has exactly $|V|-k$ edges.

If the vertex set of a graph can be partitioned into two sets V_{1}, V_{2} in such a way that every edze of the Eraph joins a vertex of ${ }^{\prime}$ V_{1} to a vertex of V_{2} then the graph is said to be bipartite. A complete graph is a sirple eraph in which an edge joins each pair of vertices. The complete reach on n vertices is denoted uy K_{n}. If a
bipartite graph has the property that every vertex of V_{1} is joined to every vertex of V_{2} and it is simple then it is called a complete $\underline{\text { bipartite graph }}$ and is denoted by $K_{m, n}$ where $m=\left|V_{1}\right|$ and $n=\left|V_{2}\right|$. The graph obtained from the cycle of leneth k on replacement of each edge by a pair of parallel edges is denoted by C_{k}^{2}.

The graph oitained from G by subdividing an edge e into two edges is called the series extension of G at ϵ. The graph obtained by adding an edge parallel to e is called the parallel extension of G at e. A series-parallel network is a graph which can be obtained from a single edge (which may be a loop) by a finite sequence of series and parallel extensions.
4. Natroid Theory
(1.17) Definition A matroid $M(E)$ (or simply M) consists of a finite set F , together with a non-cmpty collcction ξ of subsets of E , callcd the independent sets, which satisfy the \mathfrak{i} ollowing two axioms :-

1) If $A \in \xi$ and $B \subset A$, then $B \in \xi$.
2) If $A, B \in \xi$ with $|A|=|B|+1$, then there exists an $x \in A \backslash B$ such that $B \cup\{x\} \in \xi_{j}$.
(1.18) Froposition Suppose A, B are independent in M with $|B|<|A|$. Then there exjsts $C \subset A \mid B$ such that $|B \cup C|: \because|A|$ and $: B \cup C$ is indeperdent.
(1.19) Definition 'wo matroids M_{1} and M_{2} on E_{1} and E_{2} respectively are isomorphic if there is a bijection $H_{1} \rightarrow H_{2}$ which preserves independence.
(1.20) Examples
3) The most natural example of a matroid is a finite set of vectors together with the collection of its linearly independent subsets. The central theme of this thesis concerns matroids which are isomorphic to matroids arising in this way. (We shall presently give an alternative def'inition of these so-called 'linearly representable" matroids). Closely related to this example is :-
4) Any finite set of points of a full projective geonetry $P G(m, D)$ together with the collection of its independent subsets. In particular, for the finite ficld $G F(q), \operatorname{PG}(n, q)$ itself may be viewed as a matroid on $q^{m-1}+\ldots+q+1$ elements. Ihe Fano plane $P G(3,2)$ is usually called the Fano matroid when viewed in this way and is denotca by F_{7}.
5) Let $G=G(V, E)$ be a graph. Let $X \in \xi$ if and only if X does not contain a cycle of G (for $X \subset \dot{\prime}$). Then ξ is the collection of independent sets of a matroid on E, called the cycle matroid of G, denoted by $M(G)$. An arbitiary matroid M is graphic if there is a graph G for which M is isonorphic to $N(G)$.
6) Cuppose F, K are fields with F C K. Let f be a finite subset of K and let $X \in \xi$ if and only if $X \subset E$ and the elements of X are algetraically independent over F. Then ξ is the collection of independent sets of a matroid on E.
7) Let b be a set of cardinality n, and let ξ be the collection of subsets of carwinality $\& r$ (where $r \leqslant n$). Then ξ is the collection of independent subsets of a matroid on E called the Uniform matroid (of rark r, size n) and is denoted by ${ }_{r, n}$.
8) If a is a family of finite subsets of a set then the collection pariial trinsversals of A (see, E.g. [1] p. © 79) is the set of independent sets of a.matroid on F. An arbirary matroid M on E is called a transversal matroid if there eyists some ramily
$\mathcal{A}=\left\{X_{1}, \ldots, X_{t}\right\}$ say of subsets of E such that $\xi(M)$ is the family of partial transversals of \mathcal{A}. This matroid is denoted by $M\left[X_{1}, \ldots, X_{t}\right]$ and we call \mathcal{A} a presentation of M. In this case, if $\mathrm{E}:=\left\{\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}\right\}$, ther the matrix induced by the presentation is the ($n \times t$) zero-one matrix whose $(i, j)^{\text {th }}$ entry is equal to 1 if $e_{i} \in X_{j}$.

For a matroid M on E the notions of basis, circuit and rank are defined in a manner entirely analagous to the same concepts in vector spaces; thus a basis of M is a maximal independent subset, a circuit is a minimal dependent set, and the rank of a set $A \subset E$ is the cardinality of a maximal independent subset of A (and is denoted by $p(A)$). The rank of the matroid M is the rank of E, i.e. the common cardinality of any basis of M, so that for example the uniform matroid $U_{r, n}$ has rank r. In the case of a graphical matroid $N(G)$, the circuits of $M(G)$ are precisely the cycles of G, and the bases are preciscly the spanring forests. Consequently, by (1.16), we now have :-
(1.21) Proposition If the graph $G=G(V, E)$ has k connected components, then the cycle matroia $K(G)$ has rank $|V|-k$.

Any one of the concepts of bases, circuits or rank could have been used (instead of iracpendent sets) to axiomatize matroids, for example we have :-

```
(1.22) (Basis axioms) in non-empty collection 鿖 of subsets of E is
the set of bases of a matroid or, if if and only if it satisfies
```

Whenever $B_{1}, B_{2} \in B$ and $x \in B_{1} \backslash B_{2}$, there is a
$y \in B_{2} \backslash B_{1}$ such that $\left(B_{1} \cup\{y\}\right) \backslash\{x\} \in B$.

(1.23) (Circuit Axioms) A collection of subsets ϱ^{6} of E is the

 set of circuits of a matroid on E if and only if it satisfies:-1) If $c \in G$ then no proper subset of C is in C.
2) If C_{i}, C_{2} are distinct members of φ and if $x \in C_{1} \cap C_{2}$
then there is a $C_{3} \in Q$ such that $C_{3} \subset\left(c_{1} \cup C_{2}\right) \backslash\{x\}$.

A loop of $h(E)$ is an element $x \in E$ such that $\{x\}$ is a depenent set. Two elements $x, y \in E$ are said to be parallel if neither are loops and $\{x, y\}$ is a dependent set. Vie shall also say that x is a parallel clement if for some $y \in E, x, y$ are parallel. A coloop is an element which is contained in every basis of M. In the case of a graphical matroid, loops and parallels correspond precisely to the graph-theoretical notions. As for graphs a simple matroid is then a matroid without loops or parallels. Associated with every matroid $N(E)$ is a canonical simple matroid No (E_{0}), the underlying simple matroid of $M(E)$, which may be constructed as follows:-
(1.24) Let $\mathrm{E}^{\prime}=\{$ e $\epsilon \mathrm{E}$; © not a loop\}. For each ecE' let [e] denote the equivalence class of elmerits parallel to e (with the convention that $\lceil e\}=\{e\}$ if c is not a parallel). Let \bar{e} be a unique representative of $[\mathrm{c}]$. ïrite $\mathrm{E}_{\mathrm{o}}=\left\{\bar{e} ; c \epsilon^{\prime} f_{\prime}^{\prime}\right\}$, then K_{0} is the matroid on E_{0} for which a subset $\bar{A} \subset E_{0}$ is independent in H_{0} if and only if A is independent in M.
(1.25) Corollary For a finite field $F, P G(m, F)$ (viewed as a matroid as in (1.20.1)) is the underlying simple matroid of F^{m} (viewed as a matroid as in (1.20.1)).

For any suset $H^{\prime} \subset E$ the matroid f^{\prime} induces two matroids on E^{\prime} which correspond in the natural way to subgraphs of a graph obtained
by deletion and contraction of edges. The restriction of N to E^{\prime}, written $\left.M\right|_{F^{\prime}}$ is the matroid on E^{\prime} whose independent sets are precisely those subets of F^{\prime} which are independent in M . In a graph this corresponds to 'deleting' the edges $E \backslash E^{\prime}$ '. We shall write $M \backslash E^{\prime}$ for $M^{K} \mid E \backslash H^{\prime}$ and say that $M E^{\prime}$ is the matroid formed from by deleting the set E^{\prime}. The contraction of M to E^{\prime}, written $\mathrm{M}^{\prime} \otimes \mathrm{E}^{\prime}$ is the matroid on E^{\prime} in which a subset $A \subset E^{\prime}$ is independent if and only if $A \cup B$ is independent in M for some basis E of $M \backslash E^{\prime}$. In a graph this corresponds to 'contracting away' the edges $E \backslash L^{\prime}$. We shall write M / E^{\prime} for the matroid $N_{S N E} \backslash E^{\prime}$ and say that M / E^{\prime} is the matroid formed from M by contracting away from E^{\prime}.

The dual matroid of M, denoted N^{*} is the matroid on E whose collection of bases is the set $\{E \backslash B ; B$ is a basis of $H\}$. For example the dual of $U_{r, n}$ is preciscly $U_{n-r, n}$. It is clear that $\left(h^{*}\right)^{*}=M$. A set $A \subset E$ is a cobasis (cocircuit) if A is a basis (circuit) in M. Restriction, contraction and dual are related by the following well known result (see, e.g. [10] p.38, or [37] p.63):-
(1.26) Proposition For any subset $\mathrm{E}^{\prime} \mathrm{C} \mathrm{E}, \mathrm{M} / \mathrm{E}^{\prime}=\left(\mathrm{H}^{*} \backslash \mathrm{E}^{\prime}\right)^{*}$

If $E^{\prime} \subset E$ a matroid N^{\prime} on A^{\prime} is called a minor of M if M^{\prime} is obtained from ki by any combination of restrictions and contractions. Suppose now that M_{1}, \ldots, M_{t} are matroids respectively on the (pairwise disjoint) sets E_{1}, \ldots, E_{t}. Write $E=U E_{i}$. The direct sum of the matroids $M_{i}(i=1, \ldots, t)$, written $M_{1} \oplus \ldots \oplus H_{t}$ is the matroid on t whose collection of bases is the set

$$
\left\{B_{i}: B_{i} \text { is a basis of } \mu_{i} \text { for } i=1, \ldots, t\right\}
$$

For any two elements $x, y \in E, x$ is connected to y if $x=y$ or there js a circuit of M which contains both x and y. This is an . equivalence relation on f " whose equivalcnce classes are called the
connected components of M. If there is one connected component then then M is connected. Clearly, loops and coloops are connected components of M. It must be noted that the definition of connectivity does not correspond to connectivity in a graph, but we do have the following important result(see [17] p.27)
(1.27) Theorem Suppose G is a connected graph without loops and having at least 3 vertices. T.F.A.E.
(i) $M(G)$ is a connected matroid
(ii) G is a 2-connected graph

For our purposes the following (easily proved) characterization of the connected components of M will be particularly useful.

The remaining definitions and results in this section are crucial for the understanding of this thesis. In particular it should be noted that where I an using rows of a matrix sone authors are using columns.
(1.29) Definition The matroid M is said to be (linearly) representable over a field F (or simply F-representable) if there is a one-to-one correspondence between the elements of k and the rows of a, matrix A over F such that dependence in M corresponds to linear dependence (over F) of rows of A. The matrix A is said to be a represertation of l over F (or an F-representation). If M is representable over at least one ficld, we say that ir is a (linearly) representable matroid.

It is not difficult to see that the above definition is equivalent to the definition suggested in (1.20.1). Henceforth we shall always assume that M has size n and rank r, in which case it is easily scen that we may always assume that a representation matrix A of M is an ($n \times r$) matrix.

Suppose now that A is an arbitrary ($n_{\times r}$) matrix over a rield F whose rows are indexed by the n elements of E. For each $X \subset E$, let $A(X)$ denote the $(|X| \times r)$ submatrix of A consisting of those rows indexed by X. Then the following result (which is easily proved using (1.18)) provides us with a workable criteria for determining whether A is an F-representation of M, a result which will be used extensively and without further comment throughout this work:-
(1.30) Proposition For an ($n \times r$) matrix A over F, T.F.A.E.
(i) A is an F -representation of M .
(ii) For every r-subset $X \subset E, X$ is a basis of M if and only if $\operatorname{det} A(X) \neq 0$.

Let us assume henceforth that $E=\left\{e_{1}, \ldots, e_{n}\right\}$ and that $B=\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis of M.
(1.31) Proposition For a field F, M is F-represertable if ana only if there is an F -representation matrix of the form

$$
A:=\begin{align*}
& e_{1} \tag{1.31.1}\\
& \dot{e}_{r} \\
& e_{r+1} \\
& e_{n}
\end{align*}\left[\begin{array}{l}
I_{r} \\
A_{1}
\end{array}\right]
$$

proof Since the first r elements of E are independent, the first r rows of any F-representation matrix A^{\prime} are linearly independent over F. But then the column echelon form of A^{\prime} is a matrix of the form
(1.31.1) having the same corresponding linearly independent sets of rows as A^{\prime}, whence A is also an F-representation of M.

In [37]p. 143 it is show that if A is an F-representation of M of the form $A=\left[\frac{I_{r}}{A_{1}}\right]$ then the matrix $\quad A^{\prime}=\left[\frac{I_{n-r}}{A_{1}^{T}}\right] \quad$ is an F-representation of M^{*} with respect to the ordering $e_{r+1}, \ldots, e_{n}, e_{1}, \ldots$ \ldots, e_{r}. Since $M=\left(M^{*}\right)^{*}$, we can thus deduce from (1.30):-
(1.32) Proposition The matroid M is F-representable if and only if M^{*} is F-representable.

If N is F-representable by the matrix A and if $E^{\prime} \subset E$ then clearly the matrix $A\left(E^{\prime}\right)$ is an F-representation of $\left.M\right|_{E^{\prime}}$. consequently by (1.26) and (1.32) we may deduce:-
(1.33) Proposition If M is F-representable then every minor of M is F-representable.

The next two results are proved in chapter 7 of [1]
(1.34) Proposition The matroid $M(E)$ is F-representable if and only if the underlying simple matroid $M_{0}\left(E_{0}\right)$ is F-representable.
(1.35) Proposition Suppose $k=M_{i} \oplus \ldots\left(M_{t} \quad\right.$ where M_{i} is defined on E_{i}, with $E_{i}=B \cap E_{i}\left(a\right.$ basis for $\left.M_{i}\right)$ and $\left|B_{i}\right|=r_{i}$ for $i=1, \ldots, t$.

$i=1, \ldots, t$, the matrix

$$
A=\left[\begin{array}{c}
I_{r} \\
\left.\frac{I_{1}^{\prime 17}}{A_{1}^{\prime} \cdot} \cdot \begin{array}{c}
0 \\
0 \\
\\
\cdot A_{t}^{\prime}
\end{array}\right]
\end{array}\right]
$$

is an F-representation of M (with respect to the obvious ordering of E).
(1.36) Corollary The matroid M is F-representable if and only if each of its connccted components is F-representable.

Proof Sufficiency follows from (1.28) and (1.35) whereas necessity follows from (1.33)

A matroid is said to be binary if it is representable over $G F(2)$, ternary if it is representable over $G F(3)$ and regular if it is representable over every fiel.d. The next two results show that binary and ternary matroids may be characterized by 'exclusion of certain minors.' The rirst result is due to Tutte, and is proved in [37] pr'. 167-169, while the second is credited to Reid with proofs in [4], [30].
(1.37) 'iheorem A matroid is binary if and only if it does not con$\operatorname{tain} \mathrm{U}_{2,4}$ as a minor.
(1.38) Theorem A matroid is ternary if and only if it does not contain any of the matroids $\mathrm{U}_{2}, 5, \mathrm{~F}_{7}$ os their duals.

A matrix N over $?$ is called unimodular if every square subratrix has determinant (over equal to 0,1 or -1 . A matroid is called unimodular if it possesses a unimodular representation matrix (over Q). The following theorem summarises the various characterizations of regular matroids and can be deduced from results of iutte, [34], and Aigner, [1] ple ${ }^{2} 44-346$, and (1.37), (1.38).
(1.39) Theorem For a matroid M, T.F.A.E

1) M is regular.
2) M is unimodular
3) M is binary and does not contain as a minor either F_{7} or F_{7}^{*}.
4. M is binary and ternary
5) M is binary and F-representable for a field F with cher $F \neq 2$

The characteristic set $c(M)$ of a matroid M corsist of those integers n for which H is representable over a field of characteristic n. Thus $c(M) \subset P \cup\{O\}$ where P denotes the set of positive primes, and M is representable if and only if $C(M) \neq \phi$.

Suppose now that B is a basis of M. It follows easily from (1.23) that for each $e \in E \backslash B$ there is a unique circuit contained in $B \cup\{e\}$. This circuit is called the fundamental circuit of $B \cup\{e\}$ in M, and is denoted by $C_{N}(B, e)$ or more simply $C(B, e)$ if there is no ambiguity. For the following important definition we shall assume that $E=\left\{c_{1}, \ldots, e_{n}\right\}$ and that $B=\left\{e_{1}, \ldots, e_{r}\right\}$.
(1.1+0) Definition The B-basic circuit incidence matrix (B-basic c.i. matrix) $A_{B}=\left[a_{i j}\right]$ is the $((n-r) \times r)$ zero-one matrix with columns indexed by B and rows indexed by $E \backslash B$ where $a_{i j}=1$ if $e_{j} \in C\left(B, e_{j}\right)$.

The matrix A_{B} is obviously dependent on the ordering of $k ;$ a permutation of B corresponds to a permatation of the columns of A_{B} and a permutation of $E \backslash B$ corresponds to a permutation of the rows.
(1.1.1) Pronosition Suppose A_{B} is given as above, and $B=E \backslash B$. Then A_{B}^{T} is the B^{*}-basic c.i.matrix of M^{*} with respect to the ordering $e_{r+1}, \ldots, \epsilon_{n}, e_{1}, \ldots, e_{r}$.

Proof If $e_{j} \in C_{n}\left(B, e_{i}\right)(1 \leqslant j \leqslant r, r+1<i \leqslant n)$ then $\left(B \backslash\left\{e_{j}\right\}\right) \cup\left\{e_{i}\right\}$ must be a basis of H. Write $B^{\prime}=\left(B \backslash\left\{e_{j}\right\}\right) \cup\left\{e_{i}\right\}$, then $E \backslash B^{\prime}$ is a basis of M^{*}. But $\left.E \backslash B^{\prime}=B^{*} \backslash\left\{e_{i}\right\}\right) \cup\left\{e_{j}\right\}$ and since this set is independent in M^{*}, we must have $e_{i} \in C_{k^{*}}\left(B^{*}, c_{j}\right)$. The converse follows by duality.
(1.4,2) Suppose $A=\left[I_{r} \mid A^{\prime}\right]^{T}$ is a (column echelon) F-representation of M. Then the matrices Λ^{\prime} and A_{B} have their non-zero entries in the same correspording positions.

Proof irrite $A_{B}=\left[a_{i j}\right], A^{\prime}=\left[b_{i j}\right]$ with the same indexing as above. For each i, j write $X_{i j}=\left(B \backslash\left\{e_{j}\right\}\right) \cup\left\{e_{i}\right\}$. Then

$$
\begin{equation*}
\operatorname{det} N\left(X_{i j}\right)= \pm b_{i j} \tag{1.42.1}
\end{equation*}
$$

If $a_{i j}=0$ then $e_{j} \notin C\left(B, e_{i}\right)$, whence $C\left(B, e_{i}\right) \subset\left(B \backslash\left\{e_{j}\right\}\right) \cup\left\{e_{i}\right\}=X_{i j}$. But then $X_{i j}$ is a dependent set in M, so by (1.42.1) $b_{i j}=0$. If conversely $b_{i j}=0$ then by (1.42.1), $X_{i j}$ contains a circuit of M. Since $C \subset B \cup\left\{e_{i}\right\}$, we must have $C=C\left(B, e_{i}\right)$ by uniqueness of the latter. Thus $C\left(B, e_{i}\right) \subset X_{i j}$ so that $e_{j} \in C\left(B, e_{i}\right)$ whence $a_{i j}=0$.
$(1.1+3)$ Corollary If M is binary, the matrix $\left.\left|I_{r}\right| A_{B}\right]^{T}$ is a representation of M over $G F(2)$.
(1.44) Definition Let A be a matrix with rows R and columns C. Then A is block reducible if there exist proper subsets $R^{\prime} C R$ and $C^{\prime} C C$ such that all non-zero entries of A are contained in either the submatrices $R^{\prime} \times C^{\prime}$ or $\left(f \backslash R^{\prime}\right) \times\left(C \backslash C^{\prime}\right)$. Similarly the matrix Λ has k blocks if the rows and columns can be partitioned into k blocks R_{1}, \ldots, R_{k} and C_{1}, \ldots, C_{k} respectively such that all non-zero entrics of A are contained in the submatrices $R_{i} \times C_{i}$ for $i=1, \ldots, k$ and each submatrix is Llock irreducible. Also by convention we shall always assume a bjock irreducible matrix has ro zero row or colum.
(1.45) Proposition If M has B-basic c.i.matrix $A_{B}=\left[a_{i j}\right]$. Then

1) r_{i} is a zero row of A_{B} if and only if e_{i} is a loop.
2) c_{j} is a zero column of A_{B} if and only if e_{j} is a coloop.
3) $\left\{r_{i_{1}}, \ldots, r_{i}\right\} \times\left\{c_{j_{i}}, \ldots, c_{j_{t}}\right\}$ forms a block of A_{B} if and only
if $\left\{e_{j}, \ldots, e_{j_{t}}, e_{i}, \ldots, e_{i}\right\}$ is a connected component of M .
4) For $r+1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant r, e_{i}, e_{j}$ are parallel if and only if $a_{i j}=1$.

Proof For 1), 2), 3), see [12].
4) The elements e_{i}, e_{j} are parallel if and only if $\left\{e_{i}, e_{j}\right\}$ is a circuit. But then $C\left(B, e_{i}\right)=\left\{e_{i}, e_{j}\right\}$, so the result follows.
(1.4.6) Corollary Suppose A_{B} has r^{\prime} zero rows, c^{\prime} zero columns and k blocks. Then H has $r^{\prime}+c^{\prime}+k$ connected components, and for some suitable ordering of $B, E \backslash B$,

$$
A_{B}=\left[\begin{array}{lll|l}
A_{1} & & 0 & c^{\prime} \\
0 & \ddots & A_{k} & 0 \\
\hline 0 & & 0
\end{array}\right]
$$

where the $A_{i}^{\prime \prime} s$ are the blocks corresponding (as in (1.4.5.3)) to the k (non-trivial) components of M. Moreover if these k connected components are E_{1}, \ldots, E_{k} respectively and if $B_{i}=B \cap E_{i} \quad(i=1, \ldots, k)$, then A_{i} is the B_{i}-basic c.ionatrix for $M H_{i}$.

Unless otherwise stated all matrices considered will be over a fixed field F, although the next definition is also valid for matrices over a division ring.
(2.1) Definition Let M, N be ($n \times m$) matrices. Then M is projectively equivalent to N if there exists an ($m \times{ }_{\mathbb{I}}$) non-singular matrix C and an ($n \times n$) non-singular diagonal matrix D such that $D M C=N$. In the case where C is also diagonal we shall say that M is strongly projectively equivalent to N (s-projectively equivalent).

It is clear that projective equivalence is an equivalence relation on the class of ($n \times m$) matrices (over F). It is also easily seen that if M, N are projectively equivalent then any set of rows of M is linearly dependent over F if and only if the same corresponding set of rows of N is linearly dependent over F. It now follows by definition (1.29) that projectively equivalent matrices represent the same isomorphism class of matroids, and herein lies its importance to this work.

As its nane suggests, another (more classical) motivation for the study of projective equivalence is in projective geometry:-
(2.2) Proposition Let $1, N$ be ($n \times m$) matrices without zero rows, so that the n rows of M, N respectively are the coordinate vectors of n points, say P_{1}, \ldots, P_{n} and O_{1}, \ldots, O_{n} in $W(m, F)$. Then H, N are projectively : equivalent if and only if there is a collinaation of $\mathcal{G}(\mathrm{m}, \mathrm{F})$ in which \underline{p}_{i} is mapped to Q_{i} for $i=1, \ldots, n$.
 singular diagonal matrix D and non-singular matrix C. Since $\lambda P=P$ for each point P in $F G(m, F)$ and $0 \perp \lambda \in F$ the rows of $D M$ also are the coordinate vectors of P_{1}, \ldots, P_{n}. Bcine non-Eingular, C represerts a
linear transformation of F^{m} whose induced auto-projectivity of $\mathrm{PG}(\mathrm{m}, \mathrm{F})$ is thus (by (1.12)) the required collineation. Conversely suppose that there is a linear transformation of F^{m}, represented by an ($m \times r$) nonsingular matrix C say, inducing the specified collineation. Then for for each $i=1, \ldots, n$ if \underline{v}_{i} is any coordinate vector of P_{i} and \underline{w}_{i} any coordinte vector of Q_{i} it follows from the definition in $\S 1$ that $F\left(\underline{v}_{i} C\right)=F_{\underline{w}}$. In particular this is true when $\underline{v}_{i}, \underline{w}_{i}$ are the $i^{\text {th }}$ rows of M, N respectively. Eut then for $i=1, \ldots, n$ there exist $0 \neq \lambda_{i} \in F$ for which $\lambda_{i}\left(\underline{v}_{i} C\right)=w_{i}$. Writing $D=\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ it follows that D is non-singular and DMC $=N$.

Let us consider some other fariiliar equivalence relations defined on matrices :-
i) If $M, N(n \times n)$ matrices, write $M \stackrel{1}{\sim} N$ if and only if there exists an ($n \times n$) non-singular matrix B and an ($m \times m$) non-singular matrix C for which $\quad B M C=N$.
ii) If $M, N(n \times n)$ matrices, write $M \stackrel{2}{\sim} N$ if and only if there exists an (rixn) non-singular matrix C for which $C^{-1} M C=N \quad$ (similarity) iii) If M, N ($r \times m$) matrices, write $M \stackrel{3}{\sim} N$ if and orily if there exists an ($m \times m$) non-singular matrix C for which $M=N \quad$ (column equivalence)

In each of these cases we ask the question: ' is there a canonical form of matrix with respect to the given equivalence relation, i.e. is there some special simple type of matrix for which we can say that every matrix within the given class is equivalent to a unique matrix of this type ?' The answer in each of the above cases is affirmative and well known. The canonical form of i) for a matrix of rank r is precisely

$$
\left[\begin{array}{l|l}
I_{r} & 0 \\
\hline 0 & 0
\end{array}\right]
$$

The canonical form of ii) is the rational canonical form, which in the casse when F is algebraically closed becomes the simpler Jcran Canonical
form. The canonical form of iii) is none other than the column echelon form. We shall show by construction that a canonical form exists for projective equivalence (we shall henceforth call this the 'projective canonical form ${ }^{\prime}$).

First we observe that projective equivalence, like the equivalences above, is rank preserving. Accordingly we may restrict our attention to matrices having the same rank r, and so we define φ to be the class of all ($n \times m$) matrices of rank r (over F). It should be noted that equivalence iii) above is closely related to projective equivalence; clearly column equivalcnce implies projective equivalerce, hence every matrix is projectively equivalent to a matrix in column echelon form. Consequently we begin in earnest by taking a closer look at the column echelon form.

Let $A \in \mathcal{G}$ and suppose the rows of Λ are indexed by $\{1, \ldots, n\}$. Since A has rank r there is at least one r subset $J \subset\{1, \ldots, n\}$ for which $A(J)$ (defined in $\S 1$) has rank r. Let J_{1} be the first such subset in the natural lexicographic order. Then it is easily seen that A is in colunin echelon form (which in this case we shall call J_{1}-column cchelon form if and only if $A\left(J_{1}\right)=\left[I_{r} \mid 0\right]$, and in this case we must have $A=\left[\Lambda^{\prime} \mid 0\right]$ for some ($n \times r$) matrix A^{\prime}. Suppose now that: $J_{2}=\{1, \ldots, n\} \backslash J_{1}$ and that A is in J_{1}-column echelon form, then the only 'part' of A not already determined by J_{1} is the ($n-r$) $\times r$ submatrix $A^{\prime}\left(J_{2}\right)$. Wic shall call $A^{\prime}\left(J_{2}\right)$ the non-identity submatrix of A.

With this notation we have:-
(2.3) Proposition Suppose $A, B \in G$ are in J-column echelon form, with respective non-identity submatrices $A^{\prime}=\left[a_{t s}\right] \quad$ and $B^{\prime}=\left[0_{t s}\right]$
$(1 \leqslant t \leqslant n-r, 1 \leqslant s \leqslant r)$. T.F.A.E.
i) A, B are projectively equivalent.
ii) A^{\prime}, B^{\prime} are s-projectively equivalent
iii) There are non-zero elements $H_{1}, \ldots, \mu r, \delta_{1}, \ldots, \delta_{n-r}$ of F for which $\delta_{t} a_{t s^{\prime}}{ }^{\prime} s=b t s$ for each t, s.

Proof $(j . i) \Leftrightarrow(i i i)$ is clcar so it sulfices to prove (i) $\Leftrightarrow(i i i)$.
$(\underline{i}) \Rightarrow$ (iii) Let $D=\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right), C=\left[c_{i j}\right]$ be non-singular matrices for which $D A C=B$. Then in particular we have

$$
\begin{equation*}
\operatorname{DAC}\left(J_{1}\right)=B\left(J_{1}\right)=\left[I_{r} \mid 0\right] \tag{2.3.1}
\end{equation*}
$$

Suppose that $J_{1}=\left\{i_{1}, \ldots, i_{r}\right\}$ and $J_{2}=\left\{j_{1}, \ldots, j_{n-r}\right\}$. Then for each $t=1, \ldots, r$ the $i_{t}^{\text {th }}$ row of $D A$.is $\left(0, \ldots, 0, \lambda_{i_{t}}, 0, \ldots, 0\right)$. Hence the $i_{t}^{\text {th }}$ row of DAC is $\left(\lambda_{i_{1}} c_{t 1}, \cdots, \lambda_{i_{t}} c_{t m}\right)$, and so $\operatorname{DAC}\left(J_{1}\right)=\left[\lambda_{i_{t s}} c_{t s}\right]$ $(1 \leqslant t \leqslant r, \quad 1 \leqslant s \leqslant m)$. By $(2.3 .1)$ this means that

$$
C=\left[\begin{array}{cc|c}
\lambda_{i_{1}}^{-1} & 0 & \\
0 & \cdot & \cdot^{-1} \\
& & 0 \\
\hline & c_{r}^{\prime} &
\end{array}\right]
$$

Now write $\mu_{1}=\lambda_{i_{1}}^{-1} \quad, \ldots, \mu_{r}=\lambda_{i}^{-1}$
$\delta_{1}=\lambda_{j_{1}}, \ldots, \delta_{n-r}=\lambda_{j_{n-r}}$
Then $\mu_{1}, \ldots, \mu_{r}, \quad \delta_{1}, \ldots, \delta_{n-r}$ are the required elements of F. $\left(\underline{\text { iii })} \Rightarrow(i) \quad\right.$ Suppose that $\mu_{1}, \ldots, \mu_{r}, \quad \delta_{q}, \ldots, \delta_{n-r}$ satisfy the given relations and tinat J_{1}, J_{2} are as above.
Vrite $\lambda_{i_{1}}=\mu_{1}^{-1}, \ldots, \quad \lambda_{i_{r}}=\mu_{1}^{-1} \quad \lambda_{j_{1}}=\delta_{i}, \ldots, \lambda_{j_{n-r}}=\varepsilon_{n-r}$
Ther if $D=\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and $C=\operatorname{Diag}\left(\mu_{1}, \ldots, \mu_{r}, 1,1, \ldots, 1\right)$,
we have $\quad \mathrm{AC}=\mathrm{B}$ (so in fact we have shown A, B are s-projectively equivalent in this case).
(2.4) Remark In our searoh for the rrojective canonical form it now suffices (by (2.3) and the comments prior to it) to find a canonical form with respect to s-rrojective equivalence; for suppose such a canonical form exists - call it the strong canonical form (s.c.f), so that every matrix B is s-projectively equivalent to a unique matrix in s.c.f (called the associated s.c.f. of B). Then every matrix is projectively equivalent to a unique matrix in colum ecinclon form wose non-icentity submatrix is in s.c.f. Thus for any matrix \& the associated projective
canonical form of A would be precisely the associated column echelor: form of A in which the non-identity submatrix B say, is replaced by the s.c.f. of B.

Since by (2.3) s-projectively equivalcnt matrices have their nonzero entries in the same corresponding positions, our search for an s:c.f. will be restricted to finding certain privileged non-zero entries which would become equal to 1 . What are these privileged entries ? They certainly cannot comprise all the non-zero entries, since for example

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right] \text { is not s-projectively equivalent to }\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

On the other hand it is easy to see that any matrix is s-projectively cquivalent to a matrix in which every leading entry (first non-zero entry in a row or column) is equal to 1 , so we would certainly expect our 'privileged' entries to include all leading entries. However these will not in general be sufficient to give a canonical form since, e.g.

$$
\left[\begin{array}{ll}
0 & 1 \tag{2.4.1}\\
1 & 2
\end{array}\right] \text { is s-projectively equivalent to }\left[\begin{array}{ll}
0 & 1 \\
1 & 3
\end{array}\right]
$$

and these matrices are not equal even though their leading entries are all equal to 1. So in truth we will have to search somewhere between these two extremes to find the 'privileged' entries. In order to do so we introduce some now notions.

Suppose that $A=\left[a_{i j}\right]$ is an arbirary matrix. We shall be concerned with scquences of non-zero entries of A in which the position (i, j) of the non-zero entry $a_{i j}$ concerns us rather than the specific value $a_{i j}$. Consequently we shall frequently use the notation (i, j) to replace the cumbersome $a_{i j}$ and also describe $a_{i j}, a_{i}{ }^{\prime} j^{\prime}$ as distinct if $(i, j) \frac{1}{f}\left(i^{\prime}, j^{\prime}\right)$.
(2.5) Definition A chain in A is a sequence of aistinct non-zero entries of A such that consecutive terms are either in the same row or the same column, with a strict alternation between the two. Thus a chain from (i,j) to ($\left.i^{\prime}, j^{\prime}\right)$ can be any one of the folloring four types of sequences of non-zero entries of is:-
(I) $\quad(i, j),\left(i_{1}, j\right),\left(i_{1}, j_{1}\right), \ldots,\left(i_{p+1}, j_{p}\right),\left(i_{p+1}, j^{\prime}\right),\left(i^{\prime}, j^{\prime}\right)$
(II) $(i, j),\left(i, j_{1}\right),\left(i_{1}, j_{1}\right), \ldots,\left(i_{p}, j_{p}\right),\left(i_{p}, j^{\prime}\right),\left(i^{\prime}, j^{\prime}\right)$
(III) $(i, j),\left(i_{1}, j\right),\left(i_{1}, j_{1}\right), \ldots,\left(i_{p}, j_{p}\right),\left(i^{\prime}, j_{p}\right),\left(i^{\prime}, j^{\prime}\right)$
(IV) $(i, j),\left(i, j_{1}\right),\left(i_{1}, j_{1}\right), \ldots,\left(i_{p}, j_{p+1}\right),\left(i^{\prime}, j_{p+1}\right),\left(i^{\prime}, j^{\prime}\right)$
(Also by convention, if $j=j^{\prime}$ the trivial chain ($\left.i, j\right),\left(i^{\prime}, j^{\prime}\right)$ will be considered to be a chain of type (II), and if $i=i^{\prime}$ it will be considered to be a chain of type (IV)).

For any such chain we also say that $a_{i j}$ is connected to $a_{i \prime} j^{\prime}$ by the given chain C. The length of C is simply the number of terms in C and is denoted by $\ell(C)$. A chain of type (I) or (III) in which $i_{1}, \ldots, i_{p+1}<i \quad$ will be called a u-chain. The key to finding our privileged entries for the canonical form is in the following:-
(2.6) Definition A non-zero entry $a_{i j}$ of A is non-atomic if for some $1 \leqslant j^{\prime}<j$ there is a u-chain of type (I) connecting $a_{i j}$ to, $a_{i, j} j^{\prime}$. Otherwise $a_{i j}$ is atomic. An atomic chain in A is a chain in which each term is atomic.
(2.7) Example
i) Every leading entry of a matrix is atomic.
2) In the matrix

$$
A=\left[\begin{array}{cccc}
0 & a_{12} & a_{13} & 0 \\
a_{21} & 0 & a_{23} & 0 \\
0 & a_{32} & 0 & a_{34} \\
a_{41} & 0 & 0 & a_{44}
\end{array}\right] \quad \text { (where all the marked }
$$

the entry $a_{2 j}$ is atomic even though it is not a leading entry (the same is true of the $(2,2)$ entry of the matrices in $(2.4 .1)$). The entry a_{44} is non-atomic by virtue of the u-chain

$$
(4,4),(3,4),(3,2) .(1,2),(1,3),(2,3),(2,1),(4,1) .
$$

3) Suppose A^{\prime} is the submatrix of A consisting of the first t rows of A
(where $1 \leqslant t \leqslant n o$. of rows of A). Then for each $a_{i j} \in A^{\prime}, a_{i j}$ is atomic in A^{\prime} if and only if $a_{i j}$ is atomic in A. The corresponding statenent for columns is not true, since for example if

$$
A=\left[\begin{array}{ccc}
0 & a_{12} & a_{13} \\
a_{21} & 0 & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \quad \text { and } \quad A^{\prime}=\left[\begin{array}{cc}
0 & a_{12} \\
a_{21} & 0 \\
a_{31} & a_{32}
\end{array}\right]
$$

then a_{32} is atomic in Λ^{\prime} but non-atomic in A because of the u-chain

$$
(3,2),(1,2),(1,3),(2,3),(2,1),(3,1)
$$

4) If $A=\left[a_{i j}\right], B=\left[b_{i j}\right]$ are s-projectively equivalent matrices then $a_{i j}$ is atomic if and only if $b_{i j}$ is atomic, since by (2.3) both matrices have their non-zero entries in the same corresponding positions.
(2.8)Theorem Every matrix is s-projectively equivalent to a unique matrix in which every atomic entry is equal to 1.

Thus the privileged entries we were looking for in our search for the s.c.f. are precisely the atomic entries. Before proving (2.8) we shall need a lemma:-
(2.9) Lemma Any two atomic entries of Λ are connected by at most one atomic chain.
proof Assume the contrary. Then we can consider all ' $/ 4$-tuples' $\Pi=\left(a, a^{\prime}, c, c^{\prime}\right)$ where a, a^{\prime} are atomic entrics of A connected by distinct atomic chains C, C^{\prime}. Of all such 4 -tuples choose one, say
$\Pi_{0}=\left((i, j),\left(i^{\prime}, j^{\prime}\right), C_{1}, C_{2}\right)$ for which $\ell\left(C_{1}\right)+\ell\left(C_{2}\right)$ is minimal. The chains C_{1}, C_{2} may be any of the four different types. We will prove the lemma by showing that each possible permutation leads to a contradiction. First suppose that both chains begin by moving along column j (so that they are a permatation of types I and III), say $c_{1}=(i, j),\left(i_{1}, j\right), \ldots,\left(i^{\prime}, j^{\prime}\right) \quad$ and $c_{2}=(i, j),\left(i_{1}^{\prime}, j\right), \ldots,\left(i^{\prime}, j^{\prime}\right)$

Then let C_{1}^{\prime} be the chain formed from C_{1} by deleting the first term (i, j) only. Let C_{2}^{\prime} be the chain formed from C_{2} by replacing the first term (i, j) by the term $\left(i_{1}, j\right)$ or simply deleting (i, j) if $i_{1}^{\prime}=i_{1}$. It is clear that the 4 -tuple $\left(\left(i_{1}, j\right),\left(i^{\prime}, j^{\prime}\right), C_{1}^{\prime}, C_{2}^{\prime}\right)$ contradicts the choice of Π_{0}. We may arrive at similar contradictions when a) both chains begin by moving along row i (permutation of types II and IV),
b) both chains end by moving along column j^{\prime} (permutation of types I and II) or c) both chains end by moving along row i^{\prime} (permutation of III and IV). This leaves us with only two possibilities:-
case d) one of C_{1}, C_{2} is type I and the other is type $I V$, or case e) one of C_{1}, C_{2} is type II and the other is type III We will show only that d) is impossible since the argument against e) is almost identical. Without loss of generality assume that

$$
\begin{aligned}
& c_{1}=(i, j),\left(i_{1}, j\right),\left(i_{1}, j_{1}\right), \ldots,\left(i_{p+1}, j_{p}\right),\left(i_{p+1}, j^{\prime}\right),\left(i^{\prime}, j^{\prime}\right) \\
& c_{2}=(i, j),\left(i, j_{1}^{\prime}\right),\left(i_{1}^{\prime}, j_{1}^{\prime}\right), \ldots,\left(i_{q}^{\prime}, j_{q+1}^{\prime}\right),\left(i^{\prime}, j_{q+1}^{\prime}\right),\left(i^{\prime}, j^{\prime}\right)
\end{aligned}
$$

First we will show that

$$
i, i_{1}, \ldots, i_{p+1}, i^{\prime}, i_{1}^{\prime}, \ldots, i_{q}^{\prime} \text { are all distinct }
$$

Certainly the row indeces $i, i_{1}, \ldots, i_{p+1}, i^{\prime}$ occuring in C_{1} are all distinct, for otherwise we would have $\dot{i}_{s}=i_{t}$ for some $0 \leq s<t \leqslant p+2$ (taking $i_{0}=i, i_{p+2}=i^{\prime}$) and then we could 'shorten' C_{1} to the chain $c_{1}^{\prime}=(i, j),\left(i_{1}, j\right), \ldots,\left(i_{s}, j_{s-1}\right),\left(i_{t}, j_{t}\right),\left(i_{t+1}, j_{t+1}\right), \ldots,\left(i^{\prime}, j^{\prime}\right)$ (where $\left.j_{0}=j, j_{-1}=j^{\prime}\right)$ in which case $\left((i, j),\left(i^{\prime}, j^{\prime}\right), C_{1}^{\prime}, C_{2}\right)$ contradicts the choice of Π_{0}. By a similar argument all the row indeces $i, i_{1}^{\prime}, \ldots, j_{q}^{\prime}, i^{\prime}$ occuring in C_{2} are distinct. So to establish (2.9.1) it suffices to show that $\left\{i_{1}, \ldots, j_{p+1}\right\} \cap\left\{i_{1}^{\prime}, \ldots, i_{q}^{\prime}\right\}=\phi$. Suppose not. Then $i_{s}=i_{t}^{\prime}$ for sone $1 \leqslant s \leqslant p+1$ and $1 \leqslant t \leqslant q$ and so we have the chains

$$
\begin{aligned}
& D_{1}=\left(i_{s}, j_{s-1}\right),\left(i_{s}, j_{s}\right), \ldots,\left(i_{p+1}, j^{\prime}\right),\left(i^{\prime}, j^{\prime}\right) \\
& D_{2}=\left(i_{s}, j_{s-1}\right),\left(i_{t}^{\prime}, j_{t+1}^{\prime}\right), \ldots,\left(i^{\prime}, j_{q+1}^{\prime}\right),\left(i^{\prime}, j^{\prime}\right)
\end{aligned}
$$

in which case $\left(\left(i_{s}, j_{s-i}\right),\left(i^{\prime}, j^{\prime}\right), D_{1}, D_{2}\right)$ contradicts the choice of Ilo, thus proving (2.9.1).

Thus the set \mathscr{I} of row indeces (Iisted in (2.9.1)) has a unique maximal element which is either i_{s} for some $0 \leqslant s \leqslant p+2$ or i_{t}^{\prime} for some $1 \leqslant t \leqslant q$. Assume first it is i_{s}. Then we may 'link' the chains C_{1}, C_{2} to form

$$
\begin{aligned}
& \left(i_{s}, i_{s}\right),\left(i_{s+1}, j_{s}\right), \ldots,\left(i^{\prime}, j^{\prime}\right),\left(i^{\prime}, j_{q+1}^{\prime}\right), \ldots, \\
& \quad, \ldots,\left(i, j_{1}^{\prime}\right),(i, j),\left(i_{1}, j\right),\left(i_{1}, j_{1}\right), \ldots,\left(i_{s-1}, j_{s-1}\right),\left(i_{s}, j_{s-1}\right)
\end{aligned}
$$

By definition of i_{s}, the above chain is a u-chain from (i_{s}, j_{s}) to ($i_{s,}, j_{s-1}$) which contradicts the fact that both these entries are atomic. A similar contradiction involving $\left(i_{t}^{\prime}, j_{t+1}^{\prime}\right)$ and $\left(i_{t}^{\prime}, j_{t}^{\prime}\right)$ is deduced if i_{t}^{\prime} is the maximal element in \mathscr{J}.

Proof of Theorem (2.8)
Let $A=\left[a_{i j}\right]$ be an arbitrary $(n \times m)$ matrix. There are two things to prove:-
(2.8.1) that A is s-projectively equivalent to a matrix in which every atomic entry is equal to 1 , and
(2.8.2) if A, B are ($n \times m$) matrices in which each atomic entry is equal to 1 , and which are s-projectively equivalent, then $A=B$.

By (2.3), to prove (2.8.1) ve must find non-zero elements $\delta_{1}, \ldots, \delta_{n}$, μ_{1}, \ldots, μ_{n} of F for which

$$
\begin{equation*}
\delta_{i} a_{i j}{ }_{j}=1 \quad \text { whenever } a_{i j} \text { is atomic } \tag{2.8.3}
\end{equation*}
$$

for then $\left[\delta_{i} a_{i j} \mu_{j}\right]$, is the required matrix. We prove (2.8.3) by inm. duction on n. If $n=1$ then $A=\left[a_{11}, \ldots, a_{1 m}\right]$ and the atomic entries are precisely the non-zero entries. So take $\delta_{i}=1$ and

$$
\mu_{j}=\left\{\begin{array}{ll}
1 & \text { if } a_{1 j}=0 \\
a_{1, j}^{-1} & \text { if } a_{1, j} \neq 0
\end{array} \quad(j=1, \ldots, m)\right.
$$

Next assume that $n>1$ and that the result holds for matrices of less than n rows. In particular the result holds for the submatrix of A consisting of the first $n-1$ rows. Then (by (2.7.3)) there is at least one set of nor-zero elements $\delta_{1}, \ldots, \delta_{n-1}, \quad \mu_{1}, \ldots, \mu_{m}$ of F, satisfying

$$
\delta_{i} a_{i j^{\mu} j}=1 \quad \text { whenever } a_{i j} \text { is atomje in } A \text { and } 1 \leqslant i \leqslant n-1 \quad \text { (2.8.4.) }
$$

Of all the sets of elements of F which satisfy (2.8. h_{+}) choose one, say $S=\left\{\delta_{1}, \ldots, \delta_{n-1}, \mu_{1}, \ldots, \mu_{m}\right\}$ for which $X(S)$ is maximal where $X(S)$ is the set of atomic entries $a_{n j}$ in the last row of A for which $a_{n j} \mu_{j}=1$. If $X(S)$ contains every atomic entry in the last row of A then (2.8.3) is clearly satisfied by the elements $\delta_{1}, \ldots, \delta_{n-1}, \delta_{n}=1, \mu_{1}, \ldots, \mu_{m}$. So assume this is not the case and seek a contradiction. Let (n, j_{0}) be an atomic entry in the last row for which $\left(n, j_{0}\right) \& x(S)$. We are going to construct a new set S^{\prime} satisfying (2.8.4) for which $\mathrm{X}\left(\mathrm{S}^{\prime}\right)$ strictly contains $X(S)$. First define

$$
\begin{equation*}
\mu_{j_{0}}^{\prime}=a_{n, j_{0}}^{-1} \tag{2.8.5}
\end{equation*}
$$

Now replace $\mu_{j_{0}}$ in S by $\mu^{\prime} j_{0}$. The resulting set S_{0} clearly satisfies $X(s) \subset X\left(S_{0}\right)$, but if there is another atomic entry $\left(i_{1}, j_{0}\right)$ in the $j_{0}^{\text {th }}$ column then we do not necessarily have $\delta_{i_{1}}{ }^{a_{i}}, j_{0} \mu_{j_{0}}^{\prime}=1$. So what we must do is consider the, set of all possible atomic u-chains from (n, j_{0}); for every row index i and every column index j appearing in such a chain we will define $\delta_{i}^{\prime}, \mu_{j}^{\prime}$ respectively to replace δ_{i}, μ_{j} in S. Suppose ther that

$$
c=\left(n, j_{0}\right),\left(i_{1}, j_{0}\right),\left(i_{1}, j_{1}\right), \ldots,\left(i_{p+1}, j_{p}\right),\left(i_{p+1}, j_{p+1}\right)
$$

is such an atomic u-chain (where the appoarance of the last term is dependert on whether C is type I or III). Each even-numbered tern (i_{s}, j_{s-1}) (for $s=1, \ldots, p+1$) in C will determine $\delta_{j_{t}}^{\prime}$ and each odd-numbered term (i_{t}, j_{t}) (for $t=0, \ldots, p+1$, with $i_{0}=n$) will determine $\mu_{j_{t}}^{\prime}$ accoraing to the following inductive procedure:-

Ey (2.8.5) the first term $\left(n, j_{0}\right)$ determines $\mu_{j_{0}}^{\prime}=a_{n, j_{0}}^{-1}$
If (i_{s}, j_{s-1}) is a subsequent even-numbered term, with $\mu_{j_{s-1}}^{\prime}$ already determined,write

$$
\begin{equation*}
\delta_{i_{s}}^{\prime}=\left(a_{i_{s} j_{s-1}} \mu_{j_{s-1}}^{\prime}\right)^{-1} \tag{2.8.6}
\end{equation*}
$$

If (i_{t}, j_{t}) is a subsequert odd-mmbered term, with $\delta_{i_{t}}^{\prime}$ already determined, write

$$
\begin{equation*}
\mu_{i_{t}}^{\prime}=\left(\delta_{i_{t}^{\prime}}^{\prime} a_{i_{t}}\right)^{-1} \tag{2.8.7}
\end{equation*}
$$

Vie have to check that there is no ambiguity about the choices of the $\delta^{\prime \prime}$'s and the $\mu^{\prime \prime}$'s ; suppose that row i appears as an'index in two different atomic u-chains from $\left(n, j_{0}\right)$. Then considering only the first part of these chains (up to the first occurence of i) we get two subchains C_{1}, C_{2} say from $\left(n, j_{0}\right)$ to ($\left.i, j^{\prime}\right)$ and ($\left.i, j^{\prime \prime}\right)$ respectively. If these chains are identical then of course the above procedure will lead to the same choice of $\delta{ }_{i}^{\prime}$ in each case. If they are distinct, then we can add the term (i, j^{\prime}) to C_{2}, obtaining two distinct atomic chains from (n, j) to (i, j^{\prime}) which contradicts (2.9).

Thus each row i can be 'reached' by an atomic u-chain from (n, j_{0}) in at most one way, and in the case when it can be reached μ_{i}^{\prime} is uniquely determined according to (2.8.6). If row i cannot be reached in this way simply take $\delta_{i}^{\prime}=\delta_{i}$. For similar reasons each column j can be reached in at most one way, in which case $\mu^{\prime}{ }_{j}$ is uniquely determined according to (2.8.7), and if column j cannot be reached we simply take $\mu_{j}^{\prime}=\mu_{j}$.

The new set $s^{\prime}\left\{\left\{\delta_{1}^{\prime}, \ldots, \delta_{n-1}^{\prime}, \mu_{1}^{\prime}, \ldots, \mu_{m}^{\prime}\right\}\right.$ now satisfies (2.8.2). Horeover if $a_{n j} \in X(S)$ then clearly column j cannot be reached by an atomic u-chain from (n, j_{0}) for otherwise we could construct an atomic u-chain from $\left(n, j_{0}\right)$ to (n, j) which contradicts the fact that both these entries are atomic. Thus $\mu_{j}^{\prime}=\mu_{j}$ and $a_{n j} \mu_{j}^{\prime}=a_{n j} \mu_{j}=1$. Thus $X(S) \subset X\left(S^{\prime}\right)$ and strict inequality now follows from the choice of $a_{n, j_{0}}$ together with (2.8.5). This contradicts the choice of S .

To prove (2.8.2), súppose $A_{2}=\left[a_{i j}\right], B=\left[b_{i j}\right]$ are s-projectively equivalent matrices in which each atomic entry is equal to 1. By (2.7.4) $a_{i j}$ is atomic if and only if $b_{i j}$ is atomic and in this case $a_{i j}=b_{i j}=1$. Also there are non-zero elements $\delta_{1}, \ldots, \delta_{n}, \mu_{1}, \ldots, \mu_{m}$ of F for which

$$
\delta_{i} a_{i j} H_{j}=b_{i, j} \quad\left(1-j_{i} n, \quad 1 \leqslant j \leqslant m_{i}\right) \quad(2.8 .8)
$$

Fe have to show that $a_{i j}=b_{i j}$ for each i, j and we do this by induction on n. If $n=1$ then every non-zero entry of A, B is atomic, herce equal to 1 . So assume $n>1$ and that the result holds for matrices of less than n rows. In particular, by (2.7.3) we may assume that $a_{i j}=b_{i j}$ whenever $1 \leqslant \mathrm{i}_{\mathrm{r}} \mathrm{r}-1$. By (2.8.8) we deduce that

$$
\begin{equation*}
\delta_{i} \mu_{j}=1 \text { whenever } a_{i j} \neq 0 \text { and } 1 \leqslant i \leqslant n-1 \tag{2.8.9}
\end{equation*}
$$

It now suffices to sho: that $\delta_{n} \mu_{j}=1$ whenever $a_{n j} \neq 0$. Assume not; let $\left(n, j_{0}\right)$ be the first non-zero entry in the last row for which $\delta_{n} \mu_{j_{0}} \neq 1$. Then certainly $\left(n, j_{0}\right)$ is non-atomic (by (2.3.8)), hence there is a chain

$$
\begin{gathered}
\left(n, j_{0}\right),\left(i_{1}, j_{0}\right),\left(i_{1}, j_{1}\right), \ldots,\left(i_{p}, j\right),(n, j) \\
\text { where } j<j_{\hat{0}} \quad \text { and } i_{1}, \ldots, i_{p}<n
\end{gathered}
$$

But then, by (2.8.9),

$$
\delta_{i_{1}} \mu_{j_{0}}=\delta_{i_{1}} \mu_{j_{1}}=\delta_{i_{2}} \mu_{j_{1}}=\ldots=\delta_{i_{p}} \mu_{j}=1
$$

Thus $\mu_{j_{0}}=\mu_{j_{1}}=\ldots=\mu_{j}$, whence $\delta_{n} \mu_{j_{0}}=\delta_{n} \mu_{j}=1$, by choice of (n, j_{0}). This contradiction completes the proof of the theorem.
(2.10) Definition An arbitrary matrix A is in projective cenonical form (p.c.f.) if A is in column echelon form and every atomic entry of the non-identity submatrix of A is equal to 1.
(2.11) Corollary Every matrix A is projectively equivalent to a unicque matrix in p.c.f. (called the associated p.c.f. of A)

Proof Follows inmediately from remark (2.4) and theorem (2.8)
(2.12) Remark

1) The method described in the proof of (2.8) of considering all possible atomic u-chains from atomic entries in the last row of a matrix

A provides an algorithr for finding the associeted s.c.f. of A (once the atomic entries of Λ are known). Consider, for example the matrix A of (2.7.2). The entry $a_{4 i}$ is the only atomic entry in the last row, and the atomic u-chain $(4,1),(2,1),(2,3),(1,3),(1,2),(3,2),(3,4)$ determines (according to the formulae (2.8.6), (2.8.7))

$$
\begin{aligned}
& \mu_{1}=a_{41}^{-1}, \quad \delta_{2}=a_{21}^{-1} a_{41}, \quad \mu_{3}=a_{23^{-1}} a_{21} a_{4+1}^{-1}, \quad \delta_{1}=a_{13}^{-1} a_{41} \\
& \mu_{2}=a_{12}^{-1} a_{13} a_{41}^{-1}, \quad \delta_{3}=a_{32}^{-1} a_{12} a_{13}^{-1} a_{41}, \quad \mu_{4}=a_{34}^{-1} a_{32^{-1}}^{a_{12}^{-1} a_{13} a_{41}^{-1}}
\end{aligned}
$$

Taking $\delta_{4}=1$ (as in the proof) the s.c.f. of A is thus the matrix $A^{\prime}=\operatorname{Diag}\left(\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}\right) A \operatorname{Diag}\left(\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}\right)$, that is

$$
\left.A^{\prime}=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & \lambda
\end{array}\right] \quad \text { (where } \lambda=a_{44} a_{34}^{-1} a_{32} a_{12}^{-1} a_{13} a_{41}^{-1}\right)
$$

Thus if, for example $B=\left[\frac{I_{L}}{A}\right]$ then the associated p.c.f. of B is the matrix $\left[\frac{I_{4}}{A^{T}}\right] \cdots$
2) Throughout the proof of (2.8) the only elements of the field F which are used are those in the subfield of F gererated by the entries of the matrix A. Consequently the s.c.f is independent of F in the sense that F could be any field which contains all the entries of A. Thus if two matrices A, B (over F) are not' (s-)projectively equivalent over F then they are not ($s-$) projectively equivalent over any field containing F.
3) As has already been observed, projective (ard s-projective) cquivalence are well defined for matrices over an arbitrary division ring. In fact the commatativity of F is not used in the proof of (2.8.1), so we may deduce that any matrix h over a division ring D is s-projectively equivalent to a matrix in which every atomic entry is equal to 1 (s.c.f). However in the proof of (2.8.2), the deduction of (2.8.9) from (2.8.8) is denondent on the comutativity of F , so in general we
cannot achieve uniqueness. Indeed if a, b are any two non-commuting elements of D (so that $\mathrm{bab}^{-1}=a$) then

$$
\left[\begin{array}{ll}
b & 0 \\
0 & b
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & a
\end{array}\right]\left[\begin{array}{ll}
b^{-1} & 0 \\
0 & b^{-1}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
1 & b a b^{-1}
\end{array}\right]
$$

Consequently, the matrices $\left[\begin{array}{ll}1 & 1 \\ 1 & a\end{array}\right]$, and $\left[\begin{array}{cc}1 & 1 \\ 1 & b a b\end{array}\right]$ are distinct, s-projectively equivalent matrices (over D) which are both in s.c.f. For similar reasons (wich we study in detail in X_{4}) it is quite possible that two matrices over a field F may be non-projectively equivalent (over F) but projectively equivalent over some division ring containing F.
I) Cuppose the matrix A has no zero entries in the first row. In this case the associated s.c.f. of A is particularly easily described; the only atomic cntries are the leading entries, so the associated s.c.f. is a matrix of the form

$$
B=\left[\frac{1}{1} \frac{1 \ldots 1}{B^{i}}\right]
$$

where the leading entry of each row of E^{\prime} is equal to 1.

Applications of the projective canonical form

First we present a new proof of (1.15), the 'sccond fundamental theorem of projective geonetry' :-

Proor of (1.15) Suprose first that D is a field and $m \geqslant 2$. As in (2.2), any simplex in $P G(m, D)$ is associated with an $(m+1) \times m$ matrix over D. By definition: (1.8) and (2.10) any such matrix has projective cancrical form

$$
\begin{equation*}
\left[\frac{I_{m 1}}{1} 1 \cdots \cdots 1\right] \tag{2.15.1}
\end{equation*}
$$

and consequently, by (2.2) and (2.11) there is always at least one collineation mapping any given simplex onto another simplex. To show that there is only one such collineation it suffices to prove that the identity map is the only collineation which leaves invariant every point of the simplex given by (2.15.1). Let γ be such a collineation and $P \in P G(m, D)$. Suppose that the natural coordinate vectors of $P, Y(P)$ are respectively $\left(a_{1}, \ldots, a_{m}\right)$ and $\left(b_{1}, \ldots, b_{m}\right)$. By (2.2)

$$
\left[\begin{array}{cccc}
& & I_{m} & \\
\hline 1 & 1 & \cdots & 1 \\
a_{1} & a_{2} & \cdots & a_{m}
\end{array}\right] \quad, \quad\left[\begin{array}{cccc}
& I_{m} & \\
\hline 1 & 1 & \cdots & 1 \\
b_{1} & b_{2} & & b_{m}
\end{array}\right]
$$

are projectively equivalent matrices. Now since the first non-zero entry in each of $\left(a_{1}, \ldots, a_{m}\right),\left(b_{1}, \ldots, b_{m}\right)$ is equal to 1 , it follows from (2.12.4) that both these matrices are in p.c.f., hence by (2.11), $\left(a_{1}, \ldots, a_{m}\right)=\left(b_{1}, \ldots, b_{m}\right)$ so that $P=\gamma(P)$ and r is the identity.

Conversely suppose that D is not a ficld, in which case there are two non-comuting elements $a, b \in D$. Then the (distinct) matrices

$$
A=\left[\begin{array}{cccc}
& I_{m} \\
\\
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & a
\end{array}\right], \quad B=\left[\right]
$$

are projectivcly cquivalent over D since. $\left(b I_{m+2}\right) A\left(b^{-1} I_{m}\right)=B$. Since the first $m+1$ rows respectively of A, B represent the same simplex in $P(m, D)$, it follows from (2.2) that there is a collineation other than the identity maping one simplex onto itself.

The main application of the p.c.r. is in the study or matroid representations. Suppose that M is a matroid of rank r on the set $F=\left\{e_{1}, \ldots, e_{n}\right\}$ where $B=\left\{e_{1}, \ldots, e_{r}\right\} \quad$ is a basis of h. Then if M is P-representable it follows from the above work that the associatcd p.c.f. for any representration has the form $\left[\frac{I_{r}}{\Lambda}-\right]$ where everj atomic entry of A is equal to 1. For example, we can inmediately deduce
from (1.43) and (2.11) that every representation of M over $G F(2)$ is projectively equivalent to the matrix $\left[I_{r} \mid A_{B}\right]^{T}$ where A_{B} is the $B-$ basic c.i.matrix of M. Ve next use the p.c.f. to present new proof's of results concerning certain uniqueness of representability of binary and ternary matroids. The first of these is
(2.13) Theorem Suppose M is binary. Then there is a matrix A in p.c.f. all of whose non-zero entries are aqual to ± 1, such that any representation of M over any field F has A as its associated p.c.f.

Before proving this important theorem we shall need a definition and tro lemmas:-
(2.11.) Definition For any $m \geq 2$, an ($m \times m$)block irreducible matrix A is a circuit matrix if every row and every column of A has exactly two non-zero entries.
(2.15) Lemma Let A be an (r. $x_{\text {ri }}$) circuit matrix all of whose non-zero entries are equal to ± 1 except possibly one which is equal to a say. Then (up to sign), $\operatorname{det} A=1 \pm a$

Proof Since A is block irreducible, it is easily seen that A has exactly two non-vanishing permutation products - one of which is equal to ± 1, the other of which is equal to \pm a.
(2.16) Lemma cirppose A is an ($m \times m$) circuit matrix (over F) for which the matrix $A^{\prime}=\left[I_{m} \mid A\right]^{T}$ is an F-rcuresentation for some binary matroid $h^{\prime}\left(\mathrm{E}^{\prime}\right)$ of 2 m elements. Then the set of m elements of E^{\prime} corresponding to the rows of A form a circuit in $k n^{\prime}$, so ' $\operatorname{det} \cdot A=0$.

Proof Leet A_{1} be the ($m \times m$) matrix over $G P(2)$ whose non-zero entries
appear in the same positions as those of A. Then clearly by definition (2.17) the m rows of A_{1} form a circuit in (GF(2)) ${ }^{m}$. Eut by (1.43) $\left[I_{m} \mid A_{1}\right]^{T}$ is a representation of M^{\prime} over $G F(2)$ so the result follows.

Proof of (2.13) Liet $A=\left[a_{i j}\right]$ be an F-representation in p.c.f. We have to show that every entry of A is equal to ± 1, where the sign is uniquely determined by the matroid M (i.e. is not dependent on the particular representation). He proceed by induction on n. The cases $n=1,2$ (and $n=r$) are trivial so assume that $n>r>1$ and that the result holds for binary matroids of fewer than n elements. Now

$$
A=\left[\frac{I_{r}}{A_{1}}\right] \text { where } A_{1}=e_{n}\left[\frac{A_{1}^{\prime}}{-\underline{V}}\right] \text {,say. }
$$

and all atomic entries of A_{1} are equal to 1 . With respect to the obvious ordering, $\left[\frac{I_{r}}{\hbar_{1}^{\prime}}\right]$ is an F-representation of the matroid $M \backslash\left\{c_{n}\right\}$ which, by (2.7.3) is in p.c.f. By (1.33) H $\left\{e_{n}\right\}$ is binary so by the inductive hypothesis every non-zero entry of μ_{i} is equal to ± 1 with the sign uniquely determined by the matroid $M \backslash\left\{e_{n}\right\}$ (and a fortiori, by M). Ihus we have to show that every non-zero entry of $\underset{Y}{ }$ (the last ro: of A) is equal to ± 1 where the sign is uniqucly determined by the previous rows.

If every contry of \underline{v} is atomic in A_{i} we are done since then all the non-zero entries are equal to 1. If not we proceed to:stage I There is at least one u-chain from a non-atomic entry in the last row to an atomic entry in the last row. Choose one C say, of minimal length anong all such chains. Then C has the form

$$
\begin{aligned}
& C=(n, j),\left(i_{1}, i\right),\left(i_{1}, j_{1}\right), \ldots,\left(i_{m-1}, i_{m-2}\right),\left(i_{m-1}, j^{\prime}\right),\left(n, j^{\prime}\right) \\
& \text { where } m \geqslant 2, \quad i_{1}, \ldots, i_{m-1}<n \quad \text { and }\left(n, j^{\prime}\right) \text { is atomic. }
\end{aligned}
$$

Leet $I=\left\{n, i_{1}, \ldots, i_{m-1}\right\}, J=\left\{j, j_{1}, \ldots, j_{m-1}, j^{\prime}\right\}$. The choice of C ensures that the elements of I, J respectively are all distinct.

Moreover if N is the $\left(m \times_{m}\right)$ submatrix of A_{1} whose rows are indexed by I and whose columns are indexed by J it is easily seen (by similar arguments to those used in (2.9)) then that the minimality of $\ell(C)$ implies that N is a circuit matrix. Now write

$$
\begin{aligned}
& S=B \cup\left\{e_{i_{m-1}}, e_{i_{m-2}}, \ldots, e_{i_{1}}, e_{n}\right\} \\
& T=B \backslash\left\{e_{j}, e_{j_{m-2}}, \ldots, e_{j_{1}}, e_{j}\right\}
\end{aligned}
$$

Then the minor $k^{\prime}=(M \mid S) / T$ of M is binary (by 1.33$)$) and by construction the matrix $\left[\frac{I_{m}}{N}\right]$ is an F-representation of M^{\prime} with respect to the ordering $e_{j^{\prime},}, e_{j_{m-2}}, \ldots, e_{j}, e_{i_{m-1}}, \ldots, e_{i_{1}}, e_{n} \quad$ By (2.16), det $N=0$. But N satisfies the hypothesis of (2.18) so (up to sign), $\operatorname{det} N=1 \pm a_{n j}$ and so $a_{n j}= \pm 1$.

If (r, j) is the only non-atomic entry in the last row we are done. If not then we proceed to:-
stage II there is at least one u-chain from a non-atomic entry $(f(n, j))$ in the last row to either an atomic entry or (n, j) in the last row. Choose one such chain of minimal length, and suppose it is from the atomic entry ($n, j^{\prime \prime}$). Proceeding exactly as in stage I, we again deduce that $a_{n, j^{\prime \prime}}= \pm 1$ since the only possible difference is that the (non-atomic) entry $a_{n j}$ may be the other entry in the last row used in the proof and this has now been uniquely determined to be ± 1.

If $(n, j),\left(n, j^{\prime \prime}\right)$ are the only non-atomic entries in the last row we are done. If not we consider u-chains from other non-atomic entries in the last row to atomic entries or $(n, j),\left(n, j^{\prime \prime}\right)$ in the last row, and proceed as before. It is clear that the result must follow after a finite number of these steps.
(2.17) Remark The method used in the above proof once again provides an algorithm for determining the natrix A. This theorem appears in a slightly divicrent form in [12], and a weaker result is also proved in [39]. It is not difficult to deduce that the matrix A
is always unimodular if M is also F-representable for some field F with char $F \neq 2$ (see, [11] for an elementary proof of this). Consequently, this provides an alternative and more direct proof of Tutte's famous Unimodular Theorem (which is essentially stated in (1.39)). Another immediate consequence is that a binary matroid is uniquely F-representable (that is, any two F-representations are projectively equivalent) for any ficld F over which M is representable.

The next result has also been proved in [12] and [30].
(2.18) Theoren Supnose M is ternary. Then any two representations of k over $G F(3)$ are projectively equivalent.

Froof Let A_{1}, A_{2} be two representations of M over $G F(3)$ in p.c.f. Suppose $A_{1}=\left[a_{i j}\right] \quad\left(=\left[I_{r} \mid \Lambda_{1}^{\prime}\right]^{T}\right)$ and $A_{2}=\left[a_{i . j}^{\prime}\right]\left(=\left[I_{r} \mid A_{2}^{\prime}\right]^{T}\right)$. We have to show that $a_{i j}=a_{i j}{ }_{j}$ for each i, j. By a similar induction argument to that used in the proof of (2.13), we may assume that all the corresponding entries of A_{1}, A_{2} are equal except possibly those in the last row. If all the corresponding entries in the last row are equal there is nothing to prove, so we may assume w.l.o.g. that for some $(n, j), \quad a_{n j}=1$ and $a_{n j}^{\prime}=-1$ and seek a contradiction. Using cxactly the same argument as in (2.13) we may assume there is an contry $\left(n, j_{0}\right)$ in the last row with $a_{n, j_{0}}=a_{n}{ }^{\prime}, j_{0}$ and a u-chain from (n, j) to $\left(n, j_{0}\right)$ such that if I is the set of row indeces and J the set of column indeces appearing in this chain then the subatrices N_{1}, N_{2} of $A_{1}^{\prime}, A_{2}^{\prime}$ respectively, indexed by I, J, are circuit matrices. Now, $\left[I_{m} \mid N_{1}\right]^{T},\left[I_{m} \mid N_{2}\right]^{T}$ are representations over $G F(3)$ of the name minor of M. Consequently det $N_{1}=0$ if and only if det $N_{2}=0$. 3ist., by (2.15),

$$
\begin{array}{ll}
\text { det } N_{1}=1 \pm a_{n j} & \text { (up to sign) } \\
\text { and, } \quad \text { det } N_{2}=1 \pm a_{n j}^{\prime} & \text { (up to sign) }
\end{array}
$$

Since $a_{n j}=1$ and $a_{n j}^{\prime}=-1$, it follows that one of det N_{1}, det N_{2} is equal to zero and the other is equal to ± 2, which is a contradiction since $2 \neq 0$ in $G F(3)$.

We conclude this section by describing the connection between the projective canonical form and the work done by Brylawski and Lucas in [12]. For an arbitrary ($s \times t$) matrix $A=\left[a_{i j}\right]$ with row set R and column set C we may associate a bipartite graph H_{A} whose vertices are partitioned into the two sets $R=\left\{r_{1}, \ldots, r_{s}\right\}$, $C=\left\{c_{1}, \ldots, c_{t}\right\}$ and for which there is an edge joining r_{i} to c_{j} if and only if $a_{i j}=0$. Denote such an edge by $[i, j]$. Brylawski and Lucas now define a coordinatizing path P of A to be a spanning forest of the graph H_{A}, or equivalently a basis of the cycle matroid $M\left(H_{A}\right)$ defined in (1.20.3). In the case of a matroid M with basis B and P a coordinatizing path for A_{B} (the B-basic c.i.matrix) they also define a representation matrix N of K to be in (B, P)-basic form if $N(B)=I_{r}$ and the entries corresponding to P in the nor-identity submatrix of if are all equal to 1 . Obviously there may be many coordinatizing paths E; we now show that for a certain natural choice of P, the ($\mathrm{E} ; \mathrm{P}$)-basic form corresponds precisely to our p.c.f, (allowing for the fact that the role of rows and columns are interchanged).

First we observe that the set of cdges of H_{A} is totally ordered by the lexicographic order

$$
[i, j]<\left[i^{\prime}, j^{\prime}\right] \text { if and only if either }
$$

$$
\text { (a) } i<i^{\prime} \text { or }(b) i=i^{\prime} \text { and } j<j^{\prime}
$$

This order now induces a (total) Lexicographic order on the set of all coordinatizing paths. Let P^{*} be the minimal path in this orden. With this notation we have
(2.19) Theorem The edge $[i, j] \epsilon P^{\circ}$ if and only if the entry (i,j) is atomic in Λ.

Proof Suppose first that $\lceil i, j] \in P^{*}$ but that (i,j) is non-atomic. Then for some $j^{\prime}<j$ there is a chain in A of the form

$$
\begin{gather*}
(i, j),\left(i_{1}, j\right),\left(i_{1}, j_{1}\right), \ldots,\left(i_{k}, j_{k-1}\right),\left(i_{k}, j^{\prime}\right),\left(i_{,} j^{\prime}\right) \tag{2.19.1}\\
\text { where } i_{1}, \ldots, i_{k}<i
\end{gather*}
$$

By 'shortening' this chain if necessary we may assume that $i_{i}, i_{f}, \ldots, i_{k}$ are all distinct and similarly $j, j_{1}, \ldots, j^{\prime}$ are all distinct. Then the set $C=\left\{[i, j],\left[i_{1}, j\right],\left[i_{1}, j_{1}\right], \ldots,\left[i_{k}, j^{\prime}\right],\left[i, j^{\prime}\right]\right\}$ is a circuit in $M\left(H_{A}\right)$. Thus the set $X=C\{[i, j]\}$ is independent in $M\left(H_{\dot{A}}\right)$, and so by (1.17.2) there is an ef X for which the set

$$
P=P^{*} \backslash\{[i, j]\} \cup\{e\}
$$

is a basis of $\mathrm{M}\left(\mathrm{H}_{\mathrm{A}}\right)$, that is, a coordinatizing path for A . By (2.19.1) $e<[i, j]$ so the choice of P is contradicted.

Conversely suppose that (i, j) is atomic in A but that $[i, j] \& P$. Then $P \cup\{[i, j]\}$ contains a cycle C of H_{A} which we may write as

$$
C=\left\{[i, j],\left[i_{1}, j\right],\left[i_{1}, j_{1}\right], \ldots,\left[i_{k}, j^{\prime}\right],\left[i, j^{\prime}\right]\right\} \quad(k \geq 1)
$$

pirst we show that

$$
\begin{equation*}
i_{i}, \ldots, i_{k}<i \tag{2.19.2}
\end{equation*}
$$

For sup!ose not. Then we must have $i_{q}>i$ for some $1 \leqslant q^{6} k$. Since C is the fundamental circuit of $[i, j]$ in $M\left(H_{A}\right), \quad P^{*} \backslash\left\{\left[i_{q}, j_{q-1}\right]\right\} \cup\{[i, j]\}$ is a basis (interpreting $j_{0}=j$). This contradicts the choice of P since $[i, j]<\left[i_{q}, j_{q-1}\right]$, and hence proves $(2.19 .2)$. Eut now

$$
(i, j),\left(i_{1}, j\right), \ldots,\left(i_{k}, j^{\prime}\right),\left(i, j^{\prime}\right)
$$

is a u-chain in h. This is impossible if $j^{\prime}<j$ since (i,j) is atomic. But if $j<j^{\prime}$ then (by reversing the terms of this chain) we infer that (i, j^{\prime}) is non-atomic. But $\left[i, j^{\prime}\right] \in P^{*}$, so by the 'if" part proved above, (i, j^{\prime}) is atomic - a contradiction.
(2.20) Corollary (with the same notation as above) A representation

it is in projective cenonical form.
(2.21) Corollary Suppose A is an (sxt) matrix with r^{\prime} zero rows, c^{\prime} zero columns and k blocks after zero rows and columns have been deleted. Then A has $(s+t)-\left(r^{\prime}+c^{\prime}+k\right)$ atomic entries. In particular if A is block irreducible then A has $s+t-1$ atomic entries.

Proof The bipartite graph H_{A} has $s+t$ vertices and $k+r^{\prime}+c^{\prime}$ connected components. By (1.16) every spanning forest of H_{A} has $s+t-\left(k+r^{\prime}+c^{\prime}\right)$ edges so the result follows from (2.19).
(2.22) Corollary Suppose the matroid M (of size n, rank r) has k connected components. Then for any basis B of M the matrix A_{B} has $n-k$ atomic entries.

Proof If k has r^{\prime} loops, c^{\prime} coloops and k^{\prime} (non-trivial) connected components, then $k=k^{\prime}+r^{\prime}+c^{\prime}$. The result follows from (1.45), (2.22).
(2.23) Corollary Suppose A is a block irrcducible matrix. Then there is an atonic chain in a joining any two atomic entries.

Iroof The graph H_{A} is connected. Any coordinatizing path of A, in particular P°, is thus a spanning tree of H_{A} any two of whose eages must be connected by a path of this tree. The result now follows from (2.19).

It has already been noted that for a given matrix A there may be atomic entries in A which are not the leading entries in their respective row or column. With the help of the following definition (and the above results) we vill show that we can always rearrange rows and colunns of A so that the only atomic entries of the resulting matrix are the leading entries - a result of some significance in $\$ 5$.
(2.24) Definition Let A be an ($s \times t$) matrix. For $i=1, \ldots, s$ suppose the leading entry in the $i^{\text {th }}$ row of A appears in the $\alpha_{i}^{\text {th }}$ position,
ard for $j=1, \ldots, t$ the leading entry in the $j^{\text {th }}$ column appears in the $\beta_{j}^{\text {th }}$ position. Then A is in step diagonal form (s.a.f) if both of the sequences $\alpha_{1}, \ldots, \alpha_{s}$ and $\beta_{1}, \ldots, \beta_{t}$ are non-decreasing.
(2.25) Proposition Every matrix can be brought into step diagonal form by rearranging rows and columns, that is, every matrix is permutation equivalent to a matrix in s.d.f.

Proof It suffices to prove the result for block irreducible matrices, since by rearranging rows and columns, an arbitrary matrix A can always be brought into the form

$$
\left[\begin{array}{cc|c}
B_{1} & & 0 \\
& \ddots & \\
0 & B_{k} & 0 \\
\hline 0 & & 0
\end{array}\right]
$$

where the B_{i} 's are the blocks of A. By definition (2.24) A is in s.d.f. if each B_{i} is in s.d.f. So assume A is block irreducible. Then the graph H_{A} is connected. iie now relabel the vertices as follows:-

Choose an arbitrary r_{1}, then label the adjacent vertices as c_{1}, c_{2}, \ldots then the remaining vertices adjacent to c_{1} (if any) as r_{2}, r_{3}, \ldots and so on. Since H_{A} is connected this procedure will relabel each vertex, and the induced rearrangement of rows and columns of A yiclds a matrix which is in s.d.f.
(2.26) Proposition Suppose the matrix A isin s.d.r. Then the only atomic entries of A are the leading entries.

Proof Again it suffices to assume that A is an ($s \times t$) block irreducible matrix. By (2.21), A has ($s+t-1$) atomic entries. Eut since A is in s.d.f it now follows that A has exactly (st-1) leading entries since no (i, j) except $(1,1$) can te the ?ending ertry in hoth row ard colum. The result now follows by (2.7.1).

§3 CHARACTERIZATION OF ATOM:IC NATROIDS

The work of the previous chapter leads us naturally to the following definition :-
(3.1) Definition A matrix A is atomic if every non-zero entry of A is atomic, or equivalently (by(2.19)) if the bipartite graph H_{A} is a forest. A matroid is atomic if for some basis B of M the matrix A_{B} is atomic.
(3.2) Proposition The expansion of any subdeterrinant of an atomic matrix A has at most one non-vanishing term. In particular every zero-one atonic matrix is unimodular.

Proof Since H_{A} contains no cycle there can be at most one matching between any set of t rows and t columns. Thus any ($t \times t$) subdeterminant of A has at most one non-zero permutation product.

(3.3) Remark

1) The representation problem for atomic matroids is imediately classified; for supnose $!4$ is atomic with (atomic) B-basic c.i. matrix A_{B}. Then by (2.11) and (1.1,2) every representation matrix of M is projectively equivalent to $\left[I_{r} \mid A_{b}\right]^{T}$, a unimodular matrix. Thus by (1.39) if h is represertable it must be regular.
2) Rearranging rows or column of a matrix does not affect its 'atomicity'. In particular, although for a matroid $M(E)$ the matrix A_{B} is aependent on the orderirg of k, its atonicity is inajependent of this ordering.

By a consideration of the bipartite Eranh H_{A} the following statements are obvious:-
3) A patris: is atoric in and only if each of its blocks is atonic. 1) A matrix A is atomic if and only if A^{T} is atomic.
5) Any submatrix of an atomic matrix is atomic.
(3.4) Corollary

1) A matroid is atomic if and only if each of its connected components is atomic.
2) A matroid M is atonic if and only if M^{*} is atomic.
3) If a matroid is atomic then so too is its underlying
simple matroid.

Proof

1) Follows from (3.2.3) and (1.4,6).
2) Follows from (3.2.4) and (1.4.1).
3) Follows from (3.2.5) and (1.24).
(3.5) Definition (using the notation of (1.20.6)) A matroid M is a fundamental transversal matroid (FT matroid) if. for some cobasis $B^{*}, M=M\left[C_{1}^{*}, \ldots, C_{r}^{*}\right]$ where $C_{1}^{*}, \ldots, C_{r}^{*}$ are the rundamental circuits of B^{*} in M^{*}.

Because of the following result, the main theorem of this chapter (3.12) is also a characterization of binary FT matroids. (3.6) Theorem A matroid is atomic if and onily if it is a
binary Fr matroid.

Proof First supmse that H is an atomic matroid with atomic B-basic c.i.ratrix A_{B}. Write $B=\left\{e_{1}, \ldots, e_{r}\right\}$. If $B^{*}=K \backslash B$ and for $j=1, \ldots, r \quad c_{j}^{*}$ is the fundamental circuit of $B^{*} \cup\left\{c_{j}\right\}$ in M^{*}, then the matrix induced by the transversal matroid
$M^{\prime}=M\left[C_{1}, \ldots, C_{r}\right]$ is precisely $A=\left[\frac{I_{r}}{A_{B}}\right]$.

By (3.2) the matrix A represents the transversal matroid li^{\prime} ' over any field. If we can show that M is representable it follows from (3.3.1) that A is also a representation of M (over any field) and hence that $M=M^{\prime}$ as required.

We shall prove that M is representable by induction on the size n of M. If $n=1$ the result is trivial so assume $n>1$ and that the result holds for atomic matroids on less than n elements. Ye may assume M is simple, for otherwise we could apply (3.4.3) to the underlying simple matroid and deduce the result from (1.34). Now, since A_{B} is atomic, its associated bipartite graph is a forest which thus has a terminal vertex. Consequently A_{B} has either a column or a row with only one non-zero entry; since M is simple it follows from (1.45.4) that the latter is impossible, so we may assume that the $j^{\text {th }}$ column say, of $A_{i 3}$ has only one non-zero entry. Let A^{\prime} be the matrix formed from A_{B} by deleting the $j^{\text {th }}$ column and let $B^{\prime}=B \backslash\left\{e_{j}\right\}$. Then B^{\prime} is a vasis for the matroid $M /\left\{e_{j}\right\}$ and with respect to the ordering

$$
\epsilon_{1}, \ldots, e_{j-1}, c_{j+1}, \ldots c_{r}, \quad e_{r+1}, \ldots, e_{n}
$$

the matrix Λ^{\prime} is the B^{\prime}-basic c.i.matrix for $11 /\left\{e_{j}\right\}$. By (3.3.5) A^{\prime} is atomic, and thus by the inductive hypothesis $M /\left\{e_{j}\right\}$ is representable, herce by (1.32) so is its dual. But by (1.26) $\left(M /\left\{e_{j}\right\}\right)^{\bullet}=M^{*} \backslash\left\{e_{j}\right\}$ so the latter is representable. Fy choice of the $j^{\text {th }}$ column it follows from (1.41) and $(1.45 .4)$ that e_{j} is a parallel in M^{*}, and so by $\left(1 . y_{+}\right) M^{*}$ is representable. The result now follows from another application of (1.32).

For sufficiency, supiose that M is binary and $k=H\left[C_{1}^{*}, \ldots, C_{r}^{*}\right]$ where the \mathcal{C}_{j}^{*} 's are defined as above with respect to some basis B or M. If the bipartite graph associated with A_{B} contained a cycle, then there would be a transversal of for which the corresponding subdeterninant of $\left[I_{r}\left[A_{B}\right]^{T}\right.$ is equal to zero over GF(2), which contraicts the fact that this matrix is a represent-
ation of M over $G F(2)$. Thus A_{B} is an atomic matrix and the theorem follows.

The above result is closely connected to a theorem attributed to Edmunds $(\operatorname{see}[37]$, tix. $(14.4 .1)$) which states that

A transversal matroid is binary if and only if
it can be presented by a bipartite forest.

Corollary
A matroid is a binary transversal matroid if and only if it can be represented (over every field) by a zero-one atomic matrix.

A-GRAPHS

Our next (and most important) aim is to show that atomic matroids are precisely the cycle matroids of a special class of graphs. A graph will be denoted by $G(V, E)$ (or simply G) and any subgraph of G will be simultaneously identified with its edge set as a subset of k in the matroid $M(G)$ (defined in (1,20.3)). In particular, if C is a cycle of G then it is also a circuit in $M(G)$.
(3.7) Dofinition An A-graph $G(V, E)$ consists of a pair $\left(\left(C_{1}, \ldots, C_{m}\right), \dot{P}\right)$ where $\left(C_{1}, \ldots, C_{m}\right)$ is an ordered m-tuple of cycles of G (called the fundamental cycles) none of which are loops, for which $E=U C_{i}$ and for which P (the 'pivot'set) is defined by

$$
P=\left\{\text { e } \in \mathrm{E} ; \text { e c } C_{i} \cap C_{j} \text { for some } 1 \leqslant i \neq j \leqslant m\right\}
$$

In addition we must have:-

1) P contains no cycle of G, and
2) For each $k=1, \ldots, m^{-1}$ the cycle C_{k+1} has exactily one edge x_{k} say, (called the $k^{\text {th }}$ pivot) in common with $i_{i=1}^{k} C_{i}$ and exactly 2 vertices (namely the endpoints of x_{k}) in common.

It is clear that $P=\left\{x_{1}, \ldots, x_{m-1}\right\}$, but these pivots may not all be distinct (see later example). It is also not difficult to see that A-graphs are precisely those graphs which can be constructed inductively on the number of fundanental cycles in the following manner:-
(3.8) (recursive construction for A-graphs)

1) A single cycle C (not a loop) is an A-graph with $P=\phi$.
2) Cuppose $G(V, E)=\left(\left(C_{1}, \ldots, C_{m}\right), P\right)$ is an A-graph. Let $x_{m} \in E$ for which $P \cup\left\{x_{m}\right\}$ does not contain a cycle. Let G be a new graph in which a cycle C_{m+1} (not a loop) is added to G, having only the edge x_{m} and its endpoints in comon with G. Then G^{\prime} is an A-graph with defining pair $\left(\left(C_{1}, \ldots, C_{m+1}\right), P \cup\left\{x_{m}\right\}\right)$.
(3.9) Sixamples

3) The graph of figure 1 is an A-graph. There are several ways we can define the fundamental cycles recursively as in (3.8), one stich way iss $C_{1}=\{1,2,3\}, C_{2}=\{3,4,5,6\}, C_{3}=\{1,7,8,9,10\}$, $C_{l_{+}}=\{9,11,12,13\}, C_{5}=\{9,16,17,18\}, C_{6}=\{11,14,15\}$. In this case $x_{1}=3, \quad x_{2}=1, x_{3}=9, x_{4}=9, \quad x_{5}=11$,
herid hentee $P=\{3,1,9,11\}$
4) A-Eraphs are series paraliel networks.
5) f-qraphs are planar, 2-comected graphs.
6) The complete bipartite graph $K_{2,3}$ is not an A-graph since it consists of just three cycles, any two of which intersect in two edges (so that (3.7.2) can never be satisfied). Moreover no graph which contains a subgraph homeomorphic to $K_{2,3}$ is an A-graph.
7) For similar reasons no graph which contains a subgraph homeomorphic to K_{4} or $\mathrm{C}_{\mathrm{k}}^{2} \quad(\mathrm{k}>2)$ can be an A-graph. (3.10) Definition A generalised A-graph is a graph whose (graphically connected) components are A-graphs, loops or trees.
(3.11) Remark As for graphs in general it is quite possible that for two non-isomorphic (generalised) A-graphs G_{1}, G_{2}, the matroids $M\left(G_{1}\right), M\left(G_{2}\right)$ are isomorphic. Since we are primarily interested in the cycle matroid structures we shall not distinguish between G_{1}, G_{2} in this case. "ith this convention, it follows from (1.27) that graphs whose 2-connected components are A-graphs and coloops are also to be considered generalised A-gruphs, and loops can be added anywhere with the graph remaining a generalised A-graph.
(3.12) Theorem A matroid is atomic if and only if it is the cycle matroid of a generalised A-graph.

Proof Since loops and coloops are trivially atomic matroids (and of course gencralised A-graphs) it suffices by (3.4.1) to prove that

$$
\begin{aligned}
& \text { a connected matroid } M \text { is atomic if and } \\
& \text { only if } M=M(G) \text { for some A-graph } G \text {. }
\end{aligned}
$$

First suppose $G(V, E)$ is an A-graph on the pair $\left(\left(C_{1}, \ldots, C_{m}\right), P\right)$. By (3.9.3) and (1.27), $H(G)$ is certainly connected. ice have to find a basis B of $h(G)$ for wich Λ_{B} is an atomic matrix. Now since P contains no cycle of G we may choose a $y_{i} \epsilon_{i} \backslash P$
(for cach $i=1, \ldots, m$). Write $B=E \backslash\left\{y_{1}, \ldots, y_{m}\right\}$. Using (3.8)
it follows easily by induction on mat

$$
|v|=\sum_{i=1}^{m} t_{i}-2 m+2 \quad \text { where } t_{i}=\left|c_{i}\right| \quad(i=1, \ldots, m)
$$

and similarly that

$$
|B|=\sum_{i=1}^{m} t_{i}-2 m+1
$$

Thus, since B is clearly a spanning subgraph for the connected graph G and $|B|=|V|-1$, it follows from (1.16) that B is a spanning tree, that is, a basis for $M(G)$. We now show that A_{B} is an atomic matrix.

By construction $C_{i}=C\left(B, y_{i}\right) \quad(i=1, \ldots, m)$, Write $D_{i}=C_{i} \cap P \quad$ and $\quad B_{i}=C_{i} \backslash\left(P \cup\left\{y_{i}\right\}\right) \quad$ (which may be empty). Then if $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{k}}$ are the distinct elements of P there is a suitable ordering of B for which A_{B} has the form

Clearly the atomicity of A_{B} will follow if we can show A^{\prime} is atomic. Certainly A^{\prime} is block irreducible (since by (1.45.3) A_{B} is block irreduciole), thus by (2.21) it suffices to show that K^{\prime} has exactiy $(m+k-1)$ non-zero entries. for $i=1, \ldots, m$ the $i^{\text {th }}$ row of h^{\prime} has $\left|D_{i}\right|$ norizero entries, so it suffices to prove that

$$
\begin{equation*}
\sum_{i=1}^{m}\left|D_{i}\right|=m+P-1 \tag{3.12.1}
\end{equation*}
$$

are zero. So assume $m>1$. Consider the A-graph $G^{\prime}=C_{1} \cup \ldots \cup C_{m-1}$. This graph has pivot set

$$
P^{\prime}=\left\{e ; e \in C_{i} \cap C_{j} \text { for some } 1 \leqslant i \neq j \leqslant m-1\right\}
$$

Writing $D_{i}^{\prime}=C_{i} \cap P^{\prime}$, it follows by the inductive hypothesis that

$$
\begin{equation*}
\sum_{i=1}^{m-1}\left|D_{i}^{\prime}\right|=m+\left|P^{\prime}\right|-2 \tag{3.12.2}
\end{equation*}
$$

Without loss of gererality assume that p_{k} is the $(m-1)^{\text {th }}$ pivot of G. iie distinguish two cases:-
case (.) $p_{k} \in P^{\prime}$. In this case $P^{\prime}=P$, and so $D_{i}^{\prime}=D_{i}$ for $i=1, \ldots, m-1$ and $D_{m}=\left\{p_{k}\right\}$. Thus

$$
\sum_{i=1}^{m}\left|D_{i}\right|=\sum_{i=1}^{m-1}\left|D_{i}^{\prime}\right|+1=m+\left|P^{\prime}\right|-1=m+|P|-1
$$

case (b) $p_{k} \in P^{\prime}$. By construction $p_{k}\left(=x_{m-1}\right) \in C_{m}$ and $D_{m}=\left\{p_{k}\right\}$, so in this casc there is exactly one $C_{i} \quad(1 \leqslant j \leqslant m-1)$ for which $p_{k} \in C_{i}$. Then $p_{k} \in D_{i}$, and since $y^{\prime}=P \backslash\left\{p_{k}\right\}$ we must have $D_{i}^{\prime}=D_{i} \backslash\left\{p_{k}\right\}$ and $D_{j}^{\prime}=D_{j} \quad$ for each $j=1, \ldots, i-1, i+1, \ldots, m-1$. Thus (3.12.1) follows from (3.12.2).

This proves sufficiency.

Conversely, suppose that M is a connected atonic matroid on the set F. Assume that $B=\left\{e_{i}, \ldots, c_{r}\right\}$ is a basis of M for which A_{B} iss atomic. Virite $E \backslash=\left\{f_{1}, \ldots, f_{m}\right\}$ (so the rows of A_{B} are indexed by $\left.f_{1}, \ldots, f_{m}\right)$ and let $C_{i}=C\left(E, i_{i}\right)$ for $i=1, \ldots, m_{\text {. }}$ Since H_{A} (the bipartite graph associated with A_{B}) is a tree, we can certainly reorder the $C_{i}{ }^{\prime} s$ so that

$$
C_{t+1} \cap \bigcup_{i=1}^{t} C_{i} \neq \phi \quad \text { for } t=1, \ldots, n-1
$$

Morecver, since H_{A} contains no cycle it follows that

$$
\begin{equation*}
\left|C_{t+1} \cap \bigcup_{i=1}^{t} S_{i}\right|=1 \tag{3.12.3}
\end{equation*}
$$

(for $t=1, \ldots, m-1$)

Let $\left\{x_{t}\right\}=C_{t+1} \cap \stackrel{t}{\stackrel{t}{=}} C_{i} \quad$ (ior $t=1, \ldots, m-1$), and write p_{1}, \ldots, p_{k} for the distinct elements in $\left\{x_{1}, \ldots, x_{m-1}\right\}$.

Fie may now construct an A-graph G by identifying the edges with the elements of E and by taking C_{q}, \ldots, C_{m} as the fundamental cycles; by (3.12.3) each $C_{t+1}(t=1, \ldots, m-1)$ has exactly one 'edge' x_{t} in common with $\bigcup_{i=1} C_{i}$ so we can also ensure that in the construction the endpoints of x_{t} are the only vertices in common with $\stackrel{t}{i=1} C_{i}$. The set $P=\left\{p_{1}, \ldots, p_{t}\right\}$ is clearly the pivot set and does not contain a cycle since $\mathrm{P} \subset \mathrm{B} . \mathrm{As}$ in the above proof of sufficiency, B is a basis (spanning forest) for $N(G)$, and by construction the B-basic c.i. matrix of $M(G)$ is precisely A_{B}. Now $M(G)$ is certainly binary (graphic matroids are in fact regular), and by (3.6), N is binary. Thus by (3.3.1) both matroids have the same representation matrix $\left[I_{r} \mid A_{B}\right]^{T}$ over $G F(2)$ from which it follows that $M=M(G)$ as required.

Theorem (3.12) appears to be the first characterization of binary FT matroids. It has been proved in [16] that binary transversal matroids are graphic, and this result has since been subsumed by Theorem 14.4 .1 of [37] identifying the larger class of binary gampids with the cycle matroids of serics parallel networiss. flso in [5] graphical transversal matroids are characterized as those graphs which contain no subgraph homeomorphic to K_{4} or $C_{k}^{2}(k>2)$; of course $A-g r a p h s$ are more restrictive since $K_{2,3}$ is not an Λ-graph (so that $H_{2,3}$) provides an example of a transversal matroid which is not an r"i matroicl). It seens reasonable to conjecture that $\mathrm{K}_{2,3}$ is the only extra 'obstruction' for A-Eraphs.
§ 4 PROJECTIVE SFACES AND THEIR MATROID REPRESENTATIONS

In this chapter we are primarily concerned with the representations of those matroids (of example (1.20.2)) arising from a collection of points in the projective space $\operatorname{PG}(r, F)$ (where F is a field and $r \geqslant 3$). Suppose that M is such a matroid defined on the points P_{1}, \ldots, P_{n}. Then the ($n \times r$) matrix A over F, whose $i^{\text {th }}$ row (for $i=1, \ldots, n$) is the natural coordinate vector of P_{i}, is trivially a representation of K (since M is isomorphic to the matroid induced by linear dependence over F of the rows of Λ). We shall call A the natural representation of M (over F).

Proviaing there is no possibility of ambiguity, we shall identify each point in $P G(r, F)$ with its natural coordinate vector in F^{r}. If M contains the $r+1$ points $(1,0, \ldots, 0),(0,1, \ldots, 0)$, $\ldots,(0, \ldots, 0,1),(1,1, \ldots, 1)$ ve shall always assume that in the matrix A these correspond to the first $\mathrm{r}+1$ rows, in which case, by (2.10) and (2.12.4), the natural representation matrix of M is already in projective canonical form.

The natural representation is certainly not (even up to projective equivalence) the only rapresentation of M in general. . However if F is a finite prime field and M the collection of all the points of $\mathrm{PG}(r, F)$ then it is shown in $[12]$ that M is uniquely F-represcritable, so that every representation is projectively equivalent to the natural representation. He generalise this result to all fields and this requires our extending the notion of projective equivalence in a way which we will show is raturally justified.

First ve describe a procedure for constructing matroids whose representations are casily classif'ied, with interesting characteristic sets, inis procedure vill also be used to prove the result mentioned above.

Most classical proofs of the Coordinatization theorem (1.10) involve the concept of geometric 'addition' and 'multiplication' of points on a line as originated in the famous "Von Staudt Calculus'. The idea behind the proofs is to show that with respect to these operations, the collection of points on a line form a division ring which is a field if and only if the projective space is Pappian. The reader is referred to [24,25,27] for a full account of this process. If we now 'turn the tables' and actually start with a collection of points in $P G(r, F)$ we may mimick the type of constructions for adiition and multiplication defined for an arbitrary projective space and derive some very useful consequences for our study of matroid representations.

Let us label once and for all certain points of the projective plane $\mathrm{PG}(3, \mathrm{~F})$:-

For each $x \in F$, write $P_{x}=(1,0, x)$. In particular

$$
P_{0}=(1,0,0), \quad P_{1}=(1,0,1)
$$

Let $I=(0,0,1), \quad Q_{0}=(0,1,0), \quad Q_{1}=(0,1,1), \quad J=(1,-1,0)$. The points $P_{0}^{\prime} ; Q_{0}, I, P_{1}, Q_{1}$ will be called the rive basic points. For any two distinct lines ℓ_{1}, ℓ_{2} the unique point of intersection or ℓ_{1} and ℓ_{2} will be denoted by $\ell_{1} \wedge \ell_{2}$.

Let \mathscr{F} denote the collection of points $\left\{P_{x} ; x \in F,\right\}$ so that \mathscr{F} consists of precisely the set of points on $\mathrm{F}_{0} \mathrm{P}_{1}$ with the exception of I. ie now define the gcometrical addition and multiplication of any two points in \mathcal{F}.
(4.1) Adation in \mathscr{F} (see fig. (1.1.1)).

Let P_{x}, P_{x}, be any two points in \mathcal{F}.
Let $A=\left(P_{x} Q_{1}\right) \wedge\left(P_{0} Q_{0}\right), \quad B=(h I) \wedge\left(P_{x} / Q_{0}\right)$

FIGURE (4.4.1)

Now define the point $P_{x}+P_{x^{\prime}}$ to be the point $\left(P_{0} P_{i}\right) \wedge\left(B Q_{1}\right)$
A simple argument on determinarits shows that $A=(1,-x, 0)$, since P_{0}, Q_{0}, A, collinear implies A must be of the form ($1, z, 0$) for some $z \in F$ and now P_{x}, Q_{1}, A collinear implies

$$
\left|\begin{array}{lll}
0 & 1 & 1 \\
1 & z & 0 \\
1 & 0 & x
\end{array}\right|=0
$$

whence $z=-x$. By similar arguments it follows that $B=\left(1,-x, x^{\prime}\right)$ and hence also, that

$$
\begin{equation*}
P_{x}+P_{x^{\prime}}=\left(1,0, x^{\prime}+x^{\prime}\right)=P_{x+x^{\prime}} \tag{4.4.2}
\end{equation*}
$$

Thus 'addition' is a commutative, binary operation on \mathcal{F}, with unique identity $P_{\bar{u}}$, and each point P_{x} has unique inverse P_{-x}. (4.2) Multiplication in $\mathcal{F}($ rig. (4.2.1))

For any two points P_{x}, P_{x}, in
Let $C=\left(P_{x} J\right) \wedge\left(Q_{0} Q_{1}\right), D=\left(P_{x^{\prime}} Q_{1}\right) \wedge\left(P_{0} Q_{0}\right)$

Now define $P_{x} \cdot P_{x}$, to be the point $\left(P_{o} P_{\gamma}\right) \wedge(D C)$
Again by an argument on determinants it follows that

$$
\begin{gather*}
C=(0,1, x), \quad D=\left(1,-x^{\prime}, 0\right) \quad \text { and hence that } \\
P_{x} \cdot P_{x^{\prime}}=\left(1,0, x x^{\prime}\right)=P_{x x^{\prime}}
\end{gather*}
$$

Thus 'multiplication' is a commutative, binary operation on \mathscr{F} with unique identity P_{1}, and each point $P_{x}(x \neq 0)$ has unique inverse $\mathrm{P}_{\mathrm{x}} \mathrm{X}^{-1}$.
(4.3) Corollary The set \mathcal{F} together with 'addition' and
'multiplication' defined in (4.1), (4.2) respectively, is a field and the mapping $x \rightarrow P_{x}$ is an isomorphiem of F onto \mathscr{F}. Proof Immediate from (4.1.2) and (4.2.2)

Although the cxistence of an adaitive and multiplicative inverse for each P_{x} in $\mathcal{F}(x \neq 0)$ is already ensured, we next exhibit geometrical constructions of $-P_{x}$ and $\left(P_{x}\right)^{-1}$ from the five basic points together with P_{x} :-
(4.4.) Construction of $-\mathrm{P}_{\mathrm{x}} \quad(f i g,(4.4 .1))$

FIGURs (4.4.1)

Let $\quad A_{1}=\left(P_{0} Q_{0}\right) \wedge\left(P_{x} Q_{1}\right), \quad B_{1}=\left(P_{0} Q_{1}\right) \wedge\left(A_{1} I\right)$
Now define $-P_{x}=\left(B_{1} Q_{0}\right) \wedge\left(P_{0} P_{1}\right)$
It follows that $A_{1}=(1,-x, 0), \quad B_{1}=(1,-x,-x)$ and hence that

$$
-P_{x}=(1,0 ;-x)=P_{-x}
$$

(4.5) Construction of $(P)^{-1} \quad(x \neq 0)$

FIGURE (4.5.1)

Let $\quad C_{1}=\left(J P_{x}\right) \wedge\left(O_{0} Q_{1}\right), \quad D_{1}=\left(C_{1} P_{1}\right) \wedge\left(P_{0} Q_{0}\right)$ Now define $\left(P_{x}\right)^{-1}=\left(D_{1} Q_{1}\right) \wedge\left(P_{0} P_{1}\right)$

It follows that $C_{1}=(0,1, x), \quad D_{1}=\left(1,-x^{-1}, 0\right)$ and hence that

$$
\left(P_{x}\right)^{-1}=\left(1,0, x^{-1}\right)=P_{x^{-1}}
$$

(4.6) Definition Jet $z, x_{1}, \ldots, x_{n} \in F$. Then 2 is constructible from $x_{1} \ldots, x_{n}$ if the point P_{z} may be constructed by sone finite sequence of the four operations (given above) starting with the points $P_{x_{1}}, \ldots, P_{x_{n}}$ and the five basic points.

For example, if $x_{1}, x_{2}(\neq 0) \in \mathrm{F}$. then the clement $z=\left(x_{1}+x_{2}\right) x_{1}^{-1}-x_{1}^{2} x_{2} \quad$ is constructible from x_{1}, x_{2}. The construction may be, achieved in several ways; one way would be to first construct $x_{1}+x_{2}$ (by (4.1)), $x_{1}^{2}(3 y(4.02))$, and x_{1}^{-1} (by (4.5)). Next construct $x_{1}^{2} \cdot x_{2}($ by $(4.2))$ arid hence
then $-\left(x_{1}^{2} \cdot x_{2}\right)($ by $(4.4))$. Next construct $\left(x_{1}+x_{2}\right) \cdot x_{1}^{-1}$ (by (4.2)) and finally we get P_{z} the result of the construction (4.1), ${ }^{P}\left(x_{1}+x_{2}\right) \cdot x_{1}^{-1}+P_{-x_{1}^{2} x_{2}}$.

Given just the basic five we can still construct new points since $P_{1}+P_{1}=P_{2}$. Any point which is constructible from the basic five points alone will simply be called constructible.

```
(4.7) Proposition For z &F, z is constructible if and only
if z\varepsilonk}(the prine subfield of F)
```

Proof For each positive integer me wen construct (inductively) $P_{m}=P_{m-1}+P_{1}$. Using (4.4) and (4.5) we can thus deal with either of the cases $k=G F(p)$ or $k=Q$
(4.8) Corollary For $z, x_{1}, \ldots x_{n} \in F, z$ is constructible from x_{1}, \ldots, x_{n} if and only if $z \in k\left(x_{1}, \ldots, x_{n}\right)$.

Suppose then that $z \in k\left(x_{1}, \ldots, x_{n}\right)$. For a particular construction of P_{z} from x_{1}, \ldots, x_{n} the matroid induced (in the sense of (1.20.2)) by precisely the set of points occuring in the construction (including the basic five) will be denoted by M_{z} (For an arbitrary point P, not necessarily on $P_{0} P_{1}$, if P is constructible from a given set of points then we can also definc H_{p} in the same way). Before examining the representability of M_{z} we note that there is another very closely related matroid induced by the construction of $P_{z} ;$ let C_{z} be the planar configuration consisting cnly of those points and those lines actually drawn in the construction of P_{z} (with the exception that wo \&l:ays assume C_{z} 'contains' the basic configuration below)

Since all the 'points' and 'lines' of C_{z} were derived from a projective plane we know that each pair of lines of C_{z} meets in at most one point of C_{z}. Hence it follows by a well known result (see, e.g. [37] p. 31) that C_{z} induces a unique simple matroid M_{z}^{\prime} whose bases are those 3 -sets of points which are not collinear in C_{z}. Of course M_{z}^{\prime} contains the same set of 'points' as M_{z} and any 3 collinear point in M_{z}^{\prime} must be collinear in K_{z}. In general however the converse is not true; consider for example the construction of the point $P=(1,-1,1)$ (in an arbitrary field) shown in Figure (1.8.1). If char $F=2$ then the points

FIGURE (4.8.1)

FIGURE (4.8.2)
P, P_{0}, Q_{1} are nécessarily collinear in $P G(3, F)$ since

$$
\left|\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 1 \\
1 & -1 & 1
\end{array}\right|=2
$$

Consequently the matroid M_{p} (shown in fig.(4.8.2)) differs from M_{P}^{\prime} since the extra line joining P, P_{0}, Ω_{1} has had to be added. (The discerning reader will notice that in this particular case m_{p} is precisely the Fano matroid and M_{P}^{\prime} the nor-Fano matroid we shall have more to say about this example in (4.44.1)).

Ir general then the best we can say is that M_{z} is always a
'weak map image' of N_{z}^{\prime}. In the cases when $M_{z}=M_{z}^{\prime}$ the matroid M_{z} will assume added significance.

Suprose now that the matrix A_{z} is the natural representation of the matroid M_{z}. He shall always assume the points of M_{z} are listed in ordcr of their construction and that the first five are the basic five in the order $P_{U}, Q_{\hat{U}}, I, P_{1}, Q_{\mathcal{A}}$ (this ensures A_{z} is already in p.c.f.) Eollowed by $P_{x_{1}}, \ldots, P_{x_{n}}$. Suppose for example that $z=x_{1}+x_{2}$ is constructed from x_{1}, x_{2} by (4.1). Then $\quad A_{z}^{T}=\left[\begin{array}{cccccccccc}1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & -x_{1} & -x_{1} & 0 \\ 0 & 0 & 1 & 1 & 1 & x_{1} & x_{2} & 0 & x_{2} & z\end{array}\right]$
(4.9) Convention Let $f^{\prime}=f\left(X_{1}, \ldots, X_{n}\right)$ be a rational function over $2\left[X_{1}, \ldots, X_{n}\right]$ (that is, f is a quotient of polymomials in $\left.Z\left[X_{1}, \ldots, X_{n}\right]\right)$. If f is any field and x_{1}, \ldots, x_{n} any elements in F, then the expression $f\left(x_{1}, \ldots, x_{n}\right)$ will derote the natural evaluation of f at x_{1}, \ldots, x_{n} in F (providing that the denominator is non-zero in this evaluation).

Suprose that M_{z} is the matroid induced by the construction of 2 from x_{i}, \ldots, x_{n} with natural matrix representation A_{z}. Because of the values of the points $A, B, C, D, A_{1}, B_{1}, C_{1}, D_{1}$ determined in $(4.4),(4.2),(4.4),(4.5)$ it follows that for each entry (i,j) of A_{z} there is a rational function $f_{i j}\left(X_{1}, \ldots, X_{n}\right)$ for which the (i, j) entry is $f_{i j}\left(x_{1}, \ldots, x_{n}\right)$ (in the sense of (4.9)). In fact cach entry of \hat{H}_{z} is uriquely determined in this way by some previous rows. With this terminology ve have
(1, 10) Pronosition Suppose that the matrix A is a representation of $\mathrm{H} z$ in $\mathrm{f} \cdot \mathrm{c} . f$. over some field K . Then therc exist elements y_{1}, \ldots, y_{n} of k such that the (i,i) entry of A is $f_{i j}\left(y_{1}, \ldots, y_{n}\right)$.

Proof Since A is a representation of H_{z} in p.c.f. it follows from (1.42) that its first 5 rows are precisely

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

(noting that the last entry in the $5^{\text {th }}$ row is atomic hence equal to 1). Also, the first non-zero entry in each subsequent row is equal to 1, so all the rows of A are natural coordinate vectors of points in $\operatorname{PG}(3, K)$ - and we shall identify them as such. The next n rows of A (corresponding to the $P_{x}{ }^{\prime}$'s) have the form $\left(1,0, y_{1}\right), \ldots,\left(1,0, y_{n}\right)$ for elements y_{1}, \ldots, y_{n} of k. We show that these are the required elements. Suppose the $i^{\text {th }}$ row of A_{z} is the point R_{i} (or $P G(3, F)$) and the $i^{\text {th }}$ row of A is the point R_{i}^{\prime} (of $\mathrm{FG}(3, K)$). For each $i \leqslant n+5$ the rows R_{i}, R_{i}^{\prime} correspond in the ascribed way. By induction assume $s>n+5$ and that the result holds for all rows R_{i} with $i<s$. By construction R_{s} is the urique point of intersection of two lines in $P G(3, F)$ of the form $R_{j} R_{j}$ where 1 si,j<s. So sumpose $R_{s}=R_{i_{1}} R_{i_{2}} \wedge R_{i_{3}} R_{j_{4}}$ where $1 \& i_{1}, i_{2}, i_{3}, i_{L_{i}}<s$. "íc may assume that $R_{s}=(1, a, b)$ say, (the proof is even casier if the firsit coordinate is zero) where $a=f\left(x_{1}, \ldots, x_{n}\right), b=\varepsilon\left(x_{1}, \ldots, x_{n}\right)$ for some rational functions $f\left(X_{1}, \ldots, X_{n}\right), g\left(X_{1}, \ldots, X_{n}\right)$. Suppose $R_{s}^{\prime}=(1, \alpha, \beta)$ for $\alpha, \beta \in K$. We have to show that $\alpha=f\left(y_{1}, \ldots, y_{n}\right), \quad \beta=\mathcal{E}\left(y_{1}, \ldots, y_{n}\right)$.

$$
\text { Since } R_{i_{1}}, R_{i_{2}}, R_{s} \text { are collinear and } R_{i_{3}}, R_{i_{4}}, R_{s} \text { are }
$$ collinear, we have the cquations

$$
\begin{align*}
& \operatorname{det} R_{i_{1}} R_{i_{2}} R_{s}=0 \tag{4.10.1}\\
& \operatorname{det} R_{i_{3}} R_{i_{4}} R_{s}=0
\end{align*}
$$

which are two simultareous equations in a, b whose cocrficients are the cntries of $R_{i_{1}}, R_{i_{2}}, R_{i_{3}}, R_{i_{4}}$ and whose unique solution
is precisely a, b (this is hor R_{s} was constructed). Tut since
A is a representation of M_{z}, we also have

$$
\begin{aligned}
& \operatorname{det} R_{i_{1}}^{\prime} R_{i_{2}^{\prime}}^{\prime} R_{s}^{\prime}=0 \\
& \operatorname{det} R_{i_{3}}^{\prime} R_{i_{4}}^{\prime} R_{s}^{\prime}=0
\end{aligned}
$$

which are two simultaneous equations in α, β. By the inductive hypothesis, these equations are the same as (4.10.1) except that every occurence of a coefficiert say $h\left(x_{1}, \ldots, x_{n}\right)$ of one of the $R_{i_{j}}{ }^{\prime}$ s is replaced by $h\left(y_{1}, \ldots, y_{n}\right)$ and every occurence of a, b is replaced by α, β respectively. It now follows that α, β are of the ascribed form.
(4.11) Corollary For any $z \in k$ the matroid $M z$ induced by the construction of $z($ recalling (4.7)) is uriguely K-representable for any field K over which $!$ is representablu.

Proof' In this casc the 'rational functions' which determine the entrics of A_{z} all lic in C, so by (4.10) the p.c.f. of any roprescntation is uniquely determined.
(4.12) Corollary Let $f(X)$ be an irreducible polynomial in $\left.2^{[} X\right]$. Then we can construct a matroid M (of rark 3) wi th the property that $h_{\text {is only }} r^{\prime}$ rennesentable for fielus K^{\prime} in which there is a $B \subset K^{\prime}$ for which $f(\beta)=0$.

Proof The ideal $(f(X))$ of $Z X]$ is mrime. Consequently $z[X] /(f(X))$ is an integral domain with quoticnt field K say. If π is the natural homonorphism from $Z[X]$ into K, then clearly π is the identiiy on \mathbb{Z}, ark if $\pi(X)=x$ then $f^{\prime}(x)=0$ in K. suppose that $f(X)=a_{0}+a_{1} X+\ldots+a_{t} X^{t} ;$ certainly $f(x)$ is construetible from x in $\operatorname{PG}(3, k)$. Firit we construct $a_{t} x^{t}$ from x and then $a_{0}+a_{1} x+\cdots+a_{t-1} x^{t-1} \quad(=g(x)$, say $)$. low since
$f(x)=g(x)+a_{t} x^{t}$ we now construct $f(x)$ by the addition $(1,0, g(x))+\left(1,0, a_{t} x^{t}\right)$ described in (4.1). This part of the construction yields the new points $A=(1,-g(x), 0)$ and $B=\left(1,-g(x), a_{t} x^{t}\right)$. The fact that $f(x)=0$ is now indicated by the dotted line in fig(4.12 .1), since P_{0} must be the point of intersection of $B Q_{1}$ and $P_{0} P_{1}$.

Now let M be the matroid $\mathrm{M}_{\mathrm{f}}(\mathrm{x})$ induced by this construction, and let A be the natural representation matrix of H . Suppose that M is K^{\prime}-representable, and let A^{\prime} be a K^{\prime}-representation in p.c.f. $B y(4+10)$ there is a $\beta \in K^{\prime}$ such that the rows of A^{\prime} corresponding to $(1,0,0),(0,1,1),\left(1,-g(x), a x^{t}\right)$ are respectively $(1,0,0),(0,1,1),\left(1,-E_{(}(\beta), a_{t}{ }^{\mathrm{t}}\right)$. But these three points are dependent since P_{0}, A, B are collinear in $F G(3, K)$ and A^{\prime} is a representation of M. Thus in K^{\prime}

$$
\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
1 & -g(p) & a_{t} \beta^{t}
\end{array}\right|=0
$$

that is, $f(\beta)=g(\beta)+a_{t} \beta^{t}=0$ as claimed.
(4.13) Corollary Let $f_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, f_{t}\left(X_{1}, \ldots, x_{n}\right)$ be polynomials in $Z\left[X_{1}, \ldots, X_{n}\right]$ which generate an ideal whose radical is prime. Then there is a matroid M wi th the property that for any field K^{\prime}, M is K^{\prime}-representable only if there are $\beta_{1}, \ldots, \beta_{n} \in K^{\prime}$ such that $f_{i}\left(\beta_{1}, \ldots, \beta_{n}\right)=0 \quad$ for $i=1, \ldots, t$.
(4.14) Examples

1) In the case of (1.12) when $f(X)=p$ (p a positive prime), the construction is none other than the construction of $p=0$ in $G F(p)$. Provided that we now construct each $n(2 \leqslant n \leqslant p)$ inductively by $(1,0,1)+(1,0, n-1)$, the resulting matroid M_{p} has natural representation matrix A where

$$
A^{T}=\left[\begin{array}{rrrrrrrrrrrrrrrr}
1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \cdots & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & -1 & -1 & 0 & -1 & 0 & -1 & 0 & -1 & \cdots & 0 & -1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & \cdots & p-1 & p-1
\end{array}\right]
$$

The last line in this construction joins $(1,0,0),(0,1,1),(1,-1, p-1)$ and the corresponding determinant is equal to p . It follows that $c\left(M_{p}\right)=\{p\}$ since by (4.11) any K-representation of M_{p} in p.c.f. is cqual to A. Yie also note that if the last line is omitted the resulting matroid has characteristic set equal to $P \backslash\left\{p^{\prime}\right.$ prime, $\left.p^{\prime} ; p\right\}$. In the case when $p=2$ these constructions yield respectively the Fano and non-Fano matroids of figs.(4.8.2) and (4.8.1).
2) The preceding example suggests a very naïve procedure for constructing matroids with two-prime characteristic set $\left\{\mathrm{p}_{1}, \mathrm{p}_{2}\right\}$ say. The idea would be to construct the number $n=p_{1} p_{2}$ over either $G F\left(p_{1}\right)$ or $G F\left(p_{2}\right)$. By (4.12) the resulting matroid is only representable over fields of characteristic p_{1} or p_{2}, but we encounter the problem that the represertetion matrix may have deterninants (other than the one corresporaing to the 'last line') divisible by p_{1} or p_{2}. Not surprisingly ther the whole problem of firding finite (non-singleton) characteristic sets is an
extremely difficult one. Until very recently the only known example was that of Reid who exhibited a matroid with characteristic set $\{1103,2809\}$. More recently Ingleton, [21] has exhibited a matroid with characteristic set $\{13,19\}$. Neither of these examples have been published and (to the best of my knowledge) only the matrices which induce the matroids have been exhibited in private communications. We now provide a geonatrical motivation for both these examples; what is remarkable is that they can be constructed by only a slightly more subtle approach than that suggested above:-

The Kersenne non-prime $2^{29}-1$ has the prime factorisation $2^{29}-1=233.1103 .2809$. Consequently $2^{29}=1$ over each of the fields $G F(p), p=233,1103,2809$. We now construct 2^{29} (over any of these fields) in the following manner:-first construct $P_{1}+P_{1}=P_{2}(=(1,0,2))$ which involves the new points $(1,-1,0),(1,-1,1)$ and P_{2}. Next construct $P_{2} \cdot P_{2}=P_{4}(=(1,0,4))$ which involves the new points $(0,1,2),(1,-2,0)$ and $\left(1,0,2^{2}\right)$. Now inductively for each $2 \leqslant n \leqslant 28$ construct $P_{2 n-1} \cdot P_{2}=P_{2^{n}}$. At each of these stages the only new points occuring are $\left(0,1,2^{n-1}\right)$ and $\left(1,0,2^{n}\right)$. The last part of the construction is $P_{2} 28 \cdot P_{2}=\left(1,0,2^{29}\right)=(1,0,1)$ which will mean that the points $(1,-2,0),\left(0,1,2^{28}\right),(1,0,1)$ are collinear. By (4.11) the resulting matroid $\|$ is uniquely representable by its natural represcntation matrix Λ where
$A^{T}=\left[\begin{array}{lllllrrrrrrrrrrrrrl}1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & \ldots & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & -1 & -1 & 0 & -2 & 1 & 0 & 1 & 0 & 1 & 0 & \ldots & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 & 2 & 0 & 2 & 2^{2} & 2^{2} & 2^{3} & 2^{3} & 2^{4} & & 2^{27} & 2^{28} & 2^{28}\end{array}\right]$

Since

$$
\left|\begin{array}{ccl}
1 & 0 & 1 \\
1 & -2 & 0 \\
0 & 1 & 2^{28}
\end{array}\right|=1-2^{29}
$$

it follows that $\{233,1103,2809\} \mathrm{c}(\mathrm{H})$. It is not difficult to check that no other subdterminants of A are divisible by 1103 or 2809 and so $\{1103,2809\} \subset \mathrm{c}(M)$. We note that. 233 \& c (1) since

$$
\left|\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & 2^{6} \\
0 & 1 & 2^{16}
\end{array}\right|=2^{16}-2^{6}+1
$$

which is divisible by 233, and so $c(k)=\{1103,2809\}$. The matrix A was precisely that which was presented by Reid .

We note that $2^{29}-1$ is the smallest Marsenne non-prime for which the above construction yields a two-prime characteristic set. For cxample the construction of $2^{11}-1=23.89$ yields the subdeterminant

$$
\left|\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & 2^{2} \\
0 & 1 & 2^{8}
\end{array}\right|=2^{3}-2^{2}+1=253
$$

which is divisible by 23, so again we can only obtain a singleton characteristic set.
3) (Ingleton's matroid)

We notice that $13.19=8.32-9$ and so $8.32=9$ in GF(13) or GF(19). First then we construct 8.32 :$P_{1}+P_{1}=P_{2}$ which yields new points $(1,-1,0),(1,-1,1)$ and P_{2} liext $P_{2} \cdot P_{2}=J_{4}$ which yields points $(0,1,2),(1,-2,0)$ and P_{4} Next $\mathrm{P}_{2} \cdot \mathrm{P}_{4}=\mathrm{P}_{8} \quad . \quad " \quad\left(1,-L_{+}, 0\right)$ and P_{8} Next $P_{8} \cdot P_{4}=P_{32} \ldots \quad(0,1,8)$ and P_{32}

Now the construction of $8 \cdot{ }_{32}$ yields now point $(1,-32,0)$. If we construct P_{9} then the fact that $8.32=9$ will be indicated by the collinearity of the points $(1,-32,0),(0,1,8), P_{9}$. But the points $(1,-1,1),(0,1,8),(1,-32,0)$ already constructed arc collinear over $G F(13)$ and $G F(19)$ since

$$
\left|\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & 8 \\
1 & -32 & 0
\end{array}\right|=8.32-8-1=13.19
$$

Consequently the matroid M constructed up to the point $(1,-32,0)$ is by (4.11) uniquely representable by its natural representation matrix A, where

$$
A^{T}=\left[\begin{array}{rrrrrrrrrrrrrrrr}
1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & -1 & -1 & 0 & 1 & -2 & 0 & -4 & 0 & 1 & 0 & -32 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & 2 & 2 & 0 & 4 & 0 & 8 & 8 & 32 & 0
\end{array}\right]
$$

It is easily checked that no other subdeterminants of A are divisible by 13 or 19 and consequently $c(M)=\{13,19\}$. The matrix \AA^{T}, with the first column deleted, is precisely the matrix which was presented by Ingleton.

Remark In all the above work we have restricted ourselves to the plane and rank 3 matroids. However it follows from the work in [23] that if for any $r \geqslant 3, M$ is a matroid of rank r and characteristic set C, then there is a natroid M_{1} of rank 3 and characteristic set C (M_{1} is formed by the 'Dilworth truncation'). Since we have been primarily interested in the characteristic set problem we are thus justified in concentrating our attentions on planar confjegurations.

Generalised Projective Equivalence

Suppose that the ($n \times r$) matrix $A=\left[a_{i j}\right]$ is a natural represertation matrix (in p.c.f) for a collection of points of $P G(r, F)$. If σ is an automorphism of p it is clear that the matrix $A^{\prime}=\left[\sigma\left(a_{i j}\right)\right]$ is again a representation (in p.c.r.). Unless σ is the identity mapping the ratrices A, A^{\prime} will not be projectively equivalent (by (2.11)). Indeed (by (1.2)) this is
precisely why Brylawski ard Lucas' result about unique representability of full projective geonetries (in [12]) only holds for (finite) prime fields. However, what is unmistakable is that the automorphism induces (by (1.12)) an auto-projectivity of $\operatorname{PG}(r, F)$ in which the $i^{\text {th }}$ row of A is mapped onto the $i^{\text {th }}$ row of A^{\prime} (identifying points of $\mathrm{PG}(r, F)$ with their natural ccordinate vectors as usual) for $i=1, \ldots, n$. Thus the geonetrical vicwpoint suggests that we extend our definition of projective equivalence to include this case since in the sense of (1.9) the matrices A, A^{\prime} are 'projectively' equivalent. From an algebraic vicwoint there are also grounds. for slegesting that we extend the definition of projective equivalence to include this case, since (for reasons on which ve shall elucidate later) we can always fird a division ring D containing F and an element $x \in D$ for which $x a=\sigma(a) x$ for each a $c F$; conscquertly the matrices A, A^{\prime} are projectively equivalent over D, since

$$
\left(x I_{n}\right) A\left(x^{-1} I_{r}\right)=\left[x a_{i j} x^{-1}\right]=\left[\sigma\left(a_{i j}\right)\right]=A^{\prime}
$$

Inspired by these examples we nake the following definition

> (4.15) Definition Let $A=\left[a_{i j}\right], A^{\prime}=\left[b_{i j}\right]$ be ($s \times t$) block irreducible matrices over fields F_{1}, F_{2} respectively (see (4.16) below) which are in p.c.f. The matrices A, A^{\prime} are generally projectively cquivalent (g.p.e.) if there is an isomorphism $\sigma: F_{1} \rightarrow F_{2}$ in which $\sigma\left(a_{i j}\right)=b_{i j}$ for each entry $a_{i j}$ of A. Two arbitrary block irreducible matrices are generally projectively equivalert if their associated p.c.f.'s are g.p.e. Two arbitrary matrices are $g . p . e . ~ i f ~ t h e i r ~ b l o c k s ~ a r e ~ g . p . e . ~$
(4.16) Note when we say that A is a matrix over a field F we shall. always assumie that the smallest subfield of F generated by the entries of F is F itsclf.

When $F_{1}=F_{2}$ and $\sigma=i d_{F_{1}}$, definition (4.15) reduces to projective equivalence. We will eventually shov; that there are both natural algebraic and geometrical characterizations of generalised projective equivalence exactly along the lines suggested above, and the work in $\S 5$ will yield another surprising characterization. First hovever we present the promised generalisation of the result of Brylawski and Lucas.
(4.17) Theorem For any finite field F and integer $r \geqslant 3$, any two representations of $P G(r, F)$ (viewed as a matroid) are g.p.e.

I present two proofs of this result ; the first (short) proof relies on two classical results of projective geometry already mentioned in \mathcal{S}_{1}, whilc the second is an elementary and intuitive proof using only the constructions of (4.1) and (4.2).

First Proof It suffices to show that any representation of $P G(r, F)$ is g.p.c. to the natural representation. (which we have already noted is in p.c.f.). Let $A=\left[a_{i j}\right]$ be the natural representation and let $A^{\prime}=\left[b_{i j}\right]$ be another representation in p.c.f. over some field F^{\prime} say. Since K^{\prime} is in p.c.f. it follows (by (1.42)) that the first $r+1$ rows of A^{\prime} are precisely

$$
\left[\frac{I_{r}}{11 \ldots 1}\right]
$$

and the leading entry in each row is equal to 1 . For each row i or A, A^{\prime} : respectively let P_{i}, Q_{i} denote the corresponding points of $P G(r, F), P G\left(r, F^{\prime}\right)$. Then sirce A^{\prime} is a matroid representation or $\operatorname{PG}(r, F)$ - a Desarguesian projective space - it follows that the σ_{i} 's themselves form a Desarguesian projective subspace of $P G\left(r, F^{\prime}\right)$ of rank r. By (1.10) this subspace must be of the form $\mathrm{PG}\left(\mathrm{r}, \mathrm{F}^{\prime \prime}\right)$ for some subrjeld $\mathrm{F}^{\prime \prime}$ of F^{\prime}, which by (4.16) must be equal to F^{\prime}. Inus the mapping $\pi: ~ F G(r, F) \longrightarrow F G\left(r, F^{\prime}\right)$ defined
by $\pi\left(P_{i}\right)=Q_{i}$ for each i, is clearly a projectivity of $F\left(r, F^{\prime}\right)$ onto $P G\left(r, F^{\prime}\right)$. By (1.13), π is induced by a semilinear transformation $\left(\sigma^{\prime}, \sigma^{\prime \prime}\right) \quad \mathrm{F}^{r} \xrightarrow{r} \mathrm{R}^{\mathrm{r}}$ defined as in (1.11). This means that for each $\underline{v} \in \mathrm{~F}^{r}, \quad \pi(\underline{\mathrm{~V}})=\mathrm{F}^{\prime}\left(\sigma^{\prime}(\underline{\mathrm{v}})\right)$. In particular, for $i=1, \ldots, r$

$$
\begin{gathered}
\mathrm{F}^{\prime}(0, \ldots, 1, \ldots, 0)=\pi\left(\mathrm{r}^{\prime}(0, \ldots, 1, \ldots, 0)=F^{\prime}\left(\sigma^{\prime}(0, \ldots, 1, \ldots, 0)\right)\right. \\
i^{\text {th }} \text { place }
\end{gathered}
$$

Thus $\sigma^{\prime}(0, \ldots, 1, \ldots, 0)=\left(0, \ldots, \lambda_{i}, \ldots, 0\right)$ for some $0 \frac{1}{t} \lambda_{i} \in F^{\prime}$. Also, $\quad F^{\prime}(1,1, \ldots, 1)=\pi\left(F^{\prime}(1,1, \ldots, 1)\right)=F^{\prime}\left(\sigma^{\prime}(1,1, \ldots, 1)\right)$ so that $\sigma^{\prime}(1,1, \ldots, 1)=\lambda(1,1, \ldots, 1)$ for some $0 \neq \lambda \epsilon F$. But then $\lambda(1,1, \ldots, 1)=\sigma^{\prime}(1,0, \ldots, 0)+\ldots+o^{-1}(0, \ldots, 0,1)$

$$
\begin{gathered}
=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \\
\text { Thus } \lambda=\lambda_{1}=\lambda_{2}=\ldots=\lambda_{r}
\end{gathered}
$$

Consequently, for each $\left(c_{1}, \ldots, c_{r}\right) \in \mathrm{F}^{r}$, we have

$$
\begin{aligned}
\sigma^{\prime}\left(c_{1}, \ldots, c_{r}\right) & =\sigma^{\prime}\left(c_{1}, 0, \ldots, 0\right)+\ldots+\sigma^{\prime}\left(0, \ldots, 0, c_{r}\right) \\
& =\sigma^{\prime \prime}\left(c_{1}\right) \sigma^{\prime}(1,0, \ldots, 0)+\ldots+\sigma^{\prime \prime}\left(c_{r}\right) \sigma^{\prime}(0, \ldots, 1) \\
& =\sigma^{\prime \prime}\left(c_{1}\right)(\lambda, 0, \ldots, 0)+\ldots+\sigma^{\prime \prime}\left(c_{r}\right)(0, \ldots, 0, \lambda) \\
& =\lambda\left(\sigma^{\prime \prime}\left(c_{1}\right), \ldots, \sigma^{\prime \prime}\left(c_{r}\right)\right)
\end{aligned}
$$

In particular, if we consider the $i^{\text {th }}$ row of a we get

$$
\begin{aligned}
F^{\prime}\left(b_{i 1}, \ldots, b_{i r}\right)=\pi\left(F^{\prime}\left(a_{i 1}, \ldots, a_{i r}\right)\right) & =F^{\prime}\left(\sigma^{\prime}\left(a_{i 1}, \ldots, a_{i r}\right)\right) \\
& =F^{\prime}\left(\lambda\left(\sigma^{\prime \prime}\left(a_{i 1}\right), \ldots, \sigma^{\prime \prime}\left(a_{i r}\right)\right)\right. \\
& =F^{\prime}\left(\sigma^{\prime \prime}\left(a_{i 1}\right), \ldots, \sigma^{\prime \prime}\left(a_{i r}\right)\right) \quad\left(4_{1} \cdot 17.1\right)
\end{aligned}
$$

Now $\left(a_{i 1}, \ldots, a_{i r}\right),\left(b_{i 1}, \ldots, b_{i r}\right)$ both have their leading entry equal to 1, appearing in the same correspondirg position. Since $\sigma^{\prime \prime}(1)=1$, the same is true of $\left(\sigma^{\prime \prime}\left(a_{i 1}\right), \ldots, \sigma^{\prime \prime}\left(a_{i r}\right)\right)$ ard $\left(b_{i 1}, \ldots, b_{i r}\right)$. Consequently by (4.17.1) we deduce that $\left(\sigma^{\prime \prime}\left(a_{i 1}\right), \ldots, \sigma^{\prime \prime}\left(a_{i r}\right)\right)=\left(b_{i 1}, \ldots, b_{i r}\right)$, ard since this is true for each row of A, it rollows that $\sigma^{\prime \prime}$ is the required isomorphisn of F onto F^{\prime} which makes A, A^{\prime} g.p.c.

Second proof Wie procecd by induction on r, the most important step being the first, $r=3$. Jet $A=\left[a_{i j}\right]$ be the natural representation of $P G(3, F)$ and let $A^{\prime}=\left[b_{i j}\right]$ be another representation (in p.c.f.) over some field F^{\prime}. As usual we identify points of $\operatorname{PG}(3, F)\left(\right.$ and $\left.P G\left(3, F^{\prime}\right)\right)$ with their natural coordinate vectors and the points I, Q_{0}, Q_{1}, J and P_{x} (for each $\mathrm{X} \in \mathrm{F}$) are defincd as before.

Let γ be the mapping or $F(3, F)$ into $P\left(3, F^{\prime}\right)$ which takes rows of A onto the corresponding rows of A^{\prime}. Then for any three points P, Q, R of $P G(3, F)$, the fact that A^{\prime} is a representation of $P G(3, F)$ (viewed as a matroid) means that

$$
\begin{aligned}
& P, O, R \text { are collinear if and only if } Y^{\prime}(P), Y(0), Y(R) \text {, } \\
& \text { are collinear and this happens orecisely when the } \\
& \text { corresponding subdeterninants of } A, A^{\prime} \text { are zero. }
\end{aligned}
$$

The above fact, will be assumed henceforth without; further comment. Now all the points of $\mathrm{PG}(3, F)$ (that is, rows of A) have the form:-

$$
\begin{array}{ll}
\text { (i) }(1,0, x) & \left(=P_{x}\right) \\
\text { for some } x \in F \\
\text { (ii) }(1, x, 0) & \text { for some } x \in F \tag{4.17.2}\\
\text { (iii) }(0,1, x) & \text { for some } x \in F \\
\text { (iv) }\left(1, x, x^{\prime}\right) & \text { for some } x, x^{\prime} \in F
\end{array}
$$

The first four rows of A are $P_{0}, Q_{0}, I, J^{\prime}$ respectively, where $J^{\prime}=(1,1,1)$. Since $\hat{\Lambda}^{\prime}$ is in p.c.f. it followa immediately that

$$
\begin{gather*}
r\left(P_{0}\right)=(1,0,0), \quad r\left(\Omega_{0}\right)=(0,1,0), \quad r(1)=(0,1,0) \\
\text { and } r\left(J^{\prime}\right)=(1,1,1)
\end{gather*}
$$

By $(1.1+2), \quad \gamma\left(P_{1}\right)=(1,0, x)$ for some a $\in F^{\prime}$. But J, P_{1}, Q_{0} are collinear, so by (4.17 .3) we have

$$
0=\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & \alpha \\
0 & 1 & 0
\end{array}\right|=1-\alpha
$$

So in fact we have

$$
r\left(P_{1}\right)=(1,0,1) \quad \text { and } \quad r\left(0_{1}\right)=(0,1,1)
$$

(the latter following by a similar argument).
Let us now define a mapping $\sigma: \mathrm{F} \rightarrow \mathrm{F}^{\prime}$ by $\sigma(\mathrm{x})=\mathrm{y}$, where y is the (uniquely defined) element of F^{\prime} for which $\gamma\left(P_{x}\right)=(1,0, y)$. The mapping σ must be injective for otherwise we would have $P_{x}, P_{x} /, Q_{0}$ collincar for some $x \neq x^{\prime}$ which is absurd. Also by (4.17.3) and (4.17.1) we have o(0) $=0$ and $\sigma(1)=1$, so if we can show that σ is additive and multiplicative it will follow that $\sigma(F)$ is a subfield of F^{\prime} isomorphic (under σ) to F :-
σ additive: Let $x, x^{\prime} \in F$. We may assume neither are zero. Suppose that $\gamma\left(P_{x}\right)=(1,0, y)$ and $\gamma\left(P_{x^{\prime}}\right)=\left(1,0, y^{\prime}\right)$. Wie have to show that $Y\left(P_{x+x^{\prime}}\right)=\left(1,0, y+\mathrm{y}^{\prime}\right)$ and for this we refer back to fig. (l.1.1); we have established $\left(l_{1} .1 .2\right)$ that $P_{x}+P_{x^{\prime}}=P_{x+x^{\prime}}$. Now $\gamma_{\gamma}\left(0_{1}\right), \gamma\left(P_{X}\right), \gamma(A)$ collinear implies that $\gamma(A)=(1,-y, 0)$. Next, $\gamma(A), \gamma(B), \gamma(I)$ collinear and $\gamma\left(O_{O}\right), \gamma(B), \gamma\left(P_{X},\right)$ collinear together imply that $\gamma(B)=\left(1,-y,-y^{\prime}\right)$. Finally $\gamma(E),_{\gamma}\left(Q_{1}\right), \gamma\left(P_{x}+P_{x}{ }^{\prime}\right)$ coll.inear implies that $\gamma\left(P_{x+x^{\prime}}\right)=\gamma\left(P_{x}+P_{x^{\prime}}\right)=\gamma\left(1,0, y+y^{\prime}\right)$. σ multiplicative: This time we assume x, x^{\prime} are as avove but that neither are equal to or 0 . Vie refer back to fig. (4.2.1). We have establishod (4.2.2) that $P_{x} \cdot P_{x}{ }^{\prime}=P_{x, x^{\prime}}$ and we have to show that $\gamma\left(P_{x, x^{\prime}}\right)=\left(1,0, y y^{\prime}\right)$. The collinearity of $\gamma(J), \gamma\left(P_{x}\right), r(C)$ jmplies that $\gamma(C)=(0,1, y)$, and the collinearity of $\gamma(D), \gamma\left(P_{X^{\prime}}\right), \gamma\left(0_{1}\right)$ implies that $\gamma(D)=\left(1,-y^{\prime}, 0\right)$. Finally the collinearity of $\gamma(D), \gamma(C), r\left(P_{x} \cdot P_{x^{\prime}}\right)$ implies that

$$
\gamma\left(P_{x \cdot x^{\prime}}\right)=\varphi\left(P_{x} \cdot P_{x^{\prime}}\right) \Rightarrow\left(1,0, y y^{\prime}\right) \text { as required. }
$$

In order to prove the the orem (for $r=3$) we now have to show (by (i.17.2)) that
(i) $(1,0, x)=(1,0, \sigma(x))$ for each $x \in F$
(ii) $(1, x, 0)=(1, \sigma(x), 0)$ for each. $x \in F$
(iii.) $(0,1, x)=(0,1, \sigma(x))$ for each $x \in F$
and (iv) $\left(1, x, x^{\prime}\right)=\left(1, \sigma(x), \sigma\left(x^{\prime}\right)\right)$ for each $x, x^{\prime} \in F$
since in that case $\sigma(F)=F^{\prime}$ and σ is the required isomorph-
ism. Certainly (i) holds since this is how σ was defined.
For (ii) let $Q=(1, x, 0)$. Then Q, F_{-x}, Q_{1} collinear forces
$\gamma(Q)=(1, \sigma(x), 0)$, since $\gamma\left(P_{-x}\right)=(1,0, \sigma(-x))=(1,0,-\sigma(x))$.
For (iii) let $Q^{\prime}=(0,1, x)$. Then J, P_{x}, Q^{\prime} collinear forces
$\gamma\left(0^{\prime}\right)=(0,1, \sigma(x))$.
For (iv) let $Q^{\prime \prime}=\left(1, x, x^{\prime}\right)$. If $A=(1,-x, 0)$, then by (ii) we
have $\gamma(A)=(1,-\sigma(x), 0)$. But then $Q^{\prime \prime}, Q_{0}, P_{X}$, collinear and
$Q^{\prime \prime}, A, I$ collinear together imply thet $\quad \gamma\left(Q^{\prime \prime}\right)=(1, \sigma(x), \sigma(x))$.
This proves the theorem for $r=3$.

Next, assume rel and that the result holds for full projective spaces of rank $\leqslant r-1$. Let $f=\left[a_{i j}\right]$ be the natural representation of $P G(r, F)$ and $A^{\prime}=\left[b_{i j}\right]$ another representation (in P.c.f.) over sone ficld F^{\prime}. Without loss of generality, wc may assume that the first $(2 r+1)$ rows of A are

$$
\left[\begin{array}{ccccc}
& & I_{r} & \tag{1.17.5}\\
\hline 1 & 1 & \ldots & 1 & 1 \\
1 & 1 & \ldots & 1 & 0 \\
1 & 1 & \ldots & 0 & 1 \\
\vdots & & & & \vdots \\
0 & 1 & \ldots & 1 & 1
\end{array}\right]
$$

For each $i=1, \ldots, r$ consider the set of points of $P G(r, F)$ hoving zero entry in the $i^{\text {th }}$ entry. This collection of points is a rank $(r-1)$ subspace (hyperplane) of $P G(r, F)$, isomorphic to $\operatorname{ld}_{G}\left(\mathrm{r}-1, F^{\prime}\right)$. horsover, if A_{i} is the submatrix of A obtained by deleting all those sow with non-zero entry in the $i^{\text {th }}$ pos-
ition and deleting the $i^{\text {th }}$ column, then because of (4.17.5), it is easily seen that A_{i} is the natural representation of $P G(r-1, F)$ with first r rows equal to

$$
\left[\begin{array}{llll}
& I_{r} & \\
& & r_{-} & 1
\end{array}\right]
$$

and is thus in p.c.f. It is also easily seen that the corresponding submatrix A_{i}^{\prime} of A^{\prime} is a representation (in p.c.f.) of $P G(r-1, F)$ over some subfield F_{i}^{\prime} of F^{\prime} (which we will deduce are all equal to F^{\prime} presently).

For each $i=1, \ldots, r$ we can thus deduce by the inductive hypothesis that there is an isomorphism $\sigma_{i}: F \rightarrow F_{i}^{\prime}$ in which $\sigma\left(\mathrm{a}_{\mathrm{ts}}\right)=\mathrm{b}_{\mathrm{ts}}$ for each entry $\mathrm{a}_{\mathrm{ts}} \in \mathrm{A}_{\mathrm{i}}, \mathrm{b}_{\mathrm{ts}}{ }^{c} \mathrm{~A}_{\mathrm{i}}^{\prime}$.

Ye show that $\sigma_{i}=\sigma_{j}$ for each $1 \leqslant i, j \leqslant r$. Let $\alpha \in F$, then since $r \geqslant 4$ there must be a row of A in which there are zeros in the $i^{\text {th }}$ and $j^{\text {th }}$ positions and α appears as the second nonzero entry (the first is always equal to, 1). Suppose the corresponding entry (to this α) in A^{\prime} is $\beta c c^{\prime \prime}$. By choice, the selected row of A appears in $/ i$ (with the $i^{\text {th }}$ entry deleted) and in A_{j} (with the $j^{\text {th }}$ entry deleted). Thus $\sigma_{i}(\alpha)=\beta=\sigma_{j}(\alpha)$, and so $\sigma_{i}=\sigma_{j}=\sigma$ say, and $F_{i}^{\prime}=F_{j}^{\prime}=F^{\prime \prime}$, say for all $1 \leqslant i, j \leqslant r$.

Thus we have an isomorphism σ from F onto a subfield $F^{\prime \prime}$ of F in which $\sigma\left(a_{t s}\right)=b_{t s}$ provided that row t contains at least one zero entry. So finally we need only consider those rows of A which have only non-zero entries. Let $\left(1, \alpha_{2}, \ldots, \alpha_{r}\right)$ be such a row and let $\left(1, \beta_{2}, \ldots, \beta_{r}\right)$ be the corresponding row of A^{\prime}. Suppose that $\sigma\left(\alpha_{i}\right)=\beta_{i}^{\prime}$ for $i=2, \ldots, r\left(\beta_{i}^{\prime} \in F^{\prime}\right)$. Vie must show that $\beta_{i}^{\prime}=\beta_{i}$ for each $i=2, \ldots, r$

$$
\begin{array}{r}
\text { Virite } Q_{i}=\left(1,0, \ldots, a_{i}, \ldots, 0\right) \text { and } E_{i}=(0, \ldots, 1, \ldots, 0) \\
{ }_{i}^{\uparrow} \text { th place }
\end{array}
$$

for each $i=2, \ldots, r$ and let H_{i} be the hyperplane generated
by the $(x-1)$ indeperdent points $Q_{i}, E_{2}, \ldots, E_{i-1}, E_{i+1}, \ldots, E_{r}$. The point $P=\left(1, \alpha_{2}, \ldots, \alpha_{r}\right)$ is the unique point of intersection r
$i=2 H_{i}$. In particular, for each $i=2, \ldots, r$, the collection of r points $\quad Q_{i}, E_{2}, \ldots, E_{i-1}, E_{i+1}, \ldots, E_{r}, P \quad$ is dependent in $\operatorname{PG}(r, F)$. Consequently, the corresponding r rows of A^{\prime} have zero determinant. But the row corresponding to Q_{i} must be ($1,0, \ldots, \beta_{i}, \ldots, 0$). Thus,

$$
0=\left|\begin{array}{ccccccc}
1 & 0 & \ldots & \beta_{i} & \ldots & & 0 \\
0 & 1 & \ldots & 0 & \ldots & & 0 \\
\vdots & & & & & \\
0 & & \cdots & & 1 & 0 \\
0 & & \cdots & & 0 & 1 \\
1 & \beta_{2}^{\prime} & \ldots & \beta_{i}^{\prime} & \ldots & \beta_{r-1}^{\prime} & \beta_{r}^{\prime}
\end{array}\right|=\beta_{i}^{\prime}-\beta_{i}
$$

and so $\beta_{i}=\beta_{i}^{\prime}$ as claimed for each $i=2, \ldots, r$. Thus $F^{\prime \prime}=F^{\prime}$ and $\sigma: F \rightarrow F^{\prime}$ is the required isomorphism.
(4.18) Corollary (Brylawski and Lucas, [12]) For $F=\operatorname{GF}(p)$, where p is prime, the projective space $P G(r, F)$ is uniquely F-representabie, that is, any two F-representations of $\operatorname{PF}(r, F)$ are projectively equivalent.

Proof By (1.2) there are no (non-identity) automorphisms of F, so the result is immediate from (4.17).
(4.19) Representations of $\operatorname{PG}(r, F)$ where F is infinite

Although projective equivalence is not defined for infinite matrices, there is a natural analogue for the p.c.f. for a representation of $P G(r, F)$ when F is infinite; again we may identify $P G(r, F)$ with its natural representation and say that a K-representation of $P G(r, F)$ is in 'p.c.f.' if' the simplex $\left[\frac{I_{r}}{11 \ldots 1}\right]$ is mapped onto the natural simplex of $P G(r, k)$ and each point is mapred on to a vector in K^{r} whose first non-zero entry is equal
to 1. The only occasion in the proof of (4.17) where the finiteness of F was used was in deducing that the homomorphism σ was surjective. In the light of this we deduce the following resuit (where A, A^{\prime} denote infinite sets of r-tuples) :-

If A is the natural representation of $P G(r, F)$, and A^{\prime} is another representation over some field K (in 'p.c.f.' defined above), then there is an injective homomorphism $\sigma: \mathrm{F} \rightarrow \mathrm{K}$ mapping the entries of A onto the corresponding entries of A^{\prime}.

This result shows the close connection between coordinatizing (arbitrary) projective spaces and representing them when viewed as matroids.

Geometrical and algebraic characterizations of projective equivalence
(4.20) Iemma Suppose A is an ($s \times t$) block irreducible matrix, and B an arbitrary ($p \times t$) matrix without zero rows. Then the atomic entries of the matrix $C=\left[\frac{A}{B}\right]$ are precisely the atomic entries of A together with the leading entries of each row of B.

Proof It is clear that C is block irreducible and hence by (2.21) has ($s+p+t-1$) atomic entries. By (2.7.3) the atomic entries of the first s rows of C are precisely the atomic entries of A, so there are ($s+t-1$) atomic entries in these rows. But by (2.7.1) the leading entry in each of the p rows of B is atcmic in C, so the result now rollows.

Suppose now that A, B are block irreducible ($s \times r$) matrices of rank r over fields F_{1}, F_{2} respectively, in $p . c . f$. Then the
$i^{\text {th }}$ row of $A($ for $i=1, \ldots, s)$ is a natural coordinate vector of the point P_{i} say in $P G\left(r, F_{1}\right)$ and similarly the $i^{\text {th }}$ row of B corresponds to the point Q_{i} say of $P G\left(r, F_{2}\right)$. With these assumptions we now present the promised geometrical characterization

(4.21) Theorem T.F.A.E.
(i) The matrices A, B are g.p.e.
(ii) There is a projectivity $\mathrm{r}: \operatorname{PG}\left(\mathrm{r}, \mathrm{F}_{1}\right) \rightarrow \mathrm{PG}\left(\mathrm{r}, \mathrm{F}_{2}\right)$ in which $\underline{Y}\left(P_{i}\right)=Q_{i} \quad$ for $i=1, \ldots, s$.

Proof (i) implies (ii) Let $\sigma: F_{1} \rightarrow F_{2}$ be the isomorphism mapping entries of A onto the corresponding entries of B. The mapping $\quad \sigma: \mathrm{F}_{1}^{\mathrm{r}} \rightarrow \mathrm{F}_{2}^{\mathrm{r}}$ defined by

$$
\sigma^{\prime}\left(a_{1}, \ldots, a_{r}\right)=\left(\sigma\left(a_{1}\right), \ldots, \sigma\left(a_{r}\right)\right)
$$

clearly makes the pair $\left(\sigma^{\prime}, \sigma\right)$ a semi-linear transformation from $\mathrm{F}_{1}^{\mathrm{r}}$ into $\mathrm{F}_{2}^{\mathrm{r}}$ which by (1.12) induces the required projectivity. (ii) implies (i) We nay view A as the first s rows of the natural representation matrix A^{\prime} of $\operatorname{PG}\left(r, F_{1}\right)$ where the remaining rows are the natural coordinatc vectors of the remaining points of $\mathrm{PG}\left(\mathrm{r}, \mathrm{F}_{\mathrm{q}}\right)$. Since A is block irreducible and in p.c.f. it follows from (4.20) that A^{\prime} is in p.c.f. (this had to be verified since in this case we may not assume that the first $r+1$ rows of A are $\left[\frac{I_{r}}{1} 1 \cdots \cdots 1\right]$). Now let B^{\prime} be the matrix over F_{2} whose rows are the image under γ of the correspondjng rovs of A^{\prime}. Since $\gamma\left(P_{i}\right)=Q_{i}$ for $i=1, \ldots, s$ the first s rows of B^{\prime} is the matrix E . As for h^{\prime}, the matrix B^{\prime} is in p.c.f. Since γ is a projectivity, it follows that B^{\prime} is a representation of $P G\left(r, F_{1}\right)$ (as well as $\mathrm{PG}\left(\mathrm{r}, \mathrm{F}_{2}\right)$ viewed as a matroid) Ey (4.17) we deduce that $\Lambda^{\prime}, B^{\prime}$ are g.p.e., and since both these matrices are already in p.c.f. it follows from definition (4.15) that A, B are g.p.e.
(4.22) Note The hypothesis of theorem (4.21) is in no way restrictive for our purposes, since we shall usually be considering matrix representations (in p.c.f.) of a comected, rank r matroid H. If A, B are two such representations then (4.21) (which, by (1.45) is certainly applicable) is of great significance, particularly when both representations are over the same field F; for then, via the matrices A, B respectively, M generates two subgeonetries M_{1}, M_{2} say, of $P G(r, F)$ which by (4.16) and (1.10) are the fill space in each case. If A, B are not g.p.e. then (4.21) implies that there is no auto-projectivity of $P G(r, F)$ in which the 'points' of A are mapped onto the 'points' of B. This means in particular that there will be three points (lines) of M_{1} which are collinear (concurrent) in M_{1} but not collinear (concurrent) in M_{2}

Example Let N be the rank 3 matroid on $E=\{a, b, c, d, e, f\}$ in which all 3 -sets except $\{a, b, c\}$ and $\{c, d, f\}$ are deperdent (that is, M is the planar configuration of two disjoint lines of 3 points). Let $F=G(4)=\left\{0,1, \varepsilon, \varepsilon^{2}\right\}$ where ε is a primitive cube root of unity. It is easily seen that the matrices

$$
A_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\hline 1 & 1 & 1 \\
1 & \varepsilon & 0 \\
1 & 1 & \varepsilon
\end{array}\right] \quad A_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\hline 1 & 1 & 1 \\
1 & \varepsilon & 0 \\
1 & 1 & \varepsilon
\end{array}\right]
$$

are both representations (in p.c.f.) of M over F with respect to the ordering a, b, c, d, e, f. These matrices are clearly not g.p.e. For $i=1,2$, let γ_{i} be the mapping from E into $P G\left(3, l_{1}\right)$ taking points of E onto the corresponding rows of A_{i}. The three $\operatorname{lines}_{\gamma_{1}}(a) \gamma_{1}(c), \quad \gamma_{1}(b) \gamma_{1}(d)$ and $\gamma_{1}(e) \gamma_{1}(f)$ are concurrent in $P G(3,4)$ at the point $(1,0,1)$. However the 'same' three lines $r_{2}(a) r_{2}(c), \quad r_{2}(b) r_{2}(d)$ and $r_{2}(e) r_{2}(f)$ are not concurrent in $P G(3,4)$ since $(1,0,1)$ is not on the line $Y_{2}(c) Y_{2}(f)$.

The promised algebraic characterization of generalised projective equivalence is stated in the following theorem
(4.23) Theoreni Let A, B be block irreducible matrices (in p.c.f.) over fields $\mathrm{F}_{1}, \mathrm{~F}_{2}$ respectively. T.F.A.E.
(i) A, B are g.p.e.
(ii) There is a division ring D containing both F_{1} and F_{2} such that A, B are projectively equivalent over D.

Before proving this theorem we need two lemmas :-
(4.24) Lemma Let A, B be ($s \times t$) block irreducible matrices over
ficlds F_{1}, F_{2} respectively, in which each atomic entry is equal to 1 (so A,B are in s.c.f.). Suppose that D is a division ring containing $F_{1}, F 2$ and that A, B are s-projectively equivalent over D. Then there is an $x \in D$ such that $(x I) A\left(x^{-1} I_{t}\right)=B$.

Proof Let $A=\left[a_{i j}\right] \quad B=\left[b_{j, j}\right]$. There are non-zero elements
$x_{1}, \ldots, x_{s}, y_{1}, \ldots, y_{t}$ in D for which
$\operatorname{diag}\left(x_{1}, \ldots, x_{s}\right) A \operatorname{diag}\left(y_{1}, \ldots, y_{t}\right)=B$
that is, $\quad x_{i} a_{i j} y_{j}=b_{i j}$ for each i, j.
Since every atomic entry of A, B equals i (and of course they appear in the same corresponding positions) it follows that $y_{j}=x_{i}^{-1}$ whenever (i, j) is atomic. Thus if we can show that $x_{1}=\ldots=x_{s}=x$, say, it will follow that $y_{1}=\ldots=y_{t}=x^{-1}$ since every column j contains an atomic entry (j, j) for some i.

$$
\text { So let } 1<i<i^{\prime}<\text { s. } \quad \text { iie will show } x_{i}=x_{i} \text {. }
$$

Certainly every row contains an atonic entry, so suppose (i,j), $\left(i^{\prime}, j^{\prime}\right)$ are atomic entries in the $i^{\text {th }}$ and $i^{\prime \text { th }}$ rows respectively. By (2.23) there is an atomic chain joining (i,j) and $\left(i^{\prime}, j^{\prime}\right)$. Without loss of generality, assume that this chain has
the form

$$
(i, j),\left(i_{1}, j\right),\left(i_{1}, j_{1}\right), \ldots,\left(i_{k}, j^{\prime}\right),\left(i^{\prime}, j^{\prime}\right)
$$

Then $x_{i}=y_{j}^{-1}=x_{i_{1}}=y_{j_{1}}^{-1}=\ldots=x_{i_{k}}=y_{j}^{-1}=x_{i}^{\prime}$
(4.25) Lemma Suppose F_{1}, F_{2} are subfields of a field F (finitely generated over their prime fields) and that $\sigma: F_{1} \rightarrow F_{2}$ is an isomorphism. Then there is a field $K \supset F$ and an automorphism of K which extends σ.

Proof Let K be the algebraic closure of $F(1.5)$, and for $i=1,2$ let E_{i} be the subfield of K formed by adjoining to F_{i} a transendence basis of K over F_{i}. $\operatorname{By}(1.3) K / E_{i}$ is an algebraic extension. If K is the common prime field of $\mathrm{F}_{1}, \mathrm{~F}_{2}$, then we have the lattice of inclusion

Since $\mathrm{F}_{1}, \mathrm{~F}_{2}$ are isomorphic, we certainly have

$$
\operatorname{tr} \cdot d \cdot \mathrm{~F}_{1} / k=\operatorname{tr} \cdot d \cdot \mathrm{~F}_{2} / k<\infty
$$

But also, by (1.4),

$$
\begin{aligned}
& \operatorname{tr} \cdot d \cdot K / k=\operatorname{tr} \cdot d \cdot K / r_{1}+\operatorname{tr} \cdot d \cdot F_{1} / k \\
& \text { and } \quad \operatorname{tr} \cdot d \cdot K / k=\operatorname{tr} \cdot d \cdot K / R_{2}+\operatorname{tr} \cdot d \cdot F_{2} / k
\end{aligned}
$$

Thus it follows that trod. $K / T_{1}=\operatorname{tr} \cdot \mathrm{d} \cdot \mathrm{K} / \mathrm{F}_{2}$. But $\mathrm{K} / \mathrm{E}_{\mathrm{i}}$ is algebraic ($i=1,2$), so by another application of (1.4),

$$
\operatorname{tr} \cdot d \cdot E_{1} / F_{1}=\operatorname{tr} \cdot d \cdot K / F_{1}=\operatorname{tr} \cdot d \cdot K / F_{2}=\operatorname{tr} \cdot d \cdot E_{2} / F_{2} .
$$

Consequently there is a set I, and transcendence bases $\left\{X_{i}\right\}_{i \varepsilon I}, \quad\left\{Y_{i}\right\}_{i \in I}$ for $\mathrm{E}_{1} / \mathrm{F}_{1}, \mathrm{~F}_{2} / \mathrm{F}_{2}$ respectively. How
$E_{1}=F_{1}\left(\left\{X_{i}\right\}_{i \in I}\right)$ and $E_{2}=F_{2}\left(\left\{Y_{i}\right\}_{i \in I}\right)$, so we may extend σ to an isomorphism $\sigma_{1}: \mathrm{E}_{1} \rightarrow \mathrm{E}_{2}$ by defining $\sigma\left(\mathrm{X}_{\mathrm{i}}\right)=\mathrm{Y}_{\mathrm{i}}$ for each i $\in I$, and $\sigma_{1}(a)=\sigma(a)$ for each a $\in F_{1}$.

Now K is the algebraic closure of both $\mathrm{E}_{1}, \mathrm{E}_{2}$, so by (1.7) the isomorphism σ_{1} extends to an automorphism of K.

Proof of (4.23)
(i) implies (ii) Suppose $A=\left[a_{i j}\right], B=\left[b_{i j}\right]$. Let $\sigma: F_{1} \rightarrow F_{2}$ be an isomorphism in which $\sigma\left(a_{i j}\right)=b_{i j}$. We can certainly find a field containing both $\mathrm{F}_{1}, \mathrm{~F}_{2}$ and so by (4.16) we may apply (4.25) to deduce the existence of a field K (containing $\mathrm{F}_{1}, \mathrm{~F}_{2}$) and an automorphisin τ of K which extends σ. Λ well known procedure in Ring Theory (described, for example in [14] Vol II, p.436) allows us to construct under these circumstances a (non-commutative) ring - called the Skew Folynomial Ring of $\underline{K, \tau}$ and denoted by $K[x, \tau]$ - which contains K and an element $x(\nmid 0)$ for which $x a=\tau(a) x$ for each $a \in K$. This ring in turn is contained in a division ring D (again see [14] Vol II, pp.448-450). But now, over D we have,

$$
\left(x I_{s}\right) A\left(x^{-1} I_{r}\right)=\left[x a_{i j} x^{-1}\right]=\left[\tau\left(a_{i j}\right)\right]=\left[b_{i, j}\right]=B
$$

so that, A, B are projectively equivalent over D
(ii) implies (i) Let $A^{\prime}=\left[a_{i j}\right], B^{\prime}=\left[b_{i j}\right]$ be the non-identity submatrices of A, B respectively (defined in (2.3)). Then by (2.3), A^{\prime}, B^{\prime} are s-projectively equivalent over D. Thus by (4.24) there is a non-zero element $x \in D$ such that

$$
x a_{i j} x^{-1}=b_{i j} \quad(4.23 .1)
$$

If k is the (comaion) prime field of F_{1}, F_{2}, it follows from (i+16) that $\mathrm{F}_{1}=\mathcal{K}\left(\left\{\mathrm{a}_{\mathrm{i}, \mathrm{j} \frac{2}{2}, j}\right)\right.$ and $\mathrm{F}_{2}=k\left(\left\{\mathrm{~b}_{\mathrm{i}, j}\right\}_{i, j}\right)$. Thus $\mathrm{F}_{1}, \mathrm{~F}_{2}$ are the quotient fields respectively of the rings

$$
R_{1}=k\left[\left\{a_{i j}\right\}_{i, j}\right], \quad R_{2}=k\left[\left\{b_{i j}\right\}_{i, j}\right]
$$

The mapping $\sigma: R_{1} \rightarrow D$ defined by $\sigma(r)=x_{r x}{ }^{-1}$ is clearly a well-defined monomorphism, for which (by (4.23.1)) $\sigma\left(a_{i j}\right)=b_{i j}$ for each i, j. Thus $\sigma\left(R_{1}\right)=R_{2}$ and σ is thus an isomorphism of R_{1} onto R_{2}. By the universal property of quotient fields, it follows that σ extends in the natural way to an isomorphism $\mathrm{F}_{1} \rightarrow \mathrm{~F}_{2}$ of the respective quotient fields of $\mathrm{R}_{1}, \mathrm{R}_{2}$.

Maximal k-arcs and representations of uniform matroids

For any integer $k \geqslant r$, a k-arc in $P G(r, q)$ is a set of k (distinct) points such that no r lie in a subspace of dimension r-2. An important problem in the theory of finite projective spaces is to determine the maximum value of k for which there exist k-ares in PG(r, q). This number is denoted by $m(r, q)$ (or $m(r-1, q)$ by those authors who refer to $I G(r, q)$ as $\operatorname{PG}(r-1, q))$ and the reader is referred to $[7,13,18,19,26,27,31,32,33]$ for sone of the extensive work which has gone into deternining this number for various values of r and q; in ecneral only the values $m(i, q)$ and $m(q-i+2, q)$ for $i=2,3,4,5$ appear to have been satisfactorily solved.

Wie approach this problem from an entirely different viewpoint. It is easily seen that uniform matroids are representable over any sufficiently large field, so the relevart representation problem in this case is to determine the smallest field over which $U_{r, n}$ is representable, he will show that this probler is essentially equivalent to ùctermining the value $m(r, q)$ (for various q) and consequently show how considerable simplifications (of the projective gemetry) can be achieved by using straightforward matroid arguments.

The result which links the two differert approaches is :-

(4.26) Proposition The matroid $U r, n$ is representable over $\mathrm{GF}(\mathrm{q})$ if and only if $n \leqslant \mathrm{~m}(\mathrm{r}, \mathrm{q})$.

Proof For any integer $k \geqslant r$ a set of k points in $P G(r, q)$ form a k-arc if and only if no r of the points lie in a subspace of dimension ($r-2$), that is, if and only if any r of the points form an independent set in $P G(r, q)$. But $U_{r, k}$ is representable over $G F(q)$ if and only if there are k points in $P G(r, q)$ for . which any subset of r points is independent, that is, if and only if there is a k-arc in $\operatorname{PG}(r, q)$. The result now follows if we note that $U_{r, n}$ is represcntable over $G F(q)$ implies $U_{r, k}$ is representable over $G H(q)$ for each integer $k<n$.

Before examining this correspondence any further, we note that for $r \geqslant 2$ and $n \geqslant r+2$ an F-representation of $U_{r, n}$ in p.c.f. will be of the form

$$
\left[\begin{array}{cccc}
& & I_{r} & \tag{4+26.1}\\
& & M_{1} & 1 \\
1 & a_{11} & \cdots^{2} & a_{1, r-1} \\
\vdots & & & \\
i & a_{s, 1} & \cdots & a_{s, r-1}
\end{array}\right]
$$

where $s=n-r-1, \quad a_{i j} \neq 0,1$ for cach i, j. Moreover, for each $i=1, \ldots, s$ tine elements $a_{i 1}, \ldots, a_{i r-1}$ are all distinct, and for each $j=1, \ldots, r-1$ the elements $a_{1 j}, \ldots, a_{s j}$ are all aistinct. Vic also note that when $r=1, n=r$, or $n=r+1$, it follows from (4.26.1) that $U_{r, n}$ is regular, so we shall ignore these trivial cases henceforth.
(4.27) Iemma If $q \leqslant r$, then $m(r, q)=r+1$

Proof Since $U_{r, r+1}$ is representable over every field, we have by (1.26) that $r+1 \leqslant m(r, q)$. Suppose that $r+2 \leqslant m(r, q)$. Then by (4.26) $U_{r, r+2}$ is representable over $G F(q)$. Because of (4.26.1) any representation of $U_{r, r+2}$ over $G F(q)$ will have p.c.f.

$$
\left[\right]
$$

where $1, a_{1}, \ldots, a_{r-1}$ are distinct non-zero elements of $G F(q)$. But then $q \geqslant r+1$, a contradiction, so we must have $m(r, q)=r+1$.

In the light of the above result we shall always assume that $q>r$ in $P G(r, q)$.
(4.28) Jemma For any $r \geqslant 2$ and q (a prime power),

1) $m(r, q) \leqslant m(r-1, q)+1$
2) $m(2, q)=q+1$
3) $q+1 \leqslant m(r, q) \leqslant q+r-1$

Proof

1) Suppose $m(r, q) \geqslant m(r-1, q)+2$. Then by $(4,26), U_{r, m}(r-1, q)+2$
is representable over $G F(q)$. By contracting and deleting respectively two distinct elements ot this matroid, we deduce by (1.33) that $U_{r-1, n(n)}(r-1, q)+1$ is representable over $G F(q)$, and hence by $(4.26) m(r-1, q) \geqslant m(r-1, q)+1$ which is absurd.
2) (and we prove 3) at the same time)

Write $G F(q)=\left\{0, a_{1}, \ldots, a_{q-1}\right\}$. Consider the $q+1 \times r$ matrix

$$
A=\left[\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 1 \\
1 & a_{1} & \cdots & a_{1}^{r-2} & a_{1}^{r-1} \\
\vdots & & & & \\
1 & a_{q-1} & & a_{q-1}^{r-2} & a_{q-1}^{r-1}
\end{array}\right]
$$

over GF(q). By a consideration of the well known Vandermonde determinant, the fact that the a_{i} 's are distinct non-zero elements of $G F(q)$ implies that each ($r \times r$) subdeterminant of A is non-zero. Thus A is a representation for $U_{r, q+1}$ over $G F(q)$. By (4.26) we deduce

$$
q+1 \leqslant m(r, q) \quad \text { for each } r \geqslant 2 \quad \text { (4.28.4) }
$$

In particular it follows that $q+1 \leqslant m(2, q)$. Write $m=m(2, q)$. Then by (4.26) $\mathrm{U}_{2, \mathrm{~m}}$ is representable over $\mathrm{GF}(\mathrm{q})$ in which case (because of (4.26.1)) a representation in p.c.f. has the form

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1 \\
1 & b_{1} \\
\vdots & \vdots \\
1 & b_{m-3}
\end{array}\right]
$$

where $1, b_{1}, \ldots, b_{m-3}$ are ($m-2$) distinct non-zero clements of $\operatorname{GF}(q)$. Thus $q \geqslant m-1$, and so $m(2, q)=q+1$, proving 2).

By iteration of 1), we get

$$
m(r, q) \in m(2, q)+r-2=q+r-1
$$

which, together with (4.28.4) proves 3).

Next we present a much shorter ard elementary proof of a result originaliy proved in [7] and [26] ana winich can be found ir! [18].
(4.29) Theorem For any prime power q,
$m(3, q)= \begin{cases}q+1 & \text { (q odd) } \\ q+2 & \text { (q even) }\end{cases}$

Proof For q even it suffices, by (4.26) and (4.28.2) to prove that $U_{3, q+2}$ is rerresentable over $G r(q)$. Kith $G R(q)$ listed as above, consider the $(q+2) \times 3$ matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & i & 0 \\
0 & 0 & 1 \\
1 & a_{1} & a_{1}^{2} \\
\vdots & & \\
1 & a_{q-1} & a_{q-1}^{2}
\end{array}\right]
$$

over GF(q). The ,only (3×3) subdeterminants of A which are not of the Vandermonde type are those of the form

$$
\left|\begin{array}{ccc}
0 & 1 & 0 \\
1 & a_{i} & a_{i}^{2} \\
1 & a_{j} & a_{j}^{2}
\end{array}\right|=a_{j}^{2}-a_{i}^{2} \quad(1 \leqslant i, j \leqslant q-1)
$$

Since q is even, $a_{j}^{2}-a_{i}^{2}=\left(a_{j}-a_{i}\right)^{2} \neq 0$. Thus A is a representation of $U_{3}, q+2$ over $G F(q)$ as required.

For q odd it suffices to prove that $U_{3, q+2}$ is not representable over GF(q). Suppose it ware, then by (4.26.1) there would be a representation of the form

$$
!^{\prime}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & a_{1} & \sigma\left(a_{1}\right) \\
\vdots & & \vdots \\
1 & a_{q-1} \sigma\left(a_{q-1}\right)
\end{array}\right]
$$

where σ is a permutation of $G F(q)^{+} \quad(=G F(q) \backslash\{0\})$. An elementary result from group theory states that in a finite abelian group G, if there is exactly one clewent, say a, of order 2 then the product of all the elements of G is equal to a. Consequently in the multiplicative group $G F(q)^{+}$, we have the relations (amounting to the well known 'generalised' "ilson Theorem) :-

$$
\left.\Pi x=-1 \quad \text { and } \quad \Pi \sigma(x)=-1 \quad \text { (products over all } x \in G F(q)^{H}\right)
$$

Consider now the function $f: G F(q) \xrightarrow{+} G F(q)^{+}$defined by $f(x)=x^{-1} \sigma(x)$. This furction is not sur.jective (i.e. a permutation of $G F(q)^{+}$) for if it were we pould have

$$
\begin{aligned}
-1=\Pi f(x) & =\| x^{-1} \sigma(x)=\left(\Pi x^{-1}\right)(\Pi \sigma(x))=(\Pi x)^{-1}(\Pi \sigma(x))=1 \\
& \left(\text { all products over all } x \in G F(q)^{+}\right)
\end{aligned}
$$

This is a contradiction since q is odd.
Thus for some $i \neq j$, we must have $a_{i}^{-1} \sigma\left(a_{i}\right)=a_{j}^{-1} \sigma\left(a_{j}\right)$. But then

$$
\left|\begin{array}{lll}
1 & 0 & 0 \\
1 & a_{i} & \left(a_{i}\right) \\
1 & a_{j} & \left(a_{j}\right)
\end{array}\right|=a_{i} \sigma\left(a_{j}\right)-a_{j} \sigma\left(a_{j}\right)=0
$$

which contradicts the fact that A^{\prime} is a representation of $U_{3, q}+2^{.}$

Results in $[10,24,27]$ yield the important results that for any prime power q,

$$
m\left(l_{+}, q\right)=m(5, q)=q+1
$$

From $m(5, q)=q+1$, we deduce now from (4.28.3), that for $r \geqslant 5, q>r$,

$$
q+1 \leqslant m(r, q) \leqslant q+r-4
$$

At present these are the best known bounds in gencral for $m(r, q)$, since for $116 q<225$ it is not know whether $n(r, q)=q+2$ or $q+1$. In 1970 Hirschfcid conjectured that $m(r, q)=q+1$ for any odd prime power q and $r \leqslant q$. In matroid terms (by (4.26)) this can now be rostated as

Conjecture For any integers $r, n, q=p^{s}$ (p prine $=2$), arid $n-2 \geqslant r$.
T.F.f.E. (i) $U_{r, n}$ is representaule over $G F(q)$
(ii) $n \& q+1$

Finally we turn our attention to the determining of $\mathrm{n}(\mathrm{q}-j, q)$ for $j=0,1,2,3$.
(4.30) Proposition If $m(r, q)=q+1$, then $w(q-r+2, q)=q+1$

Proof Fy (4.28.2) it suffices to prove that $m(q-r+2, q) \& q+1$. Suppose not. Then $m(q-r+2, q) \geqslant q+2$ in which case $U_{q-r+2, q+2}$
is representable over $G F(q)$. The dual matroid of $U_{q-r+2}, q+2$ is $U_{r, q+2}$, so by (1.32) this matroid is representable over $G F(q)$, whence by $(4.26), m(r, q) \geqslant q+2$, a contradiction.

For q odd we have scen that $m(i, q)=q+1$ for $i=2,3,4 ; 5$ hence by (4.30) we deduce that $m(q-j, q)=q+1$ for $j=0,1,2,3$ a result proved in [32]. Moreover, since $m(i, q)=q+1$ for $i=2,4,5$ and q even, we may deduce that $m(q-j, q)=q+1$ for $j=0,2,3$ and q even (a result which does not appear in [32]). Thas does prove however in [29] that with q even, $m(q-1, q)=q+2$, thus completing this 'dual' set of results. Again this result can be proved easily by dual matroids :-
(4.31) Proposition For q even, $m(q-1, q)=q+2$

Proof By $(4.29), m(3, q)=q+2$ for q even and so $U_{3, q+2}$ is representable over $G F(q)$. As above this implies $U_{q-1, ~} q+2$ is representable over $G F(q)$, and so $m(q-1, q) \geqslant q+2$. If $m(q-1, q) \geqslant q+3$ then we must have $U q-1, q+3$ representable over GF(q). Again taking duals this means that $U_{l_{+}}, q+3$ is representable over $G F(q)$ and so $m(4, q) \geqslant q+3$, contradicting the fact that $m(4, q)=q+1$ for any q. The result now follows.

$\$ 5$ VANOS RTNGS

The algebra in this chapter will be of a slightly more specialised nature than any previously used and, although adequately covered in [2], we shall begin by listing some definitions and results for purposes of reference.

For any ideal \underline{b} of a ring A, the radical of \underline{b}, denoted \sqrt{b} is defined by

$$
\underline{V} \underline{b}=\left\{a \in A ; a^{m} \in \underline{b} \text { for some positive integer } m\right\}
$$

The nilradical of A, denoted $N(A)$ is the ideal $\sqrt{ } O$, that is, the collection of all nilpotent elements of A, or equivalently, the intersection of all prime idcals of h. The ring A is reduced if $N(A)=0$. In particular, for each ideal \underline{b} of A, the ring A / \sqrt{b} is reduced. The Jacobson radical of A, denoted $J(A)$ is the intersection of all the maximal ideals of A. The ring A is called a Jacobson (or Hilbert) ring if every prime ideal of A is the intersection of a fanily of maximal ideals. Clearly $N(A)=J(A)$ if A is a Jacobson ring.
(5.1) Theorem Suppose A is finitely generated (as a \mathbb{Z}-algebra)

Then

1) A is a Jacobson ring, and
2) For each $\underline{p} \in$ Spec A, \underline{p} is maximal if and only if A / p is finite

Proof See [6] pp.352-354

For each nultiplicatively closed subset (m.c.s.) S of A, the ring of quotients of A with respect to S (see [2] pp.36-40) is denoted by A_{S} or $S^{-1} A$. This ring is zero if and only if
$0 \in S$. For any m.c.s. S, the mapping $\Phi: A \rightarrow A S$ defined by $\Phi(a)=a / 1$ for each a εA, is called the natural homomorphism, and we have the following well known 'universal property of ' ${ }_{S}$ '
(5.2) Proposition Suppose that $\Phi: A \rightarrow A$ is the natural honomorphism, and that $f: A \rightarrow A^{\prime}$ is a ring homomorphiss satisfying

1) $f(s)$ is a unit in h^{\prime} for each $s \in S$

Then there is a unique homomorphism $\psi: A \rightarrow A^{\prime}$ making the diagram I conmute

Moreover, if in addition, f satisfies
2) Whenever $f(a)=0$, then $s a=0$ for sone $s \in S$, and
3) Every element in A^{\prime} may be written in the form $f(a)(f(s))^{-1}$ for some a $\in \Lambda, s \in S$

Then ψ is an isomorphism.
(5.3) If A is Noetherien, then $A\left[X_{1}, \ldots, X_{n}\right]$ is Noctherian and A_{S} is Noetherien for any m.c.s. S.
(5.4) If S is a m.c.s. and b is an ideal of Λ for which $\underline{\underline{b}} \cap \mathrm{~S}=\phi$ then there is a prine ideal $\underline{\mathrm{p}} \supset \underline{\mathrm{b}}$ for which $\underline{p} \cap S=\phi$

As a final preliminary we note that for a non-nilpotent $x \in A$, the set $S=\left\{x^{m} ;\right.$ an integer $\left.\geqslant 0\right\}$ is a m.c.s. of A for which the ring A_{S} will usually be denoted by $f_{(x)}$.

For the remainder of this chapter, unless otherwise stated, M will donote a matroid of rank r on the set $E=\left\{e_{1}, \ldots, e_{n}\right\}$ where the ordering is fixed.

Let X be the generic ($n \times r$) matrix of indeterminants $\left[X_{i j}\right]$ whose rows are indexed by the elements of E , and let $T=\mathbb{Z}\left[\left\{X_{i j}\right\}_{i, j}\right]$, the polynonial ring over \mathbb{Z} in the $n r$ indeterminates $\left\{X_{i j}\right\}_{i, j}$. For each r-set $U \subset E$, U is either a basis (independent) or a non-basis (dependent) in M, and $\operatorname{det} X(U)$ is a well-defined element of the ring T.

$$
\text { Let } a=\Pi\{\operatorname{det} x(U) ; U \text { basis of } M\}
$$

and let \underline{b} be the ideal of T generated by the set of elements

$$
\{\operatorname{det} X(U) ; U \text { non-basis of } M\}
$$

Vith these definitions Vámos has proved the following remarkable characterization of representabiiity which inspirea this study:-
(5.5) Theorem (Vámos, [35]) The matroid $1 f$ is representable if and only if a \& 名.

Proof Suppose first that M is representable over some field F by the ($n \times r$) matrix $N=\left[\alpha_{i j}\right]$. Let $r: T \rightarrow F$ be the ring homomorphism inzuced by $\gamma\left(X_{i j}\right)=a_{i j}$ for each $1 \leqslant i \leqslant n$, $1 \leqslant j \leqslant r$. For cach r-set $U \subset E, U$ is a non-basis if and only if $\operatorname{det} N(U)=0$. But $\operatorname{det} \mathbb{N}(U)=\gamma(\operatorname{det} X(U))$, so if U is a non-basis then $Y(\operatorname{det} X(U))=0$. Consequently $b \subset$ Ker γ, and since Ker γ is a prime ideal with F a domain, it follows that $\sqrt{\text { b }} \subset$ Ker γ. Now $\quad \gamma(a)=\gamma(\Pi$ det $X(U))=\Pi_{Y}(\operatorname{det} X(U))=\Pi \operatorname{det} N(U)$
(where the products are over all the bases U of M)
Hence $r(a) \neq 0$ since $\operatorname{det} \mathbb{N}(U) \neq 0$ for each basis U. Thus a d Kor r and so a f b since $\sqrt{\underline{b}} \subset$ Ker r.

Conversely suppose a \& $\underline{\underline{D}}$. Then the set :

$$
S=\left\{a^{t} ; t \text { integer }>0\right\}
$$

is a m.c.s. of T disjoint from b . By (5.4_{i}) there is a prime -
ideal $\underline{p} \supset \underline{b}$ with $\underline{p} \cap S=\phi$. Let k be the quotient ficld of
T / \underline{p}, and let π be the composition map $T \xrightarrow{\text { nat }} T / \underline{p} \xrightarrow{\text { inc }} K$. Let N be the $(n \times r)$ matrix $N=\left[\pi\left(X_{i j}\right)\right]$ over K.

Then N is a K-representation of K . For suppose U is an r-subset of E. If U is devendent then $\operatorname{det} X(U) \in \underline{b} \subset \underline{p}$ so that $0=\pi(\operatorname{det} X(U))=\operatorname{det} N(U)$. If U is independent then $\operatorname{det} X(U)$ divides a. Consequently $\operatorname{det} X(U) \notin p$ for otherwise a $\varepsilon \underline{p}$ which contradicts the choice of \underline{p}. But then $\operatorname{det} N(U)=\pi(\operatorname{det} X(U)) \neq 0$.

Suppose now that - : $T \rightarrow T / V \underline{b}$ denotes the canonical homomorphism. Then the set $\bar{S}=\left\{\bar{a}^{m} ; m \geqslant 0\right\}$ is a m.c.s. of $T / \sqrt{ }$ b
(5.6) Definition The Vámos ring of the matroid M is the ring

$$
A_{M}=(T / \sqrt{b})(\bar{a}) \quad\left(=(T / \sqrt{b})_{\bar{S}}\right)
$$

Although A_{M} has been defined with respect to a fixed ordering of f, it is clear that if σ is any permutation of $\{1, \ldots, n\}$ then the Vamos ring A_{M}^{\prime} defined with respect to the ordering $e_{\sigma(1)}, \ldots, e_{\sigma(n)}$ is isornorphic to A_{M} (if $\left[Y_{i j}\right]$ is the generic matrix of indeterminates used to define A_{N}^{\prime} then the mapping $Y_{i} \longrightarrow X_{\sigma}{ }_{j}(i)_{j} \quad$ induces an isomorphism between A_{M}^{\prime} and A_{M}).
(5.7) Proposition

1) $A_{M}=(0)$ if and only if M is representable.
2) A_{M} is a Noctherian ring.

Proof 1) The ring $A_{h}=(0)$ if and only if $\overline{0} \in \bar{S}$, that is, if and only if $a^{m} \epsilon \underline{b}$ for some positive integer m. This is true if and only if $a \in \sqrt{b}$, so the result follows from (5.5).
2) Follows from the results in (5.3) since \mathbb{Z} is Noetherian.

Let $\theta: T \rightarrow A_{M}$ denote the composition map $T \rightarrow T / \sqrt{D} \xrightarrow{\Phi} A_{M}$ where Φ is the natural homomorphism defined previously. Write $\theta\left(X_{i j}\right)=x_{i j}$ and let X denote the (nxr) matrix [$\left.x_{i j}\right]$ over $A_{i n}$ Also, if $N=\left[\alpha_{i j}\right]$ is an F-representation of M, write g^{N} for the homomorphism $g^{N}: T \rightarrow F$ induced by $g^{N}\left(X_{i j}\right)=\alpha_{i j}$.

```
(5.8) Proposition Yith the above definitions, the ring AM,
together with the matrix }X\mathrm{ satisfies :-
```

1) $A_{\text {i }}$ is a reduced ring.
2) Fivery $(r \times r)$ subdeterminant of X is either zero or a unit in A^{\prime}, and A_{M} is rinitely generated as a Z-algebra by the $x_{i j}{ }^{\prime} s$ together with the inverses of these subdeterminants.
3) For any field F and $(n \times r)$ matrix $f=\left[\alpha_{i j}\right]$ which is an F-representation of H, there is a unique homomorphism
$f: A \longrightarrow F$ making the diagram below commute.

4) For any homomorphism $f: A \rightarrow F$ (F^{\prime} a field), there is a unique \mathfrak{i}-repregentation N which makes the above diagram commute.

Proof

1) iie have already noted that T / \underline{b} is reduced, and any ring of quotients of a reduced fing is again reduced.
2) Let U be any r-subset of ki. If U is a non-basis then det. $X(U) \in \underline{b}$, whence $\theta(d e t X(U))=0$ in A_{M}. If U is a basis then $\operatorname{det} X(U)$ divides a whence $\theta(\operatorname{det} X(U))$ divides $\theta(a)$; now by definition of $A, \quad \theta(a)$ is a unit in A, hence $\theta(\operatorname{det} X(U))$ is a urit in A_{k}. The first statement now follows since every
($r^{\times} \times r$) subdeterminant of x has the form $\operatorname{det} x(U)=\theta(\operatorname{det} \chi(u))$ for some r-set $U \subset E$. The second statement follows from the fact that

$$
\theta(a)^{-1}={ }^{\prime} \Pi\left(0(\operatorname{det} X(U))^{-1}=\Pi(\operatorname{det} x(U))^{-1}\right.
$$

(where products are over the set of bases U of M)
since every element in A_{M} has the form $\bar{h} / \theta(\vec{a})^{m}$ where $h \in T$.
3) $\mathrm{By}(5.2)$ and the definition of 0 , it suffices to show that
 a unit (i.e. is non-zero) in F.

For any r-set U $\subset E, g^{N}(\operatorname{det} X(U))=\operatorname{det} N(U)$ which is zero if and only if U is a non-ivasis. So clearly $b \subset \operatorname{Ker} g^{N}$, and since the latter is a prime ideal and F a domain we deduce that V $\underline{B} \subset \operatorname{Ker} g^{N}$. Also $g^{N}(a)=g^{N}($ חdet $X(U))=\Pi \operatorname{det} N(U), \neq 0$ (products over all bases U), so $g^{N}(a)$ is indeed a urit.
4) Suppose $f\left(x_{i j}\right)=\alpha_{i j} \in F \quad$ for each $1 \leqslant i \leqslant n, 1 \leqslant j \leqslant r$. Let N be the $\left(n_{x} r\right)$ matrix $\left[a_{i j}\right]$ over F. We have only to show that N is ar: F-representation of M. For any r-set $U \subset E$, $\operatorname{det} N(U)=f(\operatorname{det} X(U))$, and by 2) $\operatorname{det} X(U)$ is zero in A_{M} ir U is a non-basis and is a unit if U is a basis. Hence $\operatorname{det} N(U)=f(0)=0$ if U is a non-basis and $\operatorname{det} N(U) \neq 0$ if U is a basis singe any ring homomorphism into a field maps units onto units (i.e. non-zero elements of \bar{F}).

In (5.15) we will show that the four properties listed in (5.8) characterize the ring A
(5.9) Corollary and definition To cach p E Spec A W there corresponds a represemtation $N p=\left[\pi\left(x_{i j}\right)\right]$ of N over $K p$ the quotient field of $A_{W} / p\left(\right.$ where π is the composite map $\left.A \rightarrow A_{M} / P \rightarrow K_{p}\right)$. Conversely, to each F-representation $N=\left[\alpha_{i j}\right]$ of H, there
corresponds a ring homomorphism $f_{N}: A_{M} \rightarrow F \quad$ in which
$f\left(x_{i j}\right)=\alpha_{i j}$, and hence a corresponding prime ideal $p_{N} \quad$ of A_{M}, where $p_{N}=\operatorname{Ker} f_{N}$.

The natural corresponderce given above between the prime ideals of A_{M} and the representations of H is not in general a bijection. The most important by-product of our later refinement of A_{11} will be that this correspondence does become a bijection.
(5.10) Proposition The ring A_{M} is a Jacobson ring for which $\mathbb{A}_{\mathrm{h}} / \underline{\underline{m}}$ is a finite field for each maximal ideal $\underline{\underline{m}}$ of A_{M}.

Proof By (5.8.2), A_{M} is finitely generated as a 2 -algebra, so the result follows from (5.1).
(5.11) Corollary (Rado) If H is representable, then it is representable cver a finite field.

Proof By (5.7 .1) $A_{1 f} \neq(0)$. Consequently A_{M} possesses a maximal ideal m , say. By (5.10), $\mathrm{A}_{\mathrm{m}} / \underline{m}$ is a finite field, so by virtue of the canonical homomorphism $A_{M} \rightarrow A_{N} /$, it follows from (5.8.4) (or (5.9)) that h is representable over A_{M} / \underline{m}.
(5.12) Lemma Supnose M is representable (so $A \neq(0)$), and for each $n \in Z$, let \tilde{n} denote the image or n in A_{M} under Φ. Then

1) For every non-zero element $x \in A_{M}$ there is a maximal ideal \underline{m} of Λ_{M} with $x \underline{\underline{m}}$.
2) If $n=p_{1}^{m_{1}} \ldots p_{1}^{m t} \quad$ where p_{1}, \ldots, p_{t} are distinct prime numbers, then $\tilde{n}=0$ if and only if $c(i) \subset\left\{p_{1}, \ldots, p_{t}\right\}$. In particular, for any prime $p, \tilde{F}=0$ if and only if $c(k)=\{p\}$.
3) For any prime p, \tilde{p} is a non-unit in A if and only if $p \in c(M)$.

Proof

1) $B y$ (5.8.1) A_{M} is a reduced ring so $N\left(A_{M}\right)=0$. But A_{M} is a Jacobson ring, whence $J\left(A_{k}\right)=N\left(A_{M}\right)=0$. Thus $x \neq 0$ implies $x \notin \cap\left\{\underline{m}\right.$; 且 maximal ideal of $\left.A_{M}\right\}$ and the result follows.
2) First suppose $\tilde{n}=0$. Let F be any field over which M is representable. Then by $(5.3 .3)$ there is a homomorphism $f: A_{M} \rightarrow F$. Thus,

$$
0=f(0)=f(\tilde{n})=f(n \cdot \tilde{1})=n \cdot 1_{F}
$$

so char F divides n. But ther char $F=p_{i}$ for some $1 \leqslant i \leqslant t$ and hence $c(H) \subset\left\{p_{1}, \ldots, p_{t}\right\}$.

Conversely, suppose $c(M) \subset\left\{p_{1}, \ldots, p_{t}\right\}$ but that $\tilde{n} \neq 0$. By 1) there is a maximal ideal \underline{m} of $A_{\text {fin }}$ for which $\tilde{n} \oint \underline{m}$. Consider the ficild $F=A_{m} / m$ and the canonical homomorphism $\pi: A_{M} \rightarrow \mathrm{~F}$. By (5.8.4), H is representable over F. But $n \cdot 1_{F}=\pi(\tilde{n}) \neq 0$, and consequently char $F \neq p_{i}$ for each $i=1, \ldots, t$ which contradicts $c(N) \subset\left\{p_{1}, \ldots, p_{t}\right\}$.

The second statement now follows from (5.7.2) and (5.11). 3) Suprose \tilde{p} is a ron-unit in A_{H}. Then \tilde{p} is contained in a maximal jdeal \underline{I} of A_{M} so that the field $A_{M} /$ must have char acteristic $p . B y(5.8 .4), M$ is representable over A_{M} / \underline{m}, so $p \in c(M)$. Corversely suppose $\mathrm{F} \in \mathrm{c}(\mathrm{M})$. Then by (5.3.3) there is a field F of characteristic p and a homomorphism $f: ~ A \rightarrow F$. Since $f(\tilde{p})=p \cdot 1_{F}=0, \tilde{p}$ cannot be a unit in A_{M}.
(5.13) Theorem (Rado and Vámos) For a matroid $k,|c(b)|=\infty$ if and only if 0 of $\mathrm{c}(\mathrm{M})$.

Froof First suppose $|c(M)|=\infty$. Then since every integer $m \neq 0$ has a prime factor decomposition, it follows fron (5.12.2) that $\tilde{m} \frac{1}{+} 0$. Consequently the set $W=\{\tilde{m} ; 0 \pm m \in Z\}$ is a m.c.s. of A_{M} wich is disjoint from the zero ideal (0). By (5.4) there
 field of A_{M} / \underline{q}, so that by (5.9) Mis representable over K. By definition of $q, m \cdot 1_{K} \frac{1}{+} 0$ for each $0 \neq m \in \mathbb{Z}$ hence char $K=0$ which proves necessity.

Conversely, suppose $0 \in c(H)$. By (5.11), w is representable over a finite field so $c(: i)$ contains at least one prime $p \neq 0$. Suppose that $c(M) \backslash\{0\}$ consists only of a finite number of primes $p_{1}, \ldots, p_{\downarrow}$ and seek a contradiction. If we write $n=\prod_{i=1}^{t} p_{i}$, then by $(5.12 .2) \quad \tilde{n} \neq 0$, since $0 \&\left\{p_{1}, \ldots, p_{i}\right\}$. By (5.12.1), there is a maximal ideal m of A_{M} with $\tilde{n} m$. As in the proof of $(5.12 .2), M$ is representable over the field $F=A_{M} / m$ which is finite (by (5.10)), hence having characteristic p^{\prime}, say with $p^{\prime} \neq 0$. This means that $p^{\prime}=p_{i}$ for some $1 \leqslant i \leqslant t$ in which case $p_{i} \cdot 1_{F}=0$, and herce $\tilde{n} \subset \underline{m}$, a contradiction.
(5.14) Corollary Suppose k is represeritable and A a domain. Then $|c(M)|=1$ or $|c(M)|=\infty$

Iroof By (5.7.1), $|c(A)| \geqslant 1$. Suppose that $2 \leqslant|c(H)|<\infty$ and scek a contradiction. By (5.13) $0 \& c(M)$, so $c(M)=\left\{p_{1}, \ldots, p_{t}\right\}$ for some distinct primes p_{1}, \ldots, p_{t}. Since $t \geqslant 2$, the second statement of $(5.12 .2)$ implies $\tilde{p}_{i} \neq 0$ for each $i=1, \ldots, t$, whereas by the first statement ${ }_{i=1}^{\Pi} \tilde{p}_{i}=0$ in A_{M}. This contradicts the fact that A_{M} is a donain.
(5.15) Theorem (universal property) Let S be a ring and $\underline{Y}=\left[y_{i j}\right]$ an (nxr) matriy over S, such that the 'pair' (S, Y) satisfy the following conditions :-

1) Sis a reduced ring,
2) Livery (rx) subdeterminant of Y is either zero or a urit in
S, and S is finitely generated as a \mathbb{Z}-algebra by the $y_{i j}$'s together with the inverses of these units.
3) For any field F and $(n \times r)$ matrix $N=\left[\alpha_{i j}\right]$ which is an $F-$ representation of M, there is a unique homomorphism $h: S \rightarrow F$ making the diagran below commute.

(where ∂ is induced by
$\left.\partial\left(X_{i j}\right)=y_{i j}\right)$
4) For any homomorphism $h: S \rightarrow F$ (F a field), there is a unique F-representation N of M making the above diagram comute.

$$
\begin{aligned}
& \text { Then the rings } A_{1} \text { and } S \text { are isomorphic, } \\
& \text { under an isomorphism taking } \quad \text { to } y_{i j} \text {. }
\end{aligned}
$$

Proof lie first note that $S=(0)$ if and only if M is not representable ; for if $S \neq(0)$ then S contains a maximal ideal \underline{m}, and because of the canonical homomorphism $G-\infty S / \underline{m}$, it follows from 4) that $I f$ is representable over s / m. Conversely, if l . is, say F-represertable then the existence of a homomorphism of S into F (by 3)) ensures that $S \neq(0)$ (since, by our defirition of homomorphism, $h(1)=1_{F}$). Thus by (5.7.1) we deduce that $A_{M}=$ (0) if and only if $S=(0)$, and we may now assume that both rings are non-zcro.

So let $\pi: S \rightarrow S$ 促 denote the canonical homomorphism where \underline{m} is a maximal ideal of S. Ey 4) the matrix $N=\left\lceil\pi\left(y_{i j}\right)\right.$ is a representation of H over S / \underline{L}. let U be an r subset of E, so then det $N(U)=0$ if and only if U is deperdent. But $\pi(\operatorname{det} Y(U))=\operatorname{det} I(U)$, so $\operatorname{det} Y(U) \in \underline{m}$ if and only if U is dependent. Since, by 2), det $Y(U)$ is either 0 or a unit (the latter of which is rot contained in any maximal ideal) we deduce,

Next we appeal to (5.2.1) to show that the homomorphism $d: T \rightarrow S$ induces the required homonorphism $\overline{\mathrm{C}}: \mathrm{A}_{4} \rightarrow \mathrm{~S}$, and for this we must show show that $\sqrt{ } \underline{b} \subset$ ker ∂ and $\partial(a)$ is a unit in 5 . Clearly $\partial(\operatorname{det} X(U))=\operatorname{det} Y(U)$ for each $r-\operatorname{set} U \subset L^{\prime}$, so by (5.15.5), $\underline{b} \subset$ Ker ∂. By 1) S is a reduced rirg, hence we deduce $\sqrt{ } \underline{b} \subset$ Ker a. Also, $\partial(a)=\Pi\{\operatorname{det} Y(U) ; U$ basis $\}$, which, by (5.15.5) and 2) is a product of units in S, hence is itself a unit in S. Thus, by (5.2.1) there is a (urique) homomorphism $\bar{\partial}: A_{M} \rightarrow S$ in which $\bar{\partial}\left(x_{i j}\right)=y_{i j}$. We have orly to show that $\bar{\partial}$ is a bijection:$\bar{\partial}$ surjective :- By 2) and $(5.15 .5)$, S is generatea (as a $\mathbb{z}-$ algebra) by the $y_{i j}$'s together with those elements of the form $(\operatorname{det} Y(U))^{-1}$ where U is a basis of M. By (5.8.2), det $x(U)$ is a unit in A_{M}, and since $\bar{\partial}(\operatorname{det} X(U))=\operatorname{det} Y(U)$ we also have $\bar{\partial}\left(\operatorname{det} X(I)^{-1}\right)=(\operatorname{det} Y(U))^{-1}$, hence $\bar{\partial}$ is surjective.
$\bar{\partial}$ injective :- ie need only show that $\bar{\partial}(x)=0$ implies $x=0$ for each $x \in A_{M}$. Suppose not, and $\bar{\partial}(x)=0$ for some $x \neq 0$. By (5.12.1) there is a maximal ideal \underline{m}^{\prime} of $A_{\text {M }}$ for which $x \not \underline{m}^{\prime}$. Let $\pi^{\prime}: A_{M} \rightarrow A_{M} / \underline{m}^{\prime}$ denote the canonical homomorphism and the matrix $N=\left[\pi^{\prime}\left(x_{i j}\right)\right]$. Then by (5.8.3) and 3) there is a (unique) homonorphism $h: S \rightarrow A_{h} / m^{\prime}$ which makes the diagram below commute.

But then $\pi^{\prime}=h \bar{\partial}$. Hence $\pi^{\prime}(x)=h \bar{\partial}(x)=h(0)=0$, in which case $x \in \underline{m}^{\prime}$, a contradiction. The result now follows.
(5.16) Remark In the light of (5.8) and (5.15) we can view the ring A_{M} as any pair (S, Y) where S is a ring ard Y is an ($n \times r$) matrix over S satisfying the conditions of (5.15). In particular, of course $\left(A_{d}, x\right)$ is such a pair.

The simplified Vámos ring

The ring A_{M} is based on too many indeterminates for practical use, since even for the simplest matroids M, A_{M} cannot easily be explicitily described. Yhen we eventually define the canonicrl Vános ring we will have reduced the number of irdeterminates sufficiently to be able to compute the ring easily for many important matroids. However, since we wish to establish the precise algebraic relationship between these rings it is necessary to define the intermediate ring R_{M}, winich we will call the simplified Vámos ring, and which is of genuine interest in its own right.

Once again we shall assume the same fixed ordering of E, but in this case we assume in addition that the first r elements e_{1}, \ldots, e_{r} form a basis B. In $£ 2$ we noted that a representation matrix of M is.in colum echelon form if and only if the first r rows form the identity matrix I_{r}, ard that every matrix is column equivalent to a matrix in column echelon form. With this consideration we define R_{M} in an exactly analagous way to A, except that now the definitions of T, b, a are nade with respect to the matrix

$$
X=\left[\begin{array}{c}
I_{r} \\
-X^{\prime}
\end{array}\right] \quad \text { where } \quad X^{\prime}=\left[\begin{array}{lll}
X_{r+1,1} & \cdots & X_{r+1, r} \\
\vdots & & \\
X_{n, 1} & \cdots & X_{n, r}
\end{array}\right]
$$

size the analagy we are using the samc labels X, T, \underline{b}, a , as before, but now $T=Z\left[\left\{X_{i j}\right\} \begin{array}{c}1 \leqslant i \leqslant n] \\ 1 \leqslant j \leqslant r\end{array}, \quad \underline{b}\right.$ is the ideal in T generated by the elements \{det $X(U)$; U non-basis\}, $a=\Pi\{\operatorname{det} X(U) ; U$ basis $\}$, and $R_{k}=(T / \sqrt{\underline{b}})(\bar{a})$.

Unlike A_{M} it is by no means obvious that the ring R_{M} is independent of the ordering of E (in the sense that if we def'ino the ring with respect to some other ordering the resulting ring is isomorphic to R_{m}). There is no proolem if we merely permite the elements of B among themselves or the elements of $E \backslash B$ among therselves since these operations correspond (respectively) to permutations of the colums ard rows of X^{\prime} and the resulting ring is then isonorphic to R_{M} under the mapping induced by the corresponaing permutation of the $X_{i j}$'s. However things are much more difficult in the case of an arbitrary permutation of E since this may result in defining the ring with respect to a basis different to B. We defer the proof of the ismorphism in this case until we have established the basic properties of R_{M}.

As before let $\theta: T \rightarrow R_{M}$ denote the natural mapping. Write $O\left(x_{i j}\right)=x_{i j}$ and the matrices $X^{\prime}=\left[x_{i j}\right]_{\substack{ \\1 \leqslant j \leqslant r}}^{1_{\leqslant}}$isn and $x=\left[I_{r} \mid x^{\prime}\right]^{T}$. One elementary but useful property which now is possessed by $\left(R_{M}, X\right)$ is :-
(5.17) Proposition For cach $r+1 \leqslant i \leqslant n$, 1\&jsr,

1) $x_{i j}$ is (up to sign) ari (rxr) subdeterminant of X.
2) $x_{i j}=0$ in R_{M} if ard only if e $j \underline{C\left(B, e_{i}\right) \text { and is a unit }}$
othervise. Tnus the matrix X^{\prime} over R_{H} has its zero entries
in the same corresponding positions to the ratrix $A_{B}-$

Proof 1) Firite $U_{i j}=B \backslash\left\{c_{j}\right\} \cup\left\{e_{i}\right\}$. Then det ($\left.u_{i j}\right)= \pm x_{i j}$.
2) $\operatorname{With} U_{i j}$ as above, $\operatorname{det} X\left(U_{i j}\right)= \pm X_{i, j}$. Thus $X_{i, j} \in \underline{b}$ if and only if $U_{i j}$ is a non-basis, and $X_{i j}$ divides a if and only if $U_{i, j}$ is a basis. But then $x_{i j}=0$ in R_{M} if and only if $U_{i, j}$ is a non-basis, and $x_{i j}$ is a, unit if and only if $U_{i j}$ is a basis. The result now follows since $U_{i j}$ is a non-basis if and only if it contains a circuit which must be $C\left(B, e_{i}\right)$.

The following set of results $(5.7)^{\prime},(5.8)^{\prime},(5.9)^{\prime},(5.10)^{\prime}$, (5.15)' for R_{N} are analagous results to those corresponding to A_{i+1}. In each case the new proof requires such minor modifications as to make their statement here unnecessary.
(5.7) ${ }^{\prime}$ 1) $\underline{R}_{M}=(0)$ if and only if is not represcntable.
2) B_{H} is a Noetherian ring.
(5.8)' The ring R_{N}, together with the matrix X satisries:-

1) $R u$ is a reduced rins.
2) Fivery (rir) subdeterninant of x is either zero or a unit in
R_{M}, and R_{l} is finitely generated (as a Z-algebra) by these units
togethor with their inverses.
3) For any ficld F, and ($n \times r$) column cchelon matrix $N=\left[I_{r} \|^{\prime \prime}\right]^{T}$ wich is an F-representation of H, there is a unique homomorphism $f: P_{n} \rightarrow F$ making the diagram below commate.

4) For any homomorphism $f: R \rightarrow F$ (F a field) there is a unjque Colunin echelon r-represertation IV which makes the above diagram commute.
(Note:- $(5.8 .2)^{\prime}$ is stronere than (5.8.2) thanks to (5.17.1)).
(5.9)' To cach $p \in \operatorname{Spec} R$. there corresponds a colurn echelon representation $N_{p}=\left[I_{r} \|_{\pi}\left(x_{i j}\right)\right]^{T}$ of w over $K p$ the quotient field of R_{h} / \underline{p} (where π is the composite map $R \rightarrow R / p \rightarrow K$). Conversely, to each column echelon F-representation $N=\left[I_{r} \mid N^{\prime}\right]^{T}$ (where $\mathrm{N}^{\prime}=\left[\alpha_{i j}\right]_{\substack{r+1 \leqslant i \leqslant n}}$) of N there corresponds a homomorphisn $\mathrm{f}_{\mathrm{N}}: \mathrm{R}_{\mathrm{H}} \rightarrow \mathrm{F}$ in which $\mathrm{f}_{\mathrm{N}}\left(\mathrm{x}_{\mathrm{i} j}\right)=\alpha_{i j}$ (for each i, j), and hence a corresponding prime ideal p_{N} of R_{N}, where $p_{N}=\operatorname{Ker} f_{N}$:
(5.10)' The ring R_{h} is a Jacobson ring for which R_{h} / \underline{m} is a finite field for cach maximal iãeal in of $R M$ -
(5.15)' (universal property) Let S be a ring and $Y=\left[I_{r} \mid Y^{\prime}\right]^{T}$ an (r\&r) matrix over S (where $y^{\prime}=\left[y_{i j}\right] r+1 \leqslant i \leqslant n$, , say) such that the pair (s, y) satisfy the conditions :-
5) S is a reduced ring.
6) Every ($r \times r$) subdeterminant of Y is either zero or a unit in S and S is finitely generated (as a Z-algebra) by these units together with their inverses.
7) For any ricld F, and ($n \times r$) column echelon matrix $N=\left[I_{r} \mid N^{\prime}\right]^{T}$ which is an F-represcntation of M, there is a unique homonorphism h wich makes the diagram below commute.

> (where o is induced by $\left.\partial\left(x_{i j}\right)=y_{i j}\right)$
4) For any homonorphism $h: S \rightarrow F$ (F a field), there is a unique colum echelon F-representation of wich makes the above diagran commute.

$$
\begin{aligned}
& \text { Then the rings } R_{M} \text { and } S \text { are isomorphic } \\
& \text { under an isomorphism taking } x_{i j} \text { to } y_{i j} \text {. }
\end{aligned}
$$

(5.18) Theorem The ring $R M$ is (up to isomornhism) independent of the ordering of E.
roof Let $\left(R_{N}, X\right)$ be defined as above, with respect to the ordering e_{1}, \ldots, e_{n} where $B=\left\{e_{1}, \ldots, e_{r}\right\}$ is a basis. Now let $R^{\prime}\left(=P_{M}^{\prime}\right)$ be the simplified Vanos ring defined with respect to some new ordering $e_{\sigma}(1) \cdots, \cdots(n)$ where σ is a permutation of $(1, \ldots, n)$. Ve may assume $B^{\prime}=\left\{e_{\sigma(1)}, \ldots, c_{\sigma(n)}\right\}$ is a basis. By (1.22) (basis exchange) it suffices to prove the theorem in the case when B, B^{\prime} differ by only one element, so by our previous comments, we may assume that $B^{\prime}=\left\{e_{1}, \ldots, e_{r-1}, e_{r+1}\right\}$ and that R^{\prime} is defined with respect to the ordering $e_{1} ; \ldots, e_{r-1}, e_{r+1}$, e ${ }_{r}$, e_{r+2}, \ldots, e_{n}.

Now suppose that R^{\prime} is defined with respect to the generic (column echelon) matrix of indeterminates Y_{0} where

Let $y_{i j}$ denote the natural image of $Y_{i j}$ in R^{\prime} and let $Y=\left[I_{r} \mid Y^{\prime}\right]^{T} \quad$ where $\quad Y^{\prime}=\left[y_{i j}\right]$. Since $(5.8)^{\prime}$ is true for any simplified Vámos ring defined on a fixed ordering, it is certainly true for $\left(R^{\prime}, Y\right)$ with respect to the new ordering of E. Also, we note that

$$
\begin{equation*}
c_{r+1} \in C\left(B^{\prime}, e_{r}\right) \tag{5.18.2}
\end{equation*}
$$

for otherwise $C\left(B^{\prime}, e_{r}\right) C\left\{e_{1}, \ldots, e_{r-1}\right\} \cup\left\{e_{r}\right\}=E$, which is a contradiction. So by (5.17) applied to $\left(R^{\prime}, Y\right)$ it follows that $y_{r+1, r}$ is a unit in R^{\prime}. irrite $\left(y_{r+1, r}\right)^{-1}=z$, say.

We now define a new matrix Y_{1} over R^{i} which is the matrix resulting when we interchange the $r^{\text {th }}$ and $(r+1)^{\text {th }}$ rows of Y and reduce this matrix to column echelon form. Explicitly.:-
$Y_{1}=P_{r, r+1} Y\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ \vdots & 0 & & \\ 0 & & 1 & 0 \\ -\left(y_{r+1,1}\right) z & -\left(y_{r+1,2}\right) z & \cdots-\left(y_{r+1, r-i}\right) z & z\end{array}\right]$
(where $P_{r, r+1}$ is the ($n \times n$) permutation matrix obtained from I_{n} by interchanging the $r^{\text {th }}$ and $(r+1)^{\text {th }}$ rows).

Thus Y_{1} is an (nxr) colum cchelon matrix, say $Y_{1}=\left[I_{r} \mid Y_{1}^{\prime}\right]^{T}$ where $Y_{i}^{\prime}=\left[y_{i j}^{\prime}\right] \begin{array}{r}r+1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant r\end{array}$. We now show that the rings R_{M}, R^{\prime} are isomorphic by showing that the pair $\left(R^{\prime}, Y_{1}\right)$ satisfies all the conditions of $(5.15)^{\prime}$ (in which case the isomorphism takes $x_{i j}$ to $\left.y_{i j}^{\prime}\right):-$

1) By (5.8.1)' applied to R^{\prime}, certainly R^{\prime} is reduced.
2) By $(5.8 .2)^{\prime}$ applied to Y, every ($r \times r$) subdeterminant of Y is either zero or a unit in R^{\prime} and R^{\prime} is generated by these units and their inverses. By (5.18.2) it is clear that the ($r \times r$) subdeterminants of Y_{1} differ from those of Y by at most a factor of $\pm z$ winch is itself an ($r \times r$) subdeterminant of Y_{1} (since $\left.y_{r+1, r}^{\prime}=z\right)$. Thus $(5.15 .2)^{\prime}$ holds for $\left(R^{\prime}, Y_{1}\right)$.
3) Let $N=\left[I_{r} \mid N^{\prime}\right]^{T}$ be a column echelon F-representation of M (where $N^{\prime}=\left[\alpha_{i j}\right]$) with respect to the original ordering of E. By $(5.18 .1) \alpha_{r+1, r} \neq 0$. Frite $\beta=\left(\alpha_{r+1, r}\right)^{-1}$.

Then the matrix N_{1} (defined overlear by (5.18.3)) is a column echelon F -representation of H with respect to the new ordering of E . Suppose the (i,j) entry of H_{1} is $\alpha_{i j}^{\prime}$. Then by $(5.8 .3)^{\prime}$ applied to $\left(R^{\prime}, Y\right)$ there is a homonorphisin $f: R^{\prime} \rightarrow F$ in which $f^{\prime}\left(y_{j . j}\right)=\alpha_{i j}^{\prime}$. It is clear from (5.18.3) that $\alpha_{r+1, r}^{\prime}=\beta$

$$
N_{1}=P_{r, r+1} N\left[\begin{array}{cccc}
1 & \cdots & 0 & 0 \tag{5.18.3}\\
0 & & & \\
\vdots & & 1 & 0 \\
0 & \cdots & -\left(\alpha_{r+1, r-1}\right) \beta & \beta
\end{array}\right]
$$

and that, for each $i=1, \ldots, r-1, \quad \alpha_{r+1, i}^{\prime}=-\left(\alpha_{r+1, i}\right)$. Now, $\quad f(z)=f\left(\alpha_{r+1, r}^{\prime}\right)^{-1}=\beta^{-1}$, and so for $i=1, \ldots r-1$ $f\left(-\left(y_{r+1, i}\right) z\right)=-r\left(y_{r+1, i}\right) \beta^{-1}=\alpha_{r+1, i}$.

So applying f to $(5.18 .2)$, we get
$f\left(\left[Y_{1}\right]\right)=P_{r, r+i} N_{1}\left[\begin{array}{ccc}1 & \cdots & 0 \\ 0 & & 0 \\ \vdots & & \\ 0 & & 1 \\ \alpha_{r+1,1} & \cdots & \alpha_{r+1, r}\end{array}\right]=N \quad(b y(5.18 .3))$
and so $f\left(y_{i j}^{\prime}\right)=\alpha_{i j}$, in which case $(5.15 .3)^{\prime}$ holds for $\left(R^{\prime}, Y_{1}\right)$.
4) Let $f: R^{\prime} \rightarrow F$ be a homomorphism. Suppose $f\left(y_{i j}^{\prime}\right)=\alpha_{i j}$.

We have to show $N=\left[I_{r} \mid N^{\prime}\right]^{T}$ (where $N^{\prime}=\left[\alpha_{i j}\right]$) is an F-representation of M (with respect to the original ordering of \mathcal{E}). Let N_{1} be defined as in $(5.18 .3)$. By (5.18.2) we have

$$
Y=P_{r, r+1} Y_{1}\left[\begin{array}{ccc}
1 & \cdots & 0 \\
0 & & 0 \\
\vdots & & \\
0 & & 1 \\
y_{r+1,1} & \cdots & y_{r+1, r}
\end{array}\right]
$$

Applying f to this expression yields
$r(\lceil Y])=P_{r, r+1} N\left[\begin{array}{ccc}1 & \cdots & 0 \\ 0 & & 0 \\ \vdots & & \\ 0 & & 1 \\ f\left(y_{r+1,1}\right) & \ldots & r\left(y_{r+i, r}\right)\end{array}\right]=N_{1} \quad$ (by (5.18.2) \quad and (5.18.3))

Thus, if the (i, j) entry of H_{1} is $\alpha_{i j}^{\prime}$ we have $\mathrm{f}\left(\mathrm{y}_{i j}\right)=\alpha_{i j}^{\prime}$. Now by $(5.8 .4)^{\prime}$ applied to $\left(R^{\prime}, Y\right)$, it follows that N_{1} is,a representation of H with respect to the new ordering of E, in which case, by definition of N_{1}, we must have N is a representation of M with respect to the original ordering.

Thus $\left(5.15 .4_{4}\right)$ holds for $\left(R^{\prime}, Y_{1}\right)$ and the theorem follows.
(5.19) Theorem For a matroid $M, \quad R=R M$.

Proof $B y(5.18)$ we may certainly assume that R_{M} is defined with respect to the ordering $e_{r+1}, \ldots, e_{n}, e_{1}, \ldots e_{r}$ where of course $B=\left\{e_{r+1}, \ldots, e_{n}\right\}$ is a basis of h.

$$
\text { Suppose that } \quad Z=\left[\frac{I_{n-r}}{Z_{1}}\right] \quad \text { (where } \quad z_{1}=\left[z_{i j}\right]_{r+1 \leqslant j \leqslant n}^{1 \leqslant i \leqslant r} \text {) }
$$

is the matrix over R_{i}, for which $\left(F_{R}, Z\right)$ satisfy (5.8)'.
Let $z^{i}=\left[\frac{I_{r}}{Z_{1}^{1}}\right]$. Once again we appeal to the univeral property by showing that the pair $\left(R_{n}, Z^{\prime}\right)$ satisfy the conditions of $(5.8)^{\prime}$.

1) Certainly $R_{N^{*}}$ is reduced.
2) For any r-set $U(i)$, it is easily seen that $\operatorname{det} Z^{\prime}(U)=$ det $Z(E \backslash U)$, in which case the set of ($r \times r$) subdeterminants of Z^{\prime} is precisely the sane as the set of $((n-r) \times(n-r))$ subdeterminants of 2 which have the desired property.
3) Suppose $N=\left[\frac{I}{M_{1}}\right]$ is an F-representation of M, where say $N_{1}=\left[\alpha_{i j}\right] \begin{array}{r}r+1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant r\end{array}$. When the matrix $\quad N^{\prime}=\left[\begin{array}{c}I_{n-r} \\ \hline N_{1}^{1}\end{array}\right]$ is an F-representation of with respect to the ordering $e_{r+1} \ldots$. $e_{n}, e_{i}, \ldots, e_{r}$. Thus by $(5.8 .3)^{\prime}$ applijed to $\left(R_{M}, Z\right)$ it follows that there is a unique homomorphism $f: R_{M} \rightarrow F$ in which $f\left(z_{i j}\right)=\alpha_{j i}$. But the (i, j) entry of Z^{\prime} is $y_{j i}$ and so $f\left(y_{j i}\right)=\alpha_{i j}$ as required.
4) Suppose $f: R_{H^{*}} \rightarrow F$ is a homomorphism in which $f\left(y_{i j}\right)=\alpha_{i j}$, say. If $N_{1}=\left[\alpha_{i, j}\right]$ we have to show that $\left[\frac{I_{r}}{N_{1}^{T}}\right]$ is an
F-representation of M. Now, by $(5.8 .4)^{\prime}$ applied to ($R W_{m}, Z$) we have that $\left[\frac{I_{n-r}}{N_{1}}\right]$ is an F-representation of M^{*}, so the result follows. We now deduce by $(5.15)^{\prime}$ that R_{M}, R_{H}. are, isomorphic under a mapping which takes $x_{i j}$ to $z_{j i}$.
(5.20) Theorem For a matroid $M_{1}, R_{M} \approx R_{M_{0}}$, where M_{0} is the underlying simple matroid of M (defined in (1.24)).

Proof With the notation of (1.24) we may assume that the first m elements of $F(m \leqslant n)$ are precisely E_{0}. Hence the elements, e_{m+1}, \ldots, c_{n} are either loops or parallel elements. We now define $F_{M_{0}}$ with respect to e_{1}, \ldots, e_{n}; suppose $Y=\left[\left.I\right|_{r} Y^{\prime}\right]^{T}$ is. the ($n \times r$) natrix over $R_{N_{0}}$ for which ($\mathrm{R}_{N_{6}}, Y$) satisfy (5.8)'. Now let Y_{1} be the ($n^{\times} r$) matrix over $R_{M_{0}}$ defined by

$$
Y_{1}=\left[\begin{array}{c}
Y \\
-\underline{V}_{12 I+1} \\
\vdots \\
-V_{n 1}
\end{array}\right]
$$

where the row $\underline{v}_{t}\left(m+15 t^{5} n\right)$ is zero if e_{t} is a loop in in, and if e_{t} is parallel to some $e_{i}(1 \leqslant i$ m $)$ then \underline{v}_{t} is precisely the $t^{\text {th }}$ row of y repeated. It is now routine to check that the pair $\left(R_{M_{0}}, Y_{1}\right)$ satisfy all four conditions of $(5.15)^{\prime}$.
(5.21) Theorem With the same hypothesis as (1.35) (for $t=2$), $\underline{\text { suppose } M=M_{1}+M_{2}}$. Then $\left.\quad R_{M} \approx \frac{R_{M_{1}}^{Q} Z R_{2}}{N\left(R_{M}^{Q} Z R_{M_{2}}\right.}\right) \quad(=$ s, say $)$

Proof Suppose that $Y=\left[J_{r_{j}} \mid\left[y_{i j}\right]\right]^{T}, \quad Z=\left[I_{r_{2}} \mid\left[z_{i j}\right]\right]^{T}$ are the matrices over $R_{M_{1}}, R_{M_{2}}$ respectively for which ($R_{M_{1}}, Y$), $\left(\mathrm{R}_{\mathrm{m}_{2}}, 2\right)$ satisfy $(5.8)^{\prime}$. We shall identify elements of $\mathrm{R}_{\mathrm{M}_{1}} \mathscr{Z}_{2} \mathrm{R}_{\mathrm{H}_{2}}$ with their natural images in S . Define the matrices

We now show that (S, V) satisfy the conditions of $(5.15)^{\prime}$.

1) By definition S is a reduced ring.
2) For any $r-s e t U \subset E$, if $U=U_{1} U U_{2}$ where U_{i} is an r_{j} subset of $E_{i} \quad(i=1,2)$, then it is easily seen that

$$
\begin{aligned}
\operatorname{det} V(U)=\operatorname{det} Y^{\prime}\left(U_{1}\right) \cdot \operatorname{det} Z^{\prime}\left(U_{2}\right) & =\left(\operatorname{det} Y\left(U_{1}\right) \otimes 1\right) \cdot\left(1 \otimes \operatorname{detZ}\left(U_{2}\right)\right) \\
& =\operatorname{det} Y\left(U_{1}\right) \otimes \operatorname{det} Z\left(U_{2}\right)
\end{aligned}
$$

and since $\operatorname{det} Y\left(U_{1}\right)$, det $Z\left(U_{2}\right)$ are either zero or units in $R_{M_{1}}, R_{M_{2}}$ respectively, it follows that $\operatorname{det} V(U)$ is either zero or a unit in S. By similar arguments it is routine to check that cvery ($r \times r$) subdeterminant of V is zero or a unit in S, and that S is generated by these elements together with their inverses.
3) If N is any \mathcal{N}-representation of M then it follows from (1.35) that iv has the form

$$
N=\left[\begin{array}{cc}
I_{r} \\
\hdashline\left[\alpha_{j i}\right] & 0 \\
\hdashline \overline{0}] & {\left[\beta_{i j}\right]}
\end{array}\right]
$$

By $(5.8)^{\prime}$ there are homomorphisms $f_{i}: R_{k_{i}} \rightarrow F(i=1,2)$ an which $f_{1}\left(y_{i j}\right)=\alpha_{i j}$ and $f_{2}\left(z_{i j}\right)=\beta_{i j}$. It now follows from (1.1) that there is a honomormism $f: R_{M_{i}} \otimes R_{1} \rightarrow F$ in which $f\left(y_{i j} \theta_{1}\right)=\alpha_{i j} \quad$ and $f\left(1 \otimes_{z_{i j}}\right)=\beta_{i j}$. Since f
clearly factors through S, we get the required homomorphisin $f: S \rightarrow F$.
4) Suppose $\mathrm{t}^{\prime}: \mathrm{S} \rightarrow \mathrm{F}$ is a homomorphism in which, gay $f\left(y_{i j} \otimes 1\right)=\alpha_{i j}$ and $f\left(1 \otimes z_{i j}\right)=\beta_{i j}$. Certainly f induces homomorphisms $f_{i}:{F_{m_{i}}}^{\rightarrow} F \quad($ for $i=1,2)$, in which $f_{i}\left(y_{i j}\right)=\alpha_{i, j}$ and $f_{2}\left(z_{i j}\right)=\beta_{i j}$. Thus by $(5.8 .4)^{\prime}$ applied to $\left(R_{M_{i}}, Y\right)$, $\left(R_{M_{2}}, Z\right)$ we deduce that the matrices $\left[I_{r_{1}} \mid\left[\alpha_{i j}\right]\right]^{T},\left[I_{r_{2}} \mid\left[\beta_{i j}\right]\right]^{T}$ are respectively F-representations of M_{1}, M_{2}. By (1.36) it now follows that f induces the required F-representation of M.

$$
\text { Thus by }(5.15)^{\prime}, \mathrm{R}_{\mathrm{M}} \approx \mathrm{~S}
$$

- To complete this section we now establish the exact algebraic relationship between the rings Λ_{M} and R_{M}
(5.22) Theorem Suppose $Z=\left[Z_{i j}\right]_{1 \leqslant j \leqslant r}^{1 \leqslant i \leqslant r \quad \text { is an }(r \times r) \text { generic }}$ matrix of indeterminates $Z_{i j}$ -

$$
\text { Then } A_{M} \approx R_{M}\left[\left\{z_{i j}\right\}_{i, j}\right](\operatorname{det} Z)
$$

Proof To avoid confusion we assume that (A_{M}, x) is defined as before and that Y is the matrix over R_{M} for which (R_{M}, Y) satisfy $(5.8)^{\prime}$. Then Y has the form

$$
Y=\left[I_{r} \mid Y^{\prime}\right]^{T} \quad \text { where } \quad Y^{\prime}=\left[y_{i j j}\right] \begin{aligned}
& 1 \leqslant i \leqslant n-r \\
& 1 \leqslant j \leqslant r
\end{aligned}
$$

Write $S=K_{H}\left[\left\{Z_{i j}\right\}_{i, j}\right]_{(\text {det } Z)}$. We shall identify elements of R_{h} with their natural images in S. In particular we form the ($n \times r$) matrix $V=Y Z$ over S. We now show that (S, V) satisfy the conditions of (5.15) :-

1) It is clear that S is a reduced ring since $R_{\text {n }}$ is.
2) Every (r×r) submatrix of V has the form $Y_{1} Z$ where Y_{1} is an ($r \times r$) submatriy of Y. But det $Y_{1} Z=$ det Y_{1}. det Z which is
either zero or a unit in S since (by (5.8.2 $)^{\prime}$) det Y_{1} is either zero or a unit in R_{M} (hence also in S) and by construction, det Z is a unit in S. Now by $(5.8 .2)^{\prime}, R_{k}$ is finitely genurated (as a \mathbb{Z}-algebra) by elements of the form $\operatorname{det} Y_{1},\left(\operatorname{det} Y_{1}\right)^{-1}$ where Y_{1} is an (rxr) submatrix of Y. By definition of S it follows that these elements together with the $Z_{i j}{ }_{j}$ (which are entries of V) and the element $(\operatorname{det} 2)^{-1}$ (which is the inverse of an ($r \times r$) subdeterminant of V) generate S as a \mathbb{Z}-algebra. Also,

$$
\operatorname{det} Y_{1}=\left(\operatorname{det} Y_{1} Z\right) \cdot(\operatorname{det} Z)^{-1}
$$

$$
\text { and, } \quad\left(\operatorname{det} Y_{1}\right)^{-1}=\left(\operatorname{det} Y_{1} Z\right)^{-1}(\operatorname{det} Z)
$$

Consequently it follows that S is generated as a \mathbb{Z}-algebra by the entries of V together with the inverses of the ($r \times r$) nonzero subdeterminants of V.
3) Suppose N is an F-representation of M. Wie may write $N=\left[\frac{N_{1}}{N_{2}}\right]$, where $\quad N_{1}=\left[\alpha_{i j}\right]_{i \leqslant j \leqslant r}^{1 \leqslant j \leqslant r}$, and $\quad N_{2}=\left[\beta_{i j}\right]_{1 \leqslant j \leqslant r} 1 \leqslant j \leqslant r$. We have to show that there is a homomorphism $f: S \rightarrow F$ in which $f\left(Z_{i j}\right)=\alpha_{i j}(1 \leqslant i, j \leqslant r)$, and the (i, j) entry of $Y^{\prime} Z$ is mapped by f onto $\beta_{i j}\left(\{\leqslant i \leqslant r-r, 1 \leqslant j \leqslant r)\right.$. Now since $B=\left\{e_{1}, \ldots, e_{r}\right\}$ is a basis of $N, \operatorname{det} N_{1}=\operatorname{det} N(B) \neq 0$. Thus N_{1} is invertible. Suppose that $N_{i}^{-1}=\left[\check{L}_{i j}\right]_{1 \leqslant i \leqslant r}^{1 \leqslant j \leqslant r}$. This means that

$$
\left.\begin{array}{rl}
\sum_{k=1}^{r} \zeta_{i k} \alpha_{k i} & =1 \quad(i=1, \ldots, r) \\
\text { and } \quad \sum_{k=1}^{r} \zeta_{i k} \alpha_{k j} & =0 \quad(i=j)
\end{array}\right\}(5.22 .1)
$$

Moreover, Ni_{1}^{-1} is again an $\overrightarrow{\mathrm{F}}$-representation of M which is in column echelon form, since $N_{i}^{-1}=\left[I_{r} \int_{N_{1}} N_{1}^{-1}\right]^{T}$. Thus by $(5.8 .3)^{\prime}$ aprlied to $\left(R_{M}, Y\right)$, there is a homonorphism $f: R \rightarrow \vec{M}$ in which $y_{i j}$ is mapped to the (i,j) entry of $N_{c_{2}} \mathrm{~N}_{1}^{-1}$. That is

$$
\begin{equation*}
f\left(y_{i j}\right)=\sum_{\ell=1}^{r} \beta_{i \ell} \zeta_{\ell j} \quad \text { for } \quad 1 \leqslant i \leqslant n-r, \quad 1 \leqslant j \leqslant r \tag{5.22.2}
\end{equation*}
$$

We may now extend f to a homomorphism $f: R_{M}\left[\left\{Z_{i j}\right\}_{i, j}\right] \rightarrow-F$ by defining $f\left(Z_{i j}\right)=\alpha_{i j}$. Since then $f($ aet $Z)=\operatorname{det} N_{1} \neq 0$ this homomorphism in turn induces a homomorphism $f: \mathbb{S} \rightarrow F$. We have only to show that the (i, j) entry of $Y^{\prime} Z$ is mapped by f to $\beta_{i j}$. low the (i,j) entry of $Y^{\prime} Z$ is $\sum_{k=1}^{r} y_{i k} Z_{k j} \quad(1 \leqslant i \leqslant n-r, 1 \leqslant j \leqslant r)$ and

$$
\begin{aligned}
f\left(\sum_{k=1}^{r} y_{i k} z_{k j}\right)=\sum_{k=1}^{r} f\left(y_{i k}\right) f\left(z_{k j}\right) & =\sum_{k=1}^{r} r\left(y_{i k}\right) \alpha_{k j} \\
& =\sum_{k=1}^{r}\left(\sum_{\ell=1}^{r} \beta_{i \ell} \zeta_{\ell k}\right) \alpha_{k j} \\
& =\sum_{\ell=1}^{r}\left(\sum_{k=1}^{r} \zeta_{\ell k} a_{k j}\right) \beta_{i \ell} \\
& =\beta_{i j} \quad b y(5.22 .1)
\end{aligned}
$$

4) Suppose $f: S \rightarrow F$ is a homomorphism, with say $f\left(z_{i, j}\right)=\alpha_{i j}$ $(1 \leqslant i, j \leqslant r)$, and $f\left(\sum_{k \leqslant 1}^{r} y_{i k} Z_{k j}\right)=\beta_{i j} \quad(1 \leqslant i \leqslant n-r, 1 \leqslant j \leqslant r)$. Then if $N_{1}=\left[\alpha_{i j}\right]$ and $N_{2}=\left[\beta_{i j}\right]$ we have to show that the matrix $N=\left[N_{1} / I N_{2}\right]^{T}$ is an F-representation of M. We first note that $\operatorname{det} N_{1}=f(\operatorname{det} Z) \neq 0$ (since get Z is a unit in S), so that N_{1} is invertible.

$$
\text { Let } N^{\prime}=\left[\begin{array}{ccc}
f\left(y_{11}\right) & \cdots & f\left(y_{1 r}\right) \\
\vdots & & \vdots \\
f\left(y_{n-r, 1}\right) & \cdots & f\left(y_{n-r, r}\right)
\end{array}\right]
$$

Then the (in) entry of $\mathrm{N}^{\prime} \mathrm{N}_{1}$ is

$$
\sum_{k=1}^{r} f\left(y_{i k}\right) \alpha_{k j}=\sum_{k=1}^{r} f\left(y_{i k}\right) f\left(z_{k j}\right)=f\left(\sum_{k=1}^{r} y_{i k} z_{k j}\right)=\beta_{i j}
$$

$$
\text { Thus } N^{\prime} N_{1}=N_{2} \text {, and hence } N^{\prime}=N_{2} N_{i}^{-1} \text {. }
$$

Since f restricts in the natural way to a homomorphism from R_{H}
into F, it now follows from $(5.8 .4)^{\prime}$ applied to (R_{M}, Y), that $\left[\frac{I_{r}}{N_{2} N_{1}}\right]$ is an F-representation of H. Post-multiplication by the invertible matrix N_{1} still yields an F -representation - namely N as required.

It now follows from (5.15) that $A_{\mathrm{M}} \approx \mathrm{R}_{\mathrm{M}}$ under an isomorphism taking $x_{i j}$ to the (i, j) entry of V.

The Canorical Vámos Ring

In studying matroid representations we have already seen in $\mathcal{S}_{2} 2$ that it really suffices to stualy reprosentations which are in p.c.f. This is the motivation behind the following construction of the cononical Vános ring :-
(5.23) Once again we assume the usual fixed ordering of E with basis B. Suppose that the E-basio c.i.matrix A_{B} has exactly ss non-zero, non-atomic entries. Let. $T=2\left[X_{1}, \ldots, X_{s}\right]$, the polynomial ring over \mathbb{Z} in s indeterminates.

We now replace each one of the non-zero, non-atomic entries of A_{B} by exactily one of the $X_{i}{ }^{\prime} s$. Suppose the resulting matrix is $D^{\prime}=\left[\alpha_{i, j}\right]_{\substack{r+1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant r}}^{\substack{\text { in }}}$. Virite $D=\left[I_{r} \mid D^{\prime}\right]^{T}$. Althoush T is is not a ricld, the matrix D over T is in p.c.f. in the scnse of (2.10).

Example Suppose :: is the Fano matroid on $E=\{1, \ldots, 7\}$ with planar representation given below

Clearly $B=\{1,2,3\}$ is a basis of m. Now

$$
A_{B}=\begin{gathered}
4 \\
5 \\
6 \\
7
\end{gathered}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & (1) & 0 \\
0 & 1 & (1 \\
1 & 0 & (1)
\end{array}\right] \quad \begin{aligned}
& \text { (where the non-zero, } \\
& \text { non-atomic entries are ringed) }
\end{aligned}
$$

Thus $T=E\left[X_{1}, X_{2}, X_{3}\right]$, and

$$
D^{\prime}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & X_{1} & 0 \\
0 & 1 & X_{2} \\
1 & 0 & X_{3}
\end{array}\right]
$$

$$
\text { and } D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 1 \\
1 & X_{1} & 0 \\
0 & 1 & X_{2} \\
1 & 0 & X_{3}
\end{array}\right]
$$

Based on the matrix D we now construct the canonical Vámos ring V_{M} in an entirely analagous way as beforc; we let \underline{b} be the ideal of T generated by the set $\{\operatorname{det} D(U)$; U non-basis of $M\}$ and let $a=\Pi\{\operatorname{det} D(U) ; U$ basis of $M\}$. The canonical Vamos ring is the ring

$$
V_{M}=(T / \sqrt{b})(\bar{a})
$$

In much the same way as R_{M} is a universal object with respect to column echelon representations of $火$, we will see that V_{H} is universai with respect to representations in p.c.f.

Iet. 0 derote the natural map of T into $V M$ and let $\theta\left(d_{i j}\right)=t_{i j}$. ت̈rite $L^{\prime}=\left[t_{i j}\right]$ and $L=\left[I_{r} \mid L^{\prime}\right]^{T}$. Once again we can now list all the aralagous results wich hold for the pair $\left(V_{h}, L\right)$. The only 'new' part of the proof's is to note that every representation matrix is projectively equivalent to a representation in p.c.f.

$(5.7)^{\prime \prime}$

1) $V_{k}=(0)$ if and only if his not roprosentable
2) V is a Noetherian ring
(5.8) The ring V_{M}, together with the matrix I, satisfies :-
3) $V_{\text {in }}$ is a reduced ring.
4) Every ($\mathrm{r} \times \mathrm{r}$) subdeterminant of L is either zero or a unit in V_{M}, and V_{l} is finitely generated (as a \mathbb{Z}-algebra) by these units together with their inverses.
5) For any field F and ($r \times r$) matrix N which is an F-representation of k in p.c.f., there is a unioue homonorphism $f: V \rightarrow F$ which makes the diagram below commute.

6) For any homonorphism $f: V \rightarrow P$ (F a field) there is a unique F-representation iv in p.C.f. which makes the above
diagran commute.
(5.9)" To each pe Spec V_{1} there corresponds a representation of M in p.c.f. over K, the cuotient field of V / Φ, namely $N_{-\underline{p}}=\left[I_{r} \mid \pi\left(t_{i, i}\right)\right]^{T} \quad$ where π is the composite map $\left.V_{H} \rightarrow V_{H} / \underline{p} \rightarrow K_{\underline{p}}\right)$ Converscly, to each F-representation $\left.\pi=\left[I_{r} \mid t \alpha_{i j}\right]\right]^{T}$ in p.c.f. there corresponds a homomorphism $f_{N}: \bar{V}_{M} \rightarrow F$ in wich
$f\left(t_{i j}\right)=\alpha_{i j}$, and hence a corresponaine prime ideal p_{N} of V_{M}, where $p_{N}=$ Ker f_{N} -
$\underline{(5.10)}^{\prime \prime}$ The ring V_{M} is a Jacobson ring fior which $V_{i / m}$ is a
finite field for each maximal ideal m.
$\underline{\underline{(5.15)}}^{\prime \prime}$ (universal property) Let S be a ring and $Y=\left[I_{r} \mid Y^{\prime}\right]^{T}$ (where $Y^{\prime}=\left[y_{i j}\right] \begin{aligned} & 1 \leqslant i \leqslant n \\ & 1 \leqslant j \in r\end{aligned}$, say) an $(n \times r)$ matrix over s in p.c.f. such that the prir (S, Y) satisfy :-
7) S is a reduceā ring.
8) Every ($1 \times r$) subdeterminant of Y is either zero or a unit in S, and S is finitely generated ass a \ddot{z}-algebra by these urits together with their inverses.
9) For any rield F and ($n \times r$) matrix iN wich is an F-representation of M in $\mathrm{p} \cdot \mathrm{c} . \mathrm{f}$., there is a unique homomorphism h making the diagram delow commute.

> (where δ is induced
> by $\left.\delta\left(d_{i j}\right)=y_{i j}\right)$
4) For any homomorphism $h: S \rightarrow F$ (F a field) there is a unique F-representation in p.c.f. which makes the above diagram commate.

$$
\begin{aligned}
& \text { Then the rings } V_{M} \text { and } S \text { are isomorphic } \\
& \text { under an isomornhism ta<ing } t_{i j} \text { to } y_{i j}=
\end{aligned}
$$

In $\}_{3} / 4$ we saw that the notion of generalisea projective equivalence was, in every natural sense, the same essentially as projective equivalence. In the light of this observation the following theorem is of great significance :-
(5.24) Theorem The correspondence in (5.9)" between the prime ideals of V_{M} and the representations of M in p.c.f. is actually a bijection, providing we do not distinguish between g.p.e. representations. That is, there is a natural one-to-one correspondence between the prime ideals of V_{M} and the ($g \cdot p \cdot e$) classes of representations of i.

Proof By $(5.9)^{\prime \prime}$ we have to prove that if N_{1}, N_{2} are representations of H in $\mathrm{p} \cdot \mathrm{C} . f$. over fields $\mathrm{F}_{1}, \mathrm{~F}_{2}$ respectively, then

Ker $\mathrm{f}_{\mathrm{N}_{1}}=$ Ker $\mathrm{f}_{\mathrm{N}_{2}} \quad$ if and only if $\mathrm{N}_{1}, \mathrm{~N}_{2}$ are g. $\mathrm{n} \cdot \mathrm{e}$. For ease of notation write f_{i} for $f_{N_{i}}(i=1,2)$. Suppose that $N_{i}=\left[I_{r} \mid\left[\alpha_{i j}\right]\right]^{T}$, and $N_{2}=\left[I_{r} \mid\left[\beta_{i j}\right]\right]^{T}$.

First suppose N_{1}, N_{2} are g.p.e. This means that there is an isomorphisa $\sigma: \mathrm{F}_{1} \rightarrow \mathrm{~F}_{2}$ in which $\sigma\left(\alpha_{i j}\right)=\beta_{i j}$. But then

$$
f_{2}\left(t_{i j}\right)=\beta_{i j}=\sigma\left(\alpha_{i j}\right)=\sigma f_{1}\left(t_{i j}\right)
$$

By (5.8.2)" this means that $f_{2}=\sigma f_{1}$. Thus $\operatorname{Ker} f_{2}=\operatorname{Ker} f_{1}$ since σ is injective.

Conversely suppose $\operatorname{Ker} f_{1}=\operatorname{Ker} f_{2}$. Now for $i=1,2$ $V_{M} / \operatorname{Ker} f_{i} \approx f_{\vec{i}}\left(V_{M}\right)$, where $f_{i}\left(V_{M}\right)$ denotes the subring of F_{i} generated by the image of V_{M} under f_{i}, so we deduce that $f_{1}\left(V_{M}\right) \approx f_{2}\left(V_{k}\right)$ under an isomorphism σ which maps $\alpha_{i j}$ to $\beta_{i j}$. Since for $i=1,2, f_{i}\left(V_{M}\right)$ contains all the entries of N_{i}, i.t follows from (1.16) that F_{i} is the quotient field of $f_{i}\left(V_{H}\right)$. Consequently, by the universal property of quotient ficlds, it follows that σ extends in the netural way to an isomorphisin from F_{1} onto F_{2}. Thus $\mathrm{N}_{1}, \mathrm{~N}_{2}$ are g.p.c. Dy defn. (4.15).

By (5.21) we have not only provided the third characterization of generalised projective equivalence promised in $\delta 4$, but we have al.so reauced the representation problem to a study of spec V_{k} and for this we use the sophisticated machinery of commutative algebra. Moreover if we are just interested in representations over finite fields we have :-
(5.25) Corollary The correspondence in (5.9)" restricts to a bijection between the maximal ideals of V_{M} and the E.p.e. classes of representations of M over finite fields.

Proof By (5.24) it suffices to prove

1) that if \underline{m} is a maximal ideal of V_{M} then V_{M} 으 is finite
and 2) if N is an F -representation (in p.c.f.) of M where F is finite, then Ker f_{N} is a maximal ideal of V_{M}.
2) has already been established in $(5.10)^{\prime \prime}$
3) since F is finite, $f_{N}\left(V_{M}\right)$ is a finite integral domain contained in F. But every finite domain is a field, so because of (4.16) $f_{N}\left(V_{M}\right)=F$, that is, f_{N} is surjective and $V_{W_{M}} /$ Ker $f_{N} \approx F$. Hence Ker f_{N} is a maximal ideal of V_{M}.

In the next theorem we establish the algebraic relationship between the rings V_{M}, R_{M}. We shall assume that M has k connected componciits and hence (by (2.22)) the B-basic c.i. matrix A_{B} has $n-k$ atonic entries. Jet $q=n-k$, and H the free Abelian group on q generators Z_{1}, \ldots, Z_{q}.

$$
\text { (5.26) Iheorem } \quad R_{V} \approx V_{M}<Z_{1}, \ldots, Z_{q}>\quad\left(=V_{M}(H)\right)
$$

Proof Write $S=V_{M}<Z_{1}, \ldots, Z_{q}>$. Recalling that $L=\left[I_{r} \mid L^{\prime}\right]^{T}$ (where $I^{\prime}=\left[t_{i j} \begin{array}{r}{[r+1 \leqslant i \leqslant n} \\ i \leqslant j \leqslant r\end{array}\right)$ we shall identify the $t_{i j}$'s with their natural images in S. By construction the matrix L^{\prime} has s atomic entries (all equal to 1), so suppose these appear in the $\left(i_{1}, j_{1}\right), \ldots,\left(i_{q}, i_{q}\right)$ positions of L^{\prime}. It can be shown by an argument which is a repetition of the proof of (2.8.1) that we can find elments $f_{r+1}, \ldots, f_{n}, g_{1}, \ldots, g_{r} \in i \operatorname{l}(C S)$

$$
\text { such that } \quad f_{i_{k}} g_{i_{k}}=Z_{k} \quad(\text { for } k=1, \ldots, q)
$$

So if we write $y_{i j}=f_{i} t_{i j} g_{j} \quad$ and $\quad y^{\prime}=\left[y_{i j}\right]_{r+1 \leqslant i \leqslant n}^{1 \leqslant j \leqslant r}$

$$
\text { then } \quad Y^{\prime}=\operatorname{diag}\left(f_{r+1}, \ldots, f_{n}\right) L^{\prime} \cdot \operatorname{diag}\left(g_{1}, \ldots, g_{r}\right)
$$

and the $k^{\text {th }}$ atomic entry of Y^{\prime} is equal to $Z_{k}(k=1, \ldots, q)$.

If we now write $Y=\left[I_{r} \mid Y^{\prime}\right]^{T}$, then we will prove the theorem by showing that the pair (S, Y) satisfy the conditions of (5.15) :-

1) Certainly S is reduced since V_{M} is.
2) By (5.26.1) every (rxr) subdeterminant of X has the form h det $L(U)$ where $h \in H$ and U is an r-subset of E. Every element of H is a unit in S and det $L(U)$ is either zero or a unit in V_{M} (hence also in S), so we deduce that every ($r \times r$) subdeterminant of Y is either zero or a unit in S. Moreover, by construction, Z_{1}, \ldots, Z_{q} all appear as entries of Y^{\prime}, hence (up to sign) as ($r \times r$) suodeterminants of Y. Now S is clearly generated as a \mathbb{Z}-algebra by V_{M} together with the elements $Z_{1}, \ldots, Z_{q}, Z_{1}^{-1}, \ldots, Z_{q}^{-1}$. By $(5.8 .2)^{\prime \prime} V_{M}$ is finitely generated as a Z-algebra by elements of the form $\operatorname{det} L(U),(\operatorname{det} L(U))^{-1}$ (where U is an r-subset of F), and $\operatorname{det} L(U)=h \operatorname{det} Y(U)$ for some $h \in H$. It now follows that S is finitely generated as a Z-algebra by the ($r \times r$) subdeterminants of Y, together with their inverses.
3) Suppose that $N=\left[I_{r}\left[N^{\prime}\right]^{T}\right.$ is a column echelon Fi-representation of li where $N^{\prime}=\left[\alpha_{i j}\right] \begin{array}{r}1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant r\end{array}$. We have to find a homomorphism $h: S \rightarrow F$ for which $f\left(y_{i, j}\right)=\alpha_{i, j}$.

By (1.4?), N^{\prime} has its atomic entries in the same corresponding positions as A_{B} (and hence also L^{\prime}, Y^{\prime}), that is, the $\left(i_{1}, j_{1}\right), \ldots,\left(i_{q}, j_{q}\right)$ positions. For ease of notation write

$$
\alpha_{i_{k} j_{k}}=\gamma_{k} \quad(k=1, \ldots, q)
$$

The elements $f_{r+1}, \ldots, f_{n}, g_{1}, \ldots, g_{r}$ are of course 'functions' of Z_{1}, \ldots, Z_{q} of the form $Z_{1}^{m_{1}} \ldots Z_{q}^{m_{q}}\left(m_{i} \in Z\right)$, so if $f_{i}=f_{i}\left(z_{1}, \ldots, z_{q}\right)$ and $g_{j}=g_{j}\left(z_{1}, \ldots, z_{q}\right)$, then in the sense of (4.9) we may define elements $\tilde{o}_{r+i}, \ldots, \delta_{n}, \mu_{1}, \ldots, \mu_{r}$ of F by

$$
\begin{array}{ll}
\delta_{i}=f_{i}\left(r_{1}, \ldots, r_{q}\right) & i=r+1, \ldots, n \tag{5.26.2}\\
\mu_{j}=g_{j}\left(r_{1}, \ldots, r_{q}\right) & j=1, \ldots, r
\end{array}
$$

The δ_{i} 's and μ_{j} 's are all non-zero, and since $f_{i_{k}} g_{j_{k}}=Z_{k}$,

$$
\begin{equation*}
\delta_{i_{k}}^{\mu} j_{k}=r_{k} \quad k=1, \ldots, q \tag{5.26.3}
\end{equation*}
$$

Consider the matrix

$$
N_{1}=\operatorname{diag}\left(\mu_{1}, \ldots, \mu_{r}, \delta_{r+1}^{-1}, \ldots, \delta_{n}^{-1}\right) N \operatorname{diag}\left(\mu_{1}^{-1}, \ldots, \mu_{r}^{-1}\right),
$$

so $N_{1}=\left[I_{r} \mid N_{1}^{\prime}\right]^{T}$ where $N_{1}^{\prime}=\left[\delta_{i}^{-1} \alpha_{i j} \mu_{j}^{-1}\right]$. The matrices N, N_{1} are projectively equivalent so N_{1} is an F-representation of M. Moreover, N_{1} is in p.c.r. since for each $k=1, \ldots, q$, the $k^{\text {th }}$ atomic entry of N_{1}^{\prime} is

$$
\delta_{i_{k}}^{-1} \alpha_{i_{k} j_{k}} \mu_{j_{k}}^{-1}=\delta_{i_{k}}^{-1} \gamma_{k} \mu_{j_{k}}^{-1}=1 \quad(b y(5.26 .3))
$$

Thus, by $(5.3 .3)^{\prime \prime}$ there is a homomorphism $h: V_{\mathrm{b}} \rightarrow \mathrm{F}$ in which $h\left(t_{i j}\right)=\delta_{i}^{-1} \alpha_{i j} \mu_{j}^{-1}$. Certainly h,exiend̀s to a homomorphism from S into F if we define $h\left(z_{k}\right)=r_{k}$ for $k=1, \ldots, q$.
Now for $i=r+1, \ldots, n, j=1, \ldots, r$ wie have

$$
\begin{aligned}
h\left(y_{i, j}\right)=h\left(f_{i} t_{i j} g_{j}\right) & =h\left(f_{\dot{i}}\right) h\left(t_{i j}\right) h\left(g_{j}\right) \\
& =h\left(f_{i}\right) h\left(g_{j}\right) \varepsilon_{i}^{-1} \alpha_{i j} \mu_{j}^{-1} \\
& =h\left(f_{i}\left(z_{1}, \ldots, z_{q}\right)\right) h\left(g_{j}\left(z_{1}, \ldots, z_{q}\right)\right) \delta_{i}^{-1} a_{i j} \mu_{j}^{-1} \\
& =f_{i}\left(\gamma_{1}, \ldots, r_{q}\right) g_{j}\left(r_{1}, \ldots, r_{q}\right) \delta_{i}^{-1} \alpha_{i j} \mu_{j}^{-1} \\
& =\delta_{i} \mu_{j} \delta_{i}^{-1} \alpha_{i j} \mu_{j}^{-1} \quad(b y(5.26 .2)) \\
& =\alpha_{i j} \quad \text { as required. }
\end{aligned}
$$

4) Suppose $h: S \rightarrow F$ is a homomorphism in which $h\left(y_{i j}\right)=\alpha_{i j}$ say. Write $N^{\prime}=\left[\alpha_{i j}\right]$ and $N=\left[I_{r} \mid N^{\prime}\right]^{T}$. Wie have to show that N is an F -representation of M .

$$
\text { For } k=1, \ldots, q \text { write } \alpha_{i_{k} j_{k}}=r_{k} \quad \text { so then } h\left(z_{k}\right)=r_{k} \text { ' }
$$

which is non-zero since Z_{k} is a unit in S. Let δ_{i}, μ_{j} be defined as in (5.25.2).

Now $h\left(f_{i} t_{i j} g_{j}\right)=h\left(y_{i j}\right)=\alpha_{i j}$, that is,

$$
\begin{aligned}
a_{i j}=h\left(f_{i} t_{i j} g_{j}\right) & =h\left(t_{i j}\right) h\left(f_{i}\right) h\left(g_{j}\right) \\
& =h\left(t_{i j}\right) h\left(f_{i}\left(z_{1}, \ldots, z_{q}\right)\right) h\left(g_{j}\left(z_{1}, \ldots, z_{q}\right)\right) \\
& =h\left(t_{i j}\right) f_{i}\left(r_{1}, \ldots, r_{q}\right) g_{j}\left(r_{1}, \ldots, r_{q}\right) \\
& =h\left(t_{i j}\right) \delta_{i} \mu_{j}
\end{aligned}
$$

Hence $h\left(t_{i j}\right)=\hat{o}_{i}^{-1} \alpha_{i j} H_{j}^{-1}$. Thus, by considering the restriction of h to V_{M} we deduce from (5.8.4)" that the matrix $N_{1}=\left[I_{r} \mid N_{1}^{\prime}\right]^{T}$, where $N_{i}^{\prime}=\left[\delta_{i}^{-1} \alpha_{i j} \mu_{j}^{-1}\right]$, is an F-representation of H. But N is projectively equivalent to N_{1} so N is an F-representation of M as required.

The theorem now follows from $(5.15)^{\prime}$.
(5.27) Remark We have shom that both the rings $A_{l N}$ and R_{M} are indeperdent of the ordering of M . We obviously hope now to establish the same result result for V_{W}, that is, if V_{M}^{\prime} is the canonical Vámos ring, defired with respect to a different ordering of E , then

$$
\begin{equation*}
V_{h^{\prime}} \approx V_{H^{\prime}} \tag{5.27.1}
\end{equation*}
$$

In [29], Sicheal conjectured that for any commutative, Noetherian rings R, S,

$$
\mathrm{R}<\mathrm{Y}>\approx \mathrm{S}<\mathrm{Y}>\quad \text { implies } \mathrm{R} \approx \mathrm{~S} .
$$

If this conjecture were true then (5.27.1) would follow immediately from (5.18) and (5.26). However in [27], Krempa has provided a counter-example, so it seems that we may not be able to deduce (5.27.1) from (5.26) and the general theory of group rings as I had first expected. 1 believe however that a proof of (5.27 .1) could be constructed along the same lines as (5.18),
using (5.15)". Until all the extrumeiy labourious and technical details of such a proof are checked, (5.27.1) will have to remain a (very strong) corjecture. It should be noted that all the examples of V_{M} given at the end of this section are certainly independent of the ordering of E .

Until (5.27.1) can be proved, the analagous results to $(5.19),(5.20),(5.21)$ for V_{M} will orly hold with respect to certain orderings of s . However, since thesc are very significant results modulo (5.27.1) we state them below. Only (5.19)' now recuires any aduitional justification.
$(5.20)^{\prime}$ "ith respect to the orderings of E given in (5.20), $V_{M} \approx V_{M_{0}}$
$(5.21)^{\prime}$ Suppose $M=M_{1}\left(E_{1}\right) \oplus M\left(E_{2}\right)$. Then with respect to the orderings of $\mathrm{E}, \mathrm{H}_{1}, \mathrm{~F} 2$ given in (5.21),

$$
V_{M} \approx \frac{V_{M_{1}} \otimes_{Z} V_{M_{2}}}{N\left(V_{M_{1}} \otimes_{Z} V_{H_{2}}\right)}
$$

$(5.19)^{\prime}$ There are orderings of E for which $V_{M} \approx V_{M}$ -

Proof By (2.25) there is an ordering of E with respect to which the matrix A_{B} is in step diagoral form. Suppose this ordering is $e_{1}, \ldots, e_{n} \cdot$ Now suppose $A=\left[I_{r} \mid A_{1}\right]^{T} \quad$ is an F-representation of M with respect to this ordering which is in p.c.f. By (2.26) every atomic entry of h_{1}^{T} is equal, to 1 , since by (1.42) A_{1} is in s.d.f. Thus $\left[I_{n-r} \mid A_{i}^{T}\right]^{T}$ is also in p.c.f. With this consideration, the proof of (5.19) carries through in this case if V_{M} is defined with respect to e_{i}, \ldots, e_{n} and $V_{M}{ }^{*}$ is defined with respect to $c_{r+1}, \ldots, e_{n}, e_{1}, \ldots, e_{r}$.

1) Suppose h is the uniform matroid $U_{2, k}$ for $k \geqslant 4$. Vrite $m=k-3$.

$$
\text { Then } D=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
1 & 1 \\
1 & X_{1} \\
\vdots & \vdots \\
1 & X_{m}
\end{array}\right] \quad T=\mathbb{Z}\left[X_{1}, \ldots, X_{m}\right]
$$

In this case $\underline{b}=0$, and $a=\left(\prod_{i=1}^{m} X_{i}\right)\left(\prod_{i=1}^{m}\left(1-X_{i}\right)\right)\left(\prod_{i<j}^{m}\left(X_{i}-X_{j}\right)\right)$ Hence $V_{N}=Z\left[X_{1}, \ldots, X_{m}\right](a)$ in this case. Since a is a unit in V_{H} it is now easily deduced that H is representable over F if and only if $|\mathrm{F}| \geqslant \mathrm{m}+2$.
2) The matroid in is regular if and obly if $V \mathcal{H} \approx \mathbb{Z}$

Proof First suppose $V_{M} \approx 2$. For any field F there is a homomorphich $f: \mathbb{Z} \rightarrow F$ defined by $f(n)=n .1_{F}$, so by (5.8.4 $)^{\prime \prime}$ 14 is F-representable for every field F, that is, h is regular. Conversely suppose h is regular. Then by (2.13) there is a $(0,1,-1)$-matrix A. such that for any field F, any F-representation of M is projectively rquivalent to A. It is now routine to check that the pair $(2, A)$ satisfy the four conditions of $(5.15)^{\prime \prime}$.
3) Suppose K is binary. Then $V_{M} \approx G F(2)$ if and only if M is not regular.

Proof If $V_{M} \approx G^{m}(2)$ it is immediate from (5.8.4 $)^{\prime \prime}$ that $c(M)=\{2\}$, so h is certainly not binary.

Conversely M binary and not regular implies by (1.43) and (2.13) that every revresentation or M is projectively cquivalent to the matrix $A=\left[I_{r} \mid A_{B}\right]^{T}$. It is now routine to check that the pair (GF'(2), A) satisfy (5.15).

We may illustrate this example in the special case when N is the Fano inatroid whose planar representation is given in (5.23). The matrix D is also given in (5.23). Now has 7 non-bases, of which only $\{3,4,5\},\{1,4,6\},\{2,4,7\},\{5,6,7\}$ yield nonzero subdeterminants. In particular
$\operatorname{det} D(\{3,4,5\})=X_{1}-1 \quad, \operatorname{det} D(\{1,1,6\})=X_{2}-1$,
$\operatorname{det} D(\{2,4,7\})=X_{3}-1$,
hence the images of X_{1}, X_{2}, X_{3} in V_{H} are all equal to 1. We may as well assume then that

$$
\mathrm{D}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right] \quad \text { and } \mathrm{T}=Z
$$

in which case the only non-basis yielding a non-zero subdeterminant is $\{5,6,7\}$, and $\operatorname{det} D(\{5,6,7\})=2$.

Thus $b=\sqrt{ }(2)=(2)$, and it is easily checked that $a=1$. Ihus $V_{M}=Z /(2)=G F(2)$.
iic also note here that if we remove the line (5,6,7) from M we obtain the non-Fano matroid M^{\prime}; by the same argument as above in calculating V_{H}, we may assume that D is given as above. In this case $\underline{b}=0$ and $a=2$ since $\{5,6,7\}$ is a non-basis, so that $V_{M^{\prime}}=\mathbb{Z}_{(2)}$. By (5.8.4), 2 is the only prime (or zero) not in $c\left(\mu^{\prime}\right)$.
4) A weak generalisation of (5.28.3) for arbitrary finite fields is the following result , we assume $F=G F\left(p^{m}\right)$
T.F.A.E. 1) k is representable only over fields isomor-

$$
\text { phic to } F \text {, and any two representations are g.p.e. }
$$

2) $\dot{V}_{M} \approx F$.
(Liote :- by (2.13) this reduces to (5.28.3) for $\mathrm{P}=\mathrm{GF}(2)$)

Proof 1) implies 2) Let A be an F-representation of M in p.cof. Then it is clear that the pair (F, A) satisfy (5.15)".
2) implies 1) is immediate from (5.24).
5) In (4.14.1) we constructed, for each prime p, matroids $\mu_{\text {, }} \mathrm{K}^{\prime}$ having respective characteristic sets $\{p\}$ and $P \backslash\left\{p^{\prime} \leqslant p\right\}$. For either matroid, any representation is projectively equivalent to the matrix A given in the example. Using this matrix, it is routine to check (using $(5.15)^{\prime \prime}$) that

$$
\begin{gathered}
V_{M}=\mathbb{Z} /(p)(=G F(p)) \quad \text { and } V_{u^{\prime}}=\mathbb{Z}(a) \text {. where } \\
a=\Pi\left\{\mathrm{p}^{\prime} \text { prime } \leqslant p\right\}
\end{gathered}
$$

6) If $M=P G(r, F)$ (viewed as a matroid in the usual sense) where Fis a finite field, then $\quad V_{M} \approx F$.

Proof Let A be the natural represtntation matrix of i describcd in $\$ 4$. Using (4.17) it is now routine to check that the pair (M, A) satisfy the conditions of (5.15)".
7) By the previous examples we have seen that $\underline{Z}, \underline{Z}$ (a) (where a is the product of the first t primes, for any t) and any finite ficld all occur as the Vanos rings of matroids. These are of course special examples and we would like to know in general which rings can occur. A partial solution is :-

If $f(X)$ is an irreducible polynomial in $E[X]$, then there is a matroid $\&$ for which

$$
V_{M}=(2[X] /(f(X)))(\overline{g(\lambda)}) \text { for some } g(X) \in \lambda[X]
$$

Proof Wic use the same notation as (4.10)-(4.12). Jet K be the quotient field f $X[Y] /(f(X))$ and x the natural imace of X in k. iie recall that the construction of $(1,0, f(x))$ in
$\operatorname{PG}(3, K)$ (described in (4.12)) induces two matroids, $M_{f}(x)$ and $N_{f}^{\prime}(x)$, the latter bcing the actual configuration of the construction (without any extra lines of $F(3, K)$ added) . For case of notation write $K=M_{f}^{\prime}(x)$. If A is the natural matrix corresponaing to the points of the construction, we have seen in (4.10) that the collinear triples force each entry of A to have the form $g_{i j}(x)$ for some $g_{i j}(X) \in \mathbb{Z}[X]$. (note that A is by construction a representation of $\mathrm{M}_{\mathrm{f}}(\mathrm{x})$ but not necessarily of N) . For exactly the same reasons we may assume that the matrix D uscd to define V_{W} is precisely $D=\left[g_{i j}(X)\right]$ over $T=2[X]$. In this case all the non-bases of N have zero determinant in D except for one, namely that corresponding to the triple B, P_{0}, Q_{1}, and this has doterminart $f^{\prime}(X)$. Thus $\sqrt{\underline{b}}=\underline{b}=(f(X))$ (since the latter is prime) and $V_{H}=\left(2[X] /\left(f^{\prime}(X)\right) \overline{g(X)} \quad\right.$ where $g(X)=\|\{\operatorname{det} D(U)$; U basis of $M\}$.

By (4.13) and a similar argument this result generalises to :-

Corollary If f_{1}, \ldots, f_{s} is any family of polynonials in 2[$\left.X_{1}, \ldots, X_{t}\right]$ which generate an ideal 0 whose radicel is prime. Then there is a matroid h : for which

$$
V_{M}=\left(x_{1} X_{1}, \ldots, X_{t}\right] M \underline{V_{0}}(\bar{g}) \quad \text { for some } g, c\left[X_{1}, \ldots, X_{t}\right]
$$

8) In every one of the preccaing exanales the ring V_{M} is an integral doinain. For examples of non-domain Vámos rings we consider the matroids of $(4.13 .2)$ and (4.13 .3). In both cases $|c(M)|=2$, so the desired examples follow from (5.14.). In fact using (4.10) and (5.15) (with the respective natural representation natrices) it is casily secn that the canonical Vámos rings of those matrojds are respectively

$$
(z /(1103.2809))(\bar{a}), \quad(z /(13.19))(\bar{a})
$$

where a, a^{\prime} are the products of the non－zero (3×3) subdetermin－ ants of the respective natural representation matrices．

9）We now exhibit an example of a matroid 1 for which $|c(M)|=1$ and yet V_{M} is not a domain：－

Let l_{1}, M_{2} be copies of the matroid $\operatorname{PG}\left(3,4_{4}\right)$ ．By（5．28．6） $V_{M_{i}} \approx \operatorname{Gr}(4)$（for $i=1,2$ ）．By Theorem 39 in $[42]$ ，the tensor product of finite fields is a reduced ring，so $N\left(G F(4) Q_{z} G F\left(4_{4}\right)\right)=0$ ． Thus by $(5.21)^{\prime}$ ，if $M=M_{1} \oplus M_{2}$ it follows that

$$
V_{M} \approx G F(4) \otimes_{Z} G F(4) \quad\left(\approx G F(4) \otimes_{G F}(2) G F(4)\right)
$$

We claim that the latter is a non－donain．For，write $\operatorname{GF}\left(4^{2}\right)=\left\{0,1, \varepsilon, \varepsilon^{2}\right\}$ where ε is a primitive cube root of unity． Then $\{1, \varepsilon\}$ is a basis for $G F(4)$ over $G F(2)$ ．Thus if we write

$$
a_{1}=1 \otimes 1, \quad a_{2}=1 \otimes \varepsilon, \quad a_{3}=\varepsilon 冈 1, \quad a_{4}=\varepsilon \otimes \varepsilon,
$$

then $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ is a basis for V_{M} over $G F(2)$ ，so V_{M} consists of 16 clements of the the form $\sum_{i=1}^{+} \alpha_{i} a_{i}$ where $\alpha_{i}=0,1$

Now write $\quad x=a_{i}+a_{3}+a_{4}, \quad y=a_{2}+a_{3}+a_{4}$
Certainly $x, y \neq 0$ ．However since $\varepsilon^{2}+\varepsilon=1$ ，and $2=0$ ，we have：．

$$
\begin{aligned}
& x y=(1 \Omega \varepsilon)+(\varepsilon 1)+(\varepsilon \varepsilon)+(\varepsilon \varepsilon \varepsilon)+\left(\varepsilon^{2} 1\right)\left(\varepsilon^{2} \varepsilon\right)+ \\
& \left(\varepsilon 刃 \varepsilon^{2}\right)+\left(\varepsilon^{2} \varepsilon \varepsilon\right)+\left(\varepsilon^{2} \varepsilon \varepsilon^{2}\right) \\
& \left.=(18 \varepsilon)+(\varepsilon \geqslant 1)+\left(\varepsilon^{2} Q_{1}\right)+\left(\varepsilon \Omega \varepsilon^{2}\right)+\left(\varepsilon^{2}\right) \varepsilon^{2}\right) \\
& \left.\left.\left.=(10 \varepsilon)+(\varepsilon)_{1}\right)+(\varepsilon)_{1}\right)+(1)_{1}\right)+(\varepsilon \cdot 1)+(\varepsilon \Omega \varepsilon)+ \\
& \left.\left(1 Q_{1}\right)+(10 \varepsilon)+(E)_{1}\right)+(\varepsilon \Omega \varepsilon)=0
\end{aligned}
$$

Thus V_{k} is a non－áomain．In this example H is disconnected， but we can define a matroid M^{\prime} as that being induced by the matrix

$$
A=\left[\right]
$$

over $\left.\mathrm{GH}^{(} 4_{4}\right)$ where $\left[\frac{\mathrm{I}_{2}}{\mathrm{it}}\right]$ is the natural representation matrix. for $P G(3,4)$. Ey $(1.45) \mathrm{M}^{\prime}$ is a connected matroid (which differs from M only by the adaition of the last line of A). Since both non-zero entries in the last line are atomic it follows from (4.17) that k^{\prime} is uniquely representable by the matrix A, and hence it is routine to check that the pair $\left(V_{M}, A\right)$ satisfy (5.15)" for the ring $\mathrm{V}_{\mathrm{H}^{\prime}}$. Thus $\mathrm{V}_{\mathrm{h}} / \approx \mathrm{V}_{\mathrm{H}}$ which is a non-domain.
10) Fie now show how (5.5)" can be used to prove that the wellknown Vámos matroid is not representable. This matroid M is usually defined as the matroid on $\mathrm{E}=\{1, \ldots, 8\}$ with bases all 4 -sets excent $\{1,2,3,4\},\{1,2,5,6\},\{1,2,7,8\},\{3,4,5,6\}$, $\{3,4,7,8\}$. After a suitable relabelling of the elements it will also be correct (and nore converient in our case) to assume that the non-bases are $U_{1}=\{2,3,4,8\}, U_{2}=\{1,2,7,8\}, U_{3}=\{1,3,4,7\}$, $U_{4}=\{3,4,5,6\}, U_{5}=\{1,5,6,7\}$. With respect to the ordering $1, \ldots, 8$, the matrix D becomes

$$
D=\left[\begin{array}{llll}
& & I_{4} & \\
& & & 1 \\
1 & 1 & 1 & 1 \\
1 & x_{1} & x_{1} & x_{2} \\
1 & 0 & x_{3} & x_{4} \\
0 & 1 & x_{5} & x_{6}
\end{array}\right]
$$

Now det $D\left(U_{4}\right)=1-X_{7}$, so the natural image of X_{7} in V_{M} will be equal to 1 . We may thus assume that $X_{7}=1$ in D and that $T=2\left[X_{1}, \ldots, X_{6}\right]$. In this case

$$
\begin{aligned}
& \operatorname{det} D\left(U_{1}\right)=0, \operatorname{det} D\left(U_{2}\right)=X_{3} X_{6}-X_{4} X_{5}, \quad \operatorname{det} D\left(U_{3}\right)=0, \\
& \text { det } D\left(U_{4}\right)=0, \quad \operatorname{det} D\left(U_{5}\right)=X_{1} X_{L_{4}}-X_{2} X_{3}-X_{l_{4}}+X_{3}
\end{aligned}
$$

wite

$$
\varepsilon_{1}=x_{3} x_{6}-x_{4} x_{5} \quad \varepsilon_{2}=x_{1} x_{4}-x_{2} x_{3}-x_{4}+x_{3}
$$

Then $\underline{b}=\left(\varepsilon_{1}, g_{2}\right)$. "ic note that the sets $U_{6}=\left\{1,2,1_{4}, 7\right\}$ and $U_{7}=\{2,5,6,6\}$ are vases, and
$\operatorname{det} D\left(U_{6}\right)=X_{3}, \quad \operatorname{det} D\left(U_{7}\right)=X_{1} X_{6}-X_{2} X_{5}-X_{6}+X_{g}$ But then the polynomial $g=x_{3}\left(X_{1} x_{6}-x_{2} x_{5}-X_{6}+X_{5}\right)$ divides a. Now,

$$
g=x_{5} g_{2}+\left(1-x_{1}\right) g_{1} \in \underline{b} \subset \cdot \sqrt{b}
$$

Thus g divides a implies $a \in \sqrt{ } \underline{b}$ and by $(5.5)^{\prime \prime}$, if is nonrepresentable.

Relationship to white's bracket ring

An alternative approach to reducing the representation problem to a ring-theoretical one has been made by ihite in $[38,39,40,41]$. The ring B_{M} (called the bracket ring) which inite associates with each matroid M is a ring of generalised determinants, and which is also, in a weaker sense than ours, a 'universal representation object for M^{\prime}. We now determine a relationship between the bracket ring and the Vámos ring.

- Let the matroid M on E be of rank r as usual. The bracket ring is defined in the following way :-

To every ordered r-tuple $U=\left(u_{1}, \ldots, u_{r}\right)$ of elements of E, associate a symbol $\left[u_{1}, \ldots, u_{r}\right]$, or simp]y [U], called a bracket. Let S_{M} be the polynomial ring over 2 generated ioy the indeterminates $\left\{[U] ; U \in E^{r}\right\}$. Let a be the ideal of S_{M} generated by all elements of the following three types

1) [U], if U contains repsated elements or is dependent in W.
2) $[U]-\left(\operatorname{sen}^{2} \sigma\right)[\sigma(U)]$ for any permutation σ of U
3) $\left[u_{1}, \ldots, u_{r}\right]\left[v_{1}, \ldots, v_{r}\right]-\sum_{i=1}^{r}\left[v_{i}, u_{2}, \ldots, u_{r}\right]\left\lceil v_{1}, \ldots, v_{i-1}, u_{1}, v_{i+1}, \ldots, v_{r}\right.$

The syzypies are any relations in this ideal. The bracket ring B_{h-} is now defined by $B_{M}=S_{M}$ 白.

We now suppose that $B=\left\{e_{1}, \ldots, e_{1}\right\}$ is a basis of his usual.

Now write \underline{a}^{\prime} for the ideal of s generated by the ideal a together with the addjtional clement $[B]-1$, and wite $B_{M}^{\prime}=S_{M} / a^{\prime} \quad(s o$ if z is the natural image of the clement $[B]-1$ in B_{H}, then $B_{H}^{\prime}=B_{H} /(z)$). If now the ring Γ and ideai \underline{b} of T are defined as in the construction of the simplified Vamos ring R_{M} then the bracket ring and Vámos ring are related by :-
(5.29) Theorem rith the notation above, $B_{M}^{\prime} \approx T / \underline{b}$

Proof It suffices to find homomorphisms $\quad Y: B_{M}^{\prime} \rightarrow T / b$ and $w: T / b \rightarrow B M_{M}^{\prime}$ for which $\gamma \psi$ and ψ are the identity mappings respectively on T / b and B_{M}^{\prime}. For ease of notation we shall write i for e_{i} in $E \quad(i=1, \ldots, n)$ and for $1 \leqslant j \leqslant r, r+1 \leqslant i \leqslant n, U_{i j}$ for the r-tuple $(1, \ldots, j-1, i, j+1, \ldots, r)$. We recall that T, b are defined with respect to the matrix

$$
X=\left[\begin{array}{cc}
I_{r} \\
\frac{X_{r+1,1}}{} & \cdots \\
\vdots & \\
X_{r+i, r} \\
X_{n, 1} & \cdots X_{n, r}
\end{array}\right]
$$

and for each $U \subset E^{r}$ we now define $\operatorname{det} \AA(U)$ as previously, but noting that we have to respect the ordering of U. In particular $\operatorname{det} X\left(U_{i j}\right)= \pm X_{i j}$.

Now let $\gamma: S_{M} \rightarrow T$ be the homonorphism induced by mapping $Y([U])=\operatorname{det} X(U)$ for cach bracket $[U]$. By olementary properties of detemamants (including the faplace exparsion) and the derinition of \underline{b} in T, it follows that $r\left(\underline{a}^{\prime}\right) \subset \underline{b}$. Thus γ induces (in the natural way) a homonorphisen $\gamma: \mathrm{E}_{h} \rightarrow \mathrm{~T} / \underline{\mathrm{b}}$.

Conversely, let $\psi: T \rightarrow S_{N}$ be the homomorpinisin induced by $\psi\left(X_{i j}\right)=U_{i j}$. This ̈nduces (via the natural homomorphism $S_{M_{i}} \rightarrow B_{n}^{\prime}$) a homomoryhism $\psi: T \rightarrow B \frac{1}{\mathcal{L}}$. Vie wish to shor that b \subset Ker ψ, and for this we will have to prove :-

For any r-subset $U C E$ with $|E \backslash U|=s \geqslant 1$

$$
\begin{equation*}
\psi(\operatorname{det} X(U))= \pm\lceil B\rceil^{S^{-1}}[U] \quad \text { in } B_{M}^{\prime} \tag{5.29.1}
\end{equation*}
$$

We prove (5.29.1) by induction on s. If $s=1$, then $U=U_{i j}$ for some $r+1 \leqslant i \leqslant n, 1 \leqslant j \leqslant r$, and the result is clear since $\psi\left(\operatorname{det} X\left(U_{i j}\right)\right)=\left[U_{i j}\right]$. Next assume $s>2$ and that the result holds for r-sets U^{\prime} with $\left|B \backslash U^{\prime}\right|<s$. without loss of generality, assume that $U \backslash B=\left\{i_{1}, \ldots, i_{s}\right\}$ and that $B \backslash U=\{1, \ldots, s\}$ (that is, $U=\left\{s+1, \ldots, r, i_{1}, \ldots, i_{s}\right\}$). Then expanding along the first row we get

$$
\operatorname{det} X(U)=
$$

$$
\cdots+(-1)^{s-1} X_{i_{1} s} \cdot\left|\begin{array}{llll}
X_{i_{2}} & \ldots & X_{i_{s}} \tag{5.29.2}\\
\vdots & & \vdots \\
X_{i} 1 \\
X_{i_{s}} & \ldots & X_{i_{s}} s-1
\end{array}\right|
$$

But by the inductive hypothesis, for each $j=1, \ldots, s$,

Thus, if we apply ψ to $(5.29 .2)$ we obtain

$$
\begin{align*}
& \psi(\operatorname{det} x(u))=[B]^{s-2}\left(\left[u_{i_{1} 1}\right]\left[1, s+1, \ldots, r, i_{2}, \ldots, i_{s}\right] \ldots\right. \tag{5.29.3}\\
&\left.\ldots+(-1)^{3-1}\left[u_{i_{1} s}\right]\left[s, s+1, \ldots, r, i_{2}, \ldots, i_{s}\right]\right)
\end{align*}
$$

Now, because of the syzygies of type (3) in a, it follows that in E_{M}^{\prime},

$$
\begin{aligned}
{[B][U]=} & {[1, \ldots, r]\left[i_{1}, s+1, \ldots, r, i_{2}, \ldots i_{s}\right]=} \\
& {\left[i_{1}, 2, \ldots, r\right]\left[1, s+1, \ldots, r, i_{2}, \ldots, i_{s}\right] } \\
+ & {\left[1, i_{1}, 3, \ldots, r\right]\left[2, s+1, \ldots, r, i_{2}, \ldots, i_{s}\right]+\ldots } \\
& \ldots+\left[1, \ldots, s-1, i_{1}, s+1, \ldots, r\right]\left[: s, s+1, \ldots, r, i_{2}, \ldots, i_{s}\right]
\end{aligned}
$$

Now, because of the syzygies of type (2) in a, it follows that (up to sign) in B_{M}^{\prime}, $[B][U]$ is equal to the expression in brackets in (5.29.3). Thus, up to sign,

$$
\psi(\operatorname{det} X(U))=[B]^{S-2}([B][U])=[B]^{S-1}[U]
$$

which proves (5.29.1) by induction.

So if now U is a non-basis of M, it follows from the syzygies of type (1) in \underline{a}, that $[U]=0$ in B_{M}^{\prime} and hence by (5.29.1) that $\psi(\operatorname{det}(U))=0$ in B_{M}^{\prime}. Thus $\underline{b} \subset$ Ker ψ and ψ induces a homomorphism $\quad \psi: T / \underline{b} \rightarrow \mathrm{~B}_{\mathrm{m}}^{\prime}$ in the natural way.

Finally we have to show that the mappings γ, ψ defined above satisfy $\quad \gamma^{\psi}=i d_{V / \underline{\mathrm{b}}}$ and $\quad \forall \gamma=i d_{\mathrm{B}}^{\prime} \quad$:-

Certainly $\quad \gamma_{\dot{\prime}}^{(}\left(X_{i j}\right)=\gamma\left(\left[U_{i j}\right]\right)=X_{i j} \quad$ and since T is gener-
ated over 2 by the indeterminates $X_{i j}$ it follows that $r y=i d_{T} / D$ Conversely ' $\mathrm{B}_{\mathrm{M}}^{\prime}$ is generated over \mathbb{Z} by the brackets [U], and by (5.29.1) we have,

$$
\forall \gamma(\lceil U])=\psi(\operatorname{det} X(U))=[B]^{s-1}\lceil U]
$$

But, in $B_{M}^{\prime},\lceil B]=1$ (since $[\mathrm{E}]-1 \epsilon \underline{a}^{\prime}$), and so $\forall \gamma([\mathrm{U}])=[\mathrm{U}]$ in B_{M}^{\prime} and $\quad i Y=i d_{D_{M}^{\prime}}^{\prime} \quad$ as required.

BIBLIOGRAFHY

[1] Aigner,M. : 'Combinatorial Theory' Springer Verlag, 1979.
[2] Attiyah, M.F. and MoDonald I.G. : 'Introduction to Cormutative AIgebra' Adaison Viesley, 1969.
[3] Bcar, R. : 'Linear Algebra and Projective geometry' Acadernic Iress Inc., N.Y., 1952.
[4] Bixby,R.E. : On Reid's Characterization of the Ternary Matroids, J.Comb. Theory Ser B. 26 (1979) 174-204.
[5] Bondy, J.A. : Transversal matroids, base orderablc matroids and graphs, Quart.J.Math'(Oxford) 23 (1972) 81-89.
[6] Bondy,J.A. and Welsh,D.J.A. : Some results on transversal matroids and constructions for identically self-dual matroids, Quart.J.Math (Oxford) 22 (1971) 435-451.
[7] Bose,R.C. : Mathematical theory of the symmetrical factorial design, Sankhyā 8 (1947) 107-166.
[8] Bourbaki,N : 'Commutative Algebra' Addison Wesley
[9] Brualdi, R. : On Fundamental Transversal matroids, Proc.Amer.liath.Soc. 45 (1974) 151-156.
[10] Bryant V. and Perfect H. : 'Independence 'Theory in Combinatorics' Chapman and Hall, 1980.
[11] Brylawski, T.H.: A note on Tutte's Unimodular Representation Theorem, Trans.Amer.Math.Soc. 171 (1975) 499-502.
[12] Brylawski,T.H. and Lucas D. : 'Uniquely Representable Combinatorial Geonetries' in Proc.Internat.Colloq. on Comb. Theory, Rome, Italy, 1973, 83-104.
[13] Casse, H. R.A. : A. solution to Segre's 'Problem $I_{r, q}$ ' for q even, Atti. Accad.Naz. Lincei Rend. 46 (1969) 13-20.
[14] Cohn, P. M. : 'Algebra', Vols. I,II, J.Viley and Sons Lta., 1977.
[15] Crapo,H. and Rota G-C. : 'Combinatorial Geometries',

$$
\text { M.I.T. Press, Cambriage, Mass., } 1970 .
$$

[16] De Sousa,J. and Yielsh,D.J.A. : A characterization of binary transversal matroids, J.kath Analysis Appl. 40(1) 1972, 55-59.
[17] Harary,F : 'Graph Theory', Addison i'esley , 1969.
[18] Hirschfeld,J.W.P. : 'Projective Geometries over finite fields', Vol I , Oxford Univ. Press, 1979.
[19] Hirschfeld,J.ii.P. : 'Projective Geometries over finite fields', Vol II, to appear.
[20] Ingleton, A.\%. : Representations of Matroids, in 'Combinatorial Mathematics and its Applications',149-167, Academic Press, 1971.
[21] Ingleton, A.\% : Matroids with two characteristics, preprint, 1981.
[2.2] Krempa,J. : Isomorphic Group lîngs with non-isomorphic conmutative coefficients, preprint 1980.
[23] Mason,T.H. : 'Katroids as the study of Geometrical Configurations', in Higher Combinatorics, D.Reidel Publishing Co., Dordrecht, Holland, 1977, 333-376.
[24] Mihalek, R.J. : 'Projective Geometry and Algebraic structures', Academic Fress, 1970.
[2.5] Pedoe,D. : 'An Introduction to Projective Geonetry', Pergamon Press, 1963.
[26] Qvist B. : Some remarks concerning curves of the second degree in a finite plane, Ann.Accad. Sci. Fenn. Ser A 134, 1952.
[27] Rowen, L.H. : 'Polynomial identities in King 'Theory', Academic Press, 1900.
[28] Segre B. : Curve razionali normali e k-archi negli spazi finiti, Ann. Kat. Pura 39, 1955, 357-379.
[29] Sehgal,S.K: 'Topics in Group Rings', Marcel Dekker, 1978.
[30] Seynour, P.D. : Matroid representation over GF(3), J.Comb. Theory Ser.B 26(2), 1979, 159-173.
[31] Thas,T.A. : Normal rational curves and k-arcs in Galois spaces, Rend. Hat. $1,1968,331-334$.
[32] Thas, J.A. : Connection between the Grassmannian $G_{k-1, n}$ and the set of k-ares of the Galois space $S_{n, q}$, Rend.Mat.2, 1969, 121-134.
[33] Thas, T.A. : Normal rational curves and (q+2)-arcs in a Galois space $S_{q-2, q}\left(q_{1} 2^{n}\right)$, Atti.Accad. Naz. Lincei Rend.49, 1969, 249-252.
[34] Tutte, ii.T. : Lectures on Matroids, J.Res. Nat. Bur.
Standards Sect.E 69, 1965.
[35] Vámos, P. : A necessary and sufficient condition for a matroid to be linear, Robjus Algebras (Proc. Conf. Univ. Waterloo, Ont., 1971) 162-169.
[36] Vámos, P. : Lincarity of matroicls over division rings, preprint.
[37] Wclsh,D.J.A. : 'Matroid Theory', Acadcmic Press, 1976.
[38] ihite,f.L. : The bracket ring of a combinatorial geometry I, I'rans. Amer. Math. Soc. 202, 1975, 79-95.
[39] white,N.L. : The bracket ring of a combinatorial geometry II, Trans. Amer. Nath. Soc. 214, 1975, 233-248.
[4.0] White,N.I. : The basis Monomial ring of a matroid, Advances in Math. 24 (3), 1977, 292-297.
[41] White,N.I. : The transcendence degree of a coordinatization of a Combinatorial Geonetry, J.Comb.Theory, B 29(2), 1980, 168-175.
[4,2] Zariski and Samuel : 'Commative Algebra; Vol.I, Van Wostrand, Princeton, N.J., 1957.

