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Abstract

Active matter is comprised of active particles whose underlying property is their ability to
exert mechanical stresses on their environment by the conversion of stored or ambient free-
energy. At sufficient particle number density, orientational order emerges due to steric,
mechanical or behavioural mechanisms, generating collective motion in motile suspen-
sions. On micrometre length scales, active particles such as bacteria can be categorised
by their swimming type: ‘extensile’ swimmers push themselves through their medium
using flagellum, whereas ‘contractile’ swimmers pull themselves. Activity drives an insta-
bility in ordered extensile (contractile) suspensions due to bend (splay) deformations in
the suspension orientation (director) which generate active flow and enhance the director
perturbation by shear-induced torque. This work comprises a two-part comprehensive
extension to this fundamental instability in both 2d and 3d, and both unbounded and
confined regimes. Active flow propagates in the same plane as the deformation that caused
it, and in part one of this work, we show this causes a de-coupling of the governing equa-
tions in the unbounded 3d regime, resulting in the dominance of bend modes for extensile
suspensions. Our main result concerns a new chirality term in the Jeffrey orbit equations
which re-couples the governing equations by rotating the director out-of-plane from activ-
ity induced shear, and in an imposed-shear regime, enhances the instability growth rate
by up to 10% versus the unbounded regime when alignment-to-shear and chiral-rotation
effects are both present. In part two, we connect bulk growth rates to regimes of weak
and strong confinement and show the critical confinement length hc to suppress growth
in 2d regime is related to the wavelength of maximum growth in the unbounded regime,
and show further that alternative boundary conditions can reduce this critical value by an
order of magnitude. The culmination of this work is the exploration of alternative steady
states and boundary conditions for the suspension orientation: the effects of rotating the
suspension relative to the boundaries, investigating torque-free boundary conditions, im-
posing a ‘swimmer slip’ condition on the substrate, and the effects of inclination. We
find regimes for which alignment-to-shear is stabilising, regimes where alignment-to-shear
is de-stabilising, and predict new steady states using a steady torque-balanced equation
for the director. This work invites discussion on appropriate boundary conditions for ac-
tive matter by providing insight into the dynamics of 3d regimes of confinement, with
experimentally realisable predictions for low Reynolds number suspensions. As part of an
ongoing research narrative, this work utilises a robust codebase, broadly extendable to
new regimes of interest, and will be published at a later date.
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1 | Introduction

1.1 Active Matter

Active matter is comprised of active, self-propelled particles (SPPs), suspended in a
medium.9–13 The underlying property of these particles is their ability to exert me-
chanical stresses on their environment by converting stored or ambient free-energy
into self-propulsion. The diversity of SPPs is vast and active matter systems con-
stitute a large breadth of length scales, crossing the disciplines of Biology, Physics
and Chemistry. SPPs can be biological units, ranging from decimetre length scales,
such as flocking starlings or sardines14 (Figure 1.1), to micrometer scales such as
bacteria15–17 (Figure 1.2b); mechanically vibrated granular rods span centimetre
length scales;18–20 and chemically driven phoretic swimmers such as ‘Janus’ particles
(Figure 1.2a) exist on the nanometre scale.21–23 Active particles can be broadly
categorised by their polarity: microswimmers and phoretic swimmers are polar with
head-tail structure, and form polar active matter , whereas rods and disks are apolar
and form nematic active matter .

A ubiquitous goal of active matter research is to be able to quantify observed macro-
scopic phenomena by understanding active matter’s principle mechanisms: the role
of environment and confinement, the effect of swimmer geometry and propulsion
mechanisms, the strength and nature of coupling between active units and their
medium, the extent of momentum-damping, or the influence of external alignment
factors, which could be behavioural, mechanical or chemical in nature. Active mat-
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Figure 1.1: Collective motion governed by behavioural mechanisms in active matter.
Left: A starling murumuration flies in intricate and complex patterns, sometimes con-
sisting of thousands of birds.∗1 Starlings showcase large number fluctuations in flocking
governed by nearest-neighbour alignment rules. Right: A closely packed shoal of sar-
dines.†2 The elongated nature of sardines make them an excellent exhibition of possible
deformations in the local swimmer orientation, such as bend and splay.

ter research has led to many exciting practical developments, including new ‘active’
materials with manufactured properties such as self-healing,24,25 overcoming long-
standing therapeutic challenges,26 or the emergence of adaptive biomaterials27 —
which could be achieved either by intelligent SPP design, modifications to their en-
vironment, or their medium.

In the medical field of therapeutics, active particles are being utilised to overcome
longstanding challenges in targeted drug delivery. The delivery of orally administered
drugs, such as insulin, is hindered by the tight cell junctions in the gastrointestinal
epithelial lining (GI). Traditional drug delivery, mediated by passive particles, can-
not overcome the thick inner mucus lining of the colon, which acts as a mechanical
barrier for foreign biomatter by a constant shedding of the mucus layer; viscoelastic
swimmers which respond favourably to shear gradients close to a boundary could

∗Image reproduced under CC BY-NC-ND 2.0 licence.1
†Image reproduced with authors permission.2
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Figure 1.2: Left: Novel ‘Janus’ particles move under their own self-propulsion by
inducing inhomogeneity in a chemical field. In this configuration, the platinum end of the
rod acts as a catalyst in the H2O2 → H2O+O2 decomposition; the resulting concentration
difference causes diffusion toward the inert gold end of the rod. Right: Confocal (false-
colour) microscopy demonstrating Bacillus subtilis as an exemplar bacterial active matter
suspension displaying collective motion and structural defects.∗3

be used to navigate the biomechanical defences of the colon, where their passive
counterparts cannot.26 Examples of self-healing matter can be found in bundles of
micotubules close to their packing fraction, where the particles undergo continuous
extension, buckling, fracturing and self-healing, generating strong internal flows up
to three times of their own propulsion velocity;27 active stresses in a droplet, in com-
bination with Marangoni stresses at an interface,28 can create droplets capable of
self-propulsion;24 suspensions of motile, extensile (contractile) active units produce
apparent shear thickening (thinning), due to coupling between elastic stresses in the
director, activity driven shear and motility driven local stress in the fluid.25

An underlying theme of active matter is the existence of a phase transition from a
disordered isotropic phase to an ordered anisotropic phase. Here, phase refers to
a homogeneous state of matter, e.g. gas, liquid, solid or crystaline and isotropic
(anisotropic) refers to a physical property which is invariant (variant) under rota-
tion. A simple, intuitive example of the isotropic-anisotropic phase transition can

∗Image reproduced under CC BY-NC-ND 2.0 licence.3
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be gleaned from the behaviour of a herd of sheep. When unharassed and far from
their packing fraction, the herd exhibits a disordered isotropic phase; the sheep have
no preferential direction and are uniformly distributed across an appropriate spatial
average. When spooked, herded or packed close together, the sheep are in an ordered
anisotropic phase, the rotational symmetry of the flock has been broken by some en-
vironmental stimulus and there exists a local preferential direction. To go between
these states, an isotropic-anisotropic phase transition must occur — in the example
of sheep, orientational order occurs due to a behavioural mechanism, e.g. safety in
numbers.

Significant literature has been devoted to uncovering the general mechanisms which
break rotational symmetry in the isotropic-anisotropic phase transition for active
matter. Early works by Viscek29 and Toner-Tu14 demonstrated this phase transi-
tion occurs by only employing noisy, nearest-neighbour velocity alignment rules, as
would be appropriate for a herd of sheep, or flock of birds. Cates and Taileur30

invoke motility (particle activity leading to self-propulsion) and steric interactions
(non-binding particle-particle interactions such as volume exclusion) as an underlying
mechanism — collisions between particles temporarily reduces their self-propulsion
velocity, leading to particle accumulation and collective motion. Simha and Ra-
maswamy31 show that rotational symmetry is broken through particle interaction
by long-range hydrodynamic forces (particle interactions mediated by induced flow)
and entropic elasticity (elastic-like forces due to system tendency toward entropically
favourable states).

Attempts to generalize active matter using ‘thermodynamic-like’ descriptions by en-
tropy production arguments are also successful in predicting the isotropic-anisotropic
phase transition.32,33 An insightful model by Takatori et al.34 drew analogy of SPPs
to passive Brownian particles to give an intuitive insight to the emergence of collective
motion. A lone Brownian particle exhibits random walk behaviour due to Brownian
motion; similarly, ‘run-and-tumble’ bacteria, such as Escherichia coli (Figure 1.3)
undergo ‘runs’ of uniform swimming punctuated by tumble events where the bac-
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teria randomly reorientates.35 On sufficient spatial-temporal averaging, this motion
is analogous to Brownian particle motion — the distinction being that the time be-
tween reorientation events for run-and-tumble swimmers is negatively biased toward
an increase in bacteria concentration. By this language, Takatori et al. demonstrate
that run-and-tumble bacteria suspensions undergo ‘phase separation’ into a coexis-
tence of dilute-dense phases, analogous to first-order gas-liquid phase transitions.

In all the discussed cases, regardless of the mechanism driving the isotropic-anisotropic
phase transition, active matter as a living material is fundamentally always out-of-
equilibrium. This arises due to the presence of SPPs in three ways: firstly, local en-
ergy dispersion results in a local stress field, which generates hydrodynamic stresses
in the medium — irrespective of fluid flow or particle motility. Secondly, SPPs
are force-free, they can only move by momentum exchange with their surroundings.
A suspension of force-free swimmers can be compared to an internal body force,36

which — unlike the sedimentation of spheres, whose motion is driven by external
body forces (i.e. gravity) — increases the degrees of freedom of the system. Thirdly,
particle orientation is self-determined and coupled to both local fluid flow and neigh-
bouring particle orientation. Active matter is a close relative of soft matter , which is
well described by close-to-equilibrium arguments in thermodynamics — conversely,
these rudimentary properties of active matter yield a highly non-equilibrium system,

Figure 1.3: A computer-generated image of a group of Escherichia coli.4 E. coli is an
exemplar rod-like bacteria which demonstrates ‘run-and-tumble’ behaviour – periods of
‘runs’ punctuated by ‘tumbles’ where the bacteria randomly reorientates.
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rendering it prone to wide range of unique phenomena. In the ordered anisotropic
phase, studies on active matter reveal a rich variety of phase transitions, instabili-
ties, wave propagation, jets and vortices, defect formation, and turbulence, amongst
many other anomalies.31,37–41

The quantitative analysis, description and prediction of active matter phenomena is
actualized by sound Mathematical models — which in turn must be appropriate for
the nature of the system they are modelling. Active matter models can be broadly
split in two regimes based on the nature of the momentum dissipation of the medium:
where hydrodynamic interactions between SPPs are important, momentum conser-
vation arguments must be considered, which is referred to as ‘wet’ active matter;
if the medium can considered inert, providing only friction, particle kinematics are
overdamped and can be modelled without momentum conservation, referred to as
‘dry’ active matter. The terms wet and dry refer only to the type of model typically
used, they are not a reference to the nature of the medium — some active matter
systems could be modelled by either approach. Vibrated granular rods42 and migrat-
ing animal herds43 are examples of systems which could be modelled as dry active
matter; swarming bacteria suspensions44 and Janus nanoswimmers21 are examples
of systems which could be modelled as wet active matter.

In Section 1.2, I derive the governing equations for a coarse-grained description of
momentum-conserving active matter, suitable for a wet active matter regime where
appropriate modelling of the suspension medium and hydrodynamic interactions be-
tween SPPs (from here on referred to as swimmers or microswimmers) are important.
In this regime, it is important to address the discrete nature of microswimmers: when
is it permissible to employ a continuum description of active matter? If we consider
the kinematics of a fluid, over spatial-intervals on the same order of magnitude of its
molecular constituents, the fluid spatial-temporal evolution is dictated by the ther-
mal fluctuations of, and collisions between, individual molecules. The ‘finiteness’ of
the fluid on such a length scale is unavoidable. For spatial-intervals orders of magni-
tude above the molecular dimensions, the details of intermolecular interactions can
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be neglected in favour of averaged macroscopic properties such as pressure (force
per unit area due to intermolecular collisions) and stress (force per unit area due to
intermolecular resistance to deformation, which are well defined in a continuum limit.

The question of continuity then, is captured by the relationship between the length
scale of interest and the interaction between particles. The Knudsen number is the
ratio of these properties, defined as

Kn = λm

L
= mean-free path

length scale .

Here, λm is the mean-free path, defined as the average distance between successive
impacts between particles. The length scale, which is the scale of phenomena we’re
interested in investigating, we are free to set at our own will. A continuum model
is appropriate when our length scale of interest is an order of magnitude above the
mean-free path, i.e. Kn < 0.1. For water molecules, λm ≈ 0.25nm, and measure-
ments of flow around even the smallest bacteria, such as Pelagibacter ubique with
an average cell diameter of 200nm,45 have a Knudsen number of Kn ≈ 10−3. Con-
sequently, fluid velocity will always be modelled by a continuous vector field, in this
work denoted u(x, t) (Section 1.2.1), whose spatial-temporal evolution is governed
by classical Newtonian mechanics generalised to infinitesimal fluid elements.

The generalisation of these principles to active matter is not clear-cut; the mean-free
path of microswimmers can be difficult to determine. A didactic case occurs when
the mechanism for the isotropic-anisotropic phase transition is motility, as Cates and
Taileur30 demonstrate. In a dilute-phase, the mean-free path could be large (rela-
tive to swimmer size) due to the distance between particles, yet the self-propulsive
nature of microswimmers increases the rate of successive collisions, effectively reduc-
ing the mean-free path. As an isotropic-anisotropic phase transition occurs, relative
particle-particle displacement decreases, increasing interaction probability. However,
successive collisions between swimmers reduces the self-propulsion velocity, which
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therefore increases the interaction time-scale — consequently, the notion of a mean-
free path becomes difficult to find deterministically. The dynamic characteristics of
the mean-free path for swimmers in active matter is not only cause of complexities
— many interesting phenomena of active matter occur at intermediate length scales,
such as boundary layer phenomena, thin-films, or defect formation. Accordingly,
appropriate care must be taken when applying a continuum model that has been
developed to understand long-wavelength behaviour to localised phenomena, such as
boundary phenomenon. Microswimmers exhibit niche behaviour at boundaries: col-
lisions with a boundary temporarily decrease swimmer motility, leading to swimmer
accumulation and trapping;46,47 boundaries can be a source of strong surface energy,
exerting a preferential alignment orientation on the suspension;48 and swimmers can
‘slip’ along a boundary, where orientation assumes a different direction to their tra-
jectory49 (Figure 1.4).

A pragmatic approach to a continuum description of active matter might invoke the
tools of statistical mechanics. Microscopic description of swimmers, as well as their
interactions with their medium, can be coarse-grained to produce long-wavelength,
long-time behaviour. In doing so, a natural order parameter known as the direc-
tor emerges, describing the local average orientation of swimmers. In the ordered
anisotropic phase, the director is a unit vector,∗ in this work denoted by p(x, t)

∗The director can be defined in the isotropic phase too, but will no longer be a unit vector

Figure 1.4: Microswimmers near a boundary can display a ‘slip’ behavioural mechanism,
where swimmer orientation assumes a different direction to their trajectory.
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(Section 1.2.2). Its spatial-temporal evolution is governed by macroscopic princi-
ples, coarse-grained from microscopic particle-particle interactions — analogous to
the emergence of macroscopic principles in a fluid, such as pressure and strain. With
careful treatment, coarse-graining is a powerful approach to a continuum model.
However this becomes inevitably intensive (and numerically expensive, if producing
simulations) as swimmer models become more detailed, swimmer volume fraction
increases, or particle interaction becomes stronger — analytical solutions quickly be-
come impossible, or at best very difficult, to solve.

An alternative approach starts with writing down all the conserved fields — physical
quantities which must be conserved by the laws of physics — and using the laws
of conservation of mass, momentum and energy to derive the governing hydrody-
namic equations. The choice of these fields is restricted to those which are ‘slow
variables’.50 When a system is disturbed from equilibrium, the perturbation which
caused the disturbance has an associated wavelength. A slow variable is one whose
relaxation time is proportional to this wavelength; in particular, whose relaxation
time is unbounded as the wavelength approaches infinity. The most general treat-
ment of ordered anisotropic fluids by this phenomenological approach is found in
liquid-crystal literature. The appropriation of this language for active matter was
first made by Simha et al.31 and has since been widely utilised as a continuum ap-
proach.

In this thesis, I establish the continuum, coarse-grained governing equations for
momentum-conserving active matter by writing down the relevant continuum fields,
applying hydrodynamic conservation laws to the suspension (Section 1.2.1), and de-
termine director alignment with contributions from liquid-crystal literature to calcu-
late the bulk and surface torques acting on the suspension (Section 1.2.2). Following
a linear stability analysis around a constant steady state solution, in Chapter 2 I
establish the instability mechanism for the unbounded 2d regime by deriving a fun-

to account for varying order. The inclusion of defects in the director requires a generalisation to
Q-tensor theory, common to liquid-crystal literature.
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damental instability known as the Stokesian active matter instability, established in
literature by Simha et al.31 and Sankararman et al.51 In Chapter 3, I extend this
analysis to the unbounded 3d regime where I illustrate that a de-coupling of the
governing equations leads to the dominance of bend modes for an extesile suspen-
sion. The main result of this work follows in Section 3.3.2, where I consider a recent
development for the inclusion of chirality into the Jeffrey orbit equations which re-
couples the governing equations and present a new regime of instability consisting of
travelling twist-bend modes and an enhanced disturbance growth rate under imposed
shear.

Hereafter, I introduce a numerical element to the analysis in the second part of this
work by solving the linearised governing equations in an instability analysis as an
eigenvalue problem in Matlab, and I explore the consequences of imposing con-
finement on the fundamental instability by considering a channel and film regime in
Chapter 4. After connecting the growth rates of unbounded regime and regimes of
weak, intermediate and strong confinement in Section 4.6, I show in Section 4.7 that
a 3d regime will always be less stable than a 2d regime by virtue of the de-coupling
mechanism discussed in Chapter 2, and continue the narrative concerning chirality
in Section 4.8. In Section 4.9, I illustrate that the choice of boundary conditions can
greatly impact the growth rate of regimes under strong confinement and can reduce
the critical confinement length needed to suppress the instability growth rate by an
order of magnitude. The culmination of this work explores the instability growth
rate of alternative steady states, either by imposing specific boundary conditions,
or by imposing flow, such as in an inclined plane, which I detail in Chapter 5. Fi-
nally in Chapter 6, I discuss possible future avenues of exploration by the inclusion
of stresses unique to polar active matter, the modelling of defects in the nematic
phase, the consequences of having a non-uniform distribution of orientations, and
extensions to the discussed regimes.
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1.2 Governing Equations

The conserved fields for a wet active matter suspension of active, motile particles
read,

ρ(x, t) fluid density,
u(x, t) fluid velocity,
c(x, t) suspension concentration,
p(x, t) suspension orientation.

The fields are all functions of position x and time t. The isotropic fluid and
anisotropic swimmer suspension fields permeate — that is, they individually obey
mass and momentum conservation laws and occupy the same domain. The fluid,
whose governing equations are derived in Section 1.2.1, is governed by modified
Navier-Stokes equations (1.18a, 1.18b) and the fluid contributes to swimmer sus-
pension kinematics by advection, rotation due to vorticity, and alignment to shear
gradients, and the suspension concentration and orientation can be defined from
volume-averaged quantities over microswimmers with local orientation and position
(1.19a–1.19c).

In the microswimmer suspension, whose governing equations are derived in Section
1.2.2, individual swimmers are assumed to be neutrally buoyant and axisymmet-
ric, with a geometric parameter λ1 measuring their alignment to local shear and
a second new geometric parameter52 λ2 governing chirality (discussed in Section
3.2). Microswimmers interact with one another in two ways: hydrodynamic inter-
actions are governed by a forcing term in the Navier-Stokes equations of the form
pp commonly known as the active stress tensor31 and a non-equilibrium motility
stress of the form ∂ipj + ∂jpi —both terms couple the swimmer orientation to fluid
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flow; steric interactions are modelled through a suspension elasticity term which is
derived from a free energy functional, equation (1.32). The swimmer suspension
also exerts stress due to swimmer polarity, self-advection from self-propulsion and
thermodynamic contributions.53 However, these terms come in at next-to-leading
order spatial gradients, and can be neglected for an initial hydrodynamic instabil-
ity analysis (Chapter 2). The mechanical stress contributions due to a suspension
of passive particles broadly fall under rheological studies and are omitted in this work.

1.2.1 Hydrodynamics

The equations which govern all fluid mechanics are derived from the conservation
principles of mass, linear momentum and angular momentum. Our derivation follows
from fundamental principles in the Eulerian frame of reference, and a similar deriva-
tion can be found in any good fluid dynamics textbook, such as Elementary fluid
dynamics, Acheson.54 By the principle of conservation of mass, the rate-of-change of
mass in a fixed volume V is proportional to the mass-flux on the volume boundary
S (Figure 1.5),

∂

∂t

∫
V
ρ dV +

∫
S
ρu · n dS = 0. (1.1)

Here n denotes the outward unit normal (Figure 1.5). Use of the divergence theorem
allows us to write the surface integral as a volume integral, and we can bring the

n

V

S

Figure 1.5: A fixed volume of fluid of vol-
ume V with surface boundary S and unit
normal n pointing out of the volume.
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time derivative inside the volume integral by utilising Reynolds transport theorem,

∫
V

∂

∂t
ρ+ ∇ ·

(
ρu
)

dV = 0. (1.2)

Since (1.2) must hold for any fixed volume, we can reduce it to point form and write,

∂ρ

∂t
+ ∇ · ρu = 0. (1.3)

This is the statement of mass conservation for a fluid. When ρ is constant throughout
the fluid, equation (1.3) reduces to the incompressibility constraint

∇ · u = 0, (1.4)

which holds for all regimes considered in this work. The momentum conservation
laws state that the rate-of-change of momentum is balanced by the sum of the forces
acting on the fluid, which can be generalised as,

g External body force per unit mass,
b External body moment per unit mass,
t Surface force per unit area,
l Surface moment per unit area.

As a consequence of the Euler-Cauchy stress principle, the surface force and surface
moment can be expressed as functions of the stress tensor σ and couple stress tensor
π respectively,
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t = n · σ, l = n · π. (1.5)

The equation for linear momentum balance reads,

d
dt

∫
V
ρu dV = ρ

∫
V

g dV +
∫

S
t dS, (1.6)

Rewriting the surface integral using equation (1.5) gives,

∫
S

t dS =
∫

S
n · σ dS

=
∫

V
∇ · σ dV, (1.7)

where we have used the divergence theorem in the final step. We can again bring the
time derivative inside the integral on the left hand side of (1.6) by utilising Reynolds
transport theorem and the incompressibility of u. With the contribution from (1.7),
equation (1.6) can be reduced to point form and we obtain the linear momentum
balance equation,

ρ
(∂u

∂t
+ (u · ∇)u

)
= ρg + ∇ · σ. (1.8)

The differential form on the left-hand side is commonly known as the material deriva-
tive,

d
dt = ∂

∂t
+ (u · ∇). (1.9)

The material derivative describes the transport of a physical quantity, such as heat
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or matter, in the presence of the background flow u. When applied to the vectorial
field u, it describes the acceleration of a fluid element from the frame of reference
of a fluid particle. The first term describes changes of the local (i.e. fixed point in
space) flow field in time. The second term, known as the inertia term, describes the
‘spatial’ acceleration of the fluid. When applied to a scalar quantity, such as density
or concentration, the second term describes advection due to the flow.

The linear momentum equation (1.8) is the fluidic equivalent of Newton’s second
law. To complete an equation of motion from equation (1.8) requires a constitutive
relation between the kinetic and kinematic qualities of a fluid. A fluid will always
deform when subjected to stress - for a Newtonian fluid, the relationship between the
viscous stress σv and velocity gradients is linear, and the Newtonian Constitutive
equation is written as,†

σv = −Pδ + 2µE, (1.10)

where P is fluid pressure, the normal stress exerted between bodies of a fluid; δ is
the Kronecker delta, µ is dynamic viscosity, which governs dissipation of momen-
tum between neighbouring regions of fluid; and E is the rate-of-strain tensor, the
symmetric component of the velocity gradient tensor ∇u which is written,

E = 1
2
(
∇u + (∇u)T

)
. (1.11)

The resulting equation by substitution of (1.10) into (1.8) is the Navier-Stokes equa-
tion,

ρ
(∂u

∂t
+ (u · ∇)u

)
= −∇P + µ∇2u + ρg. (1.12)

†Here, incompressibility of the fluid has been assumed.
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The first term on the right-hand side represents pressure forces, the second term
represents viscous forces and the final term is the body force, typically gravity in
this work. The presence of a suspension of swimming microorganisms in a viscous
fluid also induces hydrodynamic stress, which acts like a forcing term in the Navier-
Stokes equation. A simplistic model which captures forcing effects can be built from
elementary solutions to the Stokes equation, equation (1.14), which describes highly
viscous flows. Viscous flows are characterised by the dimensionless Reynolds number
which describes the relationship between the inertia and viscous term in the Navier-
Stokes equation,

Re = Inertia forces
Viscous forces = ρUL

µ
, (1.13)

for velocity and length scales U and L. High Reynold number flows (Re ≫ 1)
correspond to regimes where inertia forces dominate, such as aviation aerodynamics
which are typically turbulent. Low Reynold number flows (Re ≪ 1) correspond
to regimes where viscous forces dominate, such as coiling honey, and are typically
steady. An exemplar microswimmer, such as B. subtilis, with a characteristic length
of ∼ 4µm and swim speed of ∼ 20µm (see Section 2.2.1 for parameter ranges) yields
a Reynolds number in water of Re ≈ 10−4. Consequently, the inertia terms for the
flow around microswimmers can be neglected, and the Navier-Stokes equation can
be replaced by the steady Stokes equation,

∇ · σv = 0. (1.14)

In our initial analysis, we omit the externally-imposed body force ρg which would ap-
pear on the right-hand side of equation (1.14). Microswimmers are typically neutrally
buoyant, but gravitational forces can cause a re-orientation phenomenon known as
geotaxis when the hydrodynamic center and the center-of-mass of a microswimmer
are located in different places, causing a re-orientation along the direction of the ap-
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Figure 1.6: Elementary solutions of the Stokes equation (1.14). Reproduced from Kos et
al., 2018∗.5 Left: The fluidic response to a point force, otherwise known as a Stokeslet.
Viscosity drags along fluid adjacent to the point force, where the fluid velocity spatial
decay is proportional to 1/r2. Middle: The flow field resulting from a dipole of two
opposing forces (corresponding to active units orientated in the y-axis, exerting contractile
stress such as a ‘puller’ swimmer). Right: The flow field resulting from a dipole of two
forces facing away from one another (corresponding to active units orientated in the y-axis,
exerting extensile stresses such as a ‘pusher’ swimmer).

plied gravitational field.55 This re-orientation effect can produce plumes of up-welling
(gravitaxis) or down-welling bacteria (gyrotaxis),56 however, as we are interested in
activity-driven phenomena, we choose to omit this effect (which would have appeared
as a separate term for the director in Section 1.2.2). Gravitationally-induced flows are
typically an order-of-magnitude larger than microswimmer activity-driven flows (see
Section 2.2.1 for further parameter analysis), and the corresponding shear-induced
torque can be the dominant mechanism for re-orientation in swimmer suspensions
when confinement effects are small. These effects are included with shear-induced
torque acting on the suspension in Section 1.2.2 and specifically addressed in Chap-
ter 5.

Equation (1.14) expresses a time-independent force-balance in viscous fluids; its re-
sponse to a point force δ(x)f(x), where δ(x) is the Dirac delta function, has an

∗Figure reproduced under MDPI Open Access licence.
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elementary solution called a stokeslet (Figure 1.6, Left): the dominant flow is along
the axis of the direction of f(x), but is also constituted of a component perpendicular
to the direction of f(x) as fluid is dragged along due to viscous effects. In a far-field
approximation, we can approximate a microswimmer by two point forces: the first
represents the drag of the microswimmer, which is largest around the body or head
of the microswimmer, and the second represents the thrust exerted on the fluid by
the swimmer flagella. The relative position of these two forces broadly categorises
the type of microswimmer we have: when the microswimmer flagella are located in
front of the body, we have a ‘puller’ microswimmer, when the flagella are located
behind the microswimmer head, we have a ‘pusher’ microswimmer. This minimalist
description is known as the far-field ‘dipole’ approximation for microswimmers and
captures the fundamental flow field around the swimmer: corrections to the resul-
tant flow field can be achieved by considering higher multipole expansions.57 The
flow fields for the dipole solutions are also called ‘stresslets’, and depend only on
whether the swimmer is a ‘pusher’ or a ‘puller’ (corresponding flow fields in Figure
1.6, Middle and Right). The full derivation and explicit forms can be found in
any good text book on microhydrodynamics, such as Kim & Karrila.58

In this work, we are interested in the net flow-field arising from a suspension of
swimming microorganisms. The minimalistic dipole description of a microswimmer
is an ideal first-order approximation to this flow-field as corrections from higher
multipole expansions are small when averaging over the swimmer suspension. To
form the active stress tensor, we idealise a suspension of stresslets where the ath

swimmer has position ra, orientation νa and, equal and opposite poles of strength
fα located at ra + dνa and ra − d′νa (Figure 1.7). The force density of these rods
at x is given by,

F α(x) =
∑

a

fανa

(
δ
(
x − (ra + dνa)

)
− δ

(
x − (ra − d′νa)

))
(1.15)
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Figure 1.7: A collection of idealised dipole mi-
croswimmers. The ath microswimmers location
is given by ra with orientation νa. The mi-
croswimmer idealised as a rod has equal and op-
posite forces located at ra + dνa and ra − d′νa.

Expansion of the dirac delta function around swimmer position ra gives,

F α(x) = −fα(d+ d′)∇ ·
∑

a

νaνaδ
(
x − νa

)
+ O

(
∇∇

)
. (1.16)

Here, O
(
∇∇

)
represents higher order derivatives in the Taylor expansion. Coarse-

graining this summation16 gives us the divergence of the active stress tensor σα such
that,

σα = αpp, (1.17)

where individual swimmer orientation νa has been coarse-grained to an averaged
swimmer orientation term p(x, t) and the swimmer number density is contained
within the activity term α = −fαd̂c(x, t), where d̂ = (d+d′)/2 and α < 0 corresponds
to pusher swimmers exerting tensile stress on the fluid, and α > 0 corresponds to
puller swimmers exerting contractile stresses on the fluid. Here, the averaged swim-
mer orientation p can be well-determined by moments about a probability density
function for the swimmer orientation and position, which is discussed further in the
governing equations for the suspension (Section 1.2.2). For a fluid of viscosity µ,
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the dipole strength can be evaluated by fα ∼ vpµd̂, where vp is the microswimmer
speed, and takes values in the range of fα ∈ [0.1, 10]pN ( detailed in Section 2.2.1).
Finally, defining the total stress as σ = σv + σα, this allows us to write down the
governing equations for the active matter hydrodynamics as,

∇ · u = 0, (1.18a)

ρ
(∂u

∂t
+ (u · ∇)u

)
= −∇P + µ∇2u + ρg + α∇ · pp. (1.18b)

1.2.2 Swimmer Suspension

Next, we turn our attention to the continuum fields for the spatial and orientational
configurations of the swimmer suspension , which are well defined by the moments
of the probability density function P(x,ν, t) describing the probability of finding a
particle at point x, with orientation ν, at time t, such that,

c(x, t) =
∫

S
P(x,ν, t) dν, (1.19a)

m(x, t) =
∫

S
P(x,ν, t)ν dν, (1.19b)

Q(x, t) =
∫

S
P(x,ν, t)

(
νν − δ

3
)

dν. (1.19c)

where integrands are evaluated over S, the unit sphere of all possible orientations.
Then, the zeroth moment corresponds to the concentration c(x, t) of swimmers, the
first moment corresponds to the unnormalized polarisation m(x, t) = S(x, t)p(x, t),
where p(x, t) is a unit vector describing the average orientation of particles and
S(x, t) is a scalar order parameter describing the order strength. The second mo-
ment gives the unnormalized tensorial order parameter Q(x, t) which describes the
deviation away from the isotropic state.
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A full, dynamical description of an active matter suspension capable of predicting
isotropic-anisotropic phase transitions would require solving the Smoluchowski equa-
tions for the probability density function P(x,ν, t). However, since we are interested
in the stability of the ordered anisotropic phase, it would suffice to derive the conser-
vation laws for c(x, t) and p(x, t), as variations in the scalar order parameter S(x, t)
and tensorial order parameter Q(x, t) are small when conducting a stability analysis
around the ordered state. We are interested in regimes of self-propelled microorgan-
isms which contribute polar and motile stresses that break the symmetry p = −p,
however these terms act at higher order gradients than the activity stress tensor,
which drives the system out of equilibrium, and consequently in favour of simplify-
ing the stability analysis we choose to neglect these stresses to focus on the role of
boundary conditions in strong confinement. The regimes where our analysis can be
broadly applied and where further special consideration is required is discussed in
the concluding remarks in Section 6.2.

1.2.2.1 Concentration and Director Field Conservation Laws

Having established that the concentration c(x, t) and director (average orientation)
p(x, t) fields can indeed be connected to well defined microscopic states described by
a probability distribution function, we will proceed to lightly sketch the derivation of
their conservation equations. In Section 2.2, we will make the simplifying assumption
of constant concentration, but for completeness sake its governing equation is also
included here. The mass conservation equation was already derived in equation
(1.3), the swimmer concentration follows a similar conservation process, so we skip
its derivation and state the result which reads,

∂c

∂t
+ ∇ · (cu + cvP p) = 0. (1.20)
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Here, the second term in the divergence expression describes swimmers with self-
propulsion velocity vpp. The effects of diffusion and Brownian motion in equation
(1.20) have been neglected. Next, we turn our attention to the equation of motion
for the director, which is evaluated by a torque balance argument applied to a local
swimmer at point x, whose orientation is described by the unit vector ν(x, t). By
the definition of the rate-of-change of orientation we have,

ν̇ = w × ν, (1.21)

where ν̇ denotes the material derivative and w the swimmer angular velocity. In
seeking an expression for w, we recall that a microswimmer satisfies the no-torque
condition, such that the torque exerted on the swimmer due to rotational drag T drag

and the torque imposed by external forces T ext balance one another, which yields

T drag + T ext = 0. (1.22)

To find an expression for the rotational drag T drag, we follow a similar narrative
to Michael D. Graham.59 Note that the expressions for translational and rotational
drag on a particle in a Stokes flow are proportional to the particles velocity v and
angular velocity w,

F drag = ζhvp, (1.23)
T drag = ζrw. (1.24)

Here, ζh, ζr are the translational and rotational drag coefficients on the swimmer. For
a sphere of radius a, the drag coefficients are known to be ζsph

h = 6πµa, ζsph
r = 8πµa3,

which can be shown by a straight-forward surface integral over the sphere. The gen-
eralisation to nonspherical particles describes the relationship between the transla-
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tional drag F drag, rotational drag T drag, and stresslet S tensor, to the translational,
rotational and shear flow experienced by the particle. For sufficiently small particles,
the background flow u∞ experienced can be approximated as a linear flow,

u∞ = Ω · x + E · x, (1.25)

where Ω is the antisymmetric part of the velocity gradient tensor ∇u and E its
symmetric part. Then, by the linearity of the Stokes equation, (1.14) this allows
us to write a general expression between the forces and velocities experienced by a
particle,


F drag

T drag

S

 = R ·


u − v

ω − w

E



where ω describes the local fluid vorticity. The second-rank tensor R is known as the
‘grand resistance tensor’ and constitutes second, third and fourth-rank tensors which
detail the resistance of a particle to translation, rotation, and strain; its elements are
abbreviated Rij. For a full technical discussion, see Kim & Karrila58 or Graham.59

For our purpose, it suffices to write the relationship for the drag torque,

T drag = RTΩ · (ω − w) + RTE · E, (1.26)

The astute reader may observe the absence of a RTU like term, the torque experienced
due to pure translation, which would appear for particles with a chiral contribution
to their shape, such as a corkscrew-like particle, or a swimmer with helical flagellum.
Chiral contributions can result in translation of the particle due to shear-imposed,
and would require a self-propulsion correction to the linear-flow profile (1.26) ex-
perienced by a particle. As chirality is a next-to-leading order effect for swimming
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microorganisms, whose dominant re-orientation mechanism is determined by vor-
ticity and alignment to shear, we omit RTU and proceed with our derivation for an
axisymmetric, fore-aft particle, but re-introduce chirality in Chapter 3 where we con-
sider a chiral correction to the Jeffrey orbit equations from Ishimoto.60 Substituting
(1.26) into (1.22) and rearranging for w results in,

w = ω + (RTΩ)−1 · RTE · E + (RTΩ)−1 · T ext. (1.27)

Taking the cross product with p and substituting (1.21) gives,

ν̇ = ω × ν + (RTΩ)−1 · RTE · E × ν + (RTΩ)−1 · T ext × ν. (1.28)

The torque-vorticity tensor RTΩ expresses the relationship between torque and an-
gular velocity. For an axisymmetric fore-aft particle, RTΩ is a rotational friction
tensor, whose components comprise of ζ∥

r , friction due to rotations around the ν

vector, and ζ⊥
r , friction due to rotations perpendicular to the ν vector,

RTΩ = ζ∥
r νν + ζ⊥

r (δ − νν), (1.29a)

(RTΩ)−1 = 1
ζ

∥
r

νν + 1
ζ⊥

r

(δ − νν). (1.29b)

Since rotations about the p axis don’t change the suspension dynamics, we are free
to discard the 1

ζ
∥
r

term and unambiguously write ζr = ζ⊥
r . The torque-strain tensor

RTE can be expressed as,58

RTE
kij = ζE(ϵiklνj + ϵjklνi)νl (1.30)
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Here, ζE is the particle resistance to strain and ϵijk is the Levi-Civita symbol. Sub-
stituting (1.29b) and (1.30) into (1.28) and applying identities for the equivalence of
vorticity and angular velocity we get,

ν̇ = λ1(δ − νν) · E · ν − Ω · ν + 1
ζr

T ext × ν. (1.31)

Here, the constant λ1 = ζE
ζr

known as the Bretherton constant, describes the tendancy
of a particle to align to local shear gradients. The Bretherton constant is a function
of the swimmer geometry only: spherical particles which do not align to shear have a
Bretherton number of 0, whereas rod-like particles which are strongly effected by ex-
tensile flows have a Bretherton number close to 1. In classical swimmer problems, the
case of λ1 = 1 corresponds to infinitely long rods, but certain liquid-crystal regimes
(which we do not consider) can have an effective value of |λ1| > 1. Alignment to
shear plays an important role in the stability of an active matter suspension as it
sets a preferential alignment direction for the director and will often be referred to
during analysis throughout this work.

1.2.2.2 Determining Externally-Imposed Torque in a Suspension

Equation (1.31) can be coarse-grained to the suspension by substituting ν for the
director p, and exchanging the externally-imposed torque T ext acting on an indi-
vidual swimmer for a volume-averaged torque T V

ext. Externally-imposed torques can
arise from gravitational, magnetic or chemical forces, but in this work, we are inter-
ested in externally imposed ‘elastic-like’ torques occurring due to swimmer-swimmer
alignment effects. We are interested in densely-populated suspensions close to their
packing fraction, for which we can adopt a free-energy for the suspension to deter-
mine T V

ext, which is commonly used in liquid-crystal literature.

Rotational deformations of the director have a free-energy cost associated with the
increase of rotational entropy of the suspension. By minimising this distortion energy,
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we will find the conditions for static equilibrium in the bulk and use this expression
to detail the imposed torque on the swimmer. The most general treatment of the en-
tropy production of an ordered anisotropic fluid lies within the field of liquid-crystals
and is beyond the scope of this work. A general treatise can found in De Gennes &
Prost48 who provide a comprehensive overview of the physics of liquid crystals. The
derivation of the imposed torque in this section closely follows the work of De Gennes
& Prost, amongst others. To maintain the narrative and purpose of this work, we
sketch the details in the main text here, but fully detail the calculations in Appendix
A, with references made to the appendix through.

The simplest deformations the director field can undergo are splay, bend and twist
(Figure 1.8): Splay deformations are represented by the local divergence of the direc-
tor, directed along the director; rotational deformations in the director are calculated
by director curl, and twist (bend) deformations are the component of director parallel
(perpendicular) to curl, such that

Splay = (∇ · p)p,
Twist = p · (∇ × p),
Bend = p × (∇ × p).

The free-energy change associated with these elastic deformations, known as the
Frank free-energy, is taken as a volume integral over a sample volume of the director48

(Appendix A.2, equation (A.7)),

FT =
∫

V

1
2K1(∇ · p)2 + 1

2K2(p · ∇ × p)2 + 1
2K3||p × ∇ × p||2 dV. (1.32)

From left to right, the three terms represent the elastic-energy contributions of the
splay, twist and bend deformations seen in Figure 1.8, where the coefficients Ki are
known as the Frank free-energy constants. The distortion constants Ki are typically
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the same order of magnitude, Ki ≈ 10−6dyn, so we adopt the common one-constant
approximation such that Ki = K. The Frank free-energy integrand can be split-up
into bulk energy terms and a saddle-splay term which acts on the surface. When these
surface-energy contributions are significant, they will impose constraints on p at the
boundaries; a regime called strong-anchoring. These terms can be neglected in our
search for the external torque acting on a swimmer in the bulk and reconsidered by
way of boundary conditions in Section 4.2. Under these assumptions, the integrand
in (1.32) can be written (appendix equation (A.11)),

Figure 1.8: Top left to right: Deformations in the director can be visualised by their
alignment to glass plates. The local director orientation is indicated by the dashed lines in
each diagram. When the director is aligned parallel to glass plates and the glass plates are
‘opened’, a splay deformation is formed. If instead the director is aligned perpendicular to
the glass, a bend deformation is formed as the plates are separated. If instead the glass
plates are held parallel to one another and twisted rotated relative to one another, a twist
deformation is formed.
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fd = 1
2K||∇p||2. (1.33)

To find the imposed torque, first the condition for static equilibrium in the director
must be found (full derivation detailed in Appendix A, only the outline sketched
here). Minimising the functional FT with respect to variations in p,

δFT [p] = FT [p + δp] − FT [p],

=
∫

V

[
fd

(
x,p + δp,∇p + δ∇p

)
− fd

(
x,p,∇p

)]
dV,

=
∫

V
δp · ∇pfd(p,∇p) + δ∇p · ∇p′fd(p,∇p) + O

(
∇2

p,∇2
p′) dV.

In the final line, we have expanded fd by Taylors theorem where ∇p indicates gra-
dients with respect to p and similarly ∇p′ indicates gradients with respect to ∇p.
Keeping only linear terms and minimising δFT = 0 to all variations in δp such that
|p| = 1, we obtain the suspension static equilibrium condition which we recognise as
the standard Euler-Lagrange minimisation equation61 (appendix equation (A.12)),

∂fd

∂pi

− ∂

∂xj

∂fd

∂(∂jpi)
= hi, (1.34)

where h is known as the molecular field. Equation (1.34) is known as the ‘static
equilibrium’ condition for the director, i.e., when the director is parallel to h, the
externally-imposed torque T V

ext contribution to the generalised Jeffrey orbit equation
vanishes. In the case of fd as given by (1.33), the molecular field reads (appendix
equation (A.13)),
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h = K∇2p. (1.35)

Leslie’s 199262 rate of work hypothesis stipulates that the rate at which forces and
moments do work in the system is absorbed by the distortion free-energy fd, kinetic
energy and lost through viscous dissipation. A rigorous application of this argument
(Appendix A.3, A.4) finds that the imposed torque can be written (appendix equation
(A.29)),

T ext = p × h. (1.36)

Substitution of (1.36) with the molecular field (1.35) into the coarse-grained version
of (1.31) results in the equation of motion for the director,

∂p

∂t
+ (u + vpp) · ∇p = λ1(δ − pp) · E · p − Ω · p +D

(
∇2p − (p · ∇2p)p

)
(1.37)

where D = K
ζr

and the identity for the triple cross product has been applied. In
summary, from left-to-right the director is coupled to fluid flow by shear gradients:
alignment to shear is governed by the rate-of-strain tensor E and shear alignment
parameter λ1 (also known as the Bretherton constant); rotation due to local fluid
vorticity is represented by Ω and the final term is director elasticity governed by
D, which describes diffusion of rotational gradients in the suspension. We will refer
to (1.37) as the generalised Jeffrey orbit equation, where the details encapsulated
by the Smoluchowski capable of describing phase transitions, population dynamics,
and phenomena such as particle dispersion, have been omitted in favour of studying
densely populated, highly-ordered suspensions, where (1.37) is well-equipped to cap-
ture long-wavelength, and long-time phenomena.
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2 | Bulk Hydrodynamic
Instability of a 2D Suspension

In Section 1.2.1, we derived the hydrodynamic governing equations for a coarse-
grained active matter system (equations (1.18a, b)) and showed they include a forcing
term proportional to active particle activity, which was of the form ∇ · pp (equation
(1.17)). The active stress tensor, which was derived for a suspension of force dipoles,
is independent of the microscopic detail of the swimmers propulsion mechanism, and
reflects the highly non-equilibrium nature of active matter, which locally disperses
energy everywhere throughout the suspension leading to active flow wherever there
is a gradient in the director p(x, t), where p describes the averaged local particle
orientation in an anisotropic phase of active matter. In Section 1.2.2, we discussed
the coupling between the orientation and local flow gradients, which yielded equation
(1.37), detailing particle alignment to shear, rotation due to vorticity, and director
elasticity, which penalises gradients in the director.

In an early result in the field of active matter, Simha & Ramaswamy31 showed that
the forcing arising from the active stress tensor will destabilise an ordered nematic
active matter suspension for long-wavelength perturbations when coupling orienta-
tion, flow and concentration. In this Chapter, we will reproduce some of the main
results from this paper to prepare for a comprehensive extension to the instability
analysis. We begin in Section 2.1 by qualitatively describing the mechanism that
causes hydrodynamic pumping due to bend and splay deformations in the director,
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before detailing linear instability analysis calculations in Section 2.3. By linearis-
ing around a steady state, we mathematically reduce the analysis to an eigenvalue
problem, where we are interested in the growth rate, phase, and solution type of
the corresponding eigenmodes. Throughout this chapter, our main goal is to build
a strong intuition for the mechanical mechanism which drives the suspension out of
equilibrium to prepare ourselves for the extension to the 3d regime in Chapter 3 and
regimes of confinement in Chapter 4 and Chapter 5.

2.1 Qualitative Description

A bulk active matter suspension, free from the effects of shear, confinement or ex-
ternal alignment forces on the director, admits a steady, constant solution (denoted
by overbars) for the velocity, pressure and director fields, such that,

ū = 0, c̄ = c0, p̄ = const., P̄ = PA, (2.1)

where PA is set as atmopsheric pressure, and we set p̄ = x̂ without loss of generality
which is the general convention used throughout this work, except where explicitly
mentioned. The constant solution can be visualised by imagining a suspension of
idealised rods, whose contractile or extensile dipole moments act from the ends of
each rod (Figure 1.7). By aligning the rods end-to-end and side-by-side, the physical
interpretation of the constant solution is realised by analogy to a square lattice of
aligned common bar-magnets, whose forces would cancel one another out when per-
fectly aligned — clearly, by that same analogy, any disturbance of said bar-magnets
would result in net force local to the disturbance whose magnitude is proportional to
the size of the disturbance. In a similar way to the bar magnets, a lattice of swim-
mers idealised as rods exerting force-dipole moments will admit a steady solution
when all the rods are aligned (visualised in Figure 2.1a).
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To understand the behaviour of a suspension of force-dipoles when spatial gradients in
the director are present, recall that the director can undergo three types of rotational
deformation: bend, twist and splay (Section 1.2.2, Figure 1.8). The hydrodynamic
force associated with the bend and splay deformations emerge from the active stress
tensor by rewriting it as,

∇ · pp = (∇ · p)p + (∇ × p) × p, (2.2)

with the use of (p · ∇)p = (∇ × p) × p + 1
2∇(p · p)2, where p is a unit vector.

The first term represents splay as the divergence ∇ · p, whose hydrodynamic forcing
is directed along p; the second term represents bend ∇ × p, whose hydrodynamic
forcing is orthogonal to p, i.e., when the director is locally aligned, bend (splay)
deformation occurs for director gradients parallel (perpendicular) to the alignment
direction.

Both deformations have an associated elastic energy cost, which appears in the Frank
free-energy equation (1.8) — note that there is no hydrodynamic force associated
with a twist deformation. Active forcing is strictly at 2d phenomenon, in the sense
that active flow occurs in the same plane as the deformation that caused it, and the
lack of hydrodynamic forcing associated with a twist deformation we will reveal has
importance consequences for the modes we can expect to observe in a 3d suspension
(Chapter 3).

The active stress tensor is a coarse-grained approximation, a far-field flow approxi-
mation to the exact details near the swimmers. However, for the purposes of building
intuition for the resultant flow fields when local orientational order is disturbed, we
can decompose the force acting on an infinitesimal element of fluid between idealised
rods to visualise the resultant net flow when orientational order is disturbed (Figure
2.1b). The direction of flow is proportional to the sign of activity α, and for an exten-
sile (contractile) suspension, fluid is pumped toward (away from) the closed end of a
splay deformation, and along (away from) the outward-normal of a bend deformation.
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In general, gradients in the director are non-uniform, and the resultant flow here-
after referred to as activity-driven flow, or simply active flow, has an associated shear
gradient, which we will refer to as active shear. In Section 1.2.2, we saw that the
director is sensitive to shear gradients which imposed a shear-induced torque on the
director. As seen in (2.4d), vorticity is the term driving shear-induced rotation and
is directly proportional to the strength of shear. In Figure 2.2, we’ve illustrated
the active flow from a bend and splay deformation, where the flow for bend (splay)
is pointed along the outward-normal (closed end) of the deformation. The active
units which propagate the deformation will also experience the shear-induced torque
from the resulting active shear. In the case of bend in an extensile suspension, this
shear-induced torque will enhance the original bend deformation, whereas for a splay
deformation active shear will suppress the original splay deformation. The roles are
reversed when considering a contractile suspension. Activity driven, shear-induced
rotation is the primary mechanism for stability/instability in the ordered suspension
and we’ll see exactly how stabilising-splay and destabilising-bend fall out of the in-
stability analysis for an extensile suspension in Section 2.3.2.

Figure 2.1: Left: A depiction of the con-
stant equilibrium solution for a suspension of
idealised rods exerting extensile forces (grey
arrows) on a fluid element (dark blue circles)
adjacent to rod ends. Right: The net force
acting on a fluid element between rows of ide-
alised extensile dipole rods. Active forces are
in grey and act on local fluid elements (blue
circles). Breaking down the resulting forces
on the fluid element (dashed light-blue) il-
lustrates a net force (solid light-blue) acting
along the outward-normal of director bend.
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Splay-suppressing rotation

Bend-enhancing rotation

BEND

SPLAY

Figure 2.2: Top: Activity-induced flow enhances bend in an extensile suspension. Bot-
tom: Activity-induced flow suppresses splay in an extensile suspension. For an extensile
suspension, fluid is pumped toward the closed end of a splay deformation (outward normal
of a bend deformation, respectively). The resulting activity-inducd flow has an associated
shear, which induces a torque on the active units and suppresses (enhances, respectively)
the original rotation. For a contractile suspension, fluid is pumped in the opposite direction
for both bend and splay, and the situation is reversed (bend suppresses the deformation
and splay enhances it).

35



2.2 Non-dimensionalisation of the Governing
Equations

To quantitatively describe the instability mechanism, we will utilise a linear stability
analysis on a simplified set of the governing equations derived in Section 1.2, where
initially we will linearise around the constant, ordered steady-state described by
equations (2.1), and in Chapter 5, we will linearise around non-constant steady-
states. Summarising from Section 1.2, the full set of governing equations for an
ordered suspension of active swimmers in an incompressible fluid comprises of the
incompressibility condition (1.3), modified Navier-Stokes equation (1.18b), swimmer
number-density evolution (1.20) and torque balance for the director (1.37), which
together read,

∇ · u = 0, (2.3a)

ρ
(∂u

∂t
+ (u · ∇)u

)
= −∇P + µ∇2u + ρg + α∇ · pp, (2.3b)

∂c

∂t
+ ∇ ·

(
cu + cvpp

)
= 0, (2.3c)

∂p

∂t
+ (u + vpp) · ∇p = λ1(δ − pp) · E · p + λ2p × [(δ − pp) · E · p] (2.3d)

− Ω · p +D
(
∇2p − (p · ∇2p)p

)
.

Equations (2.3a, 2.3b) govern the fluid flow (Section 1.2.1), where u is the fluid
velocity, P the fluid pressure, α activity strength, µ is fluid viscosity, and ρ fluid
density. Equations (2.3c, 2.3d) govern the swimmer suspension (Section 1.2.2) where
p is a unit vector representing the average local orientation of swimmers, E the
rate-of-strain tensor, Ω the vorticity tensor and the final term is director diffusivity;
alignment-to-shear is governed by λ1, chirality (which has not yet been discussed, but
is included here for completeness sake and is detailed in Chapter 3) is governed by λ2,
and D governs director elasticity, which diffuses gradients in the director throughout
the suspension.
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This work concerns active matter systems driven out of equilibrium by the active
stress tensor, αpp; as such, time is scaled to balance active forcing and viscous
dissipation, such that T = µ

|α| , which determines an active shear rate. Then, scaling
variables as x = Lx̃, t = µ

|α| t̃, P = |α|P̃ returns the nondimensionalised equations
(2.3a—2.3d) as,

∇̃ · ũ = 0, (2.4a)

ξ
(∂ũ

∂t̃
+ (ũ · ∇̃)ũ

)
= −∇̃P + ∇̃2ũ + γg̃ + sα∇̃ · pp, (2.4b)

∂c̃

∂t̃
+ ∇̃ ·

(
c̃ũ + ϑc̃p

)
= 0, (2.4c)

∂p

∂t̃
+ (ũ + ϑp) · ∇̃p = λ1(δ − pp) · Ẽ · p + λ2p × [(δ − pp) · Ẽ · p] (2.4d)

− Ω̃ · p + η−1
(
∇̃2p − (p · ∇̃2p)p

)
,

where sα = sgn(α), ξ = ρ|α|L2

µ2 , γ = ρgL
|α| , η−1 = Dµ

L2|α| and ϑ = vpµ
|α|L are dimensionless

parameters, and g̃ is a unit vector describing the direction of gravitational forces.
The tildes, which designate dimensionless variables, are dropped for convenience
hereafter.

The characteristic length scale for the active matter instability is governed by activity
which drives the system out of equilibrium, and controlled by elasticity and viscosity,
which together dampen the resulting active flow. Rotational damping is governed
by η−1, where elasticity and swimmer drag contributions are contained in D = K

ζr
,

where K is the one-constant Frank free-energy constant, and ζr is the rotational
drag coefficient for the swimmer. As η governs rotational diffusivity, decreasing η

corresponds to small activity, strong damping, and will stabilise the system and in-
creasing η corresponds to strong swimmers, weak damping and will destabilise the
system. Normalising η sets the length scale to L2 = Dµ

|α| , which allows us to explore
length-scales where director elasticity balances activity driven shear gradients.
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Parameter Size
ρ, kg/m3 103

µ, kg/ms 10−3

|α|, N/m2 10−2

D, m2/s 10−10

g, m/s2 10
vp, m/s 10−5

T s 10−1

L, m 10− 11
2

Term Size
ξ 10−4

γ 10− 1
2

η 1

ϑ 10 1
2

Figure 2.3: Size
estimates for parame-
ters and dimensionless
numbers, summarised
from Section 2.2.1.

Having set the length scale, we next consider the di-
mensionless parameter ξ, which now takes the form
ξ = D

µk
, measuring the elastic damping rate to kine-

matic viscosity, µk = µ
ρ
. By increasing the sus-

pension elasticity D, we increase the Frank free-energy
cost of maintaining a deformation in the director and
decrease the deformation relaxation time which corre-
sponds to larger instability growth rates as a deforma-
tion will disperse into the neighbouring region faster.
Conversely, increasing kinematic viscosity damping will
dampen active flow rates and corresponds to smaller
instability growth. Confinement introduces a compet-
ing length scale on the instability, which we will con-
sider full detail in Chapter 4, but does not intro-
duce a competing time scale in this system. Con-
sequently, the role of ξ is reduced to a time-scaling
parameter and does not effect the instability crite-
ria. Finally, ϑ measures the swim rate per-unit-
length to active shear rate, which describes the rel-
ative strength of swimmer motility to activity-driven
flows.

With the full set of dimensionless governing equations, the length and time scales
set, and estimations of the parameter ranges, we can now set out the assumptions we
use throughout the rest of this work. In the low-Reynolds linear limit, fluid inertia
(u · ∇u) and director advection and motility ((u + ϑp) · ∇p) are absent when lin-
earising around a constant, steady-state; consequently, these terms are absent in the
analytical and numerical analysis conducted in this work. Unlike the fluid velocity u

and pressure P , the director takes on a non-zero value for the constant steady-state
– consequently, the active stress tensor pp maintains a non-zero contribution to the
governing equations and appears in the following analysis. In Chapter 5, we linearise
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around a non-constant steady-state, but as our interest lies in the dynamics of the
instability mechanism and the role of boundary conditions, we choose to omit these
terms here too. Finally, active matter instability mechanisms for varying swimmer
number density is already a well-developed field, so we choose to employ a constant-
concentration assumption throughout this work, but note that concentration appears
heavily in the estimation of the activity parameter α.

2.2.1 Parameter Estimations

To provide a framework for discussion and understand likely regimes where we could
experimentally witness the instability discussed in this work, we will need to have
an order-of-magnitude estimation for the size of our terms. Since we are most inter-
ested in the dynamics of suspensions of microorganisms, in this section we will detail
the calculations for four different microswimmers, Bacillus subtilis, Bull sperm, Es-
cherichia coli, and Chlamydomonas reinhardtii, which lead to our default parameter
values used throughout this work.

Recall that the activity parameter is defined by α = −fd̂Φ/Vc for force dipole
strength f , where f > 0 (f < 0) indicates a pusher (puller) swimmer, average dipole
length is given by d̂, Φ is the particle volume fraction and Vc the cell volume; note
that concentration has been substituted for c = Φ/Vc. We consider microswimmers
to be force-free, such that they obey,

Fthrust + Fdrag = 0. (2.5)

The drag acting on a swimmer is proportional to its self-propulsion velocity vp, and
the translational drag coefficient ζh, such that Fdrag = vpζh. The drag coefficient
for a sphere is the well known ‘Stokes drag’, ζh = 6πµr for a sphere of radius
r. However, we prefer to use a more refined drag coefficient suitable for rods and
elongated ellipsoids translating along their orientation axis ν,41
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Organism Radius, µm Length, µm Flagella, µm Vol., fL Speed, µm/s Ref.*

B. subtilis
Pusher,
rod-like

0.35 - 0.7 4 - 10 7.5 - 12 0.9 - 4.6 15 - 25

B-100211
B-100212
B-114921
B-114922
41,63–67

Bull sperm
pusher,
disk-like

2 - 2.7
0.4**

8.2 - 10.2 61.6 10.5 - 12 110 - 200 B-106855
68–71

C. reinhardtii
puller,
ellipsoidal

1.5 - 2 5 - 10 9.2 - 12.8 95 - 270 80 - 110 B-110530
72–76

E. coli
pusher,
rod-like

0.25 - 0.5 1.9 - 2.7 5 - 10 0.9 - 1.1 15 - 25

B-100095
B-101788
B-114924
65

Table 2.1: A range of parameter estimations for various swimmer microorganisms, where
the data range represents typical values found in literature. *References beginning with
B- refer to Bionumbers entries.77 **Thickness of Bull sperm.

ζh = 2πµlb
log

(
lb

2rb

)
+ ch

, (2.6)

where l is the body length, r the body radius and ch is a constant of order 1. Mean-
ingful order-of-magnitude estimations for microswimmer parameters were obtained
through existing literature on experiments of prolate, ellipsoidal swimming microor-
ganisms which can all be categorised as either pusher or puller swimmers: this data is
collated in Table 2.1, giving an appropriate range of values for swimmer dimensions.

The data was selected by considering a range of reported experiments and omitting
outlier results. By taking an appropriate median of these values (Table 2.2) the
force dipole strength and volume-fraction independent activity are calculated, using
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an estimation for the dipole length. Theoretically, the volume-fraction of swimmers
in a suspension is itself a function of swimmer geometry, nutrient availability or
swimmer motility,78 amongst many other factors. For an order-of-magnitude esti-
mation, we drew swimmer number density values from experiments corresponding
to our exemplar microswimmers and made estimations for the activity parameter at
Φ = 0.01 and Φ = 0.2 (Table 2.3). This gives a range the activity parameter as
α ∈ [0.0011, 0.43].

The lower bound agrees well with literature estimations on the activity parameter,
which suggest a range of α ∈ [0.002, 0.036].79–81 However, the upper bound for our
activity parameter is likely inflated due to the way we have estimated the dipole
length. The dipole length is estimated as half the distance between the centre of
drag and centre of thrust - these are the cell body midpoint and flagellum midpoint
respectively. The actual centre of drag will be shifted toward the flagellum due to
its drag contribution. For swimmers with short flagellum, this correction will be
negligible; however, bull sperm flagella length are six-fold their body length, so this
contribution is likely no longer negligible. Furthermore, the flagella length given is
the total length, whereas the displacement between the centre of thrust and cell body
will be significantly smaller due to the sinusoidal and helical motion which the flag-
ellum undergoes. With these considerations in mind, we state an order of magnitude
range for activity as α ∈ [0.001, 0.1]N/m2.

Similarly, we wish to provide an order of magnitude estimation for D = K/ζr, where
ζr = µl2bΦ/8r2

b is the rotational drag coefficient for a microswimmer generalised to
the suspension (1.24). The Frank free energy constant K has the dimensions of
[energy density] · l2b , for a swimmer length scale lb. For active swimmers, an ap-
propriate energy scale can be derived from ϵ ∼ ζhMd,41 where Md is the diffusion
constant for swimming bacteria, which takes a value of approximately 10−11m2/s
(B-100295,15), and is an appropriate order-of-magnitude estimation for all example
microswimmers. Then, K = ϵl2bζr can be evaluated as,
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K = cpϵΦ2l2br
−3
b , (2.7)

where cp is a constant of proportionality of order-of-magnitude ∼ O(10−2). The
parameter estimations for our chosen exemplar microswimmers are recorded in Ta-
ble 2.4. Note the strong volume-fraction dependence, which is a consequence of Φ2

appearing in K. Table 2.4 gives an order-of-magnitude range for the suspension ro-
tation parameter as D ∈ [10 − 103]µm2/s. The Bretherton constant λ1 depends only
on the shape of the particle. For an ellipsoid with ratio e, it can be approximated as
λ1 ≈= e2−1

e2+1 , which for our exemplar swimmers yields λ1 ∈ [0.60, 0.93] for elongated
particles with an aspect ratio of e ∈ [2, 5]. The calculation for the chirality constant
λ2 is more involved, and is discussed further in Chapter 3. These values inform the
parameters quoted in Figure 2.3 and our default value parameter set of η−1 = 1.2,
ξ = 1.1, λ1 = 0.7, λ2 = 0.1 (Chapter 3 onwards), γ = 1 (Chapter 5 onwards).
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Organism rb, µm lb, µm lf , µm Vb*, fL vp, µm/s
B. subtilis 0.4 7 10 3.5 20
Bull sperm 2 (0.4**) 8 60 27 150
C. reinhardtii 1.8 9 10 110 100
E. coli 0.4 2 8 1 20

Table 2.2: Values for swimmer dimensions chosen on basis of data weighting in Table
2.1. *Calculated. **Thickness of Bull sperm head.

Organism fd, pN ld, µm α/Φ, N/m2 α0.01 N/m2 α0.2 N/m2

B. subtilis 0.34 3 -0.29 -0.0029 -0.059
Bull sperm 6.1 9.5 -2.2 -0.022 -0.43
C. reinhardtii 4 3.5 0.11 0.0011 0.023
E. coli 0.17 1.5 -2.7 -0.0023 -0.053

Table 2.3: Swimmer dipole strength, dipole length and activity calculations based on
swimmer dimensions given in Table 2.2

Organism K|Φ=0.01 pN K|Φ=0.2 pN K/ζsr|Φ=0.01 µm2/s K/ζsr|Φ=0.2 µm2/s
B. subtilis 1.8e-2 7.4 41 810
Bull sperm 2.3e-4 9.2e-2 9.8 190
C. reinhardtii 4.5e-4 1.8e-2 12 240
E. coli 4.5e-4 1.8e-2 12 240

Table 2.4: The Frank elasticity and suspension rotational terms for swimmers. NB: The
elasticity is a function of the ratio lb/rb, for which C. reinhardtii and E. coli have the same
ratio, and hence identical values.

43



2.3 Quantitative Description

2.3.1 Calculations for the 2D Bulk Analysis

In this work, we are interested in understanding the way activity-driven mechanical
stresses in an active matter suspension drive the ordered state out of equilibrium.
From the set of governing equations given by (2.4), we choose to explore densely-
populated suspensions with small variations in swimmer number-density (such that
(2.4c) = 0), and assume that motility effects, governed by ϑ, are negligible compared
to activity-driven flows. By linearisation about a constant, steady-state both u ·∇u,
(u + ϑp) · ∇p and (p · ∇2p)p from equations (2.4b) and (2.4d) vanish. Finally,
until Chapter 3 where we extend our analysis into the 3d regime, we must also
set λ2 = 0. This returns the simplified governing equations, consisting of modified
Stokes equation, generalised Jeffrey orbit equation, incompressibility, and the unit
vector constraint on the director p, such that:

ξ∂tu = −∇P + ∇2u + sα∇ · pp, (2.8a)
∂tp = λ1(δ − pp) · E · p − Ω · p + η−1∇2p, (2.8b)

∇ · u = 0, (2.8c)
|p| = 1. (2.8d)

Here, the director is expressed as p = (cosϕ, 0, sinϕ), where ϕ is the azimuthal angle
in the x-z plane, measured anti-clockwise from the positive x-axis and which causes
p to satisfy the normalisation criteria |p| = 1. The coordinate system for the 2d
regime is the same as the 3d regime, with rotation into the y-axis suppressed.(Figure
2.4, with θ = 0). The coordinate system is chosen to emphasis that p can vary
from alignment along the x-axis in either the y- or z-axis, which will prove the
natural choice when considering the 3d regime and confinement in Chapters 3 and
4. Equations (2.8a—2.8d) satisfy the steady state,
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z

Figure 2.4: Coordinate system for the director p = (cos θ cos ϕ, sin θ cos ϕ, sin ϕ) as a
3d unit vector.

ū = 0, P̄ = PA, ϕ̄ = 0, p̄ = x̂.

Here, pressure is defined up to a constant PA. Since the hydrodynamic force associ-
ated with splay and bend deformations propagates in-plane to the director, an initial
analysis in the x-z plane suffices to capture the fundamental dynamics. The base
state is perturbed as,

u = ū + ε(∂zψx̂ − ∂xψẑ), P = P̄ + εP, p = p̄ + εϕẑ.

Here, ψ is the 2d stream function satisfying incompressibility such that ux = ∂zψ,
uz = −∂xψ and ε ≪ 1 is the perturbation parameter. Then, the active stress tensor
and its divergence read,
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pp =


1 0 εϕ

0 0 0
εϕ 0 0

 , ∇ · pp = ε


∂zϕ

0
∂xϕ

 ,

where only terms to order ε have been retained. Comparison to the splay (∇ · p)p
and bend (∇ × p) × p terms, reveals α∂zϕx̂ as the splay perturbation force parallel
to the director, and α∂xϕẑ as the bend perturbation force which is orthogonal to the
director. Substitution into (2.8a) gives in first order ε,

ξ∂t∂zψ = −∂xP + [∂2
x + ∂2

z ]∂zψ + sα∂zϕ, (2.9a)
−ξ∂t∂xψ = −∂zP − [∂2

x + ∂2
z ]∂xψ + sα∂xϕ. (2.9b)

Square brackets designate a differential operator, acting on terms to its right. Cross-
differentiating and equating (2.9a) and (2.9b) gives

ξ[∂2
x + ∂2

z ]∂tψ − [∂2
x + ∂2

z ]2ψ + sα[∂2
x − ∂2

z ]ϕ = 0. (2.10)

For the director equation, the tensor δ − pp takes the form,

δ − pp =


0 0 −εϕ
0 1 0

−εϕ 0 1

 ,

and the rate-of-strain and vorticity tensors take the form,
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E · p =


Exx

Eyx

Ezx

 , Ω · p =


0

Ωyx

Ωzx



Note that here the rate-of-strain and vorticity tensor are of order ε. Then in the
z-axis and for order ε only, the director equation reads

∂tϕ = λ1Ezx − Ωzx + η−1∇2ϕ,

= [λ-
1∂

2
z − λ+

1∂
2
x]ψ + η−1[∂2

x + ∂2
z ]ϕ, (2.11)

where λ±
1 = 1

2(λ1 ± 1). Equations (2.10) and (2.11) describe the spatial-temporal
evolution of a perturbation to the steady state and we choose to seek solutions as
Fourier modes of the form,

ψ = ψk exp(ik · x − iωt), ϕ = ϕk exp(ik · x − iωt),

where ψk, ϕk are constants describing the perturbation amplitude, k is the 2d wave-
vector describing perturbation orientation in space and ω(k) as a function of k is
the wave-frequency. Following substitution of Fourier modes into (2.10) and (2.11)
gives,

0 = ξω|k|2ψki− |k|4ψk + sα(k2
z − k2

x)ϕk, (2.12)
iωϕk = ψk(λ+

1k
2
x − λ-

1k
2
z) + η−1|k|2ϕk, (2.13)

substitution of (2.13) into (2.12) returns a quadratic equation in ω,
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ξω2|k|2 + iω|k|4(1 + ξη−1) − η−1|k|6 − sα(k2
x − k2

z)(λ+
1k

2
x − λ-

1k
2
z) = 0. (2.14)

Finally, solving equation (2.14) for the wave frequency ω yields the equation,

ω± = −i|k|2(1 + ξη−1)
2ξ ± i|k|2

2ξ
√

(1 − ξη−1)2 − 4|k|−6ξsα(k2
x − k2

z)(λ+
1k

2
x − λ-

1k
2
z),

and rewriting the wave-number as k = k(cos q, 0, sin q) simplifies the equation to,

ω± = ik2

2ξ
(

− (1 + ξη−1) ±
√

(1 − ξη−1)2 − 2k−2ξsα cos 2q(1 + λ1 cos 2q)
)

(2.15)

2.3.2 Stability of Bend and Splay Modes

Equation (2.15) is known as a ‘dispersion relation’ and determines the wave-frequency
from a given wave-number. The solutions ω± are eigenvalues of the system and their
associated eigenvectors describe the possible modes of propagation a perturbation
can take. Expressing the complex wave frequency as ω = ωr +iωi allows us to rewrite
a Fourier mode as,

fk exp(ωit) exp(ik · x − iωrt),

which yields a time-dependent perturbation amplitude as fk exp(iωit). From hence-
forth, any discussion related to the growth of the perturbed nodes directly cor-
responds to the magnitude and sign of ω±

i , and the stability of the perturbation
reduces to the sign of ω±

i , where ω±
i < 0 (ω±

i > 0) yields stable (unstable) modes. In
Figure 2.5, we plot the growth rate ω±

i and wave speed ω±
r for both roots against the

non-dimensional wavenumber k ∈ [0, 1] and q = 0, which shows that (2.15) yields
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a stable (ω-) and unstable (ω+) mode. The system length scale is set to balance
activity driven shear to rotational torque, and so both modes increase in stability as
k → 1, as rotational damping which acts at O(k2) will suppresses any growth of the
modes, driven by activity of order O(k). Investigating the unstable mode ω+, note
that the first term of (2.15) can be written,

−ik
2

2 (ξ−1 + η−1). (2.16)

Both terms are stabilising, damping terms, arising from viscosity dampening (equa-
tion (2.8a)) and elastic dampening (equation (2.8b)) as the ratio of the terms,

ξ−1 ∇2u

∂tu
= Viscous dissipation

Linear inertia , η−1 ∇2p

∂tp
= Director elasticity

Rotational inertia .

Expression (2.16) tells us that viscosity and elasticity damping act independently
from each other, and from activity, to stabilise a perturbation. Activity driving
terms are restricted to the discriminant, which reads

Figure 2.5: The dispersion relation of
the fundamental active matter instability
for an extensile suspension given by equa-
tion (2.15), and the default parameter set
ξ = 1.2, η−1 = 1.1, λ1 = 0.7, sα = −1.
The imaginary part of ω is solid and the
real imaginary part is dashed; the positive,
unstable root is yellow, the negative, sta-
ble root is purple. Note that real part of
both roots is identically zero.
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ik2

2
√

(ξ−1 − η−1)2 − 2k−2ξ−1sα cos 2q(1 + λ1 cos 2q) (2.17)

The first term in the square root is of the same form as the damping terms in
(2.16) and determines a minimum level of active forcing required for the instability
to propagate. The second term is a product of the active stress and flow alignment
terms—it is this term which drives an active matter system out of equilibrium. In
the limiting case of η−1 → 0, the instability associated with eigenvalue ω+ becomes
instability condition reads,

−sαξ cos 2q(1 + λ1 cos 2q) > 0. (2.18)

The instability condition for the dispersion relation (2.15) reveals how active shear
gradients, determined by fluid vorticity and rate-of-strain, govern the instability
growth rate. The vorticity term Ω · p in the governing equations yields a −sαξ cos 2q
contribution to the instability condition, and acts independently of the swimmer ge-
ometry, where the parameter governing the perturbation growth/decay rate is deter-
mined by ξ = D

µk
and the sign of activity sα. Swimmer alignment to shear, governed

x
z

x
z

Figure 2.6: The direction of gradients in the director (orange rods) correspond to the
wavevector angle q. Consequently, a pure bend perturbation (left) is associated with
wavevector angle q = 0, whereas a pure splay perturbation (right) is associated with
wavector angle q = π/2.
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by (δ − pp) · E · p, yields a −sαξλ1 cos2 2q contribution to the instability condition.
Note that without the presence of background shear, rotational effects governed by
vorticity and alignment-to-shear mutually enhance/suppress a perturbation.

Both terms are independent from the wavevector amplitude k, and (2.15) predicts
that the stability of a disturbance depends solely on relative of the perturbation
to the local ordering direction. For a perturbation angle q ∈ [0, π/2], note that
cos 2q(1+λ1 cos 2q) has only one root at q = π/4. As we’ve not included any polar or
motile stresses, we do not need to include wavevector angles of q > π/2. Since λ1 > 0
and ξ > 0, only sα can also contribute a sign change and the inequality is satisfied
for a pusher (puller) with q ∈ [0, π/4) (q ∈ (π/4, π/2], respectively). As we’ve sought
planar-wave solutions to the perturbed equations, spatial gradients in the director
are entirely determined by our choice of the wavevector k = (cos q, 0, sin q). Equa-
tion (2.15) then reveals that extensile suspensions are unstable to bend-dominated
perturbations (q ∈ [0, π/4), Figure 2.6a), whereas contractile suspensions are un-
stable to splay-dominated perturbations (q ∈ [π/4, π/2], Figure 2.6b).

Figure 2.7: The hydrodynamic forcing due
to activity as a function of q for an extensile
suspension. For q < π

4 , bend is the dominant
mode of hydrodynamic forcing in the system.
At q = π

4 , the splay becomes the dominant hy-
drodynamic forcing, indicative of a possible bi-
furcation.
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2.3.2.1 Hydrodynamic Forcing due to Activity

When seeking planar-wave solutions to the linear stability problem, gradients in the
director correspond to the disturbance wavevector angle q. Bend is introduced into
the system when a component of the director gradients are parallel to the ordered
axis, and a pure bend mode corresponds to q = 0. Conversely, splay is introduced
when a component of the director gradients are perpendicular to the ordered axis
and a pure splay mode corresponds to q = π/2, illustrated in Figure 2.6. In the
governing equation for the fluid, activity forcing is proportional to the divergence of
the stress tensor, ∇ · pp. When seeking planar-wave solutions, these gradients are
prescribed by the wavevector amplitude k and the waveangle q such that activity
induced hydrodynamic pumping due to bend and splay deformations are ik cos q and
ik sin q respectively. Increasing q from 0 to π/2 corresponds to decreasing bend and
increasing splay forcing in the fluid (Figure 2.7).

At q = π/4, we see a switch from bend being the dominant hydrodynamic forcing
to splay being dominant. Mechanically, the criterion for instability (equation (2.18))
on q corresponds to extensile suspensions being unstable to bend perturbations and
contractile suspensions being unstable to splay perturbations, which corresponds
to our quantitative analysis (Section 2.1, Figure 2.2) and is known in literature.
Without elasticity or viscous damping, (2.18) tells us that an extensile active matter
suspension is unconditionally unstable for q < π/4 — i.e., the system will admit an
unstable solution for any value of k. The dependence on the wavevector angle, as
opposed to its amplitude, will have interesting consequences when we consider the
3d regime in Chapter 3 and when confinement is introduced in Chapter 4. Including
elasticity back into ω yields,

k2 < −sα cos 2q(1 + λ1 cos 2q)
2η . (2.19)

The instability condition (2.19) determines an upper bound on k for which we have
instability. For an extensile suspension, sα = −1, and the maximal growth rate is
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associated with a pure bend deformation q = 0. In this limiting case, the instability
condition reduces to,

k2 <
1 + λ1

2η . (2.20)

Equation (2.20) tells us a swimmer suspension is always unstable to long-wavelength
perturbations, provided k meets an upper boundary set by rotational damping, η−1.
The dimensionless parameter ξ = ρD

µ
does not contain an activity term and is ab-

sent from the instability condition as it only controls the rate-of-propagation; ξ is
effectively a time-scaling parameter in the problem. Physically, this corresponds to
the fact that viscous damping only acts on fluid elements that are moving — a fluid
by definition cannot sustain any deformation, but the rate-of-strain is controlled by
the fluid viscosity parameter µ. Conversely, director elasticity acts at all times, ir-
respective of the motility of its elements, and determines a length scale for which
orientational gradients (and thereby active shear) is governed. However, the role of
ξ should be reconsidered in any environment where competing time scales are present.

Shear gradients are the primary coupling mechanism between the hydrodynamics and
director dynamics, and the instability condition (2.20) represents a torque balance
between flow alignment terms and elastic damping, which can be seen directly from
(2.13) with kz = 0. Vorticity and alignment-to-shear enter the instability condition
as 1/2 and λ1/2 respectively, where explicit dependence on the magnitude of local
shear vanishes by consequence of setting our length scale to balance activity-driven
shear and viscous damping. The vorticity term in (2.3d) has no parameter acting
on it, so can be said to act numerically at order O(1) to destabilize the suspension,
whereas the parameter governing alignment to shear can take values in the range
λ1 ∈ [0, 1), meaning shear alignment effects are always smaller than vorticity effects.
For a bend deformation, active flow pumps fluid perpendicular to bend deformation,
and consequently alignment to shear effects will rotate the director away from the
the ordered axis. In the instability criteria, this dictates that for close-to-spherical
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swimmers alignment to shear will have a minimal effect on the growth rate of a dis-
turbance, for elongated rods, shear alignment effects initially act at the same strength
as vorticity, but outside a linear instability analysis will have diminishing returns as
the director becomes aligned with local shear.

2.3.3 Eigenmodes for Unstable Eigenvalue ω+

To further understand the bend-splay instability mechanism for an extensile suspen-
sion, we consider the eigenvectors associated to the unstable eigenvalue ω+. Figure
2.8 plots uk, wk, and ϕk over q ∈ [0, π/2] for km, the maximum wavevector ampli-
tude for each q ∈ [0, π/2], and normalised to ϕk = 1. A bend (splay) deformation
is associated with hydrodynamic pumping perpendicular (parallel) to the alignment
direction, which is quantified by uk = 0 and nonzero wk at q = 0. At q = π/4,
the eigenmodes undergo a bifurcation, indicated by the change in phase between the
director and the fluid.

In Figure 2.9, we fully detail the relationship between the director phase, active flow,
active shear, and rotation due to shear. In brief, when q = 0, the system admits
a pure bend deformation in the director and when seeking planar-wave solutions to

Figure 2.8: The eigenvectors associated
with ω+ from (2.15) over q ∈ [0, π/2],
normalised to ϕk = 1 and evaluated at
the wavevector k = km, where km is the
wavevector associated with max(ω+

i(k)).
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Deviation from 
ordered state

Active forcing
(extensile)

Rotation of director
(Proportional to shear)

Figure 2.9: When seeking planar-wave solutions to perturbations of the ordered state
(orange rods, illustration), the maximum deviation of the director (measured in the main
text by ϕ) from the ordered state (orange line, graph) occurs at the peaks and troughs of
the planar-wave solution. However, bend is proportional to the gradient of the director, at
a maximum at the nodes of the planar-wave. Since activity is proportional to gradients in
the director, active forcing (light blue arrows, illustration) has its maximum at the nodes
of the planar-wave solution to the director, and so has a π/2 phase difference with the
maximum deviation of the director (light blue dashed, graph). Note that the direction of
forcing shown here is for an extensile suspension; a contractile suspension will cause an
active forcing on the fluid in the other direction. The corresponding active flow, which is
proportional to forcing and which is perpendicular to the ordered direction creates shear
gradients which are at a maximum in-phase with the phase of ϕ. Since shear rotational
effects on the director are proportional to shear gradients in the fluid, the maximum rotation
of the director (grey arrows, illustration) occurs at the peaks and troughs of the planar-
wave solution and for an extensile suspension enhance deviation from the ordered state,
creating an instability.
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the active matter suspension, bend — which is proportional to director gradients —
is at a maximum at the nodes of a sinusoidal wave, not at its peaks and troughs.
Consequently, activity driven flow will be ±π/2 out-of-phase with the director, de-
pending on the sign of activity. However, rotational effects are proportional to the
active shear gradient, which is itself π/2 out-of-phase with active flow. For a bend
deformation and an extensile suspension, shear rotation is in-phase with the original
director deformation, meaning a perturbation to the director field will be enhanced
by its own active flow. For a splay deformation and an extensile suspension, shear
rotation is out-of-phase with the original deformation, meaning a perturbation to
the director field will be suppressed by its own active flow.

The eigenvalues ω+ and ω- correspond to regimes of phase: for ω+, the director and
fluid velocity modes have a phase difference of π/2, hydrodynamic pumping and
rotation due to shear complement one another, causing an instability in the active
matter suspension, as long as director elasticity is sufficiently small; for ω-, the di-
rector and fluid velocity modes have a phase difference of −π/2 and active flow will
suppress the fluid velocity perturbation, stabilising the perturbation. The eigen-
modes corresponding to ω+ are graphed in Figure 2.10 where the vectorfield over
the perturbation wavelength i., select vectorfield over k ·x ii., and the phase relation-
ship between the fluid and the director iii. are plotted for the unstable eigenvalue
ω+ and wavevector angles (a) q = 0, (b) q < π/4 and (c) q > π/4. In Figure
2.10a the vectorfields corresponding to the unstable eigenvalue ω+ are plotted where
the out-of-phase relationship between the director and the velocity field can more
clearly be seen. As the perturbation angle q is increased from zero, splay increases
in the system, inducing hydrodynamic pumping toward the closed end of the splay.
Bend remains the dominant deformation but evidence of increasing splay can be
seen in the flow fields (Figure 2.10b i.). As q increases further it crosses the critical
value qc = π/4 for which bend and splay pump the fluid in equal amounts. Above
π/4, (Figure 2.10c) splay becomes the dominant mechanism for fluid forcing and
the system undergoes a bifurcation as fluid is now pumped along p as opposed to
perpendicular to it. When splay is dominant, the eigenmode uk is in-phase with
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Figure 2.10: Snapshot of the flow field (blue) and director field (red) for modes associated
with ω+ in a 2d system, cases correspond to: (a) q = 0, (b) q just below π/4, (c) just
above π/4. i. Vector field plot of instantaneous fluid flow and director field, ii. vector field
plot over one wavelength of k · x, iii. magnitude of θ and u over k · x to illustrate phase
difference.
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c

Figure 2.11: Main plot: Real and imaginary parts of ω+ evaluated at km|q=0, plotted
over q ∈ [0, π/2]. Sub-plot i: Bend and splay components of eigenvectors over q. Bend is
dominant for q < π/4 and splay is dominant for q > π/4. Sub-plot ii: Phase difference
between eigenvectors over q. The director and fluid are stationary, out-of-phase for q < π/4
and travelling, in-phase waves for q > π/4 as seen in the associated eigenvector plots
(Figure 2.8, Figure 2.10).

the director, meaning shear gradients are out-of-phase; alignment to shear no longer
positively reinforces the perturbation and the system becomes unconditionally stable
for a pusher.

The dependence of the disturbance growth rate ω+ over q is summed up in Figure
2.11 for which the growth rate ω+

i , wave speed ω+
r, bend and splay, and the phase

difference between p and u, are plotted over q ∈ [0, π/2] for km|q=0, the wavevector
for which ω+

i(q = 0) is a maximum. The growth rate starts at a maximum for q = 0,
diminishing as q increases as the total bend decreases. For critical q = qc < π/4,
elasticity dampens the bend modes (and therefore activity driven shear) sufficiently
to stabilise the suspension. At q = π/4, a bifurcation occurs as splay becomes the
dominant hydrodynamic forcing mode. Contrary to a bend deformation, for planar-
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wave solutions splay is at a maximum at the peaks and troughs of its phase, and so
maximal hydrodynamic pumping is maximally pumped in-phase with the director.
In an extensile suspension, splay-driven shear produces a counter-rotation of active
units ahead of the closed end of the splay, causing a travelling wave which disperses
the splay into the neighbouring region. In a polar motile suspension where concen-
tration is allowed to vary, we would also expect to see splay-concentration modes as
motility enhances an ‘inward’ pointing splay deformation. This particular mode of
instability is well documented in literature and discussed in the original paper by
Ramaswamy & Simha.31

Finally, we quantify the maximal growth rate km, which is obtained from differenti-
ating (2.15), giving

dω
dk = ik

ξ

−D+ ± D2
- − k−2ξsαg(q)√

D2
- − 2k−2ξsαg(q)

, (2.21)

where D± = (1 ± ξη−1) and g(q) = cos 2q(1 + λ1 cos 2q). Solving for the least stable
wavelength km gives,

km =
√

1
2a

(
− b−

√
b2 − 4ac

)
, (2.22)

where a = D2
- (D2

- − D2
+ ), b = 2ξsαg(q)(D2

+ − D2
- ) and c = ξ2g(q)2. The wavelength

observed in experiments will be determined by km, which is strongly dependent on
the viscosity and elasticity parameters.
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2.4 Remarks: Phase Determines Eigenmode
Stability

The dispersion relation in equation (2.15) describes the stability for a coarse-grained
suspension of active swimmers modelled as force-dipoles where momentum between
the active units and their medium is conserved. The dispersion relation was derived
from a simplified version of the governing equations (2.4) and is a minimalist descrip-
tion capturing the driving force (activity) and damping (viscosity, elasticity) which
destabilise and restore orientational order in the system respectively.

In our initial analysis in Section 2.3.2, we found agreement with early active matter
field literature (Simha & Ramaswamy31) and recovered that the dispersion relation
has a stability criterion strongly dependent on the wavevector angle, q and that an
extensile suspension is unstable to bend deformations and that a contractile suspen-
sion is unstable to splay perturbations. This was because when seeking planar-wave
solutions to perturbations of the ordered state, bend and splay deformations in the
director are directly proportional to the wavevector angle q which controls the ori-
entation of the planar-wave solution and therefore the direction of gradients in the
director. By examining where in the phase of a planar-wave solution maximal activ-
ity driven hydrodynamic pumping occurs, and where in the phase of a planar-wave
maximal shear gradients occur, we revealed that a perturbation is unstable when
the director and fluid velocity have a π/2 phase difference. The dispersion relation
yielded two eigenvalues: eigenvectors corresponding to eigenvalue ω+ share this π/2
phase difference, whereas the eigenvectors corresponding to ω- yield the director and
velocity profile to be in-phase with one another. Consequently, ω+ is the eigenvalue
for which the system admits stationary, unstable planar-wave solutions. This phase
relationship between the director and fluid flow is illustrated in Figure 2.12.

Finally, we quantified the long-wavelength instability criteria, which propagates due
to activity acting at order O(k) and damping acting at order O(k2) for distur-
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Bend Forcing Flow Shear 
Alignment

enhances

Figure 2.12: When prescribing planar-wave solutions, a bend deformation has a π/2
phase difference with hydrodynamic forcing, which in turn has a −π phase difference with
flow. In turn, shear gradients have a π/2 phase difference with activity induced flow.
Consequently, alignment to shear shares the same phase as the original bend deformation,
enhancing the bend. For an extensile suspension and a splay deformation, active forcing
has a −π/2 phase difference with the director, and shear rotational effects dampen the
original perturbation.

bance amplitude k, meaning that in the unbounded regime a suspension will always
be unstable to wavelengths smaller than a critical value set by elasticity damping
η−1 = Dµ

L2|α| , where L is the characteristic length scale balancing elastic restoration
forces and active shear. This chapter establishes a framework from which we will
extend the analysis into the unbounded 3d regime in Chapter 3 and the mechanisms,
equations and diagrams act as a reference for discussion throughout the rest of this
work.
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3 | Bulk Hydrodynamic
Instability of a 3D suspension

In this Chapter, I extend the 2d bulk analysis of the Stokesian instability established
in Chapter 2 and whose growth is described by equation (2.15) to an unbounded 3d
regime. In the previous chapter, we revealed that a coupling between active flow,
driven by deformations in the director, and shear-induced torque, will lead to the
growth of planar-wave perturbations to the constant, ordered state. The director
deformations, active flow and re-orientation of the director field all occur within the
same plane: in the 3d regime, the system gains a spatial degree of freedom, and
we reveal a new eigenvalues and eigenmodes that result from a de-coupling of the
governing equations in Section 3.2.

Following our analysis in Section 3.3.1, we introduce a new component to the govern-
ing equation for the director by means of a chirality term (Section 3.3.2). Chirality
is unique to the 3d regime as it introduces an ‘out-of-plane’ rotational effect on an
individual swimmer — here, the term ‘out-of-plane’ quantifies a rotational effect on
the director that is orthogonal to the plane of imposed shear. This is contrary to the
‘in-plane’ torque that alignment-to-shear and vorticity induce. In a linear stability
analysis of the ordered steady state, we show that the role of chirality is to induce
travelling twist-bend modes with qualitatively similar growth rates to the 2d regime.
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Finally, the effects of imposed shear in the 3d regime with chirality are discussed in
Section 3.4, which reveals a unique interplay between alignment-to-shear and chiral
effects. When both terms terms are present, imposed shear induces oscillatory solu-
tions which can enhance the growth rate of the instability by up to 10% compared
to particles without chirality.

3.1 Chiral Contribution to the Jeffrey Orbit
Equation

The extension of the linear instability analysis to the 3d regime follows the same
simplifications to the governing equations established in Section 2.2, namely: non-
linear fields in u and p vanish when linearising around u = 0, p = x̂, swimmer
number density c is held constant, and we consider a non-motile particle regime.
Then, we recover the linearised equations (2.8a-2.8d), with the inclusion of a chirality
term in the director equation governed by λ2,

ξ∂tu = −∇P + ∇2u + sα∇ · pp, (3.1a)
∂tp = λ1(δ − pp) · E · p + λ2[(δ − pp) · E · p] × p − Ω · p + η−1∇2p, (3.1b)

∇ · u = 0, (3.1c)
|p| = 1. (3.1d)

When λ2 = 0, equation (3.1b) is a generalisation of the Jeffrey equation for elliptic
particles in a Stokes flow to elliptical particle suspensions. The Jeffrey orbit equation
is derived by considering a body-of-revolution in a Stokes flow, however, the many
microorganisms don’t fall into an axisymmetric, body-of-revolution categorisation,
but instead have a degree of chirality by virtue of body-shape or appendage. Bac-
terium such as Arthrospira can utilise their helix-shaped body to deter grazing by
ciliate,82,83 the chiral morphotype of Paenibacillus dendritiformis exhibit beautiful

64



left-handedness in bacterial colonies,84 and many swimming microorganisms utilise
helical flagellum to propel themselves which play an important next-to-leading order
effect on swimmer dynamics.

In a recent paper by Ishimoto,52 the dynamics of particle in Stokes flow with n-fold
symmetry (n ≥ 3) were examined; when n ≥ 4, the dynamics were shown to be
identical to those of a helicoidal object described by two parameters: the Bretherton
constant and a chirality parameter λ2 whose contribution in (3.1) appears as the
additional term [(δ − pp) · E · p] × p. In his work, Ishimoto demonstrates that the
inclusion of chirality can lead to chaotic angular dynamics and unique Jeffery orbits
for a particle suspended in simple shear. When the director is coupled to fluid flow,
chirality induces an out-of-plane rotation when a background shear is impose, the
direction of which depends on the left/right-handedness of the helix (Figure 3.1b).
This rotation is in contrast to the in-plane rotation associated with vorticity and
shear alignment (Figure 3.1a).

y

x

θ
p

Strain

Vorticity

(a)

y

xp
-z

Chirality

(b)

Figure 3.1: (A) A rod in a shear flow experiences in-plane (x-y) rotation due to vorticity
and extensile fluidic stress. (B) Any microswimmer with a degree of chirality will experience
out-of-plane (x-z) rotation, whose direction depends on the left/right-handedness of the
chirality.
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The natural question arises: how does the inclusion of chirality into the Jeffrey
equations affect the stability of an ordered suspension of active matter? Marcos
et al.85 subjected a suspension of B. subtilis to an imposed shear gradient along
their long-axis. The bacteria comprise of a rod-like head which induces a large
hydrodynamic drag penality on the swimmer move, and several left-handed helical
flagella. The bacterium head acts as an anchor to the helical flagella which are
subject to a lift force due to the imposed shear. The resulting mechanical torque
reorientates the bacteria across the fluid streamlines, and the authors showed that
chirality contributes a drift velocity to a suspension of B. subtilis which amounts to
a ‘considerable fraction’ of the total swim speed with V/U = 6.5% ± 2.4% where
V is the chiral induced drift velocity and U the bacterial swim speed. In a high-
concentration limit for non-motile particles, we will show in the linear limit that
the reorientation phenomenon manifests itself as a twist deformation throughout the
director, resulting in new solutions for a suspension of swimmers.

3.2 Calculations for the 3D Bulk Analysis

The following calculations can be skipped over in favour of the resulting analysis in
Section 3.3. The 3d governing equations satisfy the constant base state, u0 = 0,
P = PA, p0 = x̂. Writing the director in parametised cartesian coordinates as
p = (cos θ cosϕ, sin θ cosϕ, sinϕ) (Figure 2.4) and perturbing around the base
state with u = εu1, P = PA + εP1, θ = εθ1 and ϕ = εϕ1 returns the system of
equations at order O(ε) as,
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= −ξ∂tu1 − ∂xP1 + ∇2u1 + sα(∂yθ1 + ∂zϕ1), (3.2a)
0 = −ξ∂tv1 − ∂yP1 + ∇2v1 + sα∂xθ1, (3.2b)
0 = −ξ∂tw1 − ∂zP1 + ∇2w1 + sα∂xϕ1, (3.2c)
0 = −∂tθ1 + λ1Eyx + λ2Ezx − Ωyx + η−1∇2θ1, (3.2d)
0 = −∂tϕ1 + λ1Ezx − λ2Eyx − Ωzx + η−1∇2ϕ1. (3.2e)

= ∂xu1 + ∂yv1 + ∂zw1. (3.2f)

Introducing Fourier nodes of the form f = fke
ωiteik·x−iωrt returns a linear system of

equation at order O(ε),

0 = κ1uk − ikxPk + isα(kyθk + kzϕk) (3.3a)
0 = κ1vk − ikyPk + isαkxθk (3.3b)
0 = κ1wk − ikzPk + isαkxϕk (3.3c)
0 = κ2θk + λ-

1kyuk + λ+
1kxvk + λ2/2(kzuk + kxwk) (3.3d)

0 = κ2ϕk + λ-
1kzuk + λ+

1kxwk − λ2/2(kyuk + kxvk) (3.3e)
0 = kxuk + kyvk + kzwk., (3.3f)

where κ1 = iξω−k2 and κ2 = ω+iη−1k2. I eliminate pressure by a linear combination
of (3.3a, 3.3b, 3.3c) giving

0 = (kxvk − kyuk)κ1 + isα
(
θk(k2

x − k2
y) − kykzϕk

)
, (3.4a)

0 = (kxwk − kzuk)κ1 + isα
(
ϕk(k2

x − k2
z) − kykzθk

)
. (3.4b)

Rearranging (3.3d) and (3.3e) for θk, ϕk gives,
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θk = −κ−1
2

(
λ-

1kyuk + λ+
1kxvk + λ2/2(kzuk + kxvk)

)
, (3.5a)

ϕk = −κ−1
2

(
λ-

1kzuk + λ+
1kxwk − λ2/2(kyuk + kxwk)

)
. (3.5b)

and substitution into (3.4a) and (3.4b) results in,

0 = −kyuk

[
ω̃2 + isαλ-

1(k2
x − k2

⊥)
]

+ kxvk

[
ω̃2 − isαλ+

1(k2
x − k2

y)
]

+ isαkxkykzλ
+
1wk

− isαλ̃2
[
kzk

2
xuk + kx(k2

x − k2
y)vk + kxkykzwk

]
, (3.6a)

0 = −kzuk

[
ω̃2 + isαλ-

1(k2
x − k2

⊥)
]

+ isαkxkykzλ
+
1vk + kxvk

[
ω̃2 − isαλ+

1(k2
x − k2

z)
]

+ isαλ̃2
[
kyk

2
xuk + kxkykzvk + kx(k2

x − k2
z)wk

]
. (3.6b)

Here, ω̃2 = κ1κ2, k2
⊥ = k2

y + k2
z and λ̃2 = λ2/2. Substituting in (3.3f) as uk =

−k−1
x (kyvk + kzwk) gives,

0 = f-(ky)vk + g-(kz)wk, (3.7a)
0 = g+(ky)vk + f+(kz)wk, (3.7b)

where,

f±(ki) = ω̃2(k2
x + k2

i ) + isα

2
(
λ1(2k2

xk
2
i − k2

i k
2
⊥ − k4

x) + k2
i k

2
⊥ − k4

x ± λ̃2k
2
x(k2

x − ki(ky + kz)
)

g±(ki) = kykz

(
ω̃2 + isα

2
(
λ1(2k2

x − k2
⊥) − k2

⊥ ± λ̃2k
2
x(kykz + k2

⊥ − k2
i

))
.

Then, eigenvalues are given by f+(kz)f-(ky) − g+(ky)g-(kz) = 0, which yields
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ω̃4(k4
x + k2

xk
2
⊥) + ω̃2k2

x

isα

2
[
λ1(k2

xk
4
⊥ − k4

⊥ − 2k4
x) + k4

⊥ − 2k4
x − k2

xk
2
⊥

]
− k4

x

4
[
λ2

1(k4
x − k2

⊥(2k2
x − k2

⊥)) + 2λ1k
2
x(k2

x − k2
⊥) + k4

x − k4
⊥

− λ̃2(k4
x − k2

xk
2
⊥ + kykz(k2

⊥ − 2kykz)
]

= 0. (3.8)

Dependence on ky and kz reduces to a symmetric contribution in the form of k⊥,
reflecting the rotational invariance around the x-axis. To illustrate the dependence
on the angle from the x-axis and provide meaningful comparison to the 2d results,
I write k = k(cos q, sin q cos q′, sin q sin q′). Then (3.8) can be written,

ω̃4 − ω̃k2 is
α

2 b̃− k4

4 (c̃+ d̃) = 0, (3.9)

where,

b̃ = λ1(1 − 3 cos2 q + 4 cos4 q) + 3 cos2 q − 1,

c̃ = 1
2 cos 2q(1 + cos 2q)(1 + λ1)(1 + λ1 cos 2q),

d̃ = λ2
2 cos2 q cos2 2q.

and ω̃2 = (ω + iη−1k2)(iξω − k2). Solving for ω gives,

ω = ik2

2ξ

(
−D+ ±

√
D2

- − k−2sαξ(b̃±
√
L0 + λ1L1 + λ2

1L̂1 − λ2
2L̂2

)
, (3.10)

for D± = (1 ± ξη−1), k = k(cos q, sin q cos q′, sin q sin q′) and
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L0 = sin4 q,

L1 = 2 sin4 q(4 cos2 q − 1),
L̂1 = (4 cos4 q − 5 cos2 q + 1)2,

L̂2 = 4 cos2 q cos2 2q.

In the limiting case of λ1 ̸= 0, λ2 = 0 the dispersion simplifies to the four roots,

ω±
1 = ik2

2ξ

(
−D+ ±

√
D2

- − 2k−2sαξ cos 2q(1 + λ1 cos 2q)
)
, (3.11a)

ω±
2 = ik2

2ξ

(
−D+ ±

√
D2

- − k−2sαξ(1 + cos 2q)(1 + λ1)
)
, (3.11b)

and in the limiting case of λ1 = 0, λ2 ̸= 0 we find the roots,

ω±
3 = ik2

2ξ

(
−D+ ±

√
D2

- − k−2sαξ
(
3 cos2 q − 1 + i

√
4λ2

2 cos2 q cos2 2q − sin4 q
))
,

(3.12a)

ω±
4 = ik2

2ξ

(
−D+ ±

√
D2

- − k−2sαξ
(
3 cos2 q − 1 − i

√
4λ2

2 cos2 q cos2 2q − sin4 q
))
.

(3.12b)
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3.3 Dominance of Bend Modes for an Extensile
Suspension

Completing a linear instability analysis for the 3d regime yielded four eigenvalues:
ω±

1 , ω±
2 which occur in the limit λ2 = 0 and ω±

3 , ω±
4 which occur in the limit λ1 = 0.

In the following analysis, we explore the limiting case of λ2 = 0 before exploring the
limiting case of λ1 = 0 in Section 3.3.2.

3.3.1 Non-chiral Particles: De-coupling of Governing
Equations

From (3.11a), (3.11b) we can extract the instability condition, which corresponds to
ωi > 0,

Imag(ω+
1) > 0 =⇒ −sα cos 2q(1 + λ1 cos 2q) > 2η−1k2, (3.13a)

Imag(ω+
2) > 0 =⇒ −sα(1 + cos 2q)(1 + λ1) > 4η−1k2. (3.13b)

Immediately, we notice that the instability condition given by ω+
1 is identical to

the instability condition for the 2d case, discussed by Simha & Ramaswamy31 and
discussed in Section 2.3.2, equation (2.15). Since cos 2q(1 + λ1 cos 2q) is positive for
q ∈ [0, π/4) and negative for q ∈ (π/4, π/2), we recover that ω+

1 is an unstable node
for pushers (pullers) for wave-vectors below (above) 45°, for sufficiently small k. As
shown in Section 2.3.2, the modes associated to ω+

1 are bend-splay modes, where
fluid is perpendicular (parallel) to a bend (splay) deformation. The second root ω+

2

is unique to the 3d regime. Firstly, we observe that both roots obey the same limit
as q → 0, which we will denote with the notation,

lim
q→0

ω+
1 = lim

q→0
ω+

2 = ω+
1,2.
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x

z

x

y

Figure 3.2: By the choice of parametrisation of p, in the limiting case of q = 0, a planar
bend wave (and consequential flow) can extend into the x-y plane or x-z plane with equal
probability.

The convergence to ω+
1,2 becomes intuitive when considering the choice of parametri-

sation for the director p and the wavevector k = k(cos q, sin q cos q′, sin q sin q′).
When q = 0, the perturbed system is invariant to rotations around the x-axis, it
is only when we imposed a wavevector with orientation of some non-zero q that we
break rotational symmetry about the x-axis. A pure bend deformation is strictly a
2d phenomena — it is contained entirely in a 2d plane, and consequently a bend
deformation will break rotational symmetry in the suspension. By our choice of
parametrisation for p, which parametrises rotations of the director into the y- and
z-axis by θ and ϕ respectively, we can without loss of generality observe the effects
of breaking symmetry by application of a non-zero q. With these considerations, we
see that our choice of parametrisation causes the modes associated with ω+

1,2 to cause
the bend perturbation to propagate either in the x-y plane, the x-z plane, or a linear
combination of the two. See Figure 3.2 for further illustration.

Having understood the convergence of the ω+
1,2 in the limiting case of q = 0, we

return to the instability conditions (3.13a, 3.13b) to compare the stability of the
modes associated with ω+

1 and ω+
2. The second root ω+

2 is unique to the 3d regime
and plotting ω+

1, ω+
2 over k ∈ [0, 1] for varying q, we observe that this new eigenvalue

yields unstable (stable) nodes for a pusher (puller) for all q and sufficiently small
k (Figure 3.3, main plot) which boasts larger perturbation growth rates than the
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Figure 3.3: Main plot: Growth rate of the dispersion relation given by ω+
1 and ω+

2 for
varying q. Instability exists for Im(ω) greater than zero. Roots converge for the case
q = 0. Sub-plot: Maximum of Im(ω+

1) and Im(ω+
2) and corresponding km for increasing q.

The instability mode associated with ω+
2 (red) is the dominate mode in a 3d system.

eigenvalue ω+
1 for all values of q (Figure 3.3, sub plot).

To understand why ω+
2 yields faster growing modes than ω+

1, we return to the calcu-
lations for the linear stability analysis and note that the governing equations with
λ2 = 0 for θ and ϕ are coupled to one another at order O(ε) only by shear gradients
(equations 3.3a, 3.3b),

∂tθ = λ1Eyx − Ωyx + η−1∇2θ,

∂tϕ = λ1Ezx − Ωzx + η−1∇2ϕ.

When seeking Fourier mode solutions, the velocity and director gradients are deter-
mined by our choice of wavevector k. Since our model swimmers are axisymmetric
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around their principle axis of orientation, we can restrict (without loss of generality)
the wavevector k to the x-y plane, i.e. q′ = 0. Then, the eigenvalues ω+

1 and ω+
2 fall

out of the linearised equation (equations (3.3a—3.3f) with λ2 = 0) as a decoupling
of uk, vk and θk from wk and ϕk,

0 = (ω + iη−1k2)(kxvk − kyuk) + isα(k2
x − k2

y)θk,

0 = (iξω − k2)θk + λ-
1kyuk + λ+

1kxvk,

0 = kxuk + kyvk,

0 = (ω + iη−1k2)kxwk + isαk2
xϕk,

0 = (iξω − k2)ϕk + λ+
1kxwk,

where ω±
1 is associated to uk, vk, θk and ω±

2 is associated to wk and ϕk. By restricting
the orientation of k to the x-y plane, the governing equations decouple into a pertur-
bation propagating in the x-y plane and a perturbation propagating in the x-z plane.
Due to this decoupling, the eigenmodes uk, vk and θk associated with ω+

1 are disturbed
by the wavevector kxy = k(cos q, sin q, 0). Since ky is non-zero, this mode experi-
ences both a bend and splay deformation, and as splay is stabilising in an extensile
suspension, the mode experiences a reduced growth rate. Conversely, in the decou-
pled equations for wk and ϕk, ky does not appear. Consequently, the eigenmodes
propagating into the x-z plane are disturbed by the wavevector kxz = k(cos q, 0, 0),
which corresponds to a pure bend mode, propagating into the x-z plane. The insta-
bility conditions in (3.13) tell us that the growth rate associated with a pure bend
mode of reduced amplitude |kxz| = k cos q will always trump the growth rate associ-
ated with a bend-splay perturbation, whose amplitude is |kxy| = k.

3.3.2 Chiral particles: Re-coupling of Governing Equations

We have established that in the bulk 3d regime, an extensile suspension is unstable
to bend deformations where the least-stable mode is associated with a perturba-
tion wavevector parallel to the ordered axis. In the 2d regime as the perturba-
tion wavevector angle q increases from zero, we observe a decrease in hydrodynamic
pumping due to bend and an increase in hydrodynamic pumping due to splay. At a
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wavevector angle q = π/4 the dominant pumping switches from bend, which pumps
fluid perpendicular to the ordered axis, to splay, which pumps fluid parallel to the
ordered axis. In the 3d regime, we uncovered two unstable modes: ω+

1 and ω+
2.

The modes associated to ω+
1 demonstrate the same instability mechanism as the 2d

regime, where the perturbation kinematics are restricted to x-y plane only. We then
established that the modes associated with ω+

2 when the wavevector k is restricted to
the x-y plane propagates instead into the x-z plane with a bend deformation only,
due to a decoupling between θk and ϕk. This decoupling only occurs at order O(ε),
at higher orders the modes would be re-coupled. Having established the de-coupling
of θk and ϕk in the bulk 3d case, we will model the effects of chirality, which causes
active units to rotate out-of-plane to an imposed shear. We will show that this re-
couples θk and ϕk at order O(ε). We will initially explore the limiting case of λ1 = 0
to better isolate chiral effects on the director.

The effects of chirality on the evolution of the director are small compared to align-
ment to shear and vorticity. This is because the governing parameter λ2 is an order of
magnitude smaller than λ1, with a range of λ2 ∈ [−0.1, 0.1]60 compared to λ1 ∈ [0, 1]
and vorticity, which has no parameter acting on it. Numerically, we should ex-
pect any phenomena arising due to chiral effects to act on much longer time scales
than alignment to shear and vorticity effects. In Chapter 2, we established that
the instability criteria is solely dependent on the balance of activity-driving and
elasticity-restoring length scales, where the instability growth/decay rate is deter-
mined by the active shear rate. As chirality acts on longer time scales than vorticity
and alignment-to-shear, the eigenvalues ω+

3 and ω+
4 (3.12a, 3.12b) for λ1 = 0, λ2 = 0.1

share the maximum growth rate as their ω+
1, ω+

2 counter-parts. Consequently, plotting
the growth rates of ω+

3, ω+
4 against k is yields an almost identical profile to the plot

for ω+
1 and ω+

2 in Figure 3.3 with negligible numerical differences.

However, instead of comparing the k-dependent dispersion relation, when plotting
the q-dependent dispersion profile for ω+

3, ω+
4, we find the eigenmodes exhibit markedly

different behaviour with respect to changes in the perturbation angle q than their
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non-chiral counter-parts. Vorticity is the driving instability mechanism and alignment-
to-shear is a numerically next-to-leading order effect, consequently to isolate the ef-
fects of chirality we choose to compare the chiral eigenmodes to ω+

0 for which λ1 = 0
and λ2 = 0. Figure 3.4 plots three important quantities over q ∈ [0, π/2] for ω+

0, ω+
3,

ω+
4 evaluated at their maximum wavevector amplitude km: the solid lines indicate

the growth rate Im(ω) of the eigenmodes, the dashed lines illustrate the perturbation
wave speed Re(ω), and the dotted lines plot the corresponding maximum wavevector
km.

The maximum growth rate when q = 0 corresponds to Figure 3.3, and we find strong
agreement between the growth rates of ω+

0, ω+
3 and ω+

4, where the differences between
the growth rates with and without chirality are less than a percentile (Figure 3.5,
Top). As q increases from zero in the non-chiral case, we observed two distinct
modes corresponding to perturbations in the x-direction and perturbations in the
x-y plane; in the chiral case, we find these two modes have the same growth rate for
small q, but observe the eigenmodes obtained a non-zero wavespeed (Re(ω) ̸= 0),
which in 3.3.2.1 we will see correspond to twist-bend waves propagating into the x-z
and x-y plane. The growth rates of ω+

3 and ω+
4 diverge at a critical wavevector qc,

which is determined from equations (3.12a) and (3.12b),

4λ2
2 cos2 qc cos2 2qc − sin4 qc = 0. (3.14)

When q < qc the dispersion roots can be written,

ω+
3,4 = ik2

2ξ
(

−D+ +
√
a± ib,

)
(3.15)

where a = D2
- − k−2sαξ(3 cos2 q − 1) and b = k−2sαξ

√
4λ2

2 cos2 q cos2 2q − sin4 q. In
this regime the imaginary components of ω+

3, ω+
4 converge and the instability condition
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Figure 3.4: Main plot: Real and imaginary parts of ω+
0, ω+

3, ω+
4 evaluated at their max-

imum with wave vector amplitude km over q ∈ [0, π/2]. Bifurcation occurs at q = qc;
proximity to q = π/8 is coincidental to parameter values chosen. Sub plot: Highlight of
cross-over between ω+

0 and ω+
4 (purple circle).

Figure 3.5: (Top) Difference between ω+
4 and ω+

0 (where λ1 = 0, λ2 = 0). For all ranges
of meaningful parameters, ω+

4 is larger than ω+
0 only for very small q. (Bottom) The

critical qc for which the system undergoes a bifurcation; qc is dependent on λ1 and λ2 only
and increases from zero as λ2 increases.
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becomes,

Imag(ω+
3,4) > 0 =⇒ −D+ + ν

1
2 cos

(
χ

2

)
> 0, (3.16)

where ν =
√
a2 + b2 and χ = tan−1( b

a
). For q > qc, instability is determined by

Imag(ω+
3) = 0 =⇒ k <

√
η

4
(
3 cos2 q − 1 −

√
sin4 q − 4λ2

2 cos2 q cos2 2q
)
,

Imag(ω+
4) = 0 =⇒ k <

√
η

4
(
3 cos2 q − 1 +

√
sin4 q − 4λ2

2 cos2 q cos2 2q
)
.

The full system with non-zero λ1 has a bifurcation angle qc dependent on λ1 and
λ2 (Figure 3.5b); for q < qc the roots ω+

3,4 yield a real part implying two possible
solutions of a travelling wave (Figure 3.5c), propagating either forwards or back-
wards. For q > qc the wave does not propagate with time and ω+

3,4 yields two roots
of different stability where ω+

4 yields the least stable modes.

3.3.2.1 Eigenvectors for q = 0

To understand how chirality changes the bend-splay modes, we investigate the eigen-
vectors for ω+

4, which are captured in the eigenvector plot in Figure 3.6, main, where
the eigenvectors for ω+

4 are plotted over q ∈ [0, π/2), evaluated at km for which the
growth rate of ω+

4 is at a maximum.∗ From the analysis in Section 3.3.1 where λ2 = 0,
we know that when the perturbation wavevector k is restricted to the x-y plane, the
least stable mode is associated with ω+

2, where a pure bend deformation propagates
into the x-z plane; expecting likewise, we normalise the eigenvectors to ϕk = 1. At
q = 0, we observe the phase difference between ϕk (purple) and wk (yellow) is slightly

∗The eigenmodes for ω+
3 and q < qc share the same growth rate and general characteristics, except

that θk and ϕk have a different phase and wave direction, which will be described throughout this
section.
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shifted from π/2 (Figure 3.6, sub), where an exact phase difference of π/2 between
the waves is characteristic of a bend deformation (Section 2.3.3, Figure 2.9). How-
ever, we also observe that the phase relationship between θk (green) and vk (red)
is also slightly shifted from π/2, indicating another bend deformation, propagating
into the x-y plane.

Recall that when the ordered state is perturbed with wavevector angle q = 0, a bend
perturbation can either propagate into the y-axis or the z-axis by virtue of θk or
ϕk respectively. When λ2 is non-zero, θk and ϕk are coupled together and the bend
deformations (one in the y-axis and one in the z-axis) co-exist as one mode where θk

and ϕk have a phase difference of ±π/2 (+π/2 for ω+
4, −π/2 for ω+

3)†. The resulting
mode resembles two spirals of outward pointing arrows with a phase difference of

†For θk, ϕk the modes associated with ω-
3, ω-

4 have a phase difference of ±π, but these modes
are stable.

Figure 3.6: Main: Eigenvectors corresponding to ω+
4, evaluated at km for which ω+

4 is at
a maximum over q ∈ [0, π/2). Eigenvectors are normalised to ϕk = 1 and the q-dependent
bifurcation of ω+

4 occurs at qc. Here, ϕk and wk display the dominant bend-splay mode
discussed in the ω+

2 case. Sub: Phase difference between vk, θk and wk, ϕk. The phase
difference converges to π/2 for stationary waves when q > qc.
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π/2, which is illustrated in Figure 3.7 where the director (orange) and fluid flow
(blue) are plotted along the x-axis for x ∈ [0, 2π/k]. This spiral is clockwise for ω+

4

and anticlockwise for ω+
3.

To understand why the phase difference between θk and vk (ϕk and wk respectively) is
shifted slightly from π/2 for q = 0, recall that a bend deformation is a 2d phenomena
— the deformation creates a hydrodynamic forcing into the same plane that the bend
propagates into, furthermore, alignment to shear and the vorticity term Ω ·p cause a
rotation in the director in the same plane that the shear gradients occur in. However,
when the chirality term is present and a bend deformation occurs, the director is
rotated out of the plane that the bend deformation occurs in, i.e. a change in θk (or
ϕk respectively) due to chiral effects is determined by shear gradients orthogonal to
y (or z respectively), which is quantified in the components of the director equation
(equations 3.3a, 3.3b),

Figure 3.7: Vector field plots of the modes associated with ω+
4 plotted along the x-axis

for x ∈ [0, 2π/k] and q = 0. The director is plotted in orange and the flow is plotted in
blue. Left: The full vector field plot. Right: The same vectors, but with the director
and fluid flow split to illustrate two simultaneous bend modes.
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Bend phase
(    , x-z plane)

Bend phase
(    , x-y plane)

Active Forcing
(    , x-z plane)

Active Forcing
(    , x-y plane)

Shear rotation 
experienced in x-z 
plane when coupled 

by chirality

Figure 3.8: Graph of two uncoupled (λ2 = 0) bend modes with a π/2 phase difference
in the x-z plane (ϕk, orange) and in the x-y plane (θk, light orange). Each deformation
causes an active forcing in the fluid, which is proportional to the gradient in the director
and propagates into the same plane as its corresponding deformation (wk, dashed blue
and vk dashed light blue). Rotation due to shear is proportional to the gradient of flow,
which is itself proportional to active forcing. To this point, this illustration is the same as
Figure 2.9, but extended to 3d with a second bend mode. When chirality is introduced,
rotational effects in the x-z plane are coupled to shear in the x-y plane. Since the flow in
the x-y plane has a π/2 phase difference to the flow in the x-z plane, chirality causes a shift
in the location of maximum rotation experienced in the x-z plane. Numerically, chirality
effects are much smaller than vorticity, so this phase shift is correspondingly small (orange,
dotted).
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∂tθk = λ1Eyx − Ωyx + λ2Ezx + ∇2θk,

∂tϕk = λ1Ezx − Ωzx − λ2Eyx + ∇2ϕk.

As the two bend perturbations in θk and ϕk have a phase difference of π/2, so
does the associated hydrodynamic forcing and the consequential flow. Consequently,
shear gradients in the z-axis (y-axis) have a π phase difference to θk (ϕk), and rota-
tional effects due to chirality occur with a phase difference of ±π/2 in comparison
to alignment to shear and vorticity effects. However, since chirality is governed by
λ2 ∈ [−0.1, 0.1], rotation due to chiral effects is small compared to shear alignment
and vorticity, and the phase shift in the director compared to the λ2 = 0 modes is
relatively small. The difference between the phases of a bend deformation in the
x-y and x-z plane, the corresponding flow and phase shift are graphed in Figure
3.8. The two modes ω+

3, ω+
4 correspond to a wave travelling forwards, or backwards,

depending on whether the phase difference between θk and ϕk is ±π/2.

3.3.2.2 Eigenvectors for q ̸= 0

As the perturbation wave angle increases from 0, three changes occur. Firstly, splay
is introduced into the system: splay is a restoring force in an extensile suspension
(see Section 2.3.3) and the growth of ω+

4 decrease correspondingly. Secondly, twist is
introduced into the system: when kz = 0, twist is determined by kyϕk, and the twist
deformation corresponds to a rotation of the director about the y-axis (Figure 3.9).
A twist deformation does not induce fluid forcing, but it does change the direction
that bend and splay deformations force fluid. Thirdly, increasing the magnitude of
twist in the suspension causes a shift in the phase difference between θk and ϕk until
the critical value q = qc, where the relative phases of θk, vk and ϕk, wk converge to
π/2 and θk and ϕk become in-phase with one another.

When the phase differences between θk and ϕk becomes 0 at q = qc, the system
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Figure 3.9: The bend, splay and twist
free-energy in the perturbed suspension
corresponding to the components of the
Frank free -energy integrand (1.32). Hydro-
dynamic forcing is proportional to the bend
and splay, but a twist deformation does not
induce a hydrodynamic forcing. The defor-
mation energies correspond to the modes
plotted in Figure 3.6. Note: the spike at
q = qc corresponds to the choice of normal-
ising the eigenvectors to ϕk.

undergoes a bifurcation and ω+
3 and ω+

4 obtain different growth rates. In the same
way as in Section 3.3.1, when the wavevector k is restricted without loss of generality
to the x-y plane, the least stable mode ω+

4 corresponds to a bend deformation in the
x-z plane (where as ω+

3 corresponds to a bend-splay deformation in the x-y plane).
Unlike the bulk case however, chirality couples the bend mode in the x-y axis and
the bend mode in the x-z axis together. In Figure 3.10a for which the wavevector
angle q is just above qc, the vector plots of the modes of ω+

4 are plotted, and the
decomposition of the θk and ϕk in Figure 3.10b indicates that the in the least stable
configuration, the suspension tends towards a pure bend deformation as opposed to
a superposition of a bend and splay.
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Figure 3.10: Vector field plots of the modes associated with ω+
4 plotted along the x-axis

for x ∈ [0, 2π/k] and q > qc. The director is plotted in orange and the flow is plotted in
blue. Top: The full vector field plot. Bottom: The same vectors, but with the director
and fluid flow split to illustrate two simultaneous bend modes. The phases of θk and ϕk

coincide when q > qc.
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3.4 Imposed Shear in a Bulk Fluid

Following the analysis established in Section 2.3.3 and Section 3.3, we wish to under-
stand how the underlying instability mechanism of the ordered steady state interacts
with an imposed background shear. We will see in Chapter 5 that an active suspen-
sion in the 2d regime confined to a channel or film can admit a non-trivial steady
solution with a non-zero flow and director field as a static torque balance between
shear-induced torque and elastic torque. However, in the 2d regime with p = const.,
attempting to solve for a steady state with an imposed shear yields,

0 = λ1Eyx − Ωyx.

This represents a torque balance between alignment to shear and rotation due to
vorticity, which can be resolved only when λ1 = 1: note that chirality is absent as
it is strictly a 3d phenomena. As alluded to in the introductory Chapter, certain
liquid-crystal regimes do allow the shear alignment parameter to obtain values larger
than 1, however, our interest lies in suspensions of swimming microorganisms where
λ1 ∈ [0, 1), so we omit this possibility. In the unbounded 3d regime (with or without
chirality), with the same set of governing equations as Section 3.3 (equations (3.1)),
the director admits only one constant, steady solution in an linear background shear
regime, where the director is orthogonal to the plane of imposed shear (see Figure
3.11 for illustration). Following our convention of p̄ = x̂, this corresponds to a steady
state solution of,

ū = Ãyẑ P̄ = PA, ϕ̄ = 0, p̄ = x̂, (3.17)

where Ã = Aµ
|α| determines shear strength dimensionless shear strength; Ã ≪ 1

(Ã ≫ 1) implies background shear is much less than (much greater than) active
shear. As per the convention adopted in Chapter 2, we drop the tilde denoting
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a dimensionless quantity, and refer to dimensionless shear as A for the rest of the
corresponding analysis. In Fourier space, the linearised governing equations at order
O(ε) (adapted from Section 3.2, equations (3.3a-f)) become,

0 = κ1uk − ikxPk + isα(kyθk + kzϕk), (3.18a)
0 = κ1vk − ikyPk + isαkxθk, (3.18b)
0 = κ1wk − ikzPk + isαkxϕk, (3.18c)
0 = κ2θk + λ-

1kyuk + λ+
1kxvk + λ2/2(kzuk + kxwk) − iAλ-

1ϕk − iAλ2/2θk, (3.18d)
0 = κ2ϕk + λ-

1kzuk + λ+
1kxwk − λ2/2(kyuk + kxvk) − iAλ+

1θk + iAλ2/2ϕk, (3.18e)
0 = kxuk + kyvk + kzwk. (3.18f)

It is known in literature that a background shear flow can stabilize a suspension of
swimming microorganisms by breaking spatial symmetry and giving particles a pre-
ferred direction to align to:86,87 for sufficiently large shear, we find agreement with
this and show that introducing background shear dampens long-wavelength pertur-
bations in the system. Shear contributes a coupling between θk and ϕk due to shear
alignment and rotation due to vorticity, which acts independent of the perturbation

p

Background
     shear

x

y

z

Figure 3.11: A rod-like particle with chi-
ral contributions in an imposed shear flow
has one constant, steady-state configura-
tion, where its principle axis is orthogonal
to a background shear flow.

86



wavevector as −iAλ-
1ϕk in equation (3.18d) and −iAλ+

1θk in equation (3.18e). Long-
wavelength perturbations of the director in θk and ϕk experience a restorative torque
due to background shear, which stabilises the suspension by suppressing the bend
instability which acts at O(k). In the dispersion relation, plotted in Figure 3.12a,
we see that the characteristic long-wavelength perturbation associated with unstable
bend modes, is dampened for increasing shear, until A surpasses a critical value Ac

for which the system is completely stabilised by imposed shear. This critical value
Ac is a function of λ1, λ2 only, and Ac asymptotically approaches infinity for λ1 → 1
(Figure 3.12a, Sub).

(a) (b)

Figure 3.12: (a) Main: Dispersion relation with background shear A for k ∈ [0, 1].
Imaginary part of ω is solid, real part of ω is dashed. Data is plotted for λ1 = 0.7, λ2 = 0,
q = 0. Sub: The critical value Ac for which A > Ac the system is unconditionally stable.
Ac is strongly a function of λ1, but λ2 has a negligent contribution. Ac asymptotically
approaches infinity as λ1 → 1. (b) Introducing chirality can destabilize the system for
small background shear. When A and λ2 are the same sign (blue) ω undergoes a bifurcation
which can destabilize the system. If A and λ2 differ in sign (yellow) no bifurcation occurs.
Data plotted for λ1 = 0.7, λ2 = −0.1, 0.1, A = 0.1, q = 0.
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Figure 3.13: The maximum of Imag(ω) can increase for small values of A and is dependent
on both λ1 and λ2.

Background shear changes the wave type from stationary to travelling — the driv-
ing instability mechanism occurs due to the out-of-phase nature between the fluid
pumping, which is proportional to deformation curvature, and alignment to active
shear, which is proportional to shear strength. The presence of a background shear
enhances active shear gradients and shifts the location of maximal shear from the
centre of the bend curvature to just ahead, or just behind it (dependent on the shear
direction and phase of the director). The change in location of maximal shear drives
a travelling wave, as the director experiences its maximum rotation due to shear
slightly ahead (slightly behind) its maximum deformation, causing a forward (back-
ward) travelling wave.

For small background shear, we uncover a new regime where chirality plays an im-
portant role in destabilizing the system. When background shear rate A is an order
of magnitude less than the active shear rate |α|

µ
, chirality and shear alignment can

work together to destabilise the suspension beyond the growth rates seen in absence
of background shear. The director is orthogonal to plane of imposed shear with
the projection of p on to the y-z plane given by ε(0 θk, ϕk). Vorticity uniformly
rotates the director about the x-axis, vanishing when θ and ϕ are zero. Introducing
alignment-to-shear and chirality will deform this orbit, as alignment-to-shear wants
to enhance the projection of p into the x-y plane to become aligned to background
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shear, and chirality rotates the director away from the alignment axis. This breaking
of invariance from deviations away from the x-axis appears due to the λ+

1 and λ-
1

terms in governing equations (3.18e, f).

When A and λ2 share the same sign, shear alignment alignment and chirality both
rotate swimmers out of the ordered direction, and the combination can be strong
enough to promote instability beyond the stabilising effect of vorticity term. The
phenomena occurs as a bifurcation in ω, seen in the dispersion relation (Figure
3.12b). The location of the bifurcation is critical as to whether the effect enhances
instability and is dependent on both λ1 and λ2 — if the bifurcation occurs at a
wavelength greater than the wavelength of maximum active shear, the effect will still
be destabilising, but will not enhance the maximum growth rate. The role of λ1

in initially promoting the instability is crucial — Figure 3.13 plots the maximum
growth rate of ω for varying λ1 and λ2, and Figure 3.14 shows the range of values
for which λ1 and λ2 enhance the instability.

Figure 3.14: The bifurcation of ω depends on λ1 and λ2. This parameter space plot
categorises where we find different solutions—for blue, chirality is enhancing and we have
stationary solutions, in yellow, chirality is not enhancing and we have oscillatory solutions.
The plots are plotted left-to-right for A = [0.1, 0.23, 0.37].
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Unlike the case of A = 0, where the effect of chirality destabilising the system was
marginal, here the combined effect of chirality and alignment to shear can meaning-
fully promote the instability growth rate by up to 10%. Neutralising background
shear in experiments in vivo is very difficult and the range of background shear for
which the phenomena would be seen could be reproduced in vitro. This regime re-
mains an area of active interest for future work.

3.5 Remarks: Bend is Dominant for an Extensile
Suspension

In Chapter 3 we began to extend the analysis established in Chapter 2 for the Stoke-
sian instability into the 3d regime. In Section 3.3, we established that the growth
rates of pure bend deformations in an 3d extensile ordered suspension will always
boast faster growth rates than modes comprised of bend and splay deformations put
together. This was quantified in Section 3.3.1 when comparing the growth rate of
the two unstable eigenvalues for the 3d regime, ω+

2 and ω+
1 where we discovered that

the modes associated with ω+
2, which consist of a pure bend deformation, had larger

growths rates than the modes of the eigenvalue ω+
1, which consisted of both bend

and splay deformations. When prescribing planar-wave solutions as in a linear sta-
bility analysis, bend and splay deformations are a purely 2d phenomena in the sense
that the deformations occurs in a 2d plane and causes hydrodynamic forcing into
that same plane. A perturbation defined by the wavevector k will have a vectorial
component pointing along the x-axis, and the least stable mode associated with ω+

2

propagates with respect to this component only.

When chiral terms are present (Section 3.3.2) in the governing equation for the direc-
tor, we saw that the governing equations are re-coupled as chiral particles are rotated
orthogonal to active shear induced by bend and splay deformations. Bend remains
the fastest growing deformation, and the least stable chiral eigenvalue ω+

4 describes
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two coupled bend modes: one propagating in the x-y plane, and one propagating
in the x-z plane, with a phase difference of ±π/2. The superposition of the two
bend modes results in a ‘spiralling’ mode, whose left/right-handedness depends on
whether θk and ϕk share a positive or negative phase difference.

When the two bend modes exist with a ±π/2 phase difference, their correspond-
ing hydrodynamic forcing has a π/2 phase difference from the respective mode.
Alignment-to-shear and rotation due to vorticity are proportional to the derivative of
the flow, which brings shear rotational effects in phase with the director deformation,
which was illustrated in Chapter 2. However, chiral rotation is governed by active
shear orthogonal to the director, which due to the phase difference between the bend
modes propagating in the x-y and x-z plane, is π/2 out-of-phase with the director.

Numerically, the effects of chirality are small compared to shear alignment terms,
so the net shift in shear-induced rotation due to chirality is small, on the order of
π/64 for |λ2| = 0.1. The effect of this phase shift is to create a travelling wave in
the director, as maximal shear gradients (and therefore, maximal director rotation)
is always slightly ahead (or slightly behind, depending on if θk, ϕk have a positive
or negative π/2 phase difference) of the maximum deviation of the director from the
ordered state.

In the final section of Chapter 3, we imposed a background shear flow orthogonal to
the alignment direction (y-z plane). When the director is orthogonal to the align-
ment direction, vorticity rotates the director about its long axis p and contributes
a stabilising effect on the active particles. However, shear alignment seeks enhance
the projection of the director in the y-z plane due to the extensile component of
the imposed shear, the by-product of which is to enhance chiral effects. When the
background shear A is sufficiently small (A ∈ [0.1, 0.5], where unit is normalised to
elasticity balancing active shear flows), we observed an increase in the growth rate
of the bend instability when both alignment-to-shear and chiral terms are strong
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enough to overcome stabilising vorticity. The increase in growth rate as compared
to the no-shear regime can be as much as 10%, depending on the values of λ1 and
λ2.

Chapter 2 and Chapter 3 comprise the first half of this work where we have invested
our effort into discussing the instability mechanism for the Stokesian instability, in
particular: 1) The mechanical origin of hydrodynamic forcing due to bend and splay
deformations in Section 2.1, 2) The role of phase between the fluid and the director
summarised by Figure 2.9 and Figure 2.12, 3) The consequence of bend and splay
being a 2d phenomena and the emergence of dominant bend modes in 3d, discussed
in Section 3.3.1, 4) The re-coupling of the governing equations for chirality in Section
3.3.2, and, 5) A new regime of instability with imposed shear, which can enhance
growth rates beyond that of the unbounded regime in Section 3.4. In the second
half of this work, we will explore the consequences of confinement, connecting bulk
instability growth rates to regimes of weak, intermediate and strong confinement; we
will discuss the role of boundary conditions on the types of modes we can expect to
observe experimentally, and, we will investigate non-constant, steady director and
steady flow fields.
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4 | Confinement due to a Channel
and Film

4.1 Literature Examples of Confinement

Academic literature contains many examples of analytical, numerical and experi-
mental extensions to the active matter Stokesian instability: in a paper published by
Sumesh Thampi,40 the bend instability for an extensile suspension was explored by
numerical simulation to understand the effects of topological defects in the director.
Thampi demonstrated that the bend instability develops into mesoscale turbulence
with two distinct phases: firstly, the suspension undergoes the Stokesian instability
to develop walls of strong bend deformations; secondly, the walls relax by forming
oppositely charged pairs of ±1

2 defects. The ±1
2 defects are associated with high

positive and negative vorticity and a state of mesoturbulence emerges as the defects
disperse throughout the neighbouring region, where spontaneous annihilation and
creation events continually occur. Doostmohammadi & Yeomans,7 and Chandra-
giri88 similarly study the effects of topological defects in the suspension by utilising
active matter simulations for active particles in a channel under imposed flow condi-
tions, where they reveal regimes for ‘active turbulence’ as a function of activity and
channel width (Figure 4.1b).

In an early result, Sankararaman & Ramaswamy51 analytically extended the insta-
bility to a thin-film regime of confinement. In a regime of strong confinement, the
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destabilizing role of the active stress tensor is suppressed by the boundary conditions
of alignment on the director which suppresses the propagation of bend and splay
deformations. To investigate possible mechanisms for instability, Sankararaman &
Ramaswamy incorporate a boundary condition at the free-surface which couples po-
lar active units to the local free-surface tilt, which takes the form −C

∫
p⊥ ·∇⊥h d2x,

where x is a spatial coordinate along the free-surface profile described by h and de-
termined by the kinematic boundary condition (Section 4.2), ⊥ indicates gradients
perpendicular to the unperturbed free-surface and C is a phenomenological con-
stant. By directly coupling director deformations to a free-surface tilt, the resulting
instability mechanism is entirely determined by boundary effects, and their analysis
reveals an instability with a growth rate on the order of |α|Ck2, to leading order of
wavefrequency k, which vanishes for C → 0. Notable from this work is the direct
dependence of the instability mechanism to the choice of boundary conditions; in
particular, careful consideration must be taken to choose boundary conditions reflec-
tive of observed behaviours.

The majority of numerical and experimental results have thus-far been restricted to
two dimensions,13 but recent results have unveiled unique dynamics in the 3d regime:
Chatterjee et al. include inertia in a theoretical analysis where the instability is sta-
bilised to a statistically steady isotropic hedgehog-defect turbulent state;53 Strubing
et al.90 conduct experiments on microtubule and kinesin-1 motors, revealing a unique
‘wrinkling’ instability for which the known bend-instability contracts a microtubule
ribbon into the z-axis. In a particularly relevant recent publication, Chandrakar et
al.6 (Figure 4.1a) explore regimes of intermediate confinement by experimentally
investigating the instability in the 3d regime for active liquid crystals composed of
extensile microtubule bundles and kinesin molecular motors. The microtubule bun-
dles were placed in long channel of height 100µm and width 3mm. The dominant
instability plane for the microtubule bundles is set by the confining boundaries and

∗Reprinted figure with permission.6 DOI, http://dx.doi.org/10.1103/PhysRevLett.125.
257801

†Reprinted figure with permission, under Open Access.89 DOI, https://doi.org/10.1140/
epjst/e2019-700109-x
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the authors revealed that the Stokesian instability survives when confinement length
scale is larger than the length scale set by the balance of activity driven flow and
elastic restoration, which we find agreement with in Section 4.4.1. The experiments
validate the value of a linear instability analysis, as the authors reveal a linear growth
regime in the initial phase of the instability before being proceeded by exponential
growth. The choice of boundary conditions is strongly influential on the types of
phenomena we might expect to observe, as the dominance of boundary conditions
"demonstrate[s] the inherent challenge of using boundary-free calculations to explain
experiments". The experiments are exemplar for demonstrating the existence of the
bend-instability in bacterial active matter and the results are qualitatively similar
to the theoretical analysis we will perform in this chapter. In the second half of
this work, we wish to add our analysis to this mature field by capturing a question
common to all regimes of confinement: How does confinement affect the stability of
a momentum-conserving suspension of active particles?

Figure 4.1: (a) An exemplar demonstration of the bend instability in confined
microtubule-based active nematics. Reproduced from Chandrakar ∗et al. 2020.6 (b)
Simulations reveal the underlying flow states of active nematics confined in a channel. Re-
produced from Doostmohammadi & Yeomans, 2019†7
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4.2 Common Active Matter Boundary Conditions

Active matter suspensions typically exist in regimes of strong confinement: sperm
navigating the female reproductive tract, white blood cells in veins, cancerous cells
in tumours, rods in granular active matter. Confinement is characterised by two fac-
tors: geometry and boundary effects. Typical geometries of interest include channels
with rigid boundaries such as arteries, films with deformable interfaces such a mucus
membranes, junctions between channels such as veins and lattice structures like the
extracellular matrix. Each geometry can have many different boundary effects: rigid
boundaries can be elastic,91 films can be permeable,92 swimmers can display unique
mechanical phenomena such as ‘slipping’ at a boundary,49 and navigating through a
lattice presents complex path-finding problems for a microswimmer, which qualita-
tively change observed behaviour.93

For this work, we wish to address appropriate boundary conditions for coarse-grained
active matter. Specifically, we wish to explore how the choice of boundary conditions
in the coarse-grained limit can reflect observed behavioural mechanisms in the micro-
scopic limit. We will interpret our results in the framework of the instability analysis
discussed in Chapter 2 and Chapter 3, seeking to understand how commonly used
boundary conditions affect the Stokesian instability and introducing confinement as
an infinitely long film and channel in both 2d and 3d regimes. To facilitate this anal-
ysis, we will begin by introducing the geometries of interest and discussing general
forms of common boundary conditions on the fluid and the director before making the
appropriate simplifications for a linear instability analysis in both 2d and 3d regimes.

In this work, we characterise a channel by two rigid walls placed orthogonal to the
z-axis at z = 0 and z = h, where the distance between the two walls is measured by a
constant parameter h. In the 2d regime, this leaves the x-axis unbounded, and in the
3d regime this leaves the x-y plane unbounded. We will also discuss the dynamics
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of a film, which is similarly defined, but with a free-surface at z = h instead of a
rigid wall. In principle, we could allow h to vary in the film regime (corresponding
to a deforming free-surface), but to isolate the affect of boundary conditions on the
instability mechanism, we will leave h as a constant.

Experimental observations of fluid kinematics at boundaries reveal that the fluid
velocity at a boundary must equal the velocity of the boundary itself. This velocity
continuity condition imposes constraints on both the tangential components and nor-
mal components of the fluid. The first constraint, which is imposed on the tangential
components, is known as the ‘no-slip’ boundary condition, and when the rigid wall
is stationary this boundary condition becomes,

u · t = 0, (4.1)

where t is a tangential vector to the boundary. The second constraint, which is
imposed on the normal components, is known as ‘impermeability’, and reflects the
fact that fluid particles cannot pass through a rigid wall, nor leave its surface. Again,
for a stationary rigid wall, this yields the boundary condition,

u · n = 0, (4.2)

where n is the vector orthogonal to the boundary. For a 2d or 3d channel, matching
the velocity of the fluid and boundary through the no-slip and impermeability con-
ditions is sufficient to describe the fluid dynamics, but to describe the free-surface
at a film we additionally need to resolve the total stress acting across the boundary.
This is known as the ‘stress continuity’ condition and reads,

(σf1 − σf2) · n = 0. (4.3)
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Here, σf1 and σf2 denote the stress tensors for each fluid (or gas) either side of the
boundary. In principle, the right-hand side of (4.3) should be proportional to the
product of the curvature of the free-surface and surface tension, but as we are only
considering a constant free-surface in this work, we can unequivocally set it to zero.
In this work, the total (dimensionless) stress is comprised of the viscous stress tensor
(1.10) and the active stress tensor (1.17), which together read

σf1 = −Pδ + 2E + sαpp. (4.4)

Similarly to velocity continuity, the stress continuity condition (4.3) imposes a normal
and tangential condition on the fluids either side of the boundary. Often, we might
have a gas or a liquid with a small viscosity compared to the fluid in the film, and
in these regimes the second stress tensor reduces to a pressure constraint which we
can approximate as a constant PA such that, σf2 = −PAδ. Then the normal and
tangential condition on the fluid read,

−P + 2n · E · n + 2sα(p · n) = −PA, (4.5)
t · E · n + sα(p · t)(p · n) = 0. (4.6)

To complete (4.5) and (4.6) requires a description of the director at the free-surface
and the fluid velocity at the free-surface. Application of the velocity continuity
boundary condition at the free-surface determines the ‘kinematic’ boundary condi-
tion, which again tells us that fluid particles at the interface must remain at the
interface,

∂th+ u · ∇h = u · n. (4.7)

Since we have determined that h remains constant for this work, this reduces to
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u · n = 0 at the free-surface. Finally it remains to determine the constraints on
the director, both at the rigid boundary and free-surface. In the introductory chap-
ter describing the governing equations for suspension (Section 1.2.2), we introduced
the Frank free-energy which describes a free-energy arising from elastic deforma-
tions. The integrand of the Frank free-energy (equation (1.32)) was split into a bulk
and surface energy contribution, where the surface contributions are omitted in the
calculation of the static equilibrium condition. Surface energy contributions are re-
introduced phenomenologically by considering a strong anchoring regime at a rigid
wall, which determines a regime where the substrate can impose strong torques on
the director. In its simplest form, this corresponds to,

p · n = sin(βj), (4.8)

where βj = 0 corresponds to swimmers parallel to the substrate and βj = π
2 corre-

sponds to swimmers orthogonal to the substrate. Throughout this Chapter, we will
consider βj = 0, with a non-zero βj considered in Chapter 5. In the 2d regime, as
the director is subjected to a unit vector constraint, (4.8) is sufficient to completely
determine the director at a rigid substrate. In the 3d regime, we must also consider
the tangential component of the director. Fine tuning the mechanical and chemical
properties of a substrate would theoretically allow for any alignment condition at
the rigid boundary, including those where active shear is produced due to the lo-
cal director profile. However, since we’re conducting a linearised instability analysis
around a constant steady-state, imposing a non-zero tangential alignment condition
(with respect to the ordering direction) on the director would impose twist across
the suspension. This is discussed further in Section 4.9, but for the majority of this
work we will a no-twist condition at the substrate, such that we are aligned to the
bulk,

p · t = x̂. (4.9)
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The free-surface constitutes a weak-anchoring regime where we cannot impose strong
torques on the director, consequently, by the above reasoning, the tangential compo-
nent of the director must also satisfy p · t = 0. In Section 1.2.1, we discovered that
splay gradients in the director yield active flows directed parallel to the local ordering
direction as, (∇ · p)p: to maintain consistency with the kinematic boundary condi-
tion (4.7) and a constant free-surface, it follows that the normal component of the
director at the free-surface must also be zero, which yields an ‘impermeability-like’
condition such that,

p · n = 0. (4.10)

With (4.8) and (4.10) determined by the director boundary conditions, we can sum-
marise the full set of boundary conditions for our active matter suspension. At a
rigid wall, the no-slip (4.1), fluid impermeability (4.2), aligned director (4.8), and in
3d, no-twist condition (4.9), together read,

u · t = 0, (4.11a)
u · n = 0, (4.11b)
p · n = 0, (4.11c)
p · t = x̂. (4.11d)

The boundary conditions at the free-surface comprise of the kinematic boundary
condition (4.7), which with a constant free-surface profile h reduces to an imperme-
ability condition, the tangential stress condition (4.6), which with p · n = 0 reduces
to a no-shear condition, aligned director (4.8), and in 3d, no-twist condition (4.9),
which together read,
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u · n = 0, (4.12a)
t · E · n = 0, (4.12b)

p · n = 0, (4.12c)
p · t = x̂. (4.12d)

Equations (4.11) and (4.12) form a minimalistic set of boundary conditions for the
fluid and director in either a film or channel and either a 2d or 3d regime. The
boundary conditions form a reference point from which we will establish a link be-
tween the instability mechanism in the bounded and unbounded regime and are the
default set of boundary conditions discussed in this work. Where other boundary
conditions are used, such as in Section 4.9 and Chapter 5, it will be stated which
boundary conditions have been replaced.

4.3 Numerical Methods in Matlab

Up until this point, we have utilised an analytic analysis to find the dispersion
relation for perturbations of the linearised governing equations (2.8). We have sought
Fourier-mode solutions of the form f = fk exp(ik ·x−iωt), where fk is held constant.
Introducing confinement into the system necessitates allowing fk to vary across the
channel/film height, which yields a z-dependence as,

f = fk(z) exp(ik∥ · x − iωt), (4.13)

where k∥ denotes components of k orthogonal to the axis of confinement, such that
k∥ = (kx, ky, 0) in the 3d regime and ky = 0 in the 2d regime. Initially, we will
continue to use the set of linearised governing equations about the ordered, constant
steady-state, ū = 0, p̄ = x̂, discussed in Chapter 3 (3.1a—3.1d) which in component
form read,
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0 = −ξ∂tu1 − ∂xP1 + ∇2u1 + sα(∂yθ1 + ∂zϕ1), (4.14a)
0 = −ξ∂tv1 − ∂yP1 + ∇2v1 + sα∂xθ1, (4.14b)
0 = −ξ∂tw1 − ∂zP1 + ∇2w1 + sα∂xϕ1, (4.14c)
0 = −∂tθ1 + λ1Eyx + λ2Ezx − Ωyx + η−1∇2θ1, (4.14d)
0 = −∂tϕ1 + λ1Ezx − λ2Eyx − Ωzx + η−1∇2ϕ1. (4.14e)
0 = ∂xu1 + ∂yv1 + ∂zw1. (4.14f)

Substitution of the z-dependent Fourier modes (4.13) into the linearised governing
equations (4.14) returns a linear system of ODEs,

0 = κ1uk + u′′
k − ikxPk + sα(ikyθk + ϕ′

k) (4.15a)
0 = κ1vk + v′′

k − ikyPk + isαkxθk (4.15b)
0 = κ1wk + w′′

k − P ′
k + isαkxϕk (4.15c)

0 = κ2θk + λ-
1kyuk + λ+

1kxvk + λ2/2(kxwk − iu′
k) + i(k2θk − θ′′

k) (4.15d)
0 = κ2ϕk − iλ-

1u
′
k + λ+

1kxwk − λ2/2(kyuk + kxvk) + i(k2ϕk − ϕ′′
k) (4.15e)

0 = ikxuk + ikyvk + w′
k, (4.15f)

where, κ1 = iξω − k2 and κ2 = ω + iη−1k2 and k2 = |k|. Note that differentiation
of the Fourier modes (4.13) with respect to x and y brings down from the exponent
kx and ky respectively, but differentiation with respect to z yields ∂f

∂z
= f ′

k. Then,
application of the boundary conditions discussed in Section 4.2 yields a 10th-order
boundary-value problem (BVP).

As more terms are included in the governing equations for the active matter system,
analytic solutions become increasingly difficult to attain, and a numerical approach
can be preferable to analytically solving the BVP. We choose to conduct our nu-
merical analysis on Matlab 2021a, utilising the in-built numerical BVP solvers
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bvp4c, or bvp5c which implement the three-stage Lobatto IIIa formula.94 The Lo-
batto IIIa formula utilises approximations to the solution of a BVP problem taken
at the end-points zi and zi+1 from the subinterval {zi, zi+1}. Consequently, solving
BVP problems using in-built Matlab solvers requires intelligent guesses at possible
solutions to the BVP, and an inaccurate initial approximations will result in a di-
vergence between the approximation and the solution. If this divergence grows too
large, the numerical algorithms will fail and no solution will be returned.

Figure 4.2: Differences between solutions for
the eigenvectors of the 2d channel. Solutions
vary in accuracy and are measured against
a reference solution at accuracy relTol 1e-15.
Differences are scaled according to axis label-
ing.

The in-built Matlab BVP solvers allow the user to determine this divergence thresh-
old by controlling the maximum size of the error estimate by means of two optional
arguments: relTol, which determines the relative difference between two successive
points along the BVP, and absTol, which determines the absolute difference between
successive points (Figure 4.2). As the solver progresses over the solution domain, it
can utilise an adaptive mesh size to ensure the solver always maintains the required
accuracy between successive points in the solution space. Increasing the accuracy
beyond a minimum threshold is necessary to ensure the solver is converging to a
correct solution, but beyond this threshold decreasing error tolerances provide no
meaningful benefit. To solve the coupled system of ODEs in (4.14), Matlab’s nu-
merical solvers require the 10th–order system to be broken down into a system of
coupled first–order differential equations, which can be written as,
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f1 = uk, f2 = vk, f3 = wk,

f4 = u′
k, f5 = v′

k, f6 = Pk,

f7 = θk f8 = ϕk,

f9 = θ′
k f10 = ϕ′

k.

Then, taking ∂fi

∂z
and substituting (4.15a–4.15f) yields the coupled-equations,



f ′
1

f ′
2

f ′
3

f ′
4

f ′
5

f ′
6

f ′
7

f ′
8

f ′
9

f ′
10



=



u′
k

v′
k

−ikxuk − ikyvk

−κ1uk + ikxPk − sα(ikyθk + ϕ′
k)

−κ1vk + ikyPk − isαkxθk

κ1wk − ikxuk − ikyvk + isαkxϕk

θ′
k

ϕ′
k

−κ2θk − η
(
λ-

1kyuk + iλ+
1kxvk + λ2/2

(
u′

k + ikxwk)
)

−κ2ϕk − η
(
λ-

1u
′
k + λ+

1ikxwk − λ2/2

(
ikyuk + ikxvk

))



(4.16)

where all quantities can be re-expressed in terms of fi. The parameters k, ξ, sα, η, λ1

and λ2 can all explicitly be provided to the numerical solvers as values, but the com-
plex wave-frequency ω (also contained in κi) is an unknown parameter and a function
of k, as seen in (2.15) and (3.11a–3.12b). The existence of the unknown parameter
ω turns equations (4.16) into an eigenvalue for eigenvalue ω and eigenmodes fk, and
solving for ω requires an additional boundary condition to (4.12) and (4.11) to satisfy
the extra degree of freedom. Since we are solving a perturbation analysis, the magni-
tude of the Fourier modes fk is arbitrary, and we can choose any fk which is non-zero
at the boundary. We choose to set the velocity gradient v′

k = 1 at z = 0, as this is
modelled as a rigid substrate for both the channel and film regimes in both 2d and
3d, which has the effect of scaling all the Fourier modes relative to velocity gradients
near the substrate, which will almost always be non-zero due to the no-slip condition.
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Boundary-value problems can have one, many, or even infinitely many solutions, and
the convergence of the numerical BVP solvers to a solution is heavily dependent on
providing meaningful initial guesses which fulfil the provided boundary conditions.
Two major considerations must be made when conducting a numerical instability
analysis: First, a substantial search must be conducted to identify which solutions
are the most dominant and likely to appear experimentally for a given wavelength.
Second, since we are interested in constructing the numerical equivalent of the dis-
persion relation as in (2.15) and (3.11a–3.12b), we need to be able to establish if any
two solutions produced by the numerical BVP solvers are the same type of solution,
or exist on a different branch entirely.

In order to satisfy these considerations, I developed a custom interface to Matlab’s
BVP solvers which establishes the authenticity of a solution returned from the bvp4c
or bvp5c solvers, for which the numerical algorithm is summarised graphically in
Figure 4.3. After using guesses to find an initial likely solution F 1

χ1 for a given set of
parameters χ1 to the BVP problem for a given wavevector k1, this initial solution is
converted into a format which can be used as an approximation for the next desired
solution F 2

χ1 for wavevector k2. This process can be repeated iteratively until a target
wavevector kn is reached, at which point the entire array of solutions F 1

χ1 . . . F
n
χ1 is

algorithmically scanned to verify its continuity. The continuity of this solution space
is established by inspecting the F i

χ1 solutions eigenmodes and dispersion relation for
discontinuities with respect to changes in the wavevector ki. Where problematic
solutions are discovered, they can be resolved by increasing the number of solu-
tion points between F i−1

χ1 and F i
χ1 , or traversing the solution space backwards to

use F i+1
χ1 as an approximation to F i

χ1 . After establishing the continuity of solutions
F 1

χ1 . . . F
n
χ1 , the entire solution space can be solved in parallel utilising Matlab’s

in-built parallelisation-functionality for a new set of parameters χ2, re-checked for
discontinuity errors, and iteratively re-solved until a desired target parameter set χm

is reached.
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1) Derive multiple solutions for increasing wavevector
k in serial from an initial reference solution

2) Check authenticity of solutions and re-solve 
any problem solutions

3) Derive multiple solutions in parallel for a 
new set of parameters 

4) Re-check authenticity of solutions and repeat

Figure 4.3: Numerical algorithm for establishing the continuity of solutions over wavevec-
tor.

By this methodology, we are able to track the evolution of a particular branch of
solution over large changes in parameter space, identify competing stabilising and
destabilising mechanisms, and confidently connect the growth rates in unbounded
and strongly-bounded regimes. All graphs and figures hereafter are plotted using
data produced from this custom interface, where the eigenvalues plotted are those
whose eigenmodes have the fastest growth rates. The code will be published at a
later date for public use, and the code and solutions are available on request.
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4.4 2D Channel: Emergence of the Vortex Lattice

The 2d channel represents an experimentally realisable regime for which orienta-
tional symmetry is broken in a controlled manner. Whilst minimalistic, it provides
an excellent stepping stone to understanding the behaviour of the disturbed state
in more complex confinements and regimes. Our analysis in the 2d regime revealed
that an extensile suspension is most unstable to perturbation wavevectors which are
parallel to the ordered axis, but that the corresponding fluid flow is perpendicular
to the ordered axis. A priori we might hypothesise that when the ordered axis is
along the length of an infinite channel, that confinement will suppress the columns
of fluid perpendicular to the ordered axis by virtue of impermeability, and further,
that the bend deformation will be suppressed near the boundaries due to alignment.
In the following analysis, we reveal how both boundary conditions actually affect the
modes and which boundary condition can be considered ‘stronger’, in the sense of
suppressing instability growth.

We model the infinitely long channel, extending along the x-axis, with the steady
ordered state also aligned along the x-axis, corresponding to the configuration used
throughout the rest of this work. Confinement is modelled at z = 0 and z = h̃ by two
rigid walls which impose the set of boundary conditions given by (4.11) consisting of

h

Figure 4.4: Orientation of axes for the 2d and 3d channel and film. The channel/film
width is given by h and confinement is modelled at z = 0 and z = h by the appropriate
boundary conditions. The director is aligned along the x-axis in the ordered state. In the
2d regime, dynamics in the y-axis are suppressed.
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no-slip (4.11a) and impermeability (4.11b) on the fluid, and strong anchoring (4.11c)
and no-twist on the director (4.11d). Here, the channel width is described by h̃ = h

L
,

(tilde droped hereafter) where L is the characteristic length scale balancing activity
driven shear and elasticity.

In Section 4.4.1 we begin exploring confinement for the 2d channel (Figure 4.4)
in the limit of h ≫ 1, corresponding to the modes of instability comparable to the
unbounded regime. Our goal is to compare the instability growth rate in regimes
of weak confinement to the analysis conducted in Chapter 2 and Chapter 3, and in
particular, to understand the quantitative differences between observed modes. In
Section 4.6 we reduce h to find the critical length hc for which confinement sup-
presses the instability. We use this critical width as a control parameter to provide
a framework for understanding the effect of different boundary conditions, which we
later explore in Section 4.9 after discussing the 3d regime in Section 4.7.

All analysis is conducted for an extensile suspension with the parameter set η−1 = 1.2,
ξ = 1.1, λ1 = 0.7, except where indicated (see Section 2.2.1 for parameter estimates).
In Chapter 2, we discovered that there are broadly two types of eigenmode with as-
sociated eigenvalues ω± where we discovered that for an extensile suspension, ω+

yielded unstable modes and ω- yielded stable modes. The two types of eigenmode
emerge due to the possibility of the director and fluid being ±π

2 out-of-phase with
one another when subject to a pure bend deformation. In the numerical analysis
for the bounded regime, there are a multitude of eigenvalues corresponding to dif-
ferent ordered modes, but they can still be characterised by their phase difference
between the director and fluid. Consequently, hereafter we will use ω+ to denote the
eigenvalue with the fastest growing eigenmodes and a π

2 phase difference between the
director and fluid (which is generally unstable), and ω- to denote the eigenvalue with
the fastest growing eigenmodes with a −π

2 phase difference between the director and
fluid (which is generally stable). We will see that the fastest growing eigenmodes are
associated with order 1 modes (Section 4.4.1.1) which will be denoted ω±

n=1, where
the subscript is dropped hereafter for the n = 1 case.
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4.4.1 Recovering Bulk Stability Growth Rates

When the channel width is large, the effects of confinement are only felt close to the
channel wall which imposes constraints on fluid propagation due to the no-slip and
impermeability conditions (4.11a, 4.11b) and can impose surface torques on the di-
rector due to director alignment (4.11c, 4.11d), where the rigid boundary conditions
(4.11) on the director p in the 2d regime correspond to the conditions θk = 0 and
ϕk = 0 on the Fourier modes. Consequently, when solving the eigenvalue problem
set by equations (4.15) for eigenvalue ω, we expect to retrieve the instability growth
rates Im(ω) discussed in Chapter 2 as confinement length h → ∞. In the analytical
analysis conducted in the first half of this work, eigenvalues which led to unstable
eigenmodes with a phase difference of π

2 between the director and fluid were referred
to as ω+

j, and eigenvalues which led to stable eigenmodes with a phase difference
of −π

2 between the director and fluid were referred to as ω-
j where j refers to an

eigenvalue discussed in a specific regime. We keep this notation for the second half
of this work and always plot the least stable modes for both ω+ and ω-, except where
explicitly mentioned.

In Figure 4.5, we graph the numerically determined dispersion relation for unstable
and stable eigenvalues ω+ and ω- in the 2d channel alongside the dispersion rela-
tion described in Chapter 2 for ω+

1 and ω-
1 (determined by equation (2.15)). The

numerical results strongly agree with the 2d bulk analysis for short-wavelength per-
turbations at h = 100 and indicate unstable, stationary waves for ω+

k=km where km

is the least-stable wavenumber (Figure 4.5, left, main). Confinement introduces a
new phenomena for long-wavelength perturbations; Figure 4.5, (Sub) indicates the
system undergoes a bifurcation at k = kc for which the growth rate of eigenvalues ω+

and ω- converge, and both modes collapse into a stable mode with travelling wave
solutions for k < kc. The phenomena occurs when the perturbation wavelength
crosses a threshold on the order of kc ≈ π/h, i.e. when the disturbance wavelength
exceeds the channel width.
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Figure 4.5: Dispersion relation for a 2d channel with rigid wall boundary conditions
(4.11) applied at both z = 0 and z = h for width h = 100. Numerical data is in blue,
where the growth rate Im(ω) is solid, and wave speed Re(ω) is dashed. Left, Main: The
numerical dispersion relation for ω+ has excellent agreement with analytic results, where
ω+

1 is in yellow. Sub: ω+ undergoes a bifurcation for k < kc. Right, Main: The numerical
dispersion relation for ω- also has excellent agreement with analytical results, where ω-

1 is
in purple. Sub: ω- undergoes the same bifurcation for k < kc.

To investigate this phenomena further, we plot the eigenvector, quiver and stream-
line plots for ω± at k = 0, k < kc, and ω+, ω- at k > kc in Figure 4.6. Referencing
the analysis in Chapter 2, note that when the complex argument of u and p is an
integer multiple of π/2, this is indicative of stationary wave solutions for the bend
deformation. In the unbounded case, the vectorfield plots (Figure 2.10) illustrated
a bend perturbation in director with well-defined columns of fluid, alternating in
direction depending on the phase of p and Figure 4.6c, d for k > kc indicates that
the finite channel yields the same instability mechanism as the unbounded regime.
Confinement, by virtue of the impermeability boundary condition, forces these fluid
columns to ‘collapse’ at the boundaries, causing oscillatory modes and creating a
vortex lattice along the channel.
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Figure 4.6: (i) Eigenvector, (ii) quiver, (iii) and streamline plots for a 2d channel of
width h = 100, corresponding to specific values of k in Figure 4.5 as (A) ω+ for k ≈ 0.
(B) ω+ for k just below kc. (C ) ω+ for k just above kc, the critical value for bifurcation (D)
ω- for k just above kc. Eigenvector plots are normalised to ϕk = 1.
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Figure 4.7: Elastic torque across a channel of
width h = 100, evaluated at k ≈ 0 and k just above
the critical value kc. Elastic torque is determined
by the final term in (1.37).

For long-wavelength disturbances (k < kc, Figure 4.6a, b), these columns cannot
fit length-ways into the channel and are forced width-ways instead — the critical
wavenumber kc represents the switch for when length-way oscillatory modes are
preferable over width-way oscillatory modes. Here, parallel alignment at the bound-
aries reveals itself to be a dominating boundary condition as the eigenvectors gradi-
ents (Figure 4.6a i.) indicate a sharp change in the director profile as proximity to
the boundary increases and the director is forced to align to the boundary. Elasticity
is proportional to second-order director gradients (1.32) and elastic torque acting on
the director can be calculated by the ∇2p − (p · ∇2p)p term in the director (1.37).
In Figure 4.7, the elastic torque across the channel is plotted and indicates that
applying director alignment causes the k ≈ 0 modes to have large values of imposed
elastic torque near the boundaries. The large values of imposed torque near the
surface indicate that the alignment boundary condition imposes strong torques on
the director, and experimentally these modes could only be realised if a source of
strong surface torque was present.

4.4.1.1 Higher Order Modes

In the confinement regime, the eigenmodes fk(z) are allowed to vary with the channel
width. This allows for the possibility of higher order modes in the channel, where
the vortex lattice admits multiple cells of vortices across the channel width. Here,
an nth mode refers to a solution with n rows of vorticies across the channel, where
the solution plotted in Figure 4.6 is an n = 1 mode, with associated eigenvalue ω+

n=1.
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Figure 4.8 plots the eigenvectors and streamlines associated to the eigenvalue ω+ for
the second, third and fifth order modes in a channel of width h = 100. Mathemat-
ically, there is no upper limit to the number of rows of vorticies across the channel
width, as the boundary conditions in a channel only impose that uk, wk and ϕk are
zero at the boundary.

However, increasing the number of rows of vorticies across the channel width induces
stronger gradients over wk(z) and ϕk(z). Since viscosity and elasticity damping are
proportional to these gradients, increasing the mode number comes with a penalising
energy cost due to damping. Damping is proportional to the second order gradients
in the fluid and director, whereas active forcing is proportional to the first order
gradient in the director only. Consequently, increasing the mode number will always
correspond to increases stability in the system due to viscosity and elasticity. This
is quantified in Figure 4.9 where the dispersion relation is plotted for the second,
third and fifth modes.

Figure 4.8: The eigenvector and streamline plots for the 2nd, 3rd and 5th modes asso-
ciated to unstable eigenvalues ω+

n=2, ω+
n=3, and ω+

n=5
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Figure 4.9: The dispersion relation for
ω+ corresponding to the 2nd, 3rd and 5th
modes. Increasing the number of modes
across the channel width increases the sys-
tem stability. The associated eigenvector
plot is found in Figure 4.8.

4.5 2D Film: Application of the Free-Surface BC

The 2d film is defined similarly to the 2d channel, where confinement is modelled
as a rigid wall at z = 0 and a free-surface at z = h for constant film-height h with
the x-axis left unbounded. The boundary conditions on the rigid wall again con-
sist of no-slip (4.11a) and impermeability (4.11b) for the fluid, and strong-anchoring
(4.11c) on the director. At the free -surface, the kinematic boundary condition
(4.12a) places restrictions on the normal components of the fluid velocity, and re-
solving fluidic stresses at the free-surface results in a no-shear condition (4.12b) and
an ‘impermeability-like’ condition is placed on the director (4.12c) to prevent swim-
mers escaping the surface.

It may come as a surprise that an active thick film (h ≫ 1) shares the same dispersion
relation as a wide 2d channel (Figure 4.5) — typically, the no-slip condition heav-
ily suppresses fluidic instabilities and a no-shear condition is generally considered a
weaker boundary condition. However, the instability associated with ω+ is driven by
the divergence of the active stress tensor, σα = pp, and as described in Section 4.4,
imposing alignment on a constant free-surface is a stronger constraint than either
no-slip, or no-shear. This will be quantified in Section 4.9 when we consider the
no-torque boundary condition for the director at the free-surface.
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Figure 4.10: (i) Eigenvector, (ii) quiver, (iii) and streamline plots for a 2d film of width
h = 100 evaluated for wavevector k as (A) ω+ for k ≈ 0. (B) ω+ for k just below kc. (C ) ω+

for k just above kc. (D) ω- for k just above kc. Eigenvector plots are normalised to ϕk = 1
and the corresponding dispersion relation for the film is identical to the channel 4.5.
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Figure 4.10 is a sibling figure to Figure 4.6 for the 2d film, plotting the eigenmodes
for the first-mode and least-stable mode ω± at k = 0, k < kc and ω+, ω- for k > kc,
where kc is the critical wavenumber for which the vortex lattice can no longer fit
length-ways in the film. When k > kc (Figure 4.6c, d), the perturbation wave-
length is smaller than the film height and the vortex lattice fits into the film. The
modes are qualitatively and qualitatively similar to the modes discussed in the 2d
channel case; this should come without surprise, as for such weak regimes of confine-
ment the effects of the boundaries is negligible.

For k < kc, the vortex lattice no longer fits in the film height and the modes instead
propagate length-ways down the film. Here, we find a discernible difference in the
propagation of the eigenmodes: the symmetry in boundary conditions for the 2d
channel placed these columns of fluid at equal distance from z = 0 and z = h, but
allowing the fluid to have a non-zero velocity at the free-surface effectively skews the
oscillatory modes by only suppressing tangential fluid flow close to z = 0. This can
be seen in Figure 4.10a, biii., as the regimes of high-flow (bright-yellow) are skewed
relative to the boundaries, in direct comparison to the channel regime Figure 4.6a,
biii. where the streamlines indicate the resultant vortex lattice has simply been
‘squashed’.

The skewing of the oscillatory modes is a characteristic trait seen in other experi-
ments, in particular a recent series of papers by Doostmohammadi & Yeomans.7,8, 13

Here, symmetry is broken by the presence of permanent ±1/2 topological defect
pairs. Half the defect pairs travel in one direction along the vortex lattice and the
other half travel in the opposite direction. The defect pairs do not annihilate one
another, instead they dance around one another skewing the flow vortices, which
eventually causes a transition into a state of active turbulence.
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dynamically ordered state of disclinations (Fig. 1(a); Movie 1, ESI†).
The disclination dynamics accompanying the vortex lattice have
not hitherto been reported. These dancing disclinations are posi-
tively charged, long lived, and continually navigate through the
channel. As they move past each other on the vortex lattice, the
positive disclinations form short-lived pairs, leading us to dub this
state topological Ceilidh dynamics, in rough analogy to traditional
Gaelic dances in which participants form two inward-facing
parallel lines and pairs of dancers continually exchange partners
as they circulate between the lines. Our results for quasi-1D active
nematics show that, in this simple geometry, ordered dancing-
disclination dynamics emerge as a system-spanning intermediate
regime between unidirectional flow and meso-scale turbulence.

We next treat the Ceilidh dynamics state as a spatially
ordered configuration between the unidirectional flow state
and meso-scale turbulence. As a system-spanning ordered
state, the Ceilidh dynamics pattern can itself possess irregula-
rities, which we term lattice defects. A subset of these lattice
defects are found to drive a well-defined net flux that increases
incrementally with the quantized number of drift-lattice defects.
The dynamically ordered topological and steady-flow structures

of Ceilidh dynamics within a channel represent an ideal system
for studying the emergence of ordered dynamical structures in
active matter.

2 Methods

Many living fluids can be modelled as continuous active nematic
liquid crystals because they generally consist of a dense suspension
of many (continuum) shape-anisotropic (nematic) self-propelled
(active) particles moving through a fluid medium (force-free).54

We utilize numerical simulations of active nematohydrodynamics
to solve for the density, velocity (with its associated vorticity x(r,t)),
and orientation tensor Q(r,t) (with associated director n(r,t) and
scalar order q(r,t)) fields.55 We assume that the nematic fluid has a
single nematic elastic constant K and that the activity coefficient
z 4 0, representing extensile active systems such as pusher-type
bacteria.56 The 2D active nematic is confined between two parallel
no-slip channel walls separated by a distance h, producing a
quasi-1D system. Strong anchoring at the boundaries sets the
director perpendicular to the confining walls.

Fig. 1 Dancing disclinations: topological dynamics (see Movie 1, ESI†). (a) Simulation snapshot of the instantaneous vorticity field, which forms a highly
ordered vortex lattice and a dynamically ordered state of disclinations within the channel. Negative (�1/2) topological disclinations settle in the vicinity of
the channel walls (magenta diamonds), while positive (+1/2) disclinations (green dots) transverse the mid-region as they move along the vortex lattice.
(b) Zoom showing streamlines and director field. (c) Schematic of ideal Ceilidh dynamics. In a channel of height h, �1/2 topological disclinations
(magenta diamonds) reside in the near-wall regions where they oscillate weakly about their average position. Within the mid-channel region is the vortex
lattice of counter-rotating neighbouring vortices. Moving along the edge of the vortices are the +1/2 disclinations (green dots). The system has zero
net-topological charge and ideally equal numbers of +1/2 disclinations travel to the left as to the right (light and dark green, respectively).

Paper Soft Matter

Pu
bl

is
he

d 
on

 0
6 

M
ar

ch
 2

01
7.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

Y
or

k 
on

 1
/1

1/
20

22
 2

:4
9:

30
 P

M
. 

View Article Online

Figure 4.11: The vortex lattice for the 2d channel (top), the skewed vortex lattice for
the 2d film (mid) and comparison to a vortex lattice skewed by topological defect pairs
(bottom, Doostmohammadi & Yeomans8).
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We make a direct comparison between the experimental results of Doostmohammadi
& Yeomans and our own instability analysis in Figure 4.11 where the vortices skewed
by asymmetric boundary-conditions and dancing ±1/2 defect pairs is illustrated. Of
immediate comparison is the existence of smaller, secondary vortices between the
larger primary vortices. In future work, we wish to investigate these secondary vor-
tices by a stability analysis of a non-steady solution to the director consisting of a
vortex lattice across the film width.

4.6 Critical Confinement for Suppressing Growth
Rate

As the dimensionless channel width h is measured relative to L =
√
Dµ/α, for which

elasticity and active shear balance, we define ‘intermediate’ length scales for which
h is above some critical length scale hc, where h = hc is defined as the critical con-
finement length to completely suppress the instability growth rate for the eigenvalue
ω+

n=1 with the least-stable eigenmodes (which always corresponds to the first-mode).
To seek this length scale numerically, we evaluate ω+

k=km , where km is the wavevector
associated with the maximum growth rate of ω+ for a given channel height, evaluated
at decreasing channel widths from h = 100 until the instability is suppressed.

Figure 4.12: Dispersion relation for a 2d chan-
nel of width h = 80, 60, 40, evaluated for the eigen-
value ω+ with the least-stable eigenmodes. Con-
finement drives vortex flows in the suspension, but
has a limited effect on growth rate for h ≫ hc.
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Figure 4.13: (a) Dispersion relation for a 2d channel at intermediate channel widths
h = 20, 15, 10 for eigenvalue ω+

n=1, where solid lines denote growth-rate and dashed lines
denote wave-speed. Confinement plays a strong role on suppressing the active matter
instability for h < hc. (b) Critical hc against the shear alignment parameter λ1: the
default parameter for λ1 = 0.7. Since the no-slip condition drives strong shear gradients
at the substrate, alignment-to-shear plays an important role in the critical value hc.
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As confinement restricts the maximum size of an activity driven vortex, we can apri-
ori estimate this critical length scale by comparison of the channel width to the
wavevector associated with maximum growth in the bulk: hc ≈ 2π/km

1 , where km
1

is the wavenumber of the least stable bulk perturbation. Since the wavevector k
corresponds to gradients in the director, the wavenumber km

1 corresponds to length
scale for which activity – which drives the system out of equilibrium at order O(k)
– is balanced with elasticity, which acts at order O(k2) and restores the system. For
our default parameter set, this yields hc ≈ 13, so intermediate channel widths are
here defined for h between 10 and 20.

The dispersion relation for eigenvalue ω+
n=1 at h = 80, 60 and 40 is plotted in Figure

4.12, which indicates that for length-scales where h ≫ hc, confinement continues to
have a minimum impact on the suspension instability. The critical wavenumber kc

discussed in Section 4.4.1, for which the vortex length exceeds the channel width,
decreases with h as should be expected.

The dispersion relation for eigenvalue ω+
n=1 at h = 20, 15 and 10 is plotted in Figure

4.13a. Confinement imposes a maximum vortex length due to the channel width,
and so as soon as confinement crosses below the critical length h = hc ≈ 13, the
growth rate rapidly decreases as elasticity and viscosity damping, which acts at long
wavelengths, are dominant over activity driving the system out of equilibrium. The
wavevector amplitude km

1 for the maximum growth in the bulk is dependent on λ1

(equation (2.22)), and increases as λ1 increases: correspondingly, in Figure 4.13b
we plot the critical confinement length hc against λ1, where increasing λ1 corre-
sponds to a decrease in the critical length-scale hc as expected. Plotted also are the
2d film, 3d channel and 3d film regimes, which are discussed in Section 4.7 onwards.
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4.7 3D Channel: Maximising the Instability Growth
Rate

The 3d channel is an extension of the 2d channel, such that we are unbounded in
the x-y plane with rigid walls at z = 0 and z = h. The boundary conditions on u

are generalised to the 3d versions of the no-slip and impermeability boundary con-
ditions, as discussed in Section 4.2 (4.11a–4.11d), but swimmer impermeability only
imposes a boundary condition on ϕk and the director is ‘free’ to take any angle of θk

on the top and bottom walls without violating alignment. Twist deformations do not
induce fluid pumping, and allowing such a deformation will not violate the steady
fluid state — it will however attract a penalising energy contribution due to director
elasticity. The natural boundary condition to impose on the director is a zero-twist
regime (4.11d), which corresponds to θ(z = 0) = 0 and θ(z = h) = 0 to avoid
imposing arbitrary torques on the suspension. However, it does raise an interesting
question — particularly when chirality is introduced which causes twist deformations
— what would be a natural boundary condition to reflect the invariance of θ at the
boundaries? This regime remains an area of active interest and will be investigating
in future works. In this work, we will restrict ourselves to the zero-twist regime.

In the unbounded regime, we observed that when seeking perturbations of the form
k⊥, where ⊥ indicates components of k in the x-y plane, the governing equations
de-coupled into two systems with eigenvalues ω+

1 and ω+
2. The eigenmodes connected

with ω+
2 was the least stable system, and exhibited a pure bend deformation. The

de-coupling occurs as we broke symmetry by introducing k⊥ with some non-zero
wavevector angle q, and reflects the suspensions propensity to allow bend modes
to propagate through the fluid instead of the bend-splay modes associated with ω+

1,
which were less stable. By introducing confinement in the z-axis at z = 0 and z = h,
we break rotational symmetry in the system by confinement instead of imposing
a non-zero wavevector angle, and a priori, we can make a prediction on the types
of modes we expect to see based on our analysis in Chapter 3: 1) the least stable
modes will propagate as pure bend modes, pumping fluid into the x-y plane, 2) the
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Figure 4.14: (a, Top Left) Dispersion relation for ω+ in the 3d channel. Numerical
results for ω+ (blue) are displayed alongside the analytical dispersion relation for ω+

1 (yellow).
Note that the analytical result is difficult to distinguish as ω+ and ω+

1 are almost identical.
(b, Top Right) Corresponding eigenvector plot, (c, Bottom) corresponding quiver plot.
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instability growth rates should be comparable to the unbounded regime for large h,
3) there should be no critical kc as described in Section 4.4, as this occurred when
the wavelength exceeded the channel width, but in the 3d regime we have no such
bounds in the x-y plane, 4) confinement effects should occur for smaller values of h
than the 2d regime.

Firstly, we investigate the eigenmodes for large h, which are plotted in Figure 4.14b,
normalised to θk = 1. The Fourier modes θk and vk display a π/2 out-of-phase rela-
tionship typical of a bend mode (as described in Chapter 2), whilst all other modes
are completely suppressed. This indicates that all dynamics are occurring entirely in
the x-y plane, with no deformations of the director propagating into the x-z plane.
Consulting the 3d vectorfield plot in Figure 4.14c over the channel height confirms
exactly this: the director field extending into the unbounded x-axis is pumping fluid
into the unbounded y-axis.

Director alignment forces the magnitude of the bend perturbation to decrease with
increasing proximity to the boundaries. Since elastic torque is proportional to second-
order gradients in the director (1.32), to minimise elasticity-cost, gradients in the

Figure 4.15: Maximum insta-
bility growth rate ω+

n=1 over h for
the 2d channel, film and 3d chan-
nel, film.

123



director are close to constant, except in the middle of the channel where director
gradients necessarily switch sign. The suspension dynamics in the limit of large h
are straightforward, but we would expect to see more niche boundary-layer phenom-
ena in the full, non-linear system.

Our second and third hypotheses are answered in Figure 4.14a for which the dis-
persion relation is plotted over k ∈ [0, 1] alongside ω+

1, the bulk instability growth
rate described in Chapter 2 — since we are investigating a pure bend mode, ω+

1 is
equivalent to ω+

2, the least stable growth mode described in Section 3.3.1. The agree-
ment of the confinement dispersion relation to the unbounded regime is uncanny; the
maximum difference in growth rate between the two regimes is less than a percentile,
neither does the dispersion exhibit the bifurcation as described in the 2d regime.

Finally, we investigate the change in growth rate as confinement decreases. By con-
sequences of 1) through 3), the instability growth rate in the 3d regime isn’t damped
with decreasing channel width to the same extent as the 2d regime — Figure 4.15
plots the maximum growth rate over h (see also Figure 4.13). The critical hc for
the 3d channel is approximate hc ≈ 7.52, compared to hc ≈ 13.5 for the 2d channel
and at its critical value, the modes remain qualitatively similar to the bulk case.

4.8 3D Film & Chirality: Chirality Mixes the
Vortex Lattice

Next, we investigate the 3d film, which shares the same configuration as the 3d
channel, but with substitution of the no-shear condition for no-slip at z = h (Section
4.2, (4.12)). For h ≫ 1, the narrative of the 3d film is similar to the 3d channel,
with the exception that the fluid is free to flow at the free-surface. In Figure 4.16b,
c the eigenmode and vector field plots for the 3d film at critical film height h = hc

are plotted, where we observe the characteristic phase relationship between the di-
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Figure 4.16: (a, Top Left) Dispersion relation for ω+ in the 3d film at h = hc ≈
6.16. Numerical results for ω+ (blue) are displayed alongside ω+

1 (yellow) (b, Top Right)
Corresponding eigenvector plot, (c, Bottom) Corresponding quiver plot.
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rector and the fluid. As z → 0, the eigenmodes decay due to director alignment and
no-slip at the substrate, and we note an interesting peak in the eigenmode plot for vk

around z ≈ 4.5: this peak occurs as imposing no-shear at the free-surface dampens
activity-driven flow, but there are no restrictions imposed on θ′

k close to the bound-
ary, meaning activity-driven flow must decay at the free-surface. We will explore
this idea further in Section 4.9. In Section 4.5, we described director alignment as
the ‘dominant’ boundary condition, where ‘dominant’ indicates that alignment on
the director suppresses perturbation growth stronger than no-slip or no-shear do,
by consequence, the critical film height hc for the 3d film is similar to the channel,
where hc ≈ 6.16.

In Chapter 3, we saw that introducing chirality re-couples the active matter govern-
ing equations, as chiral particles rotate orthogonal to the plane of imposed shear.
We observed in Section 3.3.2 that for wavevector angle q = 0, the resultant modes
could be visualised as two bend modes with a π/2 ± ε phase relationship, where the
magnitude of ε was dependent on the amount of twist introduced into the system.
Now, we will continue this story by investigating a channel with chiral particles,
evaluated at h = hc. In Figure 4.17b, c we once again plot the eigenmodes and
eigenvector plots. The eigenmodes illustrate the characteristic bend mode propa-
gating in the x-y plane, but we can now see a second bend mode associated with
ϕk in the x-z plane which is π out-of-phase with θk. This second bend mode arises
due to rotational coupling to vk, however, the corresponding active flow (yellow, wk)
is strongly suppressed by confinement∗, as the critical film height for modes propa-
gating in the x-z plane is significantly larger than modes propagating in the x-y plane.

∗The eigenmode wk appears to be zero in Figure 4.17b, but further investigation reveals it is
an order of magnitude smaller than ϕk.
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Figure 4.17: (a, Top Left) Dispersion relation for ω+ in the 3d channel with chiral
particles at h = hc ≈ 7.52. Numerical results for ω+ (blue) are displayed alongside analytical
ω+

1 (yellow) (b, Top Right) Corresponding eigenvector plot, (c, Bottom) Corresponding
quiver plot.
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4.9 Torque-free Free-surface Boundary Condition

Up until this point, we have rigorously applied alignment at the boundary for the
director and demonstrated its importance in suppressing the instability. At a rigid
substrate, alignment remains a strong candidate as an appropriate boundary con-
dition due the strong surface-torques a rigid substrate could induce. However, at
a free-surface, this argument becomes weaker — the surface-torques imposed at a
free-surface due to surface-tension are weaker than an inelastic substrate.

In seeking a new boundary condition for the director, one might consider a tangential
stress balance of the form n · σ · t for surface normal n and any tangential vector
t. But, as in Section 4.2, applying this to the total stress (viscous plus active) in
a linear instability analysis with a constant free-surface only reveals that ϕ(h) = 0
without imposing any constraints on θ(h). We can, however, consider a new argu-
ment by considering activity-driven shear and director gradients at the free-surface:
activity-driven flows are proportional to director gradients on the free-surface, given
by ∇⊥ = (∂x, ∂y, 0), such that u⊥ ∝ ∇⊥pp. Taking gradients in the z-direction,
which is perpendicular to the free-surface, yields ∂zu⊥ ∝ ∂z∇⊥pp. However, as we
have resolved tangential stress at the free-surface, ∂zu⊥ must vanish at the free-
surface, and consequently so must ∂z∇⊥pp.

Figure 4.18: Activity-driven fluid flows are proportional to gradients in the director.
When activity-driven flows occur in the x-y plane, z-gradients in the director are propor-
tional to shear, which must be zero at the free-surface.
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This can be visualised by imagining a bend deformation just below the free-surface
whose bend magnitude is greater than that of the bend at the free-surface; the dif-
ference in the activity-driven flow just below the free-surface and at the free-surface
generates shear gradients orthogonal to the free-surface, which conflicts the no-shear
condition, and a schematic illustrating the boundary condition is drawn in Figure
4.18. When considering the boundary conditions on the Fourier modes, this corre-
sponds to substituting θk(h) = 0 with θ′

k(h) = 0, i.e. substituting no-imposed torque
over the bulk with a torque-free swimmer at the surface, and the boundary condition
is hereafter affectionately referred to as the ‘Gecko’ boundary condition.

Application of the Gecko boundary condition to a 3d film at h = 20 yields strong
perturbation growth rates for the swimmer suspension when comparing to alignment
(Figure 4.19a). When h is only an order of magnitude about the characteristic elas-
ticity length scale, the instability growth rate is only 4% smaller than that of the
bulk case, compared to a 15% reduction in growth rate for the 3d channel. The
eigenvector plot in Figure 4.19b makes the story clear: the fundamental bend insta-
bility propagates into the x-y plane, as is characteristic of the confined 3d regime,
and the director, being free to rotate (but not tilt) at the free-surface, propagates
this bend-instability even at the free-surface.

Chirality couples the bend mode in the x-y plane to a second bend mode in the x-z
plane. Each bend mode generates a vortex lattice in their respective plane, and the
superposition of each mode onto one another yields a tilted vortex lattice, where
the tilt angle is a function of the relative strength of each bend mode. At the sub-
strate, no-slip and alignment suppress active flow, but allows for shear and director
gradients, which causes a net upwelling of the fluid; conversely, at the free-surface,
no-shear and alignment allow flow to propagate along the free-surface, but the Gecko
boundary condition ensures that this flow is contained within the x-y plane. The
resultant modes exhibit a tilted vortex lattice in the fluid, where the vortex cells are
tilted upward near the substrate where the tilt tends to zero as z → 0. Two stream-
line plots in Figure 4.19c illustrate this mode: the first streamline plot is orientated
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Figure 4.19: (a, Top Left) The dispersion relation for ω+ at h = 20, (b, Top Right)
and associated eigenmode plots, for the 3d film with the ‘Gecko’ condition applied. Numer-
ical results for ω+ (blue) are displayed alongside ω+

1 (yellow). (c, Bottom) Two streamline
plots for the chiral suspension: both plots correspond to the dispersion and eigenmode
plots above. The first plot isolates flow in the x-z plane, whereas the second is rotated
slightly to illustrate the tilting of the vortex lattice.
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perpendicular to the y-axis and isolates the second bend instability propagating in
the x-z plane, the second streamline plot is the same system, but rotated slightly to
demonstrate the tilted vortex lattice.

4.10 Remarks: 3D Regimes Boast Larger Growth
Rates

In this chapter, we have sought to explore how the instability mechanism described
in Chapter 2 works in regimes of weak, intermediate and strong confinement. We
applied traditional boundary conditions on the fluid for the 2d channel (4.11) and
film (4.12) regimes, and initially applied a strong anchoring on the substrate and
swimmer impermeability on the free-surface, before considering a torque-free bound-
ary condition for a swimmer at the free-surface, which we affectionately refer to as
the Gecko boundary condition.

In the 2d analysis, we observed a collapse of the columns of fluid seen in the un-
bounded regime, to a lattice of vortex nodes propagating length-ways, or width-ways
in the film and channel, where the collapse of fluid columns occurs due to imper-
meability at the substrate and free-surface. A critical wavenumber kc determined
if the vortex lattice fit length-ways or width-ways: when k > kc, the vortex cells
could fit length-ways into confinement, when k < kc, the vortex cells exceeded the
confinement length and were forced down the unbounded channel length. A striking
takeaway from the 2d analysis was the dependence of the critical confinement length
hc, for which confinement suppresses the instability, to the wavevector km

1 associated
with the maximum growth rate of the instability in the bulk. The wavevector km

1 is
strongly dependent on the viscosity and elasticity of the suspension; in particular,
the elasticity of the suspension can be tuned by modifying the number density of the
swimmers, and in regimes of intermediate confinement, experimental control of the
instability growth rate could be realised by changing the density of swimmers.
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In a natural continuation to the results of Chapter 3, we revealed that the 3d regime
exhibits a smaller critical confinement length hc. Spatial symmetry is broken by in-
troducing confinement into the z-axis, and we showed that this causes bend modes to
propagate into the unbounded x-y plane. Alignment and no-slip dampen the modes
close to substrate in the 3d channel, but as the flow is parallel to the boundaries,
we did not see the emergence of the vortex lattice in either the film or channel. This
result has important consequences for the growth rates we might expect to see in
experiments: the growth rate was close to the unbounded regime when confinement
was only a little larger that the critical confinement length hc, which was around an
order of magnitude larger than the length scale set by elasticity balancing activity,
and we would expect to see growth rate comparable to the unbounded analysis for
large, thick films..

Finally, in Section 4.8 we continued the narrative on chirality by considering a chiral
suspension in a 3d channel and film. Similar to the bulk analysis, we observed a
second bend mode appearing due to the coupling of active flow in the x-y plane to
director rotations in the x-z plane. This second bend mode was bounded by the film
height and causes a vortex lattice to emerge, similar to the 2d regime. Imperme-
ability at the free-surface only places a restriction on the azimuthal angle ϕ, so in
Section 4.9 we explored the Gecko boundary condition, a torque-free argument on
θ′ which allows bend modes to propagate at the free-surface. The resultant modes
illustrated a tilted vortex lattice, where the no-slip and alignment condition tilt the
vortex cells close to the substrate when chirality is present. Allowing the director
the freedom to rotate reduced the critical confinement length hc ≈ 3.73 — an order
of magnitude less than the 2d regime.
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5 | Non-constant Steady States in
Confinement

Chapter 4 investigated the effects of confinement in the 2d and 3d regimes for a
channel and for a film, where we determined that director alignment can strongly
suppress the bend instability mechanism growth rates for sufficiently strong confine-
ment. We observed that 3d regimes are less stable than their 2d counter parts, and
in the final section, we observed that careful application of boundary conditions can
yield regimes with growth rates comparable to the bulk, and that boundary phenom-
ena quantitatively and qualitatively affect observed modes.

In this Chapter, we wish to explore alternative boundary conditions on the director
to model some of the niche behaviours that microswimmers exhibit at the bound-
aries. Boundaries can be a source of strong surface energy, exerting a preferential
alignment orientation on the suspension48 and swimmers can ‘slip’ along a bound-
ary, where orientation assumes a different direction to their trajectory49 (Figure 1.4).
Both boundary conditions can be modelled by changing the boundary condition on
ϕ at the substrate. In Section 5.1 we explore the effects of rotating the constant
steady state in a channel, such that the director is aligned into and away from the
bounding walls at some angle βj. In section Section 5.3, we consider the scenario
where the suspension is aligned in the bulk along the x̂, but allowed to ‘slip’ at, i.e.
allowed to rotate into, the substrate, and in the final section, we consider the effects
of inclining a film of active matter in Section 5.4.3.
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5.1 Rotated Constant State in a 2D Channel

Alignment of the director is applied at a solid substrate with the understanding that
surface torques are strong enough to impose a preferential direction on the director
— a condition referred to as strong anchoring. At a free-surface, alignment is applied
by the logic that motile swimmers cannot ‘swim through’ a free-surface. Certainly,
in liquid crystal literature, imposed alignment at a boundary is a reasonable bound-
ary condition. However, the dynamics of suspensions of swimming microorganisms
whilst analogous to their liquid crystal counter parts, are not identical. Pusher swim-
mers can ‘slip’ along a boundary with their head pointing toward the boundary and
flagellum bundles pointing away from the substrate.

Inspired by this, we investigate the constant steady state in the 2d channel where
the director is rotated by an angle βj from the bottom substrate, such that βj = 0
corresponds to swimmers pointing down the infinite channel (Figure 5.1). We note
that for motile particles, conclusions drawn from this exercise should be carefully
interpreted, as without concentration or scalar order variations, such a rotation only
makes sense for non-motile, or nematic particles, as motile swimmers would swim
away from the boundary at the bottom, and would exert motility-induced stresses on
the boundary at the top which would have to be considered. Regardless, the exercise
is a useful stepping stone to understanding non-constant steady states with slip, as
explored in Section 5.2 onwards.

Figure 5.1: An alternative configura-
tion for a nematic director for which
ν · p = βj , where ν is the unit normal
to the boundaries.
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5.1.1 Shear Alignment Significantly Enhances Growth

In Chapter 4, Section 4.4 we saw that confinement suppresses the bend instability
when particles are aligned along the channel due to alignment and no-slip at the
boundaries. Ahead of any quantitative analysis, we can presuppose that the rotation
of the constant steady state will enhance the instability growth rate for the bend
instability, as bend-driven flow will be pumped down the unbounded length of the
channel, instead of being pumped toward confining walls.

A numerical analysis of the rotated constant state reveals some surprising conclu-
sions. Increasing βj from zero to π/2, we hypothesised that we would obtain a
maximum growth rate for βj = π/2 when alignment no longer hindered the prop-

Figure 5.2: (a) Dispersion relation for ω+ in the constant steady state, rotated such that
ν · p = βm

j with a reference solution for βj = 0, where solid lines indicate growth rate and
dashed lines indicate wave-speed. (b) The maximum growth rate of ωi over βj ∈ [0, π/2].
The angle βm

j for which ωi obtains its maximum is slightly above π/4 (light green, dotted).
The angle βc

j for which we switch from oscillatory modes to channel modes occurs at the
light green dashed line. In both plots, h = hc|βj=0, the critical confinement length in the
limit βj = 0.
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agation of the bend modes. Instead, the maximum growth rate was achieved for
βj ≈ π/4 (Figure 5.2b, light green dotted line). Comparing the dispersion relation
for the maximum growth rate case βj = βm

j and a reference solution βj = 0, Figure
5.2a reveals a shift in the wavevector associated with the maximum growth rate of
the instability from km ≈ 2π

h
to km ≈ sin βj

2π
h

. The wavenumber shift reflects the
elongation of the vortex cells as the vortex lattice is skewed by βj, and the location
of km against βj for λ1 = 0.7 is plotted in Figure 5.3a. The narrative appears to
continue as the maximum wavenumber also obeys the limit km → 0 as βj → π/2;
however, in Figure 5.2b, we plot the maximum growth rate of the instability against
the βj to discover the maximum growth rate occurs at βj ≈ π/4, not at βj = π/2,
which initially seems to violate our original hypothesis.

The proximity of βm
j to π/4 is reminiscent of the analysis performed in Chapter 2,

where the bulk suspension was perturbed with wavevector k = (cos q, 0, sin q). In
Section 2.3.2, we uncovered that an extensile suspension is unstable to a wavevector

Figure 5.3: (a) The wavevector associated to the maximum, max(ωi) plotted against
the rotation angle of the director. Data corresponds to Figure 5.5 (b) The maximum
growth rate of the director over βj ∈ [0, π/2] such that ωi(km)|βj=βm

j
plotted against λ1.

For each value of λ1, the channel width is set at the critical width h = hc corresponding
to Figure 4.13
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angle q < π/4, so long as elasticity is small enough. At q = π/4, splay becomes the
dominant mode of director deformation in the suspension, and the system undergoes
a bifurcation into a stable regime as q increases further (Figure 2.7). In the 2d
channel, the perturbation is propagated along x̂ with wavenumber k, such that a
perturbed mode is written, f1(x, z) = f(z) exp(ik · x − iωt). However, when we
rotate the ordered axis of the director by βj, but keep the system of coordinates and
Fourier modes the same, we effectively change the perturbation angle q by rotating
the director with respect to the disturbance. When βj = π/2, perturbing along
the channel length is equivalent to imposing gradients perpendicular to the director,
which corresponds to a splay deformation, not a pure bend deformation. Conse-
quently, as βj increases, splay increases and the system stabilises beyond βj = π/4.

To investigate the relationship of the maximum growth rate to the rotation angle
βm

j , we explored the effect of the alignment-to-shear parameter λ1 on the maximum
growth rate for ωi over βj ∈ [0, π/2]. To obtain Figure 5.3b, first we set the chan-
nel width to hc, where hc corresponds to the critical width where the instability is
suppressed. Since this value is proportional to λ1 (Figure 4.13), each data point cor-
responds to a different critical channel width. Then, the maximum of ωi(km)|βj=βm

j

is plotted against λ1.

Unexpectedly, as λ1 → 0, the maximum growth rate tends to zero. This is quite a
contrast to the bulk analysis, where the maximum growth rate of the instability is
proportional to, but not critically dependent on λ1 (Figure 5.4). We suggest the
following line of thought: in the 2d regime, shear rotational effects consist of rotation
due to vorticity and shear alignment, governed by λ1. As the vortex lattice skews due
to the rotation of the director, so does the orientation of active shear: when βj = 0,
flow is pumped perpendicular to the boundaries, and shear is at a maximum along
the channel length; increasing βj re-orientates active shear. As spatial symmetry is
broken by the presence of boundaries, when the vortex lattice is skewed the relative
angle between the orientation and shear changes also. This only effects the shear
alignment term, as rotation due to vorticity is independent of the particle orienta-
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Figure 5.4: The dispersion relation for ω+

in the 2d bulk regime for varying values of
λ1, where solid lines indicate growth rate and
dashed lines indicate wave-speed. The maxi-
mum growth rate is proportional, but not criti-
cally dependent on the value of λ1.

tion, whereas the magnitude of shear alignment effects are dependent on whether
the particle is not aligned to the direction of shear.

The skewing of the vortex lattice is clearly seen in Figure 5.5 for which the eigen-
modes, eigenvector field and streamlines are plotted for βj = 0, π/4, βm

j , π/2. In
the reference solution βj = 0, the vortex lattice (iii.) for maximum wavevector km

are elongated vortex modes stretching across the channel height with a width deter-
mined by the perturbation wavelength km. As the director is rotated anti-clockwise
by βk, the vortex modes are correspondingly skewed to left. The eigenvector plots
over βj ∈ (0, π/2) appear to produce a complex phase relationship between pk and
uk, which in previous analysis has been indicative of a travelling wave instability.
However, investigating the phase between the director and velocity fields reveals the
same out-of-phase relationship they shared in the bulk; the skewed vortex lattice
remains a stationary phenomenon, regardless of the orientation of bounding walls.

Returning to the graph for the maximum growth rate over βj (Figure 5.2b), we can
observe a subtle bifurcation around βj = 11π/24 (light-green dashed line) where the
maximum growth rate wavevector km tends to zero and the optimum configuration
is a single vortex stretching along the infinite length of the channel (Figure 5.5d
iii). In this configuration, the no-slip condition replaces alignment as the dominant
boundary condition, suppressing the instability mechanism near the boundaries.
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Figure 5.5: i. Eigenmodes plots, ii. eigenmode vector fields, iii. streamlines (full
solutions, steady & perturbed state) for the rotated constant state, corresponding to the
dispersion relation plotted in Figure 5.3 and evaluated at k = km and h = hc (for βj = 0
case), where (a) βj = 0, (b) βj = π/4, (c) βj = βm

j , (d), βj = π/2.
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5.2 Investigating Non-constant Steady States

Externally imposed flows are unavoidable in biological and mechanical systems: in
the blood stream, systolic and diastolic pressure generates Poiseuille flow through
veins; Marangoni surface stresses in active droplets generate internal microflows; and
gravity drives parabolic flows in inclined films. Gradients in imposed flow are typ-
ically strongest near the boundaries due to the no-slip condition applied at a rigid
substrate: this can cause a swimmers to rotate into (or away from) the boundary,
depending on orientation, and can drive niche boundary phenomena, such as swim-
mer slip,49 trapping,47 or tumbling.95

To investigate the stability of these states requires investigation into possible non-
constant steady states of the director and corresponding active flow. Up until this
point, we have explored the stability of a constant steady state where the director
is initially everywhere aligned. In the unbounded regime, this is the only possible
configuration of the director as any gradient in the director results in a net flow,
creating a local deformation in the director, and any gradient in imposed flow will
induce rotation of the director. Without externally imposed constraints, such de-
formations will necessarily lead to non-steady regimes, typically described as Jeffrey
orbits.

When in a confined geometry, we introduce additional constraints on the director and
fluid by the way of boundary conditions at the walls of the channel, or free-surface of
the film. These constraints impose additional torques on the director and allow for a
static torque balance across the channel between shear-driven torque and restoring
elasticity.

In Section 5.3, we will investigate an ‘imposed slip’ regime by imposing a slip angle
on the director of ±βj at the top and bottom boundaries. A priori, we know that
the resultant director gradient will induce active flow, and for an extensile suspen-
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sion we can expect it to flow into the negative x-axis. We would expect the resultant
deformation to primarily be composed of splay, with small corrections to the director
due to the active flow Figure 5.6.

Figure 5.6: Imposing a slip angle at the
top and bottom of a 2d film creates a splay
deformation and a Poiseuille-like flow over a
channel of width h, with rigid walls at z = 0,
z = h, and unbounded in the x-axis.

A film of fluid on an inclined plane will experience a parabolic flow due to gravity,
dictated by the boundary conditions of no-slip at the rigid boundary and no-shear
at the free-surface. The corresponding gravitationally-driven shear gradients in the
fluid causes rotation in the director field, which in turn generate activity-driven shear.
Unless the film is very thin, gravitationally-driven flow induced by the plane inclina-
tion will be of an order-of-magnitude stronger than activity-driven flow, and active
shear will be a next-to-leading order effect on the steady, parabolic fluid velocity
profile, illustrated in Figure 5.7. In Section 5.4, we investigate this regime by in-
troducing gravitational effects on the fluid, where the plane is inclined by an angle β.

Figure 5.7: An inclined 2d film with a rigid wall at
z = 0 and free-surface at z = h, and unbounded in
the x-axis, has a parabolic flow-profile due to gravi-
tational effects whose flow speeds act at an order-of-
magnitude above active shear gradients. Inclination
is measured by β. The director profile is determined
by gravitational shear.
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5.2.1 Derivation of the Steady State

The derivation of the steady state for the 2d channel bend deformation and 2d
inclined film follow the same derivation, with the exception of the boundary condition
applied at z = h and the exclusion of the gravitational term. The simplifications
to the dimensionless governing equations (2.4), follow from the previous chapters,
where fluid inertia and swimmer motility is neglected, but with the inclusion of
the gravitational term for the inclined film regime as γg, where γ = ρgL

|α| controls
the relative strength between gravitational effects and activity. Repeated here, the
simplified governing equations read,

ξ∂tu = −∇P + ∇2u + γg + sα∇ · pp, (5.1a)

∂tp = λ1(δ − pp) · E · p − Ω · p + η−1
(

∇2p −
(
p · ∇2p

)
p
)
, (5.1b)

∇ · u = 0. (5.1c)

We seek a steady-state solution to (5.1) of the form,

P = P0(z), u = u0(z)x̂, ϕ = ϕ0(z),

where ϕ is an azimuthal angle measured from the x-axis such that the director can
be written as

p =
(

cosϕ0, 0, sinϕ0
)

and the constraint |p| = 1 is satisfied automatically. The active stress tensor pp

becomes,
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pp =


cos2 ϕ0 0 sinϕ0 cosϕ0

0 0 0
sinϕ0 cosϕ0 0 sin2 ϕ0

 . (5.2)

In the film case, we can resolving (5.1a) in the z-axis gives an integrable equation in
P0(z),

∂zP0 = −γ cos β + sα∂z[sin2 ϕ0]. (5.3)

Integrating with boundary conditions at the (constant) free surface of P0(h) = Patm

and ϕ0(h) = 0, ±π gives us an expression for P0,

P0 = Patm + sα sin2 ϕ0 + γ(h− z) cos β, (5.4)

where Patm is a reference pressure. For the channel regime, pressure is simply defined
up to a constant value. Resolving (5.1a) in the x-axis gives a z-integrable expression,

∂2
zu0 + sα∂z[sinϕ0 cosϕ0] + γ sin β = 0,

Integrating with respect to z with the boundary conditions of alignment (ϕ(h0) =
0, ±π), and no-shear for the film regime, gives us an expression for the gradient of
u0,

Film ∂zu0 = γ sin β(h− z) − 1
2s

α sin 2ϕ0, (5.5a)

Channel ∂zu0 = c1 − 1
2s

α sin 2ϕ0, (5.5b)
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where c1 is a constant of integration, determined by u0(h) = 0. For the steady
solution, (5.1b) the rate-of-strain and vorticity tensors take the form,

λ1
(
δ − pp

)
· E · p − Ω · p + η−1

(
∇2p −

(
p · ∇2p

)
p
)

= 0. (5.6)

The rate-of-strain tensor E and vorticity tensor Ω are reduced to,

E =


0 0 Ezx

0 0 0
Ezx 0 0

 , Ω =


0 0 −Ezx

0 0 0
Ezx 0 0

 ,

where Ezx = 1
2∂zu0. Then with pp given by equation (5.2), the flow-alignment terms

read in the z-axis,

[
λ1
(
δ − pp

)
· E · p − Ω · p

]
z

= λ1Ezx

(
cos3 ϕ0 − sin2 ϕ0 cosϕ0

)
− Ezx cosϕ0,

= Ezx cosϕ0
(
λ1 cos 2ϕ0 − 1

)
. (5.7)

The elasticity terms read,

[
∇2p −

(
p · ∇2p

)
p
]

z
= ∂2

z sinϕ0 −
(

cosϕ0∂
2
z cosϕ0 + sinϕ0∂

2
z sinϕ0

)
sinϕ0,

= ϕ′′
0 cosϕ0, (5.8)

Collecting these contributions gives an expression for the spatial evolution of the
director,

cosϕ0

(
η−1ϕ′′

0 + 1
2∂zu0

(
λ1 cos 2ϕ0 − 1

))
= 0. (5.9)
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Noting that the trivial solution ϕ0(z) = π/2 violates previously imposed boundary
conditions, the equation reduces to the second-order non-linear differential equation
in z as

ϕ′′
0 = η

2∂zu0
(
1 − λ1 cos 2ϕ0

)
. (5.10)

Equation (5.10) describes a balance between the elastic torque η−1ϕ′′
0 and shear

alignment effects. The balance is sensitive to boundary conditions, and external shear
effects contained in the ∂zu0 term are also dependent on the boundary conditions
applied. Applying the film and channel boundary conditions gives,

Film ϕ′′
0 = η

2

(
γ sin β(h− z) − sα

2 sin 2ϕ0

)(
1 − λ1 cos 2ϕ0

)
, (5.11a)

Channel ϕ′′
0 = η

2

(
c1 − sα

2 sin 2ϕ0

)(
1 − λ1 cos 2ϕ0

)
. (5.11b)

5.2.2 Derivation of the Perturbed State

Having solved the steady state, we consider perturbations in the x-z plane, such that

P = P0(z) + εP1(t, x, z), u = u0(z)x̂ + εu1(t, x, z), ϕ = ϕ0(z) + εϕ1(t, x, z),

where u1 = (u1, 0, w1) and ε ≪ 1. To O(ε2), the director p becomes

p ≈ (cosϕ0 − εϕ1 sinϕ0, 0, sinϕ0 + εϕ1 cosϕ0), (5.12)

and the tensor pp reads,
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pp =


cos2 ϕ0 − εϕ1 sin 2ϕ0 0 cosϕ0 sinϕ0 + εϕ1 cos 2ϕ0

0 0 0
cosϕ0 sinϕ0 + εϕ1 cos 2ϕ0 0 sin2 ϕ0 + εϕ1 sin 2ϕ0

 . (5.13)

Taking the divergence of the active stress gives,

∇ · pp =


∂x[cos2 ϕ0 − εϕ1 sin 2ϕ0] + ∂z[cosϕ0 sinϕ0 + εϕ1 cos 2ϕ0]

0
∂x[cosϕ0 sinϕ0 + εϕ1 cos 2ϕ0] + ∂z[sin2 ϕ0 + εϕ1 sin 2ϕ0]

 .

Resolving equation (5.1a) into its x̂ and ẑ components and equating first order ε
coefficients yields,

−∂xP1 + (∂2
x + ∂2

z )u1 + sα
(
∂z[ϕ1 cos 2ϕ0] − ∂x[ϕ1 sin 2ϕ0]

)
= ξ∂tu1, (5.14)

−∂zP1 + (∂2
x + ∂2

z )w1 + sα
(
∂x[ϕ1 cos 2ϕ0] + ∂z[ϕ1 sin 2ϕ0]

)
= ξ∂tw1. (5.15)

Eliminating pressure by a cross-differentiation gives a third-order expression for the
fluid velocity,

∂3
zu1+2∂x∂

2
zu1−∂3

xw1+sα
(

(∂2
z −∂2

x)
[
ϕ1 cos 2ϕ0

]
−2∂2

xz

[
ϕ1 sin 2ϕ0

])
= ξ∂t(∂zu1−∂xw1).

Expanding derivatives results in the expression,
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ξ∂t(∂xw1 − ∂zu1) + ∂3
zu1 + 2∂x∂

2
zu1 − ∂3

xw1 + sαα
(

cos 2ϕ0
(
∂2

z − ∂2
x)ϕ1−

2 sin 2ϕ0∂
2
xzϕ1 − 4ϕ′

0

(
sin 2ϕ0∂zϕ1 + cos 2ϕ0∂xϕ1

)
+ ϕ1

(
cos 2ϕ0

)′′
)

= 0. (5.16)

We now turn our attention to the equation of motion for the director p,

∂tp = λ1
(
δ − pp

)
· E · p − Ω · p + η−1

(
∇2p −

(
p · ∇2p

)
p
)

(5.17)

observing that the perturbed director is time dependent. The rate-of-strain and
vorticity matrices are reduced to the form,

E =


Exx 0 Ezx

0 0 0
Ezx 0 −Exx

 , Ω =


0 0 −Ezx

0 0 0
Ezx 0 0

 .

where Exx = ε∂xu1 and Ezx = 1
2∂z

(
u0 + εu1

)
. Following our previous approach and

turning our attention to the flow-alignment terms yields,

E · p =


Exx cosϕ0 + Ezx(sinϕ0 + εϕ1 cosϕ0)

0
−Exx sinϕ0 + Ezx(cosϕ0 − εϕ1 sinϕ0)

 ,

Ω · p =


−Ezx

(
sinϕ0 + εϕ1 cosϕ0

)
0

Ezx

(
cosϕ0 − εϕ1 sinϕ0

)
 .
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Substituting first order velocity gradients from equation (5.5), the flow-alignment for
first order ε in the z-axis only become,

[
λ1
(
δ − pp

)
· E · p − ω · p

]
z

= −2λ1Exx sinϕ0 cos2 ϕ0 − Ezx cosϕ0
(
1 − λ1 cos 2ϕ0

)
+ εEzxϕ1 sinϕ0

(
1 − λ1

(
3 cos 2ϕ0 + 2

))
.

Substituting Exx, Ezx and disregarding zero’th order ε terms (observing that Exx,
Ezx contain ε terms) gives the following expression for flow-alignment terms,

1
2∂zu0ϕ1 sinϕ0

(
1 − λ1

(
3 cos 2ϕ0 + 2

))
− 1

2∂zu1 cosϕ0
(
1 − λ1 cos 2ϕ0

)
− 4λ1∂xu1 sinϕ0 cos2 ϕ0 + 1

2∂xw1(1 + λ1 cos(2ϕ0)). (5.18)

Turning our attention to the elastic torque terms in equation (5.1b), the ∇2p term
can be expanded as,

∇2p =


∂2

z cosϕ0 − ε∇2[ϕ1 sinϕ0]
0

∂2
z sinϕ0 + ε∇2[ϕ1 cosϕ0]

 . (5.19)

Similarly, the p · ∇2p term becomes,

p · ∇2p = cosϕ0∂
2
z cosϕ0 + sinϕ0∂

2
z sinϕ0 + εϕ1

(
cosϕ0∂

2
z sinϕ0 − sinϕ0∂

2
z cosϕ0

)
− ε

(
cosϕ0∇2[ϕ1 sinϕ0] − sinϕ0∇2[ϕ1 cosϕ0]

)
,

= B1(ϕ0) + εϕ1B2(ϕ0) − εB4(ϕ0).
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Here, B1(ϕ0), B2(ϕ0) and B4(ϕ0) are given by identities (B.1 – B.2, B.4). Applying
these identities gives us the simplified expression,

p · ∇2p = −ϕ′2
0 − 2εϕ′

0∂zϕ1. (5.20)

Writing down these contributions to the torque terms, we have in the z-axis,

[∇2p −
(
p · ∇2p

)
p]z = ∂2

z sinϕ0 + ε∇2[ϕ1 cosϕ0] + (ϕ′2
0 + 2εϕ′

0∂zϕ1)(sinϕ0 + εϕ1 cosϕ0),

= ϕ′′
0 + ε

(
ϕ1∇2 cosϕ0 + 2(∇ϕ1) · (∇ cosϕ0) + cosϕ0∇2ϕ1

+ ϕ′2
0 ϕ1 cosϕ0 + 2ϕ′

0 sinϕ0∂zϕ1

)
,

where we have disregarded terms of O(ε2). Expanding the derivatives and simplifying
gives,

[∇2p −
(
p · ∇2p

)
p]z = ϕ′′

0 cosϕ0 + ε
(

cosϕ0∇2ϕ1 − ϕ1ϕ
′′
0 sinϕ0

)
(5.21)

Finally, putting together the first-order ε contributions of equations (5.11a), (5.18)
and (5.21), we obtain an expression for the evolution of the perturbed director,

secϕ0∂tϕ1 = −ϕ1∂zu0G1(ϕ0) − ∂zu1G2(ϕ0)
− 2∂xu1G3(ϕ0) + ∂xw1G4(ϕ0) + η−1∇2ϕ1. (5.22)

Here G1(ϕ0), G2(ϕ0) and G3(ϕ0) are functions related to the geometry of the swim-
ming particles and steady-state solution,
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G1(ϕ0) = λ1 tanϕ0(1 + cos 2ϕ0)

G2(ϕ0) = 1
2(1 − λ1 cos 2ϕ0),

G3(ϕ0) = λ1 sin 2ϕ0,

G4(ϕ0) = 1
2(1 + λ1 cos(2ϕ0))

Then, equations (5.11a, b) along with (5.22) describes the evolution of a perturba-
tion to the generalised steady suspension. The equations are applicable to both the
2d channel and the 2d film by appropriate application of boundary conditions and
form a numerically solvable eigenvalue problem when seeking planar-wave solutions
of the form f1 = fk(z) exp(ikx− iωt).

5.3 Channel with Imposed Swimmer Slip

Numerically solving the steady channel equation, (5.11b), with the channel boundary
conditions of ϕ0(h) = βj, ϕ0(0) = βj, u0(0) = 0, u0(h) = 0 yields a steady solution
with a non-constant director field and non-zero velocity field, which is symmetrical
over the channel width. In Figure 5.8, the steady solution is plotted for βj = π/4
and h = hc, where hc is the critical channel height for suppressing the bend instability
in the 2d channel regime (Section 4.4). Imposing a slip angle at the substrate is only
possible in regimes of strong anchoring, where the substrate can impose torque on
the suspension. Figure 5.8a reveals torque, proportional to second-order gradients
in the director, is strongest in a small boundary layer close both the top and bottom
substrate. The width of this boundary layer is determined by the director elasticity
η−1, which penalises second-order gradients in the director field and confines the re-
gions of maximum elastic torque close to the substrate. Consequently in the centre
of the channel, the deviation of the director from the x-axis is small.
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Figure 5.8b reveals that imposing swimmer slip at the boundary leads to the emer-
gence of a splay deformation across the channel height and yields a net-flow into the
negative x-axis. The resultant active flow arises due to the non-constant director
field and is proportional to the gradients in the director. Splitting up the divergence
of the active stress tensor into forcing due to bend and splay (2.2) leads to,

(∇ × p) × p) = (ϕ
′
0

2 sin 2ϕ0, 0, −ϕ′
0 cos2 ϕ0), (5.23a)

(∇ · p)p = (ϕ
′
0

2 sin 2ϕ0, 0, ϕ′
0 cos2 ϕ0), (5.23b)

where (5.23a) details the flow due to bend and (5.23b) the flow due to splay. Note
that bend and splay both contribute a hydrodynamic forcing into the z-axis, but
these flows are equal and opposite and cancel one another out. Conversely, the flows
in the x-axis are cumulative, causing a net back flow for an extensile suspension.
Increasing the imposed slip angle increases the amplitude of flow at the centre of the
channel, but with very little qualitative change to the observed modes for βj < π/2.
Interestingly, the steady state equations are capable of finding steady states for im-

Figure 5.8: (a) Plot for the steady state of imposed swimmer slip over a channel where
βj = π/4. (b) Director field and velocity field over the 2d channel for the same regime.
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posed slip for βj ∈ [0, 2π]: in Figure 5.9, the steady state for βj = π is plotted,
whilst local ordering in the center of the channel remains along the positive x-axis.
However, such a regime could only be feasible with strong torques imposed across
the whole channel, which could be achievable by using magnetic fields to force align-
ment, but lie out of the scope of this work.

5.3.1 Slip Enhances Growth Rate

Numerically solving the perturbed director (5.22) and perturbed fluid (5.16), along
with the solved steady states for u0 and p0 as described above, reveals a transi-
tion from the vortex lattice to a net flow down the channel length. In Figure
5.10, we choose to plot the perturbed channel eigenmodes with their corresponding
steady state and streamlines to illustrate the resultant dynamics for βj = 0, βj > 0,
βj = π/4, βj = π/2; all states are evaluated for h = hc|βj=0. The reference state
Figure 5.10a illustrates the vortex lattice (iii.) across the film height. As βj is
increased from zero (b–d), the velocity component of the steady solution increases,
causing a merging of the vortex lattice and a net-flow into the negative x-axis. The
vortex lattice disappears when the net steady flow is larger than the maximum flow
amplitude of the perturbed vortex cells. Note that the streamlines are plotted for

Figure 5.9: (a) Plot for the steady state of an imposed slip over a channel where βj = π.
(b) Director field and velocity field over the 2d channel for the same regime.
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Figure 5.10: i. Eigenmodes plots, ii. steady state vectorfields, iii. streamlines (full
solutions, steady & perturbed state) for the imposed slip constant state, evaluated at
k = km and h = hc (for βj = 0 case), where (a) βj = 0, (b) βj > 0, (c) βj = π/4, (d),
βj = π/2.
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the full solution u = u0 + εu1, where ε is set to 0.2 and the value of βj for which
the vortex lattice disappears is arbitrarily dependent on the choice of ε.

The maximum growth rate of the director is plotted in Figure 5.11a, where the
data corresponds to βj ∈ [0, π/2] and the modes plotted in Figure 5.10. Increasing
βj corresponds to an increased growth rate, obtaining a maximum at βj = π/2. In-
vestigating the dispersion relation for βj = π/4 and βj = π/2 reveals that imposing
slip causes a transition for all wavelengths from stationary planar-waves to travel-
ling planar-waves (Figure 5.11b). Since the director is non-constant, perturbing the
director results in morphed vortex cells, as seen in the streamlines for the perturbed
modes only, plotted in Figure 5.12. The perturbed director at the centre of the
channel pumps fluid perpendicular to the channel walls, as described in Chapter 4,
but near the substrate the director is tilted and a planar-wave perturbation down
the channel length induces both bend and splay deformations near the substrate.
The emergence of travelling waves arises from the splay contribution to director de-
formation, which pump fluid parallel to the local to director.

5.4 Inclined Film with Gravity-driven Flow

The inclined film regime is an extension to the 2d film regime discussed in Section
4.5 by the inclusion of a gravitational body force acting on the fluid only — no
gravitational torque effects are modelled on the swimmer suspension; the suspension
orientation is effected only by virtue of the resultant flow from tilting the film. Un-
like Section 5.1 and Section 5.3, we do not impose an angle βj on the director at
the substrate, but use director alignment and no-slip on the substrate, and director
alignment and no-shear on the free-surface, as described by Section 4.2, (4.11) and
(4.12). Inclination is controlled by the parameter β, such that sin β = 0 indicates a
level film (Figure 5.7), which would correspond to the analysis of Chapter 4. We
continue to neglect surface tension at the free-surface.
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5.4.1 Tumbling Regime for Axisymmetric Swimmers

Axisymmetric swimmers can undergo ‘tumbling’ orbits in simple shear flow which
are characterised by long periods with the swimmer aligned parallel to the flow di-
rection, with periodic changes in orientation where the particle ‘flips’ by π such that
it is pointing in the opposite direction. The onset of tumbling is sensitive to the
vorticity component of shear, which acts on the swimmer irrespective of its orien-
tation. The alignment to-shear term governed by λ1 is comprised of the extensile
component of simple shear, but its contribution to rotational torque is dependent
on relative direction between the swimmer orientation and shear, and will vanish for
ϕ0 = π/4. Without stabilising effects such as motility, inertia or suspension elastic-
ity, the orientation of a lone swimmer is sensitive to shear flows. Consequently, the
existence of a steady state for the director in the inclined regime is not guaranteed,
but dependent on the elasticity term governed by η−1∇2p being strong enough to
balance rotational effects due to gravity-induced shear and impose orientational or-
der over the film height.

Figure 5.11: (a) The maximum growth rate of ωi for the 2d channel with imposed slip
βj , evaluated at h = hc|βj=0, where hc is the critical channel width for which confinement
suppresses the bulk instability with βj = 0. (b) Dispersion relation for ω+ for βj = 0, π/4,
π/2, where solid lines indicate growth rate and dashed lines indicate wavespeed.
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Figure 5.12: Streamlines for the perturbed modes only, where βj = 0, π/4, π/2, corre-
sponding to the full solutions in Figure 5.10.

When elasticity is strong and inclination is sufficiently small, we solve the steady
equations (5.11) for the profile of ϕ0(z). In Figure 5.13, the steady state and cor-
responding vectorfield is plotted for β = π/64 at the critical film height h = hc for
which the instability is suppressed by confinement in the limit of β = 0. By virtue
of the no-slip and no-shear conditions, the gravitational-flow profile is parabolic over
the film height and imposes shear gradients (leading to shear-induced torque) on the
suspension, which rotates the director away from the ordered direction in the x-axis.
Shear is at a maximum at the substrate z = 0 and decreases to zero at z = h; the
corresponding rotation due to shear causes a downward tilting of the director close
to the substrate. We’ve seen that a non-constant steady director profile — in Section
5.3 imposed by a ‘slip’ angle at the top and bottom of the substrate — can result
in a net flow along the x-axis and that more generally, bend and splay contributions
to flow in the z-axis cancel one another out. In the inclined regime, alignment to
gravitational-shear causes splay over the film height. Consequently activity-driven
flow, governed by sαϕ′

0 cos(2ϕ0), contributes to the steady shear flow profile and can
enhance or suppress the gravitational flow depending on the sign of activity: ex-
tensile (contractile) suspensions pump fluid toward the open (closed) end of a splay
deformation, an extensile (contractile) suspension will suppress (enhance) the steady
flow compared to a passive suspension (Figure 5.14, h = 5, β = π/128).
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Figure 5.13: (a) Plot of the steady state for an inclined film. The film is inclined at an
angle β = π/64 and the film height is h = hc for which hc is the critical height for which
confinement suppresses the active matter instability. (b) Director and velocity vector fields
over the 2d film for the same regime.

Figure 5.14: The steady flow and director profile for extensile (e), contractile (c), and
passive (p) particle suspensions when the particles are pointed (a) downhill, and (b) uphill.
Data is for h = 5, β = π/128. Extensile (contractile) active flow suppresses (enhances)
background flow due to a splay deformation in the director inducing active shear.
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5.4.2 Tumbled Regime for Active Suspensions

When elasticity is weak, or the film height is large compared to elasticity length
scales, gravitational flows can be strong enough to cause tumbling, which by its na-
ture, implies a non-steady director field. For small inclination angles, we’ve seen
that director elasticity can be sufficiently strong to enforce a balance between shear-
induced torque and elasticity-induced torque, but what happens as inclination in-
creases? By using the numerical methodology discussed in Section 4.3, we can seek
increasingly unstable solutions to the steady inclined state by slowly incrementing
the inclination angle β. This could be experimentally imagined by fixing the orienta-
tion of a suspension of particles down an inclined plane using an external-alignment
field, such as an imposed magnetic fix, gradually increasing the inclination of par-
ticles, and observing how the suspension behaves as the external-alignment field is
switched off.

Figure 5.15: (a) Plot of the steady state for an inclined film. The film is inclined at
an angle β < βc, where βc is the numerically-determined critical inclination for tumbling,
evaluated at film height h = hc for which hc is the critical height for which confinement
suppresses the active matter instability in the limit β = 0. (b) Director and velocity vector
fields over the 2d film for the same regime.
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Figure 5.16: The maximum angle obtained in
the steady director for an extensile suspension
with varying elasticity, evaluated at h < hc,
where the critical confinement length is evalu-
ated for the default parameter size η−1 = 1.2.
Solid lines indicate a ‘tilted’ state (modes cor-
responding to Figures 5.13 and 5.15), dashed
lines correspond to a ‘tumbled’ state (modes
corresponding to Figure 5.17).

Since we are able to closely follow a particular type of steady solution for the sus-
pension to an arbitrary level precision as inclination is increased, if the continuity
algorithm described in Section 4.3 fails to converge to the same solution type, we
can ascertain that that particular type of solution is no longer valid for that value
of β. We determine ‘tumbling’ to occur at the onset of this failure, where if we
were in an experimental regime and had continued to increase the film inclination,
we would no longer be able to find a steady state for the director field without dis-
inclinations and refer to the critical inclination angle for tumbling to occur as β = βc.

In Figure 5.16, the maximum angle ϕm
0 over the film height is plotted against the

inclination angle β for various values of elasticity at h ≈ hc|η−1=1.2, where the inclina-
tion is gradually increased from 0. When β < βc, we refer to the system as being in
a ‘tilting’ regime (solid lines in Figure 5.16, with modes qualitatively corresponding
to Figures 5.13 and 5.15), where director elasticity is strong enough to continuous
local order over the film height. Experimentally, as long as inclination is gradually
increased, we would expect to be able to find all the steady states between β = 0 and
β < βc. As inclination is increased further, the continuity algorithm fails, and al-
though we are able to find steady state solutions (dashed lines), we would not expect
to be able to find these states experimentally by gradually increasing inclination, as
the stability of the suspension decreases as β approaches βc from 0. Consequently,
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tilt
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enhances tilt
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tilt

Figure 5.17: (a) Plot of the steady state for an inclined film. The film is inclined at
an angle β > βc for an extensile suspension. Regions highlighted in blue (red) are where
active-shear enhances (suppresses) local rotation. (b) Director and velocity vector fields
over the 2d film for the same regime.

Activity 
suppresses tilt

Activity 
enhances tilt

Activity 
enhances tilt

Figure 5.18: (a) Plot of the steady state for an inclined film. The film is inclined at
an angle β ≈ βc for a contractile suspension. Regions highlighted in blue (red) are where
active-shear enhances (suppresses) local rotation. (b) Director and velocity vector fields
over the 2d film for the same regime.
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we refer to these theoretical states as ‘tumbled’ states, and suggest they could be
found experimentally by using an external-alignment field.

Increasing η−1 corresponds to increasing elasticity in the suspension which will in-
creases the stability of the suspension by penalising gradients in the director field and
cause the critical film height hc to also increase. Consequently, when the film height
is held constant, the critical inclination angle βc to induce tumbling will increase (βc

in red circles) as η−1 increases. The critical value βc is dependent on several factors:
the elasticity suspension, which penalises gradients in ϕ0 and increases the inclina-
tion threshold for tumbling; the film height h, which confines the vortex modes as
discussed in Chapter 4 and increases orientational stability by imposing order at the
boundaries, changes in the swimmer geometry, which are reflected in the alignment-
to-shear parameter λ1, and, the sign of activity. For an extensile suspension, active
shear which is proportional to sin 2ϕ0 (equation (5.5a)) suppresses local shear when
ϕ0 > −π/4 and enhances local shear when ϕ0 < −π/4. Figure 5.16 corresponds to
an initially stable film which is slowly inclined by angle β, but as soon as |ϕm

0 | exceeds
π/4 the local shear-induced torque experienced by the suspension rapidly increases.
Since this occurs in two locations, close to the bottom of the film near the substrate
(z = z1) and close to the free-surface (z = z2), when β > βc we find that the director
in the region of z ∈ [z1, z2] flips into a ‘tumbled’ regime (dashed lines in Figure 5.16
with modes qualitatively corresponding to Figure 5.17). Conversely, when studying
a contractile suspension, increasing β such that |ϕm

0 | exceeds π/4 shows no corre-
sponding jump to a ‘tumbled’ regime, as activity enhances local director rotation
for ϕ0 > −π/4 and suppresses it for ϕ0 < −π/4. The dashed lines in Figure 5.16
and the associated modes plotted in Figure 5.17 could be realised experimentally
by investigating a suspension initially stabilised by elasticity and gently tilted until
a region flips into a tumbled state.
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Figure 5.19: (a) Main: The maximum growth rate ωi for λ1 = [0.1, 0.3, 0.5, 0.7, 0.9]
over β ∈ [0, βc] for which βc is the critical inclination to induce tumbling. The numerical
solutions are solved for h = hc, where hc is the critical confinement height to suppress the
bulk instability. As the director approaches the tumbled angle ϕ0 ≈ π/4, we are no longer
able to numerically solve the steady state (dotted lines). Sub: The tumbling angle βc is
linearly dependent on the alignment-to-shear parameter, λ1. (b) Dispersion relation for
ω+ for h = hc|β=0 and inclination β = β∗, the inclination value for which the suspension
becomes unstable and β = βc the critical inclination angle for the tumbled regime. The
imaginary part of ω is plotted with a solid line and the real part is plotted with the dashed
line.

Figure 5.20: Dispersion relation for ω+

in the 2d film, with β = 0 and compari-
son to the bulk growth rate ω+

1. A bifurca-
tion occurs at k ≈ 0.25 where the system
switches between stationary and travelling
planar-waves.
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5.4.3 Shear Alignment Significantly Dampens Growth

We investigate the effect of inclination on the stability of the active suspension at
the critical film height h = hc for which confinement suppresses the bulk instability
in the β = 0 case (Figure 4.13b). In Figure 5.19a main, the maximum growth rate
of the perturbation is plotted for λ1 = 0.1, 0.3, 0.5, 0.7 and 0.9. We uncover two
regimes of stability as the inclination angle β is increased from zero, determined by
the parameter β∗: when β < β∗, inclination is stabilising and when β > β∗, inclina-
tion is destabilising. Similarly to Section 3.4 (equations (3.18)), imposed shear acts
at order O(1), and when λ1 = 0 any inclination will destabilise the suspension, as the
rotation-due-to-vorticity component of the imposed shear given by 1

2∂zu0ϕ1 sinϕ0 is
always destabilising, independent of the perturbation wavelength k (equation (5.18)).
However, for non-zero λ1, initially inclination provides a net stabilising effect by intro-
ducing a preferential alignment direction by virtue of gravitationally imposed shear
gradients. As β increases beyond β∗ (reference steady solution for β∗ < β < βc

in Figure 5.15), ϕm exceeds π/4 and alignment-to-shear becomes destabilising, as
discussed in Figure 5.16, and both vorticity and alignment-to-shear work together
to destabilise the suspension. Finally, as β → βc, the growth rate appears becomes
exponentially proportional to β, as a perturbation will locally cause tumbling. How-
ever, as we approach βc, the numerical solver fails to converge to a solution as the
tumbling regime goes beyond what our linear stability analysis can model. Plotting
the dispersion relation for β = β∗ and β ≈ βc in Figure 5.19b reveals a transition for
all k ∈ [0, 1] from stationary planar-waves to travelling planar-waves and a smooth-
ing of the growth rate near the bifurcation at k ≈ 0.25 in the β = 0 case (Figure
5.20).

Plotting the eigenvectors, steady state and vectorfields for β = 0, 0.001, 0.005 and
0.02 in Figure 5.22 reveals a similar narrative to regime of imposed slip in Sec-
tion 5.3.1, Figure 5.10: as β increases and the amplitude of imposed shear flow
increases, we observe a transition from the vortex lattice characteristic of Chapter
4 to a ‘wonky’ flow regime with a net flow down the film length in the x-direction.
Without an imposed flow, the director is aligned down the film along the x-axis.
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Perturbing the suspension by a planar-wave creates regions (columns) of up- and
down-flow, and the columns collapse at the boundaries due to the impermeability
boundary condition, creating a vortex lattice which consists of alternating clockwise
and anti-clockwise vortex cells, where the boundary between vortex cells corresponds
to the regions of up- and down- flows. We label anti-clockwise vortex cells as ‘odd’
and clockwise vortex cells as ‘even’. When a gravitational shear is imposed, the di-
rector tilts downwards towards the substrate, and when the suspension is perturbed
by a planar-wave the vortex cells are tilted with respect to the long axis of the film.
Since the background flow is non-uniform and fastest near the substrate, a net flow
emerges as the odd (even) vortex cells appear to migrate toward the surface (sub-
strate). However, the instability mechanism for the inclined film regime remains
the same: in Figure 5.21 the streamlines for the perturbed modes corresponding to
Figure 5.22 are plotted. Note that these streamlines are for the perturbed modes
only (i.e. only ϕ1, u1 are plotted, not ϕ = ϕ0 + εϕ1, u = u0 + εu1 etc.). In Figure
5.22 the vortex lattice disappears completely when the net background flow u0(z)x̂is
larger than max(uk). Since the solutions are summed as f = f0 +εf1, where ε ≪ 1 is
an undetermined small parameter, the value of β for which this occurs is dependent
on our choice of ε. For Figure 5.22 and all other similar figures in this Chapter,
ε = 0.2 for the purpose of illustrating net streamlines.

Figure 5.21: Streamlines corresponding to the eigenmodes of the inclined film, evaluated
at k = km and h = hc|β=0. Only the perturbed modes are plotted, the full solutions are
plotted in Figure 5.22.
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Figure 5.22: i. Eigenmodes plots, ii. steady state plots, iii. streamlines (full solutions,
steady & perturbed state) for the inclined film, evaluated at k = km and h = hc|β=0, where
(a) β = 0, (b) β = 0.001, (c) β = 0.005, (d), β = 0.02.
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5.5 Remarks: Boundary Phenomena Qualitatively
Alter Modes

In this final chapter, we have matured the numerical work undertaken in Chapter 4
to regimes with alternative steady states. Initially, we explored the effect of rotating
the director with respect to the channel in Section 5.1. In the analysis conducted in
Chapter 2, we had uncovered that the least stable mode in the bulk suspension was
concerned with a bend deformation which corresponded to gradients in the director
along the ordered axis and fluid pumped perpendicular to the ordered axis. Con-
sequently, our initial hypothesis for the rotated constant steady state was that the
instability growth rate would reach a maximum when perpendicular to the bound-
aries, as this would allow activity-driven flow to orient down the infinite length of
the channel. However, the unintended side effect of rotating the director by an angle
βj was that it effectively changed the perturbation wavevector angle, denoted by q in
the bulk analysis, and introduced stabilising splay into the suspension. An increase
in the growth rate was achieved by rotating the constant steady state for non-zero
λ1, but the maximum was obtained near to βj = π/4.

In Section 5.2, we determined the static torque balance equation, describing the
steady state of the director in background shear, or self-imposed active flow, which
we used in Section 5.3, to impose a slip angle for the channel at the substrate. The
resulting director profile resembled a splay deformation over the height of the film,
and by consequence of activity, generated a steady Poiseullie-like flow field. Inves-
tigating the perturbed modes unveiled a ‘wonky’ net back flow orientated down the
unbounded channel length, where oscillations in the flow occur due to the superpo-
sition of the background active flow with the regular vortex lattice, as described in
Chapter 4.

The planar-waves were travelling, and boasted a growth rate that monotonically in-
creases with imposed slip angle βj, obtaining a maximum growth rate for βj = π/2.
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However, whilst there are regimes where such a slip angle might exist, the rigid ap-
plication of an imposed slip angle at the substrate should be interpreted carefully as
fixing the boundary condition has implications on the types of solutions we might
find: phenomena in the bulk channel are determined by the conditions set at the
boundary, and system is coerced into satisfying niche criteria which might not reflect
reality. A suitable extension of this regime would be to include polarity and number
density variations, which could reflect E. Coli experiments, which exhibit trapping
at the substrate.47 Swimmers approaching a substrate can get trapped at the sub-
strate for significant periods of time due to a mixture of hydrodynamic and steric
interactions.

Lastly, in Section 5.4 we explored the effects of inclining the 2d film. The inclined
film imposes a gravitational shear, which tilts the director at a maximum closest to
the substrate. The introduction of an imposed shear introduces the possibility of
tumbling, and we found that the onset of the tumbling regime is influenced by the
activity type: when pointing downhill, extensile suspensions are less prone to tum-
bling, as the active flow arising from the steady director deformation suppresses local
shear. This effect occurs as long as the maximum angle of the director is less than
π/4, when this angle is exceeded, activity enhances local shear and we saw a jump
from a tilted regime to a ‘tumbled’ regime in which a small region of the director
profile flips to pointing uphill.

Finally, investigating the stability of the inclined plane, we found that the stability
of the perturbed modes was strongly dependent on the alignment-to-shear parameter
λ1, as the existence of an imposed shear creates a preferential alignment direction
for the director which stabilises the suspension. However, for all values of λ1 < 1,
vorticity ensures that inclination is always destabilising for a sufficiently large incli-
nation angle β.
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6 | Conclusion

In this thesis, we have explored and extended a long-wavelength instability known
to affect suspensions of ordered microswimmers in a momentum-conserving medium.
Active flow develops as a result of bend and splay deformations in the director field,
and the subsequent shear is contained in the same plane as the deformation. When a
constant director field is perturbed, an instability develops when the active flow en-
hances the director deformation by shear-imposed torque. This work discussed this
phenomena in a variety of regimes and confinements, and the chapters are briefly
summarised as follows: Chapter 2 established the fundamental instability, detailing
the instability mechanism for extensile and contractile suspensions, and in particu-
lar, the phase relationship between the fluid flow and director. Chapter 3 extended
this 2d analysis into the 3d regime, where the 2d nature of the active flow leads
to a de-coupling in the governing equations and the dominance of bend modes for
extensile suspensions. In our main result, we included a chirality term in the Jef-
frey orbit equations which re-couples the governing equations for the active matter
suspension, and leads to an alternative instability regime whereby the bulk instabil-
ity growth rate is enhanced for small imposed shear flow, so long as both chirality
and alignment-to-shear terms are present. In Chapter 4, we studied the instability
in films and channels, connecting instability growth rates from the bulk, to thick
films and thin films, and discussed the critical film/channel height to suppress the
instability. Here, we discovered that the de-coupled equations discussed in Chapter
3 cause the 3d regime to boast larger growth rates compared to the 2d regime for
a given confinement length, and with careful application of boundary conditions the
critical confinement length can be reduced by an order of magnitude. In Chapter 5,

169



we rotate the director field from being orientated down the channel length to being
perpendicular to it and surprisingly discover the optimum angle to enhance the in-
stability growth rate is around π/4 when the alignment-to-shear term is non-zero.
Finally, investigating regimes with a steady, non-constant director field we explored a
regime of imposed slip which evolves the vortex lattice into a regime of net flow with
decreased stability, and reveal a ‘tumbled’ regime for the inclined flow, showing that
inclination will enhance the instability growth rate, as long as alignment-to-shear is
sufficiently small.

6.1 Thesis Overview

A suspension of microswimmers exerts a hydrodynamic stress on their surrounding
medium proportional to the activity level of the swimmers. The divergence of the
active stress α∇ · pp, which was derived using a coarse-grained approximation for
a suspension of force-dipoles, contributes a forcing term into the Stokes equations
wherever there exists local deformations in the director, a unit vector describing
the local averaged orientation of swimmers. The forcing changes sign depending on
whether we’re investigating an extensile (sgn(α) = −1) or contractile suspension
(sgn(α) = 1).

Following the derivation of the active stress in Section 1.2.1, we discussed the gov-
erning equations for the director in Section 1.2.2. We utilised the Jeffrey orbit equa-
tions to describe the evolution for a swimmers orientation due to vorticity and shear
alignment effects and generalised the Jeffrey orbit equations to a suspension with
orientational order by inclusion of an elasticity term derived from liquid-crystal lit-
erature which restores local order on the suspension by penalising gradients in the
director. Having established the active matter governing equations in Chapter 1, in
Chapter 2 we sought to understand the mechanism for instability by performing a
linear instability analysis about the constant ordered state p = x̂, u = 0.
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The growth/decay of a perturbation of wavelength 2π/k to the steady state was quan-
tified by the imaginary component of the eigenvalue ω(k) when seeking planar-wave
solutions of the form f = fk exp(ix ·k − iωt). In Section 2.3, we found (in agreement
with pre-existing literature) that an extensile (contractile) suspension is unstable to
long-wavelength bend (splay) perturbations, subject to an upper bound k2 < 1+λ1

2η

(k2 < 1−λ1
2η

) due to elasticity, where λ1 measures alignment-to-shear and elasticity
damping is contained in the dimensionless parameter η−1 = Dµ

L2|α| , and L is a charac-
teristic length scale, which we set as L =

√
Dµ
|α| to balance elastic restoration forces

and active shear. The instability acts at long-wavelengths due to activity acting at
order O(k) and elasticity damping acting at order O(k2) for disturbance amplitude k.

In an extensile suspension, we recovered that bend (splay) deformations in the direc-
tor pump fluid along the outward normal of a bend formation (out the closed end of
a splay deformation, respectively). When seeking perturbations as planar-wave solu-
tions of the ordered state, active pumping due to bend and splay is proportional to
the gradients in the director, not the the maximum deviation from the ordered state.
Consequently, active flow arising from planar-wave deformations is ∓π/2 out-of-
phase with the director, with the sign dependent on the extensile/contractile nature
of the suspension, and, whether we have a bend or splay deformation. Rotational ef-
fects on the director are governed by the magnitude of shear, which in turn has a π/2
out-of-phase relationship with active flow. Consequently in an extensile (contractile)
suspension, rotation due to active shear gradients is shifted in-phase (π out-of-phase)
to the bend deformation and bend modes are unstable (stable) for extensile (con-
tractile, respectively) suspensions. In the 2d regime, gradients in the director were
quantified by the wavevector angle q such that k = k(cos q, 0, sin q), and a pure
bend (splay) deformation is quantified by q = 0 (q = π/2, respectively). Increasing
the wavevector angle q from zero to π/2 corresponds to an increase of splay in the
system and a decrease of bend. At q = π/4, we saw an important phase shift as
splay becomes the dominant mode, stabilising (de-stabilising) an extensile (contrac-
tile, respectively) suspension. This phase relationship was illustrated by Figure 2.12.
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Having established and understood the fundamental instability mechanism as de-
scribed in Chapter 2, we proceeded to extend the instability analysis into the 3d
regime in Chapter 3. Firstly, we observed that when applying a perturbation wavevec-
tor k restricted (without loss of generality) to the x-y plane, the corresponding
Fourier modes de-coupled into two systems: the first systems components consisted
of the Fourier modes associated with the x-y plane, and the second systems com-
ponents consisted of the Fourier modes associated with the z-axis. The unstable
eigenvalue associated with the first system experiences the full wavevector k, and
correspondingly exhibited both bend and splay deformations in the director field,
and their associated active flow. Since the active flow and corresponding shear-
induced rotation of a bend/splay deformation is contained within the same plane as
the deformation itself, the instability mechanism and stability of this system was con-
sistent with the 2d analysis discussed in Chapter 2, where increasing the wavevector
angle q corresponds to an increase of stabilising splay in the system (for an extensile
suspension). The second of the de-coupled systems, whose Fourier components are
those pointing in the z-axis, only experiences the projection of the wavevector k onto
the x-axis, such that the projection wavevector takes the form, k̃ = k cos qx̂. The
instability mechanism and stability of this system was consistent with a 2d system
perturbed by a pure bend mode with q̃ = 0 and |k̃| = k cos q. The eigenvalue analysis
of the decoupled modes indicate that in the 3d regime, the second system associated
with a pure bend mode will always grow faster than the first system, consisting of
mixed bend/splay deformations.

In Section 3.3.2, we introduced swimmer chirality into the director equation by in-
cluding the term λ2p × [(δ − pp) · E · p] into the Jeffrey orbit equation. Chirality
induces out-of-plane rotation in the director, where out-of-plane is quantified by a
rotation with a component in the orthogonal axis to the plane of shear. Conse-
quently, chirality re-couples the de-coupled bend and bend/splay modes described
for a wavevector restricted to the x-y plane. In the least stable configuration, the
two components of the perturbed director orthogonal to the ordered axis are π/2 ± ϵ

out-of-phase, where the magnitude of ϵ depends on the strength of the chirality pa-
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rameter λ2 and each component can be thought of as bend mode of the director
propagating into the y- and z-axis respectively. The shift in phase difference from
exactly π/2 occurs due to a shift in the location of the maximum rotation due to
shear: deviation from the ordered state is enhanced by the flows orthogonal to plane
as well as flows in the plane when chirality is present, and the coupling between com-
ponents causes the resultant mode to ‘spirals’ around the ordered axis due to the
introduction a twist deformation. In the final section of Chapter 3, we investigated
the change in growth rate to the fundamental instability when imposing a shear flow
orthogonal to the ordered direction. We revealed an interesting relationship between
the alignment-to-shear and chirality, where the growth rate was enhanced by up to
10% versus the bulk instability rate when both λ1 and λ2 were non-zero and dimen-
sionless shear took the values A ∈ [0.1, 0.5], where unity is normalised to the active
shear rate.

Two results in Chapter 4 illustrate the importance of studying bulk systems without
confinement: firstly, the critical film height hc to suppress the instability in the 2d
regime takes the value hc ≈ π/km|h=∞, where km is the wavenumber associated with
the maximum growth rate in the bulk, and secondly, the 3d regime is less stable
than the 2d regime in confinement as the 3d bulk analysis showed that the sus-
pension is unstable for all q ∈ [0, π], as opposed to q ∈ [0, π/4]. We demonstrated
this by connecting the bulk instability analysis to two regimes of confinement (a
channel and film) by numerically solving the linear instability analysis for Fourier
modes f = fk(z) exp(ik⊥ · x⊥ − iωt), where ⊥ indicates x-y components, and using
alignment of the director at the substrate/free-surface and no-slip/no-shear on the
fluid as our boundary conditions. In the limit of large h ≫ 1, where the confinement
length is normalised to the characteristic length scale L for which elasticity balances
activity driven shear, we recovered the bulk instability growth rate for k ≈ km|h=∞.
This is because for large enough k, the infinitely long columns of fluid characteris-
tic of the bulk analysis collapse into a lattice of elongated vortex modes due to the
impermeability condition at the boundaries. However, for small k, we observed a
bifurcation at kc ≈ π/h when the vortex modes, whose length are dictated by the

173



wavevector k, can no longer fit into the channel height and instead are forced along
the unbounded channel length. In the final section of this Chapter, we discussed an
alternative torque-free boundary condition on the free-surface for a 3d film, which
we affectionately called the ‘Gecko’ boundary condition. The boundary condition
enhances the instability growth rate by allowing the director to rotate in the x-y
plane at the free-surface, which consequently allows bend modes to propagate and
pump fluid on the boundary without being suppressed. When applying the Gecko
boundary condition, we found an order of magnitude decrease in the critical confine-
ment height required to completely suppress the instability.

In Chapter 5, we explored the effect of confinement on three alternative steady
states: a constant director field, rotated with respect to the length of a channel; an
‘imposed slip’ regime, with a non-constant director across the channel width and a
non-zero steady flow; and an inclined film, where alignment is imposed at the top
and bottom, but gravitational forces give rise to a steady parabolic flow and impose
a non-constant director over the film height. In the first regime, the rotation of the
director field along the channel was quantified by the boundary condition p · n = βj;
since active flow arising from a bend deformation is perpendicular to the director
angle, increasing the rotation angle βj increases the available space for the vortex
lattice to fill and results in a tilting of the vortex lattice. Consequently, as βj → π/2,
we observed a switch between a tilted vortex lattice to the vortex modes filling the
infinitely long channel. In Chapter 4 we saw the instability growth rate was sup-
pressed as the vortex lattice became increasingly confined as the confinement height
decreased. However, in the limiting case of λ1 = 0, rotating the director had no effect
on the stability growth rate, as the increased vortex cell length is exactly balanced
by the increase of splay in the system, which stabilises an extensile suspension. Un-
expectedly, we found that for non-zero λ1, the growth rate increased with βj, with a
maximum around βj = π/4. We suggest that this occurs due to the skewing of the
vortex lattice: as the vortex cells are tilted, the net flow is skewed from propagating
perpendicular to the director, providing an preferential alignment direction down the
channel length and enhancing director rotation.
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In the second regime, we imposed a slip angle at the top and bottom of the substrate,
which results in non-constant steady director, which exhibits a splay deformation
over the height of the film. Since director gradients result in activity driven flow,
we found the resultant flow was Poiseuille-like and expresses a static torque balance
between shear-induced torque and elasticity. Perturbing this steady state resulted in
a ‘wonky’ net flow along the channel length, where the oscillatory flow arises from
the vortex lattice characteristic of the suspension in a channel, imposed on to the
steady background flow. Increasing the imposed slip angle corresponded to an in-
creased growth rate, as the vorticity term of the background shear destabilises the
suspension. Experimentally, such a regime could only be realised if the substrate
could impose strong torque on the director, or if the active particles themselves ex-
hibit niche behavioural mechanisms near the boundary.

In the final regime, we explored the effects of inclining a 2d film. This regime was
solved with the same static torque balance equation that the imposed slip regime
was, but where gravitational shear causes a tilting on the director. Lone swim-
mers are subject to tumbling when shear is imposed, and we found that the onset
of tumbling differed depending on the activity type: extensile suspensions enhance
local shear when the director angle is greater than |π/4| to the substrate, whereas
contractile suspensions suppress local shear when the director angle is greater than
|π/4|. Consequently, contractile suspensions have a higher tumbling threshold than
extensile suspensions. Extensile suspensions instead display a jump to a tumbled
regime, in which a small region of the director flips to pointing the opposite way.
Lastly, we found that inclination was destabilising due to the vorticity component
of the gravitational shear, but for sufficiently small inclination, alignment-to-shear is
strongly stabilising as gravitational flow introduces a preferential alignment axis for
the director.
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6.2 Remarks and Future Works

The model employed throughout this work is a minimalist description to capture the
choice of boundary conditions and to connect the dynamics of the bulk to regimes of
confinement. The simplest extensions to the model studied would be to conduct a lin-
ear stability analysis on the full set of governing equations given by (2.4a–d), as our
simplifications included constant concentration, zero-motility, and constant scalar
order parameter. The publications discussed by Doostmohammadi & Yeomans8 and
Sumesh Thampi40 indicate how topological defects can qualitatively effect observed
modes, and we would like to further extend the model by implementing Q-tensor
theory from liquid-crystal literature which would allow us to model topological de-
fects in the director.

The majority of the analysis conducted has centred around an extensile suspension,
which is susceptible to bend deformations. Since a bend deformation produces an
active flow perpendicular to the ordered axis, we inevitably suppress the fundamental
instability when restricting an extensile suspension to a 2d channel. We hypothesised
that when the director was instead perpendicular to the boundaries, a bend deforma-
tion would be free to pump fluid down the infinite length of the channel. However, to
our surprise, this regime had the same stability as the case when the steady director
was parallel to the boundary. This raises the question: what would occur with a con-
tractile suspension aligned down, or perpendicular to, the boundaries of a channel?
We hypothesise that the critical confinement length hc for suppressing a contractile
suspension might be much smaller, as contractile suspensions are unstable to splay
perturbations which would generate active flow down the unbounded length of the
channel, instead of being directed towards boundaries.

Throughout this work, wherever a free-surface has been modelled we have imposed
p · n = 0, as swimmers cannot swim through the boundary. Secondly, we presume
that the free-surface cannot impose a strong-anchoring regime like at the substrate,
which led us to considering the Gecko boundary condition in Section 4.9. We would
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like to investigate when are these presumptions admissible, and in particular, are
there regimes where a suspension of swimmers can deform the free-surface by swim-
ming into it? This would require modelling surface tension in the boundary condi-
tions for the film height h, and an analysis surrounding a new dimensionless param-
eter balancing surface tension to activity. Applying the Gecko boundary condition
to allow the director to rotate at the free-surface would effectively couple activity to
free-surface tilt, which could lead to growing capillary surface waves for sufficiently
strong activity.

In the penultimate chapter, we discussed the existence of alternative steady states
for the director as a static torque balance. As a possible research avenue, the steady
state equations for the 3d regime were also evaluated and coded. Using this code,
we would like to explore a regime of imposed twist, where the director is forced into
alignment at the top and bottom of a channel with a twist deformation across the
channel height; as twist alters the propagation direction for active flow, we would
expect this regime to yield strong mixing in the vortex lattice. Introducing chirality
negates the possibility of steady states with imposed shear, such as in the inclined
film, but could yield unique modes for the imposed twist regime.

The code developed in the second half of this work is extendable to these regimes
of interest, but any discussion will always suffer the same casualty: a numerical
linear instability analysis is always hindered by the choice of boundary conditions,
which may or may not be sensibly chosen. Moving beyond the linear regime in an
imminent post-doctorate, we will be conducting a complementary analysis focussed
on swimmer-boundary interactions by performing computational simulations on a
suspension in confinement. The end goal will be to evidence the research and discov-
eries detailed in this work, and to explore more exciting regimes, such as swimmers
in complex confinement, swimmer-swimmer interactions, and active droplets.
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A | Stresses, moments and energy
in the director

This derivation for the external torque imposed on the director follows a general
treatment for the stresses, moments and energy on an anisotropic fluid with gener-
alized forces,

g External body force per unit mass,
b External body moment per unit mass,
t Surface force per unit area,
l Surface moment per unit area.

The derivation follows a typical liquid-crystal treatsie, similar to De Gennes &
Prost.48 The fundamental difference is in the interpretation of the anisotropic fluid;
here, an anisotropic suspension exerts stresses and moments mediated by an isotropic
fluid.
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A.1 Momentum conservation of an Anisotropic Fluid

The linear momentum conservation equation was derived in the main text as equation
(1.8). Repeated here it states

ρu̇ = ρF + ∇ · σ. (A.1)

In a similar fashion to the main text, we can write the equation for angular momen-
tum balance,

D
Dt

∫
ρ
(
x × u

)
dV =

∫
V
ρ
(
x × F + B

)
dV +

∫
S

(
x × t + m

)
dS. (A.2)

Rewriting the surface force vector t and surface moment vector m using

t = n · σ, l = n · π, (A.3)

we obtain for the surface integral,

∫
S
ϵijkxjtk +mi dS =

∫
S
ϵijkxjσγknγ + πγinγ dS

=
∫

V
∂γ[ϵijkxjσγk + πγi] dV

=
∫

V
ϵijkxjσγk,γ + ϵijkσjk + πγi,γ dV. (A.4)

The comma in σγk,γ and πγi,γ denotes the derivative with respect to the γ’th coordi-
nate. Bringing the derivative inside the integral the left hand side of (A.2) reads,
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∫
V
ρϵijkxju̇k dV =

∫
V
ϵijkxj(ρFk + σjk,j) dV, (A.5)

where we have used (A.1) to express u̇i in terms of the body force and stress tensor.
Bringing together the contributions of (A.4), (A.5) and reducing the integral to point
form, we obtain an expression for the balance of angular momentum,

ρBi + ϵijkσjk + πji,j = 0. (A.6)

Note that in an isotropic fluid, the external body moment B and couple stress tensor
π are generally zero, reducing (A.6) to ϵijkσjk = 0, which would imply that the stress
tensor is symmetric and returns the linear momentum equation (1.8).

A.2 Hydrostatic equilibrium of the director

The hydrostatic equilibrium for the elastic stresses acting on a microswimmer in an
ordered suspension can be obtained by considering a free-energy argument for the
distortion energy. The total elastic free energy FT is a volume integral of the Frank
free-energy, fd, for the elastic distortions given by (1.32).

FT =
∫

V

1
2K1(∇ · p)2 + 1

2K2(p · ∇ × p)2 + 1
2K3||p × ∇ × p||2 dV. (A.7)

From left to right, the three terms represent the splay, twist and bend deformations.
The distortion constants Ki are typically the same order of magnitude, so we adopt
the common one-constant approximation such that Ki = K. Observing the identity
||a × b|| = ||a||||b|| − (a · b)2, with a = p and b = ∇ × p, the integrand can be
written as
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fd = 1
2K

[
(∇ · p)2 + ||∇ × p||2

]
. (A.8)

In Cartesian coordinates and utilising index notation, this is equivalent to

∂ipi∂jpj + ϵijk∂jpkϵimn∂mpn. (A.9)

Here, we use Einstein notation for summation over repeated indices. Observing the
identity ϵijkϵimn = δjmδkn − δjnδkm, the second term reads

∂mpn∂mpn − ∂npm∂mpn.

Recasting indices and employing the product rule, we rewrite (A.9) as

∂ipj∂ipj + ∂i

[
pi∂jpj − pj∂jpi

]
.

This allows us to write (A.7) as the sum of a volume integral and surface integral
using the divergence theorem,

FT =
∫

V

1
2K∂ipj∂ipj dV +

∫
A

1
2K

(
pi∂jpj − pj∂jpi)ni dS (A.10)

where ni is the unit normal vector pointing out the volume. The surface integrand
represents a saddle-splay term and can be shown to be a null Lagrangian; these terms
do not contribute to the bulk energy.96 Where there is strong anchoring at bound-
aries, the effect of the saddle-splay term is to impose boundary conditions on the
director which we include when we solve the boundary value problem. Consequently,
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we disregard the surface integral from FT , leaving us with just the bulk distortion
energy,

FT [p] =
∫

V
fd(p,∇p) dV, fd(p,∇p) = 1

2K||∇p||2. (A.11)

To find the conditions for static equilibrium, we minimise the functional FT with
respect to variations in p,

δFT [p] = FT [p + δp] − FT [p],

=
∫

V

[
fd

(
x,p + δp,∇p + δ∇p

)
− fd

(
x,p,∇p

)]
dV,

=
∫

V
δp · ∇pfd(p,∇p) + δ∇p · ∇p′fd(p,∇p) + O

(
∇2

p,∇2
p′) dV.

In the final line, we have expanded fd by Taylors theorem where ∇p indicates gra-
dients with respect to p and similarly ∇p′ indicates gradients with respect to ∇p.
Keeping only linear terms and minimising δFT = 0 to all variations in δp such
that |p| = 1, we obtain the static equilibrium condition which we recognise as the
standard Euler-Lagrange minimisation equation,61

∂fd

∂pi

− ∂

∂xj

∂fd

∂(∂jpi)
= hi. (A.12)

Here, h is known as the molecular field. Static equilibrium is obtained in the bulk
when the director is parallel to h. In the case of fd as given by (A.11), the molecular
field reads

h = K∇2p. (A.13)
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A.3 Rate of work

Leslie’s 199262 rate of work hypothesis stipulates that the rate at which forces and
moments do work in an anisotropic fluid is absorbed by the distortion free-energy,
kinetic energy and lost through viscous dissipation. Writing down these contributions
gives

∫
V
ρ(F · u + B · w) dV +

∫
S
(t · u + l · w) dS = D

Dt

∫
V

1
2ρu · u + fd + D dV. (A.14)

Here, w is the axial vector describing the local angular velocity of a microswimmer
at x. Rewriting the surface integrals in (A.14) using the divergence theorem and
(1.5) gives,

∫
S
(tiui +miwi) dS =

∫
V

(σjiui,j + uiσji,j + πjiwi,j + wiπji,j) dV (A.15)

From the linear momentum balance (A.1) and angular momentum balance (A.6),
the RHS can be written,

∫
V

(σjiui,j + ui(ρu̇i − ρFi) + πjiwi,j − wi(ρBi + ϵijkσjk)) dV. (A.16)

Observe also that,

∫
V
u̇iui dV = D

Dt

∫
V

1
2uiui dV. (A.17)

Collecting contributions from (A.16), (A.17) and substituting them into (A.14), we
obtain a point form expression for the rate of change of forces, moments and work;
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σijui,j + πijwi,j − ϵijkwiσkj = ḟd + D. (A.18)

Here, Reynolds transport theorem was used to bring the material derivative into
the integrand for fd. To find an expression for ḟd(pi, pi,j), note that the material
derivative for p can be written,

D
Dtpi,j = ∂j(ṗi) − uk,jpi,k. (A.19)

By the definition of w we have ṗi = ϵijkpjwk; using this and the chain rule allows us
to write the material derivative of fd(pi, pi,j) as,

D
Dtfd(pi, pi,j) = ∂fd

∂pi

ṗi + ∂fd

∂pi,j

D
Dtpi,j

= ϵijk

[∂fd

∂pi

pjwk + ∂fd

∂pi,γ

(
pj,γwk + pjwk,γ

)]
− uk,jpi,k

∂fd

∂pi,j

. (A.20)

Ericksen97 showed that the following identity holds for any free-energy function fd,

ϵijk

(
pj
∂fd

∂pi

+ pj,γ
∂fd

∂pi,γ

+ pγ,j
∂fd

∂pγ,i

)
= 0. (A.21)

Inserting this identity into (A.20) gives us,

ḟd = ϵijk

(
pjwk,γ

∂fd

∂pi,γ

− pγ,jwk
∂fd

∂pγ,i

)
− ui,jpk,i

∂fd

∂pk,j

. (A.22)

Finally, inserting this into (A.18) gives us an expression for the viscous dissipation.
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(
σij + ∂fd

∂pγ,j

pγ,i

)
ui,j +

(
πkγ − ϵijkpj

∂fd

∂pi,γ

)
wk,γ + ϵijkwk

(
pγ,j

∂fd

∂pγ,i

+σij

)
= D. (A.23)

Given that viscous dissipation is necessarily positive, we can draw conclusions about
the nature of the stresses in (A.23). Since the signs of ui,j, wk and wk,γ are arbitrary,
the coefficients of these terms linear in ui,j, wk and wk,γ must necessarily sum to
zero. This leads us to the conclusion that the stresses take the form,62

σij = −Pδij − pk,iµjk + σ̃ij, (A.24)
πij = ϵiγkpγµjk + π̃ij. (A.25)

Here; σ̃ij and π̃ij are the dynamic contributions to stress where σ̃ij is known as the
viscous stress; P is pressure; µjk = ∂fd

∂pk.j
. The natural variables to use for the dynamic

couple stress are the director, director angular velocity and fluid velocity gradients.
By this assumption, it follows that π̃ij = 0.98

A.4 External Torque on swimmers

Here, we derive an expression for the external torque acting on a microswimmer out
of elastic equilibrium due to distortion stress in the director. This torque is defined
as the anti-symmetric component of the dynamic (viscous) stress tensor; Γi = ϵijkσ̃kj.
Then substituting (A.24) and (A.25) into (A.6),

Γi = −ϵijk

[
Pδjk + pγ,kµjγ

]
+ ϵjγk∂j

(
pγµik

)
. (A.26)

The pressure term vanishes as a consequence of symmetry. Using again the Ericksen
identity in (A.21), we can write this expression as
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Γi = ϵijk

(
pj
∂fd

∂pk

+ pj,γµγk

)
+ ϵjγk∂j

(
pγµik

)
.

We wish to relate the dynamic stress to the static stress defined by the molecular
field hk = ∂fd

∂pk
− ∂γµγk, and substitution gives

Γi = ϵijkpjhk − ϵijk

[
pj∂γµγk + pj,kµγk

]
+ ϵjγk∂j

(
pγµik

)
. (A.27)

Noticing the square brackets correspond to the derivative of pjµγk we can write,

Γi = ϵijkpjhk − ϵijk∂γ

(
pjµγk

)
+ ϵjγk∂j

(
pγµik

)
. (A.28)

To resolve the last two terms, recall the conservation of linear momentum equation:
ρu̇i = ∂jσji. Changes of the form σji → σji + σ′

ji don’t effect acceleration as long as
∂jσji = 0. Following this, we can write the final two terms as,

= ϵjγkδlj∂l

(
pγµik

)
− ϵijkδlγ∂l

(
pjµγk

)
,

= ∂l

(
ϵlγkpγµik − ϵijkpjµlk

)
,

= ∂l

([
ϵlmkµik − ϵimkµlk

]
pm

)
.

In the final line, a derivative in ∂i produces a product between a symmetric tensor
and anti-symmetric tensor, which can be shown to be identically zero. Consequently,
we can express the torque in terms of the director only as,

Γ = p × h. (A.29)
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B | Identities

B.1 Inclined Plane

In Section 5.2.2 where ϕ = ϕ0(z) + εϕ1(x, z), the following identities are used:

cosϕ0∂
2
z cosϕ0 + sinϕ0∂

2
z sinϕ0 = −ϕ′2

0 (B.1)

cosϕ0∂
2
z sinϕ0 − sinϕ0∂

2
z cosϕ0 = ϕ′′

0 (B.2)

cosϕ0∂z sinϕ0 − sinϕ0∂z cosϕ0 = ϕ′
0 (B.3)

cosϕ0∇2
[
ϕ1 sinϕ0

]
− sinϕ0∇2

[
ϕ1 cosϕ0

]
= 2∂zϕ1ϕ

′
0 + ϕ1ϕ

′′
0 (B.4)
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Theorems

Divergence Theorem

The divergence theorem relates the total rate-of-change of a vectorial quantity
(flux) over the surface of a volume, to the divergence of that quantity over the
volume. Formally, ∫∫

S
(n · u) dS =

∫∫∫
V

(∇ · u) dV,

where V is the body volume, S its surface and n the outward-facing normal.

Euler-Cauchy Stress Principle

The Euler-Cauchy stress principle states that on any surface, real or imaginary,
that divides a volume element, the action of one part of the body on the other
part is equivalent to the distribution of forces and moments on that surface.
Formally, this allows us to write the vectorial force acting on a surface as the
product between the outward normal vector to the surface, and a stress tensor.

Levi-Civita symbol

The Levi-Civita symbol expresses the relationship between a collection of num-
bers. In this thesis, it is primarily used to represent the vector cross product
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in index notation. Explicitly it is written,

ϵijk =


+1 if (i, j, k) is an even permutation,
−1 if (1, j, k) is an odd permutation,
0 if i = j, or j = k, or k = i.

Reynolds Transport Theorem

Reynolds transport theorem is a three-dimensional generalisation of the Leibniz
integral rule which describes differentiation under the integral sign. Formally,
for time derivative d

dt
, it states

d

dt

∫
v

f =
∫

v

∂f

∂t
+ (u · ∇)f dV.
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Glossary

A

active stress the stress exerted on a fluid due to the activity and motility of swim-
ming microorganisms. 11
advection the transportation of a physical quantity such as heat or matter by the
motion of fluid. 11
anisotropic (of a material) having a physical property which varies under rotation.
3
apolar (of a particle), being head-tail symmetric 1

B

Bretherton constant a measurement of a particles alignment to local shear, cal-
culated by its geometrical properties 25
brownian motion random motion of microscopic particles in a fluid due to collisions
with fluid molecules 4

C

constitutive relation a relationship between two physical quantities of a material
or substance. 15
crystaline (a state of matter), matter whose constituent particles form highly or-
dered coherent structures. 3

D

dimension the units of a measurement, e.g. length, mass, time.
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dimensionless number a number, without dimension, which captures physical
properties of a system by relating properties to one another.

E

entropy a measure of a systems energy per unit temperature unable to do useful
work. 4

F

free-energy a measure of a body’s (or system’s) ability to cause change 1

G

gastrointestinal epithelial lining (biology) the single cell layer that forms the
lining of both the large and small intestine in the colon. 2
geotaxis motion of a cell or microorganism in response to the force of gravity. 16

H

hydrodynamic concerning the mechanical properties of a fluid. 6

I

isotropic (of a material) having a physical property which is invariant under rota-
tion. 3

K

kinematic the mechanics of motion without reference to the forces that produced
that motion. 15
kinetic the action of forces in producing or changing motion 15

L

long-wavelength (of a measurable property) fluctuations that exist on a scale larger
than the length scale of interest.

M

193



marangoni stress (physics) gradients of surface tension between a fluid and sub-
strate which can drive microflows in the fluid. 3
micotubules (biology) the components of the cell skeleton which determine the cell
shape and motility. 3
motility ability to move oneself. 4

N

Naiver-Stokes Equation the fluidic equivalent of Newtons second law. 11, 15
nematic active matter active matter formed of apolar particles 1

O

overdamped a physical system which is dampened beyond the threshold to prevent
oscillations. 6

P

packing fraction the volume fraction at which a suspension of particles cannot be
packed together any closer. 4
phase a chemically and physically homogeneous quantity of matter, e.g. gas, liquid,
solid, crystaline. 3

separation separation of matter into two or more separate phases 5
transition transition of matter between two phases 3

phoretic (transport of particles) the movement of particles due to a field, such as
concentration, interacting with the particles. 1
polar (of a particle), having head-tail structure 1
polar active matter active matter formed of polar particles 1

R

Reynolds Number a dimensionless number describing the relative effects of viscous
to inertia forces. 16
rheology the study of the deformation of fluids, with particular interest to viscous
properties 12
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S

self-propelled particle are particles which propel themselves through a medium
by a means other than an external surface or body force.
shear a measure of lateral shifting of fluid layers relative to one another. 11
shear thickening (thining) (physics) a non-newtonian fluid in which viscosity
increases (decreases) as a response to shear gradients. 3
Smoluchowski equations (statistical physics) equations describing the time evo-
lution of the number density of particles as they coagulate. 21
Soft matter (field of physics) physical systems which are deformed by thermal or
mechanical stresses. 5
steric interactions between particles that are nonbonding in nature, e.g. volume
exclusion. 4, 11
Stokes Equation a simplification of the Navier-Stokes equation, describing a fluid
with low Reynolds number. 16
strain a physical measurement of relative displacement between neighbouring par-
ticles in a continuous material.
stress is a physical quantity which expresses the internal forces between neighbouring
particles in a continuous material; it is measured as the force per unit area. 1

T

thermodynamics the study of the relationship between heat, work, temperature
and energy in matter. 5

V

viscoelastic (physics) a non-newtonian fluid which has an elastic response to shear
gradients. 2
viscosity a physical measurement of a fluids resistance to mechanical strain. 15
vorticity a measurement of the local rotation of a fluid. 11
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