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Dr Campé gave the interpretation of our results in terms of absorption and

emission of solutions by the boundary. The nonlinear mirror image method

applied to the time-dependent boundary conditions (included in Chapter

4) was joint effort between by Dr Caudrelier and myself.

This copy has been supplied on the understanding that it is copyright ma-

terial and that no quotation from the thesis may be published without proper

acknowledgement.

The right of Carlos Mbala Dibaya to be identified as Author of this work has

been asserted by Carlos Mbala Dibaya in accordance with the Copyright, Designs

and Patents Act 1988.

©2022 The University of Leeds and Carlos Mbala Dibaya.

i



To my parents



Acknowledgements

First and foremost, I would like to thank my supervisor, Vincent Cau-

drelier, for his guidance and support throughout my PhD studies. His

enthusiasm for the study of solitons and nonlinear partial differential

equations inspired me during my last four years of study, and I hugely

appreciate all the knowledge he shared with me.

I am very thankful to Nicolas Crampé, for the fruitful exchanges and
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Abstract

In this thesis, we review the inverse scattering transform with zero

and non-zero boundary conditions at infinity for the one-dimensional

nonlinear Schrödinger equation. The inverse problems are discussed

making use of the theory of Riemann-Hilbert problems.

We perform the analysis of the focusing nonlinear Schrödinger equa-

tion on the half-line with time-dependent boundary conditions at ori-

gin and zero boundary conditions at infinity along the lines of the

nonlinear mirror image method with the help of Bäcklund transfor-

mations. We find two possible classes of solutions. One class is very

similar to the case of Robin boundary conditions whereby solitons are

reflected at the boundary, as a result of effective interaction with their

images on the other half-line. The new class of solutions supports the

existence of one soliton that is not reflected at the boundary but can

be either absorbed or emitted by it. We demonstrate that this is a

unique feature of time-dependent integrable boundary conditions.

Finally, we present partial results of the analysis for the focusing

nonlinear Schrödinger equation on the half-line with Robin bound-

ary conditions at origin and non-zero boundary conditions at infinity

using the nonlinear mirror image method in conjunction with Bäck-

lund transformations.
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Chapter 1

Introduction

1.1 Presentation of the model

The one-dimensional nonlinear Schrödinger (NLS) equation is given by

iut + uxx − 2κ|u|2u = 0. (1.1.1)

The unknown function u(x, t) appearing in this equation is complex-valued; the

constant κ is±1. The NLS equation (1.1.1) is referred to as focusing if κ = −1 and

it is defocusing in the case κ = 1. In this work, the space variable x is considered

either in the full-line (that is, x ∈ R) or half-line (that is, x ∈ [0,+∞)), and the

time variable t is assumed in [0,+∞).

The NLS equation (1.1.1) can be used to describe the propagation of light

in a nonlinear optical fibre Hasegawa & Tappert (1973). It also has many other

interesting physical applications: we refer interested readers to Ablowitz et al.

(2004), Dauxois & Peyrard (2006) and Sulem & Sulem (2007).

To keep the terminology used in the literature, we refer to solutions of (1.1.1)

as potentials. We will consider two classes of potentials:

• Potentials u(x, t) such that u(·, t) belong to the Schwartz class S(R)1 for

each t ≥ 0. We will refer to this as zero boundary conditions (ZBCs) at

infinity.

1S(R) is defined as the space of functions whose derivatives (including the functions them-

selves) decay faster than any power of |x| as |x| → ∞; see Appendix A.2.
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1. INTRODUCTION

• Potentials u(x, t) that tend to a time-dependent function as x → ±∞, i.e.

for each t ≥ 0

u(x, t)→ u±e
−2iκq20t, x→ ±∞, (1.1.2)

where u± are some complex constants such that |u+| = |u−| = q0 6= 0. To

tackle the initial-value problem for the NLS equation (1.1.1) with boundary

conditions (BCs) (1.1.2), it is ideal to make the BCs time-independent.

This can be done by introducing the following transformation u(x, t) →
u(x, t)e2iκq20t. As a consequence of this, (1.1.1) and (1.1.2) become

iut + uxx − 2κ(|u|2 − q2
0)u = 0, (1.1.3)

u(x, t)→ u±, x→ ±∞. (1.1.4)

We will refer to (1.1.4) as non-zero boundary conditions (NZBCs) at infinity.

1.2 Properties of the NLS equation

1.2.1 Group symmetries for the NLS equation

Consider the following change of variables

χ = cx, τ = c2t,

for some non-zero constant c. A simple application of the chain rule yields

∂

∂x
= c

∂

∂χ
,

∂

∂t
= c2 ∂

∂τ
.

A direct calculation shows that (1.1.1) yields

iqτ + qχχ − 2κ|q|2q = 0,

where q = cu. This means that if u(x, t) is a solution of equation (1.1.1) then

cu(cx, c2t) solves the same equation. This is known as the scaling symmetry group

for the NLS equation (1.1.1).

Another important group symmetry for equation (1.1.1) is the so-called Galilean

transformation group. It is realised by making the following change of variables

x→ x− vt, t→ t,

for some non-zero constant v. In this case if u(x, t) solves equation (1.1.1), then

u(x− vt, t)ei
v
2(x− v2 t) will also solve the same equation.

2



1.2 Properties of the NLS equation

1.2.2 Solution of the NLS equation

Since the appearance of the influential and important paper by Zabusky & Kruskal

(1965), (multi) solitons have attracted the attention of both physicists and math-

ematicians. To physicists, they are important to understand phenomena such as

the appearance of rogue waves and the propagation of signals in the optical fibre,

see for example Dauxois & Peyrard (2006); while to mathematicians, equations

that approximately describe these phenomena are good examples of completely

integrable systems. The mathematical machinery that encodes this integrability

property and the construction of complicated soliton solutions is known as the

inverse scattering transform, which is the central tool in this thesis. To appreciate

the importance of the inverse scattering transform, we will discuss the condition

under which solitons appear for the NLS equation (1.1.1), and we will provide a

direct derivation of the simplest soliton solution.

Consider the NLS equation (1.1.1). We look for solutions of the form

u(x, t) = ψ(x)eiφ(t), (1.2.1)

where ψ(x) and φ(t) are real-valued functions. Substituting (1.2.1) into (1.1.1)

yields

−ψφt + ψxx − 2κψ3 = 0.

This equation can be rearranged to obtain

φt =
ψxx
ψ
− 2κψ2.

The LHS of this equation is a function of t and the RHS is a function of x. Thus

both sides should be equal to a constant, say φ0. We have φt = φ0 =⇒ φ(t) =

φ0t + φ1, where φ1 is the constant of integration. The second equation can be

also rearranged to obtain

ψxx = 2κψ3 + φ0ψ. (1.2.2)

Assume that ψ and its first derivative ψx decay to zero as x→ ±∞. Multiplying

(1.2.2) by ψx and integrating, yields

(ψx)
2 = κψ4 + φ0ψ

2. (1.2.3)

3



1. INTRODUCTION

We do not have any constant of integration due to the boundary conditions of

ψ(x) above. This equation can be seen as

(ψx)
2

2
+ U(ψ) = 0,

where U(ψ) = −
(
κψ4

2
+ φ0ψ2

2

)
. Note that since ψ(x) is a real-valued function, we

have (ψx)
2 ≥ 0. This implies that U(ψ) ≤ 0 for all values of ψ that correspond

to a solution. A quick phase-portrait analysis tells us that a bounded motion

starting from ψ = 0 can only be possible if κ = −1 and φ0 ≥ 0. This corresponds

to a soliton solution for the NLS equation. Now, assume that κ = −1 and φ0 ≥ 0.

Therefore, one can integrate the remaining differential equation by making the

following change of variable ψ = a sech(θ), where a =
√
φ0, which yields ψ(x) =

a sech (a(x+K0)) , where K0 = 1√
φ0

arcsech
(
ψ(0)√
φ0

)
. Putting everything together,

we obtain

u(x, t) = a sech (ax+K) ei(a
2t+φ1),

where K = aK0. By applying the Galilean transformation above, one gets

u(x, t) = a sech (a(x− vt) +K) e
i
[
v
2
x+
(
a2− v

2

4

)
t+φ1

]
. (1.2.4)

Solution (1.2.4) is known as the four-parameter bright soliton for the focusing

NLS equation (1.1.1).

It is clear that the construction of (multi) soliton solutions is not an easy task.

A good insight about the physical system of interest is required to produce an

“accurate” ansatz. The situation becomes more complicated when one attempts

to explain the interactions between solitons. As we shall see in the next chapter,

the inverse scattering transform provides a robust mathematical framework to

tackle rigorously these challenges.

Thesis structure In Chapter 2, we discuss in detail the inverse scattering

transform for both the focusing and defocusing NLS equation (1.1.1) with zero

boundary conditions at infinity. We then review the recent developments of the

inverse scattering transform for the focusing NLS equation with non-zero bound-

ary conditions at infinity. In Chapter 3, we study integrable boundary conditions

by making use of Sklyanin’s formalism. We illustrate Sklyanin’s approach with

4



1.2 Properties of the NLS equation

two examples: the well-known Robin boundary conditions (BCs) and, recently

discovered, time-dependent BCs. Then, we analyse initial-boundary value prob-

lems (IBVPs) for the NLS equation, on the half-line, with Robin BCs at x = 0

and ZBCs at infinity through the nonlinear mirror image method; and, we briefly

review the unified transform approach to IBVPs by Fokas. We discuss the con-

nection between Sklyanin’s formalism, the nonlinear mirror image and the unified

transform. In Chapter 4, we apply the nonlinear mirror image method to solve

IBVPs for the NLS equation with time-dependent boundary conditions. Finally,

we present partial results obtained when implementing the nonlinear mirror im-

age method to solve IBVPs for the NLS equation with Robin BCs at the origin

and non-zero boundary conditions at infinity.

5



1. INTRODUCTION
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Chapter 2

Review of the inverse scattering

transform

Gardner, Greene, Kruskal & Miura (1967) introduced a rather strange method

that solves initial-value problems (IVPs) for the famous Korteweg-de Vries equa-

tion

ut − 6uux + uxxx = 0. (2.0.1)

A year after, Lax (1968) formalised their ideas by developing a general framework

known as Lax pair formalism. Later on, Shabat & Zakharov (1972) applied

similar ideas to the NLS equation (1.1.1) which opened up a door to a huge

amount of research in mathematical physics. These ideas were referred to as

inverse scattering transform (IST) for the first time by Ablowitz, Kaup, Newell &

Segur (1974) due to their multiple similitude to the well-known Fourier transform.

Note that the Fourier transform method is used to solve linear partial differential

equations (PDEs). The hallmark of the IST is that it provides a framework to

derive solitons through a finite number of linear steps. Nonlinear PDEs that can

be solved by the use of the inverse scattering transform are said to be integrable.

In Section 2.2 we discuss the inverse scattering transform for both focusing

and defocusing NLS equation (1.1.1) with zero boundary conditions (ZBCs) at

infinity. In Section 2.3 we consider only the IST for the focusing NLS equation

(1.1.1) with non-zero boundary conditions (NZBCs) at infinity.

7



2. REVIEW OF THE INVERSE SCATTERING TRANSFORM

In the sequel, we will sometimes drop out the arguments when everything

follows clearly by the context.

2.1 Lax pair formalism

The NLS equation (1.1.1) can be written as the compatibility condition of the

following auxiliary system of linear differential equations

ψx(x, t, λ) = U(x, t, λ)ψ(x, t, λ), (2.1.1)

ψt(x, t, λ) = V (x, t, λ)ψ(x, t, λ), (2.1.2)

where

U(x, t, λ) =

(
−iλ u(x, t)

κu∗(x, t) iλ

)
≡ −iλσ3 +Q(x, t), (2.1.3)

V (x, t, λ) = −2iλ2σ3 + 2λQ(x, t)− iQx(x, t)σ3 − iQ2(x, t)σ3, κ = ±1. (2.1.4)

The unknown function ψ(x, t, λ) is a 2 × 1 vector column. The asterisk stands

for the complex conjugate, λ is a complex parameter and σ3 is the third Pauli

matrix given by σ3 = diag(1,−1). In other words, a complex-valued function

u(x, t) solves the NLS equation (1.1.1) if and only if ψxt(x, t, λ) = ψtx(x, t, λ) for

all λ. This latter condition can be equivalently written as

Ut(x, t, λ)− Vx(x, t, λ) + [U(x, t, λ), V (x, t, λ)] = 0, for all λ.1 (2.1.5)

Equation (2.1.5) is known in the literature as the zero curvature condition. More

details about the zero curvature condition and its geometric interpretation can be

found, for example, in Faddeev & Takhtajan (2007). The two matrix functions

U and V defined above, form the so-called Lax pair associated with the NLS

equation (1.1.1). Given that the NLS equation is equivalent to the auxiliary

system (2.1.1)-(2.1.2), the study of its solution space is fundamental to solving

the NLS equation. This is essentially what the inverse scattering transform is

about.

1The matrix commutator is defined [A,B] := AB −BA for any square matrices A,B.
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2.1 Lax pair formalism

As mentioned above, functions ψ(x, t, λ) that solve the auxiliary system (2.1.1)

are 2 × 1 complex-valued vectors. The solution space for this system would

be generated by two linearly independent column-vector solutions. Therefore,

it makes sense to build up a 2 × 2 matrix Ψ(x, t, λ) whose columns are vector

solutions of (2.1.1)-(2.1.2) and write the system in a matrix form as Ψx = UΨ and

Ψt = VΨ. A matrix solution Ψ(x, t, λ) is said to be fundamental if it is invertible,

i.e., its determinant is non-zero. In the sequel, unless explicitly stated, whenever

we mention solutions of (2.1.1), we refer to matrix solutions. Occasionally, we

will refer to equations (2.1.1) and (2.1.2) as the x-part and t-part of the Lax pair,

respectively.

Let

σκ =

(
0 κ
1 0

)
(2.1.6)

Owing to the particular form of the matrix U(x, t, λ), we have the following

general result.

Lemma 2.1 (NLS symmetry). Let Ψ(x, t, λ) be a solution of (2.1.1) and λ a

complex parameter. Then we have that σκΨ(x, t, λ∗)∗σ−1
κ solves the same equation.

In other words,

σκΨ(x, t, λ∗)∗σ−1
κ = Ψ(x, t, λ)M(t, λ), (2.1.7)

where M(t, λ) is a constant matrix with respect to x.

Proof: The proof follows from σκU(x, t, λ∗)∗σ−1
κ = U(x, t, λ).

The x-part of the Lax pair can be rewritten as an eigenvalue or a spectral

problem:

LΨ = λΨ, (2.1.8)

where

L = iσ3 (∂x −Q) . (2.1.9)

Owing to this representation, λ is referred to as spectral parameter. We will refer

to (2.1.1) as the spectral problem or scattering problem.

The inverse scattering transform can be broken into three steps: direct prob-

lem, time evolution and the inverse problem. In the direct problem, we construct

the scattering data from a suitable initial condition u0(x) using the x-part of the

9



2. REVIEW OF THE INVERSE SCATTERING TRANSFORM

Lax pair. The time evolution step consists of using the t-part of the Lax pair

to study how the scattering data evolve with time. Finally, we use the time-

dependent scattering data to reconstruct the solution u(x, t) for the NLS equa-

tion via a normalised Riemann-Hilbert problem or Gel’fand-Levitan-Marchenko

(GLM) equation such that u(x, 0) = u0(x). This is schematized as follows:

u0(x) Scattering data (SD)

Time-dependent of SDu(x, t)

Direct problem
Via (2.1.1)

Time evolution
Via (2.1.2)

Inverse problem

Riemann-Hilbert problem or GLM

NLS equation (1.1.1)

When presenting the inverse scattering transform, it is useful to implement

the direct and inverse problems at an initial time, t = 0, and then connect them

through the time evolution. We will use this approach in this thesis.

Hereafter C+ and C− are, respectively, the upper and lower half of the complex

plane, that is, C+ = {z ∈ C | Im(z) > 0}, C− = {z ∈ C | Im(z) < 0}. Note also

that, we have

C± := C± ∪ R ∪ {∞}.

Recall that the point at infinity ∞ in the complex plane can be taken in any

direction. We denote by

e1 =

(
1
0

)
, e2 =

(
0
1

)
, σ2 =

(
0 −i
i 0

)
, 1I =

(
1 0
0 1

)
.

2.2 Zero boundary conditions at infinity

In this section, we will describe the inverse scattering transform for the initial-

value problem for the NLS equation in the case of ZBCs. We consider our poten-

tials to be in the Schwartz class, i.e. S(R). We will also assume weaker conditions

on the potentials, such as L1(R) and/or L2(R), to establish some fundamental

results. Other functional spaces can be considered; see for example Beals &

Coifman (1984), Faddeev & Takhtajan (2007) and Deift & Park (2011).
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2.2 Zero boundary conditions at infinity

2.2.1 Direct problem

Set u(x, t = 0) = u0(x). Since only the initial condition (at time t = 0) is

known, then one can only analyse the scattering problem at t = 0. Thus, for

the rest of this section, every object will be constructed at time t = 0. We will

drop any dependence on time t. For example, we will write Ψ±(x, λ) instead of

Ψ±(x, t = 0, λ).

The eigenfunctions of the scattering problem (2.1.1) are asymptotic1 to solu-

tions of

Ψx(x, λ) = −iλσ3Ψ(x, λ)

because the initial potential u0(x) decays at infinity. For each λ, a particular

solution for this differential equation is e−iλσ3x. Eigenfunctions of (2.1.1) that

behave asymptotically as e−iλσ3x are associated to λ being real. Therefore R
constitutes the continuous spectrum for the operator L.

Jost solutions Let λ ∈ R, we denote Ψ±(x, λ), solutions of the x-part of

the Lax pair such that they behave like e−iλσ3x as x → ±∞. These boundary

conditions can be written as

lim
x→±∞

Ψ±(x, λ)eiλxσ3 = 1I. (2.2.1)

The eigenfunctions Ψ±(x, λ) are referred to as Jost solutions.

We will now study some properties of the Jost solutions. We start by de-

scribing how one can formally construct them. To this end, one introduces the

following transformation:

Φ±(x, λ) = Ψ±(x, λ)eiλσ3x. (2.2.2)

The ordinary differential equations satisfied by Φ±(x, λ) can be directly integrated

to obtain Volterra integral equations

Φ−(x, λ) = 1I +

∫ x

−∞
eiλσ3(y−x)Q(y)Φ−(y, λ)e−iλσ3(y−x)dy, (2.2.3)

Φ+(x, λ) = 1I−
∫ ∞
x

eiλσ3(y−x)Q(y)Φ+(y, λ)e−iλσ3(y−x)dy. (2.2.4)

1The word asymptotic in this context refers of to the behaviour of the functions as x tends

to ±∞.
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2. REVIEW OF THE INVERSE SCATTERING TRANSFORM

For convenience, we introduce the following notations: Ψ
(1)
± and Ψ

(2)
± denote the

first and second column of Ψ±, respectively. The same convention holds for Φ±.

The next result shows that for λ ∈ R, Φ±(x, λ) are given by absolutely and

uniformly convergent Neumann series.

Proposition 2.2. Let u0(x) be an element of L1(R). Then the integral equations

(2.2.3)-(2.2.4) have unique solutions Φ±(x, λ), and these solutions are uniformly

bounded on R for each λ ∈ R. In particular, Ψ±(x, λ) are unique and uniformly

bounded solutions of the scattering problem such that (2.2.1) hold for each λ ∈ R.

Proof. We prove this result for Ψ
(1)
− (x, λ) in detail. The analysis for the other

columns is similar. The first column of Eq. (2.2.3) is

Φ
(1)
− (x, λ) = e1 +

∫ x

−∞
diag

(
1, e−2iλ(y−x)

)
Q(y)Φ

(1)
− (y, λ)dy.

To avoid cumbersome notations, we set
(
f(x, λ), e2iλxg(x, λ)

)T
= Φ

(1)
− (x, λ). Thus

we have

f(x, λ) = 1 +

∫ x

−∞
, e2iλyu0(y)g(y, λ)dy, g(x, λ) = κ

∫ x

−∞
e−2iλyu∗0(y)f(y, λ)dy. (2.2.5)

By substituting the second equation into the first, and changing the order of

integration∫ x

−∞

∫ y

−∞
κe−2iλ(z−y)u0(y)u∗0(z)f(z, λ)dzdy =

∫ x

−∞

∫ x

z
κe−2iλ(z−y)u0(y)u∗0(z)f(z, λ)dydz,

we obtain the following Volterra integral equation for f(x, λ)

f(x, λ) = 1 +

∫ x

−∞
K(x, z, λ)f(z, λ)dz, (2.2.6)

where the kernel K is given by

K(x, z, λ) = κu∗0(z)

∫ x

z

e−2iλ(z−y)u0(y)dy.

We now introduce the Neumann series for f(x, λ) as

f(x, λ) =
∞∑
n=0

fn(x, λ), (2.2.7)

12



2.2 Zero boundary conditions at infinity

f0(x, λ) = 1, fn+1(x, λ) =

∫ x

−∞
K(x, z, λ)fn(z, λ)dz, n ≥ 0.

Assume u0(x) ∈ L1(R) and λ ∈ R. The following estimate is essential for the rest

of this proof

|K(x, z, λ)| ≤ C|u0(z)|, (2.2.8)

where C = ‖u‖L1(R). Following the proof of Lemma 2.1 (Ablowitz et al., 2004),

we make the following claim: for all integers n ≥ 0

|fn(x, λ)| ≤ CnNn(x)

n!
, (2.2.9)

where N(x) =
∫ x
−∞ |u0(z)|dz. We use the induction principle to prove this claim.

It is true for n = 0 and n = 1. Assume that the claim is true for any integer

n > 1. Let’s prove that it holds for n+ 1. Before we prove this, observe that, for

any integer j ≥ 1, we have∫ x

−∞
|u0(z)|N j(z)dz =

1

j + 1

∫ x

−∞

d

dz

[
N j+1(z)

]
dz. (2.2.10)

Hence, one gets

|fn+1(x, λ)| ≤ Cn+1

n!

∫ x

−∞
|u0(z)|Nn(z)dz

=
Cn+1

n!(n+ 1)

∫ x

−∞

d

dz

[
Nn+1(z)

]
dz =

Cn+1Nn+1(x)

(n+ 1)!
.

Therefore, by the induction principle, the claim holds for any integer n. By com-

parison with the exponential series, it follows that the Neumann series defining

f(x, λ) converges absolutely. We have

|f(x, λ)| ≤
∞∑
n=0

|fn(x, λ)| ≤ exp (CN(x)) . (2.2.11)

We can replace x with +∞ in (2.2.11) to obtain a uniform convergence:

‖f‖∞ := sup
x∈R
|f(x, λ)| ≤ exp

(
C2
)
,

for all λ ∈ R. Therefore, we have obtained a uniformly bounded solution f for

the integral equation (2.2.6).
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2. REVIEW OF THE INVERSE SCATTERING TRANSFORM

This solution is unique. Indeed, consider two solutions f(x, λ) and f̃(x, λ)

that solve the integral equation (2.2.6) with the same properties. We easily see

that ∆f(x, λ) := f̃(x, λ)− f(x, λ) solves

∆f(x, λ) =

∫ x

−∞
K(x, z, λ)∆f(z, λ)dz. (2.2.12)

Replace the integral equation (2.2.12) into itself n− 1 times reads

∆f(x, λ) =

∫ x

−∞
K(x, zn, λ)

∫ zn

−∞
K(zn, zn−1, λ)× · · ·

· · · ×
∫ z2

−∞
K(z2, z1, λ)∆f(z1, λ)dz1 · · · dzn.

Note that there exists a positive constant M such that ‖∆f‖∞ = M . Such a con-

stant exists because ∆f(x, λ) is defined as the difference between two uniformly

bounded functions. From this, one gets

|∆f(x, λ)| ≤MCn

∫ x

−∞
|u0(yn)|

∫ yn

−∞
|u0(yn)| · · ·

∫ y2

−∞
|u0(y1)|dy1 · · · dyn

≤M
C2n

n!
.

Note that we used n times the identity (2.2.10) to obtain the last inequality.

Recall that M
∞∑
n=0

C2n

n!
is a convergent series, hence the sequence

(
C2n

n!

)
will

converge to zero. This means ∆f(x, λ) = 0 for all x, λ ∈ R. This proves the

uniqueness of the solution to the Volterra equation (2.2.6). Finally, it follows

that g(x, λ) is an absolutely continuous and uniformly bounded function on R for

each λ ∈ R.

We have constructed the unique vector Φ
(1)
− (x, λ) that solves the first column of

the integral equation (2.2.3) for λ ∈ R. Therefore, Ψ
(1)
− (x, λ) = Φ

(1)
− (x, λ)e−iλx is

the unique solution of the differential equation (2.1.1) such that eiλxΨ
(1)
− (x, λ)→

e1 as x→ −∞. This concludes the proof. �

Remark 2.3. In the above lemma, we proved that for each λ ∈ R, the functions

f(x, λ) and g(x, λ) are uniformly bounded on R for each λ ∈ R. It follows from

Theorem A.1(a) that:

lim
x→−∞

f(x, λ) = 1, lim
x→+∞

f(x, λ) = 1 +

∫ +∞

−∞
K(+∞, z, λ)f(z, λ)dz, (2.2.13)
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2.2 Zero boundary conditions at infinity

and

lim
x→−∞

g(x, λ) = 0, lim
x→+∞

g(x, λ) = κ

∫ +∞

−∞
e−2iλyu∗0(y)f(y, λ)dy. (2.2.14)

Due to the exponential functions appearing in the integral representation of

Φ±(x, λ), different columns of a matrix Jost solution will not be well-defined in

the same region of the λ-complex plane. For example, Ψ
(1)
− (x, λ) will be well-

defined for λ ∈ C+ while Ψ
(2)
− (x, λ) will be well-defined for λ ∈ C−. In this case,

using its integral representation, we can prove that Ψ
(1)
− (x, λ) (resp. Ψ

(2)
+ (x, λ)),

seen as a function of the spectral parameter λ, will admit an analytic continuation

in C+ (resp. C−). These properties will be useful for the inverse problem; see

Subsection 2.2.2.

Lemma 2.4 (Analytic continuation). Let u0(x) be an element of L1(R). Let

Φ−(x, λ) and Φ+(x, λ) be the solutions for the integral equations (2.2.3)-(2.2.4),

respectively. Fix x ∈ R, then Φ
(1)
∓ (x, ·) and Φ

(2)
± (x, ·) are continuous on R ∪ C±

and have an analytic continuation on C±. In particular, if u0 ∈ L1(R) ∩ L2(R),

we have

1. Ψ
(1)
− (x, ·) and Ψ

(2)
+ (x, ·) are continuous on R ∪C+ and analytic on C+ with

property

Ψ
(1)
− (x, λ) = O

(
eIm(λ)x

)
, as x→ −∞, Ψ

(2)
+ (x, λ) = O

(
e−Im(λ)x

)
, as x→ +∞, λ ∈ C+,

eiλxΨ
(1)
− (x, λ) = e1+O(λ−1), e−iλxΨ

(2)
+ (x, λ) = e2+O(λ−1), as λ→∞ and λ ∈ C+.

2. Ψ
(1)
+ (x, ·) and Ψ

(2)
− (x, ·) are continuous on R ∪C− and analytic on C− with

property

Ψ
(1)
+ (x, λ) = O

(
eIm(λ)x

)
, as x→ +∞, Ψ

(2)
− (x, λ) = O

(
e−Im(λ)x

)
, as x→ −∞, λ ∈ C−,

eiλxΨ
(1)
+ (x, λ) = e1+O(λ−1), e−iλxΨ

(2)
− (x, λ) = e2+O(λ−1), as λ→∞ and λ ∈ C−.

Proof: Again, we will show these results in detail for Ψ
(1)
− (x, λ). The analysis for

the other columns of Jost solutions will be similar. We set (f(x, λ), e2iλxg(x, λ))T =

Φ
(1)
− (x, λ). We know that f and g are solutions of the integral equations (2.2.5)

for λ ∈ R. Recall that f is formally defined by the Neumann series

f(x, λ) =

∞∑
n=0

fn(x, λ),
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2. REVIEW OF THE INVERSE SCATTERING TRANSFORM

f0(x, λ) = 1, fn+1(x, λ) =

∫ x

−∞
K(x, z, λ)fn(z, λ)dz, n ≥ 0,

K(x, z, λ) = κu∗0(z)

∫ x

z
e−2iλ(z−y)u0(y)dy.

It turns out that this series will still be convergent when the parameter λ belongs

to a specific region of the complex plane. Let us assume that λ ∈ C. The

key ingredient used to prove that the above Neumann series converges was the

estimate for the kernel K(x, z, λ). So, let us try to do the same but now λ is a

complex parameter:

|K(x, y, λ)| ≤ |u0(y)|
∫ x

z

e−2Im(λ)(y−z)|u0(y)|dy.

We see that we cannot obtain the same estimate for the kernel K (see (2.2.8))

without further assumption on the spectral parameter λ. Note that y ≥ z, that

means y − z ≥ 0. Hence, by assuming Im(λ) > 0 (that is λ ∈ C+), one recovers

the same estimate as in (2.2.8) because the exponential is bounded above by 1 and

the potential u0 is considered to be absolutely integrable on R. Therefore, one can

repeat the exact construction as above to obtain the existence and uniqueness of

the uniformly bounded function f(x, λ) that solves Eq. (2.2.6) for each λ ∈ C+.

The limiting values (2.2.13) still hold.

Note that, for λ ∈ C+, the integral equation defining g(x, λ) remains valid.

However, the integrand e−2iλxu∗0(x)f(x, λ) is not anymore absolutely integrable

on R because the exponential factor grows without limit as x → +∞. Hence,

g(·, λ) is not absolutely continuous, nor uniformly bounded on R for each λ ∈ C+.

So, in this case, one cannot have the limiting value of g(x, λ) at x = +∞ as in

(2.2.14). However, the first limit in (2.2.14) holds even for λ ∈ C+ because the

exponential decays as x→ −∞. Moreover, we have

|g(x, λ)| ≤
∫ x

−∞
e2Im(λ)y|u0(y)||f(y, λ)|dy

≤ e2Im(λ)x

∫ x

−∞
|u0(y)||f(y, λ)|dy

≤ e2Im(λ)xC exp(C2),

where C = ‖u0‖L1(R). This means that g(x, λ) decays to zero at the same rate as

e2Im(λ)x as x→ −∞. It follows that Ψ
(1)
− (x, λ) = O

(
eIm(λ)x

)
as x→ −∞.

16



2.2 Zero boundary conditions at infinity

Let us fix x ∈ R. Obviously, the function f0(x, λ) is continuous on R ∪ C+.

Assume that for any n > 1, fn−1(x, λ) is continuous on R ∪ C+. One has the

following estimate

|K(x, z, λ)fn−1(z, λ)| ≤ |u(z)| C
2n−1

(n− 1)!
. (2.2.15)

Note that the RHS of the above estimate is absolutely integrable on (−∞, x).

Owing to Theorem A.1(a), we conclude that fn(x, λ) is continuous for λ in R ∪
C+. Therefore, f(x, λ) is continuous on R ∪ C+ since it is given by a uniformly

convergent series of continuous functions over the same domain. Now, we will

use the same approach to prove analyticity. Again, f0(x, λ) is analytic on C+.

Assume that fn−1 is an analytic function of λ in C+. Let Γ be a piecewise-smooth

closed curve contained in C+. Then, one has∮
Γ

fn(x, λ)dλ =

∮
Γ

∫ x

−∞
K(x, z, λ)fn−1(z, λ)dzdλ

=

∫ x

−∞

[∮
Γ

K(x, z, λ)fn−1(z, λ)dλ

]
dz, using (2.2.15),

= 0. (2.2.16)

Note that we used Fubini’s Theorem to exchange the order of integration. The

last equality is justified by the fact K(x, z, λ)fn−1(z, λ) is analytic in C+, by

assumption and the fact that the kernel K(x, y, λ) is an entire function of λ. We

proved above that each fn(x, λ) is continuous on R ∪ C+ and now we have just

shown that for any closed contour Γ in C+ we have
∮

Γ
fn(x, λ)dλ = 0. It follows

by Morera’s Theorem that fn(x, λ) is analytic in C+. By the same argument as

above, f(x, λ) is analytic on C+.

Applying similar arguments, we can prove that g(x, λ) is a continuous function

of λ ∈ C+. Thus the use of Morera’s theorem as above will help us conclude

g(x, λ) is also analytic on C+. A direct integration by parts of f(x, λ) and g(x, λ)

yields the following asymptotic expansion in λ

f(x, λ) = 1− κ

2iλ

∫ x

∞
|u0(y)|2dy + O(λ−2), (2.2.17)

e2iλxg(x, λ) = − κ

2iλ
u∗0(x) + O(λ−2).
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2. REVIEW OF THE INVERSE SCATTERING TRANSFORM

It follows that eiλxΨ
(1)
− (x, λ) → e1, as λ → ∞ and λ ∈ C+. This concludes the

proof.

Remark 2.5. A direct consequence of the above result is that Ψ
(1)
± (x, λ) and

Ψ
(2)
∓ (x, λ) are Schwartz functions on R± and R∓ for each λ ∈ C∓, respectively.

Lemma 2.6 (Abel’s theorem, Coddington & Levinson (1955)). Consider an n-

dimensional first-order homogeneous linear ordinary differential equation y′ =

A(x)y, on an interval I ⊂ R, where A(x) denotes a complex square matrix of

order n. Let H be a matrix-valued solution of this equation. If the trace trA(x)

is a continuous function, then one has

detH(x) = detH(x0) exp

[∫ x

x0

trA(ξ)dξ

]
, x, x0 ∈ I.

Scattering coefficients Recall that the Jost solutions Ψ±(x, λ) are 2×2 matrix

functions that solve the scattering problem. Since the matrix function U(x, λ) is

traceless (that is, its trace is identically zero), one can use Abel’s theorem and

the normalisation of the Jost solutions at ±∞ to obtain

detΨ±(x, λ) = 1, λ ∈ R. (2.2.18)

This means that each Jost solution constitutes a fundamental matrix of solutions

for the scattering problem. In other terms, they both generate the space of

solutions. Note that the space of solutions is a two-dimensional vector space.

Therefore, they must be linearly dependent, that is

Ψ+(x, λ) = Ψ−(x, λ)S(λ), λ ∈ R, (2.2.19)

where the 2×2 proportionality matrix S(λ) = (sij(λ))1≤i,j≤2 is referred to as scat-

tering matrix associated with (the potential) u0(x). The entries of the scattering

matrix are called scattering coefficients associated with (the potential) u0(x) and

they are complex-valued functions of λ ∈ R. When there is no confusion, we will

omit the reference to the potential that gives rise to the scattering data. One

deduces from relations (2.2.18) and (2.2.19) that the scattering matrix S(λ) has

the following property

detS(λ) = 1, λ ∈ R. (2.2.20)
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2.2 Zero boundary conditions at infinity

Analogous to columns of the Jost solutions, diagonal entries of the scattering

matrix S(λ) can be continued analytically to some regions of the λ complex plane

whenever the potential u0(x) is absolutely integrable on R, i.e., u0(x) ∈ L1(R).

This is discussed in the following result.

Proposition 2.7. Let u0(x) be an element of L1(R). Then the scattering coef-

ficient s22(λ) (respectively, s11(λ)) is continuous on R ∪ C+ and has an analytic

continuation on C+ (respectively, is continuous on R ∪ C− and has an analytic

continuation on C−). Moreover, the scattering coefficients s12(λ) and s21(λ) are

continuous functions on R but do not have, in general, analytic continuations in

any region of the λ complex plane.

Proof: The columns of Ψ−(x, λ) = Ψ+(x, λ)S(λ)−1 are given byΨ
(1)
− (x, λ) = s22(λ)Ψ

(1)
+ (x, λ)− s21(λ)Ψ

(2)
+ (x, λ),

Ψ
(2)
− (x, λ) = s11(λ)Ψ

(2)
+ (x, λ)− s12(λ)Ψ

(1)
+ (x, λ).

(2.2.21)

By calculating the determinant of
(

Ψ
(1)
− (x, λ),Ψ

(2)
+ (x, λ)

)
, one obtains

s22(λ) = det
(

Ψ
(1)
− (x, λ),Ψ

(2)
+ (x, λ)

)
. (2.2.22)

Similarly, one gets

s11(λ) = det
(

Ψ
(1)
+ (x, λ),Ψ

(2)
− (x, λ)

)
. (2.2.23)

The results for s11(λ) and s22(λ) follow from Lemma 2.4. Similar arguments are

used to obtain the results for s12(λ) and s21(λ).

Remark 2.8. Let λ ∈ R. It follows from the first equation in (2.2.21) and the

normalisation of the Jost solutions Ψ+(x, λ) that

Ψ
(1)
− (x, λ) = s22(λ)

(
e−iλx

0

)
− s21(λ)

(
0

eiλx

)
+ O(1), as x→ +∞. (2.2.24)

As in the proof of Proposition 2.2, we set eiλxΨ
(1)
− (x, λ) =

(
f(x, λ)

e2iλxg(x, λ)

)
where f

and g are given by (2.2.6) and the second integral equation in (2.2.5), respectively.
It follows from Remark 2.3 that

s22(λ) = 1 +

∫ +∞

−∞
K(+∞, z, λ)f(z, λ)dz, s21(λ) = −κ

∫ +∞

−∞
e−2iλyu∗(y)f(y, λ)dy. (2.2.25)
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2. REVIEW OF THE INVERSE SCATTERING TRANSFORM

Note that, the integral equation for s22(λ) still holds even when λ ∈ C+. However,

one cannot say the same for s21(λ) when λ ∈ C+. In addition, we have from

(2.2.17)

s22(λ)→ 1, as λ→∞ and λ ∈ C+.

In addition, it follows from the properties of Ψ
(1)
− (x, λ) and the scattering coeffi-

cients that

eiλxΨ
(1)
− (x, λ) =

(
s22(λ)

0

)
+ O(1), x→ +∞ and λ ∈ C+. (2.2.26)

Hereafter, whenever we mention any column of the Jost matrix solutions

Ψ±(x, λ) or the scattering coefficients sjj(λ) for j = 1, 2, we always refer to

their analytic continuation in the appropriate region of the λ complex plane.

Corollary 2.9. Consider u0(x) ∈ L1(R). Then the scattering coefficients satisfy

s22(λ) = s11(λ∗)∗, λ ∈ R ∪ C+, s21(λ) = κs12(λ)∗, λ ∈ R. (2.2.27)

Proof: Suppose that λ belongs to R. The relation (2.1.7) in terms of the Jost

solutions takes the form

σκΨ±(x, λ)∗σ−1
κ = Ψ±(x, λ).

Thus the scattering matrix has the property

σκS(λ)∗σ−1
κ = S(λ).

Elementwise, we have s22(λ) = s11(λ)∗ and s12(λ) = κs21(λ)∗. Now, assume that

λ ∈ C. Taking into consideration the analytical continuation of the Jost solutions

in the correct regions of the λ complex plane, one obtains

Ψ
(1)
− (x, λ) = κσκΨ

(2)
− (x, λ∗)∗, Ψ

(2)
+ (x, λ) = σκΨ

(1)
+ (x, λ∗)∗, λ ∈ C+. (2.2.28)

Owing to Eqs. (2.2.22) and (2.2.23), one obtains the first in (2.2.27).

We say that λ ∈ C\R is an eigenvalue for the operator L if its eigenfunction

is an element of L2 (R,C2). We denote by Z± the set of all λ ∈ C±\R with such

a property. The discrete spectrum for the operator L is given by

Z = Z+ ∪ Z−.
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2.2 Zero boundary conditions at infinity

Owing to the relation (2.2.22), one can easily deduce that the set of zeros for the

scattering coefficient s22(λ) coincides with Z+. The same correspondence can be

drawn between Z− and the set of zeros for s11(λ) using (2.2.23). We have the

following well-known results in the scattering theory; see for example Beals &

Coifman (1984).

Lemma 2.10. Let u0(x) be an element of L1(R)

(a) if κ = 1, the scattering coefficients s11(λ) and s22(λ) do not vanish on

R ∪ C− and R ∪ C+, respectively;

(b) if κ = −1, there exists an open dense subset G of L1(R) such that for all

u0(x) in G, the following hold

– The scattering coefficients s11(λ) and s22(λ) do not vanish on R;

– Z+ and Z− have a finite number of elements.

Proof: From (2.2.20) and the symmetries in (2.2.27), one gets

|s22(λ)|2 − κ|s21(λ)|2 = 1, λ ∈ R. (2.2.29)

If κ = 1, we have |s22(λ)|2 ≥ 1. Together with the fact that the operator L is

self-adjoint concludes the proof of part (a). The proof for part (b) can be found

in (Beals & Coifman, 1984, Theorem A)

In the case κ = −1, we follow the terminology used in Beals & Coifman (1984):

potentials u0(x) that lead to properties given in Lemma 2.10(b) are called generic

potentials.

Definition 2.11 (Reflection coefficients). The reflection coefficients r and r̄ are

two functions of the real variable λ defined as

r : R −→ C
λ 7−→ s21(λ)

s22(λ)

,
r̄ : R −→ C

λ 7−→ s12(λ)
s11(λ)

A direct consequence of symmetries in (2.2.27) is that the reflection coefficients

are linked in the following way

r̄(λ) = κr(λ)∗. (2.2.30)

21



2. REVIEW OF THE INVERSE SCATTERING TRANSFORM

Lemma 2.12 (Beals & Coifman (1984)). Suppose that u0(x) is an element of

S(R). Then the reflection coefficient r(λ) will also be an element of S(R) and

‖r‖∞ < 1.

It is important to mention that the condition ‖r‖∞ < 1 is essential because

it guarantees the existence of a solution for the Riemann-Hilbert problem in the

inverse problem.

Norming constants Consider κ = −1. Let N and N̄ be positive integers.

Assume that u0(x) is generic. Set

Z+ = {λ1, λ2, . . . , λN} , Z− =
{
λ̄1, λ̄2, . . . , λ̄N̄

}
. (2.2.31)

For each j = 1, . . . , N , it follows from (2.2.22) that Ψ
(1)
− (x, λj) and Ψ

(2)
+ (x, λj) are

linearly dependent, that is

Ψ
(1)
− (x, λj) = γ(λj)Ψ

(2)
+ (x, λj), (2.2.32)

where γ(λj) is the proportionality constant that depends on λj. Each of these

proportionality constants γ(λj) introduces a quantity c(λj) that we refer to as

norming constant and it is defined as

c(λj) =
γ(λj)

s′22(λj)
.

It is worth mentioning some authors refer to γ(λj) as norming constants. Simi-

larly, we have

Ψ
(2)
−
(
x, λ̄j

)
= γ

(
λ̄j
)

Ψ
(1)
+

(
x, λ̄j

)
,

where γ
(
λ̄j
)

depends on λ̄j and its associated norming constant is

c
(
λ̄j
)

=
γ
(
λ̄j
)

s′11

(
λ̄j
) .

The symmetries in (2.2.27) affect the zeros and the norming constants associated

with them as follows

N = N̄ , λ̄j = λ∗j , γ
(
λ̄j
)

= −γ(λj)
∗, c

(
λ̄j
)

= −c(λj)∗. (2.2.33)

Indeed, the first two in (2.2.33) follow directly from s22(λ) = s11(λ∗)∗. Since

λ̄j = λ∗j is a simple zero of s11(λ), one has Ψ
(2)
−
(
x, λ∗j

)
= γ

(
λ∗j
)

Ψ
(1)
+

(
x, λ∗j

)
.
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2.2 Zero boundary conditions at infinity

Using both equations in (2.2.28), one obtains Ψ
(1)
− (x, λj) = −γ(λ∗j)

∗Ψ
(2)
+ (x, λj)

which gives the third relation in (2.2.33) by comparing it with Eq. (2.2.32). Note

that a direct calculation gives s′11(λ∗j) = s′22(λj)
∗. From this, we directly deduce

the last relation in (2.2.33).

We can express the scattering coefficients sjj(λ) in terms of their zeros and

the reflection coefficient, for j = 1, 2. Let us define

φ+(λ) = s22(λ)
N∏
j=1

λ− λ∗j
λ− λj

, φ−(λ) = s11(λ)
N∏
j=1

λ− λj
λ− λ∗j

. (2.2.34)

We can see that φ+(λ) and φ−(λ) are analytic in the upper-half and lower-half

of the λ complex plane, respectively. By construction, φ±(λ) do not have any

singularities in their respective region of analyticity. We have that

φ+(λ)φ−(λ) = s11(λ)s22(λ), λ ∈ R. (2.2.35)

The scattering coefficients carry a natural multiplicative Riemann-Hilbert prob-

lem on the real axis: A direct calculation from Eq. (2.2.20) gives the following

jump condition

φ+(λ)φ−(λ) =
1

1− r(λ)r̄(λ)
, λ ∈ R.

By taking the logarithm of the above, and then using Plemelj’s formulas one

obtains

log φ+(λ) = − 1

2πi

∫
R

log(1− r(τ)r̄(τ))

τ − λ
dτ, λ ∈ C+,

log φ−(λ) =
1

2πi

∫
R

log(1− r(τ)r̄(τ))

τ − λ
dτ, λ ∈ C−.

Therefore, one can replace the function φ+(λ) by its expression as given in rela-

tions (2.2.34) to obtain

s22(λ) =
N∏
j=1

λ− λj
λ− λ∗j

exp

[
− 1

2πi

∫
R

log(1− r(τ)r̄(τ))

τ − λ
dτ

]
, λ ∈ C+. (2.2.36)

The same can be done to express the scattering coefficient s11(λ) in terms of its

simple zeros in the lower-half plane and reflection coefficients.

Definition 2.13. Consider u0(x) ∈ S(R) and generic.1 Let S be the map that

associates to u0(x) its scattering data, namely

1We need u0(x) to be generic only when κ = −1.
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2. REVIEW OF THE INVERSE SCATTERING TRANSFORM

1. If κ = 1

S : {u0(x)} 7→ {r(λ)}

where r(λ) is defined as above.

2. If κ = −1

S : {u0(x)} 7→ {r(λ), (λj, c(λj)1≤j≤N)}

where r(λ), λj and c(λj) are defined as above.

2.2.2 Inverse scattering problem

In this section, we will address the following problem: Is the map S invertible?

That is, given the scattering S[u0(x)], can we recover the potential u0(x) ∈ S(R)?

The answer is Yes!

Originally, Gardner, Greene, Kruskal & Miura (1967), answered this ques-

tion by using the so-called Gel’fand-Levitan-Marchenko integral equations. Later

on, it was realised that the eigenfunctions Ψ±(x, λ) carry a natural structure of a

Riemann-Hilbert problem (RHP) with the jump across the real line. In this work,

we will take the latter approach to describe the inverse problem. We refer inter-

ested readers to Ablowitz, Prinari & Trubatch (2004) and therein references for

more details about the Gel’fand-Levitan-Marchenko integral equations viewpoint.

We have the following two theorems, see for examples Beals & Coifman (1984),

Zhou (1998), Ablowitz, Prinari & Trubatch (2004) and Faddeev & Takhtajan

(2007).

Theorem 2.14 (RHP without poles). Let r(λ) be an element of S(R) with the

property ‖r‖∞ ≤ 1. Then the following normalised Riemann-Hilbert problem

• Analyticity. m(x, t, λ) is analytic in C\R;

• Jump condition. It has continuous boundary values

m±(x, t, λ) = lim
ε→0+

m(x, t, λ± iε), λ ∈ R, (2.2.37)

satisfying the jump condition

m+(x, t, λ) = m−(x, t, λ)v(x, t, λ), λ ∈ R, (2.2.38)
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2.2 Zero boundary conditions at infinity

where the jump matrix is given by

v(x, t, λ) =

(
1− |r(λ)|2 r∗(λ)e−2iθ(λ)

−r(λ)e2iθ(λ) 1

)
, θ(λ) = λx+ 2λ2t;

• Normalisation. m(x, t, λ) = 1I + O(λ−1) as λ→∞.

has a unique solution given by

m(x, t, λ) = 1I +
1

2πi

∫
R

m−(x, t, ξ)(I − v(x, t, λ))

ξ − λ
dξ, λ ∈ C\R.

Theorem 2.15 (RHP with poles). Let r(λ) be an element of S(R) with the

property ‖r‖∞ ≤ 1 and (λj, c(λj)) ∈ C+ × (C\{0}), for each j = 1, . . . , N . Then

the following normalised Riemann-Hilbert problem

• Analyticity. m(x, t, λ) is analytic in C\ (R ∪ Z);

• Jump condition. It has continuous boundary values

m±(x, t, λ) = lim
ε→0+

m(x, t, λ± iε), λ ∈ R, (2.2.39)

satisfying the jump condition

m+(x, t, λ) = m−(x, t, λ)v(x, t, λ), λ ∈ R, (2.2.40)

where the jump matrix is given by

v(x, t, λ) =

(
1 + |r(λ)|2 −r∗(λ)e−2iθ(λ)

−r(λ)e2iθ(λ) 1

)
;

• Residues. m(x, t, λ) has simple poles at λj, λ
∗
j for j = 1, . . . , N , and the

residues are given by

Res
λ=λj

m(x, t, λ) = lim
λ→λj

[
m(x, t, λ)

(
0 0

c(λj)e
2iθ(λj) 0

)]
, (2.2.41)

Res
λ=λ∗j

m(x, t, λ) = lim
λ→λ∗j

[
m(x, t, λ)

(
0 −c(λj)∗e−2iθ(λ∗j )

0 0

)]
; (2.2.42)

• Normalisation. m(x, t, λ) = 1I + O(λ−1) as λ→∞.
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2. REVIEW OF THE INVERSE SCATTERING TRANSFORM

has a unique solution given by

m(x, t, λ) = 1I +
N∑
n=1

Res
λ=λj

m(x, t, λ)

λ− λn
+

Res
λ=λ∗n

m(x, t, λ)

λ− λ∗n


+

1

2πi

∫
R

m−(x, t, ξ)(I − v(x, t, λ))

ξ − λ
dξ, λ ∈ C\R.

Let us consider u0(x) ∈ S(R) and generic (when κ = −1) with the map S be

given as in Definition 2.13. From the equation (2.2.19), one obtains that

Φ−(x, λ) = Φ+(x, λ)e−iλσ3xS(λ)−1eiλσ3x, λ ∈ R.

This relation can be rewritten by grouping together entries that have an analytical

continuation in the same λ complex plane region as

m+(x, λ) = m−(x, λ)v(x, λ), λ ∈ R, (2.2.43)

where

m+(x, λ) =

(
Φ

(1)
− (x, λ)

s22(λ)
,Φ

(2)
+ (x, λ)

)
, m−(x, λ) =

(
Φ

(1)
+ (x, λ),

Φ
(2)
− (x, λ)

s11(λ)

)
,

v(x, λ) =

(
1− κ|r(λ)|2 κr∗(λ)e−2iλx

−r(λ)e2iλx 1

)
.

We used the symmetry (2.2.30). Let us define the following matrix functions:

m(x, λ) =

m+(x, λ), λ ∈ C+,

m−(x, λ), λ ∈ C−.
(2.2.44)

It is worth mentioning that the superscripts ”±” on m(x, λ) in (2.2.44) do not

have the same meaning as the ones in (2.2.37) and (2.2.39).

Lemma 2.16. The 2× 2 matrix functions m(x, λ) defined in (2.2.44) solves the

Riemann-Hilbert problem without poles when κ = 1 and with poles when κ = −1

at time t = 0. Moreover, the map

1. If κ = 1

P : {r(λ)} 7→ {u0(x)}

2. If κ = −1

P : {r(λ), (λj , c(λj)1≤j≤N )} 7→ {u0(x)}
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2.2 Zero boundary conditions at infinity

defined by

u0(x) = 2i lim
λ→∞

λ (m(x, λ))12 , (2.2.45)

is the inverse to S.

The reconstruction formula (2.2.45) is obtained by utilising the fact that

m(x, λ) solves the x-part of the Lax pair for the NLS equation (1.1.1).

2.2.3 Time evolution

Let u(x, t) be the complex-valued solution of the NLS equation such that u(x, t =

0) = u0(x) ∈ S(R) and generic (when κ = −1). For each λ ∈ R, consider

Ψ±(x, t, λ) the Jost solutions associated to u(x, t), that is Ψ±(x, t, λ) solve Eq.

(2.1.1) such that

lim
x→±∞

Ψ±(x, t, λ)eiλσ3x = 1I, λ ∈ R.

Thus, starting with these Jost solutions, we can repeat the same construction as

above to obtain the scattering data at any time t > 0. In what follows, we will

describe the relationship between S[u0(x)] and S[u(x, t)]. To achieve this, let us

first find out the time derivative for the Jost solutions Ψ±(x, t, λ). Since u(x, t)

solves the NLS equation, we know that the zero-curvature condition (2.1.5) must

be satisfied for all λ. This means there exists a 2×2 matrix solution Y (x, t, λ) that

solves simultaneously the x-part and t-part of the Lax pair. However, Ψ±(x, t, λ)

are fundamental matrix solutions for equation (2.1.1), therefore we have

Y (x, t, λ) = Ψ±(x, t, λ)C±(t, λ)

where C±(t, λ) are constant matrices with respect to x. Differentiating this equa-

tion with respect to time and using the fact that Y (x, t, λ) satisfies equation

(2.1.2), one gets

V (x, t, λ)Ψ±(x, t, λ)C±(t, λ) = ∂t
(
Ψ±(x, t, λ)

)
C±(t, λ)

+ Ψ±(x, t, λ)∂t
(
C±(t, λ)

)
. (2.2.46)

Since u(x, t) ∈ S(R), for each t ≥ 0, we can evaluate this equation at x = +∞ to

get

(C±(t, λ))t = −2iλ2σ3C±(t, λ).
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2. REVIEW OF THE INVERSE SCATTERING TRANSFORM

A particular solution for these equations is C±(t, λ) = e−2iλ2σ3t. After substituting

this expression of C±(t, λ) in (2.2.46) and making some rearrangement, we get

∂t (Ψ±(x, t, λ)) = 2iλ2Ψ±(x, t, λ)σ3 + V (x, t, λ)Ψ±(x, t, λ). (2.2.47)

Now, we can use this differential equation to understand how the scattering data

S[u0(x)] evolve in time. By differentiating the time-dependent version of (2.2.19)

with respect to t, we have

∂tS(t, λ) = Ψ−(x, t, λ)−1∂t(Ψ+(x, t, λ))

−Ψ−(x, t, λ)−1∂t(Ψ−(x, t, λ))Ψ−(x, t, λ)−1Ψ+(x, t, λ)

= iλ2 [S(t, λ), σ3] .

This implies

S(t, λ) = e−iλσ3tS(0, λ)eiλσ3t.

Elementwise, we have

s11(t, λ) = s11(0, λ), s22(t, λ) = s22(0, λ), (2.2.48)

s12(t, λ) = s12(0, λ)e−2iλ2t, s21(t, λ) = s21(0, λ)e2iλ2t. (2.2.49)

A direct calculation gives

r(t, λ) = r(0, λ)e2iλ2t, r̄(t, λ) = r̄(0, λ)e−2iλ2t. (2.2.50)

A key observation to make is that, s22(t, λ) has the same zeros as s22(0, λ) ≡
s22(λ). Thus, the potential u(x, t) is again generic. Let λj be the zeros of the

scattering coefficient s22(t, λ) in C+. From the time-dependent version of Eq.

(2.2.22), we have that

Ψ
(1)
− (x, t, λj) = γ(t, λj)Ψ

(2)
+ (x, t, λj), (2.2.51)

where γ(t, λj) is the proportionality constant. It follows from (2.2.47)

∂tΨ
(1)
− = iλ2Ψ

(1)
− + VΨ

(1)
− , ∂tΨ

(2)
+ = iλ2Ψ

(2)
+ + VΨ

(2)
+ . (2.2.52)
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2.2 Zero boundary conditions at infinity

The time derivative of Eq. (2.2.51) gives

∂tΨ
(1)
− (x, t, λj) = ∂tγ(t, λj)Ψ

(2)
+ (x, t, λj) + γ(t, λj)∂tΨ

(2)
+ (x, t, λj)

= ∂tγ(t, λj)Ψ
(2)
+ (x, t, λj)

+ γ(t, λj)
(
iλ2
jΨ

(2)
+ (x, t, λj) + V (x, t, λj)Ψ

(2)
+ (x, t, λj)

)
Comparing this with the first differential equation in (2.2.52) evaluated at λj,

and using (2.2.51) we obtain

∂tγ(t, λj) = 2iλ2γ(t, λj).

This implies that

γ(t, λj) = γ(0, λj)e
2iλ2j t.

A direct calculation gives the following time evolution for the norming constants

c(t, λj) = c(0, λj)e
2iλ2j t. (2.2.53)

Summary: The inverse scattering transform can be summarized as follows: ap-

ply the map S to u0(x) ∈ S(R), evolve the scattering data in time using formulae

(2.2.50) and (2.2.53), and then apply the map P to obtain the solution u(x, t) at

time t > 0 of the NLS equation (1.1.1) with u(x, t = 0) = u0(x).

2.2.4 Reflectionless potentials: Multisoliton solutions

Let κ = −1. Assume that the reflection coefficient r(t, λ) is identically zero. In

this case, the solution to the Riemann-Hilbert problem with poles can be written

as

m(x, t, λ) = 1I +
N∑
n=1

Res
λ=λn

m(x, t, λ)

λ− λn
+

N∑
n=1

Res
λ=λ∗n

m(x, t, λ)

λ− λ∗n
. (2.2.54)

Recall that, using (2.2.44), one has

Res
λ=λn

m(x, t, λ) =
[
c(λn)e2iθ(λn)Φ

(2)
+ (x, t, λn), 0

]
, (2.2.55)

Res
λ=λ∗n

m(x, t, λ) =
[
0,−c(λn)∗e−2iθ(λ∗n)Φ

(1)
+ (x, t, λ∗n)

]
. (2.2.56)

Given Φ
(1)
± , we denote by Φ

(11)
± and Φ

(21)
± its first and second entries, respectively.

Given Φ
(2)
± , we denote by Φ

(12)
± and Φ

(22)
± its first and second entries, respectively.
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2. REVIEW OF THE INVERSE SCATTERING TRANSFORM

The time-dependent version of the reconstruction formula (2.2.45) is

u(x, t) = −2i
N∑
n=1

c(λn)∗e−2iθ(λ∗n)Φ
(11)
+ (x, t, λ∗n).

In the next lines, we will try to express Φ
(11)
+ (x, t, λ∗n) in terms of the scattering

data. One can evaluate the second column of (2.2.54), taking into consideration

(2.2.44), at λ = λn, obtaining

Φ
(2)
+ (x, t, λn) = e2 −

N∑
k=1

c(λk)
∗e−2iθ(λ∗k)

λn − λ∗k
Φ

(1)
+ (x, t, λ∗k), (2.2.57)

for n = 1, . . . , N . One can do the same with the first column at λ∗n to obtain

Φ
(1)
+ (x, t, λ∗n) = e1 +

N∑
k=1

c(λk)e
2iθ(λk)

λ∗n − λk
Φ

(2)
+ (x, t, λk), (2.2.58)

for n = 1, . . . , N . The first entry of (2.2.57) is

Φ
(12)
+ (x, t, λj) = −

N∑
k=1

c(λk)
∗e−2iθ(λ∗k)

λj − λ∗k
Φ

(11)
+ (x, t, λ∗k), j = 1, . . . , N,

and, the first entry of (2.2.58) is

Φ
(11)
+ (x, t, λ∗n) = 1 +

N∑
j=1

c(λj)e
2iθ(λj)

λ∗n − λj
Φ

(12)
+ (x, t, λj), n = 1, . . . , N.

Hence, for n = 1, . . . , N , one obtains

Φ
(11)
+ (x, t, λ∗n) = 1 +

N∑
j=1

c(λj)e
2iθ(λj)

λ∗n − λj
Φ

(12)
+ (x, t, λj)

= 1−
N∑
j=1

c(λj)e
2iθ(λj)

λ∗n − λj

[
N∑
k=1

c(λk)
∗e−2iθ(λ∗k)

λj − λ∗k
Φ

(11)
+ (x, t, λ∗k)

]

= 1−
N∑
k=1

[
c(λk)

∗e−2iθ(λ∗k)

N∑
j=1

c(λj)e
2iθ(λj)

(λ∗n − λj)(λj − λ∗k)

]
Φ

(11)
+ (x, t, λ∗k).
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2.2 Zero boundary conditions at infinity

Introduce,

X = (X1, . . . , XN)T , B = (B1, . . . , BN)T , M = I + (An,k)1≤n,k≤N

where

Xn = Φ
(11)
+ (x, t, λ∗n), Bn = 1,

An,k = c(λk)
∗e−2iθ(λ∗k)

N∑
j=1

c(λj)e
2iθ(λj)

(λ∗n − λj)(λj − λ∗k)
.

The above algebraic system takes the following form

MX = B

The solution of the system is given by Xn = detM ext
n /detM for n = 1, . . . , N ,

where

M ext
n = (M1, . . . , . . . ,Mn−1, B,Mn+1, . . . ,MN) .

After substituting X in the reconstruction formula (2.2.45), one obtains the pure

N -soliton solutions as

u(x, t) = 2i
detM inc

detM
(2.2.59)

where M inc =

(
0 H

B M

)
with H = −

(
c(λ1)∗e−2iθ(λ∗1), . . . , c(λn)∗e−2iθ(λ∗N )

)T
.

Consider the case N = 1. Let λ1 = V+iA
2

with A > 0. We have

u(x, t) = 2i

det

(
0 −c∗1e−2iθ(λ∗1)

1 1 + A11

)
1 + A11

= iA2 2c∗1e
−2iθ(λ∗1)

A2 + |c1|2e−2(Ax+2AV t)

= iA2 2c∗1e
−i(V x+(V 2−A2)t)

A2e(Ax+2AV t) + |c1|2e−(Ax+2AV t)
.

Let c1 = Aeiξ+ξ0 , we obtain

u(x, t) = iA
e−i(V x+(V 2−A2)t)−iξ

eA(x+2V t)−ξ0 + e−(A(x+2V t)−ξ0)

= A sech(A(x+ 2V t)− ξ0)e−i(V x+(V 2−A2)t+ξ−π
2 ).

This is exactly the four-parameter solution (1.2.4) upon a suitable choice of pa-

rameters.
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2. REVIEW OF THE INVERSE SCATTERING TRANSFORM

2.3 Non zero boundary conditions at infinity

In this section, we will describe the inverse scattering transform to solve an initial-

value problem for the NLS equation with NZBCs (1.1.2). Unlike the ZBCs case,

the inverse scattering transform in the defocusing case (κ = 1) is different from

the one in the focusing case (κ = −1). For this thesis, we will only describe

the focusing case. We will follow closely the presentation in Biondini & Kovačič

(2014). Interested readers can see Faddeev & Takhtajan (2007) for details about

the defocusing case.

Consider the BCs (1.1.2) and take κ = −1. Recall that it is better to introduce

the following change u(x, t) 7→ u(x, t)e2iq20t. We have seen that this changes the

shape of the NLS equation (1.1.1) to (1.1.3). As we mentioned in Chapter 1, this

change allows the BCs (1.1.2) to become time-independent (1.1.4). We can also

see that the Lax pair (U, V ) takes the following form:

U(x, t, λ) =

(
−iλ u(x, t)

−u∗(x, t) iλ

)
≡ −iλσ3 +Q(x, t), (2.3.1)

V (x, t, λ) = −2iλ2σ3 + 2λQ(x, t)− iQx(x, t)σ3 − i
(
Q2(x, t) + q2

0

)
σ3. (2.3.2)

In the sequel, we will consider the auxiliary system (2.1.1) and (2.1.2) with this

new Lax pair.

2.3.1 Direct problem

Consider the initial data u(x, t = 0) = u0(x) such that u0(x) − u± as x → ±∞.

We will make this precise in the sequel. It is useful to write (2.1.1) in the following

way

Ψx(x, λ) = U±(λ)Ψ(x, λ) + ∆Q±(x)Ψ(x, λ), (2.3.3)

where

Q± =

(
0 u±

−u∗± 0

)
, U±(λ) = −iλσ3 +Q±, ∆Q±(x) = Q(x)−Q±.

Note that ∆Q±(x) → 0 as x → ±∞. We will follow the same construction as

in the case of ZBCs. If q0 = 0, the IST we are about to describe will be the

same as in Section 2.2. The eigenfunctions of the scattering problem (2.3.3) are
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2.3 Non zero boundary conditions at infinity

asymptotic to solutions of

Ψx(x, λ) = U±(λ)Ψ(x, λ). (2.3.4)

Unlike in the case of ZBCs, the matrices U±(λ) are not diagonal.

Eigenvalues, Riemann surface and uniformization variable The first

step towards solving the asymptotic problem (2.3.4) is to diagonalise the ma-

trix function U±(λ). A direct calculation shows that the eigenvalues of U±(λ) are

doubly-branched complex-valued functions of λ and are given by ±i
√
λ2 + q2

0.

The branch points are given by the roots of
√
λ2 + q2

0, that is, at λ = ±iq0. To

analyse these two functions, we need to make them single-valued. One way of

doing this is to introduce the two-sheeted Riemann surface1 defined by

k2 = λ2 + q2
0.

Explicitly, let λ + iq0 = r1e
iθ1 and λ − iq0 = r2e

iθ2 with −π
2
≤ θ1,2 <

3π
2

. So, we

have k(λ) = (r1r2)1/2ei(θ1+θ2)/2+inπ, where n = 0 corresponds to the first Riemann

sheet (C1) and n = 1 to the second sheet (C2). Then, the discontinuity appears

along the imaginary axis between −iq0 and iq0. That is, the branch cut is the

segment i[−q0, q0]. Along the real axis, we set k(λ) = ±sign(λ)
√
λ2 + q2

0 where

the sign + and − correspond to the first and second sheet, respectively. The

sign(λ) signals that we have chosen the principal real square root.

To facilitate the implementation of the IST in this case, one can introduce the

so-called uniformization variable, say z, as follows

z ≡ z(λ) = λ+ k(λ). (2.3.5)

This conformal map can be inverted to give:

λ(z) =
1

2

(
z − q2

0

z

)
, k(z) =

1

2

(
z +

q2
0

z

)
. (2.3.6)

Let C0 be the circle of radius q0 in the z-complex plane. Then the transformation

(2.3.5) has the following important properties:

1A surface made of two copies of the complex plane glued in a specific fashion.
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2. REVIEW OF THE INVERSE SCATTERING TRANSFORM

Re λ

Im λ

0

iq0

−iq0

λn

λ∗n

Re z

Im z

∞II

iq0

−iq0

zn

−q20/zn

z∗n

−q20/z∗n
0− 0+

Figure 2.1: Left: The first copy of the Riemann surface, showing the branch cut

in red (on the imaginary axis) and the region where Imk > 0 is in grey. Right:

Showing the regions D± and indicating the zeros of s22(z) (brown) and s11(z)

(blue). Also showing the orientation of the contour for the Riemann-Hilbert

problem in the inverse problem.

Prop 1. On either sheet, the segment i[−q0, q0] is mapped to the circle C0. In

particular, i[0, q0] on C1 (resp. C2) is mapped onto the part in the first

(resp. second) quadrant of the complex z-plane, i[−q0, 0] of C1 (resp. C2) is

mapped onto the part in the third (resp. fourth) quadrant of the z-complex

plane;

Prop 2. C1 is mapped onto the exterior of C0 and C2 is mapped onto the interior

of C0;

Prop 3. The limit λ → ∞ corresponds to z → ∞ in the first sheet and z → 0

in the second sheet.

In the remaining part of this section, we will express all dependence on λ and k

in terms of z using relations (2.3.6). Define

D+ =
{
z ∈ C :

(
|z|2 − q2

0

)
Imz > 0

}
, D− =

{
z ∈ C :

(
|z|2 − q2

0

)
Imz < 0

}
. (2.3.7)

These domains are shown in Figure 2.1 below. We have the following equivalence:

z ∈ D+ is the same as Im(k) > 0, and z ∈ D− is equivalent to Im(k) < 0.
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2.3 Non zero boundary conditions at infinity

Eigenvector matrices A direct calculation shows that we can write the eigen-

vector matrices associated with eigenvalue matrices −ik(z)σ3 as

E±(z) = 1I− i

z
σ3Q±.

The determinant of these matrices is

ζ(z) := detE±(z) = 1 + q2
0/z

2.

We can clearly see that the eigenvector matrices are not invertible at z = ±iq0,

since ζ(±iq0) = 0. In addition to this, there is also another singularity at z = 0.

The point z = 0 will not cause any issue with the construction of the direct

problem because as we will see it does not belong to the continuous spectrum.

Therefore, we will simply ignore it. The matrices U±(z) can be written in the

following form

U±(z) = E±(z) (−ik(z)σ3)E−1
± (z), z 6= ±iq0.

Due to this diagonalisation of U±(z), we can write down particular solutions of the

asymptotic scattering problem (2.3.4): E±(z)e−ik(z)σ3x. Similar to the ZBCs case,

we will attempt to construct eigenfunctions for the scattering problem (2.3.3) such

that they behave asymptotically as solutions of (2.3.4) when z is an element of

the continuous spectrum of the operator L. The values of λ such that k(λ) is

real-valued constitutes the continuous spectrum. That is Σλ ≡ R ∪ i[−q0, q0] is

the continuous spectrum in the λ complex plane. Owing to the properties of the

transformation λ 7→ z, we have that the continuous spectrum in the λ complex

plane is mapped to Σz ≡
(
R\{0}

)
∪C0 in the z complex plane. In the sequel, we

will drop the index λ or z on Σ. Everything will be clear by the context.

Jost solutions Let z ∈ Σ. The Jost solutions, denoted µ±(x, z), are defined as

eigenfunctions of the scattering problem (2.3.3) such that

lim
x→±∞

µ±(x, z)eik(z)xσ3 = E±(z). (2.3.8)

As in the case of ZBCs, it is convenient to introduce the following functions

Y±(x, z) = µ±(x, z)eik(z)xσ3 .
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2. REVIEW OF THE INVERSE SCATTERING TRANSFORM

The new eigenfunctions are solutions of the following Volterra integral equations

Y+(x, z) = E+(z)−
∫ ∞
x

E+(z)eik(y−x)σ3E−1
+ (z)∆Q+(y)Y+(y, z)e−ik(y−x)σ3 , (2.3.9)

Y−(x, z) = E−(z) +

∫ x

−∞
E−(z)eik(y−x)σ3E−1

− (z)∆Q−(y)Y−(y, z)e−ik(y−x)σ3 . (2.3.10)

Following the same convention as in the case of ZBCs, we denote by µ
(1)
± (x, z)

and µ
(2)
± (x, z) the first and second column of µ±(x, z), respectively. The same

notations are used for Y±. Set

Σ0 = Σ\{±iq0}.

Let A = (aij)1≤i,j≤2 be a 2× 2 matrix. Define

‖A‖? := max
j

2∑
i=1

|aij|. (2.3.11)

A direct calculation shows that (2.3.11) defines a matrix norm1 in a space of 2×2

matrices. Consider a 2 × 1 vector f with complex entries. The l1-norm of f is

defined by

‖f‖1 := |f1|+ |f2|.

It can be shown (Horn & Johnson, 2012, pages 344-345) that

‖Af‖1 ≤ ‖A‖?‖f‖1, (2.3.12)

holds for any 2× 2 matrix A and 2× 1 column vector f .

For some a, b ∈ R such that a < b, we define

P+ = [a,+∞), P− = (−∞, b].

Proposition 2.17. Let u0(x)−u± ∈ L1(P±). Then the integral equations (2.3.9)-

(2.3.10) have unique solutions Y±(x, z), and they are uniformly bounded on P± for

each z ∈ Σ0. In particular, µ±(x, z) are unique and uniformly bounded solutions

of the scattering problem in (2.3.3) such that (2.3.8) holds for each z ∈ Σ0. In

addition, if (1 + |x|)2(u0(x)− u±) ∈ L1(P±), then we reach the same conclusions

at z = ±iq0.

1In addition to the usual properties of a norm, we have ‖AB‖? ≤ ‖A‖?‖B‖? for any 2× 2

matrices A and B.
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2.3 Non zero boundary conditions at infinity

Proof: The following proof uses ideas from Biondini & Kovačič (2014). We will

prove this in detail for the first column of Y
(1)
− (x, z). The analysis for the other

columns is similar. Set

w(x, z) = E−1
− (z)Y

(1)
− (x, z).

It follows that w(x, z) satisfies the integral equation

w(x, z) = e1 +

∫ x

−∞
G(y − x, z)∆Q−(y)E−(z)w(y, z)dy, (2.3.13)

where

G(s, z) = diag
(
1, e−2iks

)
E−1
− (z).

Now, we introduce a Neumann series representation for w(x, z):

w(x, z) =
∞∑
n=0

wn(x, z), (2.3.14)

with

w0(x, z) = e1, wn+1(x, z) =

∫ x

−∞
C(x, y, z)wn(y, z)dy,

where C(x, y, z) = G(y−x, z)∆Q−(y)E−(z) and integer n ≥ 0. From the property

(2.3.12), we have

‖wn+1(x, z)‖1 ≤
∫ x

−∞
‖C(x, y, z)‖?‖wn(x, z)‖1dy.

We can use the matrix norm defined above to compute

‖E±(z)‖? = 1 +
q0

|z|
, ‖E−1

± (z)‖? =

(
1 +

q0

|z|

)
/|ζ(z)|.

Assume that z ∈ Σ0. From the properties of the map defined in (2.3.6), we must

have k ∈ R\{0}. Thus, we have

‖C(x, y, z)‖? ≤ ‖diag
(
1, e−2ik(y−x)

)
‖?‖E−1

− (z)‖?‖∆Q−(y)‖?‖E−(z)‖?
≤ 2|u0(y)− u−|c(z), (2.3.15)

where

c(z) =

(
1 +

q0

|z|

)2

/|ζ(z)| = (|z|+ q0)2

|z2 + q2
0|
. (2.3.16)
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2. REVIEW OF THE INVERSE SCATTERING TRANSFORM

It is clear that c(z) is bounded on R\{0}. When z is an element of C0, the

situation is slightly more complicated because the function c(z) → ∞ as z →
±iq0. We can first restrict the domain of definition of c(z). Let ε > 0 be given.

Define Bε(z0) = {z ∈ C : |z − z0| < εq0} and C0,ε = C0 ∩
[
Bε(iq0) ∪ Bε(−iq0)

]
.

Let us consider z ∈ C0\C0,ε, we have the following straightforward manipulations

c(z) =
(|z|+ q0)2

|z2 + q2
0|

(2.3.17)

=
4q2

0

|z2 + q2
0|

(2.3.18)

≤ 4q2
0

∣∣∣∣ 1

2iq0

(
1

z − iq0

− 1

z + iq0

)∣∣∣∣ (2.3.19)

≤ 2q0

(
1

|z − iq0|
+

1

|z + iq0|

)
≤ 2q0

(
1

q0

+
1

εq0

)
= 2 + 2/ε. (2.3.20)

We can see that for z ∈ C0\C0,ε, the function c(z) is bounded above by

cε = 2 + 2/ε. (2.3.21)

Under these conditions, the Neumann series defined above is absolutely conver-

gent. Indeed, for all positive integers j, we claim

‖wj(x, z)‖1 ≤
M j(x)

j!
, (2.3.22)

where

M(x) = 2cε

∫ x

−∞
|u0(y)− u−|dy.

The proof of this claim is similar to the one in the case of ZBCs (Proposition

2.2).

If u0(x) − u− ∈ L1(P−) then M(x) is finite. Thus by comparison with the

exponential series exp (M(x)), the Neumann series (2.3.14) converges absolutely

for each z ∈
(
R\{0}

)
∪
(
C0\C0,ε

)
. One can replace x with b in the expression of

M(x) to obtain a uniform convergence with respect to x ∈ P− and z ∈
(
R\{0}

)
∪(

C0\C0,ε

)
.

We can apply similar arguments as in the proof Proposition 2.2 to obtain the

uniqueness of w(x, z). Therefore, for each z ∈
(
R\{0}

)
∪
(
C0\C0,ε

)
, µ

(1)
− (x, z) is

the unique solution of the differential equation (2.3.3) such that

eik(z)xµ
(1)
− (x, z)→

(
1,
iu∗−
z

)T
, x→ −∞.
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2.3 Non zero boundary conditions at infinity

Now, we will discuss what happens in the neighbourhood of the branch points

z = ±iq0. Despite the fact that the eigenvector matrices E±(z) are not invertible

at z = ±iq0, a direct calculation shows

lim
z→±iq0

E±(z)eik(y−x)σ3E−1
± (z) = 1I− (y − x)(Q± ± q0σ3). (2.3.23)

Thus, the first column of (2.3.9) evaluated at z = ±iq0 reads

Y
(1)
− (x,±iq0) =

(
1

±e−iθ−

)
+

∫ x

−∞
J−(x, y)Y

(1)
− (y,±iq0)dy,

where J±(x, y) =
[
1I − (y − x)(Q− ± q0σ3)

]
∆Q−(y) and θ− = arg u−. The last

step is to find an estimate for J±(x, y):

‖J±(x, y)‖? ≤ (‖1I‖? + |y − x|‖Q− ± q0σ3‖?) ‖∆Q−(y)‖?
≤ (1 + 2q0|y − x|) |u0(y)− u−|,
≤ C (1 + |x|+ |y|) |u0(y)− u−|,
≤ C (1 + |x|) (1 + |y|)|u0(y)− u−|,

where C = 2 if q0 ≤ 1 and C = 2q0 if q0 > 1. Again, for convenience, set

w(x,±iq0) = Y
(1)
− (x,±iq0).

We can again consider the Neumann series representation for w(x,±iq0) as in

(2.3.14) with

w0(x,±iq0) =

(
1

±e−iθ−

)
, wn+1(x,±iq0) =

∫ x

−∞
J−(x, y)wn(y,±iq0)dy.

The equivalent of (2.3.22) is given by

‖wj(x,±iq0)‖1 ≤ 2(1 + |x|)M
j(x)
j!

,

M(x) = C
∫ x
−∞(1 + |y|)2|u0(y)− u−|dy.

Thus we can replicate the same argument as above to obtain that Y−(x,±iq0) is

well defined and it is given by an absolute and uniformly convergent whenever

(1 + |x|)2(u0(x) − u−) belongs to L1(P−). Finally, µ
(1)
− (x,±iq0) is well-defined

solution of (2.3.3) such that

µ
(1)
− (x,±iq0)→

(
1,±e−iθ−

)T
, x→ −∞.
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2. REVIEW OF THE INVERSE SCATTERING TRANSFORM

This completes the proof.

Remark 2.18.

1. In general, one cannot replace b in the above proof with ∞. Because if

u0(x) − u− ∈ L1(R), thus u0(x) − u− will decay at both infinity, therefore

one must have that u− = u+.

2. The additional condition that we impose on the potential u0(x) to obtain

regularity at the branch points z = ±iq0 is by no means optimal. However,

for the purpose of this thesis, this condition is enough. We refer inter-

ested readers to recent work done on this topic Demontis et al. (2013) and

Demontis et al. (2014).

Lemma 2.19 (Analytic continuation). Assume that u0(x) − u± ∈ L1(P±). Let

Y−(x, z) and Y+(x, z) be the solutions for the integral equations (2.3.9)-(2.3.10),

respectively. Fix x ∈ P±, then Y
(1)
∓ (x, ·) and Y

(2)
± (x, ·) are continuous on D±∪Σ0

and have an analytical continuation on D±. In addition, we have

1. µ
(1)
− (x, ·) and µ

(2)
+ (x, ·) are continuous on D+ ∪Σ0 and analytic on D+ with

the property

e−ikxµ
(1)
− (x, z) =



1

0

+ O(z−1), as z →∞,

 0
−iu∗−
z

+ O(1), as z → 0,

eikxµ
(2)
+ (x, z) =



0

1

+ O(z−1), as z →∞,

−iu+

z

0

+ O(1), as z → 0.

2. µ
(1)
+ (x, ·) and µ

(2)
− (x, ·) are continuous on D− ∪Σ0 and analytic on D− with

the property

e−ikxµ
(1)
+ (x, z) =



1

0

+ O(z−1), as z →∞,

 0
−iu∗+
z

+ O(1), as z → 0,

eikxµ
(2)
− (x, z) =



0

1

+ O(z−1), as z →∞,

−iu−z
0

+ O(1), as z → 0.

Note that the continuity and analyticity of the Jost solutions at the branch

require the extra condition on u0(x)− u±; see Proposition 2.17.

Proof: We will prove these results in detail for Y
(1)
− (x, z). The analysis for the

other columns will be similar. The idea is to reproduce similar arguments as in
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2.3 Non zero boundary conditions at infinity

the proof of Proposition 2.17. We set w(x, z) = E−1
− (z)Y−(x, z)e1. Similarly, it

follows that w(x, z), will be the solution of the integral equation (2.3.13). Thus,

we can introduce its Neumann series as in (2.3.14). To prove that this series is

actually convergent, one can attempt to reproduce (2.3.15). Unlike in the case

above, k(z) does not assume real values when z is off the continuous spectrum.

Therefore extra conditions need to be imposed to obtain a useful estimate for

C(x, y, z). It turns out that if we consider z ∈ D−, we can recover (2.3.15).

Recall that D− is given by the grey regions in Fig. 2.1. Let z ∈ D−, we have

that

‖C(x, y, z)‖? ≤ ‖diag
(
1, e−2ik(y−x)

)
‖?‖E−1

− (z)‖?‖∆Q−(y)‖?‖E−(z)‖?
≤ 2|u0(y)− u−|c(z),

where c(z) is given as in (2.3.16). As in the above proof, we would like to bound

the function c(z) above by a quantity that does not depend on z. Given ε > 0,

we introduce the following domain

D−ε = D−\
[
Bε(iq0) ∪Bε(−iq0)

]
.

Let z ∈ D−ε . If |z| < q0, one can repeat the calculations (2.3.17)-(2.3.20) to obtain

that the function c(z) is bounded by cε given in (2.3.21). Note that one needs to

replace the equality in (2.3.18) by strict inequality. If |z| > q0, we first observe

the following symmetry

c(q2
0/z) = c(z).

Set τ = q2
0/z. We see that in this case |τ | < q0. Therefore, one can again repeat

the arguments in (2.3.17)-(2.3.20) to get that c(τ) is bounded above by cε. In

turn, this proves that c(z) is also bounded above by cε when |z| > q0. Thus in

both cases, we managed to bound c(z) by the same constant value independent

from z. From this, we use similar arguments as in the proof of Proposition 2.17 to

prove that the Neumann series defining w(x, z) will be absolutely and uniformly

convergent on P− for all z ∈ D−ε . The continuity and analyticity properties

follow from the fact that the Neumann series converges uniformly and that each

term of the series is continuous and analytic. The conclusions on µ
(1)
− (x, z) follow

immediately.

To deduce the asymptotic behaviour, as z →∞ and z → 0, we use the well-

known Wentzel-Kramers-Brillouin (WKB) asymptotic expansion of e−ikxµ
(1)
− (x, z).
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2. REVIEW OF THE INVERSE SCATTERING TRANSFORM

Let us start with the behaviour as z →∞. We seek the following expansion

e−ikxµ
(1)
− (x, z) =

n∑
j=0

fj(x)

zj
+ O

(
z−(n+1)

)
, z →∞.

where fj(x) are to be determined. We only need the leading term of this series.

Substituting this series into the equation (2.1.1), we obtain after some manipu-

lations

n∑
j=0

(fj(x))x
zj

=− i

2

(
σ3f0(x)− f0(x)

)
z − i

2

(
σ3f1(x)− f1(x)

)
+Q(x)f0(x) +

n∑
j=1

[
iq2

0

2

(
σ3fj−1(x) + fj−1(x)

)
− i

2

(
σ3fj+1(x)− fj+1(x)

)
+Q(x)fj(x)

]
1

zj
. (2.3.24)

Note that we expressed the equation (2.1.1) in terms of z to get the above ex-

pression. By matching the powers of z, we get from the coefficient of z and the

independent term that

f0(x) =

(
1

0

)
, f1(x) =

(
i
∫ x
−∞(q2

0 − |u(y)|2)dy

−iu∗(x)

)
.

This gives the asymptotic behaviour as z → ∞. Note that we used the value of

µ
(1)
− (x, z) at x = −∞ to evaluate the constant and to integrate in the process of

computing f0 and f1. For the case z → 0, one needs to consider the following

series expansion

e−ikxµ
(1)
− (x, z) =

n∑
j=−1

zjgj(x) + O(zn+1), z → 0,

where gj(x) are to be determined. Using similar arguments as in the case of

z →∞, one gets

g−1(x) =

(
0

−iu∗−

)
, g0(x) =

(
i|u(x)|2

2

u∗− −
iu∗(x)|u(x)|2

2

)
.

This completes the proof.
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2.3 Non zero boundary conditions at infinity

Scattering coefficients Since U± is traceless, using Abel’s theorem, one de-

duces

detµ±(x, z) = ζ(z), z ∈ Σ.

This means that µ−(x, z) and µ+(x, z) are two fundamental matrices of the scat-

tering problem (2.3.3) for z ∈ Σ0. Therefore, they must be related as

µ+(x, z) = µ−(x, z)S(z), z ∈ Σ0, (2.3.25)

where the matrix S(z) = (sij(z))1≤i,j≤2 is called the scattering matrix associated

to u0(x). The entries of the scattering matrix S(z) are complex-valued functions

defined on Σ and they are referred to as scattering coefficients associated with

u0(x). Notice that we still obtain that the scattering matrix associated with u0(x)

is unimodular as in the ZBCs case

detS(z) = 1, z ∈ Σ0.

Proposition 2.20. Let u0(x) − u± be an element of L1(P±). Then the scat-

tering coefficient s22(z) (respectively, s11(z)) is continuous on D+ ∪ Σ0 and has

an analytic continuation on D+ (respectively, is continuous on D− ∪ Σ0 and has

an analytic continuation on D−). Moreover, the scattering coefficients s12(z)

and s21(z) are continuous functions on Σ0 but do not have, in general, analytic

continuations in any region of the z complex plane.

Proof: The columns of µ−(x, z) = µ+(x, z)S(z)−1 are given byµ
(1)
− (x, z) = s22(z)µ

(1)
+ (x, z)− s21(z)µ

(2)
+ (x, z),

µ
(2)
− (x, z) = s11(z)µ

(2)
+ (x, z)− s12(z)µ

(1)
+ (x, z).

(2.3.26)

By calculating the determinant of
(
µ

(1)
− (x, z), µ

(2)
+ (x, z)

)
, one obtains

s22(z) =
1

ζ(z)
det
(
µ

(1)
− (x, z), µ

(2)
+ (x, z)

)
. (2.3.27)

Similarly, one gets

s11(z) =
1

ζ(z)
det
(
µ

(1)
+ (x, z), µ

(2)
− (x, z)

)
. (2.3.28)

The results for s11(z) and s22(z) follow from Lemma 2.19. Similar arguments are

used to obtain the results for s12(z) and s21(z).
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2. REVIEW OF THE INVERSE SCATTERING TRANSFORM

We can see from the above result that the scattering coefficients have poles at

the branch points, and this can be calculated explicitly; see Biondini & Kovačič

(2014).

Combining the expressions of s12(z) and s21(z) in terms of the Jost solutions,

(2.3.27)-(2.3.28), and the asymptotic behaviours given in Lemma 2.19, we obtain

S(z) = 1I + O
(
z−1
)

z →∞,

and

S(z) = diag(u−/u+, u+/u−) + O (1) z → 0. (2.3.29)

Lemma 2.21 (Riemann surface symmetry). Let µ(x, t, z) be a solution of the

time-dependent scattering problem (2.3.3). Then µ(x, t,−q2
0/z) solves the same

equation. In other words,

µ(x, t,−q2
0/z) = µ(x, t, z)M(t, z), (2.3.30)

where M(t, z) is a constant matrix with respect to x.

Proof: The proof follows obviously from the fact that λ(−q2
0/z) = λ(z).

Let z be a complex number such that |z| > q0, i.e. z, is located outside the

circle C0. Thus, we clearly see that
∣∣∣−q20z ∣∣∣ < q0, that is −q2

0/z is located within the

circle C0. Recall that the first copy (CI) of the Riemann surface is mapped into

the inside of C0 and the second copy (CII) onto the outside of C0. This means

that

z 7→ −q2
0/z ⇐⇒ λ 7→ λ, k 7→ −k,

connects eigenfunctions associated with the spectral parameter on both copies.

Combining this with the NLS symmetry in Lemma 2.1, we have the following

result.

Corollary 2.22. Consider u(x)− u± ∈ L1(P±). Then the scattering coefficients

satisfy

s11(z) = s∗22(z∗), z ∈ Σ, s12(z) = −s∗21(z∗), z ∈ Σ, (2.3.31)

s11(z) =
u−
u+

s22(−q2
0/z), z ∈ Σ, s12(z) =

u+

u∗−
s21(−q2

0/z), z ∈ Σ. (2.3.32)
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2.3 Non zero boundary conditions at infinity

Proof: Suppose that z ∈ Σ. A straightforward calculation will show that the Jost
solutions µ±(x, z) satisfy the following two symmetries

µ±(x, z) = (iσ2)µ∗±(x, z∗)(iσ2)−1, µ±(x, z) =
i

z
µ±(x,−q20/z)σ3Q±, z ∈ Σ. (2.3.33)

These symmetries can be written in terms of the scattering matrix as

S(z) = (iσ2)S∗(z∗)(iσ2)−1, S(−q2
0/z) = σ3Q−S(z)(σ3Q+)−1, z ∈ Σ. (2.3.34)

Elementwise, the first equation in (2.3.34) gives

s11(z) = s∗22(z∗), s12(z) = −s∗21(z∗), z ∈ Σ. (2.3.35)

Similarly, the second symmetry in (2.3.34) gives

s11(z) =
u−
u+

s22(−q2
0/z), s12(z) =

u+

u∗−
s21(−q2

0/z), z ∈ Σ. (2.3.36)

This completes the proof.

Unlike in the case of ZBCs, the continuous spectrum, in this case, is not just

R, it contains a region in the complex plane. This explains why we need to keep

track of the complex conjugate in the symmetry between s12(z) and s21(z).

As in the ZBCs, we say that z ∈ C\Σ is an eigenvalue for the operator L

if its eigenfunction is an element of L2 (R,C2). We denote by K± the set of all

z ∈ C\Σ with such a property. The discrete spectrum for the operator L, in this

case, is

K = K+ ∪K−.

Owing to the relation (2.3.27), one can easily deduce that the set of zeros for the

scattering coefficient s22(z) coincides with K+. The same correspondence can be

drawn between K− and the set of zeros for s11(z) using (2.3.28).

Let u0(x) be such that u0−u± be an element of L1(P±). Then, in the remaining

part of this section, we assume the following:

• The scattering coefficients s11(z) and s22(z) do not vanish on Σ;

• K− and K+ have finite number of elements.

We will follow the terminology used in the ZBCs case: potentials that admit

the above properties of the scattering coefficients s11(z) and s22(z) will be called

generic.
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2. REVIEW OF THE INVERSE SCATTERING TRANSFORM

Definition 2.23. The reflection coefficients, denoted r(z) and r̃(z), are complex-

valued functions defined as

r : Σ −→ C
z 7−→ s21(z)

s22(z)

,
r̄ : Σ −→ C

z 7−→ s12(z)
s11(z)

Norming constants Let N be a positive integer. Assume that u0(x) is a

generic potential. For each 1 ≤ n ≤ N , let zn ∈ D+ ∪ C+ be a zero of s22(z).

That is s22(zn) = 0. Then by taking into consideration the first symmetry in

(2.3.32), we see that −u2
0/z
∗
n is also a zero of s22(λ). This means that

K+ = {z1, z2, . . . , zN ,−u2
0/z
∗
1 ,−u2

0/z
∗
2 , . . . ,−u2

0/z
∗
N}.

From the first relation in (2.3.31), we have

K− = {z∗1 , z∗2 , . . . , z∗N ,−u2
0/z1,−u2

0/z2, . . . ,−u2
0/zN}.

Set

ξn = zn, ξn+N = −u2
0/z
∗
n, n = 1, . . . , N.

Thus, Eq. (2.3.27) implies

µ
(1)
− (x, ξn) = γ(ξn)µ

(2)
+ (x, ξn), (2.3.37)

where γ(ξn) is the proportionality constant. The norming constant associated to

γ(ξn) is given by

c(ξn) =
γ(ξn)

s′22(ξn)
.

We will use both depending on our needs. Similarly, the first equation in Eq.

(2.3.28) implies

µ
(2)
− (x, ξ∗n) = γ(ξ∗n)µ

(1)
+ (x, ξ∗n). (2.3.38)

In turn, we have

c(ξ∗n) =
γ(ξ∗n)

s′11(ξ∗n)
.

The zeroes and norming constants together form the so-called discrete scattering

data.

Explicitly, the second relation in (2.3.33) gives

µ
(1)
± (x, z) =

iu∗±
z
µ

(2)
± (x,−u2

0/z), µ
(2)
± (x, z) =

iu±
z
µ

(1)
± (x,−u2

0/z), z ∈ Σ. (2.3.39)
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2.3 Non zero boundary conditions at infinity

Replacing Eq. (2.3.39) in (2.3.37) and (2.3.38), we get

µ
(1)
− (x,−u2

0/z
∗
n) = (u∗+/u−)γ(z∗n)µ

(2)
+ (x,−u2

0/z
∗
n),

µ
(2)
− (x,−u2

0/zn) = (u+/u
∗
−)γ(zn)µ

(1)
+ (x,−u2

0/zn),

that is

γ(−u2
0/z
∗
n) = (u∗+/u−)γ(z∗n) and γ(−u2

0/zn) = (u+/u
∗
−)γ(zn). (2.3.40)

Using the first relation in (2.3.33) and (2.3.40), one can easily prove that

γ(ξ∗n) = −γ(ξn)∗ and c(ξ∗n) = −c(ξn)∗.

Note that, differentiating the first relation in (2.3.36) and using (2.3.35), one

obtains

s′22(−u2
0/z
∗
n) = (z∗n/u0)2(u−/u+)(s′22(zn))∗.

Hence, we get

c(−u2
0/z
∗
n) = −(u0/z

∗
n)2(u∗+/u+)(c(zn))∗.

Using the same argument as in the ZBCs case, the scattering coefficient s22(z)

has the following explicit form

s22(z) =
2N∏
n=1

(z − ξn)

(z − ξ∗n)
exp

(
− 1

2πi

∫
Σ

log (1 + r(ζ)r∗(ζ∗))

ζ − z
dζ

)
, z ∈ D+. (2.3.41)

Note that the scattering coefficient s11(z) admits a similar expression. Taking the

limit of this equation as z → 0, and combine the result with the limits in (2.3.29)

one obtains the so-called theta condition

arg

(
u−
u+

)
= 4

N∑
n=1

arg (zn) +
1

2π

∫
Σ

log (1 + r(ζ)r∗(ζ∗))

ζ
dζ. (2.3.42)

This gives the phase difference at both infinities.

Now, we can define the direct map. We will use the same notation as the one

we defined in the case of ZBCs.

Definition 2.24. Consider a generic potential u0(x) such that u0−u± ∈ L1(P±).

Let S be the map that associates to u0(x) its scattering data, namely

S : {u0(x)} 7→
{
r(z), (zn, c(zn))1≤j≤N

}
where r(z), zn and c(zn) are defined as above.

47



2. REVIEW OF THE INVERSE SCATTERING TRANSFORM

2.3.2 Inverse problem

Now, we will discuss the inverse problem. As in the case of ZBCs, we state the

following general results, see Biondini & Kovačič (2014).

Theorem 2.25 (RHP with NZBCs). Let r be a function defined on Σ and

(zn, c(zn)) ∈ (D+ ∩ C+) × (C\{0}), for each n = 1, . . . , N , be given such that

the following normalised Riemann-Hilbert problem

• Analyticity. m(x, t, z) is analytic in C\ (Σ ∪K);

• Jump condition. It has continuous boundary values m±(x, t, s) = lim
z→s

m(x, t, z),

s ∈ Σ, satisfying the jump condition

m+(x, t, s) = m−(x, t, s)v(x, t, s), s ∈ Σ, (2.3.43)

where the jump matrix is given by

v(x, t, s) =

(
1 + |r(s)|2 −r(s)∗e−2iθ(s∗)

−r(s)e2iθ(s) 1

)
, θ(s) = k(s)(x+ 2λ(s)t);

• Residues. m(x, t, z) has simple poles at ξn, ξ
∗
n for n = 1, . . . , N , and the

residues are given by

Res
z=ξn

m(x, t, z) = lim
z→ξn

m(x, t, z)

(
0 0

c(ξn)e2iθ(x,t,ξn) 0

)
, (2.3.44)

Res
z=ξ∗n

m(x, t, z) = lim
z→ξ∗n

m(x, t, z)

(
0 −c(ξn)∗e−2iθ(ξ∗n)

0 0

)
; (2.3.45)

• Normalisation.

m(x, t, z) = 1I + O(z−1), z →∞
m(x, t, z) = (i/z)σ3Q+ + O(1), z → 0,

has a unique solution.

Now, let us consider u0(x) such that u0 − u± ∈ L1(P±) with the map S be

given as in Definition 2.24. It follows from (2.3.25) that

Y+(x, z) = Y−(x, z)e−ikσ3xS(z)eikσ3x, z ∈ Σ. (2.3.46)
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2.3 Non zero boundary conditions at infinity

By regrouping the term with an analytic continuation into the same region of the

complex plane, one gets

m+(x, z) = m−(x, z)v(x, z), z ∈ Σ,

where

m+(x, z) =

(
Y

(1)
− (x, z)

s22(z)
, Y

(2)
+ (x, z)

)
, m−(x, z) =

(
Y

(1)
+ (x, z),

Y
(2)
− (x, z)

s11(z)

)
,

v(x, z) :=

(
1 + |r(z)|2 −r(z)∗e−2iθ(z∗)

−r(z)e2iθ(z) 1

)
,

Define

m(x, z) =

m+(x, z), z ∈ D+,

m−(x, z), z ∈ D−.
(2.3.47)

Lemma 2.26. The 2× 2 matrix functions m(x, z) defined in (2.3.47) solves the

Riemann-Hilbert problem with NZBCs at time t = 0. Moreover, the map

P : {r(z), (zn, c(zn)1≤n≤N)} 7→ {u0(x)}

defined by

u0(x) = −i lim
z→∞

z (m(x, z))12 , (2.3.48)

is the inverse to S.

2.3.3 Time evolution

Using the same arguments as in the case of ZBCs, one gets the following time

evolution of the scattering data by

r(t, z) = r(z)e4ikλt, r̃(t, z) = r̃(z)e−4ikλt,

c(t, zn) = c(zn)e4ik(zn)λ(zn)t, c(t, z∗n) = c(z∗n)e−4ik(z∗n)λ(z∗n)t.
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2.3.4 Reflectionless potentials

Assume that the reflection coefficient is identically zero. In this case, the solution

of the above RHP can be written as

m(x, t, z) = 1I + (i/z)σ3Q+ +
2N∑
n=1

Res
z=ξn

m(x, t, z)

z − ξn
+

2N∑
n=1

Res
z=ξ∗n

m(x, t, z)

z − ξ∗n
.

Recall that, using (2.2.44), one has

Res
z=ξn

m(x, t, z) =
[
c(ξn)e2iθ(ξn)Y

(2)
+ (x, t, ξn), 0

]
,

Res
z=ξ∗n

m(x, t, z) =
[
0,−c(ξn)∗e−2iθ(ξ∗n)Y

(1)
+ (x, t, ξ∗n)

]
.

Given Y
(1)
± , we denote by Y

(11)
± and Y

(21)
± its first and second entries, respectively.

Given Φ
(2)
± , we denote by Y

(12)
± and Y

(22)
± its first and second entries, respectively.

The time-dependent version of the reconstruction formula, we have

u(x, t) = u+ − i
N∑
n=1

c(λn)∗e−2iθ(λ∗n)Y
(11)

+ (x, t, λ∗n). (2.3.49)

One can evaluate the second column of the above at z = ξn, obtaining

Y
(2)

+ (x, t, ξn) =

(
i
ξn
u+

1

)
−

2N∑
k=1

c(ξk)
∗e−2iθ(ξ∗k)

ξn − ξ∗k
Y

(1)
+ (x, t, ξ∗k),

for n = 1, . . . , 2N . In the same way, one evaluates the first column at ξ∗n to obtain

Y
(1)

+ (x, t, ξ∗n) =

(
1
i
ξ∗n
u∗+

)
+

2N∑
k=1

c(ξk)e
2iθ(ξk)

ξ∗n − ξk
Y

(2)
+ (x, t, ξk),

for n = 1, . . . , 2N . Note that one needs only the first component of the eigen-

function to recover the potential. Therefore, we get

Y
(12)

+ (x, t, ξj) =
i

ξj
u+ −

2N∑
k=1

c(ξk)
∗e−2iθ(ξ∗k)

ξj − ξ∗k
Y

(11)
+ (x, t, ξ∗k), j = 1, . . . , 2N,

Y
(11)

+ (x, t, ξ∗n) = 1 +
2N∑
j=1

c(ξj)e
2iθ(ξj)

ξ∗n − ξj
Y

(12)
+ (x, t, ξj), n = 1, . . . , 2N.
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2.3 Non zero boundary conditions at infinity

Hence, for n = 1, . . . , 2N , one obtains

Y
(11)
+ (x, t, ξ∗n) = 1 +

2N∑
j=1

c(ξj)e
2iθ(ξj)

ξ∗n − ξj
Y

(12)
+ (x, t, ξj)

= 1 +

2N∑
j=1

c(ξj)e
2iθ(ξj)

ξ∗n − ξj

[
i

ξj
u+ −

2N∑
k=1

c(ξk)∗e−2iθ(ξ∗k)

ξj − ξ∗k
Y

(11)
+ (x, t, ξ∗k)

]

= 1 + iu+

2N∑
j=1

c(ξj)e
2iθ(ξj)

ξj(ξ∗n − ξj)
−

2N∑
k=1

c(ξk)∗e−2iθ(ξ∗k)
2N∑
j=1

c(ξj)e
2iθ(ξj)

(ξ∗n − ξj)(ξj − ξ∗k)

Y (11)
+ (x, t, ξ∗k).

Introduce,

X = (X1, . . . , X2N )T , B = (B1, . . . , B2N )T , M = I + (An,k)1≤n,k≤2N ,

where

Xn = Y
(11)

+ (x, t, ξ∗n), Bn = 1 + iu+

2N∑
j=1

c(ξj)e
2iθ(ξj)

ξj(ξ∗n − ξj)
,

An,k = c(ξk)
∗e−2iθ(ξ∗k)

2N∑
j=1

c(ξj)e
2iθ(ξj)

(ξ∗n − ξj)(ξj − ξ∗k)
.

The above algebraic system takes the following form

MX = B.

The solution of the system is given by Xn = detM ext
n /detM for n = 1, . . . , 2N ,

where

M ext
n = (M1, . . . , . . . ,Mn−1, B,Mn+1, . . . ,M2N) .

After substituting X in the reconstruction formula (2.3.49), one obtains

u(x, t) = u+ + i
detM inc

detM
, (2.3.50)

where

M inc =

(
0 H

B M

)
with

H = (h1, . . . , h2N)T =
(
c(ξ∗1)e−2iθ(ξ∗1), . . . , c(ξ∗2N)e−2iθ(ξ∗2N )

)T
.
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Chapter 3

Integrable boundary conditions

3.1 Characterisation of integrable boundary con-

ditions

The study of initial-boundary value problems (IBVPs) for nonlinear PDEs that

can be solved by the IST goes back to the 70s. Recall that the IST (see, Chapter

2) is used to solve a class of nonlinear PDEs1 given on the full-line, that is

−∞ < x < ∞. Motivated by the similitude between the IST and the Fourier

transform [see, Ablowitz, Kaup, Newell & Segur (1974)], Ablowitz & Segur (1975)

studied nonlinear integrable PDEs on the half-line by constructing an odd/even

extension of the potential to the full-line. This extension allowed them to use the

well-developed IST machinery to solve the Cauchy problem. An even extension

led to solutions that satisfy Neumann boundary conditions (BCs) at x = 0,

while an odd extension led to Dirichlet BCs. Note that for this approach to be

successful, the nonlinear integrable PDEs of interest must have an even linearized

dispersion relation. For instance, the linear version of the NLS equation (1.1.1),

that is,

iut + uxx = 0,

admits w = k2 as dispersion relation, where k is the wave-number and w the

wave frequency.

An important step towards a rigorous characterisation of BCs that can pre-

1Nonlinear PDEs that admit a Lax pair representation.
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3. INTEGRABLE BOUNDARY CONDITIONS

serve the integrability of a given classical system was made in Sklyanin (1987).

It is worth mentioning that interesting universal nonlinear equations from math-

ematical physics, for instance, the NLS equation (1.1.1) or the KdV equation

(2.0.1), admit a Lax pair formulation1 but they can also be seen as an infinite-

dimensional Hamiltonian system, see for example Faddeev & Takhtajan (2007).

Sklyanin used both the Hamiltonian and the Lax pair formulation of integrable

classical systems to lay out his approach. In the context of this work, we will

only focus on the Lax pair side of his formulation, which will be illustrated in the

case of the NLS equation (1.1.1).

Let U(x, t, λ) and V (x, t, λ) be the Lax pair of the NLS equation given in

(2.1.3) and (2.1.4), respectively. The time-dependent version of the central equa-

tion in Sklyanin (1987) is given by the following zero curvature boundary condition

∂tK(t, λ) = V (0, t,−λ)K(t, λ)−K(t, λ)V (0, t, λ), (3.1.1)

where K(t, λ) is an unknown 2 × 2 matrix and referred to as reflection matrix.

Solutions K(t, λ) of (3.1.1) produce integrable BCs at the origin x = 0 for the NLS

equation. By integrable we mean that we can use equation (3.1.1) to construct

an infinite number of conserved quantities; see the examples below. Originally,

Sklyanin (1987) only considered the time-independent version of the reflection

matrix K, i.e. the LHS of equation (3.1.1) was zero. The time-dependent version

of Sklynin’s equation given in (3.1.1) was introduced in Bowcock, Corrigan, Dorey

& Rietdijk (1995).

Let Ψ(x, t, λ) be a matrix solution for the auxiliary system (2.1.1)-(2.1.2). The

zero curvature boundary condition (3.1.1) means that

Ψ(0, t,−λ) = K(t, λ)Ψ(0, t, λ). (3.1.2)

Definition 3.1. Boundary conditions are said to be time-dependent if their re-

flection matrix satisfying (3.1.1) is time-dependent. Otherwise, they are said to

be time-independent.

To construct conserved quantities in the presence of integrable BCs on the

half-line we can use the same approach traditionally adopted on the full-line. We

start by recalling the construction of conserved quantities on the full-line; see for

example Caudrelier (2008) for more detail.

1We saw this in the case of the NLS equation in Chapter 2.
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3.1 Characterisation of integrable boundary conditions

Conserved quantities on the full-line Consider a vector-valued solution

ψ(x, t, λ) =

(
ψ1(x, t, λ)

ψ2(x, t, λ)

)
of the auxiliary system (2.1.1)-(2.1.2) associated to a potential in S(R). Define

Γ(x, t, λ) = ψ2(x, t, λ)ψ−1
1 (x, t, λ).

For convenience, we will drop out the arguments x, t, λ. A direct calculation from

(2.1.1) yields the following Riccati equation for Γ

Γx = 2iλΓ− u∗ − uΓ2. (3.1.3)

For convenience, we rewrite the matrix V defined in (2.1.4) as

V =

(
V11 V12

V21 V22

)
.

Since we are in the case of ZBCs, we have

diag
(
V11, V22

)
→ −2iλ2σ3, V12, V21 → 0, as x→ ±∞. (3.1.4)

Entries (11) and (12) of the zero curvature condition (2.1.5) for the NLS equation

are given by

uV21 + u∗V12 − (V11)x = 0, ut − (V12)x − 2iλV12 + 2uV22 = 0, (3.1.5)

respectively. From (2.1.2), it follows that

Γt = V21 − 2V11Γ− V12Γ2. (3.1.6)

Recall that an expression of the form

Dt + Fx = 0

is called conservation law. The quantity D is known as the local conserved density,

and F is called the flux. Every conservation law defines, under a suitable choice

of boundary conditions for F (t), the conservation of an integral of D:

d

dt

∫ b

a

D(x)dx = F (a)− F (b),
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3. INTEGRABLE BOUNDARY CONDITIONS

where a and b represent the boundaries of the domain of integration. As we will

shortly see, we can also have a = −∞ and b = +∞.

One has the following straightforward manipulations

(uΓ)t = utΓ + uΓt

= ((V12)x + 2iλV12 + 2uV11)Γ + u(V21 − 2V11Γ− V12Γ2), see (3.1.5) and (3.1.6),

= (V12)xΓ + (Γx + u∗ + uΓ2)V12 + uV21 − uV12Γ2

= (V12Γ)x + u∗V12 + uV21

= (V12Γ + V11)x, see (3.1.5).

Thus we have obtained a conservation law for the NLS equation (1.1.1). Under

the assumptions (3.1.4), we obtain that

I =

∫ +∞

−∞
uΓdx (3.1.7)

is conserved in time. This integral is referred to as a generating function for

conserved quantities. Note that Γ admits the following asymptotic expansion

Γ =
∞∑
n=1

Γn
(2iλ)n

, (3.1.8)

where

Γ1 = −u∗, Γn+1 = (Γn)x + u

n−1∑
k=1

ΓkΓk−1, n ≥ 1. (3.1.9)

Expressions in (3.1.9) are obtained by replacing the series expansion of Γ in the

Riccati equation (3.1.3). Therefore, the terms of this series define conserved

quantities, and we have an infinite number of them

In =

∫ +∞

−∞
uΓndx, n ≥ 1. (3.1.10)

There is a correspondence between the existence of the above infinite number of

conserved quantities with the complete integrability, in Liouville’s sense, of the

NLS equation (1.1.1) seen as a Hamiltonian system Faddeev & Takhtajan (2007).

This is why the NLS equation (1.1.1) is called integrable.

We will now discuss two interesting examples of integrable BCs at x = 0, and

we will also illustrate the construction of their conserved quantities. We restrict
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3.1 Characterisation of integrable boundary conditions

ourselves to the half-line. This means that every other object that involves the

potentials will also be restricted on the half-line, for instance, the Lax pair (U, V )

and the auxiliary system associated with it.

Examples of integrable BCs In the case of time-independent version of equa-

tion (3.1.1), one can only obtain a family of diagonal reflection matrices Sklyanin

(1987)

K(t, λ) = λσ3 + iα1I, α ∈ R, (3.1.11)

which leads to the well-known Robin boundary conditions

ux(0, t) + 2αu(0, t) = 0, (3.1.12)

where u(x, t) is solution to the NLS equation (1.1.1). Thus, following the ter-

minology introduced in Definition 3.1, Robin BCs are time-independent. The

construction of an infinite number of conserved quantities in the case of Robin

BCs (3.1.12) was addressed in Caudrelier & Zhang (2012). Since we are dealing

with equations defined on the half-line, it is clear that the generating function

(3.1.7) will no longer be conserved in this case because we need to take into ac-

count the contribution from the boundary. Caudrelier & Zhang (2012) found that

the correct generating function, in this case, is given by

I(t, λ) =
1

2

∫ ∞
0

u(x, t)(Γ(x, t, λ)− Γ(x, t,−λ)) dx , (3.1.13)

where Γ = ψ2ψ
−1
1 and ψ1,2 are the first and second components of the vector

solution ψ satisfying the auxiliary system (2.1.1)-(2.1.2). Notice that now Γ is

defined only on the half-line. From this we can follow (3.1.8)-(3.1.10) to write

down all the conserved quantities.

Another example is the following. Let u(x, t) be the solution of the focusing

NLS equation (1.1.1). Consider the reflection matrix defined as

K(t, λ) =
1

(2λ− β)2 + α2

(
−4λ2 − 4iλH(t) + α2 + β2

)
, (3.1.14)

with

H(t) =

(
±
√
α2 − |u(0, t)|2 u(0, t)

u∗(0, t) ∓
√
α2 − |u(0, t)|2

)
, (3.1.15)
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3. INTEGRABLE BOUNDARY CONDITIONS

where α and β are real parameters characterizing the BCs. The normalisation

of K(t, λ) is chosen so that K−1(t, λ) = K(t,−λ). Without loss of generality, we

can fix α, β > 0. With this choice of the reflection matrix K, equation (3.1.1) is

equivalent to the following BCs at x = 0

iut = (α2 + β2)u− 2|u|2u± 2ux
√
α2 − |u|2. (3.1.16)

Note that the BCs (3.1.16) can equivalently be written as follows, by continuing

u and its derivatives to x→ 0 and using equation (1.1.1),

uxx + (α2 + β2)u± 2ux
√
α2 − |u|2 = 0. (3.1.17)

The choice of sign in (3.1.16) corresponds to the ones in (3.1.15). Equation

(3.1.16) defines time-dependent integrable boundary conditions at x = 0 for the

NLS equation (1.1.1).

Boundary conditions (3.1.17) correspond to the third boundary condition

studied in Khabibullin (1993) by a completely different method (the symmetry

approach). Note that the reflection matrix (3.1.14) was derived first in Zambon

(2014), again using a different method (the Bäcklund transformation approach

to integrable boundaries and defects). The BCs (3.1.16) represent the continuous

limit of those found in Caudrelier & Crampé (2019), in the same way as the NLS

equation is the continuous limit of the Ablowitz-Ladik model.

We now turn our attention to the construction of conserved quantities to

justify the fact that these BCs are integrable. This was explained in detail in

Caudrelier, Crampe & Dibaya (2022). The generating function is given by

I(t, λ) = I(t, λ)−K(t, λ) ,

where

K(t, λ) =
1

2
ln
(
K11(t, λ) +K12(t, λ)Γ(0, t, λ)

)
, (3.1.18)

and I(t, λ) is defined as in (3.1.13). Indeed, a direct calculation using the auxiliary

system (2.1.1)-(2.1.2) yields

∂t(uΓ) = ∂x(V11 + V12Γ) . (3.1.19)

This can be used for Γ(x, t, λ) and for Γ(x, t,−λ) to yield

∂tI(t, λ) =
1

2

(
− (V11(0, t, λ) + V12(0, t, λ)Γ(0, t, λ))

+ (V11(0, t,−λ) + V12(0, t,−λ)Γ(0, t,−λ))
)
.
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3.1 Characterisation of integrable boundary conditions

We now use (3.1.2) to obtain

Γ(0, t,−λ) = (K21(t, λ) +K22(t, λ)Γ(0, t, λ))(K11(t, λ) +K12(t, λ)Γ(0, t, λ))−1

and we use (3.1.1) to eliminate V11(0, t,−λ) and V12(0, t,−λ). We get, after some

cancellations

∂tI(t, λ) =
1

2

(
∂tK11(t, λ) + ∂tK12(t, λ)Γ(0, t, λ)

)
(K11(t, λ) +K12(t, λ)Γ(0, t, λ))−1

+
1

2
K12(t, λ)

(
V21(0, t, λ)− 2λV11(0, t, λ)

− V12(0, t, λ)Γ2(0, t, λ)

)(
K11(t, λ) +K12(t, λ)Γ(0, t, λ)

)−1

.

It remains to note that (2.1.4) implies the following Riccati equation in time for

Γ

∂tΓ(0, t, λ) = V21(0, t, λ)− 2λV11(0, t, λ)− V12(0, t, λ)Γ2(0, t, λ) .

With this, we deduce

∂tI(t, λ) =
1

2
∂t ln (K11(t, λ) +K12(t, λ)Γ(0, t, λ)) .

This shows that ∂tI(t, λ) 6= 0 but leads naturally to introduce K(t, λ) as in (3.1.18)

and

∂tI(t, λ) = ∂t (I(t, λ)−K(t, λ)) = 0 , (3.1.20)

which shows the announced result.

We can then construct all conserved quantities following the procedure de-

scribed above. Therefore we have proven that the time-dependent BCs (3.1.16)

are indeed integrable.

Let us remark that for Robin boundary conditions, since K is diagonal and

time-independent (see Eq. (3.1.11)), K12(t, λ) = 0 and K11(t, λ) = λ, the previ-

ous equation simplifies and shows I(t, λ) is the generating function for an infinite

number of conserved quantities without needing K(t, λ). However, for the time-

dependent boundary conditions we are discussing here, this is not the case and

K(t, λ) is indeed time-dependent and exactly compensates for the loss of conser-

vation in time of I(t, λ). We will illustrate this point with a concrete example in

subsection 4.1.3. Integrability holds for the system “half-line+boundary” while

the half-line only can be thought of as being an open system coupled to a bound-

ary that acts as a reservoir.
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3. INTEGRABLE BOUNDARY CONDITIONS

3.2 Solution methods

Sklyanin’s approach to integrable boundary conditions did not say anything about

how to construct solutions. Solution methods to IBVPs for integrable PDEs with

integrable boundary conditions developed rather independently. However, we

will see that there is a profound connection between the solution methods and

Sklyanin’s approach to integrable boundary conditions.

We have already mentioned the work by Ablowitz & Segur (1975), which can

be seen as a first step towards solving IBVPs for nonlinear integrable PDEs. The

second important step forward was made in the original work by Khabibullin

(1991).

In his work, Khabibullin (1991) puts forward the use of Bäcklund-Darboux

matrix to map IBVPs on the half-line to Cauchy problems of the same nonlinear

PDE. In this way, one can use the IST to solve the Cauchy problem on the full-

line and the solution to this will satisfy automatically certain boundary conditions

at x = 0. Khabibullin (1991) ideas were successfully implemented by Bikbaev

& Tarasov (1991) to solve the IBVP for the NLS equation (1.1.1) with Robin

BCs (3.1.12). This led to several subsequent interesting results; see for instance,

Tarasov (1991), Biondini & Hwang (2009), Caudrelier & Zhang (2012), Biondini

& Hwang (2009) and Biondini & Bui (2012). In Biondini & Hwang (2009), this

method was referred to as nonlinear mirror image; we will keep their terminology

in this work as well. Recently, Deift & Park (2011) have studied rigorously the

nonlinear mirror method using the language of Riemann-Hilbert problems.

Motivated by some limitations of the nonlinear mirror image method, for

instance, the difficulty in dealing with dispersion relations of odd degree, as in

the Korteweg-de Vries equation, Fokas and several co-workers developed another

solution method. This method is called the unified transform or Fokas method,

which does not rely on mapping the problem to a full line problem. Instead,

the idea is to perform the simultaneous spectral analysis of both parts of the

auxiliary problem associated with the Lax pair of the given integrable PDE on

the half-line.

In the next two subsections, we will discuss the nonlinear mirror image method.

Afterwards, we will briefly outline the unified transform as it is not used in our

work. For both methods, we will only consider the focusing case of the NLS
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equation (1.1.1), that is κ = −1.

3.2.1 Bäcklund transformation approach to BCs

Let Ψ(x, t, λ) be any fundamental solution of (2.1.1) and (2.1.2) associated to a

potential Q(x, t) on the full-line. Define

Ψ̃(x, t, λ) = L(x, t, λ)Ψ(x, t, λ),

where L(x, t, λ) is a 2 × 2 matrix function. A direct calculation shows that the

new eigenfuction Ψ̃ satisfiesΨ̃x = ŨΨ̃ :=
(
−iλσ3 + Q̃

)
Ψ̃,

Ψ̃t = Ṽ Ψ̃ :=
(
−2iλ2σ3 + 2λQ̃− iQ̃xσ3 − iQ̃2σ3

)
Ψ̃,

(3.2.1)

where Q̃ is a 2× 2 off-diagonal matrix with similar structure as Q, if and only if,

the matrix function L(x, t, λ) is a solution of the following differential equations

Lx = ŨL− LU , Lt = Ṽ L− LV. (3.2.2)

From the zero curvature condition of (3.2.1), we see that the (12) entry of Q̃

solves the NLS equation (1.1.1). This means the matrix L obtained as solution

of the differential equations in (3.2.2) induces a Bäcklund transformation for the

NLS equation or equations of the type (2.1.1). We can write that

Q(x, t)
L−→ Q̃(x, t).

The matrix function L is known as the Bäcklund/Darboux matrix.

The key observation made in Khabibullin (1991) was that if

Ũ(x, t, λ) = −U(−x, t,−λ), Ṽ (x, t, λ) = V (−x, t,−λ), (3.2.3)

then it follows from the second equation in (3.2.2) that the solution to the NLS

equation satisfies some boundary conditions at x = 0. Note that to implement

successfully these ideas, one needs to construct an appropriate Bäcklund matrix

L that can lead to (3.2.3). This was achieved for the first time in Bikbaev &

Tarasov (1991) for the NLS equation with Robin BCs, and it is essentially what
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3. INTEGRABLE BOUNDARY CONDITIONS

the nonlinear mirror image method is about. We will review this in detail in the

next subsection.

In Caudrelier & Crampé (2019), it was observed that under the assumption

(3.2.3), the second equation (3.2.2) is exactly the Sklyanin’s criterion for inte-

grable boundary conditions (3.1.1) if one takes

L(0, t, λ) = K(t, λ), (3.2.4)

where K(t, λ) is the solution of the time-dependent version of Sklyanin’s equation

(3.1.1). It is worth stressing again that Sklyanin (1987) original equation did

not involve time-dependent reflection matrices, that is ∂tK(t, λ) = 0. Thus his

approach seemed at first different from the one initiated by Khabibullin (1991).

3.2.2 Nonlinear mirror image method for time-independent

BCs

In this section, we will construct a Bäcklund matrix L that will allow us to

generate Robin BCs (3.1.12) at the origin. In light of the connection made in

(3.2.4), we must have

L(0, t, λ) = K(λ) = λσ3 + iα1I.

To construct such L, we will fix the time parameter at t = 0, and then obtain it

as the solution of the first differential equation in (3.2.2). Afterwards, the time

evolution of L must be compatible with the second equation in (3.2.2) in order

to obtain a useful Bäcklund transformation.

Let u(x) be a complex-valued function on R, and define

Q(x) =

(
0 u(x)

−u∗(x) 0

)
. (3.2.5)

We may have the case u(x) defined on R±. This matrix Q(x) can be seen as

the one defined in (2.1.3) at a fixed time, say t = 0. Thus, we will sometimes

refer to it or its entries as potentials. In what follows, we will use u(x) and Q(x)

interchangeably. Let A(x) be a matrix function, we say that A(x) belongs to

S(R)
[
S(R±)

]
if all its entries are elements of S(R)

[
S(R±)

]
. In the sequel, unless

otherwise stated, every time we consider a matrix or vector solution of (2.1.1),
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it should be associated with the potential above. The results we present in this

section can be found in Bikbaev & Tarasov (1991) or Deift & Park (2011). We

have also enhanced some proofs following Caudrelier, Crampe & Dibaya (2022).

Consider the following 2× 2 ordinary differential equation (ODE)Px = (−Q+ i[σ3, Pσ3])P − PQ,

P0 ≡ P (0) = iα, α ∈ R.
(3.2.6)

Lemma 3.2. If Q(x) ∈ S(R), the ODE (3.2.6) has a unique solution on R. In

particular, if Q(x) ∈ S(R±), (3.2.6) admits a unique solution on R±.

Proof: Assume that Q(x) ∈ S(R). Let Ψ0(x, λ) =
(

Ψ
(1)
0 (x, λ),Ψ

(2)
0 (x, λ)

)
be the

solution of (2.1.1) such that Ψ0(0, λ) = 1I. The differential equation in (3.2.6)

can be rewritten in a matrix commutator form as

(Pσ3)x = [−Q+ iσ3Pσ3, Pσ3] .

It is convenient to work with P1(x) = P (x)σ3, that is

(P1)x = [−Q+ iσ3P1, P1] . (3.2.7)

Obviously, we have P10 ≡ P1(0) = iασ3. We seek a solution of the form

P1(x) = H(x)P10(H(x))−1, (3.2.8)

for some invertible matrix H(x) such that H(0) = 1I. Substituting (3.2.8) into

(3.2.7), we get

(P1)x = [HxH
−1, P1].

Thus, we have

[M(x), HP10H
−1] = 0,

where

M(x) = HxH
−1 −

(
−Q+ iσ3HP10H

−1
)
.

In turn, this implies that H(x)−1M(x)H(x) ≡ D(x) is a diagonal matrix. The

matrix H is not uniquely defined and it is always possible to consider the trans-

formation H 7→ Hh where h is an invertible diagonal matrix without changing
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P1. We use this freedom to choose h such that hx = −Dh and set ϕ = Hh, with

the conclusion that

P1(x) = ϕ(x)P10ϕ(x)−1

where ϕ is a nonsingular (or fundamental) solution of

ϕx = iσ3ϕP10 −Qϕ. (3.2.9)

Writing ϕ = (ϕ1, ϕ2) where ϕ1,2 are the column vectors of ϕ, we see that

ϕ1x(x) = (−iλ0σ3 −Q)ϕ1 , ϕ2x(x) = (−iλ∗0σ3 −Q)ϕ2 , λ0 = −iα.

This means that

ϕ(x) = (ϕ1(x), ϕ2(x)) = σ3

(
Ψ

(1)
0 (x, λ0),Ψ

(2)
0 (x, λ∗0)

)
.

Recall that σ−1 = −iσ2. Since Ψ0(x, λ) is a solution of (2.1.1), it satisfies the

symmetry in (2.1.7):

iσ2Ψ0(x, λ∗)∗(iσ2)−1 = Ψ0(x, λ), (3.2.10)

for any λ. Note that we have taken into consideration the normalisation of

Ψ0(x, λ) at x = 0. The second column of equation (3.2.10) evaluated at λ∗0
reads

Ψ
(2)
0 (x, λ∗0) = −iσ2Ψ

(1)
0 (x, λ0)∗.

Thus P1(x) is given by P1(x) = ϕ(x)P10ϕ(x)−1, where the matrix ϕ(x) can be

written as

ϕ(x) =

(
ξ1(x) −ξ2(x)∗

−ξ2(x) −ξ1(x)∗

)
,

where (ξ1(x), ξ2(x))T = Ψ
(1)
0 (x, λ0). In turn, we have

P (x) =
iα

|ξ1(x)|2 + |ξ2(x)|2

(
|ξ1(x)|2 − |ξ2(x)|2 2ξ1(x)ξ2(x)∗

−2ξ1(x)∗ξ2(x) −
(
|ξ1(x)|2 − |ξ2(x)|2

)) . (3.2.11)

Since detϕ(x) 6= 0 for all x ∈ R, then P (x) defines the global solution for (3.2.6).

The case Q ∈ S(R±) is similar.

Lemma 3.3. Let Q(x) ∈ S(R) and P (x) be the solution of (3.2.6). Then P (x)→
iβ± as x→ ±∞ such that β2

± = α2.
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Proof: Consider α > 0. The analysis for the case α < 0 is similar. Let λ ∈ C+.

The differential equation (2.1.1) admits a non-unique 2 × 1 solution g(x, λ) on

R− such that

g(x, λ) = eiλx [r(x, λ), v(x, λ)]T ,

where [r(x, λ), v(x, λ)]T is a column vector that goes to e2 = (0, 1)T as x→ −∞.

For any u(x) ∈ S(R), fix x0 < 0 such that ‖u‖L1(−∞,x0] < 1/2. Note that r(x, λ)

and v(x, λ) satisfy the following differential equations

rx + 2iλr = uv, vx = −u∗r.

The trick here is to fix r(x, λ) and v(x, λ) at two different points of (−∞, x0]:

r(x, λ) = −
∫ x0

x

e2iλ(y−x)u(y)v(y, λ)dy, v(x, λ) = 1−
∫ x

−∞
u∗(y)r(y, λ)dy, x ≤ x0.

Now, we can replace the second equation into the first and change the order of
integration:∫ x

−∞

∫ x0

y

e2iλ(z−y)u∗(y)u(z)v(z, λ)dzdy =

∫ x

−∞

∫ z

−∞
e2iλ(z−y)u∗(y)u(z)v(z, λ)dydz.

This leads to the following Volterra integral equation for v(x, λ)

v(x, λ) = 1 +

∫ x

−∞
K(z, λ)v(z, λ)dz,

where the kernel K(z, λ) is given by

K(z, λ) = u(z)

∫ z

−∞
e2iλ(z−y)u∗(y)dy.

Thus, one has

|K(z, λ)| ≤ |u(z)|
2

.

From this point, one can introduce the Neumann series of v(x, λ) as we did in

the proof of Proposition 2.2. Thus, we have proved that the Neumann series is

actually absolutely and uniformly convergent on (−∞, x0], which we can extend

to R−.

Recall that λ ∈ C+. It is clear that Ψ
(1)
− (x, λ) and g(x, λ) are linearly inde-

pendent, where Ψ
(1)
− (x, λ) is the first column the Jost matrix solution Ψ−(x, λ);

see Chapter 2. Note that since α > 0, we can write

Ψ
(1)
0 (x, iα) = c1Ψ

(1)
− (x, iα) + c2g(x, iα), (3.2.12)
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where c1, c2 are constants. If the second component of Ψ
(1)
− (0, iα) vanishes, then

we must have c2 = 0. Thus Ψ
(1)
0 (x, iα) = c1Ψ

(1)
− (x, iα), that is, ξ2(x)

ξ1(x)
→ 0 as

x→ −∞. In turn, we have

P (x)→ iα, as x→ −∞.

However, if the second component of Ψ
(1)
− (0, iα) does not vanish, we have that

Ψ
(1)
0 (x, iα) ∼ e−αx [r(x, iα), v(x, iα)]T . Again, we get

P (x)→ −iα, as x→ −∞.

The above calculations can be summarized as follows: P (x)→ iβ− as x→ −∞,

where β− = α when the second component of Ψ
(1)
− (0, iα) vanishes and β− = −α

when the second component of Ψ
(1)
− (0, iα) does not vanish.

When it comes to the limit as x → +∞, one needs to consider solutions on

R+. Equation (2.1.1) admits the following solution on R+

h(x, λ) = e−iλx [r̄(x, λ), v̄(x, λ)]T ,

such that [r̄(x, λ), v̄(x, λ)]T is a column vector that goes to e1 as x → +∞. The

construction of h(x, λ) can be done as the one of g(x, λ) above. Using the same

argument as above leads to:

P (x)→ iβ+, as x→ +∞,

where β+ = −α when the second component of Ψ
(2)
+ (0, iα) vanishes and β+ = α

when the second component of Ψ
(2)
+ (0, iα) does not vanish. Note that Ψ

(2)
+ (x, λ)

is the second column of the Jost matrix solution Ψ+(x, λ).

Potential transformation. Given a potential Q(x) as above, let P (x) =

(pij)1≤i,j≤2 be the solution of (3.2.6). Set

ũ(x) = −u(x)− 2ip12(x) = −u(x) +
4αξ1(x)ξ2(x)∗

|ξ1(x)|2 + |ξ2(x)|2
.

From the explicit expression of P (x) given in (3.2.11), one has p12(x) = p∗21(x).

Thus, we have

Q̃(x) ≡

(
0 ũ(x)

−ũ∗(x) 0

)
= −Q+ i[σ3, P (x)σ3]. (3.2.13)
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Note that from the above result, the new potential Q̃(x) is also a Schwartz func-

tion. We define the following Bäcklund matrix

L(x, λ) = λσ3 + P (x). (3.2.14)

The differential equation satisfied by P (x) is equivalent to L(x, λ) solving the

familiar gauge transformation equation

Lx(x, λ) = Ũ(x, λ)L(x, λ)− L(x, λ)U(x, λ) , (3.2.15)

where Ũ(x, λ) = −iλσ3 + Q̃(x). Note that this is the time-independent version

of the first equation in (3.2.2). In turn, this ensures that if Ψ(x, λ) is a solution

of (2.1.1), and we define

Ψ̃(x, λ) := L(x, λ)Ψ(x, λ) , (3.2.16)

then Ψ̃(x, λ) solves

Ψ̃x(x, t) = Ũ(x, λ)Ψ̃(x, λ). (3.2.17)

We introduce the following important definition.

Definition 3.4. Let Q(x) be complex-valued and defined on R as above. The map

Lα : Q 7−→ Q̃ = Lα[Q],

is called the Bäcklund transformation (BT) of Q(x) with respect to α. If Q(x) is

defined on R±, the map L±α : Q 7→ Q̃ = L±α [Q] is called the Bäcklund transforma-

tion of Q(x) with respect to α. We will use the same terminology and notation

at the level of the entries ũ(x) and u(x).

We will now study some properties of these maps.

Lemma 3.5 (Deift & Park (2011)).

1. If Q(x) ∈ S(R) then RLαRLα[Q] = Q,

2. If Q(x) ∈ S(R±) then RL±α [Q](x) ∈ S(R∓) and RL∓αRL
±
α [Q] = Q.

where R[Q](x) ≡ −Q(−x).
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Proof: Let Q(x) ∈ S(R) and P (x) be the solution of (3.2.6). Set

Q1(x) = −Q̃(−x) = RLα[Q](x), P1(x) = σ3P (−x)σ3.

We have Q(−x) = −Q̃(−x) + i[σ3, P (−x)σ3] = − (−Q1(x) + i[σ3, P1(x)σ3]) . The

matrix P (x) admits the symmetry P (x) = −σ3P
†(x)σ3.1 A direct calculation

shows that

(P1(x))x = (−Q1(x) + i[σ3, P1(x)σ3])P1(x)− P1(x)Q1(x)

Taking into consideration the fact that P1(0) = P (0) = iα1I, we conclude that

Q̃1(x) = −Q1(x) + i[σ3, P1(x)σ3] = −Q(−x) which means RLα[Q1](x) = Q(x)

and proves the first point of the Lemma. The second point is proven similarly.

Corollary 3.6. The maps Lα : S(R) → S(R) and L±α : S(R±) → S(R±) are

bijections.

Proof: The proof follows from the above result.

Let u be a function defined on R, then we have

(Lα[u]) |R± = L±α
[
u|R±

]
. (3.2.18)

Scattering data transformation. As we have seen, the new potential ũ(x) =

Lα[u](x) is also in the same functional space as the original one, which is the

space of Schwartz functions S(R). Therefore, one can construct Jost solutions,

scattering data associated with ũ(x) as described in the previous chapter. We

refer to every object linked to ũ(x) with a tilde. Recall that if u(x) is a generic

potential, that is its scattering coefficient s22(λ) admits a finite number of simple

zeros in C+. We used Z+, see Section 2.3, to denote the set of all those simple

zeros. In the next lemma, we describe the relationship between the scattering

data associated with u(x) ∈ S(R) and the scattering data associated with ũ(x).

Lemma 3.7. The relation between the scattering matrix S(λ) associated with

u(x) and the scattering matrix S̃(λ) associated with ũ(x) reads

S̃(λ) = (λσ3 + iβ−1I) S(λ) (λσ3 + iβ+1I)−1 . (3.2.19)

1Given a matrix A, A† is defined as the conjugate transpose of A.
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Explicitly, for the scattering coefficients, one gets

s̃21(λ) = −λ− iβ−
λ+ iβ+

s21(λ), λ ∈ R, (3.2.20)

s̃22(λ) =
λ− iβ−
λ− iβ+

s22(λ), λ ∈ C+\ {iβ+} , if β+ > 0. (3.2.21)

If i|α| is not a zero of s22(λ), then ũ is a generic potential if u is generic. Thus,

we have either Z̃+ = Z+ or Z̃+ = Z+ ∪ {i|α|}. In both cases we have

γ̃(λk) = −λk − iβ+

λk + iβ−
γ(λk), λk ∈ Z+; (3.2.22)

and, in the second case, we have

γ̃(i|α|) =


Ψ

(11)
− (0,iα)

Ψ
(21)
+ (0,iα)

, if α > 0,

Ψ
(12)
− (0,−iα)

Ψ
(22)
+ (0,−iα)

, if α < 0.
(3.2.23)

Proof: Relation (3.2.16) in terms of Jost solutions takes the form

Ψ̃±(x, λ) = L(x, λ)Ψ±(x, λ)L−1
±∞, (3.2.24)

where

L±∞(λ) = λσ3 + iβ±1I. (3.2.25)

Using S̃(λ) = Ψ̃−(x, λ)−1Ψ̃+(x, λ) and S(λ) = Ψ−(x, λ)−1Ψ+(x, λ), one gets re-
lation (3.2.19). In turn, we have the relations on the scattering coefficients for
all λ ∈ R. The extension of the relation between s22(λ) and s̃22(λ) to C+\{iβ+}
follows immediately. Assume that s22(i|α|) 6= 0 and u(x) is a generic poten-
tial. This means that for each λk ∈ Z+, one has s22(λ) = λ−λk

λ−λ∗k
g(λ), where

g(λk) 6= 0. Equivalently, we can write relation (3.2.21) as s̃22(λ) = λ−λk
λ−λ∗k

g̃(λ),

where g̃(λ) = λ−iβ−
λ−iβ+ g(λ). Since g̃(λk) 6= 0, we conclude that Z+ ⊆ Z̃+. A direct

calculation shows that s̃22(i|α|) = 0 if and only if β+ = −|α| and β− = |α|. Thus,

Z̃+ = Z+ if β+ = −|α| and β− = −|α| and Z̃+ = Z+ ∪ {i|α|} if β+ = −|α| and
β− = |α|. This means that ũ(x) is also a generic potential. Taking into consider-
ation the analytic continuation of the columns of Jost solutions, one obtains from
relation (3.2.24)

Ψ̃
(1)
− (x, λk) =

L(x, λk)

λk + iβ−
Ψ

(1)
− (x, λk), Ψ̃

(2)
+ (x, λk) = − L(x, λk)

λk − iβ+
Ψ

(2)
+ (x, λk). (3.2.26)
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Thus, we have

Ψ̃
(1)
− (x, λk) = γ̃(λk)Ψ̃

(2)
+ (x, λk)

= − γ̃(λk)

λk − iβ+

L(x, λk)Ψ
(2)
+ (x, λk)

= − γ̃(λk)

γ(λk)(λk − iβ+)
L(x, λk)Ψ

(1)
− (x, λk).

Comparing this with the first equation in (3.2.26) gives relation (3.2.22). At

λ = i|α|, we have

L(x, i|α|)Ψ(1)
− (x, i|α|) = Ψ̃

(1)
− (x, i|α|) = γ̃(i|α|)Ψ̃(2)

+ (x, i|α|)
= γ̃(i|α|)L(x, i|α|)Ψ(2)

+ (x, i|α|).

Evaluating this relation at x = 0, gives(
α+ |α| 0

0 α− |α|

)
Ψ

(1)
− (0, i|α|) = γ̃(i|α|)

(
α+ |α| 0

0 α− |α|

)
Ψ

(2)
+ (0, i|α|).

Relation (3.2.23) follows from the above.

Time evolution The construction of a Bäcklund transformation is useful if it

is compatible with the time evolution of the PDE of interest. Consider Q(x, t) ∈
S(R) subject to Ut − Vx + [U, V ] = 0. For each t ≥ 0, construct P (x, t) as

the solution of (3.2.6), and hence also the corresponding L(x, t, λ) which then

satisfies (3.2.15). In line with Definition 3.4, define then the new potential

Q̃(x, t) = −Q(x, t) + i[σ3, P (x, t)σ3], for each t ≥ 0. Call it the Bäcklund trans-

formation of Q(x, t) with respect to α and write Q̃(x, t) = Lα[Q](x, t). Then, the

following well-known result shows that the new potential also satisfies the NLS

equation if and only if L satisfies the t-part of the gauge transformation equation.

Specifically, we have

Lemma 3.8. The following equivalence holds:

Ũt − Ṽx + [Ũ , Ṽ ] = 0⇐⇒ Lt(x, t, λ) = Ṽ (x, t, λ)L(x, t, λ)− L(x, t, λ)V (x, t, λ)

where Ṽ is given by replacing Q by Q̃ in (2.1.2).
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Proof: Indeed, we start by proving the implication from the left to the right by

assuming that L satisfies the t-part of the gauge transformation equation. Since

L also satisfies (3.2.15), the compatibility Lxt = Ltx yields(
Ũt − Ṽx + [Ũ , Ṽ ]

)
L = L (Ut − Vx + [U, V ]) = 0 .

Hence, Ũt − Ṽx + [Ũ , Ṽ ] = 0. Conversely, assume that Ũt − Ṽx + [Ũ , Ṽ ] = 0. Set

∆ = Lt − Ṽ L+ LV . An explicit calculation gives

∆ = Pt + i
(
Q̃xσ3 + Q̃2σ3

)
P − iP

(
Qxσ3 +Q2σ3

)
, (3.2.27)

which shows that ∆ does not depend on λ. Now,

0 =
(
Ũt − Ṽx + [Ũ , Ṽ ]

)
L = iλ[σ3,∆] + ∆x − Q̃∆ +Q∆.

Since ∆ does not depend on λ, the last equation gives us [σ3,∆] = 0 and ∆x =

Q̃∆ − Q∆. The former equation means that ∆ is diagonal. The latter, as a

consequence, implies that ∆ is constant with respect to x since the term on the

right-hand side is off-diagonal. Thus, we can evaluate the constant value of ∆

using (3.2.27) at x = 0. Since P (0, t, λ) = iα, we find ∆ = 0 as desired.

We have now constructed a Bäcklund matrix L(x, t, λ) that satisfies both

equations in (3.2.2) such that its value at t = 0 = x is given as in (3.1.11). We

will now describe how one can make use of this theory to solve IBVPs for the

focusing NLS equation (1.1.1) on the half-line with Robin BCs (3.1.12).

We start by introducing the following important concept.

Definition 3.9. Let u(x) be an element of S(R+), we denote by uext(x) the Bäck-

lund extension of u(x) to R with respect to α ∈ R, defined by

uext(x) =

u(x), x ≥ 0,

RL+
α [u](x), x < 0.

(3.2.28)

Note that we can also define the Bäcklund extension with respect to α of a

function defined on R− or R+. We denote by Qext(x) the off-diagonal matrix

defined as Q in (3.2.5) with u replaced by its Bäcklund extension.
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Definition 3.10. Let u(x) be an element of S(R), we say that u(x) is α-symmetric

if

u = RLα[u]. (3.2.29)

A similar definition works for the matrix potential Q(x).

We will sometimes refer to this α-symmetric condition as the folding condition.

Assume that a function u(x) ∈ S(R) is α-symmetric. Set

q(x) = u(x), x ≥ 0.

Thus, we have RL+
α [q](x) = RL+

α [u](x) = u(x). The last equality is possible

because u(x) is α-symmetric. Therefore, one has

qext(x) = u(x).

Condition (3.2.29) is the equivalent of (3.2.3). We gathered two interesting prop-

erties of an α-symmetric function in the following result.

Lemma 3.11. Let u(x) be an element of S(R). If u(x) is α-symmetric, then

β− = β+ ≡ β.

Moreover, the scattering coefficient s22(λ) does not vanish at λ = i|α|.

Proof: Assume that u(x) is α-symmetric. This implies Ũ(x, λ) = −U(−x,−λ).

As a result, we have

Ψ̃(−x,−λ) = Ψ(x, λ)M(λ) (3.2.30)

for some matrix M(λ). Using the explicit value of L(x, λ) at x = 0, we get

L(−x,−z)L(x, z) = M(z)M(−z),

where M(z)M(−z) = −(λ2 + α2). In turn, this means that P (x) = σ3P (−x)σ3.

Therefore, we obtain β+ = β−.

Let us assume towards contradiction that s22(i|α|) = 0. Consider the case

β = −|α|. Owing to relation (3.2.30), we have

Ψ̃∓(−x,−λ) = Ψ±(x, λ). (3.2.31)
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Combining this equation with relation (3.2.24), we get

Ψ
(1)
∓ (−x,−λ) =

L(x, λ)

λ+ iβ
Ψ

(1)
± (x, λ), Ψ

(2)
∓ (−x,−λ) = −L(x, λ)

λ− iβ
Ψ

(2)
± (x, λ). (3.2.32)

Since i|α| is a simple zero of s22(λ), we have Ψ
(1)
− (x, i|α|) = γΨ

(2)
+ (x, i|α|) for some

non-zero constant γ. Therefore, one has

Ψ
(2)
+ (0, i|α|) = −iσ2Ψ

(1)
+ (0,−i|α|)∗, from the second equation in (2.2.28) for κ = −1,

= −iσ2

[
L(0,−i|α|)
−2i|α|

Ψ
(1)
− (0, i|α|)

]∗
, from the first equation in (3.2.32),

= −iσ2

[
|α|σ3 − α

2|α|
Ψ

(1)
− (0, i|α|)

]∗
=

(
0 |α|+ α

|α| − α 0

)
γ∗

2|α|
Ψ

(2)
+ (0, i|α|)∗

Thus if α > 0, we should get Ψ
(2)
+ (0, i|α|) = 0, which is a contradiction. We reach

the same conclusion if α < 0. The case γ = |α| is done in a similar way using the

second equation in (3.2.32).

Lemma 3.12. The Bäcklund extension of a function u(x) ∈ S(R) is always α-

symmetric.

Proof: The proof follows from (3.2.18) and Lemma 3.5.

Lemma 3.13. Let u(x) be a continuously differentiable function on R. If u(x)

is α-symmetric, then at x = 0 it satisfies Robin BCs (3.1.12).

Proof: The result follows from the second equation in (3.2.2).

There is an alternative proof to the above result based solely on the first equation

in (3.2.2). This can be found in Deift & Park (2011).

Lemma 3.14. Let u(x) be an element of C2(R+) and ux(0
+)+2αu(0) = 0,1 then

the Bäcklund extension of u belongs to C2(R).

1Note that ux(0+) stands for the right-side derivative with respect to x of u(x) at x = 0.
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Proof: Assume that u is an element of C2(R+) such that ux(0
+) + 2αu(0) = 0.

For convenience, let us write this in a matrix form:

Q(x) ∈ C2(R+), Qx(0
+) + 2αQ(0) = 0.

It follows from the definition that L+
α [Q](x) belongs to C(R+). Thus, we have that

RL+
α [Q](x) is in C(R−). As a consequence, we have that the Bäcklund extension

Qext(x) is C2 on R\{0}. We have the following straightforward calculation

Qext(0−)−Qext(0+) = RL+
α [Q](0)−Q(0)

= Q(0)− i[σ3, P (0)σ3]−Q(0) = Q(0)−Q(0) = 0.

This means that Qext(x) is continuous at x = 0, that is Qext(0+) = Qext(0−). We

also have the following

Qextx (0+)−Qextx (0−) = Q̃x(0−)−Qx(0+)

= −2Qx(0+) + i[σ3, Px(0+)σ3]

= −2Qx(0+) + i[σ3,−2iαQ(0)σ3] = −2
(
Qx(0+) + 2αQ(0)

)
= 0.

This means that the Bäcklund extension is also differentiable at x = 0. Thus, us-

ing similar calculations, one shows that ∂2
xQ

ext(0+) = ∂2
xQ

ext(0−). This concludes

the proof.

Lemma 3.15. Let Q(x) be an element of S(R) and Ψ(x, λ) a 2 × 2 invertible

solution of (2.1.1). Then

S(λ) = lim
x→∞

e−iλσ3xΨ(−x, λ)Ψ−1(x, λ)e−iλσ3x. (3.2.33)

Proof: A proof can be found in (Deift & Park, 2011, Lemma 4.27).

Proposition 3.16. Let u(x) ∈ S(R) be a generic potential and p, s positive in-

tegers. Then u(x) is α-symmetric if and only if the following symmetries hold

s∗22(−λ∗) = s22(λ), λ ∈ C+, s21(−λ) =
λ− iβ
λ+ iβ

s21(λ), λ ∈ R, (3.2.34)
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the zeros of s22(λ) are composed of p pairs (λk,−λ∗k), k = 1, . . . , p and s self-
symmetric zeros λk = iωk ∈ iR+, k = 1, . . . , s; their norming constants satisfy
the symmetry relation

λk 6= ±iβ and γ(λk)γ∗(−λ∗k) =
λk + iβ

λk − iβ
, k = 1, . . . , 2p+ s, β = (−1)2p+sα. (3.2.35)

Proof: Assume that u(x) is α-symmetric. It follows from (3.2.31) that S̃(λ) =

S−1(−λ). Thus in terms of its entries, we obtain s̃22(λ) = s11(−λ) and s̃21(λ) =

−s21(−λ). Combining this with (3.2.20) and (3.2.21), we obtain the symmetries

in (3.2.34). From the first relation (3.2.34), we see that if λk is a zero of s22(λ)

then so is −λ∗k. Taking into consideration the analytic continuation of the Jost

solutions

Ψ̃
(1)
+ (−x,−λ) = Ψ

(1)
− (x, λ), Ψ̃

(2)
− (−x,−λ) = Ψ

(2)
+ (x, λ), λ ∈ C+. (3.2.36)

Recall that if λk 6= ±iβ is a zero of s22(λ), we have Ψ̃
(1)
− (x, λk) = γ̃(λk)Ψ̃

(2)
+ (x, λk)

and Ψ
(1)
− (x, λk) = γ(λk)Ψ

(2)
+ (x, λk), hence

Ψ̃
(1)
− (x, λk) = γ̃(λk)Ψ̃

(2)
+ (x, λk)

= γ̃(λk)Ψ̃
(2)
− (−x,−λk), used the second equation (3.2.36),

= γ̃(λk)
[
−(iσ2)Ψ

(1)
− (−x,−λ∗k)∗

]
, used the first equation in (2.2.28),

= −γ(−λ∗k)∗γ̃(λk)
[
(iσ2)Ψ

(2)
+ (−x,−λ∗k)∗

]
= −γ(−λ∗k)∗γ̃(λk)Ψ

(1)
+ (−x,−λk) used the second equation in (2.2.28),

= −γ(−λ∗k)∗γ̃(λk)Ψ
(1)
− (x, λk), used the first equation (3.2.36).

This means that γ̃(λk) = −1/γ(−λ∗k)∗. Combining this with (3.2.22), we ob-

tain the symmetry in (3.2.35). Let us consider the eigenfunction Ψ0(x, λ) of the

scattering problem (2.1.1) such that Ψ0(0, λ) = 1I. Owing to the α-symmetric

property of the potential u(x), we have

Ψ̃0(−x,−λ) = L(−x,−λ)Ψ0(−x,−λ) = Ψ0(x, λ)M(λ) (3.2.37)

for some matrix M(λ). Evaluating this equation at x = 0 = λ, one obtains

M(0) = iα1I. Hence, using (3.2.37), one gets

S(0) = lim
x→∞

Ψ0(−x, 0)Ψ0(x, 0)−1 = lim
x→∞

iα (P (−x))−1 =
α

β
1I.
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Evaluating relation (3.2.19) at λ = 0 and using S̃(λ) = S(−λ)−1, yields S(0) =

s22(0)1I which means s22(0) = α
β
. Computing lim

λ→0
Imλ>0

s22(λ) from the formula (2.2.36)

and using |s21(λ)| = |s21(−λ)|, one obtains s22(0) =

2p+s∏
k=1

λk
λ∗k

. Combined this with

s22(λ) = s∗22(−λ∗), one deduces s22(0) = (−1)2p+s. Hence, one has β = (−1)2p+sα.

The rest of this proof follows ideas as the one in Deift & Park (2011).

We now summarise the nonlinear mirror image strategy, as proposed in Bik-

baev & Tarasov (1991):
iut + uxx + 2|u|2u = 0 for x ≥ 0, t ≥ 0,

u(x, 0) = u0(x) ∈ S(R+), (initial condition),

ux(0, t) + 2αu(0, t) = 0 , t ≥ 0, α ∈ R\{0}, (Robin BCs).

(3.2.38)

Starting from the initial condition u0(x) ∈ S(R+) satisfying (u0)x + 2αu0 = 0 at

x = 0, construct its Bäcklund transformation ũ0(x) = L+
α [u0](x) and introduce

an extension uext0 (x) to the full-line as in (3.2.28). Then

(i) It follows from Lemmas 3.5 and 3.12 that uext0 (x) satisfies condition (3.2.29)

and Robin boundary condition upon setting β = (−1)2p+sα;

(ii) The extension uext0 (x) provides a valid initial condition to implement the

inverse scattering method on R in order to obtain the solution uext(x, t) for

t ≥ 0. The compatibility of symmetries (3.2.34)-(3.2.35) with the time evo-

lution s22(t, λ) = s22(λ), s21(t, λ) = s21(λ)e2iλ2t and γ(t, λk) = γ(λk)e
2iλ2kt

known from IST, ensures that the condition ũext(x, t) = −uext(−x, t) now

holds for all t ≥ 0. As a consequence, so does the boundary condition

uextx (0, t) + 2αuext(0, t) = 0 for all t ≥ 0. The desired solution of the

IBVP for the NLS equation with Robin BCs is simply obtained by tak-

ing u(x, t) = uext(x, t)|R+ .

3.2.3 Fokas approach to integrable BCs

A detailed discussion of the results we present here can be found in Fokas (2008).

For convenience, we will use similar notations as in Fokas (2008).
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Let u0(x) be an element of S(R+). Assume that we have two smooth functions

g0(t) and g1(t). Set

Q0(x) =

(
0 u0(x)

κu0(x)∗ 0

)
,

Q0(t, λ) = 2λ

(
0 g0(t)

κg0(t)∗ 0

)
− i

(
0 g1(t)

κg1(t)∗ 0

)
σ3 − iκ|g0(t)|2σ3.

The following differential equations have unique solutions

ωx + 2iλ

(
1 0

0 0

)
ω = Q0(x)ω, 0 < x <∞, λ ∈ C+, lim

x→∞
ω(x, λ) = e2; (3.2.39)

φt + 4iλ2

(
1 0

0 0

)
φ = Q0(t, λ)φ, t > 0, λ ∈ C, φ(0, λ) = e2. (3.2.40)

Let us denote by ω(x, λ) and φ(t, λ) the solutions to the equations (3.2.39) and

(3.2.40), respectively. Let T be a finite time, the maps

{u0(x)} 7→ {a(λ), b(λ)}, {g0(t), g1(t)} 7→ {A(λ), B(λ)}, (3.2.41)

defined as (
b(λ)

a(λ)

)
= ω(0, λ),

(
B(λ)

A(λ)

)
= φ(T, λ),

are invertible. We refer to a(λ), b(λ), A(λ) and B(λ) as scattering coefficients.

It is important to mention that to have an effective invertibility of the above

maps one needs additional conditions on the scattering functions. For the first

map, when κ = −1, one needs to assume that the scattering coefficient a(λ) has

N1 simple zeros, denoted λj for j = 1, . . . , N1, in the second quadrant of the

λ-complex plane. Note that a(λ) can also have a finite number of simple zeros

in the first quadrant, but they are not necessary to define effectively the inverse

map. Regarding the second map, introduce the following function

d(λ) = a(λ)A(λ∗)∗ − κb(λ)B(λ∗)∗.

When κ = −1, one needs to assume that d(λ) has N2 simple zeros, that we

denote kj for j = 1, . . . , N2, in the second quadrant of the same complex plane.
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Moreover, we assume that the zeros of a(λ) and d(λ) do not coincide. To connect

with the theory in Chapter 2, we want the initial condition u0(x) and the smooth

functions g0(t), g1(t) to be generic. As in the case of the IST method, when κ = 1,

the scattering coefficient a(λ) cannot admit zeros for the same reason. However,

the situation is a bit different for d(λ), thus we will require that in this case, d(λ)

should not have any zeros.

The scattering coefficients have the following properties

• a(λ) and b(λ) are well-defined and analytic in C+ and continuous and

bounded C+ ∪ R. Moreover,

a(λ) = 1 + O(λ−1), b(λ) = O(λ−1), λ→∞.

• A(λ) and B(λ) are entire functions that are bounded in the interior of the

first and third quadrants. We also have

A(λ) = 1 + O(λ−1), B(λ) = O(λ−1), λ→∞.

At this point, we can draw a comparison between the unified transform and

the IST method that we discussed in detail in Chapter 2. The first map in

(3.2.41) can be seen as the direct map in the case of the IST method on the

full line: we have mapped the initial condition to a set of scattering data. So,

in the ”spectral space”, the information about the initial condition is encoded

in the spectral functions a(λ) and b(λ). However, the second map in (3.2.41) is

completely different when compared to the IST method on the full line. This is

normal because the unified transform is tackling IBVP on the half-line, therefore

one needs to deal with what is happening at the boundary. In this case, A(λ) and

B(λ), carry the information related to the boundary conditions in the spectral

space.

We can use this information to construct the solution to the NLS equation

(1.1.1) on the half-line with suitable initial and boundary conditions. Given

u0(x) in S(R+), suppose that there exist smooth functions g0(t) and g1(t) such

that g0(0) = u0(0) = g1(0). Define the maps in (3.2.41). Then the so-called global

relation

a(λ)B(λ)− b(λ)A(λ) = 0, arg λ ∈ [0, π] (3.2.42)
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is satisfied if and only if

u(x, t) = 2i lim
λ→∞

λ (m(x, t, λ))12

solves the NLS equation (1.1.1) with

u(x, 0) = u0(x), u(0, t) = g0(t), ux(0, t) = g1(t),

where m(x, t, λ) is the 2× 2 solution to the following normalised RH problem

• Analyticity. m(x, t, λ) is analytic in C\ (R ∪ iR ∪ {λ1, . . . , λN1 , k1, . . . , kN2});

• Jump condition. m(x, t, λ) satisfies the jump condition

m−(x, t, λ) = m+(x, t, λ)v(x, t, λ), λ ∈ R ∪ iR,

with

m(x, t, λ) =

m+(x, t, λ), arg λ ∈ (0, π
2
) ∪ (π, 3π

2
),

m−(x, t, λ), arg λ ∈ (π
2
, π) ∪ (3π

2
, 2π),

where the jump matrix v(x, t, λ) is given by v1, . . . , v4 for arg λ = π
2
, π, 3π

2
,

and 2π, respectively, with

v1 =

(
1 0

Γ(λ)e2iθ(λ) 1

)
, v3 =

(
1 κΓ(λ∗)∗e−2iθ(λ)

0 1

)
,

v4 =

(
1 −%(λ)e−2iθ(λ)

κ%(λ)e2iθ(λ) 1− κ|%(λ)|2

)
,

v2 = v3v
−1
4 v1 =

(
1− κ|%(λ)− κΓ(λ)∗|2 (%(λ)− κΓ(λ)∗) e−2iθ(λ)

−κ (%(λ)− κΓ(λ)∗) e2iθ(λ) 1

)
,

where

%(λ) =
b(λ)

a(λ)∗
; λ ∈ R, Γ(λ) =

κB(λ∗)∗

a(λ)d(λ)
, λ ∈ R ∪ iR.

• Residues. m(x, t, λ) has simple poles at zeros of a(λ) and d(λ) and the
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3. INTEGRABLE BOUNDARY CONDITIONS

residues at those poles are given by

Res
λ=λj

m(x, t, λ) = lim
λ→λj

m(x, t, λ)

(
0 0

e2iθ(λj)

a′(λj)b(λj)
0

)
,

Res
λ=λ∗j

m(x, t, λ) = lim
λ→λ∗j

m(x, t, λ)

(
0 κe−2iθ(λj)

(a′(λj)b(λj))
∗

0 0

)
,

Res
λ=kj

m(x, t, λ) = lim
λ→kj

m(x, t, λ)

(
0 0

κB(k∗j )∗e2iθ(kj)

a(kj)d′(kj)
0

)
,

Res
λ=k∗j

m(x, t, λ) = lim
λ→k∗j

m(x, t, λ)

(
0

B(k∗j )e−2iθ(kj)

(a(kj)d′(kj))
∗

0 0

)
;

• Normalisation. m(x, λ) = 1I + O(λ−1) as λ→∞.

Recall that the boundary conditions are encoded in the spectral functions

A(λ) and B(λ), and the initial condition is linked with a(λ) and b(λ). From the

above RH problem, we know that the solution to the NLS equation is expressed

in terms of the spectral data, i.e. a(λ), b(λ), A(λ) and B(λ).

To effectively use the unified transform approach to solving IBVP for the NLS

equation, one needs to use the global relation (3.2.42) to express the unknown

boundary in terms of the given data. A classical example of this situation is the

following: Consider an IBVP for the NLS equation (1.1.1) on the half-line with

Dirichlet BC, i.e. we have u(x, 0) = u0(x) and u(0, t) = g0(t). We cannot write

down the solution because g1(t) (in the spectral space we have, A(λ) and B(λ))

is unknown. However, In this case, we can use the global relation to express A(λ)

and B(λ) in terms of u0(x) and u(0, t). In other words, ux(0, t) = g1(t) in terms

of u0 and u(0, t). This is known as Dirichlet to Neumann map.

Note that it is not always possible to solve the global relation for A(λ) and

B(λ) for any boundary conditions. However, the class of boundary conditions

for which one can solve the global relation for the unknown data is known as

linearizable boundary conditions. Dirichlet, Neumann and Robin boundary con-

ditions are all linearizable. The general equation that generates these so-called

linearizable boundary conditions is given by

V (0, t, ν(λ))N(λ)−N(λ)V (0, t, λ) = 0, (3.2.43)
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3.2 Solution methods

where ν(λ) is a function of λ, N(λ) is an unknown 2 × 2 matrix. In the case

of the NLS equation (1.1.1), one has that ν(λ) = −λ. Thus Fokas criterion

(3.2.43) to obtain boundary conditions that preserve the Livouille integrability

for the NLS equation coincides with the time-independent version of Sklyanin’s

condition (3.1.1).

We have seen that Sklyanin’s condition characterises integrable boundary con-

ditions that appear in the implementation of both the nonlinear mirror image

and unified transform in the case of time-independent BCs. In Biondini, Fokas

& Shepelsky (2014), it was shown that the nonlinear mirror image method that

we described in Subsection 3.2.2 is equivalent to the unified transform presented

above in the case of Robin boundary conditions (3.1.12).

We saw in Section 3.1 that the reflection matrix K(t, λ) (3.1.14) generates in-

teresting and complicated time-dependent BCs (3.1.16) within Sklyianin’s frame-

work. An interesting question that one might ask is: Can we apply the nonlinear

mirror image method and the unified transform to solve IBVPs for the NLS

equation (1.1.1) with BCs (3.1.16) on the half-line?

We have a partial answer to this question. Yes, we can apply the nonlinear

mirror image method to solve IBVPs for the NLS equation with BCs (3.1.16) and

ZBCs on the half-line. We describe this in the next chapter.
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Chapter 4

New implementation of the

nonlinear mirror image method

This chapter contains two sections. In Section 4.1, we implement the nonlinear

mirror image to solve IBVPs for the NLS equation (1.1.1) with integrable time-

dependent BCs (3.1.16) at x = 0 and zero boundary conditions at infinity. The

difficulty arising from having such time-dependent boundary conditions at x = 0

is overcome by changing the viewpoint of the method and fixing the Bäcklund

transformation at infinity. We present two classes of solutions. One is very similar

to the case of Robin boundary conditions, see Subsection 3.2.2, and the second

is a unique feature of the BCs (3.1.16). The content of this section appeared in

Caudrelier, Crampe & Dibaya (2022). In Section 4.2, we present the nonlinear

mirror image method to solve IBVPs for the NLS equation (1.1.1) with Robin

BCs (3.1.12) and non-zero boundary conditions at infinity. This is an ongoing

joint work with Dr Vincent Caudrelier. We have interesting partial results to

discuss, but also some issues left to solve.

Note that in both sections, we restrict our analysis to the focusing NLS equa-

tion (1.1.1), that is κ = −1.
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4.1 Nonlinear mirror image for time-dependent

BCs

4.1.1 Bäcklund matrix normalised at ∞

In Subsection 3.2.2, we constructed the Bäcklund matrix L as the solution to

the first equation in (3.2.2) at time t = 0. Since we wanted to generate Robin

BCs, we took the value of L at x = 0 as equal to the time-independent reflection

matrix K(λ), given in (3.1.11). To ensure that the Bäcklund matrix L will indeed

generate another solution to the NLS equation (1.1.1), it must evolve in time with

respect to the second equation in (3.2.2).

When it comes to time-dependent BCs (3.1.16), the above procedure turns

out to be difficult because the value of a Bäcklund matrix, say B, that generates

the BCs (3.1.16) is no longer time-independent at x = 0; see (3.1.14)-(3.1.15).

Therefore, we need a different strategy to go around this difficulty. The idea is

to construct the Bäcklund matrix B as the product of two Bäcklund matrices

of type (3.2.14) and to fix the boundary value of B at x = ∞, which is time-

independent even in our case, as opposed to the value at x = 0. This discussion

suggests that we need to first review the properties of Bäcklund matrix of type

(3.2.14) in detail in a way that is tailored to our needs.

Let u(x) be a complex-valued function defined on R. The function u(x) can

also be defined on R±. Let Q(x) be given as in Subsection 3.2.2. We will use

similar notations and conventions as in Subsection 3.2.2.

Consider the following 2× 2 ODE

Px = iρ
2

[σ3, P ] + (−Q+ i[σ3, Pσ3])P −QP, ρ ∈ R,

lim
x→+∞

P (x) =
iγ+

2
1I, γ+ ∈ R\{0}.

(4.1.1)

This ODE is the analogue of (3.2.6). In this case, we have included an extra

parameter ρ to take into consideration both parameters that appear in the BCs

(3.1.16), see (4.1.22) below.

Lemma 4.1. Let Q(x) ∈ S(R), the ODE (4.1.1) has a (unique) solution P (x)

with the properties:
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4.1 Nonlinear mirror image for time-dependent BCs

(a) P (x) has a diagonal asymptotic at −∞,

lim
x→−∞

P (x) =
iγ−
2

1I, γ2
− = γ2

+.

(b) [σ3, P (x)σ3] ∈ S(R).

The proof for this result uses similar ideas to the proofs of Lemmas 3.2 and

3.3. However, for the reader’s convenience, we include it in Appendix B.1 and

it contains the details we need concerning the various cases γ− = ±γ+. We

summarise these various cases here: Let Q(x) be as in the above lemma and

S(λ) = (sij(λ))1≤i,j≤2 be the scattering matrix associated to it:

a. If γ+ < 0 and λ+ = −ρ+iγ+
2

is not a simple zero of s22(λ) thenγ− = γ+ , if µ2 = 0 in (B.1.10) ,

γ− = −γ+ , if µ2 6= 0 in (B.1.10) .

The first case µ2 = 0 is rarely mentioned in the literature since it is rather

“useless” from the point of view of the dressing method: it does not create

a new zero for s22(λ), see formula (4.1.8) below. However, it does allow for

the case γ− = γ+ when γ+ < 0 and λ+ = −ρ+iγ+
2

is not a simple zero of

s22(λ), a case that cannot be overlooked in the construction of the mirror

image approach for the time-dependent BCs in Subsection 4.1.2.

b. If γ+ < 0 and λ+ is a simple zero of s22(λ) then γ− = −γ+.

c. If γ+ > 0 and λ+ is not a simple zero of s11(λ) then γ− = γ+.

d. If γ+ > 0 and λ+ is a simple zero of s11(λ) then γ− = −γ+.

Case a. shows a small subtlety related to our approach of fixing P (x) by its

limit at ∞. The freedom in µ2 indicates that P (x) is not uniquely determined

when γ+ < 0 and u(x) is such that λ+ is not a simple zero of s22(λ). In general,

one would also need to specify whether µ2 = 0 or not. As we explained, if

the goal was to create a soliton on a given background solution u(x), one would

naturally choose µ2 6= 0. This freedom will not be a problem for the application of

the Bäcklund transformation to the half-line problem. The additional symmetry
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coming from the folding of u(x) will fix uniquely the structure of s22(λ) relative

to whether γ− = γ+ or γ− = −γ+. With this in mind, we proceed with the fact

that P (x) can be constructed uniquely as in the above proposition (fixing µ2 as

required if we are in case a.).

Transformation of the potential Given a potential Q(x) as above, we get

P (x) as the solution of the differential equation (4.1.1). Set

Q̃(x) ≡

(
0 ũ(x)

−ũ∗(x) 0

)
= −Q(x) + i[σ3, P (x)σ3]. (4.1.2)

It follows from Lemma 4.1 that Q̃(x) is also a Schwartz function. We define the

following Bäcklund matrix

L(x, λ) =
(
λ+

ρ

2

)
σ3 + P (x) , ρ ∈ R . (4.1.3)

The differential equation satisfied by P (x) is equivalent to L(x, λ) solving the

expected differential equation

Lx(x, λ) = Ũ(x, λ)L(x, λ)− L(x, λ)U(x, λ) , (4.1.4)

where Ũ(x, λ) = −iλσ3 + Q̃(x). As, we saw in Subsection 3.2.2, the eigenfunction

defined by

Ψ̃(x, λ) := L(x, λ)Ψ(x, λ) , (4.1.5)

will solve Ψ̃x(x, t) = Ũ(x, λ)Ψ̃(x, λ) if Ψ(x, λ) is a solution of the x-part of Lax

pair.

As in Subsection 3.2.2, we introduce the following definition.

Definition 4.2. The map

Lρ,γ+ : S(R) −→ S(R)

Q 7−→ Q̃ = Lρ,γ+ [Q],

is called the Bäcklund transformation (BT) of Q(x) with respect to (ρ, γ+). We

will use the same terminology and notation at the level of the entries ũ(x) and

u(x).
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4.1 Nonlinear mirror image for time-dependent BCs

The content of Lemma 4.1 can be restricted to the half-line R+ with Q(x) ∈
S(R+). This gives a matrix L(x, λ) as in (4.1.3) and defined on R+. We denote

the corresponding map as L+
ρ,γ+

: Q 7→ Q̃ = L+
ρ,γ+

[Q]. Similarly, we can restrict

to R−, with Q(x) ∈ S(R−) but with the understanding that we could fix P (x) at

−∞, that is P (x)→ iγ
2

1I as x→ −∞, γ ∈ R\{0}. The corresponding Bäcklund

transformation of Q(x) (x < 0) with respect to (ρ, γ) will be denoted by the map

L−ρ,γ : Q 7→ Q̃ = L−ρ,γ[Q].

Lemma 4.3 (Deift & Park (2011)).

1. If Q(x) ∈ S(R) then RL−ρ,γ−RLρ,γ+ [Q] = Q,

2. If Q(x) ∈ S(R±) then

RL±ρ,γ± [Q](x) ∈ S(R∓), RL−−ρ,γ−RL
+
ρ,γ+

[Q] = Q, RL+
−ρ,γ+RL

−
ρ,γ− [Q] = Q,

where RQ(x) ≡ −Q(−x).

Proof: The strategy of this proof is similar to the one given in Lemma 3.5. So, we

highlight the main differences. Assume Q(x) ∈ S(R) and let P (x) be the solution

of (4.1.1). Define

Q2(x) = −Q̃(−x) = RLρ,γ+ [Q](x), P2(x) = σ3P (−x)σ3.

We have Q(−x) = −Q̃(−x) + i[σ3, P (−x)σ3] = − (−Q2(x) + i[σ3, P2(x)σ3]) . The

matrix P (x) admits the symmetry P (x) = −σ3P
†(x)σ3. A direct calculation

shows that

(P2(x))x = −iρ
2

[σ3, P2(x)] + (−Q2(x) + i[σ3, P2(x)σ3])P2(x)− P2(x)Q2(x)

Taking into consideration the fact that lim
x→+∞

P2(x) = lim
x→−∞

P (x) =
iγ−
2

1I, we

conclude that

Q̃2(x) = −Q2(x) + i[σ3, P2(x)σ3] = −Q(−x)

which means RL−ρ,γ− [Q2](x) = Q(x) and proves the first point of the Lemma.

The second point is proven similarly.
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Corollary 4.4. The maps Lρ,γ+ : S(R) → S(R) and L±ρ,γ± : S(R±) → S(R±) are

bijections.

Proof: It follows from Lemma 4.3.

Note that if Q(x) ∈ S(R), then(
Lρ,γ+ [Q](x)

)
|R± = L±ρ,γ± [Q|R± ] (x).

Scattering data transformation Here we review the relation between the

scattering data associated to u(x) ∈ S(R) and the data associated to ũ(x) =

Lρ,γ+ [u](x).

Lemma 4.5. The relation between the scattering matrix S(λ) associated to u(x)

and the scattering matrix S̃(λ) associated to ũ(x) reads

S̃(λ) = ((2λ+ ρ)σ3 + iγ−1I) S(λ) ((2λ+ ρ)σ3 + iγ+1I)−1 . (4.1.6)

Explicitly, for the scattering coefficients, one gets

s̃21(λ) = −2λ+ ρ− iγ−
2λ+ ρ+ iγ+

s21(λ), λ ∈ R, (4.1.7)

s̃22(λ) =
2λ+ ρ− iγ−
2λ+ ρ− iγ+

s22(λ), λ ∈ C+\
{
−ρ+ iγ+

2

}
, if γ+ > 0. (4.1.8)

In the case, γ− = γ+, ũ(x) is a generic potential if u(x) is also generic. Thus we

have Z̃+ = Z+. The norming constants are

γ̃(λk) = −2λk + ρ− iγ+

2λk + ρ+ iγ−
γ(λk), λk ∈ Z+. (4.1.9)

Proof: The proof is similar to the one given in Lemma 3.7.

Remark 4.6. For Robin BCs, the case γ− = −γ+ is not necessary since the

folding condition will set γ− = γ+. We will see that in the case of time-dependent

BCs (3.1.16), the folding condition will not rule out the case γ− = −γ+. It is

this case that gives rise to an interesting class of soliton solutions; see Subsection

4.1.3.
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Proposition 4.7. Let u(x) ∈ S(R) and P (x) be a solution of (4.1.1). The
properties of P (x) imply that we have the following useful explicit representation
of L in terms of u and ũ = Lρ,γ+ [u],

L(x, λ) =
(
λ+

ρ

2

)
σ3 + P (x) , P (x) =

i

2

ε(x)
√
γ2+ − |ũ+ u|2 ũ+ u

−(ũ+ u)∗ ε(x)
√
γ2+ − |ũ+ u|2

 , (4.1.10)

where ε(x) is a sign function completely determined by γ+ and u. By construction,

we have

γ2
+ − |ũ(x) + u(x)|2 ≥ 0 , ∀x ∈ R .

Finally,

L−1(x, λ) = σ3

(
λ+ ρ

2

)
σ3 − P (x)(

λ+ ρ
2

)2
+

γ2+
4

σ3. (4.1.11)

Proof: This result was given e.g. in Caudrelier (2008) but we give here more
details, especially on the function ε(x) which takes value ±1. The starting point
is the construction of P (x) as in Appendix B.1, see (B.1.4), which gives

P (x) =

(
C(x) D(x)

D∗(x) C(x)

)
, C(x) =

iγ+
2

|ξ1(x)|2 − |ξ2(x)|2

|ξ1(x)|2 + |ξ2(x)|2
, D(x) = − iγ+

2

ξ2(x)∗ξ1(x)

|ξ1(x)|2 + |ξ2(x)|2
.

A direct calculation then gives that detP (x) = −γ2+
4

1I so that C(x)2 = −γ2+
4

+

|D(x)|2. Since C∗(x) = −C(x), we deduce |C(x)|2 =
γ2+
4
− |D(x)|2 ≥ 0. Next,

formula (4.1.2) gives D(x) = i
2
(u(x) + ũ(x)). Hence, we have

γ2
+ − |u(x) + ũ(x)|2 ≥ 0 .

Combining everything, we have C(x) = iε(x)
2

√
γ2

+ − |u(x) + ũ(x)|2 , where ε(x)2 =

1 gives the sign in front of the square root. We can determine its value by

comparing the two expressions for C(x), yielding

ε(x)|γ+|

√
1− 1

γ2
+

|u(x) + ũ(x)|2 = γ+
|ξ1(x)|2 − |ξ2(x)|2

|ξ1(x)|2 + |ξ2(x)|2
.

The sign of the expression on the LHS is of course ε(x) by construction. The

sign of the expression on the RHS is the product of the sign of γ+ and that of

|ξ1(x)|2 − |ξ2(x)|2. The latter is completely determined by u(x). Finally, (4.1.11)

is a consequence of the fact that (P (x)σ3)2 = −γ2+
4

1I as is checked directly.
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Time evolution As we mentioned in Section 3.2.2, a Bäcklund transformation
is useful if it is compatible with the time evolution of the PDE of interest. Con-
sider Q(x, t) ∈ S(R) subject to Ut − Vx + [U, V ] = 0. For each t ≥ 0, construct
P (x, t) as the solution of (4.1.1), and hence also the corresponding L(x, t, λ)
which then satisfies (4.1.4). In line with Definition 4.2, define then the new po-

tential Q̃(x, t) = −Q(x, t) + i[σ3, P (x, t)σ3], for each t ≥ 0. Call it the Bäcklund

transformation of Q(x, t) via (ρ, γ+) and write Q̃(x, t) = Lρ,γ+ [Q](x, t). Then, the
following well known result shows that the new potential also satisfies NLS if and
only if L satisfies the t-part of the gauge transformation equation. Specifically,
as proved in Lemma 3.8, the following equivalence holds

Ũt − Ṽx + [Ũ , Ṽ ] = 0⇐⇒ Lt(x, t, λ) = Ṽ (x, t, λ)L(x, t, λ)− L(x, t, λ)V (x, t, λ), (4.1.12)

where Ṽ (x, t, λ) is given by replacing Q(x, t) by Q̃(x, t) in (2.1.4). Now, we have

obtained a Bäcklund matrix L(x, t, λ) that satisfies both equations in (3.2.2) with

the appropriate Ũ and Ṽ . This means that it generates a Bäcklund transformation

ũ(x, t) = Lρ,γ+ [u](x, t) that solves the NLS equation (1.1.1).

We now discuss the connection between L above and L constructed in Subsec-

tion 3.2.2. In the next result, we show that if we require the potential u(x) ∈ S(R)

to satisfy relation (3.2.29) with ũ(x) = Lρ,γ+ [u](x), then the Bäcklund matrix L

will have a diagonal form at x = 0 similar to (3.1.11), upon a correct choice of

the parameter γ±, and the parameter ρ must be zero. This means that it will

also generate Robin BCs.

Lemma 4.8. Let Q(x) ∈ S(R) be a generic potential. Let L(x, λ) be given as in

(4.1.3) where P (x) solves (4.1.1). If Q̃(x) = Lρ,γ+ [Q](x) is such that

Q̃(x) = −Q(−x) (4.1.13)

holds, then

γ− = γ+ ≡ γ , ρ = 0 , and L(0, λ) = λσ3 +
i(−1)Nγ

2
1I .

where N is the number of simple zeros for the scattering coefficient s22(λ).

Proof: If (4.1.13) is satisfied then Ũ(−x,−λ) = −U(x, λ). The Jost solutions are

then related by

Ψ̃±(−x,−λ) = Ψ∓(x, λ). (4.1.14)
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From Lemma 4.1, Eqs. (4.1.5) and (4.1.14), one then deduces

Ψ±(x, λ) = L(x, λ)−1Ψ∓(−x,−λ)

((
λ+

ρ

2

)
σ3 +

iγ±
2

1I

)
, λ ∈ R.

It follows that

Ψ+(x, λ) =L(x, λ)−1L(−x,−λ)−1Ψ+(x, λ)

((
−λ+

ρ

2

)
σ3

+
iγ−
2

1I

)((
λ+

ρ

2

)
σ3 +

iγ+

2
1I

)
,

which we rewrite as

Ψ+(x, λ)−1L(−x,−λ)L(x, λ)Ψ+(x, λ) =

((
−λ+

ρ

2

)
σ3

+
iγ−
2

1I

)((
λ+

ρ

2

)
σ3 +

iγ+
2

1I

)
.

In fact, the latter relation is a consequence of the more general property that

Ψ(x, λ)−1L(−x,−λ)L(x, λ)Ψ(x, λ)

is independent of x for any fundamental solution of Ψx = UΨ, as a direct calcu-
lation shows. In particular, we must have((

−λ+
ρ

2

)
σ3 +

iγ−
2

1I

)((
λ+

ρ

2

)
σ3 +

iγ+
2

1I

)
= Ψ+(0, λ)−1L(0,−λ)L(0, λ)Ψ+(0, λ) .

From (4.1.2), we have that P (0) is diagonal when Q̃(x) + Q(−x) = 0 and from

the properties of P (x) established in Lemma 4.1, we see that P (0) = iν
2

1I with

ν2 = γ2
+. Therefore, we obtain the condition

2iλ(γ− − γ+)σ3 + iρ(γ− + γ+)σ3 − γ−γ+1I =Ψ+(0, λ)−1(2iρνσ3)Ψ+(0, λ)− ν21I .

Taking the trace and using ν2 = γ2
+ we deduce γ+ = γ− ≡ γ. Another conse-

quence of (4.1.14) is that S̃(λ) = S−1(−λ) so in particular s̃21(λ) = −s21(−λ)

and s̃22(λ) = s∗22(−λ). Combined with (4.1.7) and (4.1.8), we obtain s21(−λ) =
2λ+ρ−iγ
2λ+ρ+iγ

s21(λ) and s∗22(−λ∗) = s22(λ). The symmetry for s21(λ) is consistent if

and only if (ρ− iγ)2 = (ρ+ iγ)2. Since γ 6= 0 this implies ρ = 0. For any funda-

mental solution Ψ(x, λ), using the fact that Ũ(−x,−λ) = −U(x, λ), we deduce

Ψ̃(−x,−λ) = Ψ(x, λ)M(λ) for some matrix M(λ). Evaluating the latter equation
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at x = 0 = λ and using (4.1.5), one obtains M(0) = iν
2

. Hence, using (3.2.33),

one gets

S(0) = lim
x→∞

Ψ(−x, 0)Ψ(x, 0)−1 =
γ

ν
.

Evaluating relation (4.1.6) at λ = 0 and using S̃(λ) = S(−λ)−1, one obtains

S(0) = s22(0)1I

which means s22(0) = γ
ν
. Computing lim

λ→0
Imλ>0

s22(λ) from (2.2.36) and using |s21(λ)| =

|s21(−λ)|, one obtains s22(0) =
N∏
k=1

λk
λ∗k

. Combined this with s22(λ) = s∗22(−λ∗),

one gets s22(0) = (−1)N . Hence, one has ν = (−1)Nγ. This completes the proof.

This lemma shows that the Bäcklund matrix L(x, λ) we constructed in Lemma

4.1 has a diagonal value at x = 0 which is equal to K(λ) upon setting γ+ =

γ− ≡ γ to (−1)N2α. Therefore, in the case of Robin BCs (3.1.12), fixing the

boundary value of the Bäcklund matrix at x = 0 or as x→∞ does not make any

difference. One can obtain the characterisation of the folding condition (4.1.13)

as in Proposition 3.16 and then apply the nonlinear mirror image algorithm to

solve (3.2.38).

4.1.2 Bäcklund matrix for time-dependent BCs

In this section, we will use the Bäcklund matrix L constructed in Subsection

4.1.1 as the building block of the Bäcklund matrix, say B, that will allow us to

implement the nonlinear mirror image method to solve IBVPs for the focusing

NLS equation (1.1.1) with the time-dependent BCs (3.1.16). Recall that the time-

dependent BCs (3.1.16) are equivalent to Sklyanin’s equation for the reflection

matrix K(t, λ) given by (3.1.14)-(3.1.15). Owing to the connection established by

(3.2.4), the Bäcklund matrix B must be defined such that under the conditions

(3.2.3) we have

B(0, t, λ) = K(t, λ). (4.1.15)

Fix t = 0. The construction of B follows the following three steps:
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Step 1 Consider a potential Q(x) ∈ S(R). Let L1(x, λ) be a Bäcklund matrix

that produces Q̂(x) from Q(x), that is

Q(x)
L1−→ Q̂(x).

We know that L1(x, λ) must satisfy the following differential equation

∂xL1(x, λ) = Û(x, λ)L1(x, λ)− L1(x, λ)U(x, λ),

where Û(x, λ) = −iλσ3 + Q̂(x).

Step 2 Starting from Q̂(x) constructed in Step 1, we can consider the second

Bäcklund matrix L2(x, λ) yielding −Q̂(−x) from Q̂(x), that is

Q̂(x)
L2−→ −Q̂(−x).

The Bäcklund matrix L2 is solution of

∂xL2(x, λ) = −Û(−x,−λ)L2(x, λ)− L2(x, λ)Û(x, λ) .

In this case, the Bäcklund matrix L2 is obtained explicitly as

L2(x, λ) = Ψ̂(−x,−λ)C2(λ)Ψ̂−1(x, λ)

for some matrix C2(λ) independent of x and where Ψ̂(x, λ) is a solution of

Ψ̂x(x, λ) = Û(x, λ)Ψ̂(x, λ)1.

Step 3 Finally, we consider a third transformation L3 producing Q̃(x) from

−Q̂(−x), we write

−Q̂(−x)
L3−→ Q̃(x).

Again, the Bäcklund matrix is obtained as the solution of

∂xL3(x, λ) = Ũ(x, λ)L3(x, λ) + L3(x, λ)Û(−x,−λ),

where Ũ(x, λ) = −iλσ3 + Q̃(x).

1The exact normalisation would come from fixing a boundary condition but is not relevant

for our argument.
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Note that in each step we considered Bäcklund matrix of the form (4.1.3). We

choose the Bäcklund matrix B to be defined by

B(x, λ) := L3L2L1(x, λ).

It is clear that B produces Q̃ from Q

Q(x)
B−→ Q̃(x),

and it satisfies the appropriate differential equation

Bx(x, λ) = Ũ(x, λ)B(x, λ)−B(x, λ)U(x, λ) . (4.1.16)

We make two other assumptions. First, we assume that L1 ≡ L. This means

that, see Lemma 4.1,

lim
x→±∞

L1(x, λ) =
(
λ+

ρ

2

)
σ3 +

iγ±
2

1I.

The second assumption is

lim
x→∞

B(x, λ) = h(λ)
[
(−2λ+ ρ)σ3 − iγ−

][
(2λ+ ρ)σ3 + iγ+

]
, (4.1.17)

where

h(λ) =
1

(2λ− ρ)2 + γ2
+

.

Lemma 4.9. Let Q(x) ∈ S(R). Then

Q̃(x) = −Q(−x) (4.1.18)

holds if and only if Q̂(x) is odd. Under this condition, we have

B(x, λ) = L−1
1 (−x,−λ)L1(x, λ), (4.1.19)

and

B(0, λ) = K(0, λ)

where K(t, λ) is given by (3.1.14)-(3.1.15).

94



4.1 Nonlinear mirror image for time-dependent BCs

Proof: A direct calculation gives

Ũ(x, λ) + U(−x,−λ) =L−1
1 (−x,−λ)

(
∂x
(
L1(−x,−λ)L3(x, λ)

)
−
[
L1(−x,−λ)L3(x, λ), Û(−x,−λ)

])
L−1

3 (x, λ).

Hence the folding condition Ũ(x, λ) + U(−x,−λ) = 0 is equivalent to

∂x
(
L1(−x,−λ)L3(x, λ)

)
=
[
L1(−x,−λ)L3(x, λ), Û(−x,−λ)

]
,

which in turn is equivalent to

L1(−x,−λ)L3(x, λ) = Ψ̂(−x,−λ)C3(λ)Ψ̂−1(−x,−λ) ,

for some matrix C3(λ). Using this to eliminate L3 and recalling the expression of

L2, we obtain

B(x, λ) = L−1
1 (−x,−λ)Ψ̂(−x,−λ)C3(λ)C2(λ)Ψ̂−1(x, λ)L1(x, λ).

Choosing for definiteness the Jost solution Ψ̂+(x, λ), we obtain that

lim
x→∞

Ψ̂+(−x,−λ)C3(λ)C2(λ)Ψ̂−1
+ (x, λ) = 1I ,

which yields C3(λ)C2(λ) = Ŝ−1(−λ). Summarising and recalling that

Ψ̂+(−x,−λ)Ŝ−1(−λ) = Ψ̂−(−x,−λ),

we have obtained that the folding symmetry is equivalent to

B(x, λ) = L−1
1 (−x,−λ)Ψ̂−(−x,−λ)Ψ̂−1

+ (x, λ)L1(x, λ) .

This suggests that of all the possible potentials Q(x), those that are such that

Q̂(x) = −Q̂(−x)

will fulfil the desired conditions. Indeed, in that special case of (4.1.14), we have

Ψ̂−(−x,−λ)Ψ̂−1
+ (x, λ) = 1I and we have (4.1.19). It remains to check that such a

B can satisfy (4.1.15) to ensure that it is the right candidate with the required

properties. Using Proposition 4.7, which gives

L1(x, λ) =
(
λ+

ρ

2

)
σ3 +

i

2

ε1(x)
√
γ2

+ − |û+ u|2 û+ u

−(û+ u)∗ ε1(x)
√
γ2

+ − |û+ u|2

 ,
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a direct calculation shows, recalling that we work under the assumption û(x) =

−û(−x),

B(0, λ) = L−1
1 (0,−λ)L1(0, λ)

=
1

(2λ− ρ)2 + γ2
+

(
−4λ21I− 4iλH + γ2

+ + ρ2
)
, (4.1.20)

with

H =

(
ε1(0)

√
γ2

+ − |u|2(0) u(0)

u∗(0) −ε1(0)
√
γ2

+ − |u|2(0)

)
. (4.1.21)

This is the desired result, see (3.1.14), if we set ρ = β and γ2
+ = α2.

Recall that condition (4.1.18) is the equivalent of the “α-symmetric” (3.2.29)

property. The above lemma has shown that under the assumption that (4.1.18)

holds, the Bäcklund transformationB is given as the product L−1
1 (−x,−λ)L1(x, λ)

to realise the Bäcklund transformation Q 7→ Q̃ where L1(x, λ) realises the map

Q 7→ Q̂ = L1ρ,γ+ [Q] with Q̂ being an odd function.

In the rest of this section, we fix

ρ = β , γ+ = εα , ε = ±1 . (4.1.22)

The compatibility of this whole construction with the desired time evolution must

be established. Since B(x, λ) is constructed entirely on L1(x, λ) (composed as in

(4.1.19)), this step is ensured by the equivalence (4.1.12) and the setup explained

before it. Specifically

Proposition 4.10. For each t ≥ 0, let u(x, t) ∈ S(R) be a given solution of

the focusing NLS equation (1.1.1), and L1(x, t, λ) be as in (4.1.3) with P (x, t)

constructed as in Lemma 4.1. Suppose û(x, t) = L1ρ,γ+ [u](x, t) is an odd function

in x. Then, with ρ = β, γ+ = εα,

B(0, t, λ) = K(t, λ) ,

and

Kt(t, λ) = V (0, t,−λ)K(t, λ)−K(t, λ)V (0, t, λ) .

In other words, we have that u(x, t) satisfies BCs (3.1.16) at x = 0.
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Proof: The equivalence (4.1.12) applied to B(x, t, λ), combined with the fact

that Ṽ (x, t, λ) = V (x, t,−λ) (since û(x, t) = −û(−x, t) is equivalent to ũ(x, t) =

−u(−x, t)), yields

Bt(0, t, λ) = V (0, t,−λ)B(0, t, λ)−B(0, t, λ)V (0, t, λ) .

It remains to show that B(0, t, λ) = K(t, λ). This is exactly the same calcu-

lation leading to (4.1.20)-(4.1.21) but with the time dependence included. For

completeness, here are the main steps. A direct calculation yields

B(x, t, λ) =h(λ)
[
− 4λ21I− 4λσ3 (P (x, t) + P (−x, t))

+ 2ρσ3 (P (x, t)− P (−x, t))− 4σ3P (x, t)σ3P (−x, t) + ρ2
]
, (4.1.23)

so

B(0, t, λ) = h(λ)
[
−4λ2 − 8λσ3P (0, t)− 4(σ3P (0, t))2 + ρ2

]
.

For each t ≥ 0, P (x, t) has the properties given in Proposition 4.7 so, recalling

that û(x, t) is an odd function in x (so û(0, t) = 0), we get

σ3P (0, t) =
i

2

(
ε(0, t)

√
γ2

+ − |u|2(0, t) u(0, t)

u∗(0, t) −ε(0, t)
√
γ2

+ − |u|2(0, t)

)
.

This also gives (σ3P (0, t))2 = −γ2+
4

1I, completing the proof.

We have constructed a Bäcklund matrix B that generates the BCs (3.1.16)

at the origin. As we have done previously, our next task is to use this machinery

to solve IBVPs for again the focusing NLS equation (1.1.1) with BCs (3.1.16) on

the half-line. This brings up the concept of Bäcklund extension; see Definition

3.9. Let u(x) be an element of S(R+). We define the Bäcklund extension of u(x)

by

uext(x) =

u(x) , x ≥ 0 ,

−ũ(−x) , x < 0 .
(4.1.24)

By construction, this extension satisfies the equivalent of ”α-symmetric” condi-

tion. The only technical point is its smoothness at x = 0. As in the Robin case,

the BCs ensure continuity of the Bäcklund extension, its first derivative and its

second derivative automatically. In the present case we have the additional re-

sults that all higher odd order derivative are also continuous. The continuity of
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the even ones could be ensured in principle by imposing higher order boundary

conditions in the spirit of Appendix D in Bikbaev & Tarasov (1991). In fact, the

recent work Zhang (2021) gives an account on such higher boundary conditions

which are compatible with NLS. We do not elaborate further on this here and

simply give the following partial result on this issue.

Lemma 4.11 (Smoothness of the Bäcklund extension). Let Q(x) be an element

of S(R+). The Bäcklund extension of Q(x) is an element of C2(R)1 and its odd

derivatives to all orders are continuous.

Proof: By definition, Qext(x) is an element of S (R\{0}). We only need to check

its smoothness properties at x = 0. For convenience, let us write (4.1.23) for short

as B(x, λ) = h(λ) [−4λ2 + λB1(x) +B2(x)], where B1(x) = −4(σ3P (x)+σ3P (−x))

and B2(x) = 2ρ(σ3P (x)−σ3P (−x))−4σ3P (x)σ3P (−x)−ρ2. From (4.1.16) it follows

that

Q̃(x) = Q+
i

4
[B1, σ3], B1x = i[B2, σ3] + Q̃B1 −B1Q, B2x = Q̃B2 −B2Q.

A direct calculation shows that Qext(0+)−Qext(0−) = 2Q(0)+2i[σ3, σ3P (0)] = 0,

which means that Qext(x) is continuous at x = 0. Using the explicit expression of

B1(x) above, we deduce that ∂2n+1B1(0) = 0, for all positive integer n. Therefore,

all ∂2n+1Q
ext(x) exist and are continuous at x = 0. Finally,

Qextxx (0+)−Qextxx (0−) =Qxx(0) + Q̃xx(0)

=2Qxx(0) +
i

2
[B1xx(0), σ3]

=2

(
0 uxx + (α2 + β2)u

−u∗xx − (α2 + β2)u∗ 0

)

+ 2

(
0 −2ε(0)uxΛ

2ε(0)u∗xΛ 0

)
=0,

where Λ =
√
α2 − |u|2(0), on account of the fact that we assume that u satisfies

(3.1.17).

These smoothness properties are compatible with time evolution by construction.

1A matrix function belongs to C2(R) if all its entries are also elements of C2(R).
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Characterisation of the folding condition In this sub-section, we will char-

acterise the symmetry properties of the scattering data of a potential Q(x) satisfy-

ing the condition we have just discussed, that is Q̂ = L1ρ,γ+ [Q] is an odd function.

Unlike the Robin case, this condition does not impose γ+ = γ− and we have to

consider the two cases γ+ = ±γ−. We proceed in several steps, concentrating on

the continuous data first.

Proposition 4.12. Let Q(x) ∈ S(R) be such that Q̂ = L1ρ,γ+ [Q] is an odd

function. Then, its scattering data satisfies

S−1(−λ) = B(λ)S(λ)B(−λ) , B(λ) =

(
2λ+β+iγ−
−2λ+β+iγ+

0

0 2λ+β−iγ−
−2λ+β−iγ+

)
. (4.1.25)

Explicitly, if γ+ = γ− = εα, we get

s22(−λ) = s∗22(λ∗) , s21(−λ) = −2λ+ β − iεα
2λ+ β + iεα

2λ− β − iεα
2λ− β + iεα

s21(λ) . (4.1.26)

If γ+ = −γ− = εα, we get

s22(−λ) =
2λ+ β − iεα
2λ+ β + iεα

2λ− β + iεα

2λ− β − iεα
s∗22(λ∗) , s21(−λ) = −s21(λ) . (4.1.27)

Proof: We have the following relation between Jost solutionsΨ̂±(x, λ) = L1(x, λ)Ψ±(x, λ)L−1
1±

(λ),

L1±(λ) = lim
x→±∞

L1(x, λ) =
(
λ+

ρ

2

)
σ3 +

iγ±
2

1I.
(4.1.28)

It implies in particular that Ŝ(λ) = L1−(λ)S(λ)L−1
1+

(λ). Since Û(−x,−λ) =

−Û(x, λ), we also have

Ψ̂±(−x,−λ) = Ψ̂∓(x, λ) . (4.1.29)

This implies in particular that Ŝ−1(−λ) = Ŝ(λ). Combining these two results, and

recalling that ρ = β and γ+ = εα, yields (4.1.25) with B(λ) = L−1
1+

(−λ)L1−(λ)

as desired.

These symmetries have consequences for the possible discrete data. We gather

the result in the following Proposition.

Proposition 4.13. Let Q(x) ∈ S(R) be a generic potential such that Q̂ =

L1ρ,γ+ [Q] is an odd function.
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1. If γ+ = γ− = εα:

• The zeros of s22(λ) are composed of p pairs (λk,−λ∗k), k = 1, . . . , p
and s self-symmetric zeros Biondini & Bui (2012) λk = iσk ∈ iR+,
k = 1, . . . , s. The number s of self-symmetric zeros is necessarily
even. Explicitly,

s22(λ) =

p∏
j=1

λ− λj
λ− λ∗j

λ+ λ∗j
λ+ λj

s∏
k=1

λ− iσk
λ+ iσk

e−
1

2πi

∫
R

log(1+|r(z)|2)
z−λ dz. (4.1.30)

• The related norming constants satisfy the symmetry relation

γ∗(−λ∗k)γ(λk) = −2λk − β + iεα

2λk − β − iεα
2λk + β + iεα

2λk + β − iεα
, (4.1.31)

k = 1, . . . , 2p+ s.

2. If γ+ = −γ− = εα:

• The zeros of s22(λ) include −β+iα
2

when ε = 1 or β+iα
2

when ε = −1,

and p pairs (λk,−λ∗k), k = 1, . . . , p. There are no self-symmetric zeros.

Explicitly,

s22(λ) =


2λ+ β − iα
2λ+ β + iα

p∏
j=1

λ− λj
λ− λ∗j

λ+ λ∗j

λ+ λj
e
− 1

2πi

∫
R

log(1+|r(z)|2)
z−λ dz

, ε = 1,

2λ− β − iα
2λ− β + iα

p∏
j=1

λ− λj
λ− λ∗j

λ+ λ∗j

λ+ λj
e
− 1

2πi

∫
R

log(1+|r(z)|2)
z−λ dz

, ε = −1,

(4.1.32)

• The related norming constants satisfy the symmetry relation

γ∗(−λ∗k)γ(λk) = −1 , k = 1, . . . , p . (4.1.33)

Proof: We first derive the properties of the zeros of s22(λ) in each case and will

provide proof for the relation of the norming constants at the end as it can be

done in one go for both cases. In the case γ+ = γ−, relation (4.1.26) implies that

if λk is a zero of s22(λ) then so is −λ∗k and the first claim follows. Note that

none of these zeros can be equal to (β+ iα)/2 in view of the summary given after

Lemma 4.1. Using (4.1.28) and (4.1.29), we obtain

Ψ+(−x,−λ) = B(x, λ)Ψ−(x, λ)B−1(λ) (4.1.34)
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where B(x, λ) is given as in (4.1.19) and B(λ) as in (4.1.25). This implies

Ψ−(0, 0)S(0) = B(0, 0)Ψ−(0, 0)B−1(0) that is, since B(0, 0) = 1I and B(0) = 1I

when γ+ = γ−, S(0) = 1I. Thus s22(0) = 1. But from (4.1.30), we have

s22(0) = (−1)2p+s so s must be even.

In the case γ+ = −γ−, relation (4.1.27) is rephrased by introducing

A(λ) =


2λ+ β + iα

2λ+ β − iα
s22(λ) , ε = 1 ,

2λ− β + iα

2λ− β − iα
s22(λ) , ε = −1 ,

in terms of which it reads A(−λ) = A∗(λ∗). This is the same relation as dealt

with before so we deduce that the zeros of s22(λ) come in pairs or in singlets of

purely imaginary numbers and (4.1.32) follows. We use again (4.1.34) to deduce

Ψ−(0, 0)S(0) = B(0, 0)Ψ−(0, 0)B−1(0)

but this time, since γ+ = −γ− = εα, B−1(0) =

(
β+iεα
β−iεα 0

0 β−iεα
β+iεα

)
. Therefore,

s22(0) = β−iεα
β+iεα

. Comparing with (4.1.32) which gives s22(0) = (−1)2p+s β−iεα
β+iεα

, we

deduce again that s is even. In fact s = 0 because (4.1.33) (whose proof is next)

would implies |γ(iσk)|2 = −1, a contradiction.

We turn to the proof of the relation on the norming constants for which we

don’t need to distinguish the cases. Eq. (4.1.34) gives the following relations

between the column vectors of Ψ±

Ψ
(1)
+ (−x,−λ) = B(x, λ)Ψ

(1)
− (x, λ)

−2λ+ ρ+ iγ+

2λ+ ρ+ iγ−
, (4.1.35)

Ψ
(2)
+ (−x,−λ) = B(x, λ)Ψ

(2)
− (x, λ)

−2λ+ ρ− iγ+

2λ+ ρ− iγ−
. (4.1.36)

Evaluating (4.1.35) at λ = λk and recalling that Ψ
(1)
− (x, λk) = γ(λk)Ψ

(2)
+ (x, λk)

we get

Ψ
(1)
+ (−x,−λk) = γ(λk)B(x, λk)Ψ

(2)
+ (x, λk)

−2λk + ρ+ iγ+

2λk + ρ+ iγ−
.

Now, evaluating (4.1.36) at λ = −λk and using it to eliminate Ψ
(2)
+ (x, λk) yields

Ψ
(1)
+ (−x,−λk) = γ(λk)B(x, λk)B(−x,−λk)︸ ︷︷ ︸

1I

Ψ
(2)
− (−x,−λk)

2λk + ρ− iγ+
−2λk + ρ− iγ−

−2λk + ρ+ iγ+
2λk + ρ+ iγ−

.
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Recalling the NLS symmetry (2.1.7) (when κ = −1) which gives

Ψ
(1)
− (x, λ) = iσ2Ψ

(2)
− (x, λ∗)∗, Ψ

(2)
+ (x, λ) = −iσ2Ψ

(1)
+ (x, λ∗)∗, λ ∈ C+.

Note that σ−1 = −iσ2; see (2.1.6). These symmetries together with

Ψ
(1)∗
− (−x,−λ∗k) = γ∗(−λ∗k)Ψ

(2)∗
+ (−x,−λ∗k)

give

Ψ
(2)∗
+ (−x,−λ∗k) = −γ(λk)γ

∗(−λ∗k)
2λk + ρ− iγ+

−2λk + ρ− iγ−
−2λk + ρ+ iγ+

2λk + ρ+ iγ−
Ψ

(2)∗
+ (−x,−λ∗k) .

The result follows by spelling out the two cases γ+ = γ− or γ+ = −γ− and

substituting ρ = β and γ+ = εα.

The main novelty is the first fraction in (4.1.32) which shows the presence of a

single, not purely imaginary, zero. In the absence of any other zero, that is n = 0,

and assuming the pure soliton case that is the reflection coefficient r(λ) = 0, we

will see in the next section that this term gives rise to an emitted or absorbed

soliton at the boundary.

Remark 4.14. In expression (4.1.32), we could ask what happens for instance if

one zero λk is equal to (−β + iα)/2. A short calculation shows that s22(λ) would

then contain the factor
(

2λ+β−iα
2λ+β+iα

)2
2λ−β−iα
2λ−β+iα

. In that case, (−β + iα)/2 would be

a double zero which takes us beyond our working hypothesis of generic potentials.

We now discuss the converse of Propositions 4.12 and 4.13. The short argu-

ment in Bikbaev & Tarasov (1991) uses the known one-to-one correspondence

in IST between a generic potential of the type we consider in this work and its

scattering data. We can invoke the same result here and conclude that a potential

u is such that û is odd (equivalently ũ(x) = −u(−x)) if and only if its scattering

data satisfies the symmetries of Propositions 4.12 and 4.13. In the case γ+ = γ−,

we also present in Appendix B.2 a direct (but long) proof along the lines of that

given in Deift & Park (2011) which uses Riemann-Hilbert problems techniques.

It illustrates the main differences between the present case and the Robin case

detailed in Deift & Park (2011). In particular, the use of a two-step construction

mimicking the construction of B(x, λ) from L1(x, λ) is detailed.
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Proposition 4.15. Let Q(x) ∈ S(R) be such that its scattering data satisfies the

symmetries of Propositions 4.12 and 4.13. Then ũ(x) = −u(−x) holds.

The result that the symmetries on the scattering data are compatible with

the time evolution also holds by the same reasoning that B is the composition of

two Bäcklund transformations constructed on L1.

4.1.3 Soliton solutions

Solutions and discussions in this section follow closely the ones in Caudrelier,

Crampe & Dibaya (2022).

Absorption/emission of one soliton by/from the boundary. The sim-

plest new solution that our results predict is the case where one soliton can

disappear or appear at the boundary. To our knowledge, this is the first time

that such an exact solution for such a phenomenon is computed. The following

one-soliton solution, defined for x, t ≥ 0,

u(x, t) = αeiφ ei(α
2−β2)t+iεβx sech(α(x− x0 − 2εβt) , ε = ±1 , (4.1.37)

satisfies the focusing NLS equation1 and the boundary condition (3.1.16). The

parameters φ and x0 are the arbitrary phase and position shifts. We note that the

velocity ±β and amplitude α are controlled by the boundary parameters. The

sign ε in (4.1.37) corresponds to the sign in (4.1.22). For x0 > 0 and ε = −1

in (4.1.37), the soliton disappears from the half-line x > 0 after a time t ∼ x0
2β

.

For x0 < 0 and ε = 1 in (4.1.37), the soliton appears on the half-line x > 0

after a time t ∼ − x0
2β

. As mentioned above, this solution is generated by the

first fraction in (4.1.32). This is a new class of solutions allowed by the time-

dependent boundary conditions (3.1.16). It breaks the intuition developed so far

by the nonlinear mirror image method in that such a single soliton being emitted

or absorbed has no mirror counterpart. The bulk density is defined by

N(t) =

∫ ∞
0

|u(x, t)|2 dx . (4.1.38)

1We encountered this on the full-line in Chapter 2 with generic parameters.
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For the solution (4.1.37), a direct calculation yields

N(t) = α + α tanh(α(x0 + 2εβt)) . (4.1.39)

It is clear that this is a time-dependent quantity. Its time behaviour is consistent

with the picture of the one soliton being emitted or absorbed by the boundary.

By this we mean, that the value of N(t) as t → ±∞ interpolates between 2α

(soliton present on the half-line) and 0 (soliton absent on the half-line).

Note that our formula (3.1.20) tells us that the combination1

I1 = I1 −K1 =

∫ ∞
0

|u(x, t)|2dx±
√
α2 − |u(0, t)|2 (4.1.40)

will be conserved in time. Noticing that the ± sign in front of the square root is

equal to2 −sign(x0 + 2εβt) we have ±
√
α2 − |u(0, t)|2 = −α tanh(α(x0 + 2εβt)),

hence the result.

Multisoliton solutions

A special case of the results presented above contains those in Grüner (2020)

that were obtained by dressing. Specifically, the formulas for the position and

phase shifts presented in Remark 2 of Grüner (2020) can be obtained from the

formulas in Proposition 4.13, in the case γ+ = γ−, with some standard algebraic

manipulations. Their explicit form in general is not crucial for our purposes. We

will see an example below. In structure, these are the same as the ones originally

given in Biondini & Hwang (2009) for the Robin case. The essential difference

accounting for the presence of different boundary conditions is the appearance of

the function 2λ+β−iεα
2λ+β+iεα

2λ−β−iεα
2λ−β+iεα

which replaces the function 2λ−iα
2λ+iα

characteristic of

the Robin case. However, the new case γ+ = −γ− has not been seen before by

the method of Grüner (2020).

Two solitons reflected. In the case γ+ = γ−, we can apply the results

presented above to compute a two-soliton solution on the half-line being reflected

by the boundary at x = 0. It suffices to use the four-soliton solution of NLS on

1Here and in the next formula, we have dropped irrelevant constants related to the normal-

isation of the matrix K.
2This can be found by checking the boundary condition (3.1.17) for solution (4.1.37).
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the full line, recalled in Subsection 2.2.4, with the constraints given in Proposition

4.13: the discrete data satisfies λ3 = −λ∗1, λ4 = −λ∗2 and the associated norming

constants are linked by, for k = 1, 2:

c(λk+2)∗ =
−1

c(λk)s′22(λk)s′22(−λ∗k)∗
2λk − β + iεα

2λk − β − iεα
2λk + β + iεα

2λk + β − iεα
. (4.1.41)

Fig. 4.1 shows two plots of two-soliton solutions for different choices of the

parameters and both are reflected by the boundary. Of course, such pictures will

Figure 4.1: 2D-contour plots of |u(x, t)| corresponding to two solitons reflected

with time-dependent BCs (3.1.16) for α = 2 and β = 1. The same zeros λ1 = 1+2i

and λ2 = (1 + 5i)/2 are used for both plots and with ε = 1 in (4.1.41). The

norming constants are c(λ1) = −4e−20, c(λ2) = 5e5 on the left and c(λ1) =

−4e4, c(λ2) = 5e−10 on the right.

look very familiar to the reader accustomed to solitons reflections in the Robin

case. The point is to offer a visual appreciation of the integrability of the time-

dependent case. Between the two plots, the only parameter that we changed is

the position shift ξ1, ξ2 of each soliton. This is the analogue with a boundary

of the well-known property that solitons undergo elastic collisions whose order is

irrelevant to the final result of position and phase shifts. The plots in Fig. 4.1

are to be compared with the graphical representation of the (quantum) reflection

equation in Fig. 4.2 which is well known in quantum integrable systems. The

main reason to mention this is that, in the multicomponent case, soliton colli-

sions among themselves and with a boundary are related to the set-theoretical

Yang-Baxter and reflection equations and provide examples of Yang-Baxter and
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reflection maps, see Caudrelier & Zhang (2014) and references therein. The ex-

tension of such ideas to the present time-dependent BCs is an interesting open

problem.

=

12

1

2

Figure 4.2: Line representation of the (quantum) reflection equation depicting

a two-particle process being factorised into two possible successions of particle-

particle interactions and particle-boundary interactions. The consistency of the

two possibilities which must yield the same physical scattering matrix requires

the reflection equation.

One soliton reflected and one absorbed. The previous result with two-

soliton reflected on the half-line is similar to the ones obtained for the Robin

boundary condition and corresponds to the case γ+ = γ−. We now turn to

the new possibility offered by the time-dependent case that is γ+ = −γ−. A

completely new type of solution is then possible, as mentioned previously: one

soliton may be absorbed/emitted by the boundary. To illustrate this type of

solution, in this paragraph, we focus on the case when one soliton is absorbed

and one is reflected. This is obtained from a three-soliton solution of NLS on the

full line, recalled in Subsection 2.2.4, with s22(λ) given by (4.1.32) with p = 1 (and

r(λ) = 0). This means that two of the three zeros/norming constants are required

to obey the symmetry relations of Proposition 4.13 part 2. The third zero, say λ0

is the special zero involving the boundary parameters α and β: λ0 = −β/2+ iα/2

or λ0 = β/2 + iα/2. The sign of the real part determines whether the soliton

travels towards or away from the boundary. The norming constants associated
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Figure 4.3: 2D-contour plots of |u(x, t)| corresponding to two solitons, one re-

flected and one absorbed with time-dependent BCs (3.1.16) for α = 4, β = 2.

The same zeros λ0 = 1+2i and λ1 = (1+5i)/2 are used for both plots. The norm-

ing constants are c(λ0) = 1, c(λ1) = 5e15 on the left and c(λ0) = e20, c(λ1) = 5

on the right.

Figure 4.4: 2D-contour plots of |u(x, t)| corresponding to two solitons, one re-

flected and one absorbed with time-dependent BCs (3.1.16) for α = 6, β = 1.

The same zeros λ0 = (1 + 6i)/2 and λ1 = (2 + 5i)/2 are used for both

plots. The norming constants are c(λ0) = 4e16, c(λ1) = 5 on the left and

c(λ0) = 4e−8, c(λ1) = 5e15 on the right.
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with the reflected soliton are linked by (see (4.1.33))

c(λ2) =
−1

c(λ1)∗ s′22(λ1)∗ s′22(−λ∗1)
, (4.1.42)

whereas the norming constant c(λ0) is free.

Fig. 4.3 and Fig. 4.4 show such plots for different choices of parameters, to

mimic the situation in Fig. 4.1, but with the essential difference that one of the

two incoming solitons is absorbed by the boundary, while the other is reflected

as before.

Fig. 4.5 shows the line representation of the equations underpinning the

phenomenon of Fig. 4.3 and Fig. 4.4, in the same way as Fig. 4.2 does for Fig. 4.1.

Somewhat intriguingly, if we interpret the absorption (or emission) of the single

soliton as a type of transmission into the boundary (or to the mirror half-line),

these equations correspond to (quantum) reflection-transmission equations, see

e.g. Caudrelier (2005); Caudrelier et al. (2005) and references therein. This

puzzling observation deserves further investigation beyond the scope of this work.

=
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1

2

=

12

1

2

Figure 4.5: Line representation of two-soliton solutions when one is absorbed.

One soliton reflected and one emitted. A solution with one soliton re-

flected and one emitted can simply be obtained from the previous solution by

changing the sign of the velocity of the absorbed soliton in the previous para-

graph, that is, the sign of the real part of λ0. Graphs for such solutions are

easily obtained by reversing the time flow, t→ −t, in the figures of the previous

paragraph.
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4.2 Nonlinear mirror image method for Robin

BCs with NZBCs

In this section, we discuss partial results obtained when applying the nonlinear

mirror image method to solve IBVPs for the focusing NLS equation with Robin

BCs (3.1.12) with non-zero boundary conditions at the infinity.

For some a, b ∈ R such that a < b, we define

P+ = [a,+∞), P− = (−∞, b].

Consider a function u(x) such that u(x) → u± as x → ±∞ with |u±| = q0 6= 0.

Recall that the uniformization variable z is defined by

z(λ) = λ+ k(λ),

where k(λ) is doubly-branched function given as

k2 = λ2 + q2
0.

Consider the following ODEPx =
(
Q+ i[σ3, P ]

)
P − PQ,

P0 ≡ P (0) = iασ3, α ∈ R\[−q0, q0].
(4.2.1)

Lemma 4.16. If u(x)−u± belongs to L1(P±) then the ODE (4.2.1) has a unique

solution.

The proof for this result is similar to the one of Lemma 3.2. It leads to the

following unique solution

P (x) =
iα

|ξ1(x)|2 + |ξ2(x)|2

(
|ξ1(x)|2 − |ξ2(x)|2 2ξ1(x)ξ∗2(x)

2ξ∗1(x)ξ2(x) −(|ξ1(x)|2 − |ξ2(x)|2)

)
,

where (ξ1(x), ξ2(x))T = Ψ0(x, z(λ0)), with Ψ0(x, z) a vector-valued solution of

(2.3.3) such that Ψ0(0, z) = e1.

Lemma 4.17. If u(x)−u± belongs to L1(P±) and P (x) is the solution of (4.2.1),

then P (x) has the following asymtotics

P (x)→ P± = i
(
r±1I−Q±

)
σ3, as x→ ±∞,

such that r2
± = α2 − q2

0.
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The proof of this result is given in Appendix B.3.

As we saw in Subsections 3.2.2 and 4.1.1, the matrix function defined by

L(x, z) = λ(z) + P (x), (4.2.2)

solves

Lx(x, z) = Ũ(x, z)L(x, z)− L(x, z)U(x, z) , (4.2.3)

where Ũ(x, z) = −iλ(z)σ3 + Q̃(x) with Q̃(x) given by(
0 ũ(x)

−ũ∗(x) 0

)
≡ Q̃(x) := Q(x) + i[σ3, P (x)]. (4.2.4)

We also know that in this case, the eigenfunction Ψ̃(x, z) defined as

Ψ̃(x, z) := L(x, z)Ψ(x, z) , (4.2.5)

will solve Ψ̃x(x, t) = Ũ(x, z)Ψ̃(x, z) if Ψ(x, z) is a solution of (2.3.3).

The Bäcklund matrix L induces a BT on the potentials. We have the following

definition.

Definition 4.18. Let Q(x) be complex-valued and defined on R as above. The

map

Lα : Q 7−→ Q̃ = Lα[Q],

is called the Bäcklund transformation of Q(x) with respect to α. If Q(x) is defined

on R±, the map L±α : Q 7→ Q̃ = L±α [Q] is called the Bäcklund transformation of

Q(x) with respect to α. We will use the same terminology and notation at the

level of the entries ũ(x) and u(x).

From the above lemma, it follows that the new potential ũ(x) has the following

asymptotic behaviour

ũ(x)→ −u±, as x→ ±∞.

This means that the Bäcklund transformation ũ(x) belongs to the same functional

space as the initial potential u(x); we have

Ũ±(z) = σ3U±(z)σ3.
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Recall that U± = −iλ(z)σ3 +Q±. Since these matrices have common eigenvalues,

the appropriate domain to study solutions of Ψ̃ = ŨΨ̃ is the same two-sheeted

Riemann surface defined in Section 2.3. Note that the new eigenvector matrices

are simply given by

Ẽ±(z) = σ3E±(z)σ3,

where E± = 1I − i
z
σ3Q±. Finally, the Jost solutions Ψ̃±(x, z) based on ũ(x) are

uniquely defined by

lim
x→±∞

Ψ̃(x, z)eik(z)σ3x = σ3E±(z)σ3, z ∈ Σ.

One can prove a similar result to Lemma 3.5. This will allow us to state that

the map defined in the above definition is a bijection.

Set

L±(z) := lim
x→±∞

L(x, z) = λ(z) + P±.

Recall that if u(x) is a generic potential, the scattering coefficient s22(λ) associ-

ated to it has a finite number of simple zeros in D+. We denote the set of these

simple zeros by K+. We will now discuss the relationship between the scattering

data associated to u(x) and the ones associated with the new potential ũ(x).

Lemma 4.19. Consider u(x) and P (x) as in Lemma 4.16. Let S(z) and S̃(z),

z ∈ Σ, be the scattering matrices associated to u(x) and its Bäcklund transfor-

mation ũ(x). Then

S̃(z) = M−1
− (z)S(z)M+(z), z ∈ Σ, (4.2.6)

where

M±(z) = E−1
± (z)L−1

± (z)σ3E±(z) = 2z
(
z2 + 2ir±zσ3 + q2

0

)−1
σ3

Elementwise, we have

s̃22(z) =
g+(z∗)∗

g−(z∗)∗
s22(z), s̃21(z) = −g+(z∗)∗

g−(z)
s21(z), z ∈ Σ, (4.2.7)

where

g±(z) = (z − τ±)
(
z + q2

0/τ
∗
±
)
,
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with τ± = −i(α + r±). In addition, if τ± and −q2
0/τ

∗
± are not zeros of s22, then

ũ(x) is a generic potential if u(x) is generic. Thus, we have K̃+ = K+. The

norming constants associated to zeros of s̃22(z) are given by

γ̃(ξn) = −g+(ξ∗n)∗

g−(ξn)
γ(ξn), (4.2.8)

where ξn = zn and ξn+N = −q2
0/z

∗
n for n = 1, . . . , N .

Proof: The proof is similar to the one given in Lemma 3.7.

For reference, note that

M±(z) =

(
2z

g±(z)
0

0 2z
−g±(z∗)∗

)
, g±(z) ≡ (z − τ±)

(
z + q20/τ

∗
±
)

= z2 + 2ir±z + q20 .

A Bäcklund transformation is useful if it is compatible with the time evolution

of the PDE of interest, which is the NLS equation in our case. We can repeat

similar arguments as in Lemma 3.8 to show that the BT ũ(x, t) will indeed satisfy

the NLS equation if and only if the Bäcklund matrix L evolves in time with respect

to

Lt = Ṽ (x, t, z)L(x, t, z)− L(x, t, z)V (x, t, z),

where Ṽ is defined accordingly.

To make use of the above construction, we need to introduce the notion of

“α-symmetry” or folding condition that will enable us to produce Robin BCs

from the Bäcklund matrix L constructed above. We have:

Definition 4.20 (α-symmetric property). Let u(x) be as in Lemma 4.16. We

say that u(x) is α-symmetric if

ũ(x) = u(−x). (4.2.9)

Lemma 4.21. Let u(x) be as in Lemma 4.16. If u(x) is α-symmetric then

r = r− = r+ and u− = −u+.

Proof: Assume that u(x) is α-symmetric. This implies Ũ(x, z) = −σ3U(−x,−z)σ3.

As a result, we have

Ψ̃(−x,−z) = Ψ(x, z)M(z) (4.2.10)
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for some matrix M(z). We have

L(−x,−z)L(x, z) = M(z)M(−z),

whereM(z)M(−z) = −(λ(z)2+α2). In turn, this means that P (x) = σ3P (−x)σ3.

Therefore,

P− = σ3P+σ3 ⇐⇒ r− = r+ and u− = −u+.

Recall that τ± = −i(α+r±) and g±(z) = (z − τ±)
(
z + u2

0/τ
∗
±
)
. As a consequence

of the above lemma, we set

τ ≡ τ− = τ+, g(z) ≡ g+(z) = g−(z).

For reference, note that

g(−z∗n)∗ = g(zn), g(−zn) = g(z∗n)∗.

Lemma 4.22. If Q(x) is α-symmetric and continuously differentiable, then Q(x)

satisfies Robin boundary condition

Qx(0, t) + 2αQ(0, t) = 0.

Proof: Note that Q̃(x) = −Q(x) + i[σ3, P (x)σ3]. It follows that Q̃(0) = −Q(0).

Q̃x(0)−Qx(0) = −Qx(0) + i[σ3, Px(0)σ3]−Qx(0)

= −2Qx(0) + i[σ3, Px(0)σ3]

= −2Qx(0) + i[σ3,−2iαQ(0)σ3]

= −2 (Qx(0) + 2αQ(0))

From Q̃(x) = −Q(−x), it follows that Q̃x(0) = Qx(0). Therefore, one has

Qx(0) + 2αQ(0) = 0.

Theorem 4.23. Let u(x) be a generic potential such that u(x) − u± ∈ L1(P±).

If u(x) is α-symmetric, then we have

s22(−z∗)∗ = s22(z), s22(u2
0/z) = u+

u−
s22(z), z ∈ D+ ∪ Σ,

s21(−z) = g(z∗)∗

g(z)
s21(z), z ∈ Σ.
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The simple zeros of s22(λ) are composed of p quartets (zj,−z∗j ,−q2
0/z

∗
j , q

2
0/zj),

j = 1, . . . , p and s pairs of self-symmetric zeros iωj, q
2
0/iωj ∈ iR, j = 1, . . . , s;

their norming constants satisfy the symmetry relation

γ(zj)γ
∗(−z∗j ) =

g(zj)

g(z∗j )
∗ , γ(zj)γ(u2

0/zj) = −
u∗−
u+

g(zj)

g(z∗j )
∗ , (4.2.11)

where ξj 6= τ, ξj+2(2p+s) 6= − q20
τ∗

for j = 1, . . . , 2p+ s.

For reference, we have

C(−z∗j ) = −
[
g(zj)

g(z∗j )∗
1

C(zj)

1

(s′22(zj))2

]∗
, C(u20/zj) =

(
q40
z2j

1

u2+

)
g(zj)

g(z∗j )∗
1

C(zj)

1

(s′22(zj))2
.

The proof of this result is provided in Appendix B.4.

What we have achieved. As we can see from the content of this section, we

are able to do the following:

• To construct a Bäcklund matrix L(x, z) defined in (4.2.2) where P (x) is the

solution of (4.2.1).

• Under the folding condition (4.2.9):

– To prove in Lemma 4.21 that the diagonal entries of P± coincide, that

is r− = r+, and the off-diagonal entries are the same up to a sign, that

is u− = −u+. If u± = 0, i.e. we are in the case of ZBCs at infinity,

the result in Lemma 4.21 coincides with the one in Lemma 4.8.

– To prove in Lemma 4.22 that we actually obtain Robin BCs (3.1.12).

• To characterise the folding condition in terms of the scattering data; see

Theorem 4.23.

Despite this achievement, we were unable to construct solutions on the half-line

for the focusing NLS equation (1.1.1) that satisfy Robin BCs at x = 0 and non-

zero boundary conditions at infinity.
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What we can do next. We would like to investigate closely the role that the

theta condition (2.3.42) can play in this construction.

Finally, we would like to mention that, in Tarasov (1991), the nonlinear mirror

image for the defocusing NLS equation with Robin BCs and non-zero boundary

at infinity was implemented. They found very similar symmetries to the ones

we obtained in Theorem 4.23. However, there is almost no explication of the

derivation of their symmetries or any explanation of the theta condition in their

case.

115



4. NEW IMPLEMENTATION OF THE NONLINEAR MIRROR
IMAGE METHOD

116



Appendix A

Miscellaneous

In this appendix, we will introduce the general notions related to functional spaces

we used in this work. The content of this appendix can be found in Brezis (2011)

and Walter (1974).

A complex or real vector space X is called a normed space if to each of its

elements, we can associate a positive real number, denoted ‖x‖X and called the

norm of x, such that the following properties hold:

(a) ‖x‖X ≥ 0 for all x in X.

(b) ‖x‖X = 0 implies x = 0 if x belongs to X.

(c) ‖αx‖X = |α|‖x‖X if x belongs to X and α a real or complex number.

(d) ‖x+ y‖X ≤ ‖x‖X + ‖y‖X for all x, y in X.

We say that ‖ · ‖X defines a seminorm on X if all the above properties hold but

the second.

A complex vector space X is called an inner product space if to each pair of

its elements x and y, we can associate a complex number, denoted (x, y)X and

called scalar or inner product of x and y, such that the following properties hold:

(a) (x, x)X ≥ 0 for all x in X.

(b) (x, x)X = 0 only if x = 0.

(c) (αx, y)X = α(x, y)X if x, y belong to X and α a complex number.
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(d) (x+ y, z)X = (x, z)X + (y, z)X if x, y, and z belong to X.

(e) (y, x)X = (y, x)∗X .

Every inner product on a vector space X defines a norm on X, given by

‖x‖X =
√

(x, x)X .

A.1 Lp spaces

Let p be an element of [1,∞) and d a positive integer. Consider Ω ⊆ Rd. We

denote by Lp(Ω) the space of functions f : Ω ⊆ Rd → R such that∫
Ω

|f |pdx <∞.1

The following defines a norm on Lp(Ω)

‖f‖Lp(Ω) =

(∫
Ω

|f |p
)1/p

.

We also define

‖f‖L∞(Ω) = ess sup|f |,

where the essential supremum of a measurable function g is defined as the minimal

c ∈ [−∞,∞] such that g(x) ≤ c a.e., that is,

ess sup g = inf{c ∈ [−∞,∞] : |{x : g(x) > c}| = 0}.

A complex-valued function belongs to Lp(Ω) if its real and imaginary parts belong

to Lp(Ω), for 1 ≤ p ≤ ∞. Elements of L1(Ω) are called absolutely integrable

functions on Ω.

Theorem A.1. Consider an integer d ≥ 1. Let Ω be an open subset of Rd.

Suppose that f : Ω × Rd → C and that f(x, ·) : Rd → C is absolutely integrable

for each x ∈ Ω. Let F (x) =
∫
Rd f(x, y)dy.

1In addition to this condition, these functions must measurable. The same remark applies

to functions in L∞.
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(a) Suppose that there exists g ∈ L1(Rd) such that |f(x, y)| ≤ g(y) for all x, y.

If lim
x→x0

f(x, y) = f(x0, y) for every y, then

lim
x→x0

F (x) = F (x0).

In particular, if f(·, y) is continuous for each y, then F is continuous.

(b) Suppose that ∂xjf(x, y) exists for all x, y and that there exists g ∈ L1(Rd)

such that |∂xjf(x, y)| ≤ g(y) for all x. Then ∂xjF (x) exists and is given by

∂xjF (x) =

∫
Rd
∂xjf(x, y)dy

Definition A.2. Let (X, (·, ·)) be an inner product space, and let L : X → X be

a linear operator.

• The adjoint of L is the unique linear operator L∗ : X → X that satisfies

(Lf, g) = (f, L∗g) , for all f, g ∈ X.

• The operator L is said to be self-adjoint if it is its own adjoint.

Consider Ω ⊆ R. Let f : Ω → C2 be a function such that f = (f1, f2)T . We

say that f ∈ L2(Ω,C2) if

‖f‖2
2 :=

∫
Ω

(
|f1|2 + |f2|2

)
dx <∞.

It is known that this space is a complex vector space. The following relation

(f, g)2 :=

∫
Ω

(f1(x)g∗1(x) + f2(x)g∗2(x)) dx,

defines an inner product space structure on L2(Ω,C2).

Lemma A.3. If κ = 1, then the linear operator L defined in (2.1.9) is self-adjoint

on L2(R,C2).

Proof: A calculation yields the following

(Lf, g)2 = i

∫
R

((f1x − uf2)g∗1 + (u∗f1 − f2x)g
∗
2) dx.

The proof follows from simple integration by parts.
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A.2 Schwartz space

Let j and d be positive integers. We denote by Cj(Rd) the space of complex-

valued functions that are j-times continuously differentiable on Rd. We denote

by C∞(Rd) the space of complex-valued functions that are infinitely differentiable

on Rd, and defined as

C∞(Rd) =
∞⋂
j=0

Cj(Rd).

If α = (α1, . . . , αd) ∈ Nd and x = (x1, . . . , xd), we define

∂αx = ∂α1
x1
∂α2
x2
· · · ∂αdxd , xα = xα1

1 x
α2
2 · · ·x

αd
d .

Define

S(Rd) =

{
f ∈ C∞(Rd) | sup

x∈Rd
|xα∂βxf(x)| <∞, ∀α, β ∈ Nd

}
.

S(Rd) is called Schwartz space and its element are called Schwartz functions.

They can be understood as functions whose derivatives (including the function

itself) decay faster than any power of |x| as |x| → ∞. For this reason, elements of

S(Rd) are sometimes referred to as rapidly decaying functions. For all α, β ∈ Nd,

the function ‖ · ‖α,β : S(Rd)→ R+ such that

‖f‖α,β := sup
x∈Rd
|xα∂βxf(x)|.

makes S(Rd) a semi-normed space. The topology on S(Rd) is generated by this

family of semi-norms.

It is straightforward to deduce from the definition of S(Rd) to deduce that its

elements will satisfy the following: for all positive integer N and α ∈ Nd there

exists a constant C > such that

|∂αx f(x)| ≤ C
(
1 + |x|

)−N
, x ∈ Rd.

This property can be used to prove that S(Rd) ⊂ Lp(Rd), for all 1 ≤ p <∞. One

can even prove that S(Rd) is in fact a dense subspace of Lp(Rd), for 1 ≤ p <∞.
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Appendix B

Proofs of Chapter 4

B.1 Proof of Lemma 4.1

It is convenient to work with P1(x) = P (x)σ3 which satisfies

P1x =

[
iρ

2
σ3 −Q+ iσ3P1, P1

]
. (B.1.1)

We seek a solution of the form

P1(x) = ϕ1(x)

(
iγ+

2
σ3

)
ϕ1(x)−1

for some invertible matrix ϕ1(x). Substituting the ansatz into (B.1.1) yields

[
ϕ1x(x)ϕ1(x)−1, ϕ1(x)

(
iγ+

2
σ3

)
ϕ1(x)−1

]
=

[
iρ

2
σ3 −Q+

iσ3ϕ1(x)

(
iγ+

2
σ3

)
ϕ1(x)−1, ϕ1(x)

(
iγ+

2
σ3

)
ϕ1(x)−1

]
,

which means that

ϕ1x(x)ϕ1(x)−1 −
(
iρ

2
σ3 −Q+ iσ3ϕ1(x)

(
iγ+

2
σ3

)
ϕ1(x)−1

)
= M(x)

with [
M(x), ϕ1(x)

(
iγ+

2
σ3

)
ϕ1(x)−1

]
= 0.

In turn, this implies that ϕ1(x)−1M(x)ϕ1(x) is a diagonal matrix, which we denote

by D(x). The matrix ϕ1 is not uniquely defined and it is always possible to

consider the transformation ϕ1 7→ ϕ1h where h is an invertible diagonal matrix

121



B. PROOFS OF CHAPTER 4

without changing P1. We use this freedom to choose h such that hx = −Dh and

set ϕ = ϕ1h, with the conclusion that

P1(x) = ϕ(x)

(
iγ+

2
σ3

)
ϕ(x)−1

where ϕ is a nonsingular (or fundamental) solution of

ϕx(x) =

(
iρ

2
σ3 −Q

)
ϕ+ iσ3ϕ(x)

(
iγ+

2
σ3

)
. (B.1.2)

Writing ϕ = (ϕ1, ϕ2) where ϕ1,2 are the column vectors of ϕ, we see that

ϕ1x(x) = (−iλ+σ3 −Q)ϕ1 , ϕ2x(x) = (−iλ∗+σ3 −Q)ϕ2 , λ+ = −ρ+ iγ+

2
.

We impose the standard conditions

lim
x→+∞

ϕ1(x)eiλ+x = e1 , lim
x→+∞

ϕ2(x)e−iλ
∗
+x = e2 . (B.1.3)

Equation (B.1.2) is unchanged under the transformation ϕ(x) 7→ (iσ2)ϕ∗(x)(iσ2)−1

where σ2 is the second Pauli matrix. Hence, in general there exists a nonsingular

matrix C such that ϕ(x) = (iσ2)ϕ∗(x)(iσ2)−1C. Taking into account (B.1.3), we

find C = 1I, so ϕ2(x) = −iσ2ϕ
∗
1(x), and hence the matrix ϕ(x) can be written as

ϕ(x) =

(
ξ1(x) −ξ2(x)∗

ξ2(x) ξ1(x)∗

)
.

Thus, P1(x) takes the following form

P1(x) =
iγ+

2(|ξ1(x)|2 + |ξ2(x)|2)

(
|ξ1(x)|2 − |ξ2(x)|2 2ξ2(x)∗ξ1(x)

2ξ1(x)∗ξ2(x) −
(
|ξ1(x)|2 − |ξ2(x)|2

)) . (B.1.4)

Therefore, it is enough to solve for ϕ1 which we recall is a solution of the linear

problem

ϕ1x = (−iλ+σ3 −Q)ϕ1 , (B.1.5)

with the condition lim
x→+∞

ϕ1(x)eiλ+x = e1. The rest of the construction of P1(x)

and its properties hinges on the following important standard result, see e.g.

(Coddington & Levinson, 1955, pp. 104-105). Equation (B.1.5) admits two fun-

damental solutions χ±(x) satisfying

lim
x→±∞

χ±(x)eiλ+xσ3 = 1I .
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Note that they are not necessarily unique. Also, we point out that their rela-

tionship with the columns of Jost solutions is key in the following. So we need

to distinguish the cases γ+ > 0 and γ+ < 0. In Lemma 2.4, we proved that for

λ ∈ C±,

eiλxΨ
(1)
∓ (x, λ)→ e1, x→ ∓∞, e−iλxΨ(2)

± (x, λ)→ e2, x→ ±∞, (B.1.6)

exponentially with rate Im(λ) and −Im(λ), respectively.

Using similar arguments as in Proposition 2.2, Lemma 2.4, and Remark 2.8,

we can prove that

e−iλxΨ
(2)
+ (x, λ) =

(
0

s22(λ)

)
+ O(1), x→ −∞ and λ ∈ C+. (B.1.7)

eiλxΨ
(1)
+ (x, λ) =

(
s11(λ)

0

)
+ O(1), x→ −∞ and λ ∈ C−, (B.1.8)

e−iλxΨ
(2)
− (x, λ) =

(
0

s11(λ)

)
+ O(1), x→ +∞ and λ ∈ C−, (B.1.9)

Case γ+ < 0: In this case λ+ ∈ C+ and it could be a zero of s22(λ) or not.

Suppose first that s22(λ+) 6= 0. Then we know that Ψ
(1)
− (x, λ+) and Ψ

(2)
+ (x, λ+)

are linearly independent. From (2.2.22) and the asymptotic behaviour in (2.2.26),

(B.1.6), and (B.1.7), we see that we can take

X(x) = σ3

(
Ψ

(1)
− (x, λ+)/s22(λ+),Ψ

(2)
+ (x, λ+)

)
as a fundamental matrix for (B.1.5). Hence, we have

ϕ1(x) = X(x)

(
µ1

µ2

)
(B.1.10)

for some constants µ1 and µ2. Condition (B.1.3) yields µ1 = 1 but µ2 is free. As

x→ −∞, we have ϕ1(x) ∼

(
e−iλ+x/s22(λ+)

−µ2s22(λ+)eiλ+x

)
. There are two sub-cases, either

µ2 6= 0 or µ2 = 0. Assume that µ2 6= 0. Then, ξ1(x)
ξ2(x)
→ 0 as x→ −∞ which leads

to

lim
x→−∞

P1(x) =
−iγ+

2
σ3 .
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If µ2 = 0, then

lim
x→−∞

P1(x) =
iγ+

2
σ3 .

Suppose now that s22(λ+) = 0. Then Ψ
(1)
− (x, λ+) and Ψ

(2)
+ (x, λ+) are no longer

linearly independent. Our strategy is to use the fundamental solution χ−(x) to

exhibit a convenient fundamental matrix that we will use to determine ϕ1(x).

On the one hand, we know that ϕ1(x) = χ+(x)

(
1

c

)
for some constant c and

that χ+(x) = χ−(x)C for some constant invertible matrix C. Hence ϕ1(x) =

χ−(x)

(
α

β

)
for some constants α, β. Finally, we also have that σ3Ψ

(1)
− (x, λ+) =

χ−(x)

(
1

d

)
for some constant d. Hence, let us define Y (x) =

(
σ3Ψ

(1)
− (x, λ+), χ−2 (x)

)
where χ−2 (x) is the second column vector of χ−(x). This is also a fundamental

matrix since Y (x) = χ−(x)

(
1 0

d 1

)
and it satisfies

lim
x→−∞

Y (x)eiλ+xσ3 = 1I .

Putting everything together, we have ϕ1(x) = Y (x)

(
α

δ

)
where δ = β − αd is

some constant. We now show that δ 6= 0 necessarily. Since s22(λ+) = 0, we know

that Ψ
(1)
− (x, λ+) = γΨ

(2)
+ (x, λ+) so that Y (x) = (γσ3Ψ

(2)
+ (x, λ+), χ−2 (x)). Finally,

we also have χ−2 (x) = χ+(x)

(
µ

ν

)
for some constants µ, ν. Hence,

lim
x→+∞

ϕ1(x)eiλ+x = lim
x→+∞

(
γσ3Ψ

(2)
+ (x, λ+), χ+(x)

(
µ

ν

))(
α

δ

)
eiλ+x

= lim
x→+∞

(
γσ3Ψ

(2)
+ (x, λ+)e−iλ+x, χ+(x)eiλ+xσ3

(
µ

νe2iλ+x

))(
αe2iλ+x

δ

)

=

(
0 µ

−γ 0

)(
0

δ

)
. (B.1.11)

Comparing with (B.1.3), we obtain µδ = 1 thus showing that δ 6= 0. Therefore,

going back to ϕ1(x) = Y (x)

(
α

δ

)
with Y (x) = (σ3Ψ

(1)
− (x, λ+), χ−2 (x)), we obtain
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that ϕ1(x) ∼

(
αe−iλ+x

δeiλ+x

)
as x→ −∞, with δ 6= 0. Hence, ξ1(x)

ξ2(x)
→ 0 as x→ −∞

which leads to

lim
x→−∞

P1(x) = −iγ+

2
σ3 .

Case γ+ > 0: In that case λ+ ∈ C− and it could be a zero of s11(λ) or not, or

equivalently, λ∗+ could be a zero of s22(λ) or not. We follow a similar strategy as

for the previous case but the change of sign in γ+ yields a major difference: here

ϕ1(x) = σ3Ψ
(1)
+ (x, λ+). Indeed, in general we have

ϕ1(x) = χ+(x)

(
ν1

ν2

)
, Ψ

(1)
+ (x, λ+) = σ3χ

+(x)

(
τ1

τ2

)
,

for some constants ν1, ν2, τ1 and τ2. Imposing (B.1.3) and the asymptotic of

Ψ
(1)
+ (x, λ) as in (B.1.6) requires ν1 = 1 = τ1 and ν2 = 0 = τ2. Suppose first that

s11(λ+) 6= 0, then we can use (B.1.8) and deduce that

lim
x→−∞

P1(x) =
iγ+

2
σ3 .

Suppose now that s11(λ+) = 0 so that Ψ
(1)
+ (x, λ+) and Ψ

(2)
− (x, λ+) are no longer

linearly independent and Ψ
(1)
+ (x, λ+) = γ

′
Ψ

(2)
− (x, λ+) for some nonzero constant

γ
′
. We can use the asymptotic behaviour of Ψ

(2)
− (x, λ) given in (B.1.6) to conclude

that

lim
x→−∞

P1(x) = −iγ+

2
σ3 .

This concludes the proof of part (a). For part (b), we can adapt the proof of

(Terng & Uhlenbeck, 1998, Theorem 6.6) whose main points are as follows. From

the construction of ϕ1(x), in all cases, we have either ξ1(x)/ξ2(x) or ξ2(x)/ξ1(x)

tends to 0 exponentially as e∓|γ+|x as x→ ±∞. Hence, from (B.1.4), we see that

[σ3, P1(x)] decays exponentially as x→ ±∞. We can see that in the equation

P1x =
iρ

2
[σ3, P1] + i[σ3, P1]P1 − [Q,P1], (B.1.12)

the first two terms on the right-hand side decay exponentially while the third

term has the same decay as Q which is assumed to be in S(R). Thus P1x has the

same decay as Q. Hence, by repeated differentiation of (B.1.1), we obtain that

P1x has the same decay properties as Q at ±∞ and therefore belongs to S(R).
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B.2 Proof of Proposition 4.15

We consider the case γ− = γ+ and denote this common value by γ instead of εα

for convenience in this proof. Similarly we keep ρ instead of β. Let us assume

that symmetries (4.1.26) and (4.1.31) are satisfied. We will adapt the strategy

proposed in Deift & Park (2011) to show that ũ(x) = −u(−x) holds. Consider

m(x, λ) = (m1(x, λ),m2(x, λ)) the solution to a normalized RHP with jump ma-

trix given by

v(x, λ) :=

(
1 + |r(λ)|2 −r∗(λ)e−2iλx

−r(λ)e2iλx 1

)
.

Consider two functions q1(x) and E1(x) defined as
q1(x) = σ3

(
m1

(
x, λ̂
)
,m2

(
x, λ̂∗

))
,

E1(x) = q1(x)σ3

(
iγ
2

)
q1(x)−1σ3,

λ̂ = −ρ+iγ
2
.

Set

m̂(x, λ) ≡

Z(x, λ)m(x, λ)z(λ)−1, λ ∈ C+\
{
−ρ+i|γ|

2

}
,

Z(x, λ)m(x, λ)z(λ)−1, λ ∈ C−\
{
−ρ−i|γ|

2

}
,

where Z(x, λ) =
(
λ+ ρ

2

)
σ3 +E1(x) and z(λ) =

(
λ+ ρ

2

)
σ3 + iγ

2
1I. Consider other

two functions q2(x) and E2(x)q2(x) =
(
m̂1

(
x,−λ̂

)
, m̂2

(
x,−λ̂∗

))
,

E2(x) = σ3q2(x)
(
iγ
2

)
σ3q2(x)−1.

For convenience, we set

a(λ) = s22(λ).

Let us define the following matrix function

m̃(x, λ) ≡

(iσ2)W (x, λ)m̂(x, λ)w(λ)−1a(λ)σ3(iσ2)−1, λ ∈ C+\
{
ρ+i|γ|

2

}
,

(iσ2)W (x, λ)m̂(x, λ)w(λ)−1a∗(λ∗)−σ3(iσ2)−1, λ ∈ C−\
{
ρ−i|γ|

2

}
,

(B.2.1)

where W (x, λ) =
(
−λ+ ρ

2

)
σ3 − E2(x) and w(λ) =

(
−λ+ ρ

2

)
σ3 − iγ

2
1I.

We claim:

m(x, λ) = m̃∗(−x,−λ∗). (B.2.2)
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We have the following straightforward computation

(m̃−)−1 m̃+(x, λ) = (iσ2)a∗(λ)σ3z(λ)w(λ)v(x, λ) (z(λ)w(λ))−1 a(λ)σ3 (iσ2)−1

= (iσ2)

 (1 + |r(λ)|2)|a(λ)|2 − 2λ+ρ+iγ
2λ−ρ+iγ

2λ+ρ−iγ
2λ−ρ−iγ

a∗(λ)
a(λ)

r∗(λ)e−2iλx

− 2λ−ρ+iγ
2λ+ρ+iγ

2λ−ρ−iγ
2λ+ρ−iγ

a(λ)
a∗(λ) r(λ)e2iλx 1

|a(λ)|2

 (iσ2)−1

=

(
1 + |r(−λ)|2 −e2iλxr(−λ)

−e−2iλxr∗(−λ) 1

)
.

Set m(x, λ) ≡ m̃∗(−x,−λ∗). Then,

(m−)−1m+(x, λ) =
(
(m̃−)−1 m̃+(−x,−λ)

)∗
= v(x, λ).

When a(λ) admits a finite number of simple zeros λk ∈ C+,

Res
λ=λk

m(x, λ) = lim
λ→λk

(λ− λk)m(x, λ)

= lim
λ→λk

m(x, λ)

(
0 0

c(λk)e
2iλkx 0

)
.

Equivalently,

lim
λ→λk

a(λ)m1(x, λ) = γ(λk)e
2iλkxµ2(x, λk).

For m(x, λ), we have(
Res
λ=−λ∗k

m(−x, λ)

)∗
= lim

λ→−λ∗k
[(λ− (−λ∗k))m(−x, λ)]∗

= lim
λ→λk

−(λ− λk)m∗(−x,−λ∗)

= − lim
λ→λk

[
(iσ2)(WZ)(x, λ)(λ− λk)×

m(x, λ)a(λ)σ3 (z(λ)w(λ))−1 (iσ2)−1

]
= −(iσ2)(WZ)(x, λk)

[
0

µ2(x, λk)

a′(λk)

]
((zw)(λk))

−1 (iσ2)−1

= 4(iσ2)(WZ)(x, λk)×[
1

2λk + ρ− iγ
1

2λk − ρ− iγ
1

a′(λk)
m2(x, λk) 0

]
, (B.2.3)

Thus at −λ∗k, the second column of m(x, λ) is analytic, and the first column has

a simple pole. Similarly, at −λk the first column of m(x, λ) is analytic, and the
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second column has a simple pole. On the other hand, we have

lim
λ→−λ∗k

[
m(−x, λ)

(
0 0

e−2iλ∗kxc(−λ∗k) 0

)]∗
= lim

λ→λk

[
m∗(−x,−λ∗)×(

0 0

e2iλkxc∗(−λ∗k) 0

)]

= − lim
λ→λk

[
(iσ2)(WZ)(x, λ)m(x, λ)×

a(λ)σ3 [(zw)(λ)]−1×(
e2iλkxc∗(−λ∗k) 0

0 0

)]

= 4(iσ2)(WZ)(x, λk)

[
γ(λk)

2λk + ρ+ iγ
×

c∗(−λ∗k)
2λk − ρ+ iγ

m2(x, λk) 0

]
, (B.2.4)

Note that c(λk) stands for the discrete data that appears in the normalised RHP

for m(x, λ). Compare (B.2.3) and (B.2.4), using (4.1.31) and the first equation

in (4.1.26), one gets

c(−λ∗k) =

[
2λk − ρ+ iγ

2λk − ρ− iγ
2λk + ρ+ iγ

2λk + ρ− iγ
1

γ(λk)

1

a′(λk)

]∗
= − γ(−λ∗k)

(a′(λk))∗
=
γ(−λ∗k)
a′(−λ∗k)

= c(−λ∗k).

Hence, it follows that c(λk) = c(λk). Let us discuss what happens at λ =

λ̂, λ̂∗,−λ̂,−λ̂∗:

m̂(x, λ) = Z(x, λ)m(x, λ)z(λ)−1

= q1(x)σ3

( [
(σ3q1(x))−1m

]
11

−2λ+ρ+iγ
2λ+ρ−iγ

[
(σ3q1(x))−1m

]
12

−2λ+ρ−iγ
2λ+ρ+iγ

[
(σ3q1(x))−1m

]
21

[
(σ3q1(x))−1m

]
22

)
,

Note that [(σ3q1(x))−1m(x, λ)]21 = 0 and [(σ3q1(x))−1m(x, λ)]12 = 0 at λ̂ and λ̂∗,

respectively. This means that m̂(x, λ) does not have any pole at λ̂ and λ̂∗. Again,
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we have

W (x, λ)m̂(x, λ)w(λ)−1 = σ3q2(x)×( [
σ3q2(x)−1m̂

]
11

−2λ−ρ+iγ
2λ−ρ−iγ

[
σ3q2(x)−1m̂

]
12

−2λ−ρ−iγ
2λ−ρ+iγ

[
σ3q2(x)−1m̂

]
21

[
σ3q2(x)−1m̂

]
22

)
.

Note that [σ3q2(x)−1m̂]21 (x,−λ̂) = 0 and [σ3q2(x)−1m̂]12 (x,−λ̂∗) = 0. Combined

with the above discussion, we see that m̃∗(−x,−λ∗) does not have extra poles at

λ̂, λ̂∗,−λ̂,−λ̂∗. Therefore, we have proved the above claim. In terms of vector

columns, Eq (B.2.2) is:

For λ ∈ C+ m1(x, λ) = (iσ2)(Wm̂2)∗(−x,−λ∗)
a∗(−λ∗)(−(λ+ ρ

2)+ iγ
2 )
,

m2(x, λ) = −a∗(−λ∗)
λ+ ρ

2
+ iγ

2

(iσ2)(Wm̂1)∗(−x,−λ∗),
(B.2.5)

and, for λ ∈ C−
m1(x, λ) = a(−λ)

−(λ+ ρ
2)+ iγ

2

(iσ2)(Wm̂2)∗(−x,−λ∗),

m2(x, λ) = −1

a(−λ)(λ+ ρ
2

+ iγ
2 )

(iσ2)(Wm̂1)∗(−x,−λ∗).
(B.2.6)

Assume that γ < 0, so λ̂ ∈ C+. Using

(iσ2)m̂∗(x, λ∗)(iσ2)−1 = m̂(x, λ),

(iσ2)W ∗(x, λ∗)(iσ2)−1 = W (x, λ),

it follows from the first Eq. in (B.2.5) and the second in (B.2.6)

m1

(
x, λ̂
)

=
1

iγa
(
λ̂
)W (

−x,−λ̂
)
m̂1(−x,−λ̂),

m2

(
x, λ̂∗

)
=

1

iγa
(
−λ̂∗

)W (
−x,−λ̂∗

)
m̂2

(
−x,−λ̂∗

)
.

A direct calculation shows that

W (−x,−λ̂) = σ3q2(−x)

(
−iγ 0

0 0

)
σ3q2(−x)−1,

W (−x,−λ̂∗) = σ3q2(−x)

(
0 0

0 −iγ

)
σ3q2(−x)−1,
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which implies

µ1

(
x, λ̂
)

=
1

a
(
λ̂
)σ3q2(−x)σ3

(
1

0

)
,

µ2

(
x, λ̂∗

)
= − 1

a
(
−λ̂∗

)σ3q2(−x)σ3

(
0

1

)
.

Therefore, one has

q1(x) = σ3

(
µ1

(
x, λ̂
)
, µ2

(
x, λ̂∗

))
= −q2(−x)

 1

a(λ̂)
0

0 1

a(−λ̂∗)

σ3,

from which a direct calculation shows that

E1(x) = σ3E2(−x)σ3.

From the direct scattering problem, we know that
Ψ

(1)
− (x,λ̂)
a(λ̂)

= e−iλ̂xµ1

(
x, λ̂
)

.

Hence, since a
(
λ̂
)
6= 0 and γ+ = γ−, from (B.1.10) (the constant µ2 = 0) we

have

ϕ(x) = σ3

Ψ
(1)
−

(
x, λ̂
)

a
(
λ̂
) ,

−(iσ2)Ψ
(1)
−
∗ (
x, λ̂
)

a∗
(
λ̂
)


= σ3

(
e−iλ̂xµ1

(
x, λ̂
)
,−eiλ̂∗x(iσ2)µ∗1

(
x, λ̂
))

= q1(x)

(
e−iλ̂x 0

0 eiλ̂
∗x

)
.

It follows that,

P (x) = ϕ(x)

(
iγ

2

)
σ3ϕ(x)−1σ3

= q1(x)

(
iγ

2

)
σ3q1(x)−1σ3

= E1(x).
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The case γ > 0 will lead to the same conclusion, one needs to use the other

equations in (B.2.5) and (B.2.6) instead. Let

m(x, λ) = 1I +
m(x)

λ
+ O

(
λ−2
)
, a(λ) = 1 +

a1

λ
+ O

(
λ−2
)

be the asymptotic expansions as λ → ∞. As m̃(x, λ) = m∗(−x,−λ∗), it follows

from (B.2.1) that

−m∗(−x) = (iσ2) (m(x) + (a1 − ρ)σ3 + σ3(P (−x) + P (x))) (iσ2)−1

Again, using the symmetries

m(x, λ) = (iσ2)m∗(x, λ∗)(iσ2)−1, P (x) = (iσ2)P ∗(x)(iσ2)−1,

we see that m12(x) = −m∗21(x) and P12(x) = −P ∗21(x). Then, it follows that

u(x) = 2im12(x)

= −2i
[
(iσ2) (m(−x) + a1σ3 − ρσ3 + σ3P (x) + σ3P (−x)) (iσ2)−1

]∗
12

= 2i [m(−x) + P (−x) + P (x)]∗21

= 2im∗21(−x) + [P ∗(x) + P ∗(−x)]21

= −2im12(−x)− 2i [P (x) + P (−x)]12

= − (u(−x) + 2i [P (x) + P (−x)]12)

= − (u(−x) + 2i [P (x) + P (−x)]12) = −ũ(−x).

B.3 Proof of Lemma 4.17

Let λ0 = −iα. We have by definition that (see Section 2.3)

z(λ0) = λ0 + k(λ0) = −iα− iκ
√
α2 − q2

0,

where κ = sign(α)ε and ε is 1 on C1, −1 on C2.

Let |α| > q0. In Section 2.3, we defined D± as

D+ =
{
z ∈ C :

(
|z|2 − q2

0

)
Imz > 0

}
and D− =

{
z ∈ C :

(
|z|2 − q2

0

)
Imz < 0

}
.

Recall that k(λ0) can be either −i
√
α2 − q2

0 or i
√
α2 − q2

0. So, we distinguish two

sub-cases:
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1. ε = 1 and α > q0 or ε = −1 and α < −q0, which implies that z(λ0) ∈ D−.

2. ε = 1 and α < −q0 or ε = −1 and α > q0, which implies that z(λ0) ∈ D+.

Consider the first sub-case, which means z(λ0) ∈ D−. Equation (2.3.3) admits a

non-unique solution g(x, z) on R+ such that

g(x, z) = eik(z)x

[(
− iu+

z

1

)
+ h(x, z)

]
,

where h(x, z) is a column vector that goes to zero as x→∞ for z(λ) ∈ D− ∪ Σ.

Recall that Σ is defined as the union of the real axis with a circle of radius

q0 centred at the origin. Indeed, we can show by a direct calculation that the

following integral equation solves (2.3.3)

g(x, z) = eikx

(
− iu+

z

1

)
+

∫ x

a

E+(z)

(
e−ik(x−y) 0

0 0

)
E+(z)−1∆Q+(y)g(y, z)dy

−
∫ ∞
x

E+(z)

(
0 0

0 eik(x−y)

)
E+(z)−1∆Q+(y)g(y, z)dy,

where ∆Q+(x) = Q(x)−Q+ and E±(z) = 1I− i
z
σ3Q±. By using the above integral

representation of g(x, z), we can show using similar arguments as in Proposition

2.17 that g(x, z) is well defined on R+ for z ∈ D− ∪ Σ.

In this setting, Ψ
(1)
+ (x, z(λ0)) and g(x, z(λ0)) are linearly independent, then

we can write

Ψ0(x, z(λ0)) = c1Ψ
(1)
+ (x, z(λ0)) + c2g(x, z(λ0)).

If the second component of Ψ
(1)
+ (x, z(λ0)) does not vanish at x = 0, we should

have that (ξ1(x), ξ2(x))T ∼ eik(λ0)x

(
− iu+
z(λ0)

1

)
as x → ∞. Hence, ξ1(x)

ξ2(x)
→ − iu+

z(λ0)

as x→∞ which implies that

P1(x)→ iα

|z(λ0)|2 + u2
0

(
q2

0 − |z(λ0)|2 2iu+z(λ0)∗

−2iu∗+z(λ0) −(q2
0 − |z(λ0)|2)

)
= −i

(√
α2 − q2

01I +Q+

)
σ3.

If the second component of Ψ
(1)
+ (x, z(λ0)) vanishes at x = 0, then c2 = 0 that is

(ξ1(x), ξ2(x))T = c1Ψ
(1)
+ (x, z(λ0)). Recall that Ψ

(1)
+ (x, z(λ0)) ∼ e−ik(λ0)x

(
1

− iu∗+
z(λ0)

)
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as x→∞, hence ξ2(x)
ξ1(x)
→ − iu∗+

z(λ0)
as x→∞. As a result, as x→∞, we have

P1(x)→ iα

|z(λ0)|2 + q2
0

(
|z(λ0)|2 − q2

0 −2iu+z(λ0)

2iu∗+z(λ0)∗ −(|z(λ0)|2 − q2
0)

)
= i

(√
α2 − q2

01I−Q+

)
σ3.

We summarise what we have done so far:

P1(x)→ i (r+1I−Q+)σ3 as x→ +∞

such that r+ = −
√
α2 − q2

0 if the second component of Ψ
(1)
+ (0, z(λ0)) does not

vanish, and r+ =
√
α2 − q2

0 if the second component of Ψ
(1)
+ (0, z(λ0)) does vanish.

To extract the asymptotic behaviour of P1(x) at −∞, we need the following

column vector solution of (2.3.3) on R−:

f(x, z) = e−ikx

[(
1

− iu∗−
z

)
+ v(x, z)

]
,

where v(x, z) is a column vector that goes to zero as x → −∞. This vec-

tor solution can be obtained rigorously using a similar type of argument as for

g(x, z) above. In this case, f(x, z(λ0)) and Ψ
(2)
− (x, z(λ0)) are linearly independent.

Hence,

Ψ0(x, z(λ0)) = c1f(x, z(λ0)) + c2Ψ
(2)
− (x, z(λ0)).

If the second component of Ψ
(2)
− (x, z(λ0)) does not vanish at x = 0, we should

have that (ξ1(x), ξ2(x))T ∼ e−ik(λ0)x

(
1

− iu∗−
z(λ0)

)
. Hence, ξ2(x)

ξ1(x)
→ − iu∗−

z(λ0)
as x→ −∞

which implies that

P1(x)→ i

(√
α2 − q2

0 −Q−1I

)
σ3. (B.3.1)

If the second component of Ψ
(2)
− (x, z(λ0)) vanishes at x = 0, then c1 = 0 that is

(ξ1(x), ξ2(x))T = c2Ψ
(2)
− (x, z(λ0)). Again, recall that Ψ

(2)
− (x, z) ∼ eikx

(
− iu−

z

1

)
as

x→ −∞. This implies that ξ1(x)
ξ2(x)
→ − iu−

z(λ0)
as x→ −∞. As a result, we have

P1(x)→ −i
(√

α2 − q2
01I +Q−

)
σ3.

Again, we summarise what we have done so far:

P1(x)→ i (r−1I−Q−)σ3 as x→ −∞
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such that r− =
√
α2 − q2

0 if the second component of Ψ
(2)
− (0, z(λ0)) does not

vanish, and r− =
√
α2 − q2

0 if the second component of Ψ
(2)
− (0, z(λ0)) does vanish.

This concludes the proof.

B.4 Proof of Lemma 4.23

Assume that u(x) is α-symmetric. We prove relations given in (4.2.11). Using

Lemma 4.21, equation (4.2.10) in terms of Jost solutions becomes

Ψ̃∓(−x,−z) = σ3Ψ±(x, z). (B.4.1)

This implies that

S̃(z) = S−1(−z) =⇒ s̃22(z) = s11(−z) and s̃21(z) = −s21(−z).

Combining these symmetries, relations (2.3.35) and (4.2.7) one obtains the first

two relations in (4.2.11). Equation (B.4.1) together with

Ψ̃±(x, z) = L(x, z)Ψ±(x, z)M±(z), z ∈ Σ,

give

Ψ±(x, z) = L(−x,−z)Ψ∓(−x,−z)M±(−z), z ∈ Σ.

Taking into consideration the analytic continuations of columns of Jost solutions,

for z ∈ D+, we have

Ψ
(1)
− (x, z) = − 1

g(−z)2zL(−x,−z)Ψ
(1)
+ (−x,−z), (B.4.2)

Ψ
(2)
+ (x, z) = 1

g(−z∗)∗2zL(−x,−z)Ψ
(2)
− (−x,−z). (B.4.3)

In terms of column vectors, the first symmetry in (2.3.33) gives

Ψ
(1)
− (x, z) = −(iσ2)Ψ

(2)
− (x, z∗)∗, Ψ

(2)
+ (x, z) = (iσ2)Ψ

(1)
+ (x, z∗)∗, z ∈ D+.

Using these relations one can show that

Ψ
(1)
− (x, zn) = γ(zn)Ψ

(2)
+ (x, zn)

= −γ(zn)γ∗(−z∗n)

g(−z∗n)∗
2znL(−x,−zn)Ψ

(1)
+ (−x,−zn).
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Hence comparing this with the first equation in (B.4.2) evaluated at zn, we obtain

γ(zn)γ∗(−z∗n) =
g(−z∗n)∗

g(−zn)
=

g(zn)

g(z∗n)∗
,

since g(−z∗n)∗ = g(zn) and g(−zn) = g(z∗n)∗.

Ψ
(1)
− (x, u2

0/zn) = γ(u2
0/zn)Ψ

(2)
+ (x, u2

0/zn)

=
γ(q2

0/zn)

g(−q2
0/z

∗
n)∗

(
2
u2

0

zn

)
L(−x,−q2

0/zn)Ψ
(2)
− (−x,−q2

0/zn)

=

(
u+

u∗−

)
γ(q2

0/zn)γ(zn)

g(−q2
0/z

∗
n)∗

(
2
u2

0

zn

)
L(−x,−q2

0/zn)Ψ
(1)
+ (−x,−q2

0/zn)

Hence comparing this with the first equation in (B.4.2) evaluated at u2
0/zn, we

get

γ(u2
0/zn)γ(zn) = −

(
u∗−
u+

)
g(−q2

0/z
∗
n)∗

g(−q2
0/zn)

= −
(
u∗−
u+

)
g(zn)

g(z∗n)∗
,

since g(−q2
0/z

∗
n)∗ = (u2

0/z
2
n)g(zn) and g(−q2

0/zn) = (u2
0/z

2
n)g(z∗n)∗.
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