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Abstract

It is vital to consider invariant measures of dynamical systems induced by partial differ-

ential equations with irregular coefficients because of their application and importance in

applied and pure mathematics. This thesis investigates the existence of invariant measures

for the Lasota equation in threefold.

Firstly, we consider a special choice of the coefficients using the interpolation theory. We

show that the law of the Liouville Fractional Brownian Motion with the Hurst parameter

H is an invariant measure of the Lasota equation with the drift coefficient a(x) = x

and the multiplication parameter λ = H − 1
2 . Secondly, we study the existence and the

uniqueness of mild solutions and prove the existence of invariant measures to the linear

Lasota equation assuming only some basic properties of the coefficients a and c. Lastly,

we consider the nonlinear Lasota equation and study the existence and the uniqueness of

a global mild solution with a new set of assumptions for the coefficient c and prove the

existence of invariant measures.
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Zdzis law Brzeźniak. This work has not previously been presented for an award at this, or

any other, University. All sources are acknowledged as References.

vi



In the fond memory of my father

vii



Chapter 1

Introduction

1.1 Overview

The concept of an invariant measure is an essential topic in mathematics and mathematical

physics, particularly in Partial Differential Equations (PDEs) and Dynamical Systems. It

is mostly simulated or modelled using differential equations. In modern mathematics,

both applied and pure, it is important to consider PDEs with irregular coefficients. In the

physical system, the importance of invariant measures appears in the Liouville Theorem.

The existence of an invariant measure is one of the problems in many PDEs. One of the

most important well-known evolution equations is called Lasota equation. The Lasota

equation is important due to its properties and applications. For instance, its nonlinear

version describes the process of differentiation and reproduction of the population of red

blood cells depending on the concentration of hormones at a specific stage. It is important

to study the behavior of the solution and the properties of such equation. Many authors

have studied the solution and the properties of the equation under different assumptions,

for instance, in such work of [7], [6], [27], [42], and [43].

A starting point of our deliberations is a result from the monograph [27] that the law of the

Brownian Motion is an invariant measure for the Lasota equation when the multiplication

parameter λ = 1
2 . The first objective of this thesis is to investigate what happens when

λ 6= 1
2 . We find that the law of the Liouville Fractional Brownian Motion with the Hurst

parameter H is an invariant measure for such an equation when λ = H − 1
2 . This is

achieved by using fractional integral and derivative operators. In particular, we show

that the two semigroups {S̃t}t≥0 corresponding to λ = 1
2 + α on the fractional Sobolev

space Hα,p
0 [0, 1] and {St}t≥0 corresponding to λ = 1

2 on space Lp(0, 1), commute via

the fractional derivative Dα and fractional integral Iα maps. Our work is motivated by

the following principle. Suppose we know an invariant measure to one semigroup on one

Banach space and we have another Banach space with another semigroup for which those

1



Introduction 2

two semigroups are ”commuting” in an appropriate sense, then the new semigroup has

also an invariant measure. A such generalisation can massively help to understand more

PDEs and their properties in more complicated spaces such as interpolation spaces.

One of the fundamental questions to be asked about nonlinear evolution equations is the

existence and uniqueness of the solutions. Thus, in the second objective of this thesis, we

address this question and assume sufficient conditions for the coefficients of the Lasota

equation to find the existence and the uniqueness of mild solutions. Moreover, we study

the large-time behavior of the solutions. Studying such solutions along with proving the

existence of nontrivial invariant measures and their properties make our work in this thesis

more rigorous than Rudnicki in [43]. We study a nonlinear Lasota equation under certain

assumptions of the coefficients a and c. Our main equation is the following problem

∂u(t, x)

∂t
+ a(x)

∂u(t, x)

∂x
= c(u(t, x)), t ≥ 0, x ∈ [0, 1] (1.1.1)

u(0, x) = u0(x), x ∈ [0, 1]

where, u0 ∈ C0
(
[0, 1],R

)
. We consider first in Chapter 4 the linear part of the above

problem. We assume natural assumptions where the drift coefficient, i.e., the function a

is continuous and satisfies the so-called Osgood condition and the function c = λ · u, for

some λ ≥ 0, is constant. We prove the existence and the uniqueness of mild solutions

by using the characteristic method. In particular, we prove that a natural family of

linear operators associated with equation (1.1.1) with c = 0, is a C0-semigroup on an

appropriately chosen Banach space E = C0 ([0, 1]). Moreover, we characterise the domain

of the infinitesimal generator of this semigroup. Furthermore, we prove the existence of

an invariant measure under these natural assumptions and study some properties related

to this measure.

In the following Chapter 5 we generalise the linear case to be a nonlinear case and assume

our function c to be Lipschitz on balls and of dissipative type. We prove the existence

and the uniqueness of mild solutions and analyse the property of these solutions. We

also provide an explicit solution by using the characteristic method. This solution allows

us later to study the operator’s properties, which guides us to prove the existence of an

invariant measure to the nonlinear Lasota equation with irregular coefficients. We prove

the existence of the invariant measure by following a similar path presented by Rudnicki

in [41]. We first define two Banach spaces E and Y with two semigroups. Then we

find a stationary process (in our case the Ornstein-Uhlenbeck process) in the space Y .

This process induces an invariant measure for the shift semigroup on the space Y . This

measure on Y induces a measure on the space E which turns out to be invariant for the

semigroup on E.
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1.2 Thesis Structure

This thesis comprises six chapters, including the introduction, we describe them as the

following.

In Chapter 2, we give basic definitions and notations that are necessary to make this

thesis well-contained. These preliminaries contain some definitions and results (presented

without proof) about linear operators, semigroup theory with some applications, random

variables and stochastic processes with values in Banach spaces, and probability measures

in Banach spaces.

In Chapter 3, our main work is motivated by a result presented in the monograph [28] by

Lasota and Mackey in 1981. We generalise the existence of the invariant measures for the

dynamical systems generated by a first-order PDE. Then, we construct this generalisation

by studying the Lasota equation with different parameters. In other words, we extend the

parameter to any parameter between 1
2 and 3

2 using the interpolation theory. Firstly, we

prove the existence of invariant measures for a special case if α = 1, i.e., we consider the

spaces Lp(0, 1) and H1,p
0 (0, T ). Next, after we tested our method on the special case we

extend the result for α to be any value between (0, 1), i.e, Hα,p
0 (0, T ). In the chapter the

drift coefficient a(x) in the equation (1.1.1) is equal to x and the function c(u) is linear

of the form λu.

Chapter 4 is devoted to studying the question of the existence and the uniqueness of a

solution to a first-order PDE. In particular, we study a more general case of the equation

presented in Chapter 3 when the coefficient a(x) is no longer equal to x but is allowed to

be irregular. We assume that a is only continuous and satisfies the Osgood condition. We

consider a linear case of Lasota equation, i.e., when c(u) = λ ·u, for some λ ≥ 0. We prove

that our PDE has a unique mild solution defined via characteristic methods corresponding

to the Ordinary differential equation (ODE). In particular, we show that the ODE has a

unique globally defined solution until −∞, i.e., the solution will be defined on (−∞, 0].

After having established the well-posedness of the equation, we employ methods developed

by Rudnicki [43], when the coefficient a was assumed to be a function of C1-class, to

prove the existence of invariant measures using a new set of assumptions and we prove

this measure satisfies some property.

Chapter 5 extends what we started in Chapter 4 by considering the nonlinear case under

new assumptions on the coefficient c. We assume that the function c is Lipschitz on balls

and of dissipative type and we prove the existence and the uniqueness of mild solutions.

We also analyse the properties of an appropriate solution. Moreover, we use rigorously

the notion of a classical solution to prove the representation Theorem 5.35. Next, we

prove the existence of an invariant measure under our assumptions for the coefficients a
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and c. At the end of the chapter, we discuss our main contribution concerning the paper

by Rudnicki [43].

In Chapter 6, we present related future research questions that are revealed to some of

our main results in the thesis.



Chapter 2

Preliminaries

This chapter introduces the most important preliminaries in different topics in mathe-

matics that are used in the rest of the thesis in general.

2.1 Functional Analysis

Functional Analysis is an abstract branch of mathematics that arose from Classical Anal-

ysis. Some described it as infinite-dimensional Linear Algebra along with analysis [44]. It

heavily relies on vector spaces among other concepts such as metric space and topology.

Since this thesis depends on functional spaces, we provide fundamental definitions and

some basic theorems that are intensively going to be used.

2.1.1 Banach spaces

A Banach space is a normed vector space that is complete, see [44]. It is named after

Polish mathematician Stefan Banach who introduced it for the first time and studied it

systematically in the 1920s. We state in this section the most important definitions and

properties related to Banach spaces.

Definition 2.1. Assume that X is a real vector space. A real-valued function ‖ · ‖ on X

is called a norm if and only if for any x, y ∈ X and for all α ∈ R, the following properties

hold

1. ‖x‖ > 0 (positivity),

2. ‖x‖ = 0⇔ x = 0 (definiteness),

3. ‖αx‖ = |α|‖x‖ (homogeneity),

5



Preliminaries 6

4. ‖x+ y‖ 6 ‖x‖+ ‖y‖ (triangle inequality).

Definition 2.2. A Banach space is a complete normed vector space.

Remark 2.3. A Banach space is a metric space and hence a topological space.

Definition 2.4. A topological space (for more detail see [46, Chapter X]) is called sepa-

rable if it has a countable dense subset.

In the following example, we provide the most important separable Banach space, which

we use throughout this thesis in fact our space is C0 ([0, 1]). Proofs related to this example

are made available in Appendix B.1.

Example 2.5. Assume that a, b ∈ R such that a < b. The space X = C([a, b]) which

defined by the following formula

X = C[a, b] = {f : [a, b]→ C : f is continuous }. (2.1.1)

is a separable Banach space with a norm defined by

‖f‖ = sup
x∈[a,b]

|f(x)|. (2.1.2)

Similarly, the space E = C0 ([a, b]) := {f : [a, b]→ C : f is continuous : f(a) = 0} is also

a separable Banach space with the norm defined on (2.1.2). Moreover, the space E is a

closed subspace of the space X, see Lemma B.2.

Definition 2.6. Assume that X is a normed vector space. A function f : X → X is

called continuous at x0 if

∀ ε > 0 ∃ δ > 0 : x ∈ X, ‖x− x0‖ < δ ⇒ ‖f(x)− f(x0)‖ < ε.

If f is continuous at all x ∈ X, then f is said to be continuous in X.

The following definition is taken from monograph [40], see Definition 7.17.

Definition 2.7. A function f : [a, b] → R is called absolutely continuous if for every

ε > 0 there exists δ > 0 such that for any finite family of intervals Ij = (aj , bj), 1 ≤ j ≤ n
which are pointwise disjoint,

⋃
j=1n Ij ⊂ [a, b] and

∑n
j=1 |Ij | ≤ δ,

n∑
j=1

|f(bj)− f(aj)| ≤ ε.

We also recall [40, Theorem 7.20].
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Theorem 2.8. If a function f : [a, b] → R is called absolutely continuous, then f is

differentiable at almost all points with respect to the Lebesgue measure of the interval [a, b],

the derivative function f ′ belongs to the space L1([a, b]), and the following Fundamental

Theorem of Calculus holds

f(y)− f(x) =

∫ y

x
f ′(t) dt, a ≤ x ≤ y ≤ b.

Definition 2.9. Assume that (X, d) and (Y, ρ) are two metric spaces. A function f :

X → Y is called continuous at x ∈ X if for any ε > 0 there exists δ > 0 such that if

d(x, y) < δ for then ρ
(
f(x), f(y)

)
< ε.

Definition 2.10. Let {xn}∞n=1 be a sequence of elements of a metric space (X, d). We

say that the sequence {xn}∞n=1 converges to x ∈ X if

∀ ε > 0 ∃N = Nε : ∀n ≥ N then d(xn, x) ≤ ε.

We write limn→∞ xn = x.

Definition 2.11. A sequence {xn}∞n=1 of elements of a metric space (X, d) is called a

Cauchy sequence if and only if for any ε > 0 there exists Nε ∈ N such that for all

m,n > Nε then d(xm, xn) < ε.

Definition 2.12. We say a metric space (X, d) is complete if every Cauchy sequence in

X is convergent.

Theorem 2.13. Assume that (X, d) and (Y, d) two metric spaces. Assume for every

n ∈ N the function fn : X → Y is a continuous function and {fn}n≥0 converges uniformly

to a function f on the same metric space, then f is also continuous.

Definition 2.14. Let fn : X → Y, n ∈ N, where X is a set and (Y, d) is a metric space.

We say fn → f uniformly if and only if for any ε > 0 there exists N such that for all

n ∈ N ∈ N such that

d(fn(x), f(x)) ≤ ε, for every x ∈ X.

The following Theorem is called Sandwich Theorem for functions [46], which is related to

the limits of functions and it is very useful in proving some properties.

Theorem 2.15. Assume that I ⊂ R and a is an accumulation point of I. Let f, g, h :

I → R be functions such that g(x) ≤ f(x) ≤ h(x) for all x ∈ I. If

g(x)→ L
as x→a

and h(x)→ L
as x→a

, then f(x)→ L.
as x→a

Definition 2.16. A vector space endowed with an inner product is called Hilbert space.
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Definition 2.17. Let (X, d) be a metric space and M is a subset of X. We say that M

is compact if every sequence in M has a convergent subsequence with the limit in M .

Definition 2.18. Suppose that (X, d) is a metric space and the set A ⊂ X. Then, we

say that A is dense set in X if and only if for every x ∈ X and every r > 0 there exists

y ∈ A such that d(y, x) < r.

An equivalent definition to Definition 2.18 is the following:

Definition 2.19. Let (X, d) be a metric space. Then, a set D ⊂ X is dense set if and

only if for every x ∈ X there exists a sequence {xn} ⊂ D such that xn → x.

Theorem 2.20. Let (E, d) is a metric space, a set A ⊂ E be dense in E, and that

A ⊂ B ⊂ E. Then B ⊂ E is dense in E.

Proof of Theorem 2.20. Let x ∈ E, suppose r > 0 is given. Since A is dense in E then

there exists y ∈ A such that d(x, y) < r. Since A ⊂ B, then y is also in B. Hence B is

dense in E.

Definition 2.21. Let (X, ‖ · ‖) be a Banach space and let D ⊂ X be a dense linear

subspace of X. A linear map A : D → X is called closed in X × X if and only if the

graph(A) is closed, i.e., if (xn, Axn) → (x, y) ∈ X ×X, where xn ∈ D, then x ∈ D and

y = Ax.

2.1.2 Linear bounded operators

Knowing the general form of bounded linear functional in various spaces is very important.

Part of our work is mainly based on operators, and therefore, in this section, we introduce

some definitions and general properties of linear operators between two normed vector

spaces.

Definition 2.22. Let X,Y be vector spaces over R. A function T : X → Y is called a

linear transformation (or mapping) if for any α, β ∈ R and x, y ∈ X

T (αx+ βy) = αT (x) + βT (y).

Definition 2.23. Let T be a function from a set X to a set Y and B ⊂ Y . The inverse

image of B is defined by

T−1(B) := {x ∈ X : T (x) ∈ B}.
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Definition 2.24. Assume that X,Y are two normed vector spaces. If T : X → Y is a

linear function then T is called bounded if and only if there exists a real number C > 0

such that

‖T (x)‖ ≤ C‖x‖, x ∈ X.

The following theorem plays an important role in proving some properties of linear oper-

ators on Banach spaces.

Theorem 2.25. [40, Theorem 5.4] If (X, ‖ · ‖) and (Y, ‖ · ‖) are two a normed vector

spaces and f : X → Y is a linear operators, then the following are equivalent

1. f is bounded,

2. f is continuous, i.e., continuous at every a ∈ X,

3. f is continuous at one point of X.

The following two theorems are important results in the proofs related to Sobolev spaces

which are discussed in Section 2.3.2.

Theorem 2.26. [10, Theorem 6.2 ] If X and Y are two normed vector spaces and f :

X → Y is a linear and bounded (i.e., continuous) map, then the ker f is a closed subspace

of X, where

ker f = {x ∈ X : f(x) = 0}.

Theorem 2.27. [37] If (X, ‖ · ‖X) is a Banach space and Y ⊂ X is a closed subspace of

X endowed with norm ‖y‖Y := ‖y‖X , y ∈ Y , then (Y, ‖ · ‖Y ) is also a Banach space.

Lemma 2.28. [37] Let X with norm ‖ ·‖X be a separable Banach space and Z be a linear

subspace of X. Let us endow Z with the norm inherited from X, i.e.,

‖x‖Z := ‖x‖X , x ∈ Z.

Then Z with norm ‖ · ‖Z is a separable normed vector space.

Definition 2.29. Let X and Y be two Banach spaces. A linear map T : X → Y is called

an isomorphism if it is bijective and bounded and its inverse T−1 : Y → X is bounded.

Definition 2.30. A map T : X → Y is called embedding if it is an injective continuous

map.

Corollary 2.31. Let X,Y, Z and E are Banach spaces and f : X → Y , g : Y → Z and

h : Z → E are isomorphisms, then h ◦ g ◦ f is also an isomorphism and

(h ◦ g ◦ f)−1 = f−1 ◦ g−1 ◦ h−1.
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2.2 Measure Theory

Measure theory is a very important concept in mathematics, especially in analysis. Some

functions do not behave well under integration and their limits may not exist. Such

problems can be addressed by the measure theory which provides more general frameworks

to cover these problems. In this section, we introduce the basic notation of measure theory

including a brief introduction to the Lebesgue and probability measure. We will give more

information regarding the invariant measure in Chapter 3.

2.2.1 Probability measure

Definition 2.32. Let Ω be any non-empty set. A collection F of subsets of Ω is called a

σ-field (or σ-algebra) on Ω if the following conditions are satisfied

1. ∅ ∈ F ,

2. F is closed under complements, i.e., if A ∈ F then Ac ∈ F ,

3. F is closed under countable unions, i.e., if A1, A2, . . . ∈ F , then ∪iAi ∈ F ,

4. if A1, A2, . . . ∈ F , then ∩iAi ∈ F .

Definition 2.33. The Borel σ-field over a metric space (X, d) is the smallest σ-field

containing all open sets of X and we write B(X). In particular, B(R) is the smallest

σ-field on R that contains all open (or equivalently closed) subsets of R.

Proposition 2.34. Suppose X,Y are topological spaces with topologies denoted by top(X)

and top(Y ). Let B(X),B(Y ) denote the Borel σ-field on X,Y respectively, i.e.,

B(X) = σ
(
top(X)

)
and B(Y ) = σ

(
top(Y )

)
.

If a map f : X → Y is continuous then f is B(X)/B(Y ) (Borel) measurable, i.e.,

f−1(B) ∈ B(X) for every B ∈ B(Y ).

Definition 2.35. Let F be a σ-field on Ω. A probability measure on F is a function

P : F → [0, 1] such that

1. P(Ω) = 1,

2. if {Ai}∞i=1 ∈ Ω are pairwise disjoint sets (that is Ai ∩Aj = ∅ for i 6= j), then

P
[ ∞⋃
i=1

Ai
]

=

∞∑
i=1

P(Ai).
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The triple (Ω,F ,P) is called a probability space, where Ω is the non-empty set, F is σ-field

on Ω, and P is the probability measure. The sets that belong to F are called events.

Definition 2.36. Let (Ω,F ,P) be a probability space. A function ξ : Ω → R is called a

random variable or measurable if and only if ξ(A)−1 ∈ F for every A ∈ B(R).

Definition 2.37. A stochastic process is a family ξ = {ξ(t), t ∈ T} of random variables

ξ(t) parametrized by t ∈ T , where T ⊂ R.

The following definition is classical and we follow here Definition 1.1 from the book [31].

Definition 2.38. Suppose (Ω,F ,P) is a probability space. A stochastic process w =(
w(t)

)
t≥0

is called a Brownian Motion (BM for short) if and only if the following conditions

hold

1. w(0) = 0 almost surely, i.e., there exists a set Ω1 ∈ F such that P(Ω1) = 1 and for

all ω ∈ Ω1, w(0, ω) = 0.

2. w has independent increments, i.e., if 0 ≤ t0 < t1 < · · · < tn < ∞, the random

variables w(t0), w(t1)− w(t0), w(t2)− w(t1), · · · , w(tn)− w(tn−1) are independent.

3. if 0 ≤ s < t then w(t)−w(s) is N(0, t−s), i.e., w(t)−w(s) has a normal distribution

with parameters µ = 0 and σ2 = t− s. In other words, w(t)−w(s) is an absolutely

continuous random variable with density

pt−s(x) =
1√

(2π)(t− s)
e
−x2

2(t−s) , x ∈ R.

4. The trajectories [0,∞) 3 t 7→ w(t) are, almost surely, continuous functions.

Theorem 2.39. [13, Theorem 6.2] Suppose that
(
w(t)

)
t≥0

is a Brownian Motion on a

probability space (Ω,F ,P). Let A1, A2, . . . , An ∈ B(R), for example A1 = (a1, b1), A2 =

(a2, b2), . . . . Let 0 < t1 < t2 < · · · < tn. Then

P
(
{ω ∈ Ω : w(t1)(ω) ∈ A1, w(t2)(ω) ∈ A2, . . . , w(tn)(ω) ∈ An}

)
=

∫
A1

· · ·
∫
An

pt1(x1)pt2−t1(x2 − x1)pt3 − t2(x3 − x2) . . . ptn−tn−1(xn − xn−1) dxn . . . dx1.

In Chapters 4 and 5, we use the following sophisticated property mentioned in the book

by [31, Theorem 5.1] of the BM called the law of iterated logarithm. We write down the

presentation here as the following theorem.

Theorem 2.40. Let (w(t))t≥0 be a Brownian motion. Then, almost surely,

lim sup
t→∞

|w(t)|√
2t log log(t)

= 1.
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2.2.2 Lebesgue measure

Definition 2.41. Let F be a σ-field on a set Ω. A measure µ is a function

µ : F → [0,∞]

that satisfies the following conditions.

1. µ(∅) = 0,

2. if {Ai}∞i=1 ∈ Ω are pairwise disjoint sets (that is Ai ∩Aj = ∅ for i 6= j), then

µ
[ ∞⋃
i=1

Ai
]

=
∞∑
i=1

µ(Ai).

The measure µ could be finite and we write µ(Ω) < ∞ or infinite we write µ(Ω) = ∞.

Moreover, the triple (Ω,F , µ) is called measure space, see e.g. [2], p. 161 and/or Definition

1.3.5 in [4].

Definition 2.42. A set X ⊂ R is called Lebesgue measurable or simply measurable if for

any elementary set E, we have that

µ(E ∩X) + µ(E \X) = µ(E).

The set of all Lebesgue measurable subsets of R will be denoted by L(R).

Definition 2.43. If M is a subset of R such that M = ∪ki=1Pi for some pairwise disjoint

intervals P1, · · ·Pk, then M is called an elementary set.

Definition 2.44. The Lebesgue measure on B(R) is a unique [0,∞]-valued measure

m : B(R) → [0,∞] such that m
(
[a, b]

)
= |b − a|, for all a, b ∈ R, a < b. Note that:

m
(
[0,∞]

)
=∞.

Definition 2.45. The Lebesgue measure on L(R) is the unique [0,∞]-valued measure

mL : L(R)→ [0,∞] such that mL

(
[a, b]

)
= |b− a|, for all a, b ∈ R, a < b.

It can be proved that the measure m from Definition 2.44 is the restriction of the measure

m from Definition 2.45, i.e., m(A) = mL(A) for every B(R).

Definition 2.46. A measurable space is a pair (Ω,F), where Ω is a non-empty set and

F is a σ-field of subset of Ω, [2], p. 161 and/or Definition 1.2.3 in [4].

For any element S ∈ F we say that S is a measurable set.

Usually, authors introduce the notion of a strongly measurable X-value function but we

do not do this because of the following corollary
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Corollary 2.47. If X is a separable Banach space then the classes of strongly measurable

functions and Borel measurable functions are equal.

2.2.3 Gaussian measures in Banach spaces

Definition 2.48. A Gaussian measure µ on R is either concentrated at one point µ = δm

or has a density

f(x) =
1√
2πq

e
− (x−m)2

2q , x ∈ R

for some q > 0 and m ∈ R. Such a measure is denoted by N (m, q).

Definition 2.49. A Borel measure µ has a density f(x) if and only if function f is a

Borel measurable and for every A ∈ B(R)

µ(A) =

∫
A
f(x) dx.

Let (Ω,F ,P) is a probability space. A density, if it exists, of random variable ξ : Ω→ R
is a Borel measurable function f : R→ [0,∞) such that

P(ξ ∈ A) =

∫
A
f(x) dx, for every A ∈ B(R).

Definition 2.50. Suppose that
(
w(t)

)
t≥0

is BM. We define a cylinder set in the space

E = 0C([0, 1]) by Γ = {x ∈ E : x(t1) ∈ A1, · · ·x(tn) ∈ An}, where

0 < t1 < t2 < · · · < tn ≤ 1 and A1 < · · · < An ∈ B(R).

The family of all cylinder sets is denoted by cyl(E). The law of BM is the unique Borel

probability measure µ : B(E)→ [0, 1] such that for every Γ ∈ cyl(E)

µ(Γ) =

∫
A1

· · ·
∫
An

pt1(x1)pt2−t1(x2 − x1) · · · ptn−tn−1(xn − xn − 1) dxn, · · · dx1.

Definition 2.51. Gaussian measure on a Banach space. Let E be a separable Banach

space with B(E) the Borel σ-field. A probability measure µ : B(E) → [0, 1] is called a

Gaussian measure on the space E if and only if the law of an arbitrary linear functional

ϕ ∈ E∗ is a Gaussian measure on (R,B(R)).

Proposition 2.52. The law of Brownian motion is a Gaussian measure on the space

E = C0 ([0, T ])
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2.3 Lebesgue and Sobolev Spaces

Function spaces, in particular, Lp and Sobolev spaces, are considered fundamental tools

in modern analysis such as partial differential equations (PDEs). The importance of these

spaces appears from the completeness property of the space which helps us to do analysis

and find the existence of solutions. In this section, we are not considering the whole

theory of such spaces instead, only properties that are useful and directly related to this

thesis are given.

2.3.1 Lebesgue spaces

In this subsection, we assume that µ to be the Leagues measure on L(R+). All definitions

in this section are valid if R+ is replaced by any Borel subset of R, for instance, R+ = [0, 1]

Definition 2.53. We say that a function f ∈ Lp(µ) = Lp(R+) if and only if

1. The function f : R+ −→ R is Lebesgue measurable,

2.
∫
R+
|f(x)|pdµ(x) <∞.

Definition 2.54. Let f ∈ Lp(R+, µ), we define the equivalence classes of f as the follow

[f ]∼ = [f ] = {g ∈ Lp : g ∼ f}.

Any function g ∈ [f ]∼ is called a representative of [f ]∼.

Definition 2.55. If 1 ≤ p < ∞, we define Lp space to be the space of all equivalence

classes of measurable functions f : R+ → R such that

‖f‖Lp(R+) =
(∫ 1

0
|f(x)|pµd(x)

) 1
p
<∞.

Definition 2.56. If f ∈ Lp(R+, µ) we can define the norm of the equivalent class of

function f as follows

‖[f ]∼‖p = ‖f‖p =

(∫
R+

|f(x)|p dµ(x)

) 1
p

.

Definition 2.57. Let X be a separable Banach space. We say that f ∈ L1
loc(R+;X) if

and only if

1. f : R+ → X is measurable, and

2.
∫

[0,T ] |f(s)|X ds <∞, for every T > 0.
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Now we state a theorem without proof that contains two basic inequalities called Hölder

and Minkowski inequalities. The proof of this theorem can be found in [40, Theorem 3.5].

Theorem 2.58. Let p, q ∈ [1,∞) such that 1
p + 1

q = 1. Assume that f : R+ → [0,∞) and

g : R → [0,∞) are Lebesgue measurable functions. The first one is called the Hölder’s

and it is as follows

∫
R
f(x)g(x) dµ ≤

(∫
R
fp(x) dµ

) 1
p
(∫

R
gq(x) dµ

) 1
q

. (2.3.1)

The second one is called Minkowski and it is as follows

(∫
R

(
f(x) + g(x)

)p
dµ

) 1
p

≤
(∫

R
fp(x) dµ

) 1
p

+

(∫
R
gp(x) dµ

) 1
p

.

Theorem 2.59. The space Lp(R+, µ) is a Banach space.

The proof of this theorem can be found in [40, Theorem 3.11]. Lp(R+, µ) spaces are

important examples of Banach spaces. We use these spaces later in Chapter 3. Note that

the elements in the space Lp are equivalent classes, and we suppose that all the elements

in Lp are not equivalent classes but functions because if it is true for functions it follows

that it will be true for equivalent classes.

2.3.2 Sobolev spaces

As we mentioned before Sobolev spaces are a very useful concept in partial differential

equations. Specifically, the existence of a solution with more nice properties. The solution

of differential equations if it exists normally belongs to Sobolev spaces. Before we go

through the most important definitions and properties of such spaces we need to shed light

on notation called weak derivatives. This notation is a generalization of the derivative of

functions. Therefore, in this subsection, we start by setting up the definition of a weak

derivative. Most of the results in this section have been taken from [5]. We start by

setting up some notations. Let I ⊂ R be an open interval (or open set). We define the

space C∞c (I) as follows:

C∞c (I) = {φ : I → R such that φ is infinitely differentiable and there

exists a compact interval K ⊂ I : φ(x) = 0 if x /∈ K}.

Definition 2.60. Assume that I ⊂ R is a Borel subset. A function u ∈ L1(I) if and only

if u : I → R is Lebesgue measurable and∫
I
|u(x)|dµ(x) =

∫
R
|u(x)|1I(x)dµ(x) <∞,
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where

1I(x) =

x, if x ∈ I

0, if x /∈ I

Definition 2.61. A function u ∈ L1
loc(I) if and only if u : I → R is measurable and for

every K ⊂ I compact interval, ∫
K
|u(x)|dµ(x) <∞.

Definition 2.62. Let u, v ∈ L1
loc(I). We say that v = Du (i.e., v is the weak derivative

of u) if and only if for any function φ ∈ C∞c (I),∫
I
u(x)φ′(x)dµ(x) = (−1)

∫
I
v(x)φ(x)dµ(x).

We now point out the basic definitions and properties of Sobolev spaces. From now on

we consider the interval I to be (0, 1).

Definition 2.63. Let p ∈ [1,∞). We say that u ∈ H1,p(0, 1) if and only if the function

u is continuous,
∫

(0,1) |u|
pdµ < ∞ and there exists a function v : (0, 1) → R, which is

Lebesgue measurable such that
∫

(0,1) |v|
pdµ < ∞, and Du = v (in a weak sense). The

space H1,p(0, 1) is called Sobolev space.

For a function u ∈ H1,p(0, 1) we define the norm in the space H1,p(0, 1) as follows

‖u‖H1,p(0,1) =
[ ∫

(0,1)
|u|p dµ+

∫
(0,1)
|Du|p dµ

] 1
p
. (2.3.2)

Note: By definition above, the norm ‖u‖H1,p(0,1) is finite.

Proposition 2.64. [5, Proposition 9.1] The space H1,p(0, 1) with norm defined by (2.3.2)

is a separable Banach space.

In the following, we introduce an equivalent definition to the Definition 2.63 which is an

important tool.

Definition 2.65. The space H̃
1,p

(0, 1) is the space of all functions u ∈ C([0, 1]) such that

the weak derivative Du of function u exists and Du ∈ Lp(0, 1) .

The norm of the space H̃
1,p

(0, 1) for any function u is given by

‖u‖
H̃

1,p
(0,1)

=

(
|u|pC([0,1]) + |Du|pLp(0,1)

) 1
p

. (2.3.3)

Theorem 2.66. The space H̃
1,p

(0, 1) with norm defined in (2.3.3) is a Banach space.



Preliminaries 17

It is important to say that those two spaces are equal and their norms are equivalent as

we formulate in the next result.

Theorem 2.67. H1,p(0, 1) = H̃
1,p

(0, 1) and the norms are equivalent, i.e., there exists

C > 0, such that for every u ∈ H1,p(0, 1) we have

1

c
‖u‖H1,p(0,1) ≤ ‖u‖H̃1,p

(0,1)
≤ C‖u‖H1,p(0,1).

Definition 2.68. The space H1,p
0 (0, 1) is defined as follows

H1,p
0 (0, 1) := {u ∈ H1,p(0, 1) : u(0) = 0}. (2.3.4)

Remark 2.69. Since H1,p(0, 1) = H̃
1,p

(0, 1), the equality (2.3.4) makes sense.

Theorem 2.70. The space H1,p
0 (0, 1) is a closed subspace of the space H1,p(0, 1). Equiv-

alently, the space H1,p
0 (0, 1) is a closed subspace of the space H̃

1,p
(0, 1).

Corollary 2.71. The space H1,p
0 (0, 1) is a Banach space with norm defined in quality

(3.1.3), i.e.,

‖u‖
H1,p

0 (0,1)
:= ‖u‖H1,p(0,1).

However, on this space H1,p
0 (0, 1) we can introduce a different norm which is

‖|u|‖
H1,p

0 (0,1)
:=

(∫ 1

0
|Du|p dx

) 1
p

= ‖Du‖Lp(0,1) for all u ∈ H1,p
0 (0, 1). (2.3.5)

This norm allows us to state the following theorem.

Theorem 2.72. The space H1,p
0 (0, 1) endowed with norm ‖|u|‖

H1,p
0 (0,1)

is also a Banach

space. Moreover, the norms ‖|u|‖
H1,p

0 (0,1)
and ‖u‖

H1,p
0 (0,1)

are equivalent. That is, there

exists C > 0, such that for every u ∈ H1,p
0 (0, 1)

1

C
‖u‖

H1,p
0 (0,1)

≤ ‖|u|‖
H1,p

0 (0,1)
≤ C‖u‖

H1,p
0 (0,1)

.

From Definitions 2.63, 2.65 and Theorem 2.67, we deduce the following property

H1,p(0, 1) ⊂ C([0, 1]). (2.3.6)

2.3.2.1 Bochner Integral

We do not define the Bochner integral here see for more details [49, Chapter V], Here we

only need the following useful result.
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Corollary 2.73. [49, Corollary 1] Assume that X is a separable Banach space. If a

function f : (a, b)→ X is Borel measurable and the function (a, b) 3 r 7→ ‖f(s)‖X ∈ R is

integrable, then f is Bochner integrable and

∥∥∫
(a,b)

f(s) ds
∥∥
X
≤
∫

(a,b)

∥∥f(s)
∥∥
X
ds.

2.4 C0-Semigroups

The most important set of preliminaries to mention in this Chapter is related to the theory

of semigroups in Banach Spaces. Semigroups can be used to solve some problems in PDEs.

In this section, we first give a number of definitions and identify related properties. Next,

we give the well-known result called the Hille-Yosida Theorem which helps to find the

infinitesimal generator of the strongly continuous semigroup. Finally, we provide some

examples of C0-semigroups and some applications. Most of our materials in this section

are inspired by Pazy [33].

2.4.1 Definitions and properties

Definition 2.74. Let X be a Banach space with a norm ‖·‖X and let {St}t≥0 be a family

of bounded linear operators from X to X. Then {St}t≥0 is called a strongly continuous

semigroup of bounded linear operators on the space X (or shortly C0-semigroup on X) if

and only if the following conditions are satisfied:

1. S0 = I (where I is the identity element on X),

2. St+s = StSs for every t, s ∈ [0,∞), and

3. ‖Stx− x‖X → 0 as t→ 0, for every x ∈ X.

Sometimes we write S(t), t ≥ 0 to denote the semigroups instead of {St}t≥0.

Definition 2.75. A C0-semigroup {St}t≥0 on a Banach space X is called a contraction

semigroup if and only if ‖St‖ ≤ 1, for every t ∈ [0,∞).

It is called a uniformly bounded semigroup if and only if there exists M ≥ 1 such that

‖St‖ ≤M for 0 ≤ t <∞.

Corollary 2.76. [33, Corollary 2.3] If {St}t≥0 is a C0-semigroup on a Banach space

X, then for every x ∈ X the trajectory of the semigroup {St}t≥0 starting at x, i.e., the

function

u : R+ = [0,∞) 3 t 7−→ Stx ∈ X



Preliminaries 19

is continuous.

Definition 2.77. If {St}t≥0 is a C0-semigroup on a Banach space X, then we define

D(A) = {x ∈ X : lim
t→0+

Stx− x
t

exists },

and we put Ax = lim
t→0+

Stx− x
t

, if x ∈ D(A).

A is called the infinitesimal generator of the semigroup {St}t≥0, and D(A) is the domain

of A.

Remark 2.78.

The following theorem is one of the important results in the theory of semigroups and it

has been used in many places in mathematics. The proof of the theorem can be found

in [33, Ch. 1, Theorem 2.4].

Theorem 2.79. [33] Assume that {S(t)}t≥0 is a C0-semigroup on a Banach space X

and let A be the infinitesimal generator of the semigroup. Then we have the following

properties hold:

1. If t ≥ 0, x ∈ X

lim
h→0

1

h

∫ t+h

t
T (s)x ds = T (t)x.

2. For t > 0, x ∈ X∫ t

0
T (s)x ds ∈ D(A) and A

( ∫ t

0
T (s)x ds

)
= T (t)x− x.

3. If x ∈ D(A) and t ≥ 0, then T (t)x ∈ D(A) and A
(
T (t)x

)
= T (t)(Ax).

4. If x ∈ D(A),

T (t)x− T (s)x =

∫ t

s
T (τ)Axdτ =

∫ t

s
AT (τ)x dτ.

5. D(A) is a dense subspace of X.

2.4.2 Useful examples of C0-Semigroups

In this section, we present examples and applications of different C0-semigroups in differ-

ent Banach spaces that are related to our work. We prove the first example in this section

with details, and all other models can be proved similarly.
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Example 2.80. Let X = Lp(0, 1), where 1 ≤ p <∞. Define

(Ttx)(s) = x(se−t), x ∈ X, s ∈ [0, 1), t > 0. (2.4.1)

The family {Tt}t≥0 is a C0-semigroup on the space Lp(0, 1), Moreover, {Tt}t≥0 is a C0

contraction type semigroup on Lp(0, 1), i.e., precisely the following inequality holds,

‖Tt‖L(Lp(0,1)) ≤ e
t
p , for every t ≥ 0. (2.4.2)

Proof of Example 2.80. We need to check first if Tt is 1) linear, and 2) bounded operator

before we dive in to prove the conditions of C0-semigroup listed in the Definition 2.74.

First, regarding the linearity of Tt, let x, y ∈ Lp(0, 1) and s ∈ R, α, β ∈ R, then we have

Tt[αx+ βy](s) = [αx+ βy](se−t) = αx(se−t) + βy(se−t) = αTtx(s) + βTty(s).

Thus, the operator Tt is linear for every t ∈ (0, 1). For the boundedness, let us choose and

fix t > 0. For any x ∈ Lp(0, 1). By applying the norm in the space Lp(0, 1) and changes

of variables we have

∥∥Ttx∥∥pLp(0,1)
=

∫ 1

0
|x(se−t)|pds = et

∫ e−t

0
|x(r)|p dr ≤ et

∫ 1

0
|x(r)|p dr = et|x|pLp(0,1).

Hence, Tt is bounded and

‖Tt‖L(Lp) ≤ e
t
p , t ≥ 0 (2.4.3)

Now we verify the three conditions of the Definition 2.74 of C0-semigroup. Regarding the

first condition, for any x ∈ Lp(0, 1) and any s ∈ (0, 1) we have T0x(s) = x(se0) = x(s), so

T0 = I. Regarding the second condition, for every r, t ≥ 0, and for any x ∈ R we have

(TtTrx)(s) = [Tt(Trx)](s) = (Trx)(se−1) = x(se−te−r) = x(se−(t+r)) = (Tt+r)(s).

Hence, TtTr = Tt+r. Regarding the third condition, we need to show that ‖Ttx −
x‖Lp(0,1) → 0 as t → 0, for all x ∈ Lp(0, 1). We consider two steps. For the first

step, we assume that the function x is more regular, which means that x is a Lipschitz

function. Then. for every t ∈ (0, 1) we have

∥∥Ttx− x∥∥pLp(0,1)
=

∫ 1

0
|x(se−t)− x(s)|p ds.

By considering our assumption above that function x is Lipschitz, with change of variables

we get

‖Ttx− x‖p =

∫ 1

0
|x(r)− x(s)|pds ≤

∫ 1

0
Lp|se−t − s|pds = Lp

∫ 1

0
|se−t − s|pds.
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To check if the expression above converges to zero, we consider two cases. The first case,

if p = 1 then

L

∫ 1

0
|se−1 − s| ds = L

∫ 1

0
|s|(1− e−t) ds = L(1− e−t)

∫ 1

0
|s| ds =

1

2
L(1− e−t).

So we proved that

0 ≤ |Ttx− x| ≤ L
[1
2

(1− e−t)
]
.

Therefore, by the Sandwich Theorem 2.15 we get

lim
t→0
‖Ttx− x‖ = 0.

In the second case, if p > 1, we have

0 ≤ ‖Ttx− x‖p = Lp
∫ 1

0
|(1− e−t)|s|p ds = (1− e−t)Lp

[ 1

p+ 1

]
−−→
t→0

0.

For the second step of proving the continuity of C0-semigroup condition, we consider the

set of Lipschitz functions is dense in Lp(0, 1). Let us choose and fix x ∈ Lp(0, 1) and

ε > 0. Then, there exists a Lipschitz function y : [0, 1]→ R such that ‖x− y‖Lp < ε
4 .

Since the function y is Lipschitz, by step 1 we can find δ1 > 0 such that

|Tty − y| <
ε

4
if t ∈ [0, δ1).

Moreover, we can find δ2 > 0 such that e
δ2
p ≤ 2. Put δ = min{δ1, δ2}. Then, if t ∈ (0, δ),

then by inequality (2.4.3), we get

‖Ttx− x‖Lp(0,1) ≤ |Tt(x− y)|Lp(0,1) + |Tty − y|Lp(0,1) + |y − x|Lp(0,1)

= e
δ2
p |x− y|Lp(0,1) + |Tty − y|Lp(0,1) + |y − x|Lp(0,1)

≤ 2
ε

4
+
ε

4
+
ε

4
= ε.

By this, the third condition of C0-semigroup follows.

Hence, we proved that the family {Tt}t≥0 of linear bounded operators defined on the

equation (2.4.1) is a C0-semigroup on the space Lp(0, 1).

Example 2.81. Let X = Lp
(
[0,∞)

)
= Lp. We define for t ≥ 0,

[Ttf ](x) = f(t+ x), f ∈ Lp, x ∈ [0,∞).

Then the family {Tt}t≥0 on the space Lp is a C0-semigroup of contraction.

It is straightforward to check that all the conditions in the Definition 2.74 are satisfied.
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Example 2.82. Let X = C0 ([0, 1]). Define

[Stx](s) = eλtx(se−t), x ∈ X, s ∈ (0, 1), t ≥ 0. (2.4.4)

Then the family {St}t≥0 is a C0-semigroup on the space X, in fact, This semigroup is

contraction type.

Proof of Example 2.82. We need to prove directly that the family {St}t≥0 is a C0-semigroup

on space X. Before proving that {St}t≥0 is a C0-semigroup we need to attest if St is well-

defined and for every t ≥ 0, St : X → X is a linear bounded operator. Respectively, the

following checks these properties. For the first property, we need to show that if x ∈ X
then Stx ∈ X. Denote y = Stx. By the formula in the equation (2.4.4), we denote the

family of semigroups by y(s) = eλtz(s), where z(s) = x(se−t), for every s ∈ [0, 1]. To

prove that y ∈ X, it is sufficient to prove that z ∈ X, because eλt is just a constant. First

we notice that z(0) = x(0e−t) = x(0) = 0. Secondly, we need to check if the function z

is continuous. One easy way to consider z as a composition of two functions as follows

z = x ◦ ϕ, where

ϕ : [0, 1] 3 s 7→ se−t ∈ [0, 1].

Since the function ϕ is linear then it is continuous. Hence, we infer that z is also continuous

as a composition of two continuous functions (x from our assumption belongs to the space

X), see Theorem 4.7 in [39].

For the second property (that is, the linearity), let x, y belong to the space C0 ([0, 1]), and

α, β ∈ R, then we have

St[αx+ βy](s) = eλt[αx+ βy](se−t) = αStx(s) + βSty(s).

From that, we deduce that St is a linear operator. For the boundedness of St, let us fix

t ≥ 0 then we have

‖Stx‖ C0 ([0,1]) = sup
s∈[0,1]

|(Stx)(s)| = sup
s∈[0,1]

|eλtx(e−ts)| = eλt sup
s∈[0,1]

|x(e−ts)|.

After Using a change of variables we get

‖Stx‖ C0 ([0,1]) = eλt sup
σ∈[0,e−t]

|x(σ)| ≤ eλt sup
σ∈[0,1]

|x(σ)| = eλt‖x‖ C0 ([0,1]).

By that, we have found that St is a linear bounded operator. After checking the properties

of the operator St we now attest if the family {St}t≥0 is a C0-semigroup on the space

C0 ([0, 1]). The first two conditions are apparent. For the third condition of C0-semigroup,

we need to verify the C0-continuity property. In other words, for every x ∈ C0 ([0, 1]), we

have ‖Stx − x‖ C0 ([0,1]) → 0 as t → 0. Before commencing the proof of this condition,
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we prepare the reader for the following remarks. We notice that since x ∈ C0 ([0, 1]), then

x is continuous. Also, the function x is bounded, that means, for every s ∈ [0, 1] there

exists a constant M > 0 such that |x(s)| ≤M . Furthermore, because the interval [0, 1] is

compact, then x is uniformly continuous, i.e.,

∀ ε′ > 0 ∃ δ′ > 0 : if |r − s| ≤ δ′ then |x(r)− x(s)| ≤ ε′. (2.4.5)

To verify the third condition, our aim is for any ε > 0 we need to find δ > 0 such that

0 < t ≤ δ ⇒ ‖Stx− x‖ C0 ([0,1]) ≤ ε.

Let t > 0, s ∈ [0, 1], then we have

‖Stx(s)− x(s)‖ C0 ([0,1]) = |eλtx(se−t)− x(s)|

= |eλtx(se−t)− eλtx(s) + eλtx(s)− x(s)|

≤ eλt|x(se−t)− x(s)|+ |eλt − 1||x(s)| ≤ · · · (2.4.6)

First, we consider the first part of the equation (2.4.6). Since the function x(s) is uniformly

continuous, we need to check that |s− se−t| ≤ δ′. In other words,

|s− se−t| = |s||1− e−t| ≤ |1− e−t|.

We know from [39, Theorem 8.6] that the function t 7→ e−t is continuous, in particular,

continuous at 0. So, let δ′′ > 0 such that

0 < t ≤ δ′′ ⇒ |e−t − e−0| ≤ δ′.

Therefore, we infer that for every s ∈ [0, 1] we have

0 < t ≤ δ′′ ⇒ |s− se−t| ≤ δ′. (2.4.7)

By using the equation(2.4.5) with ε′ = ε
4 , we can find δ′ > 0 such that

|x(r)− x(s)| ≤ ε

4
if |r − s| ≤ δ′. (2.4.8)

Hence, we deduce from the equation (2.4.7) and the equation (2.4.8) that for every s ∈
[0, 1] the following

0 < t ≤ δ′, s ∈ [0, 1] then |x(se−t)− x(s)| ≤ ε

4
.
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Moreover, since t 7→ eλt is continuous and 0 7→ e0λ = 1, then we have

∃ δ′′′ > 0 : eλt ≤ 2 if 0 < t ≤ δ′′′.

To conclude the first part of equation (2.4.6), if 0 < t ≤ min{δ′, δ′′′} then for every

s ∈ [0, 1] we have

eλt|x(se−t)− x(s)| ≤ 2 · ε
4

=
ε

2
. (2.4.9)

Regarding the second part of equation (2.4.6), notice that the function t 7→ (eλt − 1) is

also continuous and 0 7→ (eλ0 − 1) = 0. So, there exists δ′′′′ > 0 such that

0 < t ≤ δ′′′′ ⇒ |eλt − 1| ≤ ε

2M
. (2.4.10)

By substituting equations (2.4.9) and (2.4.10) in the RHS of equation (2.4.6) and because

x is bounded we have. Then, if 0 < t ≤ min{δ′, δ′′′, δ′′′′}, then for every s ∈ [0, 1]

|Stx(s)− x(s)| ≤ ε

2
+

ε

2M
·M ≤ ε

2
+
ε

2
= ε.

To sum up, we proved the following

‖Stx− x‖ C0 ([0,1]) = sup
s∈[0,1]

‖Stx(s)− x(s)‖ ≤ ε.

Hence we proved that the family {St}t≥0 that was defined on equation (2.4.4) is a C0-

semigroup on the space C0 ([0, 1]).

Theorem 2.83. A family {Tt}t≥0 is defined by

(Ttx)(s) = x(se−t), for any s ∈ (0, 1), t > 0 (2.4.11)

is a C0-semigroup on the space C1
0 ([0, 1]).

This theorem is a special case of Example 2.82 and the proof can be done in a similar way

to that example.

Remark 2.84. The C0-semigroup on the space C1
0 ([0, 1]) from the previous Theorem

2.83 was denoted by symbol {Tt}t≥0. The C0-semigroup on the space H1,p
0 (0, 1) from the

Theorem 2.85 below is denoted by the same symbol {Tt}t≥0. But these are different objects

because they are defined in different Banach spaces. Nevertheless, these two semigroups

agree on the smaller of these spaces. In the following Example 2.92 the former semigroup

will be denoted by {T̃t}t≥0. With this notation, the following condition holds:

T̃t(x) = Tt(x), for every x ∈ C1
0 ([0, 1]), for all t ∈ [0,∞).
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Theorem 2.85. A family {Tt}t≥0 defined by the equation (2.4.11) is a C0-semigroup on

the space H1,p
0 (0, 1), which has been defined in equation (2.3.4) Moreover, {Tt}t≥0 is a

C0-semigroup of contractions on the space H1,p
0 (0, 1).

Proof of Theorem 2.85. In order to prove that the family {Tt}t≥0 is a C0-semigroup on

the space H1,p
0 (0, 1), firstly we need to verify that for each t ≥ 0, the operator Tt is a

well-defined linear bounded operator.

Regarding the well-defined property, we need to show that:

if x ∈ H1,p
0 (0, 1) =⇒ Ttx ∈ H1,p

0 (0, 1).

First of all, suppose that x ∈ H1,p
0 (0, 1), and denote y = Ttx, i.e.,

y(s) = x(se−t) for every s ∈ [0, 1].

We need to show that the function y belongs to the space H1,p
0 (0, 1); and to do that, the

function must satisfy all conditions in the definition of the space H1,p
0 (0, 1). That is, we

need to show the following

1) y ∈ C([0, 1]) and y(0) = 0

2) the weak derivative Dy exists and Dy belongs to space Lp(0, 1).

The first two conditions are straightforward. To prove the second condition, let Dx be a

weak derivative of the function x and let us put

z(s) := e−t(Dx)(se−t), s ∈ [0, 1].

Since Dx ∈ Lp(0, 1), we easily can check that z ∈ Lp(0, 1) as a multiplication of two

measurable functions [39]. The aim is to prove that Dy = z. However, it is sufficient to

verify only the following equation∫
(0,1)

z(s)φ(s) ds = −
∫

(0,1)
y(s)φ′(s) ds, φ ∈ C∞c (0, 1). (2.4.12)

Let us choose and fix φ ∈ C∞c (0, 1). Then, by the above definition of function z, we get∫
(0,1)

z(s)φ(s) ds =

∫
(0,1)

e−t(Dx)(se−t)φ(s) ds

= e−t
∫

(0,1)
(Dx)(se−t)φ(s) ds = · · ·
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To calculate the last integral, we use changes of variables as follows σ = se−t ∈ [0, e−t].

Note dσ = e−tds, then we obtain

· · · =
∫

(0,e−t)
(Dx)(σ)φ(etσ) dσ

Because x is weakly differentiable (Dx = x) and function φ ∈ C∞c (0, 1), then we can move

the derivative to the other direction as follows

= −
∫

(0,e−t)
x(σ)

d

dσ
φ(etσ) dσ = −

∫
(0,e−t)

x(σ)etφ′(etσ) dσ

= −
∫

(0,1)
x(se−t)φ′(s) ds = −

∫
(0,1)

y(s)φ′(s) ds.

By that, we proved the equation (2.4.12). Thus, the verification of the second condition

is complete, and as a consequence y ∈ H1,p
0 (0, 1), and therefore, the operator Tt is well-

defined. Regarding the second main property (boundedness and linearity of the operator

Tt), it can be proved in a similar way as in Example 2.80. Moreover, the family {Tt}t≥0

is a contraction C0-semigroup. After showing that the operator Tt is well-defined, linear

and bounded, we are now able to verify whether the family {Tt}t≥0, which was defined

by in equation (2.4.11), is a C0-semigroup on space H1,p
0 (0, 1). The first two conditions

are trivial. For the C0-continuity condition, we take x ∈ H1,p
0 ([0, 1]), and then check the

following

‖Ttx− x‖ H1,p
0 ([0,1])

→ 0 as t→ 0. (2.4.13)

To prove the equation (2.4.13) is satisfied, we use the definition of the norm in the space

H1,p
0 ([0, 1]) defined by equation (2.3.5) and we consider two steps. The first step is to

attest the continuity condition when x ∈ C1
0 ([0, 1]), which is a subspace in the space

H1,p
0 ([0, 1]), see Example B.1. Then, in the second step we use the density of space

C1
0 ([0, 1]) in H1,p

0 ([0, 1]).

Regarding the former, we assume that x ∈ C1
0 ([0, 1]). Let t ≥ 0, then we have

‖Ttx− x‖ H1,p
0 (0,1)

=
[ ∫ 1

0

∣∣ d
ds

(
x(se−t)− x(s)

)∣∣p ds]1/p
=
[ ∫ 1

0

∣∣e−tx′(se−t)− x′(s)∣∣p ds]1/p (2.4.14)

Since x ∈ C1
0 ([0, 1]), there exists δ > 0 such that

0 < t ≤ δ =⇒ |e−tx′(se−t)− x′(s)| ≤ 2ε

3
.

By substituting the last equation with the equation (2.4.14), we obtain

‖Ttx− x‖ H1,p
0 (0,1)

≤
[ ∫ 1

0

∣∣2ε
3

∣∣p ds]1/p
≤
∣∣2ε

3

∣∣p.
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Hence we proved that

‖Ttx− x‖ H1,p
0 (0,1)

→ 0 as t→ 0 (2.4.15)

Regarding the latter step, the following result is known. One can prove this by slightly

modifying the proof of Lemma 6.1 from the book [23].

Lemma 2.86. The space C1
0 ([0, 1]) is a dense subset of the space H1,p

0 (0, 1). Moreover,

the natural embedding1 C1
0 ([0, 1]) ↪→ H1,p

0 (0, 1) is continuous.

Recall that we aim to prove equation (2.4.13). For this aim, we need to choose and fix

x ∈ H1,p
0 (0, 1) and ε > 0. So, we want to find δ > 0 such that

if 0 < t ≤ δ then ‖Ttx− x‖ H1,p
0 (0,1)

≤ ε.

By Lemma 2.86 we can find y ∈ C1
0 ([0, 1]) such that

‖x− y‖
H1,p

0 (0,1)
<
ε

3
. (2.4.16)

By the equation (2.4.15) applied to the function y we can find δ > 0 such that

if 0 < t ≤ δ then ‖Tty − y‖ H1,p
0 (0,1)

≤ ε

3
. (2.4.17)

From the boundedness property, equations (2.4.16) and (2.4.17), we infer that if 0 < t ≤ δ,
then

‖Ttx− x‖ H1,p
0 (0,1)

≤ ε

3
+
ε

3
+
ε

3
= ε.

So we verified that

if 0 < t ≤ δ then ‖Ttx− x‖ H1,p
0 (0,1)

≤ ε.

Hence, the family {Tt}t≥0 of linear bounded operators defined in the equation (2.4.11) is

a C0-semigroup in the space H1,p
0 (0, 1).

Theorem 2.87. If {Tt}t≥0 is a C0-semigroup on a Banach space X then a family {St}t≥0

defined by St = eλtTt for every t ≥ 0, i.e.,

Stx = eλtTtx, for t ≥ 0, λ ∈ R and x ∈ X, (2.4.18)

is also a C0-semigroup on the Banach space X.

1By this we mean the map C1
0 ([0, 1]) 3 x 7→ x ∈ H1,p

0 (0, 1).
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Before we embark on the proof of this result let us formulate the above result in terms of

the infinitesimal generators, see [33, Proposition 1.4].

Theorem 2.88. If {Tt}t≥0 is a C0-semigroup on a Banach space X with the infinitesimal

generator A, then the infinitesimal generator B of the family {St}t≥0 which defined by

equation (2.4.18), satisfies the following equality

B = A+ λI, i.e.,

D(B) = D(A), and Bx = Ax+ λx, x ∈ D(B)

Proof of Theorem 2.87. We assume that X is a Banach space, λ ∈ R and that {Tt}t≥0

is a C0-semigroup on X. It is obvious that for each t ≥ 0, St : X → X is well-defined,

linear and bounded. Moreover, for the C0-semigroup conditions, the first two conditions

are easy to check. For the third condition, we need to prove the following

∃ δ > 0 : |Stx− x|X → 0 as t→ 0.

Let x ∈ X and by using the definition (2.4.18) of the C0-semigroup {St}t≥0 we have

|Stx− x|X ≤ etλ|Ttx− x|X + |etλ − 1||x|X . (2.4.19)

Starting with the first term of the RHS of equation (2.4.19). Since the function t → eλt

is continuous and 0 → e0λ = 1, then there exists δ′ > 0 such that eλt ≤ ε
4 . By the

assumptions that {Tt}t≥0 is a C0-semigroup, then there exists δ′′ > 0 such that |Ttx−x| ≤
ε
4 . Hence if 0 < t < min{δ′, δ′′}, then we have

eλt|Ttx− x| ≤
ε

2
. (2.4.20)

For the second term of equation (2.4.19), the function x is continuous, and therefore,

bounded. As a consequence, we have for every s there exists a constant M > 0 such that

|x(s)| ≤M. (2.4.21)

We notice that t→ (eλt) is also continuous and 0→ (e0λ) = 0. Thus, there exists δ′′′ > 0

such that

|eλt − 1| ≤ ε

2M
. (2.4.22)

Now after all this verification we substitute the equations (2.4.20), (2.4.22) and (2.4.21)

in the RHS of the equation (2.4.19) to get the following

|Stx− x|X ≤
ε

2
+

ε

2M
·M = ε.
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Hence, if 0 < t ≤ min{δ′, δ′′, δ′′′} then |Stx− x| ≤ ε. To conclude, we proved that

lim
t→0
|Stx− x|X = 0 for every x ∈ X.

As a result, {St}t≥0 is a C0-semigroup in the Banach space X.

The next example is a generalization of Example 2.80.

Example 2.89. Let X = Lp(0, 1) and {St}t≥0 is a family of bounded linear operators

defined on X as follows

Stx(s) = eλtx(se−t). (2.4.23)

Then {St}t≥0 is a C0-semigroup on the space X.

Proof of Example 2.89. According to Theorem 2.87 it is sufficient to consider the case

λ = 0. However, when λ = 0, St = Tt, for t ≥ 0, where Tt was defined in Example 2.80.

Moreover, we already proved in Example 2.80 that {Tt}t≥0 is a C0-semigroup in the space

Lp(0, 1).

Corollary 2.90. The family {St}t≥0 that defined by the equation (2.4.23) is a C0-semigroup

on spaces C1
0 ([0, 1]) and H1,p

0 (0, 1).

Proof of Corollary 2.90. According to Theorem 2.87 it is sufficient to consider the case

λ = 0. However, when λ = 0, from Theorem 2.83 and Example 2.82 we infer that

{St}t≥0 is a C0-semigroup on the space C1
0 ([0, 1]) and in Theorem 2.85 that {St}t≥0 is a

C0-semigroup on the space H1,p
0 (0, 1). This completes the proof.

2.4.3 C0-Semigroups and applications

This section contains some abstract theorems related to the C0-semigroup on Banach

spaces. Also, we provide named spaces to apply those abstract theorems. The first

abstract result that we state in this section is a result of generalising the Theorem 2.83.

Theorem 2.91. Suppose that X and Z are Banach spaces satisfying the following as-

sumptions.

(i) Z ⊂ X is a dense subspace,

(ii) the embedding Z ↪→ X is continuous, that is, there exists a number M1 > 0 such

that for every z ∈ Z the following inequality holds |z|X ≤M1|z|Z .
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Assume that {Tt}t≥0 is a family of linear operators on X such that the following assump-

tion is satisfied.

(I) for every t ∈ [0,∞), Tt is linear bounded operator on X and there exists M0 > 0

such that

sup
t∈[0,1]

‖Tt‖L(X) ≤M0.

Assume that {T̃t}t≥0 is a family of linear operators on Z such that the following assump-

tions are satisfied.

(a) if z ∈ Z and t ∈ [0,∞), then Ttz = T̃tz. In other words, T̃t is the restriction of Tt

to the space Z.

(b) The map T̃t is a bounded linear map on Z.

(c) The family {T̃t}t≥0 is a C0-semigroup on Z.

Then, the family {Tt}t≥0 is a C0-semigroup on the space X.

Proof of Theorem 2.91. The aim in this proof is to verify that {Tt}t≥0 is a C0-semigroup

on space X. That means, three conditions need to be checked according to the Defini-

tion 2.74. Regarding the first condition, we need to show that T0 = IX , where IX is the

identity map on the space X. We notice that since {T̃t}t≥0 is a C0-semigroup on the space

Z we infer that T̃0 = IZ , where IZ is the identity map on the space Z. From assumption

(a) we infer that

T0(x) = T̃0(x) = x, for every x ∈ Z.

Since by assumption (i) above Z is a dense subspace of X and T0 : X → X is a linear

bounded operator, we infer, see e.g. [36, Theorem I.7], that T0 = IX . Regarding the

second condition, i.e. Tt+r = TtTr, for every s, r ≥ 0, we know that this condition is

satisfied in space Z, i.e. T̃t+r = T̃tT̃r, s, r ≥ 0. Since Z is a dense subspace of X, by using

assumption (a) and [36, Theorem I.7], we can deduce that this condition is also satisfied.

Regarding the C0 continuity, which is the third condition, let us choose x ∈ X. We want

to prove that

lim
t7→0
|Ttx− x|X = 0. (2.4.24)

Let us take ε > 0. By assumption (i) there exists z ∈ Z such that

|x− z|X <
ε

2(1 +M0)
. (2.4.25)

By assumption (c) there exists δ > 0 such that

0 ≤ t ≤ δ =⇒ |T̃tz − z|Z <
ε

2M1
.
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After the above few verifications, now we apply the triangle inequality and assumption

(a) to the equation (2.4.24) to get the following

‖Ttx− x‖X = |Ttx− Ttz + Ttz − z + z − x|X

≤ |Ttx− Ttz|X + |Ttz − z|X + |z − x|X

≤ |Tt(x− z)|X + |z − x|X + |Ttz − z|X . (2.4.26)

By taking the first term and last them of the equation (2.4.26) and applying assump-

tions (I) and (ii), we get the following two equations:

‖Tt(x− z)‖X ≤M0‖x− z‖X , t ≤ 1, (2.4.27)

and by assumptions (ii) and (a) we have

‖Ttz − z‖X ≤M1|Ttz − z|Z = M1|T̃tz − z|Z , z ∈ Z, t ≥ 0.

Finally, by substituting the equations (2.4.25) and (2.4.27) in the equation (2.4.24) pro-

vided 0 ≤ t ≤ δ ∧ 1 := min{δ, 1} and we obtain the following

‖Ttx− x‖X = (1 +M0)|x− z|X +M1|T̃tz − z|Z

≤ (1 +M0)
ε

2(1 +M0)
+M1

ε

2M1
≤ ε

2
+
ε

2
= ε.

Hence we proved that

0 ≤ t ≤ min{δ, 1} =⇒ |Ttx− x|X ≤ ε.

Hence, we proved the C0-continuity of the semigroup {Tt}t≥0. As consequence, the family

{Tt}t≥0 is a C0-semigroup on the space X.

In the following example, we show how one can apply Theorem 2.91 to produce a new

proof of the C0-continuity from Theorem 2.85.

Example 2.92. This example shows how one can use the abstract Theorem 2.91. Let us

consider two specific spaces defined as follows

X = H1,p
0 (0, 1) and Z = C1

0 ([0, 1]).

Firstly, let us note that by the Sobolev Embedding Theorem, see Lemma 2.86, assump-

tions (i) and (ii) are satisfied. Let {Tt}t≥0 be the family defined by formula (2.4.11) in

Theorem 2.85 on the space X. Let {T̃t}t≥0 be the family defined by formula (2.4.11) in

Theorem 2.83 on the space Z. Note that in that Theorem this family was denoted by
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{Tt}t≥0, see Remark 2.84. By using Theorem 2.85 it follows that the assumptions regard-

ing the family {Tt}t≥0 in the abstract Theorem 2.91 are satisfied. Using Theorem 2.83 it

follows that the assumptions regarding the family {T̃t}t≥0 in Theorem 2.91 are satisfied.

By Remark 2.84 the assumption (a) is also satisfied. Hence we conclude that the family

{Tt}t≥0 is a C0-semigroup on the space X, as claimed.

The real power of the abstract Theorem 2.91 will be seen later when we prove a similar

result in the fractional Sobolev spaces.

Before ending this section, we provide important results. This result is a special case

of a known theorem called Calderon-Lions interpolation Theorem [30]. The purpose is

to show that one can apply Theorem 2.91 to produce a new result by using Calderon-

Lions interpolation Theorem. In the following theorem Xα, resp. Yα, for α ∈ [0, 1], are

the interpolation space between X0 and X1, resp. Y0 and Y1, which are introduced in

Appendix IX.4 in the book [30].

Corollary 2.93 (Calderon-Lions Interpolation Theorem). [30, Theorem IX.20] Assume

that X0, X1, Y0 and Y1 are four complex vector spaces with norms denoted by | · |X0,

| · |X1, | · |Y0 and | · |Y1 respectively. Suppose also that X1 ⊂ X0 and Y1 ⊂ Y0 densely

and continuously. Suppose that T0 ∈ L(X0, Y0) and T1 ∈ L(X1, Y1) with the following

properties:

T0x = T1x for every x ∈ X1. (2.4.28)

Denote

M0 = ‖T0‖L(X0,Y0) and M1 = ‖T1‖L(X1,Y1).

Then the following holds.

(i) For every α ∈ (0, 1) we have T0x ∈ Yα if x ∈ Xα.

(ii) Denote by Tα the restriction of the operator T0 to the space Xα with range Yα. By

assertion (i), Tα is a linear map from Xα to Yα.

(iii) The map Tα : Xα → Yα is bounded and ‖Tα‖L(Xα,Yα) ≤M1−α
0 Mα

1 .

Remark 2.94. [30] Let us write down the previous result, i.e., Corollary 2.93, in a slightly

less rigorous way.

Assume that X0, X1, Y0 and Y1 are four complex vector spaces with norms denoted by

| · |X0 , | · |X1 , | · |Y0 and | · |Y1 respectively. Suppose also that X1 ⊂ X0 and Y1 ⊂ Y0 densely

and continuously. Suppose that T ∈ L(X0, Y0), i.e. T is a bounded linear map from X0

to Y0 such that T maps the space X1 to the space Y1 and, the restriction of T to X1 is a

bounded linear map from X1 to Y1.

Denote

M0 = ‖T‖L(X0,Y0) and M1 = ‖T‖L(X1,Y1).
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Then the following holds.

(i) For every t ∈ (0, 1) we have

Tx ∈ Yt if x ∈ Xt.

(ii) The restriction of the operator T to the space Xt with range Yt is a bounded linear

map from Xt to Yt and

‖T‖L(Xt,Yt) ≤M
1−t
0 M t

1.

Theorem 2.95. Assume that 0 < α < 1 and p ≥ 1. Then the family {Tt}t≥0 defined

in (2.4.11) is a C0-semigroup on the space Hα,p
0 (0, 1), i.e.,

(i) for every t ≥ 0, if x ∈ Hα,p
0 (0, 1) then Ttx ∈ Hα,p

0 (0, 1), the map

Hα,p
0 (0, 1) 3 x 7→ Ttx ∈ Hα,p

0 (0, 1)

is linear and bounded,

(ii) T0x = x for every x ∈ Hα,p
0 (0, 1),

(iii) Tt+sx = Tt(Tsx) for every x ∈ Hα,p
0 (0, 1) and all t, s ∈ [0,∞),

(iv) limt→0+ |Ttx− x| Hα,p
0 (0,1) = 0.

Proof of Theorem 2.95. To prove that the family {Tt}t≥0 is a C0-semigroup on the space

Hα,p
0 (0, 1), we use Theorem 2.91. We choose the following notation

X = Hα,p
0 (0, 1), Z = H1,p

0 (0, 1).

Assume that the C0-semigroup {T̃t}t≥0 on the space X is the semigroup from Theorem

2.85. We need to show that family {Tt}t≥0 on the space X satisfied relevant assumptions

of the abstract Theorem 2.91. For this purpose, to prove condition (i) we begin with the

following important auxiliary result.

Lemma 2.96. The condition (i) of Theorem 2.95 is satisfied.

Proof of Lemma 2.96. Let us choose and fix t ≥ 0. We apply Calderon-Lions Interpolation

Theorem, see Corollary 2.93. For this purpose, we choose the following spaces

X0 = Y0 = Lp(0, 1)

X1 = Y1 = H1,p
0 (0, 1),

Xα = Yα = Hα,p
0 (0, 1) := [Lp(0, 1), H1,p

0 (0, 1)]α.
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Let T0 be the linear and bounded map Tt from the space Lp(0, 1) to Lp(0, 1), see Ex-

ample 2.80. Let T1 be the linear and bounded map Tt from the space H1,p
0 (0, 1) to

H1,p
0 (0, 1), see Theorem 2.85. Since these maps are defined by the same formula (2.4.11)

we infer that assumption (2.4.28) from Corollary 2.93 is satisfied. We can also easily verify

all other assumptions of that Corollary 2.93. Therefore, we conclude that the map Tα,

defined as the restriction of the map T0 to the space Xα with range in Xα is a bounded

linear map and moreover,

‖Tα‖L(Xα) ≤M1−α
0 Mα

1 ,

where

M0 = ‖T0‖L(X0) and M1 = ‖T1‖L(X1).

On the other hand, by Example 2.80 and by Theorem 2.85, we have

M0 = e
t
p and M1 = e

−t(1− 1)
p .

Hence, we deduce that

‖Tα‖L(Xα) ≤ e
t( 1
p
−α)

Thus, the proof of condition (i) is satisfied.

Regarding the conditions (ii) and (iii) the proof of these conditions is a consequence of the

abstract Theorem 2.91. For condition (iv), i.e., the C0-continuity we apply assumptions

of Theorem 2.91 and make sure that they are satisfied. According to equation (3.1.5) in

Corollary 3.10, the assumptions (i) and (ii) in Theorem 2.91 are satisfied. Moreover, in

Theorem 2.85 we have already checked that assumptions (b) and (c) are hold. Regarding

the assumption (I) we proved in the above Lemma 2.96 that Tα is a bounded linear map

(Tα is the restriction of the map T0 to the space Xα with range in Xα is a bounded linear

map). According to assumption (i) in Theorem 2.91 and [36, Theorem I.7] we infer that

assumption (a) in the abstract Theorem 2.91 is hold. Since all the assumptions of the

abstract theorem 2.91 is satisfied we deduce that {Tt}t≥0 is a C0-semigroup on the space

X = Hα,p
0 (0, 1).

2.4.4 Hille Yosida Theorem and applications

Definition 2.97. Let X be a Banach space over R and A : D(A)→ X is a linear operator

with the domain D(A), which is a subspace of X. Then, we define the resolvent set of A

as the set of all real numbers λ which satisfy the following two conditions

1. λI −A : D(A)→ X is a bijective,

2. (λI −A)−1 : X → X is bounded.
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We denote the resolvent set by ρ(A).

Remark 2.98. Condition 1 of Definition 2.97 implies that for every λ ∈ ρ(A), the inverse

(λI −A)−1 exists and is a bijection from X onto the set D(A). In particular,

D(A) = Range
(
(λI −A)−1

)
, for λ ∈ ρ(A). (2.4.29)

The following Theorem is called the Hille-Yosida Theorem for a C0-semigroup of contrac-

tions.

Theorem 2.99. [33]

(I) If {S(t)}t≥0 is a C0-semigroup of contractions on a Banach space X and if A denotes

the infinitesimal generator of this semigroup, then

(i) A is closed and D(A) is dense in X.

(ii) (0,∞) ⊂ ρ(A) and ‖(λI −A)−1‖ ≤ 1
λ , for every λ > 0. Moreover

(λI −A)−1f =

∫ ∞
0

e−λtTtf dt, f ∈ X. (2.4.30)

(II) If A is a linear operator on a Banach space X with domain D(A) such that conditions

(i) and (ii) above are satisfied, then there exists a C0-semigroup of contractions

{S(t)}t≥0 such that A is the infinitesimal generator of this semigroup.

The above result can be easily modified to include contraction type semigroups.

Corollary 2.100. Assume that {S(t)}t≥0 is a C0-semigroup of contraction type on a

Banach space X, in particular there exists γ0 ∈ R such that

‖S(t)‖ ≤ eγ0t, t ≥ 0.

Let A be the infinitesimal generator of this semigroup. Then the following hold.

(i) A is closed and D(A) is dense in X;

(ii) (γ0,∞) ⊂ ρ(A) and for every λ > γ0,

(λI −A)−1f =

∫ ∞
0

e−λtTtf dt, f ∈ X, ‖(λI −A)−1‖ ≤ 1

λ
.

The identity (2.4.30) is a byproduct of the proof of the above Theorem given by Pazy

see [33, Ch. 1, Theorem 3.1].

The following Lemma is an important result that can be used to prove the infinitesimal

generator of the semigroups.
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Lemma 2.101. Assume that A is a densely defined linear operator in a Banach space

X. Assume that λ belongs to the resolvent set ρ(A). Then

(i) (I − 1
λA)−1 exists and is bounded and

Jλ := (I − 1

λ
A)−1 = λR(λ,A). (2.4.31)

(ii) λ(Jλ − I) = AJλ, and

Jλ −AR(λ,A) = I. (2.4.32)

Proof of Lemma 2.101. The first part is the consequence from the assumptions. Regard-

ing the second part (i), let λ > 0, also 1
λ > 0. From the first part of (i) we infer that the

inverse (I − 1
λA)−1 exists and bounded. Defined Jλ = (I − 1

λA)−1, then we have

Jλ := (I − 1

λ
A)−1 = (

1

λ
λI − 1

λ
A)−1 =

[ 1

λ
(λI −A)

]−1
= λR(λ,A).

Hence we proved equality (2.4.31).

To prove part (ii), we multiply both sides of the equality (2.4.32) by λ then we get the

following train of identities

λJλ − λAR(λ,A) = λI ⇐⇒ λJλ −AJλ = λI ⇐⇒ λ(Jλ − I) = AJλ.

Regarding the second equality of part (ii), since λ ∈ ρ(A), (λI − A)(λI − A)−1 = I,

therefore, we infer that

λIR(λ,A)−AR(λ,A) = I.

So we deduce that equality (2.4.32) is satisfied. By this the proof of Lemma 2.101 is

complete.

Proposition 2.102. Assume that p ∈ [1,∞). Let {Tt}t≥0 be a C0-semigroup on the

Banach space X = Lp
(
[0,∞)

)
, defined

[Ttf ](x) = f(t+ x), x ∈ [0,∞), t ≥ 0.

Let us denote by A the infinitesimal generator of this C0-semigroup. Then the following

holds.

1. D(A) = {f ∈ Lp
(
[0,∞)

)
: Df ∈ Lp

(
[0,∞)

)
}, where D is the weak derivative.

2. Af = Df, for f ∈ D(A).

To prove Proposition 2.102, we first need to prove the following three auxiliary results:

Claims 2.103, 2.104, and 2.105.
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Claim 2.103. Let us assume the assumptions and notation from Proposition 2.102. If

the function f ∈ Lp
(
[0,∞)

)
and the number λ > 0, define a function gλ ∈ Lp

(
[0,∞)

)
by

the following formula

gλ := λ(λI −A)−1f. (2.4.33)

Then

gλ(x) = λ

∫ ∞
0

1(0,∞)(t− x)e−λ(t−x)f(t) dt, x ∈ [0,∞). (2.4.34)

Proof of Claim 2.103. Let us choose and fix number λ > 0. We begin by observing

that since λ > 0, by the Hille-Yosida Theorem, see Theorem 2.99 part (I), the map

(λI − A)−1 =: R(λ,A) exists and by identity (2.4.30) is satisfied. Take function f ∈
Lp([0,∞)). Since R(λ,A) = (λI−A)−1 is bounded linear operator, we define Jλ : Lp → Lp

is also a bounded linear operator. Assume that gλ = Jλf ∈ Lp[0,∞). Moreover, since

R(λ,A) is linear, then we have gλ = λR(λ,A)f = R(λ,A)(λf). Hence, the function

gλ ∈ RangeR(λ,A). Since (λI−A)R(λ,A) = I, we infer that the RangeR(λ,A) ⊂ D(A).

Thus, gλ ∈ D(A). From our assumption of function gλ, we have

gλ = Jλf = λR(λ,A)f = λ

∫ ∞
0

e−λtTtf dt.

Hence, for every x ∈ [0,∞) we have

gλ(x) = λ

∫ ∞
0

e−λt(Ttf)(x) dt = λ

∫ ∞
0

e−λtf(t+ x) dt. (2.4.35)

By invoking the changing of variables of the above equation (2.4.35) as follows t′ = t+x⇒
t = t′ − x, t′ ∈ [x,∞) and dt = dt′, we obtain

(gλ)(x) = (Jλf)(x) = λ

∫ ∞
x

e−λ(t′−x)f(t′) dt′ = λ

∫ ∞
0

1(0,∞)(t− x)e−λ(t−x)f(t) dt.

Therefore, we proved that

gλ(x) = λ

∫ ∞
0

1(0,∞)(t− x)e−λ(t−x)f(t) dt, x ∈ [0,∞).

So the proof of the Claim 2.103 is complete.

Claim 2.104. Let us assume the assumptions and notation from Proposition 2.102. As-

sume that f ∈ Lp([0,∞)) and λ > 0 and the function gλ ∈ Lp([0,∞)) be defined by

equation (2.4.33). Then gλ is weakly differentiable on [0,∞) and the weak derivative Dgλ

of gλ satisfies the following equality

Dgλ = −λf + λgλ. (2.4.36)
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Proof of Claim 2.104. Let us choose and fix f ∈ Lp([0,∞)) and λ > 0. Let gλ ∈
Lp([0,∞)) be defined by equation (2.4.33). By the previous Claim 2.103, gλ satisfies

identity (2.4.34). We aim to show that gλ is weakly differentiable on [0,∞). Let us recall

that if the weak derivative exists it is unique [22, Ch-V Lemma 1]. We guess that the

following choice of function hλ is good hλ = λgλ−λf . Since by assumptions f ∈ Lp[0,∞)

and by identity (2.4.33) function gλ is also belongs to Lp[0,∞), we infer that the function

hλ defined above, also belongs to Lp[0,∞). So, it is sufficient to show that for every

φ ∈ C∞0 we have∫ ∞
0

gλ(x)φ′(x) dµ(x) = λ

∫ ∞
0

f(x)φ(x) dµ(x)− λ
∫ ∞

0
gλ(x)φ(x) dµ(x). (2.4.37)

To prove the above equation (2.4.37), let us take and fix φ ∈ C∞0 . Note that by using

equation (2.4.34) we have∫ ∞
0

gλ(x)φ′(x) dx =

∫ ∞
0

[
λ

∫ ∞
0

1(0,∞)(t− x)e−λ(t−x)f(t) dt
]
φ′(x) dx.

It follows, by applying the Fubini Theorem [28, Theorem 2.2.3] to the double integral on

the RHS above we infer that∫ ∞
0

gλ(x)φ′(x) dx = λ

∫ ∞
0

f(t)
[ ∫ ∞

0
1(0,∞)(t− x)e−λ(t−x)φ′(x) dx

]
dt

= λ

∫ ∞
0

f(t)e−λt
[ ∫ t

0
eλxφ′(x) dx

]
dt. (2.4.38)

Note that, by using integration by parts for the second integral of equation (2.4.38) we

get ∫ t

0
eλxφ′(x) dx = eλtφ(t)− eλ0φ(0)− λ

∫ t

0
eλxφ(x) dx.

Since the function φ has a compact support in the interval (0,∞), we infer φ(0) = 0.

Hence ∫ t

0
eλxφ′(x) dx = eλtφ(t)−

∫ t

0
λeλxφ(x) dx. (2.4.39)

Next we substitute equation (2.4.39) in the second integral of equation (2.4.38) we get∫ ∞
0

gλ(x)φ′(x) dx = λ

∫ ∞
0

f(t)e−λt
[
eλtφ(t)−

∫ t

0
λeλxφ(x) dx] dt

= λ

∫ ∞
0

f(t)φ(t) dt− λ
∫ ∞

0
f(t)

[ ∫ t

0
λe−λ(t−x)φ(x) dx

]
dt.
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By introducing an appropriate indicator function and then using the Fubini Theorem

again for the right-hand side we obtain∫ ∞
0

f(t)
[ ∫ t

0
λe−λ(t−x)φ(x) dx

]
dt =

∫ ∞
0

f(t)
[
λ

∫ ∞
0

1(0,∞)(t− x)e−λ(t−x)φ(x) dx
]
dt

=

∫ ∞
0

φ(x)
[
λ

∫ ∞
0

1(0,∞)(t− x)e−λ(t−x)f(t) dt
]
dx.

Note that according to identity (2.4.34) in Proposition 2.104

λ

∫ ∞
0

1(0,∞)(t− x)e−λ(t−x)f(t) dt = gλ(x), x ∈ (0,∞).

Therefore, ∫ ∞
0

gλ(x)φ′(x) dx = λ

∫ ∞
0

f(x)φ(x) dx− λ
∫ ∞

0
gλ(x)φ(x) dx.

Thus we proved equality (2.4.37) and this completes the proof of the Claim 2.104.

Claim 2.105. Let us assume the assumptions and notation from Proposition 2.102. As-

sume that f ∈ Lp([0,∞)) and λ > 0 and the function gλ be defined by equation (2.4.33).

Then the function gλ belongs to D(A) and satisfies

Agλ = Dgλ.

Proof of Claim 2.105. Let us choose and fix λ > 0 and f ∈ Lp([0,∞)). Let us consider

the function gλ be defined by equation (2.4.33). If follows from the Claim 2.104 that

Dgλ ∈ Lp([0,∞)). Also, since by identity (2.4.29) in Remark 2.98, Range
(
(λI −A)−1

)
⊂

D(A) and since gλ = λ(λI − A)−1f ∈ Range
(
(λI − A)−1

)
, we deduce that gλ ∈ D(A).

So we have proved the first part of our Claim. Moreover, by equation (2.4.33) we have

Agλ = Aλ(λI −A)−1f = AJλf

= λ(Jλ − I)f = λJλf − λf = λgλ − λf.

On the other hand, by identity (2.4.36) in Claim 2.104 we infer that Dgλ = λgλ − λf .

Therefore, we infer that Agλ = Dgλ. Hence, the proof of Claim 2.105 is complete.

After we proved necessary Claims 2.103, 2.104 and 2.105, it is now possible to embark

with the proof of Proposition 2.102.

Proof of Proposition 2.102. Let us recall that A is the infinitesimal generator of the C0-

semigroup {Tt}t≥0 on the space Lp([0,∞)). Our aim is to prove that properties 1 and 2
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are satisfied. Let us choose and fix an auxiliary number λ > 0. Let us denote

V := {f ∈ Lp([0,∞)) : Df ∈ Lp([0,∞))}.

First we prove that D(A) ⊂ V and

Ag = Dg, for every g ∈ D(A). (2.4.40)

Let us choose and fix an arbitrary g ∈ D(A). Then, by the Hille-Yosida Theorem and

by identity (2.4.29) in Remark 2.98, D(A) ⊂ Range
(
(λI − A)−1

)
, as well as by Lemma

2.101 part (i), we infer that there exists f ∈ Lp([0,∞)) such that

g = Jλf = λ(λI −A)−1f.

In other words, because of the definition (2.4.33) of the function gλ, g = gλ. Hence

We proved that if g ∈ D(A) and λ > 0 then there exists f ∈ Lp([0,∞)) such that

g = Jλf = λ(λI − A)−1f , that means, g = gλ. From Claim 2.104 we infer that the

function g is weakly differentiable and Dg ∈ Lp([0,∞)). That proves that g ∈ V . Also,

by Claim 2.105, we infer that Ag = Agλ = Dgλ = Dg what proves the equation (2.4.40).

Secondly, we need to show that V ⊂ D(A). Let us take and fix an arbitrary function

f ∈ V . Define an auxiliary function u as the follows

Df − λf = −λu. (2.4.41)

Thus, because Lp([0,∞)) is a vector space, u ∈ Lp([0,∞)). Let us consider a function

gλ defined by identity (2.4.33) with the function f replaced by the function u, i.e. gλ :=

λ(λI − A)−1u. By Claim 2.104 we infer that gλ is weakly differentiable and Dgλ =

−λu+ λgλ, i.e.

Dgλ − λgλ = −λu. (2.4.42)

We see now that f and gλ satisfy the same equation and both belong to the space

Lp([0,∞)). Our aim is to show that f = gλ. For this purpose let us define a function w

as follows

w := f − gλ.

It is sufficient to prove that w = 0. By linearity of weak derivative, we deduce that w is

weakly differentiable and, next by identities (2.4.41) and (2.4.42) we infer that

Dw = Df −Dgλ = λf − λu− (−λu+ λgλ) = λ(f − gλ) = λw
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We will show that Dw = λw. For this aim, let us define an auxiliary function Z(x) =

e−λxw(x). Function Z(x) is measurable and∫
[a,b]
|Z(x)|p dx <∞,

for every bounded interval [a, b] ⊂ [0,∞), which means that Z ∈ Lploc([0,∞)). Moreover,

one can show that function Z is weakly differentiable. Since we have Dw = λw, we get

DZ = D
(
e−λxw(x)

)
= D(e−λx)w(x) + e−λxD(w) = 0.

That means ∫ ∞
0

Z(x)φ′(x) dx = 0, φ ∈ C∞0 ([0,∞)).

Note that the function e−λx is of C1-class classically and hence it is differentiable and the

weak it is equal to the classical derivative. Therefore, by the Lemma [24, Lemma 2], we

infer that there exists a number C ∈ R such that

Z(x) = C, for almost all x ∈ [0,∞),

where ”for almost all” means with respect to the Lebesgue measure. In view of the

definition of the function Z we deduce that

w(x) = Ceλx, for almost all x ∈ [0,∞). (2.4.43)

Now, we claim that C = 0. Suppose by contradiction that C 6= 0. Then since w belongs

to the space Lp([0,∞)) we have

∞ >

∫ ∞
0
|w(x)|p dx =

∫ ∞
0
|Ceλx|p dx = |C|p

∫ ∞
0

epλx dx =∞.

The last equality holds because |C|p > 0 and, as pλ > 0, that
∫∞

0 epλx dx =∞. Hence we

deduce that

∞ >∞.

Thus, it is a contradiction. That means, C = 0, and therefore, by identity (2.4.43), we

infer that w = 0. Hence, f = gλ. From the Claim 2.105 that states gλ ∈ D(A), we infer

that f ∈ D(A), which proves the second property 2.

So we have finished verifying Properties 1 and Property 2. Hence, the proof of the

Proposition 2.102 is concluded.

Proposition 2.106. Assume that p ∈ [1,∞). Let {Tt}t≥0 be a C0-semigroup on the

Banach space Lp(0, 1), defined by equality (2.4.1), see Example 2.80. Let us denote by A
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the infinitesimal generator of this C0-semigroup. Then the following holds.

D(A) = {f ∈ Lp(0, 1) : f is weakly differentiable and

{(0, 1) 3 x 7→ Df(x)} ∈ Lp(0, 1), i.e.,

∫ 1

0
|xDf(x)|p dx <∞},

(Af)(x) = −xDf(x), x ∈ (0, 1) for f ∈ D(A).

In the above, the symbol D represents the weak derivative.

Proposition 2.107. Assume that {Tt}t≥0 be a C0-semigroup on the Banach space 0C([0, 1]),

defined by equality (2.4.1), see Example 2.80. Let us denote by A the infinitesimal gener-

ator of this C0-semigroup. Then the following holds true.

D(A) = {f ∈ 0C([0, 1]) : f is continuously differentiable on (0, 1]

and lim
x→0

xDf(x) = 0};

(Af)(x) = −xDf(x), x ∈ (0, 1) for f ∈ D(A).

(Af)(0) = 0 if x = 0.

The proof of this result can be done similarly to the proof of Proposition 2.106 and hence

will be skipped. This result is a special case of Theorem 4.20 from chapter 4 with function

a(x) = x.

Note that for a function f ∈ 0C([0, 1]) which is continuously differentiable on (0, 1] the

condition

lim
x→0

xDf(x) = 0

is equivalent to g ∈ 0C([0, 1]), where

g(x) =

xDf(x), x ∈ (0, 1) for f ∈ D(A).

0 if x = 0.

To prove Proposition 2.106, we first need to prove the following three auxiliary results

Claim 2.108, Claim 2.109 and Claim 2.110.

Claim 2.108. Let us assume the assumptions and notation from Proposition 2.106. As-

sume also the function f ∈ Lp(0, 1) and the number λ > 1
p . Define a function gλ ∈ Lp(0, 1)

by the following formula

gλ := λ(λI −A)−1f. (2.4.44)

Then

gλ(x) =
λ

xλ

∫ x

0
yλ−1f(y) dy, x ∈ (0, 1). (2.4.45)



Preliminaries 43

Proof of Claim 2.108. Let us choose and fix a number λ > 1
p . We notice that our current

semigroup is not a contraction semigroup. It is only a contraction type semigroup, with

constant 1
p , in other words, it satisfies estimate (2.4.2). Hence, by Corollary 2.100, we

infer that since λ > 1
p , R(λ,A) := (λI −A)−1 exists and by identity (2.4.30),

(λI −A)−1f =

∫ ∞
0

e−λtTtf dt.

One can see directly that in order for the above integral is convergent, we need to assume

that λ > 1
p . Indeed, then λ− 1

p > 0 and thus
∫∞

0 e
−λ− 1

p
)t
dt = 1

λ− 1
p

<∞. Therefore,

‖
∫ ∞

0
e−λtTtf dt‖ ≤

∫ ∞
0
‖e−λtTtf‖ dt ≤

∫ ∞
0

e−λte
t
p ‖f‖ dt =

∫ ∞
0

e
−(λ− 1

p
)t
dt ‖f‖ <∞.

We take f ∈ Lp(0, 1). Since R(λ,A) = (λI − A)−1 is bounded linear operator, we define

Jλ = λR(λ,A) : Lp(0, 1) → Lp(0, 1) is also a bounded linear operator. Assume that

gλ = Jλf ∈ Lp(0, 1). Moreover, since R(λ,A) is linear, then we have

gλ = λR(λ,A)f = R(λ,A)(λf).

Hence, gλ ∈ RangeR(λ,A). Since (λI−A)R(λ,A) = I, we infer that the RangeR(λ,A) ⊂
D(A). Thus, gλ ∈ D(A). From our assumption of function gλ, we have

gλ = Jλf = λR(λ,A)f = λ

∫ ∞
0

e−λtTtf dt.

Hence, for every x ∈ (0, 1) we have

(gλ)(x) = λ

∫ ∞
0

e−λt(Ttf)(x) dt = λ

∫ ∞
0

e−λtf(xe−t) dt. (2.4.46)

By invoking the changing of variables of the above equation (2.4.46) we obtain

(gλ)(x) = λ

∫ 0

x
(
y

x
)λf(y)

(
− 1

y
dy
)

=
λ

xλ

∫ x

0
yλ−1f(y) dy. (2.4.47)

Since we assume that the function f ∈ Lp(0,∞) we infer that the integral (2.4.47) exists

because by Hölder inequality with (1
p + 1

p∗ = 1),

∫ x

0
yλ−1f(y) dy ≤

( ∫ x

0
|yλ−1|p∗ dy

) 1
p∗
( ∫ x

0
|f(y)|p dy

) 1
p

≤
( ∫ 1

0
yp
∗(λ−1) dy

) 1
p∗
( ∫ 1

0
|f(y)|p dy

) 1
p

≤ ‖f‖Lp(0,1)

( ∫ 1

0
yp
∗(λ−1) dy

)
<∞.
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Hence, we proved for λ > 1
p

gλ(x) =
λ

xλ

∫ x

0
yλ−1 f(y) dy, x ∈ (0, 1).

So the proof of the Claim 2.108 is complete.

The following heuristic argument explains the content of Claim 2.109 Let us differentiate

equation (2.4.45), we get, for x ∈ (0, 1),

(
Dgλ

)
(x) = λ(−λ)

1

xλ+1

∫ x

0
yλ−1 f(y) dy +

λ

xλ
xλ−1f(x)

= −λ
x

λ

xλ

∫ x

0
yλ−1 f(y) dy +

λ

x
f(x)

= −λ
x
gλ(x) +

λ

x
f(x). (2.4.48)

Claim 2.109. Let us assume the assumptions and notation from Proposition 2.106. As-

sume that f ∈ Lp(0, 1) and λ > 1
p and the function gλ ∈ Lp(0, 1) be defined by equa-

tion (2.4.44). Then gλ is weakly differentiable on (0, 1) and the weak derivative Dgλ of

the function gλ satisfies the following equality

−xDgλ(x) = λgλ(x)− λf(x), for x ∈ (0, 1). (2.4.49)

Proof of Claim 2.109. Let us choose and fix f ∈ Lp(0, 1) and λ > 1
p . Let gλ ∈ Lp(0, 1)

defined by equation (2.4.44). By the previous Claim 2.108, the function gλ satisfies identity

(2.4.45). We aim to show that gλ is weakly differentiable on (0, 1). We guess that the

following choice of function hλ obtained from earlier calculated formula (2.4.48) for the

classical derivative of the function gλ is good:

hλ(x) = −λgλ(x)

x
+
λf(x)

x
, for x ∈ (0, 1).

From the above we deduce the following useful version of it:

−xhλ(x) = λgλ(x)− λf(x), for x ∈ (0, 1).

Since by assumptions f ∈ Lp(0, 1) and by identity (2.4.44) function gλ is also belongs to

the space Lp(0, 1), we infer that the function hλ defined above also belongs to Lp(0, 1).

So, it is sufficient to show that for every φ ∈ C∞0 (0, 1) we have∫ 1

0
gλ(x)φ′(x) dx = −

∫ 1

0

λ

x
f(x)φ(x) dx+

∫ 1

0
gλ(x)

λ

x
φ(x) dx. (2.4.50)
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To prove the above equation (2.4.50), let us take and fix φ ∈ C∞0 (0, 1). Note that by using

equation (2.4.45) we have∫ 1

0
gλ(x)φ′(x) dx =

∫ 1

0

λ

xλ
[ ∫ x

0
yλ−1f(y) dy

]
φ′(x) dx.

It follows, by applying the Fubini Theorem [28, Theorem 2.2.3] to the double integral on

the RHS above we infer that∫ 1

0
gλ(x)φ′(x) dx =

∫ 1

0
yλ−1f(y)

[ ∫ 1

y

λ

xλ
φ′(x) dx

]
dy. (2.4.51)

Note that since the function φ has a compact support, we infer that φ(1) = 0. If

y ∈ (0, 1), using integration by parts for the second integral of equation (2.4.51) we have∫ 1

y

λ

xλ
φ′(x) dx = −φ(y)

λ

yλ
+

∫ 1

y
φ(x)

λ2

xλ+1
dx.

Next we substitute the last equation in the second integral of equation (2.4.51) and∫ 1

0
gλ(x)φ′(x) dx =

∫ 1

0
yλ−1f(y)

[
− φ(y)

λ

yλ
+

∫ 1

y
φ(x)

λ2

xλ+1
dx
]
dy

= −
∫ 1

0
yλ−1f(y)φ(y)

λ

yλ
dy +

∫ 1

0

[∫ x

0
yλ−1f(y) dy

]
φ(x)

λ2

xλ+1
dx

= −
∫ 1

0
f(y)φ(y)

λ

y
dy +

∫ 1

0
gλ(x)

λ

x
dx

Thus we proved equality (2.4.50) as we wanted and this completes the proof of the

Claim 2.109.

Claim 2.110. Let us assume the assumptions and notation from Proposition 2.106. As-

sume that f ∈ Lp(0, 1) and λ > 1
p and the function gλ be defined by equation (2.4.44).

Then the function gλ belongs to D(A) and satisfies the following equality

(Agλ)(x) = −x(Dgλ)(x), x ∈ (0, 1].

Proof of Claim 2.110. Let us choose and fix λ > 1
p and f ∈ Lp(0, 1). Let us consider the

function gλ be defined by equation (2.4.44). If follows from the Claim 2.109 that Dgλ ∈
Lp(0, 1). Also, since by identity (2.4.29) in Remark 2.98, Range

(
(λI−A)−1

)
⊂ D(A) and

since gλ = λ(λI − A)−1f ∈ Range
(
(λI − A)−1

)
, we deduce that gλ ∈ D(A). So we have

proved the first part of our Claim.

Moreover, by Lemma 2.101 we infer that for every x ∈ (0, 1] we have

[Agλ](x) = [Aλ(λI −A)−1f ](x) = [AJλf ](x)

= [λ(Jλ − I)f ](x) = [λJλf ](x)− λf(x) = λgλ(x)− λf(x).
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On the other hand, by identity (2.4.49) we have −xDgλ(x) = λgλ(x)− λf(x), x ∈ (0, 1].

Therefore, we infer that Agλ(x) = −xDgλ(x) for x ∈ (0, 1]. Hence, the proof of the

Claim 2.110 is complete.

After we proved necessary Claims 2.108, 2.109 and 2.110, it is now possible to embark

with the proof of Proposition 2.106.

Proof of Proposition 2.106. Let us recall that A is the infinitesimal generator of the con-

traction type C0-semigroup {Tt}t≥0 on the space Lp(0, 1). Our aim is to prove properties

2.106 and 2.106 are satisfied. Let us choose and fix an auxiliary number λ > 1
p . Let us

denote

V := {f ∈ Lp(0, 1) : f is weakly differentiable and xDf(x) ∈ Lp(0, 1)}.

First we will prove that D(A) ⊂ V and

Ag(x) = −xDg(x), for every g ∈ D(A) and x ∈ (0, 1). (2.4.52)

For this purpose, let us choose and fix an arbitrary g ∈ D(A). Then, by the Hille-Yosida

Theorem and by identity (2.4.29) in Remark 2.98, D(A) ⊂ Range
(
(λI − A)−1

)
, as well

as Lemma 2.101, we infer that there exists f ∈ Lp(0, 1) such that

g(x) = Jλf(x) = λ(λI −A)−1f(x), for x ∈ (0, 1).

In other words, because of the definition (2.4.44) of the function gλ, we see that g = gλ.

From Claim 2.109 we infer that function g is weakly differentiable and xDg ∈ Lp(0, 1).

That proves that g ∈ V . Next, by Claim 2.110, we infer that

Ag(x) = Agλ(x) = −xDgλ(x) = −xDg(x), for every x ∈ (0, 1] .

Hence, we proved equation (2.4.52). Secondly, we need to show that V ⊂ D(A). To do

this, let us take and fix an arbitrary function f ∈ V . Define a function u as follows

−xDf − λf = −λu (2.4.53)

Thus, because Lp(0, 1) is a vector space, u ∈ Lp(0, 1). Let us consider a function gλ defined

by identity (2.4.44) with the function f replaced by the function u, i.e., gλ := λ(λI−A)−1u.

By Claim 2.109 we infer that gλ is weakly differentiable and

−xDgλ(x)− λgλ(x) = −λu(x), x ∈ (0, 1). (2.4.54)
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Hence the functions f and gλ satisfy the same equation and both belong to the space

Lp(0, 1). Our aim is to show that f = gλ. For this purpose let us define a function w as

follows

w := f − gλ.

It is sufficient to prove that w = 0. By linearity of weak derivative, we deduce that

w is weakly differentiable and by identities (2.4.53) and (2.4.54) we infer that for every

x ∈ (0, 1)

−xDw(x) = −xDf(x)− [−xDgλ(x)] = λ(f(x)− gλ(x)) = λw(x).

Then, we conclude that

−xDw(x) = λw(x), x ∈ (0, 1). (2.4.55)

We aim to prove that w = 0. We notice that equation (2.4.55) can be written as

−xdw
dx

= λw.

We solve this equation by the method of separation of variables and we infer that there

exists a constant C ∈ R such that

w(x) =
C

xλ
, x ∈ (0, 1).

But since λ > 1
p we have

∫ 1

0
| 1

xλ
|p dx =

∫ 1

0

1

xpλ
dx =∞.

So we proved that if C 6= 0 then

‖w‖Lp(0,1) = |C|
[∫ 1

0
| 1

xλ
|p dx

]1/p
=∞.

But because w ∈ Lp(0, 1) hence we deduce that C = 0. Therefore, w = 0. This is what

we wanted to prove. Hence, f = gλ. From the Claim 2.110 that states gλ ∈ D(A) we

infer that f ∈ D(A), which proves the second property 2.106. By this, we have finished

the proof of Proposition 2.106.



Chapter 3

Invariant Measures on the

Fractional Sobolev Spaces

The existence of an invariant measure is one of the most important problems in the theory

of PDEs. In this chapter, we focus on proving the existence of the invariant measures for

PDEs and this helps us to understand the properties of PDEs. An important work on

the invariant measures was established by Lasota and Mackey [28, Example 11.1.1]. They

considered a Wiener measure (Gaussian measure) in the space of all continuous functions

x : [0, 1] → R such that x(0) = 0. Also, they considered a C0-semigroup {St}t≥0 on the

space X = C0
(
[0, 1]

)
corresponding to the following partial differential equation:

∂u(t, s)

∂t
+ s

∂u(t, s)

∂s
=

1

2
u(t, s), t > 0, s ∈ [0, 1],

u(0, s) = x(s), s ∈ [0, 1],

(3.0.1)

where x ∈ X.

The solution to this equation can be written explicitly as follows:

u(t, s) = e
t
2x(se−t), s ∈ [0, 1], t ≥ 0,

and the C0-semigroup {St}t≥0 is defined by the analogous equation:

Stx(s) = e
t
2x(se−t), s ∈ [0, 1], t ≥ 0, x ∈ X. (3.0.2)

Remark 3.1. It is important to point out that the ”space” variable in this section is

denoted by a letter s ∈ [0, 1]. While the “space” variable in the following sections are

denoted by a letter x ∈ [0, 1]. To make matters even more complicated, the letter x is

used in the present section to denote the elements of the space of initial data. However,

48
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this should not be a problem for an attentive reader and should not lead to any confusion

or misunderstanding.

Lasota and Mackey [28] proved that the C0-semigroup {St}t≥0 preserves the Wiener mea-

sure. In other words, the classical Wiener measure on the space X is an invariant measure

for {St}t≥0. We formulate their contribution into the following Lemma. The proof of the

Lemma itself is made available in Appendix A.1.1, only pointing out that we add more

detail to the proof.

Lemma 3.2. Let C be any cylinder set on the space C0
(
[0, 1]

)
. If {St}t≥0 is a C0-

semigroup in the same space, then the following equality satisfies

µ
(
S−1
t (C)

)
= µ(C). (3.0.3)

Here, µ is a Gaussian measure, which is the law of Brownian Motion, on the space

C0
(
[0, 1]

)
, see Proposition 2.52.

By using the Lemma 3.2, we prove that it is possible to construct a generalisation to the

equation (3.0.1) with different parameters. The main novelty is to extend the parameter

to any parameter between 1
2 and 3

2 . A such generalisation can massively help to under-

stand more PDEs and their properties in more complicated spaces such as interpolation

spaces.

To find this generalisation, we start by extending Lasota and Mackey’s work and define a

new Banach space and a new C0-semigroup related to equation (3.0.1) but with different

parameters. We define an isomorphism operator between the two spaces and such an

operator needs to satisfy a suitable commutation property. If the operator exists, then

the invariant measure that was found in the Lasota and Mackey [28, Example 11.1.1] can

be used to define a new invariant measure for the new objects.

Accordingly, this chapter is organised as follows. The first Section 3.1 gives related pre-

liminaries about invariant measures and interpolation spaces. Next, Section 3.2 states our

abstract theorem as initially described above, which becomes a foundation for building

many of the results in the rest of this chapter, along with applications (using concrete

spaces) to the abstract theorem. Lastly, Section 3.3 gives our main result (the generali-

sation of Lasota and Mackey [28, Example 11.1.1].

3.1 Preliminaries

3.1.1 Introduction to invariant measure

Let us begin with defining a fundamental notion of this thesis, the definition of invariant

measures.
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Definition 3.3. Let (X,A, µ) be a probability space. If {Tt}t≥0 is a measurable semiflow

on (X,A). Then µ is called an invariant probability measure for the semiflow {Tt}t≥0 if

and only if for every t ≥ 0 and for every C ∈ A the following equality holds

µ(T−1
t (C)) = µ(C).

In what follows we need also the following definition.

Definition 3.4. Let (X,A) be a measurable space. Let Y be the space of all functions

defined on the interval [0,∞) with values in X. For an increasing sequence s1, · · · , sn ∈
[0,∞) and a measurable set A =

∏n
i=1Ai ∈ An we define a cylindrical set by the following

form

C(s1, · · · , sn;A1, · · · , An) = {x ∈ Y : x(s1) ∈ A1, · · · , x(sn) ∈ An}.

A special case of the above definition is when (X,A) is equal to
(
R,B(R)

)
.

3.1.2 Interpolation spaces

An interpolation space is a space who intermediate between two spaces [29]. One of the

most important applications of interpolation space is Sobolev spaces. In this section, we

define our main space Hα,p(0, 1) by

Hα,p(0, 1) := [Lp(0, 1), H1,p(0, 1)]α.

The following theorem generalise equation (2.3.6) in the following manner

Theorem 3.5. [45, Theorem 29] If α ∈ (1
p , 1), then

Hα,p(0, 1) ⊂ C([0, 1]). (3.1.1)

Moreover, there exists a constant C = C(α, p) > 0 such that

‖u‖C([0,1]) ≤ C‖u‖Hα,p(0,1).

Also, similarly to the Definition 2.68 of the space H1,p
0 (0, 1) we can also define the space

Hα,p
0 (0, 1) as the following

Definition 3.6. Let α ∈ (1
p , 1), we define the space Hα,p

0 (0, 1) as

Hα,p
0 (0, 1) = {u ∈ Hα,p(0, 1) : u(0) = 0}. (3.1.2)

We can apply Theorem 2.27 to the following spaces. Let X = H1,p(0, 1) and Y =

H1,p
0 (0, 1). We know from Theorem 2.70 that space Y is a closed subspace of space
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X. So, we deduce that Y is a Banach space and the norm of an element u ∈ Y is given

by

‖u‖Y = ‖u‖X =
(
|u|pLp(0,1) + |Du|pLp(0,1)

) 1
p . (3.1.3)

Since the space Hα,p(0, 1) is subspace of the space C([0, 1]) we infer that the natural

embedding, call it i,

i : Hα,p(0, 1) 3 u 7→ u ∈ C([0, 1]), (3.1.4)

is well-defined. It is easy to observe that i is a linear map. Thus, condition (3.1.1) implies

that the natural embedding i is well defined linear map. Moreover, if u ∈ Hα,p(0, 1), then

‖i(u)‖C([0,1]) = ‖u‖C([0,1]) ≤ C‖u‖Hα,p(0,1),

which means that i is a bounded map. Hence we can summarize that, the natural em-

bedding i defined in (3.1.4) is not only well-defined and a linear map but also bounded.

As a consequence of this, we can formulate the following Corollary.

Corollary 3.7. If α ∈ (1
p , 1) then the natural embedding map i defined in formula (3.1.4)

is well defined, linear and bounded.

As the earlier proofs, we can prove the following theorem.

Theorem 3.8. Let α ∈ (1
p , 1), then the space Hα,p

0 (0, 1) is a closed subspace of Hα,p(0, 1).

Moreover, Hα,p
0 (0, 1) endowed with the norm inherited from the space Hα,p(0, 1) is a

Banach space.

Proof of Theorem 3.8. The proof of this theorem comes with three steps as follows

1. Prove that the space Hα,p
0 (0, 1) is well-defined.

2. The space Hα,p
0 (0, 1) is a closed subspace of the space Hα,p(0, 1).

3. Hα,p
0 (0, 1) is a Banach space.

Step 1: We would like to show that the space Hα,p
0 (0, 1) is well-defined. Let us fix

α > 1
p . The reason we assume that α > 1

p is that in this case Theorem 3.5 holds, i.e.

Hα,p
0 (0, 1) ⊂ C([0, 1]). Hence, if u ∈ Hα,p(0, 1), then u ∈ C([0, 1]) so that u(t) makes

sense for all t ∈ [0, 1]. In particular, u(0) also makes sense. Hence we show that the space

Hα,p
0 (0, 1) is well-defined.

Step 2: Let us fix α > 1
p . According to Corollary 3.7 above the natural embedding

i : Hα,p(0, 1) ↪→ C([0, 1]) is bounded. Next, we consider the evaluation map j0 as follows

j0 : C([0, 1]) 3 u 7→ u(0) ∈ R.
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Obviously, j0 is well defined and linear. Moreover, j0 is bounded because

‖j0(u)‖ = |u(0)| ≤ sup
t∈[0,1]

= ‖u‖C([0,1]).

Hence,

‖j0(u)‖R ≤ ‖u‖C([0,1]).

Then j0 is linear and bounded. Therefore the composition j0◦i is also linear and bounded.

Denote i0 = j0 ◦ i, i.e.,

i0 : Hα,p(0, 1) 3 u 7→ u(0) ∈ R.

So we proved that i0(u) = u(0). Hence i0 is bounded and linear.

Notice: we already know the definition of the space Hα,p
0 (0, 1) is

Hα,p
0 (0, 1) = {u ∈ Hα,p(0, 1) : u(0) = 0}

= {u ∈ Hα,p(0, 1) : i0(u) = 0} = ker i.

Using Theorem 2.26 we deduce that Hα,p
0 (0, 1) is a closed subspace of space Hα,p(0, 1).

Step 3: In order to prove that the space Hα,p
0 (0, 1) is a Banach space we apply Theorem

2.27 again for the following spaces. We choose X = Hα,p(0, 1) and Y = Hα,p
0 (0, 1). Since

the space Hα,p(0, 1) is a Banach space and Hα,p
0 (0, 1) is a closed subspace of Hα,p(0, 1)

we deduce that Hα,p
0 (0, 1) is also a Banach space.

Theorem 3.9. Suppose that X and F are Banach spaces and V ⊂ X is a dense subspace

of X. Suppose that A,B : X → F are bounded linear operators such that

A(x) = B(x) for every x ∈ V,

then

A(x) = B(x), for every x ∈ X.

Proof of theorem 3.9. The proof of this theorem is very simple. We start by assuming

that x ∈ X. By the density of the set V in X there exists sequence {xn}n∈N ⊂ V such

that xn → x in X. By assumption, both A and B are bounded and hence continuous.

Thus, Axn → Ax and Bxn → Bx. On the other hand, Axn = Bxn for every n. Hence,

by the uniqueness of the limit in F , we infer that Ax = Bx, for every x ∈ X.

We conclude this section by stating an important corollary that helps us to prove some

properties.

Corollary 3.10. [45, corollary 23] If 1 > α2 > α > 0, then

H1,p(0, 1) ⊂ Hα2,p(0, 1) ⊂ Hα,p(0, 1) ⊂ Lp(0, 1).
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Moreover, each of those embedding is continuous, i.e., there exists C > 0 such that

‖u‖Hα2,p ≤ C‖u‖H1,p ∀u ∈ H1,p

‖u‖Hα,p ≤ C‖u‖Hα2 ,p ∀u ∈ Hα2,p

‖u‖Lp ≤ C‖u‖Hα,p ∀u ∈ Hα,p.

And,

H1,p is dense in Hα2,p

Hα2,p is dense in Hα,p

Hα,p is dense in Lp.

(3.1.5)

Let us begin this section by recalling a definition of a positive operator in a Banach space.

Definition 3.11. [47, p. 1.14.1] Let Y be a complex Banach space and let Λ be a linear

closed operator in Y with a dense domain D(Λ) ⊂ Y , i.e., Λ : D(Λ) → Y . The operator

Λ is said to be positive, if and only if the following two conditions are satisfies

(i) the interval (−∞, 0] is a subset of the resolvent set ρ(Λ) of Λ, and

(ii) there exists a constant C ≥ 0, such that

‖(Λ− λI)−1‖ ≤ C

1 + |λ|
, λ ∈ (−∞, 0].

The importance of positive operators stems from the fact that one can define fractional

powers of such operators, see [47, section 1.15.1] for the definition and section 1.15.2

therein for basic properties. It follows that the definition of fractional powers of positive

operators is closed. The theorem below will play a fundamental rôle in this thesis.

Theorem 3.12. [47, Theorem 1.15.3] Let Λ be a positive operator. It is supposed that

there exist two positive numbers ε and C such that Λit is bounded operator for t ∈ [−ε, ε]
and

‖Λit‖ ≤ C for all t ∈ [−ε, ε]. (3.1.6)

If α and β are two complex numbers, 0 ≤ Reα < Reβ <∞ and 0 < θ < 1 then

[D(Λα), D(Λβ)]θ = D
(
Λα(1−θ)+βθ). (3.1.7)

Let X = Lp(0, 1;C). We know that the space X is a Banach space over field C. Define

B : D(B) 3 u 7→ u′ = Du ∈ Lp(0, 1;C).
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D(B) = {u ∈ H1,p(0, 1) : u(0) = 0}.

Bu = u′ = Du.

The map B is well defined linear operator map. Note that the operator B is associated

with a certain C0-semigroup. Consider the following family of bounded linear operators

{Tt}t≥0 such that if t ∈ [0, 1] then

(
Ttf
)
(s) =

{
f(t+ s), if s ∈ [0, 1− t],
0, if s ∈ [1− t, 1],

and Tt = 0 if t ≥ 1.

Proposition 3.13. The family {Tt}t≥0 is a C0-semigroup on the space X = Lp(0, 1;C).

Note that we proved in Example 2.81 that the [Ttf ](x) = f(t + s) is a C0-semigroup on

the space X = Lp
(
[0,∞)

)
.

Theorem 3.14. [21, Theorem 3.1] Let Y be a complex ζ-convex Banach space, let T ∈
(0,+∞), p ∈ (1,+∞) and X = Lp(0, 1;Y ). Set D(B) = {u ∈ H1,p(0, 1;Y );u(0) = 0} and

the map B : D(B)→ X, B(u) = u′. Consider B is a closed operator in X. Then

i) R− ∪ {0} ⊆ ρ(B) and

‖(λ−B)−1‖ ≤ C0

1 + |λ|
, ∀λ ∈ (−∞, 0]

ii) ∀ζ ∈ R, the operator Biζ is bounded. The family
(
Biζ
)
ζ∈R is a strongly continuous

group in L(X) and there exists a constant C1 > 0 such that

‖Biζ‖ ≤ C1(1 + ζ2)e
π
2
|ζ|, ζ ∈ R.

If Y = C then we get the following simple consequence of Theorem 3.14.

Theorem 3.15. Let p ∈ (1,+∞) and X = Lp(0, 1;C). Set

D(B) = {u ∈ H1,p(0, 1;C) : u(0) = 0},

where the operator B is defined as B : D(B)→ X, B(u) = u′.

Consider B is a closed operator in X. Then

i) R− ∪ {0} ⊆ ρ(B) and

‖(λ−B)−1‖ ≤ C0

1 + |λ|
, ∀λ ∈ (−∞, 0].
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ii) ∀ζ ∈ R, the operator Biζ is bounded. The family
(
Biζ
)
ζ∈R is a strongly continuous

group in L(X) and there exists a constant C1 > 0 such that

‖Biζ‖ ≤ C1(1 + ζ2)e
π
2
|ζ|, ζ ∈ R. (3.1.8)

Corollary 3.16. In the framework and under assumptions of Theorem 3.15, we have

D(Bθ) = Hθ,p
0 (0, 1), θ ∈ (0, 1). (3.1.9)

In particular, the operator Bθ is an isomorphism between the space Hθ,p
0 (0, 1) and the

space Lp(0, 1).

Proof of Corollary 3.16. Let us choose and fix θ ∈ (0, 1). The proof of this corollary is

divided into four steps:

Step 1. It follows from Theorem 3.15 that the operator Λ = B satisfies assumptions of

Theorem 3.12. Indeed, if condition (3.1.8) is satisfied, then condition (3.1.6) is satisfied

with ε = 1 and C = 2C1e
π
2 . Hence it follows that B satisfies equality (3.1.7) (we take a

special case here) with α = 0 and β = 1, i.e.,

[D(B0), D(B1)]θ = D
(
Bθ
)
. (3.1.10)

Step 2. D(B0) = X = Lp(0, 1;C) and

D(B1) = D(B) = {u ∈ H1,p(0, 1;C) : u(0) = 0}.

Therefore, by identity (3.1.10), we infer that

D(Bθ) = [Lp(0, 1;C), {u ∈ H1,p(0, 1;C) : u(0) = 0}]θ.

Step 3. By [47, Theorem 4.3.3] and the definition (3.1.2) of the space Hθ,p
0 (0, 1;C) we

get the following equality

[
Lp(0, 1;C), {u ∈ H1,p(0, 1;C) : u(0) = 0}

]
θ

= Hθ,p
0 (0, 1;C).

Hence, we infer that equality (3.1.9) holds.

Step 4. By [47, Theorem 1.15.1 part (b)], see also Step 6 in the proof of that result, the

operator Bθ is an isomorphism between the space D(Bθ) and the space Lp(0, 1;C). Ap-

plying the earlier proved identity (3.1.9), we infer that the operator Bθ is an isomorphism

between the space Hθ,p
0 (0, 1;C) and the Lp(0, 1;C). The proof is complete.
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3.2 An Abstract Theorem about invariant measures

Theorem 3.17. Let (E, E) be a measure space and E 6= ∅ where E is a σ-field on E. Let

the following assumptions be true on the space E:

1. Suppose that for all t ≥ 0, St : E → E is E/E measurable.

2. Suppose that µ is a probability measure on E such that

µ
(
S−1
t (C)

)
= µ(C), C ∈ E , for all t ≥ 0;

3. Suppose also that (F,F) is another measure space, where F is a σ-field on F . As-

sume that a bijection map Λ : F → E satisfies

Λ(B) ∈ E , for all B ∈ F ,

so that Λ−1 exists and Λ−1 : E → F is E/F measurable. We assume also that

Λ : F → E is F/E measurable

4. Define a measure ν on the space (F,F) as the following formula:

ν(C) := µ
(
Λ(C)

)
, C ∈ F . (3.2.1)

5. Define a family Tt : F → F , t ≥ 0, in the form

Tt(x) = Λ−1

(
St
(
Λ(x)

))
, for every t ≥ 0

i.e.

Tt = Λ−1 ◦ St ◦ Λ

In other words, the diagram (3.1) is commuting

F F

E E

Figure 3.1: A graph showing the commuting of the semigroups {Tt}t≥0 on the space
F and {St}t≥0 on the space E.

Based on this, it is clear that Tt is measurable, for every t ≥ 0.



Invariant Measure 57

We assert the following statements for the measure ν:

(i) ν is a probability measure on the space (F,F),

(ii) For any C ∈ F and t ≥ 0 we have

ν
(
T−1
t (C)

)
= ν(C).

Proof of Theorem 3.17. We need to prove the theorem in regard of two assertions (i)

and (ii).

Regarding the first assertion (i), which is related to whether ν is a probability measure,

we need to satisfy two conditions that: (1) measure ν of the empty set is zero, and (2)

ν is σ-additive. To check the first condition, from the definition of the measure ν in

equality (3.2.1), we have

ν(∅) = µ
(
Λ(∅)

)
= µ(∅) = 0.

For the second condition, let Cn ∈ F for n = 1, 2, . . . (pairwise-disjoint). We have to show

that

ν
(
∪∞n=1 (Cn)

)
=

∞∑
n=1

ν(Cn).

Let us choose any sets Ci, Cj ∈ F . Since Λ is bijection, we have

Λ(Ci) ∩ Λ(Cj) = Λ
(
Ci ∩ Cj

)
= Λ(∅) = ∅.

Therefore, Λ(Cn) are pairwise-disjoint sets. Since µ is σ-additive and Λ is bijection, we

infer that

µ

(
Λ
(
∪∞n=1 (Cn)

))
= µ

(
∪∞n=1 Λ(Cn)

)
=
∞∑
n=1

µ
(
Λ(Cn)

)
.

It follows from the definition of the measure ν and the last equation that

ν

(
∪∞n=1 (Cn)

)
= µ

(
Λ
(
∪∞n=1 (Cn)

))
=
∞∑
n=1

µ
(
Λ(Cn)

)
=
∞∑
n=1

ν(Cn),

which implies that ν is σ-additive. Therefore, ν is a probability measure on the measure

space (F,F). This completes the proof of the first assertion (i).

Let us now prove the second assertion. Let us fix C ∈ F . By assumption (5) in Theo-

rem 3.17, we have

T−1
t (C) =

(
Λ−1 ◦ St ◦ Λ

)−1
(C) = Λ−1

(
S−1
t (Λ(C))

)
.
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Here we take the inverse of Tt and then apply the set C for both sides. If we apply the

measure ν to both sides of the above equation, we get

ν
(
T−1
t (C)

)
= ν

[
Λ−1

(
S−1
t (Λ(C))

)]
. (3.2.2)

If we denote Λ(C) by C ′, where C ′ is an auxiliary set, we obtain

C ′ = Λ(C)⇔ C = Λ−1(C ′).

Therefore, we can re-write the equality (3.2.1) as follows

ν
(
Λ−1(C ′)

)
= µ(C ′). (3.2.3)

By taking the above equations (3.2.3), (3.0.3) and the definition of measure ν in equa-

tion (3.2.1) and substituting them in equation (3.2.2), we get

ν
(
T−1
t (C)

)
= ν

[
Λ−1

(
S−1
t (Λ(C))

)]
= µ

(
S−1
t (Λ(C))

)
= µ

(
Λ(C)

)
= ν(C),

which concludes the second assertion. Therefore, the proof of Theorem 3.17 is completed.

3.2.1 Invariant measures on the space C1
0

(
[0, 1]

)
After we stated the abstract Theorem 3.17 in the previous section, we need to attest and

analyse our method in an example. In this section, we intend to define spaces E and F

and apply them to the abstract Theorem 3.17 to generate a concrete model (which will

later facilitate the application of different spaces other than E and F ). However, we need

before that to mention some notations and auxiliary properties that are going to lead us

towards the application of the defined spaces. The main objective of this section is to

prove the existence of an invariant measure on the following defined spaces E and F .

Let E = C0 ([0, 1]) be a space defined as the following

E = C0
(
[0, 1]

)
:= {u ∈ C

(
[0, 1]

)
: u(0) = 0}. (3.2.4)

The norm of this space E is given by

‖u‖ C0 ([0,1]) = sup
t∈[0,1]

|u(t)|. (3.2.5)

Let F = C1
0

(
[0, 1]

)
be a space defined as the following

C1
0 ([0, 1]) = {x : [0, 1]→ R : x is of C1-class, and x(0) = 0, x′(0) = 0}. (3.2.6)
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The space F is endowed with the following norm:

‖x‖
C1

0

(
[0,1]
) = sup

s∈[0,1]
|x(s)|+ sup

s∈[0,1]
|x′(s)|. (3.2.7)

Define a new C0-semigroup called {S̃t}t≥0 on the space F by

S̃tx(s) = e
3t
2 x(se−t), s ∈ [0, 1], t ≥ 0. (3.2.8)

This C0-semigroup is generated by the equation

∂u

∂t
+ s

∂u

∂s
=

3

2
u. (3.2.9)

Recall that the C0-semigroup {St}t≥0 on the space E was given in equation (3.0.2).

Theorem 3.18. Let E = C0
(
[0, 1]

)
be the separable Banach space defined on (3.2.4)

and F = C1
0

(
[0, 1]

)
be the separable Banach space defined on (3.2.6). Then the C0-

semigroup {S̃t}t≥0 on the Banach space F , generated by the equation (3.2.9), has an

invariant measure. Moreover, the measure ν defined by

ν(C) := µ
(
Λ(C)

)
, C ∈ B(F ) (3.2.10)

is an invariant measure for {S̃t}t≥0, where

Λ : F 3 x 7→ x′ ∈ E,

is the derivative map. B(F ) is the Borel σ-field on the space F , and the measure µ,

which is the law of Brownian motion on E, is the invariant measure for the C0-semigroup

{St}t≥0 generated by
∂v

∂t
+ s

∂v

∂s
=

1

2
v.

Based on the above Theorem, we can highlight the following properties:

1. E and F are separable Banach spaces,

2. {St}t≥0 is a C0-semigroup on the space E,

3. {S̃t}t≥0 is a C0-semigroup on the space F ,

4. The map Λ : F → E is bijective,

5. For every t ≥ 0, the map Λ is commuting. That is,

St ◦ Λ = Λ ◦ S̃t.
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To reach the objective of this section, we need to verify all the properties listed in The-

orem 3.18. For the property 1, the space E is a separable Banach space, according to

Lemma B.2 and Theorem 2.27, we deduce that the space E is a separable Banach space.

Similarly, the proof that the space F is a separable Banach space can be found in Ap-

pendix B.3.

For the property 2, which is extracted from Theorem 3.18, the Example 2.82 contains

prove that {St}t≥0 defined on equation (3.0.2) is a C0-semigroup on the Banach space E.

Moreover, for the property 3, the Corollary 2.90 contains prove that {S̃t}t≥0 defined on

(3.2.8) is a C0-semigroup on the Banach space F .

Now we need to verify the property 4, which is extracted from Theorem 3.18, we need to

prove that the map Λ : F → E is bijective.

Proof of property 4. Since Λ is linear, for the injectivity of Λ it is sufficient to prove that

if x ∈ F and Λ(x) = 0, then x = 0. For this aim, we choose and fix x ∈ F and Λ(x) = 0.

Since Λ is the derivative map and the function x is of C1-class, we infer that the derivative

of x is zero and we deduce that there exists a constant C ∈ R such that x = C, see [39,

Theorem 5.11 part(c)]. In particular, x(0) = C. But since x ∈ F , x(0) = 0 and thus

C = 0. Therefore, x = 0 as required.

For the surjectivity of the map Λ, let us choose and fix y ∈ E. We put

x(s) =

∫ s

0
y(σ) dσ, s ∈ [0, 1].

and we will show that x ∈ F Λ(x) = y. In order to prove that x ∈ F we need to show

that x is continuous, differentiable, x(0) = 0 and x′(0) = 0. These properties follow

from properties of the Riemann integral, in particular, [39, Theorem 6.20 part (c)]. To

conclude, we proved that the map Λ is injective and surjective and we infer that it is

bijective. Therefore, the property 4 is satisfied.

For property 5 that states for every t ≥ 0, the following diagram is commuting. That is,

0C
1([0,1 ])

0C
1([0,1 ])

0C([0,1 ])
0C([0,1 ])

Figure 3.2: A graph showing the commuting of the semigroups {S̃t}t≥0 on the space
C1

0

(
[0, 1]) and {St}t≥0 on the space C0

(
[0, 1]).

St ◦ Λ = Λ ◦ S̃t. (3.2.11)



Invariant Measure 61

Proof of property 5. To verify the property we need to show equality (3.2.11). For this

aim, let us choose and fix t ≥ 0 and x ∈ F . We need to show that the following equation

is satisfied. [
St
(
Λ(x)

)]
(s) =

[
Λ
(
S̃t(x)

)]
(s), s ∈ [0, 1]. (3.2.12)

Let us start first with the LHS of the equation (3.2.12) as follows:

[
St
(
Λ(x)

)]
(s) = e

t
2 Λ(x)

(
se−t

)
= e

t
2 x′
(
se−t

)
, s ∈ [0, 1].

On the other hand, for the RHS of equation (3.2.12) by using the definition (3.2.8) of

the C0-semigroup {S̃t}t≥0 on the space F , we have, for s ∈ [0, 1], the following train of

equalities satisfy

[
Λ
(
S̃t(x)

)]
(s) =

d

ds

(
S̃t(x)(s)

)
=

d

ds

(
e

3t
2 x(se−t)

)
= e

3t
2 x′

(
se−t

)
· e−t = e

t
2 x′
(
se−t

)
.

Thus, we conclude that the RHS and LHS of the equality (3.2.11) are equal. Consequently,

we find that the equation (3.2.12) is satisfied, and this completes the property 5.

To sum up, all properties extracted from Theorem 3.18 are satisfied, and therefore, the

defined spaces E and F are applicable to the Abstract Theorem 3.17 stated in Section 3.2.

Now we are going to prove our main Theorem in this section.

Proof of Theorem 3.18. We need to use the abstract Theorem 3.17 and verify all the

assumptions stated in it to prove Theorem 3.18 but on our concrete spaces E and F .

Regarding assumption 1, we need to prove that for all t ≥ 0 the map St : E → E is A/A
measurable.

Proof of assumption 1. We proved in Example 2.82 that St is bounded and linear for

every t ≥ 0. Thus by [40, Theorem 5.4] we deduce that St is continuous and therefore, it

is measurable by the Preposition 2.34. Consequently, the assumption 1 is valid.

Regarding assumption 2, which studies whether µ is a probability measure on A such

that:

µ
(
S−1
t (C)

)
= µ(C), C ∈ A, for all t ≥ 0;

The assumption has already been verified in Lemma 3.2.

For the assumption 3, we need to show that Λ−1 : E → F is measurable.

Proof of assumption 3. We do this by showing that it is bounded. Recall the space E =

C0
(
[0, 1]

)
, with σ-filed A = B(E) and the space F = C1

0

(
[0, 1]

)
, with σ-filed B = B(F ).

Also, recall that Λ : F 3 x 7−→ x′ ∈ E is the derivative map. We already proved in 3.2.1
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that the map Λ is bijective, and therefore, the inverse of the map Λ exists.

In the following we need to prove that the map Λ−1 satisfies the following equation:

[
Λ−1(y)

]
(s) =

∫ s

0
y(r) dr, s ∈ [0, 1], y ∈ E. (3.2.13)

For this aim let us denote by I the linear operator defined by the RHS of equality (3.2.13).

Next we will show that the map I is indeed the inverse of Λ. For this, we need to verify

that (1) I is well-defined, and (2) Λ ◦ I = idE as well as I ◦ Λ = idF .

Regarding the first condition, let us suppose that y ∈ E, which means that y is continuous.

Since y is continuous then I(y) is differentiable [39, Theorem 6.20], and [I(y)]′(s) = y(s)

for every s ∈ [0, 1]. Therefore, I(y) is of C1-class because its derivative is continuous.

Moreover, since I(y) ∈ E, we infer that

[
I(y)

]
(0) = 0 and

[
I(y)

]′
(0) = y(0) = 0.

Hence, we proved that I(y) ∈ F , and therefore, we deduce that the map I is well-defined.

Regarding the second condition, we already know from above that Λ
[
I(y)

]
(s) = y(s) for

all s ∈ [0, 1] because the map Λ is just the derivative. That is, on one hand Λ[I(y)] = y.

On the other hand, we need to prove that if x ∈ F ⇒ I
[
Λ(x)

]
= x. Let us take x ∈ F .

Then, we have [
Λ(x)

]
(s) = x′(s), for all s ∈ [0, 1].

Applying the map I to the derivative of x, and using the Fundamental Theorem of Cal-

culus [40], we have

[
I(x′)

]
(s) =

∫ s

0
x′(r) dr = x(s)− x(0) = x(s).

Hence we proved that I(x′) = x. In other words, I
[
Λ(x)

]
= x.

Thus, we proved that the map I : E → F is well-defined and Λ ◦ I = idE and I ◦Λ = idF .

In other words, Λ−1 = I or I−1 = Λ. After we have proven that the map Λ−1 exists,

we need to study whether the map is measurable. According to the Proposition 2.34, it

is sufficient to verify if the map Λ−1 is bounded. We start by taking y ∈ E, and any

s ∈ [0, 1]. Then, we have the following

[
I(y)

]
(s) =

∫ s

0
y(r) dr.
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We know that I(y) ∈ F and by using the norm of the space F that we defined before in

equation (3.2.7) we obtain the following

‖I(y)‖F = sup
s∈[0,1]

∣∣[I(y)
]′

(s)
∣∣+ sup

s∈[0,1]

∣∣[I(y)
]
(s)
∣∣

= sup
s∈[0,1]

|y(s)|+ sup
s∈[0,1]

|
∫ s

0
y(r) dr|.

Since

sup
s∈[0,1]

|
∫ s

0
y(r) dr| = sup

s∈[0,1]

∫ s

0
|y(r)| dr ≤

∫ 1

0
|y(r)| dr,

we infer that

‖I(y)‖F = ‖y‖E +

∫ 1

0
|y(r)|dr ≤ ‖y‖E + sup

r∈[0,1]
|y(r)|

∫ 1

0
|1|dr = ‖y‖E + ‖y‖E = 2‖y‖E .

This prove that ‖I(y)‖F ≤ 2‖y‖E . Therefore, I : E → F is bounded and the linearity of

map I is obvious. Also, since the map Λ−1 is bounded linear (i.e., continuous) and using

the Proposition 2.34, we deduce that Λ−1 is measurable.

Regarding assumption 5, that studies whether the operator S̃t is measurable.

Proof of assumption 5. Similar to the above situation, if we can show that S̃t is bounded

(hence continuous) then the operator will be measurable. Therefore, we just want to

verify that S̃t is bounded. Let x ∈ F . By using the norm of the space F that we defined

before in equation (3.2.7) and the definition of the {S̃t}t≥0 we have for every s ∈ [0, 1],

the following equations

‖S̃tx‖F = sup
s∈[0,1]

|S̃tx(s)|+ sup
s∈[0,1]

|[S̃tx]′(s)|

= e
3
2
t sup
s∈[0,1]

|x(e−ts)|+ sup
s∈[0,1]

|e
3
2
te−tx′(e−ts)]|

= e
3
2
t sup
σ∈[0,e−t]

|x(σ)|+ e
t
2 sup
σ∈[0,e−t]

|x′(σ)|

≤ e
3
2
t sup
σ∈[0,1]

|x(σ)|+ e
t
2 sup
σ∈[0,1]

|x′(σ)|

= e
3
2
t
[

sup
σ∈[0,1]

|x(σ)|+ sup
σ∈[0,1]

|x′(σ)|
]

= e
3
2
t‖x‖F .

Hence, we proved that S̃t is bounded, and therefore, it is continuous. By applying Propo-

sition 2.34, we infer that S̃t is measurable.

Theorem 3.19. Let {S0
t }t≥0 be a C0-semigroup on the space E0 = C0 ([0, 1]) given by

S0
t x(s) = e

t
2x(se−t), s ∈ [0, 1], x ∈ E0, (3.2.14)
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and, let {S̃0
t }t≥0 is a C0-semigroup on the space F0 = C1

0 ([0, 1]) given by

S̃0
t x(s) = e

3t
2 x(se−t), s ∈ [0, 1], x ∈ F0. (3.2.15)

Also, let Λ−1
0 : E0 → F0 be a map defined by

(
Λ−1

0 (x)
)
(s) =

∫ s

0
x(r) dr, r ∈ [0, 1], x ∈ E0. (3.2.16)

Then,

Λ−1
0 ◦ S

0
t = S̃0

t ◦ Λ−1
0 on E0. (3.2.17)

That is, for all x ∈ E0, we have for every s ∈ [0, 1] the following

[
Λ−1

0

(
S0
t x
)]

(s) =
[
S̃0
t

(
Λ−1

0 x
)]

(s). (3.2.18)

Proof of Theorem 3.19. Our aim is to prove the equality (3.2.17). Let us fix t > 0, and

choose x ∈ E0. We start with the LHS of the equality. By denoting y = S0
t x ∈ E0, and

using the Definition (3.2.14) of the C0-semigroup S0
t x, we have for every s ∈ [0, 1]

(
Λ−1

0 y
)
(s) =

∫ s

0
y(r) dr =

∫ s

0
e
t
2x(e−tr) dr = e

t
2

∫ s

0
x(e−tr) dr.

By applying the change of variables to the last integral, we get

(
Λ−1

0 y
)
(s) = e

t
2

∫ e−ts

0
x(ρ)et dρ = e

3t
2

∫ e−ts

0
x(ρ) dρ, s ∈ [0, 1].

Thus, we proved (
Λ−1

0 Stx
)
(s) = e

3t
2

∫ e−1s

0
x(ρ) dρ, s ∈ [0, 1].

For the RHS of the equality (3.2.18), we know since Λ−1
0 x ∈ F0, we can apply the the def-

inition of the C0-semigroup {S̃0
t }t≥0. Thus, by the Definition of S̃0

t y in equation (3.2.15),

we have (
S̃0
t Λ−1

0 x
)
(s) = e

3t
2 Λ−1

0 x(e−ts) = e
3t
2

∫ e−ts

0
x(r) dr, s ∈ [0, 1].

Hence, we proved that for every s ∈ [0, 1],

(
Λ−1

0 S0
t x
)
(s) =

(
S̃0
t Λ−1

0 x
)
(s).

Therefore, the proof of Theorem 3.19 is complete.

After verifying all the assumptions of the abstract Theorem 3.17, we now in the right

position to prove our concrete Theorem 3.18. In other words, we need to prove that the

C0-semigroup {S̃t}t≥0 has an invariant measure. Since S̃t = Λ−1 ◦St ◦Λ, then for any set
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C and by taking the inverse for both sides we have

S̃t
−1

(C) =
(
Λ−1 ◦ St ◦ Λ

)−1
(C) = Λ−1

(
S−1
t (Λ(C))

)
ν
(
S̃t
−1

(C)
)

= ν
[
Λ−1

(
S−1
t (Λ(C))

)]
. (3.2.19)

From the equation (3.2.10), if we denote Λ(C) by C ′ , then we get

C ′ = Λ(C)⇔ C = Λ−1(C ′)

Therefore, we can re-write the equation (3.2.10) as follows

ν
(
Λ−1(C ′)

)
= µ(C ′). (3.2.20)

Hence, applying the above consequence equation (3.2.20) and (3.0.3) along with the defi-

nition of the measure ν in equation (3.2.10) to the equation (3.2.19) we obtain

ν
(
S̃t
−1

(C)
)

= µ
(
S−1
t (Λ(C))

)
= µ

(
Λ(C)

)
= ν(C).

To conclude, we have proved that ν
(
S̃t
−1

(C)
)

= ν(C), which completes the proof of

Theorem 3.18.

3.3 Existence of Invariant measures on the fractional Sobolev

spaces Hα,p(0, 1)

Toward finding the invariant measure, we apply the output of the last section (Sect. 3.2.1)

against yet a new spaces X = Lp(0, 1) and Sobolev space F = Hα,p
0 (0, 1), which are

broader spaces than what we have defined previously. But, before that, we are going to

attest our new spaces by taking a special case. In other words, we first take α = 1 in the

space F as in the following section.

3.3.1 Invariant measures for a special case of Sobolev spaces

Let X = Lp(0, 1) defined in Definition 2.55 and F = H1,p
0 (0, T ) defined in Definition 2.68.

We want to study whether the following operators Λ and I and their properties are valid

on the new choice of spaces X and F . The operators Λ and I are defined as follows

Λ : F 3 u 7→ Du ∈ X. (3.3.1)

I : X 3 u 7→
∫ t

0
u(s) ds ∈ F for every t ∈ [0, 1]. (3.3.2)
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Note that: the definition of maps I and Λ here use the same formula in the previous Sec-

tion 3.2.1 but we mean by I here the Lebesgue integral and by Λ the weak derivative Du,

whereas before we meant the Riemann integral and the classical derivative respectively.

Proposition 3.20. The operator Λ defined in equation (3.3.1) is linear and bounded from

the space F to the space X.

Proof of Proposition 3.20. The linearity property is straightforward. For the boundedness

property, let u ∈ F . We know from equation (2.3.5) in Corollary 2.71 the following

‖Λu‖E = |Λu|Lp(0,1) = ‖|u|‖
H1,p

0 (0,1)
≤ ‖|u|‖

H1,p
0 (0,1)

.

Hence the operator Λ is bounded. Moreover, ‖Λ‖ ≤ 1.

Lemma 3.21. If u ∈ X, then for every t ∈ [0, 1] the expression
[
I(u)

]
(t) defined by

equation (3.3.2) is well-defined.

Proof of Lemma 3.21. : Let us fix t ∈ [0, 1]. We need to show that the integral defined

in equation (3.3.2) exists. In fact, we notice that u is not a continuous function because

u ∈ X, where X = Lp(0, 1) consists of all equivalent classes of functions. Thus, we cannot

use Riemann integral. Also, u is not even a function at all because u = [f ]∼. Therefore,

we can use
∫ t

0 f(s)ds, where u = [f ]∼, f : [0, 1]→ R, which for some function is Lebesgue

measurable and ∫
[0,1]
|f(x)|p dx <∞. (3.3.3)

Because the integral is Lebesgue integral, then we can rewrite the original integral as

follows. ∫ t

0
f(s) ds =

∫
[0,1]

1[0,t](s)f(s) ds.

To study whether the above integral exists in the Lebesgue sense, we study it within two

cases: p = 1 and p > 1. If p = 1 in equation (3.3.3), then have∫
[0,1]
|1[0,t](s)f(s)| ds =

∫
[0,1]

1[0,t](s)|f(s)| ds ≤
∫

[0,1]
|f(s)| ds <∞.

Hence, the integral exists. If p > 1, by using Hölder Inequality [40], we have

∫
[0,1]
|1[0,t](s)f(s)| ds ≤

(∫
[0,1]
|1[0,t](s)|q ds

) 1
q
(∫

[0,1]
|f(s)|p ds

) 1
p

.

By the assumption

(∫
[0,1] |f(s)|p ds

) 1
p

< ∞, and

(∫
[0,1] |1[0,t]|q ds

) 1
q

= t
1
q < ∞. Hence,

we deduce that the whole integral is finite, and therefore, it exists. To conclude, we proved
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that ∫ t

0
f(s)ds exists if u = [f ]∼.

Suppose we have another representative function for u called g, such that u = [g]∼, we

can claim that ∫ t

0
f(s)ds =

∫ t

0
g(s) ds.

To verify this claim, let us first fix t ∈ [0, 1]. Then we have∣∣∣∣ ∫ t

0
f(s) ds−

∫ t

0
g(s) ds

∣∣∣∣ =

∣∣∣∣ ∫ t

0

[
f(s)− g(s)

]
ds

∣∣∣∣ ≤ ∫ t

0

∣∣f(s)− g(s)
∣∣ ds.

We know that u = [f ]∼ = [g]∼ ⇒ f = g a.e with respect to the Lebesgue measure. This

means, that there exists A ⊂ [0, 1] Lebesgue measurable such that µ
(
[0, 1]\A

)
= 0, f(s) =

g(s) for s ∈ A. Hence,∣∣∣∣ ∫ t

0
f(s) ds−

∫ t

0
g(s) ds

∣∣∣∣ =

∫
[0,1]\A

0 ds = 0.

So, we proved that if u ∈ Lp(0, 1) then∫ t

0
f(s) ds =

∫ t

0
g(s) ds, for all f, g : u = [f ]∼ = [g]∼.

As a consequence, we can put ∫ t

0
u(s) ds :=

∫ t

0
f(s) ds.

To sum up, we proved if u ∈ X then
[
I(u)

]
(t) is well-defined for all t ∈ [0, 1].

Lemma 3.22. If u ∈ X = Lp(0, 1), then I(u), which is defined by equation (3.3.2), is a

continuous function.

Proof of Lemma 3.22. Let us take and fix u ∈ X. Our aim is to show that v := I(u) ∈
C
(
[0, 1]

)
. For this aim, we consider two cases: p > 1 and p = 1.

Case 1. Assume that p = 1. We want to prove that v is right-continuous at every t0 ∈
[0, 1) and that v is left-continuous at every t0 ∈ (0, 1]. Firstly we choose and fix t0 ∈ [0, 1).

In order to prove that v is right-continuous at t0, by the Heine (equivalent) definition of

continuity, see [39, Theorem 2.41], it is sufficient to prove that if a sequence (tn)∞n=1 is

decreasing and converges to t0, then v(tn) → v(t0). So, let us choose and fix such a
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sequence (tn)∞n=1. We have, since tn > t0, by properties of the Lebesgue integral,

|v(tn)− v(t0)| = |
∫ tn

0
u(s) ds−

∫ t0

0
u(s) ds|

= |
∫ tn

t0

u(s) ds| ≤
∫ tn

t0

|u(s)| ds

=

∫ 1

0
1[t0,tn]|u(s)| ds =

∫ 1

0
fn(s) ds,

where

fn(s) := 1[t0,tn]|u(s)|, s ∈ [0, 1].

Put also

f(s) :=

0 if s ∈ [0, 1] \ {t0},

|u(t0)|, if s = t0.

We observe that if s = t0 then fn(s) = |u(s)| but if s 6= t0, then fn(s)→ f(s). Hence

fn(s)→ f(s) for all s ∈ [0, 1].

Hence assumption (82) of [39, Theorem 11.32] is satisfied. Moreover, for every n ∈ N

|fn(s)| = fn(s) ≤ g(s) := |u(s)|, s ∈ [0, 1],

and
∫ 1

0 |u(s)| ds < ∞. Hence assumption (83) [39, Theorem 11.32] is satisfied. Hence

we can apply the Lebesgue Dominated Convergence Theorem [39, Theorem 11.32] and

deduce that ∫ 1

0
fn(s) ds→

∫ 1

0
f(s) ds = 0.

In summary, we deduce that

lim
n→∞

|v(tn)− v(t0)| = 0.

Therefore, v is right continuous at t0.

Secondly we choose and fix t0 ∈ (0, 1]. In order to prove that v is left-continuous at t0,

again by the Heine (equivalent) definition of continuity, it is sufficient to prove that if a

sequence (tn)∞n=1 is increasing and converges to t0, then v(tn) → v(t0). So, let us choose

and fix such a sequence (tn)∞n=1. We have, since tn < t0, by the properties of the Lebesgue



Invariant Measure 69

integral,

|v(tn)− v(t0)| = |
∫ tn

0
u(s) ds−

∫ t0

0
u(s) ds|

= |
∫ t0

tn

u(s) ds| ≤
∫ t0

tn

|u(s)| ds

=

∫ 1

0
1[tn,t0](s)|u(s)| ds =

∫ 1

0
fn(s) ds,

where

fn(s) = 1[tn,t0](s)|u(s)|, s ∈ [0, 1].

We put

f(s) :=

0 if s ∈ [0, 1] \ {t0},

|u(t0)|, if s = t0.

We observe that if s = t0 then fn(t0) = |u(t0)| and therefore fn(t0)→ |u(t0)|. Moreover,

if s 6= tn, then fn(s)→ f(s). Hence

fn(s)→ f(s) for all s ∈ [0, 1].

Hence assumption (82) of [39, Theorem 11.32] is satisfied.

Finally, for every n ∈ N,

|fn(s)| = fn(s) ≤ g(s) := |u(s)|, s ∈ [0, 1],

and
∫ 1

0 |u(s)| ds <∞. Hence assumption (83) of [39, Theorem 11.32] is satisfied.

Again, by applying the Lebesgue Dominated Convergence Theorem [39, Theorem 11.32]

and deduce that ∫ 1

0
fn(s) ds→

∫ 1

0
f(s) ds = 0.

Hence, we deduce that

lim
n→∞

|v(tn)− v(t0)| = 0.

Therefore, v is left continuous at t0.

Case 2. Assume that p > 1. Let us consider t1, t2 ∈ [0, 1] such that 0 ≤ t1 < t2 ≤ 1.

Then we have

v(t1) =

∫ t1

0
u(s) ds, v(t2) =

∫ t2

0
u(s) ds.
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By using the Hölder Inequality (2.3.1) for the above v1 and v2, we get

∣∣v(t1)− v(t2)
∣∣ =

∣∣∣∣ ∫ t2

t1

u(s) ds

∣∣∣∣ ≤ ∫ t2

t1

|u(s)| ds

≤
(∫ t2

t1

1q ds

) 1
q
(∫ t2

t1

|u(s)|p ds
) 1
p

≤ |t2 − t1|
1
q

(∫ t2

t1

|u(s)|p ds
) 1
p

≤ |t2 − t1|
1
q

(∫ 1

0
|u(s)|p ds

) 1
p

≤ |t2 − t1|
1
q ‖u‖Lp(0,1).

Hence, we proved that |v(t2)− v(t1)| ≤ |t2 − t1|α‖u‖Lp(0,1), where α = 1
q = 1− 1

p > 0.

Therefore, v is Hölder continuous with exponent α > 0, so it is continuous.

Hence, since we proved that v is left continuous on (0, 1] and right continuous on [0, 1),

we infer that v is continuous on [0, 1], as claimed.

Lemma 3.23. If u ∈ X = Lp(0, 1), then I(u) ∈ F . In other words, the operator I is a

mapping from the space X to the space F .

Proof of Lemma 3.23. Let u ∈ X. To show that I(u) ∈ F = H1,p
0 (0, 1), we need to show,

in view of Definition 2.65, Theorem 2.67 and Definition 2.68, that the following are true:

• Statement 1: I(u) ∈ C([0, 1]). This is satisfied as it follows from Lemma 3.22.

• Statement 2:
[
I(u)

]
(0) = 0. This is satisfied because

[
I(u)

]
(0) =

∫ 0
0 u(s) ds = 0.

• Statement 3: The weak derivative D
(
I(u)

)
exists and belongs to the space Lp(0, 1).

Regarding the last statement, let us denote v = I(u) and let us recall that v has a

derivative Dv where Dv ∈ Lp(0, 1), if and only if we can find a function z ∈ Lp(0, 1) such

that ∫ 1

0
v(t)φ′(t) dt = −

∫ 1

0
z(t)φ(t) dt, ∀φ ∈ C∞c (0, 1).

To find this function, we guess that z = u. Since u ∈ Lp(0, 1), it is sufficient to show that∫ 1

0
v(t)φ′(t) dt = −

∫ 1

0
u(t)φ(t) dt, ∀φ ∈ C∞c (0, 1). (3.3.4)

Recall that function φ ∈ C∞c (0, 1) if and only if φ : [0, 1]→ R of C∞-class and there exists

a > 0 such that φ ⊂ [a, 1− a]. Also, from the assumption, u ∈ Lp(0, 1).
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Now, we assume that u ∈ C
(
[0, 1]

)
. Then we have

v(t) =
[
I(u)

]
(t) =

∫ t

0
u(s) ds, t ∈ [0, 1].

According to Rudin [39], we infer that in this case v ∈ C1
(
[0, 1]

)
and v(0) = 0. Moreover,

v′(t) = u(t). Thus, to prove the equation (3.3.4), we use the Fundamental Theorem of

Calculus [39, Theorem 11.33]. since the function t 7→ v(t)φ(t) is of C1-class, then we have

the following

v(1)φ(1)− v(0)φ(0) =

∫ 1

0

d

ds
v(s)φ(s) ds.

On one hand, the left-hand-side is v(1)φ(1) = v(1) × 0 = 0 and v(0)φ(0) = v(0) × 0 = 0

because function φ has a compact support. Therefore,∫ 1

0

d

ds

(
v(s)φ(s)

)
ds = 0. (3.3.5)

On the other hand, the derivative inside the integral on equation (3.3.5) of the right-hand-

side can be rewritten as follows

d

ds

(
v(s)φ(s)

)
= v′(s)φ(s) + v(s)φ′(s).

Hence, ∫ 1

0

[
v′(s)φ(s) + v(s)φ′(s)

]
ds = 0.

By distributing the above integral and rearranging it, and Since v′(s) = u, we infer that s

−
∫ 1

0
u(s)φ(s) ds =

∫ 1

0
v(s)φ′(s) ds (3.3.6)

To conclude, we proved that the equation (3.3.4) for u ∈ C[0, 1] is satisfied. But, we want

that equation (3.3.4) holds for arbitrary u ∈ Lp(0, 1), and to achieve that, we apply the

spaces that exist in Theorem 3.9, namely X, F and V , to our special spaces. We choose

X = Lp(0, 1), F = F and V = C
(
[0, 1]

)
. We know already that V ⊂ X is dense of X.

Fix φ ∈ C∞c (0, 1) and define two maps A and B by

A : Lp(0, 1) 3 u 7→ −
∫ 1

0
u(s)φ(s) ds ∈ F ;

and

B : Lp(0, 1) 3 u 7→
∫ 1

0
v(s)φ′(s) ds ∈ F, where v = I(u).

The maps A and B are clearly bounded and linear maps from X to F and the equa-

tion (3.3.6) shows that B(u) = A(u) for all u ∈ C[0, 1] = V . Therefore, by using the
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Theorem 3.9, we infer that B(u) = A(u), u ∈ Lp(0, 1) = X. That is,

−
∫ 1

0
u(s)φ(s) ds =

∫ 1

0
v(s)φ′(s) ds, u ∈ Lp(0, 1).

Therefore, we proved that the weak derivative of v exists and Dv = u. In particular,

Dv ∈ Lp(0, 1) and that concludes the proof of Lemma 3.23.

Lemma 3.24. The map I, which was defined in equation (3.3.2), is a bounded linear map

from Lp(0, 1) to H1,p
0 (0, 1). That is, for every u ∈ Lp(0, 1), there exists C > 0 such that

‖I(u)‖
H1,p

0 (0,1)
≤ C‖u‖Lp(0,1).

Proof of Lemma 3.24. The proof of this lemma is similar to the proof of the map Λ−1 in

the previous section.

Theorem 3.25. Assume that p ∈ [1,∞). Let {Spt }t≥0 be a C0-semigroup on the space

E = Lp[0, 1] given by
(
Spt x

)
(s) = e

t
2 x(se−t), s ∈ [0, 1], x ∈ E. Also, let {S̃pt }t≥0 be a C0-

semigroup on the space F = H1,p
0 (0, 1) given by

(
S̃pt x

)
(s) = e

3t
2 x(se−t), s ∈ [0, 1], x ∈ F .

In addition, let Λ−1
p : E → F be defined as

(
Λ−1
p (x)

)
(s) =

∫ s

0
x(r) dr, s ∈ [0, 1] (3.3.7)

Then, for every t > 0, we have

Λ−1
p ◦ S

p
t = S̃pt ◦ Λ−1

p on E. (3.3.8)

In other words, the following diagram (3.3) is commuting

0H
1, p(0,1)

0H
1, p(0,1)

Lp(0,1) L p(0,1)

D1 I1

Figure 3.3: A graph showing the commuting of the semigroups {Spt }t≥0 on the space

Lp[0, 1] and {S̃pt }t≥0 on the space H1,p
0 (0, 1).

Proof of Theorem 3.25. To prove this Theorem, we are required to ultimately prove the

equation (3.3.8). We do this by following the abstract result Theorem 3.9 and naming

the abstract spaces X, F , and V . Using the notation from Theorem 3.25 we already have
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defined the space F and we put X = E. This leaves us to define the space V based on

the properties of the spaces X and F . Therefore, we choose

V = C0 [0, 1].

To commence the proof, we need first to verify if the assumptions of the Theorem 3.9 are

satisfied. We choose and fix t > 0 and we put

A = Λ−1
p ◦ S

p
t and B = S̃t

p ◦ Λ−1
p . (3.3.9)

From the above equation (3.3.9), we observe the following points.

1. The operator Λ−1
p : X → F is a linear bounded operator according to Lemma 3.24.

2. S̃t
p

: F → F is a linear bounded operator because (S̃t
p
)t≥0 is a C0-semigroup on

the space F , see Corollary 2.90. Hence, B = S̃t
p ◦ Λ−1

p : X → F is also a bounded

linear operator.

3. Spt : X → X is a linear bounded operator because (St
p)t≥0 is a C0-semigroup on the

space X, see Example 2.89.

4. As before the operator Λ−1
p : X → F is linear bounded. Therefore, A := Λ−1

p ◦ S
p
t :

X → F is also a bounded linear operator. Hence, the operators on the LHS and

RHS in equality (3.3.8) are linear bounded operators.

5. The space V is a dense subspace of the space X.

Let us observe that it follows from Example 2.89 and respectively Corollary 2.90 the

families {S̃t
p}t≥0 and respectively {Stp}t≥0 are C0-semigroups.

By Rudin [40] and Theorem 2.20, the set Cc(0, 1) is a dense subspace of Lp(0, 1). Thus, we

deduce that Cc(0, 1) is subset of 0C([0, 1]). Hence, according to Theorem 2.20 we deduce

that 0C([0, 1]) is also a dense subspace of Lp(0, 1). In other words, the space 0C([0, 1]) is

a dense subspace of the space Lp(0, 1).

Lastly, after verifying all the assumptions of the Theorem 3.9, we need now to verify the

following equation

Λ−1
p ◦ S

p
t = S̃t

p ◦ Λ−1
p on V. (3.3.10)

By observing the above equation, we had proved something similar in Theorem 3.19, i.e.,

we proved the identity equation (3.2.17), which we recall as follows

Λ−1
0 ◦ S

0
t = S̃0

t ◦ Λ−1
0 on V.
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To prove that the equation (3.3.10) holds on the space V , we need to compare the LHS of

the equation (3.3.10) with the corresponding LHS in the equation (3.2.17). Also, we need

to do the same comparison for the RHS expressions. For the left-hand sides, we have

Λ−1
p ◦ S

p
t = Λ−1

0 ◦ S
0
t on V. (3.3.11)

Similarly, for the right-hand sides, we have

S̃t
p ◦ Λ−1

p = S̃0
t ◦ Λ−1

0 on V. (3.3.12)

Toward the equivalence of the two equalities (3.3.11) and (3.3.12), we observe that

V ⊂ X and F0 ⊂ F.

From which, and taking into account the two equalities (3.3.11) and (3.3.12), we obtain

three statements as follows

Λ−1
0 (x) = Λ−1

p (x) in F, for every x ∈ V,

S0
t (x) = Spt (x) in E, for every x ∈ V,

S̃0
t (y) = S̃pt (y) in F, for every y ∈ F0.

We know that the first statement is a consequence of the definition (3.3.7) of the operator

Λ−1
p and the definition (3.2.16) of the operator Λ−1

0 which gives the equality. To justify

the second statement, we have two different C0-semigroups:

(i) {Spt }t≥0 on X = Lp[0, 1];

(ii) {S0
t }t≥0 on V .

Since V ⊂ X and if we propose an element x ∈ V , then x ∈ X. Therefore,

S0
t x ∈ V and Spt x ∈ X.

However, since V ⊂ X, we also have

S0
t x ∈ X and Spt x ∈ X.

We also remember that these two C0-semigroups are defined by the same formula. Thus,

we deduce that not only S0
t x and Spt x belong to the same space E but also that

S0
t x = Spt x ∈ X.
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That satisfies the second statement. Likewise, the third statement can be justified in the

same way as the above comparison. By this the assumptions of Theorem 3.9 are satisfied.

Hence, we deduce that these three statements imply (3.3.12) and (3.3.11). After all, we

see that the assumptions of Theorem 3.9 hold, therefore, the proof of Theorem 3.25 is

complete.

Theorem 3.26. Let {S̃pt }t≥0 be a C0-semigroup on the Banach space F and generated by

the following PDE
∂u

∂t
+ s

∂u

∂s
=

3

2
u.

Let {Spt }t≥0 be a C0-semigroup on the Banach space E. Then the Borel measure ν defined

by the following formula

ν(C) = µ
(
Λ−1
p (C)

)
, C ∈ B(F ),

is an invariant measure of the C0-semigroup {S̃pt }t≥0 on the space F , where µ is the law

of Brownian Motion on the space E, Λ−1
p : E → F is defined as in equation (3.3.7) and

B(F ) is the Borel σ-filed on the space F .

Proof of Theorem 3.26. The proof of this theorem can be done in a similar way as in

Theorem 3.18.

3.3.2 Invariant measures for a general case of fractional Sobolev spaces

In the previous section, we applied Theorem 3.18 on a special space E = Lp(0, 1) and

Sobolev space F = H1,p
0 (0, 1). In this section, we intend to generalise the application to

a broader space of the space F . In particular, we keep the same space E = Lp(0, 1) and

F = Hα,p
0 (0, 1), where α ∈ (0, 1). The goal of this section is to prove the existence of an

invariant measure for a C0-semigroup in Sobolev space that can be used to understand

the properties of many PDEs. But, before we commence this ultimate generalisation, we

are required to generalise the Diagram (3.3) in Theorem 3.25 by using a new operator Iα,

defined as the inverse of the operator Bα introduced earlier in Corollary 3.16, i.e.,

Iα := (Bα)−1.

It can be shown that Iα is the fractional integral operator in the space Hα,p
0 (0, 1) defined

as [
Iα(x)

]
(s) =

1

Γ(α)

∫ s

0
(s− r)α−1x(r) dr, for all s ∈ [0, 1]. (3.3.13)

Moreover, from Corollary 3.16 we get the following result about the operator Iα.
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0H
α , p(0,1)

0H
α , p(0,1)

L p(0,1) L p(0,1)

Dα
Iα

Figure 3.4: A graph showing the commuting of the semigroups {S̃t} on space Hα,p
0 (0, 1)

and {St} on spaces and Lp(0, 1) via the the fractional derivativeDα and fractional integral
Iα maps.

Proposition 3.27. If α ∈ (0, 1), then

R(Bα) = Hα,p
0 (0, 1).

In particular, the operator Iα is an isomorphism between the Lebesgue space Lp(0, 1) and

the Sobolev space Hα,p
0 (0, 1).

Before we denoted the operator I by

[I(x)](s) =

∫ s

0
x(r) dr, s ∈ [0, 1], x ∈ C0

(
[0, 1]

)
,

where the operator I is the inverse of the operator Λ, and Λ is the derivative. However,

the operator I requires to be replaced by Iα for α ∈ (0, 1). We apply the same calculation

we had before for the property 5 in Section 3.2.1 but with replacing Λ with this fractional

integral operator Iα. That is, we need to show the following equality

S̃t ◦ Iα = Iα ◦ St on Lp(0, 1). (3.3.14)

where (
Stx
)
(s) = e

t
2x(se−t), x ∈ Lp(0, 1), s ∈ [0, 1], (3.3.15)

and (
S̃tx
)
(s) = e( 1

2
+α)tx(se−t), x ∈ Lp(0, 1), s ∈ [0, 1]. (3.3.16)

Note that

S̃tx = eαtStx, x ∈ Lp(0, 1), t ≥ 0.

In the following, we need to formulate the equation (3.3.14) as a theorem so we can use

it, later on, to prove our main result (Theorem 3.30) in this section.

Lemma 3.28. We assume that α ∈ (0, 1) and p ∈ (1,∞). The family {S̃t}t≥0 defined by

formula (3.3.16) is a C0-semigroup on the space F = Hα,p
0 (0, 1).
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Proof of Lemma 3.28. Follows from Theorems 2.95 and 2.87.

Theorem 3.29. We assume that α ∈ (0, 1) and p ∈ (1,∞). Let {St}t≥0 be the C0-

semigroup on the space E = Lp(0, 1) defined in equation (3.3.15), see Example 2.89. Let

{S̃t}t≥0 be the C0-semigroup on the space F = Hα,p
0 (0, 1) from Lemma 3.28. Let also

Iα : Lp(0, 1)→ Hα,p
0 (0, 1)

be the fractional integral operator of order α, defined by equation (3.3.13), that is an

isomorphism, see proposition 3.27. Then, for every t ≥ 0 the following equality holds

S̃t ◦ Iα = Iα ◦ St on Lp(0, 1). (3.3.17)

Proof of Theorem 3.29. Let x ∈ Lp(0, 1). We start with an observation that in view of

Example 2.89 that is {Stx} ∈ Lp(0, 1). Then, for every s ∈ [0, 1] the right-hand-side of

the target equality (3.3.17) is equal to

[Iα(Stx)](s) =
1

Γ(α)

∫ s

0
(s− r)α−1Stx(r) dr

=
1

Γ(α)

∫ s

0
(s− r)α−1e

t
2x(e−tr) dr

= e
t
2

1

Γ(α)

∫ s

0
(s− r)α−1x(e−tr) dr. (3.3.18)

Using change of variables as follows, we put ρ = e−tr ⇒ r = etρ and 0 ≤ ρ ≤ se−t, dr =

etdρ in the above equation (3.3.18), then we obtain the following

[Iα(Stx)](s) = e
t
2

1

Γ(α)

∫ se−t

0
(s− etρ)α−1x(ρ)et dρ

=
e

3t
2

Γ(α)

∫ se−t

0
(etse−t − etρ)α−1x(ρ) dρ

=
e

3t
2

Γ(α)
et(α−1)

∫ se−t

0
(se−t − ρ)α−1x(ρ) dρ

=
e( 1

2
+α)t

Γ(α)

∫ se−t

0
(se−t − ρ)α−1x(ρ) dρ. (3.3.19)

Since x ∈ Lp(0, 1) as we assumed before, we deduce from Dore and Venni [21], see Corol-

lary 3.16, that

Iα(x) ∈ Hα,p
0 (0, 1).

By Lemma 3.28 we can say that S̃t(I
α(x)) ∈ Hα,p

0 (0, 1). Moreover, by formula (3.3.16)

we have the following equation.

S̃t
(
Iα(x)

)
= e( 1

2
+α)t

(
Iα(x)

)
(se−t), s ∈ [0, 1].
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For the left-hand-side of the equality (3.3.17), we fix s ∈ [0, 1] and we verify that the

equality is satisfied. Let t ≥ 0,

[S̃tI
α(x)](s) = e( 1

2
+α)t 1

Γ(α)

∫ se−t

0
(se−t − r)α−1x(r) dr put r = ρ

= e( 1
2

+α)t 1

Γ(α)

∫ se−t

0
(se−t − ρ)α−1x(ρ) dρ, s ∈ [0, 1]. (3.3.20)

Hence, from equations (3.3.19) and (3.3.20) we deduced and re-write the equality (3.3.17)

as follows

[S̃tI
α(x)](s) = [Iα(Stx)](s), for all s ∈ [0, 1].

Therefore, the proof of Theorem 3.29 is complete.

Before we formulate the main result in this section, let us denote by µ0 the Borel prob-

ability measure on the space C0 [0, 1] which is invariant for the semigroup {St}t≥0. This

measure was earlier denoted by µ.

Theorem 3.30. Let α ∈ (0, 1) and {S̃t}t≥0 be a C0-semigroup on the Banach space

F = Hα,p
0 (0, 1), which is defined in equation (3.3.16). This C0-semigroup is generated by

the following PDE
∂u

∂t
+ s

∂u

∂s
= (

1

2
+ α)u (3.3.21)

In addition, the Borel measure να that is defined by the following formula

να(C) = µ
(
Dα(C)

)
, C ∈ B

(
Hα,p

0 (0, 1)
)
, (3.3.22)

is an invariant measure for the C0-semigroup {S̃t}t≥0, where

(i) Dα := (Iα)−1 is the fractional derivative operator of order α,

(ii) B( Hα,p
0 (0, 1)) is the Borel σ-field on the space Hα,p

0 (0, 1), and

(iii) µ is the law of Brownian Motion on space Lp(0, 1).

Remark 3.31. It can be proved that the measure να is the law of fractional Brownian

Motion with Hurst parameter H = 1
2 + α on space Lp(0, 1). Details will be presented in

a forthcoming paper. Note that when α = 0, then να = µ is the law of Brownian Motion

as proved in the book [28].

Proof of Theorem 3.30. This proof consists of two parts. In the first part we prove that

the C0-semigroup {S̃t}t≥0 is generated by equation (3.3.21) and in the second part we

prove that να is an invariant measure for the C0-semigroup {S̃t}.
Part one. The method presented in this proof has been generalized and used later in this
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thesis in Step I of the proof of Theorem 5.35 in Section 5.3. Let us observe that formula

(3.3.23) below is a special of the formula (5.3.20).

Let us choose and fix a function x ∈ Hα,p
0 (0, 1). Define a function u by formula

u(t, s) =
(
S̃tx
)
(s) = e( 1

2
+α)tx(se−t), t ≥ 0, s ∈ [0, 1]. (3.3.23)

We need to show that this function u solves the equation (3.3.21) under an additional

assumption that the initial data function x is of C1-class. Indeed, by the chain rule, we

have the following

∂u(t, s)

∂t
= (

1

2
+ α)e( 1

2
+α)tx(se−t)− se( 1

2
+α)tx′(se−t)

= (
1

2
+ α)u(t, s)− e( 1

2
+α)tx′(se−t)se−t. (3.3.24)

And,

∂u(t, s)

∂s
= e−te( 1

2
+α)tx′(se−t). (3.3.25)

Applying equations (3.3.24) and (3.3.25) to the equation (3.3.23) we get

∂u(t, s)

∂t
+ s

∂u(t, s)

∂s
= (

1

2
+ α)u(t, s)− e( 1

2
+α)tx′(se−t)se−t + e−te( 1

2
+α)tx′(se−t)

= (
1

2
+ α)u(t, s).

Hence we proved that the semigroup {S̃t}t≥0 defined by equation (3.3.16) is corresponds

to equation (3.3.21), i.e., if u(t, s) :=
(
S̃tx
)
(s) then u solves equation (3.3.21).

Part two. From Theorem 3.29 we have the following equality

S̃t ◦ Iα = Iα ◦ St.

If we apply (Iα)−1 for both sides on the right side of the above equality, then we deduce

the following

S̃t = Iα ◦ St ◦Dα on Hα,p
0 (0, 1). (3.3.26)

For any C ∈ B( Hα,p
0 (0, 1)), if we take that the inverse to the equation (3.3.26) and apply

Corollary 2.31 then, we infer that

S̃t
−1

(C) =
(
Iα ◦ St ◦Dα

)−1
(C)

= (Dα)−1
(

(St)
−1
(
(Iα)−1(C)

))
= Iα

(
(St)

−1
(
Dα(C)

))
.
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The last equality is a consequence of the fact that (Dα)−1 = Iα. By taking the measure

να for both sides, we obtain

να
(
S̃t
−1

(C)
)

= να
[
Iα
(
S−1
t (Dα(C)

)]
. (3.3.27)

To understand the last equality (3.3.27), let us choose and fix any arbitrary set C that

belongs to the space B
(
Hα,p

0 (0, 1)
)

and then consider an auxiliary set C ′ such that

C ′ = Dα(C) ∈ B
(
Lp(0, 1)

)
.

So, we can re-write the equation (3.3.22) as follows

να
(
Iα(C ′)

)
= µ(C ′) (3.3.28)

By substituting equations (3.3.28), (3.3.22) and (3.0.3) in the equation (3.3.27), we obtain

να
(
S̃t
−1

(C)
)

= να
[
Iα
(
S−1
t (Dα(C))

)]
= µ[S−1

t

(
Dα(C)

)
] = µ(Dα(C)) = να(C).

Therefore, we proved that for any C ∈ B
(
Hα,p

0 (0, 1)
)

we have

να
(
S̃t
−1

(C)
)

= να(C).

Hence, the proof of Theorem 3.30 is complete.

Remark 3.32. The measure µ which is the law of Brownian motion on the space Lp(0, 1)

is constructed from the measure µ0 on the space C0 [0, 1]. That is because the space C0 [0, 1]

is dense and subspace of the space Lp(0, 1) and the natural embedding

i : C0 [0, 1] ↪→ Lp(0, 1)

is linear and bounded and hence, it is measurable. These facts allow us to define a Borel

probability measure µ on the space Lp(0, 1) by the following

µ(A) := µ0

(
i−1(A)

)
= µ0

(
A ∩ C0 [0, 1]

)
. (3.3.29)

In other words, µ is the image, or push-forward, of the measure µ0 via the map i. These

measures are different because they are defined in different spaces, but they are closely

related. For instance, if A ∈ B(Lp(0, 1)) then A ∩ C0 [0, 1] ∈ B( C0 [0, 1]). The measure µ0

makes sense not only in the space C0 [0, 1] but also in a slightly bigger space and remains

invariant.

Note that the Kuratowski Theorem and equality (3.3.29) implies that for every A ∈
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B( C0 [0, 1]),

µ0(A) = µ(A).

because, if A ∈ B( C0 [0, 1]) then A ∈ B(Lp(0, 1)) and they are different because the domain

of the measure is different µ : B(Lp(0, 1))→ [0, 1] and µ0 : B( C0 [0, 1])→ [0, 1].

Remark 3.33. Assume that α ∈ (0, 1), β ∈ [0, α) and consider the family {S̃t} defined

by (3.3.16). We proved in Lemma 3.28 that this family is a C0-semigroup on the Banach

space E = Hα,p
0 (0, 1). We believe that it can be proven this family is also a C0-semigroup

on the Banach space F = Hβ,p
0 (0, 1). Moreover, we believe that it can be proven that

there exists a unique ”extension” of the measure να to the space F which is also an

invariant measure for this extension semigroup on the space F . The details will need to

be worked out.



Chapter 4

Solutions for First Order PDEs

under General Assumptions

In this chapter, we study the existence and the uniqueness of a solution to a specific

first order Partial Differential Equation (PDE) called the Lasota equation. Due to its

properties and applications, the Lasota equation is considered one of the most essential

first-order PDEs. For instance, the nonlinear part describes the process of differentiation

and reproduction of the population of red blood cells depending on the concentration of

hormones at a specific stage. Using semigroup theory, we define a solution to the Lasota

equation under some sufficient conditions in a specified Banach space. The main two

results of this part of this section are Theorems 4.19 and 4.20 which we prove respectively

that a natural family of linear operators associated with equation (4.0.4) with c = 0,

is a C0-semigroup on an appropriately chosen Banach space E, and we characterise the

domain of the infinitesimal generator of that semigroup. We also study some properties

of the solutions and proved the existence of invariant measures of such equations under

natural assumptions on the coefficients. The properties of such equation were studied in

many papers, see for instance [6], [7], [41], [27] and [43].

Lasota in [27] studied the following problem

∂v(t, x)

∂t
+ a(t, x)

∂v(t, x)

∂x
= c(t, x, v) for (t, x) ∈ [0,∞)× [0, 1], (4.0.1)

v(0, x) = v0(x) for x ∈ [0, 1].

He proved the existence of a unique classical solution by using the characteristics method

under certain regularity assumptions on the coefficients a and c. For the convenience of

the reader, we state the assumptions here

Assumption 4.1. The functions a : [0,∞) × [0, 1] → R and c : [0,∞) × [0, 1] × R → R
are of C1-class and satisfy the following

82
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i) a(t, x) ≥ 0, for (t, x) ∈ [0,∞)× [0, 1];

ii) c(t, x, 0) ≥ 0, for (t, x) ∈ [0,∞)× [0, 1];

iii) c(t, x, v) ≤ k1(t) v + k2(t), for (t, x) ∈ [0,∞)× [0, 1], v ≥ 0, k1, k2 ∈ C([0, 1]);

iv) a(t, 0) = 0, for t ≥ 0.

He also considered the following autonomous version of the problem (4.0.1)

∂v(t, x)

∂t
+ a(x)

∂v(t, x)

∂x
= c(x, v) for (t, x) ∈ [0,∞)× [0, 1], (4.0.2)

v(0, x) = v0(x) for x ∈ [0, 1]. (4.0.3)

He proved that the problem (4.0.2)-(4.0.3) generates a semiflow {St}t≥0 on the space

C1
+

(
[0, 1]

)
(that is, the space of C1-class nonnegative functions). This semiflow was defined

by the following formula

Stv0 = u(t, x) for x ∈ [0, 1].

where u is the unique classical solution of the problem (4.0.2)-(4.0.3).

The set of Assumptions 4.1, was used in many research papers including Rudnicki [43]

and Brunovsky and Komornik [6] to find the properties of the Lasota equation. Rudnicki

in [43] studied the problem (4.0.2)-(4.0.3) and he confirmed that the existence of an exact

invariant measure for the semiflow {St}t≥0 has more properties.

The main objective of this Chapter is to generalise the results of Lasota, Rudnicki, and

others by studying linear first-order differential equations without assuming that the drift

coefficient a(x) is a smooth function. We only assume that a is a continuous function

satisfying so-called the Osgood condition. Then we prove that the informal family of

operators derived via informal application of the characteristics method is a C0-contraction

semigroup in the space C0 ([0, 1]). Using this fact and applying the Rudnicki approach we

prove that our equation has an invariant measure for the coefficient λ > 0.

Before we start, we need to state our equation and our assumptions. We consider the

following problem:

∂u(t, x)

∂t
+ a(x)

∂u(t, x)

∂x
= c(u(t, x)), t ≥ 0, x ∈ [0, 1] (4.0.4)

u(0, x) = u0(x), x ∈ [0, 1] (4.0.5)

where c : R → R is linear map and u0 ∈ C0 ([0, 1]). From now on we assume that the

coefficient a satisfies the following assumptions.

Assumption 4.2. Let a : [0, 1]→ R.

A1 - The function a is continuous;
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A2 - a(0) = 0 and a(x) > 0 for x ∈ (0, 1];

A3 - The function a satisfies the Osgood condition, i.e.,

|a(x2)− a(x1)| ≤ φ(|x2 − x1|), for all x1, x2 ∈ [0, 1], (4.0.6)

for an increasing continuous function φ : [0, 1]→ [0,∞) such that φ(r) > 0 if r > 0,

φ(0) = 0 and ∫ δ

0

1

φ(r)
dr =∞, for every δ > 0,

i.e.,

lim
ε→0+

∫ δ

ε

1

φ(r)
dr =∞.

Assumptions about the nonlinearity of function c will be listed later in appropriate sec-

tions. In this chapter, we consider first the homogeneous linear problem of equation

(4.0.4)-(4.0.5), i.e., we assume that c = 0 and at the end we assume c(x) = λu.

This chapter is organised as follows. In Section 4.1 we state the required preliminaries

which we use throughout the chapter. Section 4.2 is devoted to the existence and unique-

ness of solution for the homogeneous case of the problem (4.0.4)- (4.0.5). In section 4.3

we use Rudnicki’s [43, Theorem 1] as a case study to prove the existence of an invariant

measure under Assumption 4.2.

4.1 Preliminaries

In this section, we state the required definitions and properties of the solution to the first

order PDE. The definition below follows from [33, Definition IV.2.3] with the difference

that the phrase ”classical solution” is replaced by a strong solution. A generalisation of

Definition 4.3 to in-homogeneous problems will be presented later on in Section 5.1 in

Chapter 5.

Definition 4.3. Let X be a Banach space and A be a linear densely defined operator in

X, i.e. D(A) is a dense subspace of X and A : D(A) → X is a linear map. By a strong

solution to the following abstract Cauchy problem

du(t)

dt
= Au(t), t > 0, (4.1.1)

u(0) = x, (4.1.2)

where x ∈ X, we mean an X valued function u defined on the interval [0,∞) such that

(i) u : [0,∞)→ X is continuous and
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(ii) u(0) = x,

(iii) u : (0,∞)→ X is continuously differentiable,

(iv) u(t) ∈ D(A) for every t > 0, and

(v) u′(t) = Au(t), for every t > 0.

The following Theorem is based on [33, Theorem IV.1.3].

Theorem 4.4. Let X be a Banach space and A be the infinitesimal generator of a C0-

semigroup {St}t≥0. Then for all x ∈ D(A) the abstract Cauchy problem (4.1.1)-(4.1.2)

has a unique strong solution given by the following formula

u(t) = S(t)x, t ≥ 0.

Definition 4.5. Let E be a Banach space and U ⊂ R× E be an open set. Assume that

f : U → E is a continuous function. Such a function is often called a time-dependent

vector field. If U ⊂ E is open then the function f : U → E is often called a vector field

on U .

Before we state some results about the existence and uniqueness of solutions to our equa-

tion, we need to define a solution. We will define a local solution, a local maximal solution

and global solutions (for positive and negative times).

Definition 4.6. Let us assume the framework of Definition 4.5. Assume (t0, x0) ∈ U . A

local solution of the following differential equation

dx

dt
= f(t, x), (4.1.3)

with the following initial condition

x(t0) = x0 (4.1.4)

is a function φ : I → E, where I ⊂ R is an open interval such that t0 ∈ I, if and only if

the following conditions are satisfied

(i) if t ∈ I then (t, x) ∈ U (so that f(t, x) makes sense);

(ii) function φ is of C1-class,

(iii) φ(t0) = x0, i.e., the equation (4.1.4) is satisfied;

(iv) if t ∈ I then φ′(t) = f(t, φ(t)), i.e., the equation (4.1.3) is satisfied for every t ∈ I.
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A local solution ψ : J → U of the problem (4.1.3)-(4.1.4) is said to extend a local solution

φ : I → U of the problem (4.1.3)-(4.1.4) if and only if the following two conditions are

satisfied

(v) I ⊂ J ;

(v) if t ∈ I then ψ(t) = φ(t).

A local solution φ : I → U of the problem (4.1.3)-(4.1.4) is said to be a maximal local

solution if and only if it can not be extended to a strictly larger interval than I.

A maximal local solution φ : I → U of the problem (4.1.3)-(4.1.4) is said to be global in

positive times if and only if the right end of the interval I is equal to ∞.

A maximal local solution φ : I → U of the problem (4.1.3)-(4.1.4) is said to be global in

negative times if and only if the left end of the interval I is equal to −∞.

A maximal local solution φ : I → U of the problem (4.1.3)-(4.1.4) is said to be global if

and only if it is global in both positive and negative times, i.e., the left end of the interval

I is equal to −∞ and the right end of the interval I is equal to ∞, in other words, the

interval I is equal to R.

The following Theorem is based on Osgood’s Uniqueness Theorem see [34, Ch.3 Theorem

1], which plays an important role in our proof of the uniqueness of a solution.

Theorem 4.7. Assume that a : [0, 1]→ R is a continuous function satisfying the Osgood

condition. If x1, x2 : [S, T ] → R, for some S < 0 < T , are two solutions of the following

ODE problem

x′(t) = a
(
x(t)

)
, t ∈ [S, T ],

x(0) = x0,

for some x0 ∈ R, then

x1(t) = x2(t), t ∈ [S, T ].

We do not provide proof of this theorem since we only need the formulation above.
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4.2 Existence and Uniqueness of Solutions of Linear First

order PDEs

In this section, under Assumptions 4.2, we prove the existence and the uniqueness of a

global solution of the problem (4.0.4)-(4.0.5) in a special case, that is, a linear homoge-

neous case. In other words, we consider first the following problem:

∂u(t, x)

∂t
+ a(x)

∂u(t, x)

∂x
= 0, t ≥ 0, x ∈ [0, 1] (4.2.1)

u(0, x) = u0(x), x ∈ [0, 1], (4.2.2)

where u0 ∈ C0 ([0, 1]).

In what follows, note that if the function a : [0, 1]→ R satisfies Assumption (A1) we can

find a nice extension of the function a to the half-line [0,∞). For instance, we can define

such a continuous extension ã : [0,∞)→ R by the following formula

ã(x) =

a(x), if x ∈ [0, 1],

a(1), if x > 1.
(4.2.3)

But other choices are possible.

In this way, we could have assumed that a is defined on the whole interval [0,∞). But for

our purposes, we only need to know properties of a on the interval [0, 1]. Hence, although

we define below a function G on the whole interval [0,∞), we only need its properties on

the interval [0, 1].

To define a solution to equation (4.2.1) we follow the notation of Lasota [27] and use the

method of characteristics. Therefore, we consider first the following Ordinary Differential

Equation (ODE):

d x(t)

dt
= a(x(t)), t ∈ R, (4.2.4)

x(0) = x0, x0 ≥ 0 (4.2.5)

A solution to the above ODE is found in two distinct cases. Firstly, if x0 = 0, then

by Assumption (A2) we have a(0) = 0, so a function x(t) = 0 for t ∈ R+ is a solution to

the equation (4.2.4).

Secondly, if x0 > 0, then by employing the classical characteristics method we find the

following candidate for the solution to problem (4.2.4)-(4.2.5)

x(t) = G−1
(
t+G(x0)

)
, t ∈ I, (4.2.6)
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where

G(x) = −
∫ 1

x

1

ã(r)
dr, so that G′(x) =

1

ã(x)
, x ∈ (0,∞) (4.2.7)

Since we have not specified the interval of I, let us define a function x(t), t ∈ I by the above

formula (4.2.6) for the largest possible interval I. In other words, we want to determine

the domain of the function on the RHS of the formula (4.2.6). It will be shown below

that the largest interval I is of the form I =
(
−∞, τ(x0)

)
, where τ(x0) > 0. In some

cases τ(x0) =∞ and some other cases τ(x0) <∞. To make the observation rigorous we

need the following result which formulates properties of the function G.

In the following proposition, we list some basic properties that function G(x), which

defined by formula (4.2.7), satisfies.

Proposition 4.8. Assume that a : [0, 1]→ R is a continuous function satisfying Assump-

tion 4.2 and let ã be defined by formula (4.2.3). Let G : (0,∞)→ R be a function defined

by formula (4.2.7). Then the following conditions hold.

(i) G(1) = 0,

(ii) If x < 1, then G(x) < 0 and if x > 1 then G(x) > 0,

(iii) G(x) is (strictly) increasing, i.e., if 0 < x1 < x2, then G(x1) < G(x2),

(iv) limx→0+ G(x) = −∞ and limx→∞G(x) =: G∞ ∈ (0,∞] exists,

(v) limy→−∞G
−1(y) = 0,

(vi) the function G is of C1-class, and

G′(x) =
1

a(x)
for every x ∈ (0,∞).

(vii)(a) The function G is a bijection from (0,∞) onto (−∞, G∞),

(b) it maps bijectively the interval (0, 1] onto interval (−∞, 0]

(c) and the interval [1,∞) onto interval [0, G∞).

Proof of Proposition 4.8. The proof of the first three conditions (i), (ii) and (iii) is trivial.

Proof of condition (iv): Let us recall that from Osgood condition (4.0.6) we know that∫ δ

0

1

φ(r)
dr =∞, for all δ > 0, i.e., lim

ε→0+

∫ δ

ε

1

φ(r)
dr =∞.

Hence we proved that

lim
x→0+

[G(x)] = −∞.
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Figure 4.1: Graph of functions G and G−1 when G∞ =∞.
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By part (iii) the function G : (0,∞)→ R is increasing, the limit

G∞ := lim
x→∞

G(x) ∈ (0,∞) ∪ {∞}

exists. Let us stress that this limit is either a positive real number or ∞.

Proof of condition (v): First of all let us observe that since by condition (iii) the function

G is (strictly) increasing, the inverse G−1 exists and is also (strictly) increasing. By

condition (i) the function G−1(0) = 1. Moreover, by conditions (ii) and (iv) the image by

G of the interval (1,∞) is equal to the interval (0, G∞) and the image by G of the interval

(0, 1) is equal to the interval (−∞, 0). Finally, because by condition (iv) limx→0+ G(x) =

−∞ and G is (strictly) increasing, we infer that limy→−∞G
−1(y) = 0.

Proof of condition (vi): Since the function a is continuous on [0,∞) and a(x) > 0 for

x ∈ (0,∞), by [39, Theorem 4.17] the function 1
a is continuous on (0,∞). From the

definition of the function G in formula (4.2.7) and the Fundamental Theorem of Calculus,

see [39, Theorem 11.33] we deduce that the function G is differential at every x ∈ (0,∞)

and

G′(x) =
1

a(x)
, x ∈ (0,∞).

Obviously by equation (4.2.3)

G′(x) =
1

ã(x)
, x ∈ [0, 1].

To finish the proof we observe that since the function 1
a is continuous on (0,∞), also the

function (0,∞) 3 x 7→ G′(x) is continuous. Hence we proved that the function G is of

C1-class on the interval (0,∞).
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Proof of condition (vii): This has already been proved inside the proof of condition (v).

Hence, the proof of proposition 4.8 is completed.

Theorem 4.9. Let us assume that the function a satisfies Assumption 4.2. Then for

every x0 ∈ [0, 1] there exists a unique maximal solution of problem (4.2.4)-(4.2.5)

x : (−∞, τ(x0))→ R,

where

τ(x0) =

∞, if G∞ =∞,

G∞ −G(x0), if G∞ <∞.
(4.2.8)

The uniqueness has to be understood in the following way.

If x1 : (−∞, τ1)→ R and x2 : (−∞, τ2)→ R are two maximal solution of the ODE (4.2.4)

then τ1 = τ2 and x1(t) = x2(t) for all t ∈ (−∞, τ1).

Proof of Theorem 4.9. Let us choose and fix x0 ∈ (0, 1] and define τ(x0) by formula

(4.2.8). Next, let us define a function x : (−∞, τ(x0))→ R by formula (4.2.6). Then, by

Proposition 4.8, we infer that the function x is of C1-class and, by the chain rule, see [39,

Theorem 5.5], and the equation (4.2.7), its derivative is given by the following formula

x′(t) =
1

G′[G−1(t+G(x0))]
=

1
1

a[G−1(t+G(x0))]

= a
(
x(t)

)
, t ∈

(
−∞, τ(x0)

)
.

Hence the function x solves our equation (4.2.4) together with the initial condition (4.2.5).

The uniqueness of solution follows from Theorem 4.7 because the function a satisfies the

Osgood condition. To be precise, we argue as follows. Suppose by contradiction that

τ1 6= τ2. Without loss of generality we can assume that τ1 < τ2. Since the function a

in equation (4.2.4) satisfies the Assumptions 4.2, by Theorem 4.7, we deduce that the

solution to the equation (4.2.4) is unique, i.e.,

x1(t) = x2(t) for all t ∈ (−∞, τ1).

Therefore, the solution x1 : (−∞, τ1)→ R is not a maximal one because it can be extended

(by x2) to a strictly larger interval (−∞, τ2). This contradiction completes the proof of

Theorem 4.9.

Example 4.10. Here we present an example related to Proposition 4.8 and equation (4.2.4).

In the equation (4.2.4), we choose α > 0 and define function a by

a(x) = αx, for x ∈ [0, 1],
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The extension ã can be defined as before, but it is more natural to consider

ã(x) = αx, for x ∈ [0,∞).

One can check that these functions a and ã satisfy all assumptions of Proposition 4.8.

Using equation (4.2.7) we can find an explicit formula for the corresponding function

G(x).

G(x) = −
∫ 1

x

1

ã(r)
dr = −

∫ 1

x

1

αr
dr =

lnx

α
, x ∈ (0,∞).

One can check with bare hands that in this case, the function G satisfies all properties

listed in Proposition 4.8. This is of course not surprising.

If we put G(x) = y, that implies lnx
α = y ⇐⇒ lnx = αy ⇐⇒ x = eαy. Since the inverse

function G−1 is characterized by

G−1(y) = x⇐⇒ G−1(y) = eαy,

we infer, that the solution to the equation (4.2.4) is given by the following formula,

x(t) = eα
(
t+G(x0)

)
= eαt.eα

ln x0
α = eαt x0, t ∈ (−∞,∞).

Hence, in this case we have

τ(x0) =∞

and the solution is global.

The formula (4.2.6) allows us to define a solution to the problem (4.2.4)-(4.2.5) as follows:

ϕ(t, x0) :=

G−1
(
t+G(x0)

)
, −∞ < t < τ(x0); if x0 ∈ (0, 1];

0, if x0 = 0.
(4.2.9)

In particular, we deduce that ϕ(t, x0) is well defined for all t ∈ (−∞, 0] and x0 ∈ [0, 1].

We showed in Theorem 4.9 that for every x0 ∈ [0, 1], the function

(
−∞, τ(x0)

)
3 t 7→ ϕ(t, x0) ∈ R

is a solution to problem (4.2.4). In particular, ϕ(0, x0) = 0. Indeed,

ϕ(0, x0) = G−1
(
0, G(x0)

)
= G−1

(
G(x0)

)
= x0.

Using the above formulation we can define a solution to the problem (4.2.1)-(4.2.2). We

put

u(t, x0) := u0

(
ϕ(−t, x0)

)
, x0 ∈ [0, 1], t ∈ [0,∞). (4.2.10)
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Inserting formula (4.2.9) into the last formula (4.2.10) we obtain the following expression

for a solution to equation (4.2.1) as follows

u(t, x) :=

u0

(
G−1(−t+G(x))

)
, x ∈ (0, 1], t ∈ [0,∞).

u0(0), x = 0, t ∈ [0,∞).
(4.2.11)

The above formula is based on the characteristics method. The solution ϕ of equation

(4.2.4) is called the characteristic of the first order PDE (4.0.4) and the equation (4.2.4)

is called the characteristic equation.

Remark 4.11. If the function a satisfies the Assumption 4.2 and the function u0 is of

C1-class, then by direct calculations one can prove that the function u(t, x) for (t, x) ∈
[0,∞) × [0, 1], defined above in (4.2.11), satisfies equation (4.2.1) and initial condition

(4.2.2) point-wise, i.e.,

(i) at every (t, x) ∈ [0,∞)× [0, 1] the partial derivatives ∂u
∂t (t, x) and ∂u

∂x(t, x) exist and the

equality (4.2.1) is satisfied;

(ii) at every x ∈ [0, 1], the identity (4.2.2) is satisfied.

We say such that function u(t, x) is a classical solution to the problem (4.2.1)-(4.2.2) in

the classical sense.

Let us observe that the definition of the function u that is given in equation (4.2.10) is

well posed due to the following Corollary.

Corollary 4.12. If the function ϕ is defined by formula (4.2.9) then the following condi-

tion is satisfied.

ϕ(s, x0) ∈ [0, 1], for all x0 ∈ [0, 1], s ≤ 0.

Proof of Corollary 4.12. Let us choose and fix x0 ∈ [0, 1] and s ≤ 0. Then by properties (i)

and (ii) of Proposition 4.8, we infer that G(x0) ≤ 0. Since s ≤ 0, then also s+G(x0) ≤ 0.

Hence, by condition (vii) of the same Proposition, we infer that G−1(s+G(x0)) ∈ [0, 1].

The result follows by using the formula (4.2.9).

The above corollary is also an important result since we will use it later to prove the bound-

edness and the C0-continuity in our main result of this section. The following two results

are important to prove the C0-continuity condition of our main result (Theorem 4.19).

Before we state the proposition let us recall that

τ(x0) > 0, for every x0 ∈ [0, 1].
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Proposition 4.13. Assume that the function a satisfy Assumption 4.2 and u0 is a con-

tinuous function such that u0(0) = 0. Then the restriction of the function ϕ to the set

(−∞, 0]× [0, 1], i.e., the function

ϕ : (−∞, 0]× [0, 1]→ R

defined by formula (4.2.9), is continuous with respect to variable t uniformly with respect

to x0 variable, i.e., for every ε > 0 there exists δ > 0 such that

if t1, t2 ∈ (−∞, 0], |t1 − t2| ≤ δ, x0 ∈ [0, 1] then |ϕ(t1, x0)− ϕ(t2, x0)| ≤ ε. (4.2.12)

To prove Proposition 4.13 we need first to formulate two claims. One is standard and the

second one is about some properties of the function ϕ. The following claim is a special

case of [39, Theorem 4.19].

Claim 1: If a set K is a compact subset of R2 and a function f : K → R is continuous,

then f is uniformly continuous, i.e., for every ε > 0 there exists δ > 0 such that for all

x = (x1, x2) ∈ K and y = (y1, y2) ∈ K

if d(x, y) ≤ δ then |f(x)− f(y)| ≤ ε.

Here, d is the classical Euclidean metric on R2

d(x, y) =
√

(y1 − x1)2 + (y2 − x2)2.

We can not directly apply Claim 1 to the proof of Proposition 4.13 because the domain

of the function ϕ is the set (−∞, 0] × [0, 1] which is not a compact set. Therefore, to

complete the proof we need the following additional claim.

Claim 2: For every ε > 0 there exists Tε < 0 such that

if t ∈ (−∞, Tε] and x0 ∈ [0, 1], then |ϕ(t, x0)| ≤ ε. (4.2.13)

By formula (4.2.9) we can consider only x0 ∈ (0, 1]. Moreover, since τ(x0) > 0 by the

same formula we have

ϕ(t, x0) = G−1
(
t+G(x0)

)
, t ∈ (−∞, 0], x0 ∈ (0, 1].

Let us now choose and fix ε > 0. For the time being, we consider Tε < 0. The precise

value of Tε < 0 will be decided below. Since by Proposition 4.8, the function G−1 takes

only positive values, by the last formula function ϕ also takes positive values. Moreover,
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functions G and G−1 are increasing. Hence, for x0 ∈ (0, 1] and t ≤ Tε

|ϕ(t, x0)| = ϕ(t, x0) = G−1
(
t+G(x0)

)
≤ G−1

(
Tε +G(1)

)
= G−1(Tε).

To find the value of Tε we observe that by part (v) of previously used Proposition 4.8 we

can find Tε < 0 such that G−1(Tε) < ε. Having done so, we observe that if x0 ∈ (0, 1] and

t ≤ Tε then

|ϕ(t, x0)| ≤ ε.

Thus the proof of Claim 2 is complete.

Proof of Proposition 4.13. Let us now choose and fix ε > 0. By Claim 2 there exists

Tε < 0 such that the formula (4.2.13) holds with ε
2 , i.e.,

if t ∈ (−∞, Tε] and x0 ∈ [0, 1], then |ϕ(t, x0)| ≤ ε

2
. (4.2.14)

Let K = [Tε − 1, 0] × [0, 1]. Then K is a compact subset of R2. Therefore, by applying

Claim 1 for function f = ϕ, we can find δ > 0 such that

if t1, t1 ∈ [Tε − 1, 0], x0 ∈ [0, 1], |t2 − t1| ≤ δ then |ϕ(t2, x0)− ϕ(t1, x0)| ≤ ε. (4.2.15)

Without loss of generality, we can assume that δ < 1. the assertion of Proposition 4.13

follows from (4.2.14) and (4.2.15).

Thus the proof of Proposition 4.13 is complete.

The following result follows from Proposition 4.13.

Corollary 4.14. For every ε > 0 there exists δ > 0 such that

if s ∈ [−δ, 0] and x0 ∈ [0, 1], then |ϕ(s, x0)− x0| ≤ ε.

Proof of Corollary 4.14. Let us choose and fix ε > 0. By the Proposition 4.13, we can

find δ > 0 such that (4.2.12) holds. Putting t2 = 0 and t1 = s, then we get the following

if s ∈ (−∞, 0], |s− 0| ≤ δ, x0 ∈ [0, 1] then |ϕ(s, x0)− ϕ(0, x0)| ≤ ε.

Because ϕ(0, x0) = x0 and s ∈ [−δ, 0] then |s − 0| ≤ δ, and therefore, we deduce the

result.

We present now one of the most important results from the current subsection. We

continue to assume Assumption 4.2 hold.



Solutions with assumptions for PDEs 95

Theorem 4.15. If a function u0 : [0, 1]→ R is continuous and u0(0) = 0, then for every

t ≥ 0, the function u(t, ·) has the same properties. Moreover, the function u satisfies the

initial condition (4.0.5).

Proof of Theorem 4.15. Firstly, we prove that the function u satisfies equation (4.0.5).

From the definition of the function u that given in equation (4.2.10) if we take t = 0

and x0 ∈ [0, 1] then we get u(0, x0) = u0(ϕ(0, x0)) = u0(x0) because by equation (4.2.9)

ϕ(0, x0) = x0. So our function u satisfies the initial condition.

Secondly, we need to prove that the function x 7→ u(t, x) is continuous. Let us choose and

fix t > 0. We prove that u(t, ·) is continuous at x0 = 0. According to [39, Theorem 4.1]

to prove this continuity it is sufficient to prove that

lim
x0→0+

u(t, x0) = u(t, 0).

But we have already proved that u(t, 0) = 0, so we need to show that u(t, x0)→ 0 when

x0 → 0+. Let us notice that in the view of formulae (4.2.9) and (4.2.10) we have

u(t, x0) = u0

(
G−1(−t+G(x0))

)
, x0 ∈ [0, 1].

It follows from the condition (iv) of Proposition 4.8 that

G(x0)→ −∞, as x0 → 0+.

Hence, we infer

G(x0)− t→ −∞, as x0 → 0+.

By applying G−1 and using again condition (v) of Proposition 4.8 to the last equation,

we infer that

G−1(G(x0)− t)→ 0, as x0 → 0+.

By the assumptions of Theorem 4.15, the function u0 is continuous at 0 and by [39,

Theorem 4.7], we infer that

u0

(
G−1(G(x0)− t)

)
→ u0(0) = 0, as x0 → 0+.

Hence we proved that

u(t, x0)→ 0, as x0 → 0+.

To prove that u(t, ·) is continuous at x0 ∈ (0, 1], we use again the following formula

u(t, x0) = u0

(
G−1(−t+G(x0))

)
, x0 ∈ (0, 1].

Let us observe that u(t, ·) is a composition of three functions, namely;
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(i) (0, 1] 3 x0 7→ −t+G(x0) ∈ (−∞, 0],

(ii) (−∞, 0] 3 y 7→ G−1(y) ∈ (0, 1],

(iii) [0, 1] 3 z 7→ u0(z) ∈ R.

Since each of these three functions is continuous, by [39, Theorem 4.7] we infer that u(t, ·)
is also continuous on the interval (0, 1]. This completes the proof of Theorem 4.15.

In the following result, we denote the unique maximal local solution to the ODE (4.2.4)

by
(
−∞, τ(x0)

)
3 t 7→ ϕ(t, x0) ∈ R. The proof of this result is based on the condition

of the uniqueness of the solutions in Theorem 4.9 and not on the explicit formula for the

solution so that it is applicable to equations that do not have explicit solutions.

Corollary 4.16. If s < τ(x0) and t < ϕ(s, x0) then

ϕ
(
t, ϕ(s, x0)

)
= ϕ(t+ s, x0). (4.2.16)

Proof of Corollary 4.16. Let us fix s0 < τ(x0) and x0 ∈ [0, 1]. Define two functions as

follows

x1(t) = ϕ
(
t, ϕ(s, x0)

)
and x2(t) = ϕ(t+ s, x0).

By the definition of the function ϕ in equality (4.2.16), function x1 is a solution of equation

(4.2.4) with initial condition x1(0) = ϕ(s, x0), i.e.,

dx1(t)

dt
= a

(
x1(t)

)
.

Now we claim that x2 is also a solution of equation (4.2.4) because by the chain rule [39,

Theorem 5.5] we have

dx2(t)

dt
=

d

dt

[
ϕ(t+ s, x0)

]
= ϕ′(t+ s, x0) = a

(
ϕ(t+ s, x0)

)
= a

(
x2(t)

)
.

Moreover, x2(0) = ϕ(0 + s, x0) = ϕ(s, x0). Hence we have proved that x1 and x2 are

solutions to the same equation with the same initial condition. By the uniqueness part of

Theorem 4.9 we deduce that

x1(t) = x2(t), for all t.

By the definition of those functions we deduce that ϕ
(
t, ϕ(s, x0)

)
= ϕ(t+ s, x0).

We can apply an appropriate result obtained from Corollary 4.16 to deduce a solution

to the function u which exists in equation (4.2.10). However, before we formulate this
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solution, let us recall that u(t, x0) := u0

(
ϕ(−t, x0)

)
for every x0 ∈ [0, 1] and t ∈ [0,∞).

Also, let us introduce the following notation

[πt(u0)](x0) := u(t, x0), x0 ∈ [0, 1], t ≥ 0, (4.2.17)

whenever u0 : [0, 1]→ R is a continuous function such that u0(0) = 0. Which means that,

according to Theorem 4.15, the function u0 ∈ C0 ([0, 1])). In view of definition (4.2.17) of

the function πt and by Theorem 4.15, we deduce that πt(u0) is also belongs to the space

C0 ([0, 1]). In other words, we proved the following result.

Proposition 4.17. If the function u0 ∈ C0 ([0, 1]), then πt(u0) ∈ C0 ([0, 1]) for every

t ≥ 0.

In the following theorem, we state some properties that function π satisfies.

Theorem 4.18. Assume that the function u0 : [0, 1]→ R such that u0(0) = 0. If t, s ≥ 0,

then the following holds

πt+s(u0) = πt
(
πs(u0)

)
. (4.2.18)

Proof of Theorem 4.18. Let us choose and fix u0 ∈ C0 ([0, 1]) and t, s ≥ 0. Before we

embark on the proof, let us explain why equality (4.2.18) makes sense. For this aim,

we observe that in view of Proposition 4.17 the LHS of equation (4.2.18), i.e., πt+s(u0)

belongs to C0 ([0, 1]). Similarly, πs(u0) also belongs to C0 ([0, 1]) and hence, πt
(
πs(u0)

)
makes sense and belongs to C0 ([0, 1]). So, both sides of the equality (4.2.18) are elements

of the space C0 ([0, 1]).

Next, let us also choose and fix x0 ∈ [0, 1] and we need to show that the values of the

LHS and the RHS of equality (4.2.18) at x0 are equal. We start with the RHS of the

equality (4.2.18) as follows

[
πt(πs)u0

]
(x0) = πsu0

(
ϕ(−t, x0)

)
= u0

(
ϕ(−s, ϕ(−t, x0))

)
= u0

(
ϕ(−s− t, x0)

)
= u0

(
ϕ(−(s+ t), x0)

)
= u(s+ t, x0) = πs+tu0(x0).

Hence, by the arbitrariness of x0 we infer that equality (4.2.18) is true and therefore, the

proof of Theorem 4.18 is complete.

We are now ready to formulate the main result of this current subsection.

Theorem 4.19. The family {πt}t≥0, which defined by equation (4.2.17), is a C0-semigroup

of linear and bounded operators on the Banach space C0 ([0, 1]). In fact, it is a C0-

semigroup of contractions on C0 ([0, 1]).
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Proof of Theorem 4.19. Assume that t ∈ [0,∞). First of all, we would like to show that

the map πt : C0 ([0, 1]) → C0 ([0, 1]) is a linear bounded map. For the linearity, let us

choose two elements u0, v0 ∈ C0 ([0, 1]). Let u be the solution to equation (4.2.1) given by

equation (4.2.10). Let v be also the solution to equation (4.2.1) but with the initial data

u0 replaced by v0, given by an appropriate modification of the formula (4.2.10), i.e.

v(t, x0) := v0

(
ϕ(−t, x0)

)
, x0 ∈ [0, 1], t ∈ [0,∞).

Note that u0 + v0 ∈ C0 ([0, 1]), because the space C0 ([0, 1]) is a vector space. Let z be

a solution to equation (4.2.1) but with the initial data u0 + v0 given by an appropriate

modification of the formula (4.2.10), i.e.,

z(t, x0) := [u0 + v0]
(
ϕ(−t, x0)

)
= u0

(
ϕ(−t, x0)

)
+ v0

(
ϕ(−t, x0)

)
, x0 ∈ [0, 1], t ∈ [0,∞).

Therefore, by formula (4.2.17), for every x0 ∈ [0, 1] we have

[πt(u0 + v0)](x0) = z(t, x0) = u0

(
ϕ(−t, x0)

)
+ v0

(
ϕ(−t, x0)

)
= u(t, x0) + v(t, x0) = [πt(u0)](x0) + [πt(v0)](x0)

= [πt(u0) + πt(v0)](x0).

Since x0 is an arbitrary element of [0, 1], we infer that

[πt(u0 + v0)] = [πt(u0) + πt(v0)].

Similarly, for every x0 ∈ [0, 1] and α ∈ R we have

[πt(αu0)](x0) = αu(t, x0) = α[πt(u0)](x0).

Again, because x0 is an arbitrary element of [0, 1] we infer that [πt(αu0)] = α[πt(u0)].

Hence we proved that πt is a linear map. For the boundedness, let us choose and fix

t ∈ [0,∞). By using the definition (3.2.5) of the norm in the space C0 ([0, 1]) and the

definition (4.2.17) of πt along with (4.2.10) we have

‖πtu0‖ C0 ([0,1]) = sup
x0∈[0,1]

|πtu0(x0)|

≤ sup
x0∈[0,1]

|u0

(
ϕ(−t, x0)

)
| ≤ sup

s∈[0,1]
|u0(s)| = ‖u0‖. (4.2.19)

The last inequality is a consequence of Corollary 4.12 and the following observation: if

two bounded sets A and B are such that A ⊂ B ⊂ R then supA ≤ supB. Therefore, it is

bounded. Moreover, from equation (4.2.19) we infer that πt is contraction, which means



Solutions with assumptions for PDEs 99

that

‖πt‖L
(
C0 ([0,1])

) ≤ 1.

Now we need to verify the C0-semigroup properties. We need to show that the following

three properties are satisfied.

(i) π0 = I, where I is the identity element in the space C0 ([0, 1]),

(ii) πtπs = πt+s, if t, s ≥ 0,

(iii) ‖πtu0 − u0‖ C0 ([0,1]) → 0 as t→ 0, for every u0 ∈ C0 ([0, 1]).

Let us begin with the observation that the second property has already been proven in

Theorem 4.18 above. Regarding the first property, let u0 ∈ C0 ([0, 1]) and x0 ∈ [0, 1],

then we have, [π0u0](x0) = u(0, x0) = u0(x0). Hence, π0 = I. So the first property is

satisfied. Finally, we prove the last property, we aim to prove the following. Let us choose

u0 ∈ C0 ([0, 1]) and η > 0. We want to find δ > 0 such that

0 ≤ t ≤ δ =⇒ ‖πtu0 − u0‖ C0 ([0,1]) ≤ η.

By using the norm on the space C0 ([0, 1]) for every function u0 we have

‖πtu0 − u0‖ = sup
x0∈[0,1]

|u(t, x0)− u0(x0)| = sup
x0∈[0,1]

|u0

(
ϕ(−t, x0)

)
− u0(x0)|. (4.2.20)

Note that the function u0 : [0, 1]→ R is continuous. Therefore, since the interval [0, 1] is

compact, by [39, Theorem 4.19] we deduce that the function u0 is uniformly continuous.

Hence we can find ε > 0 such that if x1, x2 ∈ [0, 1] then

|x1 − x2| ≤ ε =⇒ |u0(x1)− u0(x2)| ≤ η.

Using Corollary 4.14 with this ε, we deduce that there exists δ > 0 such that if s ∈ [−δ, 0]

and x0 ∈ [0, 1] then

|ϕ(s, x0)− x0| ≤ ε.

Therefore, we take t ∈ [0, δ] and x0 ∈ [0, 1] then we obtain s = −t ∈ [−δ, 0] and ϕ(s, x0) ∈
[0, 1], by Corollary 4.12. Hence we have

|u0

(
ϕ(−t, x0)

)
− u0(x0)| = |u0

(
ϕ(s, x0)

)
− u0(x0)| ≤ η.

Provided that |ϕ(s, x0)− x0| ≤ ε. In other words, we proved the following:

If η > 0 then there exists δ > 0 such that for t ∈ [0, δ] and x0 ∈ [0, 1] we have

|u0

(
ϕ(−t, x0)

)
− u0(x0)| ≤ η.
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By taking the supremum for the above equation we obtain the following

if t ∈ [0, δ] =⇒ sup
x0∈[0,1]

|u0

(
ϕ(−t, x0)

)
− u0(x0)| ≤ η. (4.2.21)

Hence by equations (4.2.20) and (4.2.21), we infer that

if t ∈ [0, δ] then ‖πtu0 − u0‖ C0 ([0,1]) ≤ η.

Hence the proof of condition (iii) is complete. So we proved that the family {πt}t≥0 is a

C0-semigroup of linear and bounded operators on the space C0 ([0, 1]), which completes

the proof of Theorem 4.19

Theorem 4.20. The infinitesimal generator A of the C0-semigroup {πt}t≥0 of linear

and bounded operators on the space C0 ([0, 1]), see Theorem 4.19, is characterised by the

following two equalities:

D(A) =
{
u : [0, 1]→ R : u is continuous, u(0) = 0

u : (0, 1]→ R : u is of C1-class, and lim
x→0

a(x)u′(x) = 0
}
,

[Au](x) =

−a(x)Du(x), if x ∈ (0, 1], u ∈ D(A),

0 if x = 0,

The proof of this theorem can be done similarly to the proof of Proposition 2.106 and will

be skipped. Theorem 4.20 is a generalisation of Proposition 2.107. Using Theorem 4.4 we

can formulate the following result.

Theorem 4.21. For every C1-class function u0 : [0, 1] → R satisfying u0(0) = 0 and

limx→0 a(x)u′(x) = 0, i.e., for every u0 ∈ D(A), where A is the infinitesimal generator of

the C0-semigroup {πt}t≥0 on the space E = C0 ([0, 1]), see Theorems 4.19 and 4.20, the

function u(t) defined by

u(t) = πt(u0), t ≥ 0

is the strong solution, in the sense of Definition 4.3, to the following problem

du

dt
= Au(t), u(0) = u0. (4.2.22)

Proof of Theorem 4.21. Follows from Theorems 4.4 and 4.20.

Using a notion of a mild solution introduced in the next chapter we can formulate the

following extension of the previous result.
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Theorem 4.22. For every continuous function u0 : [0, 1]→ R satisfying u0(0) = 0, i.e.,

for every u0 ∈ E = C0 ([0, 1]), the function u(t) defined by

u(t) = πt(u0), t ≥ 0

is the mild solution, in the sense of Definition 5.7, of the problem (4.2.22), where, as in

Theorem 4.21, A is the infinitesimal generator of the C0-semigroup {πt}t≥0 on the space

E, see Theorems 4.19 and 4.20.

Next we will present a notion of a classical solution to equation (4.2.1).

Definition 4.23. A classical solution to equation (4.2.1)-(4.2.2) where u0 : [0, 1] → R is

a continuous function such that u0(0) = 0, is a continuous function

u : [0,∞)× [0, 1]→ R

which is of C1-class in (0,∞) × [0, 1], such that u(t, 0) = 0 for all t ∈ [0, 1), and initial

condition (4.2.2) is satisfied and equation (4.2.1) is satisfied for every (t, x) ∈ (0,∞)×[0, 1].

A similar definition can be given for an in-homogeneous problem, assuming only that the

external force c is a continuous function

c : [0,∞)× [0, 1]→ R.

Recall that, the function πt(u0) has been defined by equation (4.2.17). Since also u(t, x0) :=

u0

(
ϕ(−t, x0)

)
for every x0 ∈ [0, 1] and t ∈ [0,∞), we can rewrite the definition of πt(u0)

as follows:

[πt(u0)](x0) = u0

(
ϕ(−t, x0)

)
, x0 ∈ [0, 1], t ≥ 0.

Using the formula (4.2.9) we deuce that

[πt(u0)](x0) = u0

(
G−1

(
− t+G(x0)

))
, x0 ∈ [0, 1], t ≥ 0.

Now we can define a function u(t, x), for (t, x) ∈ [0,∞)× [0, 1] given by

u(t, x) := [πt(u0)](x) = u0

(
G−1

(
− t+G(x)

))
, x ∈ [0, 1], t ≥ 0. (4.2.23)

We can prove that if the function u0 satisfies assumptions of the previous Theorem 4.21,

then the function u defined by formula (4.2.23) is a classical solution of the PDE (4.2.1)

in the classical sense, i.e.,

(i) u is of C1-class,

(ii) u(0, x) = u0(x) for every x ∈ [0, 1];
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(iii) equation (4.2.1) is satisfied for all (t, x) ∈ [0,∞)× [0, 1].

4.2.1 Maps for finding properties for the solution

After we prove the existence and the uniqueness of the solution of the equation (4.2.1)

defined in Section 4.2, we now find the properties of that solution. Therefore, in this

section, we define a set of functions that lead us to those properties. Since we do not have

an infinite set of notations, we reused a few notations repeatedly to define the functions

between different spaces.

4.2.1.1 Maps Φ and Φ̂ if c = 0

To find the properties of the unique solution that we found in the previous section, see

equation (4.2.11), we give and recall some important notations that we are going to use

throughout the whole section.

• C0 ([0, 1]) is the space of all real-valued continuous functions such that u(0) = 0.

• Cb,uf
(
[0,∞)

)
is the space of all real-valued bounded and uniformly continuous func-

tions.

• C
(
[0,∞)

)
the space of all real-valued continuous functions on the interval [0,∞).

• C0

(
[0,∞)

)
is the space of all real-valued continuous functions on [0,∞) vanishing

at infinity, i.e.,

C0[0,∞) = {u ∈ C
(
[0,∞)

)
: lim
t→∞

u(t) = 0}. (4.2.24)

Let {πt}t≥0 be a C0-semigroup on the Banach space C0 ([0, 1]). We define the shift C0-

semigroup {Tt}t≥0 on the space Cb,uf
(
[0,∞)

)
or C0

(
[0,∞)

)
or C

(
[0,∞)

)
by the following

(
Ttg
)
(s) = g(t+ s), s ∈ R+, t ≥ 0. (4.2.25)

Define the map Φ : C0 ([0, 1])→ C
(
[0,∞)

)
by the following

[Φ(v)](t) := (πtv)(1), t ∈ [0,∞), v ∈ C0 ([0, 1]). (4.2.26)

First of all, we need to show that this map Φ is well defined and for this purpose, we need

to observe that the following lemmata are true.

Lemma 4.24. Let us assume that {πt}t≥0 is an arbitrary C0-semigroup on the Banach

space C0 ([0, 1]). If v ∈ C0 ([0, 1]) then Φ(v), defined by formula (4.2.26), belongs to the

space C
(
[0,∞)

)
. In particular, the map Φ : C0 ([0, 1])→ C

(
[0,∞)

)
is well defined.
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Proof of Lemma 4.24. Since v ∈ C0 ([0, 1]) and by Theorem 4.19 the family {πt}t≥0 is a

C0-semigroup on the space C0 ([0, 1]), then by [33, Corollary 2.3], see also Corollary 2.76,

the function

Πv := {[0,∞) 3 t 7→ πtv ∈ C0 ([0, 1])}

is also continuous. Let us recall that Πv is the trajectory of the semigroup (πt)t≥0 starting

at v. Define an evaluation map at 1 by

e1 : C0
(
[0, 1],R

)
3 v 7→ v(1) ∈ R.

We need to show that the map e1 is linear and bounded. The proof of linearity is straight-

forward. For the boundedness, starting with the left-hand side we have ‖e1(v)‖R =

|v(1)| = ‖v‖. On the other hand, for the RHS we know the norm on space C0 ([0, 1]) is

given by

‖v‖ C0 ([0,1]) = sup
x∈[0,1]

|v(x)| ≥ |v(1)|.

Hence

‖e1(v)‖ = |v(1)| ≤ ‖v‖. (4.2.27)

So the map e1 is linear and bounded and hence it is continuous. Moreover, we proved

that e1 is a contraction. Hence, the proof of the Lemma is concluded by observing that

Φ(v) = e1 ◦Πv,

so that Φ(v), as a composition of two continuous functions is a continuous function from

[0,∞ to the set R. In other words, φ(v) ∈ C([0,∞)) as claimed.

Note that the above Lemma is an abstract result because it is true for any C0-semigroup.

The next result strengthens the previous one. We formulate these abstract results because

they might be used for different equations, e.g, Burger equation (Burgers’ equation is

a fundamental PDE occurring in various areas of applied mathematics, such as fluid

mechanics).

Lemma 4.25. Let us assume that {πt}t≥0 is an arbitrary uniformly bounded C0-semigroup

on the Banach space C0 ([0, 1]). If v ∈ C0 ([0, 1]) then Φ(v) defined by formula (4.2.26) be-

longs to the space C
(
[0,∞)

)
. If v ∈ C0 ([0, 1]) then Φ(v) belongs to the space Cb,uf

(
[0,∞)

)
.

Proof of Lemma 4.25. Let us choose and fix an element v ∈ C0 ([0, 1]). In the previ-

ous Lemma, we proved that Φ(v) belongs to the space C
(
[0,∞)

)
. So, now we need to

prove that Φ(v) is bounded and uniformly continuous. Let us begin with the proof of
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boundedness. By inequalities (4.2.27) and (4.2.19) we get

|Φ(v)(t)| = |e1

(
πt(v)

)
| ≤ ‖

(
πt(v)

)
‖ C0 ([0,1]) ≤ ‖v‖ C0 ([0,1]). (4.2.28)

So, we proved that the function Φ(v) is bounded. Next, we need to prove that it is

uniformly continuous. For this aim, let us choose 0 ≤ t1 < t2 < ∞ and consider the

following

|Φ(v)(t2)− Φ(v)(t1)| = |e1

(
πt2(v)

)
− e1

(
πt1(v)

)
| = |e1

(
πt2(v)− πt1(v)

)
|

≤ |πt2(v)− πt1(v)| C0 ([0,1]) = |πt1
(
πt2−t1v − v

)
| C0 ([0,1])

≤ |πt2−t1v − v| C0 ([0,1]).

Let us take an arbitrary ε > 0. Then by the C0-continuity of the semigroup {πt}t≥0 we

can find δ > 0 such that

if s ∈ [0, δ] then |πsv − v| C0 ([0,1]) ≤ ε.

Therefore, if 0 ≤ t2 − t1 ≤ δ then we infer that

|Φ(v2)(t)− Φ(v)(t1)| ≤ |πt2−t1v − v| C0 ([0,1]) ≤ ε.

This completes the proof of Lemma 4.25.

Note that we have used contractivity of the semigroup {πt}t≥0 on the space C0 ([0, 1]) many

times. We also can strengthen the previous results by proving the following Proposition.

Proposition 4.26. If v ∈ C0 ([0, 1]) then Φ(v) belongs to the space C0

(
[0,∞)

)
.

Proof of Proposition 4.26. Let us choose and fix an arbitrary function v ∈ C0 ([0, 1]).

Then, because G(1) = 0, we write the definition of map Φ as follows

[Φ(v)](t) = [πt(v)](1) = v
(
G−1(−t)

)
, t ∈ [0,∞). (4.2.29)

We have already proved in Lemma 4.24 that the function Φ(v) is continuous and thus, to

prove that it belongs to C0

(
[0,∞)

)
we need to prove that

lim
t→∞

[Φ(v)](t) = 0.

By using formula (4.2.29) it follows that to prove the last equality it is sufficient to show

that

lim
t→∞

v
(
G−1(−t)

)
= 0. (4.2.30)
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But we have

lim
t→∞
−t = −∞.

On the other hand, by the properties of the function G we have

lim
x→−∞

G−1(x) = 0.

Finally, because v ∈ C0 ([0, 1]),

lim
s→0+

v(s) = 0.

According to [3, Theorem 8.17], by combining the last three equalities we deduce that the

identity (4.2.30) as required.

Proposition 4.27. The space C0[0,∞) is a closed subspace of the Banach space

Cb,uf
(
[0,∞)

)
and hence it is also a Banach space with the norm induced by the norm from

the latter space.

Claim 4.28. Let {Tt}t≥0 be the shift C0-semigroup on the space Cb,uf
(
[0,∞)

)
or the

space C
(
[0,∞)

)
and {πt}t≥0 be an arbitrary uniformly bounded C0-semigroup on the

space C0 ([0, 1]), then for every t ≥ 0 the following equality satisfies

Tt ◦ Φ = Φ ◦ πt. (4.2.31)

Proof of Claim 4.28. We need first to prove that both sides of the above equality (4.2.31)

make sense. It is sufficient to consider only the space Cb,uf
(
[0,∞)

)
. For this purpose, we

recall that

Φ : C0 ([0, 1])→ Cb,uf
(
[0,∞)

)
and Tt : Cb,uf

(
[0,∞)

)
→ Cb,uf

(
[0,∞)

)
Therefore, the composition

Tt ◦ Φ : C0 ([0, 1])→ Cb,uf
(
[0,∞)

)
.

is well-defined. On the other hand,

πt : C0 ([0, 1])→ C0 ([0, 1]) and Φ : C0 ([0, 1])→ Cb,uf
(
[0,∞)

)
.

Therefore, the composition

Φ ◦ πt : C0 ([0, 1])→ Cb,uf
(
[0,∞)

)
.

Hence, the equality (4.2.31) makes sense. It remains to prove it is true. For this purpose,

let us choose and fix v ∈ C0 ([0, 1]) and t ≥ 0. Then, using properties and definitions
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stated earlier, we have for every s ∈ R,

[LHS(v)](s) =
[
Tt
(
Φ(v)

)]
(s)

=
[
Φ(v)

]
(t+ s)

=
(
πt+sv

)
(1) = [πs(πtv)](1)

=
[
Φ(πtv)

]
(s) =

[
RHS(v)

]
(s).

This completes the proof of claim 4.28.

Let us emphasise that in Claim 4.28 {Tt}t≥0 is the shift semigroup while {πt}t≥0 is an ar-

bitrary C0-semigroup on the space C0 ([0, 1]). It follows from the previous Proposition 4.26

that the function Φ is not only well-defined as a function from the space C0 ([0, 1]) to the

space Cb,uf
(
[0,∞)

)
but also is well defined as a function from the space C0 ([0, 1]) to the

space C0

(
[0,∞)

)
. This new object we will denote by Φ̂. Let us observe that in view of

equality (4.2.29) the new map Φ̂ satisfies the following

Φ̂ : C0 ([0, 1])→ C0

(
[0,∞)

)
(4.2.32)

[Φ̂(v)](t) =
(
πtv
)
(1) = v

(
G−1(−t)

)
, t ∈ [0,∞). (4.2.33)

The next result list some fundamental properties of the latter function Φ̂.

Lemma 4.29. The map Φ̂ introduced above in identity (4.2.32) is well-defined and also

it is linear and bounded. In particular, it is continuous.

Proof of Lemma 4.29. The proof of the linearity of the map Φ̂ is standard. For bound-

edness, let us recall that the space C0

(
[0,∞)

)
is endowed with the supremum norm.

Therefore, by inequality (4.2.28), we have for v ∈ C0 ([0, 1]),

‖Φ̂(v)‖
C0

(
[0,∞)

) = sup
t≥0
‖Φ̂(v)(t)‖ C0 ([0,1]) ≤ ‖v‖ C0 ([0,1]).

This proves that Φ̂ is bounded, in particular, it is a contraction map.

Remark 4.30. Let us observe that Lemma 4.29 remains true for the map

Φ : C0 ([0, 1])→ Cb,uf
(
[0,∞)

)
with practically the same proof.



Solutions with assumptions for PDEs 107

Lemma 4.31. The family {Tt}t≥0 is a C0-semigroup of contractions on the space Cb,uf
(
[0,∞)

)
.

Moreover, the infinitesimal generator B of this semigroup satisfies the following

D(B) =
{
g ∈ Cb,uf

(
[0,∞)

)
: g is of C1-class and g′ ∈ Cb,uf

(
[0,∞)

)
}

B(g) = g′, g ∈ D(B).

See Example 1 in section IX.2 and Example 1 in section IX.5 in the monograph [49].

Remark 4.32. Let us observe that the Claim 4.28 remains true for the map

Φ̂ : C0 ([0, 1])→ C0

(
[0,∞)

)
with practically the same proof.

4.2.1.2 Inverses of maps Φ and Φ̂

In this subsection we denote the new maps by Q = Φ−1 (Q̂ = Φ̂−1 respectively), where

Φ−1 and Φ̂−1 are the inverse of the maps Φ and Φ̂ respectively defined before. Define a

map Q as the following

Q : Cb,uf
(
[0,∞)

)
→ C0 ([0, 1])

[Q(ψ)](x0) := ψ
(
−G(x0)

)
, where ψ ∈ Cb,uf ([0,∞)), x0 ∈ (0, 1].

Note that Q(ψ) is only defined for x0 ∈ (0, 1] because 0 /∈ Dom(G).

Also, define the map Q̂ by the following

Q̂ : C0

(
[0,∞)

)
→ C0 ([0, 1]), (4.2.34)

[Q̂(ψ)](x0) := ψ
(
−G(x0)

)
, if x0 ∈ (0, 1], ψ ∈ C0([0,∞)). (4.2.35)

Note that, so far Q̂(ψ) is only defined for x0 ∈ (0, 1] because 0 /∈ Dom(G). However, in

contrast to the case of map Q, we can additionally define

[Q̂(ψ)](0) = 0, if ψ ∈ C0([0,∞)). (4.2.36)

This works, because ψ ∈ C0([0,∞),R) so that limt→∞ ψ(t) = 0, contrary to the previous

case. This is made more precise in the proof of Proposition 4.33 below. In the following,

we need to study some properties of maps Q and Q̂.

Proposition 4.33. Suppose ψ ∈ C0([0,∞)) then the map Q̂ψ defined by (4.2.35) and

(4.2.36) is continuous, i.e., Q̂ψ ∈ C0 ([0, 1]). In particular, map Q̂ defined by (4.2.34) is

well defined.
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Proof of Proposition 4.33. Let us choose and fix ψ ∈ C0([0,∞)). Our aim is to prove

that Q̂ψ ∈ C0 ([0, 1]). To verify this aim, we need to prove two statements. First, we

need to prove that Q̂ψ is continuous at x0 if x0 ∈ (0, 1]. Second, we need to prove that

Q̂ψ is continuous at 0. Regarding the first statement, the function −G : (0, 1] → [0,∞)

is continuous and the function ψ : [0,∞) → R is continuous. Hence, the composition

ψ ◦ (−G) : (0, 1]→ R is also continuous. For the second statement, we need to show that

lim
x0→0+

[Q̂ψ](x0) = [Q̂ψ](0). (4.2.37)

Using the definition of function Q̂ψ we have

lim
x0→0+

[Q̂ψ](x0) = lim
x0→0+

ψ(−G(x0)) (4.2.38)

We know from the properties of function −G(x0) that limx→0+ [−G(x0)] = ∞. Now in

equation (4.2.38) we put −G(x0) = t and we need to find limt→∞ ψ(t). We observe that

if ψ only belongs to the space Cb,uf
(
[0,∞)

)
then such a limit may not exists. This means

that the space we used Cb,uf
(
[0,∞)

)
has to be replaced by the space C0([0,∞)) which

defined before by equality (4.2.24). Thus, since our function ψ ∈ C0([0,∞)), then the

limt→∞ ψ(t) not only exists but also is equal to 0. Therefore, by [3, Theorem 8.17] about

the limit of the composition of functions, we infer that

lim
x0→0+

ψ(−G(x0)) = lim
t→limx0→0+ (−G(x0))

ψ(t) = lim
t→∞

ψ(t) = 0.

So we proved that

lim
x0→0+

[Q̂ψ](x0) = 0.

On the other hand, from the equation (4.2.36) we have [Q̂ψ](0) = 0 which implies that

equality (4.2.37). This together with 0 = [Q̂ψ](0) implies that Q̂ψ ∈ C0 ([0, 1]).

Proposition 4.34. The map Q̂ defined by (4.2.34) is not only well defined but also linear

and bounded (from C0([0,∞)) to C0 ([0, 1])).

Proof of Proposition 4.34. Recall that for v ∈ C0([0,∞)),

(
Q̂v
)
(x) =

v(−G(x)), if x ∈ (0, 1],

0, if x = 0.

The proof of the linearity is straightforward. To prove the boundedness of the map Q̂,

let v ∈ C0([0,∞)). Since Q̂v(0) = 0, by using the definitions of the norms in the spaces
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C0([0,∞)) and C0 ([0, 1]), we get

‖Q̂v‖ C0 ([0,1]) = sup
x∈[0,1]

|[Q̂v](x)| = sup
x∈(0,1]

|[Q̂v](x)|

= sup
x∈(0.1]

|v
(
−G(x)

)
| ≤ sup

t∈[0,∞)
|v(t)| = ‖v‖C0([0,∞)).

where the last inequality is a consequence of proved earlier Proposition 4.8, that the

function −G maps bijectively (0, 1] into interval [0,∞). Therefore, the proof Proposition

4.34 is complete.

Proposition 4.35. Let Φ̂ be the map as in formula (4.2.32) and Q̂ be the map defined on

equation (4.2.35). Then we have Q̂ ◦ Φ̂ = id on C0 ([0, 1]) and Φ̂ ◦ Q̂ = id on C0([0,∞)).

In particular,

Φ̂−1 = Q̂ and Q̂−1 = Φ̂.

Proof of Proposition 4.35. To prove this Proposition, we identify that there are two parts.

The first part is related to Q̂ ◦ Φ̂ = id on C0 ([0, 1]), and the second part is related to

Φ̂ ◦ Q̂ = id on C0([0,∞)). However, before we proceed with the proof, we state that the

compositions Q̂ ◦ Φ̂ : C0 ([0, 1])→ C0 ([0, 1]) and Φ̂ ◦ Q̂ : C0([0,∞))→ C0([0,∞)) are well

defined by Lemma 4.29 and Proposition 4.33.

Now we start with the first part, we need to prove that Q̂ ◦ Φ̂ = id on C0 ([0, 1]), i.e.,

[Q̂ ◦ Φ̂](v) = v, for every v ∈ C0 ([0, 1]).

For this purpose, let us choose and fix an arbitrary element v ∈ C0 ([0, 1]). We need to

prove the following equality hold

[Q̂ ◦ Φ̂](v) = v.

Let us notice that both sides of the above equality are functions belonging to the space

C0 ([0, 1]). In particular, [Q̂ ◦ Φ̂](v)(0) = 0 and v(0) = 0. Therefore, it is enough to prove

the following

[Q̂ ◦ Φ̂](v)(x0) = v(x0) for every x0 ∈ (0, 1].

For this purpose, we choose and fix x0 ∈ (0, 1]. Then by the definition (4.2.35) of the map

Q̂ followed by the identity (4.2.33) satisfied by Φ̂, we have

[
(Q̂ ◦ Φ̂)(v)

]
(x0) = Q̂[Φ̂(v)](x0) = [Φ̂(v)](−G(x0))

= v
(
G−1(−(−G(x0)))

)
= v
(
G−1(G(x0))

)
= v(x0).
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This concludes the first part of the proof. For the second part, similarly to the previous

part, we need to show that Φ̂ ◦ Q̂ = id on the space C0([0,∞),R). That means,

[Φ̂ ◦ Q̂](v) = v, for every v ∈ C0

(
[0,∞)

)
. (4.2.39)

We notice that both sides of the above equality (4.2.39) are functions belonging to the

space C0([0,∞)). So it is enough to prove that

[(
Φ̂ ◦ Q̂

)
v(t)

]
(x0) = v(x0) for every x0 ∈ (0, 1].

For this purpose, let us choose and fix an arbitrary element v ∈ C0([0,∞)). Then for

every x0 ∈ (0, 1] we have

[(
Φ̂ ◦ Q̂

)
v(t)

]
(x0) = Φ̂

[
Q̂v
]
(x0) = Q̂v(G−1(−x0))

= v
(
−G(G−1(−x0))

)
= v(x0).

This concludes the second part of the proof and therefore, the proof of Proposition 4.35

is complete.

The following result is an obvious consequence of Proposition 4.35.

Corollary 4.36. The map Φ̂ is bijection between C0 ([0, 1]) and C0([0,∞)).

Let us observe that Claim 4.28 can also be generalised to the map Φ̂ as follows.

Claim 4.37. In the above framework, for every t ≥ 0,

T̂t ◦ Φ̂ = Φ̂ ◦ πt, (4.2.40)

in the space E, where {T̂t}t≥0 is the shift semigroup on the space C0([0,∞)) defined by

the following version of identity (4.2.25).

(
T̂tg
)
(s) = g(t+ s), g ∈ C0

(
[0,∞)

)
, s ∈ R+, t ≥ 0. (4.2.41)

Proof of Claim 4.37. We divide the proof of this claim into two parts. In the first part,

we start with the observation that by Proposition 4.27 the space C0([0,∞)) is a closed

subspace of Cb,uf ([0,∞)). Moreover, for every t ∈ [0,∞), T̂t maps the space C0([0,∞))

into itself and the family {T̂t}t≥0 is a restriction of the C0-semigroup {Tt}t≥0 defined

by formula (4.2.25) from Cb,uf ([0,∞)) to C0([0,∞)). Since by Lemma 4.31, the family

{Tt}t≥0 is a C0-semigroup of contractions on the space Cb,uf ([0,∞)), we deduce that the

family {T̂t}t≥0 is also a C0-semigroup of contractions on the space C0([0,∞)).
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In the second part of the proof, we first need to show that both sides of the equality (4.2.40)

make sense. For the left-hand-side, we recall that

Φ̂ : C0 ([0, 1])→ C0([0,∞)) and T̂t : C0([0,∞))→ C0([0,∞)),

so that the composition of those maps satisfies

T̂t ◦ Φ̂ : C0 ([0, 1])→ C0([0,∞)).

For the right-hand-side, we also recall that

πt : C0 ([0, 1])→ C0 ([0, 1]) and Φ̂ : C0 ([0, 1])→ C0([0,∞))

so similarly, the composition of both maps Φ̂ and πt satisfies

Φ̂ ◦ πt : C0 ([0, 1])→ C0([0,∞)).

So, we proved that both sides of the equality (4.2.40) make sense. Next, we want to prove

that equality (4.2.40) holds. For this aim let us choose and fix v ∈ C0 ([0, 1]) and t ≥ 0.

Then, by using properties and definitions of the maps Φ̂, T̂t and πt we have, for every

s ∈ R,

[(T̂t ◦ Φ̂)(v)](s) =
[
T̂t(Φ̂(v))

]
(s) =

[
Φ̂(v)

]
(t+ s)

=
(
πt+sv

)
(1) = [πs(πtv)](1)

=
[
Φ̂(πtv)

]
(s) =

[
Φ̂ ◦ πt(v)

]
(s).

Hence, the proof of equality (4.2.40) holds, and thus the proof of the Claim 4.37 is com-

plete.

4.2.1.3 Maps Φ and Q if c 6= 0

In this section we study equation (4.0.4) which is a special case of equation studied

by Rudnicki [43]. We know that for λ = 0 equation (4.0.4) generates a C0-semigroup

{πt}t≥0 on the Banach space C0 ([0, 1]). The infinitesimal generator of this semigroup

{πt}t≥0 denoted by A, see Theorem 4.20. By Theorem 2.88, the operator A + λI is

an infinitesimal generator of a C0-semigroup on the space C0 ([0, 1]). This semigroup is

related to the linear part of equation (4.0.4) if c = λu, for λ > 0, denoted by {St}t≥0 and

defined by the following formula

[
Stu
]
(x) = eλt

(
πtu
)
(x), t ≥ 0, x ∈ [0, 1].
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Given a parameter γ ≥ 0 we introduce a Banach space Y = Yγ defined by the following

Y = Yγ :=
{
v ∈ C

(
[0,∞)

)
: sup
s∈[0,∞)

|v(s)|e−γs <∞
}

(4.2.42)

with a norm defined by

‖v‖Y := sup
s∈[0,∞)

|v(s)|e−γs, v ∈ Y.

Note also that Y0 is equal to the space of all continuous and bounded functions v :

[0,∞)→ R.

Let {Tt}t≥0 be a family of linear operators on the space Y defined by

(
Ttg
)
(s) := g(t+ s), t, s ≥ 0, v ∈ Y. (4.2.43)

Proposition 4.38. The space defined by formula (4.2.42) is a separable Banach space.

A standard proof of Proposition 4.38 is omitted. The proof of the next proposition is also

standard and hence also omitted.

Proposition 4.39. Let Y be the separable Banach space defined in formula (4.2.42). Let

{Tt}t≥0 be the shift semigroup defined by formula (4.2.43) on the space Y . Then the family

of linear operators {Tt}t≥0 is a measurable semigroup on the measurable space (Y,B(Y )).

The next result is a generalisation of our previous Claim 4.37. This is an abstract result in

the sense that the semigroup {St}t≥0 is an arbitrary semigroup. The following corollary

will be valid for our concrete semigroup that is defined by the formula (4.2.47).

Proposition 4.40. Let {St}t≥0 be a C0-semigroup of bounded linear operators on the

Banach space E = C0 ([0, 1]) such that

‖St‖L(E) ≤Meλt, for all t ≥ 0, (4.2.44)

where M ≥ 1 and λ ≥ 0 are some constants1. Assume that γ ≥ λ and let Y = Yγ be the

Banach space defined earlier in formula (4.2.42). Then the map Φ : E → Y defined by

(
Φv
)
(t) =

(
Stv
)
(1), t ∈ [0,∞), (4.2.45)

is a well-defined linear and bounded map from the space E to the space Y . Moreover, the

following equality is satisfies

Φ ◦ St = Tt ◦ Φ on E for every t ≥ 0. (4.2.46)
1According to [33, Theorem I.2.2] such constants always exist.
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Proof of Proposition 4.40. We divide the proof into four steps.

1. The map Φ is well defined, i.e., if v ∈ E then Φv ∈ Y .

2. The map Φ is linear and bounded from the space E to the space Y .

3. Verify that the equality (4.2.46) makes sense.

4. Verify that the equality (4.2.46) holds true.

Regarding the first step, let us denote by e1 the evaluation map at position x = 1, i.e.,

e1 : E 3 v 7→ v(1) ∈ R.

Note that e1 is a linear contraction and hence a continuous function. Since

(Φv)(t) = e1(Stv), for every v ∈ E and t ∈ [0,∞)

and, by [33, Corollary 2.3], the map [0,∞) 3 t 7→ Stv ∈ E is continuous for every v ∈ E.

Therefore, we deduce that for every v ∈ E,

Φv ∈ C
(
[0,∞)

)
.

In order to complete the proof that Φv ∈ Y we only need to check the growth condition.

From the definition of the map Φ and the condition (4.2.44), we infer that for any C > 0

|Φv| ≤ Ceλs.

Since by assumptions γ ≥ λ, we infer that Φv indeed belongs to the space Y .

Regarding the second step, we need to show that Φ is a linear and bounded map. For the

linearity, let u, v ∈ E and α, β ∈ R. Then we have

Φ[αu+ βv](t) = St(αu+ βv)(1) = αStu(1) + βStv(1) = αΦu+ βΦv.

Thus Φ is linear. To prove the boundedness of Φ, let us fix v ∈ E. Then we have

|Φv|Y = sup
t≥0
|Φv(t)|e−γt = sup

t≥0
|[Stv](1)|e−γt ≤ sup

t≥0
sup
x∈[0,1]

|[Stv](x)|e−γt

= sup
t≥0
|Stv|Ee−γt ≤M sup

t≥0
|v|Ee−γteλt = M |v|E sup

t≥0
e(λ−γ)t ≤M |v|E .

Hence, we found that Φ is a linear bounded map.

Regarding the third step, we take v ∈ C0 ([0, 1]). Then Stv ∈ C0 ([0, 1]) because St maps

the space C0 ([0, 1]) into itself. Thus, by step 1, we infer that Φ(Stv) ∈ Y .

Regarding the fourth step (4), let us choose and fix v ∈ C0 ([0, 1]) and t ≥ 0. Then, by
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using properties and definition (4.2.45) of the map Φ and the family {Tt}t≥0, and the

semigroup property of the family {St}t≥0, we have for every s ∈ [0,∞) the following

equalities hold.

[(Tt ◦ Φ)(v)](s) =
[
Tt(Φ(v))

]
(s) =

[
Φ(v)

]
(t+ s)

=
(
St+sv

)
(1) = [Ss(Stv)](1)

=
[
Φ(Stv)

]
(s) =

[
Φ ◦ St(v)

]
(s).

This concludes the proof of equality (4.2.46). Thus the proof of Proposition 4.40 is

complete.

Corollary 4.41. Assume that λ > 0. Let {St}t≥0 be the C0-semigroup of bounded linear

operators on the Banach space E = C0 ([0, 1]) defined by

(
Stv
)
(x) = eλtπtv(x) = eλtv

(
G−1(−t+G(x))

)
, x ∈ (0, 1]. (4.2.47)

Assume also that γ ≥ λ and Y = Yγ is the Banach space defined earlier in formula (4.2.42)

with this parameter γ. Let also Φ be a map defined by

Φ : E → Y,(
Φv
)
(t) =

(
Stv
)
(1) = eλtπtv(1) = eλtv

(
G−1(−t)

)
.

(4.2.48)

Then all the assertions of Proposition 4.40 hold, i.e., the map Φ is a well-defined linear and

bounded (hence continuous) map from the space E to the space Y and the equality (4.2.46)

is satisfied. Moreover, Φ is injective.2

Proof of Corollary 4.41. The proof of almost all parts of this Corollary follows from

Proposition 4.40. However, the injectivity of the map Φ is true only in our special semi-

group that is defined by the formula (4.2.47). To prove Φ is an injective map, we need to

show that

if v1, v2 ∈ E and Φ(v1) = Φ(v2) then v1 = v2.

Since Φ(v1) = Φ(v2) then for every t ≥ 0 we have Φ(v1)(t) = Φ(v2)(t) which means that

for every t ≥ 0

St(v1)(1) = St(v2)(1).

Since St is linear then we get
[
St(v1 − v2)

]
(1) = 0. If we denote v = v1 − v2, then

[St(v)
]
(1) = 0. By using the definition of St in formula (4.2.48) we obtain the following

[
Stv
]
(1) = eλtπtv(1) = eλtv

(
G−1(−t)

)
= 0, t ≥ 0.

2Note that injectivity of Φ is not always true and we didn’t assert it in the previous Proposition 4.40.
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Hence we have, for every t ≥ 0,

v
(
G−1(−t)

)
= 0. (4.2.49)

From the properties of function G in Proposition 4.8 the function G−1 maps bijectively

the interval (−∞, 0] onto the interval (0, 1]. Hence, we deduce that for every x ∈ (0, 1],

there exists s ∈ (−∞, 0] such that G−1(s) = x. If we denote s by −t, we have for every

x ∈ (0, 1] there exists t ∈ (−∞, 0] such that

G−1(−t) = x.

By substituting the above equation into equation (4.2.49) we get the following

v
(
G−1(−t)

)
= v(x) = 0, for every x ∈ (0, 1]

Hence, we proved that v = 0 which implies that v1 = v2. Therefore, the map Φ is

injective.

Remark 4.42. We should deduce from the proof above that it is enough to assume

that the family {St}t≥0 is a continuous semiflow on the Banach space C0 ([0, 1]), i.e.,

the result is true without assuming that the maps St are linear. This generalization of

Proposition 4.40 will be done later in Chapter 5.

In the next definition, we defined a map Q which is the inverse of the map Φ that is

defined in the equation (4.2.48).

Definition 4.43. Suppose ψ ∈ C
(
[0,∞)

)
and let us consider the following PDE in the

classical sense

∂u(t, x)

∂t
+ a(x)

∂u(t, x)

∂x
= λu(t, x), t > 0, x ∈ (0, 1],

u(t, 1) = ψ(t), t ≥ 0.

(4.2.50)

We put Qψ(x) = u(0, x) for every x ∈ [0, 1]. We know that the solution to equa-

tion (4.2.50) with initial data u0 is given by

u(t, x) = eλtu0

(
G−1(−t+G(x)

)
.

If we put x = 1, then we get

u(t, 1) = eλtu0

(
G−1(−t+G(1)

)
= eλtu0

(
G−1(−t

)
. (4.2.51)

But from the second equation in (4.2.50) we have u(t, 1)) = ψ(t), t ≥ 0. So by rearranging

equality (4.2.51) we obtain the following

u0

(
G−1(−t)

)
= e−λtψ(t). (4.2.52)
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If we choose x = G−1(−t) ⇔ t = −G(x) and replace those new variables in equa-

tion (4.2.52) we get,

u0

(
x
)

= eλG(x)ψ
(
−G(x)

)
.

Hence we get that the map Q : Y → E defined by

(
Qψ
)
(x) =

eλG(x)ψ(−G(x)), if x ∈ (0, 1],

0, if x = 0.
(4.2.53)

This formula is similar to the formulae (4.2.35) and (4.2.36), in which we defined the

map Q̂.

Next, we need to prove a result, which is similar to Proposition 4.33 in the sense that

the space C0([0,∞)) is replaced by the space C([0,∞)). However, such a result seems to

be not true and therefore, we need to use a smaller space than the space C([0,∞)). The

space Y which was defined by formula (4.2.42) is a candidate for this purpose we need to

prove that it is a good candidate. Let us introduce the following auxiliary space.

Y0 :=
{
y ∈ C([0,∞)) : ∃C > 0 : |y(t)| ≤ C ln(2 + 2t), t ∈ [0,∞)

}
. (4.2.54)

Proposition 4.44. If y ∈ Y0, then the function Q(y) defined by (4.2.53) is continuous,

i.e., Q(y) ∈ C0 ([0, 1]). In particular, the map Q : Y0 → C0 ([0, 1]) is well-defined.

Proof of Proposition 4.44. Let us observe that the last assertion about the map Q and the

space Y0 is an obvious consequence of the first assertion and the definition (4.2.54) of the

space Y0. Let us choose and fix y ∈ Y0. Then, we infer that y belongs to C([0,∞)) which

means that function y is a continuous function. Since by Proposition 4.8 the function

G is also a continuous function, so because the composition of continuous functions is

continuous, see [39, Theorem 4.7], we infer that functions Q(y) is continuous on the left

open interval (0, 1]. Hence we only need to prove that Q(y) is continuous at 0. Since by

the definition of the function Q in formula (4.2.53), [Q(y)](0) = 0, it is sufficient to prove

that

lim
x→0+

[Q(y)](x) = 0. (4.2.55)

We take x ∈ (0, 1]. Then, since the function y ∈ Y0 we have

lim
x→0+

|[Q(y)](x)| = lim
x→0+

eλG(x)|y(−G(x))| = lim
t→∞

e−λt|y(t)|,

because if t = −G(x) then x → 0+ if and only if t → ∞. Moreover, because y ∈ Y0 and

by the L’Hospital rule, see [39, Theorem 5.13], we infer that

lim
t→∞

e−λt ln(2 + 2t) = 0.
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By applying the Sandwich Principle, see Theorem 2.15, we deduce that

lim
x→0+

|[Q(y)](x)| = 0.

Hence the equality (4.2.55) follows.

We proved that Q(y) ∈ C0 ([0, 1]) which conclude the proof of Proposition 4.44.

Proposition 4.45. Let Φ be the map defined on (4.2.48) and Q be the map defined by

formula (4.2.53), then we have

Q ◦ Φ = id on C0 ([0, 1]),

and

Φ ◦Q = id on Y0. (4.2.56)

Proof of Proposition 4.45. To prove this Proposition, we identify there are two parts.

The first part is related to Q ◦ Φ = id on C0 ([0, 1]), and the second part is related

to Φ ◦ Q = id on Y0. Before we proceed with the proof, we need to ensure that the

compositions Q ◦ Φ : C0 ([0, 1])→ C0 ([0, 1]) and Φ ◦Q : Y0 → Y are well defined. This is

true because of Propositions 4.40 and 4.44. Now we start with the first part, we need to

show that

[Q ◦ Φ](v) = v, for every v ∈ C0 ([0, 1]). (4.2.57)

Since both sides of the above equality (4.2.57) are functions in the space C0 ([0, 1]) it is

sufficient to show that for every x0 ∈ (0, 1] we have

[Q ◦ Φ(v)](x0) = v(x0).

For this purpose, let us choose and fix an arbitrary element v ∈ C0 ([0, 1]) and for every

x0 ∈ (0, 1], by applying the definitions of Q and Φ, we have

[
Q ◦ Φ(v)

]
(x0) = Q[Φv](x0) = eλG(x0)[Φv]

(
−G(x0)

)
= eλG(x0) eλ(−G(x0))v

(
G−1(G(x0))

)
= v(x0),

which completes the first part of the proof. For the second part, we need to show that

Φ◦Q = id on Y0. For this aim, we choose and fix y ∈ Y0. Let us first observe that in view

of the previous Proposition, Q(y) ∈ C0 ([0, 1]) and therefore the composition [Φ ◦Q](y) is

a well-defined element of Y . We need to prove that Φ(Q(y)) = y. Note that by applying
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the definitions of maps Q and Φ we have, for every t ∈ [0,∞)

[
(Φ ◦Q)(y)

]
(t) = Φ[Qy](t) = eλt[Qy

(
G−1(−t)

)
= eλt eλG

(
G−1(−t)

)
y
(
−G

(
G−1(−t)

))
= y(t),

which concludes the second part of the proof, and therefore, the proof of Proposition 4.45

is complete.

4.3 Applying the Rudnicki Method for Invariant Measures

In Section 4.2.1.3 we defined two maps Φ and Q that are very important to connect our

semigroup which was generated from the problem (4.0.4)- (4.0.5) to the shift semigroup.

Therefore, we use these maps in this section as well to establish the existence of an invari-

ant measure. Our proof depends on applying the Rudnicki method in [43, Theorem 1].

We follow to prove the existence of the invariant measure but using our assumptions 4.2.

Before we state our main theorem, we need to mention some required results that help to

achieve our goal.

Proposition 4.46. The C0-semigroups {πt}t≥0, which defined by equality (4.2.17) on the

space C0 ([0, 1]) and {T̂t}t≥0, which defined by equality (4.2.41) on the space C0([0,∞))

are stable, that is, if v ∈ C0 ([0, 1]) and g ∈ C0([0,∞)), then

lim
t→∞

πtv = 0 in C0 ([0, 1]),

and

lim
t→∞

T̂tg = 0 in C0([0,∞)).

Proof of Proposition 4.46. Starting with the C0-semigroup {πt}t≥0, we claim that

‖πtv − 0‖ C0 ([0,1]) → 0 as t→∞.

By applying the definition of the norm on the space C0 ([0, 1]) we have

sup
x∈(0,1]

|v
(
G−1(−t+G(x))

)
| C0 ([0,1]) → 0 as t→∞.

From the properties of the function G in Proposition 4.8, we have

0 < G−1
(
− t+G(x)

)
≤ G−1(−t). (4.3.1)

Now, applying the limit of composition of functions Theorem A.6, with choosing the func-

tions f(t) = G−1
(
−t+G(x)

)
and v(y) = v. We know that limt→∞ f(t) = lims→∞G

−1(−s) =
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0. Moreover, limy→0 v(y) = 0, because the function v is continuous and v(0) = 0. Hence,

we get

lim
t→∞

v
[
G−1(−t+G(x))

]
= 0.

But we need the uniformly continuous version. Therefore, let us take ε > 0. Since the

function v is continuous and v(0) = 0, there exists δ > 0 such that |v(y) − 0| ≤ ε if

0 ≤ y ≤ δ. By Proposition 4.8 that the limt→∞G
−1(−t) = 0 we infer that there exists

T ≥ 0 such that

0 < G−1(−t) ≤ δ if t ≥ T.

Hence, by inequality (4.3.1) we have, for every x ∈ (0, 1]

0 < G−1
(
− t+G(x)

)
≤ δ if t ≥ T.

Hence, we have, for every x ∈ (0, 1] and t ≥ T ,

|v
(
G−1(−t+G(x))

)
− 0| C0 ([0,1]) ≤ ε

In other words, we proved that for t ≥ T ,

sup
x∈(0,1]

|v
(
G−1(−t+G(x))

)
| C0 ([0,1]) → 0 as t→∞,

which means that

lim
t→∞

πtv = 0 in C0 ([0, 1]).

Hence we proved that the C0-semigroup {πt}t≥0 is stable on the space C0 ([0, 1].

In a similar way one can show that {T̂t}t≥0 is stable on the space C0([0,∞)).

Remark 4.47. Note that the first part of the Proposition 4.46 generalises Theorem 3.12

in [11], where the authors proved that the semigroup is stable in the case when a(x) = x.

Moreover, it is relevant to mention that the importance of Proposition 4.46 can appear

in the proof of the following corollary.

Corollary 4.48. The unique invariant measure of the C0-semigroup {πt}t≥0 on the space

C0 ([0, 1]) is the Dirac delta measure at 0, i.e., δ0. The unique invariant measure of the

C0-semigroup {T̂t}t≥0 on the space C0([0,∞)) is the Dirac delta measure at 0, i.e., δ0.

Recall that, for any Banach space X with the Borel σ-field denoted by B(X) the Dirac

delta measure at a, where a ∈ X in the Borel probability measure δa is defined by

δa(A) =

1, if a ∈ A ∈ B(X),

0, if a /∈ A ∈ B(X).
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Proof of Corollary 4.48. We prove this corollary in two steps. For the first step we take

A ∈ B(E) such that there exists r > 0 and B(0, r) ∩A = ∅. We claim that µ(A) = 0. To

verify our claim, let us take t ≥ 0. Then we have

µ(A) =

∫
E
1{π−1

t (A)} dµ(x) =

∫
E
ftx dµ(x).

where

ftx = 1{π−1
t (A)} =

1, if t ∈ π−1
t (A),

0, if t /∈ π−1
t (A).

In order to show that ftx → 0 as t → ∞ we choose and fix x ∈ E. By Proposition 4.46

for every x ∈ E, πtx → 0 as t → ∞ and since |ftx| ≤ 1 we infer that for every t ≥ t0

there exists t0 > 0 such that ‖πtx‖E < r. Which means that, πtx ∈ B(0, r) and therefore,

πtx /∈ A for every t ≥ t0. Hence ftx = 0 as t → ∞, t ≥ t0. Next, we use Lebesgue’s

Dominated Convergence Theorem A.3,

lim
t→t0

∫
E
ftx dµ(x) =

∫
E

lim
t→t0

ftx dµ(x) =

∫
E

0 dµ(x) = 0.

Hence we infer that µ(A) = 0. For the second step, we take A ∈ B(E) such that 0 /∈ A.

Let Ak = A ∩
(
E \B(0, 1

k )
)
, for k ∈ N. Then, A ∩

(
E \B(0, 1

k )
)

= ∅. By step 1, we have

µ(Ak) = 0. Moreover, Ak ⊂ A and
⋃∞
k=1Ak = A. By [13, Exercise 1.1] we infer that

µ(A) = lim
k→∞

µ(Ak) = lim
k→∞

0 = 0.

In particular, µ(E \ {0} = 0). Since µ is a probability measure, we infer that

1 = µ(E) = µ(E \ {0}+ {0}) = 0 + µ({0}) = 1.

Hence we proved that µ = δ0.

Let us recall that the C0-semigroup {πt}t≥0 on the space C0 ([0, 1]) corresponding to the

equation (4.2.1). Thus, Corollary 4.48 can be rephrased by saying that the equation (4.2.1)

has only a trivial invariant measure on the space C0 ([0, 1]) and this invariant measure is

the Dirac delta measure at the origin. Hence, we need to modify the equation if we want

to find nontrivial invariant measures. So, instead of problem (4.2.1)-(4.2.2) which is a

special case of problem (4.0.4)-(4.0.5) with c(u) = 0, we will consider another special case

of problem (4.0.4)-(4.0.5) with c(u) = λu, u ∈ R, λ ≥ 0 is a fixed parameter. In other

words, we consider the following problem

∂u(t, x)

∂t
+ a(x)

∂u(t, x)

∂x
= λu(t, x),

u(0, x) = u0(x).

(4.3.2)
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Thus, if we look for the existence of nontrivial invariant measures we assume that λ > 0.

Before we embark on proving the existence of the invariant measures for the equa-

tion (4.3.2) we need to state some useful definitions and properties.

Definition 4.49. [43]. We say that a measurable semiflow {Tt}t≥0 defined on a proba-

bility measure space (X,X , µ), with µ being an invariant probability measure for {Tt}t≥0,

is exact if and only if the σ-field
⋂
t>0 T

−1
t (X ) contains only sets of measure zero or one,

i.e.,

if C ∈
⋂
t>0

T−1
t (X ) then µ(C) ∈ {0, 1}.

Definition 4.50. Suppose that {Tt}t≥0 is a semiflow on a set Y . An element y ∈ Y is

called A periodic point of the semiflow {Tt}t≥0 if and only if there exists t0 > 0 such that

the following condition is satisfied

Tt0y = y. (4.3.3)

A number t0 > 0 satisfying condition (4.3.3) is called a period of the periodic point y of

the semigroup {Tt}t≥0.

Let us now state the following profound result known as the Kuratowski Theorem which

plays an important role in our main proof of finding the invariant measure, see [32,

Theorem 3.9 and Corollary 3.3].

Theorem 4.51. Let X1 and X2 are two complete separable metric spaces and E1 ⊂ X1.

Let ϕ : E1 → X2 be injective and Borel measurable. Then, E2 := ϕ(E1) ∈ B(X2), i.e., E2

are Borel subset of X2.

Moreover, the map ϕ : E1 → E2 is a Borel measurable isomorphism. In particular, the

the inverse maps ϕ−1 : E2 → E1 is Borel measurable.

The following corollary is a simple formulation from Kuratowski Theorem.

Corollary 4.52. Let X1 and X2 are two complete separable metric space and E1 ⊂ X1 is

Borel set. Let ϕ : E1 → X2 is an injective and continuous map. Then the set E2 = ϕ(E1)

is Borel subset of X2, i.e., E2 := ϕ(E1) ∈ B(X2).

Moreover, the map ϕ : E1 → E2 is a Borel measurable isomorphism. In particular, the

the inverse map ϕ−1 : E2 → E1 is Borel measurable.

Definition 4.53. Assume that T ⊂ R and ξ = {ξ(t) : t ∈ T} is a stochastic process. The

finite dimensional distribution Φt1,··· ,tn at times t1, · · · , tn ∈ T of the process ξ is a Borel

probability measure on Rn defined by the following formula

Φt1,··· ,tn(A) := P
(
(ξt1 , · · · , ξtn) ∈ A

)
, A ∈ B(Rn). (4.3.4)

Definition 4.54. Assume that T ⊂ R. A stochastic processes ξ = {ξ(t) : t ∈ T} defined

on a probability space (Ω,F ,P) is called stationary if for any real number h, its finite
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dimensional distributions are unaffected by a shift through h. In other words, for all

t1, · · · , tn ∈ T , h ∈ R such that t1 +h, · · · , tn+h ∈ T , the finite dimensional distributions

of ξ at times t1, · · · , tn and t1 + h, · · · , tn + h are equal, i.e.,

Φt1,··· ,tn = Φt1+h,··· ,tn+h.

It turns out that it is sufficient in Definition 4.54 to consider Borel sets of a special form

as is explained in the following result.

Proposition 4.55. A stochastic processes ξ = {ξ(t) : t ∈ T} defined on a probability

space (Ω,F ,P) is stationary if and only if for any real number h and all t1, · · · , tn ∈ T
such that t1 + h, · · · , tn + h ∈ T , the following equality holds

Φt1,··· ,tn(A) = Φt1+h,··· ,tn+h(A),

for every set A = A1 × · · · ×An ∈ B(Rn), where Ai ∈ B(R), i = 1, . . . , n.

Proof of Proposition 4.55. The proof of this Proposition consists of two parts. The first

part is trivial, because if Ai ∈ B(R), i = 1, . . . , n then A = A1 × · · · × An ∈ B(Rn). For

the second part, we choose and fix h > 0, t1, · · · , tn ∈ [0,∞). We use a well-known result

[2, Example 10.1], that the Borel σ-field on Rn is generated by Borel ”rectangles”, i.e.,

B(Rn) = σ(B0(Rn)), (4.3.5)

where

B0(Rn) :=
{
A1 × · · · ×An : Ai ∈ B(R), i = 1, · · · , n.

}
By the ”uniqueness of measures” property [2, Theorem 3.3] it follows from equality (4.3.5)

that if m1 and m2 are two probability measures of B(Rn) which coincide on B0(Rn), i.e.,

m1(A) = m2(A), for every A ∈ B0(Rn)

then these measures are equal, i.e.,

m1(A) = m2(A), for every A ∈ B(Rn).

We use this property for two measures

m1 = Φt1,··· ,tn and m2 = Φt1+h,··· ,tn+h.

Since the measures m1 and m2 are equal in B0(Rn) for every set A, we infer that

Φt1,··· ,tn(A) = Φt1+h,··· ,tn+h(A).
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The proof of Proposition 4.55 is complete.

4.3.1 An Invariant measure for the shift-semigroup

In this section we construct an invariant probability measure for the shift semigroup

{Tt}t≥0 that defined by equation (4.2.43) in the space Y . For the completeness sake, we

recall some important results related to the Ornstein-Uhlenbeck process (or for short, OU

process).

4.3.1.1 The Ornstein-Uhlenbeck process

Assume that w = (w(s))s∈[0,1] is a Brownian Motion defined on a probability space

(Ω,F ,P). In particular, we assume that the trajectories of w are P-almost surely contin-

uous, which means, there exists a set Ω0 ∈ F such that P(Ω0) = 1 and for every ω ∈ Ω0,

the trajectory of w corresponding to ω, i.e.,

w(·, ω) :=
{

[0, 1] 3 t 7→ w(t, ω) ∈ R
}
∈ C0

(
[0, 1]

)
is continuous. Thus, without loss of generality we assume that

Ω = C0
(
[0, 1]

)
(4.3.6)

and the Brownian Motion w is the canonical process defined by the following formula

w(s) : C0
(
[0, 1]

)
3 ω 7→ ω(s) ∈ R, s ∈ [0, 1].

For a set A ⊂ [0,∞), we denote by FA the σ-field generated by the random variables

w(t), for t ∈ A. In other words,

FA := σ
(
{(w(t1), . . . , w(tn)−1(B) : n ∈ N, t1, . . . , tn ∈ A, B ∈ B(Rn)}

)
.

Let ξ = {ξ(t) : t ∈ [0,∞)} be the OU process defined by the following identity

ξ(t) = etw(e−2t), t ≥ 0. (4.3.7)

Proposition 4.56. Let ξ = {ξ(t) : t ∈ [0,∞)} be the OU process defined by formula

(4.3.7). Then the following conditions are satisfied.

(i) If t ∈ [0,∞), then ξ(t) is N(0, 1), i.e., ξ(t) has a normal distribution with parameters

µ = 0 and σ2 = 1.



Solutions with assumptions for PDEs 124

(ii) Process ξ is stationary,

(iii) There exists a set Ω0 ∈ F such that P(Ω0) = 1 and for every ω ∈ Ω0 there exists

M = M(ω) > 0 such that

|ξ(t, ω)| ≤M ln(2 + 2t), t ∈ [0,∞). (4.3.8)

The proof below uses the following different but equivalent (in some sense) definition of

the OU process,

ξ(t) = e−tw(e2t), t ≥ 0. (4.3.9)

Proof of Proposition 4.56. Proof of part (i). Using the alternative definition (4.3.9) we

have

E
(
ξ(t)

)
= E

(
e−tw(e2t)

)
= 0,

and

E
(
ξ(t)2

)
= E

[(
e−tw(e2t)

)2]
= e−2tE

[(
w(e2t)

)2]
= e−2te2t = 1.

Proof of part (ii). This result is standard and well known. One can also calculate, for

t ∈ R and h > 0,

E
(
ξ(t)ξ(t+ h)

)
= E

[
etw(e−2t)et+hw(e−2(t+h))

]
= e2t+hE

[
w(e−2t)w(e−2(t+h))

]
= e2t+he−2(t+h) = e−h,

Proof of part (iii). In order to prove this condition, we use the law of the iterated

logarithm for Brownian motion. According to Definition 2.38 condition (4) and Theorem

5.1 in [31], there exists a set Ω0 ∈ F such that P(Ω0) = 1 and for every ω ∈ Ω0, the

trajectory

[0,∞) 3 t 7→ B(t, ω) ∈ R is continuous (4.3.10)

and

lim sup
t→∞

|B(t, ω)|√
2 log log(2t)

= 1. (4.3.11)

Let us now choose and fix ω ∈ Ω0. Then by equality (4.3.11), for every ε > 0 there exists

Tε = Tε(ω) ≥ 0 such that for every t ≥ Tε(ω), we have

|B(t, ω)| ≤ (1 + ε)
√

2t log(log t).
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Let us choose ε = 1 for the remaining proof. Thus, for every e2t ≥ T1 we have

|B(e2t, ω)| ≤ 2
√

2e2t log(log(e2t)) = 2
√

2et
√

ln(2t).

Let us observe that e2t ≥ Tε if and only if t ≥ 1
2 log T1. Hence we infer that

|ξ(t, ω)| = |e−tw(e2t, ω)| ≤ e−t(1 + ε)
√

2et
√

(log(2 + 2t))

≤ 2
√

2 log(2 + 2t), for every t ∈ [
1

2
log T1,∞). (4.3.12)

On the other hand, by condition (4.3.10) the function W (·, ω) : [0, T1]→ R is continuous

and therefore, the function ξ(·, ω) : [0, 1
2 log T1] → R is continuous. Because the interval

[0, 1
2 log T1] is compact and function |ξ(t)|

log(2+2t) : [0, 1
2 log T1] → R is continuous, we infer

that this function is bounded, see [39, Theorem 2.41]. Therefore, there exists M > 0 such

that
|ξ(t)|

log(2 + 2t)
≤M, for every t ∈ [0,

1

2
log T1]. (4.3.13)

Combining inequalities (4.3.12)-(4.3.13) we infer that there exists C > 0 such that

|ξ(t)| ≤ C log(2 + 2t), t ≥ 0.

The importance of the law of the Iterated Logarithm for Brownian motion, see Theo-

rem 2.40, for this thesis lies in the following corollary.

Corollary 4.57. Let ξ = {ξ(t) : t ∈ [0,∞)} be the OU process defined by formula (4.3.7).

Then P-almost surely the trajectories of the process ξ belong to the set Y0 which was defined

before in formula (4.2.54).

Let Y be the space defined earlier in formula (4.2.42). Let B = B(Y ) be the σ-field of

Borel subset of Y . Since, the σ-field B(Y ) is equal to the σ-field generated by the family

of cylindrical sets one gets the following abstract result. This is a consequence of a general

result due to Fernique, see [48, Corollary and Theorem 1.2, p.8]

Theorem 4.58. Let Y be a separable metric space. Suppose that ξ = {ξ(t) : t ∈ [0,∞)} is

a stochastic process defined on a probability space (Ω,F ,P) such that P-almost surely, the

trajectories of the process ξ belong to Y . Then there exists a unique probability measure

m on the measurable space
(
Y,B(Y )

)
such that for every cylinder set C, 3 of the following

form

C = C(s1, · · · , sn;A1, · · · , An) = {x ∈ Y : x(s1) ∈ A1, · · · , x(sn) ∈ An}, (4.3.14)

3Note that every cylinder set C belongs to B(Y ). Let us recall, see Corollary and Theorem 1.2, p.8 in
[48], that the Borel σ field B(Y ) on Y , is generated by the family of all cylinder sets.
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where 0 ≤ s1 < s2 < · · · < sn <∞ and Ai ∈ B(Rn), i = 1, . . . , n, one has

m
(
C
)

= Φs1,··· ,sn(
n∏
i=1

Ai), (4.3.15)

where Φs1,··· ,sn is the finite dimensional distribution of process ξ defined in formula (4.3.4).

Proof of Theorem 4.58. The proof follows from the Hahn’s extension theorem, see Theo-

rem 1.1.16 in [15].

Definition 4.59. Let Y be the separable Banach space defined in formula (4.2.42). Sup-

pose that ξ = {ξ(t) : t ∈ [0,∞)} is a stochastic process defined on a probability space

(Ω,F ,P) such that P-almost surely, the trajectories of ξ belong to Y . Then the measure

m on the space
(
Y,B(Y )

)
from Theorem 4.58 is called the law of stochastic process ξ.

Remark 4.60. It is important to note that the meaning of what we say that “m is the

law of the OU process” appears implicitly in the course of the next Lemma 4.61. We

write

m(T−1
t (C)) = P

({
ω ∈ Ω : ξ(·, ω) ∈ T−1

t (C)
})
, C ∈ B(Y ).

Denoting the set T−1
t (C) by A we get

m(A) = P
({
ω ∈ Ω : ξ(·, ω) ∈ A

})
, A ∈ B(Y ). (4.3.16)

The definition of the OU process suggests introducing the following map

K : C0
(
[0, 1]

)
3 ω 7→ {[0,∞) 3 t 7→ etω(e−2t)} ∈ Y ⊂ C([0,∞)), (4.3.17)

where we use the concrete model (4.3.6) of the sample space Ω.

Using this map we can rewrite the previous identity (4.3.16) in the following way

m(A) = P
({
ω ∈ Ω : K(ω) ∈ A

})
= P

(
K−1(A)), A ∈ B(Y ). (4.3.18)

In other words, the measurem is the image of the Wiener measure P via the transformation

K.

Lemma 4.61. Assume that γ > 0 and Y = Yγ is the separable Banach space defined

in formula (4.2.42). Let {Tt}t≥0 be the shift semigroup defined by formula (4.2.43) in

the space Y . Suppose that ξ = {ξ(t) : t ∈ [0,∞)} is a stochastic process defined on a

probability space (Ω,F ,P) such that P-almost surely, every trajectory of process ξ belongs

to the space Y . Let m be the law of the process ξ. Then m is a Borel probability measure on
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(Y,B(Y )). Moreover, the measure m is an invariant probability measure of the semigroup

{Tt}t≥0 if and only if the stochastic process ξ is stationary.

Proof of Lemma 4.61. Let us first observe that it is known that m is a Borel probability

measure on (Y,B(Y )). We prove the second assertion of this Lemma in two steps.

Step 1. We prove that if ξ is a stationary process then m is an invariant measure of

the semigroup {Tt}t≥0. Assume that the process ξ is a stationary process. Let C be a

cylindrical set of the following form

C = {C(s1, · · · , sn;A1, · · · , An)} = {x ∈ Y : x(s1) ∈ A1, · · · , x(sn) ∈ An}

for some 0 < s1 < · · · < sn, and A1, · · · , An ∈ B(R). Let us choose and fix t > 0. By the

definition of the inverse set and the definition of shift semigroup in equation (4.2.43) we

have

T−1
t (C) := {x ∈ Y : Tt(x) ∈ C}

= {x ∈ Y : [Tt(x)](si) ∈ Ai, i = 1, · · · , n}

= {x ∈ Y : x(t+ si) ∈ Ai, i = 1, · · · , n}.

Next, we calculate the measure m for both sides of the above equality to get the following

m(T−1
t (C)) = P

({
ω ∈ Ω : ξ(·, ω) ∈ T−1

t (C)
})

= P
({
ω ∈ Ω : ξsi+t(ω) ∈ Ai, i = 1, · · · , n

})
= Φs1+t,··· ,sn+t(A1 × · · · ×An) = · · ·

To move ahead with the proof we use the stationarity of process ξ, so we have

· · · = Φs1,··· ,sn(A1 × · · · ×An)

= P
(
s
{
ω ∈ Ω : ξsi(ω) ∈ Ai, i = 1, · · · , n

})
= P

({
ω ∈ Ω : ξ(·, ω) ∈ C

})
= m(C).

Hence we proved that for any cylindrical set,

m(T−1
t (C)) = m(C) for every C ∈ B(Y ).

Since the σ-field generated by the cylindrical set is equal to the Borel σ-field B(Y ) we

deduce that

m(T−1
t (D)) = m(D), for any arbitrary set D ∈ B(Y ). (4.3.19)

Step 2. We prove that if m is invariant of the semigroup {Tt}t≥0 then ξ is a stationary

process. Assume that m is an invariant probability measure for the semiflow {Tt}t≥0.
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According to Definition 4.54, in order to prove that ξ is a stationary process we need to

show that for all h > 0 and s1, · · · , sn ∈ [0,∞) the following condition is satisfied

Φs1,··· ,sn(A) = Φs1+h,··· ,sn+h(A), for every A ∈ B(Rn). (4.3.20)

Let us recall that Φs1,··· ,sn(A) = P
(
(ξs1 , · · · , ξsn) ∈ A

)
and

Φs1+h,··· ,sn+h(A) = P
(
(ξs1+h, · · · , ξsn+h) ∈ A

)
.

Let us choose and fix h > 0, t1, · · · , tn ∈ [0,∞) and a special Borel set A = A1×. . .×An ∈
B(Rn). Let C be any cylindrical set of the following form

C = {C(s1, · · · , sn;A1, · · · , An)} = {x ∈ Y : x(s1) ∈ A1, · · · , x(sn) ∈ An}.

Note that the set T−1
t (C) is equal to

T−1
t (C) = {x ∈ Y : Ttx ∈ C} = {x ∈ Y : x(t+ ·) ∈ C} (4.3.21)

= {x ∈ Y : x(t+ s1) ∈ A1, · · · , x(t+ sn) ∈ An}.

To prove condition (4.3.20) we start with the LHS and we get the following train of

equalities.

Φs1,··· ,sn(A1 × · · · ×An) = P
({
ω ∈ Ω : ξsi(ω) ∈ Ai, i = 1, · · · , n

})
= P

({
ω ∈ Ω : ξ(·, ω) ∈ C

})
= m(C)

Since m is invariant probability measure of Tt, by using identity (4.3.21), we infer that

Φs1,··· ,sn(A1 × · · · ×An) = m(T−1
t (C)) = P

({
ω ∈ Ω : ξ(·, ω) ∈ T−1

t (C)
})

= P
({
ω ∈ Ω : ξsi+t(ω) ∈ Ai, i = 1, · · · , n

})
= Φs1+t,··· ,sn+t(A1 × · · · ×An).

Hence, by Proposition 4.55, we infer that condition (4.3.20) is satisfied. This implies that

ξ is a stationary process.

The following proposition is related to [43, Proposition 4], where a similar result is proved

for a different space.

Proposition 4.62. Assume that γ > 0 and let Y = Yγ be the space defined in for-

mula (4.2.42). Let {Tt}t≥0 be the the shift semigroup on the space Y defined by equa-

tion (4.2.43). Let m be the law of the OU process ξ so that m is a probability measure on

(Y,B(Y )). Assume that the measure m is invariant for the semigroup {Tt}t≥0. Then the
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semigroup {Tt}t≥0 is exact on (Y,B(Y ),m). Moreover, the measure m of the set of all

periodic points of {Tt} on the space Y is equal to zero.

Before we embark on the proof of the above result let us state a couple of standard but

important results which are a consequence of Corollary and Theorem 1.2, p.8 in [48], that

the Borel σ field B(Y ) on Y , is generated by the family of all cylinder sets.

B(Y ) := σ
(
ξ(t) : t ∈ [0,∞)

)
,

T−1
s (B(Y )) := σ

(
ξ(t) : t ∈ [s,∞)

)
. (4.3.22)

Proof of Proposition 4.62. To prove that {Tt}t≥0 is exact, we need to verify the following

condition

if A ∈
⋂
s>0

T−1
s (B(Y )) then m(A) ∈ {0, 1}.

We assume that T−1
s (B(Y )) is σ-field generated by ξ(t) for every t ≥ s. Let us choose and

fix A ∈
⋂
s>0 T

−1
s (B(Y )). Hence, A ∈ T−1

s (B(Y )) for every s > 0. Let us now choose and

fix s > 0. Hence, by equality (4.3.22), we infer that

A ∈ σ
(
ξ(t) : t ∈ [s,∞)

)
.

Digression 4.63. Let us recall that σ
(
ξ(t) : t ∈ [s,∞)

)
is the smallest σ-field of subsets

of Ω such that every ξ(t) is measurable with respect it. Obviously, this σ-field is generated

by a family of sets of the form

{ω ∈ Ω : ξ(t1, ω) ∈ A1, . . . , ξ(tn, ω) ∈ An},

where s ≤ t1 < t2 < · · · < tn and A1, . . . , An ∈ B(R). Thus this σ-field is generated by a

family of all cylindrical sets.

By the definition (4.3.7) of the Ornstein-Uhlenbeck process we infer that

A ∈ σ
(
w(t) : t ∈ (0, e−2s]

)
.

Since σ
(
w(t) : t ∈ (0, e−2s]

)
= Fe−2s we infer that

A ∈
⋂
s>0

Fe−2s =
⋂

0<t<1

Ft.

Applying the Blumenthal’s law [31, Theorem 2.7], we infer that m(A) is zero or one. So

we proved that Tt is exact.

Now we want to show that the set of periodic points of {Tt} has zero measure. In order
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to show that it is sufficient to show the set of bounded (continuous) functions has zero

measure. Let ξ be the OU process defined by (4.3.7). Since ξ is a stationary process, by

Lemma 4.61 we infer that the measure m defined by (4.3.19) is an invariant probability

measure for the semigroup {Tt}t≥0. From the law of iterated logarithm [31, Theorem 5.1]

it follows that

lim sup
t→∞

|ξ(t)|√
2 log(2t)

= 1 P− almost surely.

This means that there exists a set Ω1 ∈ F such that P(Ω1) = 1 and for every ω ∈ Ω1,

lim sup
t→∞

|ξ(t, ω)|√
2 log(2t)

= 1.

Therefore we infer that the sets of bounded function has measure zero. Hence we proved

that the set of periodic points of {Tt} has measure zero.

Lemma 4.64. P-almost surely every trajectory of the OU process ξ defined by (4.3.7)

belongs to the following space

{
v ∈ C([0,∞)) : sup

s∈[0,∞)

|v(s)|
1 + s

<∞
}
. (4.3.23)

In particular, if γ > 0 and Y = Yγ is the space defined in formula (4.2.42), then P-almost

surely every trajectory of the OU process ξ defined by (4.3.7) belongs to Yγ.

Remark 4.65. If we define the space Y0 by the formula (4.2.42) with γ = 0, then the

last assertion of Lemma 4.64 is not true for the space Y0. Indeed, by the law of iterated

logarithm, see e.g. equality (4.3.24) below, the trajectories of the O-U process ξ are

unbounded. Indeed, since limt→∞
√

2 log log(2t) =∞, we infer that lim supt→∞ |ξ(t, ω)| =
∞.

Proof of Lemma 4.64. Because the space defined by formula (4.3.23) is contained in the

space Yγ it is sufficient to prove the first part of the Lemma. For this purpose, let

ξ = {ξ(t), t ≥ 0} be the OU process defined by (4.3.7) in term of the Brownian motion

w = (w(t))t≥0. We know from the definition of Brownian motion that P-almost surely

the trajectories t 7→ w(t) are continuous. Thus, as we have written earlier, there exists a

set Ω0 ∈ F such that P(Ω0) = 1 and for every ω ∈ Ω0 the trajectory of w corresponding

to ω, i.e.,

w(·, ω) :=
{

[0,∞) 3 t 7→ w(t, ω) ∈ R
}

is a continuous function.

Since the composition and the product of continuous functions is a continuous function

and the function t 7→ e−2t is continuous, we infer that for every ω ∈ Ω0 the trajectory of

ξ corresponding to ω, is also a continuous function.
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Moreover, from the Law of the Iterated Logarithm for Brownian motion [31, Theorem

5.1] it follows that P-almost surely

lim sup
t→∞

|ξ(t)|√
2 log log(2t)

= 1.

Thus, there exists a set Ω1 ∈ F such that P(Ω1) = 1 and for every ω ∈ Ω1,

lim sup
t→∞

|ξ(t, ω)|√
2 log log(2t)

= 1. (4.3.24)

Since by the l’Hospital rule, see e.g. [39, Theorem 5.13],

lim
t→∞

√
2 log log(2t)

1 + t
= 0,

we infer that for every ω ∈ Ω1, there exists C > 0 such that

|ξ(t, ω)| ≤ C(1 + t), t ≥ 0.

Since Ω2 := Ω0 ∩Ω1 ∈ F and P(Ω2) = 1 we infer that P-almost surely every trajectory of

the process ξ belongs to space.

The second part of Lemma 4.64 and the abstract Theorem 4.58 imply the following result.

Corollary 4.66. Assume that γ > 0 and let Y = Yγ be the separable Banach space

defined in equation (4.2.42). Let ξ be the OU process defined by formula (4.3.7). Then

there exists a unique probability measure m on the measurable space
(
Y,B(Y )

)
such that

for every cylinder set C of the form (4.3.14), the equality (4.3.15) holds.

Moreover, this measure m is concentrated on the set Y0, defined in formula (4.2.54), which

means,

Y0 ∈ B(Y ) and m(Y0) = 1.

Proof of Corollary 4.66. The proof of the first part is based on applying Theorem 4.58

and the proof of the second part is based on applying Corollary 4.57.

4.3.2 The main result

In this section, we present the main Theorem. It is a generalisation of [43, Theorem 1]

which was proved under stronger assumptions on the coefficients a and c. We begin by

recalling our Assumption 4.2 that we listed at the beginning of this chapter.
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A1 - The function a : [0, 1]→ R is continuous;

A2 - a(0) = 0 and a(x) > 0 for x ∈ (0, 1];

A3 - The function a satisfies the Osgood condition, i.e.,

|a(x2)− a(x1)| ≤ φ(|x2 − x1|), for all x1, x2 ∈ [0, 1],

for an increasing function φ : [0, 1]→ [0,∞) such that φ(r) > 0 if r > 0 and∫ δ

0

1

φ(r)
dr =∞, for every δ > 0. i.e., lim

ε→0+

∫ δ

ε

1

φ(r)
dr =∞.

Theorem 4.67. Assume that the Assumption 4.2 is satisfied. Assume that λ > 0. Let

{St}t≥0 be the C0-semigroup generated by equation (4.3.2), that given in Example 2.82.

Then, there exists a Borel probability measure µ on the Banach space E = C0 ([0, 1])

satisfying the following conditions:

(i) µ is invariant under {St},

(ii) µ(Per) = 0, where Per is the set of periodic points of {St},

(iii) {St}t≥0 is exact on
(
E,B(E), µ

)
,

(iv) each nonempty open subset of the space E has a positive measure,

(v) all moments of µ are finite and even more, i.e. there exists β > 0 such that∫
E
eβ‖v‖

2
E µ(dv) <∞.

Proof of Theorem 4.67. First of all, we need to find a Borel probability measure µ on the

space E which is invariant for the semigroup {St}t≥0. After that, We show that µ satisfies

the set of conditions stated in the Theorem 4.67. We begin with proposing a candidate for

such a measure. For this purpose, let us choose γ ≥ λ (note that this implies that γ > 0)

and let Y = Yγ be the Banach space defined by formula (4.2.42). It follows from Lemma

4.64 and Proposition 4.62 that there exists a Borel probability measure m on Y which

is invariant for the shift semigroup {Tt}t≥ on Y . Let Φ : E → Y be the map defined in

formula (4.2.48). Then we define a function µ by

µ : B(E) 3 A 7→ m
(
Φ(A)

)
∈ [0, 1]. (4.3.25)

To start with, we need to verify whether µ defined above in formula (4.3.25) is a Borel

probability measure on the space E. In other words, we need to show that µ satisfies the

following properties.



Solutions with assumptions for PDEs 133

(a) µ is a well-defined map from B(E) to [0, 1];

(b) µ is a probability measure on the space E.

Regarding the first property, since γ ≥ λ, by Corollary 4.41, the map Φ is injective and

continuous. Moreover, E and Y are separable Banach spaces (in particular, separable

metric spaces, i.e., Polish spaces ). Hence, according to the Kuratowski Theorem, see

Corollary 4.52,

Φ(A) ∈ B(Y ), for every A ∈ B(E).

This implies, that for every set A ∈ B(E), the RHS of identity (4.3.25) makes sense.

Hence the function µ is well-defined. Regarding the property (b), we need to satisfy the

following two conditions: (1) µ is σ-additive, and (2) µ(E) = 1.

To check the first condition, we need to show that

µ(
∞⋃
i=1

Ai) =

∞∑
i=1

µ(Ai), i = 1, · · · , n.

Again use the definition of measure µ in the equation (4.3.25), so we have the following

µ
( ∞⋃
i=1

Ai
)

= m
(

Φ
( ∞⋃
i=1

(Ai)
))

= m
( ∞⋃
i=1

Φ(Ai)
)

=

∞∑
i=1

m
(
Φ(Ai)

)
=

∞∑
i=1

µ(Ai).

Regarding condition (2), we need to show that µ(E) = 1. For this aim, it is sufficient to

prove that there exists a set Y0 ⊂ Y having the following two properties

(i) Y0 ∈ B(Y ),

(ii) Y0 ⊂ Φ(E).

Note that a natural candidate for Y0 would be the space Y , but unfortunately, this is

not a good choice because Φ : E → Y is not surjective. Therefore, we consider a set Y0

defined by an earlier formula (4.2.54), i.e.

Y0 :=
{
y ∈ C([0,∞)) : ∃C > 0 : |y(t)| ≤ C ln(2 + 2t), t ∈ [0,∞)

}
.

=
{
y ∈ C([0,∞)) : ∃ k ∈ N : |y(t)| ≤ k ln(2 + 2t), t ∈ [0,∞)

}

Obviously, the set Y0 is a subset of Y = Yγ . We start with the proof of property (i). Let

us observe that

Y0 =
∞⋃
k=1

Y0,k
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where, for k ∈ N we define

Y0,k =
{
y ∈ C

(
[0,∞)

)
: |y(t)| ≤ k ln(2 + 2t), t ∈ [0,∞)

}
.

Because a closed set is a Borel set and a countable union of Borel sets is a Borel set;

in order to prove that Y0 is a Borel set, it is sufficient to prove that every set Y0,k is a

closed subset of the space Y . Equivalently, it is enough to prove that for every k ∈ N,

the set Y \ Y0,k is an open subset of Y . For this purpose, let us choose and fix a function

a ∈ Y \ Y0,k. We need to find r > 0 and n ∈ N such that

if pn(u− a) < r then u ∈ Y \ Y0,k.

For this aim, we observe that since a ∈ Y \ Y0,k there exists t0 > 0 such that

|a(t0)| > k ln(2 + 2t0).

Put

ε :=
|a(t0)| − k ln(2 + 2t0)

2
> 0.

Then we choose n ∈ N such that n ≥ t0, i.e. t0 ∈ [0, n]. Take now an arbitrary u ∈ Y
such that

pn(u− a) < ε.

In view of the definition of pn,

sup
t∈[0,n]

|u(t)− a(t)| < ε.

Since t0 ∈ [0, n] we infer

|u(t0)− a(t0)| < ε.

Note that the above inequality together with earlier proven inequality |a(t0)| > ε implies

that

|u(t0)− a(t0)| < |a(t0)|.

Now we are going to prove that

|u(t0)| > k ln(2 + 2t0).

By applying the fact ||x| − |y|| ≤ |x− y| we infer that |u(t0)| satisfies the following

|u(t0)| = |u(t0)− a(t0) + a(t0)| = |a(t0)− (a(t0)− u(t0))|

≥ ||a(t0)| − |a(t0)− u(t0)|| = |a(t0)| − |a(t0)− u(t0)|

> |a(t0)| − |a(t0)− ε > |a(t0)| −
(
|a(t0)| − k ln(2 + 2t0)

)
= k ln(2 + 2t0),
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which conclude the proof of the above inequality. This inequality implies that u ∈ Y \Y0,k.

In other words, we proved that, if pn(u − a) < ε then u ∈ Y \ Y0,k. This is exactly the

proof that the set Y \ Y0,k is closed. To verify the property (ii), let us choose and fix

y ∈ Y0. Then by Proposition 4.44, we infer that Qy ∈ E. Hence x := Qy belongs to the

space E. Moreover, by equality (4.2.56) in Proposition 4.45, we deduce that

Φ(x) = Φ(Qy) = y.

This implies that y ∈ Φ(E). Hence we proved that Y0 ⊂ Φ(E).

From the definition (4.3.25) of µ, the second property Y0 ⊂ Φ(E) and Corollary 4.66 we

deduce the following

µ(E) = m
(
Φ(E)

)
≥ m(Y0) = 1.

From conditions (1) and (2), which are related to the measure µ, we conclude that µ

defined by equation (4.3.25) is indeed a Borel probability measure on the space E.

After proving the existence of the measure µ, we now are ready to commence verifying

the properties that are stated in the Theorem 4.67. We start with the first Condition that

µ is an invariant measure for {St}t≥0. That is, we are going to prove that

µ
(
S−1
t (A)

)
= µ(A), for every t ≥ 0 and A ∈ B(E). (4.3.26)

Proof of equality (4.3.26). Let us recall that {St}t>0 is a C0-semigroup on the space E and

{Tt}t>0 is the shift semigroup on the space Y . Also, m is the Borel probability measure

on the space Y , see Lemma 4.61, which is invariant for {Tt}t≥0. Let us also recall that

Φ ◦ St = Tt ◦ Φ. (4.3.27)

Since {St}t≥0 is a C0-semigroup, we infer that equality (4.3.26) holds for t = 0. Let us

choose and fix t > 0. Let us also put Z = Φ(E). We claim that Tt(Z) ⊂ Z. For this aim,

let us choose z ∈ Z. Then there exists x ∈ E such that z = Φ(x). By equality (4.3.27)

we obtain the following

Ttz = Tt
(
Φ(x)

)
= Φ

(
St(x)

)
.

Hence, Ttz ∈ Φ(E) because Stx ∈ E. From this claim, we infer that we can define two

maps

T̃t : Z 3 z 7→ Ttz ∈ Z

and

Φ̃ : E 3 x 7→ Φ(x) ∈ Z.
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Since Φ is injective, it is easy to note that the new map Φ̃ is injective from E to Z and

the following equality holds

Φ̃ ◦ St = T̃t ◦ Φ̃. (4.3.28)

Let us recall that by property (b) µ(E) = 1. From equation (4.3.25), m
(
Φ(E)

)
= 1. Since

m is an invariant measure we infer that m(Z) = 1. Then m is concentrated on the set Z

which is a Borel subset of the space Y . Let us define the following family of subsets of

the set Z:

Z := {B ⊂ Z : B ∈ B(Y )}.

Obviously, Z is a subset of B(Y ). We also define a map m̃ as a restriction of the measure

m to the σ-field Z, i.e.,

m̃ : Z 3 B 7→ m(B) ∈ [0, 1].

The map m̃ is a probability measure and it is an invariant probability measure for the

semigroup {T̃t}t≥0. In particular,

m̃(T̃−1
t (B)) = m̃(B), B ∈ Z. (4.3.29)

The measure m̃ is often called the trace of the measure m to the set Z. We also have the

following formula related to the formula (4.3.25).

Claim 4.68. We have

µ(C) = m̃
(
Φ̃(C)

)
, C ∈ B(E). (4.3.30)

The Proof of Claim 4.68 is a direct consequence of the definitions of the map Φ̃, the

measure m̃ and the definition (4.3.25) of the measure µ.

Because the map Φ̃ is bijection, if we apply Φ̃−1 to both sides of the equality (4.3.28), we

get the following:

St = Φ̃−1 ◦ T̃t ◦ Φ̃, t ≥ 0.

Let us choose and fix an arbitrary set C ∈ B(E) and an arbitrary number t ∈ [0,∞).

Also, let us take the inverse image for both sides in the above equality, then by applying

the Corollary 2.31 we get

S−1
t (C) =

(
Φ̃−1 ◦ T̃−1

t ◦ Φ̃
)
(C) = Φ̃−1

[
T̃−1
t

(
Φ̃(C)

)]
.

By taking the measure µ for both sides of the above equality, we get

µ
(
S−1
t (C)

)
= µ

[
Φ̃−1

(
T̃−1
t (Φ̃(C))

)]
. (4.3.31)
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From the equality (4.3.30), if we denote Φ̃(C) by C ′, where C ′ is an auxiliary set, we

obtain

C ′ = Φ̃(C)⇔ C = Φ̃−1(C ′).

As a consequence, we can rewrite the equality (4.3.30) as follows

µ
(
Φ̃−1(C ′)

)
= m̃(C ′). (4.3.32)

Using the equality (4.3.32) and the definition of m̃ in the equality (4.3.29) along with the

definition of µ in equality (4.3.30) and substitute them in the equality (4.3.31) we get the

following final equations:

µ
(
S−1
t (C)

)
= m̃

[
T̃t
−1(

Φ̃(C)
)]

= m̃
(
Φ̃(C)

)
= µ(C).

So far, we have proved the first condition of Theorem 4.67. Next, we need to prove

condition (ii) of Theorem 4.67.

Proof of condition (ii). Let us assume the following systems
(
E,B(E), {St}t≥0, µ

)
and(

Z,Z, {T̃t}t≥0, m̃
)
. Also, we assume that the Proposition 4.62 is true for the system(

Z,Z, {T̃t}t≥0, m̃
)
. Recall that the map Φ̃ : E → Z is a bijection, measurable and

Φ̃ ◦ St = T̃t ◦ Φ̃, for any t ≥ 0. (4.3.33)

By applying the Kuratowski Theorem 4.51, the inverse Φ̃−1 : Z → E is measurable.

Define the following sets

P̃ := {z ∈ Z : ∃ t0 > 0, T̃t0z = z}, (4.3.34)

P := {e ∈ E : ∃ t0 > 0, St0e = e}, (4.3.35)

where P̃ is the set of periodic point of the semigroup {T̃t}t≥0 and P is the set of periodic

point of the semigroup {St}t≥0. By using the definition (4.3.30) we have µ(P ) = m̃
(
Φ̃(P )

)
.

We know that m̃(P̃ ) = 0. So, in order to verify that µ(P ) = 0, it is sufficient to show that

Φ̃(P ) = P̃ . (4.3.36)

To verify the above equality we have two statements. The first statement is Φ̃(P ) ⊆ P̃ and

the second statement is P̃ ⊆ Φ̃(P ). Regarding the first statement, we assume z ∈ Φ̃(P )

and we want to show that z ∈ P̃ . For this purpose, let us take z ∈ Φ̃(P ), which means that

there exists an element e in P such that z = Φ̃(e). Since e ∈ P , by the equality (4.3.35),
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e is periodic, i.e.,

∃ e ∈ E : ∃ t0 > 0, St0e = e.

To show that z ∈ P̃ , we use the definition in formula (4.3.34) of the periodic points in P̃ .

We need to prove that T̃t0z = z. Take z ∈ Z and t0 > 0, then we have

T̃t0z = T̃t0
(
Φ̃(e)

)
=
(
T̃t0 ◦ Φ̃

)
(e) =

(
Φ̃ ◦ St0

)
(e) = Φ̃

(
St0e

)
= Φ̃(e) = z,

which implies that z ∈ P̃ . Regarding the second statement that requires P̃ ⊆ Φ̃(P ), we

follow the argument above. Assume z ∈ P̃ and we want to show z ∈ Φ̃(P ). Take z ∈ P̃ .

Then by the definition of periodic point, there exists to > 0 such that T̃t0(z) = z and

z ∈ Z. Because map Φ̃ is bijection and z ∈ Z, then there exists e ∈ E such that z = Φ̃(e).

To prove that z ∈ Φ̃(P ) it is sufficient to prove that e ∈ P . In order to do so, we use

again the definition in the equality (4.3.35) and show that St0e = e.

Φ̃(e) = z = T̃t0z = T̃t0
(
Φ̃(e)

)
=
(
T̃t0 ◦ Φ̃

)
(e) =

(
Φ̃ ◦ St0

)
(e) = Φ̃

(
St0(e)

)
.

Hence Φ̃(e) = Φ̃(St0e). Thus, we infer that e = St0e because the map Φ̃ is injective.

Therefore, e ∈ P . This concludes the proof of the second statement, and consequently,

we finish the proof of the equality (4.3.36). Since Φ̃(P ) = P̃ we deduce that

µ(P ) = m̃(P̃ ) = 0.

By this, we verified the second condition (ii) of the Theorem 4.67.

Now we need to prove the condition (iii) of Theorem 4.67, i.e, that the semigroup {St}t≥0

is exact on
(
E,B(E), µ). We will show that

if A ∈
⋂
t>0

S−1
t (B(E)) then µ(A) ∈ {0, 1}. (4.3.37)

Proof of condition (iii) . We start the proof by recalling the following. The map Φ̃ is

bijection and equality (4.3.33) holds. Also, the measure µ is defined by µ(A) = m̃(Φ̃(A)).

We assume that the system
(
Z,Z, {T̃t}t≥0, m̃

)
is exact. That is,

if C ∈
⋂
t>0

T̃−1
t (Z) then m̃(C) ∈ {0, 1}. (4.3.38)

In order to prove condition (4.3.37) we take and fix an arbitrary set A ∈
⋂
t>0 S

−1
t

(
B(E)

)
.

If we can prove that the set C := Φ̃(A) belongs to
⋂
t>0 T̃

−1
t (Z), then by the equa-

tion (4.3.38) we would deduce that m̃(C) ∈ {0, 1} from which we would infer that
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µ(A) ∈ {0, 1}. To do this, it is sufficient to prove that for every t > 0 we have

C := Φ̃(A) ∈ T̃−1
t (Z).

Since we assume that A ∈
⋂
t>0 S

−1
t (B(E)), then A ∈ S−1

t (B(E)) for every t > 0. Which

means that there exists a set B ∈ B(E) such that A = S−1
t (B).

So let us choose and fix t > 0. Because Φ̃ : E → Z is an injective and measurable map, by

applying the Kuratowski Theorem 4.51 we infer that Φ̃−1 is also measurable. Therefore,

since B ∈ B(E), we infer that

Φ̃(B) ∈ Z. (4.3.39)

Now we claim that

C = T̃−1
t (Φ̃(B)). (4.3.40)

Indeed, by equality (4.3.33), because Φ̃, T̃t and St are bijections, their inverses exist. Φ̃

is surjective because of the choice of Z So, if we take the inverse for both sides of the

equality (4.3.33), we get

S−1
t ◦ Φ̃−1 = Φ̃−1 ◦ T̃−1

t .

By applying map Φ̃ for both sides in the above equality from the right we obtain

S−1
t = Φ̃−1 ◦ T̃−1

t ◦ Φ̃. (4.3.41)

Since C = Φ̃(A) and A = S−1
t (B), we deduce that C = Φ̃(S−1

t (B)). By substituting the

equality (4.3.41) in the last equality, we get

C = Φ̃
[
Φ̃−1 ◦ T̃−1

t ◦ Φ̃(B)
]

= T̃−1
t ◦ Φ̃(B) = T̃−1

t

(
Φ̃(B)

)
.

Hence we have verified claim (4.3.40). From the equation (4.3.39) we infer that C ∈
T̃−1
t

(
Z
)
. Since t > 0 was arbitrary, we proved that C = Φ̃(A) ∈

⋂
t>0 T̃

−1
t (Z), and there-

fore, by the exactness property of the system
(
Z,Z, {T̃t}t≥0, m̃

)
in the equation (4.3.38)

we infer that

m̃(C) = m̃
(
Φ̃(A)

)
∈ {0, 1}.

From the definition of measure µ in equation (4.3.30) we deduce that µ(A) ∈ {0, 1}. That

means, {St}t≥0 is exact on
(
E,B(E), µ). By this, we verified and completed the third

condition (iii) of Theorem 4.67.

Proof of condition (iv). Let us recall that by formula (4.3.18) of the function K and the

definition of the map µ in formula (4.3.25) we have

µ(A) = m
(
Φ(A)

)
, A ∈ B(E) and m(B) = P(K−1(B)), B ∈ B(Y ).
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Thus we can rewrite the measure µ as follows

µ(A) = m
(
(Φ−1)−1(A)

)
, A ∈ B(E),

and therefore, for every A ∈ B(E),

µ(A) = m
(
(Φ−1)−1(A)

)
= P

(
K−1(Φ−1)−1(A)

)
= P

(
Φ−1 ◦K)−1(A)

)
. (4.3.42)

Now we need to find the map Φ−1 ◦K.

For this purpose let choose and fix ω ∈ Ω. We denote x = (Φ−1 ◦K)(ω) and y = K(ω).

Our aim is to find a formula that relates x to ω. Then x = Φ−1(y) and so y = Φ(x).

Thus by the definition of the map K in formula (4.3.17), we deduce that for every t ≥ 0,

y(t) = etω(e−2t). By using the changes of variables, we get

x(s) = eλG(s)y
(
−G(s)

)
, s ∈ [0, 1].

Hence by using the definition of the function y we have

x(s) = eλG(s)
(
e−G(s)ω(e−2(−G(s)))

)
= e(λ−1)G(s)ω

(
e2G(s)

)
, s ∈ [0, 1].

We have found a formula for the map Φ−1 ◦K : Ω → E. To be more precise, if ω ∈ Ω,

then x = [Φ−1 ◦K](ω) is given by the formula (4.3.43) below

[(Φ−1 ◦K)ω](s) = e(λ−1)G(s)ω
(
e2G(s)

)
, s ∈ [0, 1], (4.3.43)

Also, we can choose the space Ω = C0
(
[0, 1]

)
. Before proceeding with the proof of

condition (iv), we state a remark that will help us with the proof.

Remark 4.69. So far we have chosen Ω = C0
(
[0, 1]

)
but we are free to choose different

spaces for Ω, for instance, for a set [0, 1] ⊂ R and parameter α ∈ (0, 1],

Ωα = Cα0

(
[0, 1]

)
:= {ω ∈ C0

(
[0, 1]

)
: sup

0≤s<t≤1

|ω(t)− ω(s)|
|t− s|α

<∞},

‖ω‖
Cα0

(
[0,1]
) := sup

t∈[0,1]
|ω(t)|+ sup

0≤s<t≤1

|ω(t)− ω(s)|
|t− s|α

. (4.3.44)

It follows that

‖ω‖
Cα0

(
[0,1]
) = sup

t∈[0,1]
|ω(t)|+ sup

0≤s<t≤1

|ω(t)− ω(s)|
|t− s|α

≥ sup
0≤s<t≤1

|ω(t)− ω(s)|
|t− s|α

≥ sup
0<t≤1

|ω(t)|
|t|α

= sup
0<r≤1

|ω(t)|
|r|α

.
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We also put

C0
0

(
[0, 1]

)
:= C0

(
[0, 1]

)
.

Let us recall that there exists a Borel probability measure on the set Ω which is equal to

the law of the Brownian Motion. This probability measure is usually called the standard

(classical) Wiener measure and we will denote it by P. Note that, almost surely trajecto-

ries of Brownian Motion are continuous. But, a stronger property is known, namely that

almost surely the trajectories of Brownian Motion are Hölder continuous with every ex-

ponent α ∈ (0, 1
2). This is a well-known fact and can be proved by using the Kolmogorov

test. It follows that the law of the Brownian Motion induces a Borel probability measure

Pα on the set Ωα, i.e., the Borel probability measure Pα is the law of the Brownian Motion

on the set Ωα. Note that by definition Ωα ⊂ Ω. Moreover, both spaces Ω and Ωα are

separable Banach spaces (with naturally defined norms), see e.g. (4.3.44) and that the

embedding iα : Ωα ↪→ Ω is linear and continuous (i.e., bounded). Moreover, it can be

easily shown that the measure P is the image of the measure Pα via the map iα, i.e.,

P(A) = Pα
(
i−1
α (A)

)
, A ∈ B(Ω).

Finally, since the map iα is continuous (as noted above) and obviously injective, by the

Kuratowski Theorem, the image by iα of the set Ωα is a Borel subset of the set Ω. In

other words, since iα(Ωα) = Ωα, we deduce that Ωα is a Borel subset of the set Ω and the

restriction of the measure P to the set Ωα is equal to the measure Pα.

It is known, that Pα is a Gaussian measure on the separable Banach space Ωα. Hence, by

the celebrated Fernique Theorem, see [19, Theorem 2.7], there exists βα > 0 such that∫
Ωα

eβα‖ω‖
2
Cα Pα(dω) <∞. (4.3.45)

It is also important to note that the measure Pα is non-degenerate, i.e.,

Pα(B) > 0, for every non-empty open B ⊂ Ωα.

Now we go back to prove condition (iv) of Theorem 4.67. Our objective is to confirm that

the measure µ is positive on open sets. For this aim let us choose and fix λ > 0 as in the

system (4.3.2). Let us choose and fix an auxiliary number α ∈ [0, 1
2) such that

λ > 2(
1

2
− α), (4.3.46)

i.e.
λ− 1

2
+ α > 0.
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We consider a map

Lα : Ωα → E (4.3.47)

[Lα(ω)](s) = e(λ−1)G(s)ω
(
e2G(s)

)
, s ∈ (0, 1],

and [(Lα)ω](0) = 0.

Note that the RHS of the above equality is the same as RHS of equality (4.3.43). This

means that the map Lα is the restriction of the map Φ−1 ◦K to the space Ωα.

Now it only remains to verify the following four properties of the map Lα.

1. the map Lα is well defined, i.e., if ω ∈ Cα0

(
[0, 1]

)
and x = Lαω, then x ∈ C0

(
[0, 1]

)
,

2. the map Lα is linear,

3. the map Lα is continuous, (i.e., bounded);

4. the measure µ satisfies

µ(A) = Pα
(
(Lα)−1(A)

)
, for every A ∈ B(E). (4.3.48)

Remark 4.70. Using Definition from section 13 of the book [2], see also section 3.6 of

[4], formula (4.3.48) above means that the measure µ is equal to the image of the measure

Pα under the mapping Lα. Thus, using notation [2], µ = PαL−1
α , and, using Bogachev’s

notation, µ = Pα ◦L−1
α . A very important result here is the change of measure Theorem,

i.e., Theorem 6.13 in [2]. In our context this theorem says that for every measurable

function f : E → [0,∞) the two integrals below exist simultaneously and they are equal,

i.e., ∫
E
f(v)µ(dv) =

∫
Ωα

f(Lα(ω))Pα(dω), (4.3.49)

or ∫
E
f dµ =

∫
Ωα

f ◦ Lα dPα.

To prove the first property (1), we fix ω ∈ Cα0

(
[0, 1]

)
and put x = Lαω. By the definition

of the map Lα we have x(0) = 0 and

x(s) =
(
e2G(s)

) (λ−1)
2 ω

(
e2G(s)

)
, s ∈ (0, 1].

Since the composition of continuous functions is continuous and the functionG : (0, 1]→ R
is continuous, by [39, Theorem 4.9], we infer that the function x is continuous at every

s ∈ (0, 1]. To prove that x is continuous on the whole closed interval [0, 1] it is sufficient

to prove that, since x(0) = 0,

lim
s→0+

x(s) = 0.
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For every s ∈ (0, 1], we put r = e2G(s). Because G(s)→ −∞ when s→ 0+, we infer that

r → 0. Moreover,

x(s) = z(r) = r
(λ−1)

2 ω(r).

Since ω ∈ Cα0 ([0, 1]) with α satisfying condition (4.3.46), we infer that

lim
r→0+

z(r) = 0.

Hence we infer that lims→0+ x(s) = 0. Thus we proved the first property.

Now we will prove the second property (2). Recall that λ > 0 and α satisfies condition

(4.3.46). In part (1) we proved that the map

Lα : Cα0 ([0, 1]) 3 ω 7→ x ∈ C0 ([0, 1])

is well-defined. One can trivially prove that it is linear. Now we will prove the third

property (3) that it is bounded (and hence continuous). We begin with recalling the

definition of the norm in the space C0 ([0, 1]),

‖x‖ C([0,1])0
= sup

s∈[0,1]
|x(s)|.

Let us choose and fix λ > 0, and α ∈ [0, 1
2) such that λ > 2(1

2 − α). Hence we have

‖Lαω‖ C([0,1])0
= ‖x‖ C([0,1])0

= sup
s∈[0,1]

|x(s)| = sup
0<s≤1

|x(s)| = sup
0<r≤1

r
λ−1

2 |ω(r)|

= sup
0<r≤1

r
λ−1

2
+α |ω(r)|

rα
≤ sup

0<r≤1

|ω(r)|
rα

≤ ‖ω‖ Cα0 ([0,1]).

To verify part (4), we notice that the identity (4.3.48) follows from earlier proven identity

(4.3.42). By this, we confirm the property (iv) of Theorem 4.67. That is, we deduce each

nonempty open subset of the space 0C([0, 1]) has a positive measure µ. Indeed, since Lα

is continuous, L−1
α (A) is an open subset of Ωα, for every open subset A of E.

Finally, it remains to prove the last property of our main result of this section, Theorem

4.67.

Proof of condition (v). Let us observe that by the change of measure theorem, the Fer-

nique Theorem, see (4.3.45), the boundedness of the linear map Lα defined by equation

(4.3.47) and the Change of Measure Formula (4.3.49) (which follows from the identify
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(4.3.48)) we deduce that with function f(v) = eβ‖v‖
2
E ,∫

E
eβ‖v‖

2
E µ(dv) =

∫
E
f(v)µ(dv) =

∫
E
f(v) (Pα ◦ L−1

α )(dv)

≤
∫

Ωα

e
β‖Lα‖2L(Ωα,E)

‖ω‖2Cα Pα(dω)

=

∫
Ωα

eβα‖ω‖
2
Cα Pα(dω) <∞

if we choose β > 0 such that β‖Lα‖2L(Ωα,E) ≤ βα, where βα is the constant in the Fernique

inequality (4.3.45). Hence, the proof of part (v) of Theorem 4.67 is complete.

Hence, the proof of the whole Theorem is complete.



Chapter 5

Invariant Measures for Dissipative

Nonlinear First Order PDEs

It is known in [43] that the Lasota equation (4.0.2) has an invariant measure under

Assumptions 4.1. In this chapter, in order to prove the existence and uniqueness of a

mild solution for a nonlinear Lasota equation, we assume a new set of assumptions for

the nonlinear case along with what we assumed in Chapter 4. Moreover, we analyse the

properties of this solution. In the end, we prove the existence of an invariant measure for

such equation. We do not investigate the question of the uniqueness invariant measure.

This is an interesting question for future research.

The organization of the present chapter is as follows. We dedicate the first Section 5.1

to state standard facts and definitions of the dissipative and Lipschitz functions. In the

second Section 5.2 we study the existence and the uniqueness of mild solutions for the

nonlinear evolution equation with Lipschitz nonlinearity. In Section 5.3 we prove the

existence and the uniqueness of mild solutions to evolution equations with dissipative

nonlinearity and we study the properties of such solutions. In Section 5.4 we present our

main theorem regarding the existence of an invariant measure for our nonlinear Lasota

equation. Lastly, Section 5.5 provides a discussion related to our work with compare to

the paper by Rudnicki [43].

145
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5.1 Preliminaries

In this section, we present all the information needed about the existence and the unique-

ness of the solution in order to define a mild solution for our PDE.

Definition 5.1. Suppose E is a Banach space with dual denoted by E∗. A function

f : D(f) → E, where D(f) ⊂ E is a dense subset, is called dissipative if and only if for

every x ∈ D(f) there exists z∗ ∈ ∂‖x‖ such that

〈f(x), z∗〉E E∗ ≤ 0.

The above definition is standard, see e.g., [33, Definition I.4.1]

Notation:

• We mean by the dual space E∗ the following, E∗ := {ϕ : E → R : ϕ is linear and bounded}.

• If E∗ is dual space of the Banach space E then we use notation

〈x, ϕ〉 = 〈x, ϕ〉E E∗ = ϕ(x), x ∈ E,ϕ ∈ E∗.

• To define the notation ∂‖x‖ which we use in Definition 5.1, there are two cases:

Case 1: if x = 0, then ∂‖x‖ := {x∗ ∈ E∗ : ‖x∗‖E∗ ≤ 1}.

Case 2: if x 6= 0, then ∂‖x‖ := {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖ = ‖x∗‖ = 1}.

Example 5.2. If E is a Hilbert space, then by the Riesz Lemma [40, Theorem 4.12] and

[26, Theorem 3.8-1] the dual space E∗ can be identified with the space E itself. Hence in

this case Definition 5.1 can be rewritten in the following form, see Pazy [33].

Suppose E is a real Hilbert space with the inner product 〈·, ·〉. A function f : D(f)→ E,

where D(f) ⊂ E is a dense subset, is called dissipative if and only if for every x ∈ D(f)

〈f(x), x〉 ≤ 0.

In particular, if E = R, then a function c : D(c) → R such that D(c) ⊂ R dense subset,

is called dissipative if and only if for every x ∈ D(c)

〈c(x), x〉R = c(x)x ≤ 0. (5.1.1)

An example of such a function is c(x) = −x3, for x ∈ R. But another important example

of function c is a function c(x) = λx − x3, x ∈ R, where λ ≥ 0 is fixed. This function c

satisfies the following generalisation of condition (5.1.1):

c(x)x ≤ λ|x|2, x ∈ D(c). (5.1.2)
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A function c satisfying condition (5.1.2) will be called of dissipative type. Note that if the

function c is of dissipative type with constant λ ≥ 0 then the function c−λI is dissipative.

Definition 5.3. Let X be a normed vector space with the norm denoted by | · |.

(1) A function f : X → X is a globally Hölder with exponent α ∈ (0, 1] if and only if

there exists a constant C > 0 such that

|f(x1)− f(x2)| ≤ C|x1 − x2|α, for all x1, x2 ∈ X.

(2) A function f : X → X which is a globally Hölder with exponent 1 is called globally

Lipschitz.

(3) A function f : X → X is a Lipschitz on balls if and only if for every R > 0 there

exists a constant CR > 0 such that

|f(x1)− f(x2)| ≤ CR|x1 − x2|, for all x1, x2 ∈ BX(0, R),

where BX(0, R) is the closed ball in the space X centred at zero and of radius R.

(4) A function f : X → X is a Hölder on balls with exponent α ∈ (0, 1] if and only if for

every R > 0 there exists a constant CR > 0 such that

|f(x1)− f(x2)| ≤ CR|x1 − x2|α, for all x1, x2 ∈ BX(0, R).

The definitions of globally Lipschitz/Hölder functions make sense in every metric space.

For instance, we can take X = [0, 1] with metric

d(x1, x2) = |x2 − x1|, x1, x2 ∈ [0, 1]. (5.1.3)

In general metric spaces, instead of using notions of Lipschitz/Hölder functions on balls,

one often uses notions of locally Lipschitz/Hölder functions. These two notions are equiv-

alent if X is a finite dimensional normed vector space. But in the case when X is an

infinite dimensional normed vector space, these two notions are not equivalent. Let us

recall that if (X, d) is a metric space then a function f : X → X is said to be locally

α-Hölder with α ∈ (0, 1] if and only if for every x0 ∈ X there exists R > 0 and a constant

C = C(x0, R) such that

d
(
f(x1), f(x2)

)
≤ Cd(x1, x2)α, for all x1, x2 ∈ BR(x0).

A locally 1- Hölder function is called a locally Lipschitz function. Obviously, if X is a

normed vector space with norm | · | and the corresponding distance function is defined by
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formula (5.1.3), then every function which is Hölder on balls with exponent α ∈ (0, 1] is

also locally α-Hölder. As we mentioned above, these notions are not equivalent in infinite

dimensional spaces.

5.1.1 Initial value problems in Banach space

Assume that X is a Banach space and A is the infinitesimal generator of a C0-semigroup

{St}t≥0 of bounded linear operators on X. Consider the following linear in-homogeneous

initial value problem

du(t)

dt
= Au(t) + f(t), t > 0, (5.1.4)

u(0) = u0, (5.1.5)

where u0 ∈ X and f : [0,∞) → X is a Bochner integrable function. The following

definition is [33, Definition IV.2.1] which gives the classical solution to an abstract in-

homogeneous Cauchy problem on the interval [0,∞). Pazy [33] used a notion of a classical

solution. As mentioned in Chapter 4, because we define a classical solution in a more

”classical” way, Pazy’s ”classical solution” will be renamed here as ”strong solution”.

Definition 5.4. By a strong solution to the abstract in-homogeneous Cauchy prob-

lem (5.1.4)-(5.1.5), we mean a continuous function u : [0,∞) → X which is continuously

differentiable on (0,∞), u(t) ∈ D(A) for t ∈ (0,∞), equation (5.1.4) is satisfied on (0,∞),

and (5.1.5) holds.

In order to formulate the definition of a mild solution we need the following result (Lemma

5.5) that is stated in Pazy [33] (after Corollary IV.2.2) and in the proof of the main

Theorem in the paper by Ball [1]. This result provides motivation to define a mild

solution to the initial value problem (5.1.4)-(5.1.5).

Lemma 5.5. Assume that X is a separable Banach space and S = {S(t)}t≥0 is a C0-

semigroup on the space X. If f ∈ L1(0, T ;X), then a function z defining by

z : [0, T ] 3 t 7→
∫ t

0
S(t− r)f(r) dr ∈ X, (5.1.6)

where the integral is meant in the Bochner sense, is well defined and continuous.

Before we start with the proof of this Lemma we need to mention an important result

that we use in the proof.

Lemma 5.6. Assume that f ∈ L1(a, b;X) and the function β defined by

β : [a, b] 3 r 7→ β(r) ∈ L(X,X)
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is strongly continuous, i.e., for every x ∈ X the following function

β(·)x : [a, b] 3 r 7→ β(r)(x) ∈ X

is continuous. Then the function

β · f : [a, b] 3 r 7→ β(r)f(r) ∈ X

belongs to the space L1(a, b;X).

Proof of Lemma 5.5. The proof of this lemma is twofold. First, we verify that the function

z defined by formula (5.1.6) is well-defined. Second, we prove that the function z is

continuous. Regarding the former, we fix an element t ∈ [0, T ]. Since f ∈ L1(0, T ;X)

then f ∈ L1(0, t;X). Hence we apply Lemma 5.6 with replacing the interval (a, b) by

(0, t) and the function β(r) replaced by S(t− r) for every r ∈ [0, t]. Note that if r ∈ [0, t]

then also t − r ∈ [0, t] and t − r ≥ 0. Therefore, S(t − r) ∈ L(X,X). Moreover, by the

strong continuity, see [33, Corollary I.2.3], we infer that function β satisfies assumptions

of Lemma 5.6. Hence, the function [0, t] 3 r 7→ S(t− r)f(r) ∈ X belongs to L1(0, T ;X).

In particular, the integral
∫ t

0 S(t − r)f(r) dr exists and belongs to X. Hence we proved

that the function z is well-defined.

Regarding the second part, we need to show that the function z defined by formula (5.1.6)

is continuous. In order to do that we need to prove the following

(i) limt→T− x(t) = x(T ) in X,

(ii) limt→0+ x(t) = 0 in X,

(iii) limt→t0− x(t) = x(t0) in X and t0 ∈ (0, T ),

(iv) limt→t0+ x(t) = x(t0) in X and t0 ∈ (0, T ).

We only provide proof of part (iv). The proofs of all three remaining parts are similar.

Since the limit in the sense of Cauchy is equivalent to the limit in the sense of Heine, see

[39, Theorem 4.2], it is sufficient to prove that if (tn)n≥0 is such that

tn > t0 for every n, lim
tn→t0

tn = t0, then lim
n→∞

x(tn) = x(t0). (5.1.7)

Let us choose and fix a sequence (tn)n≥0 satisfies the equation (5.1.7). We want to show

that

lim
n→∞

x(tn) = x(t0). (5.1.8)
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For this purpose, let us observe that

x(tn)− x(t0) =

∫ tn

0
S(tn − r)f(r) dr −

∫ t0

0
S(t0 − r)f(r) dr

=

∫ t0

0
S(tn − r)f(r) dr +

∫ tn

t0

S(tn − r)f(r) dr −
∫ t0

0
S(t0 − r)f(r) dr

=

∫ t0

0

[
S(tn − r)f(r)− S(t0 − r)f(r)

]
dr +

∫ tn

t0

S(tn − r)f(r) dr.

Thus, by [49, Corollary V. 1], we have

|x(tn)− x(t0)|X =

∫ t0

0
|S(tn − r)f(r)− S(t0 − r)f(r)|X dr

+

∫ tn

t0

‖S(tn − r)‖L(X)|f(r)|X dr.
(5.1.9)

We first show that the second term of the RHS of the equality (5.1.9) converges to 0 as

n→∞. Since for every r ∈ [0, tn] so that tn − r ∈ [0, tn] ⊂ [0, T ], we have for every n

‖S(tn − r)‖L(X) ≤ CT .

Therefore,∫ tn

t0

‖S(tn − r)‖L(X)|f(r)|X dr ≤ CT
∫ tn

t0

|f(r)|X dr =

∫ T

0
1[t0,tn](r)|f(r)|X dr.

By applying the Lebesgue Dominated Convergent Theorem (LDCT) with the following

choices hn(r) = 1[t0,tn](r)|f(r)|, g(r) = |f(r)| and h(r) = 0 for r ∈ [0, T ]. Because tn →
t0 we easily infer that hn(r) → h(0) for every r ∈ [0, T ]. Moreover, since the function

f ∈ L1(0, T ;X), ∫ T

0
g(r) dr =

∫ T

0
|f(r)|X dr <∞.

Hence the assumptions of LDCT are satisfied and therefore,∫ T

0
tn(r) dr →

∫ T

0
h(r) dr = 0.

This implies that ∫ tn

t0

‖S(tn − r)‖L(X)|f(r)|X dr → 0 as n→∞. (5.1.10)

By this, we deduce that the second term of the RHS of the equality (5.1.9) converges to 0

as n→∞. Now we show that the first term of the RHS of the equality (5.1.9) converges

to 0 as n→∞. For this purpose, let us recall that from Lemma 5.6 for each r the function

β : [0,∞)] 3 t 7→ S(t)f(r) ∈ X
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is continuous. Since tn− r → t0− r for every r ∈ [0, t0] we infer that S(tn− r)f(r) is also

converges to S(t0 − r)f(r) in X. That is, for every r ∈ [0, t0]

|S(tn − r)f(r)− S(t0 − r)f(r)|X → 0.

If we put hn(r) = |S(tn − r)f(r) − S(t0 − r)f(r)|X then hn(r) → 0 for every r ∈ [0, t0].

Moreover,

hn(r) ≤ ‖S(tn − r)‖|f(r)|X + ‖S(t0 − r)‖|f(r)|X

≤ CT |f(r)|X =: g(r) r ∈ [0, T ].

Put h(r) = 0, then again the assumptions of LDCT are satisfied and therefore,∫ T

0
hn(r) dr →

∫ T

0
h(r) dr = 0.

Hence, we infer that ∫ t0

0
|S(tn − r)f(r)− S(t0 − r)f(r)|X dr → 0. (5.1.11)

Hence, by substituting equations (5.1.10) and (5.1.11) into equation (5.1.9) we infer that

equation (5.1.8) holds. Thus, the proof of part (iv) of Lemma 5.5 is complete.

Now we are ready to define the mild solution to problem (5.1.4)-(5.1.5).

Definition 5.7. Assume that A is a generator of a C0-semigroup {S(t)}t≥0 of bounded

linear operators on a Banach space X. Let a function f ∈ L1(0, T ;X) for some T >

0. A function u ∈ C([0, T ], X) is called a mild solution to the linear in- homogeneous

equation (5.1.4)-(5.1.5) if and only if the following equality holds

u(t) = S(t)u0 +

∫ t

0
S(t− s) f(s) ds, for every t ∈ [0, T ]. (5.1.12)

It is important to remark that the function u defined by the formula (5.1.12) belongs to

the space C([0, T ], X) because of Corollary 2.76 and our Lemma 5.5.

Recall that, if f = 0, then equation (5.1.4)-(5.1.5) is called linear homogeneous and in

this case, a mild solution is equal to S(t)u0, t ∈ [0, T ].

The same comments apply to the equation on the whole interval [0,∞). The argument

at the bottom of page 105 of [33] implies the following corollary.

Corollary 5.8. Assume that T > 0. If x ∈ X, f ∈ L1(0, T ;X) and a function u ∈
C([0, T ], X) is a strong solution to the initial value problem (5.1.4)-(5.1.5) then u is also

a mild solution to the same problem.
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Remark 5.9. A converse to Corollary 5.8 is not true even when f = 0. Indeed, one can

find a simple counterexample:

We can also define a mild solution for the whole real half-line [0,∞) as follows.

Definition 5.10. Assume that A is a generator of a C0-semigroup {S(t)}t≥0 of bounded

linear operators on a Banach spaceX. Assume also that a function f belongs to L1
loc([0,∞);X).

A function u ∈ C([0,∞);X) is called a mild solution to the problem (5.1.4)-(5.1.5) if and

only if the following equality holds

u(t) = S(t)u0 +

∫ t

0
S(t− s) f(s) ds, for every t ∈ [0,∞).

Ball in [1] studied mainly a notion of a weak solution and he proved the uniqueness of a

weak solution and the equivalence between the notions of weak and mild solutions. The

following definition is taken from [1]. In this definition by A∗ we denote the dual operator

to the operator A, see [33, section 1.10]. The notation we use here is the notation from

that book. Whereas, the notion of an absolutely continuous function has been recalled

in Definition 2.7 in Chapter 2 of this thesis. An obvious advantage of a notion of a

weak solution is that one does not require A to be an infinitesimal generator of a C0-

semigroup. However, under some reasonable assumptions, see Theorem 5.12 below, if for

every x ∈ X there exists a unique weak solution, then A is an infinitesimal generator of

the C0-semigroup.

Definition 5.11. Assume that A is a densely defined closed linear operator on a real or

complex Banach space X.

(I) Assume that T > 0 and a function f ∈ L1(0, T ;X) is given. A function u ∈ C([0, T ];X)

is called a weak solution of problem (5.1.4)-(5.1.5) if and only if for every v ∈ D(A∗) the

function [0, T ] 3 t 7→ 〈u(t), v〉 ∈ R is absolutely continuous and

d

dt
〈u(t), v〉 = 〈u(t), A∗v〉+ 〈f(t), v〉

for almost all t ∈ [0, T ].1

(II) If a function f ∈ L1
loc([0,∞);X), i.e., f ∈ L1(0, T ;X) for every T > 0, then a function

u ∈ C([0,∞);X) is called a weak solution of problem (5.1.4)-(5.1.5) if and only if for every

v ∈ D(A∗) the function 〈u(t), v〉 is locally absolutely continuous on [0,∞) and

d

dt
〈u(t), v〉 = 〈u(t), A∗v〉+ 〈f(t), v〉

for almost all t ∈ [0,∞).

1This ”almost all” we mean with respect to the Lebesgue measure on [0, T ]
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In the following, we formulate a significant feat presented in [1] about the weak solution

and the infinitesimal generator. In the next theorem, Ball [1] gives the existence and the

uniqueness of the weak solution of Problem (5.1.4)-(5.1.5).

Theorem 5.12. [1] Assume that A is densely defined closed linear operator on a real or

complex Banach space X, T > 0 and function f ∈ L1(0, T ;X). Then the following two

conditions are equivalent.

(i) For every u0 ∈ X, there exists a unique weak solution u of problem (5.1.4) -(5.1.5);

(ii) A is the infinitesimal generator of a C0-semigroup {S(t)}t≥0 on X.

In this case, the solution u is given by the formula (5.1.12) and hence u is a mild solution

to the initial value problem (5.1.4)-(5.1.5).

One can deduce the following corollary.

Corollary 5.13. Assume that A is the infinitesimal generator of a C0-semigroup {S(t)}t≥0

on a Banach space X. Assume that T > 0, u0 ∈ X, f ∈ L1(0, T ;X) and a function

u ∈ C([0, T ];X). Then the following two conditions are equivalent.

(i) A function u is a weak solution of problem (5.1.4)-(5.1.5)

(ii) A function u is a mild solution to the problem (5.1.4)-(5.1.5)

Proof of Corollary 5.13. The proof of implication (i) =⇒ (ii) can be done in a similar

way to proof of Proposition 4.2 in [9], see also [16]. The proof of implication (ii) =⇒ (i)

can be found in the paper [1] by Ball.

In the next result, we will prove that a classical solution to problem (4.2.1)-(4.2.2), is also

a weak solution to equation (5.1.4) satisfying the initial condition u(0) = u0.

Proposition 5.14. Let A be the infinitesimal generator of the C0-semigroup {πt}t≥0 on

the space E = C0 ([0, 1]), see Theorems 4.19 and 4.20. Assume that u0 ∈ E. Assume that a

continuous function u : [0,∞)× [0, 1]→ R is a classical solution to problem (5.1.5)-(5.1.4)

in the sense of Definition 4.23. Then a function u viewed as a function u : [0,∞)→ E is

a weak solution, in the sense of Definition 5.11, to the problem (5.1.4)-(5.1.5).

Proof of Proposition 5.14. For simplicity, we assume that f = 0. The same proof works

in the case when the function f 6= 0.

Assume that a continuous function u : [0,∞)× [0, 1]→ R is a classical solution to problem

(4.2.1)-(4.2.2). Firstly it is easy to prove that the corresponding function u : [0,∞)→ E is
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well-defined and continuous, Let us take an arbitrary η ∈ D(A∗). According to Definition

5.11, it is sufficient to show that the function (0,∞) 3 t 7→ 〈u(t), η〉 is of C1-class, and

satisfies
d

dt
〈u(t), A∗η〉 = 〈u(t), A∗η〉, for every t ∈ (0,∞).

Note that

〈u(t), η〉 =

∫ 1

0
u(t, x)η(x) dx, t ≥ 0.

Therefore, by the theorem about differentiation of a function defined by an integral, see

e.g. [39, Theorem 9.42], this function is differentiable and

d

dt
〈u(t), η〉 =

d

dt

∫ 1

0
u(t, x)η(x) dx =

∫ 1

0

∂

∂t
u(t, x)η(x) dx = · · ·

Since by the assumption the function u is a classical solution we infer that

· · · = −
∫ 1

0
a(x)

∂u(t, x)

∂x
η(x) dx = −

∫ 1

0

∂u(t, x)

∂x
[a(x)η(x)] dx

=

∫ 1

0
u(t, x)

∂[a(x)η(x)]

∂x
dx =

∫ 1

0
u(t, x)

d[a(x)η(x)]

dx
dx = 〈u(t), A∗η〉,

where the last equality follows from the Integration by parts formula, see [39, Theorem

6.22]. Hence we proved that the function u is a weak solution.

5.2 Solutions to Evolution Equations with Lipschitz Non-

linearity

Theorem 5.15. Assume that X is a Banach space and {S(t)}t≥0 is a C0-semigroup on

X. If f : X → X is a globally Lipschitz map, then for every u0 ∈ X, there exists a unique

continuous function u : [0,∞)→ X such that

u(t) = S(t)u0 +

∫ t

0
S(t− s) f

(
u(s)

)
ds, t ≥ 0. (5.2.1)

The proof of this Theorem is based on the fact that {S(t)}t≥0 is a C0-semigroup on the

space X and Theorem VI.1.2 in [33] with f(t, x) = f(x).

Remark 5.16. The above Theorem is applicable in the following case: The Banach space

X = C0 ([0, 1]) and the C0-semigroup {πt}t≥0 that was defined by equation (4.2.17).

Definition 5.17. Assume that X is a Banach space and A is a generator of a C0-

semigroup {S(t)}t≥0 of bounded linear operators on a Banach space X. Assume also
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that f : X → X is a measurable function. A mild solution to the system

du(t)

dt
= Au(t) + f(u(t)), t > 0, (5.2.2)

u(0) = u0, (5.2.3)

where u0 ∈ X, is a function u ∈ C
(
[0,∞), X

)
satisfying f ◦ u ∈ L1

loc([0,∞), X) so that

the equality (5.2.1) is satisfied.

Note that if f : X → X is a continuous function and u ∈ C
(
[0,∞), X

)
then f ◦ u ∈

C
(
[0,∞), X

)
and hence f ◦ u ∈ L1

loc([0,∞), X).

Definition 5.18. A semiflow associated to the system (5.2.2)-(5.2.3) is a family {S(t)}t≥0

of maps from X to X defined by

S(t)(u0) = S(t, u0) = St(u0) := u(t), t ∈ [0,∞) and u0 ∈ X,

where the function u is a mild solution to the system (5.2.2)-(5.2.3).

Remark 5.19. Theorem 5.15 can be rewritten in the following way:

If u0 ∈ X and f : X → X is a globally Lipschitz map then there exists a unique mild

solution to problem (5.2.2)-(5.2.3).

Remark 5.20. Assume that {π(t)}t≥0 is a C0-semigroup on a Banach space X and it’s

infinitesimal generator A. Assume that λ ∈ R. Let {S(t)}t≥0 be the C0-semigroup on the

space X and it’s infinitesimal generator A+ λI, i.e.,

S(t) = eλtπ(t), t ≥ 0,

see Theorem 2.88. Assume also that f : X → X and f0 : X → X are measurable functions

such that

f(x) = λx+ f0(x). (5.2.4)

Assume that u0 ∈ X. Let us consider equation (5.2.2). A mild solution to equation (5.2.2)

with the initial condition (5.2.3) by our definition is a function u satisfying

u(t) = π(t)u0 +

∫ t

0
π(t− s) f

(
u(s)

)
ds, t ≥ 0.

In view of equality (5.2.4), equation (5.2.2) can be written in the following form

du(t)

dt
= [A+ λI]u(t) + f0(u(t)), t > 0. (5.2.5)
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Since A+λI is a generator of the semigroup {S(t)}t≥0, we can also define a mild solution

of the equation (5.2.5) by

u(t) = S(t)u0 +

∫ t

0
S(t− s) f0

(
u(s)

)
ds, t ≥ 0.

One can prove the following Equivalence Theorem.

A function u ∈ C([0,∞), X) is a mild solution to equation (5.2.2) if and only if it is the

mild solution to the equation (5.2.5).

In this section, we considered equations with the nonlinearity f being globally Lipschitz.

A function f investigated in the next section is not globally Lipschitz. In the following

publications, we will investigate the existence of non-trivial invariant measures for our

problem. Let us note that according to the last part of Lemma 5.24, an example of

a globally Lipschitz map is provided by the Nemytski map associated with a globally

Lipschitz function c : R→ R.

5.3 Solutions to Evolution Equations with Dissipative Non-

linearity

Our new contribution in this chapter is that we apply the abstract result and definition

from Ball [1] to define the mild solution to the special case of the semigroup {π(t)}t≥0.

This is only possible because we proved in Theorem 4.19 that {π(t)}t≥0 is a C0-semigroup

on the Banach space E = C0 ([0, 1]). We consider special case of equation (4.0.4)-(4.0.5).

In particular, we consider the following nonlinear problem

∂u(t, x)

∂t
+ a(x)

∂u(t, x)

∂x
= λu(t, x)− u3(t, x), t > 0, x ∈ [0, 1], (5.3.1)

u(0, x) = u0(x), x ∈ [0, 1] (5.3.2)

where u0 ∈ E = C0 ([0, 1]). In this section we consider the C0-semigroup {π(t)}t≥0 from

Theorem 4.19 on the space E and it’s infinitesimal generator A. Let also {S(t)}t≥0 be the

C0-semigroup on the space E and it’s infinitesimal generator A+λI, so that S(t) = eλtπ(t)

for t ≥ 0. The next definition is a definition of a mild solution to Problem (5.3.1) as a

special case of the abstract definition .

Definition 5.21. Assume that u0 ∈ E. A mild solution to the system (5.3.1)-(5.3.2)

is a function u ∈ C
(
[0,∞), X

)
such that equality (5.2.1) is satisfied with X = E and

f(u) = λu− u3.

Let us notice that the function f : E → E used above is of dissipative type. In the

following result, we use a notion of the mild solution introduced in Definition 5.17.
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Theorem 5.22. Assume that X is a separable Banach space and A is an infinitesimal

generator of a contraction type C0-semigroup {S(t)}t≥0 on X and assume that f : X → X

is a dissipative map. Then for every u0 ∈ X, there exists a unique continuous function

u : [0,∞)→ X which is a mild solution to the problem (5.2.2)-(5.2.3).

Moreover, the solution u depends continuously on the initial data u0. That is, if (un0 )∞n=1

is an X-valued sequence and u0 ∈ X such that for every T > 0 if

un0 → u0 in X then un → u in C([0, T ], X),

where un is the unique mild solution to equation (5.2.2) with the initial data un0 , i.e., the

unique mild solution to the following equation

dun(t)

dt
= Aun(t) + f(un(t)), t > 0

un(0) = un0 .

Proof of Theorem 5.22. See the proof of Theorem 5.5.8 in [18].

Remark 5.23. In Theorem 5.15 and Theorem 5.22, the equality (5.2.1) hold the same.

The only difference is the assumptions in these two Theorems.

In order to apply the above abstract result to our system (5.3.1)-(5.3.2), let us formulate

the following auxiliary results.

Lemma 5.24. Let c : R→ R be a continuous function satisfying the following assumption

c(0) = 0. (5.3.3)

Let f be a function defined by

f : E 3 u 7→ c ◦ u ∈ E. (5.3.4)

Then the function f satisfies the following assertions.

(i) Function f is a well defined map from E to itself.

(ii) Function f : E → E is continuous.

Moreover, if the function c is globally Lipschitz then f is also globally Lipschitz.

Remark 5.25. Assumption (5.3.3) is needed because our space E consists of continuous

functions vanishing at 0. If E were replaced by the space C([0, 1]), assumption (5.3.3)

would not be required.



Invariant measures for dissipative first order PDEs 158

Lemma 5.26. Let E = C0 ([0, 1]). Then, the function

f0 : E 3 u 7→ −u3 ∈ E, (5.3.5)

is dissipative, see Definition 5.1 and Lipschitz on balls.

The Proof of Lemma 5.24 is standard, see for instance [8, Proposition 5.1 and Theorem

5.2] for more difficult results. The Proof of Lemma 5.26 is classical and can be found in

the book [18, Chapter 6].

Next, we state the following theorem that is a consequence of Theorem 5.22.

Theorem 5.27. Assume that λ ≥ 0 and the function f0 : E → E is defined by formula

(5.3.5). Then for every u0 ∈ E, there exists a unique continuous function u : [0,∞)→ E

such that the following equality is satisfied.

u(t) = S(t)u0 +

∫ t

0
S(t− s) f0(u(s)) ds, t ≥ 0, (5.3.6)

Moreover, the solution u depends continuously on the initial data u0. That is, if (un0 )∞n=1

is an E-valued sequence and u0 ∈ E such that un0 → u0 in E then, for every T > 0.

un → u in C([0, T ], E),

where un is the unique mild solution to equation (5.3.1) with the initial data un0 , i.e., the

unique mild solution to the following equation

un(t) = S(t)un0 +

∫ t

0
S(t− s) f0(un(s)) ds. t ≥ 0.

We can get rid of the exponential function in the above Theorem by replacing the nonlinear

function f0 by f = f0 + λI, i.e.,

f : E 3 u 7→ λu+ f0(u) = λu− u3 ∈ E. (5.3.7)

We tacitly assume that f maps E to E. To verify that the map f defined by formula

(5.3.7) is well defined, let us assume that u ∈ E. Then we have,

[f(u)](x) = λu(x)−
(
u(x)

)3
, x ∈ [0, 1].

We want to show that f(u) ∈ E. For this aim, let us first observe that if t = 0 then

u(0) = 0 and hence [f(u)](0) = 0. Secondly, a composition of continuous functions is a

continuous function, see [39, Theorem 4.9], we infer that the function

[0, 1] 3 x 7→ [f(u)](x) = λu(x)−
(
u(x)

)3 ∈ R
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is continuous. Hence, we showed that the function f is well defined. Using this new object

we deduce from Theorem 5.27 the following result.

Corollary 5.28. For every u0 belongs to the space E there exists a unique continuous

function u : [0,∞)→ E such that the following equality is satisfied

u(t) = π(t)u0 +

∫ t

0
π(t− s) f(u(s)) ds, t ≥ 0. (5.3.8)

The Definition and Remark about the mild solution from the previous section 5.2 can be

generalised to the current setting as follows.

Definition 5.29. Assume that u0 ∈ E. A mild solution to the system (5.3.1)-(5.3.2) is a

function u ∈ C
(
[0,∞), X

)
such that equality (5.3.6), or equivalently (5.3.8) is satisfied.

Remark 5.30. Theorem 5.27 or Corollary 5.28 can be rewritten in the following way.

If u0 ∈ E then there exists a unique mild solution to problem (5.3.1)-(5.3.2).

Example 5.31. Assume that u0 = 0 ∈ E. Then by the definition (5.3.7) of the function

f , f(u0) = 0. Moreover, since {π(t)}t≥0 is a C0-semigroup on the space E, we infer that

π(t)(0) = 0 for every t ≥ 0. Hence the constant function u is defined by

u(t) := u0 = 0, t ∈ [0,∞)

satisfies equation (5.3.8). Hence this constant function u is the unique mild solution to

Problem (5.3.1)-(5.3.2).

We finish these considerations with the following version of Definition 5.18.

Definition 5.32. A semiflow associated to the system (5.3.1)-(5.3.2) is a family {S(t)}t≥0

of maps from E to E defined by

S(t)(u0) = S(t, u0) = St(u0) := u(t), t ∈ [0,∞) and u0 ∈ E, (5.3.9)

where the function u is the unique mild solution to the system (5.3.1)-(5.3.2), hence with

the initial data u0. The existence and the uniqueness of a mild solution to the system

(5.3.1)-(5.3.2) is guaranteed by Remark 5.30.

Remark 5.33. It is important to bear in mind that a mild solution is not necessarily

a classical solution in the sense of Remark 4.11. First of all, even in the homogeneous

case, i.e., when the external force f = 0, the classical solution has been defined only for

the initial data function u0 of C1-class. Secondly, the classical solution is required to be

of C1-class. On the other hand, the mild solution requires the initial data function u0

to be only a continuous function, and the mild solution is required itself to be only a



Invariant measures for dissipative first order PDEs 160

continuous function as well. Finally, a classical solution satisfies equation (5.3.1) for every

(t, x) ∈ [0,∞)× [0, 1] while a mild solution satisfies the integral equation (5.3.8).

Corollary 5.34. The semiflow associated to the system (5.3.1)-(5.3.2) and introduced in

Definition 5.32 is continuous with respect to the initial data. That is, if n ∈ N, u0 ∈ E
and ε > 0, then there exists δ > 0 such that if ũ0 ∈ E such that ‖ũ0 − u0‖E ≤ δ then

sup
t∈[0,n]

‖St(ũ0)− St(u0)‖E ≤ ε.

Proof of Corollary 5.34. Follows from inequality (6.3.4) in [18, section 6.3]. In fact, in

that section a stronger result is proven, i.e., there exists C ∈ R such that for all n ∈ N
and u0, ũ0 ∈ E,

sup
t∈[0,n]

‖St(ũ0)− St(u0)‖E ≤ eCn‖ũ0 − u0‖E .

5.3.1 An explicit formula for a classical solution

In this section, we formulate a result about a special representation for the mild solutions

to the system (5.3.1)-(5.3.2). For this aim, we need to diverge a bit and consider the

classical characteristics method. We consider the following

∂u(t, x)

∂t
+ a(x)

∂u(t, x)

∂x
= c
(
u(t, x)

)
(5.3.10)

with the initial condition

u(0, x) = u0(x), x ∈ [0, 1]. (5.3.11)

We continue to assume that Assumption 4.2 are satisfied for the function a, whereas the

function c depends only on the third variable, i.e., c : R→ R, and assumed to be Lipschitz

on balls and of dissipative type function such that (5.3.3) holds. Let us point out that

with a given function c as above we associate the Nemytski map f : E → E by the

formula (5.3.4). In other words,

[f(u)](x) = c(u(x)), for every x ∈ [0, 1].

For instance, if

c(z) = λz − z3, for z ∈ R, (5.3.12)

then the above Nemtyski map f is equal to the map f introduced earlier in (5.3.7).

The function f indeed maps the space E to itself, where the space E is always the same
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E = C0 ([0, 1] with the sup norm. For more details see Lemma 5.24. Moreover, this

function c satisfies condition (5.1.2), i.e. c is of dissipative-type (with constant λ).

The equation (5.3.10) can be solved by the characteristics method. To be precise, we

consider a system of two ordinary differential equations in R+ × R as follows

dx(t)

dt
= a(x(t)), (5.3.13)

dz(t)

dt
= c(z(t)). (5.3.14)

Suppose that u is a function of C1-class that solves equation (5.3.10) and x : I → R is a

solution to the equation (5.3.13) satisfying the initial condition x(0) = x0. The solution

to the equation (5.3.13) has been discussed in detail before in Section 4.2 and it is given

by the following formula

x(t) = G−1
(
t+G(x0)

)
, t ≥ 0.

Suppose that for every z0 ∈ R there exists a unique global solution z : R+ → R of equation

(5.3.14) satisfying the initial condition

z(0) = z0. (5.3.15)

where z is the local maximal solution equation (5.3.14) given by

z(t) := u
(
t, x(t)

)
, t ∈ I. (5.3.16)

This local maximal solution is indeed a global solution when the function c : R → R is

Lipschitz on balls and of dissipative type. Indeed, the local Lipschitzianity of the function

c implies that Problem (5.3.14)-(5.3.15) has a unique local maximal solution z defined

on some time interval [0, τ). The dissipativity type of function c, i.e. because function c

satisfies condition (5.1.2), implies that τ =∞. Indeed, by assumption (5.1.1) we have

1

2

d

dt

[
e−2λt|z(t)|2

]
=

1

2

[
−2λe−2λt|z(t)|2 + e−2λt2z′(t)z(t)

]
≤ e−2λt

[
−λ|z(t)|2 + λ|z(t)|2

]
= 0, t ∈ [0, τ).

Hence the function [0, τ) 3 t 7→ e−2λt|z(t)|2 is non-increasing, so that

e−2λt|z(t)|2 ≤ e−2λ0|z(0)|2 = |z0|2, t ∈ [0, τ).

Thus we infer that

|z(t)| ≤ eλt|z0|, t ∈ [0, τ).

So the solution cannot explode on the maximal interval of existence and hence τ = ∞.

This solution of equation (5.3.14) satisfying the initial condition (5.3.15) will be denoted
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by

ψ(t, z0) := z(t), t ∈ R+, z0 ∈ R.

Note that because we assume that c(0) = 0, the unique solution of problem (5.3.14)-

(5.3.15) with z0 = 0 is the constant function z(t) = 0 for all t ∈ R+. Hence we infer

that

ψ(t, 0) = 0, t ∈ R+. (5.3.17)

From equation (5.3.16) we infer that ψ(t, z0) = u
(
t, x(t)

)
. Hence the general solution to

the system (5.3.10)-(5.3.11) is given by

u(t, x) = u
(
t, x(t)

)
= ψ(t, z0) = ψ

(
t, u0(x0)

)
= ψ

(
t, u0

[
G−1(G(x)− t)

])
.

The above formula is a generalisation of equation (4.2.11) in Section 4.2. The above

formula has been derived for solutions of the C1-class. However, we show that it is

also valid for the mild solutions. To be precise we have the following representation

result. This result is a generalization of the classical characteristics method to the case of

the coefficient a(x) in equation (5.3.1) being only continuous and satisfying the Osgood

condition and the initial data u0 being only a continuous function. The following theorem

plays a significant role later when we prove the injectivity of the map Ψ, see Proposition

5.42, which is an important tool for finding the invariant measures.

Theorem 5.35. Representation Theorem. Assume that λ > 0 and that c : R → R
is a function given by formula (5.3.12). Let, for any z0 ∈ R, ψ(·, z0) : [0,∞) → R be the

unique solution z : [0,∞)→ R of the problem

dz

dt
= c
(
z(t)

)
, t ≥ 0, (5.3.18)

satisfying the initial condition

ψ(0, z0) = z(0) = z0. (5.3.19)

Let us assume that a function f is defined by formula (5.3.7). Assume that u0 ∈ E and

u : [0,∞)→ E is the unique mild solution to the problem (5.3.1)-(5.3.2), whose existence

is guaranteed by Remark 5.30. Then,

u(t, x) =

ψ(t, u0

[
G−1(G(x)− t)

])
, if (t, x) ∈ [0,∞)× (0, 1],

0, if (t, x) ∈ [0,∞)× {0}.
(5.3.20)

Note that we need the second line in the formula above (5.3.20) because as we mentioned

in Proposition 4.8 the domain of the function G is the interval (0, 1]. In particular,

0 /∈ dom(G), so G(0) is not well defined. we have encountered the same issue in the case
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of the homogeneous equation, see equation (4.2.11) in Section 4.2.

Before we embark on the proof of Theorem 5.35, we need first to formulate an important

result about the existence of the function ψ.

Lemma 5.36. Let us assume that λ > 0 and a function/vector field c : R→ R is defined

by equality (5.3.12).

(o) Then for every z0 ∈ R, there exists a unique global solution z : [0,∞)→ R, which is a

solution of the ODE (5.3.18) and satisfies the initial condition (5.3.19).

Let ψ : [0,∞)× R→ R be the function introduced in Theorem 5.35. Then

(i) The function ψ is continuous. In particular, it is uniformly continuous on every rect-

angle [0, T ]× [−M,M ] for every T > 0 and every M > 0. mb, Moreover, equation (5.3.17)

is satisfied.

(ii) For every t ∈ [0,∞) the function ψt := ψ(t, ·) : R→ R, i.e.

ψt(z0) := ψ(t, z0), t ∈ [0,∞), z0 ∈ R,

is injective,

(iii) The function ψ is of C1-class and the derivative ∂ψ(t,z0)
∂t satisfies

∂ψ(t, z0)

∂t
= c
(
ψ(t, z0)

)
, t ≥ 0,

and the derivative ∂ψ(t,z0)
∂z0

solves the following linear equation

∂ψ(t, z0)

∂z0
= c′(ψ(t, z0))

∂ψ(t, z0)

∂z0
, t ≥ 0,

∂ψ(0, z0)

∂z0
= 1.

The function ψ is often called the flow associated with the ODE (5.3.18).

(iv) Moreover, if we replace the vector field c by vector field −c and we denote by φt the

corresponding flow, the flow associated with the following ODE

dy

dt
= −c

(
y(t)

)
, t ≥ 0,

then

φt ◦ ψt = id and ψt ◦ φt = id, i.e., φt = ψ−1
t .
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Proof of Theorem 5.35. The proof is divided into three steps.

Step I. Assume additionally that the initial data u0 is of C1-class. In this step we show

that the function u defined by formula (5.3.20), i.e.,

u : [0,∞)× (0, 1] 3 (t, x) 7→ ψ(t, u0

[
G−1(G(x)− t)

])
∈ R

has the following four properties.

(i) If x ∈ (0, 1] then u(0, x) = ψ(0, u0

[
G−1(G(x))

])
= ψ(0, u0[x]

)
= u0(x), because by

Lemma 5.36 and equality (5.3.19), ψ(0, x) = x for all x ∈ [0, 1].

(ii) The function u is of C1-class.

Indeed, the composition of C1-class functions is of C1-class, see [39, Theorem 5.5].

The claim follows because by assumption u0 is of C1-class, the functions G and G−1

are of of C1-class, see Proposition 4.8 and function ψ is also of C1-class by Lemma

5.36.

(iii) The function u from part (ii) satisfies (5.3.1)-(5.3.2) point-wise, i.e., it is a classical

solution of that problem.

(iv) By applying Proposition 5.14 and Corollary 5.13 we deduce that the function u

viewed as a continuous map from [0,∞) to the Banach space C1
0 ([0, 1]) is a mild

solution to problem (5.3.1)-(5.3.2).

Step II. If (un0 ) is a C1
0 ([0, 1])-valued sequence and u0 ∈ C0 ([0, 1]) such that

un0 → u0 in C0 ([0, 1]),

then, for every T > 0,

un → u in C([0, T ], C0 ([0, 1])),

where the function u defined by formula (5.3.20) and un is a function defined by formula

(5.3.20) with u0 replaced by un0 , i.e.,

un(t, x) =

ψ
(
t, un0

[
G−1(G(x)− t)

])
, if (t, x) ∈ [0,∞)× (0, 1],

0, if (t, x) ∈ [0,∞)× {0},
(5.3.21)

Proof Step II: Let us observe that we need to prove that for every T > 0,

un → u in C([0, T ]× [0, 1]).

In other words, we need to prove that for every T > 0

un(t, x)→ u(t, x) uniformly w.r.t. (t, x) ∈ [0, T ]× [0, 1].
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To prove the last assertion let us choose and fix T > 0. By applying Theorem A.1,

and [35], we choose the following sets

X = [0, T ]× [0, 1], Z = R, ψ : [0,∞)× R→ R.

where function ψ has been introduced in the statement of Lemma 5.36.

Note that

un = ψ ◦ vn and u = ψ ◦ v

where

vn : [0, T ]×[0, 1] 3 (t, x) 7→


(
t, un0

[
G−1(G(x)− t)

])
, if (t, x) ∈ [0, T ]× (0, 1],

(t, 0), if (t, x) ∈ [0, T ]× {0},
∈ [0,∞)×R.

and

v : [0, T ]×[0, 1] 3 (t, x) 7→


(
t, u0

[
G−1(G(x)− t)

])
, if (t, x) ∈ [0, T ]× (0, 1],

(t, 0), if (t, x) ∈ [0, T ]× {0},
∈ [0,∞)×R.

Now we need to make sure that all the assumptions are satisfied. In other words, we need

to show that

ψ ◦ vn → ψ ◦ v on [0, T ]× [0, 1].

According to part (i) of Lemma 5.36, the function ψ is uniformly continuous on every

rectangle [0, T ]× [−M,M ] for T > 0 and M > 0. Regarding the functions vn and v, since

their first components are the same, it is sufficient to prove that the second components

converge uniformly, i.e., we need to prove that

un0 (G−1(G(x)− t))→ u0(G−1(G(x)− t)) uniformly w.r.t. (t, x) ∈ [0, T ]× [0, 1].

The above formula follows by applying Theorem A.2 with the following choice of notations:

X = [0, T ]× [0, 1], Y = [0, 1]

g(t, x) = G−1(G(x)− t) ∈ Y, for (t, x) ∈ X,

fn = un0 , and f = u0.

Hence, we deduce that

un0 (G−1(G(x)− t))→ u0(G−1(G(x)− t)) uniformly w.r.t. (t, x) ∈ [0, T ]× [0, 1].

As consequence, we infer that vn convergent uniformly to v on the set [0, T ]× [0, 1]. Let

us observe that from (ii) in step I, on page 164 since the function u is of C1-class, we
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deduce that functions vn and v are continuous. Moreover, by [39, Theorem 2.41], the

set [0, T ] × [0, 1] is compact. Hence, see [39, Theorem 4.15] the sets v([0, T ] × [0, 1]) and

vn([0, T ] × [0, 1]) are compact. Furthermore, by the uniform convergence vn → v on the

set [0, T ] × [0, 1] and [39, Theorem 2.41] again, we deduce that there exists M > 0 such

for every n ∈ N

vn([0, T ]× [0, 1]), vn([0, T ]× [0, 1]) ⊂ [0, T ]× [−M,M ].

In order to apply the Theorem A.1 we put

X = [0, T ]× [0, 1], Y = [0, T ]× [−M,M ], Z = R,

and

gn = vn, g = v, ψ = ψ.

Then un = ψ ◦gn = ψ ◦vn and u = ψ ◦g = ψ ◦v. In the proof of Lemma 5.36, the function

ψ is uniformly continuous on the set Y = [0, T ] × [−M,M ]. Therefore, Theorem A.1 is

applicable and so we deduce that

un(t, x)→ u(t, x) uniformly w.r.t. (t, x) ∈ [0, T ]× [0, 1].

By this, the proof of step II is complete.

Step III. Assume that u0 ∈ E and u : [0,∞) → E is the unique mild solution to the

problem (5.3.1)-(5.3.2). Our aim here is to prove that u satisfies identity (5.3.20). Recall

that E = C0 ([0, 1]). Let us consider a sequence (un0 )∞n=1 such that un0 belongs to the class

C1
0 ([0, 1]) and

un0 → u0 in E = C0
(
[0, 1]

)
.

Let un : [0,∞)→ E is the unique mild solution to the equation (5.3.1) with initial data

u0 replaced by un0 . By the continuity part of Theorem 5.27 we infer that for every T > 0,

the following holds

un → u in C
(
[0, T ], C0 ([0, 1])

)
.

Because un0 is regular, by Step I, the function un satisfies formula (5.3.21). Let us denote

by z a function defined by formula (5.3.20). By Step II, we infer that for every T > 0,

un → z in C
(
[0, T ], C0 ([0, 1])

)
.

Hence, by the uniqueness of the limit, we infer that for every T > 0,

u = z in C([0, T ], C0
(
[0, 1])

)
.
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Because T is arbitrary, we deduce that u = z. From the definition of the function z, we

infer that the function u satisfies formula (5.3.20). Therefore, the proof of Theorem 5.35

is complete.

Proof of Lemma 5.36. The uniform continuity of the function ψ on a rectangle [0, T ] ×
[−M,M ], when T > 0 and M > 0, is a consequence of continuity of function ψ and

compactness of the rectangle [0, T ]× [−M,M ], see [39, Theorem 4.19]. But the continuity

of the function ψ follows from Theorem 10.8.1 in [20] because the function c is locally

Lipschitz which is a consequence of the function c is of C1-class. This proves part (ii).

Part (iii) follows from Theorem 3.4.2 in [14]. Finally, the proof of the last part (iv) follows

from [14, Theorem 3.2.1].

Below we analyse the properties of the global solution depending on the initial condition

z0.

Proposition 5.37. Assume that c : R→ R is a function given by formula (5.3.12). Con-

sider an arbitrary z0 ∈ R. Let z : [0,∞)→ R be the unique global solution of the problem

(5.3.18)-(5.3.19). Then

1) if z0 ∈ {−
√
λ, 0,
√
λ}, then the function c has a unique solution if c(z0) = 0. Hence the

constant function z(t) = z0, for every t ≥ 0, is a solution of the problem (5.3.18)-(5.3.19).

Hence

ψ(t, z0) = z0 for every t ≥ 0.

2) if z0 >
√
λ, then since c(z) < 0 for all z >

√
λ, then function z is decreasing on the

maximal interval of the existence and z(t) >
√
λ. Hence we get another proof that z is a

global solution and

z(t) ∈ (
√
λ,∞), for every t ≥ 0.

Moreover we can show that z(t)→
√
λ as t→∞.

3) if z0 ∈ (0,
√
λ), i.e., 0 < z0 <

√
λ, then c(z) > 0 for z ∈ (0,

√
λ). Hence, the solution of

problem (5.3.18)-(5.3.19) is increasing and z(t) <
√
λ. Thus, we get another proof that z

is a global solution and

z(t) ∈ (0,
√
λ), for every t ≥ 0.

Moreover, z(t)→
√
λ as t→∞.

4) if z0 ∈ (−
√
λ, 0), then the function c(z) < 0, so z is decreasing and

z(t) ∈ (−
√
λ, 0), for every t ≥ 0.
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5) if z0 < −
√
λ, then the function c(z) > 0, so z is increasing and

z(t) ∈ (−∞,−
√
λ), for every t ≥ 0.

In particular, for every t ∈ [0,∞), ψt maps the set (−
√
λ,
√
λ) into itself, and the map φt

(which is equal to ψ−1
t ) also maps the set (−

√
λ,
√
λ) into itself.

The above Proposition 5.37 is about the properties of the solutions to the ODE (5.3.18).

The representation Theorem 5.35 links solutions to the ODE (5.3.18) with solutions to

the PDE (5.3.1). From Theorem 5.35 and Proposition 5.37 above we get the following

corollary. The Corollary 5.38 is about properties of solutions to the PDE (5.3.1). These

properties are the consequence of that relationship. The following corollary about mild

solutions to Problem (5.3.1)-(5.3.2) describes solutions in very specific three cases which

correspond to parts (1), (3) and (4) of the previous Proposition 5.37.

Corollary 5.38. Let us assume that λ > 0 and a function f is defined by (5.3.7). Assume

that u0 ∈ E and u : [0,∞) → E be the unique mild solution to problem (5.3.1)-(5.3.2).

Then, the following holds.

1) If u0 = 0 in E, i.e.,

u0(x) = 0, for every x ∈ [0, 1], (5.3.22)

then

u(t, x) = 0, for all (t, x) ∈ [0,∞)× [0, 1].

3) If for every x ∈ (0, 1], u0(x) ∈ (0,
√
λ), then u(t, x) ∈ (0,

√
λ) for every (t, x) ∈ [0,∞)×

[0, 1].

4) If for every x ∈ (0, 1], u0(x) ∈ (−
√
λ, 0), then u(t, x) ∈ (−

√
λ, 0) for every (t, x) ∈

[0,∞)× [0, 1].

Proof of Corollary 5.38. Assume that u : [0,∞) → E is the unique mild solution to

problem (5.3.1)-(5.3.2).

1) Assume that u0 = 0 in E. Then by Example 5.31, the unique mild solution is the

constant function u(t) = 0 and hence

u(t, x) = 0, t ≥ 0, x ∈ [0, 1].
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3) Assume that u0(x) ∈ (0,
√
λ), for all x ∈ (0, 1]. By the representation Theorem 5.35

and condition (5.3.22) the solution u satisfies

u(t, x) = ψ(t, u0

[
G−1(G(x)− t)

])
= ψ(t, z0), if (t, x) ∈ [0,∞)× (0, 1],

where ψ(·, z0) : [0,∞) → R is the unique solution z : [0,∞) → R of equation (5.3.18)

satisfying the initial condition (5.3.19). By applying part (3) of Proposition 5.37 we infer

that

ψ(t, u0

[
G−1(G(x)− t)

]
∈
(
0,
√
λ
)
, t ≥ 0, x ∈ (0, 1].

4) Assume that u0(x) ∈ (−
√
λ, 0), for all x ∈ (0, 1]. By the representation Theorem 5.35

and condition condition (5.3.22) the solution u satisfies

u(t, x) = ψ(t, u0

[
G−1(G(x)− t)

])
= ψ(t, z0), if (t, x) ∈ [0,∞)× (0, 1],

Note that ψ(·, z0) : [0,∞)→ R is the unique solution z : [0,∞)→ R of equation (5.3.18)

satisfying the initial condition (5.3.19). Similarly to the above, by applying part (4) of

Proposition 5.37 we infer that

ψ(t, u0

[
G−1(G(x)− t)

]
∈
(
−
√
λ, 0
)
, t ≥ 0, x ∈ (0, 1].

By this, the proof of Corollary 5.38 is complete.

The above corollary can be used to prove the invariance of the sets W0, W+
0 and W−0 in

the following next section.

5.4 Invariant Measure for a Nonlinear PDE

In this section, we want to construct invariant measures for the nonlinear Lasota equation.

We consider our special case, the equation (5.3.1)-(5.3.2). We continue to assume the

assumptions about the coefficients a and c as we listed before in Section 5.3.1 are hold.

Assume that there exists a continuous semiflow {St}t≥0 on the space E generated by the

equation (5.3.1)-(5.3.2). Recall that

c(u) = λu− u3, u ∈ R, λ > 0. (5.4.1)
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Define u+ = min{u > 0 : f(u) = 0} and u− = max{u < 0 : f(u) = 0}. In the case of

function c that given by equation (5.4.1) we note that u+ =
√
λ and u− =

√
−λ. We

consider a space

Y = C
(
[0,∞)

)
. (5.4.2)

Let us point out that this space Y is different from the space Y defined by formula (4.2.42)

in Section 4.2.1.3. We endow the space Y is a topology induced by a sequence (pn)∞n=1 of

seminorms on Y defined by

pn(u) := sup
t∈[0,n]

|u(t)|, u ∈ Y. (5.4.3)

The space Y is not a normed vector space. The family (pn)∞n=1 generates a metric d on

Y and (Y, d) is complete, see [38, chapter 1].

Proposition 5.39. The family {Tt}t≥0 defined by
(
Ttu
)
(·) = u(t + ·) for t ≥ 0 is a

C0-semigroup on the space Y .

Define the following sets

W+
0 = {v ∈ E : 0 < v(x) < u+, for every x ∈ (0, 1]}.

W−0 = {v ∈ E : u− < v(x) < 0, for every x ∈ (0, 1]}.

W0 = {v ∈ E : u− < v(x) < u+, for every x ∈ (0, 1]}. (5.4.4)

Note that we consider above x > 0 because if x = 0 then v(x) = 0. Let us also define the

following maps

Φ : W0 3 v 7→ {[0,∞) 3 t 7→
(
Stv
)
(1)} ∈ C([0,∞); (u−, u+)), (5.4.5)

and

Ψ : W0 3 v 7→ {[0,∞) 3 t 7→ h−1
(
Stv(1)

)
} ∈ Y. (5.4.6)

where h : R→ (u−, u+) is an increasing function such that h(0) = 0 and there exists some

R > 0 such that

h(x) =

u+ − e−x, if x > R,

u− + ex, if x < −R.
(5.4.7)

Let us observe that h−1 : (u−, u+)→ R is an increasing function such that h−1(0) = 0.

Note that from the definitions of maps Φ and Ψ we infer that

[
Ψ(v)

]
(t) = h−1

(
Φ(v)(t)

)
, for every t ≥ 0.
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Proposition 5.40. The sets W+
0 , W−0 and W0 are invariant with respect to the (nonlin-

ear) semiflow {St}t≥0, i.e.,

u0 ∈W+
0 =⇒ Stu0 ∈W+

0 , for every t ≥ 0.

u0 ∈W−0 =⇒ Stu0 ∈W−0 , for every t ≥ 0.

u0 ∈W0 =⇒ Stu0 ∈W0, for every t ≥ 0.

Proof of Proposition 5.40. This result is a direct consequence of Corollary 5.38.

The following two results are a generalization of Proposition 4.40 and Corollary 4.41 to

the nonlinear case. The importance of those propositions is to study the properties of the

mapping Φ and Ψ, which help us to prove the existence of the invariant measures.

Proposition 5.41. Let us assume that {St}t≥0 is the continuous semiflow on the space

E = C0
(
[0, 1]

)
, defined by formula (5.3.9). Let Y = C

(
[0,∞)

)
be the topological vector

space defined earlier in equation (5.4.2) with the corresponding seminorm defined in equa-

tion (5.4.3). Let the maps Φ and Ψ defined by (5.4.5) and (5.4.6) respectively. Then the

following statements are satisfied

(i) if v ∈ W0 then the function {[0,∞) 3 t 7→
(
Stv
)
(1) ∈ (u−, u+)} belongs to the

space C
(
[0,∞)(u−, u+)

)
, and hence, the map Φ : W0 → C

(
[0,∞)(u−, u+)

)
defined

by equation (5.4.5) is well-defined,

(ii) the map Ψ : W0 → Y is continuous,

(iii) the following equality holds

Tt ◦Ψ = Ψ ◦ St. (5.4.8)

Proof of Proposition 5.41. Proof of item (i): To prove that the map Φ is well-defined, let

us take e1 to be the evaluation map, which means, e1 : E 3 v 7→ v(1) ∈ R. It is known

that e1 is a linear contraction and hence, it is continuous. Since [Φv](t) = e1(Stv) for

every v ∈ E and t ≥ 0, by Corollary 2.76, the map [0,∞) 3 t 7→ Stv ∈ E is continuous

for every v ∈ E. Therefore, we deduce that for every v ∈ E, Φv ∈ C([0,∞)). Hence the

map Φ defined by equation (5.4.5) is well-defined.

Proof of item (ii): Because
[
Ψ(v)

]
(t) = h−1

(
Φ(v)(t)

)
, t ≥ 0, and the function h−1 is

uniformly continuous on compact subsets of the open interval (u−, u+), it is sufficient to

prove that the map Φ is continuous. Therefore, it is sufficient to prove that it is continuous

with respect to each seminorm pn. For this purpose, let us fix n ∈ N, an element v0 ∈ E
and ε > 0. We want to find δ > 0 with the following property.

If ũ0 ∈ E and ‖ũ0 − u0‖E ≤ δ then pn
(
Φ(ũ0)− Φ(u0)

)
≤ ε.
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Thus, by definitions of map Φ in (5.4.5) and the seminorm in (5.4.3) we have

pn(Φ(ũ0)− Φ(u0)) = sup
t∈[0,n]

|[Φ(ũ0)− Φ(u0)](t)|

= sup
t∈[0,n]

|[Φ(ũ0)](t)− [Φ(u0)](t)|

= sup
t∈[0,n]

|
(
Stũ0

)
(1)−

(
Stu0

)
(1)|

≤ sup
t∈[0,n]

sup
x∈[0,1]

|
(
Stũ0

)
(x)−

(
Stu0

)
(x)|

Hence, the result follows by applying Corollary 5.34.

Proof of item (iii): To prove the equality (5.4.8), let us choose and fix t ≥ 0 and v ∈W0.

Then by using the definitions of the map Ψ, the semiflow {St}t≥0 and {Tt}t≥0 we have

for every s ≥ 0 and v ∈W0,([
Tt ◦Ψ

]
(v)
)

(s) =
[
Tt
(
Ψ(v)

)]
(s)

=
(
Ψ(v)

)
(t+ s) = h−1

[
(St+s(1)

]
= h−1

[
(St(Ssv

)
(1)
]

=
[
Ψ(Stv)

]
(s).

Since s and v are arbitrary we deduce that Tt ◦Ψ = Ψ ◦ St.

Hence, we conclude that all the three statements in Proposition 5.41 is complete.

Proposition 5.42. The map Ψ defined earlier in equation (5.4.6) is injective.

Proof of Proposition 5.42. Because
[
Ψ(v)

]
(t) = h−1

(
Φ(v)(t)

)
, t ≥ 0, it is sufficient to

prove that the map Φ is injective. Using the definition (5.4.5) of equality (5.3.20) from

Theorem 5.35, we deduce that if v ∈ E and t ∈ [0,∞) then because G(1) = 0 we have

(
Φv
)
(t) =

(
Stv
)
(1) = ψ

(
t, v(G−1(G(1)− t)

)
= ψ

(
t, v(G−1(−t))

)
. (5.4.9)

We use the above established representation (5.4.9) of the map Φ to prove its injectiv-

ity. For this aim let us choose and fix v1, v2 ∈ E such that Φ(v1) = Φ(v2). Thus, by

representation (5.4.9) we infer that

ψ
(
t, v1(G−1(−t))

)
= ψ

(
t, v2(G−1(−t))

)
, for every t ≥ 0.

Since for every t ∈ [0,∞) the map ψ(t, ·) : R→ R is injective, by part II of Lemma 5.36,

we infer that

v1
(
G−1(−t)

)
= v2

(
G−1(−t)

)
, t ∈ [0,∞).
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Since by Proposition 4.8 part (vii), the function G−1 : (−∞, 0] → (0, 1] is surjective, we

deduce that

v1(x) = v2(x), for every x ∈ (0, 1]. (5.4.10)

Because both v1 and v2 belong to the space E, we deduce that v1(0) = v2(0) and therefore

by the just proven identity (5.4.10), we deduce that v1 = v2. The proof of injectivity is

complete.

Definition 5.43. Let µ : B(W0)→ [0, 1] be a measure µ defined by

µ(A) = m
(
Ψ(A)

)
, A ∈ B(W0), (5.4.11)

where m is the Borel probability measure which is the law of the stationary process, on

the space Y defined by formula (5.4.2), and Ψ the map defined by formula (5.4.6).

Corollary 5.44. The measure µ defined by equation (5.4.11) is {St}t≥0 invariant.

Proof of corollary 5.44. Let A ∈ B(W0) for t ≥ 0. By using the definition of the measure

µ in equation (5.4.11) we have

µ
(
S−1
t (A)

)
= m

(
Ψ(S−1

t (A))
)

= m
(
(Ψ−1)−1(S−1

t (A))
)

= m
(
(St ◦Ψ−1)−1(A)

)
.

Applying the commuting property of the map Ψ and the invariant of the measure m, we

obtain

m
(
(St ◦Ψ−1)−1(A)

)
= m

[
(Ψ−1 ◦ Tt)−1(A)

]
= m

[
T−1
t ◦Ψ(A)

]
= m

(
Ψ(A)

)
= µ(A).

Hence we proved µ
(
S−1
t (A)

)
= µ(A), therefore, the proof of Corollary 5.44 is complete.

Now we are ready to prove our main result in the present section. This result generalises

[43, Theorem 1] by allowing coefficient a to satisfy natural weak assumptions and by con-

sidering the dissipative type and Lipschitz on balls nonlinearity. One important difference

between our work and Rudnicki’s proofs is that we do not prove the transformation Φ

is a homeomorphism. In fact, we have only been able to prove that it is continuous and

injective. Fortunately, because of the Kuratowski Theorem, see Corollary 4.52, this is

sufficient to deduce that the inverse map Φ−1 is Borel measurable.

Theorem 5.45. Let E = C0 ([0, 1]), the set W0 be defined in formula (5.4.4) and Y

be the space defined in formula (5.4.2). Let {St}t≥0 be the semiflow associated to the
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system (5.3.1)-(5.3.2) on the space E as in Definition 5.32. Then there exists a probability

measure µ defined on σ-field of Borel subsets of W0, such that the following conditions

are satisfied:

(i) µ is invariant under {St}t≥0,

(ii) µ(Per) = 0, where Per is the set of periodic points of {St}t≥0,

(iii) {St}t≥0 is exact on
(
W0,B(W0), µ

)
(iv) the second moment of µ is finite, i.e.,∫

W0

‖v‖2Eµ (dv) <∞

Before we commence the proof of Theorem 5.45 we need to prove the following auxiliary

result.

Claim 5.46. The set W0 defined in formula (5.4.4) is an open set, and hence, it is a

Borel, subset of the space E.

Proof of Claim 5.46. In order to prove that W0 is an open set in the space E, let us choose

and fix an arbitrary element v0 ∈W0. Since v0 is continuous then by [39, Theorem 4.16 ]

there exists x1 ∈ [0, 1] and x2 ∈ [0, 1] such that

max{v0(x) : x ∈ [0, 1]} = v0(x1) and min{v0(x) : x ∈ [0, 1]} = v0(x2).

By the definition of W0 in formula (5.4.4) we infer that v0(x1) < u+ and v0(x2) > u−.

Let us now take r = min{u+ − v0(x1), v0(x2)− u−}. Hence,

r ≤ u+ − v0(x1) and r ≤ v0(x2)− u−. (5.4.12)

Note that r > 0. We need to show that B(v0, r) ⊂ W0. In order to prove that, we take

v ∈ B(v0, r), then

sup
x∈[0,1]

|v(x)− v0(x)| < r.

Hence for every x ∈ [0, 1] we have |v(x)− v0(x)| < r. That means,

v0(x)− r < v(x) < v0(x) + r.

Obviously v ∈ E because B(v0, r) ∈ E. Moreover, from inequality (5.4.12) we infer

v(x) < v0(x) + r ≤ v0(x1) + u+ − v0(x1) = u+.
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Hence, we proved that v(x) < u+ for every x ∈ [0, 1]. Similarly, for v(x) > u− because

v(x) > v0(x2)− r ≥ v0(x2)− v0(x2)− u− = −u−.

To conclude, we proved that v ∈W0. In other words, W0 is ( an open) Borel subset of E.

by this, the proof of Claim 5.46 is complete.

Proof of Theorem 5.45. From Propositions 5.41 and 5.42 we infer that the map Ψ : E → Y

is continuous and injective. Therefore, we deduce that the restriction map Ψ : W0 → Y is

also continuous and injective. By applying Corollary 4.52, we put X1 = E and X2 = Y ,

both these spaces are separable metric spaces. Also, put E1 = W0. By claim 5.46, E1 is

a Borel subset of X1. Hence we infer that the map Ψ−1 : Ψ(E1)→ E1 is measurable.

Recall that the setW0 defined in formula (5.4.4) and the space Y defined in formula (5.4.2).

The semiflow {St}t≥0 associated to the system (5.3.1)-(5.3.2) on the space E as in Defini-

tion 5.32. Let ξ = {ξt}t≥0 be the Ornstein-Uhlenbeck process process and the trajectories

of ξ belong to the space Y . Moreover, {Tt}t≥0 is the shift C0-semigroup on the space Y .

The measure m = law(ξ) is the probability measure on the space Y satisfy the following

equality

m
(
T−1
t (A)

)
= m(A) for every A ∈ B(Y ),

see Lemma 4.61. Since by Lemma 4.64, P-almost all trajectories of ξ belong to the space Y ,

we infer that m is a Borel probability measure on Y . Define a function µ : B(W0)→ [0, 1]

by the following

µ(A) := m
(
Ψ(A)

)
, A ∈ B(W0). (5.4.13)

Note that the RHS of the above formula (5.4.13) is meaningless unless the set Ψ(A) belongs

to the family B(Y ) of Borel subsets of Y . Also, it can be rewrite equation (5.4.13) in the

following equivalent form µ = m ◦ Ψ. Note that if A ∈ B(W0) then because Ψ−1 is

measurable, we infer that

Ψ(A) ∈ B(Y ).

Hence we deduce that m
(
Ψ(A)

)
makes sense for every A ∈ B(W0), and thus, we infer

that µ which is defined by formula (5.4.13) is well defined. Note that our definition of

the measure µ is the same as defined by equation (5.4.11) on Definition 5.43 made earlier.

Therefore, we have already proved in the Corollary 5.44 that this measure µ is {St}t≥0

invariant.

To prove that µ is a probability measure, let us define the space Y0 by

Y0 = {ψ ∈ C[0,∞) : lim
t→∞

|ψ(t)|
t

= 0}.

We need to show that Y0 satisfies the following three conditions:



Invariant measures for dissipative first order PDEs 176

(i) Y0 is a Borel subset of Y ,

(ii) Y0 ⊂ Ψ(W0),

(iii) m(Y0) = 1.

Note that the conditions (i) to (iii) rewrittenabove imply the following equality

µ(W0) = m
(
Ψ(W0)

)
= 1.

The assertion (i) above can be proved in a similar way as we proved that the set W0 is a

Borel subset of the space E, see Claim 5.46. The assertion (iii) above is a consequence of

Proposition 4.56 because every continuous function satisfying the growth condition (4.3.8)

belongs to the space Y . Indeed,

lim
t→∞

|ψ(t)|
t

= lim
t→∞

[ |ψ(t)|
ln(t+M)

ln(t+M)

t

]
≤ lim

t→∞

|ψ(t)|
ln(t+M)

lim
t→∞

ln(t+M)

t
= ...

Hence we only need to prove assertion (ii). To do this, we occupy ourselves with the

following proposition.

Proposition 5.47. If y ∈ Y0, then there exists v ∈W0 such that Ψ(v) = y.

Proof of Proposition 5.47. Let y ∈ Y0. By formula (5.4.9) we have

(
Ψv
)
(t) = h−1

[
ψ
(
t, v(G−1(−t))

)]
.

So we need to find v ∈W0 such that

ψ
(
t, v(G−1(−t))

)
= h

[
y(t)

]
, t ≥ 0. (5.4.14)

By Lemma 5.36, the function ψt := ψ(t, ·) is injective for every t and φt := ψ−1
t . Moreover,

the flow {φt}t≥0 corresponding to the vector field −c. By applying φt to equation (5.4.14)

we infer that we need to find v ∈W0 such that

v
(
G−1(−t)

)
= φt

(
h[y(t)]

)
, t ≥ 0.

If we denote x = G−1(−t) which implies that −t = G(x) ⇐⇒ t = −G(x), we get the

following equivalent form of equation (5.4.14)

v(x) = φ−G(x)

(
h[y(−G(x))]

)
, x ∈ (0, 1]. (5.4.15)
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We want to prove that v ∈W0. In view of the last part of Proposition 5.37, it is sufficient

to prove that v ∈ E. For this purpose, we need to establish the continuity of the function

v on the interval [0, 1] and to show that v(0) = 0. In view of identity (5.4.15) it is sufficient

to show that limx→0+ v(x) = 0, i.e., it is sufficient to prove that

lim
x→0+

φ−G(x)

(
h[y(−G(x))]

)
= 0, x ∈ (0, 1]. (5.4.16)

Using the transformation x = G−1(−t) and observing that x→ 0+ if and only if t→∞,

we see that equality (5.4.16) is equivalent to

lim
t→∞

φt
(
h[y(t)]

)
= 0. (5.4.17)

Thus we need to prove the following: If y ∈ Y0, then condition (5.4.17) is satisfied.

Let us recall that the flow φt is the one from Lemma 5.36. Our aim is to find condition

on the function y such that if v is defined by equality (5.4.15), then equation (5.4.17) is

satisfied. Let −c(z) = −λz+ z3, and the flow φt corresponding to vector field −c, i.e., for

every z0 ∈ (0,
√
λ),

dφt(z0)

dt
= −c(φt(z0)) (5.4.18)

φ0(z0) = z0.

If z0 ∈ (0,
√
λ) then also φt(z0) ∈ (0,

√
λ) and

φt(z0)→ 0 as t→∞. (5.4.19)

Moreover,

φt(z0)→
√
λ as t→ −∞.

If the function y is bounded, i.e. there exists C > 0 such that

0 < y(t) ≤ C, ; t ≥ 0,

then by property (5.4.19) we infer that

φt(h[y(t)])→ 0 as t→∞.

Suppose that z0 is replaced by h[y(t)] ∈ (0,
√
λ). The last observation implies that we can

assume that y(t)→∞ as t→∞. Thus also h[y(t)]→
√
λ.
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We want to investigate the speed of convergence of h[y(t)] towards
√
λ so that condition

(5.4.17) holds. For our aim, let us introduce the following auxiliary function V as follows

V (x) =

∫ x

x0

dz

c(z)
, x ∈ (0,

√
λ).

where x0 is any fixed number belongs also to the interval (0,
√
λ). The function V satisfies

the following properties:

(i) V (x0) = 0;

(ii) The function V is increasing,

(iii) dV
dx = V ′(x) = 1

c(x) > 0;

(iv) V (x)→ +∞ when x↗
√
λ and

V (x) ≥ 1

2λ

[
− ln(

√
λ− x) + ln(

√
λ− x0)

]
, x ∈ (x0,

√
λ);

(v) −V (x)→ +∞ when x↘ 0 and

−V (x) ≥ 1

2λ
(lnx0 − lnx), x ∈ (0, x0);

(vi) V (x) ≤ 1
x0(
√
λ+x0)

[
ln(
√
λ− x0)− ln(

√
λ− x)

]
, x ∈ (x0,

√
λ).

Now we observe that the flow φt, which satisfies (5.4.18), satisfies the following equality

V (φt) = −t+ C0, where C0 is a constant and t ∈ R.

To detect what is the constant C0 in the above solution we put t = 0. Then we obtain

V (φ0) = C0 and hence,

V (φt) = −t+ V (φ0), t ∈ R.

In other words, we proved that if the function φt is a solution to the equation (5.4.18)

then V (φt) = −t+ V (φ0) for every t ∈ R. In particular,

V (φt(h[y(t)])) = −t+ V (h[y(t)]) for every t ∈ R.

Using the last assertion and properties (iv) and (v) of function V , we infer that condition

(5.4.17) is equivalent to the following one

−t+ V (h[y(t)])→ −∞ as t→∞,

or equivalently,

t− V (h[y(t)])→ +∞ as t→∞, (5.4.20)
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From property (vi) of the function V above we have

t− V (h[y(t)]) ≥ t−A+B ln(
√
λ− h[y(t)]), (5.4.21)

where

A :=
1

x0(
√
λ+ x0)

ln(
√
λ− x0)

B :=
1

x0(
√
λ+ x0)

By the definition (5.4.7) of function h, for t large enough, i.e. when y(t) > R,

√
λ− h[y(t)] = e−y(t).

Hence, for t large enough,

ln(
√
λ− h[y(t)]) = −y(t).

Hence, by inequality (5.4.21) we have

t− V (h[y(t)]) ≥ t−A−By(t), for t large enough. (5.4.22)

But

t−A−By(t) = t(1− A

t
−By(t)

t
)

Since limt→∞
A
t = 0, and, because y ∈ Y0, limt→∞

y(t)
t = 0, we deduce that

lim
t→∞

(1− A

t
− y(t)

t
) = 1

Hence

lim
t→∞

(t−A−By(t)) =∞.

Hence, by inequality (5.4.22) and Sandwich Principle (or a comparison Lemma), see [39,

Theorem 3.19] for a related result, we infer that

lim
t→∞

(t− V (h[y(t)])) =∞.

Hence we proved that condition (5.4.20) is satisfied and therefore we deduce that also

condition (5.4.17) holds true.

By this, we conclude the proof of Proposition 5.47.

Thus, we proved that the measure µ defined by equation (5.4.13) is probability measure
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which is {St}t≥0 invariant. Therefore, the proof of condition (i) of Theorem 5.45 is

complete.

The proof of conditions (ii) and (iii) of Theorem 5.45 can be done in the same fashion as

we proved parts (ii) and (iii) of Theorem 4.67 in Chapter 4.

The proof of condition (iv) of Theorem 5.45 follows trivially because W0 is a bounded

subset of E, i.e.,

‖v‖E ≤ max{λ+, λ−} = λ0 <∞, v ∈W0.

Hence ∫
W0

‖v‖2E ≤ λ2
0 µ(W0) = λ2

0 <∞.

Thus the proof of our main result in this section, i.e., Theorem 5.45, is complete.
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5.5 Discussion

Our main contribution in Chapters 4 and 5 concerning the paper by Rudnicki [43] is

that we have been able to formulate and prove the well-posedness of the Lasota equation

for irregular drift coefficient a(x). In fact, as in Chapter 4, we assume that a is only

continuous and satisfies the Osgood condition. To formulate our results for the nonlinear

case of the Lasota equation, we use deeply some of the results from chapter 4, that the

corresponding linear equation generates a C0-semigroup on the Banach space C0
(
[0, 1]

)
so that a notion of a mild solution to the Lasota equation makes sense. We also use some

results about dissipative problems in Banach spaces to prove that the Lasota equation is

well-posed.

Rudnicki [43] and others have always assumed that the drift coefficient a(x) is of C1-class,

since their notion of a classical solution was intrinsically dependent on that assumption.

One could have suspected that the C1-class regularity of the function a was a redundant

assumption and we proved that this is the case. On the other hand, we also rigorously

use the notion of a classical solution to verify the representation Theorem 5.35.



Chapter 6

Open Problems and Future Work

In this Chapter, we outline open problems that can be considered for future research

directions. These open problems were encountered in Chapter 3 and in Chapter 4.

6.1 Open Problem of Chapter 3

We identified during our proving of the existence of invariant measures for the first-order

PDE, the following two open problems. The first problem is related to Theorem 3.30. The

theorem can be generalise to the case α ∈ (−1
2 , 0). We conjecture that our result can be

rewritten similarly to Remark 3.31. In this present case, the Hurst parameter H = α+ 1
2

could be an arbitrary element of (0, 1
2).

The second open problem is that the law of Brownian motion µ is an invariant measure

for the semigroup denoted by {S
1
2 (t)}t≥0 generated by the following equation

∂u

∂t
+ s

∂u

∂s
=

1

2
u (6.1.1)

Denote by {Jλ(t)}t≥0 the semigroup on the E generated by equation (6.1.1) with 1
2 re-

placed by λ. Is it true if µ is an invariant measure for {Jλ(t)}t≥0 then λ = 1
2?

6.2 Open Problem of Chapter 4

We found two main open problems in this chapter. The first one is related to the The-

orem 4.19. It is an open problem whether the theorem holds on the Lebesgue spaces

Lp(0, 1) or Sobolev spaces Hα,p
0 ([0, 1]). In Chapter 3, we proved that this is true when

the function a(x) = x for x ∈ R. This should be easily generalised to the case when the
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function a is of C1-class. But the general case of a satisfying only Assumption 4.2 remains

open.

The second open problem is related to the Theorem 4.67, which is the main result of

Section 4.3. We studied there a problem of the existence of an invariant probability

measure for the C0-semigroup on the space C0 ([0, 1]) generated by the equation (4.3.2).

We assumed very weak assumptions of the coefficient a but the coefficient c was assumed

to be a constant. Our main tool was an earlier Theorem 4.19 that equation (4.3.2) with

c = 0, generates a C0-semigroup on the space C0 ([0, 1]). Many open questions remain to

be investigated, and we are mentioning some of them as follows.

• Q1. Does equation (4.3.2) with c = 0, generates a C0-semigroup on spaces different

than C0 ([0, 1])? We have tried and failed to prove such a result for the space

E = Lp(0, 1). On the other hand, as has been established in [11] and [12] that this

is true when a(x) = x.

• Q2. Under what natural conditions on the function c, equation (4.3.2) generates a

C0-semigroup on space C0 ([0, 1])?

When this is the case, under what additional assumptions, does this semigroup has

an invariant measure?

• Q3. Combine Q1 with Q2.

• Q4. Suppose the answer of Q2 is positive, what can be said about linear equation

(4.3.2) with λu replaced by c(x)? What are the natural assumptions on function c?

Remark 6.1. Lemmata 4.24, 4.25 and Claim 4.28 have been formulated and proved for

abstract C0-semigroups, not only for those used in this thesis. Would these results be

of any use in the study of the existence of invariant measures for other equations, e.g.,

the Burgers Equation. Completely different methods in the case of stochastic Burgers

Equations have been used in [17].

We ask if the following problem has a unique mild solution for every u0 ∈ E = C0
(
[0, 1]

)
:

∂u(t, x)

∂t
+ a(x)

∂u(t, x)

∂x
= c(u(t, x)), t > 0, x ∈ [0, 1].

u(0, x) = u0(x).

To prove the mild solution to the nonlinear above equation, we formulate the following

result which is a consequence of the Wintner Theorem, see the book by Hartman [25,

Theorem 5.1], see also [34, problem 8, p.36].
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Theorem 6.2. Assume that a function c : R→ R is continuous and satisfies

|c(y)| ≤ φ(|y|), y ∈ R,

for some function φ : [0,∞)→ [0,∞), such that φ(r) > 0 if r > 0 and∫ ∞
N

1

φ(r)
dr =∞, for every N > 0.

Then every local maximal solution y(t), t ∈ [t0, τ) of the equation

y′(t) = c
(
y(t)

)
, t ≥ t0,

is a global solution, i.e., τ =∞.

Note that a non-trivial linear function c satisfies assumptions of the above Theorem 6.2.

Indeed, ∫ ∞
N

dr

r
=∞ for every N > 0.



Appendix A

Referenced Theorems, Lemmas

and Propositions

For the sake of completeness in this thesis, we recall in this appendix important well-known

theorems that are used in some parts of our proofs.

A.1 Referenced Theorems, Lemmas and Propositions

Theorem A.1. [35] Let X be a non-empty set and let Y and Z be two metric spaces.

Assume {gn}n∈N be a sequence of mappings from X to Y such that

gn → g uniformly on X.

Let ψ : Y → Z be a uniformly continuous function. Then

ψ ◦ gn → ψ ◦ g uniformly on X.

We also need a simpler version of the above theorem.

Theorem A.2. Let X and Y be two non-empty sets and let (N, d) be a metric space.

Assume that g : X → Y . Assume {fn}n∈N be a sequence of mappings from Y to N such

that

fn → f uniformly on Y.

Then

fn ◦ g → f ◦ g uniformly on X.

Theorem A.3 (Dominated Convergence Theorem [2]). Suppose that φ is an integrable

function and fk is a sequence of measurable functions such that |fk(x)| ≤ φ(x) almost
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everywhere and suppose that fk converges to a function f almost everywhere. Then fk

and f are integrable and

lim
k→∞

∫
Rn
fk dµ =

∫
Rn
f dµ.

Theorem A.4 (Monotone Convergence Theorem [2]). Suppose fk is a sequence of mea-

surable functions on Rn such that 0 ≤ fk(x) ≤ fk+1(x) for all k and x. Let f(x) =

limk→∞fk(x), then

lim
k→∞

∫
Rn
fk dµ =

∫
Rn
f dµ.

Theorem A.5 (Weierstrass Approximation Theorem [39]). Let f be a continuous real-

valued function on [a, b] and for any given ε > 0 there exists a polynomial P ∈ [a, b] such

that

|f(x)− P (x)| < ε, x ∈ [a, b].

Theorem A.6. [3, Theorem 8.17] Suppose that a continuous functions f(t) → y0 as

t → ∞ and that function v(y) → v0 as y → y0. Then the composition v(f(t)) → v0 as

t→∞.

A.1.1 Proof of Lemma 3.2

Proof. Fix t > 0. Take a cylinder set C of the following form

C = C(s1, . . . , sn;A1, . . . , An)

= {x ∈ E : x(s1) ∈ A1, . . . , x(sn) ∈ An}

for some 0 < s1 < . . . < sn ≤ 1, and A1, . . . , An ∈ B(R). By the definition of the inverse

set we have

S−1
t (C) := {x ∈ E : St(x) ∈ C}

= {x ∈ E :
(
Stx
)
(si) ∈ Ai, i = 1, . . . , n}

= {x ∈ E : e
t
2x(sie

−t) ∈ Ai, i = 1, . . . , n}

= {x ∈ E : x(sie
−t) ∈ e−

t
2Ai, i = 1, . . . , n}

= C(s1e
−t, . . . , sne

−t, e−
t
2A1, . . . , e

− t
2An) (A.1.1)

Note that sets e
−t
2 Ai are Borel. So we proved that S−1

t (C) is also cylinder set but with

different time and different base sets. Now, we take the measure µ for both sides of
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equality (A.1.1) and put α2 = e−t, (α > 0) we obtain

µ
(
S−1
t (C)

)
= µ

(
C(s1e

−t, . . . , sne
−t, e−

t
2A1, . . . , e

− t
2An)

)
= µ

(
C(α2s1, . . . , α

2sn, αA1, . . . , αAn)
)

=
1√

(2π)n(α2s1 − 0) . . . (α2sn − α2sn−1)∫
αA1

. . .

∫
αAn

e
− 1

2

∑n
k=1

(xk−xk−1)2

(α2sk−α2sk−1) dx1 . . . dxn

Using the change of variables formula as follows:

Since x1 ∈ αA1 then x1 = αy1, dx1 = αdy1 where y1 ∈ A1. Also xn ∈ αAn then xn = αyn,

dxn = αdyn where yn ∈ An. Hence by substituting those changes into the above equality

we obtain

µ
(
S−1
t (C)

)
=

1√
(2π)n(α2)n(s1 − 0) . . . (sn − sn−1)∫

A1

. . .

∫
An

αn e
− 1

2

∑n
k=1

(yk−yk−1)2

(sk−sk−1) dy1 . . . dyn

=
1√

(2π)n(s1 − 0) . . . (sn − sn−1)∫
A1

. . .

∫
An

e
− 1

2

∑n
k=1

(yk−yk−1)2

(sk−sk−1) dy1 . . . dyn

= µ
(
C(s1, . . . , sn;A1, . . . , An)

)
= µ(C).

Hence, we proved

µ
(
S−1
t (C)

)
= µ(C).



Appendix B

Examples

In this section, we present some of the fundamental examples in functional spaces.

B.1 Examples of Separable Banach spaces

Proof of Example 2.5. To verify that our claim is a Banach space, we need to check

whether it is a complete normed space.

Normed Space: The conditions of normed space that were presented in Definition 2.1

must be validated as follows.

N1. ‖f‖ ≥ 0, because supy∈[a,b] |f(x)| ≥ 0.

N2. ‖0‖ = supy∈[a,b] |0| = 0. If ‖f‖ = 0 then supy∈[a,b] |f(x)| = 0 and so f = 0.

N3. Let f ∈ C[a, b] and for any scalar λ, we have

‖λf‖ = |λ|‖f‖. (B.1.1)

In order to verify the third condition, we start with the left-hand-side of the equal-

ity (B.1.1).

‖λf‖ = sup
x∈[a,b]

|λf(x)| = |λ| sup
x∈[a,b]

|f(x)|,

where we have here two cases:

Case 1: If λ = 0. Then

sup
y∈[a,b]

|0| = 0, and |0| sup
y∈[a,b]

|f(x)| = 0.
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Case 2: If λ 6= 0. For every x belongs to [a, b], we have

|λf(x)| ≤ |λ||f(x)| ≤ |λ| sup
y∈[a,b]

|f(y)|.

Since the right-hand-side of the above equation is an upper bound of {|λf(x)| : x ∈
[a, b]} then it is larger than the least upper bound, i.e

sup
y∈[a,b]

|λf(x)| ≤ |λ| sup
y∈[a,b]

|f(y)|. (B.1.2)

For the right-hand-side of the equality (B.1.1), we take x ∈ [a, b]. Then

|λ||f(x)| = |λf(x)| ≤ sup
y∈[a,b]

|λf(y)| (divide by|λ|)

|f(x)| ≤ 1

|λ|
sup
y∈[a,b]

|λf(y)| ∀x ∈ [a, b].

Hence with the same argument above we deduce the following

sup
y∈[a,b]

|f(x)| ≤ 1

|λ|
sup
y∈[a,b]

|λf(y)|

|λ| sup
y∈[a,b]

|f(x)| ≤ sup
y∈[a,b]

|λf(y)|.
(B.1.3)

So, from equations (B.1.2) and (B.1.3) we conclude that condition (N3) is held.

sup
y∈[a,b]

|λf(x)| = |λ| sup
y∈[a,b]

|f(x)|.

In other words, we proved ‖λf‖ = |λ|‖f‖.

N4. We want to show that for every f, g ∈ C[a, b], we have ‖f + g‖ = ‖f‖+ ‖g‖.

To prove this, let f, g ∈ C[a, b] and x ∈ [a, b], then we have

‖f + g‖ = sup
x∈[a,b]

|f(x) + g(x)| ≤ sup
x∈[a,b]

|f(x)|+ sup
x∈[a,b]

|g(x)| = ‖f‖+ ‖g‖.

Now we would like to verify with more detail the following equation

sup
x∈[a,b]

[
|f(x)|+ |g(x)|

]
≤ sup

x∈[a,b]
|f(x)|+ sup

x∈[a,b]
|g(x)|. (B.1.4)

Let x ∈ [a, b], then we have

|f(x)| ≤ sup
x∈[a,b]

|f(y)|. (B.1.5)
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And similarly

|g(x)| ≤ sup
y∈[a,b]

|g(y)|. (B.1.6)

So, by adding equations (B.1.5) and (B.1.6) together, we obtain

|f(x)|+ |g(x)| 6 sup
y∈[a,b]

|f(y)|+ sup
y∈[a,b]

|g(y)| ,∀x ∈ [a, b]

Assume that supy∈[a,b] |f(y)|+ supy∈[a,b] |g(y)| = M . That means

|f(x)|+ |g(x)| ≤M, ∀x ∈ [a, b]

Then, as arguing before in N3. M will be an upper bound of

{|f(x)|+ |g(x)| ,∀x ∈ [a, b]}.

Thus, supx∈[a,b][|f(x)|+ |g(x)|] ≤M . That is

sup
x∈[a,b]

[
|f(x)|+ |g(x)|

]
≤ sup

x∈[a,b]
|f(x)|+ sup

x∈[a,b]
|g(x)|

Hence the proof of equation (B.1.4) is complete. Finally, Since all conditions of normed

space are valid, the function ‖ · ‖ is a norm.

Completeness: To verify the completeness of the normed vector space C[a, b], we have

to show that every Cauchy sequence in the space C[a, b] is convergent. We start with

taking {fn} to be a Cauchy sequence in C[a, b]. Our objective is to find a function f ∈
C[a, b] such that ‖fn − f‖ → 0 as n→∞. That is,

∀ε > 0 ∃N = Nε : ∀n > N then ‖fn − f‖ 6 ε.

In order to meet our objective, we identify four requirements. The first requirement is to

find a candidate for f . Take x0 ∈ [a, b], then for every n,m ∈ N we have

|fn(x0)− fm(x0)| ≤ sup
x∈[a,b]

|fn(x0)− fm(x0)| = ‖fn − fm‖. (B.1.7)

Now, take ε > 0. Because {fn} is a Cauchy sequence then there exists N ∈ N such that

for all n,m > N then ‖fn − fm‖ 6 ε. Hence, by equation (B.1.7), we infer that

|fn(x0)− fm(x0)| 6 ε , n,m > N.
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So, we verified that the sequence fn(x0) is a Cauchy sequence in R. Because R is complete,

we deduce that fn(x0) is convergent in R. Let us denote the limit by f(x0). Thus,

fn(x0) −→ f(x0) as n→∞. (B.1.8)

After we proved that fn(x0) is convergent to f(x0), the second requirement is to show

that f belongs to the space C[a, b]. Next of that, the third requirement is to prove that

fn → f in C[a, b]. However, before fulfillment of those requirements, we need to consider

and achieve yet another requirement that studies whether fn converges to f uniformly.

Let ε > 0. Since our sequence is Cauchy in C[a, b], then ∃N = Nε such that for all

n,m ≥ N we have ‖fn − fm‖ ≤ ε. So,

sup
x∈[a,b]

‖fn(x)− fm(x)‖ ≤ ε. (B.1.9)

Fix x0 ∈ [a, b]. Then, from equations (B.1.7) and (B.1.9) we infer that

|fn(x0)− fm(x0)| ≤ ε, where n,m ∈ N.

Now, let us fix n ≥ Nε and let m → ∞. Then from equation (B.1.8) we deduce that

fm(x0) −→ f(x0). Since |fn(x0)− fm(x0)| ≤ ε, then we can rewrite it as follows

−ε ≤ fn(x0)− fm(x0) ≤ ε.

fn(x0)− ε ≤ fm(x0) ≤ fn(x0) + ε.

By using the Sandwich Theorem 2.15 for functions, we obtain

fn(x0)− ε ≤ f(x0) ≤ fn(x0) + ε.

Thus

‖f(x0)− fn(x0)‖ ≤ ε.

Hence, fn converges uniformly to f . Regarding requirement 2 studies whether f belongs

to the space C[a, b]. We know from our assumption that fn ∈ C[a, b], and from the

results of proving requirement 4 that fn −→ f uniformly, we infer by Theorem 2.13 that

f ∈ C[a, b]. Regarding requirement 3, let ε > 0. Then, from the result of requirement 4,

∃N = Nε : ∀x ∈ [a, b], ∀n ≥ N then |fn(x)− f(x)| ≤ ε

Therefore,

sup
x∈[a,b]

|fn(x)− f(x)| 6 ε, ∀n ≥ Nε.
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Hence, the main objective (that studies the completeness of normed space C[a, b]) has

been proved. That means

∀ ε > 0 ∃N = Nε : ∀n ≥ N‖fn − f‖ ≤ ε.

Therefore, the normed space is complete and consequently the space X = C[a, b] is a

Banach space.

Proof of the space X in equation (2.1.1) is separable. In order to prove the space C[a, b]

is separable, we need to find a subset that is countable dense in the space. For that, let

Pn be polynomials with rational coefficients of degree n. For countability, it is clear that

Pn is a countable set because the rational numbers are countable and p =
⋃∞
n=1 Pn is a

countable union of countable sets. Let q(x) any a polynomial such that

q(x) = a0 + a1x+ . . .+ anx
n where ai ∈ R, i = 1, . . . , n.

For density, for every ε > 0, we can choose bi ∈ Q such that

|ai − bi| <
ε

2(n+ 1)
.

For every ε > 0, since rationals are dense, then it follows that p(x) = b0 +b1x+ . . .+bnx
n.

Hence for every x ∈ [a, b], we have

|P (x)− q(x)| ≤ |b0 − a0|+ |b1 − a1||x|+ . . .+ |bn − an||x|n

≤ |b0 − a0|+ |b1 − a1|+ . . .+ |bn − an| as x ∈ [0, 1] ≤ ε

2
.

Now for any f ∈ C[a, b] and ε > 0, by Weierstrass Approximation Theorem A.5, we can

find a polynomial q such that |f − q| ≤ ε
2 . Then

‖P − f‖ ≤ ‖P − q‖+ ‖q − f‖ ≤ ε.

Hence, the rational polynomials are dense and countable. Therefore, we can deduce that

the space C[a, b] is separable.

Example B.1. The space C1
0 ([0, 1]) is a subspace of the space H1,p

0 (0, 1).

Proof of the Example B.1. To verify this example, we need to check two statements:1)

The space C1
0 ([0, 1]) is subset of space H1,p

0 (0, 1) and 2) The space C1
0 ([0, 1]) is vector

space itself. For the former, we argue that any element x in the space C1
0 ([0, 1]) is also

in the space H1,p
0 (0, 1). This means, x has a weak derivative and Both x and x′ have a

finite Lp norm, which is true since they both continuous function on a closed and bounded

interval. For the latter, C1
0 ([0, 1]) is a vector subspace because: if x, y ∈ C1

0 ([0, 1]) then
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αx + βy ∈ C1
0 ([0, 1]) for any α and β in R. It is clear that αx + βy is continuously

differentiable as x and y are an element in space C1
0 ([0, 1]) and addition and scalar

multiplication preserve the continuity and differentiability. In more details, (αx+ βy)′ =

αx′ + βy′ and (αx+ βy)(0) =
(
αx(0) + βy(0)

)
= α(0) + β(0) = 0, and similarly for x′

(αx+ βy)′(0) = (αx)′(0) + (βy)′(0) = α(0) + β(0) = 0.

Hence, we proved that

C1
0 ([0, 1]) ⊂ H1,p

0 (0, 1).

Lemma B.2. The space C0 ([0, 1]) is a closed subspace of the space C ([0, 1]).

Proof of the Lemma B.2. It is obvious to see that C0 ([0, 1]) ⊂ C ([0, 1]) because any

element in the space C0 ([0, 1]) is continuous, in particular, f(0) = 0. To prove the

space C0 ([0, 1]) is a vector space itself, let x, y ∈ C0 ([0, 1]) and α, β ∈ R then we have

αx(s) + βy(r) is continuous and αx(0) + βy(0) = 0.

Finally, it remains to show that the space C0 ([0, 1]) is closed. Let {xn}n∈N be a Cauchy

sequence in the space C0 ([0, 1]) then xn → x ∈ C ([0, 1]) uniformly because the space

C ([0, 1]) is complete. In particular, xn(0) → x(0). Since xn ∈ C0 ([0, 1]) this means that

xn(0) = 0. Hence x(0) = 0. Therefore, x ∈ C0 ([0, 1]). Hence C0 ([0, 1]) is closed subspace

of the C ([0, 1]).

Lemma B.3. The space F = C1
0

(
[0, 1]

)
, defined by formula (3.2.6) is a separable Banach

space.

Proof of Lemma B.3. Let us consider the following map:

Γ : F 3 x 7→ (x, x′) ∈ E × E, where E = C0 ([0, 1]). (B.1.10)

Based on the above map (B.1.10), the justification can be expressed in three steps. The

first step is to verify that the cartesian product E × E, that is endowed with the norm:

‖(x, y)‖E×E := |x|E + |y|E , (B.1.11)

is a Banach space. The second step of the justification is to prove that the cartesian

product E × E is separable. The third step is to justify that Γ, which was defined

in (B.1.10), is isometric.

Regarding the first step, there are two main conditions for the Banach space that need

to be satisfied, which are E × E is complete. For the former (norm), it is obvious that
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E ×E is a vector space with addition and multiplication by scalars defined in a standard

way, i.e.,

α1(x1, y1) + α2(x2, y2) := (α1x1 + α2x2, α1y1 + α2y2), αi ∈ K, xi, yi ∈ E.

Moreover, all the conditions, which are mentioned before in Definition 2.1 are clearly

satisfied. Regarding the latter condition, which is related to the completeness of the vector

space E×E, we need to study whether the space has a convergent Cauchy sequence. Let

(xn, yn) be a Cauchy sequence. Let ε > 0 and N ∈ N such that for every n,m ≥ N we

have

‖(xn, yn)− (xm, ym)‖ < ε.

From the definition of the norm of the space E ×E, which is stated in equality (B.1.11),

we have

|xn − xm|E + |yn − ym|E < ε, n,m ≥ N.

Hence, we see that sequences (xn) and (yn) are Cauchy in the space E. Since E is a

complete space, we deduce that the sequences (xn) and (yn) are convergent in E. That

means, there exist x, y ∈ E such that xn → x and yn → y in E.

Let us observe that (x, y) ∈ E × E. Given an ε > 0, we want an N1 so that |xn − x|
is less than ε

2 and an N2 so that the same is also true for |yn − y| and ε
2 . If we take

N = max{N1, N2} then we have

|(xn, yn)− (x, y)|E×E < ε.

Thus,

‖(xn, yn)− (x, y)‖E×E < ε, for n ≥ N.

Hence (xn, yn)→ (x, y). By this we proved that E × E is complete.

Regarding the second step that the cartesian product E×E is separable, we have already

proven in Example B.1 that the space C
(
[0, 1]

)
is a separable Banach space. Since the

space C0
(
[0, 1]

)
is a closed subspace of C

(
[0, 1]

)
with the same norms, then we deduce from

Lemma 2.28 that the space C0
(
[0, 1]

)
is also separable. Moreover, a cartesian product of

two separable normed vector spaces is separable . Hence, we deduce that the space E×E
is separable.

Regarding the third step which is to justify whether Γ, which was defined in equation

(B.1.10), is isometric, we start first by showing that the map Γ : F 3 x 7→ (x, x′) ∈ E×E
is injective. This is because:

Γ(x1) = Γ(x2) =⇒ (x1, x
′
1) = (x2, x

′
2) =⇒ x1 = x2.
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In addition to that the, map Γ is isometry, that is

‖Γ(x)‖E×E = ‖x‖F , for every x ∈ F. (B.1.12)

To justify that the equality (B.1.12) holds, we start with the LHS. let x belongs to the

space F . Then we have

‖Γ(x)‖E×E = ‖(x, x′)‖E×E = |x|E + |x′|E .

Similarly, for the RHS of equality (B.1.12), let x belongs to the space F . Then we deduce

from the definition of the norm of the space F for an element x ∈ F the following equality

is valid:

‖x‖F = sup
s∈[0,1]

|x(s)|+ sup
s∈[0,1]

|x′(s)| = ‖x‖E + ‖x′‖E

As a consequence, the LHS and the RHS of equality (B.1.12) are equal.

However, the map Γ is not surjective. For instance, if we take for example, elements

y(s) = s2 and z(s) = s3, then the ordered pair (y, z) belongs to the space E×E but does

not belong to Γ(F ).

Put

Z := Γ(F ).

Let us note we proved earlier that E × E is a separable Banach space. Let us also note

that Z is a closed subspace of E × E. Hence Z is a separable Banach space.

Moreover, we can show that Γ : F → Z is an isomorphism. Note that Γ : F → E × E is

not surjective but we replace the ”co-domain” E × E by the range Z of the function Γ.

Hence, with this change Γ becomes surjective. Hence we infer that F is also a separable

Banach space.
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