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Abstract

This thesis reports on the experimental analysis of the turbulence statistics of the ASDEX
Upgrade scrape-off layer (SOL), and the filaments that populate it, for different L and H-
mode discharges using the gas puff imaging (GPI) diagnostic. A synthetic GPI diagnostic is
constructed and applied to a toy model to account for the smearing of filaments caused by
imperfect alignment of the lines-of-sight and the local magnetic field.

Radial increases in relative fluctuation amplitude, skewness, and kurtosis are seen due to
the presence of filaments whose characteristics vary as they propagate radially. The proba-
bility distribution functions (PDFs) of filament amplitude for a given pixel measurement at
the GPI detector follow Gamma distributions which become increasingly skewed and flat-
tened with increasing radius. These are similar between most of the discharge types, lending
further evidence towards the so-called ‘universality of the scrape-off layer’, but the L-mode
discharge with nitrogen seeding has an increase in each metric, and the most skewed and
flattened PDFs, in the far SOL compared to the other discharge types. This is though to
be caused by changes to the filaments and is corroborated with independent measurement
of an increase in the filament amplitudes in the 2D GPI data.

Using GPI, independent measurements of individual filament poloidal sizes and radial ve-
locities are made, and reported with respect to the Myra filament model. Most filaments are
measured with sizes above the fundamental blob size with velocities under the sheath-limited
regime velocity scaling, except for SOL locations closest to the separatrix. Distribution func-
tions of filament sizes and velocities are measured, as well as the interdependence between
different filament attributes, which are used as inputs to the Garcia-Militello SOL model.

This model is based on a statistical framework that links filaments and their motion to
SOL density profiles. In the single-filament model it is shown that profile decay lengths are
directly proportional to the the radial filament velocity, vx, and parallel loss timescale, τ∥, the
characteristic time at which filaments reduce in amplitude due to parallel losses. This model
is expanded to show how radial changes of vx or τ∥ can generate profiles with either increasing
or decreasing decay lengths. From simulations of this model, measurements of the higher-
order statistical profiles, as well as single-point PDFs, are compared to the experimental
statistical characterisation of the SOL, allowing us fully use the model to determine which
change of variable may result in the change of the density profile.

For the first time, this model is extended to include the distributions of filament at-
tributes. It is shown, both analytically and in simulations, how the amplitude distribution
is required for the quadratic scaling of kurtosis with skewness, seen for Gamma distributed
fluctuation signals, and how the radial velocity distributions, in addition to spatial changes
in vx or τ∥, can lead to non-exponential decay profiles, as well as radial increases in higher-
order statistical profiles. The model is first used in 1D and then extended to 2D, showing
no change of the general results, and there is therefore no dependence of profile decay length
on perpendicular filament size or velocity, even for large poloidal-to-radial velocity ratios.
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Chapter 1

Introduction

1.1 Nuclear fusion

The end goal of nuclear fusion is to contribute to the commercial production of electricity

through the release of heat released from fusing small, light nuclei, recreating the energy

production mechanism that powers the Sun. A few of fusion’s greatest merits, in comparison

with other means of electricity production, are: the fusion reactions do not directly produce

or release carbon dioxide or other greenhouse gases; the fuel used has a high energy density,

and therefore a relatively little amount of fuel is required; depending on the fusion reaction

used, and thus the fuel type, the amount of reactants may be close to limitless, unlike

fossil fuels such as coal and gas; it does not rely on unpredictable aspects of nature, such

as the amount of wind or sunshine; fusion reactors are being designed from the ground-up

with stringent limits of ≈100 years for the maximum timescale on which the radioactivity

of materials can be an issue; and the disruption of a fusion reaction cannot lead to the

same level of catastrophe seen in a nuclear reactor meltdown (e.g., Windscale, Chernobyl,

or Fukushima).

Currently the fusion reaction thought most viable is between two isotopes of hydrogen,

deuterium (2D) and tritium (3T), which fuse to produce one helium nucleus (4He) and one

neutron (n) per reaction

2D+ 3T → 4He(3.5MeV) + n(14.1MeV). (1.1)

This reaction has been chosen mainly due to the high reactivity/cross-section at lower ion

16



CHAPTER 1. INTRODUCTION 17

temperatures than other fusion reactions, and just so happens to release more energy than

most other reactions. The reactivity, ⟨σv⟩, which is the first moment of the cross-section

of the reaction, σ, over the (assumed) Maxwellian velocity distribution of the ions, v, as a

function of temperature for a few sample fusion reactions is shown in figure 1.1, where ⟨σv⟩DT

is more than an order of magnitude greater than all other fusion reactions for T ≲ 60 keV.

Deuterium is naturally occurring in seawater (approximately 33mg per litre [1]), whilst

tritium is, unfortunately, radioactive with a half-life of 12.32 ± 0.02 years [2], and would

need to be produced on-site through the interaction of the fusion neutrons with breeding

blankets of lithium. It is because of this, coupled with extra restrictions or rules that limit

the amount of tritium that can be both in a fusion reactor, and on-site in total (in the UK),

most experimental fusion devices work with 2D–2D plasmas.∗ D–D is the next most-likely

fusion reaction, from a reactivity viewpoint, and D–D experiments are the focus of this thesis.

The D–D reaction is given by

2D+ 2D →


3He(0.8MeV) + n(2.5MeV)

3T(1.0MeV) + 1H(3.0MeV).

(1.2)

For fusion to occur, the two nuclei must overcome the Coulomb repulsion between them

and get sufficiently close to be within range of the strong nuclear force. This is obtained

by heating the fuel to very high temperatures, whereby electrons are separated from their

nuclei, and it becomes a plasma. It can be shown that in order to obtain ignition within a

fusion plasma (i.e., the point at which the rate of fusion is high enough to sustain the fusion

reaction with sufficiently high temperatures and densities for a long enough time through

self heating by the emitted alpha particles, without the need for external energy application)

the Fusion Triple Product must exceed

nTτE ≥ 5× 1021 keVs/m3 (1.3)

where n is the plasma density, T is the temperature, and τE is the energy confinement

time, the timescale over which energy is lost from the plasma. This leads to two main

approaches to achieving fusion: one is to compress the plasma to high densities, requiring

∗The last time a tokamak ran with D–T fuel was JET, currently the only operational tokamak in the world
to be able to run with D–T fuel, the last time being in 1997. Further D–T experiments have been planned
there for this year. [3]
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where nd and n, are the deuterium and tritium densities, (11v) is the rate 
given in Fig. 1.3.1 and 8 is the energy released per reaction. The total ion 
density is 

n =nd+n,, 

so eqn 1.4.1 can be written 

Figure 1.1: The reactivity for 2D–3T, 2D–2D, and 2D–3He fusion reactions, as functions of
temperature, recreated from [4].

a shorter confinement time, such as inertial confinement fusion (ICF) experiments at the

National Ignition Facility (NIF) [5]; the other is to use relatively low densities O(1019m−3)

over longer confinement times O(10 s), as in magnetically confined fusion (MCF). The latter

will be the focus of this thesis.

1.2 Tokamaks

All MCF devices make use of the fact that charged particles gyrate around magnetic field

lines due to the Lorentz force. The point around which particles gyrate is called the guiding

centre. Initial research into fusion focused on magnetic mirrors. These are linear devices

with a region of low magnetic field between two regions of high magnetic field, generated

with solenoidal coils around the device. Whilst some particles are ‘trapped’ in the magnetic

mirror if
v2⊥
|v|2

>
B1

B2
, (1.4)

where v is the particle’s velocity, ⊥ denotes the component of velocity perpendicular to the

magnetic field, and B1 and B2 are the minimum and maximum magnetic field strengths in

the mirror, respectively, any particles that do not meet this criteria have too high of a velocity
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ing the important connections found to the modelike plasma oscillations of the most

common C-Mod H-mode, and are related to the trends found in the SOL. The sum-

mary closes with some comments on future directions of research and on applications

of the diagnostic to fluctuations not directly related to turbulence characteristics,

some of whose results are offered in the appendices.

1.2 Tokamak

All magnetic confinement scenarios of plasmas are based on the fact the Lorentz

force will make charged particles gyrate in a plane perpendicular to the magnetic

induction lines (field lines) in the region. If the magnetic field is sufficiently strong,

this can stick the particles onto tightly wound helical orbits along the field lines.

Early research on magnetic confinement of plasmas was conducted on linear devices,

in which the magnetic field was provided by solenoid coils. Because the magnetic

field would not prevent particles from freely streaming parallel to the field lines, this

scheme always presented an issue about how to "seal" the two ends of the magnetic

configuration. Eventually, and roughly at the same time, Lyman Spitzer in the US

and Igor Tamm and Andrei Sakharov in the Soviet Union came up with the idea of

bending the straight field lines of the solenoid into circles and forming a torus [4].

Since most modern fusion devices have this shape, it is important to introduce the

common terms and notations of toroidal geometry (Figure 1-1).

Ro

Figure 1-1: A torus cut in half; notations for toroidal geometry

A torus is a surface of revolution (or sometimes the space it encloses) generated

29

Figure 1.2: A torus cut in half to illustrate the coordinate system used in tokamaks. Repro-
duced from Ref. [6].

component parallel to the magnetic field and are not reflected before they reach the region of

highest magnetic field, so are lost through the ends of the magnetic mirror. Collisions may

redistribute a particle’s velocity components such that particles initially trapped before a

collision are no longer trapped after the collision, and we quickly foresee a situation, through

multiple collisions, in which all particles are lost in these devices. By taking the linear

magnetic mirror and bending the axis of the device into a circle, forming a torus shape, the

problem of sealing the ends of the magnetic mirror was thought to be resolved.

Here we introduce the co-ordinate system used in toroidal magnetic devices. A torus,

figure 1.2, is defined as a surface of revolution formed by revolving a circle around an axis

coplanar with the circle, reminiscent of a ring doughnut.∗ The axis of rotation is the z axis,

often referred to as the height, as it runs through the centre of the torus upwards, when the

torus is laid flat, and the direction of rotation about this axis to form the torus is the toroidal,

ϕ, direction. The distance between the axis of rotation and the centre of the circle is the

major radius, R0, and the axis aligned along this distance has the same name, R, sometimes

referred to the major radial direction. So far, we have essentially defined the three axes

of the cylindrical coordinate system, (R,ϕ, z), which is sufficient to uniquely describe each

point inside, outside, and on the surface of the torus.

The distance between the centre of the circle, R0, and the edge of the circle, a, is called the

minor radius†, r, the ratio between these known as the aspect ratio, A = R0/a, and rotating

this axis about its intersection with R0, starting aligned with R, is the poloidal direction, θ.

∗The style of doughnut synonymous with Homer Simpson.
†In modern fusion devices the plasma shape is rarely a circle, although it is often simplified to one for

numerical simulations, and usually only one minor axis measurement is used to describe the size of the
rotational shape (along with extra parameters such as triangularity, elongation, etc.), yet the word torus is
used throughout this thesis, and the literature as a whole.
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We also have another commonly used toroidal coordinate system which may again uniquely

define each point in space, (r, θ, ϕ). Both are used in this thesis. For example, the former

is useful when describing a position in the torus, or some vector with no change in height

(e.g., the path of a neutral beam injector) whilst the latter is often useful when discussing

flows that happen about the magnetic axis (i.e., poloidal flow velocities). For completeness,

we also introduce the binormal direction, which is orthogonal to both the local magnetic

field (often referred to as the parallel direction) and the radial direction. This is particularly

useful when motions between the poloidal and toroidal directions are indistinguishable, such

as the barber-pole effect [7], or in numerical simulations [8, 9], for example.

Although the end losses issue was thought to be solved, it became quickly apparent

confinement of particles was still poor in a toroidal device. Magnetic field lines are now

curved from following the toroidal direction, and closer together at smaller major radii than

larger major radii, leading to a gradient in the magnetic field pointing inwards along the

major radius. These two effects combine to give rise to a drift of the guiding centres of

charged particles through the curvature drift and the grad-B (∇B) drift. Plasma particles

are almost always subjected to both of these drifts in an inhomogeneous magnetic field,

rarely just one of them, and the resulting drift velocity of the guiding centres is given by

vd =
v2∥ + v2⊥/2

Ωi

B×∇B

|B|2
(1.5)

where Ωi is the gyro-frequency (or Larmor frequency) given by

Ωi =
ZeB

m
(1.6)

where ∥ denotes the component of velocity parallel to the magnetic field, and Ze and m

are the charge and mass of the particle in question. The charge dependence in equation

(1.5) causes ions and electrons to drift in opposite directions in the z-direction. This charge

separation leads to an electric field, E, which in turn leads to an outward radial drift for

positively and negatively charged particles, called the E×B drift, given by

vE×B =
E×B

|B|2
. (1.7)

This drift was responsible for the majority of transport in early magnetic toroidal fusion
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devices.

To counter these drifts, a poloidal magnetic field is introduced. The toroidal and poloidal

field components add to result in magnetic field lines which twisting helically around the

torus. This means particles now experience the top and bottom parts of the torus, and their

drifts now cancel so that a particle will return back to its original position after traversing

around poloidally, essentially shorting the electric field that would otherwise be generated.

This so called rotational transform, ι, is crucial for good particle confinement and is de-

fined as the poloidal angle subtended by a field line that traverses once around the torus

toroidally. A more commonly used metric for the helicity of the magnetic field is the safety

factor, q, given by 2π/ι, which is the number of times a field line twists toroidally to go

around once poloidally. This is more commonly approximated in terms of the torus’ physical

dimensions and the toroidal and poloidal components of the magnetic field in the cylindrical

approximation as

q =
rBϕ

RBθ
. (1.8)

As a helical magnetic field line wraps around the device, it traces out a surface known as a

flux surface.

Today there are two main methods for generating the rotational transform of the magnetic

field. One is through the complex use of current driven through specially shaped coils outside

the torus. These devices are known as stellarators, the largest and newest named Wendelstein

7-X [10]. Stellarators are difficult to design due to the complicated geometry of the field coils

required to generate the desired twisting magnetic field, however can theoretically run for as

long as the external coils are running and fuel can be injected into the plasma. The other,

more widely used, device types are called tokamaks, which drive a current toroidally through

the plasma itself, called the plasma current, Ip, which produces the poloidal field. Tokamaks

are more widely used and ‘simpler’ to design than stellarators, and as such more of them

are operational around the world today, allowing more research to be conducted on tokamak

plasmas than stellarators. It would be difficult to contest that tokamaks are currently the

more mature of the two technologies, however driving the plasma current in them generally

requires a large current ramp through a central solenoid aligned with the z-axis, which makes

their operation inherently pulsed compared with the potentially long steady-state operation

that stellarators provide. Currently under construction is ITER, which, when completed,

will be the largest tokamak, and arguably the largest feat of human engineering, ever built,
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with many smaller to medium to large tokamaks throughout the world contributing physics

towards its design and operation. It is one tokamak in particular that will be the focus of

this thesis.

1.3 ASDEX Upgrade

ASDEX Upgrade [11] (AUG, or sometimes known simply as ASDEX, although strictly speak-

ing that name refers to its previous incarnation before an upgrade in 1991) is a medium

sized, large aspect ratio tokamak based at the Max Planck Institute for Plasma Physics in

Garching, Germany, and is the tokamak that the experiments discussed in this thesis were

performed on. A diagram showing the cross-section of AUG is shown in figure 1.3. Its name

is an acronym that stands for the ‘Axially Symmetric Divertor EXperiment’. As the name

suggests, ASDEX runs in a divertor configuration (section 1.4), the use of which preceded

the discovery of the H-mode for plasma operation in 1982 [12]. It has a major radius of

R0 = 1.65m, and a minor radius of a ≈ 0.5m, for an aspect ratio of A ≈ 3.3. It has a

maximum plasma height of ≈ 0.8m, and can achieve plasma volumes of up to 14m3 with

plasma densities as high as ne ≈ 2 × 1020m−3. It can achieve maximum plasma currents

of Ip = 1.4MA, maximum toroidal magnetic fields of Bϕ = 3.9T , and maximum discharge

lengths of ≲ 10 s, although not all simultaneously. It has a variety of heating mechanism: up

to 20MW of neutral beam injection (NBI) heating between two beams; up to 7MW of ion

cyclotron resonance heating (ICRH); up to 7MW of electron cyclotron resonance heating

(ECRH) between two antennas; and up to 1MW of ohmic heating.

1.4 The scrape-off layer and the divertor

At some point, the magnetic field must come into contact with material surfaces. Early

tokamak designs used limiters, which were used to limit the extent of the plasma and the

position of the last closed flux surface (LCFS). Inside the LCFS the plasma is confined,

and magnetic field lines and flux surfaces are closed, where they will trace toroidally and

poloidally around the tokamak, eventually joining back onto themselves. Outside the LCFS,

field lines and flux surfaces are open in a region called the scrape-off layer (SOL), and

magnetic field lines pierce material surfaces. As limiters defined the edge of the confined

plasma, plasma-wall interactions unavoidably occur close to the confined plasma, allowing
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ASDEX Upgrade description – September 2016                                                  Arne Kallenbach 

ASDEX Upgrade technical data  

Major / minor radius  1.65 m / 0.5 m  = 3.3 

Max. plasma height / width 0.8 m / 0.5 m = 1.8 

Plasma volume / surface  14 m³ / 42 m2 

Max. average triangularity                  0.4 

Max. plasma current  1.4 MA 

Max. toroidal field   3.9 T 

Max. OH flux swing   9 Vs 

Discharge duration   <~ 10s 

Discharge sequence  15 – 20 min 

Plasma heating   1 MW ohmic 

  10 MW 60 kV NBI 

  10 MW 93 kV NBI 

  ICRH 30-36 MHz 7 MW 

  ECRH II105,140GHz 3.5 MW 

  ECRH III    “   1.8 MW (2017) 

          3.5 MW (end 2018) 

Weight vessel,TF,PF,structure  620t 

Installed electrical power  530 MVA 

Installed flywheel energy  2.6 GJ 

Figure 1.3: A cross-section of the ASDEX Upgrade tokamak. Reproduced from Ref. [13].

recombined neutrals or sputtered wall particles to enter into the plasma and degrade it.

A divertor is a device within a tokamak (or stellarator) designed to act like an exhaust

for the plasma, acting to move as many of the plasma-wall interactions away from the bulk

plasma as possible, and to allow control over the removal of fusion products, or other heavier

contaminating species, to allow for cleaner plasmas to run for longer periods of time. A

current in a coil located in the divertor is used to shape the magnetic field here to create

a magnetic x-point on the LCFS in the radial-poloidal plane where Bθ = 0. This creates a

separatrix which divides the confined plasma and the SOL.

If the x-point is at the bottom of the tokamak the magnetic geometry is in a lower

single null (LSN) configuration, and if it is at the top it is called an upper single null (USN)

configuration. Operations with two x-points on the separatrix are called double null (DN)

configurations. The points where the separatrix meet the divertor are called the strike points

of the divertor legs, where the inner strike point is at a lower major radius than the outer

strike point. The SOL extends poloidally around the tokamak from each of these strike

points, with the part of the SOL at lower major radius referred to as the high field side

(HFS), and the part at a larger major radius referred to as the low field side (LFS), due

to their position with respect to the magnetic field strength. These regions are also often
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referred to as the inboard and outboard sides, respectively.

It is here we introduce an addendum to the coordinate system, one commonly used when

describing position in the edge of a fusion device. As certain quantities are first-order equal

on a flux surface for all θ and ϕ (e.g., pressure and current), and the cross-section of a

tokamak is rarely circular, it is useful to have a way to describe the many r(θ) positions a

flux surface will occupy with one descriptor. In this thesis the normalised poloidal flux radius

is used, given by [14]

ρ =

√
Ψ−Ψa

Ψs −Ψa
(1.9)

where Ψ is the poloidal flux, and subscripts a and s denote the poloidal flux at the magnetic

axis and separatrix, respectively. In these coordinates, the magnetic axis has a coordinate of

ρ = 0, ρ < 1 is in the confined plasma where flux surfaces are closed, ρ = 1 is the separatrix,

and ρ > 1 is in the SOL. Note that ρ is dimensionless and equal values of ρ for differing

values of θ are not necessarily the same distance away, in metres, from the magnetic axis.

Confusingly, ρ is sometimes used in the literature in two other similar definitions of the

normalised radius. The first is also dimensionless, defined as ρ = r/a (e.g., in ref. [15]),

where r and a are measured at the outboard midplane. The second is defined as ρ = r − a

(e.g., in ref. [16]), and now ρ < 0 is the confined plasma, ρ = 0 is the separatrix, and ρ > 0 is

the SOL, measured in units of distance. We also introduce the term the edge of the tokamak,

which has no specific positional definition in the same way the separatrix does, but is taken

to be ρ ≳ 0.9, which is the edge of the confined region, through to the separatrix (e.g., in

refs. [17,18]). The edge often also includes the SOL region (e.g., in refs. [19,20]), but doesn’t

necessarily, and is chosen at the author’s discretion, usually depending on the focus of the

work they are writing about.

1.5 Thesis outline

In chapter 2 a brief outline of some of the relevant scrape-off layer literature for this thesis

will be given. This will include SOL transport and its link to filaments, some of the models

behind the velocity scaling of filaments, an explanation of statistical measurements taken in

the SOL, and a look at the link between filaments and the SOL profiles.

Chapter 3 will introduce gas puff imaging, the diagnostic used throughout this thesis to

analyse the scrape-off layer. This will give a brief outline of the diagnostic in general, then
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specifically the implementation of the diagnostic on ASDEX Upgrade, before detailing some

modelling work undertaken to correct for the imperfectly aligned geometry of the diagnostic.

Chapter 4 showcases the experimental analysis of this thesis, including details of the

different discharges, details of the analysis techniques used, and results for single-point mea-

surements in the SOL, such as fluctuation distributions and other SOL statistics, and results

utilising the 2-dimensional strength of the gas puff imaging diagnostic, such as simultaneous

filament size and velocity measurements.

Chapter 5 focuses on the 1D and 2D modelling undertaken for this thesis. It uses a

theoretical framework that connects filaments that are randomly generated from the experi-

mentally measured distributions in chapter 4 with the scrape-off layer density profiles, allow-

ing conclusions about the parallel timescales required in order to allow for non-exponential

profile shapes.

Finally, chapter 6 summarises the conclusions of the preceding chapters, and suggests

where areas of further work may be conducted to clarify or expand on some of the results of

this thesis.



Chapter 2

Tokamak edge physics

2.1 Transport

Diffusive models of the scrape-off layer were insufficient to account for the large amounts of

particle and heat transport incident on the main chamber walls. This was instead of the ideal

solution a divertor was designed for, specifically energy and particles entering the SOL to

travel along field lines to the divertor region. This aptly named anomalous transport [21] was

seen to be an order of magnitude higher than predicted by neoclassical models and required

an effective diffusion coefficient, Deff , that increased with distance into the SOL [22] to

account for the amount of measured cross-field transport, given by

Deff(r) = Γ⊥(r)/∇n(r) (2.1)

where Γ⊥(r) is the radial particle flux. It was clear that these levels of particle transport

could not be entirely due to diffusion, particularly in regions of the SOL with shallow electron

density gradients where Deff → ∞ as ∇n → 0, and some convective mechanism must be

involved, thought to be caused by filaments that dominate the SOL near the wall.

2.2 Filaments

Filaments are plasma structures that arise through turbulent fluctuations at the edge of

tokamak plasmas. They are thought to arise through the interchange instability [23] and, as

ballooning-type instabilities, are more prevalent on the low-field side of the plasma. Many

names have been given to the phenomena of filaments throughout the literature. The other

26
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most commonly used term is blobs, owing to the ‘blob-like’ appearance of their 2D cross-

section in some diagnostics. These are the two terms that shall be used interchangeably in

this thesis. Even if a blob was born at a single toroidal location the fast parallel transport,

much faster compared with transport perpendicular to field lines, mean they are seen aligning

along field lines and wrap around the plasma edge, and as such have large parallel length

scales, compared with radial and poloidal size scales of a few centimetres. They are born

with amplitudes on the order of the separatrix density, although they have amplitudes (and

thus plasma densities) of up to several times the ambient SOL density further into the SOL.

Filaments propagate radially (and binormally) through the SOL, and whilst they may

lose some energy and plasma during their journey, either through parallel losses to material

surfaces, or through breaking up into smaller blobs or leaking some of their plasma to the

background SOL behind them as they propagate, they can still deposit large amounts of hot

plasma onto the main chamber walls. This is undesirable for multiple reasons: deterioration

of the first wall, diagnostics, or other plasma facing components can be accelerated due to

these large heat and particle loads; increased neutral pressures through plasma recycling lead

to reduced divertor flows and further radial heat transport, ultimately leading to a cooling

of the plasma; and sputtering of high-Z first wall atoms/ions into the main plasma can cause

large energy losses due to line radiation and subsequent plasma cooling.

Filaments have been observed on all tokamaks: spherical tokamaks [24]; small [25],

medium [26], and large [27] machines; high density and high magnetic field devices [28];

and other magnetised plasma devices, such as linear devices [29], stellarators [30], and re-

verse field pinches [31]. They have been detected with a plethora of diagnostics: reciprocating

probes [32]; lithium beam emission spectroscopy [33]; and gas puff imaging [34].

Sergei Krasheninnikov was the first to propose a model considering a single filament in

isolation, proposing the filament acted as an electrical circuit [35]. The total current in

a blob must be divergence free to maintain quasi-neutrality and prevent the build-up of

charge in one location, and any parallel current flowing along the filament must be closed by

perpendicular currents across it. As such, the divergence of the current density, J, is given

by

∇ · J = ∇ · J⊥ +∇∥J∥ = 0. (2.2)

This closure can happen at different locations along the parallel length of a filament, as

shown in figure 2.1, and filaments are often divided into two regions: the region around
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Figure 2.1: A diagram of the filament equivalent circuit, reproduced from [37]. The perpen-
dicular current source driven by curved and inhomogeneous B fields, I, can be balanced by
either parallel current, J∥, or cross-field polarisation current, J⊥,pol.

and below the x-point; and the region above the x-point [36]. The potential of the blob,

determined by the current balance, is, in Krasheninnikov’s model, due to curvature and

∇B drifts and is closed by parallel current flowing to material surfaces through the sheath.

The charge separation that these drifts create causes an electric dipole across the filament’s

density monopole and a resulting E×B drift velocity of a blob, vb, is of the order given by

vb = cs

(
ρi
δθ

)2 L∥

R

nb

nt
. (2.3)

This equation was the first expression linking a blob’s radial propagation velocity to its

perpendicular size, vb ∝ 1/δ2θ . As this was derived assuming the filament is electrically

connected to the wall, with the parallel current determined by the sheath velocity, this is

often referred to as the sheath limited regime.

The terms in equation (2.3) are as follows: cs =
√

Te/mi is the sound speed for electron

temperature Te (in eV) for ion mass mi; ρi = cs/Ωi is the ion gyro-radius (or Larmor radius);

δθ is the perpendicular blob size in the poloidal direction; R is the tokamak major radius; L∥

is the parallel connection length; and nb and nt are the blob densities at the midplane and

target, respectively. We here make a note that in the literature the exact definitions of L∥

and δθ are not often defined. For example, it is not usually clear if L∥ is the parallel field line

lengths from inner to outer divertor target plates, from the midplane to the x-point, or from

the midplane to the outer divertor plate. Similarly, it is not clear if δθ refers to the filament’s

poloidal radius or diameter. Whenever L∥ is used in this thesis the connection length is
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measured from the outboard midplane to the outboard material surface (unless otherwise

specified), and δθ will be the blob’s diameter. For context, the connection length is on the

order of 10s of metres and the filament diameters are on the order of 10s of millimetres in

ASDEX Upgrade.

Later work by D’Ippolito, Myra, and Krasheninnikov [38] furthered the single blob analy-

sis by also considering temperature and vorticity fields for the filaments, and first introduced

the notion of averages of ensembles of filaments responsible for the scrape-off layer pro-

files, particularly in the far SOL where intermittency increases. In cases where filaments

are electrically disconnected from the sheath [39] (for example, through high collisionality

and therefore large parallel resistivity) or through high magnetic shear near the x-point,

the parallel current in blobs becomes negligible and cross-field polarisation currents become

responsible for maintaining quasi-neutrality. In this case, filament velocity is given by [40]

vb = cs

√
2δθp̃

R
(2.4)

where p̃ is the pressure fluctuation of the filament. We now have the velocity scaling of

vb ∝ δ
1/2
θ in this inertial regime. The point at which the two current dissipation methods

are approximately equal occurs at the fundamental blob size [41], given by

δ∗θ = 2ρi

 L2
∥

ρiR

 1
5

. (2.5)

One way in which this model has been expanded is by accounting for the poloidal flux

expansion and distortion of filaments around the height of the x-point in the two-region

model [17] which splits filaments into two coupled regions: the midplane region above the

x-point; and the divertor region below the x-point. In the first region, curvature drive

is responsible for the charge separation in the poloidal direction, and the arising parallel

current is closed either in the same region by cross-field polarisation currents, or, depending

on parallel resistivity, in the second region either again through polarisation or currents, or

through dissipation into the sheath. In this model, four filament regimes that change the

velocity scaling dependent on the filament’s size and parallel resistivity (determined by the

plasma collisionality, Λ) is found. The phase space showing the velocity scalings is given in
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Figure 2.2: The collisionality-size phase space for filaments in the two-region model, recreated
from [17]. The different regimes are: sheath connected interchange regime (Cs); connected
ideal interchange regime (Ci); resistive x-point regime (RX); and resistive ballooning regime
(RB). The filament velocity scaling dependencies are shown for each regime.

figure 2.2. The parameters which describe this model are: the collisionality

Λ =
L∥νei

cs

Ωi

Ωe
(2.6)

where νei is the electron-ion collision frequency, and parameters are often measured at the

divertor surface, such as with divertor Langmuir probes [51]; the perpendicular size param-

eter

Θ = δ̂
5
2 =

(
δθ
δ∗θ

) 5
2

, (2.7)

the filament velocity parameter

v̂ =
vx
cs

(
R

δ∗θ

) 1
2

, (2.8)

and the flattening parameter, εx, which is between 1 and 0. 1 corresponds to a blob which

is perfectly circular in cross-section, and therefore experiences no shear, whilst 0 refers to a

blob which is sheared completely flat.

The two region model predicts the following filament regimes:
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• Sheath connected interchange regime (Cs) - for large filaments at low collisionality, they

are connected to the target and the parallel currents dominate over small polarisation

currents, and v̂ ∝ δ̂−2, returning the velocity scaling of equation (2.3).

• Connected ideal interchange regime (Ci) - small filaments at low collisionality are

still connected with the lower region, although now flattening at the x-point of al-

ready smaller filaments allows polarisation currents to become more dominant. Here,

v̂ ∝ εxδ̂
1/2, in the only regime where there is a velocity dependence on the filament

flattening.

• Resistive x-point regime (RX) - large filaments with increased parallel resistivity so that

the filament is disconnected from the target but some coupling can occur between the

two regions. Polarisation currents close the current loop somewhere above the target,

giving a velocity scaling of v̂ ∝ Λδ̂−2.

• Resistive ballooning regime (RB) - for sufficiently high collisionalities, or small enough

filaments, the upper region is disconnected from the lower region and polarisation

currents close the loop entirely in the upper region, local to the curvature current

drive, causing a ballooning of the filaments. The inertial velocity scaling of equation

(2.4), v̂ ∝ δ̂1/2, is recovered.

Later work by Peter Manz et al. [42] further expanded on this model with the inclusion

of warm ions. Many assume that a temperature ratio of τi = Ti/Te ≈ 1 although values

of τi ≳ 3 are more likely in tokamak SOLs owing to faster electron heat transport times

compared with ions. The ion pressure contribution can have the effect of increasing the

interchange drive in a filament, thus affecting vorticity in the filament, as well as inducing

additional non-linearity which can break apart filaments. Ref [42] recovers the scalings that

Myra et al. [17], with additional factors of ≤ (1+ τi), as well as an additional ion dominated

resistive ballooning (iRB) regime. This affects the smallest blobs, which append to the left

hand side of figure 2.2 for all collisionalities, where the blob acceleration is down to the

ion diamagnetic contribution to polarisation current, instead of the E × B drive for larger

filaments, has a velocity scaling of v̂ ∝ δ̂2.

A series of papers released by Daniel Carralero et al. [39, 43, 44] have reported on the

size and velocity of filaments in ASDEX-Upgrade, as well as comparison with measurements

in COMPASS and JET [45]. These results are obtained use a multi-pin probe head [46]
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attached to a manipulator which plunges it into the plasma. Firstly, the results presented

do not analyse individual filaments but instead use the conditionally averaged waveforms,

and the delay between filaments used with the known separation of the pins used to estimate

velocities in the poloidal and radial directions. This poloidal velocity is then used with

the autocorrelation time, which is noted to depend on the intensity threshold chosen for

filament detection, to calculate the radial size. The convolution of the filament’s size and

velocity on its autocorrelation time draws questions about the validity of the sizes measured,

all before one consider either the decorrelation of the filament over time, or the shadowing

effect of the invasive probe head. They also claim to be able to measure filaments smaller

than the separation between the pins on the probe, despite the filament size being larger

than pin separation being one of the fundamental assumptions they make in their probe

data analysis method. Gas puff imaging, the diagnostic used for analysis filaments in this

thesis, produces temporally resolved 2D frames with a spatial resolution of ≈ 3mm covering

a region of ≈ 6× 6 cm allowing for simultaneous size, amplitude, and velocity measurements

of filaments individually, at any location in the diagnostic field-of-view, with a relatively less

perturbative technique.

2.3 SOL statistics

Intermittent fluctuations, which are responsible for the transport of plasma density, have

been recorded in the edge of magnetic plasma devices and tokamaks for a long time [29].

The similar behaviour of these fluctuations has been reported as across devices for almost

as long, leading to the theory of the universality of the scrape-off layer [47]. As such, there

isn’t a tokamak SOL, or SOL numerical simulation, that the results described in this section

cannot be found reported for [23,48].

For the time-series of fluctuation data from a single-point in the SOL, such as from Lang-

muir probes [49], gas puff imaging [50], or beam emission spectroscopy [18], are dominated

by a series of intermittent ‘events’ caused by the traversing of a filament past the diagnos-

tics’ sampling location. In the near SOL, taken to be up to about 10–15mm into the SOL

from the separatrix in ASDEX Upgrade [45, 51] (up to ρ ≈ 1.02), the mean of the signals

is relatively high with the amplitudes of the blob events not much higher than the mean,

whereas in the far SOL, the mean is much more reduced, and the events have amplitudes
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position of the last closed flux surface at the vertical centre of the
image, Z = �2.61 cm, is in the range from 89.4 to 89.7 cm for all the
discharges presented here. The limiter radius mapped to this verti-
cal position is at R = 91.0 cm. Further information about the GPI
diagnostic can be found in Ref. [4].

This paper reports on experiments performed during the
FY2010 run campaign using GPI data from run 1100803. This com-
prises a four-point scan in line-averaged density with the Green-
wald fraction �ne=nG from 0.15 to 0.30. Here the Greenwald
density is given by nG ¼ Ip=ðpa2Þ1020 m�3, where Ip is the plasma
current in units of MA and a is the plasma minor radius in units
of meters. For the present density scan nG ¼ 5:26� 1020 m�3. These
experiments were part of the recent heat flux footprint studies on
C-Mod, and have been extensively diagnosed and documented [3].
The condition at the outer divertor goes from sheath limited at the
lowest density to high recycling at the highest density in this scan.
For each discharge the GPI diagnostic yields 0.25 s usable data time
series during the flat-top of the plasma current. By combining data
from two discharges at the same �ne and two nearby diode channels
at the same radial position with identical statistical properties, we
obtain time series of 1 second duration which allows calculation of
statistical averages with high accuracy.

3. GPI measurements

In Fig. 1 we show the radial variation of the relative fluctuation
level of the GPI intensity signals at Z ¼ �2:61 cm. The fluctuations
increase drastically in magnitude with radial distance into the SOL.
As shown in Fig. 2, the raw time series are here dominated by
large-amplitude bursts due to the radial motion of blob-like struc-
tures [5]. This results in positively skewed and flattened probabil-
ity density functions (PDFs) of the intensity signals. As an example
of this, we present in Fig. 3 the distribution function for the GPI sig-
nals for �ne=nG ¼ 0:20 at Z = �2.61 cm for the four GPI fibre view
positions radially outside the separatrix. Note that the PDFs for
the experimental data comprise more than four decades on the
ordinate axis—a consequence of the long data time series used in
this analysis. It is clearly seen that the PDF changes from a normal
distribution in the near SOL region to strongly skewed and flat-
tened in the far SOL. In the limiter shadow, the PDF has an expo-
nential tail towards large signal amplitudes. This is similar to
what has previously been found from Langmuir probe measure-
ments [2,3].

The radial motion of blob-like structures through the SOL re-
sults in single-point recordings of the plasma density dominated
by bursts with a fast rise and a slow decay. This is clearly seen in
Fig. 2 and further demonstrated by the asymmetric wave form ob-
tained from conditional averaging presented in Fig. 4. Here it is

seen that the average burst duration is the same for all line-aver-
aged densities. This is again similar to what has previously been
found from probe measurements as well as numerical turbulence
simulations [2,6]. The waiting time between large amplitude
bursts is also obtained from the conditional averaging. As shown
in Fig. 5, the burst waiting times are found to be exponentially dis-
tributed for all line-averaged densities. An exponential distribution
describes the time between events for a Poisson process, in which
events occur randomly and at a constant average rate. This implies
that large-amplitude blobs appearing in the far SOL are uncorre-
lated. It is also found that the peak burst amplitudes in the far
SOL are exponentially distributed, in accordance with the exponen-
tial tail for large amplitudes seen in Fig. 3.
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Fig. 1. Radial variation of relative GPI intensity fluctuation level at Z ¼ �2:61 cm.
The position of the last closed magnetic flux surface is indicated by the shaded
region.
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Figure 2.3: The fluctuation time series from three different locations in the SOL of Alcator
C-Mod, taken with gas puff imaging. Reproduced from ref [52].

many times larger. An example of this is shown in figure 2.3. This shows how the far SOL

has a relatively low signal mean, but with relatively large amplitude filaments this far into

the SOL without decaying, so transport in the far SOL is caused by the convection of these

filaments. In the near SOL, the filaments are harder to detect in the signal due to the larger

amounts of background plasma density.

The time series can be quantified by the probability distributions functions (PDFs) of

the fluctuation data. SOL density fluctuations are observed to follow a Gamma distribution

[6, 53,54], given by the probability density function

f(x; k, θ) =
1

Γ(k)
xk−1e−x/θ (2.9)

where x is the amplitude of the fluctuating signal, k is the shape parameter and θ is the scale

parameter, given by the expectation/mean value, E[X], and variance, σ[X], by

k =
E[X]2

σ[X]
, (2.10)

θ =
σ[X]

E[X]
. (2.11)

Γ is the Gamma function [55], given by

Γ(z) =

ˆ ∞

0
e−ttz−1 dt (2.12)
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for all complex z except the non-positive integers. It can also be shown analytically that

the Gamma distribution occurs when the fluctuation events have exponentially distributed

amplitudes and waiting times [56]. As such, the fluctuation time-series can be statistically

described solely by its mean and variance. The mean decreases and variance increases with

distance into the SOL, and as a result the PDF of the fluctuation amplitudes vary from being

near-Gaussian next to the separatrix to being positively skewed having exponential tails for

large positive fluctuations in the far SOL, whilst always following the Gamma PDF [57]. As

such, radial profiles of the relative fluctuation level, given by the signal’s standard deviation

(often referred to as the RMS) divided by the mean, increase with distance into the low field

side scrape-off layer.

Whilst some comparisons between PDFs at different SOL locations (e.g., refs. [57,58]), or

between statistical measurements in the SOL of different discharges types (e.g., ref. [50]) have

been made, comparisons at multiple locations and for multiple discharges is less common.

Work by Graves et al. [54] compares fluctuation PDFs across the SOL for one discharge

type and later between discharges types at one location, but not both together. We will

demonstrate this full comparison, as well as for other SOL statistical measurements, in this

thesis.

Commonly used higher order moments that quantify how much the PDFs deviate from

the normal distributions are skewness and kurtosis [59]. The former is a quantity describing

the asymmetry of the distribution, where a zero value indicates a distribution equally centred

around its mean, and a positive skewness means the distribution’s tail is on right, so the

mean is shifted to higher than the mode or median. The latter is a measure of how much the

higher and lower extremities/wings of the distribution contribute to the signal. Sometimes

the kurtosis is referred to as the flatness, or is spelled with a c, and the kurtosis of the normal

distribution is 3∗. The skewness and kurtosis are given by

S(x) =
1

Nσ3
x

N∑
i

(xi − x̄)3 (2.13)

and

K(x) =
1

Nσ4
x

N∑
i

(xi − x̄)4 , (2.14)

∗We here note that some publications refer to the excess kurtosis simply as the kurtosis, which is shifted
down by 3 such that the normal distribution has a kurtosis of zero. Throughout this work, unless otherwise
specified, we do not perform this adjustment.
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respectively, where σx is the signal’s standard deviation, and x̄ is the signal’s mean. Radial

profiles of S and K throughout the LFS SOL also increase, as the intermittency of the signal

increases with distance into the scrape-off layer [6, 23, 60]. This is why the PDFs will often

be described as having increased in skewness and flatness as a function of distance into the

SOL. For signals following a Gamma distribution, the quadratic relationship between the

skewness and kurtosis is given by

K =
3

2
S2 + 3 (2.15)

which SOL signals have also been demonstrated to follow [6,61].

Some of the properties of the filaments themselves, and not just the time-series, can

also be measured with single-point diagnostic tools. It has been repeatedly shown that the

amplitudes of filaments are exponentially distributed [56,62,63], where the exponential PDF

is given by

f(x;λ) =
1

λ
exp

(
−x

λ

)
(2.16)

where λ is the scale parameter, which is also the mean of the distribution. In addition, the

filament waiting times, tw, i.e., the difference between consecutive filaments’ arrival times,

ti+1 − ti, where the arrival time is the time at which the signal’s local maxima for a given

location occurs, are also exponentially distributed [6, 50, 64] (alternatively, the arrival times

themselves are uniformly distributed). This is in accordance with a Poisson process, which

is often termed a ‘memoryless’ process, in which events occur randomly and at a constant

average rate, implying the filaments detected in the SOL are uncorrelated with one another.

A stochastic model of the SOL has been built up using these measurements. An attempt

to recreate the single-point fluctuation signals has been made using measurements of average

waiting times, duration times, and amplitudes to describe the Gamma distribution input

parameters [56,57] from a series of uncorrelated pulses. Synthetic signals have been generated

which mimic experimental time series [65,66] these require values for the waiting time at least

an order of magnitude higher than those measured in experiments. It is known that not all

filaments are detected and as such recorded average waiting times are a minimum threshold

on the value. Other filament detection methods have been tried to account for this, e.g.,

wavelet decomposition [67], a deconvolution algorithm [50, 68], or separation of signal and

noise through respective distributions’ characteristic functions [69], have been attempted,

but none have satisfactorily managed to solve this issue. A resolution to this is outside the
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Figure 2.4: The electron density profile as line averaged density increases in Alcator C-mod.
The shoulder/two decay lengths are clearly seen, even for the lowest density, and the far
SOL decay length can be seen to increase as n̄e increases. The near-far SOL boundary is
seen to move closer to the separatrix for the highest line-averaged densities as the shoulder
broadens. Reproduced from ref [73].

scope of this thesis, but it is highlighted here as it is important for a full stochastic model

of the SOL to exist.

2.4 Profiles / Shoulder

Brian LaBombard was one of the first to report on the connection between the increased

density profile gradients and the presence of filaments in the far scrape-off layer [70], and

was also the first to use the term far SOL, drawing a distinction between the two differing

regions with open field lines. Many tokamaks had recorded an increase in the far SOL

decay length as plasma densities increased [71–73], so rather than a single exponential decay

length describing the entire SOL profile, a steep gradient with short decay length was seen

in the near SOL, with a shallow gradient and long decay length in the far SOL. This was

referred to as the shoulder. Example profiles are shown in figure 2.4. In the near SOL,

parallel conduction dominated transport processes, whilst the far SOL was dominated by

perpendicular convection of filaments.

As densities increased further, the near-far SOL boundary was seen to move towards

the separatrix [74] as the shoulder broadened, decreasing the near-to-far SOL size ratio.

Eventually a flattened profile is seen over all the SOL. It has even been reported that filaments

have been found now inside the last closed flux surface as the high cross-field transport
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normally seen in the far SOL is seen all throughout it [75]. This phenomena could play a

role in determining the edge density limit, also known as the Greenwald limit, or Greenwald

density [76], approximated by

nG ≈ Ip
πa2

(2.17)

where the density is in 1020m−3, Ip is the plasma current in MA, and a is the minor radius

in m. Plasma densities are often reported as the Greenwald fraction, fG = ne/nG.

Results on JT-60U suggested that the shoulder formed when the divertor underwent de-

tachment [39,72], and the increased decay length in the far SOL was linked with the increased

convection of filaments, in this case disconnected through decreases in target temperatures

and increases in parallel resistivity, see section 2.2. It was thought filaments would undergo

this regime change, and therefore a density shoulder formed, when the divertor collisionality,

equation (2.6), was raised above some threshold, Λ > 1 [36]. Further results seemed to

confirm that Λ > 1 would cause the flattening of the far SOL [45], with evidence suggesting

increases in filament sizes too. Recent experiments by Wynn et al. [77] showed how the

divertor collisionality could be changed, such as through nitrogen seeding, and the shoulder

would not be formed, instead showing that the outer divertor recycling rate had a stronger

correlation to the upstream profiles.



Chapter 3

Gas puff imaging

3.1 Fundamentals

Gas puff imaging (GPI) is a plasma diagnostic technique that allows one to observe the

fluctuations in a plasma by injecting a low temperature neutral gas into it which, with

careful design, can be close to non-perturbative. This gas puff increases the local density

of neutral species which are excited into higher energy states through collisions with plasma

electrons, and spontaneously decay into lower energy states, emitting photons of discrete,

known wavelengths corresponding to the difference in energy between these two electronic

states. With a well positioned optics system this light emission can be collected and a chosen

wavelength filtered out and imaged onto a detector, allowing for spatially and temporally

resolved measurements of plasma fluctuations. Some imaging systems use light emission from

the plasma passively, but as the signal is line integrated, analysis of signals of this type is

typically limited to linear devices [78] or usually require tomographic inversion [24] and/or a

priori knowledge of some other plasma parameter, such as another diagnostic [79]. With GPI,

the amount of light emission from within the gas cloud produces signal measurements orders

of magnitude above ambient light fluctuation levels, if the puff gas and filtered wavelength

are chosen so as to be far away from other spectral lines inside the tokamak - i.e., using

helium instead of deuterium. As such, the signal is mainly localised to from within the gas

puff. An example of the signal increase when the gas puff is introduced is shown in figure

3.1. For a sufficiently localised gas puff in the toroidal direction, and viewing optics closely

aligned with the magnetic field lines in the gas puff, a thin 2D lamina of a 3D filament can

be illuminated, imaged, and analysed.

38
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Figure 3.1: GPI signal from two SOL positions showing the increase in raw signal from a gas
puff for a typical ASDEX Upgrade H-mode discharge (pre LH-transition). The difference in
average signal before and after the gas puff is ≈ ×120 and ×9.4, for the two positions.

The diagnostic measures fluctuations in the local light emission of the introduced neutral

gas due to a combination of fluctuations in the electron density, ne, and electron temperature,

Te. The emission rate is given by

I = n0f(ne, Te) (3.1)

where f is the ratio between the densities of the upper excited state of the transmission

responsible for the emission and the ground state multiplied by the rate of decay of the upper

excited state, and n0 is the local neutral density. On ASDEX, the 587.6 nm HeI emission

line is used, which corresponds to the 33D → 23P (1s3d → 1s2p) electronic transition.

The excited state density is determined by a balance between processes which populate the

excited state (electron collision excitation from lower energy states, electron collision de-

excitation from higher excited states, spontaneous emission from the higher energy states)

and the processes which depopulate the state (electron collision excitation into higher energy

states, spontaneous emission to lower states). As such, the total signal is a function of

neutral density, electron density, and electron temperature. The local neutral density is

assumed to vary more slowly than timescales of filaments or turbulence, so the emission’s

dependence on the neutral density can be eliminated through normalisation of the signal, see

chapter 4.3.1. This normalisation also accounts for spatial distribution of the neutral gas.

For the typical SOL densities and temperatures seen in the discharges used in this thesis

(1 × 1018 < ne < 5 × 1019m3, and 15 < Te < 70 eV), it can be calculated [6, 19] that the
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contribution to the light emission is dominated by the electron density, and the fluctuation

signal is taken to be a proxy measurement of the electron density fluctuations.

3.2 GPI on ASDEX

On ASDEX Upgrade, the gas puff imaging diagnostic is located on the low-field side, just

below the outboard midplane [80], see figure 3.2. The gas injection point is located at co-

ordinates (R, z) = (2.190,−0.158)m, connected by a 400 µm wide, 66mm long capillary to

a piezoelectric gas valve [81], behind which sits the gas chamber. In this thesis, helium

was used for each discharge. The gas flow rate is controlled by changing the gas chamber

pressure, and the total gas injection controlled by the amount of time the valve is open for.

The gas injection system is the same used by the thermal helium beam (HEB) diagnostic

system [82].

The plasma is observed through an in-vessel mirror that allows a lens to be placed ‘inside’

the tokamak. A 25mm focal length objective lens is placed against this mirror, focusing the

light onto one end of a 6.7×5mm coherent fibre bundle image guide, to be recorded outside

of the tokamak. The other end of the image guide is attached to an x − y translation pad

that can be finely adjusted to change which part of the transmitted image is placed onto

the focal plane of a 16mm collimating lens. A narrow bandpass interference filter is used to

filter out the HeI 587.6 nm emission line, and the filtered image is focused onto a camera with

an 8mm lens. The interference filter’s central wavelength has a dependence on the angle of

incidence of the light, hence a collimating lens is used to ensure all light is parallel with the

principal axis of the lens system. This also allows for fine tuning of the central wavelength.

However, effects due to Doppler broadening of the helium puff [83] or Doppler shifts due to

plasma rotation [84] are negligible for our application.

For the experiments in this thesis, a Phantom v711 fast camera was used. The CMOS

sensor is composed of 20 µm pixels and was operated at a 12bit 64×64 resolution at a 200 kHz

temporal frequency. This combination allowed us to cover an approximate 6×6 cm viewing

area in the low-field side scrape-off layer, just below the outboard midplane, covering from

just inside the separatrix through the entire SOL to the limiter shadow. A higher temporal

frequency could be used, but would result in an overall lower acquisition time, unable to

cover the entirety of a discharge, and would require larger gas puffing rates for an equivalent
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Figure 3.2: A radial-poloidal cross-section of ASDEX Upgrade for a typical lower single-null
equilibrium. The separatrix (dark blue), magnetic axis (light blue), and limiter poloidal-flux
surfaces (red) are shown in. The GPI view is included (purple) with the gas puff valve (black
plus), gas puff injection point (black circle) and gas puff vector (black line) included. A zoom
in on the GPI viewing position is shown on the right.

signal, at which point the gas puff starts to become perturbative. The x− y translation pad

allows one to move which part of the image is on the active part of the Phantom’s CMOS

sensor, and can be used to tune the GPI’s view on a shot-to-shot basis, although this wasn’t

required for these experiments, as the separatrix and limiter flux-surface positions did not

vary much between discharges. The final set-up was viewing between 2.09 ≲ R ≲ 2.18m

and −0.19 ≲ z ≲ −0.10m. This covers a region at least several of the flattest profile decay

lengths.

3.3 GPI geometry correction

To maximise the spatial resolution of a gas puff imaging diagnostic one wants to align

the viewing angle of the detector with the magnetic field line as closely as possible. This

is, obviously, impossible in the case of curved field lines, where the curve will result in a

smearing of any features we see in the direction of the radius of curvature. This is less

obvious with field lines with a larger radius of curvature, although this is largely set by the

physical size of the tokamak. However we can minimise this effect by the introduction of
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the gas puff. If we assume the light emission that contributes to the signal is negligible from

outside of the gas puff, then as we reduce the toroidal extent of the gas puff, we confine the

length of the field line that contributes to the signal, both reducing the effect of smearing

due to the field line curvature and due to the misalignment of the view. In the limit of a

perfectly thin gas puff, the emission is from a 2D slice in the blob with zero smearing.

In reality, the gas puff has a finite toroidal size, and the viewing angle between the

field lines and detector is constrained by the available port positions on the tokamak. We

must also consider that the magnetic field geometry can change on a shot to shot basis.

Zweben [19] estimates spread due to an angle of θB between the line-of-sight and magnetic

field, and the finite gas cloud size Lcloud as

∆x ≈ Lcloud tan θB. (3.2)

In ASDEX Upgrade, the angle between the magnetic field and the lines-of-sight varies be-

tween 17–24◦ (0.34 ≤ tan θB ≤ 0.44), and so must be taken into account when measuring

blob sizes. To do this, a simple model of the plane around the detector viewing region is

made to quantify the error due to these effects.

3.3.1 Gas puff size

The first step is to measure the finite size of the gas puff, employing the technique used in

reference [81]. The mean emission from a gas puff during an L-mode section of the discharge

is used. The gas puff from shot # 36340 is shown in figure 3.3. From this, the emission

profile shape is measured in the direction perpendicular to the gas puff vector at multiple

distances from the injection point. Here, the gas puff vector is down the centre of the gas

puff cloud and is given by the cartesian/cylindrical equation z = −0.259R+0.409 [m]. This

also means our measurements of the emission are approximately parallel to ρ = const lines.

For this analysis, we make the following assumptions:

1. The gas cloud distribution is cylindrical about the gas puff vector.

2. The measured emission distribution along a line perpendicular to the gas puff vector

yields the gas cloud profile along that line.

3. That emission distribution (and thus gas cloud distribution) can be approximated by
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Figure 3.3: Mean emission profile of a gas puff. The gas puff vector (black deshed) starting
from the nozzle injection position (red triangle) as shown. An example of the pixels used
perpendicular to the gas puff vector are shown (orange dots) at the point of maximum mean
emission.

a Gaussian function, given by

y = A exp

(
−(x− µ)2

2σ2

)
, (3.3)

where A is the maximum amplitude, µ is the x position of the node, and σ is the

variance.

An example of this analysis for the perpendicular line that passes through the maximum

emission location is shown in figure 3.4a. From the fit of equation (3.3) to the emission data,

the full width at half maximum (FWHM), the distance in x between the points y = A/2, is

calculated with

FWHM = 2
√
2 ln 2σ. (3.4)

The error on the FWHM is then calculated with error propagation, as ∆FWHM = 2
√
2 ln 2∆σ,

where ∆σ is the error on σ from the fitting routine. The process is repeated moving backwards
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Figure 3.4: (a) The perpendicular emission profile of the highlighted perpendicular cross-
section in figure 3.3 with a fitted Gaussian function with R2 = 0.9908. The fit parameter
values are A = 316.3 ± 1.6, µ = 1.82 ± 0.15mm, and σ = 23.15 ± 0.19mm. The black
dashed line is half the maximum mean emission. (b) The FWHM of the fitted Gaussians
against parallel distance from the gas injection point. The errorbars are calculated from the
associated error on σ in the Gaussian fits. The minumum R2 in the fits is 0.9478. Orange
points are not used in the linear fit, where the gas puff can no longer be approximated by a
cone past this point.

and forwards along the gas puff vector one pixel at a time, until the perpendicular no longer

stretches the entire poloidal width of the detector view. The results are shown in figure 3.4b.

After a certain distance along the gas puff vector from the injection point the gas puff can

no longer be approximated by a cone due to neutral diffusion and ionisation. A linear fit of

FWHM against parallel distance, d, up to this distance is performed, so

FWHM(d) = md+ C

σ(d) =
md+ C

2
√
2 ln 2

.
(3.5)

In this instance, the fit is made up to dmax = 47.8mm. Assumption 3 is validated in each

of the measurements up to dmax with a minimum R2 in the fits of 0.9478. The linear fit

gives m = 0.91± 0.02, and C = 11.2± 0.7mm. The region over which the FHWM increases

linearly with distance from the capillary implies a 24.5 ± 0.5◦ half-angle of the gas cloud

cone. This is fed back into the model of the gas puff region.
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Figure 3.5: A diagram showing the simulated diagnostic domain in Cartesian coordinates
(pink). The FWHM of the gas puff cone (orange) and the gas puff vector (black dashed) are
included. An example field-line trace, the position a filament will follow, is shown (blue).
The viewing location for the diagram is the approximate viewing location of the lens in the
experimental GPI diagnostic, although zoomed out to include all the simulated domain.

3.3.2 Simulated diagnostic domain

Now that the gas puff has a measured size, we create a domain for it to exist in. The domain

is a cube with 151 elements in each direction, positioned so that the gas puff vector is aligned

with one of the axes of the domain and runs right through the centre. The coordinates of

the box are then x̂, which is approximately in the toroidal direction at the gas puff injection

location, ẑ, which is mostly vertical, but also leaning slightly away from the centre of the

tokamak, and ŷ, which is aligned with the gas puff vector, mostly in the radial direction and

slightly upwards in height. The domain covers 15 cm in each direction, with each element

being 1mm3. A diagram showing the domain in Cartesian coordinates is shown in figure

3.5.

For each location in the domain, the normalised radius, ρ, is known, and therefore the

electron density, ne, and electron temperature, Te, are known, from the lithium beam profiles

[33]. The neutral density, n0, from the gas puff is not known absolutely, and instead is only

known in relative terms. In each concentric plane along ŷ the neutral density profile is a 2D

Gaussian in shape, inferred from the emission profile measured in section 3.3.1. The total

neutral density in the first plane is set to some value, M , and calculated in subsequent planes

using a simplified collisional radiative model.



CHAPTER 3. GAS PUFF IMAGING 46

100 101 102 103 104

Electron temperature - Te (eV)

1017

1018

1019

1020

1021

El
ec

tro
n 

de
ns

ity
 - 

n e
 (m

3 )

0.5

0.5

1.0

1.5

2.0

2.
5

3.0

3.
5

4.04.5
5.0
5.5

0

1

2

3

4

5

6

Ef
fe

ct
iv

e 
em

iss
io

n 
ra

te
 - 

ef
f (

×1
e-

16
 m

3  s
1 )

Figure 3.6: The effective emission rate, εeff , as calculated in refs. [85, 86] for the helium
emission line with wavelength 587.6 nm.

3.3.3 Collisional radiative model

Now the electron density, electron temperature, and relative neutral density are known, the

emission can be calculated. Equation (3.1), is rewritten here in terms of an effective emission

rate, εeff = f(ne, Te)/ne, calculated using the neutral transport Monte Carlo code DEGAS

2 [85, 86]. The values of εeff are shown in figure 3.6. With this, the local emission of each

element in the domain can be calculated with

I = n0neεeff dV (3.6)

where dV is the volume of each element. Lines-of-sight from the lens’ virtual location to

the location in the tokamak of each pixel in the detector are calculated, and the emission

from each location within the virtual domain will therefore contribute to the pixel who’s

line-of-sight it is closest to. Any location in the domain that is more than ≈ 1mm away

from a line-of-sight vector (i.e., those outside the view of the detector) does not contribute

to the simulated GPI signal. 1mm is chosen as this is about the smallest distance between

adjacent pixels in the GPI view.

To account for the expansion of the gas cone as we move further away from the injection

point, and hence a decrease in the neutral density, we assume neutral particle continuity
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Figure 3.7: The effective electron impact ionisation rate, Siz, as calculated in [85, 86], for
atomic helium.

minus a number of particles due to ionisation moving from plane to plane in the ŷ direction.

Therefore, other than the ionised particles, we assume all the neutrals in plane yi make it

through to plane yi+1, and the distribution of the neutral density uses a 2D Gaussian again

but with an updated total and FWHM. The total rate of change of the neutral density is

then given by
dn0

dt
= −n0neSiz (3.7)

where Siz is the effective ionisation rate, as calculated in refs. [85, 86], plotted in figure 3.7.

Solving equation (3.7) gives

n0(t) = n0(t = 0) exp (−neSizt) (3.8)

where n0(t = 0) is the constant of integration. Instead of solving for time, we solve through

space, assuming any neutral gas lost through ionisation is replaced by neutral gas in the

plane behind it. We here replace the time varying neutral density with the arbitrary total

neutral density coefficient introduced in section 3.3.2, M , such that

M(yi+1) = M(yi) exp (−neSizt) . (3.9)
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A full treatment should include a term for the recombination rate in equation (3.7),

but here has been neglected as at even the lowest temperatures and densities that could

be applicable to tokmak SOLs the effective recombination rate coefficient is four orders

of magnitude lower than Siz (ne ≈ 1 × 1017m3, Te ≈ 10 eV) [85, 86]. In equation (3.6)

the emission intensity is actually an emission rate, although the time dependence has been

neglected as this has no effect other than to scale the emission profile everywhere by some

coefficient. In equation (3.9), however, we do not have this luxury. As we are not solving

particle transport against time, instead making some assumptions about the system in order

to calibrate for the viewing angle and finite gas puff size, we must account for t. Increasing

the time has the effect of moving the point of brightest emission closer to the injection point,

and vice versa for decreasing t. Here t was chosen to be the time taken for a neutral helium

atom with a thermal velocity at around room temperature (T ≈ 300K, vth ≈ 2000m/s) to

move through the thickness of a plane in the simulation domain, 1mm, giving a time of ≈

5× 10−7 s.

A few examples of the reconstruction of the average gas puff emission with the simulated

diagnostic are shown in figure 3.8. These discharges were chosen for their variation in the

electron density values seen in the SOL. Each reconstruction uses the same value for the

width of the gas puff cone, as calculated in section 3.3.2. The only difference between them

is the values of the electron density and temperature throughout the modelling domain. In

each example, the reconstruction manages to regain the overall shape of the average emission

shape of the gas cloud. The location of the brightest emission point is also recovered to a

good accuracy, to with ≈ 5mm for all gas puffs. This lends evidence to our assumptions

being valid, as nothing other than the density and temperature profiles were changed from

one reconstruction to another, yet the overall emission rates and amount of ionisation was

captured well enough to change the maximum brightness locations.

It is known that the backing pressure of the GPI gas chamber, as well as the voltage

applied to the piezoelectric valve, can alter the gas puffing rate of the GPI diagnostic [81],

and hence affect the density of neutrals in the gas puff cloud [19]. Whilst this has not been

explicitly explored in this work, of the 28 different gas puffs that comprise of the data to

be analysed as part of the experimental portion of this thesis in chapter 4, 23 had the same

chamber pressure of 1.2 bar. This pressure applies to each of the examples in figure 3.8. In

these examples, the simulated mean emission shape is different because of only changes to
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Figure 3.8: The electron density (a) and electron temperature (b) profiles for a selection of
discharges during GPI gas puffs. The mean emission profiles for an H-mode discharge with
5MW NBI heating (c); an H-mode discharge with 2.5MW NBI-heating (d); and an L-mode
discharge (e). The corresponding reconstructions with the simulated diagnostic without a
filament (f-h). The differences in locations of the points of brightest emission (red circles)
between the experimental and simulated gas puffs are 3.4mm (c & f), 5.2mm (d & g), and
5.2mm (e & h). The separatrix (white) and limiter shadow (dark red) locations are added.

the electron density and temperature profiles. As such, rather than one synthetic model used

for all gas puffs, the model has been run with enough different iterations to account for a

variety of different profiles, as well as changes to the magnetic geometry, the importance of

which will become apparent in section 3.3.4. Each time, the mean emission in the synthetic

model is a good match to the experimental measure of the mean emission.
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3.3.4 Adding filaments

Next, a filament is added into the virtual domain. A starting position is picked as one of the

pixel locations in the GPI view and a second order Runge–Kutta (RK2) method [87] with

step-size dl = 1mm is used to trace the magnetic field from this position, in both directions,

until outside the virtual domain – these positions define the centre of the filament, and its

position, rb(x, y, z). For a given blob diameter, δb, the positions of the domain, r(x, y, z)

within the radius from the blob’s position (|r−rb| ≤ δb/2) are said to be part of the filament.

We here make the assumption that the electron density inside the blob is equal to the electron

density just inside the confined plasma, ne,b = ne(ρ = 0.95). The electron temperature is

left unchanged to the background as energy transport is much faster than mass transport.

Figure 3.9 shows the simulated diagnostic data for a blob with δb = 1 cm at ρ = 1.04.

Three images are included. Figure 3.9a first gives an ‘idealised’ image for the viewing angle

and toroidal gas puff extent we have where we imagine emission from only inside the blob

itself (I(|r − rb| > δb/2) = 0), 3.9b shows the emission from the blob and the surrounding

gas puff, which is how the signal would look in the raw GPI experimental data, and 3.9c

after 3.9b has been normalised to the emission of the gas puff alone, which has the effect

of removing the contribution of the neutral density, hence the large qualitative similarity

between a and c. The smearing of the blob in the radial direction can clearly be seen, and

should be expected as the angle in the radial direction between the local field line at the

image plane and the diagnostic line-of-sight (i.e. z = const. plane) contributes nearly all of

the misalignment.

Scans for all the positions in the GPI detector for blob diameters from 0.2 cm to 3 cm

have been performed for a variety of different shots, to cover a range of magnetic geometries

in the SOL for different sets of ne and Te profiles. To calibrate from the measured sizes back

to the estimated real sizes, the measured blobs positions is first identified. From this, the

measured radial and poloidal diameters are used to determine the actual size from the virtual

measurements at that location. A discussion of the error on the diameter measurements is

given in section A.2.

3.3.5 Conclusion

In this chapter, the fundamentals of a gas puff imaging diagnostic have been explained.

Specific details about the GPI on ASDEX-U have been detailed, and a simulated diagnostic



CHAPTER 3. GAS PUFF IMAGING 51

2.10 2.12 2.14 2.16
R (m)

0.18

0.16

0.14

0.12
z (

m
)

a

0.
98

0

1.
02

0

1.
04

0
1.

06
0

1.
08

0

1.
10

0

1.
00

0

2.10 2.12 2.14 2.16
R (m)

b

0.
98

0

1.
02

0

1.
04

0
1.

06
0

1.
08

0

1.
10

0

1.
00

0

2.10 2.12 2.14 2.16
R (m)

c

0.
98

0

1.
02

0

1.
04

0
1.

06
0

1.
08

0

1.
10

0

1.
00

0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.24
0.18
0.12
0.06

0.00
0.06
0.12
0.18

Figure 3.9: Normalised emission for a filament with δb = 1 cm in the virtual domain neglect-
ing emission from outside the filament (a) and including emission from outside the filament
(b). The fluctuation emission, normalised to the gas puff emission without a filament (c).
The starting position of the blob is plotted (black x), and the seperatrix (white) and limiter
shadow (dark red) locations are added. The contour at half the maximum brightness (black
dashed) denotes the blob edge, and a circle with diameter 1 cm is added for reference of the
virtual blob diameter.

was constructed by measuring the mean size of the gas puff to counter for the limitations

caused by the viewing position and curvature of the magnetic field. Filaments with a range

of diameters were placed in various locations within the simulated gas puff, and the predicted

emissions, and therefore 2D filament projections, were measured. These results can now be

used to convert perceived filament sizes in the experimental GPI data to estimate the real

radial and poloidal diameters of the filaments.



Chapter 4

Blob measurements in ASDEX

Upgrade

4.1 The discharges

A total of 8 discharges were performed in ASDEX Upgrade that can be categorised into 4

different discharges types: L-mode, N2 seeded L-mode, H-mode with 5MW of NBI heating,

and H-mode with 2.5MW of NBI heating. Each of the discharges is in a lower single null

configuration, with ion ∇B drift pointing downwards towards the x-point. They all have a

toroidal magnetic field strength of BT = −2.5T, a plasma current Ip = 0.8MA, and a safety

factor of q95 ≈ 4.8. The H-mode discharges have additional heating from electron cyclotron

resonant heating (ECRH) of 1.2MW, and 0.5MW for the L-mode discharges. Ion cyclotron

resonant heating (ICRH) was not used in any of these discharges.

4.2 ELM removal

In order to ensure a fair comparrison between each discharge type, ELMs must be correctly

identified in the H-mode data and only the inter-ELM periods compared. A commonly used

proxy of ELM activity in ASDEX Upgrade is the Ipolsola signal, which is the electrical

shunt measuring the poloidal SOL current through two of the outer divertor tiles to the vessel

structure [88]. An example of the signal can be seen in figure 4.1. Close to the seperatrix,

ELMs can be seen in the GPI signal as large drops in signal intensity as the hot ELM filament

propagates through the SOL and ionizes most of the injected neutral gas. In the far-SOL

52
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Figure 4.1: Example time traces of (a) the divertor shunt current signal, (b) GPI signal in
the near-SOL, and (c) GPI signal in the far-SOL. The black dashed lines show estimated
arrival times of the individual ELMs.

ambient temperatures and densities are lower than in the near SOL resulting in lower GPI

intensities. Here, the ELM filament conversely causes a large increase in intensity. In the far

SOL in particular it can be difficult to distinguish between ELM filaments and blob filaments

as they have similar shapes in the 0D time signals, particularly with smaller ELMs, so the

divertor current signal is used instead as the ELM events show obviously in the signal whilst

the blob filaments show little to no feature in this signal.

To detect ELM filaments a wavelet transform is used [89]. The wavelet coefficient Cτ [n]

for time t at time period τ is given by

Cτ [n] =
1

NσMσI

N/2∑
n=−(N/2)+1

(M [n, τ ]− M̄ [n, τ ]) ∗ (Ip[n]− Īp[n]) (4.1)

where M [n, τ ] is the chosen wavelet, Ip[n] is the discrete-time signal of the Ipolsola current,

ȳ and σy donate the mean and standard deviation of quantity y, respectively, and N is the

length of the wavelet and signal. The zero-centred Gaussian function was the chosen wavelet
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in this work, given by

M [n, τ ] =
1

τ
√
2π

exp

(
− n2

2τ2

)
(4.2)

for n ∈ −N/2 < n ≤ N/2. N was taken to be 1024 as using a power of 2 helps reduce

cost computing the wavelet coefficients and was found to be long enough to provide a good

measure of ELMs in ASDEX Upgrade. The Ipolsola signal has the same 200 kHz sample

frequency as the GPI Phantom v711 detector, so 1024 time samples corresponds to 5.12ms.

The normalisation of the wavelet and signal to the mean and standard deviation ensures

−1 ≤ Cτ [n] ≤ 1. Once a suitable wavelet width, τ , is chosen the wavelet coefficients are

calculated and a value greater than a threshold of 0.5 is deemed to be caused by an ELM

filament with that size. A wavelet width of τ = 100 is well suited to detecting most ELMs,

particularly larger ones similar to those shown in figure 4.1. Detecting smaller ELMs is

more difficult, even with a smaller wavelet width. Figure 4.2 shows an example of smaller

ELMs with wavelet coefficients for τ = 50 and τ = 100. This 80ms snippet shows how a

smaller wavelet width catches an extra 5 smaller ELM filaments, yet still demonstrates how

the process is imperfect. Reducing the wavelet width any further showed no appreciative

increase in detection rate, but even at τ = 50 the coefficient stays above the 0.5 threshold

for all of the longer duration large ELMs. In an attempt to catch a variety of ELM sizes,

two wavelet widths were used, so the new wavelet coefficient is given by

Cmax[n] = max
{
Cτ=50[n], Cτ=100[n]

}
. (4.3)

To account for the sharp rise and slower decay of the ELM filament in the current, as

well as to account for the propagation of the ELM through the SOL appearing in different

GPI channels at different times, the ELM is defined to start 200 timesteps before and 600

timesteps after the wavelet coefficient crosses the 0.5 threshold, 1ms and 3ms at 200 kHz,

respectively.

4.3 Data analysis

4.3.1 Data normalisation

The raw output from the GPI diagnostic contains data about not only the local electron

density and and temperature, but also the local neutral density from the gas puff. A com-



CHAPTER 4. BLOB MEASUREMENTS IN ASDEX UPGRADE 55

0

5

10

15

(a
rb

)

# 36343

a

Ipolsola

0.00
0.25
0.50
0.75

(a
rb

)

b

C = 50

3.50 3.51 3.52 3.53 3.54 3.55 3.56 3.57 3.58
time (s)

0.00
0.25
0.50
0.75

(a
rb

)

c

C = 100

Figure 4.2: Time traces of: the divertor shunt current signal (a); wavelet coefficients for
τ = 50 (b); and wavelet coefficients for τ = 100 (c). The orange vertical dashed lines show
where ELMs are detected in the Cτ=50 coefficients only, and the green vertical dashed lines
are detected by both (a). The horizontal black lines represent the 0.5 threshold for ELM
detection (b & c).

monly used analysis technique to study plasma fluctuations, whether with GPI [80, 90] or

other diagnostics, such as BES [15,91] or Langmuir probes [46,57], is to normalise the signal

to the signal mean, Ī, such that the fluctuation data, Ĩ, is given by

Ĩ =
I − Ī

Ī
. (4.4)

With gas puff imaging, a finite amount of time after an ELM filament passes is required

for the local gas puff neutral density to regain a steady-state level and for the signal to

reach a constant mean. In order to maximise the amount of usable data during a gas puff

the fluctuation data are normalised to a lowpass filter of the signal instead of the mean, as

showcased in figure 4.3. A comparison between the two normalisation techniques was made

in a portion of L-mode data where the signal mean was not seen to vary much. The results

showed qualitatively similar measurements of single point fluctuation PDFs, conditionally

averaged waveforms, and filament size and velocity distributions. As such, the lowpass filter

normalisation is used in this thesis.
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Figure 4.3: Time traces of: the raw GPI signal with the lowpass 1 kHz signal overlaid (a);
and fluctuation signal (b), Ĩ, given by equation (4.4), with the Ĩ = 0 line included in black.
Red shaded areas indicate a time during an ELM.

4.3.2 Blob detection

The filament detection method used here is commonly used throughout the field for a mul-

titude of diagnostics [18, 43, 44, 57, 58, 63, 64]. A reference location is chosen in the GPI

detector and the 1D time signal used - for an example, see figure 4.4. The signal is said to

be contributed by a filament if it exceeds the threshold Ĩblob ≥ µ+ 2.5σ, where µ and σ are

the fluctuation signal mean and standard deviation, respectively. The blob’s arrival time, ti,

is the maximum of the fluctuation signal above this threshold. Blob detections are said to

be caused by the same filament if the signal does not decrease below 0 between detections.

If multiple maxima are found in this duration, the largest is taken as the arrival time.

An example of the fluctuation signal with detected filaments is shown in figure 4.4. This

shows one of the main limitations with using this threshold as a detection tool, in that only

large amplitude filaments are included in the analysis. Although results show little variation

in the conditionally averaged waveform for filaments with amplitudes above this threshold,

seen in Alcator C-Mod with GPI [57], and TCV with Langmuir probes [62], as well as for

filaments in discharges at different electron densities [92], given that some filament properties

may change and depend on fluctuation amplitude (e.g., radial velocity) it must be noted that

not all the filament-space is included in this analysis. A local intermittency measure has been
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Figure 4.4: Example time trace of the fluctuation signal with filaments identified (green
triangles). The detection limit of µ+ 2.5σ is added (black dotted line).

Table 4.1: A table showing the total number of unique detected filaments for each discharge
type.

Discharge type L-mode N2 seeded 2.5MW H-mode 5MW H-mode

# blobs 396 337 300 262

used as a blob detection tool in previous works [6,93] that uses a wavelet transform to detect

filaments in a time signal that is not immediately dependent on their amplitude, although

this was found to return very few detected events when attempted on the data presented

here. This is postulated to be due to a ×10 lower temporal resolution in our diagnostic.

An implementation of the deconvolution algorithm by Theodorsen et al. [50] (discussed in

section 2.3), as well as full testing of filament detection with a wavelet transform, was outside

the scope of this work. As such, the 2.5σ threshold is used. The total numbers of unique

detected filaments for each discharge type are given in table 4.1.

Much of the literature stops here and defines this blob’s position, ri, as that of the

reference signal location, and the blob’s amplitude, Ai, equal to the fluctuation signal at this

position and time, Ĩ(ri, ti). This is a valid approach, particularly in diagnostics that can only

sample one position in the plasma at a time, such as Langmuir probes, or in other imaging

diagnostic systems with a low spatial resolution. The Phantom v711, however, has a nominal

spatial resolution of ≈ 1mm, with a blob often covering > 10 pixels in each direction, and
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this method of describing a blob’s amplitude and position becomes ineffective, particularly

when tracking its motion through the SOL. Instead, this detection method is used here

purely for detecting blobs, and their position and amplitude are measured separately. Two

reference locations at a height of z = −0.15mm, are used in each discharge. This is in the

centre of the GPI frame, poloidally, and close to the centre of the gas puff, where the signal is

strongest. The pixels closest to this height at ρ = 1.04 and ρ = 1.06 are used. The majority

of detected events at ρ = 1.02 are too close to the separatrix to be a useful reference location,

with some pixels corresponding the blob being in the confined plasma, and ρ = 1.08 to close

to the limiter shadow in the H-mode discharges, and outside of the GPI view for L-mode

discharges, to be used.

4.3.3 Blob amplitude and position

Turning to the 2D frame, F , at time ti, where all pixels are normalised as described in

section 4.3.1, all channels are considered to belong to blob i if their fluctuation amplitude is

greater than half the current amplitude estimate, F (ri, ti) ≥ Ai/2, and they are connected

to the reference channel by other channels above this threshold. The blob amplitude is then

revised to be the maximum of these channels. Next, the limits of the blob are redefined

using the revised amplitude, and some pixels which belonged to the blob previously will now

lie outside the edges of blob. This ensures that the amplitude and size of the blob do not

depend on the reference channel used for detection - it does require the starting location be

close to the blob but does not require it to be within the limits of the blob, as is sometimes

the case. An example blob is plotted in figure 4.5. The amplitude measured at the reference

location is 0.436, where as the revised amplitude using the maxima of pixels in the blob is

0.580.

Once the amplitude is defined, the position of the blob can be calculated. The position

is calculated as the centre of mass (CoM) using the intensity of all pixels inside the blob

boundary. The CoM is given as

xCoM =

∑
i xiĨi∑
i Ĩi

(4.5)

where x is the coordinate dimension to calculate the CoM for (i.e., R and z), and subscript i

is each pixel belonging to the blob. The position of a filament’s CoM is rarely the same as the

reference location, or the location of the brightest blob pixel. Figure 4.5 shows how the blob’s
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Figure 4.5: A frame showing an example of a blob measurement made in the far SOL.
The blob position (orange diamond) has moved out and down from the reference location
(yellow star), making the blob’s position closer to ρ=1.05 than ρ=1.04. The flux surface and
perpendicular pixels used to measure the blob poloidal (purple) and radial (green) diameters
are shown.

position is 3mm out and down from the reference location, which moves from a normalised

radius of ρ = 1.040 to ρ = 1.046. By revising the blob’s location and amplitude this way,

the measurements do not depend on the reference location chosen to detect filaments.

4.3.4 Blob radial and poloidal size measurement

Once the filament’s position and which pixels are considered to be part of the blob are

identified, the radial and poloidal diameters, δr and δθ respectively, can be measured. Firstly,

although the fibre-optic bundle was rotated to approximately line up with the minor radius

and poloidal directions, the pixel positions are still given in terms of major radius and height

(R and z), and the position of flux surfaces can vary from shot to shot, as well as through

out the shot. As such, we start by measuring the angle the radial and poloidal direction

vectors make to the R− z plane, ϕr,θ, shown in figure 4.6.
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Figure 4.6: (a) Normalised radius values for the GPI view. Blue dots show the pixels used
for the quadratic fit (red line) at the reference location (yellow star). The tangent at the
reference location is found to calculate the poloidal direction vector (not shown), and the
perpendicular used for the radial direction vector (pink dashed line). For this reference
location and magnetic geometry, an angle of ϕ(r,θ) = −15.6◦ is found. (b) The difference
between ϕ(r,θ) for each location minus and the reference location. The green lines show the
limits where the value of ρ doesn’t extend along the full poloidal extent of the GPI view.
The maximum absolute difference in this region is 3.2◦.

The pixel in each row∗ which is closest to the normalised radius in the reference location

is chosen to locate the flux surface through the entire vertical extent of the GPI view. A

quadratic function, z = AR2 + BR + C, is fit to in order to locate the pixel height as a

function of major radius for the ρ = const surface. In the example shown in figure 4.6a

the coefficient of determination [94] for the fit is R2 = 0.9962, and is greater than 0.99 for

all other reference locations in all shots and gas puffs. From this fit, the poloidal direction

vector is defined as a tangent to the flux surface at the reference location, θ = 2ARref + B,

and perpendicular to this is the radial direction vector, r = −1/2ARref , and the angle to

transform from the R− z plane to the r − θ plane is

ϕr,θ = arctan

(
−1

2ARref

)
. (4.6)

For the example in figure 4.6, the specific quadratic fit parameters are given in table 4.2.

Using these values gives the transform angle in this specific case as ϕr,θ = −15.6± 1.3◦. The

∗Here a row refers to a line of pixels in the GPI view that extend approximately along the minor-radial
direction, or almost horizontally in the plots.
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Table 4.2: A table showing the parameters to a quadratic fit of the flux surface in the SOL.

Coefficient Value Error

A 28.5 5.9

B -119 25

C 124 27

calculation of the error is discussed in section A.1.

The same transform angle is used for all blobs detected at a single reference location,

and as they travel throughout the scrape-off layer, and is used when calculating the blob

diameters and velocities. As such, the error from the fit can be less significant than the error

from a changing transform angle in another part of the detector view. Figure 4.6b shows

the difference between the transform angle calculated at each pixel position in the GPI view

minus the angle found at the reference location, ∆ϕ. The size of the difference in the angles

lies between −3.2–2.0◦. The far edges of the view are not included beyond the limits of ρ

at the top left and bottom right corners, as a flux surface cannot be traced over the whole

poloidal view. The largest values of ∆ϕ are found at the top and bottom of the frame,

however most blobs cannot be tracked this close to the edge (section 4.3.5), so these larger

differences in transform angle are unlikely. It was decided that, to air on the side of caution,

a larger value of the error for the transform angle σϕr,θ
= 3◦ would be used when performing

error calculations through out the rest of this work.

To measure δθ, starting along the flux surface from the position where the blob’s ampli-

tude was recorded, the Euclidean distance between the top and bottom of the blob along the

poloidal direction vector is measured, stopping when a pixel’s intensity is Ĩ < Ai/2. This

is repeated, moving the starting pixel along the row of pixels towards the separtrix until it

is outside the blob, then repeated again in the opposite direction. The largest distance is

attributed as the poloidal diameter of the blob at time ti. Similarly for δr, starting from

the location of maximum amplitude, but now the measurement is made along the radial

direction vector, moving the starting position up and down the column of pixels, and the

largest distance is the radial diameter for time ti. For the example in figure 4.5 the blob’s

diameter is measured as (δr, δθ) = (1.49,1.67)cm. The error on the diameter measurements

is discussed in section A.2.
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4.3.5 Blob velocity measurement

To measure the velocity of filaments, a tracking algorithm is implemented. Starting with the

centre-of-mass position in the detected frame, rCoM(ti), equation (4.5) is used to find the

local centre-of-mass in a circle of radius 1 cm in the next frame, F (ti +∆t), where ∆t is the

time between frames which, for these experiments, is ∆t=5 µs. A new circle with the same

radius is used centred around the centre-of-mass found in the last step, and is repeated until

it does not move. This has the effect of moving the centre-of-mass along the gradient of the

intensity field in the frame, until an approximation of rCoM(ti +∆t) is found. This location

is used as the new ‘reference location’, and the blob’s amplitude, location, and radial and

poloidal diameters are measured, as described in sections 4.3.3 and 4.3.4. The velocity, in

the R− z plane is given by

vx =
xCoM(t+∆t)− xCoM(t)

∆t
, (4.7)

where x is the R or z direction, and xCoM is given by equation (4.5). The transform into

the r − ϕ plane uses the transform angle, ϕr,θ, and the velocity magnitude, and radial and

poloidal velocities are given by

|v| =
√
v2R + v2z

vr = |v| cosα

vθ = |v| sinα.

(4.8)

α is the angle that the velocity magnitude |v| makes with the radial direction vector, given

by

α = arctan

(
vz
vR

)
− ϕr,θ. (4.9)

The error calculations for vr and vθ are explained in appendix A.3.

4.4 Results

4.4.1 Single-point results

We begin by presenting results from analysis of single point time series data in the scrape-off

layer, from a single pixel location in the gas puff imaging diagnostic. This can be directly
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compared to analysis from diagnostics such as Langmuir probes, or other single-point analysis

in other GPI systems, with the advantage of analysing and diagnosing multiple locations

simultaneously.

4.4.1.1 Probability distribution functions

Here we demonstrate how the plasma fluctuations recorded by gas puff imaging at single

locations in the SOL follow Gamma distributions, 2.3. The Gamma distribution function,

shape parameter k, and scale parameter θ, are given by equations (2.9)-(2.11), respectively.

Figure 4.7 shows the probability distribution functions for the fluctation data∗ at a range of

locations in the SOL for each type of discharge. Each set of measured PDFs follow Gamma

distribution functions, as shown by the dashed lines, which are not fits to the data points

themselves, but instead are calculated from the input parameters of the Gamma distribution

functions, k and θ, calculated from the mean and standard deviation of the fluctuation

points alone. The L-mode discharges in particular (figures 4.7a and 4.7b) have PDFs of

fluctuation amplitudes close to normal distributions in the near SOL which become more

flattened with distance into the SOL, indicating a reduction in the smaller sized fluctuations

and increases in the larger sized fluctuations and distance from the separatrix increases. The

same Gamma distributions have been shown in Alcator C-Mod [57] [95], TCV [62], ASDEX

Upgrade [96, 97], MAST [48], and NSTX [20]. Both with and without nitrogen seeding, the

distribution functions remain approximately similar up to ρ=1.04, but for the far SOL, the

PDF in the N2 seeded discharges experiences a noticeable further broadening, with more

fluctuations at higher values than without nitrogen.

Both types of H-mode discharge are similar to one another but both are markedly dif-

ferent to the L-mode. In H-mode the near-far SOL boundary (ρ=1.04,1.06) show similar

distributions to the L-mode distribution (ρ=1.04), particularly when considering the input

parameters for the distributions, as seen in table 4.3, and the far SOL (ρ=1.08) is very sim-

ilar to the far SOL of L-mode without nitrogen (ρ=1.06). The similarity between L-mode

and H-mode PDFs has been shown previously in ASDEX Upgrade [96]. Where the PDFs

differ greatly is in the near SOL. At ρ=1.02 the distributions are again flattened similar to

the far SOL, as opposed to becoming more Gaussian. Results from NSTX [20] using GPI

∗Note that the Gamma distribution has a non-negative range, and as such cannot produce the exact single
point PDFs shown here. Instead, when calculating the input parameters, Ĩ + 1 is used, and the resulting
PDFs are translated by +1 in the x-direction.
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Figure 4.7: Probability distribution functions for different single locations in the SOL during
(markers): L-mode (a); L-mode with N2 seeding (b); H-mode with 2.5MW of NBI heating
(c); and H-mode with 5MW of NBI heating (d), with the approximated Gamma distribution
functions included (dashed lines).

show a PDF inside the LCFS in L-mode discharges with a similar slightly flattened shape

presented here. This could indicate an error in the location of the LCFS, reconstructed with

CLISTE [14,98]. Other potential sources of error are a reduction in signal strength far from

the gas puff injection location as separatrix electron temperatures ≳ 70 eV, ionising most

of the neutral gas puff, or a less than perfect removal of ELMs from the signal. The latter

would be exacerbated near the separatrix with comparison with the far SOL, particularly

for smaller ELMs.

4.4.1.2 Filament amplitudes

The literature widely reports the amplitudes of detected filaments to be exponentially dis-

tributed [56, 62, 63]. We investigated this in ASDEX Upgrade in figure 4.8 showing the

complimentary cumulative distribution functions (CCDFs), which are equal to 1 minus the

cumulative distribution functions (CDFs), for each discharge type for varying distances into



CHAPTER 4. BLOB MEASUREMENTS IN ASDEX UPGRADE 65

Table 4.3: A table showing the shape (k) and scale (θ) input parameters for the Gamma
distribution function for different locations in the SOL for all types of discharges.

ρ 1.02 1.04 1.06 1.08

Discharge type k θ k θ k θ k θ

L-mode 88.5 0.0113 42.6 0.0234 13.1 0.0761 - -

N2 seeded 139 0.00720 31.5 0.0317 8.59 0.116 - -

2.5MW H-mode 12.1 0.0824 32.8 0.0305 34.6 0.0288 12.62 0.0790

5MW H-mode 26.1 0.0383 38.8 0.0258 35.0 0.0286 11.5 0.0863
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Figure 4.8: CCDFs for filament amplitudes at different radial locations, minus the minimum
amplitude. The number of filaments is given in the legends.

the SOL. The CCDF is a measure of how the probability a randomly drawn variable X will

be greater than some value x, P (X > x). The CCDF for an exponential distribution is given

by

F (x;λ) = exp

(
−x

λ

)
(4.10)

where λ is the mean value, or the mean amplitude in the case of the amplitude distribution,

⟨A⟩. Here, the amplitude minus the minimum detectable amplitude is presented. This has

the effect of shifting the CCDF in the negative x direction without altering the shape.

When considering the CCDFs for each discharge type individually, it can be seen that

the mean amplitude increases as distance into the SOL increases, as shown by the decrease

of the gradients of the graphs. The L-mode discharges have no measurements as far into the
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SOL as ρ = 1.08 and the number of blobs in H-mode successfully tracked back as close to the

separatrix as ρ = 1.02 is very low, making direct comparisons between these discharges at

these SOL locations difficult. At the near-far SOL boundary (ρ = 1.04) filament amplitudes

are approximately equal, and continue to rise further into the SOL, and the N2 seeded

amplitudes are still equivalent to the H-mode amplitudes at each discharge types largest

radii, with the unseeded L-mode discharge showing a clear amplitude reduction compared

to all other discharges.

The measurements deviate from the ideal CCDFs, and here we explore why this may be.

As explained in section 4.3.3, the way in which we define the blob amplitude and position

varies slightly to the literature. This is likely to cause a systematic difference in measurement

rather than the large deviation seen here. Instead the discrepancy is likely due to a lower

than expected number of measurements for amplitudes near near Amin. This could be due

to smaller filaments appearing close to larger ones in time. As explained in the filament

detection section (section 4.3.2), multiple local maxima are attributed to the same blob if

the signal if the signal doesn’t go below zero between the maxima, taking the largest to be

the blob’s arrival time, and discarding the smaller filament. It could also be caused by the

different cut-off values used for each gas puff / inter-ELM period. The minimum amplitude

subtracted is the minimum amplitude for the entire discharge type, and not for each period

of measurement. As such, a shorter period with a low cut-off may be able to measure a

small number of filaments with low amplitude, which cannot then be detected in the other

measurement periods with a higher cut-off value.

This is demonstrated in figure 4.9. To test this hypothesis, an exponentially distributed

set of numbers was randomly drawn with a mean of λ = 0.25 and its PDF measured. The

PDF of the randomly generated data set deviates largely from the experimental PDF. Even

when all randomly drawn values below some cut-off were excluded, the normalised PDF

does not change if plotted against x− xmin, and if normalised to the total number of values

measured. Instead, we convolve the PDF with a weighting function, WF(x), defined as

WF(x) =


y0 +

(
1−y0
x0

)
x 0 ≤ x < x0

1 x ≥ x0

(4.11)

where, in this specific case, x0 = 0.5 and y0 = 0.1. This simulates detecting fewer events near
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Figure 4.9: The PDF (a) and CCDF (b) for the 2.5MW H-mode at ρ = 1.06 (blue, bar
chart & circles). Measurements from an exponentially distributed random distribution with
mean = 0.25 (orange, triangle). The adjusted variables (green, square) are calculated by
convolving the simulated result with the weighting function with x0 = 0.5 and y0 = 0.1
(green, eq. (4.11)).

the xmin value. Even in this simplified example, the adjusted PDF shape qualitatively tends

more closely towards the experimental one. The effect on the CCDF can also be seen. The

adjusted CCDF decreases in gradient until x0, where the gradient matches the simulated

CCDF. This shows that the measurements presented here can be made consistent with an

exponential distribution of filament amplitudes, given these kinds of assumptions about the

measurement limitations.

4.4.1.3 Waiting times

Filaments are born through a Poisson process and as such the waiting time between filaments,

given by the difference in arrival times tw,i = ti+1 − ti, section 4.3.2, should be exponential

distributed by some constant average waiting time, ⟨tw⟩ [6,56,57]. The waiting time CCDFs,

equation (4.10), are measured for two reference locations in the SOL, ρ = 1.04 and ρ = 1.06.

When calculating filament amplitudes, the blob was tracked before and after detection, and

its precision of location and amplitude refined based on the 2D frame, but for the waiting

time statistics, just the times and events detected in the single-point time series are used.

This is to ensure we are comparing the waiting time statistics of a single point, rather than

filaments that cross through the entire flux surface in the GPI view for any height, z. Any
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Table 4.4: A table showing the average waiting times for ρ = 1.04 and ρ = 1.06 for each
type of discharge. ⟨tw⟩ is the measured mean of the waiting times, τw and στw are the fit
and error, respectively, from fitting an exponential function, exp

(
−tw/τw

)
, to the CCDFs.

Waiting times are given in milliseconds. R2 is the coefficient of determination for those fits.

ρ 1.04 1.06

Discharge type ⟨tw⟩ τw στw R2 ⟨tw⟩ τw στw R2

L-mode 1.954 1.945 0.027 0.9973 5.737 5.582 0.098 0.9862

N2 seeded 2.318 2.305 0.031 0.9973 5.23 5.37 0.14 0.9711

2.5MW H-mode 1.890 1.912 0.065 0.9872 2.602 2.518 0.039 0.9955

5MW H-mode 1.271 1.419 0.085 0.9806 1.332 1.368 0.072 0.9841

error introduced in the waiting times caused by using the arrival time in the 1D signal rather

than the time the blob’s CoM is at the exact normalised radius is negligible, as this would

be only a few timesteps, where the GPI sampling period is 5 µs, and the bin size used is ten

times larger at 0.05ms.

Figure 4.10 shows the CCDFs for the waiting time between detected filaments. In each

case, the average of the waiting times (⟨tw⟩ =
∑N

i tw,i/N) agrees with τw, found by fitting

the CCDFs with an exponential function within ±3%, with the exception of the 5MW H-

mode where the number of waiting times is low, but still agrees to within ±10%. The values

for ⟨tw⟩ and τw, as well as the error on the fits, στw , and the coefficient of determination,

R2, are displayed in table 4.4. At ρ = 1.04 the difference between average waiting times

across the discharge types is lower than in at ρ = 1.06, which would indicate a reduction

in the percentage of filaments that make it that far into the SOL. For both locations, H-

mode plasmas show a reduced average wait time compared with L-mode discharges, with the

5MW discharge lower than the 2.5MW discharges. H-mode shots have a reduced number

of waiting times because only filaments in the same inter-ELM period are used to calculate

a waiting time. This puts a maximum waiting time on the order of 10s of milliseconds,

compared to ≈ 200ms for L-mode and nitrogen seeding. Even taking this into account, the

results suggest a change in the filament generation rate is seen as additional NBI heating

power is used.

4.4.1.4 Average waveform & autocorrelation

The average waveform is a commonly used method for measuring the duration time, τd, of

a filament past a location in the SOL. Whilst the literature is often inexplicit in how τd is
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Figure 4.10: The CCDF for waiting times between filaments, taken at the reference locations
ρ = 1.04 (a), and ρ = 1.06 (b). The number of waiting times is given in the legends.

defined, here we take it to be the amount of time the signal due to the filament is above

1/e of its amplitude value. Similarly to the waiting time distribution measurements, we take

only the signal from the reference locations ρ = 1.04 and ρ = 1.06, not correcting for the

position defined in 2D data. Each filament in the time series is centred to the arrival time,

ti, and normalised to its amplitude, Ĩ(rref , ti) before the signals for each type of discharge

are averaged, and the duration time of the averaged signals measured. The results are shown

in figure 4.11.

The L-mode and N2 seeded waveforms show the typical double-exponential shape, with

a fast rise and slow decay at both reference locations. The duration time, shown in table

4.5, increases with distance into the SOL, as well with the addition of nitrogen seeding,

suggesting either an increase in blob sizes, or a decrease in blob speeds. This increase with ρ

is mirrored in the H-mode discharges, although the change for 2.5MW heating is minimal,

and a larger increase is seen for the 5MW in the far SOL, despite them being equivalent

in the near SOL. Interestingly, the H-mode waveform does not exhibit the same shape as

L-mode for ρ = 1.04. Here, we measure the shortest duration times and the waveform now

exhibits a slow rise and fast decay. The autocorrelation times, τac, are also measured and

shown in figure 4.12 and table 4.5. The autocorrelation is a measure of the how similar the
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Figure 4.11: The conditionally averaged waveform taken at the reference locations ρ = 1.04
(a), and ρ = 1.06 (b). The number of filaments used is given in the legends. The y = 1/e
cut-off is added (black, dashed).

signal is with itself over some time lag. The autocorrelation function of signal X for time

lag τ is given by

ACX,X(τ) =
1

NσXnσX−τ

N/2∑
n=−(N/2)+1

(
X(n)− X̄(n)

)
∗
(
X(n− τ)− X̄(n− τ)

)
(4.12)

where X̄ and σX denote the signal mean and standard deviation, respectively, and the

autocorrelation time, τac is the time lag required for the autocorrelation function to fall

below 1/e. The only difference in τac between discharges is seen in the nitrogen seeding,

which is still larger than the L-mode and H-mode discharges, and any increase with ρ is

also smaller in comparison to τd, with the standard L-mode discharge increasing the most.

The data presented here was calculated using n = 64 data points, averaging over each the

autocorrelation functions for each filament. Whilst changing the number of data points to

n = 32 or n = 128 quantitatively changes the autocorrelation time, the qualitative differences

and similarities between discharges and locations are unaltered.

What causes the differences between these conditional averages is not clear. The con-

ditional average of filament waveforms is often performed for data from diagnostics such as

Langmuir probes, where a single measurement at one point in space can be made. Whilst

any differences between averages allows one to draw conclusions about some corresponding

change to the filaments, the measurement is caused by a combination of the filaments’ sizes
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Table 4.5: A table showing the duration times, τd, and autocorrelation times, τac, at ρ = 1.04
and ρ = 1.06 for each type of discharge.

Discharge type
τd (µs) τac (µs)

ρ = 1.04 ρ = 1.06 ρ = 1.04 ρ = 1.06

L-mode 55 65 30 38

N2 seeded 74 80 40 43

2.5MW H-mode 42 44 32 31

5MW H-mode 42 57 31 35
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Figure 4.12: The average autocorrelation functions, using n = 64 data points, calculated at
the reference locations ρ = 1.04 (a), and ρ = 1.06 (b). The number of filaments used is given
in the legends. The y = 1/e cut-off is added (black, dashed).

and velocities and as such we cannot say which of the quantities has changed. This will be

addressed in section 4.4.2.

Previously, changes in the conditionally averaged waveform of the electron density of

filaments has shown variation with distance from the separatrix [99], including both the

reduction in duration time and the change in the ratio of the rise and decay times of the

waveform moving closer to the separatrix, reported here. Multiple publications report no

change to the average when altering the discharge density [57, 63], or when averaging for

binned filament amplitudes [57,62]. There is evidence that increasing magnetic field strength

causes a decrease in the duration time of the waveform [100], although any change in the

magnetic field between the two measurement locations here is too small to have caused any

appreciable difference in the average waveform.
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4.4.2 Multi-point results

Here we present the results from analysis of 1D and 2D data, where a gas puff imaging

diagnostic shows its strongest advantage over other diagnostic systems.

4.4.2.1 Profiles of statistical metrics

We start by measuring the first four statistical moments of a radial slice through the GPI

detector at a constant height of z = −0.15m as this is in the centre of the Phantom view

and has a good signal over most of the scrape-off layer near the middle of the gas puff.

The results are shown in figure 4.13. (a) shows IRMS/Ī, where IRMS is the mean adjusted

standard deviation of the signal and Ī is the mean of the signal, using the 1 kHz low-pass

filtered signal. This is a measure of the size of the amplitude of the fluctuations in a signal

relative to its mean, or the relative fluctuation size. An increase in IRMS/Ī is seen in all

discharge types for increasing distance into the SOL, caused by an increase in the filament

amplitude relative to the mean at these larger distances, also shown in the amplitude CCDFs

in section 4.4.1.2. Figures (b) and (c) show the third and fourth statistical moments, the

skewness and kurtosis given by equations (2.13) and (2.14), respectively. The skewness

is a measure of the asymmetry of a distribution, where a value of zero would indicate a

distribution equally centred around its mean value. Here, positive values of the skewness

indicate distributions with the mean shifted to a value higher than the mode or median of

the distributions, which increases with distance into the SOL. The result is mirrored by the

PDFs shown in figure 4.7 which deviate from normal distributions near the separatrix to

distributions with an exponential tail at higher fluctuation values. The kurtosis is a measure

of the how much the higher (lower) value measurements contribute towards the distribution,

with the kurtosis of the normal distribution equal to 3, by definition∗. For example, a

distribution with kurtosis greater than 3 would represent a PDF with a relatively higher

peak and wider wings compared to a normal distribution with the same standard deviation.

Here, the kurtosis is shown to be around 3 through the edge, which strongly rises with

increased distance into the far SOL, indicative of a signal with relatively few measurements

far away from the mean. This again is seen in the PDFs in figure 4.7, where an increase

in ρ sees a larger deviation from the normal distribution. Finally, figure 4.13 (d) shows the

∗We here note that some publications refer to the excess kurtosis simply as the kurtosis, which is shifted
down by 3, such that the kurtosis of the normal distribution is equal to zero. Throughout this work, unless
otherwise specified, we use Pearson’s non-adjusted kurtosis
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kurtosis of a signal plotted against its skewness. For the Gamma distribution, the skewness

and kurtosis can be expressed solely in terms of the shape parameter, with S = 2/
√
k and

K = 6/k + 3, giving the quadratic dependence K = 3S2/2. The measured skewness and

kurtosis dependence match the theoretical quadratic scaling well, with each deviating by less

than 10%, with the mean square error for each discharge type being 7% for L-mode, 6% for

N2 seeding, 4% for the 2.5MW H-mode, and 3% for the 5MW H-mode. The points which

deviate most from the quadratic scaling are either in the confined plasma at ρ ≲ 1.0 where

there is low signal due to most of the helium in the gas puff being ionised, or in the limiter

shadow in the far SOL, where the signal is low due to low electron density and temperature.

These results agree well with theory and other results in the literature, but with some

differences. Firstly, we discuss the difference in the relative fluctuation amplitudes between

the L-mode and H-mode discharges, which was also present in the single point PDFs. The
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location of the minima for L-mode and nitrogen seeded discharges is around, or just outside

of, the separatrix, and agrees with other low density L-mode results using GPI [57], which

show the steadily rising profile with distance into the SOL. The H-mode discharges instead

show this minima to be much further out, showing a decrease until the mid-SOL and then the

increase. Higher density L-mode discharges have shown a flattened fluctuation level profile,

with no increase into the far SOL in Alcator C-Mod [101], and a similar minima near the

near-far SOL boundary has also been recorded with ball-pen probe measurements in L-mode

discharges in ASDEX Upgrade [99].

The skewness and kurtosis tell a similar story, with much of the literature reporting a

minima near the separatrix, approximately 0 and 3 for the skewness and kurtosis, respec-

tively, that increases radially into the SOL [57,102]. Whilst the kurtosis results here match

the literature reportings, the skewness has a similar shift of the minima into the scrape-off

layer, not reported by Kube et al. [101], who reported the flattened relative amplitudes.

Horacek et al. [99], who reported the minima further into the SOL, do not report results

for skewness or kurtosis. Agostini et al. (with whom we compare the flattened PDFs near

the separatrix with their values just inside the LCFS in section 4.4.1.1) report a similar

local minima in the skewness profile in the vicinity of the separatrix which increases radially

into the SOL. This leads us to believe that the position of our measurements is correct, but

instead is likely caused by not completely filtering out all the ELM events in the signal,

particularly for smaller ELMs, which may only be detected in the near SOL signals. This

would explain why the skewness goes negative, due to a reduction in the signal strength as

all the helium gas is ionised by the hot ELM filaments. This ELM activity is not seen in the

kurtosis profile, as this doesn’t measure which side of the mean the signal is contributing to,

only how relatively far away from the mean it is.

4.4.2.2 Filament sizes

Similar to the average waveform, we can perform a 2D average of the filaments to get an

average radial and poloidal diameter for filaments in each discharge at various positions

in the SOL. The average waveform was only performed at the reference locations used in

the blob detection, so each filament needed to be centred around its detection time, and

normalised to the maxima at this time. Some normalisation and centring must be done in

2D conditional averages too. Here, each filament’s frame is translated so as to position the
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blobs’ CoM position, equation (4.5), for a given flux surface on the pixel closest to the flux

surface at a height of z = −0.15m. This allows all blobs that are tracked through a given

flux surface to be used in the average, regardless of their z coordinate. Before averaging, the

frames are normalised to their total emission per area

Fi,Norm =
Fi∑
Iblob

Areablob

. (4.13)

The results are displayed in figure 4.14 and table 4.6. The results for H-mode discharges

are not included for ρ = 1.02 as only 4 and 6 filaments were successfully tracked this far

back through the SOL for 2.5MW and 5MW, respectively. Both the L-mode and nitrogen

discharges had the limiter shadow just after ρ = 1.06 and so data is unavailable at ρ = 1.08

for these discharge types.

Most 2D averages suggest a slight decrease to the blob’s radial size with increasing

distance into the SOL, however the decrease is small, close to within error. Therefore, the

perceived radial size decrease is perhaps less than expected due to the smearing effect being

more aggressive at smaller major radii. It is likely that any variation in the relative CoM

positions inside the blobs will cancel one another out when averaging to give an averaged size

less than the average of the individual sizes. The L-mode and N2 seeded discharges show a

similar unchanging poloidal diameter when moving through the SOL, where as both H-mode

discharges have their largest averages closest to the separatrix at ρ = 1.04, larger than any

of the other discharges or locations, that all decrease as they move to the wall. This increase

in blob size from L-mode to H-mode discharges has previously been reported in ASDEX

Upgrade with GPI by Fuchert et al. [80]. Their conditional average was performed just in-

front of the limiter shadow (ρ = 1.06 and 1.08 for L-mode and H-mode here, respectively),

reporting averages approximately half of what we measure here, albeit for densities 3-5 times

smaller than here, although they are not explicit in how they define the measurement for the

blob size, and the radius is a commonly used measure of the blob size. We here note that

as the 2D conditionally averaged sizes are an average of multiple filaments that have been

translated in the viewing plane so that their CoMs align with one another, the sizes quoted

in table 4.6 have not been calibrated for the diagnostic’s viewing geometry, as discussed in

section 3.3.

For the poloidal and radial diameter measurements, as a blob’s shape can fluctuate as it
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Figure 4.14: The 2D conditional average of filaments, normalised to intensity per area, and
centred on their centre of mass. The averages are for ρ ∈ [1.02, 1.04, 1.06] for L-mode (a-c)
and N2 seeding (d-f), and for ρ ∈ [1.04, 1.06, 1.08] for 2.5MW (g-i) and 5MW (j-l) H-mode.
The number of filaments used in the average is given in the bottom left corner.

Table 4.6: A table showing apparent size of the 2D average of filaments in the SOL in the
radial and poloidal directions, r and θ (cm).

ρ 1.02 1.04 1.06 1.08

Discharge type δr δθ δr δθ δr δθ δr δθ
L-mode 1.8 1.5 1.5 1.7 1.3 1.3 - -

N2 seeded 1.7 1.5 1.6 1.8 1.6 1.6 - -

2.5MW H-mode - - 1.6 2.2 1.5 1.9 1.3 1.6

5MW H-mode - - 1.5 1.9 1.4 1.8 1.5 1.7
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moves through the SOL, average size measurements are used in this section. The poloidal

and radial diameters are averages over the individual measurements for the frames in which

the filament’s position is within ρeavl ± 0.005 to account for any small variation of filament

size and shape from frame to frame, where ρeval is the evaluation location. For example, for

the measurements taken at the ρ = 1.04 location, whichever frames has the blob position as

1.035 ≤ ρ < 1.045 are used for the measurement of this one filament. Details on how this

affects the error analysis are in section A.4. The sizes measured in each frame are individually

adjusted to account for the viewing geometry of the diagnostic, as discussed in section 3.3,

and the adjusted values are then averaged together.

Figures 4.15 and 4.16 show the poloidal and radial diameter probability distribution func-

tions, respectively, with the quantitative measurements displayed in table 4.7. Each graph

has the corresponding log-normal distribution added. The distribution is not a fit to the

measured distribution but is instead constructed from the input parameters of the associ-

ated log-norm distribution. The log-normal distribution for randomly distributed variable x

is given by

f(x;σ, α) =
1

x
√
2πσ

exp

(
− ln2

(
x
α

)
2σ2

)
(4.14)

where σ is the shape parameter and α is the scale parameter, calculated with the expec-

tation/mean and the variance of the natural logarithm of x, E[Y ] and V [Y ], respectively,

where Y = ln(X) and yi = ln(xi), by

σ =
√

V [Y ] =

√√√√ 1

N

N∑
i

(yi − ȳ)2 (4.15)

α = exp
(
E[Y ]

)
= exp

 1

N

N∑
i

yi

 . (4.16)

L-mode and N2 discharges show closely matching distributions for the poloidal diameter

at ρ = 1.02 and ρ = 1.04, which also closely aligns with similar 2D averages, and only begin

to deviate at the far SOL. Here a relative increase in the number of blobs above δθ ≈ 1.5 cm

can be seen, which is also mirrored in a slightly larger 2D average here. This indicates, along

with the increased expected amplitude at this position, that blobs in N2 seeded discharges

lose their plasma more slowly than discharge without N2. Both types of H-mode discharges

give distributions with a higher spread of measured diameters, as well as a shift towards
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Figure 4.15: PDFs for the poloidal diameters of blobs at different positions in the SOL, with
corresponding log-normal distribution functions. The number of filaments used is given in
the legends.
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Table 4.7: A table showing the shape, σ, and scale, α, input parameters for the log-normal
distributions for blob radial, r, and poloidal, θ, diameters (cm).

ρ 1.02 1.04 1.06 1.08

Discharge type σ α σ α σ α σ α

Poloidal diameter - δθ (cm)

L-mode 0.326 1.53 0.320 1.77 0.270 1.45 - -

N2 seeded 0.355 1.49 0.338 1.82 0.344 1.61 - -

2.5MW H-mode - - 0.299 2.25 0.319 1.91 0.335 1.64

5MW H-mode - - 0.406 2.24 0.398 2.26 0.399 2.16

Radial diameter - δr (cm)

L-mode 0.324 1.01 0.242 0.999 0.265 0.958 - -

N2 seeded 0.286 0.888 0.275 0.985 0.294 1.04 - -

2.5MW H-mode - - 0.302 1.00 0.2749 0.917 0.279 0.917

5MW H-mode - - 0.346 0.794 0.287 0.769 0.346 0.891

larger blobs at all radial locations, which is again consistant with the results of [80]. In the

H-mode far SOL with more heating power, a larger relative number of large filaments was

seen.

In the fluctuation frame data, filaments’ radial sizes appear larger in the near SOL

compared to the far SOL, although, once the correction for the GPI viewing angle and finite

toroidal gas puff extent are applied, any differences due to location appear minimal. The

radial sizes in the 5MW H-mode, however, appear to be shifted to smaller radii, as compared

to the other discharge types. This trend is also mirrored by the consistently lowered shape

parameter, α. The difference between this discharge type and the others cannot be rectified

by normalisation to the gyro-radius, ρs. The gyro-radius is given by

ρs =

√
Temi

eB
(4.17)

where Te is the electron temperature in eV, mi is the ion mass, e is the elementary charge,

and B is the magnetic field. The gyro-radii for each discharge as a function of radius are

shown in figure 4.17. Normalising δr to ρs would increase the difference between the radial

diameter distribution in the 5MW H-mode as the gyro-radius is at a maximum for this

discharge type. Only a difference of ≈ 2% is seen between the two H-mode discharge types,

and between 5–10% between the H-mode and L-mode gyro-radii, which is not enough of a

difference to bring the PDFs for the poloidal diameters between discharges in line with one



CHAPTER 4. BLOB MEASUREMENTS IN ASDEX UPGRADE 80

1.02 1.03 1.04 1.05 1.06 1.07 1.08

0.30

0.35

0.40

0.45

0.50

Gy
ro

-ra
di

us
 - 

s (
m

m
)

L-mode
N2 seeding
2.5MW H-mode
5MW H-mode

Figure 4.17: The ion gyro-radius, ρi, for each discharge type throughout the SOL, for tem-
perature Te.

another, so any difference we do measure is a real change in filament size.

4.4.2.3 Filament velocities

A filament’s velocity measurement may also fluctuate as it moves through the SOL, similar

to the blob diameter. As such, in this section we also evaluate the average filament velocity

as it traverses the region spanned by ρeval ± 0.005. This evaluation and the possible errors

associated with it are discussed in section A.5. The distributions for the radial and poloidal

filament velocities are shown in figures 4.18 and 4.19, respectively. The radial velocities have

had log-normal distributions added, and the poloidal velocities have had normal distributions

added: the input parameters for these distributions are given in table 4.8. The normal

distribution is given by

f(x;µ, σ) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
(4.18)

where µ and σ are the mean and standard deviation, respectively. Both the L-mode and N2

discharges show a large reduction in radial velocity from ρ = 1.02 compared with the rest of

the SOL, with this effect being more pronounced with the nitrogen seeding. This is similarly

reflected in the scale parameters, although the large difference at ρ = 1.02 could be caused

by the N2 bin between 400–600m/s, where a movement of a few measurements into the bins
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Figure 4.18: PDFs for the radial velocities of blobs at different positions in the SOL, with
corresponding log-normal distribution functions. The number of filaments used is given in
the legends.

either side would recreate the L-mode distribution perfectly. Except for at ρ = 1.02, the

radial velocity distributions, which have been calibrated for the error in position from the

viewing angle, match quite similarly to one another.

The poloidal velocity measurements are where the velocities vary the most. Both H-

mode distributions appear approximately centred around vθ ≈ 0m/s with very wide distri-

butions, whilst L-mode and N2 discharges have velocities that are mostly centred around

vθ ≈ 200m/s. The near SOL, at ρ = 1.02, shows a reduction of the L-mode mean velocity

by about half, whilst the N2 distribution shows a slightly negative average, although the

velocity measurements here do not match well to the predicted normal distribution. Care

is taken to ensure that blob tracking stops just before any blob pixel is at a location of

ρ < 1.00 (i.e., before the blob is connected to the main plasma), however the correction on

blob location is only performed on the centre-of-mass location. Also, the chosen cut-off for a

a pixel’s intensity and whether or not it is considered part of the blob or not is half the blob

amplitude, and not zero. These are two possible ways that blobs tracked back to ρ = 1.02
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Table 4.8: A table showing the shape, σ, and scale, α, input parameters for the log-normal
distributions for blob radial velocities, vr, and the mean, µ, and standard deviation, σ, input
parameters for the normal distributions for poloidal velocities, vθ, (m/s).

ρ 1.02 1.04 1.06 1.08

Radial velocity - vr (m/s)

Discharge type σ α σ α σ α σ α

L-mode 0.801 496 0.640 362 0.744 369 - -

N2 seeded 0.550 571 0.671 293 0.695 284 - -

2.5MW H-mode - - 0.876 373 0.609 348 0.765 405

5MW H-mode - - 0.686 315 0.842 231 0.747 375

Poloidal velocity - vθ (m/s)

Discharge type µ σ µ σ µ σ µ σ

L-mode 116 588 257 350 203 466 - -

N2 seeded -90.4 681 278 322 233 379 - -

2.5MW H-mode - - 51.6 438 -7.65 494 0.602 432

5MW H-mode - - 15.6 442 -50.5 463 18.0 323
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could still be connected to the confined plasma, and why the results from these locations

may differ from the other locations.

In addition to the distributions of filament velocity, we also explore the scaling of radial

velocity with poloidal diameter with respect to the sheath limited and inertial filament

regimes, given by equations (2.3) and (2.4), respectively. The results are shown in figure

4.20. We first note that at each position and for each discharge type, over 95% (in some

cases, 100%) of filaments detected have a poloidal size larger than the fundamental blob size,

given by equation (2.5), with the exception of the L-mode and nitrogen seeded discharges in

the very near SOL at ρ=1.02, where the number is only 51% and 45%∗. Of those filaments

with size larger than the fundamental blob size, most have corresponding radial velocity

under the inertial regime velocity scaling, which is considered as an upper limit for the

filament velocity [39, 103]. We point out a few exceptions to this. For the nitrogen seeded

discharge at ρ = 1.06, figure 4.20d., a few of the larger filaments have larger velocities,

although most are within error of the sheath limited regime scaling.

For the H-mode discharges, there are multiple filaments with velocities above the scaling

which are now not just limited to the larger filaments. For example, in figures k. and l. for

the far SOL in 5MW H-mode discharge, filaments with velocities larger than the inertial

scaling appear for a range of filament diameters above the fundamental blob size. This

could be explained either as an effect due to warm ions [42], or as a shift into the resistive

x-point regime, the top right of figure 2.2. This has the effect of increasing the velocity for

a given filament size. Neither of these mechanisms is confirmed here as measurements of ion

temperatures and divertor collisionality have not been made here.

All but a few filaments with poloidal diameters smaller than the fundamental blob size fall

below the expected inertial regime velocity scaling (or resistive ballooning regime), although

these are within estimated error on the velocity measurement. Similarly to before, inclusion

of warm ions would increase the velocity for a given filament diameter, and easily include

all smaller filaments. One consideration not made here is with respect to the connected

ideal interchange regime, the bottom left of figure 2.2. Here, the velocity reduces due to

the flattening parameter, εx, which is always < 1. As such, multiple filaments in L-mode

and with nitrogen seeding at ρ = 1.02 would likely now be above the scaling velocity. This

is in contrast to recent work on TCV [104] which estimates εx ≈ 0.3, and benefited from

∗Unfortunately, only 3 and 5 filaments are successfully tracked back this close to the separatrix for the
2.5MW and 5MW H-mode discharges, where 2 and 3 are above the funadamental blob size, respectively.
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Figure 4.20: Scatter plots for the radial velocity of filaments against their poloidal diameter.
The L-mode (top row, a-c, blue) and N2 seeding (second top, d-f, orange) filaments are for
positions ρ=[1.02,1.04,1.06] (circles, triangles, and squares, left to right), and the 2.5MW
H-mode (second bottom, g-i, green) and 5MW H-mode (bottom row, j-l, red) filaments are
for positions ρ=[1.04,1.06,1.08] (triangles, squares, and pluses, left to right). The sheath
limited regime (black dashed, eq. (2.3)) and inertial regime (black dotted, eq. (2.4)) velocity
scalings, have been overlaid in each plot, with the fundamental blob size (vertical grey, eq.
(2.5)) included.
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multi-diagnostics connected along field lines to deduce the average velocity of filaments is

best described by the ideal interchange regime at low discharge densities.

4.4.2.4 Inter-filament flow velocities

We can compare the velocity of filaments with the background flow of the plasma in between

filaments. Any data within ±100 time steps (±0.5ms) of the blob arrival time, ti, is defined

to belong to the filament, and data outside of this time range is deemed as inter-filament

data. This allows ample time for any effect in the wake of the filament to be minimised,

allowing for even the longest tracked blobs. For the H-mode discharges, any data during an

ELM is also not included in the inter-filament flow measurements. The inter-filament period

is the any time in-between these periods, as well as any time that isn’t attributed to an ELM

in H-mode discharges. Here, the inter-blob plasma flow is measured using the dynamic time

warping (DTW) algorithm [105–107]. The velocities shown here are averages for the entire

inter-filament periods for each discharge. The means are then averaged along the poloidal

direction, and the standard deviation of the means also calculated. Measurements from

within 8 pixels at the edges of the detector are not included, as DTW is known to perform

badly at the edges.

Figure 4.21 shows the inter-blob SOL flows. The radial inter-blob velocity show trends

that all decrease with distance into the SOL. This matches with the decrease of velocities

seen in the distributions at the near SOL for L-mode and N2 seeded discharges, although the

velocity reduction continues here through the entire SOL, tending to zero, with even some

negative radial velocities recorded right in front of the limiter shadow, which was not seen

with the filament velocities. The same radially decreasing profile is reported by Fuchert et

al. in the SOL [80], although their measure does not limit itself to just the inter-filament

periods. We cannot, however, rule out that no filaments are present during the inter-blob

periods, as only larger blobs are detected, as discussed in section 4.3.2. We also note that

the inter-blob mean flows shown here have not been corrected for the GPI viewing geometry,

which should only scale the radial velocities rather than change the profile shape.

The SOL experiences a radial electric field, Er, due to the temperature profile. Plasma

flow along the field lines to the connecting solid surface is dictated by the plasma potential

[108], and related to the electron temperature by ϕ(r) ≈ 3Te(r), where Te is measured in eV.

As the temperature decreases with r, so does the potential, and the resulting electric field is
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Figure 4.21: Inter-filament flows in the scrap-off layer in the radial direction, vr, (a) and
poloidal direction, vθ, (b). The discharge types are: L-mode (blue); N2 seeded (orange);
2.5MW H-mode (green); and 5MW H-mode (red). The predicted poloidal flow from the
SOL electron temperature gradient is added (b, black dashed, right hand y-axis).

radially outward, Er = −∇ϕ. The resulting poloidal E ×B velocity is given by

vθ =
Er ×Bϕ

B2
≈ 3Te

λTeBϕ
, (4.19)

where λTe is the electron temperature gradient length scale, and Bϕ is the toroidal compo-

nent of the magnetic field. Here, we have assumed no variation of temperature along a flux

tube in the SOL, and the electron temperature is taken as an exponentially decaying profile

as measured by the lithium beam diagnostic. For all discharges used here, the temperature

profiles do not vary much, neither in magnitude nor gradient, and are well described by

a single exponential decay length, λTe = 32.2 ± 0.3mm, with an approximately equal pre-

dicted vθ,(E×B) for all shots, which is included in figure 4.21b, alongside the experimentally

measured values. The poloidal inter-filament flow velocities have also not been corrected for

the GPI geometry, but poloidal measurements require very little adjustment, and would be

within the variance of measurements along the poloidal direction.

The predicted poloidal E×B flow decreases radially, dominated by the electron temper-

ature profile, as the change in magnetic field over the SOL width is small. The L-mode and

N2 seeding poloidal flow profile match closely to one another, with the N2 discharge slightly

higher than without nitrogen, but both exhibiting a positive poloidal flow that decreases
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with distance into the SOL. The measured flow is vastly under what is predicted by the Te

profile. The H-mode flows measured are even lower than those measured for L-mode. The

2.5MW discharges still exhibit a slight decrease with distance, but is much flatter than pre-

dicted by Te, and flows measured in L-mode. Something apparently changes when the NBI

heating is doubled to 5MW, as the measured poloidal flow decreases further, even exhibiting

negative measurements around the near-far SOL boundary, although as the variance is large

the poloidal flow could be close to zero and any change in sign could be within error. This

change in poloidal flow is also measured in the filaments themselves, with the mean H-mode

poloidal filament velocity ≈ 0m/s, and ≈ 200m/s in L-mode. Fuchert et al. [80] report a

change in flow direction of filaments from positive to negative for L-mode and H-mode dis-

charges, respectively. Our results here suggest a change in the radial electric field, causing

some difference to the poloidal flow. The trend here would suggest some dependence on

the amount of auxiliary heating power, however the result from [80] with 3MW of auxiliary

ECRH heating measure poloidal velocities of −100–−300m/s, 0.7MW less than the total

heating power in the 2.5MW H-mode experiments here. We cannot rule out that the type

of heating may have an effect, as NBI heating could add a torque and resultant toroidal

rotation that ECRH heating doesn’t.

4.4.3 2D distribution functions

Next we explore the dependence of one blob property on another property. We start by inves-

tigating the amplitude dependence on the poloidal diameter. An example 2D distribution,

with corresponding binned 1D amplitude distributions, for L-mode discharges at ρ = 1.04

are shown in figure 4.22. Any issues experienced with low numbers for good statistics in 1D

PDFs can exacerbated with 2D distributions, but some meaningful conclusions can still be

drawn. The 2D PDF shows the general upwards trend between the amplitude and poloidal

diameter. The white dashed line added on to figure 4.22a is the mean filament amplitude

for that diameter range, which is the only input parameter required for the exponential

distribution, which the filament amplitudes are shown to follow in section 4.4.1.2. The 1D

PDFs for a given diameter range are shown in figure 4.22b. Even with the modest number

of measurements here, the distributions can be seen to shift towards higher amplitudes as

the diameter range increases, following on from the mean measurement. It is worth noting

that the measurements of amplitude here have not had the minimum amplitude removed,
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and the distributions exhibit the same adjustment from the ideal exponential distribution,

as demonstrated in figure 4.9.

Figure 4.23 shows the binned average amplitude measurements for each discharge type

at various radial locations. Firstly, we notice each average increases as a function of distance

into the SOL, consistent with figures 4.8 and 4.13a. Next, the majority of lines agree with the

example in figure 4.22a, showing an increase in mean amplitude with poloidal size. The trend

is even more pronounced when data points with a low number of filament measurements are

ignored. For example, the 2.5MW discharge has < 10 measurements at ρ = 1.02. Similarly,

from the example in figure 4.22a, and the poloidal diameter PDFs in figure 4.15 the number

of measurements in the smallest and largest diameter ranges is usually very small. As such,

the positive trend is more obvious if the outer most data points are not included. Finally,

we note differences and similarities between the discharge types. Both H-mode discharges

have a similar range of mean amplitudes as we move through the SOL. The range isn’t too

dissimilar for the L-mode cases, but the difference is over a domain of 1.02 ≤ ρ ≤ 1.06, rather

than 1.02 ≤ ρ ≤ 1.08.

Similarly, we can look at the radial velocity dependence on the poloidal diameter. Figure

4.24 shows an example measurement for the L-mode discharges at ρ = 1.05. Here we see

that the filaments with the largest poloidal diameters tend to give filaments with the smallest

velocities. In particular, this is shown in the velocity PDFs for a given poloidal diameter

range. The smallest diameter range shows a diffuse distribution, with the distributions be-
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Figure 4.23: Amplitude averages for binned poloidal diameter size for all discharge types for
various locations throughout the SOL.

coming narrower, and more centred at lower velocities as the diameter range increases. This

is largely mirrored in the scale parameters, a good proxy for the means of the distributions,

of the other discharges at other locations, figure 4.25. Each discharge type and for each

location shows the decrease from smaller blob diameters at 1–2 cm. For larger diameters it is

unclear if the relation ship still decreases or if the some minimum radial velocity is reached.

For the nitrogen seeding, we also recover the larger velocities for the position closest to the

separatrix, as in section 4.4.2.3. No clear trends are seen in the shape parameters, figure

4.26.

We can also see how the radial size depends on the poloidal diameter. The radial diameter

scale parameter as a function of poloidal diameter is shown in figure 4.27. No variation is

seen with SOL position, but a clear difference is seen between the L-modes and H-modes.

In L-mode, with and without nitrogen, the radial diameters’ scale parameters start at ≈ 1,

and then increase slightly, up to ≈ 1.5 as the poloidal diameters go from 1–4 cm. For the

2.5MW H-mode, αδr starts just under 1 for small poloidal diameters, and goes just above
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for clarity.
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Figure 4.25: Radial velocity scale parameters for binned poloidal diameter size for all dis-
charge types at various locations throughout the SOL.
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Figure 4.26: Radial velocity shape parameters for binned poloidal diameter size for all dis-
charge types at various locations throughout the SOL.

1 for larger sizes, with the 5MW H-mode showing a similar trend rise in scale parameter

against poloidal diameter, but being slightly lower for all sizes. This trend is seen for all

radial positions. No significant change or trend is seen in the shape parameters, which are

≈ 0.3 for all discharge types and SOL positions.

Whilst there is only a small change in electron gyro-radius between discharge types,

reducing by ≈ 0.03mm from H-mode to L-mode, shrinking from 0.5–0.3mm from ρ = 1.02

to ρ = 1.08, see figure 4.17, the reduction in the scale parameter could be due to changes

in the magnetic geometry between discharges, as flux surfaces are closer together in H-mode

discharges than in L-mode, caused by a change in the poloidal magnetic field component.

The gradient of the magnetic field changes from the near to far SOL, R − Rmin ≈ 30mm

(ρ ≈1.043–1.054), and the difference in ∂rBθ is seen in the near and far SOL between

discharges. The poloidal magnetic field gradients are shown in table 4.9. It is known that

magnetic shear can have an effect on filaments. For example, strong magnetic shear near

the x-point can distort a filament enough to disconnect it from the target [17], and recent
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Figure 4.27: Radial diameter scale parameters for binned poloidal diameter size for all dis-
charge types at various locations throughout the SOL.

3D fluid simulations have shown that magnetic shear can alter the density and potential

distribution within a filament [109]. An increase in magnetic shear in the SOL could be

responsible for the stretching of a blob in the poloidal direction, whilst also reducing its size

in the radial direction, which is why we see lower scale parameters for the same poloidal

diameter in discharges with the higher magnetic field gradient. Although the poloidal field

gradient in the far SOL is comparable in H-mode to the near SOL in L-mode, the scale

parameters for the radial diameters show no radial dependence in the H-mode case. The

shear in the near SOL could already have limited the filament’s radial size in the H-mode

near SOL, and so to blobs are unable to recover to larger sizes in the far SOL.

The relationship between the radial velocity dependence on the blob’s amplitude has

been also examined. It shows similar reduction in the velocity as amplitude increases as it

did for the radial velocity on poloidal diameter dependence up to a medium amplitude value,

after which the velocities remain constant independent of the amplitude. This follows on

from our previous conclusions that the amplitude has a dependence on the poloidal diameter
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Table 4.9: A table showing poloidal magnetic field gradient, ∂Bθ
∂R (T/m), in the near and far

SOL for all discharge types, measured at the height of the magnetic axis.

Discharge type Near SOL Far SOL

L-mode 0.3813± 0.0059 0.2986± 0.0025

N2 seeded 0.404± 0.026 0.3055± 0.0043

2.5MW H-mode 0.4682± 0.0096 0.3424± 0.0081

5MW H-mode 0.455± 0.014 0.3564± 0.0078

size, and any dependence the radial velocity may appear to have with amplitude can arise

from the poloidal measurement. A 2D PDF measurement of the poloidal velocity and radial

velocity has also been made, and no dependence has been seen, other than the change in

mean velocity between discharge types, already explored in the 1D poloidal distributions in

section 4.4.2.3.

4.5 Summary

This chapter describes the analysis techniques used to investigate the filaments in the ASDEX

Upgrade scrape-off layer for a collection of different discharge types, and the subsequent

results of this analysis. It also includes some analysis of the SOL as a whole, which includes

some statistical descriptions of the SOL which include the inter-filament periods too (and

inter-ELM periods, for H-mode discharges). This analysis was primarily on data from the

gas puff imaging diagnostic.

Single-point PDF measurements of the SOL show the time-series of the fluctuations follow

Gamma distributions which become more flattened at larger radii due to the intermittent

appearance of filaments that propagate this far into the SOL. H-mode discharges showed a

lower change in the intermittency of the signal between positions in the SOL than their L-

mode counterparts as the near-SOL PDFs already showed a larger deviation from a normal

distribution, with the N2 seeded discharge showing the most intermittent signals. Radial

profiles of higher order statistical moments also show that the nitrogen seeded discharges

had the highest values of skewness and kurtosis in the far SOL when compared to the

other discharge types. The nitrogen seeded discharges also had a larger range of relative

fluctuation levels over the whole SOL. Each discharge types’ time-series data also followed

a skewness-squared scaling for the kurtosis, again expected for a random variable from a
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Gamma distribution.

The CCDF of filament amplitudes also showed the largest filament amplitudes for the

N2 seeded discharge, adding further credence to the larger signal contributions in the SOL

coming from filaments. This suggests the addition of neutral impurities in the divertor region

has an effect on reducing how quickly the filaments’ amplitudes reduce in the upstream SOL

as they propagate through it, (such as through increased collisionality, for example). H-mode

discharges also showed smaller average waiting times between filaments than L-mode, as well

as a further reduction in the waiting time with increased auxiliary heating.

Filament size distributions have been measured at multiple locations in the SOL for each

of the discharge types. L-mode and nitrogen seeded discharges have similar poloidal size

distributions in the near SOL, with larger filaments seen in the very far SOL in the N2

discharges, also reflected in 2D averages of the filaments. This increase in filament size,

in conjunction with the increased amplitudes also seen in these discharges, further points

to evidence for a change in parallel drainage times of filaments, and thus a change in how

quickly they reduce in amplitude, with the additional seeding. H-mode discharges show even

larger poloidal filament sizes, with additional NBI heating further increasing the filament

sizes, as well as the poloidal size distributions increasing to larger sizes as α, the log-normal

scale parameter, increases.

Radial velocity distributions for L-mode and N2 seeded discharges show larger velocities

at the very near SOL compared with all other locations and discharge types, although few to

no filaments could be measured this close to the separatrix in H-mode, with little variation

otherwise. Poloidal velocity measurements show H-mode filaments have a gaussian distribu-

tion around 0m/s, with approximately equal numbers of filaments moving with positive and

negative velocities. This changes for L-mode discharges which are centred around slightly

positive poloidal values. Measurements of the radial velocity of filaments versus poloidal

diameter shows the overwhelming majority of filaments to be above the fundamental blob

size, and most of these filaments have velocities below the inertial regime velocity scaling,

for all discharge types. For the ρ = 1.02 SOL location in L-mode and N2 seeded discharges,

approximately half of the filaments are instead found to have poloidal sizes smaller than the

fundamental blob size and velocities under the inertial regime velocity scaling. As too few

filament measurements were made at this location in H-mode discharges, we are unable to

determine if half the filaments are under the fundamental blob size in these discharges as
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well.

Inter-filament flow measurements also confirm a decrease in radial velocity as position

increase through the SOL. A reduction in the mean poloidal flow velocity is also seen going

from L-mode to H-mode with increasing power. A decrease in the poloidal velocity is seen

with increased distance into the SOL, which is the trend expected from a decreasing radial

electric field caused by a decreasing electron temperature profile, however the measured

velocities are between 5 to 20 times lower than expected.

2D filament distributions have also been characterised, showing a general increase in

filaments’ amplitudes with poloidal diameter, with the average amplitude increasing with

distance into the SOL for all poloidal sizes too. The largest poloidal diameters tend to go

with filaments with the smallest radial velocities, and the smallest poloidal filaments have

the largest range of radial velocities. It was also seen that radial diameter increases with

poloidal diameter too, although this effect was less pronounced in H-mode filaments than

L-mode or N2 seeded, where a soft limit on the distribution mean is seen for large diameters.

Whether this could be due to the increased poloidal magnetic shear present in H-modes was

discussed.



Chapter 5

SOL simulations

In this chapter we use a theoretical model and simulations of the scrape-off layer to explore

the relationship between the experimental measurements of filaments in the ASDEX Upgrade

SOL and the SOL electron density profiles, namely if filaments can be used to explain the

different mean density profile shapes we measure independently of the filaments, as well as

to draw some conclusions about the required timescale of the parallel direction. Filament

amplitudes, sizes, and velocities are generated randomly from the distributions measured in

sections 4.4.2-4.4.3 and allowed to propagate through a simulated SOL domain. If the SOL

profiles are determined by the filaments that propagate through them, then a time average

over the simulated domain will provide a measure of the density profile.

In these simulations, the blobs remain invariant under translation - i.e., they do not

change in size or shape as they propagate through the SOL, and if filaments cross one-

another and occupy the same space, their contributions to the signal simply add together.

As such, the filament properties are set at the birth of the filament and do not change with

position in this model. We therefore choose the experimental distributions from the SOL

location with the most measurements to help increase confidence in the statistics of the

distributions measured. This is at ρ = 1.04 for the L-mode and N2 seeded discharges, and

ρ = 1.06 for the 2.5MW and 5MW H-mode discharges.

The 1D model used here is based off the theoretical framework as laid out by Militello

and Omotani [110], as well as independently derived by Garcia et al. [111]. In this model,

all filaments are generated with identical attributes (diameters, amplitudes, and velocities),

as well as a single parallel timescale parameter, τ∥, which is a constant that describes how

quickly a filament reduces in amplitude as it propagates through the SOL. Using identical

96
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Table 5.1: A table showing the average filament attributes for each discharge type used in
the single blob case.

Discharge type δθ (cm) δr (cm) A (arb) vr (m/s) vθ (m/s)

L-mode 1.858 1.028 0.472 423.9 256.7

N2 seeded 1.925 1.024 0.534 347.0 277.6

2.5MW H-mode 2.016 0.954 0.626 -7.654 404.9

5MW H-mode 2.437 0.803 0.530 -50.52 265.4

Table 5.2: A table showing the distribution inputs for filament attributes for each discharge
type used in the independent case.

Discharge type σθ αθ σr αr ⟨A⟩ σvr αvr µvθ σvθ
L-mode 0.320 1.766 0.242 0.999 0.472 0.640 361.8 256.7 350.1

N2 seeded 0.338 1.817 0.275 0.985 0.534 0.671 282.6 277.6 321.7

2.5MW H-mode 0.319 1.914 0.275 0.917 0.626 0.609 347.6 -7.654 493.9

5MW H-mode 0.398 2.255 0.287 0.769 0.530 0.842 231.1 -50.52 463.3

parameters for all the filaments that remain constant throughout the SOL simplifies the

initial derivation of the statistical profiles of the SOL, and also allows one to change filament

characteristics independently of one another in a controlled way to investigate what effect

they have on the profiles. We refer to this as the single-filament Garcia-Militello (GM) model.

The filament attributes used are the means of the experimental measurements recorded in

chapter 4, and are shown in table 5.1. This model is later expanded into 2D [112].

In addition to the single-filament GM model, we introduce a distributed-filament GM

model, in which the filaments are generated with randomly selected attributes according

to the experimental distributions measured in sections 4.4.2-4.4.3. Here, the attributes are

drawn independently to other filament attributes. The filament diameters and radial velocity

are sampled from log-normal distributions, whilst the amplitudes are drawn from exponential

distributions, and in the case of 2D simulations, the poloidal velocities are drawn from normal

distributions. The distributions used are displayed in table 5.2. In both the single-filament

and distributed-filament models, the waiting times between filaments are always generated

from an exponential distribution.

Here we note that some dependence on the filament poloidal diameter was found for

the radial diameter, amplitude, and radial velocity in section 4.4.3. As such, simulations

were also run where the poloidal diameters are randomly generated as in the distributed-
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Table 5.3: A table showing the input parameter equation constants for each discharge type
used in the dependent case for radial diameter and amplitude as functions of poloidal diam-
eter.

Discharge type
σr(δθ) αr(δθ) ⟨A⟩(δθ)

m c m c m c

L-mode -0.00995 0.338 0.108 0.921 0.0749 0.332

N2 seeded 0.0269 0.270 0.178 0.763 0.0734 0.415

2.5MW H-mode -0.00135 0.333 0.00676 0.979 0.0490 0.523

5MW H-mode -0.0875 0.513 0.00208 0.817 0.0561 0.397

Table 5.4: A table showing the input parameter equation constants for each discharge type
used in the dependent case for radial velocity as functions of poloidal diameter.

Discharge type
σvr(δθ) αvr(δθ)

m c A L C

L-mode -0.0955 0.758 2821 0.4019 305.8

N2 seeded -0.0741 0.725 4503 0.318 270.2

2.5MW H-mode -0.0936 0.784 1582 0.460 316.3

5MW H-mode -0.0971 1.026 2272 0.488 194.4

filament GM model, and the size is used to determine the input parameters for the radial

diameter, amplitude, and radial velocity distributions. Each distribution input follows a

linear dependence (mδθ + c), except for the radial velocity scale parameter, which follows

an exponential function (A exp
(
−δθ/L

)
+ c). The equation constants are given in tables

5.3 and 5.4. As the poloidal velocity was not seen to depend on the poloidal diameter,

this was drawn independently, as in the distributed-filament GM model. It was found that

no significant variation was found between the dependent and independent cases, and the

same qualitative conclusions can be drawn for each. As such, the results for the distributed-

filament GM models shown are from simulations where all the filament attributes are drawn

independently of one another.

We will then go on to adjust the model three different ways. The first is a dual timescale

model, or ∆τ∥, which introduces a second parallel timescale so that the first part of the

SOL has τ∥,1 up to some position, Rch, and a second timescale, τ∥,2, from Rch onwards. The

second adjustment is a dual velocity model, or ∆vx instant, where a filament will have one

radial velocity, vx,1, for the first part of the SOL up to Rch, and then a second velocity,

vx,2, thereafter. The third adjustment is a finite acceleration model, or ∆vx gradual, which
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introduces a finite filament acceleration, ax, between two SOL locations, Rch,1 and Rch,2.

The single-filament and distributed-filament models for each of these model adjustments

is explored in both 1D and 2D. In every simulation, the waiting time between filaments,

τw, is kept constant, as this is later shown to have no effect on the trends of the simulated

profiles when normalised to the separatrix values, only adjusting their absolute value. In 1D,

τw = 10 µs, and in 2D, τw = 0.1 µs. This change is to account for the change in normalisation

of the 2D model over the added dimension, and is justified in section 5.2.1.

When the various models are used, the simulated profiles that they generate are compared

to the experimental profiles. This is done by changing input variables, detailed in the relevant

section for that variation of the model, so that the fit to the resulting simulated profile

best matches the fit to the corresponding experimental profile. The experimental electron

density profiles are taken from measurements with the lithium beam emission spectroscopy

diagnostic [33]. The profiles are averaged over the duration of a GPI gas puff (200ms). For

the H-mode profiles, only the inter-ELM periods are used. The profiles used here are only

taken up to the position of the limiter shadow.

This chapter is organised as follows. We start in 1D, introducing the theoretical frame-

work introduced in section 5.1. The single-filament GM model is derived and used in section

5.1.1, then the distributed-filament GM model is derived and used in section 5.1.2. As this

is the first introduction of distributed filaments in this work, the different blob attributes

will be introduced to the model individually to explore what change they have to the density

profiles in isolation to one another, before combining them all at the end. These models

are used with measurements of experimental density profiles that can be described with one

exponential decay length.

In section 5.1.3 we will progress to the adjusted single-filament models, which are used

for recreating profiles which require two exponential decay lengths to describe them. The

single-filament ∆τ∥ model is derived in section 5.1.3.1, the single-filament instant ∆vx model

is derived in section 5.1.3.2, and the single-filament gradual ∆vx model is derived in section

5.1.3.3. The results from each of these three models is presented and compared in section

5.1.3.4. This is then repeated for the adjusted distributed-filament models in section 5.1.4,

deriving the distributed-filament ∆τ∥ model in section 5.1.4.1, the distributed-filament in-

stant ∆vx model in section 5.1.4.2, and the distributed-filament gradual ∆vx model in section

5.1.4.3, before showing the results in section 5.1.4.4.
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The 2D work is organised in the same manner, introducing the 2D theoretical framework

in section 5.2, the 2D single-filament GM model in section 5.2.1, and the distributed-filament

GM model in section 5.2.2. The adjusted single-filament models are in section 5.2.3, with

the dual timescale model derived in section 5.2.3.1, the dual velocity model derived in sec-

tion 5.2.3.2, and the finite acceleration model derived in section 5.2.3.3, with the results

presentated and compared in section 5.2.3.4. Finally, the 2D distributed-filament models

are in section 5.2.4. These include the ∆τ∥ case in section 5.2.4.1, the instant ∆vx case in

section 5.2.4.2, and the gradual ∆vx case in section 5.2.4.3, with the results to these extended

distributed-filament models shown and discussed in section 5.2.4.4. A summary of all the

results in this chapter is given at the end in section 5.3.

5.1 1D theoretical framework

We start by introducing the theoretical framework for the 1D simulations, as laid out by

Militello and Omotani [110]. The 1-dimensional domain is aligned in the radial-direction,

x, where the separatrix is located at x = R − Rsep = 0, and positive x values represent the

SOL. An individual blob is represented by the equation

Bi(x, t) = A0,iΛ
(
x−X(t), δx,i

)
Fi(t) (5.1)

where subscript i denotes the i-th filament being considered. A0,i is the starting amplitude

of a filament at the separatrix, which here is taken to be a measure of the blob’s density. Λ

is a function defining the shape of the blob in 1D, X is the blob position∗, given by

X(t) =

ˆ t

0
vx,i(t

′) dt′, (5.2)

vx,i(t) is the radial velocity function of the filament, δx,i is the radial diameter of the filament,

and Fi(t) is a function describing the reduction of the filament’s amplitude due to parallel

losses as it traverses the SOL. Filaments i cross the separatrix at their arrival time, t = t0,i.

∗Here, the filaments’ positions are given by the location of their maxima, rather than the CoM equation
(4.5), used to define blob locations in section 4.3.3



CHAPTER 5. SOL SIMULATIONS 101

An exponential function is used for the amplitude reduction function,

Fi(t) =


1 t < t0,i

exp
(
t0,i−t
τ∥

)
t ≥ t0,i.

(5.3)

Λ can be any well defined shape. A few good examples are: to replicate the double expo-

nential waveform seen in experimental data [23,57], section 4.4.1.4, given by

Λ(x, t) =


exp

(
x−X(t)

δdecayx

)
x < X(t)

exp
(
X(t)−x
δrisex

)
x ≥ X(t)

(5.4)

where δdecayx + δrisex = δx; to approximate the double exponential with a single exponential

[110,113] given by

Λ(x, t) = exp

(
x−X(t)

δx

)
H[X(t)− x] (5.5)

where H is the Heaviside step function [114]; or a Gaussian function, as one would expect a

radial slice through a 2D Gaussian to be [112], given by

Λ(x, t) = exp

(
(x−X(t)2

δ2x ln(2)/4

)
. (5.6)

The factor of ln(2)/4 in equation (5.6) ensures each waveform type has the same full width

at half maximum. Examples of the waveforms with A = 1, δx = 15mm, and X(t) = 55mm

are given in figure 5.1.

As we have assumed filaments do not interact with one another, a snapshot of the signal

caused by these filaments, and thus the density in our domain∗, θ(x, t), can be calculated by

summing over all filaments

θ(x, t) =
∞∑
i

Bi(x, t− t0,i). (5.7)

An example of the time signals generated at different locations in the scrape-off layer for

the Heaviside approximation using equation (5.5) is shown in figure 5.2. The form of the

equations are setup to guarantee invariance of the filament as they propagate, so a filament

∗This is density because we choose our amplitude term A0,i to have the units of density, although this
model could be used to account for fluctuations in other thermodynamic quantities, such as temperature,
pressure, etc.



CHAPTER 5. SOL SIMULATIONS 102

0 10 20 30 40 50 60 70 80
R Rsep (mm)

0.0

0.2

0.4

0.6

0.8

1.0
Fi

la
m

en
t a

m
pl

itu
de

 (a
rb

) Double exponential
Exponential * Heaviside
Gaussian

Figure 5.1: Example waveforms for equations (5.4) (blue, solid), (5.5) (orange, dotted), and
(5.6) (green, dashed). All filaments have amplitude A = 1, X = 55mm, and δx = 1.5 cm

(the double exponential waveform has δrisex = 0.3 cm and δdecayx = 1.2 cm.)

does not change its shape and just reduces its amplitude, simulating parallel losses in the

filament whilst moving through the SOL.

The density profile, Θ(x), can be obtained by taking the time average of our SOL signal

Θ(x) =

∞∑
i

Bi(x, t− t0,i)

= limT→∞
1

T

ˆ T

0

∞∑
i

Bi(x, t− t0,i) dt.

(5.8)

Here, the bar notes a time average, so ... ≡ limT→∞T−1
´ T
0 ...dt. In practice, the time period

is not infinite, but as long as the finite time T is large enough to allow the system to converge

to a statistical average, then the above equation holds. This also means we do not sum an

infinite number of filaments, but instead a finite number, K. As the system has been set up

with independence between filaments generated with a constant average time between them,

τw, K will itself be a random variable from the Poisson distribution, given by

f(k;λ) =
λke−λ

k!
(5.9)

where λ is the rate parameter, given by the expected number of events in a given time

interval, T/τw, and the arrival times of filaments are uniformly distributed over time T with
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Figure 5.2: Example signals from the simple 1D model with the Heaviside approximation of
the blob at various locations in the SOL.

a constant average waiting time between filaments, τw. Equation (5.8) can then be re-written

as

ΘT (x) =
1

T

ˆ T

0

K∑
i

Bi(x, t− t0,i) dt. (5.10)

As this system is ergodic by design, Campbell’s theorem can be used to show the time-

average of the system is equivalent to the ensemble average over the possible statistical

outcomes [110,115], and equation (5.10) becomes

ΘT (x) = ⟨θ(x, t)⟩

=

ˆ ∞

0
PA0 dA0,i

ˆ ∞

0
Pδx dδx,i

∞∑
K=1

PK

K∑
i

ˆ T

0
Pt0,iBi(x, t− t0,i) dt (5.11)

where ⟨...⟩ denotes the ensemble average, and PX is the probability distribution function for

filament attribute X. We will explore how changing P for certain filament attributes affects

the radial statistical moments calculated in this model, however the number of events, K, is

always Poisson distributed, so PK is given by equation (5.9), and the arrival times are always

uniformly distributed, Pt0,i = 1/T , which is the equivalent as exponentially distributed wait-

ing times between events ti and ti+1, as shown in section 4.4.1.3. For the system here it can

be shown [115] that as T → ∞,
∑∞

K=1 PK
∑K

i

´ T
0 Pt0,iBi(x, t− t0,i) dt = 1/τw

´∞
−∞Bi(t) dt,
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and we re-write equation (5.11) as

ΘT (x) = {B(x, t)}

=
1

τw

ˆ ∞

−∞
dt

ˆ ∞

0
dA0

ˆ ∞

0
dδx

[
B(x, t)PA0Pδx

]
(5.12)

where the curly brackets denote the expectation value operator. Higher order statistical

moments can similarly be found, such as the variance, σ(x) = {B(x, t)2}, the skewness,

S(x) = {B(x, t)3}/{B(x, t)2}3/2, and the kurtosis, K(x) = {B(x, t)4}/{B(x, t)2}2, where

{B(x, t)n} =
1

τw

ˆ ∞

−∞
dt

ˆ ∞

0
dA0

ˆ ∞

0
dδx

[
B(x, t)PA0Pδx

]n
. (5.13)

5.1.1 Single-filament Garcia-Militello model

We first begin by making comparisons to an experimentally measured electron density profile

that can be fully described by an exponential function with a single decay length throughout

the whole of the SOL. For this, we use a base case of parameters, based off the mean of the

measurements from 5MW H-mode discharge # 36342 for t ∈ [4.5, 4.7]s. The profile decay

length is measured as L = 20.26 ± 0.53mm, with the experimental profile shown in figure

5.3.

In this single filament model, we start by allowing each filament produced to be of the

same size, amplitude, and velocity, allowing us to exactly control the changes in the inputs

to measure the effect this has on the simulated profiles. This has the effect of replacing PX

in equation (5.12) with the Dirac delta function

PX = δ(X − x) =


1 X = x

0 X ̸= x

(5.14)

where x is attribute X’s mean value given in table 5.1. In order to match the simulated

profile to the experimental profile, a parallel timescale of τ∥ = 76 µs, to the nearest 1 µs, is

needed for the base case to give a profile decay length of L = 20.1713± 0.0025mm and has

been added into figure 5.3.

By doubling the radial velocity of the filaments for a fixed parallel timescale they are

able to propagate twice as far into the SOL for a given reduction in their amplitude, causing
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Figure 5.3: Density profile for the 5MW H-mode experimental discharge # 36342, for t ∈
[4.5, 4.7]s (black dashed). The simulated profiles (coloured lines) from the 1D single blob
case are: the base case (a); changing vx (b); and changing τ∥ (c). The outputs from the
statistical framework (shapes) are included.

larger densities at larger radii. This has the effect of doubling the decay length of the density

profile. Conversely, halving the radial velocity has the effect of halving the decay length of

the profile. The same effect can be seen by changing the parallel timescale, τ∥. If the

parallel timescale doubles, then the filaments take twice as long to decay, so larger densities

can be seen at larger radii, and if τ∥ is halved then the profile decay length is halved too.

These profiles are all included in figure 5.3. The profile changes caused by doubling the

parallel timescale are indistinguishable from the one caused by doubling the radial velocity

(within error), and as such, doubling the radial velocity whilst halving the parallel timescale

cancel each other out in the profiles to reproduce the base case. Exact measurements of

the profile decay length are given in table 5.5. We here reiterate that the examples shown

are normalised to the separatrix density, so the profiles do differ from another when looking

at them in absolute values. This would then have an effect of changing the amount of flux
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Table 5.5: A table showing the profile decay length for 1D simulations, using the Heaviside
approximation, by varying vx and τ∥. For each case, 1vx = 265.4m/s and 1τ∥ = 76 µs.

vx (arb) τ∥ (arb) L (mm)

1 1 20.1713± 0.0025

2 1 40.339± 0.018

0.5 1 10.085 61± 0.000 54

1 2 40.3427± 0.0087

1 0.5 10.085 67± 0.000 83

2 0.5 20.1702± 0.0051

0.5 2 20.1719± 0.0016

further into the SOL.

The other parameters also investigated were the radial filament size, δx, the filament

amplitude, A, and the filament waiting time, τw. These have no effect on the profile decay

length, however changing A and τw change the value of the profile at x = 0. As all profiles

are normalised to the separatrix value, this has no effect. The filament waveform was also

changed to the double exponential and Gaussian, which modified the decay lengths slightly

to 20.399± 0.047mm and 20.388± 0.057mm, respectively.

We now check the fitted decay lengths against the model by solving equation (5.12). In

the single filament case, no filament attribute depends on another and the order of integration

does not matter. For a Dirac delta function as the distribution function, the integral over

all space returns the point around which the function is centred, namely

ˆ ∞

0
xδ(X − x) dX = x, (5.15)

and the distributions are simply replaced with the single attribute value. Equation (5.12)

then becomes

Θ(x) =
A0

τw

ˆ ∞

−∞
exp

(
x−X(t)

δx

)
H[X(t)− x] exp

(
−t

τ∥

)
dt

=
A0

τw
exp

(
x

δx

) ˆ ∞

X−1(x)
exp

(
−t

τ∥
− X(t)

δx

)
dt (5.16)

where X−1(x) is the inverse function of the position function X(t), equation (5.2). For a

constant filament velocity, vx, X(t) = vxt and X−1(x) ≡ t = x/vx. Therefore, the profile is
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Figure 5.4: Simulated profile decay lengths against the experimental decay lengths during gas
puffs where the profile is described by one decay constant. The difference between the decay
length of the simulation, Lsim, and the product of vxτ∥ used in the simulation is represented
by the colourbar.

given by

Θ(x) =
A0

τw
exp

(
x

δx

)ˆ ∞

x
vx

exp

(
− t

τ∥

(
1 +

vxτ∥

δx

))
dt

=
A0

τw
G0 exp

(
− x

vxτ∥

)
(5.17)

where

G0 =
τ∥(

1 +
vxτ∥
δx

) . (5.18)

From equation (5.17), it can be seen that the profile decay length is exponential, and

given by the product vxτ∥, confirming the results of Garcia and Militello [110, 111]. For

the base case with vx = 265.4m/s and τ∥ = 76 µs, the 1D GM model predicts a decay

length of 20.1704mm. Figure 5.4 shows the simulated profile decay lengths against the

experimental decay lengths for gas puff durations where the density profiles are described by

one decay length only, with the difference between the model estimated decay length and the

simulated decay length shown by the colours. All simulated profile decay lengths are within

the estimated error from the fit of the expected analytical decay length, within ±0.01mm.

From this, we conclude that the profile decay length is directly proportional to the filament

radial velocity and parallel timescales. This will be explored in further detail in section 5.1.2.
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Figure 5.5: Profiles in the simulated SOL for the 1D single blob case (solid lines) for shot
# 36342, t ∈ [4.5, 4.7]s for: the relative fluctuation levels (a); skewness (b); and kurtosis (c).
The values of kurtosis against skewness are shown (d) with the theoretical K = 3S2/2 + 3
relation added (black dashed). The theoretical values are added (blue circles, yellow star).

We now turn to the higher order statistical moments. Figure 5.5 shows an example of

these measurements for the single filament case using the Heaviside waveform. Similarly

to how we derived the expression for the profile, we can replace the integration over the

amplitude and size distributions with the relevant values. The variance then becomes

σ(x) = {B(x, t)2}

=
1

τw

ˆ ∞

−∞

A0 exp

(
x−X(t)

δx

)
H[X(t)− x] exp

(
−t

τ∥

)2

dt

=
A2

0

τw
exp

(
2x

δx

)ˆ ∞

x
vx

exp

(
−2t

τ∥

(
1 +

vxτ∥

δx

))
dt

=
A2

0

2τw
G0 exp

(
− 2x

vxτ∥

)
, (5.19)
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which in turn gives the relative fluctuations as

IRMS

Ī
=

√
σ(x)

Θ(x)
=

√
2

2

√
τw
G0

. (5.20)

For the inputs of the base case this gives
√

σ(x)/Θ(x) = 0.479, a slight overestimate of the

average of the simulated SOL of 0.477. Neither equation (5.20) nor figure 5.4a show any

variation with distance into the SOL, in contrast to the experimental relative fluctuation

levels seen in figure 4.13a. This is not a special case for the base case, nor for any of the

other shots included in figure 5.4, and is instead caused by all filaments being generated with

the same size, amplitude and velocity.

In general, for the single filament case with a Heaviside waveform, we can write

{B(x, t)n} =
An

0

τw
exp

(
nx

δx

) ˆ ∞

x
vx

exp

(
−nt

τ∥

(
1 +

vxτ∥

δx

))
dt

=
An

0

nτw
G0 exp

(
− nx

vxτ∥

)
, (5.21)

and the skewness and kurtosis∗ are

S =
{B(x, t)3}

{B(x, t)2}3/2
=

2
√
2

3

√
τw
G0

(5.22)

and

K =
{B(x, t)4}
{B(x, t)2}2

=
τw
G0

, (5.23)

respectively. These also do not increase with distance into the SOL, as in the examples in

figure 4.13, which is also caused by the identical filaments. The kurtosis also deviates from

the theoretical K = 3S2/2 dependence, both in the sense that the simulation results do not

follow this trend, figure 5.3d, and, using equations (5.22)-(5.23), K ̸= 3/2S2, but instead

suggests a K = 9/8S2 scaling.

Finally, we study the single point probability distribution functions, like in section 4.4.1.1,

for the simulated signal fluctuations, given by equation (4.4), to see if they still follow a

Gamma distribution, equation (2.9). Figure 5.6 shows the PDFs for the base single blob

case. Here we see how each location in the SOL has a nearly identical PDF, with no variation

∗This derivation of the kurtosis gives the excess kurtosis, and all values shown in the graphs, both the
derived values and measurements of the simulated data, are the unadjusted Pearson’s kurtosis, as in section
4.4.2.1.
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Figure 5.6: Probability distribution functions for different single locations in the SOL for
the 1D single blob case (coloured markers) for shot # 36342, t ∈ [2.5, 2.7]s. The Gamma
functions calculated from the input parameters, k and θ, are included (dashed lines). The ρ
positions are at R−Rsep = [12, 23, 35, 46]mm.

with location. This follows the same trend as the higher order moments also having no radial

variation, in contrast to the experimental results presented in figure 4.7. We do still see that

the fluctuations closely follow Gamma distributions, even without the radial change, as each

PDF has approximate input parameters of k = 4.40± 0.02 and θ = 0.227± 0.001, with any

variation due to the finite temporal resolution of the data. The other single blob cases’ PDFs

from figure 5.3 were also checked, each still showing no variation with x, although the values

of the Gamma input parameters do change, so each case has a different shape parameter.

We here note how the inputs to the Gamma distribution relate to the first two statistical

moments.∗ The equations for k and θ are given by equations (2.10) and (2.11), respectively,

using the signal fluctuation, where as the statistical moments are calculated on the raw

signal. If the fluctuation signal is just a scaling of the raw signal to the signal’s mean, then

we can rewrite the expectation value and variance of Ĩ in terms of I, and as such the Gamma

distribution inputs of Ĩ in terms of the lower statistical moments of I. This simply gives

kĨ = E[X]2/V [X] ≡ kI , so the shape parameter is unchanged by the change in variable,

and θĨ = V [X]/E[X]2 = θy, in which θy is the square of the relative fluctuation amplitude,

the radial profile of which is shown in figure 5.3a. As such, radial behaviour of the relative

∗As in section 4.4.1.1, we note that because the Gamma distribution is defined for a positive domain,
when calculating the input parameters, Ĩ + 1 is used instead of equation (4.4), and the resulting PDFs are
translated by +1 in the x-direction.
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fluctuation amplitude, or lack thereof, informs us of the radial changes we should expect to

see in the single point probability distribution functions. Similarly, Garcia shows [56, 111]

how the inputs to the Gamma distribution are expressed as k = τd/τw and θ = A0, where in

his work τd is a combination of τ∥ and δx/vx. In the model shown here, these variables do

not vary over the SOL, and as such the single-point PDFs do not vary with position.

5.1.2 Distributed-filament Garcia-Militello model

In order to investigate the effect of all filaments having the same attributes in the previous

section, we now introduce the distributions to randomly draw filament attributes from, start-

ing with the 5MW discharge # 36342 base case. The PDF input parameters introduced in

this section are for the blob amplitude, radial diameter, and radial velocity, each introduced

individually. They are used in isolation to one another, with the other attributes kept con-

stant, as in the previous section, as well as an instance of all three together. The distribution

inputs are given in table 5.2 and are all used independently to one another, taken directly

from the experimental measurements in section 4.

The simulated density profiles from these examples are shown in figure 5.7, and the profile

decay lengths are given in table 5.6. These were achieved by altering τ∥ to a precision of

1mm. This was also repeated for the dependent case. In this instance, the filament poloidal

sizes are generated first and the rest of the filament attributes generated afterwards using the

coefficients given in tables 5.3 and 5.4.∗. The measured decay lengths change quantitatively,

but not qualitatively, and are within error on the fits to the profiles. Any small changes are

likely due to the minute differences in the individual blobs generated. As such, the profiles

are not included, but the measured decay lengths are also included in table 5.6.

Following on from the conclusion of section 5.1.1, we can here see how it is the radial

velocity that has the largest effect on the density profile. In both the dependent and in-

dependent cases, adding in the radial or amplitude distributions affected the profile decay

length by less than 0.1% (< 0.01mm) when compared with the single-filament profile, and

is well within the error for the fit to the profiles. The expression for Θ remains unchanged

in these cases from equation (5.17) with the exception of swapping either A0 or δx with the

expectation value of the relevant distribution. The radial velocity profiles however are very

∗The poloidal sizes themselves are not required in the 1D simulations, but they are still generated first to
allow direct comparison with the 2D simulations, section 5.2
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Table 5.6: A table showing the profile decay length for 1D simulations, using the Heavi-
side approximation, with distributions for different blob attributes, in the independent and
dependent cases.

Attribute from dist. Lind. (mm) Ldep. (mm)

Radial diameter 20.1720± 0.0026 20.1709± 0.0025

Amplitude 20.1789± 0.0033 20.1638± 0.0031

Radial velocity 19.14± 0.41 19.08± 0.39

All 19.17± 0.52 18.84± 0.37
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different. Firstly, by just looking at the absolute values of the decay lengths, a decrease

of 1mm (5%) is seen, although much of the difference between the profiles is obscured by

studying the decay lengths alone. The profile, seen in figure 5.7, can now seen to be deviating

from an exponential profile quite largely, starting with a steeper profile near the separatrix

with a decay length that increases with distance into the SOL. As such, the metric of a single

decay length, used to define a normalised exponential function, may not be so appropriate

to describe this profile.

The radial velocity distribution must be accounted for when calculating the expressions

for Θ. Equation (5.12) has no information about the velocity distribution, but there is the

X−1(x) = x/vx term in the limit of the time integration itself in equation (5.16). We make

the following argument for a derivation of the expression for the mean profile. In the case

where each filament has the same velocity, then each filament contributes the same signal to

the average, and we arrive at equation (5.17). In a simplified case where filaments can take

on either one of two velocities, v1 or v2, with equal probability, then half the filaments would

would contribute to the signal in one way, and the remaining filaments in another way. As

such, we could rewrite equation (5.17) as

Θ(x) =
1

2

A0

τw

Gv1 exp

(
− x

v1τ∥

)
+Gv2 exp

(
− x

v2τ∥

) . (5.24)

Here, Gvi is equation (5.18) with vx swapped for vi. A similar approach could be taken

using more than two velocities, each with equal probability, or using two velocities, but with

different probabilities. In the case of the former, the factor of 1/2 would be replaced with

1/nvx , where nvx was the number of different velocities the filament could have. For the

latter scenario, the brackets would need expanding and each term would need a normalised

coefficient representing the probability of that velocity.

This is what we have in the case of a well defined velocity distribution for an increasingly

large number of velocities. Here we have used log-normally distributed radial velocities and

so the relative fraction of filaments with velocity vx,i is given by the log-normal PDF. This

gives the equation for the profile as

Θ(x) =

I∑
i

1

vx,i
√
2πσvx

exp

−
ln
(

x
αvx

)2
2σ2

vx

 A0

τw
Gvi exp

(
− x

vx,iτ∥

)
(5.25)
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where i and I represent the smallest and largest velocities drawn from the distribution. In the

simulations the velocities are a continuous random variable between the limits of vx ∈ [0,∞].

As such, equation (5.25) tends towards the analytical solution for the problem as the number

of discrete vx,i values is increased, or by replacing the sum with an integral as vx,i+1−vx,i → 0.

This expression, however, has no analytical solution, and we instead calculate equation (5.25)

for the smallest and largest vx randomly drawn in the simulation with a vx,i+1−vx,i = 1m/s

which gives good approximations for the radial statistical moments.

Changing the filament waveform from the Heaviside approximation to either the dou-

ble exponential or Gaussian had a small effect on the absolute value of the decay length

by slightly deviating from a perfect exponential near the separatrix, but was otherwise un-

changed. This slight difference is attributed to the relative change between how we define

the filaments’ positions compared to their centre-of-mass. In the Heaviside approximation

when a filament is positioned at the separatrix all of the filament contributes to signal before

the separatrix only. As the filaments have a constant amplitude up to this point before they

decay exponentially and this gives the non-exponential for x < 0 for the profiles in figure

5.7. As the other two waveform types have some non-zero signal for x > 0 when at the

separatrix, this effect is shifted to slightly higher x. As such, the difference in the profiles

due to a change in the filament waveform can be disregarded.

We also investigate the higher order moments of the signals, shown in figure 5.8. Similar

to the mean profile, adding in the radial diameter and amplitude distributions has no effect on

the profile shape for the relative fluctuation amplitude, skewness, or kurtosis. In fact, when

adding in the radial diameter distribution, the equations for the mean, standard deviation,

skewness, and kurtosis, do no change from those given in equations (5.17)–(5.23), except

the radial diameter term is swapped for the expected value of the distribution. Because we

used the mean value in the single blob case, the addition of the radial diameter distributions

doesn’t change any of the moments in relation to the base case. For the case with the

amplitude distribution included, the An
0 term is replaced in the n-th statistical moment with

the corresponding n-th moment of the exponential distribution function,

In =

ˆ ∞

0

xn

A0
exp

(
− x

A0

)
dx

= n!An
0 .

(5.26)
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Figure 5.8: Profiles in the simulated SOL for the 1D independent blob case (solid lines) for
shot # 36342, t ∈ [4.5, 4.7]s for: the relative fluctuation levels (a); skewness (b); and kurtosis
(c). The values of kurtosis against skewness are shown (d) with the theoreticalK = 3S2/2+3
relation added (black dashed). The expected values derived from the model are included as
symbols in (a–c).

The form of equations (5.20)–(5.23) do not change, i.e., there is still no dependence on x and

the profiles remain flat, but now the coefficients change. The general case with exponentially

distributed amplitudes is

{B(x, t)n} =
(n− 1)!An

0

τw
G0 exp

(
− nx

vxτ∥

)
(5.27)

and specifically for the relative fluctuation level, skewness, and kurtosis,√
σ(x)

Θ(x)
=

√
τw
G0

, (5.28)

S = 2

√
τw
G0

(5.29)
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and

K = 6
τw
G0

, (5.30)

respectively. Note, that here we now recover the K = 3/2S2 scaling expected for a signal

described by a Gamma distribution, although radial variation of the moments is still not

seen.

Again, it is the radial velocity distribution that brings about the largest change. We now

see, for the first time, the increase in relative fluctuation amplitude, skewness, and kurtosis,

with distance into the SOL, as recorded in the experimental data, figure 4.13. A similar

method for obtaining expressions for the higher order moments can be used here as it was

for the profile. The modified version of the n-th order expectation value becomes

{B(x, t)n} =
An

0

nτw

I∑
i

1

vx,i
√
2πσvx

exp

−
ln
(

vx,i
αvx

)2
2σ2

vx

Gvi exp

(
− nx

vx,iτ∥

)
(5.31)

and approximations for the relative fluctuations, skewness, and kurtosis can be found. These

have been added into figure 5.8 and agree will with the simulated values, giving an increase

with all quantities into the SOL. Previously, all exp
(
−nx/vxτ∥

)
terms cancelled, giving no

radial variation, but now the velocity distribution terms mean the exponential terms cannot

cancel, retaining the radial dependence in the statistical moments. From this we can conclude

that, in the single-blob case, a distribution of radial velocities is necessary to reproduce the

increasing relative fluctuations, skewness, and kurtosis values with distance into the scrape-

off layer consistent with experimental results. Equation (5.31) can be modified for the

moments for the independent blob scenario, when the amplitudes, radial sizes, and radial

velocities, are all randomly generated, by replacing δx with the expectation value of the

radial size distribution, and replacing the An
0 term with the result of equation (5.26).

We now investigate the single point probability distribution functions for the 1D indepen-

dent blob case, shown in figure 5.9. The corresponding Gamma PDF input parameters are

included in table 5.7. As shown in the previous section, no radial variation in the relative

fluctuation levels again translates to no change in the PDFs for the simulations with the

added radial diameter and or amplitude distributions, but we do here directly show how the

change in the the value of the fluctuations between the two cases directly leads to the change

in the shape of the distributions. For the radial diameters, which does not deviate much



CHAPTER 5. SOL SIMULATIONS 117

10 5

10 4

10 3

10 2

10 1

100

a

x distribution

b

A distribution

-2 0 2 4 6 8
10 5

10 4

10 3

10 2

10 1

c

vx distribution

-2 0 2 4 6 8

d

All distributions

=1.02 =1.04 =1.06 =1.08

I

PD
F(

I)

Figure 5.9: Probability distribution functions for different single locations in the SOL for the
1D independent blob case (coloured markers) for shot # 36342, t ∈ [4.5, 4.7]s. The Gamma
functions calculated from the input parameters, k and θ, are included (dashed lines). The ρ
positions are at R−Rsep = [12, 24, 36, 48]mm.

with respect to the single blob base case (both the relative fluctuations and the Gamma

input parameters vary less than 5%), the PDF is also very similar to the PDF in the base

case, whilst the PDF with the amplitude distribution shows exhibits a larger positive tail,

consistent with an increased scale parameter (or relative fluctuation level).

The radial variation seen in the statistical profiles when introducing the radial velocity

distributions is recovered in the single point PDFs too. Now, as we increase our distance

from the separatrix, the shape parameters decrease and the scale parameters increase. Previ-

ously, with a constant equal velocity for all filaments, the blobs moved together, so that any

initial distance between filaments would remain the same throughout the entirety of their

propagation. Even if filaments had different amplitudes and radial extents they were still

similar, and the signal was still similar from position (x,t) to position (x+ v∆t, t+∆t), so
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Table 5.7: A table showing the shape (k) and scale (θ) input parameters for the Gamma
distribution function for different locations in the SOL for the four 1D independent blob case
simulation shown in figure 5.9.

ρ 1.02 1.04 1.06 1.08

Distribution added k θ k θ k θ k θ

Radial diameter 4.29 0.233 4.32 0.231 4.30 0.233 4.32 0.231

Amplitude 2.17 0.460 2.19 0.457 2.18 0.459 2.19 0.457

Radial velocity 3.83 0.261 2.71 0.370 1.96 0.509 1.48 0.675

All three 1.84 0.545 1.29 0.773 0.96 1.046 0.73 1.374

the PDFs would be the same. Now with varying filament velocities, this similarity no longer

holds and we see a radial variation in the PDFs. It is this non-similarity that gives a radial

dependence in the statistical moments, B(x, t)n, and is therefore responsible for the change

in the PDF input parameters.

5.1.3 Adjusted single-filament models

Here we explore how we can amend the single-filament GM model from section 5.1.1 to

recreate density profiles that do no follow one exponential decay length. We consider two

base cases: the first is the 5MW H-mode discharge # 36342 for t ∈ [2.5, 2.7]s, where the

density decay length decreases in the far SOL, shown in figure 5.10; and the L-mode discharge

# 36344 for t ∈ [2.5, 2.7]s, where the density decay length increases in the far SOL, shown

in figure 5.11. In these examples, the profiles cannot be described by a single exponential

function, and instead a piecewise function of two exponentials is used, given by

y(x) =


y0 exp

(
x−x0
L1

)
x ≤ x0

y0 exp
(
x0−x
L2

)
x > x0

(5.32)

where (x0, y0) are the coordinates of the point where the two exponentials meet, and L1 and

L2 are the decay lengths of the profile in the SOL nearest to the separatrix and furthest from

the separatrix, respectively. As the profiles are still normalised to the separatrix value, the

y0 variable is of no interest to us in these experiments but is required to ensure continuity

between the two regions of the profile. It should be noted that the filament input parameters

for the two base cases are different because of the different discharge types. Whilst this may
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Figure 5.10: Electron density profile for the 5MW H-mode discharge # 36342 (black dashed).
Three simulation profiles from the 2D single blob case are included: changing τ∥ (a, blue);
instantaneously changing vx (orange); and gradually changing vx (green). The x0 parameters
(coloured triangles), Rch values (coloured vertical lines), and the outputs from the statistical
framework (coloured shapes) are included.

quantitatively change the required parameters (for e.g., as vx has changed, a different τ∥

would be required for the same L decay length) the analysis and conclusions are still valid.

The fit parameters for the experimental profiles are given in table 5.8.

5.1.3.1 Single-filament dual timescale model

In this section, the single-filament GM model is extended by introducing a second parallel

timescale in the scrape-off layer, simulating a change in collisionality, connection length, etc.,

as we move through the SOL, and upstream is now connected (or disconnected) to a different

part of the divertor, or, more generally, a different part of the first wall. This changes the
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Figure 5.11: Electron density profile for the L-mode discharge # 36344 (black dashed).
Three simulation profiles from the 1D single blob case are included: changing τ∥ (a, blue);
instantaneously changing vx (orange); and gradually changing vx (green). The x0 parameters
(coloured triangles), Rch values (coloured vertical lines), and the outputs from the statistical
framework (coloured shapes) are included.

Table 5.8: A table showing the fit parameters for the base case non-exponential experimental
profiles, and the profiles generated in the 1D single blob case using the Heaviside approx-
imation. For the 5MW H-mode discharge, when x = 31mm, ρ ≈ 1.052, and x = 23mm,
ρ ≈ 1.032 in the L-mode discharge.

Profile type x0 (mm) L1 (mm) L2 (mm)

H
-m

o
d
e Experimental 30.76± 0.89 17.1± 1.2 5.11± 0.20

∆τ∥ 30.53± 0.15 16.98± 0.20 5.115± 0.032

∆vx instant 31.48± 0.25 16.84± 0.32 4.953± 0.027
∆vx gradual 31.26± 0.12 16.93± 0.17 4.953± 0.027

L
-m

o
d
e Experimental 23.15± 0.32 15.888± 0.087 27.49± 0.59

∆τ∥ 23.07± 0.22 16.092± 0.073 27.48± 0.26

∆vx instant 23.40± 0.49 16.06± 0.15 27.08± 0.54
∆vx gradual 22.79± 0.31 15.88± 0.11 27.40± 0.34
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equation for the parallel drainage function, equation (5.3) to

Fi(t) =


1 t < t0,i

exp
(
t0,i−t
τ∥,1

)
t0,i ≤ t < tch + t0,i

exp
(
−tch
τ∥,1

+
tch+t0,i−t

τ∥,2

)
t ≥ tch + t0,i

(5.33)

where tch = Rch/vx, and Rch is the x-position at which the parallel drainage times change.

By substituting the above expression for Fi(t) into equation (5.1), we follow the same

steps up to equation (5.12) as in the single-filament GM model. The dual timescale model

equivalent of equation (5.16) for the n-th order statistical moment is then given by

{B(x, t)n} =



A0 exp
(

nx
δx

)
τw

 tch´
X−1(x)

exp
(
− nt

τ∥,1

)
exp

(
−nX(t)

δx

)
dt

+
∞́

tch

exp
(
−ntch

τ∥,1
− n(t−tch)

τ∥,2

)
exp

(
−nX(t)

δx

)
dt

]
x < Rch

An
0 exp

(
nx
δx

)
τw

∞́

X−1(x)

exp
(
−ntch

τ∥,1
− n(t−tch)

τ∥,2

)
exp

(
−nX(t)

δx

)
dt x ≥ Rch

(5.34)

where the velocity is constant so that X(t) = vxt and X−1(x) = x/vx. This can be solved

to give general equation

{B(x, t)n} =


An

0
nτw

Gτ1

[
1 + exp

(
n(x−Rch)
vxτ∥,1

+ n(x−Rch)
δx

)(
Gτ2
Gτ1

− 1
)]

exp
(
− nx

vxτ∥,1

)
x < Rch

An
0

nτw
Gτ2 exp

(
nRch
vxτ∥,2

[
1− τ∥,2

τ∥,1

])
exp

(
− nx

vxτ∥,2

)
x ≥ Rch

(5.35)

used to find the profile, relative fluctuation level, skewness, and kurtosis. Gτi is given by

equation (5.18) with τ∥ swapped for τ∥,i. If τ∥,2 = τ∥,1, then Gτ2/Gτ1 = 1, and equation (5.35)

returns to equation (5.21), as expected. To match the simulated profile to the experimental

profile, the input variables that can be changed are Rch, τ∥,1, and τ∥,2. These are changed to

a precision of 1mm, 1 µs, and 1% of τ∥,1, respectively.

5.1.3.2 Single-filament dual velocity model

In this section, the single-filament GM model is extended by the introduction of a second

radial velocity, so that the blobs undergo a velocity change at some position, Rch, with a
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constant τ∥ through all of the SOL. They therefore have a velocity of vx,1 for x < Rch and

velocity vx,2 for x ≥ Rch. This changes the blob’s position equation to be∗

X(t) =


X1(t) =

´ t
0 vx,1(t

′) dt′ t < tch

X2(t) =
´ tch
0 vx,1(t

′) dt′ +
´ t
tch

vx,2(t
′) dt′ t ≥ tch

(5.36)

where tch = Rch/vx,1, which makes
´ tch
0 vx,1(t

′) dt′ = Rch.

{B(x, t)n} can again be calculated for the double velocity case with the original parallel

drainage term, equation (5.3), substituting equation (5.36) in place for equation (5.2) and

treating the two parts of the SOL separately. This gives us our starting equation as

{B(x, t)n} =



An
0 exp

(
nx
δx

)
τw

 tch´
x

vx,1

exp
(
−nt

τ∥

)
exp

(
−nX1(t)

δx

)
dt

+
∞́

tch

exp
(
−nt

τ∥

)
exp

(
−nX2(t)

δx

)
dt

]
x < Rch

An
0 exp

(
nx
δx

)
τw

∞́

tch+
x−Rch
vx,2

exp
(
−nt

τ∥

)
exp

(
−nX2(t)

δx

)
dt x ≥ Rch

(5.37)

where equation (5.36) is solved to yield X1(t) = vx,1t and X2(t) = Rch + vx,2(t − tch) for

constant velocities. The general equation for the radial statistical moments is then given by

{B(x, t)n} =


An

0
nτw

Gv1

[
1 + exp

(
n(x−Rch)
vx,1τ∥

+ n(x−Rch)
δx

)(
Gv2
Gv1

− 1
)]

exp
(
− nx

vx,1τ∥

)
x < Rch

An
0

nτw
Gv2 exp

(
nRch
vx,2τ∥

[
1− vx,2

vx,1

])
exp

(
−nx
vx,2τ∥

)
x ≥ Rch

(5.38)

where Gvi is given by equation (5.18) with vx swapped for vx,i. If vx,2 = vx,1, then Gv2/Gv1 =

1 and equation (5.38) returns to equation (5.21), just like the ∆τ∥ model. Here, Rch and τ∥

are again changed to 1mm and 1 µs, respectively, the same precision as in section 5.1.3.1,

but now vx,2 is changed to within 1% of vx,1.

5.1.3.3 Single-filament finite acceleration model

Because of some of the results of the instantaneous dual velocity model, that we will go

on to show in section 5.1.3.4, a gradual ∆vx model was implemented and tested. Here a

∗The i subscript has been removed for legibility.
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constant τ∥ is used across the SOL, and the filaments begin with velocity vx,1, as before. In

this model, there is a region in the SOL over which the filament undergoes a constant, and

finite, acceleration, ax, starting at Rch,1 and ending at Rch,2. This alters the equation for

the filament position to

X(t) =



X1(t) =
´ t
0 vx,1(t

′) dt′ t < tch,1

X2(t) =
´ tch,1
0 vx,1(t

′) dt′ +
´ t
tch,1

(
vx,1 +

´ t
tch,1

ax(t
′) dt′

)
dt′ tch,1 ≤ t < tch,2

X3(t) =
´ tch,1
0 vx,1(t

′) dt′

+
´ tch,2
tch,1

(
vx,1 +

´ t
tch,1

ax(t
′) dt′

)
dt′ +

´ t
tch,2

vx,2(t
′) dt′ t ≥ tch,2

(5.39)

where ax is a constant acceleration between tch,1 and tch,2 and 0 for all other time. We pre-

scribe ax, vx,1, Rch,1, and Rch,2, so other terms can be calculated before hand. As such, tch,1 =

Rch,1/vx,1 as previously, vx,2 =
√

v2x,1 + 2ax(Rch,2 −Rch,1), and tch,2 =
(
vx,2 − vx,1

)
/ax +

tch,1. As such, equation (5.39) can be simplified to X1(t) = vx,1t, X2(t) = vx,1t + ax(t −

tch,1)
2/2, and X3(t) = Rch,2 + vx,2(t− tch,2).

In deriving an expression for the radial statistical moments, the SOL must be split into

three regions using equation (5.39) for the filaments position. The n-th expectation value is

then given by

{B(x, t)n} =



An
0 exp

(
nx
δx

)
τw

 tch,1´
x

vx,1

exp
(
−nt

τ∥

)
exp

(
−nX1(t)

δx

)
dt

+
tch,2´
tch,1

exp
(
−nt

τ∥

)
exp

(
−nX2(t)

δx

)
dt

+
∞́

tch,2

exp
(
−nt

τ∥

)
exp

(
−nX3(t)

δx

)
dt

 x < Rch

An
0 exp

(
nx
δx

)
τw

 tch,2´
X−1

2 (x)

exp
(
−nt

τ∥

)
exp

(
−nX2(t)

δx

)
dt

+
∞́

tch,2

exp
(
−nt

τ∥

)
exp

(
−nX3(t)

δx

)
dt

 Rch,1 ≤ x < Rch,2

An
0 exp

(
nx
δx

)
τw

∞́

tch,2+
x−Rch,2

vx,2

exp
(
−nt

τ∥

)
exp

(
−nX3(t)

δx

)
dt x ≥ Rch,2

(5.40)
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where the integral limit X−1
2 (x) is the inverse function of X2(t) in equation (5.39), given by

tch,1 +

(√
v2x,1 + 2ax(x−Rch,1)− vx,1

)
/ax.

This is solved to give the general form for the gradual ∆vx case as

{B(x, t)n} =



An
0

nτw

{
Gv1

[
1− exp

(
n(x−Rch,1)

vx,1τ∥
+

n(x−Rch,1)
δx

)]
× exp

(
− nx

vx,1τ∥

)
+
√

nπδx
2ax

E

×

[
erf

(√
n

2axδxτ2∥
T2

)
− erf

(√
n

2axδxτ2∥
T1

)]
+Gv2 exp

(
n(x−Rch,2)

δx
− ntch,2

τ∥

)}
x < Rch,1

An
0

nτw

{√
nπδx
2ax

E

×

[
erf

(√
n

2axδxτ2∥
T2

)
− erf

(√
n

2axδxτ2∥
TX2

)]
+Gv2 exp

(
n(x−Rch,2)

δx
− ntch,2

τ∥

)}
Rch,1 ≤ x < Rch,2

An
0

nτw
Gv2 exp

(
nRch,2

vx,2τ∥
− ntch,2

τ∥

)
exp

(
− nx

vx,2τ∥

)
x ≥ Rch,2

(5.41)

where

E = exp

n(axt1τ∥ − vx,1τ∥ − δx)
2

2axδxτ2∥
+

n(2x− axt
2
1)

2δx

 , (5.42)

T1 = vx,1τ∥ + δx, T2 = axτ∥(tch,2 − tch,1) + vx,1τ∥ + δx, and TX2 = axτ∥(X
−1
2 (x) − tch,2) +

vx,1τ∥ + δx. For this model, Rch,1 and Rch,2 are each changed to the nearest 1mm, τ∥ is

changed to within 1 µs, and ax is changed to within 2 significant figures.

5.1.3.4 Adjusted single-filament model results

The dual timescale model was applied to the H-mode single blob base case with parameters

Rch = 34mm, τ∥,1 = 71 µs, and τ∥,2 = 19 µs ≈ 0.27τ∥,1, and the L-mode single blob case

with Rch = 28mm, τ∥,1 = 36 µs, and τ∥,2 = 66 µs ≈ 1.83τ∥,1, both with the Heaviside

waveform. This can be seen in figures 5.10a and 5.11a. The evaluations from equation (5.35)

are included as blue circles, and the simulated profiles are shown with solid blue lines, with

the fit parameters in table 5.8. The prediction of the model is found to accurately predict

the simulated profiles in both cases, and agrees with the general conclusion of section 5.1.1

- namely that in order for the far SOL to decrease the parallel timescale must decrease
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(τ∥,2 < τ∥,1) and vice versa.

Next, we notice the Rch position used in the simulations is set about 3.5mm and 5mm

further than the x0 position of the profile fit for each of the two discharges. This is likely an

artefact of how the position of the blob with the Heaviside approximation is calculated, as

explored in section 5.1.2. When changing for the double exponential or Gaussian waveform,

then the Rch moves closer to the x0 fit, becoming 31mm and 30mm, respectively, as the

defined positions of these waveforms moves towards the centre-of-mass position. The τ∥

parameters also decrease slightly with these two waveforms, but each is less than 10% and

doesn’t affect the qualitative outcome of the results.

The simulated profiles for the H-mode and L-mode profiles are shown as an orange solid

line in figures 5.10b and 5.11b, respectively, with the fit parameters for the profiles displayed

in table 5.8. Here, the simulation parameters required were τ∥ = 52 µs, Rch = 30mm,

and vx,2 = 0.37vx,1 ≈ 98.2m/s for the decreasing decay length profile, and τ∥ = 45 µs,

Rch = 21mm, and vx,2 = 1.42vx,1 ≈ 602m/s for the increasing decay length profile. Here

Rch was set a few mm in-front of the x0 position of the profile, opposite to the dual parallel

timescale scenario, but we still see the same dependence on the decay length with the radial

velocity, namely that a decreased velocity can reduce the decay length past the Rch position,

and an increased velocity can increase the decay length.

If we look at how the profile shape is altered, we see a deviation from an exponential up

to x0 in both examples. When the velocity decreases, the near SOL decay length starts to

increase as we approach Rch. As such a smaller τ∥, compared to a single exponential with

one velocity with this decay length, is required. This is caused by the relative increase in

the signal contribution from filaments that have slowed down since passing the Rch position.

As their velocity has decreased, they are at a smaller x position for a given t′, and hence

for a given amplitude. In some cases, if the ratio of vx,2/vx,1 is too small this flattening can

increase so much as to give an increase of density profile with increasing x in the middle of

the SOL, which has never been recorded in experiment. This could be exacerbated by the

instantaneous change in the filaments’ velocities, which would require some instantaneous

and infinite force to act on them. An attempt to alleviate this issue slightly is explored

later in this section. In the opposite situation where the decay length increases in the far

SOL, necessitating an increasing filament velocity, the near decay length now decreases as it

approaches x0, and a comparatively larger τ∥ is required in this part of the SOL.
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The estimations for the dual velocity model from equation (5.38) have been added to

figures 5.10b and 5.11b as orange triangles, and accurately follow the simulations’ profiles,

even accurately recreating the small increase before Rch in the decreasing decay length

example. This can be explicitly seen in equation (5.38). For example, in the case of a

decreasing profile decay length, vx,1 > vx,2, and therefore the ratio Gv2/Gv1 > 1. As such,

the coefficient in front of the first exponential term is positive, leading to an addition of the

profile as a function of x up to Rch when compared to the single velocity / decay length

example.

The simulated profiles for the finite acceleration H-mode and L-mode experiments are

added to figures 5.10c and 5.11c, respectively, as solid green lines green line, with the fit

parameters included in table 5.8. The H-mode profile used τ∥ = 57 µs, Rch,1 = 13mm,

Rch,2 = 34mm, and ax = −1.5× 106m/s/s (which gives vx,2 = 86.2m/s ≈ 0.32vx,1), and the

L-mode profile required τ∥ = 44 µs, Rch,1 = 12mm, Rch,2 = 32mm, and ax = 6.7×106m/s/s

(so vx,2 = 669m/s ≈ 1.58vx,1). In each case, the simulated near SOL profile is brought closer

to an exponential. This is particularly important in the H-mode profile, with a decreasing

far SOL decay length. The ratio between vx,2 and vx,1 can now be reduced further, without

the profile in front of Rch increasing too much, by increasing the distance over which the

filaments decelerate. Again, as with the instant ∆vx case, the reduction of the velocity

produces a reduced decay length, and vice versa.

The estimates for the finite acceleration model from equation (5.41) are also included in

figures 5.10c and 5.11c as green squares and accurately predict the simulated profiles. Whilst

this form of the equations in this model are more complicated than the instantaneous ∆vx

model equivalent of equation (5.38), it does help to match the near SOL profile shape more

accurately, particular in the H-mode example.

For each of the three cases we study the higher order moments of each of these signals,

starting with the H-mode base case, with the decreasing decay length, shown in figure 5.12.

For the dual τ∥ case, each of the higher order profiles increases with distance into the SOL

up to Rch, after which they are a constant value. Conversely, the profiles decrease for both

changing velocity cases, up to Rch where they are again constant. In each case, the values

of the radial statistics match closely to those predicted by the model, which are included

in the figure. The gradual change of the profiles up to the flatter far SOL region is due to

the finite extent of the blob. The model accurately predicts the rise/decline of the statistic
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Figure 5.12: Profiles in the simulated SOL for the 1D single blob case (solid lines) for shot
# 36342, t ∈ [2.5, 2.7]s for: the relative fluctuation levels (a); skewness (b); and kurtosis (c).
The values of kurtosis against skewness are shown (d) with the theoretical K = 3S2/2 + 3
relation added (black dashed). The expected values derived from the model are included as
symbols in (a–c).

with distance into the SOL with the inclusion of the first exponential term inside equations

(5.34), (5.37) and (5.41) (as well as the weak x dependence in the TX2 term in the latter).

It also captures the flat far SOL statistic for each case, as all x dependence cancels out in

this region without the inclusion of filament velocity distributions.

Whilst the increase of the higher order statistics profiles in the near SOL, caused by the

dual parallel timescale model with τ∥,2 < τ∥,1, gives the trend seen in the experimental results

reported in section 4.4.2.1, the flat part of the profiles in the far SOL does not match this

trend. This is even worse for the case where a decreasing velocity is used, as a decrease in

relative fluctuation level, skewness, and kurtosis is not observed experimentally. It is difficult

to tell what the behaviour of the higher order statistical profiles will be from the equations

for {Bn} in the regions x < Rch (x < Rch,2 for the gradual ∆vx case), as the terms in the
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Figure 5.13: Probability distribution functions for different single locations in the SOL for
the 1D single blob case (coloured markers) for shot # 36342, t ∈ [2.5, 2.7]s. The Gamma
functions calculated from the input parameters, k and θ, are included (dashed lines). The ρ
positions are at R−Rsep = [11, 24, 36, 49]mm.

equation do not cancel to give elegant expressions. However, for the far SOL region, x > Rch

(Rch,2), they do. For example, for the ∆τ∥ case in the far SOL, using equation (5.35) with

n = 2, 3, and 4 to obtain expressions for the skewness and kurtosis where x ≥ Rch are

2
√
2τw/3Gτ2 and τw/Gτ2 , respectively, with no variation in or dependence on x. This gives

the flat K = 9/8S2 scaling recovered in section 5.1.1, seen in figure 5.12d, rather than the

experimentally measured 3S2/2. We can again conclude that the single blob case is unable

to correctly reconstruct the experimentally measured statistics in the SOL.

We can also tentatively make the assumption that a decrease in the velocity is unlikely

to be the cause of the deviation from an exponential profile when the far SOL decay length

decreases, due to the adverse effect this has on the statistical profiles, and instead is most

likely caused by a decrease in the parallel timescales. It is also noted that here, changing

from the Heaviside approximation to the Gaussian waveform of the 1D blob alters the effect

of the radial profiles for the dual τ∥ case. Rather than the increase in each of the moments,

the symmetry of the blob shape means here we do not see an increase in any of the higher

order moments, even though the mean (profile) still decreases for x > Rch. The relative

fluctuation level remains approximately equal, and the skewness and kurtosis both decrease

slightly. This is explored in further detail in the 2D case, section 5.2.4 which uses a 2D

Gaussian for the blobs’ waveforms.

We also study the single point PDFs for each of the three single-blob cases described in
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Table 5.9: A table showing the shape (k) and scale (θ) input parameters (from the 5MW
H-mode discharge # 36342, t ∈ [2.5, 2.7]s) for the Gamma distribution functions for different
locations in the SOL for three 1D single blob case simulations with radial variation in τ∥ or
vx. The PDFs are shown in figure 5.13.

ρ 1.02 1.04 1.06 1.08

Simulation type k θ k θ k θ k θ

∆τ∥ 4.23 0.236 3.76 0.266 2.34 0.428 2.36 0.424

∆vx instant 4.02 0.249 5.27 0.190 6.51 0.154 6.53 0.153

∆vx gradual 4.51 0.222 5.97 0.168 7.27 0.138 7.28 0.137

table 5.9, which also gives the Gamma input parameters. The single point PDFs are shown

in figure 5.13. As we now have radial variation in either τ∥ or vx, the PDFs are no longer

identical and retain some variation with distance into the SOL. However, as with the relative

fluctuation levels, which we have shown the Gamma PDFs to follow, it is only the dual τ∥

case that results in Gamma distributions deviating further from normal distributions with

distance into the SOL, in agreement with experimental results as k decreases with distance

into the scrape-off layer. This lends further evidence towards a decrease in filament velocity

not being the cause of the change in profile shape in this single blob case, but instead is

caused by a decrease in the parallel timescale, consistent with the experimental results from

Wynn et al. [77]. It is also noted that as the ρ = 1.06 and ρ = 1.08 positions are at a radius

larger than Rch in all cases, the PDFs at these two locations are almost identical in the single

blob case.

A similar analysis was performed using the measurements from the L-mode discharge

# 36344. The radial profiles for the higher order moments for each simulation type in the

1D single blob case using the L-mode parameters are also evaluated and displayed in figure

5.14. Each profile shows the opposite behaviour in the far SOL now the second decay length

has increase, with each moment decreasing for the increased τ∥ case, and decreasing for the

increased vx cases. Each profile is flat throughout the far SOL where x ≥ Rch, and each

falls short of the K = 3S2/2 scaling expected for Gamma distributed signals, showing how

the single blob case is unable to accurately recreate experimental signals and requires the

velocity distribution and amplitude distribution to correct these shortcomings. In the single

blob model however, we might conclude that in this case, the flattening of the far SOL profile

cannot be caused by an increase in the parallel timescale, as this causes an uncharacteristic
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Figure 5.14: Profiles in the simulated SOL for the 1D single blob case (solid lines) for shot
# 36344, t ∈ [2.5, 2.7]s for: the relative fluctuation levels (a); skewness (b); and kurtosis (c).
The values of kurtosis against skewness are shown (d) with the theoretical K = 3S2/2 + 3
relation added (black dashed). The expected values derived from the model are included as
symbols in (a–c).

decrease in the higher order statistical moments, but an increase in the radial velocity could

be the cause, as this also causes the moments to increase with distance into the scrape-off

layer.

The radial behaviour of the statistics is also reflected in the single point PDFs, figure

5.15, with the input parameters shown in table 5.10. Firstly, we note how all the PDFs

show a more intermittent and flattened profile shape than in figure 5.13 due to the relative

decrease in k and increase in θ, likely due to the relative decrease in the duration time of

the filaments, τd, which is proportional to the filaments’ size and inversely proportional to

the velocity (τw was kept constant at 10 µs between all 1D simulations). Whilst the PDFs

appear more flattened than compared with experimental results, this can be tweaked by

changing τw, which has no effect on any of the radial profile shapes, only their absolute
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Table 5.10: A table showing the shape (k) and scale (θ) input parameters (from the L-mode
discharge # 36344) for the Gamma distribution functions for different locations in the SOL
for three 1D single blob case simulations with radial variation in τ∥ or vx. The PDFs are
shown in figure 5.15.

ρ 1.02 1.04 1.06

Simulation type k θ k θ k θ

∆τ∥ 3.08 0.324 3.61 0.277 3.61 0.277

∆vx instant 2.81 0.356 2.53 0.395 2.52 0.396

∆vx gradual 2.61 0.383 2.33 0.428 2.32 0.431
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Figure 5.15: Probability distribution functions for different single locations in the SOL for
the 1D single blob case (coloured markers) for shot # 36344, t ∈ [2.5, 2.7]s. The Gamma
functions calculated from the input parameters, k and θ, are included (dashed lines). The ρ
positions are at R−Rsep = [14, 29, 43]mm.

values. Whether this assumption holds in experiment due to larger filament numbers that

this would produce in the scrape-off layer, which in turn alters the amount of plasma-wall

interaction, or plasma-neutral recycling, for example, is out of the scope of this model.

Next, the changing velocity cases show a flattening of the PDFs for higher radial positions

reflecting the increase in the relative fluctuation levels, contrasted with the decreasing relative

fluctuation level in the dual τ∥ case, which results in the flatter PDFs at lower radial positions.

This further shows how, in the single blob case, an increased density profile decay length

cannot be caused by an increase in parallel timescales alone.
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Table 5.11: A table showing the fit parameters for the base case non-exponential experimental
profiles, and the profiles generated in the 1D independent blob case using the Heaviside
approximation. For the 5MW H-mode discharge, when x = 31mm, ρ ≈ 1.052, and x =
23mm, ρ ≈ 1.032 in the L-mode discharge.

Profile type x0 (mm) L1 (mm) L2 (mm)
H
-m

o
d
e Experimental 30.76± 0.89 17.1± 1.2 5.11± 0.20

∆τ∥ 30.58± 0.37 17.17± 0.53 5.116± 0.080

∆vx instant 30.97± 0.98 17.0± 1.3 5.16± 0.22
∆vx gradual 30.20± 0.92 17.6± 1.4 5.12± 0.20

L
-m

o
d
e Experimental 23.15± 0.32 15.888± 0.087 27.49± 0.59

∆τ∥ 21.86± 0.58 16.01± 0.21 27.97± 0.67

∆vx instant 23.21± 0.28 16.035± 0.092 27.57± 0.33
∆vx gradual 23.51± 0.41 15.89± 0.13 27.39± 0.49

5.1.4 Adjusted distributed-filament models

In this section, we re-introduce the distributed filament attributes to the simulations for

the same non-exponential profiles as in section 5.1.3. The input parameters to the relevant

distributions for the independent blob case are given in table 5.2. Again, it was tested

adding in each filament attribute distribution independently, and the same conclusion as

the one in section 5.1.2 was reached; namely that introducing distributions for the radial

size and amplitude did not change the normalised profile outside the error of the fits. It

was also seen again that the normalised profile did not change between adding in the radial

velocity distribution in isolation when compared with adding in all three filament attribute

distributions independent to one another. Finally, the difference between the profiles in

the dependent and independent cases were also within error of the fit. As such, only the

experimental profile and the results from the independent blob case with all three filament

attributes randomly drawn from distributions are included in this section, for both double

decay length discharge examples (5MW H-mode # 36344 and L-mode # 36342). The fit

parameters for the simulated profiles in each of the models in this section are shown in table

5.11.

In order to derive the equations for the radial profile and higher order statistics, we take

the same approach as in section 5.1.2. Including the radial diameter distribution doesn’t

change the form of the equations for {B(x, t)n}, the exponentially distributed filament am-

plitudes requires the result of equation (5.26) to be included, and including the radial velocity
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distribution introduces the sum over the relevant velocities and the equation for the lognor-

mal distribution, equation (4.14).

5.1.4.1 Distributed-filament dual timescale model

For the distributed-filament dual timescale model, we start with equation (5.34), and get

{B(x, t)n} =
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(5.43)

for n-th order expectation value of the profiles. The input variables to the simulations are

Rch, τ∥,1 and τ∥,2, varied to the nearest 1mm, 1 µs, and 1% of τ∥,1.

5.1.4.2 Distributed-filament dual velocity model

For the distributed filament dual velocity model, the starting equation of (5.37) for the

single-filament equivalent is used. Including the changes for the amplitude and velocity

distributions gives

{B(x, t)n} =


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(5.44)

In these simulations, the input variables are Rch, τ∥, and vx,2, changed to within 1mm, 1 µs,

and 1% of vx,1, respectively.
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5.1.4.3 Distributed-filament finite acceleration model

For the last 1D simulation type, the expression for the distributed-filament finite acceleration

model is given by taking the result of the single-filament analogue, equation (5.41). The result

is given by

{B(x, t)n} =
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(5.45)

for ax > 0, where where E is given by equation (5.42), and T1, T2, and TX2 are as defined in

section 5.1.3.3. In this model, Rch,1 and Rch,2 are each changed to the nearest 1mm, τ∥ is

changed to within 1 µs, and ax is changed to within 2 significant figures.

Equation (5.45) is only defined for positive accelerations. In the case of ax < 0, the

scenario had to be changed slightly. In the single-filament finite acceleration case, it was

simple to calculate what the final velocity would be for all the filaments once they had

undergone acceleration ax through a displacement Rch,2 − Rch,1. Now that a distribution

of velocities is included, some filaments would undergo a direction change if their starting

velocity was sufficiently low, causing them to change direction and propagate back towards

the separatrix, which has never been seen in experiments performed in the low-field side

scrape-off layer. Rather than place a minimum radial velocity, vx,min, of zero which would

cause slower blobs to stop at some position in the SOL, a minimum velocity of vx,min = 0.1vx,1
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Figure 5.16: Electron density profile for the 5MW H-mode discharge # 36342 (black dashed).
Three simulation profiles from the 1D independent blob case are included: changing τ∥ (a,
blue); instantaneously changing vx (orange); and gradually changing vx (green). The x0
parameters (coloured triangles), Rch values (coloured vertical lines), and the outputs from
the statistical framework (coloured shapes) are included.

is used instead so that all filaments continue to propagate with some small, finite velocity.

This means that an analytical expression for the statistical moments cannot be found when

ax < 0.

5.1.4.4 Adjusted distributed-filament model results

The simulated profiles for the 5MW H-mode discharge with the decreasing profile decay

legnth are shown in figure 5.16 with the fit parameters in table 5.11. For the dual τ∥ case

τ∥,1 = 110 µs, τ∥,2 = 10 µs ≈ 0.091τ∥,1, and Rch = 36mm. For the instantly changing

velocity case, τ∥ = 43 µs, vx,2 = 0.12vx,1, and Rch = 31mm. For the gradually changing

velocity scenario, the acceleration used was ax = −4 × 108m/s/s between Rch,1 = 30mm

and Rch,2 = 45mm, and τ∥ = 45 µs.
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We find that the overall result of the single blob case applies once the filament distribu-

tions are introduced. This is that a reduction in either τ∥ or vx is required at some point in

the SOL to counter the natural flattening of the profiles caused by the introduction of the

velocity distribution, as well as a longer τ∥ required. Of the three profiles, the one from the

∆τ∥ case matches the experimental profiles more closely than either of the ∆vx cases. By

using two τ∥ values in the SOL, the simulated profile in the independent blob case can again

be matched to the experimental one closely, especially in the near SOL where the flattening

effect from the introduction of the radial velocity, seen in section 5.1.2, is balanced by the

decreasing effect up to Rch caused by the decrease in τ∥. In the far SOL, the flattening

caused by the velocity distribution is more pronounced, with no third timescale to counter

it.

In the distributed filament dual velocity case, the reduction in velocity was larger than in

the single blob case and the natural profile flattening was more pronounced, leading to a rise

in the profiles just before the x0 position. For a reduction in τ∥, such as through a reduction

in the connection length, this does not happen, although the natural flattening in the far SOL

profile can be seen here. For the changing velocity cases, the second velocity and velocity

distribution reinforce one another in the profile before x0. The only way to recreate the much

shorter decay length in the far SOL is to have a large reduction in velocity, which results in

a more increased flattening in the near SOL, and here even an increase in the profile just

before x0. This is not a feature seen in experimental profiles, and as such we would conclude

that such a large reduction of filament velocity is unlikely to be the cause of the profile decay

length decrease. A gradually changing velocity was not able to reduce the flattening effect,

as it did in section 5.1.2, due to the large reduction in velocity required by the large decrease

in decay length. With the specific acceleration, velocity distribution, and displacement

over which the acceleration is applied, only filaments with a vx,1 ⪆ 3482m/s finish with

vx,2 > 0.1vx,1, which, for the given log-normal distribution of velocities, is ≈ 0.05%. From

these observations, it is unlikely that a velocity reduction of the filaments is responsible for

causing such a large decrease in the plasma density profile in the far SOL, and is more likely

caused by the reduction in the parallel timescale.

Studying the higher order statistical moments, figure 5.17 we now see that each of the

profiles rise with increasing distance into the SOL for each of the simulation types with the

introduction of the velocity distributions. We also see that each of the simulations now follows



CHAPTER 5. SOL SIMULATIONS 137

10 0 10 20 30 40 50
R Rsep (mm)

1

2

3

4

5
I R

M
S/I

a

10 0 10 20 30 40 50
R Rsep (mm)

5

10

15

20

Sk
ew

ne
ss

b

vx instant
vx gradual

10 0 10 20 30 40 50
R Rsep (mm)

0

200

400

600

800

Ku
rto

sis

c

5 10 15 20
Skewness

0

200

400

600

800

Ku
rto

sis

d

Figure 5.17: Profiles in the simulated SOL for the 1D independent blob case (solid lines)
for shot # 36342, t ∈ [2.5, 2.7]s for: the relative fluctuation levels (a); skewness (b); and
kurtosis (c). The values of kurtosis against skewness are shown (d) with the theoretical
K = 3/2S2 + 3 relation added (black dashed). The expected values derived from the model
are included as symbols in (a–c).

the expected K = 3S2/2 scaling now the amplitude distributions are included. The main

difference between the profiles is that the dual τ∥ case continuously rises from the separatrix

all the way through the SOL, whereas both the double vx cases exhibit a slight decrease just

before x ≈ 30mm, the Rch position, which reflects the increase in the density profiles seen in

these simulations. This is seen in both the simulated profiles, and the expected profile from

the model’s equations. Now we see that the velocity distribution causes the rise in the higher

order moments and it is strong enough to overcome the reduction in the velocity that would

be needed to cause the reduction in the profile decay length. As expected, the single point

PDFs also show a further deviation from the normal distribution with increasing distance

into the SOL, following the increase in the relative fluctuation levels. These are shown in

figure 5.18, with the k and θ input parameters in table 5.12. In the single blob case, it was
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Table 5.12: A table showing the shape (k) and scale (θ) input parameters (from the 5MW H-
mode discharge # 36342, t ∈ [2.5, 2.7]s) for the Gamma distributions functions for different
locations in the SOL for three 1D independent blob case simulations with radial variation in
τ∥ or vx. The PDFs are shown in figure 5.18.

ρ 1.02 1.04 1.06 1.08

Simulation type k θ k θ k θ k θ

∆τ∥ 2.26 0.442 1.46 0.687 0.420 2.38 0.0798 12.5

∆vx instant 1.24 0.809 1.14 0.880 0.384 2.61 0.0679 14.7

∆vx gradual 1.31 0.763 1.32 0.759 0.273 3.67 0.0483 20.7
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Figure 5.18: Probability distribution functions for different single locations in the SOL for the
1D independent blob case (coloured markers) for shot # 36342, t ∈ [2.5, 2.7]s. The Gamma
functions calculated from the input parameters, k and θ, are included (dashed lines). The ρ
positions are at R−Rsep = [11, 24, 36, 49]mm.

only the dual τ∥ scenario that reported this increase, but now the far SOL sees an increased

intermittency, with only the fastest of the filaments able to propagate this far into the SOL

to contribute to very high Ĩ contributions to the PDFs. In experiment, PDFs this positively

skewed are not seen. This can be counteracted in the simulations by increasing τw, having

no effect on the shapes of any of the statistical profiles, only changing their absolute values.

However, increasing τw does increase the computation time of the simulations, as this scales

with the number of filaments generated.

Finally, we perform the same 1D Heaviside simulation experiments introducing the fila-

ments’ distributions for each attribute on the L-mode discharge # 36344, t ∈ [2.5, 2.7]s, to

show that the model can still be used with filament distributions when the far SOL decay
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Figure 5.19: Electron density profile for the L-mode discharge # 36344 (black dashed).
Three simulation profiles from the 1D independent blob case are included: changing τ∥ (a,
blue); instantaneously changing vx (orange); and gradually changing vx (green). The x0
parameters (coloured triangles), Rch values (coloured vertical lines), and the outputs from
the statistical framework (coloured shapes) are included.

length increases instead of decreases. We again saw no deviation between the profiles’ shapes

with no distributions added as we did when the amplitude and radial diameter distributions

were added in independently; nor any deviation with only the radial velocity distribution

included and all the distributions included; nor any significant difference between the inde-

pendent and dependent case, other than changes in the absolute values of the profiles. As

such, only the independent cases with all distributions included are presented. The profiles

of the simulations are shown in figure 5.19, and the fit parameters included in table 5.11.

The dual timescale scenario required τ∥,1 = 51 µs, τ∥,2 = 70 µs and Rch = 34mm; the instant

velocity change case used τ∥ = 56 µs, vx,2 = 1.18vx,1, and Rch = 23mm; and the gradu-

ally changing velocity scenario needed ax = 2.6 × 106m/s/s between Rch,1 = 19mm and

Rch,2 = 39mm, and τ∥ = 55 µs.
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In this example, all the decay lengths and x0 parameters measured in the simulations are

within error of the fits to the experimental profile, and from the profiles alone it is difficult

to conclude whether the changing profile could be caused by the change in τ∥ or vx from

using the profile alone. The effects of the velocity distribution increasing the decay length

are countered by the increase in vx which causes a decrease in the decay length, and the

near SOL fits much more closely to double exponential form of equation (5.32), especially

compared with the changing velocity cases in figure 5.19. Each of the higher order statistical

moments, shown in figure 5.20∗, increase as distance into the SOL increase, in agreement with

experimental measurements, conversely to the single blob case, as in figure 5.14. We again

see that the addition of the velocity distribution is responsible for each of these increasing

with distance, even in the dual τ∥ scenario where we previously recorded a decrease in these

quantities. This again makes it difficult to determine whether it is the change in velocity

or the change in parallel timescale responsible for the change in profile decay length. The

kurtosis 3S2/2 scaling is also reintroduced with the inclusion of the amplitude distribution

in each of the three simulation types.

We also study the single point PDFs, shown in figure 5.21, with the input parameters in

table 5.13. They all show an increased flattening with distance into the SOL, as expected

from the relative fluctuation level measurements, or θ. As in the previous example, they start

from a much more flattened distribution at the lowest ρ than the same scenario without the

velocity distributions, and can be altered by changing the τw parameter of the simulations

without affecting the shapes of the profiles. As the velocities are drawn from log-normal

distributions, and the mean of the log-normal distribution, α exp
(
σ2/2

)
, is always larger

than the distribution’s median, α, then more than half the filaments generated will always

have a velocity lower than the mean, the value used in the single blob case. This means that,

for the same density profile, more than half the velocities always have a velocity lower than

the mean velocity, so the k and θ input parameters to the Gamma distribution will always

be lower and higher, respectively, than compared to the single blob case.

As it is thought that the divertor collisionality can play a role in changes to upstream

density profiles, we investigate where the Rch position connects along magnetic field lines

from the outboard midplane to the divertor in each of the two non-exponential profiles

∗In the gradual ∆vx case, the model was unable to correctly predict the profiles for Rch,1 ≤ x < Rch,2,
thought to be caused by the rounding errors introduced when calculating erf(T0) and erf(T2) in equation
(5.45).
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Figure 5.20: Profiles in the simulated SOL for the 1D independent blob case (solid lines)
for shot # 36344, t ∈ [2.5, 2.7]s for: the relative fluctuation levels (a); skewness (b); and
kurtosis (c). The values of kurtosis against skewness are shown (d) with the theoretical
K = 3S2/2 + 3 relation added (black dashed). The expected values derived from the model
are included as symbols in (a–c).

Table 5.13: A table showing the shape (k) and scale (θ) input parameters (from the L-mode
discharge # 36344) for the Gamma distribution functions for different locations in the SOL
for three 1D independent blob case simulations with radial variation in τ∥ or vx. The PDFs
are shown in figure 5.21.

ρ 1.02 1.04 1.06

Simulation type k θ k θ k θ

∆τ∥ 1.48 0.677 1.12 0.893 0.885 1.13

∆vx instant 1.49 0.670 1.056 0.947 0.827 1.21

∆vx gradual 1.46 0.683 0.992 1.01 0.821 1.22
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Figure 5.21: Probability distribution functions for different single locations in the SOL for the
1D independent blob case (coloured markers) for shot # 36344, t ∈ [2.5, 2.7]s. The Gamma
functions calculated from the input parameters, k and θ, are included (dashed lines). The ρ
positions are at R−Rsep = [14, 29, 44]mm.

for both the single blob and independent scenarios. Figure 5.22 shows a radial-poloidal

cross-section of the divertor region of ASDEX Upgrade, with the Rch positions plotted with

coloured markers. The divertor location is found using a second order Runge-Kutta (RK2)

method [87], with step-size dl = 1mm, tracing from Rch along the magnetic field to the first

contact with a material surface.

Rch is towards the end of the last divertor tile in all but one of the simulations with a

double parallel timescale, indicating that any change in τ∥ could be caused by the change

in surface material from the divertor to the first wall, through changes in the sheath/pre-

sheath, for example. The connection lengths are shown in figure 5.23, and this point at the

end of the divertor tile is shown with a star. For larger radii than this, the reduction in

connection length is not so strong as to be the sole cause of any decrease in the profile decay

length for shot # 36342, t ∈ [2.5, 2.7]s as a similar connection length reduction is seen in

the other two examples where the profile decay length either doesn’t change or increases.

As such, the change in the connection length alone cannot cannot be the sole cause of the

decrease in profile decay length. We also note that such changes in the connectivity of the

upstream SOL to the divertor could be through increased poloidal flux expansion. This

causes a stretching of filament cross-sections and is strongest in the vicinity of the x-point,

affecting the near-SOL the most (for example, Ref. [104]). This is why some studies only

measure the connection length as far as the x-point height. The crosses on figure 5.23 show
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Figure 5.22: Image showing where the Rch point from the outboard midplane connects along
field lines to the divertor for the 1D single blob case for: shot # 36342, t ∈ [2.5, 2.7]s (a); and
shot # 36344, t ∈ [2.5, 2.7]s (b); and the 1D independent case for: shot # 36342, t ∈ [2.5, 2.7]s
(c); and shot # 36344, t ∈ [2.5, 2.7]s (d). The simulations included are: the ∆τ∥ case (orange
circle); the ∆vx instant case (green triangle); and the ∆vx gradual case (red plus). The blue
line shows the location of the separatrix.

R−RSOL position connects to the divertor at the approximate x-point height.

Here, the connection lengths are measured from the lithium beam location (low-field

side SOL at a height of z = 0.326m) to the divertor or first wall. It does not account for

any non-axisymmetric structures in the tokamak, such as coils, ICRH antennas, diagnostics,

etc. The last measurement on each connection length, at the largest R −Rsep is just inside

the limiter shadow, and shows a steep decrease in the connection length because of this. If

instead of measuring from the height of the lithium beam, the connection length is measured

from the GPI viewing location, the overall trend of the connection lengths with distance into

the SOL does not change, and only acts to decrease the lengths by approximately 6–7m.

The only dual parallel timescale simulation in which Rch is moved further towards the

outer strike point is L-mode shot # 36344, where it has moved approximately half way down

the tile, however we might consider the simulation type with distributions included as the

more realistic, especially when considering how the profiles of the higher order statistics
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Figure 5.23: The connection lengths from the Lithium beam diagnostic to the divertor / first
wall as a function of distance into the scrape-off layer. The points where the connection to
the wall is the same height as the x-point (crosses) and where the connection is at the end
of the second divertor tile (stars) are added. The last connection length measurement is just
inside the limiter shadow.

are affected. The Rch position for the instantly changing velocity case is markedly different

between the two shots, being approximately halfway up the second divertor tile for shot #

36342, and at where the two divertor tiles meet for shot # 36344, always slightly behind

where Rch was required for changing τ∥ in both discharges. As positions correspond to the

blobs’ maximum positions in these simulations, rather than the centre-of-mass positions, any

instance of Rch being in front of x0 could be due to this difference.

5.2 2D theoretical framework

In this section, we introduce an extra dimension into the simulation domain, where y is

taken to be the bi-normal direction, analogous to the poloidal direction in the experimental

measurements. We use the same input parameters for the filaments as in the 1D case, as

displayed in the tables at the start of chapter 5. We start with the general equation for a

blob, B, the 2D analogy of equation (5.1), given by

Bi(x, y, t) = A0,iΛ(x−X(t), y − y0 − Y (t), δx,i, δy,i)Fi(t). (5.46)

We can re-use the same equations (5.3) and (5.33) for Fi(t), and equations (5.2), (5.36),

and (5.39) for both X(t) and Y (t), which describe the filament positions. The y0 term has
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also been introduced, which is the y position of the filaments as it crosses the separatrix,

Xi(t− t0,i) = 0. We choose Λ to be a two-dimensional Gaussian function [112,116] with zero

rotation, given by

Λ(x, y, wx,i, wy,i) = exp

−
(
x−Xi(t

′)
)2

w2
x,i

−
(
y − y0,i − Yi(t

′)
)2

w2
y,i

 (5.47)

where w2
x = δ2x/4 ln(2) and w2

y = δ2y/4 ln(2) so that the full-width at half maximum will be

equal to δ, as in the experimental filament size measurements.

All the assumptions used in the 1D framework, such that the system is ergodic, filaments

are independent and invariant under transform as they propagate through the scrape-off

layer, etc., still hold in the 2D frame, and the 2D version of equation (5.11) for the time

average, and therefore the profile of the simulated domain, for some y-position, y∗, is written

as

Θ(x) = {B(x, y∗, t)}

=
1

τw

ˆ ∞

−∞
dy0

ˆ ∞

−∞
dt

ˆ ∞

0
dA0

ˆ ∞

0
dwx

ˆ ∞

0
dwy

(
B(x, y, t)Py0PA0PwxPwy

)
(5.48)

where we’ve now included the integral over the possible y0 starting positions, with probabil-

ity distribution function Py0 , and the curly brackets denote the expectation value operator.

Higher order statistical moments can also be found in the same way as in the 1D framework.

In all the following examples, regardless of whether we are in the single blob case, or inde-

pendent/dependent blob cases, Py0 is the uniform distribution function over the y distance

yL, and, as in 1D, the waiting time between filaments is always exponentially distributed. In

the 2D section, τw, the average waiting time between filaments, is taken to be 0.1 µs, 100×

larger than the previous section, as we had already started to see a large flattening of the

single point PDFs with the inclusion of the filament distributions, which is only exacerbated

in the 2D case as filaments are distributed along y0. Increasing τw helps to combat this, and

as explained in the 1D case, and confirmed in the 2D simulations too, does not affect the

overall trends seen, only the absolute values of profiles, PDF input parameters, etc. This

will be justified in the next section.
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5.2.1 Single-filament Garcia-Militello model

It is prudent to begin by exploring the simplest case in the 2D simulations. Namely, we

again take the 5MW H-mode shot # 36342, t ∈ [4.5, 4.7]s, as this has an electron density

profile that can be described by a single exponential decay, with L = 20.26 ± 0.53mm. We

compare this experimental profile with the simulated profile from the single-filament Garcia-

Militello model, where each filament has the same amplitude, size, and velocity, in both

dimensions. This is equivalent to swapping the distribution functions for these parameters

with the Dirac delta function which, when integrated over, return the value they are centred

around, equation (5.15), which we let be the mean values from table 5.1. Integrating over

equation (5.48) then gives

Θ(x) = {B(x, y∗, t)}

=

ˆ ∞

−∞

ˆ ∞

−∞

A0

τw
exp

−(x− vxt)
2

w2
x

−
(
y − y0 − vyt

)2
w2
y,i

Fi(t) dt dy0

=

ˆ ∞

−∞

A0
√
πwy

Lyτw
exp

(
−(x− vxt)

2

w2
x

)
F (t) dt

for constant x and y velocities.

Care and consideration must be taken when integrating over time. In the 1D waveform

with the Heaviside approximation, the lower integration limit −∞ could be substituted with

the time corresponding to the filament position, X(x)−1, but this is no longer valid as the

Gaussian waveform used in 2D stretches infinitely from its location. We choose the same

starting parallel drainage function F (t) from equation (5.3), and obtain

Θ(x) =
A0

√
πwy

Lyτw

ˆ 0

−∞
exp

(
−(x− vxt)

2

w2
x

)
dt+

ˆ ∞

0
exp

(
−(x− vxt)

2

w2
x

− t

τ∥

)
dt


=

A0πwxwy

2Lyvxτw

erfc( x

wx

)
+ exp

 w2
x

4v2xτ
2
∥
− x

vxτ∥

 erfc

(
wx

2vxτ∥
− x

wx

) (5.49)

where erfc is the complimentary error function, 1 − erf. We can rewrite this generally for

the n-th moment of the 2D single blob case as

{B(x, t)n} =
An

0πwxwy

2nLyvxτw

[
erfc

(
x

wx

)
+ E0

(
1−G0(0)

)]
(5.50)
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Figure 5.24: Density profile for the 5MW H-mode experimental discharge # 36342, for
t ∈ [4.5, 4.7]s (black dashed). The simulated profiles from the 2D single blob case are: the
base case (a); changing vx (b); and changing τ∥ (c).

where

E0 = exp

n

 w2
x

4v2xτ
2
∥
− x

vxτ∥


 (5.51)

and

G0(z) = erf

√
n

[
wx

2vxτ∥
− (x− z)

wx

] . (5.52)

We again obtain the decay length L = vxτ∥, the same as the single blob case in 1D with each

of the waveforms. In fact, in the specific instance that we let vy = 0, and Py0 = δ(y0 − y∗),

equation (5.50) collapses to the equation for a Gaussian filament in the 1D case.

In this simulation, the only variable we can change to match the profiles is the parallel

timescale, τ∥. This is changed to the nearest 1 µs so that the resulting exponential fit to

the simulated profile is closest to the fit to the experimental profile. In this 2D base case,
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Figure 5.25: The decay length of simulated profiles in the single-filament GM model against
ratio of poloidal to radial velocities by varying poloidal velocity. All other filament attributes
are kept constant (blue circles), except for one instance where Ly is doubled (orange dia-
mond).

the measured decay length is L = 20.115 ± 0.056mm with calculated decay length vxτ∥ =

19.91mm, using τ∥ = 75 µs, 1 µs less than in the 1D scenario. In this scenario, τ∥ was changed

to a precision of 1 µs. The discrepancy between the two comes from a slight deviation from

an exponential just after the separatrix, caused by the condition on F (t) when x < 0. This

was not seen in the 1D simulations with the Heaviside approximation as the blob contributed

nothing to the signal at any position in front if its defined position, which is not the case with

the Gaussian filaments. This is captured in the weak x dependence in the error functions in

equation (5.49).

Also included in figure 5.24 are the simulated profiles where the decay length was altered

by changing some of the inputs to the simulations. Namely, as in the 1D case, only altering

vx and τ∥ changed the decay lengths, with other quantities, such as τw, wx, wy, or A0, only

affecting the absolute values of the profiles. The measured decay lengths for the profiles are

shown in table 5.14. These results confirm the direct proportionality of L with vx and τ∥.

The outputs from the model equation (5.49) are included in 5.24 and match excellently to

the simulated profiles in all cases, including the small deviation from an exponential at low

values of x.

So far we have not mentioned the role of vy. Whilst other filament attributes show up in

equation (5.49) to scale the profile, the poloidal velocity appears to have no effect. This was
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checked by varying the ratio of the poloidal velocity to radial velocity and measuring the

corresponding fit to the simulated profiles, figure 5.25. vx was kept constant at 256.4m/s,

varying the poloidal velocity, whilst keeping all other filament attributes the same. For values

of vy/vx ≤ 15, the profile decay length was found to vary less than 1%, within the random

variation expected between simulations. Only for a high velocity ratio was any difference

seen. This was caused by how the simulation is run. As the poloidal velocity is increased

for a given radial velocity, the angle of the paths traced by filaments with respect to the

y = const line increases. As such, fewer filaments pass through the sampled domain in the

far SOL, causing a decrease in the profile in the far SOL. This effect can be nullified by

increasing Ly, the range of y0 values at which a filament can cross the separatrix. This only

scales the profile’s absolute value, and has no effect on its shape. Previous 2D work [112]

avoids this effect through introducing a period boundary in the poloidal direction.

Here we note that the expression we derive in equation (5.50) different to the one obtained

by Militello et al., equation (9) in ref. [112]. Their expression can be reached if, instead

of evaluation the time integral between ±∞, as we do, it is evaluated from x/vx < t <

∞, as was done in deriving the expression for the 1D single blob case with the Heaviside

approximation in section 5.1.1. Their expression, however, always underestimated the profiles

when matching to our simulations. It is not thought that the difference in how our simulations

treat F (t) for x < 0 is the cause of this discrepancy, as excluding that from our derivation

(by allowing F (t) to be an exponential for all x) only altered the profiles’ slight deviation

at low positive x values. As their work doesn’t show a direct comparison between their

simulations and profiles derived directly from their expression, we can’t speculate further on

the differences between the two investigations, but given the precision to which our expression

predicts our profiles in multiple cases (and the higher order statistics to come) we conclude

that the reasoning behind our derivation is sound.

The higher order statistical moments from the simulations are also evaluated and are

shown in figure 5.26. In the 2D simulations, these are measured at each y value in the

domain and then averaged to give the profile, with the shaded regions indicating the standard

deviation of these profiles over the domain. The profiles are approximately flat over the

scrape-off layer, after an initial bump at x = 0 caused by the change of the F (t) parallel

drainage function as the filaments transition from the edge to the SOL. Other than some

subtle differences, the results are qualitatively the same as the 1D results, where no radial
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Table 5.14: A table showing the profile decay lengths for 2D single blob simulations by
varying vx and τ∥. For each case, vx = 265.4m/s and 1τ∥ = 75 µs.

vx (arb) τ∥ (arb) L (mm)

1 1 20.115± 0.056

2 1 40.19± 0.10

0.5 1 10.075± 0.032

1 2 40.19± 0.10

1 0.5 10.075± 0.032

Table 5.15: A table showing the shape (k) and scale (θ) input parameters (from the 5MW
H-mode discharge # 36342, t ∈ [4.5, 4.7]s) for the Gamma distribution function for different
locations in the SOL for the 2D single blob case simulations for different values of τw. The
PDFs are shown in figure 5.27.

ρ 1.02 1.04 1.06 1.08

τw (µs) k θ k θ k θ k θ

10 0.155 6.46 0.155 6.44 0.156 6.42 0.157 6.38

1 1.62 0.619 1.62 0.619 1.61 0.621 1.60 0.623

0.1 15.7 0.0636 15.8 0.0633 15.8 0.0631 15.9 0.0631

increase in the profiles is seen, so the single blob case with constant velocity and parallel

timescales cannot be a representative case of the SOL in experiments. We also note that

the K = 3S2/2 dependence is not present in the 2D single blob case either. The predicted

profiles from the model, using equation (5.50), are also included in figure 5.26. The model

tends to over-estimate compared to the values from the simulation, but the error is in the

order of 1%, however it still captures the general trend of no change in the SOL, as well as

qualitatively describing the bump around x = 0.

Displayed in figure 5.27 are the single-point PDFs for the fluctuation signal at various

radial locations in the SOL. Where the statistical moments were measured as averages over

the y direction, these PDFs are measured at one bi-normal location, y = 0. Firstly, as there

is no variation in the relative fluctuation levels with radius the PDFs are almost identical

at each position, both the direct measures, and the PDFs generated by measuring k and θ

from the fluctuation signal directly. The distribution inputs are shown in table 5.15.

Here we also present evidence for the justification to increase τw in the 2D simulations

from the 1D simulations, as figure 5.27 shows the PDFs from three different 2D single blob

base case scenrarios, with everything identical except for the waiting time between filaments.
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Figure 5.26: Profiles in the simulated SOL for the 2D single blob case (solid lines) for shot
# 36342, t ∈ [4.5, 4.7]s for: the relative fluctuation levels (a); skewness (b); and kurtosis (c).
The values of kurtosis against skewness are shown (d) with the theoretical K = 3S2/2 + 3
relation added (black dashed). The theoretical values are added (blue circles, yellow stars).

When τw = 10 µs the PDFs show a similar large exponential tail to the PDFs in figures 5.18

and 5.21, where all the distributions had been included in the simulations. If we expect a

similar change in the PDFs in the 2D case to the 1D case, namely a further increase in the

exponential tail at larger fluctuation levels as the distributions are added, then these PDFs

would become further flattened from what they already are. Decreasing τw to 1 µs showed a

less flattened set of distirbutions, but was still comparable to the PDFs in figure 5.15 where

radial variations of τ∥ and vx had been introduced, so τw was further decreased to 0.1 µs,

where the PDFs are now much closer to Gaussian distributions, as experiments show the

PDFs to be in the near SOL. It is here that we point out the
wy

yL
term at the beginning

of equation (5.50) is a normalisation of the waiting time from the 1D case to the 2D case,

specifically the waiting time for a filament to appear at some specified y location, which for

this specific case is ≈ 0.014, so a reduction of τw by a factor of 100 seems reasonable in this
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Figure 5.27: Single point probability distribution functions for different locations in the
SOL for the 2D single blob case (coloured markers) for shot # 36342, t ∈ [4.5, 5.7]s, for:
τw = 10 µs (a); τw = 1 µs (b); and τw = 0.1 µs (c). The Gamma functions calculated
from the input parameters, k and θ, are included (dashed lines). The ρ positions are at
R−Rsep = [11, 23, 35, 47]mm.

regard.

5.2.2 Distributed-filament Garcia-Militello model

We now investigate the addition of filament distributions to the previous example, where

we still keep τ∥ and vx constant throughout the SOL, so when there is a single exponential

decay length that describes the profile through the whole of the scrape-off layer. Similar

to section 5.1.2, we again discovered that adding in distributions for the amplitudes and

radial sizes showed no change to the profile or higher order moments’ profile shapes, only

the absolute values, so these results are omitted in this section. As the poloidal directions

were not present in the 1D simulations, we test the poloidal diameter and poloidal velocity

distributions inclusion in isolation, as well as the radial velocity, and finally the effect of

all the distributions in the independent case. τ∥ is again the only variable to match the

simulated and experimental profiles, changed to a precision of 1 µs.

The profiles generated are shown in figure 5.28, and matched by changing τ∥ to a precision

of 1 µs. The distribution inputs used are again the 5MW H-mode experimental measure-

ments, displayed in table 5.2, and the measured decay lengths included in table 5.16. The

addition of the poloidal diameter and poloidal velocity distributions had no effect on the pro-

file, and these profiles look identical to the single blob case. The effect these distributions’
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Table 5.16: A table showing the profile decay lengths for 2D independent simulations for the
inclusion of various distributions for the filament attributes. The experimentally measured
profile’s decay length is L = 20.26± 0.53mm, and the 2D single blob case’s is L = 20.112±
0.056mm.

Distributed attribute τ∥ (µs) L (mm)

Radial velocity - vx 106 20.36± 0.40

Poloidal diameter - δθ 75 20.116± 0.056

Poloidal velocity - vθ 75 20.118± 0.056

All attributes, independent 106 20.25± 0.38

All attributes, dependent 106 19.96± 0.30
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Figure 5.28: Density profile for the 5MW H-mode experimental discharge # 36342, for
t ∈ [4.5, 4.7]s (black dashed). The simulated profiles are from the single blob case with some
attributes drawn from the distributions.

inclusion on equation (5.50) is to swap wy with the mean of the poloidal distribution, of

which wy was the mean in the previous section, and the independence of equation (5.50) on

vy yields zero change from including the poloidal velocity distribution.

As in all the 1D cases, including the radial velocities from a distribution changes the

shape of the profile, going from a straight exponential decay, showing a flattening of the
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profile and increase in the decay length with distance into the SOL. As such, the parallel

timescale needed to produce an average fit parameter near the experimentally measured one

increased up to τ∥ = 106 µs, although we make the same comment in the 2D case that we did

in the 1D cases, that the decay length is not really very well described by a single exponential

decay, with the R2 value of the fits decreasing, even if L is a close match. Equation (5.50)

is modified in the same way in which we arrived at equation (5.31), by multiplying by the

log-normal distribution, equation (4.14), and summing over all the radial velocities, giving

{B(x, t)n} =
An

0wxwy

2nLyτwσvx

√
π

2

I∑
i

1

v2x,i
exp

−
ln
(

vx,i
αvx

)2
2σ2

vx


[
erfc

(
x

wx

)
+ EviGvi(0)

]
(5.53)

where Evi and Gvi(z) are given by equations (5.51) and (5.52), respectively, replacing vx

with vx,i. A factor of n! is needed when the filaments amplitudes are drawn from exponential

distributions, as from equation (5.26). Other than weak radial dependencies on wx in the

error functions, the only radial dependence is on the radial velocity and parallel timescale,

which explains why the profiles are the same for the single blob case and independent case,

except when the radial velocities are randomly selected.

The dependent case was also tested. Here, the filament attributes’ distribution input

parameters are calculated based on the randomly chosen poloidal diameter. This determines

the filament attributes at the birth of the filament at the separatrix, which are the same

throughout its propagation through the simulated SOL. These attributes do not change

as the poloidal size reduces due to its reduction in amplitude. As such, the dependent

simulations are a test of the dependent nature of the experimentally measured 2D PDFs

rather than how the radial velocity of a filament changes depending on which regime it is

in. The generated profiles showed no significant deviation from the independent case, and as

such are not included in figure 5.28, but the decay length is recorded in the last row of table

5.16. The profile decay length is slightly lower than in the independent case, but is within

any variation we might expect to see from randomly drawn variables, and within the error

of the profile fits.

The profiles for the higher order moments are shown in figure 5.29, for both the sim-

ulations and the calculated values from the model. As expected from the 1D results, the

relative fluctuation level, skewness, and kurtosis, show no radial variation in the simulations
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Figure 5.29: Profiles in the simulated SOL for the 2D independent case (solid lines) for shot
# 36342, t ∈ [4.5, 4.7]s for: the relative fluctuation levels (a); skewness (b); and kurtosis (c).
The values of kurtosis against skewness are shown (d) with the theoretical K = 3S2/2 + 3
relation added (black dashed). The expected values derived from the model are included as
symbols (a-c).

with just the poloidal diameter or poloidal velocity distributions included. Again turning

to equation (5.50), the only radial dependence seen is the exponential terms which, outside

the range of the error function, cancel in defining each of the moments. The cases with

distributed poloidal sizes and velocities only are equivalent and the profiles lie on top of

one another. The radial velocity distribution’s inclusion is again responsible for the radial

increase of each of the statistical moments, as the sum over vx,i means the exponential terms

no longer cancel. This is the same for the case with all distributions included, which has rel-

atively higher values for each moment due to the inclusion of the n! term from the amplitude

distributions.

Lastly we look at the single point PDFs for various locations in the SOL for each of the

2D independent simulations. The PDFs are shown in figure 5.30, and the Gamma input
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Figure 5.30: Probability distribution functions for different single locations in the SOL for
the 2D independent simulations (coloured markers) for # shot 36342, t ∈ [4.5, 4, 7]s. The
Gamma distributions calculated from the input parameters, k and θ are included (dashed
lines). The ρ positions are at R−Rsep = [11, 23, 35, 47]mm.

parameters, k and θ, are shown in table 5.17. Any radial variation in either the case with

the poloidal diameter distribution or the poloidal velocity distribution can be attributed

to the finite temporal sampling used and are otherwise equal, showing no radial variation

in agreement with the flat relative fluctuation profile. The case with the radial velocity

distribution shows decreasing k and increasing θ with position as the PDFs deviate more

from the normal distribution, and this trend is only increased in the simulation with every

distribution included due to the amplitude distribution’s inclusion. In these latter two cases,

the PDFs recreated make good approximations of the experimental PDFs in section 4.4.1.1.

By measuring the various radial statistical profiles and PDFs, we are able to conclude, for

the two-dimensional framework, that the radial velocity distributions are required to recreate

the experimentally measured radial change in the scrape-off layer statistics.



CHAPTER 5. SOL SIMULATIONS 157

Table 5.17: A table showing the shape (k) and scale (θ) input parameters (from the 5MW
H-mode discharge # 36342, t ∈ [4.5, 4.7]s) for the Gamma distribution functions for different
locations in the SOL for the four 2D independent blob case simulations. The PDFs are shown
in figure 5.30.

ρ 1.02 1.04 1.06 1.08

Distribution added k θ k θ k θ k θ

Poloidal diameter - δθ 15.4 0.0650 15.5 0.0647 15.6 0.0642 15.7 0.0637

Poloidal velocity - vθ 15.8 0.0632 15.7 0.0635 15.4 0.0649 15.6 0.0642

Radial velocity - vx 19.2 0.0521 13.6 0.0735 9.87 0.101 7.48 0.134

All three 9.68 0.103 6.96 0.144 4.98 0.200 3.83 0.261

Table 5.18: A table showing the fit parameters for the base case non-exponential experimental
profiles, and the profiles generated in the 2D single blob case. For the 5MW H-mode
discharge, when x = 31mm, ρ ≈ 1.052, and x = 23mm, ρ ≈ 1.032 in the L-mode discharge.

Profile type x0 (mm) L1 (mm) L2 (mm)

H
-m

o
d
e Experimental 30.76± 0.89 17.1± 1.2 5.11± 0.20

∆τ∥ 30.87± 0.17 16.95± 0.25 4.974± 0.037

∆vx instant 30.31± 0.26 17.20± 0.38 5.077± 0.056
∆vx gradual 30.36± 0.14 16.02± 0.14 5.655± 0.032

L
-m

o
d
e Experimental 23.15± 0.32 15.888± 0.087 27.49± 0.59

∆τ∥ 23.64± 0.43 16.02± 0.43 27.72± 0.53

∆vx instant 23.17± 0.69 15.73± 0.24 27.92± 0.89
∆vx gradual 22.85± 0.46 16.13± 0.16 27.73± 0.51

5.2.3 Adjusted single-filament models

We now go on to use the 2D framework to recreate the density profiles that cannot be de-

scribed with one exponential decay length for the whole of the scrape-off layer. The same two

examples used in section 5.1.2 are used here too. The first is the 5MW H-mode discharge #

36342, t ∈ [2.5, 2.7]s, where the far SOL decay length decreasesshown in figure 5.31, and the

second is the L-mode discharge 36344, t ∈ [2.5, 2.7]s, where the far decay length increases,

shown in figure 5.32. In each case, the experimental and simulation profiles are fit with the

piecewise function (5.32), and are normalised to their separatrix values, as in the 1D simu-

lations. Each filament is born with the same radial and poloidal diameters, amplitude, and

radial and poloidal velocities, but with randomly generated waiting times between filaments

and starting bi-normal position. The measured fit parameters are summarised in table 5.18,

and filament input parameters in table 5.1.
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Figure 5.31: Electron density profile for the 5MW H-mode discharge # 36342 (black dashed).
Three simulation profiles from the 2D single blob case are included: changing τ∥ (a, blue);
instantaneously changing vx (orange); and gradually changing vx (green). The x0 parameters
(coloured triangles) and Rch values (coloured vertical lines) are included.

5.2.3.1 Single-filament dual timescale model

This is the same as in 1D, in section 5.1.3.1, with two parallel timescales used, τ∥,1 in the

first part of the SOL up to Rch, and then τ∥,2 from Rch onwards. Equation (5.33) is used

for F (t), so we must to solve the equation in the statistical framework, the integration over

t is broken into its constituent parts defined by the equation for F (t), equation (5.33), so we

must treat the region up to the separatrix independent to the near SOL, where 0 ≤ x < Rch

and 0 ≤ t < tch(= x/vx), and in turn treat that differently to the far SOL where x ≥ Rch
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Figure 5.32: Electron density profile for the L-mode discharge # 36344 (black dashed).
Three simulation profiles from the 2D single blob case are included: changing τ∥ (a, blue);
instantaneously changing vx (orange); and gradually changing vx (green). The x0 parameters
(coloured triangles) and Rch values (coloured vertical lines) are included.

and t ≥ tch. This gives the equation for the n-th order statistical moment as
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] (5.54)
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where Eτi and Gτi(z) are given by equations (5.51) and (5.52), respectively, where τ∥ is

swapped for τ∥,i. To match the simulated profile to the experimental profile, the input

variables that can be changed are Rch, τ∥,1, and τ∥,2. These are changed to a precision of

1mm, 1 µs, and 1% of τ∥,1, respectively.

5.2.3.2 Single-filament dual velocity model

Here we derive the expression for the n-th expectation value for the profiles in the single-

filament dual velocity model from the statistical framework in the same way as in the previous

example, treating the integration over time as three distinct regions. In 1D, section 5.1.3.2,

the integration was split into only two regions, as the filament at x < 0 had no effect on the

profile past this point when the Heaviside function was used as the filament waveform, but

as the Gaussian waveform effects regions further into the SOL than the filaments current

location, the blobs movement with a different parallel drainage term at x < 0 requires it to

be treated separately. Specifically, the equation is set up and subsequently solved as

{B(x, y∗, t)
n} =

An
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−∞
exp

(
−n(x− vx,1t)

2

w2
x

)
dt

+

ˆ tch

0
exp

(
−n(x− vx,1t)

2

w2
x

− nt

τ∥

)
dt

+

ˆ ∞

tch

exp

−
n
(
x−Rch − vx,2(t− tch)

)2
w2
x

− nt

τ∥

 dt


=

An
0πwxwy

2nLyvx,1τw

erfc(√
nx

wx

)
+ Ev1

[
Gv1(Rch)−Gv1(0)

]

+
vx,1
vx,2

exp

 nRch

vx,2τ∥

[
1− vx,2

vx,1

]Ev2

[
1−Gv2(Rch)

] (5.55)

where Evi and Gvi(z) are given by equations (5.51) and (5.52), respectively, with vx swapped

for vx,i. Here, Rch and τ∥ are again changed to 1mm and 1 µs, respectively, and vx,2 is changed

to within 1% of vx,1.



CHAPTER 5. SOL SIMULATIONS 161

5.2.3.3 Single-filament finite acceleration model

To help alleviate the effect of the instantaneous change in velocity on the profile, the 2D

single-filament finite acceleration model was also implemented, using equation (5.39) for the

velocity. For this model, there is no simple solution for the n-th order expectation value

derived from the statistical framework, owing to the (t− tch,1)
2 term in the velocity function,

giving an integral of exp
(
−t4
)
, so is not included. However, the simulations were still able to

be ran, and simulated profiles could be analysed. In this model, Rch,1 and Rch,2 are changed

to within 1mm, τ∥ is changed to within 1 µs, and ax is changed to within 2 significant figures.

5.2.3.4 Adjusted single-filament model results

For the dual parallel timescale simulations, the required parameters were Rch = 30mm,

τ∥,1 = 64 µs, and τ∥,2 = 18 µs ≈ 0.28τ∥,1 for the H-mode profile, and Rch = 21mm, τ∥,1 =

34 µs, and τ∥,2 = 67 µs ≈ 1.97τ∥,1 for the L-mode profile. The values of τ∥ are comparable

to 1D values in section 5.1.3.1, particularly the ratios, and the Rch positions have moved

closer to separatrix due to the change in the filament waveform used. The dependence of

the decay length on τ∥ is preserved in this example, namely that a decreasing decay length

requires a shorter timescale, and an increased decay length requires a longer timescale. The

fits to the simulated profiles are all in good agreement with the fits to the experimental

profile as well, shown as solid blue lines in figures 5.31a and 5.32a. The estimations from

the model, equation (5.54), are also included in these figures, shown as as blue circles, where

they perfectly describe the simulated profiles.

For the dual velocity model, the input parameters used were Rch = 24mm, τ∥ = 50 µs,

and vx,2 = 0.38vx,1 ≈ 100.9m/s for the H-mode profile, and Rch = 14mm, τ∥ = 45 µs,

and vx,2 = 1.47vx,1 ≈ 623.1m/s for the L-mode profile. The input parameters are again

to within a few percent of those used in the 1D simulations, except for Rch which is again

brought forward about ≈ 6mm for both cases. The simulated profiles are made to match

the experimental profiles well, particularly for the increasing decay length. These are shown

as solid orange lines in figures 5.31b and 5.32b. For the H-mode example the large decrease

in filament velocity required to match the far SOL manifests as a flattening of the profile

around the Rch location, which was also recorded in the 1D case, so although the fitted

decay length of the simulated profile agrees well with the experimental fit, the match by eye

isn’t as good as the dual timescale case. The results of equation (5.55) have also been added
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Figure 5.33: Profiles in the simulated SOL for the 2D single blob case (solid lines) for shot
# 36342, t ∈ [2.5, 2.7]s for: the relative fluctuation levels (a); skewness (b); and kurtosis (c).
The values of kurtosis against skewness are shown (d) with the theoretical K = 3S2/2 + 3
relation added (black dashed). The expected values derived from the model are included as
symbols in (a–c).

to figures 5.31b and 5.32b as orange triangles and describe the simulation profiles perfectly,

including the bump around Rch in the H-mode profile.

For the finite acceleration model, the required input parameters were Rch,1 = 9mm,

Rch,2 = 29mm, τ∥ = 54 µs, and ax = −1.5 × 106m/s/s (so vx,2 = 86.2m/s ≈ 0.32vx,1) for

the H-mode profile, and Rch,1 = 4mm, Rch,2 = 24mm, τ∥ = 53 µs, and ax = 7.0× 106m/s/s

(so vx,2 = 678.0m/s ≈ 1.60vx,1) for the L-mode profile. The simulated profiles are in figures

5.31c and 5.32c. In each of the examples, the profiles are a better match in the near SOL

due to the flattening effect being spread out over a larger SOL length.

Studying the higher order radial statistical moments, we see both similarities and differ-

ences between the 1D results, section 5.1.4, and the 2D results. For the H-mode discharge,

figure 5.33, both the changing velocity scenarios, each of the radial profile types decrease
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Figure 5.34: Profiles in the simulated SOL for the 2D single blob case (solid lines) for shot
# 36344, t ∈ [2.5, 2.7]s for: the relative fluctuation levels (a); skewness (b); and kurtosis (c).
The values of kurtosis against skewness are shown (d) with the theoretical K = 3S2/2 + 3
relation added (black dashed). The expected values derived from the model are included as
symbols in (a–c).

with distance into the SOL up to Rch, after which they flatten out again, as in 1D. Going off

the 1D results for dual parallel timescales, we would expect a rise in the statistics up to Rch

which flatten in the SOL. Instead, we see approximately flat profiles through the whole SOL,

but we do however see a small positive bump around Rch, even though a decrease of {B} and

{B2} is seen. This is due to the lack of a τ∥,i term in the coefficient of equation (5.54) which

exists in the 1D equivalent, (5.35), in the Gτ,i terms, whereas in equation (5.55) a vx,i term

in the denominator causes a relative increase in the coefficient that doesn’t cancel in the

expressions for the relative fluctuation level, skewness, or kurtosis. The predictions from the

equations are also included in figure 5.33. They accurately predict the relative fluctuation

level in all cases and overestimate the skewness and kurtosis whilst qualitatively following

the profiles’ trends, including the bump around x = 0 (and Rch) for the dual τ∥.
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The higher order statistics are measured and displayed in figure 5.34 for the increasing

profile decay length example. In contrast, both changing velocity simulations see an increase

with x up to Rch, again owing to the vx,i term in the coefficient denominator, which this

time has increased in the far SOL, which remains flat afterwards. The dual τ∥ profiles again

remain constant throughout the SOL, but now see a dip around Rch instead of the bump

seen in the H-mode example, where as 1D had previously seen a decrease in the profiles. The

statistical frameworks’ predictions are again plotted on the figure, agreeing quantitatively

for the relative fluctuation levels in each experiment, whilst over-predicting the skewness and

kurtosis whilst still capturing the general trend. In both the increasing and decreasing profile

length examples, the K = 3S2/2 + 3 scaling is not obeyed in either case, which was also

shown for the 1D examples. By comparing the coefficient of equations (5.54) or (5.55), the

S = 8/9K2 scaling is returned, the same as in the 1D example. This result is important, as

it shows the skewness vs kurtosis seen for Gamma distributed signals in experiments cannot

be returned in the simulations, regardless of whether they are in 1D or 2D, and independent

of the filament waveform used.

The single point PDFs for each of the single blob 2D cases are shown in figure 5.35, and

the corresponding k and θ parameters shown in table 5.19. For each of the ∆τ∥ scenarios,

almost no radial change is seen due to the flatness of the relative fluctuation level profile

in these scenarios, except for if the PDF is measured near the bump/dip close to the Rch

position. This is again different to the 1D simulations where a difference was seen where

the fluctuation level changed. The instantaneous and gradual ∆vx simulations show little

variation to one another in both profile types as the fluctuation levels are qualitatively

similar, with the main differences being between the two discharges. As in 1D, a reduction

of the filament velocity with distance into the SOL to cause a decrease in decay length leads

to the PDFs to become more normally distributed at higher x opposite to experimental

observations. We again may conclude that the large decrease in the profile decay length in

the far scrape-off layer cannot be due to a large decrease in all filament velocities in the

single blob case. With an increase in the filament velocity for the increasing decay length

simulations, a slight increase in the intermittency of the PDFs is seen with radius, although

this change is lesser than in the previous example, likely due to the PDFs at lowest x already

flattening more than in the previous case. It should be noted that the relative change in

velocity is not as strong in this case either. It is possible, based on the PDFs and statistical
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Figure 5.35: Probability distribution functions for different single locations in the SOL for
the 2D single blob case (coloured markers) for shots # 36342, t ∈ [2.5, 2.7]s (a-c), and
# 36344, t ∈ [2.5, 2.7]s (d-f). The ρ positions are at R − Rsep = [11, 24, 36, 49]mm, and
R − Rsep = [14, 29, 44]mm, respectively. The Gamma functions calculated from the input
parameters, k and θ, are included (dashed lines).

profiles, that an increasing decay length could be caused by filament velocity increase in the

single blob case.

5.2.4 Adjusted distributed-filament models

Finally, we reintroduce the distribution functions for filament attributes for the two non-

exponential profile examples. We again found no change to the profiles due to individually

including the distributions for the filament diameters, poloidal velocity, or amplitude, only

changing the absolute value at the separatrix, and that the only change was from including

the radial velocity distribution, as seen in sections 5.1.2 and 5.2.3. As such, in this section,

results are shown only for the case where all the attributes are independently randomly gen-

erated, as again, no qualitative difference was seen in the dependent case. We again look at
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Table 5.19: A table showing the shape (k) and scale (θ) input parameters for the Gamma dis-
tribution functions for different locations in the SOL for three 2D single blob case simulations
with radial variation in τ∥ or vx shown in figure 5.35.

ρ 1.02 1.04 1.06 1.08

H
-m

o
d
e Simulation type k θ k θ k θ k θ

∆τ∥ 15.7 0.0636 15.7 0.0637 15.2 0.0660 15.9 0.0631

∆vx instant 15.7 0.0636 23.3 0.0428 41.8 0.0239 41.6 0.0240
∆vx gradual 16.6 0.0602 24.8 0.0403 40.5 0.0247 41.0 0.0244

L
-m

o
d
e Simulation type k θ k θ k θ - -

∆τ∥ 12.4 0.0809 12.6 0.0792 12.7 0.0787 - -

∆vx instant 10.6 0.0940 10.6 0.118 8.59 0.116 - -
∆vx gradual 9.58 0.104 7.83 0.128 7.83 0.128 - -

Table 5.20: A table showing the fit parameters for the base case non-exponential experimental
profiles, and the profiles generated in the 2D independent blob case. For the 5MW H-mode
discharge, when x = 31mm, ρ ≈ 1.052, and x = 23mm, ρ ≈ 1.032 in the L-mode discharge.

Profile type x0 (mm) L1 (mm) L2 (mm)

H
-m

o
d
e Experimental 30.76± 0.89 17.1± 1.2 5.11± 0.20

∆τ∥ 30.33± 0.24 17.42± 0.34 5.286± 0.053

∆vx instant 30.12± 0.94 16.9± 1.3 5.10± 0.20
∆vx gradual 30.53± 0.94 16.8± 1.3 5.11± 0.20

L
-m

o
d
e Experimental 23.15± 0.32 15.888± 0.087 27.49± 0.59

∆τ∥ 23.60± 0.36 16.15± 0.12 27.43± 0.36

∆vx instant 23.60± 0.36 16.14± 0.12 27.14± 0.40
∆vx gradual 23.11± 0.47 15.92± 0.15 27.31± 0.55

the three cases of changing the parallel timescale, changing radial velocity instantaneously,

and a gradual filament acceleration. This was again performed on the 5MW H-mode pro-

file with decreasing decay length and the L-mode profile with increasing decay length. The

piecewise fit parameters to (5.32) for each profile type are displayed in table 5.20. As in

section 5.1.4, the equations for the n-th expectation value are found by taking the corre-

sponding equation from the single-filament model in 2D, including the contribution from

the exponentially distributed amplitudes, equation (5.26), and the sum over relevant radial

velocities and the equation for the lognormal distribution, equation (4.14).
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5.2.4.1 Distributed-filament dual timescale model

Here, we modify the 2D single-filament ∆τ∥ model, equation (5.54), and get

{B(x, y∗, t)
n} =

An
0πwxwy(n− 1)!

2Lyvxτw

vx,max∑
vx,min

1

vx
√
2πσvx

exp

−
ln
(

vx
αvx

)2
2σ2

vx


erfc(√

nx

wx

)

+Eτ1

[
Gτ1(Rch)−Gτ1(0)

]
+ exp

 nRch

vxτ∥,2

[
1−

τ∥,2

τ∥,1

]Eτ2

[
1−Gτ2(Rch)

]
(5.56)

for the n-th order expectation value of the profiles, where Eτi and Gτi(z) are given by

equations (5.51) and (5.52), respectively, where τ∥ is swapped for τ∥,i. The input variables

that are changed to match the simulated and experimental profiles are Rch, τ∥,1, and τ∥,2.

These are changed to a precision of 1mm, 1 µs, and 1% of τ∥,1, respectively.

5.2.4.2 Distributed-filament dual velocity model

For the distributed-filament dual velocity model, the inclusion of the amplitude and radial

velocity distributions into equation (5.55) yields the equation

{B(x, y∗, t)
n} =

An
0πwxwy(n− 1)!

2Lyvx,1τw

vx,1,max∑
vx,1,min

1

vx,1
√
2πσvx

exp

−
ln
(
vx,1
αvx

)2
2σ2

vx


×

erfc(√
nx

wx

)
+ Ev1

[
Gv1(Rch)−Gv1(0)

]

+
vx,1
vx,2

exp

 nRch

vx,2τ∥

[
1− vx,2

vx,1

]Ev2

[
1−Gv2(Rch)

] (5.57)

where Evi and Gvi(z) are given by equations (5.51) and (5.52), respectively, with vx swapped

for vx,i. Here, Rch and τ∥ are changed to within 1mm and 1 µs, respectively, and vx,2 is

changed to within 1% of vx,1.
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Figure 5.36: Density profile for the 5MW H-mode experimental discharge # 36342, t ∈
[2.5, 2.7]s (black dashed). Three simulation profiles from the 2D independent blob case
are included: changing τ∥ (a, blue); instantaneously changing vx (orange); and gradually
changing vx (green). The x0 parameters (coloured triangles) and Rch values (coloured vertical
lines) are included.

5.2.4.3 Distributed-filament finite acceleration model

As in section 5.2.3.3, due to the t2 term in the position equation, equation (5.39), there

is an integral of exp
(
−t4
)
when deriving an expression for {B(x, y∗, t)

n}, and so no simple

solution exists. The simulations are still run, and the simulated profiles can be analysed, but

they cannot be directly compared to the analytical model. Here, the input variables that are

changed are Rch,1 and Rch,2 are changed to within 1mm, τ∥ is changed to within 1 µs, and ax

is changed to within 2 significant figures. As in 1D, to avoid the slower filaments reversing

the direction of their propagation when they undergo a deceleration for the decreasing decay

length, the minimum velocity of a blob is set to 10% of its starting velocity, 0.1vx,1.
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Figure 5.37: Density profile for the L-mode experimental discharge # 36344, t ∈ [2.5, 2.7]s
(black dashed). Three simulation profiles from the 2D independent blob case are included:
changing τ∥ (a, blue); instantaneously changing vx (orange); and gradually changing vx
(green). The x0 parameters (coloured triangles) and Rch values (coloured vertical lines) are
included.

5.2.4.4 Adjusted distributed-filament model results

This section describes the results for the adjusted models with distributed filament attributes.

The 5-MW H-mode profiles with decreasing profile decay length are shown in figure 5.36,

and the L-mode profiles with increasing profile decay length are in figure 5.37.

For the dual parallel timescale simulations, the required parameters were Rch = 31mm,

τ∥,1 = 118 µs, and τ∥,2 = 11 µs ≈ 0.093τ∥,1 for the H-mode profile, and Rch = 24mm,

τ∥,1 = 55 µs, and τ∥,2 = 75 µs ≈ 1.36τ∥,1 for the L-mode profile. As with 1D, introduction of

the radial velocity distribution leads to a flattening of the near SOL profile so an increase in

τ∥,1 is needed to match the decay length to the experimental fits. A smaller τ∥,2 is needed

for the H-mode profile, resulting in a great reduction of the ratio of τ∥,2/τ∥,1, and whilst

an increase in τ∥,2 is still needed for L-mode, the τ∥,2/τ∥,1 has not been reduced due to the
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distribution’s addition and natural flattening of the profile. A similar change in the ratios

between the single blob and independent blob cases was seen in 1D. Both the simulated

profiles for the dual τ∥ case, figures 5.36a and 5.37a, match to the experimental profiles well,

and could be responsible for the change in the profile decay lengths. The 2D statistical

framework, blue circles in the graphs, given by equation (5.56), also describes the simulated

profiles excellently.

The inputs for the instantaneously changing radial velocity simulations were Rch =

25mm, τ∥ = 53 µs, and vx,2 = 0.11vx,1, and Rch = 14mm, τ∥ = 63 µs, and vx,2 = 1.23vx,1,

for the decreasing and increasing profile decay lengths, respectively. As with the 1D case,

the addition of the velocity distribution reduced the ratio of vx,2/vx,1 when compared with

the single blob case. As such, the flattening of the near SOL profile in the 5MW case was

compounded by the reduced velocity, and the velocity distribution, and τ∥ is higher than

compared to the single blob case. For the L-mode example, the simulated profile is found to

match well with the experimental one and a good match could possibly be made using the

natural flattening from the velocity distribution, although this has not been tested.

As with the 1D case, we see that when a large decrease of the decay length is needed

by a large decrease in the filaments’ velocities, the simulated profile is not a good match for

the experimental one even if the fit parameters agree, because the piecewise fit function is

not a suitable approximation here. In figure 5.36b a local maxima is seen centred around

Rch caused by the instantaneous slowing of the blobs in the simulation. Not only is this a

poor match in this example, but an increasing density bump like this is never seen in the

experimental SOL profiles. Despite this, the solution to the statistical framework, equation

(5.57), yields profiles that agree well with those obtained from the fit for in both the profile

examples shown here, and even recreates the local maxima in the H-mode example.

Finally, we also investigate the case with gradually accelerating filaments. For this, the

input parameters used were τ∥ = 53 µs with the filament accelerating at ax = −4.0×108m/s/s

between Rch,1 = 25mm and Rch,2 = 40mm for the H-mode discharge, and τ∥ = 61 µs with

ax = 1.9 × 106m/s/s between Rch,1 = 9mm and Rch,2 = 29mm for the L-mode discharge,

with the profiles displayed in 5.36c and 5.37c, respectively. In the H-mode example with

ax < 0, only filaments with a starting velocity greater than 3482m/s, the fastest 0.05% of

the randomly generated velocities, end with a velocity greater than this imposed minimum

of 10% of vx,1.
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Figure 5.38: Profiles in the simulated SOL for the 2D independent blob case (solid lines)
for shot # 36342, t ∈ [2.5, 2.7]s for: the relative fluctuation levels (a); skewness (b); and
kurtosis (c). The values of kurtosis against skewness are shown (d) with the theoretical
K = 3S2/2 + 3 relation added (black dashed). The expected values derived from the model
are included (a-c).

As such a large filament deceleration is required to match the decreasing decay length

profiles, the local maxima is seen just after Rch,1 and the piecewise fit function is not a good

approximation of this simulated profile. We also saw an increase in the magnitude of the

deceleration needed with the velocity distributions introduced but over a smaller distance

between Rch,2 and Rch,1, as in 1D, but the match between simulation and experimental

profiles could not be made any better. For an increasing decay length, the required filament

acceleration was decreased with the addition of the velocity distributions, mirroring the 1D

result.

From the profiles alone, we may conclude that a decrease in the profile decay length

cannot be caused by a decreasing filament velocity, even when a gradual change of velocity is

implemented, if the decrease in the decay length is too great and would more likely be caused
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Figure 5.39: Profiles in the simulated SOL for the 2D independent blob case (solid lines)
for shot # 36344, t ∈ [2.5, 2.7]s for: the relative fluctuation levels (a); skewness (b); and
kurtosis (c). The values of kurtosis against skewness are shown (d) with the theoretical
K = 3S2/2 + 3 relation added (black dashed). The expected values derived from the model
are included (a-c).

by a decrease in the parallel timescales, however accelerating filaments could be responsible

for a change in profile decay length, such as shoulder formation.

The radial profiles for the higher order statistics are shown in figure 5.38 for the H-mode

simulations and in figure 5.39 for the L-mode simulations. In the 2D single blob case an

increase in the statistics with radius was only seen when filament velocity increased (as well

as a local increase around Rch for decreasing τ∥). Now that the velocity distributions are

included, each of the profiles are seen to increase with distance into the scrape-off layer,

although a local minima around Rch is seen in the profiles for each of the H-mode dual ∆vx

profiles.∗ The relative increase in the profiles for the H-mode discharge is larger than the

L-mode, particular for the skewness and kurtosis, mirroring the larger change in decay length

∗The local minima is also seen in the kurtosis if zoomed in.
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Figure 5.40: Probability distribution functions for different single locations in the SOL for
the 2D independent blob case (coloured markers) for shots # 36342, t ∈ [2.5, 2.7]s (a-c),
and # 36344, t ∈ [2.5, 2.7]s (d-f). The ρ positions are at R −Rsep = [11, 24, 36, 49]mm, and
R − Rsep = [14, 29, 44]mm, respectively. The Gamma functions calculated from the input
parameters, k and θ, are included (dashed lines).

between the two discharge types.

The expected statistical moments from the model have also been calculated for the ∆τ∥

and instant ∆vx cases and included in the figures. They are seen to match well with the

profiles, as well as accurately predict the relative difference in magnitude between the two

examples, and capturing the local minimum in the ∆vx cases in figure 5.38. Figures 5.38d

and 5.39d show the kurtosis vs skewness. The experimentally observed K = 3/2S2 scaling is

seen for the lower values of S and K, which correspond to the SOL locations closest to the

separatrix, but diverges as distance into the SOL increases. Whilst some divergence is seen

in the experimental results (section 4.4.2.1), the divergence here is larger. If the values of S

and K are evaluated at x = 0 using equation (5.54) with the adjustment for the distributions,

we do return 3/2S2 for K, but this is no longer true for x > 0 as the other terms in the
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Table 5.21: A table showing the shape (k) and scale (θ) input parameters for the Gamma
distribution functions for different locations in the SOL for three 2D independent blob case
simulations with radial variation in τ∥ or vx shown in figure 5.40.

ρ 1.02 1.04 1.06 1.08

H
-m

o
d
e Simulation type k θ k θ k θ k θ

∆τ∥ 9.92 0.0101 7.04 0.142 3.05 0.328 0.548 1.82

∆vx instant 7.40 0.135 7.96 0.126 4.07 0.246 0.563 1.78
∆vx gradual 7.40 0.135 8.26 0.121 3.33 0.300 0.421 2.38

L
-m

o
d
e Simulation type k θ k θ k θ - -

∆τ∥ 6.86 0.146 4.81 0.208 7.80 0.263 - -

∆vx instant 6.62 0.151 4.39 0.228 3.44 0.291 - -
∆vx gradual 6.45 0.155 4.31 0.232 3.60 0.278 - -

equation are included.

We also study the single point PDFs for the 2D independent blob simulations, shown in

figure 5.40, with the PDF input parameters in table 5.21. These are again dictated by the

relative fluctuation levels, and different simulation PDFs have decreasing shape parameters

and increasing scale parameters as radius increases, giving PDFs that resemble the PDFs

recorded in experiments. The PDFs all deviate more from normal distributions, whilst still

following Gamma distributions, as we increase the distance into the scrape-off layer. As

the decreasing decay length example has the largest relative fluctuation levels, these PDFs

are the most skewed and flattened, showing PDFs more flattened than any we see in the

experimental results, however this could be fine tuned by adjusting other input parameters

to the simulations, τw or Ly for e.g., without altering the profiles. It is therefore difficult

from the PDFs and radial profiles to discern whether a change in filament velocity or parallel

timescale is most likely to be the cause of a change in the density profiles in experiments.

5.3 Summary

This chapter used a statistical framework that uses the statistical experimental observations

of filaments measured in chapter 4 to describe their effect on the electron density profiles in

the scrape-off layer. It is firstly used in the Garcia-Militello model to describe the effect on

profiles that have a single decay length throughout the SOL domain. In the single-filament

GM model, where all filaments used have the same properties (size, velocity, amplitude,

etc.), it is shown that the SOL decay length has a direct proportionality on the filament
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velocity and the parallel timescale, a measure of how quickly a filament reduces in amplitude,

simulating parallel loses. In this situation, however, no radial variation is seen in any of the

SOL statistics (relative fluctuation levels, skewness, kurtosis or single-point PDFs) that are

recorded in experiment. This was seen by directly measuring the outputs of the simulations,

as well as deriving expressions directly from the statistical framework.

The model has been further advanced here by including the experimentally measured

distribution functions of filament attributes in the distributed-filament GM model. Distri-

butions for the filament size had no effect on the profile or the other statical measures. Ex-

ponential distributions for the filament amplitudes were necessary to recover the K = 3/2S2

scaling seen for Gamma distributed time-series in experiments. Only the radial velocity dis-

tribution had any effect on the profiles, introducing a natural increase of the decay length

with distance into the SOL caused by filaments with larger velocities propagating further

for a given reduction in amplitude. A relative increase in the parallel timescale was needed

to compensate for this, although the exponential function is not a particularly accurate de-

scription of the profiles in this instance. This distribution alone was unable to recover the

quadratic kurtosis scaling, but was able to cause a radial increase of higher order statistics

and increased flattening of single-point PDFs. The distributions of the filament attributes

were also accounted for in the theoretical framework. Expressions for the profiles, and the

radial profiles of the higher order statistics, were successfully derived, and were good approx-

imations of the simulation outputs.

The model was then used to explore how filaments can be responsible for SOL profiles that

cannot be described with a single exponential decay length, such as in shoulder formation.

Three different mechanisms were investigated: using a second parallel timescale in the far

SOL; using a second radial velocity in the far SOL; and a finite filament acceleration through

some region of the SOL. The same approximate result was seen when trying to match these

profiles, that a decreasing profile decay length required either a reduced parallel timescale

or reduced filament velocity (or negative acceleration), and vice versa. However, too much

of an instantaneous change in the filament velocity was shown to cause the near SOL profile

to largely deviate from an exponential curve, an effect that could be somewhat alleviated in

the finite acceleration examples. These results were shown with profiles from simulations,

and predictions for those profiles were also derived directly out of the statistical framework.

In these double decay length simulations, some variation was now seen in the near SOL
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region of the higher order statistics and the single-point PDFs. For a decreasing decay

length, decreasing τ∥ caused the relative fluctuation amplitude, skewness, and kurtosis to

increase with radius (up to Rch), as seen in experiment results, whereas a decreasing velocity

caused these to decrease. A decrease in the filament velocity however, caused the profiles

to decrease. It is therefore suggested that, in the single-filament models, the decrease in

parallel timescale is likely to be the cause in the decreased profile decay length. Conversely,

the case with increased decay length is more likely to be caused by the increase in filament

velocity, as this caused the expected increase with radius in the profiles of the higher order

statistical quantities. These behaviours were also shown to be derivable from the model too.

Expanding the adjusted models to the adjusted distributed-filament models produced a

more complicated picture. Again, a natural increase of the decay length of the profile through

the radial velocity distribution required an increase in the parallel timescales, as well as a

relative increase in the difference between τ∥,2/τ∥,1 (vx,2/vx,1) for a reduced decay length. In

the example used here, the decrease in the radial velocity was so large that a local density

maximum around Rch was produced, an effect that isn’t seen in experimental profiles, and

as such the large velocity decrease is thought not to be the cause of the decreasing profile

decay lengths. Oppositely, a reduced difference of τ∥,2/τ∥,1 (vx,2/vx,1) was needed for an

increasing profile decay length as now the natural change to the decay length by the velocity

distribution was working in the same direction as the profile change. In fact, it is postulated

that now for some profiles no change in vx or τ∥ would be needed to reproduce some shoulder

formation profiles, although this hasn’t been tested here.

When the velocity distributions are introduced in the modelling, the higher order radial

statistics all increase with distance into the SOL regardless of whether τ∥ or vx increased

or decreased, and their behaviour can no longer be used as a way to distinguish which

mechanism may be responsible for a change in the profile decay length. These changes are

again seen as output from the simulations, but have also been derived from the first principles

of the statistical framework.

The results summarised so far have been conducted in both 1D and 2D simulations and

model. Any significant differences between the 1D and 2D results can be largely attributed

to a difference in the waveform of the filament used and do not affect the qualitative results.

It was seen that inclusion of the poloidal sizes and poloidal velocities in the 2D cases had

no effect on the profiles generated in the simulations, nor did it affect the profiles in the
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modelling. There was also no dependence of the profiles on the ratio between the poloidal

and radial velocities, so long as the range of y0 values that filaments crossed the separatrix

at was sufficiently large enough that filaments would track through the furthest part of the

simulated SOL.



Chapter 6

Summary, conclusion, and further

work

This thesis aimed to make experimental observations of filaments in the scrape-off layer of

the ASDEX Upgrade tokamak and characterise them in a way that links their properties

and behaviour back to the electron density profiles in the scrape-off layer. This study used

the helium gas puff imaging diagnostic, covering a ≈ 6×6 cm region just below the outboard

midplane at a 200 kHz sampling frequency. A simple analytic model was constructed that al-

lowed us to take the images of filaments with the GPI diagnostic and account for the smearing

of objects due to the non-perfect alignment between local magnetic field and the diagnostic’s

line-of-sight, and the finite toroidal size of the gas puff. With this, detailed measurements

of filament diameters and velocities in the radial and poloidal directions were made for fila-

ments from four different discharge types: L-mode, L-mode with nitrogen seeding, H-mode

with 2.5MW of NBI heating, and H-mode with 5MW of NBI heating.

A brief summary of the main results are as follows:

• Radial profiles of relative fluctuation amplitude, skewness, and kurtosis increase with

increased distance into the SOL, due to the presence of filaments whose characteristics

vary as the propagate radially. The PDFs of the fluctuation signal from single GPI

detector pixels follow Gamma distributions, which become increasingly skewed and

flattened with increasing radius.

• The L-mode discharge with nitrogen seeding has the largest increase in radial statis-

tics, and greatest skewing and flattening of PDFs, at the furthest into the SOL when

178
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compared to other discharges. This is thought to be due to changes in the filaments,

which is corroborated with 2D measurements of the filaments themselves, showing

larger mean filament amplitudes and poloidal diameter cross-sections at comparative

locations.

• Independent measurements of filament poloidal sizes and radial velocity are made,

showing nearly all filaments have diameters larger than the fundamental blob size, and

velocities under the maximum predicted by the inertial regime velocity scaling. The

exception is at ρ = 1.02 in L-mode and N2 seeded discharges, where half the filaments

are smaller than the fundamental blob size, and their velocities are described by the

inertial scaling.

• Filament size distributions are measured, with the poloidal size of filaments increasing

going from L-mode, to N2 seeding L-mode, to H-mode discharge types. Filaments in

the 5MW H-mode discharge had the smallest radial diameters, thought to be caused

by increased poloidal magnetic shear.

• Radial velocity distributions for L-mode and N2 seeded discharges show larger velocities

at ρ = 1.02 compared with other discharge types and positions, although few filaments

could be tracked this close to the separatrix in H-mode.

• Poloidal filament velocity distributions are approximately normally distributed, with a

low mean velocity in L-mode and N2 seeded discharges, with a mean that approaches

that found in H-mode discharges. The inter-filament poloidal flow was also measured,

which showed similar values. This is contrary to the expected poloidal E ×B velocity

from the radial electric field, as measured experimentally in Alcator C-mod [67], but

does qualitatively agree with the trend previously measured experimentally on ASDEX

Upgrade [80].

• 2D distribution functions of filament parameters suggest amplitudes and radial diam-

eters increase as poloidal diameters increase, as well as suggest the largest filaments

have the smallest radial velocities, consistent with the inertial filament regime.

• In the single-filament Garcia-Militello model, the decay length of electron density pro-

files is directly proportional to the radial velocity and the parallel loss timescale of
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filaments only, and the model does not produce a radial change in the profiles of higher

order statistics, or a change of the single-point PDFs of fluctuations.

• In the distributed-filament GM model, only the introduction of a distribution for the

radial velocity of filaments changes the density profile, compared to the single-filament

GM model, by increasing the decay length of the profile as distance into the SOL

increases. The velocity distribution also increases relative fluctuation levels, skewness,

and kurtosis with distance into the SOL.

• If only the filament amplitudes drawn randomly from an exponential distribution, with

all other attributes held fixed as in the single-filament GM model, then no change to

the profile shape is seen, but the K = 3/2S2 scaling, seen for Gamma distributed

fluctuation signals, is returned.

• In the adjusted models, changes to either vx or τ∥ in the SOL can change the decay

length of the density profile, creating profiles that are best described by two exponential

decay lengths. For a sufficiently large decrease in the far SOL decay length, it is most

likely to be caused by a decrease in τ∥ rather than vx due to how the latter unrealistically

affects the near SOL profile.

• We were able to reproduce the independently measured mean SOL electron density pro-

file shapes by applying a distributed-filament GM model that used measured filament

characteristics as inputs. Furthermore, the implication of this is that far SOL profiles

are primarily are primarily determined by filament transport and filament physics.

• As the model is extended into 2D, no change of the general results is seen. As such, in

this model, the SOL density profiles to not depend on perpendicular filament size or

velocity. This is shown directly in the derivations of the expressions from the model,

as well as an investigation of the simulated profiles when increasing poloidal-to-radial

velocity ratio.

Radial profiles of the relative fluctuation levels, skewness, and kurtosis of the He I line-

emission signals from GPI are shown to increase with distance into the SOL due to the

advection of filaments through the SOL. The probability distribution functions of the signal

intensities from individual GPI pixels are also shown to be nearly normally distributed near

the separatrix, showing positive skewness and flattening as distance increases into the SOL,
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but are described by Gamma distributions for all positions. The nitrogen seeded discharges

had the most skewed and flattened PDFs in the far SOL, as well as the largest range of

fluctuations from all the discharges.

Filament amplitudes are found to be exponentially distributed in each discharge type

and at every position checked in the SOL. N2 seeded filaments have a larger mean amplitude

than their purely L-mode counterparts, although H-mode discharges had approximately equal

large mean amplitudes for their locations in the far SOL. The means of the distributions were

found to increase with distance into the SOL as ambient SOL plasma density decreases.

Waiting times between filaments are also found to be exponentially distributed in accor-

dance with a Poisson process, and as such the filaments are uncorrelated with one other.

The average waiting times between filaments are found to be approximately equal for all

discharge types in the near-to-mid SOL, but increase at larger radii. The L-mode discharges

show a larger average waiting time than the H-mode discharges, where the waiting time is

also seen to decrease with increased additional NBI heating, suggesting filaments could play

a role in power balance of the confined plasma. We note that the waiting times here are

unlikely to be the true waiting time of the filaments as it is known that the current method

for detecting filaments using a threshold based on the signal’s variance does not capture all

filaments.

The GPI diagnostic has been used to make simultaneous measurements of the radial and

poloidal diameters and velocities of filaments due to its 2D spatial and temporal resolution,

and as such distributions of these filament attributes can be measured. Poloidal sizes of

filaments are seen to increase in H-mode discharges compared to L-mode, and increases in

size with NBI power are also seen between the two H-mode discharge types. The L-mode

discharges with and without nitrogen seeding show similar distributions in the near SOL, but

those with N2 show larger sizes in the far SOL, again suggesting a change in the filaments’

parallel dynamics that results in more upstream plasma transport. Radial diameters are

approximately similar between most discharge types, except in the highest power H-mode.

It is suggested that the additional poloidal magnetic shear in that discharge plays a role

in reducing the filaments’ extent. This mechanism could also be responsible for the larger

poloidal sizes seen in these discharge types, causing filaments with non-ciruclar cross-sections

to rotate their primary axis so that it aligns to the poloidal direction.

Radial velocity distributions for the L-mode and nitrogen seeded discharges show that



CHAPTER 6. SUMMARY, CONCLUSION, AND FURTHER WORK 182

the filaments nearest to the separatrix (ρ = 1.02) have the highest velocity than elsewhere

in the SOL. Very few filaments can be tracked this close to the separatrix in H-mode and

distribution measurements for this location in these discharges couldn’t be made with any

statistical significance. The rest of the SOL shows approximately similar radial velocity dis-

tributions in each discharge type. In addition, the radial velocity of filaments was compared

to their poloidal size with respect to the Myra filament velocity model. The overwhelming

majority of filaments were measured to be larger than the fundamental blob size, with radial

velocities well described by the inertial regime scaling. Velocities that were larger than this

scaling could potentially be explained through the addition of warm ions, or were possibly

in the resistive x-point regime instead. It was only in L-mode and N2 seeding discharges at

ρ = 1.02 where a significant number of filaments, approximately half, were measured to have

poloidal sizes smaller than the fundamental blob size, and were instead described by the

inertial regime. In these two discharge types, the fastest filaments were again found in the

near SOL. Inter-filament flow velocities were also determined for each discharge. The largest

radial velocities are again determined to be closest to the separatrix, gradually reducing to

zero at the furthest parts of the SOL.

Filament poloidal velocities were inferred and shown to be well approximated by nor-

mal distributions. The two L-mode discharges had mean filament velocities in the order of

200m/s, where as the H-mode discharges were centred around 0m/s with approximately

equal numbers of filaments propagating with positive and negative poloidal velocities. A

similar change of the the inter-filament poloidal velocity was also recorded, where the stan-

dard deviation of the measurement covered the 0 velocity well. A slight variation of this

inter-flow velocity was seen with position but was within the variance of the measurement.

2D distribution functions of filament properties were also investigated. From this, it was

found that the filaments with the largest poloidal diameters had the smallest radial velocities,

whilst the smallest filaments had the largest range of velocities. It was also generally seen

that the larger a filament was in poloidal diameter, the larger it was in radial diameter

too, although this seemed to reach a soft maximum size for the distributions in the 5MW

discharge, and again it was postulated that the increased poloidal magnetic field shear in

this discharge was breaking up filaments. A positive correlation between poloidal diameter

and filament amplitude was also seen.

Future research should look to conduct similarly detailed investigations of the SOL in
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the manner of this thesis, as nuances of SOL and filaments from single-point measurements

can be lost, for e.g., the average waveform of filaments cannot untangle the size from the

velocity. But even these measurements and conclusions have areas for improvement. In order

to make any meaningful measurements of filament distributions or statistics in the SOL, the

measurements have had to be averaged and all time resolution of the measurements is lost,

and as such direct comparison between the filament properties and the macroscopic plasma

parameters at the time of the measurements, such as line averaged density for example, could

not be made.

Two obvious ways in which this may be improved immediately leap to mind. Repeated

plasma discharges with identical parameters could be made, and distributions made from

equivalent times in multiple discharges. This may be problematic depending on how well

a plasma can be repeated in a tokamak from one shot to another. It is also noted that

tokamak time is limited, and alternative scenarios and proposals vying for plasmas could

make it difficult to justify multiple repeated plasmas.

One other improvement over the current research would be for changes in the GPI diag-

nostic equipment to be made. A detector with a higher sensitivity than the Phantom v711

used here would require less gas to be puffed for equivalent signal-to-noise ratios, allowing

for higher frequency puff rates, covering a larger percentage of a shot and allowing for more

filaments to be included in the analysis. This has the added benefit of potential redesigns

to the diagnostic’s design, such as better alignment to the magnetic field. Whilst the indi-

vidual filament measurements could be corrected for this smearing with our toy model, the

line-of-site integration for measurements such as the single-point PDFs, or radial statistical

profiles could not.

The experimentally measured filament properties were used as inputs to a statistical

model of the scrape-off layer. Simulations of this model were based on the characteristics

of the ASDEX Upgrade filaments inferred from analysis of the experimental data, randomly

generated from filament PDFs and then propagated through the simulated domain. The

filament attributes could either be fully controlled, such as enforcing all filaments to be

generated with the same size, velocity and amplitude, or could be randomly generated from

specified distributions.

The simulation outputs were temporally averaged to produce simulated density profiles

created by the filaments, and then the parallel timescale, the characteristic time over which
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filament amplitudes reduce due to parallel losses, were changed to match the simulated

profiles to experimental ones. Higher order statistical measures of the simulated domain

were benchmarked against experimental observations to draw conclusions about the validity

of the model used. The simulations and model were conducted in 1D and 2D.

It was concluded that in the single-filament Garcia-Militello mode, where all filaments

are identical, the product of the filament velocity and parallel timescale gives the profile de-

cay length. This was found empirically through analysis of the simulations, as well through

deriving statistical moments from the model directly. In the 2D single-filament GM model,

where a 2D Gaussian was used for the filament waveform, the derived expression for the

profile was found to differ to that in Ref. [112], but produced excellent and improved pre-

dictions of the simulated profile. These single-filament models, however, could not account

for radial increases in the relative fluctuation amplitudes, skewness, or kurtosis, nor for the

positive skewing of PDFs, that are universally measured in experiments. Other filament

parameters, such as the diameter, velocity, or waiting time between filaments, had no effect

on the profile, but did act to scale the profiles.

In the distributed-filament GM model, filament attributes were randomly generated from

distributions and introduced one attribute at a time in order to determine their effect. Chang-

ing from single filament diameters to distributed diameter sizes had no effect on the pro-

file shapes or any of the higher order measurements. The filament amplitude distribution

was found to play no role in altering the profile decay length, but was responsible for the

K = 3/2S2 scaling measured universally in experiment SOLs. This was still insufficient

to introduce any radial variation in higher order statistical moments, or single-point PDFs.

The model was successfully extended and solved to incorporate these distributions and was

able to accurately predict the radial statistics.

The only change on profile shapes seen when going from the single-filament to distributed-

filament modelwas seen with the inclusion of the radial velocity distributions. These caused

a natural increase of the profile decay length with distance into the SOL caused by the

fastest filaments propagating further for a given amplitude reduction. In these situations an

increased τ∥ is required for an equivalent SOL decay length to simulations with no radial

velocity distribution, although the profiles now deviate from perfect exponential decay. It

was also shown that the radial velocity distributions were necessary for introducing increases

in relative fluctuation levels, skewness, and kurtosis, both in terms of measurements of
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the simulations and through the addition of the velocity distributions into the statistical

framework.

The model and the simulations were extended to generate profiles with double exponential

decay lengths. As the scrape-off layer decay lengths have been shown to depend on the

parallel timescale and radial velocity, these two parameters are varied independently to

generate these non-exponential profiles. Changing parallel timescale simulates a change

in the parallel motion of plasma, such as through changes in downstream conditions, or

changes in the parallel connection length. Changing the radial velocity simulates either an

acceleration or deceleration in the filaments.

In adjusted single-filament models, a decrease in τ∥ or vx was found to cause a decrease

in the density profile decay lengths, whilst reducing τ∥ was found to cause a radial increase

in higher order statistics and positive skewing and flattening of PDFs. On the other hand,

decreasing vx was found to have the opposite effect on the higher order statistics. The

opposite effect on the density profile can be obtained when increasing either τ∥ or vx, when

increasing the far SOL decay length, but only the increase in velocity would cause the

expected increase in higher order statistical profiles.

In each scenario, amplitude distributions were again shown to be necessary, both in

simulations of the experimental measurements and in derivations of the statistical framework,

in order to regain the K = 3/2S2 scaling of SOL signals, and the velocity distribution

necessary to cause an increase in each higher order statistical profile. With distributed radial

velocities included, it was difficult to reproduce well matched profiles with decreasing decay

lengths by decreasing the filament velocity, however greater matches were found through

decreasing the parallel timescale. This leads us to conclude that such a large decrease in

profile decay length is more likely to be due to decreases in the parallel timescales rather than

decreases in radial velocity. These simulated results were also corroborated with predictions

from the quantities derived from the model.

In this work, this statistical model of the scrape-off layer profiles with filaments has been

extended to incorporate two methods by which the profile decay length can be changed, as

well as the profiles being changed through the inclusion of distributed filament attributes.

This was done in terms of implementing the changes into the simulations, as well as changes

to the analytical model to derive new expressions for the profiles and higher order statistical

profiles. There are ways in which this can be taken further.
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For example, the discontinuity caused by a sudden change in the filament velocity was

alleviated through the inclusion of a finite filament acceleration over some part of the SOL. In

some cases, this could help to make the simulated profiles more accurately match experimen-

tal profiles, and in some cases the model could also be solved and the analytical expression

matched to the simulated profiles. It would be pertinent to include a similar gradual change

in the parallel timescale in the model, for example, a τ∥ dictated by spatially-continuous

changes in the plasma sound speed and SOL connection length.

The single-filament Garcia-Militello model used prescribes each filament attribute for the

time is crosses the separatrix, based off experimental measurements from one location, and

these do not change as it propagates through the SOL, with the exception of the amplitude.

For the dependent case, the velocity is drawn randomly based on the filament’s starting

poloidal diameter, which again do not change. A natural extension of this model would be

to introduce a change in filament size, either increasing or decreasing in poloidal diameter,

which would then have an effect on the radial velocity. This could be achieved either by

changing the randomly drawn velocity based on the relative change in expectation velocity

as the poloidal size changes, or through prescribing exact velocities for a filament based on

filament velocity scaling laws that change as a filament goes from one regime to another.

This model has been extremely useful in elucidating how changes in filament character-

istics or dynamics affected various profiles, however, these changes have not been directly

linked to changes in the plasma. Further simulations could dynamically solve for a filaments’

density and temperature as it propagates through the SOL, accounting for changes at the

target, such as decreases in temperature or increases in neutral particle densities. This would

ideally be done in a way in which the user still obtains control over the starting filament

attributes like in this model, in order to also continue to evolve the statistical framework.

The addition of a synthetic diagnostic may also help to improve the confidence, not

only in this statistical framework, but in the validity of any conclusions drawn from various

diagnostics. For example, a synthetic gas puff imaging diagnostic that allowed the user to

change the alignment between the diagnostic’s line-of-sight and the filament would allow one

to investigate the effect this may have on higher order statistical moments.



Appendix A

Error calculations

This section will go into detail about how the errors are estimated for various measurements

in this thesis. Each time, the law of combination of errors is used [59] to estimate the error

σf for some function f(x1, x2, . . . , xN ) of N independent variables. The formula used is

σ2
f =

N∑
i=1

(
∂f

∂xi

)2

σ2
xi

(A.1)

where σxi is the error of variable xi.

A.1 Transform angle error

The transform angle, ϕr,θ, is given by equation (4.6) and depends on the quadratic coefficient

A, and the reference location Rref , with associated errors σA and σRref
. As σRref

≪ σA, the

error on Rref can be neglected, and including it does not affect the error on the transform

angle until the 9th decimal place. As such, combining equations (4.6) and (A.1) gives

σϕr,θ
=

2Rref

4A2R2
ref + 1

σA (A.2)

which, for the values given in section 4.3.3, gives σϕr,θ
= 1.3◦ (0.022 rad).
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A.2 Diameter error

The Euclidean distance between the edges of the blob is used to measure the diameter and

is given by

δx =

√
(R1 −R2)

2 + (z1 − z2)
2 (A.3)

where δx is the diameter along either the radial, r, or poloidal, θ, direction vectors, and

(Ri, zi)i=1,2 are the pair of position coordinates that define the edge of the blob. An estimate

of ±1 pixel is used as the error in the positions of (Ri, zi), the largest separations of which

are given in table A.1. Equation (A.2) remains unchanged for each direction, as does the

expression for the error. δx must be differentiated by each variable, giving

∂δx
∂R1

=
− (R2 −R1)√

(R1 −R2)
2 + (z1 − z2)

2
,

∂δx
∂R2

=
(R2 −R1)√

(R1 −R2)
2 + (z1 − z2)

2
,

∂δx
∂z1

=
− (z2 − z1)√

(R1 −R2)
2 + (z1 − z2)

2
,

∂δx
∂z2

=
(z2 − z1)√

(R1 −R2)
2 + (z1 − z2)

2
,

(A.4)

where we note the denominator of each derivative is equal to δx. Substituting the partial

derivatives into equation (A.1), with the errors errors for Ri and zi as σR and σz respectively,

gives

σ2
δx =

(R2 −R1)
2

δ2x
σ2
R +

(R2 −R1)
2

δ2x
σ2
R +

(z2 − z1)
2

δ2x
σ2
z +

(z2 − z1)
2

δ2x
σ2
z

=
2

δ2x

[
(R2 −R1)

2 σ2
R + (z2 − z1)

2 σ2
z

]
which, in the approximation of σR ≈ σz ≡ σx, simplifies to

σ2
δx =

2σx
δ2x

[
(R2 −R1)

2 + (z2 − z1)
2
]

σδx =
√
2σx = 0.16 cm (A.5)

for the Phantom v711 setup described in this thesis.
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Table A.1: A table of error values used in calculating radial and poloidal diameters and
velocities.

Variable Error

R1 & R2 1.1mm

z1 & z2 1.0mm

ϕr,θ 3.0◦
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Figure A.1: The measured filament radial diameters (blue circles) and poloidal diameters
(orange diamonds) against the filament’s set diameter in the synthetic GPI diagnostic for
position [R, z] = [2.150,−0.153]m. This corresponds to the example blob in figure 4.5,
with the measured diameters (horizontal, dashed) and calibrated diameters (vertical dashed)
indicated. The shaded areas indicate estimates for the errors. The y=x line is added in black.
The y-error plotted is σδx = 0.16 cm.

As described in section 3.3, a synthetic diagnostic is used to account for the finite toroidal

extent of the gas puff and the non-perfect alignment between the line-of-sight of the diagnostic

and the magnetic field, which introduces an extra error in the filament diameter measure-

ments. An example for position [R, z] = [2.150,−0.153]m, which corresponds to the example

blob shown in figure 4.5, is shown in figure A.1. From the diameter measured directly in the

GPI frame, and upper and lower bound on the measured diameters can be estimated using

σδx = 0.16 cm and an upper and lower bound on the calibrated diameters can be estimated

using these curves. The typical error associated with the filament diameter is then taken to

be half the difference between the upper and lower estimates. This is typically on the order

of a few millimetres.
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A.3 Velocity error

Equations (4.8) and (4.9) are used to calculate filament velocities. Combing these equations

gives full equations for vr and vθ as

vr =
√

v2R + v2z cos

(
arctan

(
vz
vR

)
− ϕr,θ

)
, (A.6)

vθ =
√
v2R + v2z sin

(
arctan

(
vz
vR

)
− ϕr,θ

)
(A.7)

The error on ϕr,θ has already been discussed in section A.1, and the error given in table

A.1. The velocities vR and vz are given by equation (4.7), and only depend on their starting

position x1 at time t1, and their end position x2 at time t2 = t1 +∆t, where x is the R or

z coordinate, and ∆t is the time between frames, equal to 5 µs in these experiments. Any

error on the time is assumed to be negligible, and any error on xi is assumed to be ±1 pixel,

where the largest pixel errors are given in table A.1.

Here we will go through a detailed breakdown of the error analysis for vr. We start by

calculating the partial derivatives of equation (A.6) to give

∂vr
∂vR

=

vR cos

(
arctan

(
vz
vR

)
− ϕr,θ

)
+ vz sin

(
arctan

(
vz
vR

)
− ϕr,θ

)
√

v2R + v2z

,

∂vr
∂vz

=

−vR sin

(
arctan

(
vz
vR

)
− ϕr,θ

)
+ vz cos

(
arctan

(
vz
vR

)
− ϕr,θ

)
√
v2R + v2z

,

∂vr
∂ϕr,θ

=
√
v2R + v2z sin

(
arctan

(
vz
vR

)
− ϕr,θ

)
.

(A.8)

To obtain expressions for the errors on vR and vz, we first differentiate each by the required

variable, so
∂vx
∂x1

=
−1

∆t
,

∂vx
∂x2

=
1

∆t
, (A.9)

which, with the error propagation formula (A.1), gives

σ2
vx =

1

∆2
t

σ2
x +

1

∆2
t

σ2
x

σvx =

√
2

∆t
σx. (A.10)
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Using the definition of α in equation (4.9), we start to build the expression for σvr by

substituting equations (A.8) and (A.10) into equation (A.1), using the assumption that

σvR ≈ σvz ≡ σv

σ2
vr =

(
vR cos(α) + vz sin(α)

|v|

)2

σ2
v +

(
−vR sin(α) + vz cos(α)

|v|

)2

σ2
v + |v|2 sin2(α)σ2

ϕr,θ

σ2
vr =

(
v2R

(
sin2(α) + cos2(α)

)
+ v2z

(
sin2(α) + cos2(α)

)) σ2
v

|v|2
+ |v|2 sin2(α)σ2

ϕr,θ

σ2
vr =

(
v2R + v2z

) σ2
v

|v|2
+ |v|2 sin2(α)σ2

ϕr,θ

σvr =

√
2
σ2
x

∆t2
+ |v|2 sin2(α)σ2

ϕr,θ
. (A.11)

A similar treatment for vθ on equation (A.7) gives

σvθ =

√
2
σ2
x

∆t2
+ |v|2 cos2(α)σ2

ϕr,θ
. (A.12)

A.4 Averaging diameter error

In section 4.4.2.2 the average blob size over several frames is used, instead of an instantaneous

blob measurement, and as such, the error analysis differs slightly. The mean diameter, δ̄x,

is given by

δ̄x =
1

N

N∑
i=1

δx,i (A.13)

where each individual measure of the diameter has an uncertainty, discussed in section A.2.

Each partial derivative of equation (A.13) is simply

∂δ̄x
∂δx,i

=
1

N
. (A.14)
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Equations (A.13), and (A.14) combine with the error propagation formula (A.1), to give

σ2
δ̄x

=
N∑
i=1

(
1

N

)2

σ2
δx,i

σ2
δ̄x

=
1

N2

N∑
i=1

σ2
δx,i

σδ̄x =
1

N

√√√√ N∑
i=1

σ2
δx,i

. (A.15)

A.5 Averaging velocity error

In section 4.4.2.3, the average filament velocity over multiple frames is used. The instanta-

neous velocity can be expressed as vi = (ri+1 − ri)/∆t, so the velocity average is

v̄ =
1

N

N∑
i=1

vi

v̄ =
1

N

(
r2 − r1
∆t

+
r3 − r2
∆t

+
r4 − r3
∆t

+ . . .
rN+1 − rN

∆t

)
v̄ =

1

N

rN − r1
∆t

. (A.16)

This is no different to equation (4.7) bar the factor of 1/N . Equations (A.9) and (A.1) now

become
∂vx
∂x1

=
−1

N∆t
,

∂vx
∂x2

=
1

N∆t
, (A.17)

and

σ2
vx =

√
2

N∆t
σx, (A.18)

respectively. A similar process method to section A.3 is used, and equations (A.11) and

(A.12) become

σv̄r =

√
2

σ2
x

N2∆t2
+ |v|2 sin2(α)σ2

ϕr,θ
(A.19)

σv̄θ =

√
2

σ2
x

N2∆t2
+ |v|2 cos2(α)σ2

ϕr,θ
, (A.20)

where |v| is now the average velocity magnitude between rN and r1.
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