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 Abstract 
 Understanding  the  development  of  the  hypothalamus  is  important,  due  to  its  role  as  the 

 central  regulator  of  homeostasis.  However,  relative  to  development  of  other  regions  of  the 

 brain,  characterisation  and  understanding  of  hypothalamus  development  is  incomplete. 

 Three  important  reasons  for  this  are:  (i)  the  hypothalamus  is  specified  early  compared  to 

 other  brain  regions,  and  then  develops  rapidly;  (ii)  the  hypothalamus  has  a  complex, 

 anatomical  structure  even  in  the  embryo;  (iii)  hypothalamic  progenitor  cells  grow  and  migrate 

 anisotropically.  This  non-linear  growth  makes  it  difficult  to  interpret  downstream 

 developmental  events  and  molecular  interactions  that  regulate  early  hypothalamus 

 specification and regionalisation. 

 One  promising  way  to  investigate  development  of  the  hypothalamus  is  through  combining 

 computational  methods  and  traditional  embryological  approaches.  To  this  end,  I  begin  this 

 thesis  by  developing  a  method  of  fine-grained  classification  of  the  Hamburger  Hamilton  (HH) 

 stage  10  chick  embryo.  I  was  able  to  train  an  accurate  classifier  despite  a  limited  dataset,  by 

 testing  a  variety  of  biologically  motivated  data  augmentation  techniques.  I  encouraged 

 confidence  in  the  staging  system  and  subsequent  classifications  by  analysing  and  visualising 

 the output of the classifier. 

 Using  this  classifier,  I  conducted  a  detailed  morphological  study  of  the  developing 

 hypothalamus  at  HH10  and  surrounding  stages,  using  both  experimental  embryology 

 techniques  and  computational  morphometric  analyses.  Using  my  increased  understanding  of 

 the  developing  morphology,  I  characterised  the  expression  of  key  hypothalamus 

 morphogens:  SHH,  FGF10,  and  BMP2,  as  well  as  components  of  the  SHH  signalling 

 pathway.  I  found  that  regionalisation  between  these  morphogens  occurred  early  and  rapidly, 

 with  substantial  heterogeneity  in  expression  along  both  the  anteroposterior  and  mediolateral 

 axes. 

 Finally,  I  tested  to  what  extent  this  regionalisation  is  neuroepithelium  intrinsic  using  ex  vivo 

 culture.  I  found  both  anteroposterior  and  mediolateral  regionalisation  in  culture,  which 

 suggests that these processes are self-organising in the neuroepithelium. 

 Overall,  my  thesis  provides  novel  insights  into  early  hypothalamic  morphogenesis  and 

 molecular  regionalisation,  and  shows  through  extension  and  use  of  the  classifier  how  these 

 complex processes may begin to be unpicked. 
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 Chapter 1 

 Introduction 

 In  this  Chapter,  I  discuss  the  role,  structure,  and  development  of  the  hypothalamus.  I  also 

 outline  recent  work  investigating  the  interface  between  morphology  and  gene  expression  in 

 the  developing  brain.  I  next  discuss  Sonic  Hedgehog  (SHH),  a  morphogen  of  interest  in 

 hypothalamic  development  and  a  potential  link  between  hypothalamic  progenitor  cell 

 development  and  increasing  morphological  complexity  of  the  hypothalamus.  Finally,  I 

 discuss  the  challenges  associated  with  unpicking  the  role  of  complex  signalling  ligands  such 

 as  SHH  in  the  developing  hypothalamus,  and  introduce  a  potential  role  for  neural  network 

 based image classification in tackling these challenges. 

 1.1 The development of the hypothalamus 

 The  hypothalamus  is  an  ancient,  vital  organ  of  the  brain.  Located  at  the  base  of  the 

 forebrain,  the  hypothalamus  functions  as  a  central  homeostatic  regulator,  controlling  core 

 survival  processes.  Recent  advances  in  genetics  have  revealed  that  disordered 

 hypothalamic  development  plays  a  role  in  complex  diseases  such  as  infertility,  obesity,  and 

 chronic  stress  (Bedont  et  al.  ,  2015;  Biran  et  al.  ,  2015;  Eachus  et  al.  ,  2017;  Moir  et  al.  ,  2017). 

 However,  to  understand  how  aberrant  development  of  the  hypothalamus  could  lead  to  adult 

 disease, we must first understand how the hypothalamus normally develops. 

 Until  recently,  the  two  major  working  models  of  hypothalamus  development  assumed  that 

 the  complex  arrangement  of  neuronal  populations  in  the  adult  hypothalamus  arise  due  to 

 isotropic  expansion  of  progenitor  cells  during  embryonic  development.  The  columnar  model 

 suggested  that  the  neuraxis  is  highly  organised  along  the  anteroposterior  axis  from  an  early 

 developmental  stage,  and  that  the  hypothalamus  develops  from  a  diencephalic  structure 

 (Swanson,  1992,  2012;  reviewed  by  Fu  et  al.  ,  2019).  The  prosomere  model  aimed  to  form  a 

 general  way  of  understanding  forebrain  development.  The  prosomere  model  suggests  that 

 the  developing  hypothalamus  is  the  most  anterior  point  of  the  brain,  not  the  telencephalon. 

 Further,  the  model  groups  the  hypothalamus  and  the  telencephalon  as  one  developmental 

 unit  (Rubenstein  et  al.  ,  1994;  Puelles  and  Rubenstein,  2003;  Bedont  et  al.  ,  2015).  However, 
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 recent  work  in  the  embryonic  chick,  outlined  below,  has  shed  light  on  how  hypothalamic 

 development does not conform to either the columnar or prosomere model. 

 By  mid-embryogenesis,  the  main  progenitor  subsets  that  can  be  recognised  (originally 

 demonstrated  in  the  mouse)  are  the  anterior  tuberal,  posterior  tuberal,  and  mammillary, 

 separated  from  paraventricular  progenitors  by  progenitors  in  the  intrahypothalamic  diagonal 

 (Shimogori  et  al.  ,  2010;  Kim  et  al.  ,  2020).  The  spatial  arrangement  of  these  progenitors  is 

 closely  aligned  to  the  spatial  arrangement  of  distinct  adult  hypothalamic  neurons  and  glia. 

 Thus,  tuberal,  mammillary  and  paraventricular  neurons  differentiate  close  to  anterior  tuberal, 

 mammillary,  and  paraventricular  progenitors,  respectively,  while  radial  glial-like  cells 

 differentiate  from  posterior  tuberal  progenitors.  However,  until  recently,  it  was  completely 

 unclear  how  these  distinct  mid-embryonic  progenitor  territories  formed.  Understanding  how 

 these  areas  develop  is  important.  For  example,  the  paraventricular  neuroendocrine  neurons 

 of  the  adult  hypothalamus  make  connections  with  the  tuberally-located  glial  pituitary  gland, 

 thereby  mediating  the  endocrine  role  of  the  hypothalamus  through  the  release  of  hormones 

 (Swanson,  1987).  Since  many  disorders  involving  hypothalamic  dysfunction  are 

 neuroendocrine-related,  understanding  how  these  regions  are  built  and  how  the  neurons 

 within them ultimately make connections will be instrumental in treating these disorders. 

 A  study  by  Fu  et  al.  (2017,  2019  -  described  in  detail  below)  in  the  chick  embryo  was  the  first 

 to  suggest  that  the  hypothalamic  progenitor  subsets  detected  at  mid-embryogenesis  develop 

 and  grow  through  a  complex,  non-linear  manner.  A  more  recent  study  by  Kim  et  al.  (2022), 

 again  using  the  chick  embryo,  also  suggests  this.  This  latter  work  involved  a  detailed 

 single-cell  RNA  sequencing  (scRNA-seq)  effort  over  6  time  points  from  Hamburger-Hamilton 

 (HH)8  to  HH20  to  understand  which  genes  were  expressed  by  different  progenitor  cells,  at 

 different  early  hypothalamic  developmental  time  points.  The  expression  profiles  of  key  genes 

 (including  Sonic  Hedgehog  (  SHH)  ,  Fibroblast  growth  factor  10  (  FGF10)  ,  Bone 

 morphogenetic  proteins  (  BMPs:  in  particular  BMP2  and  BMP7  )  and  the  transcription  factor 

 NKX2.1  )  were  verified,  visualising  expression  through  a  novel  in  situ  hybridisation  technique 

 -  hybridisation  chain  reaction  (HCR)  -  which  allows  multiple  mRNAs  to  be  examined  in  a 

 single sample ((Choi  et al.  , 2018; Kim  et al.  , 2022)). 
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 Figure  1.1  Regionalisation  of  the  developing  hypothalamus.  (A)  UMAP  clusterings  of  a 

 scRNA-seq  dataset  of  developing  hypothalamus  cells  at  HH13/14  combined  with  another 

 dataset  of  cells  at  HH15/16.  Expression  of  numerous  markers  enabled  the  clusters  to  be 

 identified  with  distinct  progenitor  types  and  maturing  neurons.  Red  arrow:  lineage  trajectory 

 for  mammillary  progenitors,  orange  arrow:  lineage  trajectory  for  tuberal  progenitors.  (B)  Side 

 view  of  a  developing  chick  brain  at  HH15  following  HCR  in  situ  hybridization  for  SHH  , 

 NKX2-2,  FGF10  .  Schematic  representation  of  the  HH13-16  developing  chick  brain  in  side 

 view.  (C)  Distinct  progenitor  cells  exist  in  spatially-defined  regions  at  this  stage.  (A-C) 

 adapted from (Kim  et al.  , 2022).  Scale bar 100µm. 

 In  other  words,  this  study  combined  bioinformatics  analysis  with  molecular  expression 

 profiling  to  produce  a  robust  picture  of  the  development  of  hypothalamic  progenitor  cell  types 

 over  a  large  portion  of  early  hypothalamic  development.  Ultimately,  this  allowed  the  authors 

 to  link  the  spatial  relationship  of  progenitor  populations  profiled  across  developmental  time. 

 At  the  same  time,  RNA  velocity  -  an  in  silico  analysis  that  predicts  how  cells  differentiate 

 over  time  -  suggested  lineage  trajectories  from  earlier  hypothalamic  cells,  to  tuberal, 

 mammillary,  and  paraventricular  progenitors,  and  then  to  their  respective  neurons  (Kim  et  al., 

 2022; Fig 1.1A). 

 A  principal  finding  of  this  work  was  that  chick  hypothalamus  development  could  be  mapped 

 to  well-defined  stages  of  embryonic  development:  at  HH8-10  the  hypothalamus  was  induced 

 from  prethalamic-like  cells.  Between  HH10  and  HH16  the  hypothalamus  underwent 

 regionalisation,  with  distinct  gene  expression  domains  arising  (Fig  1.1B),  giving  rise  to  the 

 same  progenitor  subsets  previously  suggested  in  the  mouse  (Kim  et  al.  ,  2020),  and  between 

 HH13  and  HH21  the  hypothalamus  underwent  neurogenesis  (Fig  1.1B,  C).  Importantly,  the 
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 study  suggested  that  regionalisation  into  the  distinct  progenitor  subsets  occurred  through 

 extensive  anisotropic  growth  from  an  early  population(s)  of  hypothalamic  floor  plate-like 

 cells, which are first detected around HH8 (Kim et al., 2022). 

 The  finding  that  the  hypothalamus  is  induced  around  HH8,  and  that  at  this  stage, 

 hypothalamic  cells  share  characteristics  with  ventral  midline  floor  plate  cells,  confirmed  and 

 extended  previous  studies  (Dale  et  al.  ,  1997,  1999).  These,  and  the  scRNA  seq  paper  of 

 Kim  et  al.  showed  that  hypothalamic  floor  plate-like  cells  constitute  the  anterior-most 

 population  of  SHH/FOXA2-positive  ventral  midline  cells  (Kim  et  al.  ,  2022),  but  can  be 

 distinguished  from  more  posterior  floor  plate  cells  through  their  expression  of  hypothalamic 

 transcription  factors  -  such  as  NKX2-1,  and  signalling  factors  -  including  BMPs  (Dale  et  al.  , 

 1997;  1999;  Kim  et  al.,  2022).  Classic  chick  embryology  approaches  -  both  in  vivo  and  ex 

 vivo  -  had  shown  that  hypothalamic  floor  plate-like  cells  (originally  termed  rostral 

 diencephalic  ventral  midline  (RDVM)  cells)  are  induced  by  underlying  the  prechordal 

 mesoderm/mesendoderm  (Kiecker  and  Niehrs,  2001;  Patten  et  al.  ,  2003;  Ohyama  et  al.  , 

 2005;  Placzek  and  Briscoe,  2005).  These  studies  had  shown  that  prechordal 

 mesoderm/mesendoderm  secretes  SHH  and  Nodal,  and  then  SHH  and  BMPs  (Ellis  et  al.  , 

 2015),  which  work  synergistically  to  induce  hypothalamic  floor  plate  cells  (Dale  et  al.  ,  1999; 

 Patten  et al.  , 2003; Manning  et al.  , 2006). 

 In  addition  to  confirming  these  earlier  studies,  Kim  et  al.  (2022)  extended  them,  first  by 

 significantly  expanding  the  molecular  characterisation  of  hypothalamic  floor  plate-like 

 progenitors  at  HH8,  and  second  by  showing  that  hypothalamic  floor  plate-like  progenitors  are 

 induced  from  diencephalic/prethalamic-like  cells  that  express  PAX6  and  Follistatin  (FST)  . 

 Since  FST  is  antagonistic  to  BMP/Nodal  signalling  by  binding  extracellularly  directly  to  the 

 ligands  (Fainsod  et  al.  ,  1997;  Wu  et  al.  ,  2008;  Kim  et  al.  ,  2022),  a  likely  possibility  is  that 

 BMPs  and  Nodal,  initially  originating  from  the  prechordal  mesoderm,  play  a  role  in  induction 

 of hypothalamic floor plate cells by FST mediated antagonism. 

 The  scRNA-seq  profiling  and  multiplex  HCR  analyses  showed  that,  somewhere  between 

 HH8  and  HH10,  FGF10  is  upregulated  in  hypothalamic  floor  plate-like  cells.  The  onset  of 

 FGF10  expression,  dramatic  expansion  of  hypothalamic  floor  plate-like  cells  around  HH10, 

 and  evidence  for  extensive  growth  during  regionalisation  -  all  added  to  the  findings  of  a 

 previous  fate-mapping  study  in  the  chick,  which  had  provided  the  first  evidence  that  two  of 

 the  distinct  hypothalamic  progenitor  subsets  (anterior  tuberal  and  mammillary)  arise  through 

 a  mechanism  linked  to  anisotropic  growth  (Fu,  et  al.,  2017)  (Fig  1.2).  Upregulation  of  FGF10 

 around  HH10,  coincides  with  a  dramatic  (largely  lateral)  expansion  in  the  expression  of 
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 molecular  markers  of  hypothalamic  floor  plate-like  cells  (Dale  et  al.  ,  1999;  Kim  et  al.  ,  2022). 

 For  example,  SHH,  which  is  expressed  in  a  rod  of  ventral  midline  cells  at  HH8,  is  expressed 

 in a wider oval shape at HH10 (Fig 1.3A, B). 

 Fu  et  al  (2017)  injected  FGF10/SHH-  expressing  floor  plate-like  cells  in  the  midline  of  the 

 HH10  hypothalamus  with  DiI  (a  lipophilic  fluorescent  dye  which  allows  for  direct  visualisation 

 of  cell  lineages),  and  traced  these  cells  to  HH17  -  a  time  when  anterior  tuberal  and 

 mammillary  progenitor  regions  are  becoming  distinct  (Fu  et  al.  ,  2017,  Fig  1.1).  This  study 

 showed  that  FGF10/SHH-  positive  floor  plate-like  cells  at  HH10  undergo  extensive  tangential 

 migration/growth  and  ultimately  give  rise  to  the  anterior  tuberal  neurogenic  domain,  and  the 

 mammillary  progenitor  domain,  while  between  these,  a  third  domain,  which  does  not  expand, 

 forms  the  posterior  tuberal  progenitor  domain  (Fig  1.2B,C).  This  is  a  non-neurogenic  zone, 

 which  ultimately  gives  rise  to  glial  cells,  including  cells  that  become  the  infundibulum,  median 

 eminence  and  posterior  pituitary  (Pearson  et  al.  ,  2011).  The  fate-mapping  studies  showed 

 that  each  of  these  three  progenitor  domains  are  generated  from  distinct  regions  of 

 FGF10/SHH  floor  plate-like  cells.  Anterior  tuberal  (neurogenic)  cells  are  generated  through 

 the  anisotropic  anterior  growth  of  the  anterior-most  FGF10  -expressing  cells,  which 

 downregulate  FGF10  as  they  grow  anteriorly;  glial  tuberal  cells  are  generated  from 

 central-most  FGF10  -expressing  cells  that  downregulate  SHH.  Mammillary  progenitors  are 

 generated  through  the  anisotropic  growth  of  the  posterior-most  FGF10  -expressing  cells,  and 

 retain  SHH  expression  (Fu  et  al.,  2017;  2019)  (Fig  1.2B-C).  Throughout  these  events,  the 

 profile  of  SHH  in  the  developing  hypothalamus  undergoes  dramatic  changes:  from  a 

 rod-shape,  then  an  oval-shape  at  HH8-HH10,  then  to  the  torus-shaped  profile  that 

 characterises  the  hypothalamus  from  HH13  onwards  (Figs  1.1B  and  1.3).  In  summary,  this 

 work  was  the  first  to  describe  an  anisotropic  growth  model  of  hypothalamic  development  in 

 which  hypothalamic  progenitors  migrate,  and/or  proliferate  from  earlier  FGF10-expressing 

 floor plate-like cells beginning around HH10. 
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 Figure  1.2  Anisotropic  growth  of  the  developing  hypothalamus.  (A)  At  HH10,  the 

 prospective  hypothalamus  has  been  induced  in  the  neuroepithelium  and  is  a  floor  plate 

 (FP)-like  FGF10  positive  domain.  (B)  At  E3  the  hypothalamus  has  been  regionalised  into 

 anterior  tuberal,  posterior  tuberal  and  mammillary  domains.  At  this  point,  the  hypothalamus 

 has  begun  anisotropic  growth  i.e.  anterior  growth  from  the  tuberal  domain.  By  E5,  the 

 anterior tuberal domain has expanded, and the mammillary domain has begun to expand. 

 This  study  also  highlighted  a  role  for  the  secreted  signalling  ligand  SHH  in  the  growth  and 

 differentiation  of  anterior  tuberal  progenitors  (see  Section  1.3  for  more  details  of  Shh 

 signalling,  and  its  role  in  patterning  and  proliferation).  As  anterior  tuberal  neurogenic 

 progenitors  emerge  from  FGF10  -expressing  floor  plate  cells,  they  maintain/upregulate  SHH  , 

 and  this  ultimately  promotes  their  differentiation  as  measured  through  p57  expression.  This 

 results  in  a  proliferative  gradient  from  anterior  (high  differentiation,  low  proliferation)  to 

 posterior  (high  proliferation,  low  differentiation)  (Fu  et  al.,  2017,  Fu  et  al.,  2019).  If  SHH 

 signalling  is  pharmacologically  blocked,  using  cyclopamine,  at  HH10  -  i.e.  a  time  when  floor 

 plate-like  cells  have  already  been  induced  -  then  the  anterior  tuberal  SHH  -positive 

 neurogenic  progenitors  do  not  grow  -  as  measured  by  a  reduction  in  the  size  of  the  anterior 

 hypothalamic  domain  concomitant  with  a  reduction  of  DiI  labelled  cells  in  the  anterior 

 hypothalamus  (Fu  et  al.,  2017)  (Fig  1.2).  Other  studies  in  mouse  similarly  suggested  that 

 neuroepithelial-derived  SHH  is  necessary  for  differentiation  of  anterior  tuberal  hypothalamic 

 progenitors (Szabó  et al.  , 2009; Shimogori  et al.  ,  2010; Carreno  et al.  , 2017) 
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 Figure  1.3.  SHH  expression  in  the  early  developing  hypothalamus  .  (A-B)  show 

 flat-wholemount  ventral  views  and  (C)  shows  a  wholemount  side  view  of  an  isolated 

 neuroepithelium,  with  SHH  expression  visualised  at  HH7  (A),  HH10  (B),  and  HH18  (C).  (A) 

 At  HH7,  the  neuroepithelium  is  cylindrical,  (B)  at  HH10,  the  optic  vesicles  have  extended 

 laterally,  which  allows  the  developing  prosencephalon  (pictured)  to  be  easily  identified.  (C)  At 

 HH18,  the  developing  brain  has  turned,  making  ventral  views  difficult  to  image,  and  therefore 

 side  views  are  typically  used.  At  this  point,  the  hypothalamus  is  detectable  along  the  ventral 

 neuroepithelial tissue. (A-C) adapted from (Manning  et al.  , 2006). 

 The  Fu  et  al  (2017)  study  demonstrates  the  dynamic  expression  of  SHH  and  FGF10  ,  and 

 raises  the  possibility  that  interactions  between  them  may  be  important  in  hypothalamic 

 development.  Elsewhere  in  the  embryo,  SHH  and  FGF10  regulate  each  other’s  expression. 

 For  instance,  in  the  developing  limb  bud  (Sekine  et  al.  ,  1999;  Jin  et  al.  ,  2019),  while  in  the 

 developing  lung,  FGF10  downregulates  SHH  to  initiate  branching  morphogenesis  (Bellusci 

 et al.  , 1997; Sekine  et al.  , 1999). 

 To  date,  no  study  has  directly  investigated  interactions  between  SHH  and  FGF10  at  early 

 stages  of  hypothalamic  development.  However,  studies  have  examined  interactions  between 

 SHH  and  BMPs.  In  chick,  the  prechordal  mesoderm  secretes  BMPs  (Dale  et  al.  ,  1999), 

 which  in  turn  induce  the  transcription  factor  TBX2  in  central  hypothalamic  floor  plate-like 

 cells  (Manning  et  al.  ,  2006).  The  study  by  Manning  et  al.,  (2006)  also  performed  gain-  and 

 loss-of-function  studies  showing  that  TBX2  represses  SHH  ,  so  a  likely  interpretation  is  that 

 TBX2  -expressing  cells  give  rise  to  the  future  posterior  tuberal  progenitors  -  that  ultimately 

 form the glial domain of the tuberal hypothalamus (Figs 1.1. and 1.2). 

 Work  in  mouse  suggests  this  is  a  conserved  pathway:  here  studies  have  shown  that  Tbx2 

 and  Tbx3  are  expressed  in  a  similar  pattern  to  that  in  the  chick,  and  that  Tbx3  directly 

 represses  Shh  by  removing  a  positive  transcriptional  regulator  (Sox2)  (Trowe  et  al.  ,  2013). 
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 At  the  same  time,  BMPs  themselves  -  in  particular  BMP2  and  BMP7  -  are  upregulated  in  the 

 hypothalamus.  Initial  studies  (Kim  et  al.,  2022)  suggest  that  BMP2  and  BMP7  are  expressed 

 very  dynamically  over  HH8-HH18,  but  their  profiles  have  not  yet  been  investigated 

 thoroughly. 

 1.1.1 Role of the prechordal mesoderm 

 As  introduced  above,  a  particularly  salient  feature  of  the  developing  hypothalamic 

 neuroepithelium  is  its  relationship  with  the  adjacent  prechordal  mesoderm,  which  initially 

 induces  hypothalamic  floor  plate-like  cells.  The  prechordal  mesoderm  has  a  complicated 

 spatial  relationship  with  the  developing  hypothalamus.  At  HH9-10,  the  prechordal  mesoderm 

 is  in  line  with  the  developing  hypothalamus,  but  becomes  progressively  more 

 posterior/caudal  to  the  hypothalamus  (Fu  et  al.  ,  2019).  Additionally,  the  cells  comprising  the 

 prechordal  mesoderm  begin  to  disperse  shortly  after  HH10  (Jacob  et  al.  ,  1984;  Seifert  and 

 Christ,  1990;  Ellis  et  al.  ,  2015).  How  necessary  the  prechordal  mesoderm  is  for  continued 

 hypothalamus  development  is  unclear,  considering  the  distancing  and  dispersal  that  occur 

 relatively early in hypothalamus development. 

 Kim  et  al.  (2022)  and  Fu  et  al.  (2017)  were  landmark  studies  in  hypothalamus  development, 

 shedding  light  on  the  induction,  regionalisation,  growth,  and  differentiation  of  hypothalamus 

 progenitor  populations.  However,  they  also  suggest  that  the  early  hypothalamus  is  highly 

 dynamic,  rendering  it  challenging  to  decipher  how  embryonic  progenitor  populations  give  rise 

 to  the  adult  hypothalamus.  Further,  neither  of  these  studies  considered  an  important 

 implication  from  the  anisotropic  growth  model  of  Fu  et  al.  (2017):  the  development  of 

 morphological structure. 

 1.2 Morphological studies of development 

 There  is  increasing  recognition  among  developmental  biologists  that  growth  and  function  are 

 intrinsically  linked,  and  understanding  their  relationship  is  vital  to  obtaining  a  mechanistic 

 understanding  of  development  as  well  as  to  harnessing  developmental  reprogramming  to 

 treat disorders. 
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 Figure  1.4  Neuroepithelial  morphology  of  hypothalamic  tissue  in  the  developing  chick. 
 (A-C)  show  side  views  of  the  whole  brain  at  E5  (D),  after  neuroepithelial  isolation  (E),  and  a 

 zoom  of  the  white  square  box  (F).  The  hypothalamic  morphology  is  only  visible  after 

 isolation,  and  protrudes  ventrally  from  the  rest  of  the  forebrain.  LH:  Lateral  hypothalamus. 

 AH:  anterior  hypothalamus.  os:  optic  stalk.  hyp:  hypothalamus.  RP:  Rathke’s  pouch.  cf: 

 cephalic flexure. Scale bars: (E) 1000µm, (F) 200µm. 

 Interest  in  morphogenesis  -  the  development  of  biological  form  or  shape  as  a  process  - 

 perhaps  began  with  D’arcy  Thompson’s  ‘On  Growth  and  Form’  which  contained 

 mathematical  descriptions  and  analyses  of  many  natural  phenomena  e.g.  shells  and  eggs 

 (Thompson,  1917).  However,  interest  in  the  shape  and  form  of  the  embryo  has  since 

 stemmed  from  the  Turing’s  later  pioneering  work  on  morphogenesis,  where  he  outlined  how 

 an  embryo  may  generate  form  from  de  novo  asymmetries  in  chemical  concentration  (and 

 that  these  asymmetries  would  cause/allow  shape  change  in  an  organism).  Despite  its 

 abstract  nature,  Turing’s  work  marked  a  shift  in  thinking  about  how  embryos  might  develop 

 (Turing, 1952). 

 More  recently,  studies  of  chick  early  forebrain  morphogenesis  have  extracted  3-D  meshes 

 from  biological  data  of  tissue  morphology  (Garcia  et  al.  ,  2017,  2019).  The  authors  here 

 investigated  the  development  of  shape  suggesting  that  the  large  structures  of  the  chick 

 forebrain are shaped through an interplay of morphogen gradients and mechanical stresses. 
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 1.2.1 Development of hypothalamic morphology 

 The  work  of  Garcia  et  al.  ,  (2017)  focused  on  the  morphological  development  of  the  entire 

 early  forebrain,  and  therefore  only  included  the  hypothalamus  as  a  minor  consideration, 

 grouping  it  with  the  telencephalon.  As  such,  there  is  not  yet  a  detailed  morphological  study  of 

 hypothalamus  development.  Such  a  study  would  be  important  because  the  neuronal 

 populations  that  form  the  adult  hypothalamus  are  arranged  in  a  complex  manner,  and 

 because  the  hypothalamus  develops  a  distinct  adult  morphology,  protruding  ventrally  from 

 the rest of the forebrain (Lechan and Toni, 2000). 

 In  chick,  the  onset  of  adult  hypothalamus  morphology  might  be  best  studied  by  investigating 

 the  tissue  morphology  of  the  ventral  neuroepithelium  around  HH10.  Not  only  does  this  stage 

 mark  the  point  at  which  hypothalamic  progenitors  expand,  but  it  also  marks  the  stage  when 

 the  prosencephalon  begins  to  close  into  the  anterior  end  of  the  brain  tube,  concomitant  with 

 other  morphological  development  such  as  formation  of  the  optic  vesicles  (Fig  1.3B,  Fig  1.4). 

 Yet,  studies  on  neuroepithelia  at  these  stages  have  focused  to  date  only  on  molecular 

 expression  and  have  only  used  2-D  images,  where  many  ventral  morphological  features  are 

 largely  lost  (Fig  1.3;  Manning  et  al.,  2006).  In  chick,  by  embryonic  day  5  (E5)  the 

 hypothalamus  is  obscured  by  surrounding  tissues  (Fig  1.4A),  but  if  isolated,  it  can  be  seen  to 

 show  a  morphology  resembling  that  of  the  adult,  where  it  has  protruded  ventrally  from  the 

 rest of the forebrain (Fig 1.4B-C; Fu  et al.,  2017). 

 However,  when  this  adult-like  protruding  morphology  develops  is  not  well  characterised, 

 likely  because  morphological  changes  occur  rapidly  in  the  developing  prosencephalon, 

 which makes linking early morphological changes across developmental stages difficult. 

 A  candidate  signalling  molecule  which  could  mediate  growth  and  differentiation  (and 

 therefore  more  broadly  linking  morphology  to  cell  fate)  in  the  developing  hypothalamus  is 

 Sonic hedgehog. 
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 1.3 Sonic hedgehog 

 Sonic  hedgehog  is  a  secreted  glycoprotein  with  many  critical  roles  in  vertebrate 

 development.  Sonic  hedgehog  is  encoded  by  the  SHH  gene,  which  was  first  cloned  on  the 

 basis  of  its  high  conservation  with  the  Drosophila  hedgehog  gene  (Echelard  et  al.  ,  1993; 

 Krauss  et al.  , 1993; Riddle  et al.  , 1993; Roelink  et al.  , 1994; Marigo  et al.  , 1995) . 

 Since  then,  Shh  has  become  the  most-studied  member  of  the  hedgehog  family,  and  has 

 been  shown  to  play  a  key  role  in  vertebrate  development  and  organogenesis.  Initial  studies 

 (described  below)  revealed  the  importance  of  Shh  in  patterning  the  embryonic  ventral  neural 

 tube  and  posterior  limb  bud.  Soon  after,  studies  indicated  that  Shh  plays  an  important  role  in 

 directing  a  vast  array  of  developmental  processes  in  the  embryo,  including  development  of 

 the  somites  (Fan  and  Tessier-Lavigne,  1994),  foregut  (Litingtung  et  al.  ,  1998),  lung  (Pepicelli 

 et  al.  ,  1998),  brain  (Ericson  et  al.  ,  1995;  Hynes  et  al.  ,  1995;  Dahmane  and  Ruiz  i  Altaba, 

 1999),  and  wider  craniofacial  development  (Chiang  et  al.  ,  1996;  Dubourg  et  al.  ,  2004; 

 Nagase  et al.  , 2005; Haworth  et al.  , 2007). 

 Further  investigation  showed  that  SHH  has  diverse  functional  roles  in  mediating  and 

 directing  cell  proliferation  in  embryonic  cell  populations  (Rowitch  et  al.  ,  1999),  and  has  a  role 

 in  both  foetal  and  postnatal  life  in  circuit  wiring  and  stem  cell  regulation  (Bhardwaj  et  al.  , 

 2001; Palma  et al.  , 2005; Álvarez-Buylla and Ihrie,  2014, 2014; Garcia  et al.  , 2018) 

 Below,  I  summarise  the  current  state  of  knowledge  regarding  the  roles  of  SHH  as  both  a 

 morphogen and a mitogen in the embryo. 

 1.3.1 Sonic hedgehog as a morphogen 

 Turing  introduced  the  concept  of  a  morphogen  (Turing,  1952),  and  subsequent  studies 

 (Wolpert,  1969;  Crick,  1970)  led  to  its  conventional  definition:  a  molecule  that  diffuses 

 through  cells  and  tissues  to  establish  a  concentration  gradient  that  evokes  discrete  cell 

 responses  at  particular  threshold  concentrations  to  confer  position  identity  and  pattern 

 cell/tissue fields. 

 Classic  grafting  studies  in  the  chick  had  suggested  that  the  dorso-ventral  (DV)  axis  of  the 

 posterior  neural  tube  (the  future  spinal  cord)  and  anterior-posterior  (AP)  axis  of  the  limb  bud 
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 are  patterned  through  the  activity  of  a  morphogen  deriving  from  ventral  midline  cells  of  the 

 notochord  and  floor  plate  (Yamada  et  al.  ,  1991),  and  the  posterior  zone  of  polarising  activity 

 (ZPA)  (Tickle  et  al.  ,  1975),  respectively.  The  cloning  of  SHH  provided  insight  into  the 

 molecular  identity  of  this  morphogen:  SHH  showed  restricted  expression  to  the  notochord, 

 floor  plate  and  ZPA  (Echelard  et  al.  ,  1993;  Krauss,  et  al.,  1993;  Riddle  et  al.  ,  1993;  Chang  et 

 al.  , 1994; Roelink  et al.  , 1994). 

 The  canonical  SHH  signalling  pathway  involves  effector  zinc-finger  transcription  factors  of 

 the  Gli  family:  Gli1,  Gli2,  and  Gli3.  Gli1  exists  only  as  an  activator,  whereas  Gli2  and  Gli3  can 

 be  converted  proteolytically  from  activator  (GliA)  to  repressor  (GliR)  forms  (reviewed  by 

 Carballo  et  al.,  2018).  The  signalling  pathway  is  initiated  when  secreted  SHH  binds 

 Patched1  (Ptc)  at  the  surface  of  a  responsive  cell.  Binding  relieves  inhibition  of  the 

 transmembrane  protein  Smoothened  (Smo)  and  ultimately  triggers  the  activation  of  the  Gli 

 transcription  factors.  This  in  turn  results  in  activation  of  SHH  target  genes,  including  Ptc  , 

 forming a negative feedback loop (Fig 1.5A). 

 Gain-  and  loss-of-function  studies  of  SHH,  or  components  of  its  signalling  pathway,  indicated 

 that  SHH  acts  as  a  stereotypical  morphogen  in  both  the  neural  tube  and  the  limb  bud, 

 establishing  a  concentration  gradient  that  is  translated  into  a  GliA-GliR  gradient  that  patterns 

 these  tissues  and  instructs  cell  fates  (although  note  that  the  precise  regulatory  role  of  each 

 Gli is not fully elucidated) (Riddle  et al.  , 1993;  Ericson  et al.  , 1996). 

 In  the  neural  tube,  SHH  is  secreted  from  the  notochord  and  floor  plate  and  diffuses  through 

 ventral  regions  of  the  neural  tube,  converting  Gli2  and  Gli3  to  GliA  forms,  and  inducing  Gli1 

 (a  GliA)  (Briscoe  and  Thérond,  2013).  In  turn,  this  leads  to  the  establishment  of  different 

 progenitor  cell  types  along  the  dorso-ventral  axis  (Fig  1.5B).  In  the  developing  limb  bud, 

 SHH  is  secreted  from  the  ZPA,  travels  through  the  posterior  limb  bud,  and  confers  posterior 

 identity  through  canonical  induction  of  Gli1  and  prevention  of  Gli3R  (Marigo  et  al.  ,  1996). 

 (Fig  1.5C).  Thus  in  both  systems,  the  relative  levels  of  GliA-GliR,  and  the  balance  between 

 activation  and  repression  of  target  genes,  are  the  pivotal  mechanism  by  which  cells  translate 

 a  gradient  of  SHH  ligand  into  a  discrete  set  of  cell  identities  (Briscoe  and  Thérond,  2013; 

 Tickle and Towers, 2017; Placzek and Briscoe, 2018). 
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 Figure  1.5  Key  features  of  the  SHH  pathway.  (A)  Simplified  schematic  of  the  canonical 

 SHH  pathway.  SHH  binds  to  the  membrane-bound  receptor  Patched1,  relieving  Patched1's 

 constitutive  inhibition  of  Smoothened  (Smo).  Upon  SHH  signalling,  Smo  is  able  to  interact 

 with  Gli  transcription  factors,  which  initiate  transcription  of  SHH  target  genes  such  as  the 

 gene  encoding  Patched1.  This  gives  rise  to  ligand-dependent  antagonism  (LDA;  red  dotted 

 flathead  arrow),  whereby  SHH  network  activity  stimulates  the  expression  of  its  own 

 repressor  (Ptc).  Red  flathead  arrows  indicate  effects  that  occur  in  the  presence  of  SHH 

 binding.  (B)  Simplified  schematic  of  neural  tube  patterning  by  SHH.  SHH  is  expressed  by  the 

 notochord  (NC),  and  movement  of  SHH  into  the  floor  plate  (FP)  induces  SHH  expression  in 

 the  FP.  From  here,  SHH  forms  a  concentration  gradient  from  ventral  to  dorsal  in  the 

 developing  neural  tube,  specifying  neural  progenitors  (p0–3,  pMN).  Dotted  lines  indicate 

 progenitor  region.  (C)  Simplified  schematic  of  limb  bud  digit  patterning  by  SHH.  SHH  is 

 secreted  from  the  zone  of  polarizing  activity  (ZPA)  and  travels  through  the  posterior  limb 

 bud,  specifying  posterior  identity  through  Gli1  and  Gli3  induction.  (D)  Experimental  evidence 

 for  Patched1-dependent  ligand-dependent  antagonism  on  developing  hair  follicles,  adapted 

 from  (Adolphe  et  al.  ,  2017).  Left:  The  levels  of  Gli1  activity  resulting  from  a  proximo-distal 

 SHH  concentration  gradient.  Right:  In  a  Patched1  genetic  knockout,  the  Hedgehog  gradient 

 is  no  longer  attenuated  via  ligand-dependent  antagonism,  so  high  concentration-dependent 

 cell  identities  are  found  more  distally.  Red  dotted  line  is  the  shape  of  the  wild-type  SHH 

 gradient. Adapted from (Groves  et al.  , 2020). 
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 The  mechanisms  through  which  SHH  becomes  spatially  distributed  in  both  the  neural  tube 

 and  limb  bud  remain  poorly  understood  (reviewed  by  (Tickle  and  Towers,  2017;  Placzek  and 

 Briscoe,  2018).  Candidate  mechanisms  include  free  diffusion  (e.g.  that  discussed  in  Crick, 

 1970),  or  diffusion  that  is  modified  by  lipid  modification  of  SHH,  or  its  binding  to 

 proteoglycans in the extracellular matrix (Saha and Schaffer, 2006). 

 More  recently,  additional  features  of  SHH  signalling  have  been  revealed,  indicating  a  large 

 amount  of  complexity  to  the  signalling  pathway  (reviewed  by  (Briscoe  and  Thérond,  2013). 

 SHH  is  modified  by  cholesterol,  which  appears  to  be  vital  to  the  formation  of  SHH  multimers 

 and  permits  SHH  to  move  through  hydrophilic  environments  (Zeng  et  al.  ,  2001).  Further, 

 cholesterol  modification  and  multimer  formation  is  important  for  binding  to  the  cell  membrane 

 and increasing the range of SHH diffusion, respectively (Gallet  et al.  , 2006). 

 SHH  has  also  been  revealed  to  be  associated  with  the  primary  cilia  of  vertebrate  cells. 

 Investigations  into  SHH  signalling  and  cilia  were  prompted  by  comparison  of  genetic 

 knockout  experiments  in  both  mouse  and  Drosophila  of  SHH  signalling  components  (Goetz 

 and  Anderson,  2010).  Additionally,  diseases  involving  dysfunctional  cilia  resemble  diseases 

 involving  dysfunctional  SHH  signalling,  and  studies  have  since  revealed  that  the  primary  cilia 

 is  important  in  vertebrate  SHH  signalling  (Briscoe  and  Thérond,  2013),  and  is  enriched  for 

 Patched1  (Rohatgi,  et  al.  2007).  Collective  studies  investigating  the  location  of  Gli-related 

 processing  components  indicated  that  the  primary  cilia  is  the  location  of  Gli  proteolysis  and 

 therefore  important  in  signal  transduction.  Additionally,  recent  studies  have  highlighted  an 

 interplay  between  Ptc  transport  through  the  cilium  and  cholesterol  signalling  (Weiss  et  al.  , 

 2019). 

 Intriguingly,  the  timing  of  exposure  of  cells  to  SHH  -  in  particular  the  length  of  their  exposure 

 -  are  critical  to  their  development:  cells  are  capable  of  measuring  their  own  exposure  to  SHH 

 and  integrating  this  as  meaningful  information  over  time  (Kohtz  et  al.  ,  1998;  Chinnaiya  et  al.  , 

 2014).  This  challenges  the  conventional  definition  of  SHH  as  a  morphogen,  as  it  means  that 

 absolute  levels  of  SHH  are  not  directly  translated  into  a  spatial  ‘positional’  value  (Briscoe  and 

 Small, 2015). 

 This  is  perhaps  most  well  characterised  in  the  embryonic  chick.  Here,  in  both  the  neural  tube 

 and  the  limb  bud,  SHH  -responsive  cells  integrate  SHH  levels  over  time  and  transiently 

 progress  through  progenitor  identities,  promoting  to  sequential  ventral,  or  posterior  identities 

 (Zhu  and  Mackem,  2011;  Balaskas  et  al.  ,  2012).  Furthermore,  cells  can  become  refractory  to 

 SHH  over  time,  via  the  SHH-induced  negative  feedback  loop  described  above.  Thus,  the 
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 higher  the  amount  of  SHH  signalling  over  time,  the  more  the  pathway  is  suppressed,  a 

 mechanism  termed  ligand-dependent  antagonism  (LDA)  (reviewed  by  Dessaud  et  al.,  2008; 

 Groves  et  al.,  2020)  (Fig  1.5A,  D).  The  dynamic  nature  of  SHH,  with  multiple  methods  of 

 regulation,  indicates  that  to  understand  SHH‘s  action  as  a  morphogen,  it  is  critical  to  study 

 which  cells  are  receiving  SHH  signalling,  where  they  are,  and  for  how  long  they  are  exposed 

 to SHH. 

 1.3.2 Sonic hedgehog as a mitogen 

 A  less  well  characterised  role  for  SHH  is  as  a  mitogen,  i.e.  a  regulator  of  cell  proliferation/cell 

 cycle  progression  (reviewed  by  Fuccillo  et  al.,  2006;  Groves  et  al.,  2020).  First  described  as 

 being  critical  for  proliferation  of  granule  neuron  progenitors  in  the  developing  cerebellum 

 (Dahmane  and  Ruiz  i  Altaba,  1999;  Rowitch  et  al.  ,  1999;  Wallace,  1999;  Wechsler-Reya  and 

 Scott,  1999;  Kenney  and  Rowitch,  2000;  Garcia  et  al.  ,  2018),  SHH  signalling  is  now  known 

 to govern cell proliferation in many tissues. 

 In  the  chick  limb  bud,  classic  studies  suggested  an  integration  of  growth  and  patterning 

 (Towers  et  al.  ,  2008),  and  more  recently  SHH‘s  influence  on  the  cell  cycle  has  been 

 characterised:  SHH  signalling  first  stimulates  ZPA  cell  proliferation  via  Cyclin  D2  before 

 down-regulating  proliferation  in  the  ZPA  through  control  of  BMP2  signalling  (Pickering  et  al.  , 

 2019).  This  fine  control  of  proliferation  by  SHH  ensures  that  the  correct  number  of  digits  form 

 in  the  limb.  In  spinal  cord  progenitors,  SHH  signalling  regulates  the  length  of  the  G1  phase  of 

 the  cell  cycle,  decreases  cell  cycle  length  and  increases  expression  of  Cyclin  D1  and  N-myc, 

 to  expand  specific  progenitor  pools  (Cayuso  et  al.  ,  2006;  Ulloa  and  Briscoe,  2007).  In  the 

 brain,  SHH  induces  progenitor  cell  proliferation  and  the  maintenance  or  growth  of  progenitor 

 cell  populations  (Donovan  and  Dyer,  2005);  similarly,  SHH  has  a  proliferative  role  in  retinal, 

 telencephalic,  and  hypothalamic  progenitors  (Xu  et  al.  ,  2010;  Wilson  et  al.  ,  2012;  Carreno  et 

 al.  ,  2017;  Fu  et  al.  ,  2017).  Moreover,  an  important  feature  of  SHH  control  of  proliferation  is 

 timing,  as  SHH  first  promotes  cell  cycle  progression  but  then  inhibits  it  (Chinnaiya  et  al.  , 

 2014;  Pickering  et  al.  ,  2019)  and  in  this  manner,  can  play  a  role  in  cell  cycle  exit.  Indeed,  in 

 the  hypothalamus  SHH  may  ultimately  upregulate  p57,  driving  cell  cycle  exit  (Fu  et  al., 

 2017). 

 In  summary  SHH  has  multiple  roles  in  many  developing  organs.  In  the  developing 

 hypothalamus  there  is  evidence  that  SHH  may  act  as  a  morphogen,  mitogen,  and  regulator 
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 of  differentiation.  In  the  hypothalamus,  SHH  does  not  simply  provide  positional  information 

 by  establishing  a  spatial  morphogenic  field,  but  instead,  triggers  complex  downstream 

 effects  that  control  the  entire  process  of  morphogenesis:  pattern,  proliferation,  growth  and 

 differentiation.  As  such,  understanding  more  about  the  role  of  SHH  in  hypothalamus 

 development  in  an  integrated  manner  may  provide  clues  as  to  early  hypothalamic 

 regionalisation and morphodynamics. 

 However,  this  multi-faceted  role  of  SHH  in  hypothalamic  development  makes  unpicking  the 

 relative  contributions  of  SHH  expressing  hypothalamic  progenitors  to  the  overall 

 development  of  the  hypothalamus  difficult.  One  challenge  outlined  in  Section  1.1  is  that  the 

 floor  plate-like  cells  undergo  concurrent  specification  and  migration,  all  whilst  SHH 

 expression  is  dynamic:  floor  plate-like  cells  that  migrate  anteriorly  retain,  or  upregulate  SHH  ; 

 central floor plate-like cells switch off  SHH  ; posterior  floor plate-like cells retain  SHH  . 

 Traditionally,  the  actions  of  SHH  have  been  dissected  through  genetic  or  pharmacological 

 interventions,  conducted  and  analysed  at  specific  time-points.  Whilst  these  approaches  have 

 enormous  merit  and  are  highly  tractable,  consideration  needs  to  be  given  to  the  idea  that 

 such  studies  will  inevitably  miss  many  dynamic  events,  given  that  SHH  (and  other 

 developmental  factors)  are  operating  under  tight  timescales  and  have  strong  positive  and 

 negative feedback loops. 

 One  approach  to  ameliorate  this  challenge  is  to  develop  a  more  fine-grained  measure  of 

 development.  In  this  way  researchers  could  begin  to  unpick  the  function  of  SHH  in  the 

 hypothalamus  through  careful  experiments  which  are  more  finely  discretized  through 

 development,  so  as  to  not  miss  key  events.  Below,  I  will  discuss  efforts  to  develop  more 

 fine-grained  methods  of  staging  development,  before  illustrating  how  this  method  could 

 further our understanding of hypothalamus development. 

 1.4 Challenges in developmental staging 

 As  discussed  above,  chick  embryos  have  been  used  to  drive  our  understanding  of  early 

 brain  development  (Placzek  and  Briscoe,  2018).  Yet,  as  with  many  model  organisms  in 

 developmental  biology,  chick  embryos  are  difficult  to  obtain  in  large  numbers.  As  such, 

 developmental  biology  datasets  are  typically  small.  As  a  further  consideration  in  the  chick, 

 the  rate  of  development  is  sensitive  to  both  intrinsic  and  extrinsic  factors  (for  instance, 
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 temperature)  so  developmental  staging  is  usually  based  on  morphology,  not  chronological 

 age. 

 In  the  chick,  developmental  stages  are  made  with  reference  to  the  Hamburger-Hamilton 

 (HH)  1955  staging  guide,  which  assigns  embryos  to  stages  between  HH1  (newly  incubated 

 egg)  through  46  (newly  hatched  chick)  (Hamburger  and  Hamilton,  1951).  This  classic 

 staging  guide  is  based  on  numerous  morphological  metrics,  but  for  early  stages  when  the 

 brain  is  forming,  relies  on  the  number  of  somites  –  segmented  pieces  of  tissue  that  are  laid 

 down  at  highly  regular  intervals  on  either  side  of  the  spinal  cord  (Palmeirim  et  al.  ,  1997). 

 However,  observational  studies  have  shown  that  the  rate/timing  of  development  of  different 

 body  structures,  including  the  brain,  is  subtly  uncoupled  from  somite  number,  and 

 increasingly,  researchers  are  attempting  to  develop  bespoke  staging  methods  for  distinct 

 embryonic  regions  (Newgreen  and  Erickson,  1986;  Palmeirim  et  al.  ,  1997;  Boehm  et  al.  , 

 2011; Sáenz-Ponce  et al.  , 2012; Musy  et al.  , 2018). 

 In  the  neural  tube,  this  asynchrony  could  be  explained  by  the  presence  of  a  highly  migratory 

 type  of  progenitor  cell  called  the  neural  crest  cells.  These  cells  migrate  away  from  the 

 developing  neural  tube  and  contribute  to  a  wide  variety  of  organs  throughout  the  developing 

 embryo  (Newgreen  and  Erickson,  1986).  However,  unlike  when  using  somite  number,  there 

 is no clear timing of neural crest cell migration which has straightforward readouts. 

 One  way  to  address  this  would  be  to  use  different  classification  schema  for  determining  how 

 developed  an  embryo  is.  A  particularly  promising  approach  is  through  the  use  of  deep  neural 

 network based image classifiers. 

 1.5 Image classification 

 Image  classification  is  the  process  of  assigning  an  image  into  a  class,  which  is  a  discrete 

 grouping  of  images  which  share  similar  characteristics  or  features.  Usually,  image 

 classification  problems  are  supervised  problems,  where  the  images  are  manually  labelled  by 

 a  person.  An  early  example  of  supervised  image  classification  is  the  method  of  random 

 forest  classification,  where  satellite  images  were  included  as  part  of  the  cohort  of  test 

 datasets  (Breiman,  2001).  The  field  of  image  classification  has  since  expanded  at  a  rapid 

 pace  since  the  popularisation  of  deep  neural  network  (DNN)  based  image  classifiers.  This  is 
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 because  all  non-neural  network  based  image  classifiers  (henceforth  termed  ‘traditional’ 

 image  classifiers)  typically  underperform  compared  to  DNN  based  classifiers,  and  have  a 

 reduced ability to learn complex features about a dataset. 

 1.5.1 Neural networks for image classification 

 In  classification  problems,  neural  networks  are  statistical  models  which  can  be  used  to 

 estimate  the  probability  of  input  data  belonging  to  a  particular  class  .  In  the  case  of  image 

 classification,  typically  a  neural  network  is  trained  on  some  subset  of  a  labelled  dataset, 

 referred  to  as  the  training  dataset  (Goodfellow  et  al.  ,  2016).  From  this  training  dataset,  the 

 network  learns  features  from  the  image,  makes  a  prediction  about  which  class  the  image 

 image  belongs  to,  checks  this  against  the  label,  and  then  gives  more  weight  to  the 

 components  of  the  network  which  brings  the  estimation  closer  to  the  correct  answer,  or 

 reduces  the  weight  in  the  case  of  a  wrong  answer.  In  this  way  the  network  iteratively  learns 

 which  parts  of  the  dataset  described  the  classes  well.  Adding  several  feature  extraction 

 layers  creates  a  deep  neural  network  (DNN),  which  has  become  the  de  facto  method  of  use 

 of neural networks (LeCun  et al.  , 2015). 

 DNN  image  classifiers  have  become  popular  for  several  reasons.  They  are  well  suited  to 

 supervised  problems,  i.e.  a  classification  problem  where  there  is  a  labelled  dataset  with  the 

 true  classification.  This  is  referred  to  as  the  ground-truth  dataset.  This  forms  the  basis  of  a 

 training  dataset,  from  which  a  DNN  can  iterate  through  whilst  learning  increasingly  complex 

 non-linear  features  about  the  images  in  the  training  dataset,  rather  than  having  to  work  with 

 more  simple,  pre-measured  features.  Perhaps  most  importantly  for  a  developmental 

 biologist,  this  means  that  training  a  DNN  to  solve  a  classification  problem  allows  them  to 

 easily share a method for classifying their data without an exhaustive list of criteria. 

 1.5.2 Developmental biology applications 

 The  use  of  DNNs  in  analyses  of  in  vitro  fertilisation  (Khosravi  et  al.  ,  2019)  and  cell  cycle 

 (Eulenberg  et  al.  ,  2017)  (reviewed  by  (Hallou  et  al.  ,  2021))  first  pointed  to  the  power  of  this 

 approach in the field of developmental biology. 
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 DNNs  were  recently  used  to  classify  the  developmental  stage  of  zebrafish  tailbuds,  an 

 experimental  model  for  posterior  spinal  cord  growth  (Pond  et  al.  ,  2021).  In  this  study, 

 networks  were  trained  on  2-D  and  3-D  image  datasets,  Bayesian  optimisation  (introduced 

 further  below)  was  used  to  tune  network  architecture,  and  success  was  judged  through 

 classification  accuracy.  While  this  study  provides  proof-of-principle  for  using  DNNs  to  classify 

 developmental  stages,  it  did  not  test  the  DNN’s  ability  to  classify  unseen  or  out-of-distribution 

 data  –  its  capability  to  generalise  (Rosin  and  Fierens,  1995).  This  aspect  of  DNNs  in 

 developmental  biology  is  therefore  yet  to  be  fully  leveraged,  and  an  important  goal  is  to 

 determine the approaches that best improve generalisation. 

 It  is  conventionally  thought  that  the  training  of  a  neural  network  requires  a  large  amount  of 

 data.  The  challenge  is  however,  in  many  areas  of  biomedical  science,  it  is  often  impractical 

 to  generate  large  amounts  of  data  due  to  cost,  time,  or  ethics.  In  such  cases,  it  is  important 

 to  maximise  the  utility  of  limited  data  when  training  DNNs,  but  how  best  to  do  this  remains  an 

 open question. 

 1.5.3 Data augmentation 

 When  large  datasets  are  not  available,  data  augmentation  (through  transformations  such  as 

 rotations)  is  a  particularly  useful  technique  for  expanding  the  training  regime,  with  the 

 intention  that  a  classifier  will  learn  the  class-defining  features  of  the  image,  and  will  disregard 

 irrelevant features, including image acquisition artefacts (Simard  et al.  , 2003). 

 Augmentation  transformations  include  those  that  are  ‘label-preserving’,  i.e  preserve  the 

 features  of  the  image  that  originally  assigned  it  to  a  given  class.  In  addition,  new  data 

 augmentation  methods  have  been  developed  that  only  partially  preserve  labels,  for  instance, 

 an  approach  where  a  ‘cutout’  is  used  to  mask  a  random  portion  of  the  image  (DeVries  and 

 Taylor,  2017).  This  approach  reduces  the  classifier’s  reliance  on  those  masked  parts  of  the 

 image.  As  a  result,  the  classifier  is  encouraged  to  learn  more  general  features,  thus 

 becoming more robust and less sensitive to artefacts in the training dataset. 

 Another  augmentation  method  that  partially  preserves  labelling  are  Möbius  transformations, 

 which  are  bijective  conformal  mappings  (Zhou  et  al.  ,  2021)  i.e.  that  lines  and  curves  in  the 

 input  are  mapped  to  a  transformed  line  or  curve  in  the  output  but  local  angles  are 

 preserved.  In  this  way,  Möbius  transformations  are  some  combination  of  other  simpler 
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 transformations,  e.g.  translation,  rotation,  scaling.  Möbius  transformations  have  been  used 

 successfully  in  image  classification  in  non-biomedical/developmental  biology  use-cases,  and 

 have  been  found  to  be  useful  in  training  networks  on  limited  datasets.  To  date,  Möbius 

 transformations  are  untested  on  developmental  biology  datasets.  This  may  be  worth 

 exploring  as  they  may  be  particularly  effective  in  accounting  for  user  error  in  microscopy 

 image  acquisition.  For  example,  if  a  user  damages  the  sample  during  acquisition,  Möbius 

 transformations  may  be  able  to  emulate  this.  By  normalising  the  user  error  feature  space, 

 the DL algorithm is discouraged from learning these erroneous features. 

 Besides  data  augmentation,  classifier  performance  may  be  improved  by  optimising 

 parameters  of  the  DNN  that  are  set  prior  to  training.  These  so-called  hyperparameters 

 include  the  number  of  computational  units  (neurons)  in  the  network,  and  the  rate  at  which 

 these  units  update  –  the  learning  rate.  Hyperparameter  optimisation  is  typically  carried  out 

 via  systematic  (LeCun  et  al.  ,  1998)  or  random  (Bergstra  and  Bengio,  2012)  testing  of  values. 

 More  recently,  Bayesian  optimisation  techniques  have  been  leveraged,  with  a  surrogate 

 probability  model  used  to  inform  which  values  are  tested  (Shin  et  al.  ,  2020).  An  open 

 question  then,  when  training  DNNs  on  microscopy  images,  is  how  to  exploit  data 

 augmentation and network optimisation techniques to best exploit small datasets. 

 One  way  that  this  could  be  answered  is  through  incorporation  of  domain  expertise.  In 

 statistics,  domain  expertise  is  contextual  knowledge  or  factual  insight  which  relates 

 specifically  to  the  dataset  which  is  being  modelled  (Hjørland  and  Albrechtsen,  1995).  In  the 

 case  of  developmental  biology,  this  could  take  many  forms.  For  example,  specific  features  of 

 the  development  of  a  tissue  down  to  a  molecular  or  cellular  level,  or  relatively  higher  level 

 considerations,  such  as  what  microscope  data  were  acquired  on,  etc.  Intuitively, 

 incorporating  domain  expertise  when  designing  a  strategy  to  deal  with  an  image 

 classification problem may improve the classification accuracy. 

 Another  challenge  in  training  image  classifiers  for  specific  applications  in  developmental 

 biology  is  assessment  and  analysis  of  the  resulting  classifier.  One  way  that  this  can  be  done 

 is  through  saliency  maps.  These  are  visualisations  which  show  parts  of  an  input  image  the 

 classifier  is  using  to  make  a  classification  (Simonyan  et  al.  ,  2014),  assessing  both  the 

 efficacy  of  data  augmentation,  and  a  DNN’s  capability  to  generalise.  In  this  way,  saliency 

 maps  enable  insight  into  the  ‘black  box’  approach  of  using  a  high  accuracy  DNN  classifier, 

 an important step in increasing uptake of DNN use in developmental biology. 
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 1.6 Thesis aims 

 Recent  studies  have  dramatically  advanced  our  understanding  of  early  hypothalamus 

 development.  Why  these  studies  have  only  come  recently  is  because  the  hypothalamus  is 

 relatively  difficult  to  study.  It  is  specified  early  compared  to  many  other  developing  organs, 

 and  it  appears  that  progenitor  cells  in  the  hypothalamus  progress  rapidly  through  different 

 molecular  states.  Further,  there  has  been  relatively  little  characterisation  of  the  tissue 

 morphology  at  early  time  points,  and  how  the  development  of  that  morphology  may  be 

 influenced by and in turn influence further hypothalamus development. 

 There  is  now  a  good  understanding  of  when  the  hypothalamus  is  specified,  at  around  HH8. 

 However  the  morphology  of  this  stage  (and  others)  is  difficult  to  examine  experimentally, 

 requiring fine microdissection to preserve the 3-D neuroepithelium. 

 Further,  whilst  Kim  et  al.  (2022),  and  Fu  et  al.  (2017)  made  progress  towards  characterising 

 hypothalamic  progenitor  locations  and  transitions  in  molecular  identity,  a  complete 

 understanding  has  not  yet  been  achieved.  This  is  likely  due  to  the  rapid  and  early 

 development  of  the  hypothalamus,  making  it  easy  to  miss  important  developmental 

 milestones and short lived molecular identities of the progenitor cell populations. 

 These considerations in mind lead to the following open questions: 

 1.  Can  DNNs  be  used  to  sub-stage  the  developing  chick  brain  in  a  more  fine-grained 

 manner than conventional staging methods (i.e. Hamburger-Hamilton)? 

 2.  What is the structure of the early tissue morphology when: 

 a.  The hypothalamus is being specified? 

 b.  The hypothalamus is being organised into distinct progenitor regions? 

 3.  What  are  the  earliest  signs  of  regionalisation  that  prefigure  the  organisation  of  the 

 hypothalamus  into  anterior  and  posterior  tuberal,  and  mammillary  progenitor 

 domains? 

 4.  To  what  extent  is  the  regionalisation  of  the  developing  hypothalamus  intrinsic,  or 

 does it rely on external factors (e.g. from the PM)? 

 To address these questions, I aimed to conduct the following research: 
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 1)  I  began  by  subdividing  HH10,  a  critical  and  dynamic  stage  in  hypothalamus 

 development.  I  sought  to  understand  to  what  extent  any  morphology-based 

 sub-stages  I  derived  could  be  made  reliable  and  consistent  through  the  use  of 

 DNN-based image classification (Chapter 3). 

 2)  With  an  accurate  classifier,  I  then  aimed  to  further  characterise  morphology  in  3-D  at 

 and around my sub-stages (Chapter 4). 

 3)  Having  conducted  a  thorough  morphological  study  of  these  stages,  I  next  aimed  to 

 see  whether  these  morphological  structures  could  be  explained/linked  to  early  gene 

 expression dynamics (Chapter 5). 

 4)  Finally,  I  wished  to  test  to  what  extent  the  morphological  and  molecular  development 

 I  characterised  in  Chapters  4-5  was  autonomous,  through  the  use  of  ex  vivo  tissue 

 culture (Chapter 6). 
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 Chapter 2 

 Materials and Methods 

 2.1 Image classifier construction and training 

 2.1.1 Data acquisition 

 Ground-truth  data  used  for  training  and  validating  the  image  classifier  comprised  bright-field 

 and  phase  contrast  microscopy  images  of  HH10  (9-12  somite)  chick  embryos,  and  included 

 published  and  unpublished  data.  Images  were  acquired  using  the  following  microscopes: 

 Olympus  BX60,  Zeiss  AxioImager.Z1,  and  a  Leica  dissecting  microscope  at  4x  or  10x 

 magnification.  Training  data  were  labelled  into  three  sub-stages,  termed  10.1,  10.2  and  10.3, 

 based  by  Prof.  Marysia  Placzek,  according  to  the  gross  morphology  of  the  HH10  brain. 

 Briefly,  stages  were  assigned  according  to  the  overall  shape  of  the  prosencephalon,  the 

 angle  of  the  posterior  prosencephalon  relative  to  the  prosencephalic  neck,  and  optic  vesicle 

 shape.  There  are  151  images  in  the  dataset,  with  54  sub-stage  10.1,  55  sub-stage  10.2,  and 

 42  sub-stage  10.3  embryos  respectively.  The  limb  dataset  contained  269  images,  with  150 

 labelled  as  control,  and  119  labelled  as  treated,  and  were  acquired  as  described  in  (Towers 

 et  al.  ,  2008).  The  images  of  both  datasets  were  JPEG  format,  and  varied  in  resolution,  from 

 188 x 188 to 1000 x 1000 pixels. 

 2.1.2 Statistical analysis of somite numbers 

 I  did  not  assume  that  the  variance  of  somite  number  with  sub-stages  is  evenly  distributed. 

 Therefore, this relationship was analysed by an unpaired  t  -test with Welch’s correction. 
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 2.1.3 Clustering analysis of brain dataset 

 I  first  reduced  the  dimensionality  of  the  raw  images  via  principal  component  analysis  (PCA) 

 (Partridge  and  Calvo,  1998).  I  determined  the  appropriate  number  of  PCs  to  be  2  by 

 iteratively  increasing  this  number  from  1  until  I  found  diminishing  returns  in  the  proportion  of 

 variance  explained.  I  then  performed  k  -means  clustering  on  the  dimensionally-reduced 

 dataset  (Ranjan  et  al.  ,  2017),  determining  the  appropriate  number  for  k  to  be  3  by  iteratively 

 increasing  this  number  from  1  until  I  found  diminishing  returns  in  the  reduction  in 

 within-cluster  sum  of  squares  (WCSS)  (Bholowalia  and  Kumar,  2014).  All  clustering  was 

 implemented  in  Python  3.6  using  scikit-learn  0.24.1  (Pedregosa  et  al.  ,  2011).  Chapter  3,  Figs 

 3.2-3.3  were  generated  using  seaborn  0.11.2  (Waskom  et  al.  ,  2021)  and  matplotlib  3.2.2 

 (Hunter, 2007). 

 2.1.4 Data preprocessing 

 I  tested  a  variety  of  data  augmentation  regimes  (Tables  3.1-3.2  Appendix  Tables  2-4,  Fig 

 3.4).  To  make  the  trained  model  invariant  to  image  features  that  are  not  classifying  (e.g. 

 scale,  colour),  various  preprocessing  methods  were  applied.  Images  were  converted  to 

 grayscale,  resizing  to  200  x  200  pixels  using  openCV  (3.4.2.17)  and  pillow  (8.3.1)  (Bradski, 

 2000;  Clark,  2015).  200  x  200  is  sufficiently  small  to  be  easily  processed,  whilst  retaining 

 sufficient  spatial  resolution  to  distinguish  morphology.  I  normalised  the  histograms  of  each 

 image,  using  the  pillow  function  ImageOps.equalize  (Clark,  2015).  This  served  to  brighten 

 images  that  were  too  dark  and  vice  versa.  For  sharpening  (Table  3.1),  I  used  the  pillow 

 function ImageFilter.SHARPEN (Clark, 2015). 

 2.1.5 Data augmentation 

 Following  preprocessing,  I  constructed  a  baseline  augmented  dataset.  For  microscopy 

 images,  a  common  user-generated  feature  during  data  collection  is  the  orientation  of  the 

 sample.  Thus  I  included  rotation  as  a  baseline  augmentation,  choosing  to  rotate  each  image 

 by  36  multiples  of  10°.  The  rotation  method  enlarged  the  images  on  rotation  without  cutting 
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 off  any  part.  This  meant  that  in  addition  to  rotational  and  colour  invariance,  scale  invariance 

 would  be  included  into  the  baseline  datasets.  For  the  limb  classification,  I  also  incorporated 

 flipped  images  as  part  of  the  baseline,  ensuring  the  left/right  symmetry.  All  augmentations 

 were implemented with imgaug 4.0 (Jung  et al.  , 2020). 

 2.1.6 Traditional classifiers 

 To  construct  my  Random  Forest,  Support  Vector  Machine  (SVM),  and  k  -Nearest  Neighbour 

 (KNN)  classifiers,  I  used  scikit-learn  (Pedregosa  et  al.  ,  2011).  For  each,  I  fit  10  separate 

 models,  generating  a  new  training  and  validation  split  for  each  model.  The  data  splitting 

 followed a 80:20 ratio (120 training, 31 validation images). 

 2.1.7 Cross-validation 

 Initially,  I  used  hold  out  cross-validation,  where  a  portion  of  the  dataset  (in  my  case,  20%)  is 

 held  back  and  used  as  a  validation  set.  I  trained  10  models  per  augmentation  regime, 

 reshuffling  the  training/validation  data  each  time.  My  results  were  substantially  variable,  e.g. 

 for  models  trained  on  the  Baseline  dataset,  the  difference  between  the  minimum  and 

 maximum  validation  accuracy  was  26.9%  (Appendix  Table  4).  I  supposed  that  this  variability 

 was  a  product  of  the  small  dataset.  As  20%  of  the  dataset  was  being  held  back,  even  just  a 

 few  skewed  features  present  in  the  training  or  validation  set  would  affect  results.  Therefore,  I 

 employed  k  -fold  cross  validation  (Tables  3.1-3.2,  Appendix  Tables  2-3).  This  ensured  that  I 

 made  use  of  the  entire  dataset,  as  well  as  isolating  the  portions  of  the  data  contributing  to 

 variable  results  (Fushiki,  2011).  Briefly,  I  partitioned  the  dataset  into  10  non-overlapping  folds 

 of  15  images.  I  then  trained  the  network  on  folds  2-10  and  validated  with  the  first  fold. 

 Following  this,  the  network  was  then  trained  with  folds  1  and  3-10,  with  the  second  subset 

 used  to  validate.  This  proceeded  until  all  folds  were  used.  In  this  way,  I  averaged 

 performance of the neural network across the entire dataset. 
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 Figure  2.1  Image  classifier  network  architecture.  After  the  input  layer,  the  image  was 

 processed  following  the  VGG  block  style,  i.e.  through  increasingly  wide  convolution  and  max 

 pooling  layer  pairs  (Simonyan  and  Zisserman,  2014).  At  each  ‘block’  I  used  a  single 

 convolutional  layer  which  retains  resolution  through  padding.  Following  this,  a  max  pooling 

 layer  is  used  as  a  method  of  spatial  downsampling.  Between  each  convolutional  layer  and 

 max  pooling  layer  there  is  a  non-linear  ReLU  activation  function  and  a  dropout  layer.  For 

 simplicity,  only  2  of  the  blocks  are  shown.  After  the  final  max  pooling  layer,  the  data  was 

 passed  through  a  wide  fully  connected  layer.  Lastly,  the  classification  is  made  in  the  output 

 layer. Diagram generated using NN-SVG (LeNail, 2019). 

 2.1.8 Neural network architecture 

 I  based  my  bespoke  DNN  on  the  Visual  Geometry  Group  (VGG-16)  model  architecture, 

 which  has  been  highly  successful  for  image  classification  (Simonyan  and  Zisserman,  2014) 

 (Fig  2.1).  This  architecture  involves  repeated  functional  units  or  VGG  ‘blocks’,  each 

 comprising  a  convolution  layer  with  resolution  preservation  followed  by  a  max-pooling  layer 

 that  performs  two-fold  spatial  down-samplin.  I  depart  here  from  VGG-16,  as  I  only  include 

 one  convolutional  layer  between  each  max  pooling  layer.  Between  the  convolutional  and 

 max-pooling  layers  there  is  a  Rectified  Linear  Unit  (ReLU)  activation  function  (Agarap, 

 2018).  As  the  actual  spatial  resolution  of  the  data  decreases,  the  number  of  filters  doubles. 

 Thus,  the  first  layer  that  receives  the  200  x  200  image  input  has  16  functional  units,  which  is 

 repeated  6  more  times  resulting  in  a  final  convolutional  layer  with  dimensions  4  x  4,  with 

 1024  functional  units.  This  follows  a  similar  pattern  to  VGG-16,  however  the  largest 

 convolutional  layer  in  VGG-16  is  512  wide,  whereas  I  extend  to  1024.  Following  these 

 blocks,  I  include  a  fully  connected  layer  of  1024  units,  followed  by  a  softmax  classification 
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 layer  for  the  brain  classification,  or  a  sigmoid  classification  layer  for  the  limb  classification. 

 Here,  my  model  differs  from  VGG-16,  which  uses  three  wider  fully  connected  layers.  All 

 neural  networks  were  built  with  Keras  2.3.0  (Chollet  and  others,  2015)  and  trained  using 

 TensorFlow 2.2.0 (Abadi  et al.  , 2015). 

 2.1.9 InceptionV3 and ResNet50 

 I  tested  two  common  neural  network  architectures:  InceptionV3  (Szegedy  et  al.  ,  2015)  and 

 ResNet50  (He  et  al.  ,  2016).  First,  I  randomised  the  weights,  before  training  for  1-50  epochs 

 (full  training  cycles).  The  exact  number  of  epochs  varied  as  I  implemented  early  stopping, 

 halting  training  if  10  epochs  had  passed  without  a  change  in  validation  accuracy  over  a 

 0.01%  threshold.  The  number  of  epochs  to  pass,  and  the  early  stopping  threshold,  were 

 selected  empirically  based  on  the  speed  at  which  models  that  were  allowed  to  run  to  50 

 epochs  converged.  When  this  was  triggered,  I  restored  the  highest  scoring  weights  in 

 training  before  saving  the  model.  Following  the  typical  approach  (Goodfellow  and  Bengio, 

 2016)  I  inserted  a  softmax  classification  layer  as  the  last  layer  in  the  model.  The  softmax 

 activation  performs  the  actual  classification  by  transforming  the  input  between  0  and  1 

 outputting  three  values  which  sum  to  1,  which  effectively  define  probabilities  of  the  input 

 belonging  to  each  sub-stage.  This  was  necessary  as  both  InceptionV3  and  ResNet50  were 

 designed  around  the  ImageNet  dataset  (1000  classes).  I  used  the  Adaptive  Moment 

 Estimation  (Adam)  optimiser  with  an  initial  learning  rate  of  10  −4  (Zhang  and  Mitliagkas, 

 2019),  but  decreased  this  to  10  −5  after  I  observed  overfitting.  However,  10  −5  is  also  commonly 

 used  for  image  classification  (Zhang  and  Mitliagkas,  2019;  Margapuri  et  al.  ,  2020). 

 Hyperparameter  fine-tuning  was  implemented  using  TensorFlow  2.2.0  (Abadi  et  al.  ,  2015) 

 and Keras 2.3.0 (Chollet and others, 2015). 
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 2.1.10 Training regime 

 As  above,  I  trained  for  no  more  than  50  epochs,  and  implemented  early  stopping.  I 

 regularised  the  network  with  L  2  regularisation  (weight  decay),  which  penalises  large  weights 

 in  the  neural  network  (Goodfellow  and  Bengio,  2016).  The  key  parameter,  λ  ,  is  a  fraction  of 

 the  sum  of  the  squared  weights  of  the  network.  As  λ  increases,  the  loss  function  value 

 increases.  Because  a  neural  network  is  optimised  by  minimising  the  loss  function,  L  2 

 regularisation  encourages  smaller  weights  and  thus  less  complex  models.  I  chose  the 

 numerical  value  of  λ  through  Bayesian  optimisation  (Appendix  Table  6)  as  10  −4  .  This  value 

 has been found to be effective in training image classifiers (Gabas  et al.  , 2016). 

 I  also  used  dropout,  which  randomly  turns  off  neurons  in  a  layer  at  a  given  rate  (Srivastava, 

 2013).  This  discourages  individual  neurons  from  becoming  dominant,  encouraging  a 

 classifier  with  better  generalisability.  I  added  a  20%  dropout  layer  between  each 

 convolutional  and  max  pooling  layer,  and  a  50%  dropout  layer  before  the  final  classification; 

 these  percentages  were  also  determined  through  Bayesian  optimisation  (S6  Table).  I  used 

 the  optimiser  Adam,  with  a  learning  rate  of  10  −4  ,  determined  through  Bayesian  optimisation 

 (Appendix  Table  6).  I  set  the  range  of  trialled  learning  rates  to  test  during  optimisation 

 (10  -1  –10  -6  )  according  to  my  InceptionV3/ResNet50  learning  rate  of  10  −5  .  My  model  has  fewer 

 trainable  parameters  than  both  InceptionV3  and  ResNet50.  Due  to  this,  training  converged 

 more  slowly,  and  therefore  it  is  unsurprising  that  my  model  performed  optimally  with  a  faster 

 learning rate than ResNet50 or InceptionV3. 

 2.1.11 Saliency analysis 

 I  generated  saliency  maps  using  tf-keras-vis  0.8.0  (Yasuhiro,  2021).  In  these,  image  pixels 

 are  coloured  based  on  whether  they  contribute  positively  (hot  colours)  or  negatively  (cold 

 colours)  towards  the  output  prediction.  This  produces  a  map  of  the  features  of  an  input  the 

 network  deems  most  and  least  important  towards  a  classification.  I  used  the  SmoothGrad 

 method,  which  produces  clean  saliency  maps  by  adding  noise  to  the  input  image  (Smilkov  et 

 al.  ,  2017).  To  understand  the  decision  making  of  the  classifier  on  real-world  data,  I  generated 

 the saliency maps using test images, which were not involved in model training or validation. 
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 2.1.12 Software 

 The  neural  networks  were  built  and  trained  using  Python  3.6.  The  models  were  trained  on  a 

 NVIDIA  Tesla  V100  GPU  using  the  HPC  system  provided  by  the  Joint  Academic  Data 

 Science  Endeavour  (JADE)  II.  The  code  and  software  dependency  list  are  publicly  available 

 at  https://github.com/ianbgroves/chick_embryo_DCNN_classifier  . 

 2.2 Chick embryo dissection and histological techniques 

 Fertilised  Bovan  brown  chicken  eggs  (Henry  Stewart  &  Co,  Norfolk,  UK)  were  incubated  in 

 humidified  37℃  incubators,  collected  from  eggs,  and  staged  according  to  the  Hamburger 

 and  Hamilton  staging  criteria  (Hamburger  and  Hamilton,  1951),  or  where  stated  according  to 

 my HH10 sub-staging system (labelled 10.1, 10.2, 10.3 for staging criteria see Fig 3.1). 

 All  dissections  used  No.5  forceps  (Dumont,  11251-20),  spring  scissors  (Vannas,  15018-10), 

 and tungsten needles sharpened via electrolysis. 

 All  experiments  involving  live  chick  embryos  conformed  to  the  regulatory  standards  of  the 

 University  of  Sheffield,  and  were  carried  out  according  to  the  UK  Animals  (Scientific 

 Procedures)  Act  1986.  No  ethical  approval  or  Home  Office  licensing  was  required,  as  chicks 

 were  not  incubated  beyond  E3.5  (hatching  is  E21).  Named  Animal  Care  and  Welfare  Officers 

 (NACWOs) had oversight of all incubated eggs. 

 2.2.1 Sagittal sectioning 

 Embryos  were  collected  as  described  above,  then  washed  in  phosphate-buffered  saline 

 (PBS;  Sigma,  P4417),  and  equilibrated  overnight  at  4℃  in  30%  sucrose  (Sigma,  S0389)  for 

 cryoprotection. 
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 2.2.2 Neuroepithelia dissection 

 Hamburger-Hamilton  stage  6-14  embryos  were  removed  from  the  egg  using  and  incubated 

 in  1mg/ml  Dispase  I  (Roche)  at  room  temperature  for  10-25  minutes  depending  on  stage. 

 Following  this,  neuroepithelia  were  extracted  from  the  underlying  mesoderm  and  endoderm 

 tissue using tungsten needles (Fig 2.2). 

 2.2.3 Explant dissection 

 Neuroepithelia  were  acquired  as  described  in  Section  2.1.1,  and  hypothalamic  tissue  was 

 explanted  using  tungsten  needles.  Four  cuts  were  made,  such  that  the  explanted  tissue  is 

 approximately  a  square  of  tissue  around  the  ventral  midline.  At  stages  HH8-9,  the  explanted 

 region  was  guided  by  the  gene  expression  domains  of  Sonic  Hedgehog  (  SHH)  and 

 Patched-1  (PTCH1)  .  At  stage  HH10  (i.e.  10.1-3),  the  explanting  was  guided  by  the 

 A-fold/A-base morphology described in Chapter 4. 
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 Figure  2.2  Dissection  of  chick  embryonic  neuroectoderm.  (A)  Bright-field  images 

 showing  dorsal  views  of  wholemounted  HH8-HH12  embryos  reproduced  from  (Hamburger 

 and  Hamilton,  1951).  (B):  Bright  field  image  showing  a  ventral  view  of  an  HH11  embryo 

 partially  dissected  following  protease  digestion,  with  key  anatomic  features  labelled.  A-P: 

 Anterior-posterior.  D-V:  Dorsal-ventral.  L-R:  Left-right.  (C)  Dissection  of  neuroectoderm 

 allows  for  visualisation  of  hypothalamic  morphology.  (i-iv)  Bright  field  images  showing  ventral 

 views  of  HH10-12  isolated  neuroepithelia.  Magenta  arrowheads  indicate  a  thickening  of 

 tissue in the rostral diencephalic ventral midline. Magnification – 5.4x. Scale bars: 200µm. 
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 2.2.4 Hybridisation Chain Reaction  in situ  hybridization 

 Samples  were  fixed  in  4%  Paraformaldehyde  (PFA)  at  4℃,  dehydrated  in  a  methanol  series 

 and  stored  (minimum)  overnight  at  -20℃.  Following  dissection,  the  samples  were  rehydrated 

 in  a  reverse  methanol  series  and  washed  in  phosphate-buffered  saline  +  0.1%  Tween-20 

 (PBST).  The  samples  were  then  incubated  in  Proteinase  K  (10µg/mL)  for  120-210  seconds 

 (depending  on  sample  developmental  stage),  refixed  in  4%  PFA  at  4℃  which  was  then 

 washed off with PBST, followed by washes with 5X Saline-Sodium Citrate (SSC). 

 Following  this,  the  neuropethelia  were  incubated  in  hybridisation  buffer  for  30  minutes  at 

 37℃.  Next,  the  samples  were  incubated  at  37℃  overnight  with  mRNA  probes  targeting  the 

 gene  of  interest,  which  contained  an  l1  initiator  sequence  with  the  ability  to  bind  to 

 fluorescently tagged DNA (Fig 2.3A). 

 The  following  day,  the  samples  were  washed  as  follows:  4  times  with  HCR  wash  buffer,  2 

 times  with  5X  SSC  buffer.  The  samples  were  then  pre-incubated  with  amplification  buffer  for 

 5  minutes.  Fluorescently  tagged  DNA  Hairpin  pairs  matching  the  probes  were  snap-cooled 

 by  heating  to  95℃  for  90  seconds  and  allowed  to  cool  to  RT  in  the  dark  for  30  minutes. 

 Snap-cooling  is  a  necessary  step,  as  it  removes  any  aberrant  polymerisation  of  the  hairpins 

 that  may  have  occurred  in  storage,  ensuring  that  the  hairpins  form  monomeric  strands  (Choi 

 et  al.  ,  2018).  Following  this,  hairpin  pairs  were  mixed  with  the  amplification  buffer  and  the 

 solution  was  added  to  the  samples  (Fig  2.3B).  These  were  incubated  overnight  at  RT,  in  the 

 dark.  Here,  the  chain  reaction  took  place,  whereby  the  hairpins  bound  to  the  l1  initiator 

 sequence  assembled  long  sequences  with  multiple  fluorophores,  amplifying  the  fluorescent 

 signal  (Fig  2.3C).  The  following  day,  samples  were  washed  5  times  in  5X  SSC,  followed  by 

 a final wash of PBST + DAPI (1µL/mL). 

 For  probe  stripping,  the  samples  were  washed  in  2X  SSC  +  Tween  20  (SSCT),  preincubated 

 in  DNAse  buffer  for  15  mins  (100µL/mL  in  H20)  (Fig  2.3D).  After  this,  the  samples  were 

 incubated  overnight  in  DNAse  I  in  solution  (10µL  DNase  I,  50µL  DNase  buffer,  440µL  H20). 

 The  next  day,  the  samples  were  washed  three  times  with  30%  formamide  in  2X  SSC  and 

 three  times  with  2X  SSC.  After  this,  the  samples  were  labelled  via  the  HCR  method  detailed 

 above. 
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 Figure 2.3 Hybridisation chain reaction protocol.  (A) mRNA probes containing an 

 initiation l1 sequence, designed against the target mRNA are hybridised to the target. (B) 

 After hybridisation, hairpin DNA pairs are added to the solution, which bind to the l1 

 sequence. (C) The mechanism through which the chain reaction is propagated. The bound 

 probe containing the HCR initiator l1 sequence triggers the chain reaction, a self-assembly 

 of the hairpin DNA molecules, which are attached to a fluorophore for visualisation. (D) After 

 imaging, the samples can be re-probed through incubation with DNase, which detaches the 

 hairpin sequence and probe. Adapted from (Choi  et  al.  , 2018). 
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 2.2.5 Proliferation analysis 

 For  the  proliferation  analysis  in  Section  4.2.3,  I  detected  proliferating  cells  in  two  ways:  First, 

 using  the  Click-IT  EdU  Alexa  Fluo  488  kit  (Life  Technologies,  C10337).  HH10-12  embryos 

 were  incubated  in  ovo  by  windowing,  applying  0.5mM  EdU,  resealing  and  incubating  at  37C 

 for  1.5h.  Embryos  were  then  fixed  and  neuroepithelia  dissected  as  described  above.  EdU 

 staining was performed according to the manufacturer’s instructions. 

 Phospo-histone  H3  (pH3)  labelling  was  performed  as  follows:  Embryos  were  collected, 

 neuroepithelia  dissected,  and  fixed  as  described  in  Section  2.2-2.2.2.  Neuroeptihelia  were 

 then  washed  with  PBS  three  times,  and  preblocked  with  a  blocking  buffer  (PBS  +  1% 

 Triton-X-100,  10%  Heat  inactivated  goat  serum  (HINGS)).  Neuroepithelia  were  then 

 incubated  overnight  with  primary  anti-pH3  (raised  in  rabbit)  diluted  1/1000  in  the  blocking 

 buffer.  The  next  day,  the  neuroepithelia  were  washed  twice  with  PBS  at  room  temperature, 

 before  being  washed  overnight  in  PBS  +  10%  HINGS.  On  the  next  day,  secondary 

 antibodies  were  added  overnight  in  the  dark,  on  a  rocker  at  4℃  (Alexa  Fluo  488  at  1/500 

 dilution, Molecular Probes). Finally, neuroepithelia were washed twice with PBS and imaged. 

 2.3 Image acquisition and processing 

 All fluorescent images (Chapters 4-6) were processed using FIJI (Schindelin  et al.  , 2012). 

 2.3.1 Whole embryo imaging 

 Stage  10.1-10.3  embryos  were  imaged  under  a  Leica  dissecting  microscope  using  a  4x 

 objective, dorsal side down. 

 42 



 2.3.2 Wholemount neuroepithelia imaging 

 Wholemount  neuroepithelia  were  imaged  under  a  Zeiss  Apotome  2  using  a  10x  objective. 

 Neuroepithelia  were  imaged  dorsal  side  down  in  a  depression  slide,  immersed  in 

 Fluoroshield and captured by the Zen AxioVision software. 

 2.3.3 Imaging sagittal sections 

 Sagittal  sections  were  imaged  under  a  Zeiss  Apotome  2  in  Fluoroshield  and  captured  by  the 

 Zen AxioVision software. 

 2.3.4 Confocal imaging 

 Membrane  labelled  neuroepithelia  were  imaged  under  a  Zeiss  LSM  980  Airyscan  2  dorsal 

 side  up  in  a  depression  slide,  immersed  in  Fluoroshield  and  captured  by  the  Zen  blue 

 software. 

 2.3.5 Lightsheet imaging 

 The  HH12  embryo  used  for  surface  mesh  reconstruction  was  imaged  under  a  Zeiss  LSM 

 980 Airyscan 2 confocal microscope. 

 2.3.6 Mesh processing 

 All  surface  meshes  were  reconstructed  from  fluorescent  images  of  DAPI  labelled  nuclei 

 using  the  3D  viewer  plugin  for  FIJI  (Schmid  et  al.  ,  2010).  Meshes  were  exported,  and 

 processed  initially  in  Meshmixer  (Autodesk).  Here,  the  meshes  were  simplified  (for 

 tractability  of  processing),  and  minor  holes  were  filled  automatically.  These  meshes  were 

 then  imported  into  MeshLab  (Cignoni  et  al.  ,  2008),  smoothed,  and  the  mean  curvature  of  the 

 tissue  was  computed.  Outliers  were  removed  by  capping  the  range  of  the  data,  and  the 

 curvature values for each vertex were rescaled between 1 and -1 through the function 
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 where  q  is  the  mean  curvature  of  a  given  vertex  in  the  mesh  and  q  max  and  q  min  are  the 

 maximum and minimum values of  q  over all vertices. 

 2.3.7 3-D cell segmentation 

 The  image  of  the  β-catenin  labelled  neuroepithelium  was  downscaled  using  FIJI,  resized  to  a 

 voxel  resolution  of  z  =  0.235um,  xy=  0.15um  to  match  the  input  resolution  of  the  confocal 

 3-D-U-Net.  Segmentation  was  completed  using  the  included  in  the  cell  segmentation 

 pipeline  PlantSeg  (Wolny  et  al.  ,  2020).  Briefly,  membrane  predictions  were  generated  using 

 the  pre-trained  3-D  confocal  U-Net  (Ronneberger  et  al.  ,  2015),  These  predictions  were  then 

 segmented  into  labelled  objects  (representing  cells)  using  the  partitioning  method  GASP 

 (Bailoni  et al.  , 2019). 

 2.3.8 Morphometric analysis 

 Segmented  cells  were  analysed  using  the  FIJI  plugin  MorpholibJ  (Legland  et  al.  ,  2016).  The 

 total  number  of  voxels  for  each  segmented  object  was  calculated  and  used  to  filter  out 

 objects  which  were  too  large  or  too  small  and  the  remaining  objects  analysed  for  sphericity, 

 surface  area,  and  volume.  Surface  area  was  calculated  using  a  discretised  Crofton  formula 

 (Lehmann  and  Legland,  2012).  Volume  was  calculated  by  counting  the  number  of  voxels 

 (weighted  by  the  size  of  an  individual  voxel).  Sphericity  was  calculated  the  normalised  ratio 

 of the squared velocity over the cubed surface area, i.e. 
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 Chapter 3 

 Using image classification to characterise a novel 

 staging system for the developing chick brain over 

 HH10 

 3.1 Introduction 

 As  described  in  Chapter  1,  chick  embryos  have  been  used  to  drive  our  understanding  of 

 early  brain  development.  In  the  chick,  the  rate  of  development  is  sensitive  to  extrinsic  factors 

 –  for  instance,  temperature  –  developmental  staging  is  based  on  morphology,  not 

 chronological  age.  Developmental  stages  are  made  with  reference  to  the 

 Hamburger-Hamilton  (1955)  staging  guide,  which  assigns  embryos  to  stages  between  HH1 

 (newly  incubated  egg)  through  46  (newly  hatched  chick)  (Hamburger  and  Hamilton,  1951). 

 This  classic  staging  guide  is  based  on  numerous  morphological  metrics,  but  for  early  stages 

 when  the  brain  is  forming,  relies  on  the  number  of  somites  -  segmented  pieces  of  tissue  that 

 are  laid  down  at  highly  regular  intervals  on  either  side  of  the  spinal  cord  (Palmeirim  et  al.  , 

 1997).  However,  careful  observational  studies  show  that  the  rate/timing  of  development  of 

 different  body  structures,  including  the  brain  -  is  subtly  uncoupled  from  somite  number,  and 

 increasingly,  researchers  are  attempting  to  develop  staging  classifiers  for  distinct  embryonic 

 regions (Boehm  et al.  , 2011; Sáenz-Ponce  et al.  , 2012;  Musy  et al.  , 2018). 

 Recent  studies  in  the  chick  show  that  the  developing  hypothalamus  undergoes  a  significant 

 expansion  over  HH10  (a  period  that  encompasses  ~5  hours),  accompanied  by  subtle 

 changes  in  its  morphology  (Fu  et  al.  ,  2017,  2019;  Kim  et  al.  ,  2022).  Molecular  studies  show 

 that  the  expansion  is  accompanied  by  the  first  signs  of  its  regionalisation  into  distinct 

 functional  domains  (Kim  et  al.  ,  2022).  This  means  that,  for  the  accuracy  of  future 

 experiments,  it  is  important  to  develop  a  finer-grained  classification  of  the  HH10 

 hypothalamus.  However,  even  after  spending  several  weeks’  dissecting,  I  still  found  it  difficult 

 to  recognise  the  subtle  changes  that  occur  in  brain  morphology  over  HH10,  and  to  order  the 

 chicks  accordingly  with  confidence.  I  therefore  asked  if  I  could  develop  an  image  classifier. 

 This  refers  to  the  branch  of  computer  vision  related  to  analysis  of  an  image  and 

 assignment/categorising images into predefined classes. 
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 Recently,  Deep  Learning  (DL)  based  neural  networks  have  been  used  extensively  to  extract 

 meaningful  information  from  images.  Their  application  includes  image  classification,  but  also 

 related  tasks  such  as  object  localisation  and  segmentation  classification.  These  techniques 

 are  increasingly  becoming  embedded  in  biomedical  research  (LeCun  et  al.  ,  2015),  and  have 

 been  used  to  powerful  effect  in,  for  example,  classifying  histological  samples  (Iizuka  et  al.  , 

 2020), and nucleus segmentation (Caicedo  et al.  , 2019). 

 A  common  maxim  for  training  DNN-based  image  classifiers  is  that  performance  improves 

 with  increasing  amounts  of  training  data  (Thompson  et  al.  ,  2020;  Jacquemet,  2021). 

 However,  in  many  areas  of  biomedical  science,  it  is  often  impractical  to  generate  large 

 amounts  of  data  due  to  cost,  time,  or  ethics.  In  such  cases,  it  is  important  to  maximise  the 

 utility of limited data when training DNNs, but how best to do this remains an open question. 

 In  this  chapter,  I  address  this  in  the  context  of  microscopy  images  of  HH10  chick  embryos.  I 

 set  out  to  develop  a  reproducible,  rapid,  and  automatable  classifier  that  subdivides  images  of 

 embryos  at  different  developmental  sub-stages  at  HH10,  which  would  provide  an  important 

 tool  for  conducting  experiments  into  hypothalamus  development.  (Note  this  work  took  place 

 in Years 2-3 of my PhD, when access to the lab was limited). 

 3.2 Results 

 3.2.1 Somite number does not explain variation in HH10 neural 
 morphology 

 Up  to  this  point,  I  referred  to  HH10  embryos  as  early/middle/late,  based  on  the  number  of 

 somites  (as  is  usual  and  per  the  Hamburger-Hamilton  staging  guide  (Hamburger  and 

 Hamilton,  1951).  However,  my  analysis  in  Section  3.2.2-3  incorporated  overall  brain 

 morphology,  and  I  next  investigated  to  what  extent  I  could  codify  this  into  a  more  concrete 

 sub-staging  system  for  HH10,  to  aid  more  precise  investigation  of  hypothalamic 

 development. 

 My  visual  inspection  of  images  suggested  that  the  chick  HH10  brain  could  be  divided  into 

 three  sub-stages,  according  to  the  morphology  of  the  developing  prosencephalon  (the 

 forebrain),  which  I  termed  10.1,  10.2  and  10.3.  Three  reference  images  illustrating  these 

 sub-stages  are  shown  in  Fig  3.1A.  At  10.1,  the  developing  brain  is  kite-shaped,  the  optic 
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 vesicles  (developing  eyes)  are  shallow,  and  the  angle  of  the  prosencephalic  neck,  the 

 anatomical  landmark  where  the  forebrain  meets  the  posterior  brain,  is  obtuse  (Fig  3.1A,  Fig 

 3.1B  iii,  left  columns).  At  10.2,  the  developing  brain  is  hammer-shaped,  the  optic  vesicles  are 

 more  pronounced,  and  the  posterior  prosencephalon-prosencephalic  neck  are  aligned  (Fig 

 3.1A,  Fig  3.1B  iii,  middle  columns).  At  10.3,  the  angle  of  the  posterior 

 prosencephalon-prosencephalic  neck  is  acute,  and  there  is  a  significant  amount  of  curvature 

 in the optic vesicles (Fig 3.1A, Fig 3.1B iii right columns). 

 The  overall  shape  profiles  that  I  picked  out  for  my  sub-staging,  including  the  prosencephalic 

 neck, are schematised in Fig 3.1B. 

 I  next  investigated  the  relationship  between  the  sub-stages  and  the  classic 

 Hamburger-Hamilton  staging  chart  (Hamburger  and  Hamilton,  1951),  where  developmental 

 stage  is  determined  by  somite  number:  HH10  embryos  have  9,  10  or  11  somites,  and  are 

 traditionally  termed  HH10-  (9  somites),  HH10  (10  somites),  or  HH10+  (11  somites) 

 (Hamburger  and  Hamilton,  1951).  First,  I  quantified  somite  number  at  each  sub-stage  (Fig 

 3.2A).  I  observed  that  each  sub-stage  (10.1,  10.2,  10.3)  can  have  a  wide  range  of  somites 

 (8-12  somites)  (Fig  3.2B).  I  also  found  significant  differences  in  somite  number  between  10.1 

 and  10.3  (***  p=0.0002),  and  between  10.2  and  10.3  (*  p=0.015),  but  found  no  significant 

 difference  in  somite  number  between  10.1  and  10.2  (p=0.079)  (Fig  3.2B).  In  conclusion, 

 somite  number  is  a  poor  predictor  of  chick  HH10  brain  development,  underscoring  the  need 

 for a finer-grained classification approach. 
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 Figure  3.1.  Sub-staging  the  HH10  chick  embryo  brain  based  on  expert  visual 
 inspection  of  morphology.  (A)  Example  brightfield  microscopy  images  of  stage  10 

 sub-stages  (top  panels),  with  close-ups  of  the  developing  brain  (bottom  panels).  These 

 images  were  used  as  the  original  reference  point  for  ground  truth  labelling,  and  were  not 

 used  as  part  of  the  DNN  classifier  training  dataset.  (i-iii)  show  key  anatomical  markers  used 

 for  sub-stage  labelling.  (i):  prosencephalon,  (ii):  optic  vesicle,  (iii):  angle  of  prosencephalon 

 and  prosencephalic  neck.  (iv,  v):  show  other  anatomical  features  relevant  to  this  study:  (iv) 

 somites;  (v)  neuromere.  Scale  bars:  upper  1000µm,  lower  500µm.  (B)  Schematic  indicating 

 morphological profiles of sub-stages. 
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 Figure  3.2  The  number  of  somites  at  the  10.1,  10.2,  and  10.3  sub-stages  does  not 
 account  for  the  variation  seen  in  HH10  brain  morphology.  (A)  Manual  quantification  of 

 somite  number  for  the  reference  images  shown  in  Fig  3.1A.  Right  hand  panels  show 

 close-ups  of  somitic  regions.  Scale  bars:  left  1000µm,  right  250µm.  (B)  Violin  plot  of  somite 

 count  across  sub-stages  10.1,  10.2  and  10.3.  (n=  18  10.1,  14  10.2,  and  21  10.3  embryos 

 respectively:  note  the  data  used  for  these  quantifications  were  not  included  as  training  data). 

 There  are  statistically  significant  differences  in  somite  numbers  between  10.1  and  10.3,  and 

 10.2  and  10.3,  but  not  10.1  and  10.2.  Despite  these  differences,  each  sub-stage  can  have  9, 

 10, 11, or 12 somites. 
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 3.2.2  Unsupervised  learning  via  k  -means  clustering  supports  three 

 sub-stages, but performs poorly as a classifier 

 I  next  examined  whether  the  choice  of  three  sub-stages  could  be  supported  through 

 clustering  approaches.  Inspired  by  an  approach  used  to  classify  cell  types  in  histology 

 images  (Krueger  et  al.  ,  2019),  I  combined  principal  component  analysis  (PCA)  and  k  -means 

 clustering.  My  aim  was  to  derive  an  appropriate  number  of  classes  for  further  supervised 

 classifiers and test the efficacy of unsupervised classifiers. 

 A  dataset  of  151  chick  brain  images  was  labelled  as  per  reference  images  (Appendix  Fig  1A; 

 54  at  10.1,  55  at  10.2,  and  42  at  10.3).  I  then  used  PCA  for  dimensionality  reduction,  to 

 ensure  comprehensible  and  robust  clustering  (Ben-Hur  and  Guyon,  2003).  To  empirically 

 determine  an  appropriate  number  of  PCs,  I  generated  a  scree  plot  (Fig  3.3A),  calculating  the 

 total  variance  explained  by  reducing  the  chick  embryo  sub-stage  dataset  into  increasing 

 numbers  of  PCs.  I  found  that  two  PCs  explained  81%  of  the  dataset  variance,  and  increasing 

 the number of PCs further led to substantially diminishing returns. 

 I  next  clustered  my  data  via  k  -means.  To  determine  the  number  of  clusters  to  use,  I  used  the 

 elbow  method  (Fig  3.3B):  I  clustered  the  dataset,  with  1-10  clusters,  and  selected  the  ideal 

 number  of  clusters  as  the  inflection  point  in  the  within-cluster  sum  of  squares  (WCSS), 

 where  increasing  k  showed  diminishing  returns  in  WCSS.  This  was  reached  at  k  =  3,  which  I 

 then  visualised  (Fig  3.3C).  I  found  substantial  differences  in  the  number  of  images  within 

 each  cluster.  Between  the  three  clusters,  clusters  1-3  contained  84,  18,  and  49  images 

 respectively  (Fig  3.3D).  I  assumed  that  the  sub-stage  most  represented  in  each  cluster  was 

 the  true  classification  for  that  cluster.  Thus,  sub-stages  10.1,  10.2  and  10.3  corresponded  to 

 clusters  2,  1  and  3,  respectively  (Fig  3.3D).  Therefore,  the  classification  accuracies  achieved 

 by PCA followed by  k  -means clustering were: 10.1:  38.9%; 10.2: 41.7%; 10.3: 44.9%. 
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 Figure  3.3  k  -means  clustering  supports  classification  of  the  image  dataset  into  three 
 sub-stages.  (A)  Scree  plot  for  principal  component  analysis  (PCA)  with  increasing  numbers 

 of  PCs.  The  elbow  point  is  at  2  PCs,  which  explain  81%  of  the  variance  in  the  dataset.  (B) 

 The  elbow  method  for  determining  the  optimal  number  for  k  .  The  within-cluster  sum  of 

 squares  (WCSS)  score  is  calculated  for  k  -means  clustering  on  increasing  values  of  k  .  The 

 optimal  number  of  k  is  determined  by  the  inflection  point  of  the  graph,  which  occurs  around  k 

 =  3.  (C)  Scatter  plot  of  the  k  -means  clustered  dataset,  with  k  centroids  (red  circles).  (D) 

 Number  of  sub-stages  present  in  each  cluster.  Despite  unsupervised  methods  identifying 

 three  groups  of  images,  the  number  of  embryos  in  each  cluster  does  not  match  the  number 

 of embryos in each labelled sub-stage of the training data. 

 As  k  -means  clustering  is  unsupervised,  it  is  difficult  to  determine  whether  the  method  may 

 group  data  similar  to  a  human  observer.  Looking  beyond  the  classification  accuracies,  the 

 51 



 distribution  of  images  between  clusters  is  skewed.  The  ‘10.3’  cluster,  cluster  3  performed 

 best,  but  the  accuracy  and  image  distribution  in  the  clusters  suggest  poor  efficacy  for 

 classifying  sub-stage  (Fig  3.3D).  This  is  likely  because  feature(s)  are  being  used  for 

 clustering  which  are  irrelevant  to  the  true  class.  Whilst  I  confirmed  that  three  sub-stages  is 

 an  appropriate  number  of  sub-stages  to  use,  I  next  aimed  to  substantially  improve  the 

 classification accuracy achieved by using DCNNs. 

 3.2.3  A  DCNN  trained  using  ResNet50  achieves  a  classification 

 accuracy  of  up  to  75%  using  a  combined  data  augmentation  regime  of 

 rotation & Gaussian blur 

 Initially,  to  reduce  overfitting  in  my  relatively  small  dataset  (comprising  151  images),  I  tested 

 supervised  simple  classifiers:  random  forest,  support  vector  machine  (SVM),  and  k-  nearest 

 neighbour  (KNN).  However,  I  was  not  able  to  train  a  sufficiently  accurate  classifier,  with  the 

 highest  individual  and  highest  average  validation  accuracies  achieved  being  54.8%  (RFC) 

 and 38.3% (KNN) respectively (Appendix Table 1). 

 I  therefore  opted  to  construct  a  strategy  which  would  enable  me  to  train  a  DCNN  based 

 classifier.  Due  to  the  limited  datasets,  I  carefully  considered  each  step  of  training  and 

 evaluating  the  DCNNs.  First,  I  considered  pre-processing.  As  the  datasets  consisted  of  both 

 brightfield  and  phase-contrast  microscopy  images  (bright  and  dark  backgrounds 

 respectively),  I  reasoned  that  a  useful  pre-processing  step  would  be  to  normalise  the 

 histograms of each image. 

 Next,  I  augmented  the  dataset  through  transformations,  which  both  expanded  the  number  of 

 datapoints  for  training,  and  normalised  skewed  image  features  unimportant  for  classification. 

 For  instance  in  microscopy  images,  subject  orientation  often  varies  greatly.  Henceforth,  I 

 refer to the dataset augmented with rotations as the baseline. 
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 Figure  3.4  Examples  of  different  augmentations  on  an  image  of  a  10.2  sub-stage 
 embryo.  (A)  An  example  image  of  a  10.2  embryo  from  the  dataset  (base),  with  (B)  the 

 augmentation  regimes  tested  for  classifier  training:  geometric  (e.g.  rotation),  photometric 

 (e.g. contrast), and complex (e.g. cutout) augmentations. 

 I  then  determined  my  cross  validation  approach.  I  deemed  that  the  widely  used  hold  out 

 validation,  (where  some  amount  of  the  dataset,  often  20%,  is  unavailable  for  training),  was 

 unsuitable  for  my  purposes,  as  with  a  limited  dataset  it  is  key  to  use  every  data  point 

 possible  for  training.  I  verified  this  empirically,  showing  a  large  amount  of  variability  between 

 highest  validation  accuracy  achieved  by  models  trained  on  the  brain  dataset  with  hold  out 

 validation  (Appendix  Table  4).  Therefore,  I  used  k  -fold  cross  validation  with  k  =  10,  (i.e. 

 15-16 images per fold, using the whole dataset for training) for all subsequent training. 

 For  training  a  DCNN  classifier,  I  first  tested  training  using  the  widely  used  network 

 architectures  from  InceptionV3  (Szegedy  et  al.  ,  2015)  and  ResNet50  (He  et  al.  ,  2016). 

 These  two  neural  networks  have  achieved  high  classification  accuracies  on  ImageNet,  a 

 large  database  of  over  14  million  images.  I  aimed  to  understand  to  what  extent  these 

 established architectures could be used with limited microscopy data. 

 I  then  trained,  using  the  InceptionV3  and  ResNet50  architectures  (Appendix  Tables  2-3),  on 

 a  variety  of  augmentation  regimes  (Fig  3.4).  Generally,  InceptionV3  performed  poorly,  with 

 similar  averages  across  various  data  augmentations,  and  a  maximum  validation  accuracy  of 

 60.5%.  This  is  more  successful  than  k  -means,  which  was  44.9%  (Fig  3.3D),  however  the 

 average  validation  accuracies  achieved  by  InceptionV3  are  in  the  range  of  44-46%,  so  that 

 53 



 overall,  performance  is  similar  to  that  achieved  through  k-  means.  With  ResNet50  training,  I 

 saw  a  marked  improvement  in  validation  accuracies  over  InceptionV3  and  the  k  -means 

 clustering  accuracy  across  all  augmentations  (except  for  crop,  which  only  improved  by  an 

 average  of  3%).  The  baseline  &  Gaussian  blur  augmentation  regime  (hereafter  referred  to  as 

 Gaussian  blur)  had  the  highest  average  validation  accuracy,  (69.2%),  and  highest  fold 

 accuracy  (75.9%).  Additionally,  this  regime  achieved  the  second  lowest  standard  deviation, 

 an  important  metric  in  light  of  a  limited  dataset  (Appendix  Table  3).  Taken  together,  these 

 results  suggest  that  training  with  commonly-used  image  classification  architectures  is  not 

 effective  in  classifying  small  microscopy  datasets.  However  this  underperformance  was 

 substantially ameliorated by data preprocessing, and the Gaussian blur regime. 

 3.2.4  A  bespoke  neural  network  classifies  developmental  sub-stages  of 

 a small dataset of chick embryo brains with up to 90.9% accuracy 

 ResNet50  has  been  used  successfully  for  image  classification  on  datasets  other  than 

 ImageNet,  for  example  on  ChestX-ray14,  a  dataset  of  X-ray  images  (Baltruschat  et  al.  , 

 2019).  ChestX-ray14  is  substantially  larger  than  my  dataset,  comprising  112,120  images. 

 Therefore,  considering  that  I  did  little  fine-tuning  of  the  hyperparameters  of  ResNet50,  and 

 that  ResNet50  was  constructed  for  large  datasets,  ResNet50  performed  surprisingly  well  (up 

 to  75.9%)  when  trained  on  the  brain  data.  H  owever,  this  performance  leaves  room  for 

 improvement  so  I  set  out  to  understand  whether  a  bespoke  network  would  achieve  even 

 higher  classification  accuracies.  I  aimed  to  incorporate  domain  expertise,  by  specifically 

 considering the types of problems encountered in developmental biology datasets. 

 I  constructed  a  model  with  a  wide,  VGG-16  block-style  architecture  (Fig  2.1),  which  has  been 

 successful  in  image  classification  (Simonyan  and  Zisserman,  2014).  I  used  Bayesian 

 optimisation  (Appendix  Table  6)  and  examples  from  the  applied  deep  learning  literature  to 

 tune  the  hyperparameters  (Zhang  and  Mitliagkas,  2019;  Margapuri  et  al.  ,  2020).  I  then 

 determined  the  most  useful  and  robust  augmentation  regimes  (Table  3.1).  The  baseline 

 usually  performed  well,  surpassing  my  best  ResNet50  results  with  an  average  validation 

 accuracy  of  76.2%.  However,  for  each  fold,  one  of  the  various  augmentations  always  had 

 higher  validation  accuracy  than  the  baseline.  The  poorest  performing  augmentation  was 

 baseline & crop, with an average validation accuracy of 47.1%. 
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 Aug  Fold 

 1  2  3  4  5  6  7  8  9  10  Avg.  SD 

 1  69.3  68.1  79.3  78.9  72.6  84.8  74.6  68.0  90.9  75.2  76.2  7.5 

 1  Sharpened  78.7  80.9  77.0  70.2  80.2  80.7  70.7  76.7  90.0  76.9  78.2  5.6 

 1 + 2  68.9  75.5  78.8  79.8  75.1  84.5  78.8  69.1  90.3  83.1  78.4  6.7 

 1 + 3  75.7  67.1  58.2  64.2  66.2  67.4  68.6  36.6  79.6  68.0  65.2  11.6 

 1 + 4  81.0  73.8  80.6  79.1  81.7  86.9  79.0  71.9  88.9  81.9  80.5  5.1* 

 1 + 5  73.6  76.6  79.9  76.7  76.9  86.1  78.0  68.1  91.7  83.3  79.1  6.6 

 1 + 4,5 RC  86.3  81.0  78.2  74.2  77.6  82.2  73.2  77.6  89.0  83.2  80.3  5.1* 

 1 + 2,4,5 RC  84.6  75.5  82.1  70.1  81.2  83.1  75.9  77.1  90.9  84.2  80.5  5.9 

 Fold Avg.  70.5  69.2  74.7  73.7  72.3  79.5  71.8  66.7  83.2  74.6 

 Table  3.1  Augmentation  exploration  of  the  brain  dataset  using  the  bespoke  model.  I 
 explored  the  data-space  using  k  -fold  cross  validation,  the  individual  fold  validation  accuracies 

 that  each  network  achieved  are  shown  in  columns  1-10,  and  the  averages  and  standard 

 deviation  of  these  accuracies  is  shown  in  the  rightmost  columns.  As  a  baseline  processing 

 step,  all  images  were  rotated  15  times,  at  equally  spaced  degrees.  I  then  tested 

 augmentations  on  top  of  this  baseline,  before  a  final  test  whereby  each  image  was  randomly 

 augmented.  Augmentations  (Aug)  as  follows:  (1)  rotation  (baseline);  (2)  shear;  (3)  crop;  (4) 

 Gaussian  blur;  (5)  cutout;  (RC)  random  combination  of  rotation  +  cutout,  or  shear,  or  blur. 

 Highest  validation  accuracies  for  each  fold,  highest  average  for  each  augmentation  (Avg.), 

 and  lowest  standard  deviation  (SD)  are  shown  in  bold.  (1  Sharpened),  baseline  with  a 

 preprocessing  sharpen  filter;  (1+  4,5  RC)  random  combination  of  baseline,  Gaussian  blur, 

 and cutout. 

 The  best  performing  individual  augmentation  was  baseline  &  Gaussian  blur,  with  the  highest 

 average  validation  accuracy  of  80.5%  and  the  lowest  standard  deviation  (excluding  crop, 

 which  performed  substantially  below  baseline).  Baseline  &  cutout  provided  the  best 

 individual  fold  validation  accuracy,  of  91.7%  at  fold  9  (vs.  Gaussian  blur  88.9%).  Despite 

 baseline  &  cutout  achieving  the  highest  individual  fold  validation  accuracy,  I  conclude  that 
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 baseline  &  Gaussian  blur  overall  performed  best,  as  it  achieved  the  highest  validation 

 accuracy on folds 4-7. 

 I  also  tested  the  efficacy  of  Möbius  transformations,  which  have  proven  successful  in  other 

 contexts  (Zhou  et  al.  ,  2021)  but  are  untested  for  microscopy  image  classification.  I  reasoned 

 that  Möbius  transformations  could  introduce  the  DCNN  to  common  microscopy  artefacts, 

 e.g.  tissue  bending  during  sample  preparation.  However,  the  baseline  and  Möbius 

 transforms  performed  more  poorly  than  the  baseline  alone,  and  that  sparse  inclusion  of 

 Möbius transformations also decreased validation accuracy (Appendix Table 5). 

 My  cross  validation  (Table  3.1)  shows  dataset  partitions  that  lead  to  low  accuracies, 

 indicating  that  these  partitions  contain  images  with  features  that  are  not  shared  with  the 

 images  in  higher  scoring  partitions.  These  are  likely  artefacts  introduced  in  chick 

 dissection/preparation  or  imaging,  e.g.  due  to  tearing  of  the  fragile  tissue.  As  such,  I  sought 

 to  mitigate  this  invariance.  Whilst  the  good  performance  of  the  baseline  is  intuitive,  both  the 

 shear  and  Gaussian  blur  regimes  also  achieved  high  validation  accuracies.  For  shear,  I 

 reasoned  that  this  could  reflect  increasing  the  robustness  of  the  network  by  introducing  it  to 

 distortions  similar  to  the  types  of  tissue  deformations  routinely  introduced  in  chick 

 dissection/preparation  or  imaging  Similarly,  Gaussian  blur  could  increase  robustness  by 

 introducing  the  DCNN  to  data  that  resembles  out-of-focus  images,  a  common  microscopy 

 artefact. 

 To  test  whether  Gaussian  blur  is  having  this  effect,  I  applied  the  inverse  operation  by 

 sharpening  the  images  during  preprocessing  before  the  baseline  augmentation  (Table  3.1,  1 

 Sharpened).  I  found  that  sharpening  increased  average  validation  accuracy  from  76.2% 

 (baseline)  to  78.2%  (baseline  sharpened).  Further,  I  saw  that  poorly  performing  baseline 

 folds  (e.g.  2  and  8)  had  substantially  higher  validation  accuracies.  However,  the  results  from 

 sharpening  as  a  preprocessing  step  do  not  entirely  explain  the  discrepancy  in  validation 

 accuracies  between  the  baseline  &  Gaussian  blur.  This  suggests  that  Gaussian  blur  is  not 

 only  introducing  the  DCNN  to  out-of-focus  images,  but  could  be  masking  tissue  tearing 

 artefacts  through  smoothing  of  geometric  lines  or  curves  in  the  tissue  structure.  Moreover, 

 these  augmentations  may  be  assisting  the  network  to  focus  on  a  true  sub-stage 

 characteristic,  rather  than  features  arising  from  biological  inter-sample  variation.  This 

 suggests  that  these  poorly  scoring  dataset  partitions  contain  features  that  lead  to  an 

 inaccurate  classification,  but  this  can  be  mitigated  with  reasoned  preprocessing  and 

 augmentation. 
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 Since  different  augmentations  had  scored  highest  on  different  folds,  I  next  tested  different 

 combinations  of  these  augmentations  as  an  approach  to  reduce  variability  (Table  3.1,  1+4,5 

 RC,  1  +  2,4,5  RC).  I  identified  an  informed  combined  regime  as  a  useful  approach  when 

 dealing  with  high  variability,  small  datasets.  For  example,  folds  2  and  8  had  the  lowest 

 average  validation  accuracies  across  all  augmentations.  For  both,  mixing  the  baseline  with 

 shear,  Gaussian  blur,  and  cutout  resulted  in  substantially  higher  validation  accuracies, 

 allowing the network to learn ‘difficult’ features of the images. 

 In  summary,  I  found  training  a  bespoke  neural  network  suits  my  classification  problem,  and 

 that  reasoned  augmentations  enhance  network  performance,  achieving  >90%  validation 

 accuracies,  despite  a  small  dataset.  Whilst  the  focus  of  this  thesis  is  on  hypothalamus 

 development,  I  include  below  an  analysis  of  developing  limb  data,  as  a  test  of  whether  my 

 classification  strategy  can  also  be  applied  straightforwardly  to  other  limited,  developmental 

 biology datasets. 

 3.2.5  The  bespoke  neural  network  classifies  a  small  dataset  of 

 developing chick limbs with up to 94.4% accuracy 

 I  next  set  out  to  see  if  my  pre-processing,  architecture,  and  data  augmentation  approach 

 could  be  applied  to  other  small  datasets.  For  this,  I  used  published  data  comprising  269 

 developing  chick  limb  images  (Towers  et  al.  ,  2008a),  separated  into  two  labelled  categories: 

 ‘control’  (corresponding  to  the  normal  limb  development),  and  ‘treated’,  where  growth  had 

 been  transiently  inhibited  by  the  drug  trichostatin  A.  I  sought  to  determine  whether  my 

 approach could be used to train a DCNN to classify control versus treated limbs. 
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 Aug  Fold 

 1  2  3  4  5  6  7  8  9  10  Avg.  SD 

 1 (Flipped)  89.5  87.0  83.1  88.0  91.0  90.0  91.3  94.4  92.9  89.2  89.6  3.2 

 1 + 2  93.1  80.7  88.2  91.1  90.1  81.5  93.6  92.9  94.4  88.9  89.5  4.9 

 1 + 3  89.1  77.4  83.2  85.9  80.1  81.2  85.2  86.1  87.3  86.9  84.2  3.7 

 1 + 4  91.1  85.3  82.2  90.1  90.4  93.6  90.5  93.0  92.4  90.2  89.9  3.5 

 1 + 5  93.2  81.4  88.1  88.6  90.1  85.1  90.7  93.2  93.6  89.8  89.4  3.9 

 1 + 2,4,5 RC  92.0  84.5  87.5  89.4  90.4  85.5  91.4  93.1  93.6  91.4  89.9  3.1 

 Fold Avg.  91.3  83.7  85.4  88.9  88.7  86.2  90.5  92.1  92.4  89.4  88.7 

 Table  3.2  Augmentation  exploration  of  a  limited,  developing  limb  dataset  using  the 
 bespoke  model.  I  explored  the  data-space  using  k  -fold  cross  validation,  the  individual  fold 

 validation  accuracies  that  each  network  achieved  are  shown  in  columns  1-10,  and  the 

 averages  and  standard  deviation  of  these  accuracies  is  shown  in  the  rightmost  columns.  As 

 a  baseline  processing  step,  all  images  were  rotated  15  times,  at  equally  spaced  degrees  and 

 flipped.  I  then  tested  augmentations  on  top  of  this  baseline,  before  a  final  test  whereby  each 

 image  was  randomly  augmented.  Augmentations  (Aug)  as  follows:  (1)  rotation  &  flip 

 (baseline);  (2)  shear;  (3)  crop;  (4)  Gaussian  blur;  (5)  cutout;  (RC)  random  combination  of 

 rotation  +  cutout,  or  shear,  or  blur.  Highest  validation  accuracies  for  each  fold,  highest 

 average  for  each  augmentation  (Avg.),  and  lowest  standard  deviation  (SD)  are  shown  in 

 bold. 

 I  set  up  the  problem  in  a  similar  fashion  to  the  brain  classification,  with  minor  changes  as 

 warranted  by  the  switch  from  a  multi-class  to  a  binary  classification  problem.  In  addition  to 

 the  baseline  augmentation  regime,  I  introduced  flipped  images  along  the  horizontal  axis,  as 

 the  experimental  protocol  in  (Towers  et  al.  ,  2008)  used  the  left  limb  as  control,  and  treated 

 the  right  limb.  The  validation  accuracies  achieved  were  generally  higher  than  for  the  brain 

 classification,  especially  across  the  baseline,  which  for  folds  2,  5,  8  achieved  the  highest 

 validation  accuracies  --  something  not  seen  in  the  brain  classification  (Table  3.2).  However, 

 the  mixed  regime  performed  best,  with  the  joint  highest  average  classification  accuracy  and 

 lowest  standard  deviation  of  all  the  regimes  tested.  Additionally,  the  mixed  regime  only 

 marginally  underperformed  the  fold  average  once  at  fold  5.  Thus,  my  strategy  of  reasoned 
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 data  augmentations,  derived  for  training  classifiers  on  the  chick  brain  dataset,  extended  well, 

 classifying another limited microscopy dataset of developing limbs with high accuracy. 

 3.2.6 Saliency maps identify novel class-specific features 

 I  next  performed  saliency  analysis  (Simonyan  et  al.  ,  2014)  on  the  brain  datasets,  to 

 determine  to  which  region(s)  of  the  images  my  classifiers  were  sensitive.  I  selected  the 

 baseline  model,  and  a  range  of  models  trained  on  different  augmentation  regimes  (Table 

 3.1),  and  first  visualised  their  saliency  maps  for  test  images  of  each  brain  sub-stage  (Fig 

 3.5Ai-vi,  Fig  3.6Ai-vi,  Fig  3.6Bi-vi).  The  baseline  model  focused  on  the  brain  at  10.2,  with 

 scattered  attention  peripherally.  (Fig  3.5Ai).  This  was  reflected  in  the  10.1  maps  (Fig  3.6Ai), 

 but  not  the  10.3  maps  (Fig  3.6Bi).  Models  trained  with  Gaussian  blur  (Fig  3.5Aii),  cutout  (Fig 

 3.5Aiii),  and  shear  (Fig  3.5iv)  honed  focus  substantially,  leaving  several  focal  points 

 (compare  Fig  3.5Ai  with  Fig  3.5Aii-iv).  Similar  effects  were  seen  in  the  10.1  and  10.3  maps 

 (Fig  3.6Aii-iv,  Fig  3.6Bii-iv).  Gaussian  blur  also  introduced  focus  on  the  10.2  prosencephalic 

 neck  (Fig  3.5Aii).  I  included  crop  as  a  negative  control,  as  it  showed  the  worst  performance 

 of  all  augmentations  tested  (Table  3.1).  Crop  either  produced  very  little  focus  (Fig  3.5Avi)  or 

 scattered  attention  throughout  the  image  (Fig  3.6Avi,  3.6Bvi).  These  results  confirm  that  the 

 choice  of  augmentation  results  in  different  image  features  being  picked  out  by  a  classifier, 

 but  also  that  biologically  relevant  features  e.g.  the  prosencephalic  neck  can  be  focused  on 

 after augmentation with Gaussian blur. 
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 Figure  3.5  Saliency  maps  of  a  10.2  substage  identify  focal  differences  between  models 
 trained  on  different  augmentations.  (A)  A  test  10.2  image  not  used  in  training/validation  of 

 any  DCNN.  (i-vi)  Saliency  maps  generated  from  training  a  DCNN  on  the  baseline  rotationally 

 augmented  data  (i),  with  a  further  augmentation  (ii-vi,  listed  above  each  image).  Baseline  (i) 

 leads  to  a  large  amount  of  attention  spread  over  the  prosencephalon.  Gaussian  blur  (ii) 

 cutout  (iii),  and  shear  (iv)  increase  focus  to  a  few  focal  points  on  the  prosencephalon.  The 

 maps  generated  by  the  augmentations  i-v  contrast  with  crop  (vi).  This  performed  the  worst  of 

 all  the  augmentation  regimes,  and  has  very  little  focus  on  the  prosencephalon.  (B)  (i)  The 

 saliency  map  generated  by  the  combined  regime  as  shown  in  (Av),  overlaid  with  the  test 

 10.2  image.  The  combined  regime  increases  the  focus  on  points  introduced  by  the  various 

 augmentations,  and  the  focus  is  highest  on  the  region  of  the  embryo  (i,  magenta  arrow) 

 central  to  the  prosencephalic  neck  (white  arrow),  also  a  region  of  high  focus.  The  combined 

 regimes  of  various  augmentations  increase  the  focal  attention.  Highest  focal  points  are  the 

 centre  of  the  prosencephalic  neck  (magenta  arrow)  and  the  junction  of  the 

 prosencephalon-prosencephalic neck (white arrow). 
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 Figure  3.6  Saliency  maps  of  10.1  and  10.3  substages  identify  focal  differences 
 between  models  trained  on  different  augmentations.  (A-B)  Test  images  of  10.1  and  10.3 

 embryos.  (i-vi)  Saliency  maps  generated  from  (A-B)  and  assessed  through  models  trained 

 on  different  augmentation  regimes,  following  the  bespoke  architecture  (from  Table  3.1), 

 trained  on  the  baseline  rotationally  augmented  data,  with  a  further  augmentation  (listed 

 above  each  image).  Random  comb.  refers  to  a  model  trained  on  the  baseline  and  a  random 

 combination  of  Gaussian  blur,  cutout,  and  shear  augmentations.  The  random  combination 

 results  in  attention  which  is  discrete  and  focused  e.g.  (Av),  (Bv).  Conversely,  models  trained 

 on  baseline  &  crop  show  scattered  attention,  where  the  attention  map  shows  high  attention 

 pixels  scattered  throughout  the  image  can  be  seen  (Avi,Bvi).  A  scattered  attention  map 
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 suggests  that  the  model  is  focusing  on  various  image  features  unrelated  to  the  subject.  (C) 

 Saliency  maps  as  in  (A,B  v)  overlaid  with  the  test  image.  Here,  for  10.1,  the  model  focused 

 most  on  the  angle  of  the  prosencephalic  neck  (Ci  magenta  arrow)  and  the  anterior 

 prosencephalon  (Ci  white  arrow).  For  10.3  the  focus  was  shifted  to  more  posterior  regions  of 

 the embryo, including the neuromeres (Cii, white arrows). 

 I  next  tested  the  DCNN  trained  on  the  combined  regime,  applying  either  Gaussian  blur, 

 cutout,  or  shear  over  the  baseline  per  image.  This  regime  produced  a  similar  average 

 validation  accuracy  and  standard  deviation  to  Gaussian  blur  (Table  3.1,  the  highest  scoring 

 individual  augmentation).  The  saliency  maps  show  large  focal  points  on  the  centre  of  the 

 prosencephalic  neck  (Fig  3.5Bi,  magenta  arrow)  and  the  junction  of  the 

 prosencephalon-prosencephalic  neck  (Fig  3.5Bi,  white  arrow).  I  also  saw  a  ‘combined  map’ 

 effect,  where  the  combined  regime  produced  focus  resembling  larger  versions  of  focal  points 

 from  the  individual  augmentation  regimes  (Fig  3.5A,  Fig  3.6Av,  3.6Bv).  In  particular  I  found 

 clear differences in the focal points paid to each class. 

 For  10.1,  the  combined  augmentation  regime-trained  DCNN  focused  on  the  prosencephalic 

 neck  and  the  prosencephalon  (Fig  3.6Ci,  magenta  and  white  arrow  respectively),  while  for 

 10.3,  focal  points  were  more  posterior  and  confined  to  the  neuromeres  (structures 

 delineating  future  brain  regions)  (Fig  3.6Cii,  white  arrows).  Contrastingly,  for  10.2  the  focus 

 was  spread  over  the  prosencephalon  and  more  peripherally  (Fig  3.5B),  indicating  that  this 

 sub-stage  shares  similarities  with  both  10.1  and  10.3,  being  between  them  in  developmental 

 time.  Exemplifying  the  utility  of  my  approach,  I  found  that  the  sub-stage  specific  features  of 

 10.3  focused  on  these  more  posterior  regions  (compare  Fig  3.6Cii  and  Fig  3.5B,  Fig  3.6Ci), 

 which were not explicitly part of the labelling criteria. 

 In  summary,  the  brain  classifier  saliency  maps  confirmed  the  labelling  intuitions  (for  the  10.1 

 and  10.2  sub-stages),  and  provided  insight  into  novel  morphological  features  that  best 

 defined the sub-stages, outside of any preconceptions. 

 I  then  generated  saliency  maps  in  a  similar  fashion  for  the  limb  classifier.  For  the  control  limb 

 my  baseline  augmentation  regime  produced  a  tight  focus  on  the  posterior  distal  tip  (Fig 

 3.7Ai).  Gaussian  blur  and  shear  introduced  some  focus  more  anteriorly  in  the  limb  (Fig 

 3.7Aii,  iv).  Cutout  produced  a  similar  map  to  baseline,  albeit  with  slightly  reduced  focus  (Fig 

 3.7Aiii).  Whilst  crop  performed  relatively  better  than  in  the  brain  classification,  I  again 

 included  it  for  comparison,  as  it  continued  to  underperform  every  other  augmentation  regime. 

 The crop saliency map resembled the baseline, but with a reduced focus (Fig 3.7Avi). 
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 For  the  treated  limb,  I  saw  more  attention  paid  to  the  anterior  proximal  edge  in  the  baseline, 

 Gaussian  blur,  and  shear  regimes  (Fig  3.7Bi,  ii,  iv).  Again  this  was  reduced  slightly  in  the 

 cutout  map  (Fig  3.7Biii).  Shear  introduced  a  focal  point  more  distally,  whilst  retaining  the 

 focal  points  that  the  other  maps  exhibited.  Again,  crop  produced  very  little  focus,  with  one 

 large  point  at  the  corner,  likely  reflecting  the  expanded  field  of  view  of  the  test  image 

 compared to the cropped augmentation regime. 

 I  next  tested  the  combined  regime,  augmenting  each  baseline  regime  image  with  Gaussian 

 blur,  shear,  or  cutout.  For  both  the  control  and  treated  limbs,  I  saw  a  large  increase  in  focus 

 from  this  regime  (Fig  3.7Bv).  Intuitively  and  similar  to  the  brain  saliency  maps,  I  saw  a 

 combined  map  effect  -  where  the  combined  regime  introduced  focal  points  from  each  other 

 augmentation  regime.  Additionally,  I  see  clearest  in  the  combined  regime  saliency  maps  that 

 the  classifiers  define  the  two  classes  based  on  different  aspects  of  the  tissue  morphology. 

 For  the  control  limb,  I  saw  this  regime  focus  on  the  overall  width  of  the  limb  (Fig  3.7Ci  upper 

 white  arrow,  Fig  3.7Bi)  and  the  posterior  distal  edge  (Fig  3.7Ci,  lower  white  arrow).  For  the 

 treated  limb,  I  saw  a  focus  on  a  more  anterior  distal  edge  (Fig  3.7Cii,  magenta  arrow),  as 

 well  as  a  strip  of  focus  running  from  proximal  to  distal,  suggesting  that  the  width  of  this  axis 

 in the limb was important in classification. 
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 Figure  3.7  Saliency  maps  from  images  of  developing  chick  limbs  identify  morphology 
 as  a  class-defining  feature.  (A)  A  test  control  limb  image  not  used  in  training/validation  of 

 any  DCNN.  (i-vi)  Saliency  maps  generated  from  training  a  DCNN  on  the  baseline  of  flipped 

 and  rotationally  augmented  limb  data  (i),  with  a  further  augmentation  (ii-vi,  listed  above  each 

 image).  Baseline  (i)  leads  to  a  tight  focal  point  on  the  posterior  distal  edge  of  the  limb. 

 Gaussian  blur  (ii)  cutout  (iii),  and  shear  (iv)  share  this  focal  point,  but  for  gaussian  blur  and 

 shear  there  are  focal  points  added  more  anteriorly  and  toward  the  centre  of  the  developing 

 limb.  The  maps  generated  by  the  augmentations  i-v  contrast  with  crop  (vi)  which  performed 

 the  worst  of  all  the  augmentation  regimes  for  the  brain  classification,  and  has  reduced  focus 

 from  baseline.  (B)  (i-vi)  A  test  image  with  augmentations  as  in  (A)  but  with  a  treated  limb. 
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 Baseline  (i)  exhibits  a  large  focal  point  in  the  proximal  anterior  portion  of  the  limb,  with  a 

 smaller,  posterior  distal  point.  Gaussian  blur  (ii)  resembles  baseline,  but  with  smaller 

 additional  points  of  focus  introduced  throughout  the  limb.  Cutout,  and  Shear  (iii,  iv)  produce 

 similar  saliency  maps,  with  attention  paid  to  both  posterior  and  anterior  proximal  regions,  as 

 well  as  some  posterior  distal  regions.  Again,  crop  (vi)  contrasts  with  the  other  saliency  maps, 

 in  that  focus  is  substantially  reduced  over  Baseline  alone.  Finally,  the  combined  regime  for 

 both  control  and  treated  limbs  (C)  increases  focus  throughout  the  limb.  For  control,  the  focus 

 is  throughout  the  posterior  distal  tip,  with  the  highest  attention  paid  to  the  edges  of  the  limb 

 (C  i,  white  arrows).  For  the  treated  limb,  I  see  that  focus  is  generally  more  anterior  and 

 proximal,  with  the  highest  focal  point  being  the  distal  long  edge  of  the  developing  limb  (C  ii, 

 magenta arrow). 

 Surprisingly,  despite  the  fact  that  both  the  control  and  growth  inhibitor-treated  limbs  had 

 been  processed  to  visualise  the  expression  of  the  Sonic  Hedgehog  (SHH)  gene  (Fig  3.7Ci-ii, 

 orange  arrows,  Fig  3.8A-Bi),  the  classifier  did  not  pay  attention  to  these  regions  of  the  image. 

 This  is  important,  as  SHH  is  intricately  linked  to  developing  tissue  fate  and  growth  in  the  limb 

 (Groves  et  al.  ,  2020)  (and  other  contexts).  In  the  limb  dataset,  there  were  images  which  have 

 no  SHH  expression.We  also  found  that  SHH  presence  was  not  a  classifying  feature  in  test 

 cases where  SHH  was switched off (Fig 3.8A-Bii). 

 65 



 Figure  3.8  SHH  expression  is  not  used  to  classify  between  control  and  treated  limbs. 
 (A)  Test  images  of  control  (i)  and  treated  (ii)  chick  embryo  limbs,  not  used  in  the  model 

 training/validation  pipeline.  The  control  limb  has  expression  of  SHH  (i,  magenta  arrow), 

 whilst  the  treated  limb  does  not  (ii,  yellow  arrow).  (B)  Saliency  maps  generated  using  the  test 

 images  in  (A),  classified  using  the  same  mixed  augmentation  model  used  to  generate  Fig  4C 

 i-ii.  The  network  pays  little  attention  to  the  SHH  expression  (i,  magenta  and  ii,  yellow  arrows), 

 instead focusing on the broader shape of the limbs and specific points of curvature. 

 These  results  suggest  that  rigorous  examination  of  classifier  attention  gives  insight  not  only 

 into  data  processing  and  augmentation  efficacy,  but  also  into  the  features  of  the  embryo 

 which  most  define  the  classification,  with  the  potential  for  insights  which  help  examine  the 

 relationship between morphology and other biological factors, including gene expression. 
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 3.2.7 Classification of an independent test dataset 

 The classification accuracy results presented thus far in this chapter were prediction 

 accuracy on multiple folds of the entire training dataset. The saliency analyses presented in 

 Section 3.2.6, however, were conducted on samples unseen during any training. To 

 understand the extent that the trained models generalise to data outside of the training 

 dataset, I next set out to test classifiers trained on different augmentation regimes on a 

 separate, independent dataset. 

 To do this, I used the dataset generated for the analysis in Section 3.2.1. This comprised 57 

 brightfield images of 10.1-10.-3 sub-stage embryos. I then evaluated the models trained in 

 Section 3.2.4, with ten separate models trained per augmentation regime, and took the 

 average classification accuracy across these (Table 3.3).  The classification accuracy on this 

 test dataset was generally poor, with the previously concluded best performing augmentation 

 regime (combination of baseline with cutout and gaussian blur) achieving at best 32.1% test 

 accuracy. 

 This was surprising, as the accuracy during training was generally high (Table 3.1). There 

 are several possible explanations for the poor test accuracy. Firstly, all images in the test 

 dataset were taken using a brightfield microscope. The training dataset did contain 

 brightfield images, but at a low frequency (ratios of 6/54 at 10.1, 6/55 at 10.2, and 4/42 at 

 10.3 brightfield/phase contrast images). By retrospectively inspecting the data this way, I 

 saw that not only is there a low representation of the test data modality in the training 

 dataset, but also that the representations are imbalanced. 

 There are two potential solutions to this that future work should seek to address. Firstly, 

 combining the 57 brightfield images of the test dataset into the training dataset, and then 

 randomly holding back a proportion of that mixed dataset as a new test dataset. This would 

 create a more balanced proportion of phase contrast vs. brightfield images in the test 

 dataset, and the trained models would similarly be more robust to inference on non-phase 

 contrast images. 
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 Aug  AVG Accuracy (%) 

 1  30.7 

 1 + 2  32.8 

 1 + 3  29.3 

 1 + 4  32.1 

 1 + 5  32.8 

 1 + 4,5 RC  32.1 

 Table  3.3  Classification  accuracy  on  an  independent  test  dataset  for  brain 
 classification,  using  the  bespoke  models  trained  in  Section  3.2.4.  I  tested  the  models 

 that  were  trained  during  k  -fold  cross  validation,  and  averaged  their  prediction  accuracy 

 (AVG).  Models  trained  with  the  following  augmentations  (Aug)  are  as  follows:  (1)  rotation 

 (baseline);  (2)  shear;  (3)  crop;  (4)  Gaussian  blur;  (5)  cutout;  (RC)  random  combination  of 

 rotation  +  cutout,  or  shear,  or  blur.  Highest  validation  accuracies  for  each  fold,  highest 

 average  for  each  augmentation  (Avg.),  and  lowest  standard  deviation  (SD)  are  shown  in 

 bold.  (1  Sharpened),  baseline  with  a  preprocessing  sharpen  filter;  (1+  4,5  RC)  random 

 combination of baseline, Gaussian blur, and cutout. 

 Secondly, future work should aim to resolve imbalanced classes in the training dataset (i.e. 

 the imbalance from fewer 10.3 samples than 10.1 or 10.2), and one way to do this could be 

 making use of over-sampling techniques, which balance the dataset by favourably 

 increasing the number of (in this case) 10.3 samples until it matches the number of 10.1/10.2 

 samples. One particularly promising approach would be to use the Synthetic Minority 

 Oversampling Technique (SMOTE) (Chawla  et al.  , 2002)  on the 10.3 samples which are 

 misclassified, as these likely represented ‘confusing’ samples which are near the boundary 

 between two classes 
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 3.3 Summary 

 The  aim  of  this  chapter  was  to  characterise  a  more  fine-grained  staging  system  for  the  HH10 

 chick  brain,  which  is  an  important  developmental  stage  for  hypothalamus  development, 

 where  many  dynamic  events  occur  rapidly  (discussed  in  Chapter  1).  To  address  this,  I  first 

 had  to  determine  the  relationship  between  somite  number  and  overall  brain  morphology, 

 finding  that  somite  number  was  an  unreliable  predictor  of  sub-stage.  I  then  developed  an 

 image  classifier  to  automatically  sub-stage  an  embryo  given  a  picture  of  its  developing  brain. 

 This  is  useful,  as  it  both  speeds  up  analysis,  and  ensures  consistency  of  staging  between 

 experiments.  To  do  this,  I  had  to  perform  a  systematic  exploration  of  various  methods  to 

 ameliorate  the  limited  dataset,  finding  that  using  my  experimental/biological  domain 

 expertise helped to design effective strategies. 

 Over  HH10,  the  developing  forebrain  undergoes  substantial  morphological  changes.  At  10.1, 

 the  brain  is  kite-shaped,  and  the  angle  of  the  prosencephalic  neck  obtuse.  At  10.2  the  optic 

 vesicles  have  extended  laterally,  resulting  in  a  hammer-shaped  brain,  and  the 

 prosencephalic  neck  angle  is  now  more  right-angled.  Finally,  at  10.3  the  optic  vesicles  have 

 both  extended  laterally  and  curved  substantially,  and  the  apex  of  their  curve  is  in-line  with 

 the prosencephalic neck, the angle of which is now acute. 

 Up  to  this  point,  the  images  of  the  developing  brain  have  been  of  the  overall  profile,  and 

 typically  the  hypothalamus  is  obscured  due  to  perspective  or  surrounding  opaque  tissue. 

 Therefore,  the  overall  gross  morphological  changes  occurring  during  my  sub-stages  were  a 

 proxy  for  changes  in  hypothalamic  development.  Now  that  I  was  confident  that  I  could 

 reliably  sub-stage  an  embryo  at  HH10,  and  that  this  staging  system  could  easily  be  used  by 

 others,  I  set  out  to  explicitly  link  my  sub-stages  to  changes  in  hypothalamic  morphology  and 

 molecular expression (Chapters 4 and 5). 
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 Chapter 4 

 Characterisation of chick hypothalamus 

 morphology over HH8-HH12 

 4.1 Introduction 

 As  discussed  in  Chapter  1,  recent  work  in  chick  has  significantly  advanced  our 

 understanding  of  hypothalamus  growth  and  development  (Fu  et  al.  ,  2017;  Kim  et  al.  ,  2022). 

 These  studies  overturned  the  working  model  that  adult  hypothalamic  neuronal  populations 

 are  generated  through  isotropic  growth  of  embryonic  progenitor  cell  populations,  instead 

 suggesting  an  anisotropic  growth  model  involving  simultaneous  tangential  migration  and 

 specification  of  neuronal  precursor  cells  from  a  SHH/FGF10  -expressing  progenitor 

 population(s).  Neither  study,  however,  examined  the  consequences  of  anisotropic  growth  on 

 the  development  of  the  3-D  morphology  of  the  hypothalamus.  Further,  although  the  studies 

 performed  a  cursory  analysis  of  the  expression  patterns  of  SHH,  FGF10  and  BMP2  ,  neither 

 investigated  their  expression  patterns  in  detail,  nor  paid  attention  to  changes  in  their 

 expression  that  might  occur  over  the  stage  10  sub-stages  (10.1,  10.2,  and  10.3)  that  I 

 characterised in Chapter 3. 

 Recently,  researchers  have  been  attempting  to  integrate  mechanical  events  and  morphogen 

 signalling  in  other  areas  of  embryonic  development  in  order  to  develop  novel  morphogenetic 

 theories  of  development  (Collinet  and  Lecuit,  2021;  Valet  et  al.  ,  2022).  As  discussed  in 

 Chapter  1,  the  mid-embryonic/adult  hypothalamus  has  a  complex  3-D  morphology.  However, 

 the  morphogenetic  events  underlying  this  morphology  are  not  well  characterised.  I 

 hypothesised  that  morphogen-like  signalling  ligands  might  play  an  important  role  in  the 

 development of the 3-D morphology of the hypothalamus. 

 As  outlined  in  the  Introduction,  the  hypothalamus  begins  to  form  around  HH8-HH10.  I 

 therefore  sought  to  first  characterise  the  3-D  morphodynamics  of  the  developing 

 hypothalamus  at  stages  HH8-HH12  (this  Chapter),  and  to  then  relate  these  to  the 

 spatio-temporal  expression  of  key  morphogen  genes,  including  SHH  ,  FGF10  ,  and  BMP2  , 

 and  to  SHH  signal  pathway  components  (Chapter  5).  These  were  chosen  as  they  are  known 

 to  be  expressed  in  the  early  hypothalamus  (Dale  et  al.,  1997;  Manning  et  al.,  2006;  Fu  et  al., 
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 2017;  Kim  et  al.,  2022)  and  to  be  important  for  early  hypothalamus  development.  SHH  and 

 FGF10  are  critical  to  the  induction,  anisotropic  growth,  and  specification  of  hypothalamic 

 progenitors,  which  occur  over  HH8-HH12  (Dale  et  al.  ,  1997;  Fu  et  al.  ,  2017),  while  BMPs 

 regulate  SHH  in  the  hypothalamus  (Manning  et  al.  ,  2006).  My  overall  goal  was  to  determine 

 whether their expression profiles might predict early tissue morphology. 

 I  began  with  cross-sectional  data  (Fig  4.1A),  which  I  then  planned  to  reconstruct  in  3-D. 

 However,  I  found  that  the  variability  in  the  precise  orientation  of  the  sample,  and  damage 

 caused  by  slicing,  affected  my  ability  to  align  and  reconstruct  these  in  3-D.  As  a  result,  I  then 

 focused  on  wholemount  3-D  imaging  of  isolated  neuroepithelium.  This  provided  a  robust  and 

 reproducible  picture  of  morphology  in  the  developing  chick  brain  and  hypothalamus.  Further, 

 through  this  analysis  I  characterised  a  novel,  complex  morphology  of  the  developing  chick 

 prosencephalon,  which  includes  the  developing  hypothalamus.  For  the  sake  of  brevity  I 

 include  only  the  initial  analysis  of  sagittal  sections,  and  focus  primarily  on  analyses  of  the 

 3-D wholemount images in Section 4.2. 

 4.2 Results 

 4.2.1 Dissection of the chick neuroectoderm reveals ventral folds 

 I  initially  set  out  to  visualise  the  morphology  of  the  developing  hypothalamus  at  HH10,  a 

 critical  stage  of  hypothalamus  development,  when  regionalisation  is  about  to  begin  (Fu  et  al.  , 

 2017, 2019; Kim  et al.  , 2022). 

 While  the  neuroepithelium  along  the  length  of  the  neural  tube  at  HH10  is  largely  cylindrical, 

 the  tissue  in  the  vicinity  of  the  developing  hypothalamus  is  more  complex,  and  in  fact  a  fold 

 has  previously  been  noted  in  2-D  sagittal  sections  (Fig  4.1B,  adapted  from  (Fu  et  al.  ,  2017)). 

 To  assess  if  this  fold  is  characteristic  of  HH10  embryos,  I  re-examined  the  sagittal  profile  of 

 the  developing  hypothalamus  at  HH10,  incubating  sections  with  DAPI  as  a  proxy  for  overall 

 tissue  morphology  (see  Section  2.2.1).  A  prominent  fold  was  detected  in  all  HH10  embryos 

 (n  =  4).  I  termed  the  prominent  fold  the  anterior  fold  (A-fold;  Fig  4.1B-C,  green  square 

 bracket;  magenta  arrowheads  mark  posterior  limit  of  fold)  and  I  termed  the  tissue  anterior  to 

 the  A-fold  the  ventral  face  (V-face;  Fig  4.1B-C,  blue  square  brackets).  Analysis  of  previously 

 published  work  ((Fu  et  al.  ,  2017);  Fig  4.1B)  led  me  -  at  the  start  of  my  thesis  -  to  tentatively 

 suggest  that  in  an  11-somite  embryo,  the  A-fold  is  composed  of  FGF10  -expressing 
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 progenitors,  while  the  V-face  is  composed  of  nascent  anterior  tuberal  progenitors  that  have 

 downregulated  Fgf10  . 

 It  proved  difficult  to  reconstruct  these  structures  in  3-D  from  sequential  sagittal  sections,  due 

 to  variability  in  sample  orientation  and  slicing  angle.  As  a  result,  I  turned  to  wholemount 

 analyses  of  isolated  neuroepithelia  to  get  a  clearer  picture.  To  remove  the  neural  tube  from 

 its  surrounding  tissues  I  applied  dispase  (a  protease  treatment  that  dissociates  tissue 

 layers),  then  dissected  away  mesodermal,  endodermal  and  ectodermal  tissues,  leaving  only 

 the  neuroepithelium.  This  was  then  incubated  with  DAPI,  placed  in  a  well  (dorsal  down)  and 

 visualised  using  fluorescence  microscopy  to  enable  3-D  reconstruction  of  the  tissue  through 

 optical sectioning (see Section 2.2-3). 

 Again,  due  to  the  dense  packing  of  cells  in  the  neuroepithelium,  their  DAPI-labelled  cell 

 nuclei  were  a  sufficient  proxy  for  overall  tissue  shape.  3-D  imaging  revealed  the  extent  and 

 position  of  the  A-fold  and  V-face.  In  a  stage  10.3  embryo  the  A-fold  was  U-shaped  with  its 

 posterior  apex  at  the  ventral  midline,  and  in  line  with  the  posterior  extent  of  the  optic 

 vesicles,  and  the  V-face  extended  towards  the  anterior  neuropore  (Fig  4.1D,  magenta 

 arrowhead,  green  and  blue  square  brackets  respectively).  The  3-D  reconstruction  also 

 showed the ventral extent of the A-fold and V-face (Fig 4.1D).. 
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 Figure  4.1:  The  developing  hypothalamus  at  HH10  has  a  characteristic  3-D 
 morphology.  (A)  Dorsal  view  of  a  stage  10.1  chick  embryo,  demonstrating  the  sectioning 

 plane  for  (B-C)  (black  dotted  line)  (4x).  (B)  Mid-sagittal  views  labelled  via  in  situ  hybridisation 

 for  Foxg1-  expressing  telencephalic  cells  and  FGF10  -expressing  hypothalamic  progenitors 

 (40x),  reproduced  from  (Fu  et  al.  ,  2017).  (C)  Mid-sagittal  views  of  the  neuroepithelium 

 labelled  with  DAPI  (20x).  (D)  Ventral  wholemount  view  of  a  10.3  embryo  (10x).  Magenta 

 arrowheads  indicate  the  posterior  limit  of  the  A-fold,  green  square  brackets  indicate  the 

 A-fold,  and  blue  square  brackets  delineate  the  ventral  face  (V-face)  Scale  bars:  (A)  200μm; 

 (B) 50μm; (C-D) 100μm. 
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 Figure  4.2:  3-D  imaging  of  wholemount  isolated  neuroepithelia  reveals  complex  tissue 
 morphology,  including  a  ventral  indentation  and  tissue  fold(s).  Images  arranged  in 

 increasing  developmental  stages  (from  A-L),  determined  through  somite  number  and  overall 

 morphology  of  neuroepithelium.  All  images  show  ventral  views.  During  HH8,  a  ventral 

 indentation  forms  (A-C,  yellow  square  brackets)  At  early  HH9,  the  ventral  midline  begins  to 

 fold  (D,  magenta  arrow),  which  was  the  earliest  detectable  sign  of  the  A-fold.  From  HH9-10, 

 an  A-fold  in  the  ventral  midline  was  detectable,  initially  appearing  as  a  horizontal  fold  (E-F, 

 green  square  brackets  then  becoming  U-shaped  (G-H  green  square  brackets.  Magenta 

 arrows  point  to  posterior  apex  of  A-fold.  The  tissue  anterior  to  the  A-fold  was  the  V-face  (E-L, 

 blue  square  brackets).  During  HH10  sub-stages,  multiple  folds  appear,  transiently  (I-L). 

 Scale bars: 100μm. 

 Next,  I  asked  when  the  A-fold/V-face  first  become  apparent,  by  examining  wholemount 

 images  of  dissected  embryos  between  HH8  and  HH12.  The  prosencephalon  was 

 morphologically  distinct  throughout  these  stages,  because  it  broadens  from  a  pinch-point  at 

 the prosencephalic neck (Fig 4.2A-L). 

 At  HH8,  the  ventral  surface  of  the  prosencephalon  appeared  to  be  flat  (Fig  4.2A).  By  HH8+ 

 (6  somites)  to  HH9,  however,  a  wide,  shallow  indentation  was  apparent  around  the  anterior 
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 ventral  midline  (Fig  4.2B-D,  yellow  square  brackets,  n=3).  From  HH9  to  HH10,  this 

 indentation  became  progressively  more  focal,  and  represented  a  smaller  proportion  of  the 

 ventral  tissue  (Fig  4.2F-L).  Beginning  at  HH9,  a  fold  appeared  in  ventral  midline  tissue  at  the 

 posterior  part  of  the  indentation  (n=3/  6;  Fig  4.2D-L,  magenta  arrowheads).  By  HH10,  all 

 embryos  exhibited  this  fold,  agreeing  with  the  cross-sectional  data  (n=18).  Transiently,  over 

 stage  10.1  and  10.2,  multiple  posterior  folds  were  detected,  but  at  stage  10.3  these  were  no 

 longer  detected,  and  only  the  single  prominent  U-shaped  A-fold  was  observed  (Fig  4.1K-L, 

 magenta arrowhead). 

 While  the  size  and  extent  of  the  A-fold  appeared  dynamic  throughout  HH10-11  (Fig  4.2E-L, 

 green  square  brackets),  this  was  most  likely  an  artefact  of  tissue  orientation.  The  anterior 

 limit  of  the  V-face  tissue  was  harder  to  define,  as  there  were  fewer  morphological  landmarks. 

 However,  side-views  suggested  that,  at  its  anterior  limit,  the  V-face  began  to  curve  and  turn 

 dorsally  (Fig  4.1B-C),  and  I  tentatively  labelled  the  wholemount  views  accordingly  (Fig 

 4.2E-L, blue square brackets). 

 4.2.2  3-D  morphometric  analyses  of  hypothalamic  morphology  at  the 

 tissue and cellular level 

 While  the  wholemount  analyses  showed  that  the  A-fold  and  V-face  are  characteristic 

 features  of  the  ventral  midline,  their  exact  position  and  shape  was  difficult  to  pinpoint,  and 

 the  anterior  limit  of  the  V-face  was  not  obvious.  A  better  understanding  of  the  position  and 

 shape  of  these  structures  is  of  potential  importance,  as  these  landmarks  could  represent 

 important  boundaries  between  distinct  progenitor  populations.  I  therefore  next  sought  to 

 define  the  anterior  limit  of  the  V-face,  and  pinpoint  the  positions  of  the  A-fold  and  V-face  as 

 discrete  morphological  landmarks  by  examining  their  morphometric  characteristics  relative  to 

 surrounding forebrain tissue. 

 To  do  this,  I  examined  the  tissue-scale  mean  curvature  of  the  ventral  prosencephalon  (Fig 

 4.3),  reconstructing  the  epithelial  surface  from  the  DAPI  images  of  densely  packed  nuclei.  I 

 then  investigated  first  the  indication  from  the  3-D  imaging  that  the  indentation  arises  after 

 HH8,  and  transitions  from  a  broad  indentation  into  a  midline  structure  which  exhibits  folds; 

 and  second,  whether  any  tissue-wide  morphological  characteristics  could  be  used  to  help 

 demarcate an anterior boundary for the V-face. 
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 To  examine  curvature,  I  extracted  surface  meshes  for  neuroepithelia  at  stages  HH9,  10.1, 

 10.3,  and  HH13  and  computed  the  mean  curvature  of  each  mesh,  rescaling  these  values 

 from  1  to  -1  (corresponding  to  the  points  of  highest  and  lowest  curvature  in  each  mesh, 

 respectively).  I  then  isolated  the  highest  regions  of  curvature  in  the  embryo,  and  manually 

 filtered  out  the  surfaces  with  curvatures  below  a  threshold  of  60%  of  the  maximum  curvature 

 value  (the  60%  threshold  was  tuned  empirically,  scaled  to  each  embryo  such  that  the  flat  and 

 negatively curved regions were omitted), leaving the highest points of curvature. 

 Reconstruction  of  the  surface  at  HH9  revealed  a  small  oblong  region  in  the  anterior-most 

 ventral  neuroepithelium  that  appeared  to  have  relatively  higher  curvature  than  the  adjacent 

 neuroepithelium,  especially  at  its  posterior  end  (Fig  4.3A’,  white  dotted  outline).  Nonetheless, 

 the  difference  was  subtle,  confirming  the  conclusion  from  optical  sections  that  the  curved 

 indentation  was  just  forming  (Fig  4.3A’’).  Reconstruction  at  stage  10.1  showed  areas  along 

 the  anterior  ventral  midline  that  transitioned  from  low  to  high  curvature.  The  largest  was 

 anterior-most,  i.e.  marking  the  A-fold  (Fig  4.3B’,  green  and  magenta  arrowheads). 

 Thresholding  confirmed  this  large  circular  region  to  be  of  high  curvature  relative  to  the  rest  of 

 the  embryo  (Fig  4.3B’’).  Comparison  with  HH9  suggested  that  the  onset  of  high  curvature  in 

 the  anterior  ventral  midline  was  concomitant  with  a  decrease  in  curvature  of  the  tissues 

 lateral  and  anterior  to  this  region  (Fig  4.3B’’,  blue  arrowhead).  These  analyses  support  the 

 conclusion  from  optical  sectioning  that  by  10.1,  multiple  folds  appear  in  the  anterior  ventral 

 midline, with the most prominent being the A-fold. 

 At  stage  10.3,  the  optic  vesicles  in  the  forebrain  appeared  pronounced  and  the  developing 

 hindbrain  began  to  bulge,  relative  to  earlier  stages  (Fig  4.3C).  Despite  these  profound 

 tissue-scale  changes  in  morphology,  a  high  point  of  curvature  was  still  apparent  along  the 

 ventral  midline,  with  a  high  point  at  the  posterior  edge  of  the  A-fold  (Fig  4.3C’,  magenta 

 arrowhead).  When  thresholded,  the  A-fold  was  apparent  as  a  U-shape  (Fig  4.3C’-C’’,  green 

 arrowhead),  with  the  V-face  detected  as  a  flattened  area  of  tissue  anteriorly  (Fig  4.3C’-C’’, 

 blue  arrowhead,  note  this  embryo  is  the  same  shown  in  Fig  4.1D,  2L).  Despite  a  tear  in  the 

 tissue,  the  anterior  limit  of  the  V-face  was  apparent  through  a  transition  from  medium  to  low 

 curvature (Fig 4.3C’ white dotted line). 
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 Figure  4.3:  3D  morphometrics  show  that  from  HH9-HH13,  the  hypothalamus  becomes 
 more  highly  curved.  Surface  reconstruction  3D  models  of  HH9  (A),  stage  10.1  (B),  stage 

 10.3  (C),  and  HH13  (D)  embryos,  obtained  from  thresholding  the  DAPI  signal.  3D  mean 

 curvatures  are  coloured  from  cool  to  warm  (lowest  to  highest  curvature);  histogram  height 

 corresponds  to  the  number  of  mesh  vertices  with  that  curvature  (A’-D’).  Points  of  highest 

 relative  curvature  are  shown  in  white  (A’’-D’’),  with  regions  whose  curvature  is  less  than  60% 

 of  the  maximum  filtered  out.  The  A-fold  (green  arrowhead),  its  posterior  apex  (magenta 

 arrowhead),  the  V-face  (blue  arrowhead),  and  its  anterior  limit  (white  dotted  line)  are 

 indicated (n=1 per stage). Scale bars: 100μm. 

 77 



 By  HH13,  the  oldest  stage  examined,  there  were  three  regions  with  substantially  higher 

 curvature  than  adjacent  regions.  Two  of  these  were  within  the  optic  vesicle;  the  third  was  the 

 ventral  midline.  Here,  the  mean  tissue  curvatures  that  had  been  detected  at  earlier  stages 

 were  greatly  increased  (Fig  4.3D’).  Similar  to  the  profile  of  stage  10.1  and  10.3,  the  A-fold 

 was  easily  detectable  as  a  sudden  transition  from  low  to  high  curvature  (Fig  4.3D’-D’’, 

 magenta  and  green  arrowheads)  and  the  V-face  was  a  relatively  flatter  region  anterior  (Fig 

 4.3D’-D’’  blue  arrowhead).  Similar  to  the  stage  10.3  embryo,  the  anterior  limit  of  the  V-face 

 was  defined  by  a  transition  from  high  to  low  curvature  anteriorly  (Fig  4.3D’,  white  dotted  line). 

 Strikingly,  the  A-fold  showed  a  similar  level  of  curvature  to  the  optic  vesicles,  and  both 

 remained when thresholded (Fig 4.3D’’). 

 A  key  finding  from  these  curvature  analyses  was  that  the  relative  position  of  the  A-fold  (as 

 marked  by  the  transition  from  low  to  high  curvature  in  the  anterior  ventral  midline)  moved 

 posteriorly,  relative  to  the  prosencephalic  neck  over  HH9-HH13.  At  the  same  time,  the  V-face 

 lengthens,  judged  through  the  position  of  the  A-fold/V-face  boundary  respective  to  the 

 anterior  neuropore  (Fig  4.3B-D  AN),  or  most  anterior  point  pictured.  At  stage  10.1  the  V-face 

 was  in-line  with  anterior  regions  of  the  optic  vesicle;  and  progressively  between  10.1-3  the 

 V-face  became  closer  to,  before  becoming  in-line  with  the  prosencephalic  neck,  the  region 

 where  the  most  posterior  regions  of  the  optic  vesicle  outpocket  laterally.  Re-examination  of 

 the wholemount neuroepithelia confirmed this (Fig 4.2F-L). 

 In  summary,  the  curvature  analyses  support  and  extend  the  observations  made  in  Section 

 4.2.1  that  the  anterior  ventral  midline  undergoes  discrete  changes  in  morphology  around 

 HH10,  characterised  by  a  pronounced  U-shaped  A-fold  that  abuts  the  flatter  V-face  at  its 

 anterior  edge.  The  A-fold  moves  backwards  relative  to  the  prosencephalic  neck,  and 

 concomitantly,  the  V-face  lengthens.  As  discussed  in  Chapter  1,  the  late  embryonic  /  adult 

 hypothalamus  protrudes  from  the  ventral  surface  of  the  forebrain,  anterior  to  the  cephalic 

 flexure  and  ventral  to  the  forming  zona  limitans  intrathalamica.  The  rapid,  stark  changes  in 

 developing  ventral  morphology  reported  here  could  thus  be  the  first  sign  of  this  more 

 protruded morphology. 

 I  next  examined  the  geometry  of  cells  within  the  ventral  prosencephalon,  to  identify  any 

 morphometric  patterns.  I  focused  on  cell  shape,  an  important  indicator  of  cellular  function  in 

 epithelial  morphogenesis  (Gillard  and  Röper,  2020).  This  analysis  was  limited  to  a  single 

 embryo  at  stage  10.2.  To  outline  cell  shape,  I  labelled  the  lateral  cell  membrane  using  an 

 antibody  for  the  membrane-bound  protein  β-catenin  (Fig  4.4A).  At  low  magnification 
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 (10-20x),  individual  cells  could  not  be  discerned  easily,  due  to  the  dense  cell  packing  within 

 the  tissue  (Fig  4.4A,  A’).  To  address  this,  I  used  high-magnification  confocal  microscopy 

 (63x),  tiling  multiple  fields  of  view.  For  tractability,  I  only  analysed  the  A-fold/V-face  cells, 

 which  were  the  most  ventral  of  optical  sections  (and  cover  the  area  delineated  by  the  dotted 

 outline  in  Fig  4.4A’’).  This  showed  that  high  β-catenin  labelled  a  trapezoid-shaped  area, 

 widest  most  anteriorly  (Fig  4.4A’’).  Comparison  of  the  tiled  and  DAPI  views  suggested  the 

 narrow  area  was  the  A-fold  (demarcated  with  green  dotted  outline)  and  the  wider  area  was 

 the  V-face  (blue  dotted  outline).  I  then  performed  3-D  segmentation  using  the  DNN  U-Net 

 (Ronneberger  et  al.  ,  2015),  as  part  of  PlantSeg,  a  morphometric  analysis  pipeline  for 

 measuring  properties  of  membrane-labelled  cells  (Wolny  et  al.  ,  2020).  This  yielded 

 predictions  about  whether  each  pixel  belonged  to  a  cell  membrane  (Section  2.3.6).  I  then 

 conducted  morphometric  analysis  on  these  regions  (Fig  4.4A’’),  computing  cell  sphericity  (Fig 

 4.4B), surface area (Fig 4.4C), and volume (Fig 4.4D); see Section 2.3.7 for details). 

 At  stage  10.2,  there  was  substantial  heterogeneity  in  each  of  the  metrics  between  the  A-fold 

 and  V-face.  Cells  in  the  anterior  part  of  the  A-fold  were  more  spherical  than  those  in  its 

 posterior  part;  while  cells  in  the  posterior-central  part  of  the  V-face  were  more  spherical  than 

 cells  towards  its  peripheral  regions.  This  might  be  important:  epithelial  cells  round  up  as  they 

 enter  mitosis  (Taubenberger  et  al.,  2020),  hence  the  spherical  cells  could  be  more 

 proliferative  than  other  adjacent  cells.  Quantitative  analyses  showed  that  cells  of  high 

 sphericity were also of highest volume, but of lowest surface area (Figs 4.4B-D). 

 In  summary,  I  identified  a  novel  morphological  structure  -  an  anterior  ventral  midline 

 indentation  -  which  appears  to  give  rise  to  distinct  morphological  regions:  the  U-shaped 

 A-fold and the V-face. These arise between HH9 and HH10. 
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 Figure  4.4:  Cell  shapes  differ  within  the  A-fold  and  V-face  of  the  stage  10.2  embryo. 
 (A-A’)  Ventral  view  of  an  isolated  stage  10.2  neuroepithelium  at  10x  (A)  and  20x  (A’).  Blue 

 dotted  square  in  A  shows  the  view  in  A’.  At  these  magnifications  and  resolutions,  it  was 

 challenging  to  perform  3D  cell  segmentation  due  to  overlap  in  cell  boundaries  delineated  by 

 an  immunolabel  for  the  cell  membrane  protein  β-catenin.  Magenta  arrowhead:  posterior 

 apex  of  A-fold,  Green  square  bracket:  A-fold;  blue  square  bracket:  V-face.  (A’’):  63x  high 

 magnification  ventral  view  of  the  same  embryo  as  in  A-A’.  The  higher  power  and  increased 

 resolution  allowed  for  more  robust  3D  segmentation  of  cell  shapes.  Blue  and  green  dotted 

 lines  delineate  the  V-face  and  A-fold  respectively,  and  together  they  form  the  quantified  area 

 in  B-D.  (B-D):  3D  cell  segmentation  colourised  from  cool  (low  values)  to  warm  (high  values) 

 colours  according  to:  sphericity  (B);  surface  area  (C);  and  volume  (D).  Scale  bars:  (A-A’) 

 100μm; (A’’, B-E) 25μm. 
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 4.2.3 A-fold and V-face cells are proliferative at HH10-12 

 My  morphometric  analyses  showed  spherical  cells  (i.e  potentially  proliferative  as  mitotic  cells 

 adopt  spherical  morphologies  (Cadart  et  al.  ,  2014))  in  the  anterior  part  of  the  A-fold,  and  in 

 the  posterior-central  part  of  the  V-face.  I  therefore  examined  proliferation  in  these  regions 

 over  HH10-13.  I  sought  to  determine  if  V-face  and/or  A-fold  cells  are  proliferative,  whether 

 levels  of  proliferation  are  substantially  different  in  any  particular  part  of  the  A-fold  or  V-face, 

 and  more  generally  if  proliferation  patterns  correlate  with  particular  aspects  of  hypothalamic 

 morphology. 

 I  characterised  proliferation  in  dissected  3-D  neuroepithelia.  I  analysed  cells  in  G2-M  phase 

 using  an  antibody  against  phospho-histone  H3  (pH3)  (Fig  4.5A-B,  A’-B’),  which  is  produced 

 by  cells  undergoing  the  G2  to  M  phase  cell  cycle  transition  (Hans  and  Dimitrov,  2001),  and 

 cells  in  S-phase,  using  EdU  (Fig  4.5C-D,  C’-D’),  a  thymidine  analogue  incorporated  during 

 DNA synthesis (Yu  et al.  , 2009) 

 I  did  not  discern  any  clear  patterns  of  proliferation.  Fig  4.5  shows  representative  images  from 

 n=6  embryos.  I  identified  proliferating  cells  in  both  the  A-fold  and  V-face  at  all  stages 

 analysed  (Fig  4.5A-D).  Relatively  few  M-phase  cells  were  detected,  in  comparison  to 

 S-phase  cells.  In  general,  lower  numbers  of  dividing  cells  were  detected  in  the  A-fold/V-face 

 in  comparison  to  other  brain  areas:  high  levels  of  proliferation  were  detected  in  the 

 telencephalon  and  optic  vesicles.  Potentially,  there  was  a  subtle  pattern  to  cells  in  M-phase, 

 which  were  detected  most  abundantly  at  the  A-fold/V-face  border,  and  at  the  V-face 

 periphery. However, there was no discernable pattern to S-phase cells 

 The  combination  of  sparse  pH3  labelling  (Fig  4.5A-A’,  5B-B’)  and  high  numbers  of  EdU+ 

 cells  (Fig  4.5C-C’,  5D-D’),  as  well  as  the  high  sensitivity  of  the  EdU  methodology,  meant  the 

 study  was  difficult  to  interpret  and  underpowered,  and  I  would  therefore  require  larger 

 amounts  of  data  to  draw  firm  conclusions  about  patterns  of  proliferation  within  and  relative  to 

 the  V-face  cells.  Nevertheless,  my  results  indicate  that  the  folds  (including  the  A-fold)  do  not 

 appear  to  be  due  to  hyperproliferation,  as  in  all  cases  there  were  fewer  pH3/EdU  positive 

 cells in the A-fold than in the surrounding developing brain. 
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 Figure  4.5:  V-face  cells  are  proliferative  at  HH10-13.  (A-D):  Ventral  views  of  isolated 

 neuroepithelia  at  HH10  (A),  stage  10.3  (B),  HH11  (C),  and  HH13  (D),  labelled  for  markers  of 

 the  cell  cycle.  (A’-D’)  show  zoomed  views  of  blue  boxed  regions,  the  purple  dotted  line 

 represents  the  A-fold,  the  green  square  bracket  the  anteroposterior  extent  of  the  A-fold  and 

 the  yellow  square  bracket  the  V-face.  (A-B,  A’-B’)  Phospho-histone  H3  (pH3)  labelling  shows 

 cells  undergoing  a  G2/M  phase  transition  of  the  cell  cycle.  At  HH10-11  there  are  proliferating 

 cells  in  the  A-fold  (A’-B’,  green  square  brackets;  magenta  dotted  lines  demarcate  posterior 

 limits  of  the  U-shaped  A-fold.  At  HH10-11,  pH3  positive  cells  are  also  detected  in  the  V-face 

 (A’-B’,  blue  square  brackets).  (C-D,  C’-D’)  EdU  labelling  marking  cells  in  S-phase  of  the  cell 

 cycle.  At  HH11,  there  was  proliferation  in  the  V-face  cells  (C’),  yet  at  a  lower  frequency  than 

 the  surrounding  tissue  (C).  At  HH13,  this  difference  was  reduced  (D’).  Scale  bars  (A-D): 

 100μm, (A’-D’): 50μm. 
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 4.3 Summary 

 The  overall  hypothesis  that  I  have  investigated  in  this,  and  Chapter  5,  is  that  morphogen-like 

 signalling  ligands  might  play  an  important  role  in  the  development  of  the  3-D  tissue 

 morphology  of  the  hypothalamus.  To  begin  to  address  this  I  first  had  to  examine  when  I 

 could  detect  the  first  obvious  signs  of  3-D  morphology  in  the  ventral  prosencephalon.  To  do 

 so,  I  developed  a  novel  approach,  isolating  neuroepithelia  and  analysing  wholemount  ventral 

 views. 

 I  detected  the  first  signs  of  development  of  3D  morphology  at  HH8-HH9,  when  a  large 

 ventral  indentation  becomes  obvious.  This  occurs  at  the  same  time  that  the  prosencephalic 

 neck  becomes  obvious,  and  the  optic  vesicles  start  to  form.  Over  HH9  and  stage  10.3,  the 

 ventral  indentation  rapidly  forms  a  series  of  ventral  folds,  as  detected  visually  and  through 

 curvature  analyses.  I  defined  the  anterior-most  fold  as  the  A-fold.  The  A-fold  has  a 

 characteristic  U-shape  by  stage  10.3.  Immediately  ahead  of  the  A-fold  is  a  relatively  flatter 

 tissue  I  defined  as  the  V-face.  This  elongates  over  HH10-12,  and  at  the  same  time,  the 

 A-fold  moves  relatively  backwards  within  the  prosencephalon.  My  3-D  cell  morphometric 

 analysis  showed  that  cells  in  the  central  anterior  part  of  the  A-fold  and  central  posterior  part 

 of  the  V-face  are  more  spherical  than  other  regions  of  these  tissues.  They  may  be  more 

 frequently undergoing mitosis, but my proliferation assays did not provide useful data on this. 

 With  a  clearer  picture  of  the  morphological  changes  that  occur  over  HH8-12,  I  next  aimed  to 

 answer  whether  this  morphology  correlated  with,  or  could  be  predicted  by,  expression  of  key 

 signalling factors that are known to operate in the developing hypothalamus. 
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 Chapter 5 

 3-D imaging of signalling ligand expression in the 

 developing hypothalamus 

 5.1 Introduction 

 I  next  investigated  whether  the  expression  profile  of  known  signalling  ligands  might  prefigure 

 the morphology of the developing hypothalamus, ie. the U-shaped A-fold and the V-face. 

 The  Fu  et  al  (2017)  study,  described  in  Chapter  1,  suggested  complex  and  dynamic 

 expression  of  SHH  and  FGF10  in  the  developing  hypothalamus.  This  study  concluded  that 

 they  are  co-expressed  at  HH9-10,  then,  between  HH10-12,  they  largely  resolve  into: 

 SHH  -expressing  anterior  tuberal  progenitors,  which  migrate/grow  anteriorly; 

 FGF10  -expressing  posterior  tuberal  progenitors,  which  do  not  expand  extensively;  and 

 SHH-expressing  mammillary  progenitors,  which  expand.  At  the  same  time,  pharmacological 

 studies,  using  cyclopamine,  indicated  an  ongoing  role  for  SHH  in  directing  the  proliferation 

 and  differentiation  of  anterior  tuberal  progenitors  (Fu  et  al.,  2017)  and  their  progression  to 

 tuberal  neuronal  precursors  .  The  relative  expression  patterns  of  FGF10  and  SHH  ,  however, 

 were  limited  to  analyses  of  sagittal  sections  and  were  mostly  performed  using  chromogenic 

 in situ  hybridisation rather than sensitive double-labelling  (Fu  et al.  , 2017). 

 The  fact  that  (i)  SHH  and  FGF10  had  not  been  previously  imaged  in  3-D,  and  (ii)  they  had 

 complex  expression  profiles  over  HH10-12  (the  stages  where  the  A-fold/V-face  are 

 developing  in  earnest)  led  me  to  first  focus  on  analysing  the  expression  of  SHH  and  FGF10 

 in ventral wholemount views of isolated neuroepithelia. 
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 5.2 Results 

 5.2.1  SHH  and  FGF10  are  reciprocally  expressed  as  the  hypothalamic 

 A-fold forms 

 I  analysed  the  expression  profiles  of  SHH  and  FGF10  in  3-D  using  double-labelled 

 hybridisation  chain  reaction  (HCR)  in  situ  hybridisation,  a  sensitive  technique  that  allowed 

 me  to  accurately  compare  their  expression  profiles.  I  performed  these  analyses  over 

 HH9-HH13  in  collaboration  with  a  postdoctoral  researcher  in  the  Placzek  group,  Dr  K. 

 Chinnaiya,  who  optimised  the  wholemount  HCR  technique  while  I  optimised  the  3-D 

 imaging. 

 My  ventral  wholemount  views  provided  a  detailed  picture  of  the  extent  and  shape  of  gene 

 expression  domains.  Moreover,  since  the  morphological  features  I  had  described  in  Chapter 

 4  (forming  folds,  A-fold,  V-face)  were  still  apparent  after  HCR  and  DAPI  labelling,  I  was  able 

 to  assess  the  patterns  of  expression  of  FGF10  and  SHH  relative  to  these  features.  My 

 results  indicated  a  consistent  pattern  of  expression  of  FGF10  ,  relative  to  expression  of  SHH  , 

 which  was  expressed  in  the  U-shaped  A-fold.  My  results  also  (Fig  5.1A’-C’’)  showed  that  the 

 conclusions  of  Fu  et  al  .  (2017)  -  that  FGF10  and  SHH  are  initially  co-expressed  -  were  not 

 correct. 

 At  HH9+  and  10.1,  SHH  and  FGF10  did  not  show  the  same  anterior  limit,  but  instead, 

 showed  almost  reciprocal  expression  along  the  A-P  axis,  overlapping  in  the  developing 

 (HH9+)  or  clearly-formed  (10.1)  A-fold  (Fig  5.1A’-A”’,  B’-B”’).  FGF10  expression  extended 

 from  close  to  the  anterior  neuropore  into  the  A-fold  (Fig  5.1A’,  B’).  By  contrast,  SHH  was 

 detected  in  the  ventral  midline  of  the  posterior  neuroaxis,  through  the  forming  folds  (at 

 HH9+)  and  the  clearly-formed  A-fold  (at  10.1),  terminating  just  ahead  of  this  in  V-face  (Fig 

 5.1A’’-B’’).  The  expression  levels  of  SHH  appeared  to  vary.  Since  the  views  are  maximum 

 intensity  projections,  the  seemingly  strong  SHH  expression  in  the  A-fold  (and  the  other 

 transient  folds)  is  most  likely  an  artefact  of  imaging  that  reflects  the  depth  of  the  A-fold. 

 Overlaid,  FGF10  and  SHH  appear  therefore  to  overlap  in  the  posterior  V-face  and  the  A-fold 

 (Fig  5.1A’’’-B’’’).The  position  of  SHH  and  FGF10  ,  relative  to  the  A-fold  and  V-face  were 

 independently  confirmed  by  Dr  Sarah  Burbridge  (a  postdoc  in  the  lab),  through  examination 

 of mid-sagittal sections. 
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 Figure  5.1  A-fold  and  V-face  cells  express  genes  encoding  key  hypothalamic 
 signalling  ligands  SHH  and  FGF10.  Magenta  arrow:  posterior  apex  of  A-fold.  Green 

 square  bracket:  A-fold.  Blue  square  bracket:  V-face.  All  images  show  ventral  views  of 

 isolated  neuroepithelia.  (n=1  per  stage).  (A)  At  HH9+  (late  HH9),  SHH  and  FGF10 

 expression  domains  are  not  coincident  (A-A’’).  (B)  At  stage  10.1  FGF10  extends  more 

 laterally,  and  SHH  more  anteriorly  and  laterally  than  at  HH9+  (B’-B’’).  (C)  Ventral  view  of  an 

 isolated  neuroepithelium  from  a  HH12  embryo  processed  as  in  (A-B).  FGF10  is  expressed 

 highly  in  the  centre  of  the  V-face,  and  weakly  laterally  (C’).  SHH  is  expressed  highly  in  the 

 anterior  V-face,  and  the  A-fold,  and  is  downregulated  in  the  centre  of  the  V-face  (C’’).  (D) 

 Schematic  summarising  the  observed  transition  in  expression  domains  over  HH10-12:  a 

 SHH  /  FGF10  co-expressing  domain  remains,  but  SHH  and  FGF10  otherwise  resolve  into 

 discrete  populations  along  the  anteroposterior  axis.  (E)  Schematic  of  the  observed 

 expression  transition  of  SHH  from  a  rod-shaped  to  a  Y-shaped  pattern.  Scale  bars:  100μm. 
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 In  situ  analyses  for  SHH  and  FGF10  were  performed  by  Dr  K.  Chinnaiya,  and  images  were 

 acquired in collaboration with Dr K. Chinnaiya. 

 From  HH10  to  HH12  the  profile  of  FGF10  changed,  resulting  in  an  oval  region  of  expression 

 at  HH12.  However,  throughout  HH9-HH12,  the  relative  positions  between  the  FGF10  and 

 SHH  expression  domains  remained  the  same:  FGF10  was  nestled  within  (i.e.  partially 

 surrounded  by),  and  overlapped  with,  the  U-shaped  SHH  expression  domain.  Strikingly,  the 

 A-fold  appeared  to  consistently  be  coincident  with  SHH  expression  (Fig  5.1C’),  suggesting 

 that  SHH  (at  least)  may  prefigure  the  development  of  the  hypothalamic  morphology 

 described  in  Chapter  4.  My  imaging  also  showed  the  progression/development  of  SHH 

 expression  over  the  period  HH9-HH12.  Previous  chromogenic  studies  have  shown  that  SHH 

 expands  from  a  rod,  to  an  oval,  then  to  a  torus  (Fig  1.2).  My  imaging  demonstrated  how 

 these  expression  profiles  link  to  morphological  features.  The  SHH-negative  torus 

 ‘hole/interior’  coincided  with  the  posterior  V-face,  where  FGF10  was  detected.  The  outer 

 torus  of  SHH  was  not  uniform.  A  strong  arc  of  expression  was  detected  towards  the  anterior 

 edge  of  the  V-face,  but  expression  of  SHH  was  much  weaker  in  the  part  of  the  torus  lateral 

 to  the  A-fold,  at  the  level  of  the  prosencephalic  neck  (Fig  5.1C”-C’’’,  red  arrowheads).  The 

 A-fold itself, and more posterior regions, expressed  SHH  strongly. 

 Taken  together,  these  results  showed  that  whereas  SHH  is  initially  expressed  uniformly  in 

 ventral  midline  cells,  it  comes  to  be  expressed  in  a  non-uniform  manner  in  the  developing 

 hypothalamus  (high-low-high  expression  from  anterior  to  posterior  and  low  expression  in  the 

 radially-expanded  domain,  lateral  to  the  A-fold  (Fig  5.1D).  In  addition,  these  results  showed 

 that  while  FGF10  was  initially  anterior  to  SHH,  by  HH12  FGF10  and  SHH  had  swapped 

 relative positions (Fig 5.1D). 

 These  findings  support  my  hypothesis  that  the  expression  of  signalling  ligands  might 

 prefigure  morphology.  In  particular,  at  HH9+  I  detected  reciprocal  patterns  of  expression  of 

 FGF10  and  SHH  whose  overlap  predicts  the  A-fold  and  V-face.  Further,  these  studies  show 

 that  throughout  the  period  HH10.3-  HH12,  the  SHH/FGF10  -expressing  overlapping  domain 

 marks the A-fold. 
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 5.2.2  BMP2  is transiently detected at the V-face/A-fold interface 

 I  next  examined  the  relative  expression  patterns  of  SHH  and  BMP2  ,  to  ask  whether  their 

 profiles  might  predict  any  aspect  of  hypothalamic  morphology.  BMP2  has  previously  been 

 shown  to  downregulate  SHH  in  the  developing  hypothalamus  (Manning  et  al.  ,  2006),  and 

 has  recently  been  identified  as  important  to  hypothalamus  development  from  a  scRNA-seq 

 study  (Kim  et  al.  ,  2022),  but  to  date  its  expression  has  not  been  studied  in  detail  in  the 

 developing hypothalamus. 

 I  began  by  analysing  embryos  from  HH8  until  late-stage  HH11  (HH11+).  Unlike  in  Section 

 5.2.1,  all  subsequent  analyses  were  performed  by  me  alone  (see  front  matter: 

 acknowledgement  of  collaborative  work  within  the  thesis  for  details).  In  a  first  round  of  HCR 

 in  situ  studies,  triple-label  analyses  were  performed  to  simultaneously  detect 

 GLI1/BMP2/PTCH1  (discussed  in  this  chapter)  and  in  a  second  round  (same  embryos), 

 triple-label  analyses  were  performed  to  detect  SHH/FST/GLI3  (  SHH  discussed  here;  others 

 discussed in Chapter 6). 

 At  HH8-9,  BMP2  showed  an  expression  profile  that  was  highly  similar  to  SHH  in  developing 

 hypothalamus  cells  (Fig  5.2A’-B’’’’).  However,  by  10.1,  the  expression  profile  of  BMP2  had 

 changed  drastically:  SHH  -expressing  cells  had  lost  BMP2  expression,  which  was  now 

 confined  to  a  heart-shaped  arc  around  them  (Fig  5.2C’-C””).  Very  transiently,  BMP2 

 expression was highest in the anterior-most part of the arc (Fig 5.2D’’, Fig 3C’’). 

 From  10.1-  HH11,  however,  the  expression  of  BMP2  became  more  tightly  focused,  fading  in 

 the  anterior  part  of  the  heart-shaped  arc,  and  becoming  restricted  to  two  lateral  bands  of 

 expression  running  along  the  tissue  lateral  to  the  midline.  (Fig  5.2C’’-F’’).  T  he  lateral  bands  of 

 expression  of  BMP2  were  situated  directly  adjacent  to  the  SHH  -strong  A-fold,  possibly  delineating 

 their mediolateral border (Fig  5.  2C’’’-F’’’, orange  dotted line). 

 In  terms  of  morphological  features,  then,  initial  expression  of  BMP2  predicts  the  folds  (including 

 the  A-fold),  The  transient  high  level  BMP2  expression  in  the  anterior  part  of  the  heart-shaped  arc 

 correlates  with  the  V-face/A-fold  boundary.  The  sustained  lateral  expression  of  BMP2  correlates 

 with the medio-lateral border of the A-fold. 
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 Figure  5.2:  Early  regionalisation  of  SHH  ,  PTCH1  ,  and  BMP2  in  the  HH8-11  developing 
 hypothalamus.  Wholemount  ventral  views  of  HH8-11  neuroepithelia  from  embryos 

 processed  by  HCR  in  situ  hybridisation  for  SHH  (A’-F’),  BMP2  (A’’-F’’),  and  PTCH1  (A’’’-F’’’). 

 89 



 with  morphology  shown  by  the  DAPI  signal  (A-F).  Magenta  arrowheads  indicate  posterior 

 apex  of  the  A-fold,  orange  dotted  lines  indicate  the  A-fold/V-face  boundary  at  HH9-11.  At 

 HH8,  SHH  extends  anteriorly,  and  marks  the  developing  hypothalamus  (A’).  There  was  some 

 expression  of  PTCH1  in  the  gut  endoderm  at  the  most  anterior  tip  or  the  embryo,  but 

 otherwise  BMP2  and  PTCH1  are  expressed  in  the  SHH  positive  cells  (A’’-A’’’).  At  HH9,  in  the 

 centre  of  the  V-face,  PTCH1  has  been  downregulated,  whereas  SHH  and  BMP2  remain 

 similar  to  the  HH8  profile  (B’-B’’’).  For  the  10.1-10.3  sub-stages,  there  was  a  clear 

 regionalisation  between  SHH  ,  PTCH1  ,  and  BMP2  positive  cells.  SHH  was  expressed  in  the 

 A-fold  and  the  V-face  (C’),  and  BMP2  surrounds  the  SHH  expressing  cells  (C’’),  sharing  a 

 similar  profile  to  PTCH1  ,  which  extends  further  anteriorly  (C’’’).  Throughout  my  sub-stages 

 10.1-3,  a  progressive  widening  mediolaterally  of  the  SHH  domain  occurs  (C’-E’),  and 

 simultaneously  BMP2  positive  cells  showed  a  progressive  weakening  anteriorly  with  a 

 strengthened  expression  along  the  tissue  lateral  to  the  posterior  midline  in  the  tissue  which 

 downregulates  SHH  (D’’-F’’).  PTCH1  expression  mirrored  this,  as  it  was  reduced  along  the 

 posterior  midline  and  laterally,  becoming  a  strong  mediolateral  strip  of  cells  anteriorly  by  10.3 

 (C'’’-F’’’),  these  shape  profiles  then  persisted  in  HH11  (G’-G’’’’).  (H)  Summary  panel  of 

 patterning  events  between  HH8-10.1.  N.B.  Merge  panels  in  A’’’’-G’’’’  were  aligned  manually 

 as  the  samples  were  imaged  multiple  times  (due  to  reprobing  -  note  that  *  represents  an 

 embryo lost in reprobing) and imaging orientations differed slightly. Scale bars: 100µm. 

 5.2.3  PTCH1  expression  suggests  regionally-distinct  levels  of  SHH 

 signalling in the developing hypothalamus 

 I  have  shown  so  far  that  the  expression  profiles  of  SHH,  FGF10  and  BMP2  change 

 concurrently  with  the  development  of  the  A-fold/V-face  morphology.  Yet,  my  hypothesis  that 

 these  factors  influence  the  development  of  3-D  morphology  implies  that  these  ligands  signal 

 actively  over  HH8-11.  Ideally,  I  would  have  sought  evidence  for  active  signalling  of  each 

 ligand,  but  as  time  was  limiting,  I  focused  on  analysing  read-outs  of  the  SHH  signalling 

 pathway. 

 To  investigate  SHH  signalling,  I  first  investigated  the  expression  of  PTCH1.  PTCH1  is  the 

 canonical  SHH  receptor,  and  its  relationship  with  SHH  is  relatively  well  characterised  in  early 

 neural  development.  In  the  developing  posterior  neuraxis,  SHH  and  PTCH1  are  initially 

 co-expressed,  and  following  this  PTCH1  becomes  downregulated  in  SHH-  expressing  cells  in 

 the  midline  floor  plate  (Marigo  and  Tabin,  1996)  .  This  is  thought  to  be  due  to  specific  motifs 
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 of  SHH  /  PTCH1  signalling:  SHH  signalling  induces  PTCH1  ,  PTCH1  then  represses  the 

 expression  of  PTCH1.  Thus,  where  SHH  signalling  is  highest,  PTCH1  is  induced  highly,  and  as 

 a  result  PTCH1  expression  is  eventually  downregulated.  Additionally,  PTCH1  inhibits  SHH 

 through  ligand  dependent  antagonism  (Dessaud  et  al.  ,  2008;  Groves  et  al.  ,  2020)  ,  resulting 

 in a complex and non-linear interaction. 

 Investigating  the  expression  PTCH1  would  therefore  simultaneously  provide  me  with  an 

 indication  of  whether  SHH  signalling  is  active,  whether  PTCH1  is  regulated  at  equivalent 

 levels  in  all  parts  of  the  developing  hypothalamus,  and  also  whether  there  is  any  indication  of 

 spatial  regulation  between  PTCH1  and  SHH.  To  this  end,  I  visualised  PTCH1  expression 

 alongside  SHH  and  BMP2  (Fig 5.2A’’’’-G’’’’)  . 

 At  HH8,  before  the  development  of  the  A-fold/V-face,  SHH  and  PTCH1  were  co-expressed  in 

 the  ventral  midline  of  the  prosencephalon,  suggesting  high  levels  of  SHH  signalling  in  the 

 nascent  hypothalamus.  By  HH9,  however,  SHH  and  PTCH1  started  to  become  regionalised, 

 as  the  A-fold/V-face  boundary  began  to  become  detectable  (Fig  5.2B-B’’’’,  orange  dotted 

 line).  Each  was  still  expressed  in  the  A-fold,  but  PTCH1  was  not  expressed  in  the  weakly 

 SHH-  positive  V-face  cells,  and  instead,  was  detected  in  an  arc  around  these  (Fig  5.2B’,  B”’), 

 suggesting the beginning of a regionalisation between  SHH/PTCH1  expression  . 

 Over  10.1-10.3  SHH  and  PTCH1  almost  completely  resolved  into  discrete  domains  of 

 expression,  reflecting  an  expression  profile  seen  elsewhere  in  the  neuraxis  (Marigo  and 

 Tabin,  1996).  PTCH1  was  barely  detectable  in  SHH-  expressing  cells,  but  instead  was 

 detected  around  these  (Fig  5.2  C’’-F’’).  Merged  views  however  showed  an  overlap,  i.e. 

 outermost  SHH  -expressing  cells  appeared  to  co-express  PTCH1  .  Strikingly,  however, 

 expression  of  PTCH1  was  not  uniform,  and  instead,  highest  expression  levels  were  detected 

 in  the  hemi-arc  around  the  SHH  -expressing  V-face  cells  (Fig  5.2C’’’-F’’’).  The  regionalisation 

 between  SHH  and  PTCH1  expression  persisted  into  HH11  (Fig  5.2G’’’’).  Comparison  with 

 BMP2  expression  suggested  that  the  regions  of  weaker  PTCH1  expression  were  coincident 

 with the lateral bands of  BMP2  described above (Fig  5.2E’’’’-G’’’’). 
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 Figure  5  .  3  The  spatial  pattern  of  GLI1  does  not  explain  regionalisation  of  BMP2  and 
 PTCH1  in  the  developing  hypothalamus  at  HH8-11.  (A-F).  All  images  show  wholemount 

 ventral  views  of  isolated  neuroepithelia  analysed  with  HCR  in  situ  hybridisation  for  GLI1 

 (A’-F’)  ,  BMP2  (A’’-F’’)  ,  and  PTCH1  (A’’’-F’’’).  At  HH8,  GLI1  was  expressed  in  the  midline,  in 

 the  PTCH1  and  BMP2  positive  cells  (A’),  BMP2  was  also  expressed  in  the  developing 

 hypothalamus,  but  not  the  gut  endoderm  (A’’),  and  PTCH1  was  detected  in  the  developing 

 hypothalamus  as  well  as  more  anteriorly  in  the  gut  endoderm  (A’’’).  At  HH09,  GLI1,  BMP2, 

 and  PTCH1  continue  to  be  expressed  in  developing  hypothalamus  cells.  (B’-B’’’).  By  HH10, 

 PTCH1  has  begun  to  be  downregulated  posteriorly  (C’’’),  with  low  expression  in  the  centre  of 

 the  V-face.  At  this  stage,  BMP2  was  still  expressed  in  V-face  (C’’),  and  GLI1  expression  was 

 not  detected  (C’).  Throughout  HH10,  BMP2  shares  a  similar  expression  profile  to  PTCH1  , 

 with  a  radial  arc  of  expression  in  the  hypothalamic  anterior  V-face,  but  extends  more 

 posteriorly  (D’’-F’’).  GLI1  expression  continues  to  be  undetected  (D’-F’).  At  HH11,  PTCH1 

 expression  had  declined  laterally  and  was  detected  as  a  band  of  expression  running 

 mediolaterally  at  the  anterior  edge  of  the  developing  hypothalamus  (F’’’),  BMP2  expression 
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 was  complementary  to  this,  having  declined  anteriorly/medially,  and  strengthened  laterally 

 (F’’). 

 These  observations  suggest  the  following  hypothesis  of  SHH,  BMP2,  and  PTCH1 

 interactions  that  lead  to  the  expression  profiles  detected.  PTCH1  becomes  rapidly 

 downregulated  in  midline-situated  (A-fold  and  V-face)  SHH  -expressing  cells.  Potentially,  the 

 lack  of  PTCH1  supports  the  more  efficient  spread  of  SHH,  which  then  induces  further 

 PTCH1  expression  in  anterior  and  lateral  cells,  which  in  turn  upregulate  SHH  .  Concurrently, 

 BMP2  is  becoming  confined  to  posterior-lateral  strips,  where  it  inhibits  SHH  expression 

 which  in  turn,  results  in  the  downregulation  of  PTCH1  in  that  lateral  tissue.  This  dynamic 

 regulation  of  induction  and  cessation  of  SHH  signalling,  and  SHH  upregulation,  could  explain 

 the  radial  expansion  of  SHH  ,  and  more  generally  how  SHH  is  shaped  in  the  developing 

 hypothalamus. 

 5.2.4  GLI1  expression  supports  the  idea  that  there  are  different  levels  of 

 SHH signalling in the V-face vs the posterior-lateral hypothalamus 

 The  complex  profiles  of  SHH  and  PTCH1  prompted  me  to  next  examine  the  spatial 

 organisation  of  a  second  SHH-target  gene,  GLI1  .  Transcription  of  GLI1  in  the  nervous 

 system  is  dependent  on  SHH  (Bai  et  al.  ,  2002).  Consequently,  GLI1  is  normally  not  present 

 to  transduce  initial  SHH  signalling,  but  I  reasoned  that  it  might  provide  clues  as  to  the  levels 

 of active SHH signalling in different parts of the developing hypothalamus. 

 At  HH8  and  HH9,  very  low  levels  of  GLI1  were  detected  in  PTCH1/SHH  -expressing  ventral 

 midline  cells,  whereas  high  levels  of  GLI1  were  detected  beyond  these,  in  the  ventral  optic 

 vesicles,  where  PTCH1  is  only  weakly  detected  (Fig  5.2A’,  A’’’,  Fig  5.3A’-B’,  5.3A’’’-B’’’).  Over 

 stage  10.1-HH11,  when  SHH  and  PTCH1  expression  patterns  had  broken  initial  symmetry, 

 GLI1  is  detected  throughout  the  ventral  optic  vesicles  and  overlaps  with  PTCH1  in  lateral 

 cells  that  express  low  levels  of  PTCH1  (Fig  5.3C’-F’,  C’’’-F’’’’);  however,  GLI1  was  not 

 detected  adjacent  to  the  anterior  arc  of  high  SHH/PTCH1  expression  (i.e.  in  the  V-face). 

 These  analyses  support  the  idea  that  there  are  different  levels  of  SHH  signalling  in  the 

 V-face, compared to posterior-lateral parts of the developing hypothalamus. 
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 5.2.5  Early  patterns  of  signalling  ligands,  and  early  morphologies, 

 prefigure distinct hypothalamic progenitor populations 

 Having  identified  PTCH1  as  a  candidate  for  anterior  spatial  control  of  SHH,  and  BMP2  as  a 

 candidate  factor  for  the  control  of  posterior/lateral  SHH  expression  in  the  developing 

 hypothalamus  at  HH10-11,  I  next  investigated  whether  these  expression  profiles  persisted, 

 predicting  later  progenitor  regionalisation  of  the  hypothalamus.  As  outlined  in  Chapter  1,  by 

 HH14,  scRNA-seq  analyses  show  that  distinct  hypothalamic  progenitor  cell  types  have 

 formed:  mammillary  progenitors;  posterior  tuberal  progenitors;  and  anterior  tuberal 

 (neurogenic)  progenitors  (Kim  et  al.  ,  2022).  Previous  studies  that  performed  in  situ 

 hybridisation  for  SHH  (including  HCR),  analysing  side-views,  have  shown  that  these  cell 

 types  occupy  regionally-distinct  domains,  and  have  revealed  the  pattern  of  SHH  in  each 

 (Manning  et  al.  ,  2006;  Kim  et  al.  ,  2022).  I  now  wanted  to  match  my  ventral  wholemount 

 views  to  these  side-views.  To  do  this  I  obtained  an  extended  image  series,  analysing  ventral 

 wholemount  views  of  SHH  expression  patterns  relative  to  PTCH1  and  BMP2  at  later  stages, 

 from HH11-14 (Fig 5.4). 

 Throughout  HH12-14,  the  developing  hypothalamus  expanded  in  size  (Fig  5.4B-F).  Despite 

 this  increase  in  size,  I  saw  a  consistent  pattern  in  SHH  ,  PTCH1  ,  and  BMP2  .  By  HH12, 

 PTCH1  was  expressed  anteriorly  in  a  mediolateral  arc  (Fig  5.4B’-F’,  G),  with  weak 

 expression  in  the  SHH  expressing  cells  in  the  ventral  midline  cells  (Fig  5.4C’-E’,  G).  By 

 HH14,  SHH  resolved  into  two  populations:  an  anterior  arcing  population  overlapping  with  the 

 most  medial  PTCH1  positive  cells  (Fig  5.4F’’,  blue  arrowhead),  and  a  posterior  Y-shaped 

 population  of  cells  (Fig  4F’’,  green  arrowhead),  the  lateral  limits  of  which  coincided  with  the 

 lateral  limits  of  the  fold  morphologies  and  the  medial  limits  of  BMP2  expression  (Fig  5.4F’’’, 

 green arrowhead). 

 At  the  same  time  that  I  was  conducting  these  studies,  others  in  the  Placzek  lab  were:  (i) 

 analysing  BMP2,  FGF10  and  SHH  within  the  context  of  other  markers;  and  (ii)  performing 

 fate-mapping  studies.  Briefly,  these  showed  two  points  that  are  pertinent  to  my  work.  First, 

 the  transient  high  BMP2  expression  level  that  I  observed  at  10.1  coincides  with  the 

 expression  of  TBX2  ,  a  marker  of  posterior  tuberal  progenitors.  Second,  the  A-fold/V-face 

 boundary  marks  a  transition  point,  where  floor  plate-like  cells  undergo  a  profound  change, 

 migrating  anteriorly  and  giving  rise  to  tuberal  progenitors  that  constitute  the  V-face  (Figure 

 5.4F);  cells  that  remain  in  the  A-fold  (and  regions  posterior  and  lateral  to  it)  give  rise  to  the 

 mammillary hypothalamus. 
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 Figure  5.4:  PTCH1  ,  SHH  ,  and  BMP2  organise  in  the  developing  hypothalamus 
 throughout  HH11-14.  (A-F)  Ventral  views  of  isolated  neuroepithelia  from  embryos  at  stages 

 HH11-14.  At  HH11,  PTCH1  was  expressed  in  an  anterior  arc  and  has  begun  to  decrease 
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 lateral  to  the  ventral  midline  (A’).  SHH  was  expressed  narrowly  and  has  some  overlap  with 

 PTCH1  (A’’).  Similarly,  BMP2  overlaps,  but  extends  more  posteriorly  and  laterally  (A’’’). 

 Between  HH11  and  HH12,  the  overlap  between  the  PTCH1  and  the  SHH  domains  was  less 

 pronounced,  and  SHH  extends  more  laterally  (B’-C’-B’’-C’’).  BMP2  was  no  longer  detected  in 

 the  A-fold/V-face  and  was  instead  seen  as  two  small  bands  of  posterior,  lateral  expression 

 (B’’’-C’’’).  After  HH12,  the  pattern  is  more  stable,  with  the  only  marked  difference  that  there 

 were  greater  distances  between  the  populations  (E’-F’,  E’’-F’’,  E’’’-F’’’).  (G)  Schematic 

 summarising  the  regionalisation  seen  at  HH12  in  relation  to  the  morphology  identified  in 

 Chapter 4. Scale bars: 100µm. 

 These  analyses  revealed  how  the  early  subtle  changes  in  expression  detected  over  HH9-11, 

 and  the  early  morphological  features  that  I  described  in  Chapter  4,  prefigure  the  regionally 

 distinct  domains  at  HH14.  The  region  where  SHH  and  FGF10  overlap  anteriorly  (in  the 

 posterior  V-face  )  predicts  where  tuberal  progenitors  appear  as  they  develop  from  floor 

 plate-like  cells.  The  A-fold  (where  SHH  is  high,  and  FGF10  is  weakly  detected)  predicts  the 

 hypothalamic  floor  plate  and  future  mammillary  hypothalamus  (Fig  5.4F,  MMH;  Fig  5.4F’’, 

 green  arrowhead).  Cells  lateral  to  this  domain  expressed  PTCH1  only  weakly,  but  expressed 

 BMP2.  Finally,  the  anterior  arc  of  SHH  and  PTCH1  appears  to  predict  the  anterior  tuberal 

 progenitor/neurogenic domain. No  BMP2  was detected  at this axial level from HH11-14. 

 5.3 Summary 

 In  this  Chapter,  I  have  investigated  the  molecular  landscape  of  core  morphogen-like 

 signalling  ligands  relative  to  developing  3-D  morphological  features  that  I  characterised  in 

 Chapter  4.  In  these  Chapters,  my  overall  hypothesis  is  that  these  ligands  prefigure  this 

 morphology. 

 In  contrast  to  previous  conclusions  (Fu  et  al.  ,  2017),  FGF10  and  SHH  were  not  initially 

 co-expressed.  Instead,  FGF10  and  SHH  initially  showed  reciprocal  expression.  Their  overlap 

 correlated  with,  and  may  predict  the  A-fold  and  the  posterior  V-face  (Fig  5.5B).  Additionally,  I 

 saw  subtle  regionalisation  occurring  across  HH8-14.  SHH  breaks  symmetry  along  the  A-P 

 axis,  but  does  so  only  after  the  first  signs  of  overt  3-D  morphology  (Fig  5.5B).  Thus,  after 

 formation  of  the  A-fold,  SHH  is  downregulated  in  the  posterior  V-face  and  upregulated  in  an 

 arc in the anterior V-face (Fig 5.5C). 
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 As  elsewhere  in  the  neural  tube,  I  observed  that  SHH  expands  laterally  (Placzek  et  al.  , 

 1993),  and  a  priori  ,  I  expected  to  see  a  uniform  radial  expansion  of  SHH  .  However,  the 

 wholemount  views  showed  a  more  complex  pattern  of  SHH  expression.  Expression  is  weak 

 in  the  regions  next  to  the  U-shaped  A-fold  (forming  mammillary  hypothalamus):  these 

 regions co-express  BMP2,  but strong in a more anterior  arc (Fig 5.4F). 

 As  also  would  be  expected  from  expression  in  the  neural  tube,  SHH  and  PTCH1  are 

 transiently  expressed  together  in  the  ventral  midline,  then  PTCH1  is  downregulated  in 

 SHH-  expressing  cells,  and  upregulated  in  adjacent  cells  (Marigo  and  Tabin,  1996). 

 Surprisingly,  levels  of  PTCH1  are  not  uniform.  Instead,  a  strong  anterior  arc  is  detected, 

 beyond the  SHH-  expressing V-face arc (Fig 5.5B-C). 

 Prior  to  the  development  of  any  overt  3-D  morphology,  SHH  and  BMP2  are  co-expressed  in 

 developing  hypothalamic  cells  (Fig  5.5A).  As  the  A-fold  and  V-face  become  apparent,  BMP2 

 begins  to  be  expressed  in  a  heart-shaped  ring,  overlapping  with  outermost  SHH-expressing 

 cells. 

 Multiplex  analysis  of  SHH,  BMP2  and  PTCH1  show  BMP2  expression  medial  to 

 PTCH1  -domains  (Fig  5.5B-C).  In  the  apex  of  the  heart-shaped  ring  -  a  region  that 

 marks/predicts  the  posterior  V-face  -  BMP2  is  transiently  expressed  at  high  levels,  before 

 being  downregulated  here.  BMP2  expression  then  persists  only  lateral  to  the  A-fold  (Fig 

 5.5C). 

 In  contrast  to  PTCH1  ,  a  second  SHH-target  gene,  GLI1,  was  not  detected  in  the  ventral 

 hypothalamus,  but  instead  was  detected  in  more  lateral  regions,  where  PTCH1  levels  are 

 very low. No  GLI1  was detected in the forming V-face. 

 My  studies  suggest  that  at  HH12,  there  are  (at  least)  two  SHH  populations  which  are 

 discrete  spatially.  One  population  comprises  antero-tuberal  progenitors  and  the  second 

 comprises  mammillary  progenitors  that  lie  posterior/lateral  to  the  FGF10  -expressing  cells. 

 The  spatial  relationships  of  SHH/PTCH1/BMP2  set  up  at  HH10-11  appear  to  be  consistent 

 until  HH14.  This  is  surprising  because  the  prosencephalon  and  generally  the  hypothalamus 

 expands  in  size,  but  the  relative  proportions  are  kept  constant,  implying  a  degree  of  scaling 

 in their expression. 
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 Figure  5.5  Summary  schematic  of  symmetry  breaking  and  regionalisation  of  SHH  , 
 PTCH1  ,  BMP2  in  the  early  developing  hypothalamus.  (A)  At  HH8,  SHH  ,  PTCH1  ,  and 

 BMP2  were  expressed  in  the  developing  ventral  midline  hypothalamic  cells.  (B)  During 

 HH8-9,  there  was  an  onset  of  regionalisation,  resulting  in  several  distinct  populations.  (C)  By 

 HH12,  there  was  a  simpler  profile,  with  2-3  SHH  expressing  populations,  PTCH1  was 

 confined  to  an  anterior  band,  and  FGF10  had  resolved  into  a  SHH/FGF10  population  in  the 

 A-fold,  and  a  central  disc  of  expression  in  the  centre  of  the  V-face.  BMP2  was  no  longer 

 detected anteriorly, and was expressed as two bands lateral to the A-fold/base. 

 Overall,  the  expression  profiles  of  SHH,  FGF10,  BMP2  and  PTCH1  over  HH8-11  are 

 complex,  with  multiple  overlapping  regions  and  heterogeneous  levels  of  expression  (Fig  5.2). 

 As  detailed  in  Chapter  6,  I  next  sought  a  method  of  disentangling  this  complexity.  To  do  this, 

 I  used  ex  vivo  tissue  culture  of  explanted  developing  hypothalamus  cells,  to  examine 

 whether  the  expression  domains  develop  through  mechanisms  that  are  autonomous  to  the 

 neuroepithelium 

 Ideally,  I  would  have  examined  the  profile  of  all  four  genes  (  FGF10,  BMP2,  SHH,  PTCH1  )  . 

 However,  the  FGF10  and  BMP2  probes  were  not  easy  to  work  with,  as  each  has  relatively 

 few  short  hairpins  (see  Chapter  2).  Preliminary  experiments  to  visualise  these  expression 
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 domains  in  isolated  explants  showed  a  poor  signal  to  noise  ratio  (Appendix  Fig  1).  At  this 

 point,  access  to  the  lab  was  limited  due  to  the  COVID-19  restrictions,  which  meant  that  I 

 could  not  resolve  issues  with  optimising  the  HCR  in  situ  for  visualising  FGF10  or  BMP2.  The 

 analyses  in  Chapter  6  were  therefore  limited  to  SHH  and  PTCH1  :  these  probes  that  were 

 more robust (greater number of hairpins). 
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 Chapter 6 

 Characterisation of  ex vivo  expression of  SHH  and 

 PTCH1 

 6.1 Introduction 

 In  Chapter  5  I  demonstrated  the  relative  patterns  of  expression  of  SHH  and  PTCH1  over 

 HH8-HH14  in  vivo  .  At  HH8,  SHH  and  PTCH1  are  both  expressed  in  a  rod  of  anterior  ventral 

 midline  cells.  By  HH12,  this  symmetric  arrangement  is  broken.  Posteriorly,  SHH  is  expressed 

 in  the  U-shaped  A-fold,  while  adjacent/overlapping  cells  express  low  levels  of  PTCH1  .  In  the 

 crook  of  the  U-shaped  A-fold  -  a  region  occupied  by  posterior  tuberal  progenitors  -  SHH  is 

 becoming  downregulated.  Anterior  to  these,  SHH  is  expressed  in  an  arc,  just  inside,  and 

 overlapping with a wider arc of cells that express high levels of  PTCH-1. 

 A  critical  question  is  how  SHH  becomes  organised  into  the  pattern  observed  at  HH12. 

 Previous  studies  have  shown  that  the  underlying  prechordal  mesendoderm  induces  SHH 

 expression  in  the  developing  hypothalamus  (Dale  et  al.  ,  1997;  Patten  et  al.  ,  2003).  This 

 occurs  around  HH6-HH10  during  convergent  extension.  By  HH10,  cells  of  the  prechordal 

 mesendoderm  are  beginning  to  disperse  (Jacob  et  al.  ,  1984;  Seifert  and  Christ,  1990;  Ellis  et 

 al.  ,  2015).  I  next  set  out  to  ask:  is  the  organisation  of  SHH  and  PTCH1  (and  their  subsequent 

 correlation with morphology)  a result of neuroepithelial  or mesodermal influences? 

 To  do  so  I  set  out  to  isolate  hypothalamic  explants,  free  from  adjacent  tissues,  and  then 

 culture  them  ex  vivo  ,  with  the  following  aims:  (i)  to  assess  to  what  extent  the  changes  in 

 expression  profiles  of  SHH  and  PTCH1  are  a  result  of  interactions  within  the 

 neuroepithelium;  and  (ii)  to  develop  an  assay  with  which  to  perturb  the  patterning  of  SHH 

 and PTCH1  and by doing so begin to unpick the potential  interactions between these factors. 
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 6.2 Results 

 6.2.1  HH10  hypothalamic  explants  ball-up  in  culture,  precluding  analysis 

 of regionalisation of  SHH  /  PTCH1 

 My  first  aims  were  to  both  confirm  the  reliability  and  accuracy  of  my  dissection,  and  to 

 characterise  the  molecular  properties  of  the  explants  prior  to  ex  vivo  culture,  which  would 

 enable me to place them in the context of my wholemount views. 

 As  a  starting  point,  I  attempted  to  dissect  SHH  -expressing  hypothalamic  progenitors  from 

 HH10.  I  began  at  HH10  because  of  my  characterisation  of  HH10  morphology  in  Chapters 

 3-4,  which  made  dissection  of  SHH  and  PTCH1  expressing  cells  by-eye  straightforward. 

 Thus,  I  aimed  to  dissect  neuroepithelium  composed  of  the  A-fold  and  V-face.  Following  this,  I 

 fixed the explants and labelled them for  SHH  and  PTCH1  via HCR  in situ  hybridisation. 

 My  results  showed  I  could  accurately  dissect  the  developing  hypothalamus.  Strong 

 expression  of  PTCH1  was  detected  along  the  top  edge  of  the  explants,  with  more  weakly 

 expressing  PTCH1-  positive  cells  overlapping  with  SHH  expression  in  the  centre  of  the 

 explant  (Fig  6.1A’-C’).  In  many  of  the  explants,  the  U-shaped  A-fold  (strong  SHH  )  could  be 

 detected,  (Fig  6.1B’’’,  C’’’,  F’’’)  indicating  that  the  isolation  does  not  result  in  an  immediate 

 change in morphology. 

 As  expected  from  the  results  presented  in  Chapter  4,  explants  dissected  but  not  cultured  (t0) 

 taken  at  the  10.1-3  sub-stages  showed  progressive  regionalisation  of  SHH  and  PTCH1 

 expression  (Fig  6.1D-F).  At  10.1,  expression  of  SHH  and  PTCH1  was  detected  in  the  centre 

 of  the  explants,  comprising  the  A-fold  and  posterior  V-face  (Fig  6.1A’-D’,  A’’-D’’).  Strongest 

 PTCH1  expression  was  seen  anteriorly,  and  in  SHH  low/negative  cells.  This  complementary 

 relationship  progressed  by  10.3,  where  PTCH1  expression  was  greatly  reduced  in  the  SHH 

 cells, and was only detected at the outer limit of the explant. (Fig 6.1F’-F’’). 
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 Figure  6.1  t0  explants  show  a  progression  of  regionalisation  of  SHH  and  PTCH1  .  All 

 panels  show  wholemount  ventral  views  of  dissected  neuroepithelia  (10x).  (A-F)  explants 

 taken  from  progressively  older  embryos  through  10.1-10.3,  labelled  for  SHH  and  PTCH1  . 
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 (A’-F’)  Throughout  the  stage  10  sub-stages,  PTCH1  and  SHH  expression  domains 

 transitioned  from  initially  overlap  substantially  to  being  mostly  mutually  exclusive.  In  many 

 explants, the U-shaped A-fold could be detected ). Scale bars 100μm. 

 Taken  together,  my  results  from  the  HH10  t0  explant  dissection  characterise  the  initial  state 

 of  the  HH10  explant  prior  to  culturing  -  an  important  baseline  by  which  to  compare  against.  I 

 showed  I  was  able  to  accurately  and  reliably  dissect  SHH/PTCH1  positive  cells  over  the 

 HH10  substages.  Following  this,  I  set  out  to  characterise  the  progression  of  SHH/PTCH1 

 expression  in  cultured  explants,  starting  with  explants  cultured  for  24  hours  (henceforth,  t24 

 explants)  . 

 To  this  end,  I  dissected  neuroepithlia  at  HH10,  again  using  the  morphological  landmarks  of 

 the  A-fold/V-face  as  a  guide.  I  then  embedded  these  into  collagen  beds  (Dale  et  al.,  1997, 

 Placzek  et  al.,  1993;  Section  2.2.3),  and  cultured  them  for  24  hours,  before  fixing  and 

 visualising  SHH  and  PTCH1  expression via HCR  in situ  hybridisation (Fig 6.2). 
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 Figure  6.2.  HH10  t24  explants  show  co-expression  of  SHH  and  PTCH1  .  All  panels  show 

 wholemount  views  of  cultured  explants  (10x).  (A-D)  explants  cultured  for  24  hours,  labelled 

 for  PTCH1,  SHH,  and  BMP2  .  (A’-D’)  PTCH1  expression  showed  no  obvious  regionalisation, 

 and  was  expressed  through  most  of  the  explant.  (A’’-D’’)  SHH  expression  varied;  there  were 

 some  explants  which  exhibited  regionalisation  (B’’,  C’’)  whereas  in  others  SHH  was  also 

 expressed throughout the explant (A’’, D’’). (A’’’-D’’’)  .  Scale bars 100μm. 
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 The  explants  did  not  grow  in  size  substantially  after  24  hours  of  culturing,  but  did  transition 

 from a flat, monolayer epithelium into more spherical tissue (Fig 6.2A-D). 

 I  did  not  see  any  discrete  regionalisation  of  SHH  and  PTCH1  .  In  4/4  explants,  SHH  and 

 PTCH1  overlapped.  (Fig  6.2A’-D’,  2A’’-D’’).  In  two  of  these,  PTCH1  and  SHH  were 

 expressed  uniformly  throughout  the  explants  (Fig  6.2A’,  D’,  2A’,  D’’).  And,  in  the  other  two, 

 SHH  was  not  expressed  uniformly  throughout  the  explant,  but  in  a  smaller  area  than  PTCH1  , 

 suggesting the beginning of regionalisation (Fig 6.2B’-C’, B’’-C’’). 

 Overall,  I  did  not  see  the  expected  regionalisation  of  SHH  and  PTCH1  in  the  HH10  t24 

 explants.  I  did  observe  the  potential  beginning  of  regionalisation,  but  all  explants  had 

 substantial  or  total  overlap  of  SHH  and  PTCH1  expression.  I  reasoned  that  this  could  be  due 

 to  two  factors:  (i)  the  HH10  dissection  was  technically  difficult  and  following  dissection,  the 

 cells  in  the  tissue  were  inactive  (due  to  chilling  to  4℃)  for  some  time  after  implantation  into 

 the  collagen  matrix,  hence  the  HH10  t24h  culture  may  not  reflect  24  hours  post  HH10 

 development;  (ii)  the  tendency  of  the  HH10  explants  to  curl  into  a  ball  may  have  obliterated 

 any regionalisation that had occurred. 

 Due  to  these  factors,  I  next  set  out  to  isolate  explants  from  younger  stages:  HH8  and  HH9 

 embryo:  the  anterior  midline/prospective  hypothalamus  is  simpler  (and  therefore  quicker)  to 

 dissect  at  these  stages,  when  the  folds  have  not  yet  formed.  At  HH8  expression  of  SHH  and 

 PTCH1,  appear  relatively  uniform,  and  at  HH9,  expression  of  SHH  and  PTCH1  are  only 

 slightly  regionalised  into  distinct  parts  of  the  tissue  (Chapter  5).  Following  this,  I  planned  to 

 culture these for longer - 48 hours. 
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 Figure  6.3.  HH8-9  t0  explants  have  overlapping  expression  of  SHH  and  PTCH1  .  All 

 panels  show  wholemount  ventral  views  of  dissected  neuroepithelia  (10x).  (A-E)  explants 

 taken  from  HH8  embryos,  labelled  for  PTCH1  (A’-D’)  and  SHH  (A’’-D’’).  PTCH1  was 

 expressed  uniformly  throughout  the  middle  of  the  explant,  occasionally  with  slightly  stronger 

 expression  laterally.  (A’-B’),  the  SHH  expression  domain  was  uniform  and  overlapped  almost 

 entirely  with  PTCH1  (A’’-D’’).  (F-H)  explants  taken  from  HH9  embryos  labelled  for  PTCH1 

 (F’-H’)  and  SHH  (E’’-H’’).  PTCH1  expression  was  throughout  the  middle  of  the  explant, 

 overlapping  with  SHH  ,  with  a  slight  non  uniformity,  where  PTCH1  expression  was  slightly 

 anterior to  SHH  expression. Scale bars 100μm. 

 6.2.2  SHH  and  PTCH1  already show some regionalisation  at HH8-HH9 

 I  dissected  explants  from  HH8  or  HH9  and  fixed  them  without  culturing,  and  then  visualised 

 the  expression  of  PTCH1  and  SHH  using  HCR  in  situ  hybridization  (Fig  6.3).  Henceforth,  I 

 refer  to  these  as  HH8-9  t0  explants  .  At  HH8,  I  detected  SHH  expression  in  the  centre  of 

 each  explant  (Fig  6.3A’’-E’’,  n=5).  In  3/5  explants,  PTCH1  expression  appeared  uniformly 

 distributed  with  expression  extending  slightly  around  the  SHH  domain  (Fig  6.3B’,  D’,  E’);  in 

 2/5  explants,  PTCH1  expression  appeared  slightly  stronger  along  one  edge  (Fig  6.3A’,  C’)  In 

 all  3  explants  isolated  at  HH9,  SHH  and  PTCH1  were  expressed  throughout  most  of  the 

 explant,  with  PTCH1  extending  slightly  outside  of  the  SHH  /  PTCH1  domain(Fig  6.3F’-H’, 
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 F’’-H’’).  Qualitative  inspection  suggested  that  SHH  and  PTCH1  were  expressed  in 

 complementary  gradients  (compare  Fig  6.3F’-H’  with  F’’-H’’).  These  results  confirmed  a 

 conclusion  from  Chapter  5,  that  SHH/PTCH1  are  already  beginning  to  organise  into  discrete 

 domains by HH9. 

 A  trade-off  from  explanting  at  HH8  compared  to  HH10  is  that  there  are  substantially  fewer 

 morphological  landmarks  at  HH8.  This  means  there  is  a  greater  risk  of  contamination  from 

 neuroepithelium  outside  of  the  target  area.  Nevertheless,  my  results  show  a  clear  picture  of 

 the  landscape  of  SHH  and  PTCH1  expression  in  the  HH8  t0  explant,  I  therefore  next  aimed 

 to culture them to determine if substantial growth and regionalisation occurred  ex vivo  . 

 6.2.3  SHH  and  PTCH1  regionalise  ex vivo  into distinct  domains 

 To  do  this,  I  next  dissected  prospective  hypothalamic  explants  from  HH8  and  HH9  embryos, 

 cultured  them  for  48  hours  and  labelled  them  as  before  for  SHH  and  PTCH1  via  HCR  in  situ 

 hybridization,  terming  these  the  t48  explants  (Fig  6.4).  I  found  regionalisation  between  SHH 

 and  PTCH1  in  every  cultured  explant  (n=3/3  at  HH8,  3/3  at  HH9).  At  HH8-9  t48,  3/3  explants 

 were  spherical,  each  showed  PTCH1  expression  in  an  arc  above  SHH  expression  (Fig 

 6.4A’-A’’,  C’-C’’,  D’-D’’).  In  each  of  these  spherical  explants,  SHH  expression  was  detected 

 as a disc, overlapping slightly with the  PTCH1  arc  (Fig 6.4A, B, C). 

 At  HH9,  all  explants  exhibited  regionalisation  of  SHH  and  PTCH1  expression.  PTCH1  was 

 expressed  in  regions  largely  separate  to  SHH  expression,  but  with  overlap  (Fig  6.4D-F). 

 Within  each  explant  the  area  occupied  by  SHH  or  PTCH1-  expressing  cells  varied,  perhaps 

 reflecting subtle variation in the area isolated at t=0. (cf. Fig 6.4F’, F’’ and 6.4E’, E’’). 

 Having  established  HH8  as  an  optimal  stage  for  explanting  to  assess  organisation  of  SHH 

 and  PTCH1  ,  I  next  sought  to  understand  the  stability  of  the  observed  regionalisation  of  SHH 

 and  PTCH1  .  In  vivo  ,  the  developing  hypothalamic  tissue  grows  substantially  between 

 HH8-14.  Despite  this  increase  in  size,  I  only  observed  a  single,  radial  boundary  between 

 SHH  and  PTCH1  i.e.  PTCH1  was  always  expressed  in  an  arc  around  the  disc  shaped  SHH 

 expression  at  t=48h.  In  other  developing  tissues,  e.g.  in  the  developing  rugae  (regular  folds 

 of  tissue)  of  the  palate  SHH  and  PTCH1  are  expressed  in  periodic  stripes  (Lee  et  al.  ,  2011; 

 Xu  et  al.  ,  2016).  However,  in  the  developing  hypothalamus,  I  observed  a  constant  pattern  of 

 SHH  and  PTCH1  ,  and  therefore  I  hypothesised  that  the  regionalised  explants  would  also 

 exhibit a constant pattern. 
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 Figure  6.4  Explants  taken  from  HH8-9  embryos  and  cultured  for  48  hours  exhibit 
 organisation  of  SHH  and  PTCH1  expression.  (A-F)  All  panels  show  wholemount  views  of 

 cultured  (48h)  explants  (10x)  labelled  via  HCR  in  situ  hybridisation  for  PTCH1  (A’-F’)  and 

 SHH  (A’’-F’’).  At  HH8  t48,  PTCH1  and  SHH  regionalise  and  are  not  expressed  uniformly 

 throughout  the  explant  (A’-G’,  A’’-F’’),  however  in  some  cases  their  expression  domains 

 overlap  (B’,  B’’’,  D’,  D’’’).  At  HH9  t48  PTCH1  and  SHH  also  regionalise,  and  there  are  also 

 examples of overlap between  SHH  and  PTCH1  (D’-F’,  D’’-F’’). Scale bars 100μm. 
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 6.2.4  SHH  and  PTCH1  regionalisation  is  maintained  throughout  explant 

 growth 

 To  test  this  hypothesis,  I  next  dissected  explants  at  either  the  4,  5,  or  6  somite  stage,  and 

 cultured  them  for  72  hours.  (Fig  6.5),  and  termed  these  t72  explants  .  As  there  was  relatively 

 little  growth  of  the  t24  explants  described  above,  I  estimated  that  these  were  approximately 

 equivalent  to  E3  in  development  (HH8:  26-29h  +  72h  -  24h  stasis  =  approx  74  hours).  I 

 found,  as  with  the  HH8  48h  explants  that  SHH  and  PTCH1  regionalised  into  distinct  domains 

 (Fig 6.5A’-J’, A’’-J’’). 

 Explants  taken  from  embryos  with  4  somites  displayed  a  constant  pattern  of  SHH  and 

 PTCH1  expression,  and  in  these  SHH  and  PTCH1  expression  were  mutually  exclusive  (Fig 

 6.5A’-C’,  A’’-C’’).  However,  there  was  variability  in  the  relative  proportion  of  the  explant  that 

 was  SHH/PTCH1  positive.  In  one  case,  SHH  and  PTCH1  together  occupied  the  entire 

 explant  (Fig  6.5B’-B’’),  whereas  in  the  other  HH8  4-somite  explants  they  were  only 

 expressed  in  a  smaller  proportion  of  the  tissue  (Fig  6.5A’-A’’,  C’-C’’).  In  these  cases,  the 

 majority  of  the  SHH/PTCH1  negative  explant  tissue  lay  adjacent  to  PTCH1  expression  but 

 not  SHH  expression, possibly reflecting anisotropic  anterior expansion  in vivo  . 

 At  5  somites,  I  observed  the  only  explant  which  appeared  to  have  two  stripes  of  PTCH1 

 expression,  one  large,  comprising  approximately  half  the  tissue,  and  one  small  in  the 

 opposite  end  of  the  explant  (Fig  6.5D’).  Here,  SHH  expression  was  situated  between  these 

 two regions (Fig 6.5D’’). 

 However,  this  was  the  only  example  of  multiple  domains  of  PTCH1  expression.  In  the  6 

 somite  t72  explants,  I  only  observed  single  domains  of  both  PTCH1  and  SHH  expression 

 (Fig  6.5E-J).  There  did  not  appear  to  be  a  clear  pattern  as  to  whether  the  expression 

 domains  of  PTCH1  or  SHH  were  larger.  In  some  cases,the  PTCH1  expression  domain  was 

 substantially  larger  than  the  SHH  expression  domain  (Fig  6.5H’-J’,  H’’-J’’).  Conversely,  the 

 SHH  domain  was  sometimes  larger  than  the  PTCH1  domain  (Fig  6.5  E’-E’’,  F’-F’’).  Whilst 

 less  clear  than  in  the  4  somite  t72  explants,  the  tissue  negative  for  either  SHH  or  PTCH1  lay 

 next to the  PTCH1  expression domain (Fig 6.5E-I, white  arrowheads). 

 109 



 Figure  6.5.  Explants  taken  from  HH8  embryos  at  4-6  somites,  cultured  for  72  hours, 
 exhibit  organisation  of  SHH  and  PTCH1  expression.  (A-J)  All  panels  show  wholemount 

 views  of  cultured  (72h)  explants  (10x)  labelled  via  HCR  in  situ  hybridisation  for  PTCH1  (A’-J’) 

 and  SHH  (A’’-J’’).  At  HH8  (4  somites)  t72,  PTCH1  and  SHH  regionalised  substantially  but  did 

 not  comprise  a  substantial  portion  of  the  overall  tissue  (A’-C’,  A’’-C’’).  At  HH8  5  somites, 

 there  were  two  domains  of  PTCH1  expression  which  surrounded  the  SHH  expression 

 (D’-D’’).  At  HH8  6  somites  PTCH1  and  SHH  also  regionalise,  with  discrete  domains  of 

 expression (E’-J’, E’’-J’’). Scale bars 100μm. 

 Overall,  I  have  shown  here  that  the  expression  domains  of  SHH  and  PTCH1  break 

 symmetry  ex  vivo,  which  lends  support  to  the  model  presented  in  Chapter  4  -  that 

 interactions  between  PTCH1  and  SHH  in  the  neuroepithelium  organise  PTCH1  and  SHH 

 into  discrete  domains  of  expression.  Additionally,  as  the  explants  are  permitted  to  grow  large 
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 and  are  not  constrained  by  normal  developing  hypothalamic/brain  morphology,  I  can  assess 

 the effect of unconstrained tissue growth on the regionalisation of  SHH  and  PTCH1. 

 I  next  set  out  to  understand  whether  the  SHH/PTCH1  regionalisation  phenomenon  reflected 

 a retention of the anteroposterior axis throughout explant development. 

 6.2.5 Lineage tracing shows explants retain anterior-posterior memory 

 To  assess  anteroposterior  axis  retention,  I  dissected  explants  taken  from  neuroepithelia  at 

 HH8,  and  injected  them  with  the  fluorescent  cell  dye  DiI,  targeting  the  anterior  edge.  After  DiI 

 injection,  I  cultured  these  explants  for  72h  as  prior,  visualising  SHH  and  PTCH1  expression 

 to  examine  their  relative  expression  patterns  compared  to  the  initial  anterior  edge  of  the 

 explant (Fig 6.6). 

 DiI  incorporated  successfully  into  cells  in  the  explants,  and  was  located  in/anterior  to  the 

 PTCH1  expression  domain  (Fig  6.6A’-D’,  A’’’-D’’’  n=4/4).  Supporting  the  conclusions  from  my 

 analysis  in  Sections  5.2.4-5,  SHH  and  PTCH1  were  expressed  complementarily  and  were 

 largely  mutually  exclusive  (Fig  6.6B’-D’,  B’’-D’’).  In  the  smallest  of  these  explants,  SHH  and 

 PTCH1  overlapped  partially  (Fig  6.6A’-A’’).  However,  DiI  was  still  found  only  in  PTCH1 

 expressing  cells  (Fig  6.6A’’’),  and  the  merged  views  show  clear  regions  of  expression  of  SHH 

 and  PTCH1  (Fig  6.6A),  suggesting  that  SHH  and  PTCH1  were  in  the  process  of 

 regionalising into mutually exclusive domains in this explant. 

 SHH  and  PTCH1  were  already  beginning  to  be  regionalised  along  the  anterior-posterior  axis 

 by  HH8.It  is  possible  that  this  non  uniformity  is  responsible  for  the  consistent  regionalisation 

 of  PTCH1  at  the  anterior  of  the  explant.  I  therefore  next  set  out  to  dissect  explants  from 

 younger embryos. 
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 Figure  6.6.  HH8  explants  cultured  for  72  hours  retain  the  relative  anteroposterior  axis. 
 (A-B)  panels  show  wholemount  views  of  HH6  explants  cultured  for  72  hours,  (C-D)  panels 

 show  mid  optical  sections  from  wholemount  stacks  of  HH6  explants,  denoted  by  *.  All  panels 

 show  explants  labelled  via  HCR  in  situ  hybridisation  for  PTCH1  (A’-D’),  SHH  (A’’-D’’),  and  via 

 injection  for  DiI  (A’’’-D’’’).  In  the  HH8  t72  explants,  PTCH1  and  SHH  organise  into  distinct 

 domains  of  expression  (A’-D’,  D’’-D’’).  DiI  injected  into  the  initial  anterior  of  the  explant  now 

 labels the  PTCH1  expression domain but not the  SHH  (A’’’-D’’’). Scale bars 100μm. 
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 To  do  this,  I  dissected  HH6  explants  (Fig  6.7;  n=3).  I  did  not  fix  t0  explants  for  this  stage,  but 

 the  wholemount  views  of  isolated  neuroepithelia  showed  that  at  HH6,  SHH  was  expressed  in 

 a  rod  of  ventral  midline  cells,  tapering  off  anteriorly  (Fig  6.7A,  A”)  and  PTCH1  was  detected 

 weakly  and  uniformly  throughout  and  beyond  these  (Fig  6.7A,  A’).  The  ventral  midline  was 

 very  obvious  at  HH6,  as  it  is  translucent,  and  for  dissection  I  targeted  a  square  patch  of 

 tissue around the anterior-most ventral midline (Fig 6.7A, boxed area). 

 After  dissection,  I  targeted  DiI  to  the  anterior  edge  of  each  explant,  and  then  cultured  each 

 for  72h  (Fig  6.7B-D),  visualising  via  HCR  in  situ  for  SHH  and  PTCH1  expression  (Fig 

 6.7B’-B’’’,  D’-D’’’).  I  estimated  the  developmental  stage  of  the  explants  as  approximately 

 HH17+  (HH6:  23-25h  +  72h  -  24h  stasis  =  approx  71  hours).  In  2/3  explants,  I  observed  an 

 unexpected  pattern  to  SHH  expression:  it  was  expressed  in  a  Y-shape.  In  all  3  explants  I 

 observed  substantial  regionalisation  of  SHH  and  PTCH1  (Fig  6.7B’-B’’  -  7D’-D’’),  whereby 

 they  resolved  into  distinct  domains  with  little  overlap.  In  the  2  explants  in  which  Y-shaped 

 SHH  was  detected,  PTCH1  appeared  between  the  ‘arms’  of  the  Y-shape.  DiI  was  observed 

 in  the  PTCH1  expressing  tissue,  indicating  this  to  be  the  anterior  part  of  the  explant  (Fig 

 6.7B’’’-D’’’). 

 The  cultured  HH6  explants  therefore  appeared  to  show  aspects  of  neuroepithelial 

 self-organisation.  First,  a  rod  of  SHH  appears  to  become  organised  into  a  Y-shaped  domain 

 over time. Second,  PTCH1  becomes organised into a  region anterior to  SHH  . 

 Overall,  the  HH6  t72  explants  support  the  conclusion  from  the  HH8  t72  explants:  that  the 

 cells  in  the  explants  retain  their  relative  antero-posterior  axis,  and  suggest  that  the  initial 

 anterior  after  culture  was  where  there  was  PTCH1  expression  and  not  SHH.  The  results 

 presented  here  provide  a  basis  for  experiments  unpicking  organisation  in  hypothalamic 

 development. 
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 Figure  6.7.  PTCH1  marks  the  initial  anterior  of  HH6  explants,  cultured  for  72  hours.  (A) 

 wholemount  ventral  view  of  a  neuroepithelium  from  an  HH6  embryo  labelled  via  HCR  in  situ 

 hybridisation  for  PTCH1  (A’)  and  SHH  (B’).  (B-D)  wholemount  views  of  cultured  (72h) 

 explants  labelled  via  HCR  in  situ  hybridisation  for  PTCH1  (B’-D’),  SHH  (B’’-D’’),  and  via  DiI 

 (B’’’-D’’’).  In  vivo,  PTCH1  and  SHH  are  expressed  uniformly  around  the  ventral  midline 

 (A-A’’),  PTCH1  was  expressed  wider  and  at  relatively  lower  levels  compared  to  SHH  (A’-A’’). 

 In  the  HH6  t72,  PTCH1  and  SHH  regionalise  into  distinct  domains  of  expression  (B’-D’, 

 B’’-D’’)  with  little  overlap.  PTCH1  was  expressed  in  tissue  which  was  labelled  as  initially 

 anterior  at  t0  by  DiI  (B’’’-D’’’).  The  DiI  labelling  was  located  in  the  PTCH1  expressing  tissue 
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 which  was  at  the  interface  with  the  SHH  expression  domain.  All  magnifications  10x.  Scale 

 bars 100μm. 

 6.2.6  Follistatin  expressing  cells  are  discrete  from  Shh  -expressing 

 ventral midline hypothalamic cells at HH8-12 

 At  the  same  time  that  I  was  conducting  my  studies,  the  Placzek  lab  was  conducting  a  large 

 scRNA-seq  analysis  of  chick  hypothalamic  development  (Kim  et  al.  ,  2022).  This  study 

 showed  that  the  hypothalamus  is  induced  from  prethalamic-like  diencephalic  cells,  that  can 

 be  characterised  through  expression  of  follistatin  (FST).  This  study  also  revealed  that  FST 

 can  inhibit  hypothalamic  induction  (Kim  et  al.  ,  2022).  A  future  aim  would  be  to  ask  whether 

 SHH-  expressing  prosencephalic  ventral  midline  cells  can  intrinsically  drive  the  altered 

 expression  patterns  of  SHH  and  PTCH1  that  are  found  in  vivo  ,  and  as  a  first  step  towards 

 this, I examined the profile of  SHH  relative to  FST  . 

 I  therefore  performed  double-label  HCR  analysis  to  compare  the  profiles  of  FST  and  SHH  in 

 wholemount  neuroepithelia  between  stages  HH8-11+  (Fig  6.8).  I  found  that  at  every  stage, 

 FST  and  SHH  expressing  cells  were  mutually  exclusive  (Fig  6.8A-G).  At  HH8-9,  SHH  and 

 FST  directly  abutted  each  other  at  their  medio-lateral  extents  (Fig  6.8A’-C’,  A’’-C’’).  By  HH11, 

 SHH  and  FST  were  still  mutually  exclusive,  but  a  substantial  gap  was  detected 

 mediolaterally  between  the  SHH  and  FST  expression  domains,  with  FST-  expressing  cells 

 confined  to  the  anterior  optic  vesicles  by  the  end  of  HH11  (Fig  6.8G,  G’’).  Strikingly, 

 comparison  with  wholemount  embryos  analysed  in  Chapter  5  showed,  the  cells  in  the 

 FST/SHH  negative gap were expressing  BMP2  and  SHH  (Fig 5.3 E’’’-F’’’)  . 

 Overall,  characterisation  of  the  FST  expression  domain  across  HH8-11  showed  that  FST 

 and  SHH  cells  are  mutually  exclusive  at  these  stages.  However,  their  close  proximity  means 

 that  it  is  likely  that  my  explants  (certainly  those  at  HH6-HH8)  would  have  some 

 contamination  from  more  lateral  FST-  positive  tissues.  Further  work  should  develop  an 

 understanding  of  whether  the  results  reported  here  are  due  to  the  presence  of  FST 

 expressing cells in the initial culture. 
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 Figure  6.8:  SHH  and  FST  are  mutually  exclusive  in  the  developing  chick  brain  between 
 HH8-HH11  .  (A-H)  Ventral  views  of  isolated  neuroepithelia  from  embryos  at  stages  HH8-12, 

 processed  for  HCR  in  situ  hybridisation  for  SHH  (A’-H’),  and  FST  (A’’-H’’).  Prior  to  HH10,  the 

 SHH  positive  cells  abutted  FST  positive  cells  mediolaterally  (A’-C’,  A’’-C’’).  Between  HH9  and 

 10.1  a  small  lateral  gap  between  the  SHH  and  FST  positive  cells  was  established  (D’-  E’, 

 D’’-E’’).  After  HH10,  the  gap  between  SHH  and  FST  positive  cells  widened  (F’-G’,  F’’-G’’). 

 Scale bars 100μm. 

 6.3 Summary 

 I  was  able  to  dissect  hypothalamic  explants  at  HH08-10  with  a  high  degree  of  accuracy  - 

 previous  work  has  used  hypothalamic  explants  but  a  key  novelty  here  is  a  thorough 

 characterization of the base state of the explants - the t0. 

 SHH  and  PTCH1  regionalise  in  a  neuroepithelial  intrinsic  manner  after  48h  in  culture. 

 Neuroepithelial  intrinsic  SHH  is  important  in  hypothalamus  development  (Szabó  et  al.  ,  2009) 

 but  my  results  here  suggest  that  the  expression  of  SHH  also  organises  in  a  neuroepithelial 

 intrinsic  manner,  which  could  be  a  potential  ongoing  regulating  mechanism  for  the  effects  of 

 SHH  when  the  interface  between  the  neuroepithelium  and  the  prechordal  mesoderm  is  lost. 

 Surprisingly,  there  did  not  seem  to  be  a  clear  rule  whether  the  HH8  t72  cultures  expressed 

 predominantly  SHH  or  PTCH1.  Re-examining  the  t0  HH8  cultures,  this  could  be  due  to  the 

 heterogeneity  along  the  anteroposterior  axis,  which  suggests  that  the  regionalisation 

 between  SHH  and  PTCH1  is highly sensitive. 
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 Additionally,  the  largest  amount  of  tissue  in  the  HH8  t72  explants  always  seemed  to  be  on 

 the  SHH  negative  border  with  PTCH1  expression  (rather  than  on  the  other  side  of  the  SHH 

 positive).  This  is  important,  as  it  hints  that  expansion  of  the  explant  always  occurred  on  the 

 side of the explant contralateral to  SHH  positive  cells. 

 The  hypothalamus  first  grows  anteriorly,  through  the  expansion  of  anterotuberal  progenitors. 

 It  may  be  that  the  contralateral  tissue  reflects  this  and  the  explants  have  organised 

 anteroposteriorly  as  they  would  in  vivo  ,  where  PTCH1  is  always  expressed  anterior  to  SHH 

 (after  HH8).  To  support  this  hypothesis,  I  used  DiI  lineage  tracing  to  mark  the  anterior,  finding 

 that  the  anterior  does  coincide  with  the  PTCH1  expression  at  both  HH8  and  HH6.  This  was 

 surprising,  as  at  HH6  there  is  no  obvious  upregulation  of  PTCH1  anteriorly  (which,  whilst 

 small at HH8, may be enough to ensure anterior patterning). 

 A  result  that  I  did  not  expect  from  the  HH6  t72  explants  was  that  the  expression  domain  of 

 SHH  was  often  Y-shaped.  This  is  important,  as  it  implies  not  only  can  these  explants  self 

 organise  along  the  anteroposterior  axis,  but  also  that  there  is  a  degree  of  mediolateral  self 

 organisation.  This  is  reminiscent  of  the  in  vivo  pattern  of  SHH  over  HH10-14  described  in 

 Chapter  5,  where  I  showed  that  the  posterior  tuberal  region  showed  a  U-shaped  SHH 

 expression  along  the  A-fold.  Intuitively,  this  U-shape  could  be  the  same/very  similar 

 patterning to the Y-shape seen in the HH6 t72 explants. 
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 Chapter 7 

 Discussion 
 In  Chapter  1  I  outlined  several  open  questions  to  be  tackled  in  this  thesis.  Here  I  summarise 

 my results in the context of those questions: 

 1.  Can  DNNs  be  used  to  sub-stage  the  developing  chick  brain  in  a  more 
 fine-grained manner than conventional staging methods? 
 To  address  this  question,  I  first  characterised  a  subtle  staging  problem  in  the 

 developing  HH10  chick  embryo  brain.  I  characterised  a  way  of  tackling  this  problem 

 using  the  sub-stages  10.1-3.  I  then  assessed  the  extent  to  which  these  sub-stages 

 were  linked  to  somite  number,  finding  it  to  be  an  unreliable  indicator  of 

 prosencephalic  morphology.  I  then  developed  a  deep  neural  network  based  image 

 classifier  to  stage  HH10  embryos  according  to  these  sub-stages.  To  obtain  an 

 accurate  classifier,  I  tested  several  network  architectures,  and  systematically 

 examined the utility of a large variety of augmentations (Chapter 3). 

 2.  What  is  the  structure  of  the  early  tissue  morphology  when  the  hypothalamus  is 
 being a) specified and b) organised into distinct progenitor regions? 
 To  answer  this,  I  conducted  a  fine-grained  morphological  study  of  the  developing 

 chick  embryo  at  HH10,  focusing  on  the  ventral  developing  hypothalamus  cells/tissue. 

 I  used  a  variety  of  methods  to  identify  and  further  characterise  morphological 

 structures,  finding  that  during/immediately  after  hypothalamic  specification  (HH8)  a 

 prominent  fold  develops  at  HH9  (the  A-fold),  and  there  was  a  relatively  larger  and 

 flatter region anterior to this, termed the Ventral face (V-face) (Chapter 4). 

 3.  What  are  the  earliest  signs  of  regionalisation  that  prefigure  the  organisation  of 
 the  hypothalamus  into  anterior  and  posterior  tuberal,  and  mammillary 
 progenitor domains? 
 Having  found  this  morphology,  I  next  tackled  this  question  by  investigating  whether 

 there  were  key  molecular  events  that  prefigured  and  correlated  with  this  morphology. 

 I  visualised  genes  which  were  important  to  early  hypothalamus  development:  SHH  , 

 PTCH1,  BMP2,  GLI1  .  Finding  substantial  regionalisation,  which  in  many  cases 

 coincided  with  the  morphology  I  described  in  Chapter  4,  I  provide  novel  insights  into 

 the complicated spatial expression of these genes (Chapter 5). 

 4.  To  what  extent  is  the  regionalisation  of  the  developing  hypothalamus  intrinsic, 
 or does it rely on external factors (e.g. from the PM)? 
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 To  address  this,  I  used  ex  vivo  cultures  of  hypothalamic  explants  over  HH8-10  to 

 investigate  to  what  degree  the  molecular  changes  I  report  are  intrinsic  to  the 

 neuroepithelium.  Principally,  I  find  that  there  is  a  degree  of  neuroepithelial  intrinsic 

 regionalisation  in  both  the  anteroposterior  and  mediolateral  axes.  In  conducting  this 

 work,  I  also  develop  an  assay  to  investigate  hypothalamic  regionalisation  through 

 perturbations. 

 7.1 Characterising sub-stages of the HH10 chick embryo 

 In  Chapter  3,  I  characterised  a  subtle  staging  problem  in  experiments:  that  the  conventional 

 Hamburger-Hamilton  staging  criteria  for  early  chick  embryos  -  number  of  somites  -  is  not 

 precise  enough  for  early  chick  brain  development.  Sub-staging  embryos  to  study 

 hypothalamus  development  is  novel,  and  doing  so  using  deep  neural  networks  makes  use  of 

 modern,  powerful  techniques  for  image  classification.  This  means  that  devising  a  more 

 detailed  and  fine-grained  staging  system  does  not  result  in  additional  arduous  pre-analysis 

 from the experimental biologist. 

 Other  attempts  have  been  made  to  devise  staging  systems  for  developmental  biology 

 research  that  move  beyond  conventional  staging  metrics.  Some  authors  have  devised 

 morphometric  systems  for  staging,  where  some  metric  is  used  to  stage  the  embryo.  One 

 advantage  of  my  method  is  that  all  of  the  features  that  experimentalists  in  my  lab  have  used 

 to  sub-stage  the  HH10  embryos  do  not  have  to  be  explicitly  defined,  but  are  instead  encoded 

 automatically  through  the  neural  network  training  process.  One  drawback  of  this  is  that  an 

 erroneous  or  irrelevant  feature  could  be  learned  by  the  classifier,  and  here  I  mitigate  this 

 through  saliency  analyses,  where  I  show  that  the  classifier  focuses  on  sub-stage  specific 

 features which were used during labelling. 

 This  characterisation  highlights  that  conventional  staging  studies  may  not  be  sufficient  to 

 fully  understand  hypothalamus  development.  My  sub-staging  method  is  one  way  in  which 

 more fine-grained time series and fate mapping experiments can be performed. 

 Advances  in  higher-resolution  data  collection  methods  (Cutrale  et  al.  ,  2019),  including 

 detailed  time-courses  of  embryonic  development  by  microscopy,  necessitate  careful 
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 consideration  of  traditional  staging  guides.  My  studies  underscore  the  importance  of 

 developing  novel  methods  to  finely  gauge  development  in  the  early  brain:  I  find  that  the 

 number  of  somites  is  out  of  sync  with  early  brain  development.  This  has  consequences  for 

 experiments  on  the  development  of  early  brain  regions,  including  the  hypothalamus,  where 

 accuracy  may  ultimately  be  key  in  deciphering  the  mechanisms  leading  to  the  emergence  of 

 distinct progenitor subtypes 

 Further  work  could  expand  the  dimensions  of  the  images  used.  I  used  2-D  morphological 

 profiles  to  train  my  classifiers.  Extending  this  with  3-D  fluorescent  images,  which  are 

 increasingly  used  in  developmental  biology,  could  provide  a  more  robust,  accurate  classifier. 

 Additionally,  including  gene  expression  data  for  the  brain  classification  could  couple  my 

 sub-stages  to  a  biological  mechanism(s).  Finally,  the  classifier  could  be  extended  for  further 

 use  in  the  developing  limb  (Musy  et  al.  ,  2018),  for  example  following  my  sub-staging 

 approach, to provide a more fine-grained profile of limb development. 

 Additionally,  future  work  should  use  the  data  presented  in  this  thesis  to  fine-tune  the  labelling 

 of  the  dataset.  This  could  be  done  by  using  the  wholemount  ventral  views,  which  are 

 characterised  in  the  context  of  both  morphological  and  molecular  profiles  to  fully  characterise 

 10.1-3,  with  explicit  links  to  biological  events.  Doing  so  will  also  minimise  the  risk  of  labelling 

 errors. 

 7.2  Development  of  an  image  classifier  to  classify  the  HH10 

 sub-stages 

 Whilst  I  tested  a  large  variety  of  different  data  augmentation,  training,  and  construction 

 regimes  -  this  was  not  exhaustive.  There  are  several  additional  steps  which  could  be  taken. 

 For  example,  slightly  expanding  the  dataset  to  accommodate  a  third  (unaugmented)  test  set 

 would be ideal as the final test of accuracy for the classifier. 

 Including  as  an  additional  preprocessing  step  an  image  feature  extraction,  such  as  the 

 Haralick  texture  analysis  (Haralick  et  al.  ,  1973),  which  have  been  used  successfully  to 

 extract  image  features  from  MRI  scans  in  biomedical  imaging  (Wibmer  et  al.  ,  2015)  This 

 would  increase  the  interpretability  of  the  PCA/k-means  clustering,  which  I  currently  only  use 

 to justify my choice of sub-stage number. 
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 In  this  work,  my  approach  was  to  use  biological  domain  expertise  to  inform  a  machine 

 learning  classifier  to  aid  in  experiments  on  HH10  chick  embryos.  By  doing  so,  I  combined  the 

 objective,  systematic  nature  of  machine  learning  approaches  with  biological  domain 

 expertise.  This  enabled  training  of  high  accuracy  image  classifiers  on  limited  datasets, 

 through bespoke data processing and augmentation regimes. 

 The  key  novelty  of  the  study  is  the  development  of  a  strategy  that  enables  classification  of 

 limited  microscopy  datasets  covering  subtle  morphological  changes  in  different  experimental 

 systems.  I  report  a  novel  staging  problem  in  early  chick  brain  development,  namely  that  the 

 early  brain  undergoes  subtle  morphological  changes  over  a  very  short  time  window,  and  that 

 this  phenomenon  is  uncoupled  from  somite  number.  This  agrees  with  other  studies  on 

 different  developing  tissues.  For  example,  asynchronies  have  been  reported  in  somite 

 number  and  both  mouse  limb  morphology  (Musy  et  al.  ,  2018),  and  frog  neural  development 

 (Sáenz-Ponce  et  al.  ,  2012).  Therefore,  I  and  others  find  that  the  number  of  somites  is 

 uncoupled  from  wider  organ  development  at  certain  stages.  Due  to  this  uncoupling, 

 traditional  staging  methods  can  fail,  risking  missing  key  developmental  events  and  altering 

 interpretation  of  experiments.  My  trained  image  classifier  provides  a  solution  to  classify  the 

 developing brain (and hypothalamus) as it undergoes subtle morphological change. 

 Development  is  a  continuous  process,  so  a  pragmatic  consideration  is  how  to  categorise 

 development  into  discrete  tractable  stages.  The  methodology  used  here  provides  an 

 unbiased  and  systematic  way  of  determining  the  number  of  classes  to  separate 

 developmental  staging  data.  In  this  instance,  clustering  of  the  brain  dataset  suggested  three 

 classes,  but  in  other  cases  the  class  number  may  be  more/less  and  my  approach  naturally 

 extends to that. 

 Previous  efforts  to  classify  microscopy  images  in  developmental  biology  have  focused  on 

 hyperparameter  optimisation  (Pond  et  al.  ,  2021)  without  data  augmentation.  In  contrast,  I 

 have  instead  focused  on  exploring  different  data  augmentations,  as  I  can  fully  exploit 

 biological  domain  expertise  when  augmenting  data,  as  opposed  to  hyperparameter 

 optimisation.  Recent  theoretical  work  supports  my  approach,  highlighting  the  superiority  of 

 data  augmentation  at  optimising  the  learning  of  DCNNs  (Hernández-García  and  König, 

 2018).  I  saw  substantial  differences  in  model  performance  with  different  data  augmentations, 

 indicating  the  importance  of  reasoned  augmentation  regime  design.  I  also  found  that 

 combining  individually  successful  augmentations  was  an  effective  method  to  consolidate  the 

 benefits  of  these  augmentations.  To  exemplify  the  utility  of  my  approach,  I  then  applied 
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 similar  data  augmentation  regimes  to  a  developing  limb  dataset.  Again,  I  made  reasoned 

 predictions  about  the  dataset,  for  instance,  that  the  model  would  overfit  without  flipping 

 augmentations.  I  conclude  that  careful  analysis  of  the  data  and  an  appropriate  augmentation 

 regime  should  be  designed  for  specific  datasets  and  problems  encountered  in 

 developmental biology. 

 My  work  indicates  that  training  using  InceptionV3  and  ResNet50  architectures  is  not  always 

 suitable  for  all  classification  problems,  specifically  on  small  datasets.  This  is  unsurprising,  as 

 these  models  were  built  for  ImageNet,  a  more  general  and  larger  dataset.  Indeed,  other  work 

 on  biological  image  classification  using  small  (albeit  larger  than  ours)  datasets  has 

 encountered  issues  using  a  ResNet50  architecture.  Margapuri  et  al.  tested  various  model 

 architectures  (including  ResNet50)  at  classifying  different  bee  species  (Margapuri  et  al.  , 

 2020).  They  found  that  ResNet50  overfits  on  their  data,  achieving  at  best  a  7.4%  accuracy. 

 They  also  tested  InceptionV3  finding  similar  results  to  ours,  with  a  maximum  accuracy  of 

 44.5%.  Whilst  these  authors  did  test  augmentations  including  rotation  and  cutout,  they  found 

 that  the  un-augmented  data  achieved  higher  accuracies.  Considering  these  and  my  findings, 

 it  is  clear  that  applying  widely  used  image  classification  architectures  alone  is  not  a 

 straightforward solution when dealing with small datasets. 

 My  chosen  approach,  of  training  a  DCNN  to  classify  images,  has  advantages  over  more 

 traditional  classifiers  that  rely  on  precomputed  features  of  the  dataset.  The  latter  either 

 requires  arduous  manual  selection  and  measurement  of  image  features  or  computing  image 

 texture  features.  However,  computing  image  texture  features  is  reliant  on  registration  of  the 

 dataset, which itself is not trivial particularly for developmental biology datasets. 

 In  contrast,  my  approach  requires  no  prior  knowledge  about  the  embryos,  nor  the  skill  to 

 assess  the  morphological  features.  My  approach  also  shows  that  pre-selected  features  may 

 not  be  those  that  are  the  most  useful  for  classification.  For  instance,  I  find  that  the  best 

 classifier  of  the  10.3  brain  sub-stage  is  neuromere  shape  (not  one  of  the  pre-selected 

 features),  while  for  the  limb,  morphology  was  a  stronger  classifying  feature  than  SHH 

 expression,  even  in  cases  where  SHH  was  expressed  in  control  and  not  in  the  treated  limb. 

 My  strategy  would  also  allow  image  classifiers  to  be  trained  for  other  biological  problems 

 with  limited  microscopy  data.  Finally,  using  my  DCNN  is  straightforward  for  the  end  user,  an 

 important factor when considering the time critical nature of biological experiments. 

 Finally,  I  used  saliency  maps  to  gain  insight  into  the  regions  of  the  images  to  which  the 

 classifiers  were  most  sensitive.  My  results  illustrate  the  utility  of  saliency  analysis  in 
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 interpreting  classifiers  in  a  manner  that  is  coherent  to  experimental  biologists.  This  has  been 

 exemplified  in  other  areas  at  the  interface  of  DL  and  biomedical  research  e.g.  X-ray  images 

 of  lung  cancer  and  infection  labelled  by  radiologists  (Baltruschat  et  al.  ,  2019;  Panwar  et  al.  , 

 2020).  Here,  the  authors  leveraged  saliency  methods  to  understand  classifier  decision 

 making,  an  important  step  if  DNN  based  classifiers  are  to  have  a  role  in  medical  decision 

 making.  The  use  of  such  methods  will  encourage  confidence  in  non-specialists  about 

 DCNN-based  classifiers.  As  I  show  here,  there  is  potential  for  insight  into  the  most  predictive 

 features  of  labelled  classes,  free  from  human  preconceptions.  Therefore,  these  analyses 

 encourage  confidence  in  the  classifier,  which  will  increase  uptake  by  the  wider 

 developmental biology field. 

 7.3  Characterisation  of  early  hypothalamus  morphology  in  3-D 

 at HH10 

 In  Chapter  4,  I  defined  and  characterised  a  novel  morphology  in  the  developing 

 hypothalamus  at  HH8-14.  This  study  is  important  because  previous  work  has  only 

 mentioned  the  neuroepithelial  morphology  in  passing  (Fu  et  al.  ,  2017).  I  generated  a  detailed 

 visualisation  of  morphology  over  HH8-14,  which  are  the  stages  where  hypothalamic 

 induction  and  regionalisation  are  occurring  (Fu  et  al.  ,  2017;  Kim  et  al.  ,  2022).  Further  work 

 here  could  refine  the  morphometric  study  through  a  user-generated  ground  truth.  Currently, 

 the  U-net  which  I  used  to  classify  cell  membranes  in  Section  4.2.2  was  packaged  pre-trained 

 on  a  confocal  dataset  of  cell  membranes  in  plant  tissue.  Generating  a  more  expansive 

 hypothalamic  membrane  dataset,  and  training  the  U-net  on  manually  segmented 

 hypothalamic  cell  membranes,  would  enhance  the  segmentation.  Further,  an  extended  time 

 series  of  morphology  between  HH14  (the  latest  I  visualised)  and  E5  embryo,  where  the 

 hypothalamus has developed the protruding morphology (Fu  et al.  , 2017) would be useful. 

 7.4  Investigation  of  early  hypothalamic  regionalisation  and 

 correlations with developing morphology 
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 Building  on  the  work  in  Chapter  4,  In  Chapter  5,  I  focused  on  visualising  genes  involved  in 

 early  hypothalamic  regionalisation,  using  ventral  views  of  wholemount  neuroepithelia  which  I 

 had isolated from the surrounding tissues. 

 Previous  efforts  have  usually  investigated  the  development  of  the  hypothalamus  using 

 primarily  un-dissected  wholemounts  and  sections.  Whilst  there  has  been  some  previous 

 examination  of  the  dissected  neuroepithelium  (Dale  et  al.  ,  1999),  I  have  shown  in  this 

 Chapter  a  novel  approach  to  analysing  hypothalamic  morphology  and  morphogenesis  by 

 extension  into  3-D.  The  principal  advantage  of  using  the  wholemount  ventral  views  is  they 

 reveal  the  mediolateral  shapes  and  extents  of  nascent  hypothalamic  regions,  as  well  as  how 

 these relates to anteroposterior regionalisation and morphology (i.e. the A-fold/V-face). 

 Future  work  should  seek  to  exploit  the  advantages  of  each  modality  of  visualising  the 

 developing  hypothalamus,  and  by  doing  so  ameliorate  the  disadvantages  of  each  method. 

 For  example,  wholemount  and  sagittal  sections  naturally  complement  each  other  as  sagittal 

 sections  can  verify  wholemount  views,  which  are  more  susceptible  to  artefacts  as  a  result  of 

 perspective shifts. 

 A  particularly  surprising  feature  I  noticed  of  early  hypothalamus  development  was  that  my 

 wholemount  ventral  views  showed  there  was  a  high  degree  of  heterogeneity  and  dynamism 

 in  SHH  ,  BMP2  ,  and  PTCH1  expression.  In  each,  my  data  showed  an  extension  on  the 

 current  understanding.  For  SHH  ,  I  showed  that  the  expression  profile  of  SHH  was  not  a 

 simple  radial  disc,  but  in  fact  had  distinct  points  of  strong/weak  expression  in  the  A-fold  and 

 lateral  to  the  A-fold  respectively.  In  contrast  to  the  findings  of  Fu  et  al.,  (2017)  I  found  FGF10 

 and  SHH  appeared  to  be  expressed  to  be  in  complementary  gradients  at  HH10,  FGF10 

 running from anterior to posterior and  SHH  vice versa. 

 This  strong  expression  in  the  A-fold  coincided  with  where  SHH  and  FGF10  overlapped, 

 which  may  have  important  implications  for  the  subsequent  specification,  migration,  and 

 growth  of  the  hypothalamus.  Similarly,  the  weak  expression  of  SHH  coincided  with  the 

 eventual location of  BMP2  at HH11-14, where  BMP2  was  confined lateral to A-base. 

 Previous  work  has  shown  that  BMP2  can  downregulate  SHH  expression  in  the  developing 

 hypothalamus,  but  through  a  Tbx2  related  mechanism.  There  is  no  evidence  that  Tbx2  is 

 expressed  in  the  BMP2  positive  cells  immediately  lateral  to  the  A-fold,  so  open  questions 

 here  are  i)  is  BMP2  downregulating  SHH  here  and  ii)  if  so,  through  what  mechanism? 
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 Making  thorough  use  of  the  single  cell  RNA  sequencing  dataset  provided  by  (Kim  et  al.  , 

 2022) may elicit potential target factors which could explain this. 

 More  anteriorly,  I  showed  that  there  was  an  early  regionalisation  of  SHH  /  BMP2  as  the  A-fold 

 and  V-face  become  apparent  at  HH9.  BMP2  begins  to  be  expressed  in  a  heart-shaped  ring, 

 overlapping  with  outermost  SHH  -expressing  cells.  Triple-labelling  of  SHH  ,  BMP2  and 

 PTCH1  show  BMP2  medial  to  PTCH1  -domains.  In  the  apex  of  the  heart-shaped  ring  -  a 

 region  that  marks/predicts  the  posterior  V-face  -  BMP2  is  transiently  expressed  at  high 

 levels,  before  being  downregulated  here.  What  mediates  this  is  unclear.  The  area  this  is 

 occurring  in,  the  V-face  neuroepithelium,  is  in  register  (i.e.  aligned  on  the  antero-posterior 

 axis)  with  the  prechordal  mesoderm,  and  a  potential  candidate  for  this  mediation  is  the 

 release  of  factors  from  the  prechordal  mesoderm,  as  shortly  after,  the  registration  between 

 the  neuroepithelium  and  prechordal  mesoderm  is  lost  as  the  prechordal  mesoderm  becomes 

 relatively  more  posterior  (Fu  et  al.  ,  2019).  However,  a  more  detailed  characterisation  of 

 prechordal  mesoderm-neuroepithelial  signalling  is  required  before  a  specific  mechanism  can 

 be hypothesised. 

 Therefore,  in  Chapters  4-5  I  was  able  to  characterise  highly  dynamic  expression  patterns  of 

 genes  marking  early  hypothalamic  regionalisation,  and  relate  this  to  the  A-fold  and  V-face 

 over HH8-14. 

 This  has  important  implications  for  hypothalamus  development.  If  the  earliest  detectable 

 regionalisations  prefigure  the  development  of  morphology  then  a  more  complete 

 understanding  of  hypothalamic  regionalisation  and  development  must  take  into  account  this 

 morphogenetic  process.  A  related  question  is  whether  these  morphological  structures  are 

 the  earliest  detectable  indications  of  the  distinctive  adult  morphology  of  the  hypothalamus. 

 This  morphology  can  be  characterised  as  having  three  attributes:  (i)  the  organisation  of  adult 

 neuronal  populations  doro-ventrally  -  does  this  reflect  differences  in  the  planar  organisation 

 at  early  time  points?  (ii)  Following  this,  does  the  A-base/V-face  mark  the  most  ventral  point, 

 and  the  future  location  of  the  infundibulum?  (iii)  Does  this  morphogenesis  occurring  between 

 HH9-14  reflect  that  much  of  the  hypothalamus  protrudes  ventrally  from  the  rest  of  the 

 forebrain, as indeed it does by HH14? 

 To  test  these  hypotheses,  further  work  should  seek  to  perturb  the  formation  of  the  A-fold,  in 

 the  first  instance  by  manipulating  SHH/FGF10  signalling.  As  the  A-fold  is  consistently 

 located  where  SHH  and  FGF10  overlap,  this  could  reveal  how  the  anteroposterior  location  of 

 the  A-fold  is  determined.  Similarly,  knockdown  of  BMP2  could  provide  clues  as  to  whether 
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 the  lateral  (to  the  A-fold)  downregulation  of  SHH  reflects  a  mediolateral  size  constraint  on 

 the developing morphology. 

 7.5  An  ex  vivo  assay  to  assess  neuroepithelial  regionalisation 

 in the early developing hypothalamus 

 In  Chapter  6,  I  built  on  previous  work  that  used  hypothalamic  explants  to  investigate 

 molecular  regionalisation  in  hypothalamus  development  (Manning  et  al.  ,  2006;  Kim  et  al.  , 

 2022).  I  presented  two  novel  findings.  First,  that  the  explants  retain  their  anterior/posterior 

 axis  as  measured  by  PTCH1  regionalising  with  DiI  which  labelled  the  initial  anterior  of  the 

 explant  after  culture.  This  could  be  expanded  on  by  using  DiI  and  DiO  simultaneously  on  the 

 initial  lateral  limits  of  the  explants,  to  assess  whether  there  is  retention  of  the  mediolateral 

 axis. 

 In  this  way,  my  work  represents  a  basis  for  assessing  how  much  of  the  developing 

 hypothalamus  regionalisation  is  intrinsic  to  events  in  the  neuroepithelium,  as  the  prechordal 

 mesoderm  was  removed  prior  to  culture.  The  regionalisation  of  the  hypothalamus  being  (at 

 least  semi-)  intrinsic  is  important  as  it  narrows  down  the  potential  mechanisms.  Further  work 

 here  should  investigate  potential  mechanisms  by  perturbing  the  markers  of  regionalisation 

 (e.g.  SHH  and  PTCH1  )  through  small  molecule  inhibitors  such  as  Cyclopamine  (Stanton  and 

 Peng, 2010). 

 A  surprising  result  from  the  ex  vivo  studies  presented  in  Chapter  6  was  that  SHH  expression 

 frequently  organised  into  a  ‘Y’  pattern.  This  pattern  of  expression  is  reminiscent  of  the 

 pattern  seen  in  vivo  (in  the  A-fold)  from  HH10  onwards  (Chapter  5,  Fig  5.2).  As  these  SHH 

 expressing  cells  appear  to  mark  the  posterior  tuberal  hypothalamus,  the  recurrence  of  this 

 pattern  ex  vivo  implies  that  the  onset  of  posterior  tuberal  hypothalamus  identity  may  be 

 neuroepithelial  intrinsic.  A  substantial  advantage  of  conducting  simultaneous  in  vivo  and  ex 

 vivo  studies is through comparison between the two. 

 Not  only  do  the  explant  cultures  indicate  to  what  extent  regionalisation  is  neuroepithelial 

 intrinsic,  they  also  can  provide  clues  to  underlying  mechanisms  of  development  through 

 virtue  of  removal.  For  example,  my  results  show  that  explants  cultured  at  HH6  for  72  hours 

 show  both  anteroposterior  axis  retention  (i.e.  PTCH1  expression  anteriorly)  and  also,  that 
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 potentially  the  posterior-tuberal  progenitor  cells  posterior  to  this  self-organise  (i.e.  the 

 Y-shaped  SHH  profile). 

 In  vivo,  the  anterior  PTCH1  positive,  SHH  negative  cells  appear  to  prefigure  the  anterior 

 hypothalamus/  anterior  limit  of  the  hypothalamus  (Fig  5.2)  Posterior  to  these  cells,  are  the 

 anterior  tuberal  progenitors,  which  express  FGF10  but  not  SHH  .  Whilst  the  FGF10  probes 

 did  not  work  satisfactorily  in  my  ex  vivo  studies,  whereas  I  observe  that  ex  vivo,  the  anterior 

 PTCH1  expressing cells usually abut the posterior  Y-shaped  SHH  expression. 

 Therefore  I  would  have  expected  that  if  tuberal  progenitors  were  retaining  every  aspect  of  in 

 vivo  behaviour  there  would  be  a  SHH,  PTCH1  negative  population  of  cells  anterior  to  the 

 Y-shaped  SHH  profile.  The  consistent  lack  of  this,  in  both  the  HH6  and  HH8  explants,  could 

 indicate  that  the  continued  generation  of  anterior  tuberal  progenitors  (which  are  FGF10 

 positive,  SHH  negative),  require  ongoing  signalling  from  the  prechordal  mesoderm  for  some 

 time after HH8. 

 7.6 A role for mathematical modelling 

 Mathematical  modelling  has  played  a  useful  role  in  deciphering  the  contribution  of  SHH  and 

 other  signalling  molecules  in  the  neural  tube  (Balaskas  et  al.  ,  2012).  Here,  the  authors 

 describe  the  temporal  dynamics  of  expression  of  three  neural  tube  genes  downstream  of 

 Shh  signalling  (Pax6,  Olig2,  Nkx2.2).  Further,  Cohen  et  al.  revealed  how  quantitative 

 modelling  of  SHH  activity  in  the  neural  tube  allowed  for  increased  understanding  of  a 

 switch-like  role  for  SHH,  providing  evidence  for  how  graded  morphogen  signals  can  produce 

 sharp and distinct outputs in developing tissues (Cohen  et al.  , 2014; Groves  et al.  , 2020). 

 Other  work  has  used  mathematical  modelling  to  investigate  SHH  patterning/molecular 

 interactions  in  complex  spatial  domains.  For  example,  Menshykau  et  al.  investigated  lung 

 branching  morphogenesis  using  simulations  of  FGF10  and  SHH,  solving  their  equations  on 

 2-D  spatial  domains  that  resembled  lung  branches  (Menshykau  et  al.  ,  2012).  In  doing  so, 

 they  could  also  investigate  the  impact  that  lung-like  morphology  has  on  the  regulatory 

 network between FGF10 and SHH. 

 The  data  I  have  acquired  in  this  thesis  have  led  me  to  the  point  where  mathematical 

 modelling  will  be  instrumental  in  further  unpicking  the  complex  regionalisation  of  SHH  (and 
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 FGF10/BMPs)  in  the  developing  hypothalamus  that  I  investigated  in  Chapter  5.  Such 

 modelling  could  also  aid  understanding  the  relative  contribution  and  feedback  of  this 

 regionalisation  on  the  developing  morphology  I  described  in  Chapter  4.  In  addition,  the 

 development  of  a  more  fine-grained  classifier  will  allow  me  to  more  closely  match 

 mathematical  models  to  experimental  data.  Finally,  the  ex  vivo  work  provides  a 

 complementary  experimental  method  to  modelling,  as  it  will  allow  us  to  unpick  the  relative 

 contributions  of  the  prechordal  mesoderm  and  neuroepithelium  in  ongoing  hypothalamic 

 regionalisation/growth. 

 In  summary,  the  work  presented  in  this  thesis  encompasses  a  range  of  different 

 experimental  and  computational  approaches  and  includes  the  study  of  patterning  and 

 morphogenesis  events  in  the  developing  hypothalamus.  I  have  provided  novel  insights  into 

 early  hypothalamic  morphogenesis  and  molecular  regionalisation.  The  challenge  in  any 

 future  work  is  to  continue  to  disentangle  these  complex  processes  through  further 

 experimentation, image analysis, and mathematical modelling. 
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 Appendix 

 Repeat 

 1  2  3  4  5  6  7  8  9  10  Avg.  SD 

 RFC  54.8  25.8  35.5  25.9  32.3  41.9  35.5  29.0  38.7  45.2  36.5  9.1 

 SVM  22.6  41.9  32.3  29.0  22.6  38.7  35.5  22.6  32.3  35.5  31.3  7.0 

 KNN  41.9  38.7  51.2  45.2  41.9  32.3  38.7  29.0  22.6  41.9  38.3  8.3 

 Appendix  Table  1  Traditional  machine  learning  classification  on  the  un-augmented 
 dataset.  The  original  dataset  was  used  to  fit  ten  classifiers,  and  the  classification  accuracies 

 were  determined  with  a  different  (80:20)  split  of  training/  testing  data  for  each  model.  RFC; 

 Random  forest  classifier.  SVM;  support  vector  machine,  KNN;  k-nearest  neighbours  (k  =  3). 

 Highest  classification  accuracies  for  each  repeat,  highest  average  for  each  classifier  (Avg.), 

 and lowest standard deviation (SD) are shown in bold. 

 129 



 Aug  Fold 

 1  2  3  4  5  6  7  8  9  10  Avg.  SD 

 1  40.7  41.5  43.3  46.7  42.4  46.1  47.0  46.7  46.5  40.4  44.1  2.7 

 1 + 2  41.0  40.0  53.3  49.1  44.9  38.1  46.8  46.9  47.5  39.4  44.7  4.9 

 1 + 3  35.6  50.7  51.3  49.6  43.3  47.6  46.2  47.1  32.9  49.1  45.3  6.3 

 1 + 4  40.0  35.4  54.4  40.9  40.9  46.6  46.7  46.7  48.7  42.6  44.3  5.4 

 1 + 5  40.1  41.9  53.8  45.4  36.2  47.5  46.7  46.7  46.8  40.1  44.5  5.0 

 1 + 2,4,5 RC  38.0  42.2  60.5  38.7  40.9  52.8  48.6  46.0  47.1  37.8  45.4  7.4 

 Fold Avg.  39.2  42.0  52.8  45.1  41.4  46.5  47.0  46.7  45.1  41.6 

 Appendix  Table  2  Augmentation  exploration  of  the  dataset  using  InceptionV3.  I 
 explored  the  data-space  using  k  -fold  cross  validation,  the  individual  fold  validation 

 accuracies  that  each  network  achieved  are  shown  in  columns  1-10,  and  the  averages  and 

 standard  deviation  of  these  accuracies  is  shown  in  the  rightmost  columns.  As  a  baseline 

 processing  step,  all  images  were  rotated  15  times,  at  equally  spaced  degrees.  I  then  tested 

 augmentations  on  top  of  this  baseline,  before  a  final  test  whereby  each  image  was  randomly 

 augmented.  Augmentations  (Aug)  as  follows:  (1)  rotation  (baseline);  (2)  shear;  (3)  crop;  (4) 

 Gaussian  blur;  (5)  cutout;  (RC)  random  combination  of  rotation  +  cutout,  or  shear,  or  blur. 

 Highest  validation  accuracies  for  each  fold,  highest  average  for  each  augmentation  (Avg.), 

 and lowest standard deviation (SD) are shown in bold. 
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 Aug  Fold 

 1  2  3  4  5  6  7  8  9  10  Avg.  SD 

 1  40.0  71.1  73.5  54.1  69.4  66.9  64.1  70.9  65.9  63.7  64.0  10.0 

 1 + 2  65.4  40.1  67.0  51.0  69.8  67.1  63.4  48.7  67.9  56.2  59.9  11.7 

 1 + 3  44.2  55.6  60.9  52.4  51.8  46.7  46.7  50.0  45.8  46.9  50.1  5.2 

 1 + 4  69.0  74.5  75.9  51.1  70.6  69.2  70.6  70.1  71.6  69.4  69.2  6.8 

 1 + 5  45.7  40.1  56.9  52.0  44.3  70.4  69.8  49.9  71.3  48.2  54.9  11.7 

 1 + 2,4,5 RC  63.1  37.2  68.7  48.1  67.3  62.7  52.0  71.0  68.4  55.3  59.4  11.0 

 Fold Avg.  54.6  53.1  67.2  51.5  62.2  63.8  61.1  60.1  65.2  56.6 

 Appendix  Table  3  Augmentation  exploration  of  the  dataset  using  ResNet50.  I  explored 

 the  data-space  using  k  -fold  cross  validation,  the  individual  fold  validation  accuracies  that 

 each  network  achieved  are  shown  in  columns  1-10,  and  the  averages  and  standard 

 deviation  of  these  accuracies  is  shown  in  the  rightmost  columns.  As  a  baseline  processing 

 step,  all  images  were  rotated  15  times,  at  equally  spaced  degrees.  I  then  tested 

 augmentations  on  top  of  this  baseline,  before  a  final  test  whereby  each  image  was  randomly 

 augmented (see  Table 3.1  caption). 
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 Aug  Avg. (%)  SD  Min (%)  Max (%) 

 Rotation  80.3  6.7  64.7  91.6 

 Crop  74.8  8.4  59.9  82.3 

 Shear  78.4  4.8  68.1  84.8 

 Gaussian blur  80.3  4.9  71.9  89.3 

 Cutout  83.6  4.6  76.1  91.5 

 Crop  53.5  8.9  39.2  74.9 

 Appendix  Table  4  Data  augmentation  regime  exploration  with  hold-out 
 cross-validation  .  The  networks  were  initialised  and  trained  with  reshuffled  data  10  times  for 

 each  augmentation.  Rotation  achieves  the  highest  accuracy  at  91.6%,  however  cutout 

 reaches  91.5%,  and  is  the  most  reliable,  with  the  highest  average  and  lowest  standard 

 deviation. The optimal score for each metric is shown in bold. 
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 Aug  Fold 

 1  2  3  4  5  6  7  8  9  10  Avg.  SD 

 1 + Möbius  55.7  57.6  47.4  49.1  49.4  41.3  38.1  57.4  43.9  66.1  50.6  8.6 

 1 + M:G 
 (10% 

 chance) 

 76.6  79.4  67.4  66.4  79.8  76.9  70.8  77.6  84.6  79.0  75.9  5.8 

 Appendix  Table  5  Testing  of  Möbius  transformations  as  data  augmentations  for  the 
 brain  dataset.  1  +  Möbius:  the  dataset  is  augmented  with  the  baseline  &  Möbius 

 transformations.  1  +  M:G  (10%  chance).  The  dataset  is  augmented  with  Gaussian  blur  with 

 a 10% chance of a Möbius transformation per image. 
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 Hyperparameter  Value/category 

 Activation function  ReLU 

 Batch size  32 

 Layer dropout  20% 

 Final layer dropout  50% 

 L  2  regularisation λ  10  -4 

 Optimiser  Adam 

 Learning rate  10  -4 

 Average validation accuracy  64.1% 

 Min, Max validation accuracy  43.6%, 81.5% 

 Appendix  Table  6  Optimal  hyperparameters  for  the  baseline,  determined  by  Bayesian 
 optimisation.  I  tested  these  hyperparameters  with  the  following  ranges:  Activation  function: 

 ReLU-Sigmoid,  Batch  size:  16-128,  Optimiser:  Adam,  Adadelta,  Adamax,  Adagrad,  SGD, 

 RMSprop,  Layer  dropout:  0.05-0.25%.  Final  layer  dropout:  0.3-0.8%.  λ:  10  -3  -  10  -6  ,  Learning 

 rate:  10  -1  -  10  -6  ,  selecting  the  value/category  which  was  used  most  by  the  optimisation 

 algorithm. 
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 Appendix Figure 1 HCR  in situ  hybridisation for  FGF10  and  BMP2 ex vivo  results in a 
 low signal to noise ratio.  (A-A’’) In a 10.1 explant  cultured for 72h,  FGF10  signal (A’) is 

 non-specific and noisy. (B-B’’) In a 10.1 explant cultured for 48h, BMP2 signal is also noisy, 

 with non-specific signal. Scale bars 100μm. 
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