
Poisson polynomial algebras and

their spectra

Maram Alossaimi

A thesis submitted in partial fulfilment of the requirements for the

degree of Doctor of Philosophy

School of Mathematics and Statistics

Supervisor: Prof. Vladimir Bavula

The University of Sheffield

December 2022





Declaration

I hereby declare that the contents of this thesis are original and have not been submitted in

whole or in part for consideration for any other degree or qualification in this university or

any other university, with the exception of specific references to the work of others. Except

as noted in the text, everything in this thesis is my original work. It does not include any

contributions from others.

Maram Alossaimi

September 2022

ii



Acknowledgements

First and foremost, I am grateful to my supervisor, Professor Vladimir Bavula, for his com-

ments and suggestions during my PhD journey. I am also thankful to my advisor, Dr. Frazer

Jarvis, for his time and advice. I am deeply indebted to Professor David Jordan for his kind

comments and advice.

I would like to express my deepest appreciation to my sponsor Royal Embassy of Saudi

Arabia Cultural Bureau, especially, the University of Imam Mohammad Ibn Saud Islamic for

allowing me to study at the University of Sheffield and completed my PhD degree.

Words cannot express my gratitude to Lynne Newcombe and Zelda Hannay who supported

and pushed me forward during my PhD journey.

Finally, I would like to extend my special thanks to my family and friends for their kind

support and patience, particularly my husband whose unwavering patience, belief in me and

encouragement made this thesis possible.

iii



Abstract

This thesis is devoted to studying Poisson algebras, their properties and classifications of

Poisson prime ideals for a certain class of Poisson polynomial algebras A in three variables.

The study of such algebras was first introduced by Oh in 2006, [Oh3].

This thesis consists of two parts; In the first part, general properties of Poisson algebras

and their Poisson ideals are considered, and a review of known results and techniques is

presented. In the second part, classifications of Poisson prime ideals, minimal Poisson ideals

and maximal Poisson ideals are given.

The algebras A = K[t][x, y] are the Poisson polynomial algebras in one variable t, with

trivial Poisson bracket, over an algebraically closed field K of characteristic zero, that are

extended into two variables x and y, under certain conditions, such that if u is a fixed

polynomial in K[t]1, f is an arbitrary polynomial in K[t], λ is a unit element in K×, c is an

arbitrary element in K, the partial derivations ∂t = d
dt and ∂y = d

dy . The Poisson algebras A

can be denoted either by

(
K[t]; f∂t, λ

−1f∂t, c, u
)

2 or K
[
t
][
y; f∂t

]
p

[
x;λ−1f∂t, u∂y

]
p

3

with Poisson bracket defined by the rule

{t, y} = fy, {t, x} = λ−1fx and {y, x} = cyx+ u.

1The polynomial ring
2This notation is from [Oh3], in particular (D;α, β, c, u), see Lemma II.2.19
3This notation indicates the extension of Poisson algebras with some functions multiplied by partial deriva-

tives, and p means a Poisson algebra
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v

The class of Poisson algebras A splits into three classes: I, II and III. Each of them

splits further into subclasses, see diagram .0.1 for detail. The classifications of Poisson prime

ideals4, minimal Poisson ideals5 and maximal Poisson ideals6 for the seventeen classes of

Poisson algebras, that are in blue, are obtained. In addition, the classifications of special

cases for the five classes of Poisson algebras, that are in green, are obtained. However, for

Poisson algebras that are in red, their Poisson prime ideals cannot be classified.

4Poisson ideals and prime ideals of the Poisson algebra
5Minimal elements with respect to the inclusions of Poisson prime ideals
6Maximal elements with respect to the inclusions of Poisson prime ideals
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§ I Introduction

Poisson structures have their roots in nineteenth-century research by Poisson, Hamilton,

Jacobi and Lie. With the groundbreaking studies of Lichnerowicz and Weinstein, it began to

exist as a separate field in the 1980s. Since then, Poisson structures have been involved in

a wide range of fields, including abstract algebra, representation theory, algebraic geometry,

differential geometry, string theory, classical/quantum physics, and differential geometry. In

each of these subjects, it turns out that the Poisson structure is a crucial component that

naturally arises with the problem under investigation, and its delicate qualities are always

essential for finding the solution. Recently, extensive work has been done, in particular, in

abstract algebra, please refer to [Oh3], [Oh4], [Goo2], [Jor], [JoOh], [MyOh], [Bav3], [Bav4]

and [Bav5].

Recall that a Poisson algebra D is a (commutative) K-algebra over a field K with a K-

bilinear product {·, ·} on D, which is called a Poisson bracket, such that (D, {·, ·}) is a Lie

algebra and satisfies the Leibniz's rule

{a · b, c} = a · {b, c}+ {a, c} · b for all a, b, c ∈ D.

Recall that an ideal p of D is prime if

IJ ⊆ p =⇒ I ⊆ p or J ⊆ p,

where I and J are ideals of D. The Krull dimension of D is the supremum of the heights of

all prime ideals of D.

Recall that an ideal I of a Poisson algebra D is called a Poisson ideal if {D, I} ⊆ I. The

1



Poisson ideal of D generated by a is denoted by (a). A Poisson ideal I is called a Poisson

prime ideal if I is a Poisson ideal and a prime ideal of D. The set of all Poisson prime ideals

of D is called the Poisson spectrum and is denoted by PSpec(D).

Classification of Poisson prime ideals is a very difficult problem which is done only for a few

classes of Poisson algebras. Over a field of characteristic zero, any algebra of Krull dimension

one has trivial Poisson bracket, that is

{a, b} = 0 for all elements a, b.

There are plenty of Poisson algebras of Krull dimension two, and the classification of Poisson

algebras of Krull dimension two up to isomorphism is a wide-open problem. Even more

difficult is the classification of Poisson algebras of Krull dimension three. Moreover, Poisson

algebras of Krull dimension three is a very large and complex class of Poisson algebras. It is

still open problem even for the polynomial algebra in three variables. There is an excellent

paper by Polishchuk [Pol], a substantial part of it is the review of results about Poisson

algebras of dimension three, see Subsection II.2.6.

There is a great variety of Poisson algebras in three variables, and this thesis demonstrates

this phenomenon. The main object of our study is a class of Poisson polynomial algebras

in three variables over an algebraically closed field K of characteristic zero that consists of

Poisson algebras

(K[t];α, β, c, u)1,

where α and β are arbitrary K-derivations of the Poisson polynomial algebra K[t], that is

α = f∂t, β = g∂t, where f, g ∈ K[t], ∂t =
d

dt
, c ∈ K and u ∈ K[t].

Then it follows from Lemma IV.0.1 and Lemma IV.0.2 that g = 1
λf , where λ ∈ K×. There-

1This notation is from [Oh3], see Lemma IV.0.1
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fore, the Poisson algebras A are denoted either by

(
K[t]; f∂t, λ

−1f∂t, c, u
)

or K
[
t
][
y; f∂t

]
p

[
x;λ−1f∂t, u∂y

]
p

2

with Poisson bracket defined by the rule

{t, y} = fy, {t, x} = λ−1fx and {y, x} = cyx+ u,

see Chapter IV for detail. Surprisingly, this class of Poisson algebras contains a lot of sub-

classes of Poisson algebras that require different techniques for their study and different types

of results are obtained for each subclass.

The class of Poisson algebras A splits into three classes: I, II and III. Let us give more

detail.

• The first class I consists of two subclasses: I.1 and I.2.

• The second class II consists of two subclasses: II.1 and II.2.

• The third class III consists of two subclasses: III.1 and III.2.

Each of them splits further into subclasses. For more information please refer to diagram

IV.1.1, diagram IV.2.1 and diagram IV.3.1, respectively.

Originally, the goal was to classify Poisson prime ideals for all Poisson algebras A. Now,

it is obvious that it is a large task and some of the subclasses are very difficult to study.

Classifications of Poisson prime ideals are obtained approximately for the half of classes of

Poisson algebras A. Namely, for the Poisson algebras that belong to the following classes:

I, II.1, III.1, some classes in II.2 and III.2.

The classifications of Poisson prime ideals for Poisson algebras that belong to all subclasses

of the first class I, the first part of the second class II.1, and the first part of the third

2This notation indicates the extension of Poisson algebras with some functions multiplied by partial deriva-
tives, and p means a Poisson algebra

3



class III.1 are obtained. Additionally, in these subclasses, the minimal Poisson ideals3 and

maximal Poisson ideals4 are classified, and the inclusions of Poisson prime ideals are given. In

addition, each subclass is treated independently because techniques that are used to classify

the Poisson prime ideals are different. In particular, some of them are similar to the techniques

in recent papers as [Oh3], [Oh4], [JoOh] and [Bav4].

However, to classify Poisson prime ideals is a very difficult problem. There are many rea-

sons for that and the main reason is that a description of the set of common (generalized)

eigenfunctions for the hamiltonian vector fields {x, ·}, {y, ·} and {t, ·} is a very difficult prob-

lem, in general as we have to solve a system of partial differential equations. In the second

part of the second class II.2 and the second part of the third class III.2, the classifica-

tions of Poisson prime ideals for Poisson algebras that belong to some subclasses, and special

subclasses with some restrictions, are given. For more information see Chapter IV.

The thesis is organised as follows: Some preliminary standard material in algebras and

related subjects are given in Chapter II. In Chapter III, there are two classes of Poisson alge-

bras of dimension two and their Poisson prime ideals′ classification, which can be considered

typical examples for any other Poisson algebras of dimension two in this thesis. In Chapter

IV, the class of Poisson algebras A of dimension three is introduced, and then its structure is

given. In addition, the three main classes are introduced and their structure diagrams. Fol-

lowing that, the classifications of Poisson prime ideals, minimal Poisson ideals, and maximal

Poisson ideals for Poisson algebras that belong to some subclasses are given.

Let us present some typical results on the classification of Poisson prime ideals, minimal

Poisson ideals and maximal Poisson ideals for some subclasses of Poisson algebras A.

3Minimal elements with respect to the inclusions of Poisson prime ideals
4Maximal elements with respect to the inclusions of Poisson prime ideals

4



In the theorem below the classification of Poisson prime ideals is given for the Poisson

algebra A3 that belongs to the subclass I.1.2.

Theorem I.0.1. [Theorem IV.1.5] Let A3 = (K[t]; 0, 0, c, 0) be the Poisson algebra with

Poisson bracket

{t, y} = 0, {t, x} = 0 and {y, x} = cyx, where c ∈ K×.

Then the Poisson spectrum of A3 is
{

0, (x), (y), (t − λ), (x, y), (x, y − µ), (y, x − µ), (x, lpp), (y, lqq), (x, t − λ), (y, t − λ), (x, y, t −
λ), (x, y−µ, t−λ), (y, x−µ, t−λ) | λ ∈ K, µ ∈ K×, p ∈ IrrmK(t)[y]5 and q ∈ IrrmK(t)[x]6

}
,

lp and lq are unique monic polynomials in K[t] of the least degree in t such that lpp ∈ K[t, y]7

and lqq ∈ K[t, x]8, respectively, the inclusions of Poisson prime ideals of A3 are described in

the below diagram.

0(x, y, t− λ)
(x, y − µ,
t− λ)

(y, x− µ,
t− λ)

(x, t− λ)
0(x, Ipp)

(x, y)

(y, Iqq)
(x, y − µ)

(y, t− λ)

(y, x− µ)

(t− λ)(y)0(x)

00

where λ ∈ K, µ ∈ K×,
lpp ∈ K[t, y] and lqq ∈ K[t, x].

5The set of monic irreducible polynomials of the polynomial algebra K(t)[y] over the field of rational
functions in the variable t

6The set of monic irreducible polynomials of the polynomial algebra K(t)[x] over the field of rational
functions in the variable t

7The polynomial ring in two variables t and y
8The polynomial ring in two variables t and x
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In the theorem below the classification of Poisson prime ideals is given for the Poisson

algebra A6 that belongs to the subclass I.2.1.1.

Theorem I.0.2. [Theorem IV.1.8] Let A6 = (K[t]; f∂t,−f∂t, 0, 0) be the Poisson algebra

with Poisson bracket

{t, y} = fy, {t, x} = −fx and {y, x} = 0, where f ∈ K[t]\K

and Rf = {λ1, . . . , λs} be the set of distinct roots of the polynomial f . Then the Poisson

spectrum of A6 is

{
0, (x), (y), (t−λi), (x, t−λi), (y, t−λi), (xy−µ), (x, y), (h, t−λi), (xy−µ, t−λi), (x, y, t−ν),

(y, x−µ, t−λi), (x, y−µ, t−λi), (x−µ, y−ω, t−λi), (x−ω, y+ω−1µ, t−λi) | ν ∈ K,µ, ω ∈
K×, λi ∈ Rf , i = 1, . . . , s and h ∈ IrrmK[x, y]

}
, the inclusions of Poisson prime ideals of A6

are described in the below diagram.

0

(
x− ω,

y + ω−1µ,

t− λi
)

(
xy − µ,
t− λi

)

0

(
y, x− µ,
t− λi

)

(
y, t− λi

)
(
x− µ,
t− λi

)

0(xy − µ)

(
x, y − µ,
t− λi

)
(
x, y, t− ν

)
(
x− µ,
y − µ′,
t− λi

)

(x, y)

(
y − µ,
t− λi

)(
h, t− λi

)

(
x, t− λi

)

(t− λi) (y) (x)

0

where ν ∈ K, µ, µ′, ω ∈ K×,
λi ∈ Rf , i = 1, . . . , s

and h ∈ IrrmK[x, y].

6



In the following theorem, the classification of Poisson prime ideals is given for the Poisson

algebra A9 that belongs to the subclass I.2.2.1.

Theorem I.0.3. [Theorem IV.1.10] Let A9 = (K[t]; f∂t,−f∂t, c, 0) be the Poisson algebra

with Poisson bracket

{t, y} = fy, {t, x} = −fx and {y, x} = cyx, where f ∈ K[t]\K, c ∈ K×

and Rf = {λ1, . . . , λs} be the set of distinct roots of the polynomial f . Then the Poisson

spectrum of A9 is

{
0, (x), (y), (x, y), (t−λi), (y, t−λi), (x, t−λi), (x, y, t−ν), (x, y−µ, t−λi), (y, x−µ, t−λi) | ν ∈
K,µ ∈ K×, λi ∈ Rf and i = 1, . . . , s

}
, the inclusions of Poisson prime ideals of A9 are

described in the below diagram.

0

(
y, x− µ,
t− λi

)

(
y, t− λi

)

(
x, y − µ,
t− λi

)

(
x, t− λi

)

(
x, y, t− ν

)

(x, y)

(y) (t− λi) (x)

0 where ν ∈ K,µ ∈ K×,
λi ∈ Rf and i = 1, . . . , s.

7



§ II Background

This chapter contains some basic facts in algebras that are significant and useful to under-

stand throughout this thesis. This chapter divides into three sections: General knowledge in

algebras II.1, Poisson algebras and related subject II.2, and Poisson enveloping algebras II.3.

Readers with a basic understanding of algebras are encouraged to move on to Chapter III.

§II.1 General definitions on algebras

The aim of the section is to recall some basic definitions and properties in ring theory and

K-algebra to be used throughout this thesis. The left case will only be considered and the

right case has the same situation but requires a different multiplication structure.

II.1.1 Rings and modules

The following are some well-known definitions and properties of rings and modules, and the

main sources for these are [GoWa] and [Sta].

Definition II.1.1. An unital ring R is a set on which two binary operations are defined

addition (+) and multiplication (·) such that (R,+) is an abelian group, (R, ·) is a monoid

set, and the distributive laws hold:

a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c for all a, b, c ∈ R.

In addition, R is a commutative ring if a · b = b · a for all a, b ∈ R.

8



II.1. General definitions on algebras 9

Definition II.1.2. Let R be a ring. A subset S of R is a subring if S is a ring under the

operations inherited from R.

Definition II.1.3. Let R be a ring. A subset I of R is a left ideal if I is an abelian subgroup

of R under addition and for all r ∈ R, a ∈ I implies ar ∈ I. In addition, I is an ideal1 of R if

I is a left and right ideal of R. A ring R is a simple ring if R and 0 are the only ideals of R.

Definition II.1.4. Let R be a ring. R is called an integral domain if ab = 0 then either

a = 0 or b = 0 for all a, b ∈ R. In particular, R has no non-zero element as a zero divisor.

Definition II.1.5. Let K be a commutative ring. If for any non-zero a ∈ K there exists

b ∈ K such that ab = ba = 1 then K is called a field.

Definition II.1.6. Let R and S be rings. A map ϕ : R→ S is called a ring homomorphism

if

ϕ(a+ b) = ϕ(a) + ϕ(b),

ϕ(ab) = ϕ(a)ϕ(b),

ϕ(1) = 1

for all a, b ∈ R. If ϕ is injective, surjective and a bijection then ϕ is called a monomorphism,

epimorphism and isomorphism, respectively.

Definition II.1.7. Let R be a ring. An ideal p of R is prime if

IJ ⊆ p =⇒ I ⊆ p or J ⊆ p,

where I and J are ideals of R. In addition, the set of all prime ideals of R is called the

spectrum of R and is denoted by Spec(R).

Definition II.1.8. Let R be a ring. The height of a prime ideal p of R is the supremum of

all integers n such that there exists a chain

p0 ⊂ p1 ⊂ · · · ⊂ pn = p

1two-sided ideal



10 Chapter II. Background

of distinct prime ideals of R, and is denoted by ht(p). In addition, the Krull dimension of R

is the supremum of the heights of all prime ideals of R.

Definition II.1.9. Let R be a ring. An ideal m of R is a maximal if m 6= R and the only

ideal strictly containing m is R. The set of all maximal ideals of R is denoted by Max(R).

Definition II.1.10. Let R be a ring. The set

Z(R) = {z ∈ R | zr = rz for all r ∈ R}

is called the centre of R. In addition, the centre of R is a commutative subring of R.

Definition II.1.11. Let R be a ring over a field K. If K is a subset of Z(R) then R is called

a K-algebra.

Definition II.1.12. Let R be a ring. If there is a family {Ri}i≥0 of additive subgroups of

R such that

1. 1 ∈ R0,

2. Ri ⊆ Rj for all i ≤ j,

3. RiRj ⊆ Ri+j for all i, j ≥ 0, and

4. R =
⋃
i≥0Ri.

then R is called a filtered ring and the family {Ri} is called a filtration of R.

Definition II.1.13. Let R be a ring and {Ri}i∈Z be a family of additive subgroups of R

then R is called a Z-graded ring2 if

1. R =
⊕

i∈ZRi, and

2. RiRj ⊆ Ri+j for all i, j ≥ 0.

The family {Ri} is called a grading of R and a non-zero element of Ri is called an element of

homogeneous degree i.

2or a graded ring
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Definition II.1.14. Let R be a filtered ring and {Ri}i≥0 be a filtration of R. The associated

graded ring is

gr(R) =
⊕

i≥0

(Ri/Ri−1)3

equipped with

(r +Ri−1)(s+Rj−1) = rs+Ri+j−1 for all r ∈ Ri and s ∈ Rj .

For all r ∈ Ri we have r̄ = r +Ri−1 ∈ Ri/Ri−1.

Definition II.1.15. Let R be a ring. An unital left R-module M is an additive abelian group

with a map R×M →M that is defined by (r,m) 7→ rm such that

1. (r1 + r2)m = r1m+ r2m for all r1, r2 ∈ R,m ∈M,

2. r(m1 +m2) = rm1 + rm2 for all r ∈ R,m1,m2 ∈M,

3. (r1r2)m = r1(r2m) for all r1, r2 ∈ R,m ∈M , and

4. 1m = m for all m ∈M.

Definition II.1.16. Let R be a ring and M be a left R-module. A subset N of M is called

a left submodule of M if N is a left R-module under the operations inherited from M . In

addition, M is a simple R-module if M and 0 are the only submodules of M .

Definition II.1.17. Let R be a ring and M be a left R-module. If M can be expressed as

M =
∑n

i=0Rmi for some elements mi ∈ M then M is called a finitely generated R-module.

In addition, if M is generated by an element m ∈ M such that M = Rm = {rm | r ∈ R} is

called a cyclic R-module.

The following is the definition of annihilator of modules.

Definition II.1.18. Let R be a ring, M be a left R-module and X be a subset of M then

the annihilator of X is

annR(X) = {r ∈ R | rx = 0 for all x ∈ X}.
3as additive groups and R−1 := 0
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Definition II.1.19. Let R be a ring. An ideal P of R is left primitive if P = annR(M) for

some simple left R-modules M . In addition, a ring R is called a left primitive ring if 0 is a

left primitive ideal of R.

Definition II.1.20. Let R be a ring. A left R-module M of R is a left Noetherian if every

ascending chain

N1 ⊆ N2 ⊆ N3 ⊆ · · ·

of left submodules of M is eventually stationary. Thus, there exists some integer n0 such

that Nn = Nn+1 for all n ≥ n0. A module M of R is a Noetherian if M is a left and right

Noetherian.

Definition II.1.21. Let R be a ring. Then R is left Noetherian if and only if R is a left

Noetherian R-module. In addition, R is a Noetherian ring if R is a left and right Noetherian.

Definition II.1.22. Let K be a field and R be a K-algebra. If R is finitely generated with

finite-dimensional generating K-subspace V containing 14 then the real number,

lim sup
(

logn(dimK V
n)
)
, is independent of the generating subspace V of R, this number is

called the Gelfand-Kirillov dimension of R

GK dim(R) = lim sup
(

logn(dimK V
n)
)
.

Definition II.1.23. Let R be a ring and α be an automorphism of R. A skew Laurent ring

T = R[x±1;α] over R5 is a ring such that

1. T is a ring and R ⊆ T ,

2. an element x is invertible in T ,

3. T is a free left R-module with basis {1, x, x−1, x2, x−2, . . .}, and

4. xr = α(r)x for all r ∈ R.

4that is, R = ∪∞n=1V
n

5or skew Laurent extension of R
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Definition II.1.24. Let R be a ring and α be an endomorphism of R. A additive map

δ : R→ R is called a left α-derivation on R if

δ(ab) = α(a)δ(b) + δ(a)b for all a, b ∈ R.

Definition II.1.25. Let R be a ring, α be a ring endomorphism of R and δ be a left α-

derivation on R. Then S = R[x;α, δ] is called a skew polynomial ring over R6 if

1. R ⊆ S and S is a ring,

2. an element x is in S,

3. S is a free left R-module with basis {1, x, x2, . . .}, and

4. xr = α(r)x+ δ(r) for all r ∈ R.

II.1.2 Lie algebras

The following are some facts in Lie algebras, and the main source for these definitions is [Pre].

Definition II.1.26. A vector space L over a field K is called a Lie algebra if there exists a

bilinear product [·, ·] on L, called a Lie bracket, which is anti-commutative and satisfies the

Jacobi identity:

[a, a] = 0 and [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 for all a, b, c ∈ L.

Definition II.1.27. Let L be a Lie algebra. A K-subspace B of L is a Lie subalgebra if

[b1, b2] ∈ B for all b1, b2 ∈ B.

Definition II.1.28. Let L be a Lie algebra. A K-subspace I of L is a Lie ideal if [a, b] ∈ I
for all a ∈ L and b ∈ I. In addition, L is called a simple Lie algebra if L is not abelian and

if L and 0 are the only Lie ideals of L.

6or an Ore extension of R
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Definition II.1.29. Let L1 and L2 be Lie algebras over a field K. A K-linear map

ϕ : L1 → L2

is called a Lie algebra homomorphism if ϕ([a, b]) = [ϕ(a), ϕ(b)] for all a, b ∈ L1.

Definition II.1.30. Let L be a Lie algebra over a field K. A K-vector space M is an

L-module if there is a bilinear product [·, ·]M : L×M →M such that

[[a, b],m]M = [a, [b,m]M ]M − [b, [a,m]M ]M for all m ∈M and a, b ∈ L.

In addition, a K-subspace N of M is called an L-submodule of M if [a, n]M ∈ N for all a ∈ L
and n ∈ N . In addition, M is a simple7 L-module if M and 0 are the only submodules of M .

Definition II.1.31. Let L be an algebra over a field K8 with a binary operation (a, b) 7→ a·b.
A K-endomorphism α of L is called K-derivation on L if

α(a · b) = α(a) · b+ a · α(b) for all a, b ∈ L.

The set of K-derivations on L is denoted by DerK(L). In addition, the set of inner derivations

on L is

IDerK(L) := {ada | a ∈ L}, where ada(b) := [a, b] := ab− ba.

Definition II.1.32. Let L be a Lie algebra over a field K. If U is an unital associative

algebra and ϕ : L → U is a Lie algebra homomorphism then the pair (ϕ,U) is called an

enveloping algebra of L.

Definition II.1.33. The universal enveloping algebra of Lie algebra L is an enveloping

algebra
(
ψ,U(L)

)
which has the following universal mapping property: for any enveloping

algebra (ϕ,U) of L there exists a unique associative algebra homomorphism f : U(L) → U

such that ϕ = f ◦ ψ.

7irreducible
8not necessarily associative or Lie algebra
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II.1.3 The Weyl algebras and the Generalized

Weyl algebras

Definition II.1.34. Let An be an associative K-algebra generated by X1, . . . , Xn

and Y1, . . . , Yn as determined by the defining relations

[Yi, Xj ] = δij and [Xi, Xj ] = [Yi, Yj ] = 0 for all i, j,

where δij is the Kronecker delta function then An is called the n′th Weyl algebra.

The following definition is the generalized Weyl algebra that was introduced by V. V.

Bavula. Further details concerning the generalized Weyl algebra can be found in [Bav2].

Definition II.1.35. [Bav2, page 72] Let D be a ring, σ = (σ1, . . . , σn) be an n-tuple of

commuting automorphisms of D, a = (a1, . . . , an) where ai ∈ Z(D) such that σi(aj) = aj for

all i 6= j. The generalized Weyl algebra9 A = D[X,Y ;σ, a] of rank n is a ring generated by

D and X1, . . . , Xn, Y1, . . . , Yn as determined by the defining relations

YiXi = ai, XiYi = σi(ai),

Xid = σi(d)Xi, Yid = σ−1
i (d)Yi, for all d ∈ D,

[Xi, Xj ] = [Xi, Yj ] = [Yi, Yj ] = 0 for all i 6= j,

where [x, y] = xy − yx. Notice that a and σ are called sets of defining elements and auto-

morphisms of the generalized Weyl algebra A, respectively.

9in short GWA



16 Chapter II. Background

§II.2 Poisson algebras: Review of results

The goal of this section is to recall some essential definitions and properties of Poisson algebras

and related topics to be used throughout this thesis. In particular, the constructions of

Poisson brackets and some criteria to classify Poisson prime ideals are discussed. In addition,

our motivations for Poisson algebras are demonstrated by reviewing some studies on Poisson

algebras and related subjects, see Subsections II.2.5 and II.2.6.

II.2.1 Poisson algebras

The following are some basic definitions and properties of Poisson algebras. The main sources

for these are [Oh1], [Oh3], [Oh4], [JoOh] and [Bav3].

Definition II.2.1. A (commutative) K-algebra D is called a Poisson algebra if there exists

a bilinear product {·, ·} on D, called a Poisson bracket, such that (D, {·, ·}) is a Lie algebra

and satisfies the Leibniz's rule

{a · b, c} = a · {b, c}+ {a, c} · b for all a, b, c ∈ D.

Definition II.2.2. A K-subspace B of a Poisson algebra D is a Poisson subalgebra if

{b1, b2} ∈ B for all b1, b2 ∈ B.

Definition II.2.3. Let D be a Poisson algebra. A Poisson bracket is called a trivial Poisson

bracket if {a, b} = 0 for all a, b ∈ D.

Definition II.2.4. Let D be a Poisson algebra. Then

1. Z(D) := {a ∈ D | a · b = b · a for all b ∈ D} is called the centre of D.

2. PZ(D):={a ∈ D | {a, b} = 0 for all b ∈ D} is called the Poisson centre of D.

3. Z(D) := {a ∈ D | a · b = b ·a, and {a, b} = 0 for all b ∈ D} is called the absolute centre

of D.

If D is a Poisson algebra with trivial Poisson bracket then the above three sets are equal.



II.2. Poisson algebras: Review of results 17

Definition II.2.5. Let D1 and D2 be Poisson algebras over a field K, and define K-algebra

homomorphism ϕ : D1 → D2, which is called a Poisson homomorphism if

ϕ({a, b}) = {ϕ(a), ϕ(b)} for all a, b ∈ D1.

Definition II.2.6. Let D be a Poisson algebra. An ideal I of the algebra D is called a

Poisson ideal of D if {a, b} ∈ I for all a ∈ D and b ∈ I. The Poisson ideal of D generated by

a is denoted by (a). In addition, the algebra D is a simple Poisson algebra10 if D and 0 are

the only Poisson ideals of D.

Definition II.2.7. Let D be a Poisson associative algebra over a field K, and DerK(D) be

the set of K-derivations on D. Then

PDerK(D) :=
{
δ ∈ DerK(D) | δ({a, b}) = {δ(a), b}+ {a, δ(b)} for all a, b ∈ D

}

is called the set of Poisson derivations on D. In addition, the set of inner derivations on D

is

PIDerK(D) :=
{

pada | a ∈ D
}
, where pada(b) := {a, b}, b ∈ D.

Notice that, for all a ∈ D the derivation pada = ham(a) := {a, ·} ∈ DerK(D) is called also

the hamiltonian vector field11 associated with the element a.

Definition II.2.8. Let D be a Poisson algebra. A Poisson ideal p of D is called a prime

Poisson ideal if p is a prime ideal of D. In addition, a Poisson ideal q of D is called a Poisson

prime ideal of D if

IJ ⊆ q =⇒ I ⊆ q or J ⊆ q,

where I and J are Poisson ideals of D.

Definition II.2.9. Let D be a Poisson algebra. A set of all Poisson prime ideals of D is

called the Poisson spectrum of D and is denoted by PSpec(D).

Definition II.2.10. Let D be a Poisson algebra. A Poisson ideal I of D is called a maximal

10or Poisson simple algebra
11or a hamiltonian derivation
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Poisson ideal of D if I is a maximal element with respect to (⊆,PSpec(D)).

PMax(D) =
{
I ∈ PSpec(D) | I is a maximal element

}
.

A Poisson ideal m of D is a Poisson maximal ideal if m is a maximal ideal that is also Poisson.

In addition, a Poisson ideal I of D is called a minimal Poisson ideal of D if I is a minimal

element with respect to (⊆,PSpec(D)).

Definition II.2.11. Let D be a Poisson algebra. A Poisson ideal P of D is Poisson primi-

tive12 if there exists a maximal ideal M of D such that P is the largest Poisson ideal contained

in M .

Definition II.2.12. Let D be a Poisson algebra. A Poisson ideal p of D is a Poisson height

n prime ideal if p is a Poisson prime ideal of D and has height n as a prime ideal.

Definition II.2.13. Let D be a Poisson algebra, and ∆ be a set of linear maps from D into

itself. A Poisson ideal I of D is called ∆-Poisson ideal13 if δ(I) ⊆ I for all δ ∈ ∆.

Definition II.2.14. Let D be a Poisson algebra and δ be a Poisson derivation on D. If D

and 0 are the only δ-Poisson ideals of D then D is called an δ-Poisson simple. In addition,

a δ-ideal p of D is called a δ-prime Poisson ideal if p is a prime Poisson ideal.

Definition II.2.15. Let G be a monoid and the Poisson algebra D be G-graded algebra

such that

{Di, Dj} ⊆ Di+j for all i, j ∈ G

then D is called a G-graded Poisson algebra.

The following remark defines the Poisson structures on factor Poisson algebras, localized

Poisson algebras and the tensor product of Poisson algebras.

Remark II.2.16. Let D be a Poisson algebra.

12symplectic
13or ∆-invariant or ∆-stable
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1. Let I be a Poisson ideal of D. Then the factor algebra D/I is a Poisson algebra with

Poisson bracket defined by the rule

{a+ I, b+ I} = {a, b}+ I for all a, b ∈ D.

2. If S is a multiplicative subset of D then the localization algebra S−1D of the algebra D

is a Poisson algebra with Poisson bracket defined by the rule

{as−1, bt−1} = s−2t−2(st{a, b} − sb{a, t} − at{s, b}+ ab{s, t}) for all a, b ∈ D, s, t ∈ S.

3. Let D1 and D2 be Poisson algebras. Their tensor product D1⊗D2 is a Poisson algebra

with Poisson bracket defined by the rule

{a1 ⊗ b1, a2 ⊗ b2} = {a1, a2} ⊗ b1b2 + a1a2 ⊗ {b1, b2},

where a1, a2 ∈ D1, b1, b2 ∈ D2 and {D1, D2} = 0.

II.2.2 Construction of Poisson polynomial

algebras

The theorem below gives us the first extension of Poisson polynomial algebras into one vari-

able, and the Poisson structure is defined similarly to the multiplication in skew polynomial

algebras.

Theorem II.2.17. [Oh3, Theorem 1.1] Let D be a Poisson algebra over a field K and α,

δ be K-linear maps on D. Then the polynomial ring D[x] becomes a Poisson algebra with

Poisson bracket

{a, x} = α(a)x+ δ(a) for all a ∈ D (II.2.1)

if and only if α is a Poisson derivation on D and δ is a derivation on D such that

δ({a, b})− {δ(a), b} − {a, δ(b)} = δ(a)α(b)− α(a)δ(b) for all a, b ∈ D. (II.2.2)
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The Poisson algebra D[x] is denoted by D[x;α, δ]p and if δ is zero then it is denoted by

D[x;α]p.

The next remark shows that the distinction between forms of the Poisson polynomial

algebras and skew polynomial algebras.

Remark II.2.18. [MyOh] The Poisson polynomial algebra D[x] in Theorem II.2.17 is de-

noted by D[x;α, δ]p instead of D[x;α, δ] to distinguish it from skew polynomial algebras.

The following lemma gives us the second extension of Poisson polynomial algebras into two

variables. This is the critical method used to construct the class of Poisson algebras A, see

Chapter IV.

Lemma II.2.19. [Oh3, Lemma 1.3] Let D be a Poisson algebra over a field K, c ∈ K, u ∈ D
and α, β be Poisson derivations on D such that

αβ = βα and {a, u} = (α+ β)(a)u for all a ∈ D. (II.2.3)

Then the polynomial ring D[x, y] becomes a Poisson algebra with Poisson bracket

{a, y} = α(a)y, {a, x} = β(a)x and {y, x} = cyx+ u for all a ∈ D. (II.2.4)

The Poisson algebra D[x, y] with Poisson bracket (II.2.4) is denoted by (D;α, β, c, u) or

D[y;α, 0]p[x;β, δ′ := u∂y]p.

II.2.3 Poisson modules

The following are some basic definitions and properties of Poisson modules, and the main

source is [Jor].

Notice that, the Poisson modules have been defined in several ways across the literature.

The following definition was introduced by D. R. Farkas, [Far].
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Definition II.2.20. Let D be a commutative Poisson algebra with Poisson bracket {·, ·}
and M be a D-module then M is called a Poisson D-module if there is a bilinear product

{·, ·}M : D ×M →M such that the following hold:

1. {{a, b},m}M = {a, {b,m}M}M − {b, {a,m}M}M for all a, b ∈ D, m ∈M ,

2. {a, bm}M = {a, b}m+ b{a,m}M for all a, b ∈ D, m ∈M , and

3. {ab,m}M = a{b,m}M + b{a,m}M for all a, b ∈ D, m ∈M .

Definition II.2.21. LetD be a Poisson algebra andM be a PoissonD-module. A submodule

N of M is a Poisson submodule if {a, n}M ∈ N for all a ∈ D and n ∈ N . In addition, M is

a simple Poisson D-module if M and 0 are the only submodules of M .

Definition II.2.22. Let D be a Poisson algebra and M be a Poisson D-module. In addition,

M is a semisimple Poisson module if M is a direct sum of simple Poisson D-modules.

Definition II.2.23. Let D be a Poisson algebra, and M1 and M2 be Poisson D-modules. A

Poisson module homomorphism ϕ : M1 →M2 is a D-module homomorphism such that

ϕ({a,m}M1) = {a, ϕ(m)}M2 for all a ∈ D and m ∈M1.

In addition, if ϕ is bijective then ϕ−1 : M2 → M1 is also a Poisson module homomorphism

and ϕ is a Poisson module isomorphism.

The following remarks give us some Poisson module structures expressed by factoring

Poisson algebras by their Poisson ideals.

Remark II.2.24. [Jor, Remark 4] Let D be a Poisson algebra. There is a natural method

for Poisson D-modules to appear in which I and J are Poisson ideals of D with I ⊆ J then

the factor J/I is a Poisson D-module with {a, j+ I}J/I = {a, j}+ I, where a ∈ D and j ∈ J .

Every Poisson submodule of J/I is a Lie ideal, hence, if J/I is simple as a Lie algebra then

it is simple as a Poisson module.

Remark II.2.25. Let D be a Poisson algebra and I, J be Poisson ideals of D then I/IJ

and J/IJ are Poisson D-modules.
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The following is the definition of the annihilator of Poisson modules.

Definition II.2.26. Let D be a Poisson algebra and M be a Poisson D-module. The

annihilator of M is

annD(M) = {a ∈ D | am = 0 for all m ∈M}.

The following is the definition of the Poisson annihilator of Poisson modules.

Definition II.2.27. Let D be a Poisson algebra, M be Poisson D-module and S ⊆M then

we have

PannD(S) = {a ∈ D | {a,m}M = 0 for all m ∈ S}.

II.2.4 Poisson algebras in algebraic geometry

The aim of this subsection is to recall some basic terminology and notations on algebraic

geometry to be used throughout this thesis. The main source in this subsection is [Har].

Definition II.2.28. An irreducible closed subset of AnK , with the induced topology, is called

an affine algebraic variety14, and an open subset of an affine variety is called a quasi-affine

variety.

Definition II.2.29. Let Y be a quasi-affine variety in AnK and f : Y → K be a function

on Y . If there is an open neighbourhood U with P ∈ U ⊆ Y, and g, h ∈ A = K[x1, . . . , xn]

such that h is not zero on U and f = g/h on U then f is called regular at a point P ∈ Y. In

addition, if f is regular at every point of Y then is called regular on Y.

Definition II.2.30. Let X,Y be varieties and ϕ : X → Y be a continuous map such that for

every open set U ⊆ Y , and every regular function f : U → K the function f ◦ϕ : ϕ−1(U)→ K

is regular then ϕ is called a morphism.

Definition II.2.31. Let X be a topological space. A presheaf F of abelian groups on X

consists of the data

1. for every open subset U ⊆ X, an abelian group F (U), and

14or simply affine variety
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2. for every inclusion V ⊆ U of open subsets of X, a morphism of abelian groups ρUV :

F (U)→ F (V )

subject to the conditions

(a) F (∅) = 0, where ∅ is the empty set,

(b) ρUU : F (U)→ F (U) is the identity map, and

(c) if W ⊆ V ⊆ U are three open subsets then ρUW = ρVW ◦ ρUV .

Definition II.2.32. A presheaf F on a topological space X is a sheaf if it satisfies the

following supplementary conditions:

(d) If U is an open set, {Vi} is an open covering of U and s ∈ F (U) is an element such

that s|Vi = 0 for all i then s = 015, and

(f) If U is an open set, {Vi} is an open covering of U and si ∈ F (Vi) for each i with the

property that for each i, j, si|Vi∩Vj = sj |Vi∩Vj then there is an elements s ∈ F (U) such

that s|Vi ,= si for each i.

Definition II.2.33. Let F be a presheaf on X. The elements of F (U) are called sections

of F over the open set U .

Definition II.2.34. Let X be a topological space and OX be a sheaf of rings on X then a

pair (X,OX) is called a ringed space.

Definition II.2.35. A sheaf of ideals16 on X is a sheaf of modules F which is a subsheaf of

OX . In other words, for every open set U, F (U) is an ideal in OX(U).

Definition II.2.36. Let (X,OX) be a locally ringed space such that (X,OX) ' Spec(R) for

some ring R then X is called an affine scheme.

Definition II.2.37. Let (X,OX) be a locally ringed space in which every point has an open

neighbourhood U such that the topological space U , together with the restricted sheaf OX |U
is an affine scheme then X is called a scheme.

15Note condition (d) implies that s is unique
16or an ideal sheaf
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Definition II.2.38. Let X be a non-singular variety X of dimension n. The sheaf Ω1
X of

differential 1-forms on X is a vector bundle of rank n. Its determinant
∧n Ω1

X = Ωn
X is the

canonical bundle of X, denoted ωX .

Definition II.2.39. Let X be an algebraic variety and OX be a sheaf of holomorphic func-

tions on X. A (holomorphic) Poisson structure on X is a C-bilinear operation

{·, ·} : OX ×OX → OX

which satisfies skew-symmetry, Leibniz's rule and Jacobi identity for all elements in OX .

Definition II.2.40. Let Y be an affine variety and suppose that A(Y ) is equipped with a

Lie bracket {·, ·} : A(Y )×A(Y )→ A(Y ), which makes
(
A(Y ), {·, ·}

)
into a Poisson algebra.

Then
(
Y, {·, ·}

)
is called an affine Poisson variety17.

II.2.5 Review on Poisson polynomial algebras

The first review is on the paper [Oh3]. This study gives us a significant structure of Poisson

polynomial algebras, which is used to consider the class of Poisson algebras A, see Chap-

ter IV for detail. Following that, some valuable properties of localized and factor Poisson

polynomial algebras are given in Lemma II.2.43. Additionally, some simplicity criteria for

skew Poisson polynomial algebras are considered in Proposition II.2.45. After that, there are

several techniques to classify Poisson prime ideals of Poisson polynomial algebras as Example

II.2.50. In this example, there is an interesting approach for classifying Poisson prime ideals

of a Poisson algebra that has dimension four.

Definition II.2.41. Let D be a Poisson algebra.

1. A Poisson derivation α on D is called an inner map if there exists an invertible element

a ∈ D such that α(b) = a−1{b, a} for all b ∈ D.

2. An element a of D is called Poisson normal if {a,D} ⊆ aD.

The next lemma shows that any two derivations are equal, commute or skew/Poisson

derivations, if this is true on a set of generators.

17or simple Poisson variety
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Lemma II.2.42. [Oh3, Lemma 1.2] Let D be a Poisson algebra over a field K and α, δ be

derivations on D. If D is generated by a set X as an algebra, then

1. if α(a) = δ(a) for all a ∈ X then α is equal δ.

2. if αδ(a) = δα(a) for all a ∈ X then α and δ commute.

3. if α satisfies α({a, b}) = {α(a), b}+ {a, α(b)} for all a, b ∈ X then α ∈ PDer(D).

4. if α and δ satisfy (II.2.2) for all elements in X then α and δ satisfy (II.2.2) for all

elements in D.

The next lemma gives us the structure of the localization and factorization of Poisson

algebra A = D[x;α, δ]p. Also, the variables can be swapped if their images are linear in one

term.

Lemma II.2.43. [Oh3, Lemma 3.2] Let D be a Poisson algebra over a field K, (α, δ) be a

skew Poisson derivation on D and A = D[x;α, δ]p.

1. If S is a multiplicative subset of D, then any derivation on D is uniquely extended to

S−1D and

(S−1D)[x;α′, δ′]p ∼= S−1A,

where α′ and δ′ are the extensions of α and δ on S−1D, respectively.

2. If I is an (α, δ)-Poisson ideal of D, then IA is a Poisson ideal of A and

A/IA ∼= (D/I)[x; ᾱ, δ̄]p,

where ᾱ and δ̄ are the maps induced on D/I by α and δ, respectively.

3. A Poisson algebra D[x;α]p[y;β]p such that β(D) ⊆ D and β(x) = bx for some element

b ∈ D is equal to D[y;β′]p[x;α′]p, where β′ = β|D and α′ : D[y, β′]p → D[y, β′]p is

defined by

α′(a) = α(a) and α′(y) = −by for all a ∈ D.

The next lemma gives us simplicity criterion for the Poisson algebra A = D[x±1;α]p.
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Lemma II.2.44. [Oh3, Lemma 3.3] Let A = D[x±1;α]p. Then A is a Poisson simple if and

only if

1. D is α-Poisson simple, and

2. nα is not an inner map for all n ∈ Z+.

The following proposition gives us a criterion of the simplicity of prime Poisson ideals of

A = D[x;α]p.

Proposition II.2.45. [Oh3, Proposition 3.4] Let A = D[x;α]p.

1. If J is a prime Poisson ideals of A such that x ∈ J then J has the form I + xA, where

I is a prime Poisson ideal of D.

2. If I is an α-prime Poisson ideal of D then IA is a prime Poisson ideal of A.

3. If P is a prime Poisson ideal of A such that x /∈ P then P ∩D is an α-prime Poisson

ideal of D.

4. If nα is an inner map, where n ∈ Z+ then there is y ∈ PZ(A) such that y is transcen-

dental over D, and A is a finitely generated D[y]-module.

5. If D is α-Poisson simple and there is no positive integer n such that nα is an inner

map then x is inside every prime Poisson ideal of A.

The following examples give us some different structures of Poisson brackets on commutative

polynomial algebras.

Example II.2.46. The Poisson algebra K[y, x]. Let K[y] be a Poisson polynomial algebra

with trivial Poisson bracket. Set

α = f∂y and δ = g∂y, where f, g ∈ K[y].

Then α is a Poisson derivation, δ is a derivation and (α, δ) satisfies (II.2.2). Hence, by

Theorem II.2.17, K[y, x] = K[y][x;α, δ]p is a Poisson algebra with Poisson bracket

{y, x} = fx+ g, where f, g ∈ K[y].
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The next example gives us the expression of a generalization of the Poisson algebra D[x;α, 0]

that is in Theorem II.2.17, when δ = 0.

Example II.2.47. The Poisson n-space. Let Λ = (λij) be a skew-symmetric n × n matrix

and K[x1] be a Poisson algebra with trivial Poisson bracket. Suppose that

αi = λ1ix1∂x1 + · · ·+ λi−1,ixi−1∂xi−1 , where i = 2, . . . , n

is a derivation on K[x1, . . . , xi−1]. Now, since α2 is a Poisson derivation on K[x1] which

implies that K[x1][x2;α2]p is a Poisson algebra. Notice that, if

B = K[x1][x2;α2]p . . . [xn−1;αn−1]p

is a Poisson algebra and by using Lemma II.2.42 we have that αn is a Poisson derivation on

B. Therefore, it follows from Theorem II.2.17 that B[xn;αn]p = K[x1, . . . , xn] is a Poisson

algebra. Hence, by induction on n, we have the coordinate ring O(Kn) = K[x1, . . . , xn] of

the affine n-space Kn is a Poisson algebra with Poisson bracket defined by the rule

{xi, xj} = λijxixj for all i, j = 1, . . . , n, see [Oh1].

The most familiar example of Poisson brackets is given in the following example.

Example II.2.48. The polynomial ring A = K[y1, x1, . . . , yn, xn] is the simple Poisson 2n-

space with Poisson bracket defined by the rule

{f, g} =
∑( ∂f

∂yi

∂g

∂xi
− ∂g

∂yi

∂f

∂xi

)
for all f, g ∈ A,

which is given in [ChPr]. Equivalently,

{yi, xj} = δij , {xi, xj} = 0 and {yi, yj} = 0 for all i, j,

where δij is the Kronecker delta function. Let Ai be a Poisson subalgebra of A generated

by y1, x1, . . . , yi, xi. The algebra Ai can be written as the Poisson algebra that is in Lemma
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II.2.19 by

Ai = Ai−1[yi; 0]p[xi; 0, δi]p = (Ai−1; 0, 0, 0, 1),

where δi is defined by

δi(yj) = 0, δi(xj) = 0 and δi(yi) = 1 for all j = 1, . . . , i− 1.

The following is a typical example of Poisson algebra (D;α, β, c, u) that is in Lemma II.2.19,

and is similar to the class of Poisson algebras A, whereas this has dimension four.

Example II.2.49. The Poisson algebra M2(K). Let K[x, y] be a Poisson polynomial algebra

with trivial Poisson bracket and α = −2x ∂x − 2y ∂y be a derivation on K[x, y]. Then α is a

Poisson derivation and by using Lemma II.2.19 there exists

(
K[x, y];α,−α, 0, 4xy

)
,

which is the Poisson algebra O(M2(K)) = K[x, y][s, t] with Poisson bracket

{x, y} = 0, {x, t} = 2xt, {x, s} = −2xs,

{y, t} = 2yt, {y, s} = −2ys, {s, t} = 4xy,

given in [Oh1, 2.9] and [Van, 3.13].

The next example describes a significant approach for classifying prime Poisson ideals of

A2 = K[y1, x1, y2, x2]. This is breaking down the Poisson algebra into factor algebras by

some of their principal Poisson ideals to classify the prime Poisson ideals of A2 that contain

these ideals, and then classify the ideals of A2 that do not contain any of these four variables.

Example II.2.50. [Oh3, Example 3.6] The coordinate ring A2 of Poisson symplectic 4-space

is the Poisson algebra K[y1, x1, y2, x2] with Poisson bracket

{y1, x1} = 2y1x1, {y1, y2} = y1y2, {x1, y2} = −x1y2,

{y1, x2} = y1x2, {x1, x2} = −x1x2, {x2, y2} = 2y2x2 + 2y1x1.



II.2. Poisson algebras: Review of results 29

(i) Let us classify the prime Poisson ideals of A2 that contains x1. Set

A2/x1A2
∼= K[y1][y2;α]p[x2;β]p, (II.2.5)

where α = y1∂y1 and β = y1∂y1 + 2y2∂y2 . Set

A = K[y1][y2;α]p, B = K[y1][y2;α]p[x2;β]p = A[x2;β]p.

Notice that, by using Proposition II.2.45.(1) the prime Poisson ideals of A that con-

tains y2 have the form I + y2A, where I is a prime ideal of K[y1]. It follows from

Lemma II.2.43.(3) that A = K[y2][y1;α′], where α′ = −y2∂y2 and by using Proposition

II.2.45.(1) the prime Poisson ideals of A that contains y1 have the form J + y1A, where

J is a prime ideal of K[y2]. Now, since every prime Poisson ideal of B not containing

y1, y2, x2 is (α, β, γ)-stable, and each monomial yr1y
s
2x
t
2 ∈ B is a common eigenvector of

α, β, γ with eigenvalue r− 2t, r+ 2s,−s− t, respectively, every non-zero prime Poisson

ideal of B contains one of y1, y2, x2. Therefore, all prime Poisson ideals of A2 that

contains x1 are

x1A2, x1A2 + x2A2,

x1A2 + y2A2, y1A2 + x1A2,

JA2 + y1A2 + x1A2 + x2A2, IA2 + x1A2 + y2A2 + x2A2,

KA2 + y1A2 + x1A2 + y2A2,

where I, J and K are prime ideals of K[y1],K[y2] and K[x2], respectively.

(ii) Let us classify the prime Poisson ideals of A2 that contains y1. Set

A2/y1A2
∼= K[x1][y2;α]p[x2;β]p,

where α = −x1∂x1 and β = −x1∂x1 + 2y2∂y2 . Replacing x1 in K[x1][y2;α]p[x2;β]p by

y1 in the Poisson algebra given in the right hand of (II.2.5), all prime Poisson ideals of
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A2 that contains y1 are

y1A2, y1A2 + x1A2,

y1A2 + y2A2, y1A2 + x2A2,

JA2 + y1A2 + x1A2 + x2A2, LA2 + y1A2 + y2A2 + x2A2,

KA2 + y1A2 + x1A2 + y2A2,

where L, J and K are prime ideals of K[x1],K[y2] and K[x2], respectively.

(iii) Let us classify the prime Poisson ideals that contain neither y1 nor x1: If P is a

prime Poisson ideal that does not contain either y2 or x2 then y1 ∈ P or x1 ∈ P since

{y2, x2} = 2y2x2+2y1x1. Hence, let us assume that y2 /∈ P, x2 /∈ P and z = y2x2+y1x1.

Then z is a Poisson normal element of A2 and

A2[y−1
1 , x−1

1 , y−1
2 ] = K[y±1

1 ][x±1
1 ;α]p[y

±1
2 ;β]p[z; γ]p,

where

α = 2y1∂y1 ,

β = y1∂y1 − x1∂x1 ,

γ = 2y1∂y1 − 2x1∂x1 + 2y2∂y2 .

Set A = K[y±1
1 ][x±1

1 ;α]p[y
±1
2 ;β]p and B = A[z; γ]p. It follows from (i) that A has no

non-trivial prime Poisson ideal. Suppose that there is a non-trivial Poisson ideal I of A

and let P be a prime ideal minimal over I. Then the largest H -stable ideal (P : H )

contained in P is a prime Poisson ideal containing I by [Dix], where H is the set of all

hamiltonians in A. Hence, A is a γ-Poisson simple. Hence, it follows from (i), (ii) and
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(iii) that all prime Poisson ideals of A2 are

0, zA2,

x1A2, x1A2 + x2A2,

x1A2 + y2A2, y1A2 + x1A2,

JA2 + y1A2 + x1A2 + x2A2, IA2 + x1A2 + y2A2 + x2A2,

KA2 + y1A2 + x1A2 + y2A2,

y1A2, y1A2 + x2A2,

y1A2 + y2A2, y1A2 + x1A2,

JA2 + y1A2 + x1A2 + x2A2, LA2 + y1A2 + y2A2 + x2A2,

KA2 + y1A2 + x1A2 + y2A2,

where z = y2x2 + y1x1 and I, L, J,K are prime ideals of K[y1],K[x1],K[y2],K[x2],

respectively.

The next review is on the paper [Oh4]. This study is an extension of the material of [Oh3].

In addition, some interesting results on finitely generated Poisson algebras over a field of

characteristic zero are considered as Proposition II.2.53 and Theorem II.2.56. Following that

some techniques to classify Poisson prime ideals of finitely generated Poisson algebras are

given in Example II.2.60.

Definition II.2.51. Let α be a Poisson derivation of a Poisson algebra D. A K-linear map

δ of D is called an inner α-derivation if there exists an element a ∈ D such that

δ(b) = aα(b) + {a, b} for all b ∈ D.

The results of the paper [Oh4] can be considered in the following:

1. If δ is an inner α-derivation on D and then (α, δ) is a skew Poisson derivation on D

then it follows from Theorem II.2.17 that there exists a Poisson polynomial algebra

D[x;α, δ]p.
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2. Every prime Poisson ideal of D is a Poisson prime ideal of D, but the converse is not

always true, see Example II.2.59.

Lemma II.2.52. [Oh4, Lemma 1.4] Let K be a field of characteristic zero, D be a Poisson

algebra over K and Λ be a set of derivations on D. Then every prime ideal minimal over a

Λ-Poisson ideal is a Λ-Poisson ideal. In particular, every prime ideal minimal over a Poisson

ideal is a Poisson ideal.

The next proposition shows that any Poisson prime ideal is a prime Poisson ideal in Noethe-

rian algebras over a field of characteristic zero.

Proposition II.2.53. [Oh4, Proposition 1.5] Let K be a field of characteristic zero and D

be a Poisson algebra over K which is finitely generated as an algebra. Then every Λ-Poisson

prime ideal of D is a prime ideal, where Λ is a set of derivations on D. In particular, every

Poisson prime ideal of D is a prime ideal.

The following lemma shows that the Poisson algebra D[x;α, δ]p can be written by using

the determining element of an inner map.

Lemma II.2.54. [Oh4, Lemma 2.1] Let D be a Poisson algebra over a field of characteristic

zero and (α, δ) be a skew Poisson derivation on the Poisson algebra D. If δ is an inner map

α-derivation determined by a ∈ D then

D[x;α, δ]p = D[x+ a;α]p.

The next corollary identifies Poisson prime ideals of D[x;α, δ]p by Poisson prime ideals of

D.

Corollary II.2.55. [Oh4, Corollary 2.2] Let D be a Poisson algebra over a field of charac-

teristic zero and Q be an α-Poisson prime ideal of D which is δ-stable. Then QD[x;α, δ]p is

a Poisson prime ideal.

The next theorem gives us the simplicity criterion for the Poisson algebra D[x;α, δ]p.
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Theorem II.2.56. [Oh4, Theorem 2.3] Let D be a Poisson algebra18 over a field of char-

acteristic zero which is a field and (α, δ) be a skew Poisson derivation on D. If δ is not an

inner map α-derivation then the Poisson algebra D[x;α, δ]p is a Poisson simple.

The following lemma describes the Poisson prime ideal of D[x;α, δ]p that does not contain

x.

Lemma II.2.57. [Oh4, Lemma 2.4] Let D be a Poisson algebra over a field of characteristic

zero and P be a Poisson prime ideal of A = D[x;α, δ]p. Then P ∩D is a prime Poisson ideal

of D. In addition, if P does not contain x then the following are equivalent:

1. P ∩D is α-stable.

2. P ∩D is δ-stable.

3. P ∩D is (α, δ)-stable.

The next theorem describes the Poisson prime ideal of D[x;α, δ]p that is not α-stable.

Theorem II.2.58. [Oh4, Theorem 2.6] Let D be a Poisson algebra over a field of charac-

teristic zero, P be a Poisson prime ideal of A = D[x;α, δ]p, and Q = P ∩D be not α-stable.

1. The ideal P contains an element of the form ax+ b, where a, b /∈ Q.

2. Set S = D\Q and let α′, δ′ be the extensions of α, δ to S−1D, respectively. Then the

derivation δ′ is an inner α′-derivation modulo S−1Q.

The next example shows that the Poisson prime ideals are not always prime Poisson ideals

in general.

Example II.2.59. Let K be a field of characteristic q > 0 and A = K[x][y; 0, ∂x]p. Notice

that, the ideal I = (xq, yq) of A is a Poisson ideal hence, A/I is a Poisson algebra. Now,

the factor Poisson algebra A/I is Poisson simple, i.e. A/I has no non-trivial Poisson ideals.

Hence, I is a Poisson prime ideal of A, but I is not a prime ideal of the algebra A since x /∈ I.

The next example gives us the description for classifying Poisson prime ideals of A =

D[x;α, δ]p which are in three steps: Firstly, classifying the Poisson prime ideals that contain

18possibly infinitely generated
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x. After that, classifying Poisson prime ideals that do not contain x and are (δ, α)-stable.

Finally, classifying Poisson prime ideals that neither contain x nor are (δ, α)-stable. This

method will be used to classify Poisson prime ideals for some Poisson algebras in Section

IV.1, but it is not in a direct way and assuming δ = 0.

Example II.2.60. [Oh4, Example 2.7] Let D be a Poisson algebra and (α, δ) be a skew

Poisson derivation on D. Then A = D[x;α, δ]p is a Poisson algebra with Poisson bracket

{a, x} = α(a)x+ δ(a), where a ∈ D.

Let us classify all Poisson prime ideals of A. Notice that, any Poisson prime ideal of A that

contains x is induced by a Poisson prime ideal of D.

Now, let P be a Poisson prime ideal of A such that x /∈ P and Q = P ∩ D is (α, δ)-

stable. It follows from Proposition II.2.53 that the Poisson algebra D/Q is an integral domain

and the ideal P/Q of (D/Q)[x; ᾱ, δ̄]p is a Poisson prime ideal that does not contain x. In

addition, (P/Q)∩(D/Q) = 0, where ᾱ and δ̄ are the derivations on D/Q induced by α and δ,

respectively. Hence, let us assume that D is an integral domain and P ∩D = 0. By localizing

at the multiplicative set D\{0} and by using Lemma II.2.43.(1), one can assume that D is a

field. Therefore, it follows from Theorem II.2.56 and Lemma II.2.54 that any Poisson prime

ideal P is induced from Poisson prime ideals of D[y; ᾱ]p. Now, one can apply Proposition

II.2.45 to classify all Poisson prime ideals of D[y; ᾱ]p.

Let P be a Poisson prime ideal of A such that x /∈ P and Q = P ∩D is not(α, δ)-stable. Set

S = D\Q. Let us find the Poisson prime ideal S−1P of (S−1D)[y;α′]p that contains S−1Q

by Theorem II.2.58.(2) and Lemma II.2.54, where α′ is the extension of α to S−1D. Notice

that, S−1D is a local ring with the maximal ideal S−1Q. If y ∈ S−1P then we have

S−1P = S−1Q+ y(S−1D)[y;α′]p

by Proposition II.2.45.(1). Suppose that y /∈ S−1P . Since S−1P ∩ S−1D = S−1Q, S−1Q is

an α′-Poisson prime ideal of S−1D by Proposition II.2.45.(3). Hence, α′ induces a Poisson

derivation ᾱ′ on S−1D/S−1Q, which is a field. Now, one can apply Proposition II.2.45.(4)
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and (5) to the Poisson algebra (S−1D/S−1Q)[y; ᾱ′]p to classify the Poisson prime ideals of

S−1P/S−1Q.

The next review is on the paper [JoOh]. This study defines a new structure of the Poisson

bracket, which is in a ring in three variables over the complex field, see Definition II.2.63.

This structure is determined by a fixed polynomial and its derivations. Additionally, there are

various techniques for classifying Poisson prime ideals, Poisson maximal ideals and Poisson

primitive ideals. In particular, there are valuable methods to classify Poisson prime ideals as

Theorem II.2.72, Corollary II.2.73, Example II.2.76 and Example II.2.77, which will be used

to classify Poisson prime ideals for some Poisson algebras in Chapter IV.

The next definition gives us the Zariski topology structure on the Poisson spectrum.

Definition II.2.61. [JoOh, Definition 1.6] LetD be a Poisson algebra. The Poisson spectrum

of D is the subspace of Spec(D) consisting of the Poisson prime ideals with the induced Zariski

topology. Thus, a closed set in PSpec(D) has the form V(I) := {P ∈ PSpec(D) | I ⊆ P} for

some ideal I of D. As is observed in [Goo2], replacing I by the Poisson ideal it generates, I

can be assumed to be a Poisson ideal.

Definition II.2.62. Let D be a Poisson algebra and I be a Poisson ideal of D then I is

called a residually null if the induced Poisson bracket on D/I is zero.

The following definition is the exact bracket. This is a Poisson structure, which is defined

by using a fixed polynomial and its derivations.

Definition II.2.63. [JoOh, page 1] Let D = C[x, y, z] be a Poisson algebra and a ∈ D. Then

a Jacobian or exact bracket determined by a is given by

{x, y}a =
∂a

∂z
, {y, z}a =

∂a

∂x
and {z, x}a =

∂a

∂y
. (II.2.6)

The abbreviation of partial derivatives is given in the following notation.

Notation II.2.64. Let D = C[x, y, z] be a Poisson algebra, Q(D) = C(x, y, z) be the quotient

field of D. Now, let us assume that w = x, y or z. The derivation ∂
∂w of D is denoted by ∂w

and if a ∈ D the partial derivative ∂w(a) is denoted by aw.
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In the following notation, a Poisson bracket is identified by the determinant of the Jacobian

matrix.

Notation II.2.65. Let F = (f, g, h) ∈ D3. There is a bilinear anti-symmetric product

{·, ·}F : D ×D → D such that

{b, c}F =

∣∣∣∣∣∣∣∣∣

f g h

bx by bz

cx cy cz

∣∣∣∣∣∣∣∣∣
for all b, c ∈ D.

Thus, {b, ·}F is the derivation

(gbz − hby)∂x + (hbx − fbz)∂y + (fby − gbx)∂z (II.2.7)

on D. Notice that,

{b, x}F = gbz − hby, {b, y}F = hbx − fbz, {b, z}F = fby − gbx (II.2.8)

and

{y, z}F = f, {z, x}F = g, {x, y}F = h.

The bracket {·, ·}F is a unique bilinear anti-symmetric product {·, ·} : D×D → D such that

{y, z} = f, {z, x} = g, {x, y} = h

and {b, ·} is a C-derivation for all b ∈ D. The same conclusion holds for Q(D). Let

JF (a, b, c) = {a, {b, c}F }F + {b, {c, a}F }F + {c, {a, b}F }F for all a, b, c ∈ D.

Thus, a, b and c satisfy the Jacobi identity for {·, ·}F if and only if JF (a, b, c) = 0.

The following proposition gives us the relation between the Poisson bracket above and the

Jacobi identity of the generators.

Proposition II.2.66. [JoOh, Proposition 1.14] Let F ∈ D3. Then D is a Poisson algebra

under {·, ·}F if and only if JF (x, y, z) = 0.
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Definition II.2.67. Let F = (f, g, h) ∈ D3 and {·, ·}F : D → D be the bilinear anti-

symmetric product determined by F in Notation II.2.65. Then F is called a Poisson triple

on D if and only if there is a Poisson bracket on D such that

{y, z} = f, {z, x} = g and {x, y} = h.

The following notation gives us the definitions of new functions on D3.

Notation II.2.68. Let F = (f, g, h) ∈ D3. Then we define the functions grad: D → D3 and

curl: D3 → D3 such that

grad(f) = (fx, fy, fz) ∈ D3 and curlF = (hy − gz, fz − hx, gx − fy) ∈ D3.

Definition II.2.69. Let F = (f, g, h) be a Poisson triple on D. If F has the form:

1. grad a = (ax, ay, az) for some a ∈ D then F is exact on D.

2. b grad a = (bax, bay, baz) for some a, b ∈ D then F is a m-exact on D.

3. b grad a = (bax, bay, baz) for some a, b ∈ Q(D) such that bax, bay, baz ∈ D then F is

qm-exact on D.

The following proposition describes some properties of the Poisson triple on D3.

Proposition II.2.70. [JoOh, Proposition 1.17] Let f, g, h, a, b ∈ D and F = (f, g, h) ∈ D3.

1. F is a Poisson triple if and only if F · (hy − gz, fz − hx, gx − fy) = 0.

2. grad a = (ax, ay, az) is a Poisson triple on D.

3. If F is a Poisson triple on D then bF := (bf, bg, bh) is a Poisson triple on D.

4. b grad a is a Poisson triple.

Let s, t ∈ C[x, y, z]\{0} be coprime and a = st−1 ∈ C(x, y, z). The exact bracket (II.2.6)

multiplied by b = t2 is the m-exact Poisson bracket t2{·, ·}a on C(x, y, z) restricts to a qm-

exact Poisson bracket on C[x, y, z]. Let us fix s, t and write this bracket as {·, ·}. Then

{x, y} = tsz − stz, {y, z} = tsx − stx and {z, x} = tsy − sty. (II.2.9)
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Lemma II.2.71. [JoOh, Lemma 3.4] Let (λ, µ) ∈ CP1, fλ,µ = λs−µt be a non-zero non-unit

polynomial and u be an irreducible factor polynomial in D of fλ,µ. The ideal (fλ,µ) is Poisson

and (u) is a Poisson prime ideal of D under the Poisson bracket (II.2.9).

The following theorem describes the Poisson prime ideals of D under the qm-exact bracket

that is determined by the polynomial a.

Theorem II.2.72. [JoOh, Theorem 3.8] Let s, t ∈ D\{0} be coprime and a = st−1 ∈ Q(D).

The Poisson prime ideals of D under the qm-exact bracket determined by a are

(i) 0,

(ii) the residually null Poisson prime ideals, and

(iii) the height one prime ideals (u), where u is an irreducible factor of fλ,µ for some (λ, µ) ∈
CP1 such that fλ,µ is a non-zero non-unit polynomial.

The next corollary describes the Poisson prime ideals of D under the exact bracket that is

determined by the non-constant polynomial a.

Corollary II.2.73. [JoOh, Corollary 3.9] Let a ∈ D\C. The Poisson prime ideals of D

under {·, ·}a are

(i) 0,

(ii) the residually null Poisson prime ideals, and

(iii) the height one prime ideals (p), where p is an irreducible factor in D of a− µ for some

µ ∈ C.

The Poisson structures in the next examples are similar to some Poisson structures that

will be appeared in Chapter IV.

Example II.2.74. Let D = C[x, y, z] and a = x2/2 then we have the Poisson bracket

{y, z} = x and {x, y} = {z, x} = 0.

Notice that, the residually null Poisson prime ideals are the prime ideals that contain x. The

prime ideals generated by the irreducible factors of x2−µ, as µ varies, are the ideals (x−λ),
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where λ ∈ C. These are all Poisson ideals and only (x) is a residually null ideal. By using

Corollary II.2.73, we have

PSpec(D) =
{

0, (x− λ), (x, f), (x, y − β, z − γ) | λ, β, γ ∈ C and f ∈ IrrmC[y, z]
}
.

Example II.2.75. Let D = C[x, y, z] and a = αx + βy + γz, where α, β, γ ∈ C are not all

zero. Then we have the Poisson bracket

{x, y} = γ, {y, z} = α and {z, x} = β.

Notice that, by using Corollary II.2.73, we have PSpec(D) =
{

0, (a− µ) | µ ∈ C
}

.

The next example gives us the description for classifying the Poisson prime ideals and

Poisson maximal ideals for Poisson algebras of dimension three. This can be considered

as another approach for classifying the Poisson prime ideals. The idea came from fixing a

polynomial a, and defining the exact bracket in D = C[x, y, z]. There are two cases for a,

and the classifications of Poisson prime ideals for both cases are given. This is a significant

approach and will be used to classify Poisson prime ideals for some Poisson algebras in Section

IV.3.

Example II.2.76. [JoOh, Example 4.9] Let D = C[x, y, z] and a ∈ C[x±1, y±1, z±1] be a

monomial. By the symmetry between a and a−1, it is enough to consider the following two

cases. Let j, k and l be non-negative integers, not all 0,

Case i: a = s = xjykzl,

Case ii: s = xjzl, t = yk, a = xjy−kzl.

In Case i, we have the Poisson bracket

{x, y} = lxjykzl−1 = (xj−1yk−1zl−1)lxy,

{y, z} = jxj−1ykzl = (xj−1yk−1zl−1)jyz, and

{z, x} = kxjyk−1zl = (xj−1yk−1zl−1)kzx.

(II.2.10)
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In Case ii, the Poisson bracket for {x, y} and {y, z} hold but

{z, x} = −kxjyk−1zl = −(xj−1yk−1zl−1)kzx.

Then the Poisson principal prime ideals are

(x) if j 6= 0,

(y) if k 6= 0,

(z) if l 6= 0,

(xjykzl − µ), where µ ∈ C×, (in Case i), and

(λxjzl − µyk), where λ, µ ∈ C×, (in Case ii).

The height two Poisson prime ideals are

• (x, y) if j + k > 1,

• (x, z) if j + l > 1,

• (y, z) if k + l > 1,

• any height two Poisson prime ideal containing (x) if j ≥ 2,

• any height two Poisson prime ideal containing (y) if k ≥ 2, and

• any height two Poisson prime ideal containing (z) if l ≥ 2.

Notice that, any Poisson height two prime ideal must be a residually null ideal.

In addition to 0 and the maximal ideals containing any of the residually null Poisson prime

ideals listed, this specifies PSpec(D). Notice that, the Poisson principal prime ideals are

Poisson primitive ideals except (x), (y) and (z), if j ≥ 2, k ≥ 2 and l ≥ 2, respectively.

The next example describes a certain case of Poisson algebras of dimension three in which

some constants are rational. In this example, there is a critical method to classify Poisson

prime ideals, which is writing the Poisson bracket as D-multiple of others. This will be used

to classify Poisson prime ideals for some Poisson algebras in Sections IV.2 and IV.3.



II.2. Poisson algebras: Review of results 41

Example II.2.77. [JoOh, Example 4.10] LetD = C[x, y, z] be a Poisson algebra with Poisson

bracket defined by

{x, y} = τxy, {y, z} = ρyz and {z, x} = σzx, where τ, ρ, σ ∈ C.

We consider the Poisson spectrum for this bracket in dimQ(τQ+ρQ+σQ) = 1. Let us assume

that τ = l, ρ = j and σ = ±k, where j, k and l are coprime non-negative integers, and l > 0.

Thus

B1 := {x, y} = lxy, {y, z} = jyz and {z, x} = ±kzx. (II.2.11)

Then B2 := xj−1yk−1zl−1B1, where B2 is one of the brackets considered in Example II.2.76.

The Poisson spectrum of D under B1 can be computed from that of B2.

If j, k and l are non-negative integers then any Poisson prime ideal of D under B1 is a

Poisson prime ideal of D under B2, but if Q is a Poisson prime ideal of D under B2 then Q

is a Poisson prime ideal of D under B1 or Q contains at least one of x, y and z. In this case,

it follows from Example II.2.76, that the Poisson spectrum of D under B1 is

0, (y), (x), (z),

(xjykzl − µ), µ ∈ C×, if {z, x} = kzx in (II.2.11),

(xjzl − µyk), µ ∈ C×, if {z, x} = −kzx in (II.2.11),

(x, y), (y, z), (x, z),

and the maximal ideals that contain them.

In [JoOh, Example 1.19.(2)], D = C[x, y, z] is a Poisson algebra with Poisson bracket

{x, y} = 0, {y, z} = y and {z, x} = −αx,

where α = m/n is rational, with m and n coprime, and n > 0. The Poisson spectrum of D

is unchanged by multiplication by n giving

B1 := {x, y} = 0, {y, z} = ny and {z, x} = −mx.
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Then this is z−1B1 := x1−jy1−kB2, where j = n, l = 0 and k = |m|. Here B2 is the same

as, Case ii, in Example II.2.76 if m > 0. It is the same as, Case i, if m < 0. Therefore, the

Poisson spectrum of D is

0, (y), (x), (x, y),

(xn − µym), µ ∈ C×, if m > 0,

(xny−m − µ), µ ∈ C×, if m < 0,

(x, y, z − ν), ν ∈ C.

The next remark describes a special case of Poisson algebras of dimension three in which

some constants are irrational.

Remark II.2.78. [JoOh, Remark 4.11] Let D = C[x, y, z] and ρ, σ, τ ∈ C be such that

dimQ(ρQ+σQ+τQ) > 1 the quadratic Poisson bracket in Example II.2.77. From the results

in [Goo2, 9.6.(b)] the Poisson spectrum, in this case, can be obtained, including the Poisson

simplicity of B := C[x±1, y±1, z±1].

1. If ρ, σ and τ are all non-zero the Poisson prime ideals of D are 0, (x), (y), (z), the

height two prime ideals (x, y), (y, z), (z, x), and the maximal ideals containing any one

of the Poisson height two primes.

2. If τ = 0 and dimQ(ρQ + σQ) > 1 then the Poisson prime ideals of D are 0, (x), (y)

and all prime ideals containing (z) or (x, y). In particular, taking τ = 0, ρ = 1 and

σ = −α ∈ C\Q, we get the multiple, by z, of the Poisson bracket from [JoOh, Example

1.19.(2)], where

{x, y} = 0, {y, z} = y and {z, x} = −αx.

The Poisson prime ideals of D are 0, (x), (y) and all prime ideals containing (x, y).

Following [Goo2, Example 6.4], all except (x, y) are Poisson primitive ideals.
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II.2.6 Review on Poisson algebras from

algebraic geometry

The following is a review on the paper [Pol]. The interest in this study for us is that the

Poisson algebras of dimension three. Some properties of this algebras are given. In addition,

this can be thought of as one of the Poisson structure applications and can give us a better

understanding of Poisson structures.

Throughout this review, we suppose that X is a scheme of finite type over C.

Definition II.2.79. Let X be a Poisson scheme (X,OX , {·, ·}). Then there is a canonical

Poisson subscheme X0 ⊂ X such that the induced Poisson structure on X0 is zero, and X0

is maximal with this property, i.e. the corresponding Poisson ideal sheaf is

OX{OX ,OX} ⊂ OX .

Remark II.2.80. Let X be a scheme. For any Poisson structure on X there exists OX -linear

homomorphism H : ΩX → TX = Der(OX ,OX) such that

H(df)(g) = {f, g}.

In addition, if X is smooth, we denote by G the section of
∧2 TX such that

i(ω)G = H(ω) for all ω ∈ Ω1
X , (II.2.12)

where i(ω) is the operator of contraction of ω.

Definition II.2.81. Let X be irreducible then a Poisson structure H on X is called non-

degenerate if H has maximal rank at the general point.

Definition II.2.82. Let X be smooth with even dimension. Then the divisor of degeneration

Z ⊂ X of a non-degenerate Poisson structure on X can be defined as the zero locus of the

Pfaffian of H, which is a section of detTX ' ω−1
X .
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Remark II.2.83. A Poisson structure is constant along any hamiltonian flow φt, so the

condition of degeneracy is preserved under φt. It follows that any hamiltonian flow moves

any irreducible component of Z into itself. If f is a local equation of an irreducible component

of X then for all hamiltonian vector fields Hg, the function

Hg(f) = {g, f}

is zero along this component.

Definition II.2.84. Let F be an OX -module. A Poisson connection on F is a C-linear

bracket {·, ·} : OX ×F → F which is a derivation, and satisfies the Leibniz's rule

{f, gs} = {f, g}s+ g · {f, s}, where f, g ∈ OX (II.2.13)

and s is a local section of F . Equivalently, a Poisson connection is given by a homomorphism

v : F → Hom(ΩX ,F) = Der(OX ,F) which satisfies the relation

v(fs) = −H(df)⊗ s+ f · v(s), where f ∈ OX . (II.2.14)

Namely, v(s) ∈ Der(OX ,F) is defined by the relation

v(s)(f) = {f, s}. (II.2.15)

Definition II.2.85. Let X be a smooth Poisson variety and D be the sheaf of differential

operators on X. A D-Poisson module is an OX -module M with a Lie action of OX19 given

by

{·, ·} : OX ×M →M

which is a differential operator and satisfies the relation

{f, gm} = {f, g}m+ g{f,m}, where f, g ∈ OX and m ∈M.

In other words, this structure corresponds to some map v : M → D ⊗OX M , where the

19where the Lie bracket on OX is the Poisson bracket



II.2. Poisson algebras: Review of results 45

OX -module left structure on D is

v(fm) = −H(df)⊗m+ fv(m), where f ∈ OX and m ∈M.

Definition II.2.86. Let X be a Poisson scheme. A Poisson ideal sheaf J ⊂ OX is called

degenerate if

{x, y}z + {y, z}x+ {z, x}y ∈ J3 for all x, y, z ∈ J.

Definition II.2.87. A smooth projective variety X with ample anti-canonical class is called

Fano variety.

Let X be a smooth variety of odd dimension n = 2k + 1. A Poisson structure on X is

non-degenerate if the corresponding morphism H : ΩX → TX has rank 2k at the general

point. In other words, if G ∈ ∧2 TX is the structural tensor of the Poisson structure, then

the product g = G ∧G ∧ · · · ∧G︸ ︷︷ ︸
k

∈ ∧2k TX ' Ω1
X ⊗ ω−1

X is non-zero, hence g induces an

embedding i : ωX → Ω1
X . At the general point the image im(i) ⊂ Ω1

X coincides with the

annihilator of the Lie subsheaf im(H) ⊂ TX , hence, it defines a corank-1 foliation on X, which

means that for any local section ν ∈ ωX the 1-form ω = i(v) satisfies the Pfaff equation

ω ∧ dω = 0.

Theorem II.2.88. [Pol, Theorem 9.1] Let i : L → Ω1
X be an embedding of a line bundle

defining a corank-1 foliation on a smooth variety X. Let c1(L) ∈ H2(X,C) be a first Chern

class of L. Assume that either c1(L)2 6= 0 or c1(n) 6= 0 and H1(X,L) = 0. Then the vanishing

locus of i has a component of codimension ≤ 2.

Corollary II.2.89. [Pol, Corollary 9.2] The rank of a non-degenerate Poisson structure on

a Fano variety of odd dimensions drops along the subset of codimension ≤ 2.

Let X be a smooth variety of dimension three. A 20Poisson structure on X is the same as

an embedding i : ωX → Ω1
X defining a corank-1 foliation on X. Notice that, it follows from

20non-zero
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Theorem II.2.88 and Corollary II.2.89 that if X is a Fano 3-fold then the vanishing locus Z

of i has a component of dimension ≥ 1.

Theorem II.2.90. [Pol, Theorem 13.1] Let C ⊂ X be a smooth curve which is an irreducible

component of the vanishing locus of a Poisson structure21 on smooth variety X of dimension

three. Then the conormal Lie sheaf of C is abelian, i.e. {JC , JC} ⊂ J2
C , where JC ⊂ OX is

an ideal sheaf of C.

Let X and Y be smooth of dimensions three and one, respectively. Let f : X → Y be a

morphism, and Fi be the multiple fibers of f , and mi be their multiplicities then there is a

pull-back morphism on 1-forms

if : f∗ωY
(∑

i

(mi − 1)Fi

)
→ Ω1

X ,

which defines generically an integrable subbundle. Let D be a divisor in the linear system

∣∣∣f∗ωY
(∑

i

(mi − 1)Fi

)
⊗ ω−1

X

∣∣∣

then there is a Poisson structure that is defined by the rule

if,D : ωX ' f∗ωY (−D) ↪→ f∗ωY → Ω1
X .

Lemma II.2.91. [Pol, Lemma 13.3] Let i : ωX → Ω1
X be a Poisson structure which is defined

by

i(η) ∧ df ∧ dg = {f, g}η, where η ∈ ωX and f, g ∈ OX .

Then a smooth divisor D ∈ X is Poisson with respect to i if and only if the composition

ωX |D
i|D−−→ (Ω1

X)|D → Ω1
D is zero.

Theorem II.2.92. [Pol, Theorem 13.5] Let f : X → Y be a morphism and i : ωX → Ω1
X be

a Poisson structure on X, where X has dimension three and Y has dimension one, such that

21equipped with the reduced scheme structure
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a general fiber of f is a Poisson divisor with respect to i. Then i = if,D for some divisor

D ∈ H0
(
f∗ωY

(∑

i

(mi − 1)Di

)
⊗ ω−1

X

)
.

§II.3 Poisson enveloping algebras: Review of re-

sults

The aim of this section is to review some key definitions and properties of Poisson enveloping

algebras to be used throughout the thesis. In particular, the construction of Poisson action

on modules, and simplicity criterion for Poisson enveloping algebras. Additionally, our moti-

vations for Poisson enveloping algebras are demonstrated by evaluating a paper on a related

subject, see Subsection II.3.3.

II.3.1 The Generalized Weyl Poisson algebras

The following definition is the generalized Weyl Poisson algebra that was introduced by V.

V. Bavula, followed by some of its Poisson simplicity criterion. The main source for these is

[Bav3].

Definition II.3.1. [Bav3, page 106] LetD be a Poisson algebra, ∂ = (∂1, . . . , ∂n) ∈ PDerK(D)n

be an n-tuple of commuting derivations of the Poisson algebra D, a = (a1, . . . , an), where

ai ∈ PZ(D) such that ∂i(aj) = 0 for all i 6= j. The generalized Weyl algebra

A = D
[
X,Y ; (idD, . . . , idD), a

]
= D[X1, . . . , Xn, Y1, . . . , Yn]/(X1Y1 − a1, . . . , XnYn − an)

admits a Poisson structure which is an extension of the Poisson structure on D and is given

by the rule: For all i, j = 1, . . . , n and d ∈ D,

{Yi, d} = ∂i(d)Yi, {Xi, d} = −∂i(d)Xi and {Yi, Xi} = ∂i(ai), (II.3.1)

{Xi, Xj} = {Xi, Yj} = {Yi, Yj} = 0 for all i 6= j. (II.3.2)



48 Chapter II. Background

The Poisson algebra is denoted by A = D[X,Y ; a, ∂} and is called the generalized Weyl

Poisson algebra of rank n22, where X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn).

The next lemma gives us the existence of generalized Weyl Poisson algebras of rank n.

Lemma II.3.2. [Bav3, Lemma 2.1] Let A = D[X,Y ; a, ∂} be a generalized Weyl Poisson

algebra of rank n. Let A = D
[
X,Y ; ∂, ∂(a)

]
, where ∂(a) =

(
∂1(a1), . . . , ∂n(an)

)
. Then X1Y1−

a1, . . . , XnYn − an ∈ PZ(A) and the generalized Weyl Poisson algebra A = D[X,Y ; a, ∂} is a

factor algebra of the Poisson algebra A,

A ∼= A/
(
X1Y1 − a1, . . . , XnYn − an

)
.

Definition II.3.3. [Bav3, page 107] Let A = D[X,Y ; a, ∂} be a generalized Weyl Poisson

algebra of rank n.

1. The set D∂ :=
{
d ∈ D | ∂1(d) = 0, . . . , ∂n(d) = 0

}
is called the ∂-constants ring of D.

2. Dα =
{
λ ∈ D∂ |padλ := {λ, ·} = λ

∑n
i=1 αi∂i, λαi∂i(ai) = 0 for all i = 1, . . . , n

}
.

The following theorem describes the simplicity criterion for generalized Weyl Poisson alge-

bras.

Theorem II.3.4. [Bav3, Theorem 1.1] Let D be a K-algebra and A = D[X,Y ; a, ∂} be a

generalized Weyl Poisson algebra of rank n. Then the Poisson algebra A is a simple Poisson

algebra if and only if

1. the Poisson algebra D has no proper ∂-invariant Poisson ideals,

2. Dai +D∂i(ai) = D for all i = 1, . . . , n, and

3. the algebra PZ(A) is a field, i.e. char(K) = 0, PZ(D)∂ is a field and Dα = 0 for all

α ∈ Zn\{0}.

The following proposition describes the criterion for the Poisson centre to be a field.

22in short GWPA
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Proposition II.3.5. [Bav3, Proposition 1.2] Let A = D[X,Y ; a, ∂} be a generalized Weyl

Poisson algebra of rank n. Then PZ(A) is a field if and only if char(K) = 0, PZ(D)∂ is a

field and Dα = 0 for all α = (α1, . . . , αn) ∈ Zn\{0}.

The construction of Zn-graded Poisson on generalized Weyl Poisson algebras is given in the

following remark.

Remark II.3.6. [Bav3, page 110] Let A = D[X,Y ; a, ∂} be a generalized Weyl Poisson

algebra of rank n then

A := D[X,Y ; a, ∂} =
⊕

α∈Zn
Aα (II.3.3)

is a Zn-graded Poisson algebra, where Aα = Dvα, vα =
∏n
i=1 vαi(i) and

vj(i) =





Xj
i if j > 0,

1 if j = 0,

Y
|j|
i if j < 0.

Hence, AαAβ ⊆ Aα+β and {Aα, Aβ} ⊆ Aα+β, where α, β ∈ Zn.

The following example is a classical example of generalized Weyl Poisson algebras.

Example II.3.7. [Bav3, page 111] The classical Poisson polynomial algebra

P2n = K[X1, . . . , Xn, Y1, . . . , Yn] with Poisson bracket

{Yi, Xj} = δij and {Xi, Xj} = {Xi, Yj} = {Yi, Yj} = 0 for all i 6= j

is a GWPA

P2n = K[H1, . . . ,Hn][X,Y ; a, ∂}, (II.3.4)

where K[H1, . . . ,Hn] is a Poisson polynomial algebra with trivial Poisson bracket, a =

(H1, . . . ,Hn), ∂ = (∂1, . . . , ∂n) and ∂i = ∂
∂Hi

, via the isomorphism of Poisson algebras

P2n → K[H1, . . . ,Hn][X,Y ; a, ∂}, Xi 7→ Xi, Yi 7→ Yi.
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II.3.2 Poisson enveloping algebras

The following definition is the Poisson enveloping algebra that is recalled from [Oh2].

Definition II.3.8. Let D be a Poisson algebra over a field K, U be a K-algebra with an

algebra homomorphism α : D → U and Lie homomorphism β : D → UL23 such that

α({a, b}) = β(a)α(b)− α(b)β(a) and β(ab) = α(a)β(b) + α(b)β(a)

for all a, b ∈ D. The triple (U(D), α, β) is called a Poisson enveloping algebra of D, if the

following holds: If V is K-algebra, γ : D → V is an algebra homomorphism, and δ : D → VL
24

is Lie homomorphism such that

γ({a, b}) = δ(a)γ(b)− γ(b)δ(a) and δ(ab) = γ(a)δ(b) + γ(b)δ(a)

for all a, b ∈ D. There exists a unique algebra homomorphism h : U → V such that hα = γ

and hβ = δ, see diagram II.3.1.

U

α, β

D
γ, δ

V

h

Diagram II.3.1: The unique algebra homomorphism h : U → V

The following theorem gives us the existence and uniqueness of Poisson enveloping algebras.

Theorem II.3.9. [Oh2, Theorem 5] Let D be a Poisson algebra.

1. There exists a Poisson enveloping algebra (U(D), α, β) of D.

2. If (U1(D), α1, β1) and (U2(D), α2, β2) are Poisson enveloping algebras of D then there

exists a unique algebra isomorphism h : U1(D) → U2(D) such that hα1 = α2 and

hβ1 = β2.
23UL is a Lie algebra U with Lie bracket [a, b] = ab− ba
24VL is a Lie algebra V with Lie bracket [a, b] = ab− ba
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The following corollary describes the relation between Poisson modules and the modules

over Poisson enveloping algebra.

Corollary II.3.10. [Oh2, Corollary 6] Let D be a Poisson algebra over a field K and

(U(D), α, β) be a Poisson enveloping algebra of D. A vector space M over a field K is a

Poisson D-module if and only if M is a left U(D)-module.

The following corollary gives us a simplicity criterion for the annihilator of Poisson modules.

Corollary II.3.11. [Oh2, Corollary 8] Let D be a Poisson algebra. Every annihilator of a

simple Poisson D-module is a symplectic ideal of D.

The following proposition gives us a criterion for Poisson enveloping algebra to be a Noethe-

rian ring.

Proposition II.3.12. [Oh2, Proposition 9] Let D be a Poisson algebra over a field K and

(U(D), α, β) be a Poisson enveloping algebra of D. If D is finitely generated as a K-algebra

then U(D) is a left and right Noetherian ring.

II.3.3 Review on Poisson enveloping algebras

The following review is on the paper [Bav4]. In this study, another definition of Poisson

modules is provided in Remark II.3.22. Then the relations between the universal enveloping

algebra, the Poisson enveloping algebras, and the algebra of Poisson differential operators are

discussed in Theorem II.3.25. Following that, the Gelfand-Kirillov dimensions of U(D) and

gr
(
U(D)

)
are calculated in Theorem II.3.24.

Definition II.3.13. A localization of an affine commutative algebra is called an algebra of

essentially finite type.

Definition II.3.14. Let D be an associative algebra. Then its dual25 algebra Dop coincides

with D as a vector space, but the multiplication is given by a ∗ b := ba. Similarly, given a

25associative
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Poisson algebra (D, {·, ·}), its dual associative algebra Dop is a Poisson algebra (Dop, {·, ·}op),
which is called the dual Poisson algebra of D, where

{a, b}op := −{a, b} for all a, b ∈ Dop.

Remark II.3.15. Let D be an associative algebra and its dual26 Dop. Then every left

D-module is a right Dop-module, and vice versa.

Definition II.3.16. Let D be a commutative algebra over a field K. The ring of 27differential

operators D(D) on D is D(D) =
⋃∞
i=0Di(D), where D0(D) = EndK(D) ' D, (x 7→ ax)↔ a,

Di(D) =
{
u ∈ EndK(D) | [a, u] := au− ua ∈ Di−1(D) for all a ∈ D

}
.

The set of D-modules
{
Di(D)

}
is the order filtration for the algebra D(D):

D0(D) ⊆ D1(D) ⊆ · · · ⊆ Di(D) ⊆ · · · and Di(D)Dj(D) ⊆ Di+j(D) for all i, j ≥ 0.

Definition II.3.17. Let D be a Poisson algebra and {xi}i∈I be a set of generators of D.

The Poisson structure on an associative algebra D is uniquely determined by the Poisson

structure constants cij := {xi, xj}, where i, j ∈ I. Let n = card(I) be the cardinality of the

set I28. The n× n matrix

CD := (cij) (II.3.5)

is called the Poisson structure constants matrix of D and the ideal cD of D, which is generated

by all the structure constants cij is called the Poisson structure constants ideal of D.

Remark II.3.18. [Bav4, pages 6, 7] Let D be a Poisson algebra and the set of inner deriva-

tions HD := PIDerK(D). Then

1. PIDerK(D) is an ideal of the Lie algebra PDerK(D)29.

26associative
27K-linear
28the case n =∞ is possible
29since [δ,pada] = padδ(a) for all δ ∈ PDerK(D) and a ∈ D
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2. the Poisson algebra D is a Lie algebra with respect to the bracket {·, ·}. The map

D → PIDerK(D), a 7→ pada

is an epimorphism of Lie algebras with kernel PZ(D).

3. the Poisson centre PZ(D) is invariant under the action of PDerK(D). Let z ∈ PZ(D), d ∈
D and ∂ ∈ PDerK(D) then applying the derivation ∂ to the equality {z, d} = 0 we ob-

tain the equality {∂(z), d} = 0, i.e. ∂(z) ∈ PZ(D).

Definition II.3.19. [Bav4, page 9] Let D be a Poisson algebra. The subalgebra PD(D)

of the K-endomorphism algebra EndK(D), which is generated by D and HD is called the

algebra of Poisson differential operators of D.

Let us assume that K is an arbitrary field. A simplicity criterion for the algebra PD(D)

of Poisson differential operators is given in the following theorem.

Theorem II.3.20. [Bav4, Theorem 1.1] Let D be a Poisson algebra over K. Then the

following are equivalent:

1. The differential operator algebra PD(D) is a simple algebra.

2. The Poisson algebra D is a simple Poisson algebra.

A simplicity criterion for the Poisson enveloping algebra U(D), and the relation between

U(D) and PD(D) are described in the following theorem.

Theorem II.3.21. [Bav4, Theorem 1.2] Let D be a Poisson algebra over K. Then the

following are equivalent:

1. The Poisson enveloping algebra U(D) is a simple algebra.

2. The differential operator algebra PD(D) is a simple algebra and U(D) ' PD(D).

3. The Poisson algebra D is a simple Poisson algebra, and D is a faithful left U(D)-module.

If one of the above conditions holds then U(D) ' PD(D).
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The next remark gives us a description for Poisson action on Poisson modules.

Remark II.3.22. [Bav4, pages 7, 8] Let the commutative associative algebra D be a Poisson

algebra, and M be a left D-module
(
D ×M → M , (a,m) 7→ am

)
. The left D-module M

over D is called a Poisson left D-module30 if there is a bilinear map

D ×M →M, (a,m) 7→ δam

which is called a Poisson action of D on M such that for all a, b ∈ D and m ∈M ,

(PM1) δ{a,b} = [δa, δb],

(PM2) [δa, b] = {a, b}, and

(PM3) δab = aδb + bδa.

Every left Poisson D-module M determines the homomorphism of associative algebras,

D → EndK(M), a 7→ aM : M →M, m 7→ am (II.3.6)

and the homomorphism of Lie algebras,

D → EndK(M), a 7→ δa : M →M, m 7→ δam (II.3.7)

such that

[δa, bM ] = {a, b}M for all a, b ∈ D, (II.3.8)

δab = aMδb + bMδa for all a, b ∈ D, (II.3.9)

and vice versa.

Semidirect products of algebras are described in the following remark.

30or left module over the Poisson algebra



II.3. Poisson enveloping algebras: Review of results 55

Remark II.3.23. [Bav4, page 9] Let D be a K-algebra, G be a Lie algebra, U(G) be the

enveloping algebra of G, and

δ : G → DerK(D), a 7→ δa

be a Lie algebra homomorphism31. Let Doδ U(G) be the semidirect product of D and U(G).

It is an associative algebra that is generated by the algebras D and U(G) subject to the

defined relation

gd = dg + δg(d) for all d ∈ D and g ∈ G.

Let {xi}i∈I be a K-basis of G. Then

D oδ U(G) =
⊕

α∈N(I)

Dxα =
⊕

α∈N(I)

xαD

is a free left and right D-module, where N(I) is a direct sum of I copies of the set N, xα =
∏
i∈I x

αi
i .

Let us assume that D is a domain of essentially finite type over a perfect field K and S be

a multiplicative subset of Pn. The next theorem shows that the Gelfand-Kirillov dimensions

of U(D) and gr
(
U(D)

)
are finite.

Theorem II.3.24. [Bav4, Theorem 1.4] Let D = S−1
(
Pn/I

)
a Poisson algebra over a field

K, where I = (f1, . . . , fm) is a prime ideal of Pn and r = r
(
∂fi
∂xj

)
is the rank of the Jacobian

matrix
(
∂fi
∂xj

)
over the field of fractions of the domain Pn/I. Then the algebra U(D) is a

Noetherian algebra with

GKU(D) = GK gr
(
U(D)

)
= 2GK(D) = 2(n− r).

The sets of generators and defining relations for the Poisson enveloping algebra are provided

in the following theorem.

31δ[a,b] = [δa, δb] for all a, b ∈ G
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Theorem II.3.25. [Bav4, Theorem 2.2] Let D be a Poisson algebra, U(D) be its universal

enveloping algebra32 and U(D) be its Poisson enveloping algebra. Then

1. U(D) ' D opad U(D)/I(D), where I(D) = (δab − aδb − bδa)a,b∈D is the ideal of the

algebra D opad U(D) generated by the set {δab − aδb − bδa | a, b ∈ D}.

2. if D = S−1K[xi]i∈Λ/(fs)s∈Γ, where S is a multiplicative subset of the polynomial algebra

K[xi]i∈Λ, and Λ, Γ are index sets. Then the algebra U(D) is generated by the algebra

D and the elements {δi := δxi | i ∈ Λ} as determined by the defining relations

(a) [δi, δj ] =
∑

k∈Λ
∂{xi,xj}

∂k
δk,

(b) [δi, xj ] = {xi, xj}, and

(c)
∑

i∈Λ
∂fs
∂xi
δi = 0,

where i, j ∈ Λ such that i 6= j and s ∈ Γ. So, the algebra U(D) is generated by D and

the set δD = {δa | a ∈ D} as determined by the defining relations

(a) [δa, δb] = δ{a,b},

(b) [δa, b] = {a, b},

(c) δab = aδb + bδa,

(d) δλa+µb = λδa + µδb and δ1 = 0,

where a, b ∈ D and λ, µ ∈ K.

3. the map πD : U(D) → D(D), a 7→ a, δb 7→ padb = {b, ·} is an algebra homomorphism,

where a, b ∈ D and its image is the algebra PD(D).

The following corollary shows that a homomorphism between Poisson enveloping algebras

can be defined using the homomorphism between their Poisson algebras.

Corollary II.3.26. [Bav4, Corollary 2.3] Let D1 and D2 be Poisson algebras. Then every

homomorphism of Poisson algebras f : D1 → D2 can be extended to a homomorphism of

their Poisson enveloping algebras f : U(D1)→ U(D2) that is defined by f(δa) = δf(a).

32as a Lie algebra
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The following corollary gives us the required condition for Poisson enveloping algebra to

be commutative.

Corollary II.3.27. [Bav4, Corollary 2.5] Let D be a Poisson algebra. Then U(D) is a

commutative algebra if and only if D has a trivial Poisson structure.

The following proposition describes that any endomorphism/automorphism of Poisson en-

veloping algebras can be obtained from an endomorphism/automorphism of their Poisson

algebras.

Proposition II.3.28. [Bav4, Proposition 2.9] Let D be a Poisson algebra. Then

1. the map EndPois(D)→ EndK(U(D)), σ 7→ σ : a 7→ σ(a), δa 7→ δσ(a), where a ∈ D, is a

monoid monomorphism.

2. the map AutPois(D)→ AutK(U(D)), σ 7→ σ : a 7→ σ(a), δa 7→ δσ(a), where a ∈ D, is a

group monomorphism.

The following example gives us a construction of left Poisson modules.

Example II.3.29. Every Poisson algebra D is a left Poisson D-module since for all a ∈ D,
aD : D → D, b 7→ ab and δa = {a, ·} : D → D, b 7→ {a, b}.



§ III Classes of Poisson algebras of

dimension two

In this chapter, two new classes of Poisson algebras are introduced and their Poisson prime

ideals, minimal Poisson ideals and maximal Poisson ideals are classified. One of them is

the Poisson algebra P = K[t, x], see Section III.1, and the other is the Poisson algebra

P2(f) = K[x, y], see Section III.2.

Notations. We assume that K is an algebraically closed field of characteristic zero, K[t] is

the Poisson polynomial algebra with trivial Poisson bracket, and K(t) is the field of rational

functions in the variable t.

§III.1 The Poisson algebra P = K[t, x]

The aim of this section is to classify all Poisson prime ideals, minimal Poisson ideals and

maximal Poisson ideals of the Poisson algebra P, which are indicated in Theorem III.1.2.

Following that, the containment information between Poisson prime ideals of the algebra

P is given in diagram III.1.1. This is an interesting class of Poisson algebras of dimension

two and is a significant method to classify Poisson prime ideals for some Poisson algebras in

Chapter IV.

Let α be a Poisson derivation on K[t]. By using Theorem II.2.17, the algebra P= K[t, x] =

K[t][x;α]p is a Poisson algebra with Poisson bracket defined by the rule

{t, x} = α(t)x, where α = f∂t, where f ∈ K[t]\{0}. (III.1.1)

58
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There are two cases to consider: f ∈ K× and f ∈ K[t]\K.

Case i: If f ∈ K× then the Poisson algebra K[t][x;α]p is isomorphic to the 2-space Poisson

algebra with Poisson bracket defined by the rule

{t, x} = fx (III.1.2)

and is denoted by P(f). It follows from this equality that the prime ideals of P(f), 0, (x)

and (x, t− ν) are also Poisson ideals, P(f)/(x) ∼= K[t], and P(f)/(x, t− ν) ∼= K. Hence,

PSpec
(
P(f)

)
=
{

0, (x), (x, t− ν) | ν ∈ K
}
.

Case ii: If f ∈ K[t]\K then we have the Poisson algebra P= K[t, x] with Poisson bracket

defined by the rule

{t, x} = fx. (III.1.3)

The following notation gives us the explicit formula of the roots of the polynomial f and

the localization of the Poisson algebra P.

Notation III.1.1. Let Rf = {λ1, . . . , λs} be the set of distinct roots of the polynomial

f(t) =

s∏

i=1

λf (t− λi)mi , (III.1.4)

where λf is the leading coefficient of f and m1, . . . ,ms ≥ 1 are the multiplicities of the roots

λ1, . . . , λs, respectively. The localization of the algebra P at the powers of the element fx is

Pfx= K[t, x±1, f−1], i.e. Pfx= S−1P =
{

(fx)−ip | i ≥ 0, p ∈ P
}
, where S =

{
(fx)i | i ≥ 0

}
.

The following theorem classifies the Poisson prime ideals of the Poisson algebra P.

Theorem III.1.2. Let P= K[t, x] be the Poisson algebra as above and f ∈ K[t]\K, i.e.

Rf 6= ∅. Then

1. PSpec(P)=
{

0, (x), (t − λi), (x, t − ν), (x − µ, t − λi) | ν ∈ K,µ ∈ K×, λi ∈ Rf and i =

1, . . . , s
}

, and P/(x) ∼= K[t], P/(t− λi) ∼= K[x], P/(x, t− ν) ∼= P/(x− µ, t− λi) ∼= K
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for all ν ∈ K, µ ∈ K×, λi ∈ Rf and i = 1, . . . , s, the containment information between

Poisson prime ideals of P is given in diagram III.1.1.

0
(
x, t− ν

) (
x, t− λ1

)
(
x− µ,
t− λ1

) (
x, t− λi

)
0

(
x− µ,
t− λi

) (
x, t− λs

)
(
x− µ,
t− λs

)

(x) (t− λ1) (t− λi) (t− λs)

00

where ν ∈ K\Rf ,

λi ∈ Rf and i = 1, . . . , s.

Diagram III.1.1: The containment information between Poisson prime ideals of P

2. PMax(P)=
{

(x, t− ν), (x− µ, t− λi) | ν ∈ K,µ ∈ K×, λi ∈ Rf and i = 1, . . . , s
}

3. the localization Pfx of the algebra P is a simple Poisson algebra.

4. PZ(P) =PZ(Pfx)=K.

Proof. 3. It follows from the equality (III.1.3) that

δt := padt = fx∂x and δx := padx = −fx∂t, (III.1.5)

where ∂t = d
dt and ∂x = d

dx are the partial derivatives of the algebras P, and Pfx=

K[t, x, (fx)−1]. Then

∂x = (fx)−1δt and ∂t = −(fx)−1δx. (III.1.6)

It follows from these equalities that the Poisson algebra Pfx is simple. Indeed, let I

be a non-zero Poisson ideal of Pfx since P ⊆ Pfx, the ideal I ′ := P ∩ I is a non-zero

Poisson ideal of P. Let n := min
{

degx(a) | a ∈ I ′\{0}
}
, where degx(a) is the x-degree

of the polynomial a = a0 + a1(t)x + a2(t)x2 + · · · + ad(t)x
d, i.e. degx(a) = d provided

ad(t) 6= 0, where a0(t), a1(t), . . . , ad(t) ∈ K[t].

(i) Suppose that n = 0. Then 0 6= I ′ ∩K[t] = K[t]p for non-zero polynomial p ∈ K[t]
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if degt(p) = 0, i.e. p ∈ K× then 1 ∈ I ′ ⊆ I, hence, I = Pfx. If degt(p) ≥ 1 then

the polynomial ∂t(p) = dp
dt ∈ I ′∩K[t] has degree degt(p)−11 which is not possible

since 0 6= ∂t(p) ∈ K[t]p. This means that the case degt(p) ≥ 1 is impossible.

(ii) Suppose that n ≥ 1. Fix a polynomial, say a = a0 + a1x+ a2x
2 + · · ·+ anx

n, with

degx(a) = n, where a0, a1, . . . , an ∈ K[t] then the polynomial ∂x(a) = ∂a
∂x ∈ I ′\{0}

and degx
(
∂x(a)

)
= n−1, a contradiction. Therefore, the case n ≥ 1 is impossible.

1. It follows from the equality (III.1.3) that the prime ideals of P, 0, (x), (t−λi), (x, t−ν)

and (x − µ, t − λi) are also Poisson ideals, P/(x) ∼= K[t], P/(t − λi) ∼= K[x], and

P/(x, t− ν) ∼= P/(x− µ, t− λi) ∼= K, where ν ∈ K,µ ∈ K×, λi ∈ Rf and i = 1, . . . , s.

Hence, all the ideals in statement 1 are Poisson prime ideals of the Poisson algebra P.

Clearly that diagram III.1.1 reflects all possible containment of these Poisson prime

ideals. To finish the proof of statement 1 we have to show that there are no additional

Poisson ideals of P, but this follows from statement 3.

2. Statement 2 follows from diagram III.1.1.

4. Since PZ(P) ⊆ PZ(Pfx), it suffices to show that Z := PZ(Pfx) = K. Given a ∈ Z\{0}.
We have to show that a ∈ K. Since a ∈ Z\{0}, the ideal (a) := aPfx is a non-

zero Poisson ideal of the Poisson algebra Pfx. The Poisson algebra Pfx is simple by

statement 3, hence, a is a unit in the algebra Pfx, i.e. a = bf ixj for some b ∈ K× and

i, j ≥ 0. It follows from the equality (III.1.6) that

0 = (fx)−1{t, a} =
∂a

∂x
= jbf ixj−1,

0 = (fx)−1{x, a} =
∂a

∂t
= ibf i−1xj ,

(III.1.7)

that i = j = 0, i.e. a = b ∈ K×, as required.

1since char(K) = 0
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§III.2 The Poisson algebra P2(f ) = K[x, y]

The aim of this section is to classify all Poisson prime ideals, minimal Poisson ideals and

maximal Poisson ideals of the Poisson algebra P2(f), which are described in Proposition

III.2.1. Following that, the relation between the Poisson differential operator algebras of

P2(f), and the Weyl algebras is given in Proposition III.2.1.(4).

It is easy to check the polynomial algebra K[x, y] over an arbitrary field K admits a Poisson

structure that is given by the rule {y, x} = f for an arbitrary polynomial f ∈ K[x, y]. This

Poisson algebra is denoted by P2(f).

Proposition III.2.1. Let P2(f) = K[x, y] be the Poisson algebra with Poisson bracket

{y, x} = f, where f ∈ K[x, y]. Then

1. PSpec(P2(f)) =
{

0, p | p ∈ Spec(K[x, y]), f ∈ p
}

.

2. PMax(P2(f)) =
{
m | m ∈ Max(K[x, y]), f ∈ m

}
.

3. if f 6= 0 then P2(f)f is the localization of P2(f) at the powers of the element f is

simple.

4. if f 6= 0 then the algebra PD(P2(f)f ) ' A2,f is isomorphic to the localization of the

Weyl algebra A2 = K〈x, y, ∂x, ∂y〉 at the powers of the element f . In particular, the

algebra PD(P2(f)f ) is a simple Noetherian algebra.

Proof. 4. The algebra PD(P2(f)) is a subalgebra of the Weyl algebra A2 = D
(
K[x, y]

)

which is generated by the polynomial algebra K[x, y], the derivations padx = −f∂y and

pady = f∂x, and statement 4 follows.

3. Statement 3 follows from statement 4 and Theorem II.3.20.

1. Statement 1 follows from statement 3.

2. Statement 2 follows from statement 1.



§ IV The Poisson algebras A of di-

mension three

The main purpose of this chapter is to classify Poisson prime ideals, minimal Poisson ide-

als and maximal Poisson ideals for a certain class of Poisson polynomial algebras in three

variables.

Recall that the Poisson polynomial algebra (D;α, β, c, u) was introduced by Oh in 2006,

in the following Lemma.

Lemma IV.0.1. [Oh3, Lemma 1.3] Let D be a Poisson algebra over a field K, c ∈ K, u ∈ D
and α, β be Poisson derivations on D such that

αβ = βα and {a, u} = (α+ β)(a)u for all a ∈ D. (IV.0.1)

Then the polynomial ring D[x, y] becomes a Poisson algebra with Poisson bracket

{a, y} = α(a)y, {a, x} = β(a)x and {y, x} = cyx+ u for all a ∈ D. (IV.0.2)

The Poisson algebra D[x, y] with Poisson bracket (IV.0.2) is denoted by (D;α, β, c, u) or

D[y;α, 0]p[x;β, δ′ := u∂y]p.

Now, let us consider an arbitrary Poisson algebra (D;α, β, c, u), where the Poisson algebra

D is the Poisson polynomial algebra K[t] over a field K of characteristic zero with trivial

63
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Poisson bracket, and α, β are arbitrary K-derivations of K[t], i.e.

α = f∂t, β = g∂t and f, g ∈ K[t], where ∂t =
d

dt
,

c ∈ K and u ∈ K[t]. It follows from (IV.0.1) that

0 = {d, u} = (α+ β)(d)u for all d ∈ K[t], (IV.0.3)

hence, u is an element in the Poisson centre of K[t], and

(α+ β)u = 0. (IV.0.4)

The following lemma describes all commuting pairs (α, β).

Lemma IV.0.2. Let K[t] be the Poisson polynomial algebra and α, β be Poisson derivations

on K[t]. If α = f∂t and β = g∂t, where f, g ∈ K[t]\{0} then

αβ = βα if and only if g =
1

λ
f, where λ ∈ K×. (IV.0.5)

Proof. Notice that,

[α, β] = αβ − βα = (fg′ − gf ′)∂t = g2

(
f

g

)′
∂t,

where (−)′ = d(−)
dt . Therefore, [α, β] = 0 if and only if

(
f
g

)′
= 0 if and only if f

g ∈
kerK(t)(∂t) = K if and only if f

g = λ for some λ ∈ K× if and only if g = 1
λf .

The Poisson algebras A = (K[t]; f∂t, λ
−1f∂t, c, u), where f, u ∈ K[t], λ ∈ K× and c ∈ K

with Poisson bracket defined by the rule

{t, y} = fy, {t, x} = λ−1fx and {y, x} = cyx+ u.

It follows from Lemma IV.0.2 and the equality (IV.0.4) that there are three main classes:

Class I: α+ β = f∂t + λ−1f∂t = 0 and u = 0.
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Class II: α+ β = f∂t + λ−1f∂t = 0 and u 6= 0.

Class III: α+ β = f∂t + λ−1f∂t 6= 0 and u = 0.

In order to study Poisson algebras in each of the three classes, we need to subdivide them

into subclasses.

• The first class I has two subclasses: I.1 and I.2.

• The second class II has two subclasses: II.1 and II.2.

• The third class III has two subclasses: III.1 and III.2.

Each subclass has further subclasses. For more information see diagram IV.1.1, diagram

IV.2.1 and diagram IV.3.1, respectively.
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§IV.1 The first class

The aim of this section is to classify all Poisson prime ideals, minimal Poisson ideals and

maximal Poisson ideals of Poisson algebras that belong to the first class I. This class has

two subclasses: I.1 and I.2, and each subclass has several subclasses. Let us give further

detail, the first subclass I.1 has two subclasses: I.1.1 and I.1.2. In particular, the Poisson

algebra, that belongs to the subclass I.1.1, is the polynomial ring in three variables with a

trivial Poisson structure. In addition, the classification of Poisson prime ideals for the Poisson

algebra, that belongs to the subclass I.1.2, is obtained in Theorem IV.1.5. The inclusions of

Poisson prime ideals for this Poisson algebra are described in diagram IV.1.3.

The second subclass I.2 has two subclasses: I.2.1 and I.2.2, and each subclass has two

further subclasses:

I.2.1.1, I.2.1.2, I.2.2.1 and I.2.2.2, respectively.

The classifications of Poisson prime ideals for Poisson algebras that belong to these four

subclasses are obtained in Theorem IV.1.8, Theorem IV.1.9, Theorem IV.1.10 and Theorem

IV.1.11, respectively. In particular, each subclass is treated individually and different tech-

niques are used. The main methods are the localization and factorization of Poisson algebras,

and Theorem III.1.2. These techniques are similar to some of the approaches in recent papers

[Oh3] and [Oh4], see reviews in Subsection II.2.5 for detail. In addition, the containments

information between Poisson prime ideals for these algebras are given in diagram IV.1.4,

diagram IV.1.5, diagram IV.1.6 and diagram IV.1.7, respectively.

Class I:

If α + β = f∂t + 1
λf∂t = 0, u = 0 and c ∈ K, where λ ∈ K×, f ∈ K[t]. Notice that,

f∂t + 1
λf∂t = 0 implies that there are two subclasses:

Class I.1: If f = 0.

Class I.2: If λ = −1.
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Structure of the first class of Poisson algebras A is given in diagram IV.1.1.

The following is the first subclass of class I and consists of two subclasses which are de-

pendent on c.

Class I.1

If f = 0, i.e. α = β = 0, u = 0 and c ∈ K then we have the Poisson algebra A1=

(K[t]; 0, 0, c, 0) with Poisson bracket defined by the rule

{t, y} = 0, {t, x} = 0 and {y, x} = cyx. (IV.1.1)

There are two subclasses which are dependent on c:

Class I.1.1: If c = 0.

Class I.1.2: If c ∈ K×.

Remark IV.1.1. It follows from the equality (IV.1.1) that t ∈ PZ(A1). Furthermore, the

Poisson algebra A1 = K[t]⊗ P is a tensor product of two Poisson algebras: (K[t], {·, ·} = 0)

and P = K[x, y] with the Poisson bracket {y, x} = cyx, where c ∈ K.

The next is the Poisson algebra A2 that belongs to the subclass I.1.1 and has a trivial

Poisson structure.

Class I.1.1:

If c = 0 = α = β = u then the Poisson algebra A2= (K[t]; 0, 0, 0, 0) has a trivial Poisson

structure and the Poisson spectrum of A2 is the spectrum of the polynomial ring in three

variables, i.e.

PSpec(A2) = Spec(A2) = Spec(K[t, x, y])

which is unknown yet.
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0
α+ β =

f∂t + λ−1f∂t = 0

and u = 0

Class I:

f = 0,

α = β = 0,
u = 0

C
la
ss

I.
1

f 6= 0,

λ = −1,
β = −α 6= 0,

u = 0

C
la
ss

I.
2

c = 0

cl
as
s
I.
1.
1

c ∈ K×

class
I.1.2

c = 0

class
I.2.1

c ∈ K×

cl
as
s
I.
2.
2

0f ∈ K[t]\K

cl
as
s
I.2
.1
.1

0f ∈ K×

class I.2.1.2

f ∈ K[t]\K

class
I.2.2.1

f ∈ K×
clas

s I.2
.2.2

Diagram IV.1.1: Structure of the first class of Poisson algebras A
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The following is the Poisson algebra A3 that belongs to the subclass I.1.2. Notice that, c

is a non-zero element in K. The techniques to classify Poisson prime ideals of A3 have some

properties of localization.

Class I.1.2:

If c ∈ K× and α = β = u = 0 then we have the Poisson algebra A3 = (K[t]; 0, 0, c, 0) with

Poisson bracket defined by the rule

{t, y} = 0, {t, x} = 0 and {y, x} = cyx. (IV.1.2)

The following notation describes the localization algebra of the Poisson algebra A3.

Notation IV.1.2. Let S = K[t]\{0}. The localization of the Poisson algebra A3 is B =

S−1A3, i.e. B = K(t)[x, y], where K(t) = S−1K[t] is the field of rational functions in the

variable t. The algebra B is a Poisson algebra with Poisson bracket defined by the rule

{y, x} = cyx. (IV.1.3)

The next lemma describes the Poisson prime ideals of the Poisson algebra B.

Lemma IV.1.3. Let A3 = (K[t]; 0, 0, c, 0) be the Poisson algebra as above and B be the

Poisson algebra in Notation IV.1.2, where c ∈ K×. Then

1. PSpec(B)=
{

0, (x), (y), (x, p), (y, q) | p ∈ IrrmK(t)[y] and q ∈ IrrmK(t)[x]
}
, the con-

tainment information between Poisson prime ideals of B is given in diagram IV.1.2.

2. PMax(B)=
{

(x, p), (y, q) | p ∈ IrrmK(t)[y] and q ∈ IrrmK(t)[x]
}

.

3. the localization Bxy of the algebra B at the powers of the element xy is a simple Poisson

algebra.

4. PZ(B) = PZ(Bxy)=K(t).

Proof. 3. It follows from the equality (IV.1.3) that

δy := pady = cyx∂x and δx := padx = −cyx∂y,



70 Chapter IV. The Poisson algebras A of dimension three

0
(
x, p

)

(x)

(
y, q

)

(y)

0

where p ∈ IrrmK(t)[y]

and q ∈ IrrmK(t)[x].

Diagram IV.1.2: The containment information between Poisson prime ideals of B

where ∂y = ∂
∂y and ∂x = ∂

∂x are the partial derivatives of the algebras B = K(t)[x, y],

and Bxy = K(t)[x, y, (xy)−1]. Then

∂x = (cyx)−1δy and ∂y = −(cyx)−1δx.

It follows from these equalities that the Poisson algebra Bxy is simple. Indeed, let I

be a non-zero Poisson ideal of Bxy since B ⊆ Bxy, the ideal I ′ := B ∩ I is a non-zero

Poisson ideal of B. Let n := min
{

degx(a) | a ∈ I ′\{0}
}
, where degx(a) is the x-degree

of the polynomial a = a0 + a1(y)x+ a2(y)x2 + · · ·+ ad(y)xd, i.e. degx(a) = d provided

ad(y) 6= 0, where a0(y), a1(y), . . . , ad(y) ∈ K(t)[y].

(i) Suppose that n = 0. Then 0 6= I ′ ∩ K(t)[y] = K(t)[y]p for non-zero polynomial

p ∈ K(t)[y] if degy(p) = 0, i.e. p ∈ K(t) then p is a unit element this implies that

1 ∈ I ′ ⊆ I hence, I = Bxy. If degy(p) ≥ 1 then the polynomial ∂y(p) = ∂p
∂y ∈

I ′∩K(t)[y] has degree degy(p)−11 which is not possible since 0 6= ∂y(p) ∈ K(t)[y]p.

This means that the case degy(p) ≥ 1 is impossible.

(ii) Suppose that n ≥ 1. Fix a polynomial, say a = a0 + a1x+ a2x
2 + · · ·+ anx

n, with

degx(a) = n, where a0, a1, . . . , an ∈ K(t)[y] then the polynomial ∂x(a) = ∂a
∂x ∈

I ′\{0} and degx
(
∂x(a)

)
= n − 1, a contradiction. Therefore, the case n ≥ 1 is

impossible.

1. It follows from the equality (IV.1.3) that the prime ideals of B, 0, (x), (y), (x, p)

1since char(K) = 0
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and (y, q) are also Poisson ideals. Hence, all the ideals in statement 1 are Poisson

prime ideals of the Poisson algebra B. Clearly that diagram IV.1.2 reflects all possible

containment of these Poisson prime ideals. To finish the proof of statement 1 we have to

show that there are no additional Poisson ideals of B, but this follows from statement

3.

2. Statement 2 follows from diagram IV.1.2.

4. Since PZ(B) ⊆ PZ(Bxy), it suffices to show that Z :=PZ(Bxy)=K(t). Given a ∈ Z\{0}.
We have to show that a ∈ K(t). Since a ∈ Z\{0}, the ideal (a) := aBxy is a non-

zero Poisson ideal of the Poisson algebra Bxy. The Poisson algebra Bxy is simple by

statement 3, hence a is a unit of the algebra Bxy, i.e. a = f(t) for some f ∈ K(t) as

required.

The next remark gives us an important equality to classify the Poisson spectrum, which

will be used very often throughout this thesis.

Remark IV.1.4. If S = K[t]\{0} and the localization of the Poisson algebra A is B = S−1A

then

PSpec(A) = PSpec(B)r
∐

PSpec(A,K[t]), (IV.1.4)

where PSpec(B)r =
{
A ∩ P | P ∈ PSpec(B)

}
and

PSpec(A,K[t]) =
{
p ∈ PSpec(A) | p ∩K[t] 6= 0

}
. (IV.1.5)

Notice that, the map

PSpec(B)→ PSpec(B)r, P 7→ A ∩ P (IV.1.6)

is a bijection with the inverse p 7→ S−1p.

The next theorem classifies the Poisson prime ideals of the Poisson algebra A3.

Theorem IV.1.5. Let A3 = (K[t]; 0, 0, c, 0) be the Poisson algebra as above and B be the

Poisson algebra in Notation IV.1.2, where c ∈ K×. Then
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1. PSpec(A3) = PSpec(B)r
∐

PSpec(A3, S), where

PSpec(B)r =
{

0, (x), (y), (x, lpp), (y, lqq) | p ∈ IrrmK(t)[y] and q ∈ IrrmK(t)[x]
}
, lp

2

is a unique monic polynomial in K[t] of the least degree in t such that lpp ∈ K[t, y]3;

PSpec(A3, S) =
{

(t− λ), (x, t− λ), (y, t− λ), (x, y, t− λ), (x, y − µ, t− λ), (y, x− µ, t−
λ) | λ ∈ K and µ ∈ K×

}
, the containment information between Poisson prime ideals

of A3 is given in diagram IV.1.3.

0(x, y, t− λ)
(x, y − µ,
t− λ)

(y, x− µ,
t− λ)

(x, t− λ)
0(x, Ipp)

(x, y)

(y, Iqq)
(x, y − µ)

(y, t− λ)

(y, x− µ)

(t− λ)(y)0(x)

00

where λ ∈ K, µ ∈ K×,
lpp ∈ K[t, y] and lqq ∈ K[t, x].

Diagram IV.1.3: The containment information between Poisson prime ideals of A3

2. for all p ∈ PSpec(B)r and q ∈ PSpec(A3, S), q * p.

Proof. 1. The first equality of statement 1 follows from (IV.1.4). Then the second equality

of statement 1 follows from the explicit description of the set PSpec(B), see Lemma

IV.1.3.(1). Let p ∈ PSpec(A3, S). Then p′ := K[t] ∩ p is a non-zero prime ideal of the

polynomial algebra K[t], i.e. p′ = (t−λ) for some element λ ∈ K4. The Poisson algebra

A3/(t− λ) ∼= K[t]/(t− λ)⊗K[x, y] ∼= K[x, y] (IV.1.7)

2respectively, lq
3respectively, lqq ∈ K[t, x]
4since the field K is an algebraically closed field
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is a polynomial Poisson algebra P2= K[x, y] with Poisson bracket {y, x} = cyx, where

c ∈ K×. The Poisson prime spectrum of such algebras is described in Theorem III.1.2.

So,

PSpec(P2) =
{

0, (x), (y), (x, y), (y, x− µ), (x, y − µ) | µ ∈ K×
}
.

Therefore,

PSpec(A3, S) =
{

(t− λ), (x, t− λ), (y, t− λ), (x, y, t− λ), (x, y − µ, t− λ), (y, x− µ, t−
λ) | λ ∈ K and µ ∈ K×

}
.

2. Suppose that q ⊆ p for some ideals p ∈ PSpec(B)r and q ∈ PSpec(A3, S), we seek a

contradiction. Then B = S−1q ⊆ S−1p ( B, a contradiction.

The next is the second subclass of class I and has two subclasses which are dependent on

c.

Class I.2

If λ = −1, i.e. β = −α = −f∂t, u = 0 and c ∈ K, where f ∈ K[t]\{0} then we have the

Poisson algebra A4 = (K[t]; f∂t,−f∂t, c, 0) with Poisson bracket defined by the rule

{t, y} = fy, {t, x} = −fx and {y, x} = cyx. (IV.1.8)

There are two subclasses which are dependent on c:

Class I.2.1: If c = 0.

Class I.2.2: If c ∈ K×.

Remark IV.1.6. The Poisson ideals (x) and (y) are Poisson prime ideals of A4 = K[t][x, y],

and

A4/(x) ∼= K[t, y] (IV.1.9)

is a polynomial Poisson algebra P1 = K[t, y] with Poisson bracket {t, y} = fy, where f ∈
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K[t]\K. The Poisson prime spectrum of such algebras is described in Theorem III.1.2. So,

PSpec(P1) =
{

0, (y), (t−λi), (y, t−ν), (y−µ, t−λi) | ν ∈ K,µ ∈ K×, λi ∈ Rf and i = 1, . . . , s
}
.

In addition,

A4/(y) ∼= K[t, x] (IV.1.10)

is a polynomial Poisson algebra P = K[t, x] with Poisson bracket {t, x} = −fx, where

f ∈ K[t]\K. The Poisson spectrum of such algebras is described in Theorem III.1.2. So,

PSpec(P) =
{

0, (x), (t−λi), (x, t−ν), (x−µ, t−λi) | ν ∈ K,µ ∈ K×, λi ∈ Rf and i = 1, . . . , s
}
.

Definition IV.1.7. Let A be a Poisson algebra and I be a subset of A then

V(I) =
{
p ∈ PSpec(A) | I ⊆ p

}
.

The following is the Poisson algebra A5 that belongs to the subclass I.2.1. This subclass

has two subclasses which are dependent on the roots of f .

Class I.2.1:

If α = f∂t, β = −f∂t and u = c = 0, where f ∈ K[t]\{0} then we have the Poisson algebra

A5 = (K[t]; f∂t,−f∂t, 0, 0) with Poisson bracket defined by the rule

{t, y} = fy, {t, x} = −fx and {y, x} = 0. (IV.1.11)

There are two subclasses which are dependent on f :

Class I.2.1.1: If f ∈ K[t]\K.

Class I.2.1.2: If f ∈ K×.
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Class I.2.1.1: If f ∈ K[t]\K and u = c = 0 then we have the Poisson algebra A6 =

(K[t]; f∂t,−f∂t, 0, 0) with Poisson bracket defined by the rule

{t, y} = fy, {t, x} = −fx and {y, x} = 0. (IV.1.12)

The next theorem identifies the Poisson prime ideals of the Poisson algebra A6.

Theorem IV.1.8. Let A6 = (K[t]; f∂t,−f∂t, 0, 0) be the Poisson algebra as above, where

f ∈ K[t]\K, i.e. Rf 6= ∅. Then

1. PSpec(A6) = {0} ∪ V(x) ∪ V(y) ∪ V(f) ∪⋃µ∈K× V(xy − µ).

2. PSpec(A6) =
{

0, (x), (y), (t− λi), (x, t− λi), (y, t− λi), (xy−µ), (x, y), (h, t− λi), (xy−
µ, t − λi), (x, y, t − ν), (y, x − µ, t − λi), (x, y − µ, t − λi), (x − µ, y − µ′, t − λi), (x −
ω, y + ω−1µ, t− λi) | ν ∈ K,µ, µ′, ω ∈ K×, λi ∈ Rf , i = 1, . . . , s and h ∈ IrrmK[x, y]

}
,

the containment information between Poisson prime ideals of A6 is given in diagram

IV.1.4.

0

(
x− ω,

y + ω−1µ,

t− λi
)

(
xy − µ,
t− λi

)

0

(
y, x− µ,
t− λi

)

(
y, t− λi

)
(
x− µ,
t− λi

)

0(xy − µ)

(
x, y − µ,
t− λi

)
(
x, y, t− ν

)
(
x− µ,
y − µ′,
t− λi

)

(x, y)

(
y − µ,
t− λi

)(
h, t− λi

)

(
x, t− λi

)

(t− λi) (y) (x)

0

where ν ∈ K, µ, µ′, ω ∈ K×,
λi ∈ Rf , i = 1, . . . , s

and h ∈ IrrmK[x, y].

Diagram IV.1.4: The containment information between Poisson prime ideals of A6
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3. PMax(A6) =
{

(x, y, t− ν), (y, x− µ, t− λi), (x, y− µ, t− λi), (x− µ, y− µ′, t− λi), (x−
ω, y + ω−1µ, t− λi) | ν ∈ K,µ, µ′, ω ∈ K×, λi ∈ Rf and i = 1, . . . , s

}
.

4. PZ(A6fxy) = K[xy, (xy)−1] and I ∩PZ(A6fxy) 6= 0 for all non-zero Poisson ideals I of

A6fxy, where A6fxy is the localization of the algebra A6 at the powers of the element

fxy.

5. PZ(A6) = K[xy].

Proof. 4. Notice that,

δx := padx = fx∂t,

δy := pady = −fy∂t,

δt := padt = f(−x∂x + y∂y).

Therefore,

∂t = (fx)−1δx and ∆ := x∂x − y∂y = −f−1δt.

Suppose that I is a non-zero Poisson ideal of the Poisson algebra A6fxy. We have to

show that I ∩ PZ(A6fxy) 6= 0. Since ∂t = (fx)−1δx the ideal I2 := I ∩K[x, y] is a non-

zero Poisson ideal of the Poisson algebra K[x, y], where {y, x} = 0 which is ∆-invariant.

Since kerK[x,y](∆) = K[xy] and the polynomial algebra K[x, y] =
⊕

i∈ZK[x, y]νi, where

νi =





xi if i > 0,

1 if i = 0,

y|i| if i < 0

is a direct sum of ∆-eigenspace with different eigenvectors5:

∆νi = iνi for all i ∈ Z,

the ideal I2 contains an element pνi for some polynomial p ∈ K[xy]\{0} and i ∈ Z.

The element νi is a unit in A6fxy. Hence, p ∈ I and so 0 6= p ∈ I ∩ PZ(A6fxy), by the

5since char(K)=0



IV.1. The first class 77

statement (ii) below.

(i) A6fxyδx +A6fxyδy +A6fxyδt = A6fxy∂t ⊕A6fxy∆ straightforward.

(ii) PZ(A6fxy) = K[xy, (xy)−1]: By the statement (i),

PZ(A6fxy) = kerA6fxy
(∂t) ∩ kerA6fxy

(∆) = K[x±1, y±1] ∩ kerA6fxy
(∆) = kerK[x±1,y±1](∆) =

K[xy, (xy)−1].

5. PZ(A6) = A6 ∩ PZ(A6fxy) = A6 ∩K[xy, (xy)−1] = K[xy], by statement 4.

1. If A6fxy = S−1A6, where S =
{

(fxy)i | i ≥ 1
}

then any non-zero Poisson prime ideal of

A6 intersect with S contains an element (fxy)i for some i ≥ 1. It follows from (IV.1.4)

that PSpec(A6) = PSpec(A6fxy)
r
∐

PSpec(A6, S). Therefore,

PSpec(A6, S) = {0} ∪ V(fxy) = {0} ∪ V(x) ∪ V(y) ∪ V(f)

and by statement 4,

PSpec(A6fxy)
r = {0} ∪

⋃

µ∈K×
V(xy − µ).

2. It follows from statement 1,

PSpec(A6) = {0} ∪ V(x) ∪ V(y) ∪
s⋃

i=1

(t− λi) ∪
⋃

µ∈K×
(xy − µ).

Notice that, the following Poisson factor algebras are examples of the ones appeared in

Theorem III.1.2

A6/(x) ∼= P1,

A6/(y) ∼= P, {t, x} = −fx,

A6/(t− λi) ∼= P0 = K[x, y], {y, x} = 0,

A6/(xy − µ) ∼= P3 = K[t, x±1], {t, x} = −fx.
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Now, statement 2 follows from Theorem III.1.2.

3. It follows from diagram IV.1.4.

Class I.2.1.2: If f ∈ K× then we have the Poisson algebra A7 = (K[t]; f∂t,−f∂t, 0, 0)

with Poisson bracket defined by the rule

{t, y} = fy, {t, x} = −fx and {y, x} = 0. (IV.1.13)

The next theorem gives us the classification of Poisson prime ideals of the Poisson algebra

A7.

Theorem IV.1.9. Let A7 = (K[t]; f∂t,−f∂t, 0, 0) be the Poisson algebra as above, where

f ∈ K×, i.e. Rf = ∅. Then

1. PSpec(A7) =
{

0, (x), (y), (xy−µ), (x, y), (xy−µ, t−ν), (x, y, t−ν), (x−λ, y+λ−1µ, t−
ν) | ν ∈ K and µ, λ ∈ K×

}
, the containment information between Poisson prime ideals

of A7 is given in diagram IV.1.5.

(
xy − µ,
t− ν

)

0(xy − µ)

(
x, y, t− ν

)
(
x− λ,

y + λ−1µ,
t− ν

)

(x, y)

(y) (x)

0

where ν ∈ K and µ, λ ∈ K×.

Diagram IV.1.5: The containment information between Poisson prime ideals of A7

2. PMax(A7) =
{

(x, y, t− ν), (x− λ, y + λ−1µ, t− ν) | ν ∈ K and µ, λ ∈ K×
}

.
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Proof. 1. Since f ∈ K×, by Theorem IV.1.8.(1),

PSpec(A7) = {0} ∪ V(x) ∪ V(y) ∪
⋃

µ∈K×
V(xy − µ).

Now, the theorem follows from Theorem III.1.2 since

A7/(y) ∼= P(f), {t, x} = −fx,

A7/(x) ∼= P ′1 = K[t, y], {t, y} = fy,

A7/(xy − µ) ∼= P ′3 = K[t, x±1], {t, x} = −fx.

2. It follows from diagram IV.1.5.

The next is the Poisson algebra A8 that belongs to the subclass I.2.2. This subclass has

two subclasses which are dependent on the roots of f .

Class I.2.2:

If c ∈ K×, α = f∂t, β = −f∂t and u = 0, where f ∈ K[t]\{0} then we have the Poisson

algebra A8 = (K[t]; f∂t,−f∂t, c, 0) with Poisson bracket defined by the rule

{t, y} = fy, {t, x} = −fx and {y, x} = cyx. (IV.1.14)

There are two subclasses which are dependent on f :

Class I.2.2.1: If f ∈ K[t]\K.

Class I.2.2.2: If f ∈ K×.

Class I.2.2.1: If f ∈ K[t]\K and c ∈ K× then we have the Poisson algebra A9 =

(K[t]; f∂t,−f∂t, c, 0) with Poisson bracket defined by the rule

{t, y} = fy, {t, x} = −fx and {y, x} = cyx. (IV.1.15)



80 Chapter IV. The Poisson algebras A of dimension three

The next theorem classifies the Poisson prime ideals of the Poisson algebra A9.

Theorem IV.1.10. Let A9 = (K[t]; f∂t,−f∂t, c, 0) be the Poisson algebra as above, where

c ∈ K× and f ∈ K[t]\K, i.e. Rf 6= ∅. Then

1. PSpec(A9) = {0} ∪ V(x) ∪ V(y) ∪ V(f).

2. PSpec(A9) =
{

0, (x), (y), (x, y), (t− λi), (y, t− λi), (x, t− λi), (x, y, t− ν), (x, y − µ, t−
λi), (y, x − µ, t − λi) | ν ∈ K,µ ∈ K×, λi ∈ Rf and i = 1, . . . , s

}
, the containment

information between Poisson prime ideals of A9 is given in diagram IV.1.6.

0

(
y, x− µ,
t− λi

)

(
y, t− λi

)

(
x, y − µ,
t− λi

)

(
x, t− λi

)

(
x, y, t− ν

)

(x, y)

(y) (t− λi) (x)

0 where ν ∈ K,µ ∈ K×,
λi ∈ Rf and i = 1, . . . , s.

Diagram IV.1.6: The containment information between Poisson prime ideals of A9

3. PMax(A9) =
{

(x, y, t − ν), (y, x − µ, t − λi), (x, y − µ, t − λi) | ν ∈ K,µ ∈ K×, λi ∈
Rf and i = 1, . . . , s

}
.

4. the localization A9fxy of the algebra A9 at the powers of the element fxy is a simple

Poisson algebra.

Proof. 4. Suppose that I is a non-zero Poisson ideal of A9fxy. We have to show that

I = A9fxy. Notice that, an ideal I ′ := I ∩A9 is a non-zero Poisson ideal of the Poisson

algebra A9. Let I1 := I∩K[t] = K[t]q be a non-zero Poisson ideal of the Poisson algebra
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K[t], where q ∈ K[t]\{0} which has no common root with f if q ∈ K× then q ∈ I, and

so I = A9fxy, as required. Suppose that q ∈ K[t]\K, we seek a contradiction. Notice

that,

δx := padx = fx∂t − cyx∂y,

δy := pady = −fy∂t + cyx∂x,

δt := padt = f(−x∂x + y∂y).

Therefore,

cf−1δt = −x−1δx − y−1δy

2f∂t = x−1δx − y−1δy + cy∂y + cx∂x

which implies that the ideal I and the algebra K[t] are f∂t-invariant. Hence, I1 and

every minimal prime ideal of the ideal I1 of K[t], i.e. ideals (t − ν) are f∂t-invariant,

where ν is a root of q. So, f∂t(t − ν) = f ∈ (t − ν). Therefore, ν is a root of the

polynomial f , a contradiction. Now, let I2 := I ∩P2 be a non-zero Poisson ideal of the

Poisson algebra P2, where {y, x} = cyx. In particular,

∂x = (cxy)−1δy,

∂y = −(cxy)−1δx.

Let n := min
{

degx(a) | a ∈ I2\{0}
}
, where degx(a) is the x-degree of the polynomial

a = a0 + a1(y)x+ a2(y)x2 + · · ·+ ad(y)xd, i.e. degx(a) = d provided ad(y) 6= 0, where

a0(y), a1(y), . . . , ad(y) ∈ K[y].

(i) Suppose that n = 0. Then 0 6= I2∩K[y] = K[y]p for non-zero polynomial p ∈ K[y]

if degy(p) = 0, i.e. p ∈ K×, then p is a unit element this implies that 1 ∈ I2 ⊆ I

and so I = A9fxy. If degy(p) ≥ 1 then the polynomial ∂y(p) = ∂p
∂y ∈ I2 ∩K[y] has

degree degy(p) − 16 which is not possible since 0 6= ∂y(p) ∈ K[y]p. This means

that the case degy(p) ≥ 1 is impossible.

(ii) Suppose that n ≥ 1. Fix a polynomial, say a = a0 + a1x+ a2x
2 + · · ·+ anx

n, with

6since char(K) = 0
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degx(a) = n, where a0, a1, . . . , an ∈ K[y] then the polynomial ∂x(a) = ∂a
∂x ∈ I2\{0}

and degx
(
∂x(a)

)
= n−1, a contradiction. Therefore, the case n ≥ 1 is impossible.

1. By statement 4, the Poisson algebra A9fxy is simple. So, every non-zero Poisson ideal

of A9 contains an element (fxy)i for some i ≥ 1. Therefore,

PSpec(A9) = {0} ∪ V(fxy) = {0} ∪ V(x) ∪ V(y) ∪ V(f). (IV.1.16)

2. By statement 1,

PSpec(A9) = {0} ∪ V(x) ∪ V(y) ∪
s⋃

i=1

(t− λi). (IV.1.17)

Notice that, the following Poisson factor algebras are examples of the ones appeared in

Theorem III.1.2

A9/(x) ∼= P1,

A9/(y) ∼= P, {t, x} = −fx,

A9/(t− λi) ∼= P2.

Now, statement 2 follows from Theorem III.1.2.

3. It follows from diagram IV.1.6.

Class I.2.2.2: If f, c ∈ K× then we have the Poisson algebra A10 = (K[t]; f∂t,−f∂t, c, 0)

with Poisson bracket defined by the rule

{t, y} = fy, {t, x} = −fx and {y, x} = cyx. (IV.1.18)

The following theorem describes the classification of Poisson prime ideals of the Poisson

algebra A10.

Theorem IV.1.11. Let A10 = (K[t]; f∂t,−f∂t, c, 0) be the Poisson algebra as above, where

c, f ∈ K× and Rf = ∅. Then
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1. PSpec(A10) =
{

0, (x), (y), (x, y), (x, y, t − ν) | ν ∈ K
}

, the containment information

between Poisson prime ideals of A10 is given in diagram IV.1.7.

(
x, y, t− ν

)

(x, y)

(y)(x)

0

where ν ∈ K.

Diagram IV.1.7: The containment information between Poisson prime ideals of A10

2. PMax(A10) =
{

(x, y, t− ν) | ν ∈ K
}

.

Proof. 1. Since f ∈ K×, by Theorem IV.1.10.(1),

PSpec(A10) = {0} ∪ V(x) ∪ V(y).

Now, statement 1 follows from Theorem III.1.2 since

A10/(x) ∼= P ′1,

A10/(y) ∼= P(f), {t, x} = −fx.

2. It follows from diagram IV.1.7.
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Notes: From now, the numerical ordering for the third digit is changed to a letter instead

of a number to simplify the notation.

§IV.2 The second class

The class II comprises two main subclasses: II.1 and II.2, and each subclass has further

subclasses. The aim of this section is to classify all Poisson prime ideals, minimal Poisson

ideals and maximal Poisson ideals for Poisson algebras that belong to the class II.1 and

certain subclasses of II.2.

Let us give more detail, the first subclass II.1 has four subclasses:

II.1a, II.1b, II.1c and II.1d.

The classifications of Poisson prime ideals for Poisson algebras that belong to these four

subclasses are obtained in Theorem IV.2.3, Theorem IV.2.5, Theorem IV.2.6 and Theorem

IV.2.7, respectively. In particular, each of these is treated individually and different tech-

niques are involved. The main ideas to classify Poisson prime ideals for these algebras are

the localization and factorization of Poisson algebras, and Lemma IV.2.2. These methods are

similar to some techniques in the recent paper [Bav4], see the review in Subsection II.3.3 for

detail. In addition, the inclusions of Poisson prime ideals for Poisson algebras that belong

to the subclasses, II.1b, II.1c and II.1d, are given in diagram IV.2.2, diagram IV.2.3 and

diagram IV.2.4, respectively.

The second subclass II.2 has eight subclasses:

II.2a, II.2b, II.2c, II.2d, II.2e, II.2f, II.2g and II.2k.

In addition, the Poisson prime ideals for Poisson algebras that belong to the subclasses, II.2a,

II.2b and II.2c, are classified in Corollary IV.2.8, Corollary IV.2.9 and Theorem IV.2.11,

respectively. Also, the classifications of Poisson prime ideals for Poisson algebras belong to

special cases of the subclasses, II.2d, II.2g and II.2k, are obtained in Corollary Corollary

IV.2.12, Corollary IV.2.13 and Corollary IV.2.14, respectively. Following that, the inclusions
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of Poisson prime ideals for Poisson algebras that belong to the subclasses, II.2d′ and II.2k′, are

given in diagram IV.2.5 and diagram IV.2.6, respectively. However, it is difficult to classify

Poisson prime ideals for the Poisson algebras that belong to the two subclasses, II.2e and

II.2f.

Class II:

If α+ β = f∂t + λ−1f∂t = 0, u ∈ K[t]\{0} and c ∈ K, where λ ∈ K×, f ∈ K[t]. Notice that,

f∂t + λ−1f∂t = 0 implies that there are two subclasses:

Class II.1: If f = 0.

Class II.2: If λ = −1.

Structure of the second class of Poisson algebras A is given in diagram IV.2.1.

The following is the first subclass of class II and consists of four subclasses. The clas-

sifications of Poisson prime ideals for Poisson algebras A12, A13, A14 and A15 that belong

to these subclasses, II.1a, II.1b, II.1c and II.1d, respectively, are obtained. In addition, the

primary key to classifying is Lemma IV.2.2, which can be considered the algebra A11 as a

generalization of these algebras.

Class II.1

If f = 0, i.e. α = β = 0, u ∈ K[t]\{0} and c ∈ K then we have the Poisson algebra

A11 = (K[t]; 0, 0, c, u) with Poisson bracket defined by the rule

{t, y} = 0, {t, x} = 0 and {y, x} = cyx+ u. (IV.2.1)

There are four subclasses to consider:

Class II.1a: If c = 0 and u ∈ K×.

Class II.1b: If c = 0 and u ∈ K[t]\K.

Class II.1c: If c and u are in K×.
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0
α+ β =

f∂t + λ−1f∂t = 0

and u 6= 0

Class II:

f = 0,

α = β = 0,

u 6= 0

c ∈ K×

f 6= 0

λ 6= −1,
β = −α 6= 0,

u 6= 0

c = 0

c = 0c ∈ K×

u ∈ K×

u ∈ K[t]\K

u ∈ K[t]\Ku ∈ K×

0f ∈ K×

0f ∈ K[t]\K

0u ∈ K[t]\K 0u ∈ K[t]\K

0u ∈ K× 0u ∈ K×

0f ∈ K×

0f ∈ K[t]\K

0f ∈ K[t]\K

0f ∈ K×

f ∈ K×

class II.2e

Class II.2

cla
ss I

I.2g

Cl
as
s I
I.1

class II.1c class II.1
a

class II.1b
cla
ss
II.
1d

cla
ss

II.2
a

class II.2c

cl
a
ss

II
.2
b

class II.2d

class II.2k

class II.
2f

f ∈ K[t]\K

Diagram IV.2.1: Structure of the second class of Poisson algebras A
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Class II.1d: If c = 0 and u ∈ K[t]\K.

Remark IV.2.1. Clearly, ρ := cyx+ u 6= 0, and so there is a chain of Poisson algebras

A11 ⊂ A := K(t)⊗K[x, y] ⊂ Aρ. (IV.2.2)

The next lemma gives us the classification of Poisson prime ideals of the Poisson algebra

A11.

Lemma IV.2.2. Let A11 = (K[t]; 0, 0, c, u) be the Poisson algebra as above, where u ∈
K[t]\{0} and c ∈ K. Then

1. the Poisson algebra Aρ is a simple Poisson algebra with PZ(Aρ) = K(t).

2. the algebra PD(Aρ) of Poisson differential operators is isomorphic to the localization

of the Weyl algebra K(t) ⊗ A2 over the field K(t) at the powers of the element ρ,

S−1
ρ K(t) ⊗ A2, where Sρ := {ρi | i ≥ 0} and A2 = K〈x, y, ∂x, ∂y〉 ⊆ EndK(Aρ).

In particular, the algebra PD(Aρ) is a simple Noetherian domain of Gelfand-Kirillov

dimension five.

3. if p ∈ PSpec(A11)\{0} then either t− λ ∈ p, where λ ∈ K or ρ ∈ p.

Proof. 2. The algebra PD(Aρ) is a subalgebra of the algebra EndK(Aρ) that is generated

by the algebra Aρ and the derivations

δx = padx = −ρ∂y, δy = pady = ρ∂x and δt = padt = 0.

Hence,

PD(Aρ) ' S−1
ρ K(t)⊗A2 = A2(K(t))ρ.

The Weyl algebra A2(K(t)) over the field K(t) is a simple Noetherian domain of

Gelfand-Kirillov dimension five over K, hence so is its localization PD(Aρ).

1. By Theorem II.3.20, statement 1 follows from statement 2.

3. Statement 3 follows from statement 2.
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The following is the Poisson algebra A12 that belongs to the subclass II.1a. Notice that,

everything is zero, except u is a unit element in K. The technique to classify Poisson prime

ideals of A12 is localizing A12 at u and writing A12 as a tensor product.

Class II.1a:

If c = 0 and u ∈ K× then we have the Poisson algebra A12 = (K[t]; 0, 0, 0, u) with Poisson

bracket defined by the rule

{t, y} = 0, {t, x} = 0 and {y, x} = u. (IV.2.3)

The following theorem classifies the Poisson prime ideals of the Poisson algebra A12.

Theorem IV.2.3. Let A12 = (K[t]; 0, 0, 0, u) be the Poisson algebra as above, where u ∈ K×.

Then replacing the element y by u−1y we may assume that u = 1 and in this case the Poisson

algebra A12 = K[t] ⊗K[x, y] is a tensor product of the trivial Poisson algebra K[t] and the

simple Poisson algebra K[x, y], where {y, x} = 1. Then

1. PSpec(A12) =
{
p⊗K[x, y] | p ∈ Spec(K[t])

}
.

2. PMax(A12) =
{
m⊗K[x, y] | m ∈ Max(K[t])

}
.

3. PZ(A12) = K[t].

Proof. We may assume that u = 1. Then the Poisson algebra A12 = K[t]⊗K[x, y] is a tensor

product of the trivial Poisson algebra K[t] and the simple Poisson algebra K[x, y], where

{y, x} = 1. Hence, PZ(A12) = K[t] and

PSpec(A12) =
{
p⊗K[x, y] | p ∈ Spec(K[t])

}
,

by Lemma IV.2.27. Clearly,

PMax(A12) =
{
m⊗K[x, y] | m ∈ Max(K[t])

}
.

7since ρ = u ∈ K×
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The following notation gives us the explicit formula of the roots of the polynomial u.

Notation IV.2.4. Let Ru = {λ1, . . . , λn} be the set of distinct roots of the polynomial

u(t) =
n∏

i=1

λu(t− λi)ri , (IV.2.4)

where λu is the leading coefficient of u and r1, . . . , rn ≥ 1 are the multiplicities of the roots

λ1, . . . , λn, respectively.

The following is the Poisson algebra A13 that belongs to the subclass II.1b. Notice that, c

is zero and u ∈ K[t]\K. The technique to classify Poisson prime ideals of A13 is similar to

the techniques used in the algebra A12, whereas u is a polynomial in t.

Class II.1b:

If c = 0 and u ∈ K[t]\K then we have the Poisson algebra A13 = (K[t]; 0, 0, 0, u) with Poisson

bracket defined by the rule

{t, y} = 0, {t, x} = 0 and {y, x} = u. (IV.2.5)

Let A13u be the localization of the algebra A13 at the powers of the element u.

The next theorem describes the Poisson prime ideals of the Poisson algebra A13.

Theorem IV.2.5. Let A13 = (K[t]; 0, 0, 0, u) be the Poisson algebra and A13u be as above,

where u ∈ K[t]\K, i.e. Ru 6= ∅. Then

1. by replacing the element y by u−1y, we may assume that u = 1 in the Poisson algebra

A13u and in this case the Poisson algebra A13u = K[t]u⊗K[x, y] is a tensor product of

the trivial Poisson algebra K[t]u and the simple Poisson algebra K[x, y], where {y, x} =

1,

(i) PZ(A13u) = K[t]u.

(ii) PSpec(A13u) =
{
p⊗K[x, y] | p ∈ Spec(K[t]u)

}
.
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2. PSpec(A13) =
{

0, (t − ν), (p, t − λi) | ν ∈ K, λi ∈ Ru, i = 1, . . . , n and p ∈
Spec(K[x, y])\{0}

}
, the containment information between Poisson prime ideals of A13

is given in diagram IV.2.2.

0

(
y, x− µ,
t− λi

)

(
y, t− λi

) (
y − µ,
t− λi

)

(
x, y, t− λi

)
(
x− µ,
y − µ′,
t− λi

)

(
x, t− λi

)
(
x− µ,
t− λi

) (
h, t− λi

)

(
x, y − µ,
t− λi

)

(t− λi)(t− ν)

0

where ν ∈ K\Ru, µ, µ
′ ∈ K×,

λi ∈ Ru, i = 1, . . . , n

and h ∈ IrrmK[x, y].

Diagram IV.2.2: The containment information between Poisson prime ideals of A13

3. PMax(A13) =
{

(t − ν), (m, t − λi) | ν ∈ K\Ru, λi ∈ Ru, i = 1, . . . , n and m ∈
Max(K[x, y])\{0}

}
.

Proof. 1. We may assume that u = 1 for the algebra A13u. Then the Poisson algebra

A13u = K[t]u ⊗K[x, y] is a tensor product of the trivial Poisson algebra K[t]u and the

simple Poisson algebra K[x, y], where {y, x} = 1. Hence, PZ(A13u) = K[t]u and

PSpec(A13u) =
{
p⊗K[x, y] | p ∈ Spec(K[t]u)

}
,

by Lemma IV.2.2.(3), since ρ = u ∈ K[t]u.

2. For all elements ν ∈ K, (t − ν) ∈ PSpec(A13). For every i = 1, . . . , n, the Poisson

algebra A13/(t − λi) ' P0 has trivial Poisson bracket, and statement 2 follows from

Lemma IV.2.2.(3).

3. It follows from diagram IV.2.2.
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The following is the Poisson algebra A14 that belongs to the subclass II.1c. Notice that, c

and u are non-zero elements in K. The technique to classify Poisson prime ideals of A14 is

factoring A14 by the irreducible polynomial ρ, and writing A14 as a tensor product.

Class II.1c:

If c and u are in K× then we have the Poisson algebra A14 = (K[t]; 0, 0, c, u) with Poisson

bracket defined by the rule

{t, y} = 0, {t, x} = 0 and {y, x} = cyx+ u. (IV.2.6)

It follows that the element ρ = cyx+ u is an irreducible polynomial in A14.

The next theorem gives us the classification of Poisson prime ideals of the Poisson algebra

A14.

Theorem IV.2.6. Let A14 = (K[t]; 0, 0, c, u) be the Poisson algebra as above, where u and c

are in K×. Then

1. the Poisson algebra A14 = K[t] ⊗ K[x, y] is a tensor product of the trivial Poisson

algebra K[t] and the Poisson algebra K[x, y] with {y, x} = ρ.

2. PSpec(A14) =
{

0, (t−ν), (ρ), (ρ, t−ν),
(
t−ν, x−µ, y− (cµ)−1u

)
| ν ∈ K and µ ∈ K×

}
,

the containment information between Poisson prime ideals of A14 is given in diagram

IV.2.3.

3. PMax(A14) =
{(
t− ν, x− µ, y − (cµ)−1u

)
| ν ∈ K and µ ∈ K×

}
.

Proof. 1. Clearly, the Poisson algebra A14 = K[t]⊗K[x, y] is a tensor product of the trivial

Poisson algebra K[t] and the Poisson algebra P4 = K[x, y] with {y, x} = cyx+ u = ρ,

where u and c are in K×. Notice that, the ideal (ρ) is a prime Poisson ideal of the

Poisson algebra A14 and the factor algebra

A14/(ρ) ' K[t]⊗ P4/(ρ)

is a tensor product of trivial Poisson algebras K[t] and P4/(ρ).
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(
ρ, t− ν

)

(
t− ν,

x− µ, y−
(cµ)−1u

)

(t− ν)(ρ)

0

where ρ = cyx+ u,

ν ∈ K and c, u, µ ∈ K×.

Diagram IV.2.3: The containment information between Poisson prime ideals of A14

2. Now, statement 2 follows from Lemma IV.2.2.(3).

3. It follows from diagram IV.2.3.

The following is the Poisson algebra A15 that belongs to the subclass II.1d. Notice that, c

is a non-zero element in K and u ∈ K[t]\K. The technique to classify Poisson prime ideals

of A15 is similar to the techniques used in the algebra A14, whereas u is a polynomial in t.

Class II.1d:

If c ∈ K× and u ∈ K[t]\K then we have the Poisson algebra A15 = (K[t]; 0, 0, c, u) with

Poisson bracket defined by the rule

{t, y} = 0, {t, x} = 0 and {y, x} = cyx+ u. (IV.2.7)

It follows that the element ρ = cyx+ u is an irreducible polynomial in A15.

The following theorem shows that the classification of Poisson prime ideals of the Poisson

algebra A15.
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Theorem IV.2.7. Let A15 = (K[t]; 0, 0, c, u) be the Poisson algebra as above, where c ∈ K×

and u ∈ K[t]\K, i.e. Ru 6= ∅. Then

1. PSpec(A15) =
{

0, (t−ν), (ρ), (ρ, t−ω), (x, t−λi), (y, t−λi), p, (x, y, t−λi), (x, y−µ, t−
λi), (y, x − µ, t − λi),

(
t − ω, x − µ, y − (cµ)−1u(ω)

)
| ν ∈ K,µ ∈ K×, λi ∈ Ru, ω ∈

K\Ru, i = 1, . . . , n, p ∈ Spec(A15), ρ ∈ p and ht(p) = 2
}
, the containment information

between Poisson prime ideals of A15 is given in diagram IV.2.4.

0

(
y, x− µ,
t− λi

)

(
y, t− λi

) (
x, t− λi

)

(
x, y, t− λi

)
(
t− ω,

x− µ, y−
(cµ)−1u(ω)

)

(
ρ, t− ω

)
p

(
x, y − µ,
t− λi

)

(ρ)(t− λi) (t− ω)

0

where ρ = cyx+ u, p ∈ Spec(A15),

ρ ∈ p, ht(p) = 2, ω ∈ K\Ru,

λi ∈ Ru and i = 1, . . . , n.

Diagram IV.2.4: The containment information between Poisson prime ideals of A15

2. PMax(A15) =
{

(x, y, t − λi), (x, y − µ, t − λi), (y, x − µ, t − λi),
(
t − ω, x − µ, y −

(cµ)−1u(ω)
)
| µ ∈ K×, λi ∈ Ru, ω ∈ K\Ru and i = 1, . . . , n

}
.

Proof. 1. Notice that, (t−ν), where ν ∈ K and (ρ) are Poisson prime ideals of the Poisson

algebra A15. By Lemma IV.2.2.(3), each non-zero Poisson prime ideal q of A15 contains

one of the above ideals.

(i) Suppose that t − ω ∈ q and (t − ω) 6= q, where ω ∈ K\Ru. Then the Poisson

algebra

A15/(t− ω) ∼= P ′4 = K[x, y]
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admits the Poisson bracket {y, x} = cyx + u(ω), where u(ω), c ∈ K×. Then by

Theorem IV.2.6.(1),

PSpec(A15) ⊇
{

(ρ, t− ω),
(
t− ω, x− µ, y − (cµ)−1u(ω)

)
| ω ∈ K\Ru, µ ∈ K×

}
.

(ii) Suppose that t− λi ∈ q and (t− λi) 6= q for some λi ∈ Ru and i = 1, . . . , n. Then

the Poisson algebra

A15/(t− λi) ∼= P2.

Then, PSpec(A15) ⊇
{

(x, t − λi), (y, t − λi), (x, y, t − λi), (x, t − λi, y − µ), (y, t −
λi, x− µ) | µ ∈ K×, λi ∈ Ru and i = 1, . . . , n

}
.

(iii) Suppose that t−ν /∈ q for all ν ∈ K. Then necessarily ρ ∈ q, by Lemma IV.2.2.(3).

The Poisson algebra A15/(ρ) has trivial Poisson bracket, and so

PSpec
(
A15/(ρ)

)
= Spec

(
A15/(ρ)

)
.

Hence, the set
{
p ∈ Spec(A15) | ρ ∈ p and ht(p) = 2

}
contains precisely all the

Poisson prime ideals of the Poisson algebra A15 that properly contain the ideal (ρ)

and do not meet the algebra K[t].

1. Now, statement 1 follows from statements (i)–(iii).

2. It follows from diagram IV.2.4.

The following is the second subclass of class II and contains eight subclasses. The classifi-

cations of Poisson prime ideals for the Poisson algebras A17, A18 and A20 that belong to the

subclasses, II.2a, II.2b and II.2c, respectively, are obtained. In addition, the classifications of

Poisson prime ideals for the Poisson algebras A22, A26 and A28 that belong to special cases

of the subclasses, II.2d, II.2g and II.2k, respectively, are obtained. However, the Poisson

prime ideals of Poisson algebras that belong to the two subclasses, II.2e and II.2f, cannot be

classified.
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Class II.2

If λ = −1, i.e. β = −α = −f∂t and f, u ∈ K[t]\{0} then we have the Poisson algebra

A16 = (K[t]; f∂t,−f∂t, c, u) with Poisson bracket defined by the rule

{t, y} = fy, {t, x} = −fx and {y, x} = cyx+ u. (IV.2.8)

There are eight subclasses to consider:

Class II.2a: If c = 0, f and u are in K×.

Class II.2b: If c = 0, f ∈ K× and u ∈ K[t]\K.

Class II.2c: If c = 0, f ∈ K[t]\K and u ∈ K×.

Class II.2d: If c = 0, f and u are in K[t]\K.

Class II.2e: If c, f and u are in K×.

Class II.2f: If c, f ∈ K× and u ∈ K[t]\K.

Class II.2g: If c ∈ K×, f ∈ K[t]\K and u ∈ K×.

Class II.2k: If c ∈ K×, f and u are in K[t]\K.

The following is the Poisson algebra A17 that belongs to the subclass II.2a. Notice that, c

is zero, u and f are unit elements in K. The technique to classify Poisson prime ideals of A17

is similar to the technique in the paper [JoOh], which identifies the non-constant polynomial

a in the algebra A17 to turn the Poisson bracket into exact. From their study, in particular,

Corollary II.2.73 the classification of Poisson prime ideals for A17 follows.

Class II.2a:

If α = f∂t, β = −f∂t, c = 0 and f, u ∈ K× then we have the Poisson algebra A17 =

(K[t]; f∂t,−f∂t, 0, u) with Poisson bracket defined by the rule

{t, y} = fy, {x, t} = fx and {y, x} = u. (IV.2.9)
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The following corollary shows that the classification of Poisson prime ideals for the Poisson

algebra A17.

Corollary IV.2.8. Let A17 = (K[t]; f∂t,−f∂t, 0, u) be the Poisson algebra as above and

a = fxy + ut, where f, u ∈ K×. Then PSpec(A17) =
{

0, (a− µ) | µ ∈ K
}

.

Proof. Suppose that a = fxy + ut, where f, u ∈ K× then the Poisson bracket in (IV.2.9)

is exact, and a − µ is irreducible for all µ ∈ K. It follows from Corollary II.2.73 that the

Poisson spectrum of A17 consists of 0 and (a− µ), where µ ∈ K.

The following is the Poisson algebra A18 that belongs to the subclass II.2b. Notice that, c

is zero, f is a unit element in K, and u is a polynomial in t. The technique to classify Poisson

prime ideals of A18 is similar to the technique used in the algebra A17, which identifies the

non-constant polynomial a in the algebra A18 to turn the Poisson bracket into exact. From

the study [JoOh], in particular, Corollary II.2.73 the classification of Poisson prime ideals for

A18 follows.

Class II.2b:

If α = f∂t, β = −f∂t, c = 0 and u ∈ K[t]\K, where f ∈ K× then we have the Poisson algebra

A18 = (K[t]; f∂t,−f∂t, 0, u) with Poisson bracket defined by the rule

{t, y} = fy, {t, x} = −fx and {y, x} = u. (IV.2.10)

The following corollary shows that the classification of Poisson prime ideals of the Poisson

algebra A18.

Corollary IV.2.9. Let A18 = (K[t]; f∂t,−f∂t, 0, u) be the Poisson algebra as above and

a = fxy +
∏n
i=1

λu
(ri+1)(t− λi)ri+1, where f ∈ K×. Then PSpec(A18) =

{
0, (a− µ), (x, y, t−

λi) | µ ∈ K, λi ∈ Ru and i = 1, . . . , n
}

.

Proof. Let us assume that u is (IV.2.4) and a = fxy+
∏n
i=1

λu
(ri+1)(t−λi)ri+1 then the Poisson

bracket in (IV.2.10) is exact, and a−µ is irreducible for all µ ∈ K. It follows from Corollary

II.2.73 that the Poisson spectrum of A18 consists of 0, (a−µ) and (x, y, t−λi), where µ ∈ K,
λi ∈ Ru and i = 1, . . . , n.
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The following is a special case of the subclass II.2b.

Example IV.2.10. Let α = f∂t, β = −f∂t, c = 0 and u = vt, where f, v ∈ K× then we have

the Poisson algebra A19 = (K[t]; f∂t,−f∂t, 0, vt) with Poisson bracket defined by the rule

{t, y} = fy, {x, t} = fx and {y, x} = vt. (IV.2.11)

Suppose that a = fxy+ 1
2vt

2, where f, v ∈ K× then the Poisson bracket in (IV.2.11) is exact,

and a − µ is irreducible for all µ ∈ K. It follows from Corollary II.2.73 that the Poisson

spectrum of A19 consists of 0, (a− µ) and (x, y, t), where µ ∈ K.

The following is the Poisson algebra A20 that belongs to the subclass II.2c. Notice that,

c is zero, u is a unit element in K, and f is a polynomial in t. The techniques to classify

Poisson prime ideals of A20 have some properties of factor Poisson algebras.

Class II.2c:

If α = f∂t, β = −f∂t, c = 0 and u ∈ K×, where f ∈ K[t]\K then we have the Poisson algebra

A20 = (K[t]; f∂t,−f∂t, 0, u) with Poisson bracket defined by the rule

{t, y} = fy, {t, x} = −fx and {y, x} = u. (IV.2.12)

The following theorem shows that the classification of Poisson prime ideals for the Poisson

algebra A20.

Theorem IV.2.11. Let A20 = (K[t]; f∂t,−f∂t, 0, u) be the Poisson algebra as above, where

u ∈ K× and f ∈ K[t]\K, i.e. Rf 6= ∅. Then PSpec(A20) =
{

0, (t − λi) | λi ∈ Rf and i =

1, . . . , s
}
.

Proof. For some element λi ∈ Rf , where i = 1, . . . , s we have

A20/(t− λi) ∼= K[t]/(t− λi)⊗K[x, y]

is a tensor product of K[t]/(t − λi) and the simple Poisson algebra P(u) = K[x, y] with

{y, x} = u, where u ∈ K×. Notice that, the localization A20f of algebra A20 is a simple
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Poisson algebra. Hence, the Poisson spectrum of A20 consists of 0 and (t−λi), where λi ∈ Rf
and i = 1, . . . , s.

Class II.2d:

If α = f∂t, β = −f∂t and c = 0, where f, u ∈ K[t]\K then we have the Poisson algebra

A21 = (K[t]; f∂t,−f∂t, 0, u) with Poisson bracket defined by the rule

{t, y} = fy, {t, x} = −fx and {y, x} = u. (IV.2.13)

The following is a special case of the subclass II.2d. In this Poisson algebra A22 that

belongs to the subclass II.2d′, we suppose that the non-constant polynomial f divides u,

and c is zero. Thus, the technique to classify Poisson prime ideals of A22 is similar to the

technique in the paper [JoOh], which is writing the bracket as A22-multiple of other. From

their study, in particular, Example II.2.76 and Example II.2.77 the classification of Poisson

prime ideals of A22 follows.

Class II.2d′:

If u = fg, α = f∂t, β = −f∂t and c = 0, where f, g ∈ K[t]\K then we have the Poisson

algebra A22 = (K[t]; f∂t,−f∂t, 0, fg) with Poisson bracket defined by the rule

{t, y} = fy, {t, x} = −fx and {y, x} = fg. (IV.2.14)

The following corollary gives us the classification of Poisson prime ideals of the Poisson

algebra A22.

Corollary IV.2.12. Let A22 = (K[t]; f∂t,−f∂t, 0, fg) be the Poisson algebra as above and

a = xy +
∫
g, where f, g ∈ K[t]\K, i.e. Rf 6= ∅ and Rg 6= ∅. Then

1. PSpec(A22) =
{

0, (t− λi), (a), (a− µ), (x, t− λi), (y, t− λi), (x− µ′, t− λi), (y − µ′, t−
λi), (xy, t−ω), (xy−µ′, t−ω), (h, t−λi), (x, y, t−λi), (x, y−µ′, t−λi), (y, x−µ′, t−λi), (x−
µ′, y − ν, t − λi), (x, y, t − ω) | ν, µ, µ′ ∈ K×, λi ∈ Rf , ω ∈ Rg and h ∈ IrrmK[x, y]

}
,
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the containment information between Poisson prime ideals of A22 is given in diagram

IV.2.5.

0

(
x− µ′, y−
ν, t− λi

)

(
y − µ′,

t− λi
)

(
x− µ′,
t− λi

)

(
x, y, t− λi

) (
y, x− µ′,

t− λi
)

(y, t− λi)(x, t− λi)
(h, t− λi) (xy,

t− ω)

(
x, y − µ′,
t− λi

)
(
x, y, t− ω

)

(
xy − µ,
t− ω)

(a) (a− µ)(t− λi)

0

where a = xy +
∫
g,

h ∈ IrrmK[x, y], ν, ρ, µ, µ′ ∈ K×,
ω ∈ Rg and λi ∈ Rf .

Diagram IV.2.5: The containment information between Poisson prime ideals of A22

2. PMax(A22) =
{

(x, y, t−λi), (x, y−µ′, t−λi), (y, x−µ′, t−λi), (x−µ′, y−ν, t−λi), (x, y, t−
ω) | ν, µ, µ′ ∈ K×, λi ∈ Rf and ω ∈ Rg

}
.

Proof. 1. Suppose that

B1 := {t, y} = y, {x, t} = x and {y, x} = g

and (IV.2.14) by B2 then we have B2 = fB1. Notice that B1 is exact, where a = xy+
∫
g

and it follows from Corollary IV.2.1 that the Poisson spectrum of A22 under B1 is 0,

(a − µ) and (x, y, t − ω), where µ ∈ K, ω ∈ Rg. Hence, by using Example II.2.77 we

have that any Poisson prime ideal of A22 under B1 is a Poisson prime ideal of A22 under

B2, but if Q is a Poisson prime ideal of A22 under B2 then Q is a Poisson prime ideal

of A22 under B1 or Q contains f . Therefore, the Poisson spectrum of A22 consists of

0, (t− λi), (a), (a− µ), (x, t− λi), (y, t− λi), (x− µ′, t− λi), (y− µ′, t− λi), (xy, t−ω),

(xy−µ′, t−ω), (h, t−λi), (x, y, t−λi), (x, y−µ′, t−λi), (y, x−µ′, t−λi), (x−µ′, y−ν, t−λi)
and (x, y, t− ω), where ν, µ, µ′ ∈ K×, λi ∈ Rf , ω ∈ Rg and h ∈ IrrmK[x, y].
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2. It follows from diagram IV.2.5.

The following is the Poisson algebra A23 that belongs to the subclass II.2e. Notice that, c, u

and f are unit elements in K. The main issue is that there is no known approach or technique

to classify Poisson prime ideals of A23, and it is difficult to find the common eigenvectors for

δt, δx and δy on A23.

Class II.2e:

If α = f∂t, β = −f∂t, where f, u, c ∈ K× then we have the Poisson algebra A23 =

(K[t]; f∂t,−f∂t, c, u) with Poisson bracket defined by the rule

{t, y} = fy, {t, x} = −fx and {y, x} = cyx+ u. (IV.2.15)

The following is the Poisson algebra A24 that belongs to the subclass II.2f. Notice that, c

and f are unit elements in K, and u is a non-constant polynomial in t. This seems more

complex than the algebra A23. Also, the main issue is that there is no known approach

or technique to classify Poisson prime ideals of A24, and it is difficult to find the common

eigenvectors for δt, δx and δy on A24.

Class II.2f:

If α = f∂t, β = −f∂t and u ∈ K[t]\K, where f, c ∈ K× then we have the Poisson algebra

A24 = (K[t]; f∂t,−f∂t, c, u) with Poisson bracket defined by the rule

{t, y} = fy, {t, x} = −fx and {y, x} = cyx+ u. (IV.2.16)

Class II.2g:

If α = f∂t, β = −f∂t and u, c ∈ K×, where f ∈ K[t]\K then we have the Poisson algebra

A25 = (K[t]; f∂t,−f∂t, c, u) with Poisson bracket defined by the rule

{t, y} = fy, {t, x} = −fx and {y, x} = cyx+ u. (IV.2.17)
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The following is a special case of the subclass II.2g. In this Poisson algebra A26 that

belongs to the subclass II.2g′, we assume that f is a monomial of degree one, c and u are

unit elements in K. Therefore, the technique to classify Poisson prime ideals of A26 is similar

to the technique used in algebra A17, which identifies the non-constant polynomial a in the

algebra A26 to turn the Poisson bracket into exact. From the study [JoOh], in particular,

Corollary II.2.73 the classification of Poisson prime ideals of A26 follows.

Class II.2g′:

If f = ρt, i.e. α = ρt∂t, β = −ρt∂t and ρ = c, where u, c ∈ K× then we have the Poisson

algebra A26 = (K[t]; ct∂t,−ct∂t, c, u) with Poisson bracket defined by the rule

{t, y} = cty, {x, t} = ctx and {y, x} = cyx+ u. (IV.2.18)

The following corollary shows that the classification of Poisson prime ideals of the Poisson

algebra A26.

Corollary IV.2.13. Let A26 = (K[t]; ct∂t,−ct∂t, c, u) be the Poisson algebra as above and

a = (cyx+u)t, where u, c ∈ K×. Then PSpec(A26) =
{

0, (a−µ),
(
t, x−λ, y− (cλ)−1u

)
| µ ∈

K and λ ∈ K×
}

.

Proof. Suppose that a = (cyx + u)t, where u, c ∈ K× then the Poisson bracket (IV.2.18) is

exact, and a − µ is irreducible for all µ ∈ K×. It follows from Corollary II.2.73 that the

Poisson spectrum of A26 consists of 0, (a− µ) and
(
t, x− λ, y − (cλ)−1u

)
, where µ ∈ K and

λ ∈ K×.

Class II.2k:

If α = f∂t, β = −f∂t, where f, u ∈ K[t]\K and c ∈ K× then we have the Poisson algebra

A27 = (K[t]; f∂t,−f∂t, c, u) with Poisson bracket defined by the rule

{t, y} = fy, {t, x} = −fx and {y, x} = cyx+ u. (IV.2.19)
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The following is a special case of the subclass II.2k. In this Poisson algebra A28 that belongs

to the subclass II.2k′, we assume that f and u are monomials of degree one, and c is a unit

element in K. Therefore, the technique to classify Poisson prime ideals of A28 is similar to the

technique used in some previous algebras, which identifies the non-constant polynomial a in

the algebra A28 to turn the Poisson bracket into exact. From the study [JoOh], in particular,

Corollary II.2.73 the classification of Poisson prime ideals for A28 follows.

Class II.2k′:

If f = ρt, i.e. α = ρt∂t, β = −ρt∂t, u = vt and ρ = c, where c, v ∈ K× then we have the

Poisson algebra A28 = (K[t]; ct∂t,−ct∂t, c, vt) with Poisson bracket defined by the rule

{t, y} = cty, {x, t} = ctx and {y, x} = cyx+ vt. (IV.2.20)

The following corollary gives us the classification of Poisson prime ideals of the Poisson

algebra A28.

Corollary IV.2.14. Let A28 = (K[t]; ct∂t,−ct∂t, c, vt) be the Poisson algebra as above and

a = (cyx+ 1
2vt)t, where c, v ∈ K×. Then

1. PSpec(A28) =
{

0, (a), (t), (a− µ), (y, t), (x, t), (t, xy − ω), (t, xy), (x, y, t), (x, t, y − µ′),
(y, t, x−µ′), (t, x−λ, y+λ−1ω) | λ, ω, µ, µ′ ∈ K×

}
, the containment information between

Poisson prime ideals of A28 is given in diagram IV.2.6.

2. PMax(A28) =
{

(x, y, t), (x, t, y − µ′), (y, t, x− µ′), (t, x− λ, y + λ−1ω) | λ, ω, µ′ ∈ K×
}

.

Proof.

1. Suppose that a = (cyx+ 1
2vt)t, where c, v ∈ K× then the Poisson bracket (IV.2.20) is exact,

and a − µ is irreducible for all µ ∈ K×. It follows from Corollary II.2.73 that the Poisson

spectrum of A28 consists of

0, (a), (t), (a−µ), (y, t), (x, t), (t, xy−ω), (t, xy), (x, y, t), (x, t, y−µ′), (y, t, x−µ′) and (t, x−
λ, y + λ−1ω), where λ, ω, µ, µ′ ∈ K×.
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(
x, y, t

) (
y, t, x− µ′

)

(y, t)
(
t, xy

)
(x, t)

(
x, t, y − µ′

)
(
t, x− λ,

y + λ−1ω
)

(
t, xy − ω

)

(a) (a− µ)(t)

0

where a = (ρyx+ 1
2vt)t

and λ, ω, ρ, v, µ, µ′ ∈ K×.

Diagram IV.2.6: The containment information between Poisson prime ideals of A28

2. It follows from diagram IV.2.6.
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§IV.3 The third class

The aim of this section is to classify all Poisson prime ideals, minimal Poisson ideals and

maximal Poisson ideals of Poisson algebras that belong to certain subclasses of the third

class III. This class has two subclasses: III.1 and III.2, and each subclass consists of several

subclasses.

Let us give more detail, the first subclass III.1 has four subclasses:

III.1a, III.1b, III.1c and III.1d.

The classifications of Poisson prime ideals for Poisson algebras that belong to these four

subclasses are obtained in Theorem IV.3.1, Theorem IV.3.2, Corollary IV.3.3 and Corollary

IV.3.4, respectively. In particular, each of these is treated individually and different tech-

niques are involved. The main ideas to classify the Poisson prime ideals of these algebras

are Example II.2.76, Example II.2.77 and Remark II.2.78. These techniques are in the recent

paper [JoOh], see the review in Subsection II.2.5 for detail. In addition, the inclusions of

Poisson prime ideals for these algebras are given in diagram IV.3.2, diagram IV.3.3, diagram

IV.3.4 and diagram IV.3.5, respectively.

The second subclass III.2 has four subclasses:

III.2a, III.2b, III.2c and III.2d.

The Poisson prime ideals for the Poisson algebra that belongs to the subclass III.2b, are

classified in Corollary IV.3.5. After that, the inclusions of Poisson prime ideals for this

algebra are given in diagram IV.3.6. In addition, the classifications of Poisson prime ideals

for the Poisson algebras that belong to special cases of the subclasses III.2c and III.2d, are

obtained in Corollary IV.3.6 and Corollary IV.3.7. Following that, the inclusions of Poisson

prime ideals for these algebras are given in diagram IV.3.7 and diagram IV.3.8. However, it

is difficult to classify Poisson prime ideals for the Poisson algebra that belongs to the subclass

III.2a.
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Class III:

If α+ β = f∂t + λ−1f∂t 6= 0, u = 0 and c ∈ K, where f ∈ K[t]\{0}, λ ∈ K\{−1, 0}.
There are two subclasses:

Class III.1: If c = 0.

Class III.2: If c ∈ K×.

Structure of the third class of Poisson algebras A is given in diagram IV.3.1.

Notes: We will assume that λ ∈ C\{−1, 0} instead of λ ∈ K\{−1, 0}.

The following is the first subclass of class III and contains four subclasses. In addition, the

classifications of Poisson prime ideals for Poisson algebras A30, A31, A32 and A33 that belong

to the subclasses III.1a, III.1b, III.1c and III.1d, respectively, are obtained. The critical key

to classifying is Example II.2.76, Example II.2.77 and Remark II.2.78, which are from the

study [JoOh].

Class III.1

If c = 0, α = f∂t, β = λ−1f∂t and u = 0, where f ∈ K[t]\{0}, λ ∈ C\{−1, 0} then we have

the Poisson algebra A29 = (K[t]; f∂t, λ
−1f∂t, 0, 0) with Poisson bracket defined by the rule

{t, y} = fy, {t, x} = λ−1fx and {y, x} = 0. (IV.3.1)

There are four subclasses:

Class III.1a: If f ∈ K× and λ ∈ Q\{−1, 0}.

Class III.1b: If f ∈ K× and λ ∈ C\Q.

Class III.1c: If f ∈ K[t]\K and λ ∈ Q\{−1, 0}.

Class III.1d: If f ∈ K[t]\K and λ ∈ C\Q.
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0
α+ β =

f∂t + λ−1f∂t 6= 0

and u = 0

Class III:

f 6= 0 ,

λ ∈ C\{0,−1}
u = c = 0

f 6= 0,

λ ∈ C\{0,−1}
c ∈ K×

u = 0

f ∈ K×f ∈ K[t]\K

f ∈ K×f ∈ K[t]\K

0
λ ∈

Q\{−1, 0}

0λ ∈ C\Q

0λ ∈ C\Q 0λ ∈ C\Q

0
λ ∈

Q\{−1, 0} 0
λ ∈

Q\{−1, 0}

λ ∈
Q\{−1, 0}

λ ∈ C\Q

class III.2c

C
la
ss

II
I.
2

clas
s II

I.2d

C
la
ss

II
I.
1

class III.1c class III.
1a

class III.1b
cla
ss
II
I.1
d

class III.2b

cla
ss

III
.2a

Diagram IV.3.1: Structure of the third class of Poisson algebras A
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The following is the Poisson algebra A30 that belongs to the subclass III.1a. Notice that,

f is a non-zero element in K, and λ ∈ Q\{−1, 0}. The technique to classify Poisson prime

ideals of A30 is similar to the technique in the study [JoOh], which is writing the bracket as

A30-multiple of other. Thus, from their study, in particular, Example II.2.76 and Example

II.2.77 the classification of Poisson prime ideals for A30 follows.

Class III.1a:

If f ∈ K×, i.e. α = f∂t, β = λ−1f∂t, u = c = 0, and n,m are non-zero integers such that

λ = m
n 6= −1 then we have the Poisson algebra A30 = (K[t]; f∂t,

n
mf∂t, 0, 0) with Poisson

bracket defined by the rule

{t, y} = fy, {t, x} =
n

m
fx and {y, x} = 0. (IV.3.2)

The following theorem classifies the Poisson prime ideals of the Poisson algebra A30.

Theorem IV.3.1. Let A30 = (K[t]; f∂t,
n
mf∂t, 0, 0) be the Poisson algebra as above, where

f ∈ K×, m > 0, n 6= 0 and m,n are coprime integers.

1. If n > 0 then PSpec(A30) =
{

0, (x), (y), (x, y), (xm − µyn), (x, y, t− ν) | ν ∈ K
}

.

2. If n < 0 then PSpec(A30) =
{

0, (x), (y), (x, y), (xmy−n − µ), (x, y, t − ν) | ν ∈ K
}

,

the containment information between Poisson prime ideals of A30 is given in diagram

IV.3.2.

3. PMax(A30) =
{

(x, y, t− ν) | ν ∈ K
}
.

Proof. 1. Let us multiply the bracket (IV.3.2) by a non-zero scalar f−1 then we have

{t, y} = y, {t, x} =
n

m
x and {y, x} = 0. (IV.3.3)

Now, multiplying by m and rearranging the bracket which implies that

B1 := {y, t} = my, {t, x} = −nx and {x, y} = 0. (IV.3.4)
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0
(
xm − µyn

)

(
x, y, t− ν

)

(x, y)

(y) (x)

0

where ν ∈ K×, µ ∈ K×

n,m ∈ Z× and n > 0.

0
(
xmy−n − µ

)

(
x, y, t− ν

)

(x, y)

(y) (x)

0

where ν ∈ K×, µ ∈ K×

n,m ∈ Z× and n < 0.

Diagram IV.3.2: The containment information between Poisson prime ideals of A30

Let us call the bracket (II.2.11) in Example II.2.76 by B2 then t−1B1 := x1−jy1−kB2

with j = m, l = 0 and k = |n|. It follows from Example II.2.77 that the Poisson

spectrum of A30 consists of

0, (y), (x), (x, y), (x, y, t− ν), ν ∈ K

(xm − µyn), µ ∈ K×, if n > 0,

(xmy−n − µ), µ ∈ K×, if n < 0.
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2. It follows from diagram IV.3.2.

The following is the Poisson algebra A31 that belongs to the subclass III.1b. Notice that,

f is a non-zero element in K, and λ is irrational. The technique to classify Poisson prime

ideals of A31 is similar to the technique in Remark II.2.78.

Class III.1b:

If f ∈ K×, i.e. α = f∂t, β = λ−1f∂t and u = c = 0, where λ ∈ C\Q then we have the Poisson

algebra A31 = (K[t]; f∂t, λ
−1f∂t, 0, 0) with Poisson bracket defined by the rule

{t, y} = fy, {t, x} = λ−1fx and {y, x} = 0. (IV.3.5)

The next theorem gives us the classification of Poisson prime ideals of the Poisson algebra

A31.

Theorem IV.3.2. Let A31 = (K[t]; f∂t, λ
−1f∂t, 0, 0) be the Poisson algebra as above, where

f ∈ K× and λ ∈ C\Q. Then

1. PSpec(A31) =
{

0, (y), (x), (x, y), (x, y, t − ν) | ν ∈ K
}
, the containment information

between Poisson prime ideals of A31 is given in diagram IV.3.3.

2. PMax(A31) =
{

(x, y, t− ν) | ν ∈ K
}
.

Proof. 1. Let us multiply the bracket (IV.3.5) by a non-zero scalar f−1λ and rearrange it

then we have

{y, t} = −λy, {t, x} = x and {x, y} = 0. (IV.3.6)

It follows from Remark II.2.78 that the Poisson spectrum of A31 consists of

0, (y), (x), (x, y) and (x, y, t− ν), where ν ∈ K.

5. It follows from diagram IV.3.3.
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(x, y, t− ν)

(x, y)

(y)(x)

0
where ν ∈ K.

Diagram IV.3.3: The containment information between Poisson prime ideals of A31

The following is the Poisson algebra A32 that belongs to the subclass III.1a. Notice that, f

is a polynomial in t, and λ ∈ Q\{−1, 0}. The technique to classify Poisson prime ideals of A32

is similar to the technique in the study [JoOh], which is writing the bracket as A32-multiple

of other. Thus, from their study, in particular, Example II.2.76 and Example II.2.77 the

classification of Poisson prime ideals for A32 follows.

Class III.1c:

If f ∈ K[t]\K, i.e. α = f∂t, β = λ−1f∂t, u = c = 0, and n,m are non-zero integers such that

λ = m
n 6= −1 then we have the Poisson algebra A32 = (K[t]; f∂t,

n
mf∂t, 0, 0) with Poisson

bracket defined by the rule

{t, y} = fy, {t, x} =
n

m
fx and {y, x} = 0. (IV.3.7)

The following corollary gives us the classification of Poisson prime ideals of the Poisson

algebra A32.

Corollary IV.3.3. Let A32 = (K[t]; f∂t,
n
mf∂t, 0, 0) be the Poisson algebra as above, where

f ∈ K[t]\K, i.e. Rf 6= ∅, m > 0, n 6= 0 and m,n are coprime integers.
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1. If n > 0 then PSpec(A32) =
{

0, (x), (y), (t − λi), (xm − ωyn), (x, y), (y, t − λi), (x, t −
λi), (x− µ, t− λi), (y − µ, t− λi), (h, t− λi), (x, y, t− ν), (x, y − µ, t− λi), (y, x− µ, t−
λi), (x− µ, y − µ′, t− λi) | ν ∈ K, ω, µ, µ′ ∈ K× and h ∈ IrrmK[x, y]

}
.

2. If n < 0 then PSpec(A32) =
{

0, (x), (y), (t − λi), (xmy−n − ω), (x, y), (y, t − λi), (x, t −
λi), (x− µ, t− λi), (y − µ, t− λi), (h, t− λi), (x, y, t− ν), (x, y − µ, t− λi), (y, x− µ, t−
λi), (x− µ, y − µ′, t− λi) | ν ∈ K, ω, µ, µ′ ∈ K× and h ∈ IrrmK[x, y]

}
, the containment

information between Poisson prime ideals of A32 is given in diagram IV.3.4.

3. PMax(A32) =
{

(x, y, t− ν), (x, y−µ, t−λi), (y, x−µ, t−λi), (x−µ, y−µ′, t−λi) | ν ∈
K and µ, µ′ ∈ K×

}
.

Proof. 1. Suppose that

B2 := {y, t} = mfy, {t, x} = −nfx and {x, y} = 0. (IV.3.8)

If B2 := fB1, where the bracket B1 is (IV.3.4). It follows from Example II.2.77 that

any Poisson prime ideal of A32 under B1 is a Poisson prime ideal of A32 under B2 and if

Q is a Poisson prime ideal of A32 under B2, but not a Poisson prime ideal of A32 under

B1 then (f) ⊂ Q.

The Poisson spectrum of A32 under B1 is

0, (y), (x), (x, y), (x, y, t− ν), ν ∈ K

(xm − µyn), µ ∈ K×, if n > 0,

(xmy−n − µ), µ ∈ K×, if n < 0.

Therefore, the Poisson spectrum of A32 under the bracket B2 is

0, (y), (x), (t− λi),

(x, y) (x, t− λi) (y, t− λi),

(x− µ, t− λi), (y − µ, t− λi), (h, t− λi),
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0

(
x, y − µ
t− λi

) 0

(
y, x− µ,
t− λi

)

(
x, t− λi

)
(
x− µ,
t− λi

)(x, y)
(
h, t− λi

)
(
y − µ,
t− λi

)

(
x− µ, y−
µ′, t− λi

)
(
x, y, t− ν

)

(
y, t− λi

)

(t− λi)(x) (y)

(
xm − ωyn

)

0

where ν ∈ K, µ, µ′, ω ∈ K×,
λi ∈ Rf , h ∈ IrrmK[x, y],

n,m ∈ Z× and n > 0.

0

(
x, y − µ
t− λi

) 0

(
y, x− µ,
t− λi

)

(
x, t− λi

)
(
x− µ,
t− λi

)(x, y)
(
h, t− λi

)
(
y − µ,
t− λi

)

(
x− µ, y−
µ′, t− λi

)
(
x, y, t− ν

)

(
y, t− λi

)

(t− λi)(x) (y) (xmy−n − ω)

0

where ν ∈ K, µ, µ′, ω ∈ K×,
λi ∈ Rf , h ∈ IrrmK[x, y],

n,m ∈ Z× and n < 0.

Diagram IV.3.4: The containment information between Poisson prime ideals of A32

(x, y, t− ν), (x, y − µ, t− λi),

(x− µ, y − µ′, t− λi), (y, x− µ, t− λi),

(xm − ωyn), ω ∈ K×, if n > 0,

(xmy−n − ω), ω ∈ K×, if n < 0,

where ν ∈ K, µ, µ′ ∈ K×, λi ∈ Rf , i = 1, . . . , s and h ∈ IrrmK[x, y].
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2. It follows from diagram IV.3.4.

The following is the Poisson algebra A33 that belongs to the subclass III.1d. Notice that, f

is a polynomial in t, and λ is irrational. The technique to classify Poisson prime ideals of A33

is similar to the technique in the study [JoOh], which is writing the bracket as A33-multiple

of other. Thus, from their study, in particular, Example II.2.76 and Example II.2.77 the

classification of Poisson prime ideals for A33 follows.

Class III.1d:

If f ∈ K[t]\K, i.e. α = f∂t, β = λ−1f∂t and u = c = 0, where λ ∈ C\Q then we have the

Poisson algebra A33 = (K[t]; f∂t, λ
−1f∂t, 0, 0) with Poisson bracket defined by the rule

{t, y} = fy, {t, x} = λ−1fx and {y, x} = 0. (IV.3.9)

The following corollary shows that the classification of Poisson prime ideals of the Poisson

algebra A33.

Corollary IV.3.4. Let A33 = (K[t]; f∂t, λ
−1f∂t, 0, 0) be the Poisson algebra as above, where

f ∈ K[t]\K, i.e. Rf 6= ∅ and λ ∈ C\Q. Then

1. PSpec(A33) =
{

0, (x), (y), (t−λi), (x, y), (y, t−λi), (x, t−λi), (y−µ, t−λi), (h, t−λi), (x−
µ, t−λi), (x, y, t−ν), (y, x−µ, t−λi), (x, y−µ, t−λi), (x−µ, y−µ′, t−λi) | ν ∈ K,µ, µ′ ∈
K×, λi ∈ Rf , i = 1, . . . , s and h ∈ IrrmK[x, y]

}
, the containment information between

Poisson prime ideals of A33 is given in diagram IV.3.5.

2. PMax(A33) =
{

(x, y, t− ν), (y, x−µ, t−λi), (x, y−µ, t−λi), (x−µ, y−µ′, t−λi) | ν ∈
K,µ, µ′ ∈ K×, λi ∈ Rf and i = 1, . . . , s

}
.

Proof. 1. Suppose that

B2 := {y, t} = −λfy, {t, x} = fx and {x, y} = 0. (IV.3.10)
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0

(
x, y − µ
t− λi

) 0

(
y, x− µ,
t− λi

)

(
x, t− λi

)
(
x− µ,
t− λi

)(x, y)
(
h, t− λi

) (
y − µ,
t− λi

)

(
x− µ, y−
µ′, t− λi

)(
x, y, t− ν

)

(
y, t− λi

)

(t− λi)(x) (y)

0

where ν ∈ K, µ, µ′ ∈ K×,
λi ∈ Rf , h ∈ IrrmK[x, y].

Diagram IV.3.5: The containment information between Poisson prime ideals of A33

If B2 := fB1, where the bracket B1 is (IV.3.6). It follows from Example II.2.77 that

any Poisson prime ideal of A33 under B1 is a Poisson prime ideal of A33 under B2 and if

Q is a Poisson prime ideal of A33 under B2, but not a Poisson prime ideal of A33 under

B1 then (f) ⊂ Q.

The Poisson spectrum of A33 under B1 is 0, (y), (x), (x, y) and (x, y, t−ν), where ν ∈ K.
Therefore, the Poisson spectrum of A33 under the bracket B2 is

0, (y), (x), (t− λi),

(x, y) (x, t− λi) (y, t− λi),

(x− µ, t− λi), (y − µ, t− λi), (h, t− λi),

(x, y, t− ν), (x, y − µ, t− λi),

(x− µ, y − µ′, t− λi), (y, x− µ, t− λi),

where ν ∈ K, µ, µ′ ∈ K×, λi ∈ Rf , i = 1, . . . , s and h ∈ IrrmK[x, y].

2. It follows from diagram IV.3.5.
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The following is the second subclass of class III and consists of four subclasses. In addition,

the classification of Poisson prime ideals for the Poisson algebra A36 that belongs to the

subclass III.2b, is obtained. The classifications of Poisson prime ideals for the Poisson algebras

A38 and A40 that belong to special cases of the subclasses III.2c and III.2d, are obtained.

However, the Poisson prime ideals of Poisson algebra that belongs to the subclass III.2a,

cannot be classified.

Class III.2

If c ∈ K×, α = f∂t, β = λ−1f∂t and u = 0, where f ∈ K[t]\{0}, λ ∈ C\{−1, 0} then we have

the Poisson algebra A34 = (K[t]; f∂t, λ
−1f∂t, c, 0) with Poisson bracket defined by the rule

{t, y} = fy, {t, x} = λ−1fx and {y, x} = cyx. (IV.3.11)

There are four subclasses:

Class III.2a: If f ∈ K× and λ ∈ Q\{−1, 0}.

Class III.2b: If f ∈ K× and λ ∈ C\Q.

Class III.2c: If f ∈ K[t]\K and λ ∈ Q\{−1, 0}.

Class III.2d: If f ∈ K[t]\K and λ ∈ C\Q.

The following is Poisson algebra A35 that belongs to the subclass III.2a. Notice that, f

and c are unit elements in K, and λ is rational. It might be the classification of Poisson

prime ideals for A35 is similar to the classification of Poisson prime ideals for A36, but the

main issue is that there is no known approach or technique to classify Poisson prime ideals

of A35, and it is difficult to find the common eigenvectors for δt, δx and δy on A35.

Class III.2a:

If α = f∂t, β = λ−1f∂t, u = 0, where f, c ∈ K× and n,m are non-zero integers such that

λ = m
n 6= −1 then we have the Poisson algebra A35 = (K[t]; f∂t,

n
mf∂t, c, 0) with Poisson
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bracket defined by the rule

{t, y} = fy, {t, x} =
n

m
fx and {y, x} = cyx. (IV.3.12)

The following is Poisson algebra A36 that belongs to the subclass III.2b. Notice that, f

and c unit elements in K, and λ ∈ C\Q. The technique to classify Poisson prime ideals of

A36 is similar to the technique used in the algebra A3.

Class III.2b:

If α = f∂t, β = λ−1f∂t and u = 0, where f, c ∈ K×, λ ∈ C\Q then we have the Poisson

algebra A36 = (K[t]; f∂t, λ
−1f∂t, c, 0) with Poisson bracket defined by the rule

{t, y} = fy, {t, x} = λ−1fx and {y, x} = cyx. (IV.3.13)

Let S = K[t]\{0}. The localization of the Poisson algebra A36 is B1 = S−1A36, i.e. B1 =

K(t)[x, y], where K(t) = S−1K[t] is the field of rational functions in the variable t. The

algebra B1 is a Poisson algebra with Poisson bracket defined by the rule

{y, x} = cyx. (IV.3.14)

The following corollary shows the classification of Poisson prime ideals of the Poisson algebra

A36.

Corollary IV.3.5. Let A36 = (K[t]; f∂t, λ
−1f∂t, c, 0) be the Poisson algebra as above, where

f, c ∈ K× and λ ∈ C\Q. Then

1. PSpec(B1)=
{

0, (x), (y), (x, p), (y, q) | p ∈ IrrmK(t)[y] and q ∈ IrrmK(t)[x]
}
.

2. the localization B1xy of the algebra B1 at the powers of the element xy is a simple

Poisson algebra.

3. PSpec(A36) =
{

0, (x), (y), (x, y), (x, lpp), (y, lqq), (x, y, t− ν)| ν ∈ K, p ∈ IrrmK(t)[y]

and q ∈ IrrmK(t)[x]
}
, lp

8 is a unique monic polynomial in K[t] of the least degree in t

8respectively, lq
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such that lpp ∈ K[t, y]9, the containment information between Poisson prime ideals of

A36 is given in diagram IV.3.6.

(
x, Iqq

)
0

(
y, Iqq

)

(
x, y, t− ν

)

(x, y)

(y) (x)

0

where λ ∈ K,

lpp ∈ K[t, y] and lqq ∈ K[t, x].

Diagram IV.3.6: The containment information between Poisson prime ideals of A36

4. PMax(A36) =
{

(x, y, t− ν) | ν ∈ K
}
.

Proof. 1. Notice that, the Poisson spectrum of B1 can be obtained from Lemma IV.1.3.(1)

and it follows from Lemma IV.1.3.(3) that the localization B1xy of the algebra B1 is a

simple Poisson algebra. Let us multiple and rearrange the bracket (IV.3.13) then we

have

{t, y} = λfy, {t, x} = fx and {y, x} = cλyx, (IV.3.15)

Now, let I be a non-zero Poisson prime ideal of A36 such that I ∈ PSpec(A36, S) then

there is I1 := I ∩ K[t] = K[t]q for some q ∈ K[t]. If q ∈ K× then 1 ∈ I1 ⊆ I, so

I = A36. Therefore, let degt(q) ≥ 1. It follows from (IV.3.15) that

δx := −fx∂t − cλyx∂y,

δy := −λfy∂t + cλyx∂x.

9respectively, lqq ∈ K[t, x]
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So, ∂t(q) /∈ I1, hence ∂t(q) /∈ I, hence y ∈ I and x ∈ I this implies that (x, y) ⊆ I, thus,

I = (x, y, t−ν) for some ν ∈ K. The Poisson spectrum of A36 follows from the equality

(IV.1.4);

PSpec(A36) = PSpec(B1)r
∐

PSpec(A36, S).

2. It follows from diagram IV.3.6.

Class III.2c:

If α = f∂t, β = λ−1f∂t, u = 0, c ∈ K×, where f ∈ K[t]\K, and n,m are non-zero integers

such that λ = m
n 6= −1 then we have the Poisson algebra A37 = (K[t]; f∂t,

n
mf∂t, c, 0) with

Poisson bracket defined by the rule

{t, y} = fy, {t, x} =
n

m
fx and {y, x} = cyx. (IV.3.16)

The following is a special case of the subclass III.2c. In this Poisson algebra A38 that

belongs to the subclass III.2c′, we assume that f is a monomial of degree one in t, c = r
m and

λ = m
n , where n, r,m are non-zero coprime integers. The technique to classify Poisson prime

ideals of A38 is similar to the technique in the study [JoOh], which is writing the bracket as

A38-multiple of other. Thus, from their study, in particular, Example II.2.76 and Example

II.2.77 the classification of Poisson prime ideals for A38 follows.

Class III.2c′:

If f = t, i.e. α = t∂t, β = λ−1t∂t, u = 0 and c = r
m , where r, n,m are non-zero coprime

integers such that λ = m
n 6= −1 then we have the Poisson algebra A38 = (K[t]; t∂t,

n
m t∂t,

r
m , 0)

with Poisson bracket defined by the rule

{t, y} = ty, {t, x} =
n

m
tx and {y, x} =

r

m
yx. (IV.3.17)

The following corollary gives us the classification of Poisson prime ideals of the Poisson

algebra A38.
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Corollary IV.3.6. Let A38 = (K[t]; t∂t,
n
m t∂t,

r
m , 0) be the Poisson algebra as above, and

m, r and n are non-zero coprime integers. Then

1. PSpec(A38) =
{

0, (x), (y), (t), (xmtr−ωyn), (x, t), (x, y), (y, t), (x, y, t), (x, y, t−µ), (y, t, x−
µ), (x, t, y−µ) | µ, ω ∈ K×

}
, the containment information between Poisson prime ideals

of A38 is given in diagram IV.3.7.

(
x, y, t

)(
y, t, x− µ

)
0

(
x, y, t− µ

)

(y, t) (x, y) (x, t)

(
x, t, y − µ

)

(
xmtr − ωyn

)
(y) (x)(t)

0
where µ, ω ∈ K×

and n, r,m ∈ Z×.

Diagram IV.3.7: The containment information between Poisson prime ideals of A38

2. PMax(A38) =
{

(x, y, t), (x, y, t− µ), (y, t, x− µ), (x, t, y − µ) | µ ∈ K×
}
.

Proof. 1. Let us multiply by a non-zero scalar m and rearrange the bracket (IV.3.17) then

we have

B1 := {x, y} = ryx, {t, x} = −ntx and {y, t} = mty. (IV.3.18)

Now, let us call the bracket (II.2.11) in Example II.2.76 by B2 with l = r, j = m and

k = |n| then B2 := xk−1yj−1tl−1B1. It follows from Example II.2.77 that the Poisson

spectrum of A38 consists of

0, (x), (y), (t), (x, t), (x, y), (y, t), (x, y, t), (xmtr − ωyn), (x, y, t − µ), (y, t, x − µ) and

(x, t, y − µ), where µ, ω ∈ K×.
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2. It follows from diagram IV.3.7.

Class III.2d:

If α = f∂t, β = λ−1f∂t, u = 0 and c ∈ K×, where f ∈ K[t]\K, λ ∈ C\Q then we have the

Poisson algebra A39 = (K[t]; f∂t, λ
−1f∂t, c, 0) with Poisson bracket defined by the rule

{t, y} = fy, {t, x} = λ−1fx and {y, x} = cyx. (IV.3.19)

The following is a special case of the subclass III.2d. In this Poisson algebra A40 that

belongs to the subclass III.2d′, we assume that f is a monomial of degree one in t, and λ is

irrational. The classification of Poisson prime ideals of A40 follows from Remark II.2.78.

Class III.2d′:

If f = t, i.e. α = t∂t, β = λ−1t∂t and u = 0, where c ∈ K×, λ ∈ C\Q then we have the

Poisson algebra A40 = (K[t]; t∂t, λ
−1t∂t, c, 0) with Poisson bracket defined by the rule

{t, y} = ty, {t, x} = λ−1tx and {y, x} = cyx. (IV.3.20)

The following corollary shows that the classification of Poisson prime ideals of the Poisson

algebra A40.

Corollary IV.3.7. Let A40 = (K[t]; t∂t, λ
−1t∂t, c, 0) be the Poisson algebra as above, c ∈ K×

and λ ∈ C\Q. Then

1. PSpec(A40) =
{

0, (x), (y), (t), (x, t), (x, y), (y, t), (x, y, t), (x, y, t−µ), (y, t, x−µ), (x, t, y−
µ) | µ ∈ K×

}
, the containment information between Poisson prime ideals of A40 is given

in diagram IV.3.8.

2. PMax(A40) =
{

(x, y, t), (x, y, t− µ), (y, t, x− µ), (x, t, y − µ) | µ ∈ K×
}
.
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(
x, y, t

)(
y, t, x− µ

)
0

(
x, y, t− µ

)

(y, t) (x, y) (x, t)

(
x, t, y − µ

)

(y) (x)(t)

0
where µ ∈ K×.

Diagram IV.3.8: The containment information between Poisson prime ideals of A40

Proof. It follows from Remark II.2.78.



Conclusion

Throughout this work, typical classes of Poisson algebras of dimension two were considered

and their Poisson prime ideals were classified–see Chapter III. This thesis concentrated on a

specific class of Poisson algebras of dimension three

A =
(
K[t]; f∂t, λ

−1f∂t, c, u
)
,

where f, u ∈ K[t], λ ∈ K× and c ∈ K–see Chapter IV. The class of Poisson algebras A splits

into three classes: I, II and III. Each of them splits further into subclasses, see diagram .0.1

for detail.

The classifications of Poisson prime ideals, minimal Poisson ideals and maximal Poisson

ideals for the seventeen classes of Poisson algebras, which are in blue, were obtained. In

addition, the classifications of special cases for the five classes of Poisson algebras, which are

in green, were obtained, and some properties of these algebras were considered. Additionally,

the inclusions of Poisson prime ideals for these algebras were presented in diagrams. However,

for the Poisson algebras A2, A23, A24 and A36, their Poisson prime ideals could not be

classified.
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Further research

This thesis has generated some ideas for future research:

The first idea is to revisit the Poisson algebras that have not been done yet and see whether

their Poisson prime ideals can be classified and if there are any new methods or techniques

to use.

The second idea is to classify simple finite-dimensional Poisson modules over Poisson alge-

bras that belong to some subclasses of Poisson algebras A. This might be done by using these

classifications of Poisson prime ideals. There are two studies, [Bav4] and [Jor], in Poisson

modules which might be the main sources for this research. Significantly, there will be some

obvious modules of some Poisson algebras that belong to some subclasses, but not all will be

easy to classify, as we saw in this class of Poisson algebras.

The third idea is to classify Poisson prime ideals for a similar class of Poisson algebras, in

particular, (K[t, s];α, β, c, u) that has dimension four, i.e. K[t, s][y;α][x;β, δ]. Also, it might

be possible to see whether it can be generalized to arbitrary n or find a general form for this

typical class of Poisson algebras. This might be done by using similar techniques and ideas

from this thesis. After that, it might be possible to classify some simple finite-dimensional

Poisson modules over this class of Poisson algebras.

The fourth suggestion is to classify some generalized Weyl Poisson algebras for Poisson

algebras that belong to some subclasses of Poisson algebras A and study their properties.

This might be done by using similar techniques in the paper [Bav3].
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