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over singleton model radii, RS (whose Ṁ is constant), from Fig-
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radii. The dotted black line shows the radius predicted by the
Brown relation. The arrows show the amount of inflation induced
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Summary

Cataclysmic variables are a type of close, interacting binary system, with a white
dwarf primary and an M dwarf donor star that is in contact with its Roche lobe.
As such, the outer layers of the M dwarf are gradually accreted onto the white
dwarf, driven by angular momentum loss. Mass transfer and angular momentum
loss dominates the evolution of these systems.

I characterise 15 new eclipsing cataclysmic variable stars, finding component
masses and radii, and orbital separations by modelling their light curves in mul-
tiple filters. These characterisations conform to the results of previous similar
works, tracking the canonical donor evolutionary sequence.

I develop a method to infer mass loss and angular momentum loss rates from
donor properties. Stars are inflated by mass loss, and by replicating a donor star
with the stellar evolutionary code, MESA, I can infer the mass loss rate the star
is subjected to and calculate the corresponding angular momentum loss rate. I
apply this method to the newly extended sample of eclipse-modelled cataclysmic
variables, and report my findings.

The field of research around cataclysmic variables has struggled with an un-
known contribution to angular momentum losses in the short period (< 2.5 hours)
regime for some time. This is seen in population synthesis models and evolution-
ary models, though discriminating between differing explanations for these excess
losses has been somewhat challenging. By comparing existing prescriptions for
magnetic braking and consequential angular momentum loss (specifically, extra
angular momentum loss resulting from successive nova eruptions) with observed
mass loss and angular momentum loss rates, I present preliminary evidence in
favour of nova eruptions being the dominant source of excess angular momentum
losses. These findings are limited primarily by the poorly understood and poorly
characterised M dwarf mass-radius relationship, a problem likely to be mitigated
with the release of Gaia DR3.
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Chapter 1

Background, context, and

motivation

1
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Figure 1.1: A schematic of the structure of a CV, not to scale. The black dashed
line outlines each Roche lobe. The dark blue circle is the white dwarf and is
surrounded by its accretion disc. The lower red teardrop is the secondary star,
and is connected to the donor via the mass stream. The light blue spot where
the mass stream meets the disc is the bright spot impact region.

Cataclysmic Variable (CV) systems consist of a white dwarf primary, and a

lower mass red dwarf secondary star. The two are in extremely close proximity,

such that the outer layers of the secondary are gradually accreted onto the white

dwarf; this mass transfer process affects the evolution of both stars, in particular

the donor, and is the main driving mechanism for the evolution of the system as

a whole. The mass transfer also gives rise to two more observable features of a

CV: an accretion disc around the white dwarf, and a shock-heated bright spot

region where accreted donor material impacts the outer rim of the disc (Warner,

1995; Hellier, 2001). Figure 1.1 shows a schematic of this structure.

Systems actively undergoing mass transfer are important to our understand-
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ing of stellar evolution. A diversity of stars will experience a mass transfer phase,

and losing mass strongly influences a star’s evolutionary path and must be ac-

counted for (e.g. Renzini 1981; Smith 2014 for single stars, or Hurley et al. 2002

for binaries). Of such systems, CVs in particular are interesting as modelling

their eclipse light curves can yield precise, independent measures of both stars’

mass and radius (Wood & Crawford, 1986; Littlefair et al., 2008; Savoury et al.,

2011). Further, since the donor stars’ evolution is dominated by its mass loss,

CVs provide a window into binary evolution (Knigge, 2006). The mass loss itself

is driven by poorly-understood mechanisms, classically attributed to stellar mag-

netism and gravitational waves, that can also be probed using CV observation

and modelling.

Since CVs can have directly observed orbital separations, stellar masses, and

radii, they gain additional powerful diagnostics, in addition to parameters acces-

sible with more general techniques such as spectroscopic analysis. The ability to

thoroughly characterise CVs makes them an excellent test-bed for binary mod-

elling, and the complex processes that contribute to their evolution. Unfortu-

nately, whilst reasonably accurate semi-empirical modelling of most of the CV

evolutionary track and population distribution has been possible for more than a

decade (e.g. Knigge et al. 2011; Paxton et al. 2015), the field has yet to produce

physically motivated theoretical models capable of accurately reproducing either

the CV population distribution or complete evolutionary track, indicating some

shortfalls in our understanding (Schreiber et al., 2015; Schreiber et al., 2016). Of

most significance to this work is the problem of missing Angular Momentum Loss

(AML), where CVs with low mass donor stars appear to be losing angular mo-

mentum much faster than our models predict (Schreiber et al., 2016). This first

chapter will summarise the current understanding of CV formation and evolution,

with a focus on the issues with CV evolutionary models.

1.1 Roche geometry

Before discussing the formation, structure, and evolution of CVs, it is first critical

to understand Roche lobes. In a two-body orbital system, the Roche potential of a

point is an effective potential in the non-inertial, co-rotating frame of reference. It

is given by the sum of the gravitational potential energies due to the two masses,

and the potential energy arising from centrifugal force. This can be described
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Figure 1.2: Showing the Roche potential in the neighbourhood of the binary
system, with the more massive primary star on the left. Darker regions are lower
potentials, lighter regions are higher potentials. The red line illustrates the
Roche lobes.

mathematically for each position vector:

ϕ = − GM1

|r− r1|
− GM2

|r− r2|
− 1

2
(Ω× r)2 (1.1)

Where ϕ is the Roche potential, G is the gravitational constant, r is the position

vector being considered relative to the centre of mass, and Ω is the angular

momentum vector of the binary. M1,2 and r1,2 are the masses and position vectors

of the two orbiting bodies, measured from the centre of mass. Figure 1.2 shows

this graphically.

There are five key locations in the Roche potential, called Lagrange points.

The first Lagrange point, L1, is the point at which a small (co-rotating) mass

is attracted both equally and oppositely by both bodies, and their effects are

cancelled out. The line of constant potential that passes through L1 gives two

teardrops joined at the tips, and the teardrop encapsulating an object is known as

its Roche lobe. Matter that lies beyond the Roche lobe is no longer gravitationally

bound to that body, and will leave the surface of the object. If the matter crosses

into the other object’s Roche lobe, the material will fall onto that body, otherwise
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the material will be ejected. Ejected material will no longer be in a stable orbit,

and will go on to either be ejected from the system entirely, or find a new higher

orbit where the two-body effects are negligible.

The shape of the Roche lobes are non-trivial to calculate, and must be done

numerically. However, approximations exist for the volume-equivalent radius of a

Roche lobe (that is, the radius of a sphere of equivalent volume). Most commonly

used is the Eggleton (1983) approximation,

RL

a
=

0.49q2/3

0.6q2/3 + ln(1 + q1/3)
(1.2)

where a is the orbital separation, and q is the mass ratio of the system, M2/M1.

This formula is accurate to within ∼< 1% for all values of q. In CVs, where the

secondary star is completely filling its Roche lobe, RL makes for a reasonable

approximation for the secondary stars’ radius though note that the lobe is non-

spherical, as can be seen in Figure 1.2.

1.2 Accretion in CVs

Accretion physics is important to the appearance and behaviour of a CV. Whilst

it is summarised here, more in-depth descriptions can be found in Warner (1995);

Hellier (2001); Ritter (2010a).

When the donor star overfills its Roche lobe, matter is ejected from its surface

at thermal velocities, ∼ 10km s−1 for a 5000K M dwarf, which is small compared

to the orbital velocity of the system (M dwarf velocities of ∼ 400 − 500 kms−1

are common in the observations reported in Chapters 4 and 5). Since the ejected

material is effectively stationary as it leaves the donor, it falls along a ballistic

trajectory towards the white dwarf primary and forms an accretion disc around

it.

Disc material gradually loses angular momentum and gravitational potential

energy due to its viscosity, which acts over time to concentrate the majority of

the disc’s angular momentum in the minority of the disc’s mass, ejecting some

material at high velocities at the expense of moving the remainder closer to the

white dwarf. This viscosity partially arises from friction within the fluid of the disc

but the main source is thought to be from turbulence – random eddy currents

moving material to different radii. This form of turbulence in a thin disc was
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formalised in the alpha disc model by Shakura & Sunyaev (1973), where viscosity,

ν, is related to scale height, H, and the speed of sound, cs, by a free parameter,

α.

ν = αcsH (1.3)

Since turbulent eddies cannot be larger than H or have velocities greater than cs,

csH forms the upper limit of ν, and α is limited in this model to values between

0 and 1. In typical CV accretion discs (i.e. quiescent discs, see §1.3.5), α takes

values from ∼ 0.01− 0.05 (Hellier, 2001).

Material that enters the disc must lose gravitational potential energy before it

can be accreted to the white dwarf surface. Approximately half of this energy is

lost thermally, through radiating accretion light, and the other half is converted

to the kinetic energy necessary to maintain orbit about the white dwarf at lower

altitudes. This low orbit has typical velocities roughly an order of magnitude

higher than the rotational velocity of the white dwarf, so for material to settle

on the stars’ surface it must dissipate a large amount of kinetic energy. A region

between the inner edge of the disc and the surface of the white dwarf where

this deceleration occurs is called the boundary layer, and can be a significant

contributor to the total brightness of a CV.

As the white dwarf is accreting material onto its surface, one might expect

it to grow in mass over time, and possibly even detonate as a type Ia supernova

when it crosses the 1.4M⊙ Chandrasekhar limit. This postulation is supported

by the white dwarfs in CVs being significantly more massive than their singleton

counterparts (Zorotovic et al., 2011), but were this the case one would expect

there to be a relationship between age and white dwarf mass. McAllister et al.

(2019) searched for this relationship, but found no correlation between the two,

indicating that the white dwarfs in CVs do not grow over time, and are unlikely to

reach the Chandrasekhar limit. Growth is thought to be limited by the accreted

material cyclically detonating, in events called Classical Novae outlined in §1.3.4

(Wijnen et al., 2015; Sparks & Sion, 2021). Serial detonation is even invoked as a

potential source of AML, dubbed Consequential AML (CAML), that is described

in §1.5.6.
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1.3 CV variability and subtypes

Several subtypes of CV exist that can lie significantly outside the normal evolu-

tionary tracks, contain exotic components, or undergo outbursts. In addition, it is

common for CVs to display a significant short term, stochastic variability, known

as flickering. This quasi-random noise is not fully understood, but is known to

be localised to the vicinity of the white dwarf or bright spot (Horne & Stiening,

1985; Bruch et al., 1996; Bruch, 2000), though does not appear to lie directly on

it. Here I briefly describe the various subtypes of CVs, though note that only

quiescent CVs are suitable for analysis in this work.

1.3.1 Brown dwarf donors

The formation channel of CVs does not require that the secondary star meets any

minimum mass requirement, and it is theoretically possible to form a CV with

a substellar brown dwarf donor (Politano, 2002, 2004). Because the donor is so

small, these systems can form well below the theoretical minimum period (see

§1.5.3), between 46 minutes and 2.5 hours (Politano, 2004). CVs are observed

with extremely short orbital periods, but observational evidence of these hosting

brown dwarfs is rare. However, some tentative candidates do exist, for example

in SDSS J150722.30+523039.8 (initially Littlefair et al. 2007, though contested

by Uthas et al. 2011)

1.3.2 Magnetic CVs

It is possible for white dwarfs to have very strong magnetic fields, in the region

of tens to hundreds of megagauss. Such white dwarfs are called polars and are

an interesting field of study in their own right, but when a polar is accreting

material from a donor star the system is designated as an AM Her star and the

intense magnetic field strength alters the CV in a two main ways. The strong field

lines of the polar mean that the hot, charged photosphere material transferred

to the primary cannot form an accretion disc and instead falls directly onto the

surface of the white dwarf. The impacting material forms a bright spot on the

white dwarf surface, which is usually bright enough to be visible from Earth. In

addition, the strong field lines force the white dwarf to become tidally locked to

the donor star.
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There is also a subclass of magnetic CVs with weaker field strengths of a few

megagauss, known as DQ Her stars. In these systems, the white dwarf is not

tidally locked, and a partial disc can exist.

1.3.3 Helium-rich CVs

A small number of CV donors are helium-rich, with much smaller radii than their

hydrogen-rich counterparts; these can be semi-degenerate helium stars, the cores

of highly evolved main sequence stars, or a second white dwarf. As a CV donor

must be in contact with its Roche lobe, such systems are far more compact than

usual, with orbital periods ∼< 65 minutes. Such systems are AM CVn stars, after

the prototypical system AM Canum Venaticorum. For further discussion on AM

CVn stars, see Solheim (2010).

1.3.4 Classical Novae

The white dwarf in a CV is almost constantly accreting matter onto its surface.

Over time this surface layer can build up, and is placed under immense pressure by

the gravity of the white dwarf. Eventually, pressures rise enough to force material

at the boundary to become degenerate, and once hot enough this boundary layer

can begin nuclear fusion. Since the accreted material is degenerate, it cannot

expand in response to the energy injected by fusion and heats further, leading to

more and more fusion and culminating in a complete detonation of the accreted

material on the white dwarf’s surface (Warner, 1995). This detonation heats the

material enough to lift degeneracy, and the accreted material is blown from the

surface. These are recognised by a significant brightening of the system of between

6 and 19 magnitudes, lasting anywhere from a few days, to several months.

Once a system has experienced a classical nova, it is classified as a CNe system.

(Warner, 1995). However, theory suggests that all CVs experience classical novae

many times over their lifetimes. The required amount of accreted material for

the nova to occur depends on the white dwarf mass, but lies between 3×10−5M⊙

of hydrogen for a 1.3M⊙ white dwarf, and 5× 10−3M⊙ for a 0.6M⊙ white dwarf

(Hellier, 2001). Typical CV accretion rates are around 10−9M⊙ yr−1 for long

period systems, and 10−10M⊙ yr−1 for short period systems (Hellier, 2001; Pala

et al., 2021), suggesting classical novae recur every few million years, or every few

tens of thousands of years at most.
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The amount of material retained by the white dwarf is likely negligible. Both

population synthesis (Wijnen et al., 2015) and observations (McAllister et al.,

2017a) indicate no evidence of mass growth over time for the white dwarfs in

CVs, and hence that the expulsion of the accreted material in a classical nova is

complete.

A final note is that some CVs show multiple classical novae in relatively quick

succession (Schaefer, 2010). These Recurrent Novae (RNe) are distinguished by

having more than one observed nova event recorded. As good quality data only

exist for the last few centuries, this enforces a soft limit on recurrence interval of a

few hundred years, though recent efforts have been made to search ancient records

for candidate events (Hoffmann & Vogt, 2022). Only a handful of confirmed RNe

are known; the variable star index (Watson et al., 2006) only contains 12 systems

classified as RNe.

1.3.5 Dwarf Novae

CVs also undergo less extreme brightening events, called dwarf nova outbursts.

These brighten the system by between 2 and 5 magnitudes (Warner, 1995) and are

more brief than typical CNe, lasting less than ∼ 20 days. However, in contrast to

CNe, they have recurrence times much more in line with human timescales, rang-

ing from a few days to some decades. This is due to the fundamental difference in

the physical origin of the two phenomena. Dwarf nova outbursts do not originate

directly from either star in the system, but rather from the accretion disc around

the white dwarf. Such outbursts are well-described by the disc instability model

(Cannizzo, 1993; Dubus et al., 2018).

Initially, the disc is in a cooler, “low” state with low temperature, low surface

density, and low viscosity. Material in the disc moves inwards due to friction

from turbulence (see §1.2) which is relatively weak in the low viscosity material,

so radial movement of disc material is slow.

If the accretion rate of donor material exceeds the rate material falls onto the

surface of the white dwarf, then a build-up of matter begins in the outer regions

of the disc, raising the density and temperature. Eventually, this annulus reaches

∼ 7000K, at which point hydrogen becomes partially ionised and a rapid further

increase in temperature is triggered as the material becomes optically thick and

heat is trapped in the disc. In addition, as the temperature and density rise, so

does cs, and following Equation 1.3, so does viscosity, even assuming constant
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α. In fact, α rises during outburst, to α ∼ 0.1 − 0.5 (Hellier, 2001). This hot,

luminous, “high” state is again stable, and the disc is said to be in outburst.

Now that the disc is more viscous, material is moved inwards more readily.

The infall rate onto the white dwarf is significantly increased, and is now higher

than the mass transfer rate, so the disc is drained onto the surface of the white

dwarf. As it does so, the surface density and temperature begin to fall, and

eventually protons and electrons recombine into hydrogen. Recombination is

an exothermic process, but the release of energy is outweighed by the material

once again becoming optically thin and allowing radiation to more easily escape

the disc. The disc then quickly cools back down to the quiescent, “low” state,

returning to a low surface density, and the cycle can repeat. For a more in-depth

consideration of this model, refer to discussions by Cannizzo (1993), Osaki (1996),

and Hameury (2002).

Three types of dwarf novae exist, which exhibit somewhat different behaviour

than what is outlined above. The first of which are SS Cyg stars, distinguished by

very consistent amplitudes across outbursts, though there is variation in length,

shape, and recurrence time.

Z Cam stars exhibit standstills, events where the system enters outburst, peaks

in brightness, then begins to dim. However, rather than returning to its quies-

cent magnitude, the brightness is maintained ∼ 1 − 1.5 magnitudes below peak

brightness for a long period of time, typically between a few days, and a few years

(Simonsen et al., 2014).

The third subtype are SU UMa stars. These systems are known for their

more complex behaviour, exhibiting superoutbursts and superhumping, and are

described in §1.3.6

1.3.6 SU UMa stars

SU UMa stars are distinguished by exhibiting superoutbursts, similar to the regu-

lar dwarf nova outbursts that the star still undergoes, but with greater amplitudes

and durations, and longer recurrence times. These outbursts are triggered by the

disc radius growing to such an extent that it begins to be tidally perturbed by the

donor star, and becomes elliptical. This can only take place when the donor star

is less than ∼ 1/3 the white dwarf mass, so only short period systems see these

superoutbursts. (Hellier, 2001). SU UMa stars are known for their superhumps,

which also arises from the disc eccentricity. The tidal interaction between the
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disc and the donor produces an area of increased luminosity at the edge of the

disc between the white dwarf and the donor (Warner & O’Donoghue, 1988). As

the disc is elliptical, the distance between this disc edge and the donor varies

over the course of an orbit, causing variation in brightness as the donor moves

around the disc. These fluctuations are the superhumps, and are useful as they

provide a diagnostic to the mass ratio for the system as the (Patterson, 1998,

2001; Patterson et al., 2005).

Because of the strong influence of the donor, the disc is subject to precession,

with a precession rate slightly longer than the orbital period. The superhump pe-

riod, Phump is then a combination of the orbital period, Porb, and the precessional

period Ppr,
1

Phump

=
1

Porb

− 1

Ppr

(1.4)

and whilst Ppr is difficult to observe, both Porb and Phump can be readily observed

with photometry. Since the precession period is dependant on the mass ratio and

the disc radius, by finding the superhump period of eclipsing CVs an empirical

relationship can be found between the superhump excess, ϵ, and the mass ratio

of a CV, where:

ϵ =
Phump − Porb

Porb

(1.5)

and several papers exist discussing and calibrating this relationship, see McAllister

et al. (2019) and Kato (2022) for some recent calibrations and a good starting

point for more information.

1.3.7 Novalike systems

The disc instability model applies to CVs with mass transfer rates that are high

enough to exceed the infall rate onto the CV during the “low” state, but low

enough that the “high” state can drive a net loss of mass from the disc. However,

a subset of CVs have mass transfer rates high enough to sustain the high state

and maintain a permanent outburst mode. Such systems are called novalikes.

Most novalike CVs show little variation besides the stochastic flickering seen

in most CVs, though a small number known as VY Scl stars do occasionally enter

“low” states and dip in brightness by several magnitudes. Livio & Pringle (1994)

propose that this is triggered by a starspot rotating into the L1 point causing a

fall in mass transfer rate. This fall is because the stellar surface in a starspot is

lower than at the unspotted surface, causing the donor to temporarily disconnect
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from the L1 point whilst the L1 is covered with a spot. A competing theory from

Wu et al. (1995) proposes that the fall in brightness is caused by the irradiation of

the donor stars’ atmosphere driving mass transfer, and that when this irradiation

becomes blocked in some way, the mass transfer rate falls enough for the disc to

enter the low state for a short time.

1.4 CV formation

The formation of a CV begins with a binary system forming at a distance of

∼ 100R⊙. Crucially, the stars differ significantly in mass, one typically being

< 1M⊙ and the other > 1M⊙ (Ritter, 2012). The lifespan of a star falls as its

mass increases, so the larger star evolves faster than its companion, increasing in

radius as it does so. Eventually, the primary fills its Roche lobe, usually when

it ascends to the red giant branch. Once the outer layers of the primary contact

the Roche lobe, the L1 point forms a locus for mass to move from the massive,

evolved star onto the less evolved secondary star.

As mass moves away from the primary, and away from the centre of mass of

the system, it gains angular momentum. However, because angular momentum is

conserved within the binary this is offset by a drop in separation, and the radius

of the Roche Lobe, RL, contracts following Equation 1.2. More matter is now

outside the primary Roche lobe, encouraging further mass transfer and hence

further reduction in orbital separation (Ritter, 2010b).

With this positive feedback loop, the primary can quickly transfer its whole

envelope. The process is very rapid – so rapid that models have been unable to

properly resolve it, but is probably ∼ 102 − 103 years in duration (Ritter, 2012).

With this influx of mass, the secondary star grows and the accreted matter forms

a thick, bloated, deeply convective envelope on the star. The increased radius of

the secondary brings the two bodies into contact (Ritter, 2010b) and the stars

enter a common envelope phase of evolution. See Paczynski (1976) for an original

reference on common envelope evolution, or Ivanova et al. (2020) for a recent

review of the topic. For detail on this phase as it relates to CVs, see Taam et al.

(1978); Webbink (1984); Zorotovic & Schreiber (2010); Passy et al. (2011).

The common envelope phase transfers much of the secondary stars’ angular

momentum to the shared envelope, though the mechanism for this is poorly un-

derstood (De Marco et al., 2011). If the common envelope is substantial enough,
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all the energy can be removed from the orbit and the two stars will merge. If it

is not substantial enough, the entire common envelope is unbound from the stars

before a merger occurs, and the stars are left in a more compact orbit than when

the common envelope phase began. CV systems are the product of the latter

scenario - the common envelope is ejected via a strong wind, leaving the remnant

core of the primary as a white dwarf, and a low mass secondary companion M

dwarf still on the main sequence.

The common envelope phase can be parametrised with the energies involved,

namely the gravitational binding energy of the envelope, Ubind, and the change

in the angular momentum contained in the orbit before and after the common

envelope phase, ∆Uorb, as the common envelope efficiency parameter, α.

α =
Ubind

∆Uorb

(1.6)

This is known as the α formalism (De Marco et al., 2011), and is a good illustration

of how poorly the field understands CE evolution. α should be a metric that

can be predicted with models, but this has proven very challenging and several

competing frameworks exist (Ivanova et al., 2020).

The energy needed to liberate the envelope is expected to come from the orbit

of the binary, but some systems have been observed and characterised with α > 1.

suggesting that other sources, like the thermal output of the stars, can contribute

to the envelope ejection (De Marco et al., 2011; Ivanova et al., 2013). Common

envelope evolution remains a very difficult problem to solve, and only approximate

models currently exist (Ivanova et al., 2020), but the following scenario is generally

accepted as likely in the case of CVs.

For proto-CVs, α has been loosely estimated to be ∼ 0.2 − 0.6 (Politano &

Weiler, 2007), and some evidence exists for lower q systems having larger α (Passy,

2013). The ejecta carries with it angular momentum, causing orbital separation to

quickly fall from ∼ 100R⊙ to a few R⊙ (Politano & Weiler, 2007). Following the

common-envelope phase, angular momentum is shed through magnetic braking

and gravitational wave braking until the donor comes into contact with its Roche

lobe, a process that takes ∼ 1− 2 Gyrs. Mass transfer can then resume, though

this time in the more stable secondary-to-primary direction. The system is now

a CV, and its evolution from here will be dominated by AML and mass transfer,

detailed in §1.5.1.

Early population studies expect that under this formation process up to 50%
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of CVs should host a helium white dwarf (Politano, 1996), though to date this has

been difficult to test. Zorotovic & Schreiber (2010) examined a sample of post-

common envelope binaries and found only 13± 7% of the sample to be expected

to evolve into a CV containing a helium white dwarf. However, no confirmed

helium white dwarfs have been observed in CVs.

1.5 CV evolution

Once the system emerges from the common envelope phase, AML causes the orbit

to tighten until the less massive red dwarf secondary fills its Roche lobe. Converse

to during formation, mass transfer is now moving matter closer to the system’s

centre of mass, imparting angular momentum to the secondary as it does so. This

causes the orbit to widen, and increases RL. Hence, mass transfer now acts to

decrease further transfer (Ritter, 2010b), rather than exacerbate it.

To maintain mass transfer some mechanism is necessary to shed angular mo-

mentum and bring the secondary back in contact with its Roche lobe. Canonically,

two mechanisms are thought to drive this; gravitational wave braking, and mag-

netic braking (Knigge, 2006; Knigge et al., 2011). AML drives the two bodies

closer together and triggers mass transfer, and mass loss from the donor drives

it to retreat from the white dwarf primary. These two processes find equilibrium

when the donor is just barely overflowing its Roche lobe, and the angular mo-

mentum gained by the donor from mass transfer is offset by the AML from the

system. The mass transfer timescale of the donor is much shorter than its nuclear

timescale, so mass loss dominates its evolution and gives rise to a single, unified

CV evolutionary path.

There is a further complicating factor to consider; whilst the secondary is

losing mass, it is not in thermodynamic equilibrium. The outer layers are being

lost, which reduces the pressure on the core and so reduces the rate of fusion.

Below masses of ∼ 0.2M⊙, the thermal timescale is comparable to the mass loss

timescale (this is later demonstrated in §3.4), so the star is unable to cool and

contract to its equilibrium radius. This leaves the star hotter than it would be

under zero mass loss, and its radius increases proportionally to the mass loss rate

(Knigge, 2006; Knigge et al., 2011).



Background, context, and motivation 15

1.5.1 The classical picture of CV evolution

When two bodies orbit each other in space, the periodic warping of space-time

produces gravitational waves (Einstein, 1918) and these waves carry energy away

from the system, robbing it of angular momentum and reducing the orbital radius

(Paczyński, 1967). In CVs, the rate of momentum loss from gravitational waves is

small, so long timescales are needed to significantly alter the orbital period. Both

population synthesis models and evolutionary models of CVs do not match the

observed population distribution with gravitational braking alone, and magnetic

braking is thought to make up the deficit (e.g. Kolb (1993); Kolb & de Kool

(1993); Davis et al. (2008); Garraffo et al. (2018b)). A quantitative description

of the some magnetic braking models are given in §1.5.7. Before discussing the

braking mechanisms in CVs, it is important to review the classical understanding

of CV evolution

1.5.2 The effect of mass transfer on the binary

When mass moves from the donor to the white dwarf primary, the redistribution of

matter within the system must take place whilst conserving angular momentum.

The total angular momentum of the binary, J , is given by,

J = M1a1v1 +M2a2v2 = M1a1
2πa1
Porb

+M2a2
2πa2
Porb

(1.7)

where the distance from each star to the centre of mass is a1,2, and the velocity of

each star is v1,2. The binary separation between the stars is a = a1 + a2, and the

ratio between the stars’ distances to the centre of mass is the inverse of their mass

ratio, i.e. a2
a1

= M1

M2
. By substituting Porb for Kepler’s 3rd law, a simple equation

for J can be constructed,

J = M1M2

(
Ga

M1 +M2

)1/2

(1.8)

Now, by taking the natural log of both sides and differentiating with respect to

time, the following relation between the derivatives is found.

ȧ

a
= 2

J̇

J
+

(Ṁ1 + Ṁ2)

M1 +M2

+ 2
Ṁ1

M1

+ 2
Ṁ2

M2

(1.9)
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For the specific case where the total system mass is fully conserved, Ṁ = 0,

Ṁ1 = −Ṁ2, and J̇ ≡ 0 allows the above to be simplified,

ȧ

a
= 2

Ṁ1

M1

+ 2
Ṁ2

M2

= 2(q − 1)
Ṁ2

M2

(1.10)

or by similarly differentiating the logarithm of P 2
orb ∝ a3,

Ṗorb

Porb

=
3

2

ȧ

a
= 3(q − 1)

Ṁ2

M2

(1.11)

Equations 1.10 and 1.11 tell us how the binary responds to mass transfer. As

mass is lost from the secondary, Ṁ2 is negative and systems with q > 1 will have

their orbits contract, whilst systems with q < 1 will have their orbits widen in

response to mass transfer.

The effect of mass transfer on the Roche lobe is important to CVs, and must

be considered. A simpler, more easily manipulated alternative to the Eggleton

RL approximation (Equation 1.2) from (Paczyński, 1971),

RL

a
= 0.462

q

1 + q

1/3

(1.12)

although this only holds between 0 < q < 0.8 and is accurate to 2%. Taking the

logarithm, differentiating with respect to time, and substituting Equation 1.10,

ṘL

RL

=
ȧ

a
+

Ṁ2

3M2

=

(
2q − 5

3

)
Ṁ2

M2

(1.13)

However, this reveals the flaw in assuming fully conservative mass transfer (Ṁ ≡
0, J̇ ≡ 0), as this implies that for q < 5/6, RL will increase in response to mass

transfer. This is not compatible with continuous mass transfer without some

mechanism driving the stars closer together again (such as the nuclear expansion

of an evolved donor ascending the red giant branch, as during the CV formation),

and as most CVs are observed with q < 5/6 and do not possess such a mechanism.

Finally, the stability criteria for mass transfer can be evaluated using the

equations above. The maximum stable value of q can be found by considering the

mass-radius exponent of the donor (ξ), and its Roche lobe (ξL). For the donor, ξ
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can be found by simply differentiating the general equation R ∝ M ξ.

ξ =
d ln R2

d ln M2

(1.14)

Similarly, by using Equation 1.13,

ξL =
d ln RL

d ln M2

= 2q − 5

3
(1.15)

For stable mass transfer, the response of the Roche lobe must be less than

the response of the donor, ξ > ξL. This ensures that mass loss causes the star

to contract more than the Roche lobe contracts, and gives the following stability

criterion,

q <
1

2
ξ +

5

6
(1.16)

for which a theoretical value of ξ can be used to find the maximum q. For a

low mass, main sequence star (M < 0.8M⊙), ξ ≃ 0.8 (Knigge et al., 2011) and

q < 1.23. Below M2 ∼< 0.43M⊙, the star becomes deeply convective and ξ falls

sharply to ξ = −1/3 (Paczyński, 1965; Rappaport et al., 1982), and q ∼< 2/3.

1.5.3 Period evolution and key population features

The orbital period of a CV can be measured by tracking either their spectroscopic

radial velocities (e.g. Gänsicke et al. 2009), or the timings of repeating features

in their light curves (e.g. Littlefair et al. 2008). Once this has been done for a

large enough sample (Southworth et al., 2015), a histogram of the periods can be

plotted. This plot, shown in fig. 1.3, has three immediately obvious features:

� a long period cutoff, as the number of systems taper off after ∼ 12hrs

� a period gap at ∼ 2− 3hrs

� a period minimum at ∼ 1 hour, with a pile-up of systems just above it.

Each of these features are discussed in turn.

The period maximum

There are three constraints on a CV pertinent to the maximum allowable period.

The mass ratio, q = Mdonor

Mwd
, must be low enough for thermally stable mass transfer
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Figure 1.3: Reproduced from Southworth et al. (2015), Figure 14. The orbital
period distribution of RKCat (Ritter, H. & Kolb, U., 2003) CVs identified by the
SDSS (white histogram) and of the subset of these which are eclipsing (grey
histogram). The light grey shaded region illustrates the period gap at 2.1 -
3.1 hours. The periods have been collected into histogram bins which are of equal
size in log space.
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(q < 1.23 from §1.5.2, here approximated as q = 1.0), the donor radius must be

approximately equal to the Roche radius, and maximum mass of a white dwarf

is well known to be limited to ≤ 1.4M⊙ before triggering thermonuclear runaway

(Schönberg & Chandrasekhar, 1942).

Now, to find the theoretical period maximum, one must simply find the period

corresponding to the largest possible donor star. Warner (1995) shows that the

average density, ρav, for objects that fill their RL follows a robust relationship;

ρav
ρ⊙

= 75.9P−2
orb(h) (1.17)

Knigge et al. (2011) derived a connection between CV secondary mass and radius,

M2 & RL. This can be manipulated to produce a mass-period relationship,

ρav =
3M2

4πR3
L

≃ 75.9P (h)−2 (1.18)

RL

R⊙
= C ·

( M2

D ·M⊙

)α
(1.19)

where C and D are constants for a particular regime, i.e., short-period, long-

period, or period bouncer, and α is the mass-radius index (Knigge, 2011). Com-

bining the above gives a pleasingly simple relationship.

M
(1−3α)
2 ∝ P−2 (1.20)

For long-period CVs, α = 0.67 ± 0.04 (Knigge et al., 2011), and equation

1.20 becomes M1.01
2 ∝ P 2, and larger secondary masses require longer periods.

The theoretical maximum secondary mass of 1.4M⊙ corresponds to a period of

∼ 12hrs, though in reality these higher mass donors are rarer and the frequency

of CVs at these higher periods begins to drop much earlier, at ∼ 6hrs (Gänsicke

et al., 2009).

The period gap

Between periods of around 2-3 hours, there is a dramatic fall in the number of

CVs detected and volume-limited samples indicate that this is a real effect and

not a selection bias (Kolb et al., 1998; Pala et al., 2020). The origin of this gap

in the period distribution is something of an open problem.

Models indicate that long period systems (P > 3h) have far higher mass loss
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rates than short period systems (P < 2h) (Ritter, 1985). This suggests a signif-

icant change in braking mechanisms between the two regimes. Recall that the

donor star is inflated by mass loss (§1.5). If the cutoff of angular momentum loss

is sharp, i.e. magnetic braking suddenly ceases, the donor is allowed to contract

to its equilibrium radius and disconnects from its Roche lobe, shutting off mass

transfer. The system is still subject to gravitational radiation, however, so grad-

ually continues to evolve towards shorter periods. Once the secondary reconnects

with its Roche lobe, mass transfer resumes and the system again presents itself

as a CV, emerging from the period gap at a ∼ 2hr period (Kolb, 2002).

The disruption of magnetic braking was proposed early on to explain the

period gap (Rappaport et al., 1983; Spruit & Ritter, 1983), and relatively shortly

after Kolb & de Kool (1993) showed more quantitatively that a sub-class of purely

gravitational braking CV systems does not reproduce the observed population.

The classical evolutionary path of CVs has involved the secondary becoming fully

convective which was thought to disrupt the magnetic field and so cease magnetic

braking (Knigge et al., 2011). Davis et al. (2008) used population synthesis to

demonstrate that, if the period gap is caused by disrupted magnetic braking,

this may affect the mass function of quiescent CVs that are moving through the

gap. They expect an excess of non-transferring CVs over low mass post-common

envelope CVs that emerge from the common envelope phase directly into the

period gap. These should form at a predictable rate across q, but due to the

slow crossing of quiescent CVs the latter ‘pile up’ in the gap - a detectable effect

observed by Zorotovic et al. (2011).

The period minimum, and period bouncer systems

The period minimum was first predicted by Rappaport et al. (1982), and can be

understood by considering the two governing timescales affecting the secondary.

For donors with masses above ∼ 0.1M⊙, the donor is contracting in response

to mass loss. As this proceeds, both the Kelvin-Helmholtz (a.k.a. thermal)

timescale, τKH, and mass transfer timescale, τṀ , are increasing (the latter due

to Ṁ2/M2 rising as the period shrinks). However, τKH rises faster, and at a pe-

riod of ∼ 80 minutes (Ritter & Kolb, 1998; McAllister et al., 2019), τKH exceeds

τṀ , causing the donor to lose mass adiabatically and expand rather than contract

in response to mass loss. This allows the donor to remain in contact with its

Roche Lobe when mass loss raises it to a higher orbit, and the system evolves to
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longer periods over time.

More quantitatively, as the components of a short period CV move closer

together and the donor falls in mass, τKH and τṀ become more out of balance,

corresponding to α in equation 1.20 decreasing (Knigge, 2011). A main-sequence

star will have α ∼ 1, but a secondary subjected to fast, adiabatic mass loss will

have α ≃ −1/3. Looking at the gradient of equation 1.20, the existence of a

period minimum can be easily seen.

Ṗ

P
=

(3α− 1)

2

Ṁ2

M2

(1.21)

When α ≤ 1/3, a negative Ṁ will produce a positive change in P , and the donor

begins to retreat from the white dwarf (Rezzolla et al., 2001).

This has been confirmed by Knigge et al. (2011), who found that for period

bouncer CVs, α = 0.21+0.05
−0.10, giving the following empirical version of equation

1.20 in the post-period minimum regime.

M2 ∝ P−5.4 (1.22)

1.5.4 Problems with the classical picture

A solid knowledge of exactly how and why CVs lose angular momentum has re-

mained surprisingly elusive for several decades now. Early theories established

gravitational waves and magnetic braking as the two main sources of AML, but at-

tempts to quantify this with evolutionary models and population synthesis models

consistently fall short. Gravitational losses are well understood, and have been in-

dependantly observed and studied, but the sources and consequences of magnetic

braking are not so easy.

1.5.5 The missing AML problem

The evolution of CVs is driven by the donor stars. The orbital period is deter-

mined by the mass-radius relationship of the donor under mass loss, and the decay

of the orbit should simply result directly from the two braking mechanisms (grav-

itational and magnetic). Figure 1.4 shows the relationship between the donor

mass and orbital period, and the single unified CV track can be seen in the ob-

servations. CV evolution models can be built to try and reproduce this track,
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and indeed at long periods, our understanding of those mechanisms seem robust

enough to produce models that satisfy observations. The period gap can, with

some manual tweaks, also be reproduced with some accuracy. Unfortunately, at

short periods (∼< 2 hours), the data begin to diverge from models (Knigge, 2006;

Knigge et al., 2011).

Section 1.5 describes how the donor’s mass-radius relation is altered by the

presence of continued mass loss. The donor is larger than a singleton of the same

mass, as the mass loss timescale is comparable to the thermal timescale and the

donor is not quite able to maintain thermal equilibrium (Knigge et al., 2011).

The degree of this inflation increases with more rapid mass loss. As mass loss is

driven by AML, it follows that a CV donor that has stronger AML will have a

larger radius, and therefore sit at a longer period than a CV with weaker AML,

altering the gradient of the tracks in Figure 1.4 at periods of ∼< 3 hours. In this

way, the shape of the tracks in Figure 1.4 is a diagnostic of the form of AML

experienced by a CV across its lifetime (Knigge et al., 2011).

Knigge et al. (2011) used observations of donor masses and radii and attempted

to recreate the donor evolutionary sequence. An unknown additional source of

AML was added to their models, simply scaled relative to gravitational braking.

This unknown contribution to AML is motivated by the disagreement between

data and the model that omits this source. Knigge et al. (2011) find that the

best-fit model to their data uses an excess braking below the period gap that

is 1.47 × J̇GR, where J̇GR is the AML due to gravitational waves. Figure 1.4 is

reproduced from their work, and shows the significant improvement in agreement

with data.

Pala et al. (2017) used the effective temperatures of the white dwarfs to probe

CV evolution. The white dwarf temperature can be enhanced by accretion, so

a hotter white dwarf suggests a higher mass transfer rate. This is sensitive to

changes in Ṁ on relatively short timescales (∼ 104 yrs), but still provides a valu-

able insight. Pala et al. (2017) compare their white dwarf temperatures (and

therefore mass transfer rates and AML rates) to MESA CV evolutionary tracks,

and find that their observed temperatures are poorly described by only gravita-

tional AML, but are more well described by models that includes excess AML

equivalent to gravitational losses, i.e. double-strength gravitational AML.

The disagreement between theory and observation at short periods indicates

that our understanding of AML in this regime is lacking, and a few proposals to
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Figure 1.4: Reproduced from Knigge et al. (2011). Black markers are data from
superhumpers, Red markers are data from eclipsers. Crosses denote candidate
period bouncer CVs, Squares are short-period CVs, and Circles are long period
CVs. Open symbols are omitted from their analysis due to lying in the period
gap. The Dashed Black lines are their ‘standard’, näıve model, and the Solid
Red line includes an empirically determined excess AML source, scaled to grav-
itational wave braking. In the top panel, the Vertical black line signifies the
observed period minimum, with the grey region as the FWHM of the period spike
as measured in Gänsicke et al. (2009).
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rectify this have been suggested.

The obvious solution to the problem of missing AML is that we simply do not

understand magnetic braking well enough to say that it fully disappears below

the period gap. The donor may retain a residual magnetic field strong enough

to drive some weaker form of magnetic braking that remains after the bulk of

magnetic braking ceases, a.k.a. residual magnetic braking.

The period gap is frequently attributed to a fall in magnetic braking when

the donor becomes fully convective, due to a large reduction in magnetic field

strength. However, observations of field M dwarfs of similar masses, with convec-

tive envelopes, are seen with key tracers of magnetism. Specifically, X-ray obser-

vations find that the coronal magnetic energy dissipation of fully convective stars

is similar to non-convective stars (Wright & Drake, 2016), and Zeeman-Doppler

imaging of rapidly rotating M dwarfs indicate that magnetic fields remain strong,

whilst the complexity of surface magnetic fields increases alongside rotation rate

(e.g. Petit et al. 2003; Donati & Landstreet 2009; Marsden et al. 2011; Waite

et al. 2011, 2015). Together, these observations strongly indicate that the dis-

rupted magnetic braking model commonly accepted is ill-motivated, and may be

more closely tied to field complexity than field strength (Garraffo et al., 2018b).

If the gap is indeed driven by a sudden increase in field complexity, then it is rea-

sonable to assume that magnetic braking may remain significant after the system

emerges from the period gap.

Magnetic braking is not the only possible explanation for excess AML, and

another strong candidate is consequential AML. This mechanism is discussed

below.

1.5.6 Consequential AML

Consequential AML (CAML) is an additional source of momentum loss, originally

motivated physically as a second source of magnetic wind emanating from the

inner regions of the white dwarf accretion disc (King & Kolb, 1995; Schenker

et al., 1998). In more modern considerations of CAML, the excess loss is explained

as nova events temporarily immersing the system in a viscous medium, causing

drag on the two bodies and reducing their orbital separation (Schreiber et al.,

2016). In each case, this AML is “consequential”, in the sense that they rely on

either a pre-existing disc to be present or the white dwarf to be accreting enough

mass to trigger novae, and the CAML disappears in the absence of existing AML.
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By modelling CV evolution including this process, several issues of older CV

population synthesis and evolutionary models can be solved at once (Schreiber

et al., 2016). These issues are:

1. the observed mass of CV white dwarfs is systematically higher than singleton

white dwarfs (e.g. McAllister et al. 2019; Pala et al. 2020);

2. since the short period regime has much lower AML rates, CVs should spend

most of their time below the period gap, and ∼ 99% of CVs are expected to

be short period (Kolb, 1993), but observations see a less severe imbalance

between long (17%) and short (83%) period systems (Pala et al., 2020);

3. under purely gravitational losses, the period minimum was first calculated

at ∼ 67 minutes (Kolb & Baraffe, 1999), but is observed at ∼ 79 minutes

(McAllister et al., 2019);

4. the space density of CVs is roughly 1-2 orders of magnitude lower than

population synthesis models predict.

The introduction of a modified, empirically calibrated CAML produces models

that do not suffer from these issues, making a compelling case for its use – though

it is unsurprising that observations can be matched by the introduction of an

unrestricted free parameter.

The maximum dynamically stable mass transfer rate of a CV is a function

of q, related via the adiabatic mass-radius exponent, ξad, and the mass-radius

exponent of the Roche radius, ξL. Where the two intersect forms a threshold

beyond which runaway mass transfer (much like the pre-CV common envelope

phase) is triggered, and most likely results in a merger between the two bodies.

Similarly to the derivation in §1.5.2,

ξad =
dln(R2)

dln(M2)ad
=

dln(RL)

dln(M2)
= ξL (1.23)

where ξad for convective stars is −1/3. Recalling the Eggleton approximation for

the Roche radius, Equation 1.2, we can find ξad(q) (Schreiber et al., 2016) in the

absence of CAML,

ξad =
2

3

ln(1 + q1/3)− 1
2

q1/3

1+q1/3

0.6q2/3 + ln(1 + q1/3)
(1 + q) + 2(q − 1) = −1/3 (1.24)
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Solving this equation gives a critical maximum value of q ∼< 0.634. However,

under CAML, extra sources of J̇ are introduced. For example, under the classi-

cal non-conservative construction, J̇CAML is due to nova ejecta carrying angular

momentum away from the system as it leaves, contributing

J̇CAML

J
= ν

Ṁ2

M2

(1.25)

Here, ν = M2
2/(M1(M1+M2)) and encapsulates the assumption that the angular

momentum carried by ejected nova material is equal angular momentum to the

white dwarf. The right hand side of Equation 1.23 is then altered by the increased

AML rate.

ξad =
2

3

(
ln(1 + q1/3)− 1

2
q1/3

1+q1/3

0.6q2/3 + ln(1 + q1/3)

)
+ 2ν +

M2

M1 +M2

− 2 (1.26)

The effect of this altered form of ξad is that CVs with higher mass ratios are stable.

Binary population synthesis models by Schreiber et al. (2016) demonstrate that

this model is not compatible with observations, producing more CVs with low

mass donors than the non-CAML model and actually performing worse than

models that don’t include this version of CAML. However, by altering the form

of ν so that it is no longer tied to the white dwarf’s angular momentum, a much

better agreement with observations can be reached. This is the empirical CAML

model, or eCAML.

ν is altered to a simple function of the white dwarf primary mass,

ν(M1) =
C

M1

(1.27)

where C is an arbitrary constant chosen to best reflect observations, and (Schreiber

et al., 2016) adopt values of C = 0.3−0.4. The inverse relationship of more CAML

at lower white dwarf masses is motivated by lower mass systems ejecting nova ma-

terial at a lower velocity, meaning the binary is immersed in a friction-generating

medium for longer and imparting more energy into the ejecta.

With eCAML, the dynamically unstable region is expanded. This has the

important effect of making CVs with low-mass white dwarfs prone to dynamically

unstable mass transfer (see §1.5.2), removing them from the CV population – this

simultaneously answers the question of CV white dwarfs being more massive than
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expected, and also vastly lowers the space density (Belloni et al., 2018). Finally,

the majority of systems that are now dynamically unstable are short-period CVs,

so the observed period distribution is significantly better reproduced. Figure 1.5 is

reproduced from Schreiber et al. (2016), and shows the three dynamically unstable

regions graphically.

Some observational evidence for eCAML has recently been uncovered by Pala

et al. (2021), where an inverse correlation between white dwarf mass and mass loss

rate was observed. This is in line with Equation 1.27. Also, low mass (< 0.5M⊙)

helium-core white dwarfs are expected to be formed in binaries, but are frequently

observed as singletons. The merger scenario under eCAML provides a neat expla-

nation for this (Zorotovic & Schreiber, 2017). In addition, Sparks & Sion (2021)

observed the spectra of CV donors and found significant non-solar abundances,

indicating that after nova outbursts, some of the nova-processed material is re-

tained in the system long enough to be accreted onto the donor, and is supportive

both of lower mass white dwarfs having a lower eCAML contribution, and of the

donor being immersed in nova material long enough to accrete significant amounts

of it.

1.5.7 A review of modern magnetic braking theories

The M dwarf secondary of a CV will emanate some wind, made up of charged

ions, and have some magnetic field which co-rotates with the star. Consider a blob

of charged wind material, moving with some sideways velocity in the plane of the

orbit, almost certainly slower than the magnetic field lines. The blob will interact

with the field and be accelerated to co-rotate with them. This higher velocity

causes it to move outwards, to a higher orbit, where the field lines are moving

even faster, accelerating the blob more. As the wind material is accelerated, it

exerts a drag force on the magnetic field of the donor and slows its rotation rate.

The close proximity of the binary means that tidal effects are strong, and the

donor is spun up again by robbing the orbit of angular momentum, reducing the

binary separation and hardening the binary (Verbunt & Zwaan, 1981).

As an aside, Wickramasinghe et al. (1996) presented theoretical motivation

that the white dwarfs in CVs can have too strong a magnetic field to allow mag-

netic braking. Open field lines are necessary for wind to escape the system, so

too strong a white dwarf magnetic field can trap the ionised gas in-system, sup-

pressing the wind of the secondary. Evidence for AML suppression under strong
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magnetic fields has been found in binary population synthesis models that fo-

cus on magnetic CVs (Belloni et al., 2020). The models that include magnetic

wind suppression under a strong white dwarf magnetic field result in a better fit

to key CV observables – specifically the orbital period distribution, white dwarf

temperature distribution, and space density.

When building a magnetic braking model, assumptions must be made about

the effects of the magnetic field strength and field geometry, as well as how the

wind speed scales with the donor’s mass, radius, and rotation rate. The adopted

values for these free parameters are tuned to match open cluster data, as open

clusters can have their ages determined, and the masses, radii, and rotation rates

of the stars contained in them observed (e.g. Matt et al. 2015; Garraffo et al.

2018a). The CV community is able to use these findings to inform CV models.

However, the parameter space covered by open cluster data does not cover the

parameter space occupied by CVs. Rotation rate is a key variable in magnetic

braking prescriptions, but the typical CV rotational period is on the order of a few

hours, and singleton M dwarfs are considered extremely fast rotators with periods

of a day – a difference of an order of magnitude. Observations of singletons simply

do not reach to the extremely low mass, rapid rotations that are frequently seen

in CVs, so we are forced to rely on extrapolation and theory.

This carries with it some major practical issues. One is that whilst the broad

effects of magnetic fields is relatively easy to intuit, quantitative physical under-

standing the mechanics and origins of stellar magnetic fields is difficult, involving

fluid dynamics, considering interactions with the accretion disc, and magnetism

acting on complex systems, which quickly becomes prohibitive to model and is

usually handled with one of a variety of recipes. Knigge et al. (2011) contains

a detailed compilation of some older approaches, but the decade since has seen

a few newer methodologies emerge. Here, two recent magnetic braking prescrip-

tions are described in moderate detail: the Matt et al. (2015) prescription, and the

Garraffo et al. (2018a) prescription. For a more complete, detailed summary of

the modern understanding of M dwarf magnetic fields refer to Kochukhov (2021).

Matt prescription for magnetic torque

In Matt et al. (2015), an empirical prescription is derived that relates the torque

felt by a low mass main sequence star to that stars’ mass, radius, and Rossby

number, Ro. Ro is a fluid dynamics term for the ratio between the inertial



Background, context, and motivation 30

and Coriolis force terms of the Navier-Stokes equations. A small Ro indicates a

system dominated by Coriolis effects, and a large Ro indicates that centrifugal

and inertial forces dominate. The Ro of a main sequence star can be calculated

from its rotation period, Prot, and the convective turnover timescale, τcz.

Ro =
Prot

τcz
(1.28)

Through Ro, the effectiveness of magnetic braking is tied to rotation, which is

extremely fast in CVs, and stellar mass and age, which affect τcz.

Matt et al. (2015) make use of observations of stars with masses between

0.15 − 1.3M⊙ and ages of ∼ 106−9 yrs, that have had their rotation periods

measured. This dataset is used to calibrate a theoretically motivated empirical

prescription for magnetic braking. There is some evidence for a saturation of

magnetic activity below a critical Rossby value (a.k.a. above a critical rotational

period) (Reiners et al., 2009), where magnetic activity seems to no longer respond

to changes in rotation. Matt et al. (2015) therefore adopt two relationships for

torque, T , modulated by an empirical value, p,

T = −T0

(
τcz
τcz,⊙

)p(
Ω∗

Ω⊙

)p+1

(1.29)

for the unsaturated regime, and

T = −T0χ
p

(
Ω∗

Ω⊙

)
(1.30)

in the saturated regime. In both cases, p is assigned as p = 2 in order to agree

with the most common literature spin-scaling prescription, T ∝ Ω3
∗. χ is the

inverse critical Ro for saturation, for which Matt et al. (2015) adopt a value of

10. The rotation rates of the donor and the Sun are Ω∗,⊙ respectively, and T0 is

given by a function of mass and radius,

T0 = 9.5× 1030erg

(
R∗

R⊙

)(
M∗

M⊙

)
(1.31)

The authors take observations of two clusters, the ∼ 5 Myr old ONC cluster

and the ∼ 580 Myr old Praesepe cluster, and use the first as initial conditions

and the second as target distribution to reproduce. Figure 1.6 is taken from

Matt et al. (2015), and compares the initial and final conditions of their synthetic
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cluster model compared to these two boundary conditions. During the first few

tens of Myrs of this model, the stars in the synthetic cluster are spun up as they

contract, lowering their periods by factors of ∼ 5 − 10. After this initial phase,

which is much shorter than the spin down timescales, the more long-term spin

evolution begins.

The agreement between the synthetic cluster and the Praesepe cluster at 574

Myrs is impressive. Above ∼ 0.8M⊙, stars converge on a single narrow mass

- period track just as is seen in the observations, and the large scatter below

∼ 0.8M⊙ is also reproduced. Also, just as is seen in the cluster observations of

Praesepe, the fastest rotators are those with the lowest masses. Both of these

features arise from the transition from saturated braking, to unsaturated braking

(Matt et al., 2015).

At formation, almost all stars experience saturated magnetic braking. The

single narrow track arises from higher mass stars spinning down faster than lower

mass stars, moving them off the much less efficient saturated braking regime

sooner. The pile-up of systems then produces the narrow track. The mass depen-

dancy of this track comes from the fact that spin-down timescale in the saturated

regime is shorter for higher mass stars. The broad population of low mass rapid

rotators is a direct result of the broad initial conditions, which span an order of

magnitude themselves, and the longer spin-down time of lower mass stars in the

saturated regime allowing them to remain at high rotation rates for longer.

However, this model does fail in a few key respects. In the bottom panel of

Figure 1.6, a small population of very slow rotators can be seen at ∼ 0.4M⊙. The

slower rotation rates of these stars suggests an alternative spin-down mechanism.

The inverse problem is seen at ∼ 0.7M⊙, where a handful of stars are seen ro-

tating faster than predicted by any of the synthetic cluster stars, suggesting that

magnetic braking is not as effective in their case. More importantly for the CV

field, the parameter space of CVs is completely uncovered, as CVs have rotation

periods of < 0.2 days, and the systems that this work concerns have periods of

∼< 0.07 days. Whilst this would firmly place CVs in the saturated regime, there is

evidence of a ‘supersaturated’ regime at extreme rotation periods that may be rel-

evant to CV donors (James et al., 2000; Wright et al., 2011; Argiroffi et al., 2016).

This possibility is also noted by Gossage et al. (2021) when outlining best practice

use of this prescription in the stellar evolution code MESA, though the subject is

not a settled matter and competing evidence for the lack of supersaturation has
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Figure 1.6: Figure taken from Matt et al. (2015). Red crosses are observations
of the ONC (top) and Praesepe (bottom) cluster stars. Black diamonds are
synthetic cluster stars. In the bottom panel, the solid green line is the theoret-
ical asymptotic spin rate of unsaturated stars and the dotted blue line delimits
magnetically saturated and unsaturated stars.
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been reported by Jeffries et al. (2011).

Garraffo prescription for magnetic torque

The Garraffo et al. (2018a) model considers the morphology of the magnetic field

to also be important to the strength of magnetic braking, based on the work by

Garraffo et al. (2015). The primary justification for this inclusion is observations

of open clusters of a known age, where a bimodality is seen in the rotation rates of

stars of similar masses. Some stars appear to be fast rotators, and some are slow

rotators, and there is a dearth of systems between the two. Previous attempts

to model this bimodality have relied on an unexplained transition between an

efficient braking state, and an inefficient braking state (Spada et al., 2011; Reiners

& Mohanty, 2012; Gallet & Bouvier, 2013), and Garraffo et al. (2018a) expand

on this by offering a shift in magnetic field morphology as the underlying trigger.

Their formalisation of this is based on two assumptions. They assume that

stars with a dipolar magnetic field follow a known spin-down law, with a mass

dependence reflecting τcz (Skumanich, 1972). Second, they assume that there is

some relationship between field morphology and stellar spin rate. Specifically,

that stars rotating more rapidly have more complex magnetic fields. This is

formalised via an AML rate, J̇ ,

J̇ = J̇dipoleQJ(n) (1.32)

where J̇dipole is the dipole loss under the Skumanich law, J̇dipole ∝ Ω3τcz. QJ is

a modulating factor that encapsulates the field complexity at the stellar surface,

and is controlled by the complexity factor, n, which is a function of Ro. Garraffo

et al. (2016) derive an equation for QJ , based on fitting the results of magneto-

hydrodynamic simulations with varying field complexities.

QJ(n) = 4.05e−1.4n +
n− 1

60Bn
(1.33)

Where B is the magnetic field strength at the stellar surface. As the second

term is only significant for n > 7, Garraffo et al. (2018a) consider n = 7 as the

maximum complexity, and consider only the first term of this relation. This is

the equivalent of the saturation of magnetic braking, but here is contingent on

field complexity rather than Ro.
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Garraffo et al. (2018a) suggest the following relation between Ro and n,

n = 1 +
x

Ro
+ (y ·Ro) (1.34)

where x and y are free parameters, chosen to fit observations of open clusters. The

three terms reflect three aspects of the magnetic braking model - the minimum

complexity is defined as n ≡ 1, the first factor encodes stars with small Ro having

large n (e.g. young, fast rotators), and the third term gives stars with large Ro

similarly large n to explain the observed population of old rapid rotators that

appear to have experienced minimal spin-down (van Saders et al., 2016). This

prescription explains the AML of a star as purely a function of Ro.

Similar to Matt et al. (2015), Garraffo et al. (2018a) run a population syn-

thesis model to compare to observations using initial conditions taken from the

13 Myr old h Persei cluster (Moraux et al., 2013), but the authors show that

differences between alternative initial conditions do not survive longer than 200

Myrs. Observations of stellar rotation periods and colour from several clusters

with known ages are then compared to the synthetic population.

The resulting distribution does recover the Skumanich bifurcation observed

in open clusters, reproducing the fast and slow rotating populations and the

gap between them, though the large uncertainty in the age of the cluster does

introduce some discrepancy. In addition, the synthetic cluster does not consider

the effects of close binary stars, which will affect the spin-down rate through

tidal effects. However, this effect is ignored by the author, as there is evidence

that the binary fraction in open clusters is low (Meibom et al., 2007). The mass

dependency of this track is also reproduced by the model, and Figure 1.7.

The Garraffo et al. (2018a) prescription is simpler in concept than the Matt

et al. (2015) prescription, and both prescriptions perform well. However, neither

formulation covers the parameter space of CV donors, and both are semi-empirical

with some arbitrary decisions made in order to fit open cluster data. This makes

both approaches highly vulnerable to extrapolation errors and difficult to trust

in the context of CV evolution, especially in the short period regime.

Comparisons to the Rappaport, Verbundt and Joss model

The differences between these prescriptions in the case of CV evolution can be

examined by applying them to a donor evolutionary track, and Knigge et al.
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Figure 1.7: Example comparison between synthetic and observed cluster popula-
tions taken from Garraffo et al. (2018a). Red points are observations of M37,
which has its age measured at ∼ 346−550 Myrs. Blue points are the probability
distribution of the synthetic cluster population from Garraffo et al. (2018a).

(2011) has constructed a donor sequence using their own models that reasonably

accurately reproduces observations. The masses, radii, and periods along the se-

quence are given, so the would-be effects of the magnetic braking prescriptions

described above can be calculated. In addition to the two previously discussed

prescriptions, the default MESA (Paxton et al., 2015) magnetic braking prescrip-

tion (Rappaport et al., 1983) is included. This prescription includes a magnetic

braking index, γ,

J̇ = −3.8× 10−30MR4
⊙

(
R

R⊙

)γ

ω3 dyn cm (1.35)

Note that in the specific case of CVs, period and radius are synonymous with

one another due to the requirement that the donor is in contact with the Roche

lobe, and is tidally locked.

Figure 1.8 shows how the Matt et al. (2015) magnetic braking prescription

compares to the Garraffo et al. (2018a) and MESA Rappaport et al. (1983) mag-

netic braking prescriptions. Most prescriptions see a discontinuity at 0.2M⊙,

where Knigge et al. (2011) imposes the magnetic braking cutoff and the donor
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Figure 1.8: Showing the AML rates, J̇ , of three magnetic braking prescriptions,
applied to the masses, radii, and spin periods of the ‘standard’ CV donor track
of Knigge et al. (2011). The vertical shaded region shows the period gap,
corresponding to the mass at which Knigge et al. (2011) enforces the period
gap to occur. Green lines show the Rappaport et al. (1983) magnetic braking
prescription, which is the default used in MESA (Paxton et al., 2015). The red
line shows the Matt et al. (2015) prescription, and the blue line shows the
Garraffo et al. (2018a) prescription.
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contracts to its equilibrium radius.

The differences between the three prescriptions is clear in both the overall

strength of the prescriptions, but also in how they evolve with mass. All the

prescriptions shown decrease at lower masses, but at different rates. In the context

of CV evolution, a different dropoff rates of magnetic braking would alter the

shape of the donor mass-radius sequence, so observations of CV donors should be

able to allow us to evaluate the effectiveness of different braking prescriptions.

Note that the AML from magnetic braking predicted by Matt et al. (2015)

is ∼ 2 orders of magnitude lower than the braking commonly required to cal-

culate CV evolution. This is a consequence of tuning their braking model’s free

parameters to open cluster rotation rates, and the effects of this under-estimation

is explored by Andronov et al. (2003). This problem is avoided in the case of

Garraffo et al. (2018a,b), by using different values of their free parameters for

open cluster stars and CVs.

1.6 This work

The primary focus of this work is in expanding the sample of well-characterised CV

donors, which remains small (less than 40 systems in total). Whilst this sample

is augmented by the large number of donors characterised using the superhump

excess technique (§1.3.6), eclipse modelled systems are preferable due to the small

number of robust assumptions that need to be made. The specific focus is on

characterising systems with short periods, and therefore low mass donors, in an

attempt to increase the number of well characterised CVs below the period gap.

I characterise an additional 15 CV systems with periods of ∼< 2.5 hours.

The secondary goal is then to take this larger sample, and make comparisons

to CV evolutionary models below the period gap. By comparing observed data

with the modelled donor masses and radii, the long-term baseline AML rate can

be inferred for a given system. As these short-period systems are expected to

only evolve under gravitational braking, but are known to experience some excess

AML above this, various empirical prescriptions for excess AML as functions of

the CV system parameters can be built and serve as a diagnostic for the physical

motivation of the excess AML.

Chapter 2 catalogues the observations used in this work, and Chapter 3 de-

scribes the modelling approach and analysis techniques used to process the obser-
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vations. Chapter 4 details the analysis of three CVs below the period gap, which

are given closer examination due to issues with their characterisation. Chapter 5

then applies the same methodology to a further 12 CVs, which were not subject

to any serious issues. Chapter 6 infers mass loss rates and angular momentum

loss rates for the eclipse modelled CV population, the results of which are then

explored in Chapter 7. Finally, Chapter 8 summarises the work presented here.



Chapter 2

Observations and observational

techniques

39
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This chapter summarises the observations analysed in this thesis, and the

characteristics of the instruments employed to do so.

Taking the observations has made use of three instruments: ULTRASPEC,

ULTRACAM, and HiPERCAM. These are time-series photometric imaging cam-

eras, capable of taking high-cadence images of the night sky in one, three, or five

colours, respectively. The observed eclipses typically span around 30 minutes and

observations need to measure flux changes on timescales of a few seconds to resolve

the eclipse. Crucially, HiPERCAM and ULTRACAM make their multi-colour im-

ages simultaneously, which removes the possibility of changes in brightness in the

disc or bright spot polluting the white dwarf colour measurement, making them

ideal instruments for this analysis.

2.1 Instruments

The cameras used were mounted on several telescopes across the decade of our ob-

servations. These were the Gran Telescopio de Canarias (GTC) on La Palma (with

HiPERCAM), the Thai National Telescope (TNT) with ULTRASPEC, the New

Technology Telescope (NTT) in Chilé (with ULTRACAM). Prior to 2016, UL-

TRACAM was hosted on the William Herschel Telescope (WHT), on La Palma.

Section 2.4 details what instrument/telescope combination was used for each ob-

servation used in this thesis.

2.1.1 HiPERCAM

HiPERCAM is a quintuple-beam optical imaging camera that saw first light on the

WHT in 2017, and is sensitive to wavelengths from 320− 1060nm (Dhillon et al.,

2021). HiPERCAM uses a system of ‘Super SDSS’ filters (usup, gsup, rsup, isup, zsup),

designed to match the classic SDSS band cutoff wavelengths (Fukugita et al.,

1996), but allow a higher throughput and so give a more sensitive instrument.

This instrument has a series of dichroic beam-splitters, that sequentially pick

off the usup, gsup, rsup, isup, zsup bands and funnel each into dedicated cameras that

use highly sensitive, low readout noise, Charge-Coupled Devices (CCDs) as detec-

tors. However, this improvement in sensitivity is not constant across the bands,

shown in Figure 2.1, resulting in a small difference between colours observed with

HiPERCAM and the SDSS. Unfortunately, as magnitudes for standard stars are

often reported in the classic SDSS photometric system, some work was neces-
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Figure 2.1: Taken from Dhillon et al. (2021). Transmission profiles of the as-
built HiPERCAM dichroic beam-splitters (dashed black lines), the HiPER-
CAM standard SDSS filters (dotted lines), and the HiPERCAM Super SDSS
filters (solid lines).

sary to color-correct the HiPERCAM observations, which is described in detail

in §2.3.2.

On the GTC, HiPERCAM is capable of detecting sources down to gsup ∼ 23

in exposures of only a second, and can achieve gsup ∼ 28 with an hour of

exposure. This allows observations of fainter CVs than previous studies (e.g.

McAllister 2017), and helps target CVs at short periods with faint, low mass

donors. Unfortunately, while HiPERCAM was used to observe eclipses for some

systems, no HiPERCAM observations were modelled for this thesis, with observed

systems either being in outburst, or not having observable bright spot features,

which are essential for modelling.

HiPERCAM is capable of incredibly fast frame rates of up to ∼ 1000Hz,

though this capability was not used for this work. However, as part of the effort

to achieve this frame rate by reducing dead-time between frames HiPERCAM is

capable of exposing a frame while simultaneously reading out the previous image.

This is achieved by masking half of the CCD, and only exposing with one half.

When a frame is finished exposing, the electrons are shuttled across to the masked

side (a rapid process, 6.8− 7.8 ms) and can be read out during the next exposure

time. HiPERCAM has four sets of readout electronics that operate in tandem.

This virtual elimination of dead-time is a significant benefit when resolving the
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large, rapid changes in flux during the ingresses and egresses of CV eclipses.

2.1.2 ULTRACAM

ULTRACAM is a three-beam optical imager sensitive to wavelengths between

∼ 300 − 1100nm, and is the direct predecessor to HiPERCAM (Dhillon et al.,

2007). It is similarly built for high-speed photometric studies, but is not capable

of the extreme framerates of HiPERCAM, limited to framerates of ∼< 500Hz.

ULTRACAM uses the same frame transfer readout technique to HiPERCAM,

though uses only two CCDs.

ULTRACAM was originally commissioned with SDSS-like u′, g′, r′, i′, z′ filters,

that match the SDSS closely and did not necessitate colour-term corrections.

However, in Fubruary 2019 ULTRACAM was upgraded to use the same Super

SDSS photometric system used by HiPERCAM. When necessary, observations

were translated to the classic SDSS system as described in §2.3.2. Observing an

object with ULTRACAM in more than three bands requires multiple observing

runs, and manually swapping filters.

2.1.3 ULTRASPEC

ULTRASPEC was occasionally used to supplement ULTRACAM and HiPER-

CAM observations. ULTRASPEC was originally commissioned as a spectro-

graphic cousin of ULTRACAM, using again a frame transfer design, with an

electron-multiplying CCD (Dhillon et al., 2014). After a brief proof-of-concept

trial as a photometric imager in June 2009, ULTRASPEC was modified to a full-

time imaging instrument and mounted on the 2.4m TNT in November 2013, and

is now operated by the National Astronomical Research Institute of Thailand

(NARIT).

This is a single-colour instrument that uses the u′, g′, r′, i′, z′ filters, in addition

to a wide-band KG5 filter that is approximately equivalent to u′ + g′ + r′. It is

also the slowest of the three cameras, but is still capable of high framerates up

to ∼ 200Hz. However, as ULTRASPEC on the NTT is a somewhat less in-

demand instrument than either HiPERCAM or ULTRACAM, it proved useful in

two significant respects - to gauge the viability of CV systems before dedicating

more valuable HiPERCAM and ULTRACAM observing time (e.g. testing the

visibility of eclipse features, checking if a CV is undergoing an outburst), and in
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acquiring or refining measurements of orbital period.

2.2 Data reduction

All three cameras use CCD detectors, which are a staple of ground-based as-

tronomy due to their high sensitivity, and low noise. CCDs are made up of a

large grid of photosensitive pixels, which release electrons proportionally to the

number of photons that fall on them. This signal is then moved pixel-by-pixel

into the readout electronics, which is essentially a capacitor that has its voltage

measured to determine the number of electrons that were released. This voltage

is converted to electron counts with an Analog-to-Digital Converter (ADC), that

outputs the corresponding integer number of electrons to the input charge, in

Analog-to-Digital Units (ADU). To extract time-series photometric information

from the raw image files, the HiPERCAM data reduction pipeline was used1.

The analysis of this data uses flux-calibrated relative photometry, in which a

reference star in the same image as the target is extracted and used as a known-

constant flux source. Then, by using the ADU flux ratio between these two sources

as the observable, effects from changes in weather, altitude, and seeing conditions

are compensated for, since these variations are assumed to affect both the target

and reference star equally. By multiplying the ADU ratio between the target and

reference stars by the flux in mJy of the reference star, the photometry can be

calibrated and produce a light curve of the target star.

Bias frames

The readout electronics of a CCD are not perfect, and contribute a small amount

of gaussian noise to each pixel, called readout noise. The ADC is only capable

of recording positive integer values, and rounds negative pixel counts to 0. To

illustrate why this is an issue, take the exaggerated example of a readout noise of

7e−/px on a region of the CCD that is stimulated by 5e−/px. If negative values

are limited to 0, the effect is to increase the average, and Figure 2.2 illustrates the

effect of discarding negative counts. This will have a small corrupting effect on

low-signal areas of the CCD, significantly corrupting the sky background signal

that must be subtracted from the source signal (§2.2). Without proper bias

1Available https://cygnus.astro.warwick.ac.uk/phsaap/hipercam/docs/html/
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Figure 2.2: Illustrating the effect of omitting negative values on the average of a
distribution. The black line is a Gaussian distribution with an average of 5 and
a standard deviation of 7. The vertical dashed line shows the ‘true’ average
of 5 ADU, and the vertical solid line shows the average given by an ADC that
reports negative electron counts as 0.

correction, a similar corruption also occurs for the flat field images described

below.

To prevent corruption, a small bias voltage is applied to each pixel, raising

the null detection value away from zero and preventing noise from giving nega-

tive readings. To then remove this bias voltage from observations, zero second

exposures of a masked detector are taken to characterise the bias voltage for each

pixel, and are subtracted off each subsequent exposure. These are known as bias

frames, and because the structure of the bias is subtly altered by different instru-

ment setups, a new bias frame is taken when instrument options such as binning

pixels together when reading them out, or only reading out partial images, are

altered.

Flat fielding

The response of each pixel to photons is similar, but not exactly equal. In addi-

tion, the optics of the telescope are not perfect and throughput varies across the

field of view, a.k.a vignetting. Dust and imperfections in the telescope optics can

also introduce variation across the image, and must also be accounted for.
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These effects mean that each exposure the instrument takes is convolved with

a constant flat-field response pattern.

In order to characterise and remove the flat-field pattern, an exposure is taken

of an image that is known to be uniform in brightness, which will have the flat-

field pattern imprinted on it. The twilight sky forms a highly uniform field in

optical bands, so was used as this flat source.

Residual stellar light should still be removed, so to completely eliminate stars

from the flat field observation, many exposures are taken while the telescope is

being nudged by a small amount every few seconds. Since the stars move pixels

between each exposure, calculating the median frame will remove stars from the

image, leaving behind only the uniform sky observation imprinted with the flat-

field response pattern. The flat field images are bias corrected to give the final

flat image. Then, by dividing each subsequent exposure by the flat image, non-

uniformity in the detector response can be corrected in future images.

Aperture photometry

While stars are theoretically point sources, the are observed through the atmo-

sphere and the optics of the telescope, which act to spread the light from a star,

usually by a few arcseconds even under the best conditions. This spreads light

from a star over several pixels. As such, to find the total flux of a star the con-

tributions from all pixels containing the stars’ flux nmust be summed together,

ideally subtracting all flux contributed by non-stellar sources. The HiPERCAM

pipeline has two methods for this: ‘normal’ extraction and ‘optimal’ extraction.

The sky background is not perfectly black and in both extraction methods

must be removed from the extracted flux of a source. This is done by taking an

annulus about each source, and assuming it is solely make up of sky background

light (in the case of a nearby object, portions of the annulus can be masked in

software and not counted in the sky background). The inner edge of the annulus

is selected to be far enough from the source that none of the target’s light is

present, and the outer edge is limited by the need to avoid contamination from

other sources, and large annuli starting to become sensitive to sky variations across

the image. The average sky signal per pixel is then calculated, and subtracted to

isolate the source flux.

Under normal extraction, the user specifies one or more ‘reference’ stars, and

one or more ‘target’ stars. The pixel ADU counts around the reference stars as a
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function of their radial distance to the peak flux are characterised with a Gaussian

or Moffat profile. The Full-Width at Half Maximum (FWHM) of this distribution

fit is calculated, and all pixels within x × FWHM of the peak flux are summed

to give the extracted flux of a source, cutting off some fraction of the wings of

the flux distribution. Here x is a user-defined parameter, and while in theory a

large value of x would be desirable to capture all flux from a source, adding extra

pixels increases the readout noise of the detection, and suffers from diminishing

returns due to the small amounts of flux contained in the wings. Also, as the same

fraction of light from each source should be lost from both the target sources and

reference sources, cutting out these wings should not alter the flux ratio between

sources, and the flux ratio is the relevant quantity under relative photometry (see

§2.3).

In many cases, it is preferable to use the ‘optimal’ extraction method, de-

scribed by Naylor (1998). Here, a weight is taken into account when summing

the flux contributions of each pixel based on the expected contribution to the

overall flux. This can give an improvement of ∼ 10% to the signal-to-noise ratio,

especially in faint sources as less weight is given to pixels at the wings of the flux

profile, where readout noise and error from the sky background are more signif-

icant. However, in brighter stars with an already high signal-to-noise ratio the

improvement is offset by the potential systematic error introduced by any diver-

gence from the model profile fit used. As such, the optimal extraction method is

generally used for faint stars, and normal extraction is used for bright stars.

2.3 Photometric calibration

A comparison star in the same frame as the target is used to account for seeing

and transparency variations over an observation, and standard stars from Smith

et al. (2002) were used to transform the light curves from ADU to the SDSS

u′g′r′i′z′ photometric system. At the core of the photometric calibrations is the

following expression of the apparent magnitude in some band, mapp, of a target,

mapp = minst + χkext +mzp + Cinstcm (2.1)

where minst is the instrumental magnitude, −2.5log(ADU/time), χ is the airmass

of the observation and kext is the atmospheric extinction coefficient in the relevant

band. mzp is the zero point offset of the instrument, calculated from photometric
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standard stars, ideally taken on the night of an observation. cm is the colour

term correction between the response curve of the instrument, and the target

photometric system, and Cinst is a diagnostic instrumental colour. Each of these

terms must be properly handled, and are discussed in turn.

2.3.1 Calculating atmospheric extinction coefficients

Atmospheric extinction was calculated using the longest continuous observation

available within a reasonable time from target observations.

To calculate the atmospheric extinction coefficients, aperture photometery

was extracted for five sources in these long observations, and the instrumental

magnitude, minst, vs airmass, χ, was fit with a straight line for each source. The

gradients of these lines are the atmospheric extinction coefficients, kext, for the

relevant band, and the y-intercept is the instrumental magnitude of that object

above the atmosphere, minst,0:

minst =minst,0 + χkext (2.2)

2.3.2 Transformations between filter systems

ULTRACAM and HiPERCAM use an SDSS-like filter system with higher effi-

ciency bandpasses, referred to as Super SDSS. There are three relevant photo-

metric systems:

� SDSS filters, u′, g′, r′, i′, z′;

� ULTRACAM/ULTRASPEC SDSS-like, ureg, greg, rreg, ireg, zreg;

� HiPERCAM/ULTRACAM Super SDSS, usup, gsup, rsup, isup, zsup.

Note that I have no z band observations, so the z band is omitted hereafter.

I aim to place our photometery in the SDSS u′g′r′i′ system, as this is the system

later used by the white dwarf atmospheric models, and allows data from different

instruments to be either binned together, or modelled simultaneously c.f. §3.3.4.

The ureg, greg, rreg, ireg filters were sufficiently similar to standard SDSS filters that

the uncorrected magnitudes of standard reference stars from Smith et al. (2002)

could be used to calibrate absolute photometery without issue. However, with the

new filters, there was concern that the different shape of the sensitivity curves,

particularly in the u′ band, differ enough from the SDSS filters to cause issues
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Figure 2.3: The differences in photometric throughput in terms of registered ADU,
for SDSS filter system (dotted lines), and ULTRACAM Super SDSS filters, for
ULTRACAMmounted on the NTT (solid lines). Blue: u bands, Green: g bands,
Red: r bands, Black: i bands. Both throughputs include atmospheric extinction
of χ = 1.3.

with our photometric calibration. Figure 2.3 illustrates the change in throughput

between the SDSS photometric system, and the Super SDSS filters, on ULTRA-

CAM on the NTT.

To perform the colour corrections, Equation 2.2 for the magnitude of a star

was used with the addition of a colour term. Using the g′ band as an example:

g′ = ginst + χkext + gzp + cg,sup(g
′ − r′) (2.3)

where gzp is the zero point, ginst = −2.5log(ADUexp/texp) for an exposure time of

texp, and cg,sup is the colour term correction gradient. In theory, the atmospheric

extinction term also has some colour dependency, as extinction varies with wave-

length. However, the effect is negligible between these photometric systems, so it

is omitted.

In order to compute the colour term correction gradients, the optical path of

each system was simulated using the pysynphot package, with measured through-

puts of all ULTRACAM and HiPERCAM components in the optical path. Pre-

computed stellar models from Dotter (2016) and Choi et al. (2016) were used

to generate the Teff and log(g) values of an 8.5 Gyr isochrone for main sequence

stars with masses from 0.1 to 3 M⊙, spanning from log(g) = 3.73 → 5.17, and
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Teff = 2900K → 10, 300K. The Phoenix model atmospheres (Allard et al., 2012)

were used to generate model spectra of each mass, which were then folded through

each optical path to calculate an AB magnitude. In addition, white dwarf models

with log(g) = 8.5 were similarly processed (Koester, 2010; Tremblay & Bergeron,

2009), to assess the impact of the different spectral shape on the resulting colour

terms.

The colour terms between the SDSS and Super SDSS systems were then syn-

thesised, e.g., g′ − gsup, on ULTRACAM and HiPERCAM for each model atmo-

sphere. These data were plotted against synthesised SDSS colours, i.e. (u′ − g′),

(g′ − r′), (g′ − i′), and a straight line was fit to the colour relationship for the

combined dataset of both white dwarf and main sequence stars. In the example

case of g′ − gsup, this would be

g′ − gsup = gzp + cg,sup(g
′ − r′)

These relationships are shown for HiPERCAM in Figure 2.4 for all four Super

SDSS filters used to observe these CVs, and Table 2.1 and Table 2.2 contain the

coefficients of each colour term correction for both HiPERCAM and ULTRACAM.

When processing ULTRACAM data, (u′ − g′) was used to correct u magnitudes,

(g′ − r′) was used to correct g and r magnitudes, (g′ − i′) was used to correct the

i band. These colour corrections are not generally the same for main sequence

stars and white dwarfs, though the colours of the CVs presented in this work are

all such that the discrepancy is on the order of a few percent, and is considered

negligible.
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Table 2.1: ULTRACAM colour term best fit lines from Figure 2.4. The data are
modelled by equations of the form (u′ − usup) = ϕ+ cu(u

′ − g′), with cu being the
relevant colour gradient.

Correction Diagnostic ϕ c

(u′ − usup) (u′ − g′) 0.003 0.036

(g′ − r′) 0.033 0.063

(g′ − i′) 0.038 0.044

(g′ − gsup) (u′ − g′) -0.001 0.014

(g′ − r′) 0.010 0.027

(g′ − i′) 0.012 0.018

(r′ − rsup) (u′ − g′) -0.017 0.016

(g′ − r′) -0.004 0.032

(g′ − i′) -0.002 0.022

(i′ − isup) (u′ − g′) -0.031 0.020

(g′ − r′) -0.015 0.040

(g′ − i′) -0.012 0.028
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Figure 2.4: The difference between the classic SDSS photometric system, and the
ULTRACAM SuperSDSS filters on the NTT, as a function of SDSS colours, are
calculated for model atmospheres. Red points are Koester white dwarf models,
black points are Phoenix main sequence model atmospheres, and the blue line
is the best fit straight line to the combination of both datasets. When applying
colour corrections, the highlighted relations were used.
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Table 2.2: HiPERCAM colour term best fit lines from Figure 2.5. The data are
modelled by equations of the form (u′ − usup) = ϕ+ cu(u

′ − g′), with cu being the
relevant colour gradient.

Correction Diagnostic ϕ c

u′ − usup (u′ − g′) 0.096 0.054

(g′ − r′) 0.150 0.029

(g′ − i′) 0.152 0.022

g′ − gsup (u′ − g′) 0.008 0.023

(g′ − r′) 0.010 0.045

(g′ − i′) 0.014 0.031

r′ − rsup (u′ − g′) 0.000 0.001

(g′ − r′) 0.001 0.003

(g′ − i′) 0.001 0.002

i′ − isup (u′ − g′) 0.033 0.022

(g′ − r′) 0.016 0.044

(g′ − i′) 0.012 0.030
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Figure 2.5: As Figure 2.4
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2.3.3 Calculating comparison star magnitudes

The comparison stars in the target frame often do not have known brightnesses

in the SDSS photometric system, and so this must be determined by observation.

The network of SDSS photometric standards provided by Smith et al. (2002) are

used as calibrating objects, with robust, accurate known magnitudes. By observ-

ing a flux standard during clear conditions, the comparison stars’ magnitude can

then be calculated from a similarly clear observation. Equation 2.2 was used to

calculate the zero points of the telescope/instrument combination in each band

from a standard star observation.

The comparison star magnitudes were then calculated from observations. Since

the colour term corrections are dependent on SDSS colours, an iterative approach

was used to converge on these values. SDSS magnitudes are related to the instru-

mental magnitudes by:

u′ =uinst,0 + uzp + cu,sup(u
′ − g′)

g′ =ginst,0 + gzp + cg,sup(g
′ − r′)

r′ =rinst,0 + rzp + cr,sup(g
′ − r′)

i′ =iinst,0 + izp + ci,sup(g
′ − i′)

Initially, u′, g′, r′, i′ magnitudes are set equal to the instrumental magnitudes, and

a new set of u′, g′, r′, i′ magnitudes are calculated. The new values are then used

to repeat the calculation until a new iteration produces no change, typically after

∼4 loops.

2.3.4 Producing a flux-calibrated target light curve

Finally, the target light curves can be calculated. Broadly, this encompasses

two processes: the target star light curve must be corrected for transparency

variations, and then converted from ADU counts to calibrated flux. As the aim

is to produce a flux-calibrated light curve in the SDSS photometric system, from

observations using a significantly different photometric system, the simple ADU

ratio between the target and comparison is insufficient. Consider the target star
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g′ magnitude and flux, gt, F t, and comparison star g′ magnitude and flux, gc, F c:

gt =gtinst,0 + gzp + cg,sup(g
′ − r′)t

gc =gcinst,0 + gzp + cg,sup(g
′ − r′)c

since,

gt − gc = −2.5log
(F t

F c

)
we can write

F t

F c
=10−0.4(gtinst,0−gcinst,0) · 10−0.4cg,sup

(
(g′−r′)t−(g′−r′)c

)
F t

F c
=
ADU t

ADU c
·Kt,c

where Kt,c = 10−0.4cg,sup

(
(g′−r′)t−(g′−r′)c

)
. This accounts for differences in wave-

length response between the two systems when calculating the flux ratio, and is

applied to each frame. The (g′ − r′)t magnitudes are calculated using a sigma-

clipped mean instrumental magnitudes computed from all frames in the observa-

tion. In practice, the factor Kt,c varies from ∼ 1.0− 1.1 for our observations.

While developing this correction method, some verification tests were per-

formed. ASASSN-16kr was observed in both the standard SDSS filters in 2018,

and the super SDSS filters in 2019. This presented an opportunity to compare the

corrected 2019 data with the fluxes observed in 2018. Additionally, both ASASSN-

16kr and SSSJ0522−3505 use multiple standard stars across observations, which

should agree if the calibration has been done correctly. Finally, AY For provided

a case where the SDSS magnitudes of the comparison stars were known a priori,

as the field has been observed in the Pan-STARRS survey. The calibrated com-

parison star magnitudes using the technique provided here are within 2% of the

Pan-STARRS magnitudes, indicating a reasonable calibration. In all cases, the

flux-calibrated light curves were similar and the white dwarf colours consistent,

suggesting that this method of flux calibration is indeed accurate.

I add a 3% systematic error in quadrature to the white dwarf fluxes when

fitting for the effective temperature. This is a practice established by McAllister

et al. (2019), to account for systematic error in flux calibration and modelling.
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2.4 Catalogue of observations

The observations analysed in this work span the full decade from 2011, through

to 2021, and have been taken from multiple sites as the instruments move from

telescope to telescope. To aid with the readability, a key is provided in Table 2.3

of the acronyms used for instruments and telescopes.

When optimising the eclipse model to the data, some systems had their eclipses

binned together where appropriate to reduce the complexity of the parameter

space. These tables also detail which data were combined, and where no binning

ID is given the eclipse is fit individually.

Acronym Expansion
NTT New Technology Telescope
TNT Thai National Telescope
WHT William Herschel Telescope
UCAM ULTRACAM
USPEC ULTRASPEC

Table 2.3: Acronyms used in the observation summaries.
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Table 2.4: Observations taken for ASASSN-14hq. Mid-eclipse times and cycle numbers are calculated following the method
detailed in §3.2.

Instrument Telescope Date Observation Observation Filter(s) Tecl Cycle No. Binning
start end ID
TDB TDB MJD

UCAM NTT 2016/11/9 06:06 06:45 ureg, greg, rreg 57701.27137(1) 0 A
UCAM NTT 2016/11/11 06:22 06:49 ureg, greg, rreg 57703.27826(1) 27 A
UCAM NTT 2017/3/19 02:25 03:09 ureg, greg, rreg 57831.12065(1) 1747 A
UCAM NTT 2017/3/21 23:59 00:44 ureg, greg, rreg 57834.01942(1) 1786 A
UCAM NTT 2018/1/23 00:55 01:48 usup, gsup, rsup 58141.06425(1) 5917 B
UCAM NTT 2018/1/25 01:19 01:57 usup, gsup, rsup 58143.07107(2) 5944 B
UCAM NTT 2018/1/28 02:28 03:05 usup, gsup, rsup 58146.11846(2) 5985 B
UCAM NTT 2018/1/28 04:09 04:49 usup, gsup, rsup 58146.19283(2) 5986 B
UCAM NTT 2018/1/30 01:04 01:29 usup, gsup, rsup 58148.05102(3) 6011 B

Table 2.5: Observations taken for ASASSN-14kb.

Instrument Telescope Date Observation Observation Filter(s) Tecl Cycle No. Binning
start end ID
TDB TDB MJD

UCAM NTT 2018/1/20 01:01 01:32 usup, gsup, rsup 58138.05257(1) -75 A
UCAM NTT 2018/1/23 05:25 06:24 usup, gsup, rsup 58141.25354(1) -28 A
UCAM NTT 2018/1/25 03:12 04:11 usup, gsup, rsup 58143.16050(1) 0 A
UCAM NTT 2018/1/26 02:06 02:56 usup, gsup, rsup 58144.11398(2) 14 A
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Table 2.6: Observations taken for ASASSN-15pb.

Instrument Telescope Date Observation Observation Filter(s) Tecl Cycle No. Binning
start end ID
TDB TDB MJD

UCAM NTT 2016/8/20 23:33 00:37 ureg, greg, ireg 57621.01182(3) -55 A
UCAM NTT 2016/8/22 02:37 03:25 ureg, greg, rreg 57622.13130(5) -43 A
UCAM NTT 2016/8/22 04:39 05:39 ureg, greg, rreg 57622.22458(4) -42 A
UCAM NTT 2016/8/23 01:02 01:50 ureg, greg, rreg 57623.06421(2) -33 A
UCAM NTT 2016/8/25 04:44 05:19 ureg, greg, rreg 57625.20988(2) -10 A
UCAM NTT 2016/8/26 02:56 03:39 ureg, greg, rreg 57626.14278(2) 0 A

Table 2.7: Observations taken for ASASSN-16kr. Eclipses marked with a binning ID of ‘-’ were fit as an individual eclipse,
and not combined with any other data.

Instrument Telescope Date Observation Observation Filter(s) Tecl Cycle No. Binning
start end ID
TDB TDB MJD

UCAM NTT 2018/10/13 02:34 03:15 ureg, greg, rreg 58404.131217(3) -3774 -
UCAM NTT 2018/10/16 04:25 04:59 ureg, greg, rreg 58407.1955(2) -3724 -
UCAM NTT 2018/10/17 02:24 04:26 ureg, greg, rreg 58408.114806(4), -3709, -

58408.176(1) -3708 -
UCAM NTT 2019/09/27 23:56 00:27 usup, gsup, rsup 58754.012610(3) 1935 -
UCAM NTT 2019/09/29 00:48 01:37 usup, gsup, rsup 58755.054468(3) 1952 -
UCAM NTT 2019/09/30 03:21 04:48 usup, gsup, rsup 58756.157613(4) 1970 -
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Table 2.8: Observations taken for ASASSN-17fo.

Instrument Telescope Date Observation Observation Filter(s) Tecl Cycle No. Binning
start end ID
TDB TDB MJD

UCAM NTT 2018/1/24 05:55 06:19 usup, gsup, rsup 58142.25819(1) -16 -
UCAM NTT 2018/1/25 05:10 05:55 usup, gsup, rsup 58143.24296(1) 0 -
UCAM NTT 2018/1/26 06:34 07:03 usup, gsup, rsup 58144.28927(2) 17 -

Table 2.9: Observations taken for ASASSN-17jf.

Instrument Telescope Date Observation Observation Filter(s) Tecl Cycle No. Binning
start end ID
TDB TDB MJD

UCAM NTT 2019/09/28 01:41 03:04 usup, gsup, rsup 58754.12003(2) -42 -
UCAM NTT 2019/09/30 02:16 02:46 usup, gsup, rsup 58756.10769(1) -7 -
UCAM NTT 2019/10/01 04:08 04:38 usup, gsup, rsup 58757.18671(1) 12 -

Table 2.10: Observations taken for AY For.

Instrument Telescope Date Observation Observation Filter(s) Tecl Cycle No. Binning
start end ID
TDB TDB MJD

UCAM NTT 2016/11/09 01:57 03:02 ureg, greg, rreg 57701.10964(1) -0 -
UCAM NTT 2016/11/10 03:09 03:53 ureg, greg, rreg 57702.15423(1) 14 -
UCAM NTT 2016/11/11 02:34 03:12 ureg, greg, rreg 57703.12424(1) 27 -
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Table 2.11: Observations taken for CSS090102.

Instrument Telescope Date Observation Observation Filter(s) Tecl Cycle No. Binning
start end ID
TDB TDB MJD

UCAM WHT 2011/5/30 23:30 23:49 ureg, greg, rreg 55711.98538(2) -3705 A
UCAM WHT 2011/6/2 00:23 01:38 ureg, greg, rreg 55714.04408(2) -3672 A
UCAM WHT 2011/6/2 01:38 02:41 ureg, greg, rreg 55714.10647(2) -3671 A
UCAM WHT 2012/1/17 02:28 03:18 ureg, greg, rreg 55943.12147(4) 0 A
UCAM WHT 2012/1/17 05:16 06:11 ureg, greg, rreg 55943.24624(2) 2 A
UCAM WHT 2014/8/4 21:01 21:58 ureg, greg, rreg 56873.90433(4) 14920 A

Table 2.12: Observations taken for CSS090419.

Instrument Telescope Date Observation Observation Filter(s) Tecl Cycle No. Binning
start end ID
TDB TDB MJD

UCAM WHT 2013/25/7 21:41 22:38 ureg, greg, ireg 56498.92854(2) 0 A
UCAM WHT 2013/26/7 21:05 22:00 ureg, greg, rreg 56499.90935(3) 13 A
UCAM WHT 2013/28/7 22:12 23:02 ureg, greg, ireg 56501.94632(7) 40 A
UCAM WHT 2013/4/8 21:00 21:30 ureg, greg, rreg 56508.88704(3) 132 A
UCAM WHT 2013/4/8 22:55 23:21 ureg, greg, rreg 56508.96244(3) 133 A
UCAM WHT 2014/3/8 20:59 21:50 ureg, greg, rreg 56872.89819(3) 4957 A
UCAM NTT 2021/9/7 03:26 04:00 usup, gsup, isup 59404.15373(6) 38509 A
UCAM NTT 2021/10/7 04:30 05:10 usup, gsup, isup 59405.21005(7) 38523 A
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Table 2.13: Observations taken for CSS090622.

Instrument Telescope Date Observation Observation Filter(s) Tecl Cycle No. Binning
start end ID
TDB TDB MJD

UCAM WHT 2014/8/5 02:31 03:20 ureg, greg, rreg 56874.13102(5) -1 A
UCAM WHT 2014/8/5 04:34 04:58 ureg, greg, rreg 56874.20195(5) 0 A
UCAM WHT 2014/8/5 23:07 23:43 ureg, greg, rreg 56874.98217(5) 11 A
UCAM WHT 2014/8/8 22:31 23:10 ureg, greg, ireg 56877.96120(5) 53 B
UCAM WHT 2014/8/9 03:43 04:22 ureg, greg, ireg 56878.17399(5) 56 B
UCAM WHT 2014/8/11 04:50 05:37 ureg, greg, ireg 56880.23094(5) 85 B

Table 2.14: Observations taken for MASTER OT J001400.25-561735.0.

Instrument Telescope Date Observation Observation Filter(s) Tecl Cycle No. Binning
start end ID
TDB TDB MJD

UCAM NTT 2016/8/25 05:28 07:36 ureg, greg, rreg 57625.29674(4) -11 A
UCAM NTT 2016/8/26 01:26 02:22 ureg, greg, rreg 57626.08356(7) 0 A
UCAM NTT 2016/11/8 02:39 03:04 ureg, greg, rreg 57700.116579(7) 1035 -
UCAM NTT 2017/6/12 10:07 10:30 ureg, greg, rreg 57916.42174(1) 4059 -
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Table 2.15: Observations taken for OGLE82.

Instrument Telescope Date Observation Observation Filter(s) Tecl Cycle No. Binning
start end ID
TDB TDB MJD

UCAM NTT 2016/8/21 23:47 00:50 usup, gsup, rsup 57622.02757(1) -14 -
UCAM NTT 2016/8/23 00:26 00:59 usup, gsup, rsup 57623.03460(1) 0 -
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Table 2.16: Observations taken for SDSS J0748. Here, ‘N’ denotes eclipses that were used to refine ephemeris, but not used
in the phase-folded eclipse modelling.

Instrument Telescope Date Observation Observation Filter(s) Tecl Cycle No. Binning
start end ID
TDB TDB MJD

USPEC TNT 2017/1/14 20:28 20:58 KG5 57767.87085(2) -699 N
USPEC TNT 2017/1/17 14:14 14:42 KG5 57770.61147(4) -652 N
USPEC TNT 2017/1/22 18:32 19:15 KG5 57775.80116(2) -563 N
USPEC TNT 2017/2/14 12:48 13:05 KG5 57798.54248(2) -173 N
USPEC TNT 2017/2/14 13:55 14:27 greg 57798.60079(3) -172 A
USPEC TNT 2017/2/15 12:24 12:54 greg 57799.53377(3) -156 N
USPEC TNT 2017/2/24 14:11 15:20 rreg 57808.63030(3) 0 A
UCAM NTT 2017/3/20 23:39 00:43 ureg, greg, rreg 57833.00433(3) 418 A
USPEC TNT 2017/12/12 15:20 16:01 rreg 58099.66090(2) 4991 N
USPEC TNT 2018/2/1 17:21 17:53 KG5 58150.74140(3) 5867 N
USPEC TNT 2018/2/4 18:12 18:40 rreg 58153.77358(1) 5919 B
USPEC TNT 2018/2/5 17:59 18:27 rreg 58154.76487(3) 5936 -
USPEC TNT 2018/2/7 15:55 16:48 greg 58156.68913(2) 5969 -
USPEC TNT 2018/12/16 22:10 22:50 greg 58468.94496(5) 11324 -
USPEC TNT 2018/12/17 16:31 16:55 ureg 58469.70301(5) 11337 A
USPEC TNT 2018/12/17 19:16 19:45 KG5 58469.81963(6) 11339 N
USPEC TNT 2018/12/17 20:38 21:08 rreg 58469.87794(5) 11340 B
USPEC TNT 2018/12/17 22:04 22:37 rreg 58469.93625(4) 11341 B
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Table 2.17: Observations taken for CRTS SSSJ0522−3505 J052210-350530. Mid-eclipse times and cycle numbers are calculated
following the method detailed in §3.2.

Instrument Telescope Date Observation Observation Filter(s) Tecl Cycle No. Binning
start end ID
TDB TDB MJD

UCAM NTT 2019/09/29 08:12 09:00 usup, gsup, rsup 58755.36436(6) -710 -
UCAM NTT 2019/10/01 08:01 08:43 usup, gsup, rsup 58757.35456(1) -678 -
UCAM NTT 2020/01/29 04:07 05:02 usup, gsup, isup 58877.20128(5) 1249 -
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Table 2.18: Observations taken for SDSS J152419.33+220920.0. Note that the observations showed some color-dependent
variability, so were binned with a different grouping.

Instrument Telescope Date Observation Observation Filter(s) Tecl Cycle No. Binning
start end ID
TDB TDB MJD

UCAM NTT 2011/5/28 03:34 04:10 ureg, greg, rreg 55709.16440(1) -11907 A
UCAM NTT 2011/5/31 02:05 02:45 ureg, greg, rreg 55712.10374(1) -11862 A
UCAM NTT 2011/6/2 02:48 04:50 ureg, greg, rreg 55714.12865(1) -11831 A
UCAM WHT 2012/4/29 03:11 03:38 ureg, greg, rreg 56046.14373(1) -6748 B
UCAM WHT 2012/4/29 23:08 00:07 ureg, greg, rreg 56046.99290(1) -6735 B
UCAM WHT 2013/7/13 21:30 22:09 ureg, greg, ireg 56486.91456(1) 0 A
UCAM WHT 2013/7/21 20:49 21:30 ureg, greg, ireg 56494.88342(1) 122 A
UCAM WHT 2013/7/30 21:01 21:50 ureg, greg, ireg 56503.89743(1) 260 A
UCAM WHT 2013/8/5 22:50 23:51 ureg, greg, rreg 56509.97209(1) 353 B
UCAM WHT 2014/3/3 05:47 06:23 ureg, greg, rreg 56719.25331(1) 3557 g A,

r & u fit
individually

UCAM WHT 2014/8/2 22:58 23:39 ureg, greg, rreg 56871.96768(1) 5895 -
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This chapter describes in detail the two modelling techniques used for this

thesis: the characterisation of a CV using multi-band eclipse modelling, and using

MESA models to infer the long-term mass loss rate of a system from its donor

properties. The MESA modelling was done in collaboration with Meridith Joyce1

and Marc Pinsonneault2, whom I thank for their contributions to building the

MESA configuration for M dwarfs, and in designing the star spot implementation.

Since the models used in this analysis are computationally expensive and

require large parameter spaces, the choice of fitting algorithm is important. The

majority of the parameter optimisation done in this work uses a type of Markhov

Chain Monte Carlo (MCMC) technique, and this is described in detail in §3.1,

before discussing the models themselves.

3.1 Parameter optimisation of many variables

Frequently in science, a model must have its input parameters fit to data. For

models with few input parameters and well-behaved evaluation metrics (i.e. model

likelihood varies smoothly with input parameters), optimisation is relatively easy,

but this is often not the case; for example the eclipse modelling portion of this

work (§3.3.1) has a noisy likelihood landscape, and requires 18 parameters for a

single eclipse. Fitting a full dataset of multiple eclipses frequently involves fitting

100+ parameters. To make matters worse, the eclipse model is fairly expensive

to compute in large numbers, making a full exploration of the parameter space

impractical.

The MCMC method is now a well-established tool in astronomy. It is ro-

bust, efficient when used properly, and yields the probability distribution of the

variables being optimised even when the distributions are not well-described by

simple functions. This has led to MCMC often being the method of choice when

fitting models. This section provides a working knowledge of MCMC, but for an

in-depth introduction and review of the technique and its various sub-types see

Sharma (2017).

1Space Telescope Science Institute: Baltimore, MD, US
2Ohio State University, OH, US
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3.1.1 Bayesian analysis

Bayesian inference uses known, ‘prior’ knowledge combined with new informa-

tion, ‘data’, to derive a better understanding - the ‘posterior’ knowledge - of a

model. This somewhat self-evident intuition is formalised as Bayes’ Theorem,

which calculates the posterior probability, p(θ|D, I) a set of model parameters, θ,

given some observed data, D, and background information, I.

p(θ|D, I) =
L(D|θ, I) · q(θ|I)

p(D|I) (3.1)

Here, L(D|θ, I) is the probability of the observed data, given a model and prior

information, so is called the likelihood of the data. q(θ|I) is the probability of the

model being valid, given some prior information, so is called the prior distribution.

Finally, p(D|I), or the probability of observing the data, given the previously

known information, is also called the ‘Evidence’, and acts as a normalisation

factor. Using this vocabulary, Equation 3.1 can be written as:

Posterior =
Likelihood× Prior

Evidence
(3.2)

In Bayesian inference, the goal is to find the posterior distribution of the param-

eters of a model, given some data and any prior information.

3.1.2 MCMC optimisation

The MCMC technique is a class of tools developed to approximate the posterior

distribution in Equation 3.1. Analytical calculations of the posterior are predi-

cated on knowing the analytical forms of the likelihood, prior and evidence, which

is often not known.

An MCMC sampler, as the name suggests, is a combination of a Monte Carlo

method, a class of algorithms that rely on random sampling to find a result, and

a Markov chain, a mathematical system that transitions between states accord-

ing to probabilistic rules (Foreman-Mackey et al., 2013). An MCMC randomly

samples the prior distributions of the model variables (the Monte Carlo half of

the algorithm), evaluates their L and q, and either accepts them onto its chain of

sampled points or not, depending on if they meet a set of conditions (the Markov

chain half of the algorithm). If the L of the proposed set of variables is higher

than the L of the last set on the chain, the proposed set of variables is accepted.
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If L is lower, the algorithm randomly accepts or rejects the proposed step. Con-

veniently, L is usually related to the χ2 metric by L ∝ exp(−χ2/2), so a change in

L is often relatively easy to compute. The method by which a new set of param-

eters is proposed, and acceptance decided in the event of a decrease in L is the

sampling method, and several choices exist for different types of problems. The

sampling method used here is the affine invariant sampling method with parallel

tempering, described below.

By giving a finite chance to accept a ‘worse’ set of parameters, the chain is, in

theory, allowed to explore and sample the entire possible parameter space without

becoming trapped in local minima, though this requires an infinitely long chain.

However, as the sampler preferentially accepts positions with higher L, as the

length of the chain increases the distribution of samples on the MCMC chain

approaches the ‘true’ distribution of the posterior.

Affine invariant ensemble sampling

The affine invariant ensemble method of sampling was developed by Goodman &

Weare (2010), and makes use of many ‘walkers’ sampling the parameter space in

tandem. Each walker functions as an individual MCMC chain, and the walkers

interact by proposing steps based on the current states of other walkers. A new

parameter vector for walker k is proposed via a ‘stretch move’; another walker, j

is chosen at random, and the last position vectors on each chain, θj,N and θk,N , are

used to propose a new position, Θk, that lies somewhere on the line connecting

the two position vectors.

Θk = θj + z · (θk − θj) (3.3)

The variable z determines the location of the new vector on the line, and is

randomly drawn from a probability distribution g(z),

g(z) ∝

 1√
z
, 1

2
≤ z ≤ 2

0, Otherwise
(3.4)

The choice of g(z) favours a consolidation of the walkers, and aids convergence on

regions of high L. A schematic of this stretch move concept is shown in Figure 3.1.

Then, Θk is either accepted or rejected from the chain depending on the current

state of the chain. Recall that if the proposed LN+1 > LN , i.e. the likelihood
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Figure 3.1: Reproduced from Goodman & Weare (2010), showing the concept
of a stretch move proposal. The proposed next step for j is given by choosing a
random position on the line joining the last step on chain j, Xj, and the last chain
on another walker chosen at random, Xk. The proposed step is shown by the star,
Y . Grey dots with no outlines illustrate the other walkers in the ensemble, but
are unused.

has improved, the sample is immediately accepted. However, if LN+1 < LN , the

acceptance is determined by the transition probability, P (Θk|θk,N), defined as

P (Θk|θk,N) = α(Θk|θk,N) · q(Θk|θk,N) (3.5)

where α(Θk|θk,N) is the acceptance probability,

α(Θk|θk,N) = min

(
1, zn−1 L(Θk)

L(θk,N)

)
(3.6)

for a model with n dimensions. A random number, u, is drawn from a uniform

distribution from 0 to 1, and if u < α(Θk|θk,N), the proposed position is accepted.

This quantifies two aspects of the sampler: the larger the drop in the probability

that a new Θk describes observation, the less likely the algorithm is to accept Θk

onto the chain; and larger stretch moves are more likely to be accepted. At each

step in the MCMC, every walker has a new position proposed this way.

The affine invariant ensemble sampler benefits significantly from having the

walkers in the ensemble interact, as they can communicate to other walkers regions

of high L even between walkers in different local minima. Further, the sampler
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has a higher likelihood to accept dispersing steps than consolidating steps, so

walkers are only likely to gather in deep minima, increasing exploration except in

the case of a significantly higher likelihood. This improves the ensemble’s abil-

ity to both locate the global minimum, and to sample non-spherical probability

distributions (a task that can be difficult for simpler sampling techniques). Fur-

ther, this algorithm is able to have the proposal and evaluation of new steps in

every chain performed simultaneously, significantly improving computation time;

a typical rule-of-thumb is to use 2n walkers for n parameters being optimised

(Goodman & Weare, 2010), and since the number of walkers is almost always

larger than the number of available threads, increased evaluation time scales well

with more threaded computation.

Parallel tempering

Parallel tempering is an additional element of an MCMC sampler that helps

in more fully exploring the parameter space in more complex models, while also

being more capable of characterising posterior distributions in the case of complex

correlations between parameters (Earl & Deem, 2005).

In metallurgy, a metal can be toughened by relieving its internal stresses

through tempering, a treatment in which a metal is first heated to a high temper-

ature, then slowly cooled. While the metal is at a high temperature, impurities are

able to diffuse throughout the crystal structure of the metal and explore possible

crystallisation locations. As the metal slowly cools, impurity atoms are gradually

more and more attracted to areas of the crystal that exert less stress on the ma-

terial, until the metal is fully cooled and the majority of atoms have found areas

of local minima in stress potential.

The ensemble MCMC can take analogy from this ‘hot’ exploration phase and

‘cool’ settling phase (Earl & Deem, 2005). This is done by running several parallel

ensembles, that each have a different ‘temperature’ between 1 and ∞. Each

ensemble samples a modified posterior, that follows πT (Θ);

πT (Θ) = [L(Θ)
1
T ]q(Θ) (3.7)

As T → ∞, the chain samples the prior with no respect to how well Θ describes

the data. This hot chain is analogous to the diffusive atoms with much higher

thermal energy than the stress potential of the metal, and is free to randomly
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explore available parameter space without being restricted by the L function,

potentially finding regions of high likelihood far from the initial conditions and

communicating these regions back to cooler ensembles. Cooler temperatures are

analogous to the cooling metal – drawn increasingly strongly towards regions of

high likelihood. The cold case of T ≡ 1 behaves equivalently to a normal ensemble

sampler.

Note that because hotter walkers are less sensitive to L, their posterior no

longer accurately reflects the ‘true’ distribution. If a parameter is described by a

Gaussian distribution with a standard deviation, σ, the tempered L will have a

standard deviation of σ
√
T .

When running a parallel tempered MCMC, the values used in the software

are β = 1/T , for which I choose between 3 and 5 evenly spaced values of β

between 0 and 1. The number of temperatures used depends on the evaluation

time; since parallel tempering runs multiple full ensembles in tandem, in models

with very large numbers of parameters it becomes highly desirable to use as few

temperatures as possible. However, the penalty in computation time per step

comes with the benefit of a dramatically improved ability to locate the global

minimum, especially in complex parameter space.

3.1.3 The bisection method

When searching for the root of a simple model, i.e. one with a single input

parameter, x, and a single output metric, y, that either monotonically increases

or decreases with x, I use the bisection method. This requires relatively few

evaluations to find the root of a function, i.e. y(x0) = 0. If two values of y are

known to have opposite signs, e.g. y1(x1) is positive and y2(x2) is negative, it

can be deduced that x0 lies between x1 and x2. Then, by repeatedly evaluating

midpoint between the two values of x known to be closest to x0, the algorithm

will tend towards x1 ∼ x2 ∼ x0. In practice, the optimisation terminates when

y(x1)− y(x2) is within some tolerance. Step-by-step, this proceeds as follows:

1. First, evaluate the upper and lower limits of x, xlow and xhigh, to ensure

that one returns a negative y, and one returns a positive y

2. Evaluate y(xmid), where xmid = 0.5(xlow + xhigh).

3. If xmid has the same sign as xhigh, assign xhigh = xmid, or vice-versa for xlow.
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4. Check if the difference between y(xlow) and y(xhigh) is within tolerance. If

it is, terminate the optimisation. Otherwise, repeat the process.

3.2 Finding an orbital ephemeris

Crucial to both observing and modelling an eclipse is a good knowledge of the

orbital ephemeris. This is described by the equation

Tecl = T0 + PorbE (3.8)

where Tecl is the time of mid-eclipse, T0 is the mid-eclipse time of the zeroth

eclipse, and E is the eclipse number. Accurately calculating Tecl is important to

scheduling observations of a system, and Porb is a crucial to the eclipse modelling.

As observations are often separated by several months or even years, an error

in Porb of even ∼ 0.1 seconds can accumulate to give significantly inaccurate

predicted eclipse times. This need for precision also requires the definition of

where a time is recorded from, as the delay introduced by the light travel time from

one side of the Earth’s orbit to the other can significantly offset an observed time.

All eclipse times presented in this thesis are given in the Barycentric Modified

Julian Date (BMJD), which is the time of eclipse as measured from the centre of

mass of the solar system. Note that this is different to the heliocentric MJD often

seen in the literature, and where heliocentric literature values are used, they are

converted to BMJD. Two timescales are relevant: UTC, in which a clock ticks at

the rate of an Earth-bound observer; and TDB, in which a clock ticks at the rate

of an observer at the barycentre of the solar system. Literature values, and the

clocks in the observing cameras, use UTC time. This is converted to TDB during

photometric calibration, for consistency with the BMJD times used.

3.2.1 Finding eclipse times

When finding an eclipse time, simply taking a time of minimum light is insufficient

for the systems in this work. This is because it is common for CV eclipses to have

very flat eclipse minima, and because CV eclipses have a fairly complex structure.

Rather, finding the mid-eclipse time is done by looking at the numerical derivative

of an eclipse. First, an eclipse is smoothed to remove short term fluctuations,

partly those due to noise but also to mitigate the short term flickering often seen
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in CVs. This initial smoothing is done by applying a median filter to the data.

Then, the numerical derivative is calculated and smoothed again, this time with

a ‘boxcar’ convolution (a.k.a. a moving average). Properly filtered, the dominant

remaining features of the numerical derivative are the ingresses and egresses of the

white dwarf and bright spot. The white dwarf ingress and egress are, in theory,

symmetrical – the ingress should be a sharp, negative spike, and egress should be

a sharp, positive spike. As the two should be the same shape, a double-Gaussian

is fit to the derivative, using manually chosen initial conditions. In this model, two

Gaussians share a width, σ, and have their mid-points equidistant from a central

point. The magnitude of their heights are shared, but with opposite signs;

T1,2 = Tecl ±∆T

h1,2 = ±h

where T1,2 are the respective midpoints of the two Gaussians, h1,2 are their respec-

tive heights, and 2∆T is the distance between the two Gaussians. The derivative

is then fit with these four free parameters (Tecl, h, ∆T, σ) using an MCMC with

wide, uniform priors of appropriate ranges, to give the Tecl.

3.2.2 Computing period

To find a rough initial ephemeris of a system, at least two eclipse observations with

known E are necessary. Given no prior knowledge of Porb and T0, this can be done

by simply observing the system for several hours, until two consecutive eclipses

are seen. This gives a rough measure of Porb, but can be significantly refined with

longer baseline observations. For each observed Tecl, E could unambiguously be

determined, either from observing consecutive eclipses or from previously reported

literature values. Where literature values were used to calculate a value of E, the

result never deviated from an integer by more than 0.25 and were rounded to the

nearest whole number.

An MCMC algorithm was used to fit a straight line model to the independent

variable E and dependent variable Tecl, with a gradient P and intercept T0; i.e.

model values of T ′
ecl were generated from the set of E and a proposed (P, T0) pair,

and (Tecl − T ′
ecl) was minimised. Again, wide uniform priors were used for P and

T0, based on initial values.

The model also accounts for potential systematic differences in timing accuracy
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between instruments by having variable error scale factors applied to all eclipses

observed with a specific instrument. For example, the timing reported for eclipses

observed with ULTRACAM may be systematically offset from reality, and the

errors associated with those observations might need to be larger than reported

to be consistent with data from other instruments. The prior distribution assumed

for these error factors was log-uniform ranging from 0.01 to 5, which favours the

smallest error-multiplying factor consistent with the data.

Finally, the values of E for each eclipse were offset to minimise the covariance

between T0 and P . Consider a predicted eclipse time for E. The uncertainty on

Tecl in Equation 3.8 can be written as,

σ2
T ecl = σ2

T0 + 2σT0σPE + σ2
PE

2 (3.9)

from the standard error propagation formula. To evaluate an alternative set of

E ′, E can be offset by some integer, N , with E ′ = E − N . By substituting this

into equation 3.9, expanding out the brackets, and consolidating some terms, σ2
T ecl

becomes,

σ2
T ecl =σ2

T0 + 2σT0σP(E
′ +N) + σ2

P(E
′ +N)2

To minimise the cross-correlation between P and T0, the second term of

the above equation should be minimised. This is achieved by setting N =

−(σT0σP)/(σ
2
P), and re-fitting the ephemeris. Then, the above becomes:

σ2
T ecl = σ4

T0 + (σPE
′)2 (3.10)

with no cross correlation, in theory. In practice, as E must be rounded to an

integer, some residual cross-correlation persists, but is minimised.
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3.3 Modelling CV eclipse light curves

To determine the system parameters for the CVs in this study, the eclipse light-

curves were modelled. This method is more frequently applicable in CVs than

the more traditional approach of using spectroscopic eclipsing binaries, since the

donor star is rarely directly visible. Compared to using the superhump period

excess to estimate the mass ratio (Patterson et al., 2005; Knigge, 2006), light

curve modelling requires few assumptions. However, it does require reasonably

precise alignment of the system and so is not possible for a large fraction of CVs.

CV eclipse modelling was first developed by Wood & Crawford (1986), and

has been refined significantly over the last decade (Savoury et al., 2011; Littlefair

et al., 2014; McAllister et al., 2017a, 2019). The code used for this modelling,

however, is the publicly available lfit_python software3, based on the lcurve4 code

authored by Tom Marsh. The method relies on four assumptions, namely that:

(1) the stream of mass flowing from the donor to the white dwarf follows a ballistic

trajectory, (2) the white dwarf obeys a theoretical mass-radius relationship, (3)

the white dwarf is unobscured by the accretion disc or other sources of intra-

system material, and (4) the donor exactly fills its Roche lobe. Most of these

assumptions are considered robust, though the visibility of the white dwarf has

been called into question by Spark & O’Donoghue (2015). The white dwarf mass-

radius relationship was recently tested by Parsons et al. (2017), and found to be

a reasonable assumption. Assuming that the mass stream following a ballistic

trajectory appears to be a reasonable assumption, as the thermal velocity of the

donor surface is orders of magnitude lower than the orbital velocity of the two

stars. However, the most convincing argument to the validity of these assumptions

are comparative studies, showing good consistency between eclipse modelling and

other techniques (Tulloch et al., 2009; Copperwheat et al., 2012; Savoury et al.,

2012; Sion & Godon, 2022).

The rough outline of the modelling process is described here, but is detailed

fully in §3.3.1. Throughout, symbols are typically used when referring to model

and system parameters, and a key is provided in Table 3.1. Radii are found by

assuming that the secondary star completely fills its Roche lobe, which is required

for mass transfer and ensures that the donor radius is solely a function of mass

ratio, q, and orbital separation, a, c.f. Equation 1.2. The white dwarf eclipse

3Available at https://github.com/StuartLittlefair/lfit python
4Available at https://cygnus.astro.warwick.ac.uk/phsaap/software/

https://github.com/StuartLittlefair/lfit_python/tree/d36f5449350ef9cad6a285d6fd4cb9bdcd443c13
https://cygnus.astro.warwick.ac.uk/phsaap/software/
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Table 3.1: The various symbols used in this chapter, and their meanings.

Symbol Parameter

Fwd, donor, disc,bs White dwarf, donor star, disc, and bright spot fluxes
Teff White dwarf effective temperature

log(g) White dwarf surface gravity
Mwd, Rwd White dwarf mass and radius

Mdonor, Rdonor Donor star mass and radius
q Mass ratio
a Orbital separation
xl1 Distance from the white dwarf to the L1 point
i Inclination

∆ϕ White dwarf eclipse width in units of phase
Rdisc Accretion disc radius
b Disc surface profile exponent

θyaw, θtilt, θaz Bright spot yaw, tilt, azimuth
S Bright spot length scale

Y, Z Bright spot profile exponents
uld White dwarf limb darkening coefficient
ϕ0 An eclipse phase offset
π Parallax

E(B-V) Interstellar extinction

width is set by the width of the donor, a, inclination, i, and q (Bailey, 1979).

Assuming that the mass stream between the two stars follows a ballistic tra-

jectory puts the stream on a calculable path, determined by q (Lubow & Shu,

1975). This allows the location of the bright spot to be fixed in space, as the point

at which this path intersects the outer edge of the accretion disc. Therefore, the

phase of the bright spot ingress and egress is a function of q, i, ∆ϕ, and disc

radius. By assuming that the white dwarf is unobscured, the duration of white

dwarf ingress and egress are dependent on the white dwarf radius and inclination.

Four components of the eclipse model are the four component fluxes, Fwd,

Fdonor, Fdisc, Fbs. As the white dwarf is assumed to follow a known mass-radius

relationship, by fitting the observed white dwarf colours with a temperature,

gravity, distance and interstellar extinction, the temperature and radius of the

white dwarf yield a mass. The donor mass is then a simple product of the white

dwarf mass, and q. The final result of modelling are then the following system

parameters:

� white dwarf and donor masses
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� white dwarf and donor radii

� orbital separation

� orbital velocity of the white dwarf and donor

� inclination

� white dwarf effective temperature and surface gravity

� distance

Practically, the modelling actually takes place in two phases, which are each

described in detail. First the phase-folded eclipse is modelled under the above as-

sumptions using proxy variables, then the resulting proxy variables are converted

to physical parameters once observations are well-described by an eclipse model.

This proxy variable fitting is done for the sake of computational efficiency.

Note that this model requires simultaneously fitting many variables simulta-

neously, thus finding the best-fitting parameters to observed data is complex. The

technique used is described in §3.3.4.

3.3.1 Phase-folded eclipse modelling

Recall that the light from a CV originates from four distinct objects in the system.

The white dwarf and donor star, the accretion disc about the white dwarf, and

the bright spot impact region (hereafter simply ‘the bright spot’), where trans-

ferred material impacts the outer rim of the accretion disc and liberates significant

amounts of energy. Notably the bright spot emits flux directionally, so beaming

must also be accounted for in the model. The anatomy of a CV eclipse light curve

is a sequence of five events that usually occur in the following order:

1. a pre-eclipse hump is often seen as the bright spot rotates to point at the

observer

2. The white dwarf becomes obscured by the donor

3. The bright spot becomes obscured by the donor

4. The white dwarf emerges from behind the donor

5. The bright spot emerges from behind the donor

Figure 3.2 shows a typical light curve, with these events noted.

A single eclipse is described by 18 parameters:
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Figure 3.2: Showing an example eclipse light curve, folded about the period of
the eclipse. The solid black line shows the brightness of the system varying
over time. The blue solid lines show the white dwarf ingress (left) and egress
(right). The red dashed lines show the ingress (left) and egress (right) of the
bright spot. The pre-eclipse hump is the grey shaded region

� White dwarf, donor star, disc, and bright spot fluxes, Fwd, donor, disc,bs

� Mass ratio, q

� White dwarf eclipse width in units of phase, ∆ϕ

� Scaled white dwarf radius, Rwd/xl1

� White dwarf limb darkening coefficient, uld

� Scaled outer disc radius, Rdisc/xl1

� Disc surface profile exponent, b

� Seven parameters describing the bright spot

� An eclipse phase offset, ϕ0

The seven bright spot parameters are not physically motivated, but describe a

flexible empirical bright spot model designed to capture a large range of bright

spot eclipse morphologies.

The white dwarf

The white dwarf is modelled as a luminous disc, with a total surface brightness

Fwd and a radius of Rwd/xl1. It is subject to limb darkening, using a linear
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prescription:
Il
I0

= 1− uld(1− cosβ) (3.11)

where I0 is the intensity at the centre of the disc, and Il is the intensity at a limb.

β is the angle between the line normal to the surface of the white dwarf, and

the observer’s line of sight. However, the observations are not precise enough to

constrain uld, so a Gaussian prior derived from the white dwarf Teff and log(g) is

used.

The donor star

The secondary star does not become obscured during an eclipse, but there is still

some variation in its brightness. The donor is not spherical, so a small ellipsoidal

variation is seen as it rotates to expose more or less of its surface to the observer.

As a result, the donor is modelled as a limb darkened, and gravity darkened disc

with total surface brightness Fdonor, and a modulation to describe the changing

observable surface area.

The accretion disc

The accretion disc is modelled as a series of annular rings about the white dwarf,

extending out to Rdisc/xl1 and with a total surface brightness of Fdisc. The in-

tensity of each annulus decreases with distance from the white dwarf, following

an exponential formula, Ii ∝ R−b for ring i at distance R from the white dwarf.

As b is a free parameter in the model, the disc brightness can be made more or

less centrally concentrated to match observations. As the bright spot location is

determined by q and Rdisc/xl1, the phases of bright spot ingress and egress provide

a valuable constraint for Rdisc/xl1.

The bright spot

The bright spot model is not physically motivated, but rather is chosen to be able

to reproduce a large range of bright spot eclipses. It is modelled as a strip of flux

extending from the edge of the disc, with a defined brightness profile and overall

flux. The strip intensity falls off exponentially, described by the equation

IX ∝
(
X

S

)Y

· exp
[
−
(
X

S

)Z]
(3.12)



Methods 79

Figure 3.3: Showing a schematic of the bright spot model. The lower dashed
line joins the centres of the white dwarf and donor stars, and the upper dashed
line runs parallel to it, intersecting the bright spot location. The straight red
line is one half of the flux-emitting strip and has a profile exponent Y , and the
arrow shows the direction of light emission, at an angle θyaw from the normal.

where IX is the intensity of the strip a distance X along it, and S is the scale of

the bright spot. Y and Z are the profile exponents.

The bright spot is known to emit light directionally, at a beaming angle, θyaw,

from the normal to the strip in the plane of the disc, and an angle θtilt from the

plane of the disc. Some fraction of the light is beamed, and the rest, fis, is emitted

isotropically from the strip. This geometry is shown in Figure 3.3

Lower values of q will cause the ballistic stream to take a wider arc towards

the white dwarf, moving the intersection point with the disc. The angle between

the bright spot and disc edge is defined by θaz, the angle between the strip and

the line of sight of the observer.

As the bright spot is the most complex component of the model, there is

an option to simplify it in software for systems with faint bright spot features

that cannot be properly resolved. This mode is called the ‘simple’ bright spot

model, and fixes θtilt at 90◦, θyaw at 0◦, and the strip exponents X and Y to 1

and 2, respectively. By removing these four degrees of freedom, better and faster

characterisation of the eclipse is possible.
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Choice of priors

The choice of prior is important in Bayesian inference, but I have very little prior

knowledge on a system. The prior distributions used were generally uniform and

span the numerically allowed range5, with a few exceptions.

As it is unconstrained by data, uld initially uses a Gaussian prior centred on

0.3 with a width of 0.1. Once a constraint on Teff is known, a more accurate value

of uld can be calculated and used for future fitting. The bright spot scale draws

from a log-uniform prior between 0 and 0.2, which favours smaller values, and θaz

is forbidden from values that would cause the bright spot strip to deviate from

a tangent to the disc by > 80◦. Finally, some combinations of parameters are

forbidden in the model. The values of q and ∆ϕ must be such that i ≤ 90◦ for an

eclipse to occur, and the disc radius is constrained by the maximum radius before

precession becomes a significant effect, Rdisc/a < 0.46 (Hellier, 2001).

3.3.2 Post-processing the eclipse model

The eclipse modelling uses proxy variables, so some processing must be done to

convert them to physical values. This is done in two steps. First, a white dwarf

temperature and surface gravity are fit to the white dwarf fluxes. Then, the white

dwarf temperature and orbital period are combined with the best-fit eclipse model

parameters to convert the scaled distances to metres, and mass ratio to the masses

of each star.

Fitting white dwarf colours

By modelling the eclipse in multiple bands, at least three observations of white

dwarf flux are available. The DA white dwarf cooling model from Bergeron et al.

(1995)6 is fit to these flux observations. These cooling models yield the absolute

magnitude of the white dwarf in each band, M , for a given effective temperature,

Teff and surface gravity, log(g). This absolute magnitude is then easily trans-

lated to an apparent magnitude, m, given a system parallax, π, and interstellar

extinction coefficient, E(B− V),

m = M − 5 log(π, arcsec)− 5 (3.13)

5e.g. angles are limited to be between 0 and 2π, and fluxes range from 0 to the peak flux of
the eclipses.

6Available at http://www.astro.umontreal.ca/∼bergeron/CoolingModels

http://www.astro.umontreal.ca/~bergeron/CoolingModels
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To optimise these four parameters, an affine-invariant MCMC with three lev-

els of parallel tempering was used, c.f. §3.1.2. for priors, uniform Teff and log(g)

distributions were used that span the range set by the model cooling tracks.

E(B− V) used a uniform distribution between 0, and the maximum IRSA mea-

surement for the relevant sky coordinates7, and the parallax prior was chosen to

match the Gaia measurement of the system (Lindegren et al., 2018; Luri et al.,

2018; Gaia Collaboration et al., 2016, 2018).

Conversion of proxy variables to physical parameters

The eclipse model proxy variables are then converted to real values. Five input

variables are needed: Teff , Porb, q, ∆ϕ, and Rwd/xl1.

A measure of the white dwarf radius, Rwd, can be found using Kepler’s 3rd

law and making the substitutions r = Rwd/a and q = Mdonor/Mwd.

P 2
orb =

4π2a3

G(Mwd +Mdonor)
(3.14)

=
4π2R3

wd

GMwd(1 + q)r3
(3.15)

R3
wd =

P 2
orbr

3GMwd(1 + q)

4π2
(3.16)

r can be found from Rwd/xl1 by calculating xl1/a, which itself is a function only

of q.

Finding Rwd this way requires the white dwarf mass. Fortunately, for a given

Teff (which is known from the colour fits, §3.3.2), white dwarfs follow tight theo-

retical mass-radius relationships (Parsons et al., 2017), that can be employed to

find the unique Mwd, Rwd pair that satisfies both Equation 3.16 and the theo-

retical mass-radius relationship. Specifically, a proposed theoretical mass-radius

pair is chosen from a model relationship and a value of Rwd,calc is calculated from

Equation 3.16. If this matches the theoretical value, the mass is valid. Otherwise,

the proposed mass is altered accordingly and a new mass-radius pair is checked

again until the two agree.

Three white dwarf mass-radius relations were used. First, a solution was

searched for using the Wood (1995) models, spanning masses of 0.4 − 1.0M⊙.

The Wood (1995) models are preferred, as they use a thicker hydrogen layer

7Available at https://irsa.ipac.caltech.edu/applications/DUST/

https://irsa.ipac.caltech.edu/applications/DUST/
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that is more appropriate for the accreting CV white dwarfs. If no solution could

be found, the Panei et al. (2000) models were searched, spanning masses from

0.4− 1.2M⊙. Both of these mass-radius relationships account for the white dwarf

Teff . If no solution has been found with these two tracks, the Hamada & Salpeter

(1961) 0 Kelvin mass-radius relation is checked for solutions. This track spans

the largest range in mass, from 0.14 − 1.44M⊙. If no solution is found with the

Hamada & Salpeter (1961) tracks, the model is considered invalid, though this

did not occur for any system in this thesis.

Then, the inclination is calculated. ∆ϕ is solely a function of q, and i. There-

fore, the eclipse model values of ∆ϕ and q are used to calculate the system in-

clination - this is done by proposing candidate values of i, and comparing the

calculated ∆ϕcalc(q, i) with the modelled ∆ϕ, and adjusting i as needed until the

two agree.

Now, three quantities are known; i, Mwd, and Rwd. As previously mentioned,

Rdonor is assumed to be the Roche radius, from Equation 1.2, and Mdonor is found

simply by (q · Mwd). a is calculated from the two component masses and Porb,

using Kepler’s laws. Finally, the orbital velocities, Kwd, donor respectively, of the

two stars are calculated using Kepler’s laws.

Kwd =
2πasini

Porb

q

1 + q
(3.17)

Kdonor = Kwd ·
Mwd

Rwd

(3.18)

3.3.3 Capturing flickering with Gaussian Processes

CVs almost always display some amount of stochastic variability, known as flick-

ering. Rather than attempting to model this physically, it is instead treated as

correlated noise and characterised with a Gaussian process (GP). The application

of GPs to capturing flickering was established by McAllister et al. (2017a) based

on work by Roberts et al. (2012) and Gibson et al. (2012). The utility of this

addition to the eclipse modelling step is a significant improvement in the accu-

racy of parameter posteriors, as the GP can be used to subtract flickering from

the observations while leaving the key light curve features that modelling aims to

reproduce, demonstrated by McAllister et al. (2017a).

This section is aimed at giving a working knowledge of GPs in the context of

characterising flickering, and for more in-depth discussion the reader is directed
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Figure 3.4: Reproduced from McAllister (2017). Two variables, t1,2, are described
by a joint Gaussian distribution. Blue ellipses trace lines of equal probability of
drawing a sample. Solid black Gaussians along each axis show the probability
distributions of each variable, and the dashed black Gaussian along the y-axis
shows the probability distribution of t2, given a fixed value of t1, which is shown
by the vertical dashed line.

towards these works. The mathematics below omits error in flux for legibility,

but closely similar derivations are possible that include error when calculating

the likelihood of a data set.

Gaussian Process background

GPs are a statistical method that can be adapted to produce a series of correlated

points across a time (or space) axis, the distribution of which is described by a

Gaussian function. The points are related to one another by a joint distribution;

to illustrate what a joint distribution is, take the example to two variables t1, t2,

shown graphically in Figure 3.4. Each is normally distributed about a central

value, but higher values of t1 are more likely to be produced alongside higher

values of t2. Thus, knowing the value of t1 can inform the likely value of t2,

written as P (t1|t2).
By describing a time-series dataset as an arbitrarily large number of variables
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with a joint distribution between them, the probability of a point being described

by a GP, given the rest of the data, can be computed. Similarly, the likelihood

of an entire data set being described by a GP is also calculable. This principle

is the basis of time-series GPs, and allows them to be used when evaluating the

goodness-of-fit of a model.

A GP distribution is defined simply by two functions, a mean function, µ(t),

and a covariance function, k(ti, tj).

y(t) ∼ GP(µ(t) · k(ti, tj)) (3.19)

where ti,j are the times of two data points, and are not necessarily adjacent. In

this context, the set of y is a set of observed fluxes at times t. The distribution of

y is then represented by the joint distribution of P (y|t), following a multivariate

Gaussian, N ,

P (y|t) = N (µ(t),K) (3.20)

WhereK is the covariance matrix of the multivariate Gaussian, and fully describes

how the distribution of each element of t is affected by each other element, forming

an n× n matrix for n data in t.

K =


k(t1, t1) k(t1, t2) · · · k(t1, tn)

k(t2, t1) k(t2, t2) · · · k(t2, tn)

· · · · · · · · · · · ·
k(tn, t1) k(tn, t2) · · · k(tn, tn)

 (3.21)

Computing a covariance matrix

In practice, as t becomes a larger set and n increases, computing the n × n

matrix K becomes impractical. Instead, a kernel is defined that gives analytical

functions that approximate each k(ti, tj), and the choice of kernel defines the type

of correlation between data.

When modelling flickering, a Matern-3/2 kernel is used, which produces a

covariance matrix that correlates nearby values more strongly than those further

away in time. The kernel has a ‘memory’ timescale, λ, and an amplitude, α, that

can be tuned to a data set. This replaces k(ti, tj) with α · kM(r2), where kM(r2)

is defined as

kM(r2) =
(
1 +

√
3r2
)
· exp

(
−

√
3r2
)
. (3.22)
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Here, r2 is a pseudo-radius, and is a function of the distance between the two ti,j

being considered. Generally, since the Gaussian process technique is applicable

to parameter vectors, this is written as

r2 = (ti − tj)
⊤ · Λ−1 · (ti − tj) (3.23)

Note that the choice of the matrix Λ defines how other data in a set affect other

data, and can be any square matrix of the same width as t. For the GP used in

this work, a simple Λ is used which has λ along the diagonal and 0 elsewhere,

making λ a kernel scale parameter. In this model each ti is a single time value,

making Λ a 1 × 1 matrix with values of λ along the ‘diagonal’ – functionally,

r2 = λ · (ti − tj)
2.

Evaluating a model fit with a Gaussian process

Finally, the L of a set of y, t can be calculated given a GP, i.e. L(y|α, λ, t),
analogous to P (y|t) (Rasmussen & Williams, 2006). This is the pertinent step to

the modelling, as the likelihood function of the data is replaced with the likelihood

of the GP. When evaluating a proposed Θ in the MCMC, rather than using

L ∝ exp(−χ2/2) the likelihood function is replaced with the likelihood of the

residuals after observed fluxes have had the eclipse modelled fluxes subtracted,

i.e. yres = yobs − ymodel, given an (α, λ) pair. This is expressed more clearly

algebraically, as

L = P (yres|t, α, λ) =
1

(2π)n/2|K|1/2 exp
(
− 1

2
y⊤
resK

−1yres

)
(3.24)

One final factor must be accounted for. Flickering appears to be localised

to the region of space near the white dwarf, and often reduces in amplitude

substantially during the white dwarf eclipse (McAllister et al., 2017a). To capture

this in the GP, two kernels are used: one external to the white dwarf eclipse, and

one internal to the white dwarf eclipse. Each shares a value of λ, but has its own

freely variable α, αout and αin.

Overall, the GP adds three new parameters to the eclipse model: αout,in and

λ, which are optimised alongside the eclipse parameters themselves. αout,in use

wide, log-uniform priors to prioritise smaller amplitudes. λ uses a narrower log-

uniform prior, chosen to prevent the timescale from either exceeding the duration

of the eclipse, or becoming shorter than the time resolution between data points.
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The slightly more complex parameter space that must now be explored, and more

computationally expensive evaluation of L, is made up for in a significantly better

characterisation of lower quality eclipses (McAllister et al., 2017a).

3.3.4 Hierarchical model structure

In this thesis, the light curve fitting model used by McAllister et al. (2019) is

extended, adopting a hierarchical approach to reduce model complexity.

Changes in the disc radius and brightness profile, and bright spot parameters

can mean that the same CV has a significantly different eclipse light curve at dif-

ferent times, often making it difficult to justify averaging together many eclipses,

as features can become smeared out and uninformative. In the worst-case sce-

nario, all 18 parameters would be independently variable for each eclipse, in each

band. However, by sharing some parameters between eclipses and bands, this

large number of free parameters is slightly reduced, and the posterior of some

parameters can be informed by multiple eclipses. McAllister et al. (2017a) share

q, Rwd/xl1, and ∆ϕ between eclipses, and I broaden that concept by organis-

ing the model into a hierarchical structure, a schematic of which is shown in

Figure 3.5.

The top level of the model provides the core parameters, which are unchanging

between all observing bands and constant across our observations: q, Rwd/a, and

∆ϕ. I assume the white dwarf and donor fluxes do not change on the timescale of

our observations, and so these variables, along with the limb darkening coefficient

of the white dwarf, are shared between all eclipses observed with the same filters.

The bottom level holds parameters that can vary quickly enough to change be-

tween eclipses, i.e. parameters describing the accretion disc and bright spot. By

handling parameters this way, I maximise the amount of data informing impor-

tant variables. I also somewhat reduce the number of free parameters, which aids

in model fitting, but the chief justification for the hierarchical approach is that

it ensures consistency between eclipses - something not guaranteed when fitting

eclipses individually.

Where possible, data were also binned together. Ideally, this has three bene-

ficial effects: the number of eclipses, and therefore the number of parameters, is

reduced; binning increases the signal-to-noise ratio of the data; and as the flick-

ering component is not consistent between eclipses, should reduce the degree of

flickering present in the data. However, as CV eclipses often have variable bright
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Figure 3.5: The hierarchical structure of the light curve model. Parameters are
inherited downwards, to produce an eclipse at the ‘leaves’ of the tree, e.g. Eclipse
3 inherits the parameters of Band 2, which in turn inherits the Core parameters.
Fwd,RS represent the fluxes of the white dwarf and donor star, and ULD is the limb
darkening coefficient of the white dwarf.
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spot and disc contributions, it is frequently not reasonable to combine eclipses.

Varying bright spot and eclipse features will become smeared out when binned,

corrupting crucial elements of the eclipse. This smearing effect is also subtly

present, even in data that appear consistent. As a bin width must be chosen

that will not precisely align with the integration times of the photometric data,

binning will always introduce a small blurring of timing data, and whilst this is a

small effect, it can significantly alter the white dwarf ingress and egress features.

Therefore, binning is only done when data are sufficiently similar, and is treated

with caution.

3.4 Evolutionary modelling

Once armed with a robust sample of CVs donor masses and radii, evolutionary

modelling is able to refine our understanding even further. In §1.5, I motivated

how the donor star inflates in response to mass loss, and how the degree of this

inflation is related to the severity of the mass loss. If the radius of an equivalent

star in the absence of mass loss is known, and the observed radius of a CV donor

can be reproduced by stellar structure models with the introduction of some

amount of mass loss, the long-term average mass loss rate can be inferred.

The stellar evolution code used is the MESA codebase (Paxton et al., 2011,

2013; Paxton et al., 2015, 2019), a one-dimensional stellar evolution model. MESA

is highly flexible, due to its use of various ‘modules’, wherein each module sup-

plies code with an element of the physics of the star. These are configurable with

relatively simple input files, and can be customised to extend MESA with new

physics not contained in the core codebase. Regarding CV modelling in partic-

ular, there is a priori cause for confidence; largely default MESA configurations

are capable of modelling CV donor tracks with impressive accuracy, even repro-

ducing the period gap by a shutdown of magnetic braking triggered by the donor

becoming fully convective (Paxton et al., 2015). §6.1 also demonstrates this capa-

bility, and shows that with some small modifications the agreement between the

evolutionary tracks produced by MESA and Knigge et al. (2011) can be improved

further.

Note that all MESA models for this thesis were run using version 21.12.1 of

the MESA codebase, and use the configuration detailed in §3.4.1, unless specified

otherwise.
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To extract mass loss rates, I will go through three steps. Firstly, I demonstrate

how the radius of a zero-Ṁ singleton model of a given mass can be tuned to match

the M dwarf mass-radius relationship given by Brown et al. (2022) by introducing

star spots. Secondly, I explore the range of donor masses for which the radius is

insensitive to mass loss history – donors within this mass range can be used to

find the secular mass loss rate. Finally, I outline the method by which I search

for mass loss rates that produce stellar models matching CV donor observations.

3.4.1 MESA configuration for low-mass M dwarfs

Broadly speaking, when computing a stellar evolution model one must simply in-

put models of physical processes, describe some initial conditions, and allow the

stellar model to evolve over time. Unfortunately, the physics of stars in not com-

pletely understood, and the processes that affect a star’s evolution significantly

differ depending on its conditions. Whilst some core physics is fixed, MESA pro-

vides many options for which prescriptions to use for a particular process, or even

which processes to consider at all. MESA has default configuration values that

are reasonable for some common stellar conditions, but some tuning of the model

physics is a necessary step for any rigorous modelling. As such, some tailoring of

configuration files must be done in order to produce accurate donor models.

Parameters that are not discussed below are left as the MESA default. Notably

left as default is the metallicity of the donor stars; robust measurements of donor

metallicity are challenging, though some recent attempts have yielded results

(Harrison, 2016, 2018). However, these are prone to systematic error, and refer

to a small sample size. All MESA models presented here use the default MESA

metallicity, Z = 0.02 (initial_z = 0.02d0), Y = 0.28(initial_y = 0.28d0).

Model initialisation

Whilst MESA allows for beginning a MESA run with a precomputed stellar

model, the models in this analysis all generate their stars from a pre-main se-

quence cloud of gas before each run. This ensures that each model is computed

from the very beginning with the correct physics, and is set by the command

create_pre_main_sequence_model = .true.
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Nuclear processing

Computing the equilibrium reaction rates of nuclear burning in a star is non-

trivial, as the different species being consumed and produced form a complex

network of interactions. The products of one reaction are often the reagents of

another, and with many options for reaction paths and hard-to-calculate reaction

rates, this is prohibitive (and often inaccurate) to compute on the fly. Rather, a

pre-calculated or empirical reaction network is used.

MESA has several options for the reaction network available in its core code-

base. By default, the basic network considers the reactions of the staple elements

of most stellar cores: hydrogen-1, helium-3, carbon-12, nitrogen-14, oxygen-16,

neon-20, and magnesium-24. However, we use the more complete reaction net-

work given by pp_and_cno_extras. This is a combination of two other networks,

pp_extras and cno_extras. pp_extras is preferred, as it more accurately represents

nuclear reactions in young stars (Murphy et al., 2021), and cno_extras more fully

considers the reaction chains the CNO cycle, specifically at high temperatures

(Paxton et al., 2011). To enable this, the lines change_net = .true., new_net_name

= ‘pp_and_cno_extras.net’ are added to the configuration file.

In addition, the JINA Reaclib reaction rate library (Cyburt et al., 2010) is

used: set_rates_preference = .true., new_rates_preference = 2

Opacity tables

MESA uses two opacities: radiative opacity and conductive opacity, with options

to select which opacity sources to use and when to use them. I use the opacities

calculated for Asplund et al. (2009) solar abundances by setting the following

flags:

� kap_file_prefix = ‘a09’

� kap_lowT_prefix = ‘lowT_fa05_a09p’

� kap_CO_prefix = ‘a09_co’

Note that MESA uses separate opacity tables for high (kap_file_prefix) and low

(kap_lowT_prefix) temperatures, and I set both to the appropriate tables for As-

plund et al. (2009). For completeness, I also set the higher temperature, hydrogen-

poor/metal-rich opacity table to the Asplund et al. (2009) (kap_CO_prefix), though
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the stars modelled here are all low temperature M dwarfs and this does not affect

these specific results.

Surface boundary lookup tables

When solving the four differential equations necessary to produce an internally

consistent stellar model, i.e. how the radius, pressure, luminosity, and temper-

ature vary with mass, some boundary conditions are required. The boundary

conditions for radius and luminosity are self-evident: R(M = 0) = 0, and

L(M = 0) = 0. Unfortunately, such simple fixed central values are not avail-

able for the temperature and pressure, so the boundary condition at the surface

of the star is used instead. This requires defining the location of the surface of

the star. This is done by setting a value of optical depth, τ , to use as the base of

the stellar atmosphere.

A basic approach is to set the pressure and temperature to 0 at the stellar

surface, i.e. P (M = Mτ ) = 0, T (M = Mτ ) = 0, but this is a poor approximation.

A far more accurate approximation is to pre-calculate model stellar atmospheres,

which then give values of P, T as a function of τ , log(g), and luminosity. Different

choices of atmosphere table results in different surface temperatures and pressures,

which can alter the mass-radius relation for the resulting models.

For these MESA models, the tau_10 grid was used, which interpolates the

PHOENIX (Hauschildt et al., 1999, 2001) and Castelli & Kurucz (2004) stellar

atmospheres (which assume solar metallicity) at τ = 10 for the base of the at-

mosphere (Paxton et al., 2010, 2011). Note that none of the atmosphere tables

available in MESA accurately reproduce observations of M dwarfs across the range

of donor masses required. In fact, of the available tables, the tau_10 gives some

of the less accurate modelled mass-radius relations for low mass stars. However,

this atmosphere grid was chosen as it produces stars that are consistently smaller

than required for stars with M < 0.3M⊙, a deficit that is compensated for in §6.3,

using the method described in §3.4.2. In this way, rather than relying on the at-

mosphere table to produce the correct stellar radii, the radius can be manually

adjusted to match observations.

Mixing length theory

Mixing length theory is concerned with the convective boundary, where rising

material dissipates its heat, reverses trajectory, and begins to sink. Models that
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treat a convective layer as a hard boundary between convective and non-convective

material are less able to describe observations than models that allow for some

degree of overshooting of rising material past the theoretical convective boundary,

before dispersing its energy (Prandtl, 1925). This is often justified physically by a

rising packet of material having some momentum that must be dissipated before

reversing direction (Bradshaw, 1974).

By reducing the degree of overshooting, the efficiency with which energy is

transported from the inner regions of the star is similarly reduced, increasing

R(L). We decrease the default MESA overshooting of 2× the pressure scale height

of the convective boundary, to 1.95× this scale height: mixing_length_alpha = 1.95

. In addition, we use the Henyey et al. (1965) MLT formulation, and the following

overshooting formalism new to MESA v21.12.1:

� overshoot_scheme(:) = ‘exponential’

� overshoot_zone_type(:)= ‘any’

� overshoot_zone_loc(:)= ‘any’

� overshoot_bdy_loc(:) = ‘any’

Model convergence and grid fidelity

Finally, two numerical options were enabled. The first is the MESA ‘gold’ toler-

ances, which enforces tight tolerances on energy conservation. If, after computing

a time step, the sum of the energies of each model cell does not closely match the

known total energy of the star, the step is rejected and re-attempted, resulting in

more accurate models (Paxton et al., 2019).

Second, we apply the okay_to_reduce_gradT_excess = .true. flag, which enables

the MLT++ treatment of convection of §7.2 of Paxton et al. (2013). When the

stellar envelope is superadiabatic and its atmosphere is radiation-dominated, the

convective velocities can approach the speed of sound of the stellar envelope. This

forces MESA to take extremely short time steps to try and resolve convection,

and makes such envelopes prohibitive to model. The okay_to_reduce_gradT_excess

flag allows MESA to reduce the severity of the temperature gradient, making the

star less superadiabatic, and less prone to small time steps. This is important to

the star spot corrections, as it allows them to be numerically stable for a larger

range of spot parameters.
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3.4.2 Modelling star spots in MESA

A general problem in the modelling of low mass stars is an under-estimation of

their radii (López-Morales & Ribas, 2005), and MESA is no exception. Recently,

Brown et al. (2022) characterised a sample of ∼ 15000 M dwarfs with Gaia par-

allaxes, radii, and 2MASS KS measurements from Morrell & Naylor (2019) with

a 5th order polynomial, R(M), referred to as the Brown relation. Notably, this

relation shifts to the theoretical Baraffe et al. (2015) tracks at M < 0.121M⊙,

as the data become increasingly sparse at such low masses. We use this semi-

empirical mass-radius relation as the baseline ‘zero mass loss’ benchmark radius

for comparison against models.

The difference between singleton MESA models with no mass loss and the

Brown relation is shown in Figure 3.6, but the goal is not to reproduce the Brown

relation exactly; CV donors are filling their Roche lobes, so are non-spherical.

To partially account for this effect, Knigge et al. (2011) introduces a 4.5% radius

inflation over isolated stars, and I mirror this approach. Thus, the target radius

inflation in Figure 3.6 is 4.5%. However, it must be emphasised that the non-

spherical Roche geometry is not solely a geometric effect – the breakdown of

spherical symmetry means that the gravitational potential of the star is no longer

similar to a point mass, which fundamentally alters the structure of the star near

the surface where the effects are largest and increases the stellar radius (Renvoizé

et al., 2002). The effects are not captured by this radius correction. However, for

the purposes of this work, they can be considered negligible.

To artificially inflate the MESA models to account for the discrepancy with

empirical mass radius relationships, and the additional inflation caused by depar-

tures from spherical symmetry, I introduce star spots into MESA. Star spots are

magnetic phenomena, where the magnetic pressure from concentrations of mag-

netic field lines provides partial pressure support to the photospheric material,

and since spots must remain in pressure equilibrium with the spotted surface, the

temperature in a spotted region is reduced by ideal gas laws. As a consequence,

the cooler spotted regions emit less black body radiation, inhibiting energy flux

out of the stellar interior, and inflating the star.

The star spot model

As MESA is a one-dimensional code and star spots are a two-dimensional phe-

nomenon, spots are modelled using the formulation given by Somers & Pinson-
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Figure 3.6: Showing the radius inflation of default MESA models over the Brown
relation, i.e. (RMESA−Rbrown)/Rbrown. The horizontal dashed line is the target
radius inflation for MESA models, of 4.5% over the Brown relation. Crosses
correspond to MESA models at an age of 2 Gyrs.
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neault (2015), based on work by Spruit & Weiss (1986). This implementation was

done as a collaboration with Meridith Joyce8 and Marc Pinsonneault9.

Under this spot treatment, two effects are considered: the photosphere is

made inhomogeneous by the presence of spots, and convection is inhibited by

the presence of a strong magnetic field. In the Somers & Pinsonneault (2015)

model, the former effect is enforced by altering the effective temperature to a

surface-weighted average of the spotted and unspotted surface, and the latter by

augmenting the radiative gradient of the star.

The spots cover a fraction of the stellar surface, fspot, and a temperature

contrast of xspot = Tspot/Tamb, where the effective temperature of the spotted

surface is Tspot, and the effective temperature of the ambient, unspotted surface

is Tamb. The surface-weighted average of the star, Tav is then,

T 4
av = (1− f)T 4

amb + fspotT
4
spot (3.25)

And the altered luminosity, Lav, becomes

Lav =4πR2σboltzT
4
amb(1− fspot + fspot · x4

spot) (3.26)

Lav =4πR2σboltzT
4
ambαspot (3.27)

Lav =Lambαspot (3.28)

αspot, the redistribution parameter, and is what actually alters the structure of

the star. α is analogous to the blocking area of perfectly black spots, or spots

that are completely supported by magnetic pressure.

MESA performs a lookup for the surface pressure from Teff using precalculated

boundary condition tables (§3.4.1). I modify the MESA code to perform this

lookup with Tav.

However, in MESA Teff is not used in the stellar model interior - rather, it uses

energies and pressures to calculate structure. Therefore, I alter Equation 3.25

to use pressure instead. Recall the ideal gas equation, for gas in the ambient,

unspotted surface, this gas will have pressure and temperature Pgas,amb, Tgas,amb,

density ρ, and mean molecular weight µ. Here, R denotes the gas constant.

Pgas,amb =
ρR

µ
Tgas,amb (3.29)

8Space Telescope Science Institute: Baltimore, MD, US
9Ohio State University, OH, US



Methods 96

The spotted and unspotted surfaces are under pressure equilibrium, but the spot-

ted surface pressure has a contribution from gas pressure, Pgas,spot, and some

contribution from magnetic pressure, Pmag,spot. Therefore, we can write

P = Pgas,amb =Pgas,spot + Pmag,spot (3.30)

ρR

µ
Tamb =

ρR

µ
Tspot + Pmag,spot (3.31)

Pmag,spot =
ρR

µ
(Tamb − Tspot) (3.32)

Pmag,spot =(1− xspot)Pgas,amb (3.33)

(3.34)

And therefore,

Pgas,spot =Pgas,amb − Pmag,spot (3.35)

Pgas,spot =Pgas,amb − (1− xspot)Pgas,amb (3.36)

Pgas,spot =xspotPgas,amb (3.37)

However, star spots do not penetrate to the core of the star. To quantify this,

rather than fixing xspot and calculating the new pressure at each depth of the

star, I calculate the gas pressure difference at the surface of the star, and fix this

gas pressure difference for interior layers. As gas pressure rises with depth, a

significant difference at the surface quickly becomes insignificant. Rather than

directly altering the pressure profile of the star, the radiative gradient, ∇r, at

each depth is modified. MESA then uses ∇r to compute a self-consistent pressure

profile for the star.

αspot,i =1− fspot + fspot · x4
spot,i (3.38)

∇′
r,i =

∇r,i

αspot,i

(3.39)

This is analagous to the method employed in Somers & Pinsonneault (2015).

Values of fspot and xspot can be passed to MESA as user-configured parameters to

define the degree of spotting. Figure 3.7 shows the radii of main sequence stellar

models at 2 Gyrs, and 0.15M⊙ with progressively more spots.
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Figure 3.7: Showing how model radius varies as a function of spot coverage for
a 0.15M⊙ star. Here, spots are perfectly black (xspot ≡ 0), and the radius is
extracted at 2 Gyrs. Evaluated MESA models are shown as black crosses, and
joined by a black line to guide the eye.
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3.4.3 Optimising mass loss rate to donor observations

The mass loss rate required to match donor observations can now be found. As

the inflation of the donor increases monotonically with increasing mass loss, the

bisection method is used to precisely and accurately optimise mass loss. When

evaluating a proposed Ṁ , two other key model parameters must be set. First the

mass loss over a period of 1 Gyr is calculated. The initial model mass is then this

expected 1 Gyr mass, in addition to the target mass. Doing this allows for some

lead time before the model reaches the desired stellar mass, and gives the star

time to reach both the main sequence, and settle to its equilibrium radius. The

appropriate fspot for the target mass is also calculated, and the model fixes fspot at

this value. Fixing fspot this way accounts for the donor having comparable τKH and

τṀ , which would not allow the star to properly adjust to variable spot parameters.

Finally, to find the uncertainty in Ṁ , two further combinations of donor mass

and radius were evaluated for each system: (M = M̄ + σM , R = R̄ + σR), and

(M = M̄ − σM , R = R̄ − σR). The donor mass and radius are highly correlated

(typical cross-correlation coefficient values for the eclipse modelled systems later

analysed for this work are ∼ 0.9995), so this is reasonable approximation to make.

3.4.4 Determining AML rate from system parameters

Finally, the mass loss can be converted to an angular momentum loss rate. To do

so, I will begin by defining the total AML from the system, J̇ , as the sum of the

typical system AML, J̇sys (i.e. gravitational and magnetic braking), and CAML,

J̇CAML,

J̇ = J̇sys + J̇CAML (3.40)

King & Kolb (1995) set a general formulation of CAML as some fraction of donor

mass loss,
J̇CAML

J
= ν

Ṁdonor

Mdonor

(3.41)

where the form of ν depends on the CAML prescription being used.

The form of J̇sys in the presence of CAML is also given in King & Kolb (1995).

J̇sys
J

= D
Ṁdonor

Mdonor

(3.42)

D =

(
5

6
− ζ

2

)
− Mdonor

Mwd

+ α

(
Mdonor

Mwd

− 1

3

Mdonor

Mwd +Mdonor

)
− ν (3.43)
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α is the mass retention factor, Ṁtotal/Ṁdonor. Following the findings of McAllister

et al. (2019), there is no growth of the white dwarf over time and thus α ≡ 1. ζ

is the mass-radius exponent of the donor star, d(lnRdonor)
d(lnMdonor)

.

The final equation needed is for the total J of the binary. This is simply given

by

Jtot = MwdMdonor

√
Ga

Mwd +Mdonor

(3.44)

After substituting α = 1, J̇ as a function of component masses, a, Ṁdonor, and

ζ, is found

J̇ = J
Ṁdonor

Mdonor

· (D + ν) (3.45)

J̇ = MwdṀdonor

√
Ga

Mwd +Mdonor

((
5

6
− ζ

2

)
− 1

3

Mdonor

Mwd +Mdonor

)
(3.46)

As a product of the eclipse modelling and MESA modelling, all the necessary

quantities for Equation 3.46 are known. Therefore, the secular AML rate for the

modelled CV systems can be deduced.
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Table 4.1: Summary of observational information for the 3 CVs of this chapter.

System name RA Dec g′ T0, Period,
BMJD, UTC days

ASASSN-16kr 22:05:59.48 -34:14:33.9 18.0 57658.22013(1) 0.061285933(1)
ASASSN-17jf 20:29:17.13 -43:40:19.8 20.2 58754.12003(3) 0.0567904(7)
SSS111126 05:22:10.00 -35:05:30.0 18.9 58755.36437(1) 0.06219343(1)

The work presented in this chapter was published as Wild et al. (2021), in the

Monthly Notices of the Royal Astronomical Society under the title System param-

eters of three short period cataclysmic variable stars by Wild, Littlefair, Ashley,

Breedt, Brown, Dhillon, Dyer, Green, Kerry, Marsh, Parsons, and Sahman. The

following is my own work, unless otherwise cited.

This chapter concerns the three systems, ASASSN-16kr, ASASSN-17jf, and

CRTS SSSJ0522−3505 J052210-350530 (hereafter SSSJ0522−3505), which proved

challenging to model. As such, a deep inspection of the robustness of the analysis

techniques is conducted using these systems as a case study, and is used in later

chapters to justify the inclusion of similar results. Table 4.1 summarises the right

ascension, declination, magnitude, and ephemeris of each CV.

4.1 Prior observations

New data were observed for each of these three systems, detailed in §2.4. Table 2.7

describes the ASASSN-16kr observations, Table 2.9 describes ASASSN-17jf, and

Table 2.17 describes SSSJ0522−3505. However, in each case there were prior

observations, described here.

ASASSN-16kr

ASASSN-16kr (a.k.a. MASTER J220559.40-341434.9) was discovered by the All-

Sky Automated Survey for Supernovae (ASASSN) on 11 September 2016, and

observed by the MASTER network on the 19th (ATel #9509 and #9510), both

at ∼ 14th magnitude. Initially classified as an SS Cyg type object due to its

low outburst amplitude (vsnet alert #20189), subsequent observations confirmed

eclipses and superhumping behaviour (vsnet alerts #20190, #20196, #20206;

Kato et al. 2017).

Time-resolved photometery detected superhumps and eclipses, and Kato et al.
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(2017) calculated an orbital period of 0.0612858 ± 0.0000003 days, and a super-

hump period of 0.061999± 0.000067 days. Kato et al. (2009) demonstrated that

superhump periods vary systematically, and can be categorised into stages: stage

A, an initial growth stage with a long period; stage B, a developed stage with

a varying period; and stage C, with a shorter and more constant period. This

system is noted by Kato et al. (2017) as being in the transition from stage B to

stage C, though this is suggested to possibly be due to a suspect measurement a

the start of the outburst they observed.

ASASSN-17jf

ASASSN-17jf was confirmed as eclipsing by Berto Monard (vsnet alert #21257)

between 14 and 17 July 2017. The system was initially observed with a mean

unfiltered magnitude of ∼ 15.5 outside eclipse, with an eclipse depth of ∼ 1

magnitude. From these observations, an orbital period of 0.0578 ± 0.0003 days,

and a rough superhump period of 0.0565 days was derived.

SSSJ0522-3505

SSSJ0522−3505 was first observed by the CRTS on 28 February 2005, and as

recently as 11 November 2019 (Drake et al., 2008). These data show high vari-

ability, and outbursts ∼6 months apart. High time resolution light curves taken

by Paterson et al. (2019) show an eclipse depth of ∼ 1.5 magnitudes and an orbital

period of 0.0622± 0.0005 days.

4.2 Eclipse modelling

The observations were reduced, analysed for system ephemerides c.f. §3.2, and

phase folded for eclipse modelling following §3.3.1.

Phase-folded eclipse modelling gave good results in all three systems, each

light curve being well-modelled with small residuals; the final optimisations are

shown here in Figures 4.1 - 4.15. The Gaussian processes describing flickering in

the systems were consistent with little to no variability, indicating that almost

all the scatter in the flux residuals could be fully described by the uncertainty in

flux measurement. However, when fitting white dwarf model atmospheres to the

observed white dwarf fluxes, the resulting fits were not satisfactory. The bulk of

this chapter discusses this poor fit, its possible causes, and its implications.



Three CVs with peculiar white dwarf colours 103

0.00

0.01

0.02

0.03

0.04

Fl
ux

, m
Jy

2019/09/28@02h52m g

0.10 0.05 0.00 0.05 0.10 0.15

0.000

0.005

Re
s.,

 m
Jy

0.00

0.01

0.02

0.03

Fl
ux

, m
Jy

2019/09/28@02h52m r

0.10 0.05 0.00 0.05 0.10 0.15
0.005

0.000

0.005

Re
s.,

 m
Jy

0.000

0.005

0.010

0.015

0.020

0.025

Fl
ux

, m
Jy

2019/09/28@02h52m u

0.10 0.05 0.00 0.05 0.10 0.15
Phase

0.000

0.005

Re
s.,

 m
Jy

Figure 4.1: ASASSN-17jf light curve models. Top: grey points are the observed
flux, and note that the photometric system is the SDSS as per §2.3.4; black
line is the observed flux, with the mean Gaussian process sample subtracted;
the dark blue line is the mean light curve model, and the blue band is the
standard deviation on this in the MCMC chain. The components of the model
are also shown: the light blue line is the white dwarf flux, green line is the
bright spot, orange line is the disc, and the red line is the donor. Bottom: The
residuals between the data and model are plotted as the black line, with grey
error bars. The Gaussian process 1-sigma region is shown as a red band.
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Figure 4.2: ASASSN-17jf light curve models (cont.)
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Figure 4.3: ASASSN-17jf light curve models (cont.)
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Figure 4.4: A corner plot of the physical parameters of ASASSN-17jf.
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Figure 4.5: ASASSN-16kr light curve models. Symbols are the same as Figure 4.1
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Figure 4.6: ASASSN-16kr light curve models (cont.)
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Figure 4.7: ASASSN-16kr light curve models (cont.)
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Figure 4.8: ASASSN-16kr light curve models (cont.)
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Figure 4.9: ASASSN-16kr light curve models (cont.)
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Figure 4.10: ASASSN-16kr light curve models (cont.)
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Figure 4.11: ASASSN-16kr light curve models (cont.)
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Figure 4.12: A corner plot of the physical parameters of ASASSN-16kr.
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Figure 4.13: SSSJ0522−3505 light curve models. Symbols are the same as Fig-
ure 4.1
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Figure 4.14: SSSJ0522−3505 light curve models (cont.)
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Figure 4.15: SSSJ0522−3505 light curve models (cont.)
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Figure 4.16: A corner plot of the physical parameters of SSS111126.



Three CVs with peculiar white dwarf colours 119

4.3 White dwarf atmosphere fits

The two values of log(g) produced by modelling – the first from fitting the white

dwarf fluxes to model atmospheres, and the second from combining Teff and P

with the light curve parameters – did not fall within 1σ of each other in any

of these three systems. In ASASSN-17jf and SSSJ0522−3505, the white dwarf

atmosphere fit converged close to the minimum surface gravity allowed by the

coverage of our models, log(g) = 7.0. The second log(g), from light curve fitting,

indicated values for each system of 8.10±0.04 and 8.30±0.03, respectively. When

analysing ASASSN-16kr, flux fitting gave a more reasonable log(g) = 8.21± 0.13,

but the second log(g) still gave a significantly higher log(g) = 8.59 ± 0.03, a

difference of ∼ 3σ.

This is concerning, as the two log(g) should be consistent with one another for

each system. Comparison of the measured white dwarf colours to the Bergeron

et al. (1995) model grids in Figures 4.17, 4.18, and 4.19, reveals that the measured

colours of the white dwarfs lie outside the colour space of the models. This

is the origin of the discrepancies in log(g) obtained with the two methods for

ASASSN-17jf and SSSJ0522−3505, but ASASSN-16kr is loosely consistent with

the rightmost cooling track. However, the observed flux of a white dwarf of this

radius is too high for the observed Gaia parallax, pushing the model fits to smaller,

higher gravity model atmospheres.

A likely cause for this issue would be an error in photometric calibration,

causing a corresponding error in white dwarf fluxes. However, this is unlikely to

be the source of the problem, for the reasons explained in §2.3.4, and inspection of

the figures above also rules out poor light curve fits as the cause of this problem.

The most plausible explanation for the fact that our measured white dwarf fluxes

do not lie inside the model grids, is that the change in brightness during white

dwarf ingress/egress is contaminated by an additional source of light – for example

a boundary layer close to the white dwarf surface. The implications of this for

our system parameters is explored in §4.5.1.

That the white dwarf colours do not lie on the model grids also raises questions

about the accuracy of the white dwarf temperatures. To try and quantify the im-

pact on Teff , two additional optimisations of model parameters to the white dwarf

fluxes were performed. In one approach, a Gaussian prior on log(g) using the

estimate from the light curve modelling was used, and all available flux measure-

ments were fit simultaneously. In a second approach I fit the white dwarf flux in
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each band independently using the same prior on log(g) and the Gaia prior on π.

Since these independent fits use no colour information, E(B-V) is only constrained

by the prior, but is retained as a nuisance parameter and Teff is marginalised over

E(B-V). Figure 4.20 shows the Teff posteriors from the individual fits for the three

systems.

Figure 4.20 shows little sign of a consistent discrepancy over the three ob-

served CVs. The u′ band in ASASSN-16kr and SSSJ0522−3505 suggests a cooler

temperature than the other bands, but lies in between the r′ and g′ in ASASSN-

17jf.

Each approach gives a different distribution for Teff . To avoid confusion, results

of each individual fit are not reported, instead the overall temperature ranges

for each system are given. ASASSN-16kr Teff estimates ranged from 10200K to

12150K, and ASASSN-17jf estimates from 8330K to 12710K. The SSSJ0522−3505

fits that used all four observed fluxes both converged on ∼ 22700K, but the single-

flux fits all resulted in wide posterior distributions covering 25000−90000K, with

very weak peaks in the ∼ 30000− 50000K range, seen in Figure 4.20.

In all three systems, the figures reported in Table 4.2 are the Teff produced by

the constrained log(g) fit with all fluxes simultaneously. The log(g) reported are

the values found from the light curve parameters.



Three CVs with peculiar white dwarf colours 121

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
u'-g'

0.4

0.2

0.0

0.2

0.4

g'
-r'

9000 K

12000 K

15000 K

20000 K

Figure 4.17: The white dwarf model atmosphere fits for ASASSN-17jf. Green
circle: Best fit with uniform prior on log(g). Red circle: Best fit with the prior
log(g) = 8.10± 0.04. The observations are shown as the black point and error
bars. Solid black lines are white dwarf model cooling tracks, increasing in
log(g) to the left. Red dashed lines are isothermal tracks for different log(g).
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Figure 4.18: The white dwarf model atmosphere fits for ASASSN-16kr. The red
circle is the best fit with a prior of log(g) = 8.52 ± 0.02. Symbols are the same
as Figure 4.17.
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Figure 4.19: The white dwarf model atmosphere fits for SSSJ0522−3505. The
red circle is the best fit with a prior of log(g) = 8.28 ± 0.04. Symbols are the
same as Figure 4.17.
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Figure 4.20: The result of fitting white dwarf model atmospheres to each pho-
tometric band independently. Blue solid line: u′ band, Green solid line:
g′ band, Red solid line: r′ band. The joint distribution between all bands is
characterised in each case by the best fit Gaussian (magenta dashed lines).
Top: ASASSN-17jf, joint Teff = 8330 ± 780 K; Middle: ASASSN-16kr, joint
Teff = 12150± 300 K; Bottom: SSSJ0522−3505, joint Teff = 33300± 5200 K.
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4.4 System Parameters

A poorly constrained white dwarf model might reasonably be expected to cast

doubt on the final system parameters, as the white dwarf temperature in particu-

lar is used to find the correct white dwarf mass-radius relationship. Fortunately,

the effect of the uncertain white dwarf temperatures on the system parameters,

most importantly on Mwd, is mostly negligible. For example, increasing Teff for

ASASSN-17jf from 8000K to 12000K only changes Mwd by 0.001M⊙, compared to

our statistical uncertainty of 0.031M⊙. Even a large uncertainty in Teff only has a

minor impact on the system parameters; for example a change in the white dwarf

temperature for SSSJ0522−3505 from 10000K to 20000K only changes Mwd by

0.02M⊙, comparable with the measurement uncertainty. The system parameters

are reported in Table 4.2.

ASASSN-16kr has a recorded superhump period, and now also a q measure-

ment. It can therefore be used to calibrate the superhump period excess, ϵ vs.

q relationship, as done in McAllister et al. (2019), though with a more extreme

mass ratio system than was previously available. The system was not confidently

classed as exhibiting stage B or C stage superhumps, so the results for both stages

are given. Assuming the CV was in stage B, qB = 0.059±0.007; assuming stage C

and using the relevant relation from McAllister et al. (2019), qC = 0.068± 0.012.

In both cases, the estimated qB,C is ∼ 2σ higher than the observed value of

q = 0.044± 0.002. Whilst a 2σ difference is not a highly significant discrepancy,

this could be preliminary evidence that the ϵ− q relation may over estimate q for

CVs at short periods, which has been suspected for some time (Pearson, 2007;

Knigge et al., 2011).
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Table 4.2: The system parameters found for the three CVs with peculiar white
dwarf colours. Here, the reported π is the posterior distribution from fitting the
white dwarf fluxes, c.f. §3.3.2.

System Name: ASASSN-16kr ASASSN-17jf SSSJ0522−3505

Mwd/M⊙ 0.952± 0.018 0.669± 0.031 0.760± 0.023
Rwd/R⊙ 0.0083± 0.0002 0.0120± 0.0004 0.0112± 0.0003

Mdonor/M⊙ 0.042± 0.001 0.060± 0.008 0.042± 0.004
Rdonor/R⊙ 0.105± 0.002 0.112± 0.004 0.105± 0.004

q 0.044± 0.002 0.085± 0.006 0.055± 0.003
P , hours 1.470862368(2) 1.36297(2) 1.492642(2)
a/R⊙, 0.653± 0.005 0.567± 0.009 0.614± 0.007

i 86.4± 0.4 83.7± 0.5 83.8± 0.3
Kwd, km/s 22.7± 1.5 39.5± 4.2 26.0± 1.8
Kdonor, km/s 515± 3 462± 5 470± 4

π, mas 6.58± 0.22 2.09± 0.19 1.81± 0.11
Teff , kK 10− 12 8− 13 ∼ 25

log(g), cgs 8.55± 0.03 8.15± 0.05 8.22± 0.04

4.5 Implications of results

All three systems were candidate post-period minimum systems based on their

periods and preliminary eclipse data; none show a prominent bright spot (indica-

tive of a low mass transfer rate), or significant donor flux (implying a dim donor).

As a result of this work, ASASSN-16kr and SSSJ0522−3505 are confirmed as

having evolved through the period minimum and now have sub-stellar donors,

and ASASSN-17jf lies in the period minimum region of Figure 4.21. All three

CVs are strongly consistent with the ‘optimal’ Knigge et al. (2011) donor track.

Additionally, despite the difficulty in white dwarf modelling, all three white dwarf

masses derived in this analysis fall within the range of CV white dwarf masses

observed by Pala et al. (2020), of ⟨Mwd⟩ = 0.83 ± 0.17M⊙, and are significantly

higher than the pre-CV DA white dwarf mass of only 0.66 ± 0.15M⊙ (McCleery

et al., 2020).

4.5.1 Is it correct to assume an unobscured white dwarf?

As mentioned in §4.3, the white dwarf colours may differ from model grids because

the white dwarf ingress/egress is contaminated by an additional source of light,
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Figure 4.21: Donor evolution tracks compared with these observations – note
that both axes are scaled logarithmically. Solid black line: the standard donor
sequence from Knigge et al. (2011), solid red line: the ‘optimal’ donor track
from Knigge et al. (2011). The three systems characterised in this chapter are
shown as blue crosses.
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such as a boundary layer close to the surface. If the eclipse is polluted by some

other feature, phase-folded eclipse modelling will be wrong in two key elements:

comparing colours to model atmospheres may be inaccurate, and the ingress and

egress durations that constrain the white dwarf radius will not be correct. Spark &

O’Donoghue (2015) conducted a study into the validity of assuming a pure white

dwarf, comparing CV eclipse observations with white dwarfs with and without

a few types of surface features such as boundary layers on the white dwarf, hot

spots, or an optically thick or thin equatorial belt. These features are revealed

by a departure from symmetry between the white dwarf ingress and egress, but

care must be taken not to confuse the flickering component of the CV with the

signature of surface features.

Unfortunately, detecting a surface layer or hot spot on the white dwarf requires

both a high time resolution and high signal-to-noise ratios. Spark & O’Donoghue

(2015) make use of SALTICAM data at a cadence of 0.15s, but the observations

available here have a ∼3-4s exposure time and lower signal-to-noise. Measuring

the eclipse precisely enough to make claims about the nature of the white dwarf’s

surface is therefore not possible with present observations. The three systems

of this work are prime candidates to search for white dwarf eclipse asymmetries,

as the issue of flickering corrupting the white dwarf ingress/egress derivative is

largely mitigated; all three have little to no flickering present. Future observations

at higher cadence would open the possibility of examining the surfaces of these

white dwarfs, though a large telescope will necessary due to the faintness of the

systems; HiPERCAM on the GTC is an ideal candidate.

4.5.2 The hot white dwarf of SSSJ0522−3505

The effective temperature of white dwarfs in short period CVs is typically ∼
10000K (Pala et al., 2017), but the observed colours of SSSJ0522−3505 indicate

a much hotter Teff of ∼ 25000K. This is likely to be accurate, as the system’s

observations are clearly dominated by the white dwarf flux, and show roughly the

same eclipse depth in the r′, g′, and u′ bands, which would not be consistent with

a lower white dwarf temperature.

The measured effective temperature could be wrong, either as a result of

poor flux calibration (see §2.3.4 for reasons this is unlikely) or because the in-

gress/egress fluxes do not represent the fluxes of the white dwarf photosphere,

as discussed in section 4.5.1. However, the measured temperature is ∼ 10000K
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hotter than expected, and these effects are unlikely to have introduced an error of

this magnitude. As support for this, note that Pala et al. (2017) find that white

dwarf temperatures from UV spectroscopy typically agree with those measured

from eclipse light curves to within ∼ 1000K. Reasons why the white dwarf tem-

perature in SSSJ0522−3505 might be unusually hot are explored here, but UV

spectroscopy to confirm the white dwarf temperature is highly desirable.

The white dwarf in a CV is thought to settle at an equilibrium temperature,

where radiative heat loss is balanced with two energy sources: energy released

by infalling material, and a low level of “simmering” nuclear fusion in the white

dwarf envelope (Townsley & Bildsten, 2003, 2004), but there are several reasons

that this white dwarf may be temporarily out of equilibrium. There is no reason,

though it is unlikely, that a CV cannot form from a main sequence star with a

brown dwarf companion, to produce a young CV with a low-mass donor and a

white dwarf still cooling from its formation temperature. Once the donor has

reconnected with its Roche lobe, it would rejoin the normal CV evolution track

and otherwise behave as a normal CV, with a normal accretion rate but a younger,

hotter white dwarf than is typical.

A recent dwarf nova outburst was observed in this system in 2011, and could

have produced a temporary boost to Teff . During these events, the disc enters

a hot, optically thick state, and the infall rate onto the white dwarf is greatly

increased (Osaki, 1996), releasing a significant amount of energy and heating the

white dwarf surface. This is only the most recent observed outburst, as there is

a gap in observations between 2013 and 2019 during which any outburst events

would have gone unrecorded. This may be important, as recent X-ray observations

of another post period minimum system, OV Bootis (Schwope et al., 2021), shows

that the white dwarf temperature is increased to 23000K 5 months after outburst,

9000K hotter than its Teff prior to outburst. The increase in temperature can be

somewhat long-lasting; detailed observations of GW Lib have shown its white

dwarf is still 3000K hotter than equilibrium 8 years post-outburst(Szkody et al.,

2016). Another possibility is a recent classical nova – thermonuclear runaway in

an accreted surface layer on the white dwarf – which would temporarily heat the

white dwarf beyond its equilibrium temperature (Starrfield et al., 2016), giving

the impression of a hotter white dwarf than expected, though a classical nova

resulting in such a strong heating effect would be surprising.

However, assuming the white dwarf is in thermal equilibrium, Teff can be used
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to estimate the long-term accretion rate of the system (Townsley & Gänsicke,

2009). If the modelled Teff of SSSJ0522−3505 is both accurate and driven by

accretion, it would correspond to Ṁwd = 6 ± 2 × 10−10M⊙yr
−1, compared to

accretion rates of ∼ 10−10 − 10−11M⊙yr
−1 expected for CVs in the post-period

minimum regime (Pala et al., 2017). Unfortunately, the MESA-based method

to find Ṁ that is outlined in §3.4 cannot be reliably applied to this system, as

the Mdonor is too low. Although this is somewhat high, a mass accretion rate of

10−10M⊙yr
−1 is not incompatible with the presence of dwarf nova outbursts in

SSSJ0522−3505, since a hot, optically thick accretion disc that would forbid such

outbursts would require an accretion rate of order 10−8M⊙yr
−1 (Hameury et al.,

1998) to be stable on long timescales.

4.6 Summarising remarks

The original paper (Wild et al., 2021) examined the period excess as a qualitative

diagnostic for excess AML, but this analysis is deferred to the end of Chapter 5

where it repeated with an expanded data set – though note that the conclusions

are unchanged from the original paper.

I contribute the component masses and radii, separations, white dwarf tem-

peratures and surface gravities of three new short-period CVs to the population of

well-characterised CV observations, two of which have extremely low-mass donor

stars, and one which appears to be in the process of evolving through the pe-

riod minimum. I measure the Teff of the white dwarf in SSSJ0522−3505 to be

∼ 10000K higher than is typical for a CV. I note that the derived temperature

is quite uncertain, but cannot confidently determine the origin of the discrep-

ancy and summarise possible causes. All three of the newly modelled systems

lie within 1σ of the ‘optimal’ model mass-radius evolutionary tracks from Knigge

et al. (2011).
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A modest backlog of observed CV eclipse light curve data was reduced, cali-

brated, and modelled following the procedure outlined in §3.3.1, and the results

are presented here.

The systems modelled in this chapter were chosen largely based on their short

periods, targeting the donor mass range for which mass loss rates could be inferred

(0.08M⊙ < Mdonor < 0.20M⊙, shown in §6.2). They range in period from 1.4−2.2

hours, and were drawn from a few sources. The All-Sky Automated Survey for

Supernovae (ASASSN) (Shappee et al., 2014) is sensitive to transients, and is

a valuable tool to identify CVs by their outbursts for follow-up once they re-

enter quiescence; such systems are recognised by their ASASSN moniker. Other

candidate systems were gathered from a variety of sources, which are cited below.

The modelled systems in this thesis were:

� ASASSN-14hq

� ASASSN-14kb (a.k.a OGLE-LMC529.30.114)

� ASASSN-15pb

� ASASSN-17fo

� AY For (a.k.a Hα0242-2802) (Woudt et al., 2004)

� CSS090102 J132536+210037 (hereafter CSS090102) (Kato et al., 2012)

� CSS090419 J162620-125557 (hereafter CSS090419) (Kato et al., 2012)

� CSS090622 J215636+193242 (hereafter CSS090622) (Kato et al., 2012; Thorstensen

et al., 2016)

� MASTER OT J001400.25-561735.0 (hereafter MAS0014) (Woudt, private

communication)

� OGLE BLG-ECL-000082 (a.k.a BLG510.16.126296, hereafter OGLE82) (Soszyn-

ski et al., 2016)

� SDSS J074859.6+312512.7 (hereafter SDSS J0748) (Kato et al., 2016)

� SDSS J152419.33+220920.0 (hereafter SDSS J1524) (Southworth et al.,

2010; Michel et al., 2013)
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ASASSN-14hq and ASASSN-15pb were observed by Paterson et al. (2019) and

had their periods measured, though the observations used in this thesis pre-date

this publication and I make my own independent measurement of the period.

These two systems were also noted to be in outburst in late 2014 in the case of

ASASSN-14hq, and 2015 in the case of ASASSN-15pb. Table 4.1 summarises the

right ascension, declination, magnitude, and ephemeris of the CVs observed here.



Eclipse modelling of 12 CVs 134

Table 5.1: Summary of observational information for the 12 CVs of this chapter.

System name RA Dec g′ T0, Period,
BMJD, UTC days

ASASSN-14hq 06:38:19.59 -48:59:16.1 18.1 57701.27140(2) 0.074326999(3)
ASASSN-14kb 04:46:50.01 -71:22:56.0 18.6 58143.16048(2) 0.0681057(4)
ASASSN-15pb 20:14:22.92 -63:37:58.6 19.5 57626.14278(3) 0.093290(6)
ASASSN-17fo 11:38:35.70 +04:44:54.5 19.6 58143.24296(2) 0.061548(1)
AY For 02:42:34.82 -28:02:44.0 18.2 57701.10964(1) 0.07461485(4)
CSS090102 13:25:36.06 +21:00:36.8 19.8 55943.12147(2) 0.062384910(2)
CSS090419 16:26:19.83 -12:55:56.5 20.5 56498.92855(3) 0.075442759(3)
CSS090622 21:56:36.34 +19:32:41.5 19.3 56874.20195(4) 0.0709293(7)
MAS0014 00:14:00.25 -56:17:35.0 18.3 57626.08355(1) 0.07152949(1)
OGLE82 17:54:16.19 -35:26:39.5 18.0 57623.03460(2) 0.071930828(3)
SDSS J0748 07:48:59.56 +31:25:12.7 17.8 57808.63030(1) 0.058311083(3)
SDSS J1524 15:24:19.33 +22:09:20.1 19.1 56486.91456(1) 0.065318733(1)

5.1 Results

All eclipses presented are well-described by their fits, with small residuals. The

light curves are shown below, along with the white dwarf flux distributions their

best-fit white dwarf model atmospheres, and notes on the modelling of each sys-

tem. Table 5.2 details the physical parameters of these 12 new systems.

In a few cases, the GP appears as a flat line along a residual of 0 despite

some obvious scatter, e.g. ASASSN-14hq, seen in Figure 5.2. This is expected,

as in these cases the residuals are fully described by the error in flux and the

GP likelihood becomes dominated by the priors, sampling small values of GP

amplitude.

None of these systems presented the issues with their characterisations that

was seen in Chapter 4. The modelled white dwarf colours were described by cool-

ing tracks well in most cases, with the exceptions of CSS090419 and CSS090622.

Spectroscopic follow-up in these cases is desirable to probe these systems more

deeply.

Some results are particularly good demonstrations of the ability of the hi-

erarchical GP modelling approach to usefully model poorer quality light curves

in tandem with higher quality data. An example of this is seen in the case of

MAS0014, the light curves of which are seen in Figures 5.33, 5.34, and 5.35,

where the high-quality binned data help a subtle bright spot egress to be confi-

dently constrained in the eclipse of 2016/11/07 even in the presence of significant
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flickering. A more extreme example is that of SDSS J0748, which has the white

dwarf and bright spot ingresses blended together for the majority of observations,

but clearly distinct ingresses on the night of 2018/02/05 and somewhat distinct

ingresses on 2018/02/07, seen in Figure 5.42. Using the hierarchical structure

to share information between observations constrains the parameter space, and

makes characterisation possible in a system that would otherwise be extremely

difficult to model.

When optimising the eclipse model to the data, some systems had their eclipses

binned together where appropriate to reduce the complexity of the parameter

space, and the observing logs in §2.4 details which eclipses were combined. How-

ever, in the interests of readability, the dates of the data that are binned for a

given light curve are also noted in the figure caption. For unbinned data, the

date and approximate mid-eclipse time is given in the axis title. The majority of

observations were made with ULTRACAM, though some systems are supported

by ULTRASPEC data.
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5.1.1 ASASSN-14hq

The period of this system was measured by Paterson et al. (2019) to be 0.074327(9)

days, consistent with my own measurement of 0.074326999(3) days. These obser-

vations fell into two binning categories: the 2016 and 2017 data, and the January

2018 data – specific observation logs are given in Table 2.4. Eclipse modelling

indicates that the disc radius fell in brightness by ∼ 20% in the g′ and ∼ 50% in

the u′ between these two batches, suggesting the disc may have been in a phase

of dumping material onto the white dwarf faster than material enters it from the

donor during this period. As this system was observed in outburst only two years

prior to these observations, this is not unexpected.

For this system, the white dwarf fluxes were well-described by the model

cooling tracks, with the white dwarf fitting phase producing a value of π that

agrees with Gaia (3.40±0.07 mas and 3.40±0.08 mas, respectively). Fitting found

a somewhat low mass white dwarf, 0.67± 0.07M⊙, though this falls just over 1σ

outside the intrinsic scatter of the Pala et al. (2020) population measurement of

0.83±0.13M⊙ so is well within the expected range. Models converged on a donor

mass of 0.097± 0.002M⊙, consistent with the pre-period minimum CV track that

amplifies gravitational braking by a factor of ∼ 2.5.
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Figure 5.1: ASASSN-14hq light curve models. Symbols are the same as Figure 4.1.
Data are the result of binning the following nights: 2016/11/9, 2016/11/11,
2017/3/19, 2017/3/21.
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Figure 5.2: ASASSN-14hq light curve models (cont.). Data are the result of
binning the following nights: 2018/1/23, 2018/1/25, both 2018/1/28 observations,
2018/1/30.
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Figure 5.3: ASASSN-14hq observed white dwarf fluxes, compared to the best-fit
model atmosphere.
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Figure 5.4: A corner plot of the physical parameters of ASASSN-14hq.



Eclipse modelling of 12 CVs 141

5.1.2 ASASSN-14kb

ASASSN-14kb has very distinct modelling features, making it an easily charac-

terised system. The 4 observations showed little variance between them, and the

binned light curves seen in Figure 5.5 show remarkably little residual flickering.

Additionally, the white dwarf spectral energy distribution was well-described by

the cooling tracks and exactly reproduces the Gaia π distribution of 2.78± 0.11.

The resulting donor mass of this CV appears to be significantly high for the ob-

served period, sitting ∼ 3σ above the purely gravitational wave driven MESA

donor track.
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Figure 5.5: ASASSN-14kb light curve models. Symbols are the same as Figure 4.1
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model atmosphere.
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Figure 5.7: A corner plot of the physical parameters of ASASSN-14kb.
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5.1.3 ASASSN-15pb

ASASSN-15pb was an ideal candidate for modelling. The data in all bands were

consistent enough to be comfortably binned together, aided by the 6 observations

spanning only 6 days. The observations of this system take place in August

2016, only a year after the system was observed in outburst, but the system

appears to have quickly returned to a reasonably well-behaved state and is suitable

for modelling. The bright spot and white dwarf ingresses are mildly blended

in the u′, g′, and r′ observations, and slightly more strongly blended in the i′

band. Whilst this did not prevent the optimisation from strongly constraining

the white dwarf fluxes (with the exception of the loosely constrained i′ band flux),

this blending makes constraining the eclipse width, ∆ϕ, and white dwarf radius

more challenging. Despite this, by drawing on information from all eclipses the

quantities are well-constrained, and the white dwarf fluxes are well-described by

the model cooling tracks, so the resulting system parameters cab be considered

sound.

Paterson et al. (2019) measure the period of this system to be 0.09329(2) days,

which is consistent with my measurement of 0.093290(6) days. This is the longest

period CV in this new sample, lying in the region defined as the period gap by

the Knigge et al. (2011) donor tracks. However, the donor mass is significantly

lower than the 0.20M⊙ period gap mass assumed by Knigge et al. (2011), at

0.148± 0.008M⊙.
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Figure 5.8: ASASSN-15pb light curve models. Symbols are the same as Figure 4.1.
u′, g′, and r′ data are the result of binning together all observations.
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Figure 5.9: ASASSN-15pb light curve models (cont.)
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Figure 5.10: ASASSN-15pb observed white dwarf fluxes, compared to the best-fit
model atmosphere.
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Figure 5.11: A corner plot of the physical parameters of ASASSN-15pb.
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5.1.4 ASASSN-17fo

ASASSN-17fo was observed in early 2018, and whilst the three eclipses were not

suitably concordant to allow them to be binned together, the relevant eclipse

features for modelling are impressively distinct with little flickering present. The

resulting eclipse model described the data well, and the white dwarf fluxes find

a good solution to models with Mwd = 0.85 ± 0.01M⊙ and a parallax of 1.79 ±
0.20 mas, in strong agreement with the Gaia π of 1.96± 0.20 mas. However, the

donor mass and period place this system well above the ‘standard’ Knigge et al.

(2011) donor track in Figure 5.53.
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Figure 5.12: ASASSN-17fo light curve models. Symbols are the same as Figure 4.1
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Figure 5.13: ASASSN-17fo light curve models (cont.)
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Figure 5.14: ASASSN-17fo light curve models (cont.)
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Figure 5.15: ASASSN-17fo observed white dwarf fluxes, compared to the best-fit
model atmosphere.
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Figure 5.16: A corner plot of the physical parameters of ASASSN-17fo.
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5.1.5 AY For

AY For had the white dwarf and donor stars’ masses estimated spectroscopically

in Mason & Howell (2005) to be Mwd ∼ 0.64M⊙ and Mdonor ∼ 0.17M⊙, with

no error reported. These values are not consistent with my findings of Mwd =

0.78 ± 0.02M⊙ and Mdonor = 0.106 ± 0.006M⊙. The previous measurement is

highly dubious; it is based on inferring a donor mass and radius from the period

using the modelMdonor−P relation presented in Howell & Skidmore (2002), which

is then used to calculate a white dwarf mass from a spectroscopic q. This relies

heavily on a poorly understood relationship, and extrapolates that further when

giving a white dwarf mass. AY For is also claimed by Mason & Howell (2005)

to be a pre-period minimum system, which is corroborated by this more rigorous

analysis.

The white dwarf fluxes of AY For were not well-described by the white dwarf

cooling tracks, similarly to the systems in §4.3. There is high confidence that

this is a real effect rather than a poor calibration, as the field about AY For

was observed by the Pan-STARRS survey, and the comparison star SDSS magni-

tudes are reported, which can be used to flux-calibrate the data independently of

the standard star method typically used. Comparing these two calibrations finds

comparison star fluxes that are within 2% of each other. Rather, this system

possibly suffers from a similar corrupting effect to that seen in the three CVs of

Chapter 4, though the disagreement here is not as severe as the extreme case of

SSSJ0522−3505. Modelling error is similarly unlikely, as the light curve fits gen-

erally show distinct ingress and egress features that are replicated in the models.

However, based on the in-depth analysis of Chapter 4, the system parameters of

AY For can still be considered robust.
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Figure 5.17: AY For light curve models. Symbols are the same as Figure 4.1
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Figure 5.18: AY For light curve models (cont.)
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Figure 5.19: AY For light curve models (cont.)
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Figure 5.20: AY For observed white dwarf fluxes, compared to the best-fit model
atmosphere.
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Figure 5.21: A corner plot of the physical parameters of AY For.
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5.1.6 CSS090102

Despite these observations spanning three years, from May 2011 to August 2014,

the eclipses were concordant enough to be binned together. The resulting data

have somewhat weak bright spot egress features, but the optimised eclipse model

reproduces the observation well, with very little residual scatter about the model.

The white dwarf fluxes are again well-described by cooling tracks, producing a

relatively low but reasonable Mwd = 0.62 ± 0.03M⊙ and the best-fit parallax of

1.41±0.30 mas again agrees well with the Gaia observation of π = 1.51±0.32 mas.

The best-fit system parameters place this CV at the donor mass at which

the direction of period evolution begins to reverse. However, the observed period

is significantly longer than the canonical period minimum, possibly indicating a

significantly higher mass loss rate than is typical. Unfortunately, the donor mass is

just below the threshold for the methodology of §3.4 atMdonor = 0.060±0.003M⊙,

so this currently cannot be verified.
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Figure 5.22: CSS090102 light curve models. Symbols are the same as Figure 4.1.
Data are the results of binning all available eclipses.
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Figure 5.23: CSS090102 observed white dwarf fluxes, compared to the best-fit
model atmosphere.
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Figure 5.24: A corner plot of the physical parameters of CSS090102.
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5.1.7 CSS090419

The white dwarf of CSS090419 significantly brightens in the i′ band, compared to

the r′ band. This is unlikely to be calibration error in the i′ band, as calibration

has otherwise proven to be robust. In addition, this brightening is not seen in the

ASASSN-15pb i′ band observations, suggesting it is not a systematic issue.

The resulting fit appears to be acceptable, with little residual flux. These fits

are given in Figures 5.25 and 5.26, and show that the eclipse model does a good

job of describing the data. However, the white dwarf and bright spot ingresses are

somewhat blended in the r′ and i′, and whilst the egresses are distinct enough to

resolve a white dwarf flux, the key parameters of Rwd and ∆ϕ are more difficult

to constrain. In addition, inspecting the light curves shows that there is some

level of degeneracy between the disc flux and white dwarf flux, particularly in

the r′ band, exacerbating the difficulty in modelling. These blended features are

reflected in large uncertainty in white dwarf flux. Indeed, the standard deviations

on all four white dwarf fluxes are large enough that they are consistent with their

mean – a perfectly flat spectrum.

This is not typical white dwarf behaviour, and cannot be reproduced by the

white dwarf model atmospheres used here given the constraints. Whilst an ex-

tremely hot white dwarf is able to produce a flat spectrum in the optical range,

the luminosity of such an object is forbidden by the Gaia distance measurement.

This preference for a flat spectrum is reflected in the high, and highly uncertain,

best fit Teff = 18200 ± 9000K, though the posterior π distribution is consistent

with the Gaia measurement of 1.41±0.78 mas, with slightly reduced uncertainty.

Also note that this system appears to have the lowest white dwarf mass of the

sample, of only 0.59 ± 0.08M⊙. Despite these issues with the white dwarf fit-

ting, as demonstrated in Chapter 4 the uncertain white dwarf model has little

impact on the system parameters, and the resulting characterisation can still be

considered valid.
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Figure 5.25: CSS090419 light curve models. Symbols are the same as Figure 4.1.
Data are the results of binning all available eclipses.
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Figure 5.26: CSS090419 light curve models (cont.). Data are the results of binning
all available eclipses.



Eclipse modelling of 12 CVs 169

400 500 600 700
Wavelength, nm

0.004

0.005

0.006

0.007

0.008

0.009

0.010

Fl
ux

, m
Jy

Modelled apparent flux
Observed flux

Figure 5.27: CSS090419 observed white dwarf fluxes, compared to the best-fit
model atmosphere.
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Figure 5.28: A corner plot of the physical parameters of CSS090419.
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5.1.8 CSS090622

These observations fell into two binning categories, due to a significant dimming

of the disc by a factor of ∼ 3 between 2014/8/5 and 2014/8/8. Note that all

eclipses (except the bin A u′ eclipse) show a slight dip in flux before white dwarf

ingress, possibly due to some absorbing feature in the disc. Whilst both data

sets are suitable for modelling, with eclipse features that are distinct enough to

characterise, the post-disc-dimming data are significantly improved, with clear,

sharp ingresses and egresses. Without the improved feature resolution, this system

would be significantly more challenging to model due to the severely blended u′

band eclipse in the bin A eclipses.

The resulting white dwarf flux fit is acceptable, converging on π = 2.02 ±
0.27 mas to agree with the Gaia π = 2.08± 0.27 mas, and finding a white dwarf

mass of 0.67 ± 0.06M⊙. The period and donor mass are consistent with the

‘optimal’ Knigge et al. (2011) donor track.



Eclipse modelling of 12 CVs 172

0.00

0.02

0.04

0.06

0.08

0.10

Fl
ux

, m
Jy

bin A g

0.15 0.10 0.05 0.00 0.05 0.10 0.15
0.01

0.00

0.01

Re
s.,

 m
Jy

0.000

0.025

0.050

0.075

0.100

0.125

Fl
ux

, m
Jy

bin A r

0.15 0.10 0.05 0.00 0.05 0.10 0.15

0.01

0.00

0.01

Re
s.,

 m
Jy

0.00

0.02

0.04

0.06

0.08

0.10

Fl
ux

, m
Jy

bin A u

0.15 0.10 0.05 0.00 0.05 0.10 0.15
Phase

0.01

0.00

0.01

Re
s.,

 m
Jy

Figure 5.29: CSS090622 light curve models. Symbols are the same as Figure 4.1.
Data are the result of binning together the three eclipses of 2014/8/5.
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Figure 5.30: CSS090622 light curve models (cont.). Data are the result of binning
together the eclipses of 2014/8/8, 2014/8/9, 2014/8/11.
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Figure 5.31: CSS090622 observed white dwarf fluxes, compared to the best-fit
model atmosphere.
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Figure 5.32: A corner plot of the physical parameters of CSS090622.
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5.1.9 MASOT0014

As this system has strong disc features and significant flickering, modelling was

challenging. Flickering during white dwarf ingress and egress resulted in uncertain

white dwarf flux measurements, and the weak bright spot egress was similarly

masked, though the severity of this was reduced somewhat by the hierarchical

model. In addition, this system is host to a significant disc, which can obscure

the fainter bright spot features. Despite this, the white dwarf fluxes are well-

described by the cooling tracks, and Figure 5.53 shows this system as consistent

with the ‘standard’ donor evolution track. Further supporting the model fitting is

the Gaia π = 2.31± 0.13 mas, closely agreeing with the white dwarf atmosphere

fitting value of 2.42± 0.11 mas.
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Figure 5.33: MAS0014 light curve models. Symbols are the same as Figure 4.1.
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Figure 5.34: MAS0014 light curve models (cont.)
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Figure 5.35: MAS0014 light curve models (cont.). Data are the result of binning
together the eclipses of 2016/8/25 and 2016/8/26.
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Figure 5.36: MAS0014 observed white dwarf fluxes, compared to the best-fit
model atmosphere.
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Figure 5.37: A corner plot of the physical parameters of MASOT0014.
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5.1.10 OGLE82

This system has only two observations, and 5 of the 6 resulting eclipses have dis-

tinct key eclipse features that make modelling significantly easier. The exception

to this is the 2016/8/23 u′ band eclipse, which has a weak bright spot and so

an obfuscated bright spot egress. Most eclipses have significant flickering visi-

ble, which reduces as expected during the white dwarf eclipse, and appears to

be generally less severe in the eclipse of 2016/8/23. System parameters are well-

constrained and sensible, with white dwarf fluxes that are reproduced by model

cooling tracks and a donor mass that places this CV approximately 1σ above the

‘standard’ donor track.
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Figure 5.38: OGLE82 light curve models. Symbols are the same as Figure 4.1
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Figure 5.39: OGLE82 light curve models (cont.)
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Figure 5.40: OGLE82 observed white dwarf fluxes, compared to the best-fit model
atmosphere.
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Figure 5.41: A corner plot of the physical parameters of OGLE82.
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5.1.11 SDSS J0748

For this system, several KG5 eclipses were recorded over the course of the obser-

vations. Whilst it is possible to use KG5 data in modelling, this was not done for

this analysis. Rather, the KG5 eclipses were used to constrain the period, then

discarded. The KG5 eclipses are still reported in Table 2.16.

SDSS J0748 has only two u′ band observations, one ULTRACAM observa-

tion, and one ULTRASPEC observation. These data have heavily blended white

dwarf and bright spot ingresses, which are challenging to model. The poor u′

band data are reflected in the large uncertainty in white dwarf flux, since other

important parameters such as ∆ϕ and Rwd could be constrained by other eclipses.

Importantly, the two eclipses from 2018/2/5 and 2018/2/7 have distinct features,

that enable modelling, though interestingly the phase offset between the white

dwarf eclipse and bright spot is significant enough that the white dwarf ingress

is blended with the bright spot egress in the case of the former, which is not seen

in any other eclipse presented here.
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Figure 5.42: SDSS J0748 light curve models. Symbols are the same as Figure 4.1
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Figure 5.43: SDSS J0748 light curve models (cont.). Data are the result of bin-
ning the following eclipses: both eclipses of 2017/2/14, 2017/2/24, 2017/3/20,
2018/12/17.
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Figure 5.44: SDSS J0748 light curve models (cont.). Data are the result of combin-
ing the eclipse of 2018/2/4 with the two r′ band eclipses observed on 2018/12/17.
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Figure 5.45: SDSS J0748 observed white dwarf fluxes, compared to the best-fit
model atmosphere.
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Figure 5.46: A corner plot of the physical parameters of SDSS J0748.
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5.1.12 SDSS J1524

The binning of this system was somewhat non-standard, as the three filters on

the eclipse of 2014/3/3 were not all equally consistent. The greg eclipse was

consistent with the A binning group, but the ureg and rreg eclipses were not. As

such, the ureg and rreg eclipses of this observation were fit individually, and the

greg light curve was binned with the other relevant data. The resulting fits are

broadly satisfactory, though some eclipses (namely the greg and rreg eclipses of the

A binning group) appear to have fairly poor white dwarf ingresses and egresses.

However, the resulting fits give a well-constrained donor mass that agrees strongly

with the ‘optimal’ Knigge et al. (2011) donor track, suggesting the results are

reasonable. The white dwarf fits are not ideal, but do not diverge from models

by enough to cause concern.



Eclipse modelling of 12 CVs 194

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Fl
ux

, m
Jy

2014/03/03@06h03m u

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100

0.00

0.01

Re
s.,

 m
Jy

0.00

0.02

0.04

0.06

Fl
ux

, m
Jy

2014/03/03@06h04m r

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100
0.01

0.00

0.01

Re
s.,

 m
Jy

0.00

0.05

0.10

0.15

Fl
ux

, m
Jy

2014/08/02@23h14m g

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100
Phase

0.025

0.000

0.025

Re
s.,

 m
Jy

Figure 5.47: SDSS J1524 light curve models. Symbols are the same as Figure 4.1
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Figure 5.48: SDSS J1524 light curve models (cont.). Binned data are the result of
combining eclipses from 2011/5/28, 2011/5/31, 2011/6/2, 2013/7/13, 2013/7/21,
2013/7/30, and, in the case of the g′ band, 2014/3/3.
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Figure 5.49: SDSS J1524 light curve models (cont.). Data labelled ‘bin A’ are a
combination of the eclipses from the nights of Binned data are the result of com-
bining eclipses from 2011/5/28, 2011/5/31, 2011/6/2, 2013/7/13, 2013/7/21, and
2013/7/30. Data labelled ‘bin B’ are the combination of 2012/4/29, 2012/4/29,
and 2013/8/5.
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Figure 5.50: SDSS J1524 light curve models (cont.). Data are the combination of
2012/4/29, 2012/4/29, and 2013/8/5.
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Figure 5.51: SDSS1524 observed white dwarf fluxes, compared to the best-fit
model atmosphere.
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Figure 5.52: A corner plot of the physical parameters of SDSS J1524.
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Table 5.2: The system parameters found for the CVs analysed here. The re-
ported parallax, π, is the posterior distribution from fitting the white dwarf fluxes,
c.f. §3.3.2.

System Name: ASASSN-14hq ASASSN-14kb ASASSN-15pb

Mwd/M⊙ 0.67± 0.01 0.74± 0.02 0.72± 0.03
Rwd/R⊙ 0.0119± 0.0001 0.0113± 0.0002 0.0115± 0.0005

Mdonor/M⊙ 0.097± 0.002 0.134± 0.003 0.148± 0.008
Rdonor/R⊙ 0.157± 0.001 0.164± 0.001 0.210± 0.004

q 0.145± 0.002 0.182± 0.002 0.206± 0.004
P , hours 1.78384800(7) 1.63453(1) 2.23896(3)
a/R⊙ 0.681± 0.004 0.670± 0.005 0.824± 0.014

i 80.35± 0.06 84.4± 0.1 79.4± 0.1
Kwd, km/s 58.0± 0.9 76.2± 1 75± 2
Kdonor, km/s 399± 2 419± 3 364± 6

π, mas 3.40± 0.07 2.78± 0.11 1.0± 0.2
Teff , K 14819± 800 17700± 1000 19200± 1600

log(g), cgs 8.11± 0.02 8.21± 0.03 8.17± 0.06

System Name: ASASSN-17fo AY For CSS090102

Mwd/M⊙ 0.85± 0.01 0.78± 0.02 0.62± 0.03
Rwd/R⊙ 0.0099± 0.0001 0.0106± 0.0003 0.0126± 0.0004

Mdonor/M⊙ 0.109± 0.002 0.106± 0.006 0.060± 0.003
Rdonor/R⊙ 0.1436± 0.0007 0.162± 0.003 0.119± 0.002

q 0.1267± 0.0005 0.136± 0.004 0.094± 0.002
P , hours 1.477147(2) 1.790756(1) 1.49723786(5)
a/R⊙ 0.646± 0.003 0.717± 0.007 0.582± 0.008

i 84.23± 0.03 84.0± 0.2 88.7± 0.6
Kwd, km/s 60.2± 0.4 57.8± 2.0 40.9± 1.2
Kdonor, km/s 468± 2 425± 4 431± 6

π, mas 1.79± 0.36 2.12± 0.16 1.41± 0.30
Teff , K 14800± 600 18100± 500 14800± 1200

log(g), cgs 8.37± 0.02 8.28± 0.04 8.00± 0.33
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Table 5.3: Table 5.2, continued.

System Name: CSS090419 CSS090622 MASOT0014

Mwd/M⊙ 0.59± 0.08 0.67± 0.06 0.86± 0.03
Rwd/R⊙ 0.0122± 0.0009 0.0112± 0.0007 0.0097± 0.0003

Mdonor/M⊙ 0.087± 0.011 0.104± 0.009 0.122± 0.007
Rdonor/R⊙ 0.152± 0.007 0.155± 0.005 0.165± 0.003

q 0.146± 0.003 0.159± 0.008 0.142± 0.004
P , hours 1.81062621(6) 1.702302(6) 1.7167077(5)
a/R⊙ 0.660± 0.030 0.661± 0.020 0.722± 0.008

i 80.9± 0.1 88.2± 0.6 84.8± 0.3
Kwd, km/s 56.0± 2.7 63.7± 2.5 63.2± 2.0
Kdonor, km/s 381± 16 408± 12 445± 5

π, mas 1.42± 0.69 2.02± 0.27 2.42± 0.11
Teff , K 18200± 9000 9800± 1500 17300± 1000

log(g), cgs 8.04± 0.12 8.16± 0.08 8.37± 0.04

System Name: OGLE82 SDSS J0748 SDSS J1524

Mwd/M⊙ 0.83± 0.01 0.68± 0.02 0.99± 0.01
Rwd/R⊙ 0.0099± 0.0002 0.0121± 0.0004 0.0082± 0.0003

Mdonor/M⊙ 0.131± 0.004 0.066± 0.004 0.097± 0.003
Rdonor/R⊙ 0.170± 0.002 0.117± 0.002 0.144± 0.001

q 0.157± 0.002 0.095± 0.004 0.099± 0.001
P , hours 1.7263398(6) 1.39947(1) 1.56764953(2)
a/R⊙, 0.720± 0.006 0.575± 0.007 0.701± 0.006

i 83.9± 0.1 81.7± 0.2 85.8± 0.1
Kwd, km/s 68.5± 1.0 42.2± 1.8 48.6± 0.8
Kdonor, km/s 435± 3 450± 5 493± 5

π, mas 3.82± 0.12 1.83± 0.14 1.95± 0.18
Teff , K 18000± 4000 22500± 3000 12500± 900

log(g), cgs 8.37± 0.03 8.11± 0.03 8.61± 0.04
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5.2 Comparing observations with model donor

tracks

The observed donor properties can be compared to the Knigge et al. (2011)-like

MESA donor tracks. Figure 5.53 shows the full sample of short-period eclipse

modelled CVs (a catalogue of these systems is given in Appendix A.1) plotted

with the ‘standard’ donor track that includes only gravitational braking below

the gap and the disagreement between model and data indeed persists.

There is a large scatter in the observations, but new data continue to lie

systematically to the right of the ‘standard’ model track (shown by the blue line),

and the need for extra AML continues to be supported by observations. The new

data appear to have a significant scatter about the canonical donor evolutionary

tracks. Typically, scatter in CV donor tracks is explained as being due to different

white dwarf masses, but the effect of this on P is thought to be relatively small,

on the order of a few minutes (Goliasch & Nelson, 2015), and falls significantly

short of explaining these new results. Further discrediting this as the source of

scatter is Figure 5.53, which illustrates that whilst the average white dwarf mass

of this sample is indeed slightly lower than the canonical Pala et al. (2020) value,

the difference is small and its effects are unlikely to be significant.

There are then two possibilities for this scatter: either the parameter estima-

tions of this thesis are somehow flawed, or CV donor evolution is not as unified as

believed; at this time, it is difficult to rule out either option. The majority of the

eclipse model fits do not give significant cause for concern about their validity.

In theory, the new hierarchical model only requires a single example of distinct

egresses to constrain the mass ratio, with other eclipses only needed to constrain

the white dwarf fluxes. However, I have not included a thorough study into the

hierarchical model’s ability to recover parameters from blended eclipse features.

Such a study would be desirable, to better understand the capabilities of the new

model. If, however, these results are to be believed (and there is little cause not

to), this may indicate that the canonical idea of a unified track does not account

for possibly significant effects, such as variation in the age or formation metallic-

ity of the donor, or variations in the degree of excess AML that is known to be

present in these CVs.
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Figure 5.53: Showing how eclipse modelled observations compare with evolution-
ary models in the short period regime. The solid blue line is the ‘standard’
Knigge et al. (2011) donor track with only gravitational braking below the pe-
riod gap, and the solid green line is the ‘optimal’ track with 2.47× amplified
gravitational braking. Data points are scaled based on their white dwarf masses.
The magenta crosses are the 3 CVs with peculiar colours from Chapter 4,
black circles are the 12 systems of Chapter 5, gold upright triangles are data
from McAllister et al. (2019), grey squares are from Savoury et al. (2011), and
the brown inverted triangles are the supplementary systems from Gänsicke
et al. (2010); McAllister et al. (2015); McAllister et al. (2017a); McAllister et al.
(2017b).
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Figure 5.54: Showing how the modelled observations compare with the average
white dwarf mass found by Pala et al. (2020), 0.83 ± 0.17M⊙, which is shown
by the red dashed line and red shaded area. Data symbols are similar to
Figure 5.53, and the data points are similarly scaled to aid understanding of the
correlation between datum size and Mwd.
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5.2.1 A preliminary look at AML in CVs

The published results and analysis of the three CVs in Chapter 4 (Wild et al.,

2021) pre-date the more fully developed method to infer a donor mass loss rate

described in §3.4.3. However, that preliminary analysis remains of interest, and

motivates Chapter 6. As such, the preliminary AML analysis method of Wild

et al. (2021) was repeated using the new data presented here, significantly increas-

ing the population of well-characterised CVs compared to what was available at

publication. The core findings of that work persist with the new data set, lending

further credence to the results.

In order to qualitatively evaluate missing AML, the period excess was exam-

ined, Pex = Pobs − Pstd. Here, Pobs is the observed period, and Pstd is the period

predicted by the Knigge et al. (2011) CV donor track with only 1× gravitational

braking below the period gap, interpolated across Mdonor. To determine Pex from

a measured (Pobs,Mdonor) pair, mass samples are drawn from the modelled pos-

terior distribution of Mdonor, and period is interpolated at each mass from the

evolutionary tracks to give a corresponding Pstd distribution. As Pstd is very sen-

sitive to Mdonor, the Pstd error dominates the uncertainty in Pex. A positive Pex

indicates that the model is missing AML, and a negative Pex indicates a model

that has too much AML, relative to an observation. The validity of Pex is vul-

nerable to two key systematic biases; the validity of Pstd (itself contingent on the

accuracy of a variety of model assumptions and biases), and the inherent physical

variation of the CV population.

CVs may follow inherently different evolutionary tracks due to differences in

donor metallicity (Stehle et al., 1997; Harrison, 2016), white dwarf mass (Knigge,

2006), and the age of the donor when it first contacts the Roche lobe (Howell,

2001). A population-wide scatter in this parameter space is not captured in

the Knigge et al. (2011) model, which uses fixed values for these variables, but

justification for the adopted values are given (Knigge et al., 2011; Knigge, 2006).

If any individual system deviates from the adopted values in the models of Knigge

et al. (2011) then Pex for that system will be influenced by these differences as well

as any extra AML. However, conclusions about Pex drawn from the population at

large should remain robust, as long as the population doesn’t differ systematically

from the values adopted in the models. The white dwarf mass used by Knigge

et al. (2011) is somewhat lower than more recent observations suggest, using

Mwd = 0.75M⊙ versus the more recent value of Mwd = 0.83 ± 0.17M⊙ (Pala
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et al., 2020). An updated version of Knigge’s modelling is necessary to properly

characterise the effect of this change on the donor evolutionary tracks, as this will

affect both the size of the Roche lobes, and the rate of gravitational wave AML.

Other CV models suggest that the effect of correcting Mwd will be small, at most

around 2 minutes (Goliasch & Nelson, 2015). This analysis is not rigorous enough

for this to become an issue, and the effects of using an incorrect white dwarf mass

is considered acceptable.

More seriously, Pex is only an accurate proxy of additional AML if the underly-

ing donor physics in the model are correct. For example, if the models incorrectly

predict the mass of systems in the period gap, this can have a large effect on Pex.

In the models of Knigge et al. (2011) this mass is fixed at the empirically derived

value of 0.2M⊙, as observations of superhumping and eclipsing CVs suggest that

period gap occurs at donor masses of 0.20±0.02M⊙ (Knigge, 2006). Using model

tracks with lower or higher masses for the donor mass of the period gap would

alter Pex, though in this case the broad trend in Pex will again be unchanged.

The result is plotted in Figure 5.55. These data are fit with a straight line,

and as the data have significant uncertainty in both axes, the sum orthogonal

distance (weighted by uncertainty) from the data is minimised to find the best fit

(Hogg et al., 2010). Python’s SciPy package, ODR was used to perform this fitting.

The best-fit lines to the two data sets are Pex/hours = −(4.07±0.83)Mdonor/M⊙+

(0.32±0.06) and Pex/hours = −(1.62±0.27)Mwd/M⊙+(1.34±0.21). The best-fit

slope of Pex as a function of both Mdonor and Mwd is significantly correlated: 5σ

from the null hypothesis of 0 in the case of Mwd, and ∼ 3σ for Mdonor. How-

ever, note that the best-fit line for Mdonor does not pass through Pex = 0 at

Mdonor = 0.20M⊙ as expected, unless > 3σ confidence on the gradient and inter-

cept are considered.

Again, it is stressed that the only robust product of this analysis is the sign of

the gradient of the M−Pex relationship, and that its steepness and y-intercept are

both subject to systematic errors that are not captured in the statistical errors

given above. Despite this, the clear and statistically significant increase in Pex

towards low masses implies that additional AML has a larger effect on the donor

at lower component masses.

Note that Pex considers a changing gravitational braking strength, which de-

clines as the total system mass falls. There are then three cases to describe the

trend in Pex: the excess AML also declines in strength but more slowly than



Eclipse modelling of 12 CVs 207

gravitational losses; excess AML is roughly constant across the range of Mdonor

or Mwd; or excess AML actually increases in strength towards lower Mdonor or

Mwd. Note that none of these options translate to the “optimal” Knigge et al.

(2011) models which adopt additional AML of the same form as GWB, but are

compatible with the eCAML solution for excess AML.
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Figure 5.55: The relation between the two body masses, and the period excess,
Pex is shown. The observed data are keyed the same as Figure 5.53, and the
solid red line shows the best-fit solution to the data. Shaded red regions
show successively lower confidence intervals of the fit, with the darkest region
being 1σ confidence, and the lightest region being 3σ confidence. The lines of
best fit have the forms: Pex = −(4.07 ± 0.83)Mdonor/M⊙ + (0.32 ± 0.06) and
Pex/hours = −(1.62± 0.27)Mwd/M⊙ + (1.34± 0.21).
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The structure of this chapter is as follows: first, I demonstrate that MESA is

capable of reproducing the canonical CV donor tracks of Knigge et al. (2011), and

use MESA to evaluate the range of donor masses for which the method detailed

in §3.4 can be reasonably applied. Then, I derive an empirical relationship for

appropriate spot parameters as a function of donor mass, and use this to infer

Ṁdonor and J̇ for the well-characterised eclipse modelled CV sample.

The analysis of this section includes eclipse modelled data from several sources:

the 15 systems contained in this thesis, the 15 CVs characterised by McAllister

et al. (2019), and the 14 CVs modelled by Savoury et al. (2011). An additional

4 systems from McAllister et al. (2015); McAllister et al. (2017a); McAllister

et al. (2017b); and Gänsicke et al. (2010) were used, detailed in Table A.11. A

full catalogue of all these data is given in Appendix A.1. There is some overlap

between the CVs contained in McAllister et al. (2019) and Savoury et al. (2011),

and where this is the case the more recent findings of McAllister et al. (2019) are

preferred.

6.1 Reproducing the canonical CV donor tracks

MESA can closely reproduce the two Knigge et al. (2011) donor tracks. Recall

from §1.5.5 that two such tracks are constructed, a ‘standard’ track with only

typical gravitational braking below the period gap, and an ‘optimal’ track that

amplifies gravitational braking by a factor of 2.47.

Initial work to reproduce CV evolution is outlined in Paxton et al. (2015).

A subsequent reproduction of the ‘optimal’ track was undertaken by Pala et al.

(2017), and I continue to refine their process. By default, MESA shuts off mag-

netic braking when the donor becomes fully convective, a practice which I moti-

vate in §1.5.5 to be spurious. Instead, MESA is altered to enforce a fixed magnetic

braking cut-off at 0.2M⊙, arbitrarily fixing the donor mass of the period gap in

line with Knigge et al. (2011) (this is justified by observations - the mass of the

period gap appears to be 0.20± 0.02M⊙ (Knigge et al., 2011)). In addition, Pala

et al. (2017) added a subroutine to MESA that allows for the amplification of grav-

itational braking below the period gap. This subroutine uses the s% other_jdot_mb

MESA hook, and scales the calculated gravitational braking by a fixed constant

below the period gap and applies it as magnetic braking. This was previously

hard-coded, and I made minor changes to allow this scaling to be defined in the
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MESA configuration inlist.

This was used to reproduce the ‘optimal’ track. Previous works have used

entirely default MESA configuration for the donor physics, though I apply the

configuration described in §3.4.1 to improve model accuracy. Beyond these set-

tings, the model is also initialised with some additional binary configuration:

� The two objects begin at an orbital period of 12 hours, with Mdonor =

0.65M⊙ and Mwd = 0.82 to match the mean observed white dwarf mass.

This period is chosen as the donor is not yet in contact with the Roche lobe

but evolves to contact the Roche lobe relatively quickly.

� The donor mass at which the CV emerges from the period gap is dependent

on spot parameters. The donor star has a fixed spot coverage fspot = 0.10

and contrast ratio of xspot = 0, chosen to approximately match the period

at which the donor emerges from the period gap.

� The white dwarf is not allowed to retain any accreted material,

– mass_transfer_beta = 1.0, limit_retention_by_mdot_edd = .false.

� The white dwarf is considered as a point mass, with no evolution over time,

– evolve_both_stars = .false.

These changes are enough to reproduce the Knigge et al. (2011) tracks to a

reasonable degree; Figure 6.1 shows the four model tracks in the short period

regime. Note that the small deviation at ∼ 0.13M⊙ in the MESA models are

due to MESA transitioning do a different equation of state, and is expected.

The small difference in gradient between the MESA models and the Knigge et al.

(2011) models is due to the donor having a differing mass-radius relationship; this

model does not use variable star spot physics as the donor mass falls. With a more

tailored donor configuration this could likely be improved without introducing the

star spot physics at all – specifically, the period minimum occurs at a significantly

lower donor mass in the MESA models due to the differing equations of state and

atmosphere tables used, but an exact reproduction of Knigge et al. (2011) is not

the focus of this study and this agreement is considered acceptable.
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Figure 6.1: Showing how well MESA can reproduce the canonical Knigge et al.
(2011) donor tracks. Solid lines are MESA tracks, and dotted lines are the
Knigge et al. (2011) tracks. Black lines have only gravitational braking below
the period gap, and red lines gave gravitational braking at 2.47× strength below
the period gap.
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6.2 For what range of masses can mass loss rates

be extracted?

Note that the analysis of this section does not include any star spots, i.e. fspot = 0

for these models.

Recall from §1.5.3 the two timescales that govern the response of the donor

to mass loss: τKH and τṀ . These timescales are calculated by

τKH =
GM2

donor

LdonorRdonor

(6.1)

τṀ =
Ṁ

Mdonor

(6.2)

If τKH ≪ τṀ , the donor is able to maintain thermal equilibrium and is indistin-

guishable from a singleton star of the same mass.

If τKH ≫ τṀ , the donor is not able to maintain equilibrium, and mass loss is

fast and adiabatic. The donor is inflated by mass loss, but since the stellar struc-

ture reacts relatively slowly, the adjustment of the structure towards equilibrium

can be interrupted by changes in mass loss rate. This time lag between the star

beginning to experience a specific mass loss rate, and the structure adjusting to

reflect it makes the degree of inflation of the donor sensitive to the mass loss

history of the donor.

Calculating the two timescales for CVs reveals that for much of their lives,

τKH ∼ τṀ (Knigge et al., 2011) - meaning that most CV donors are almost able

to maintain thermal equilibrium, but are still mildly affected by mass loss. Under

this almost-equilibrium regime, mass loss induces some degree of radius inflation

in the donor, but because the star adjusts on timescales comparable to τṀ , the

degree of inflation only depends on the present-day average Ṁ . In this regime, the

mass loss history of the donor can be discarded, and the radius inflation becomes

a diagnostic for the baseline mass loss rate, averaged over τṀ ∼ 1Gyr.

Whether a donor radius is sensitive to its Ṁ history is a function of Mdonor.

As Mdonor falls, τKH begins to rise faster than τṀ . Figure 6.2 shows this trend,

produced by a MESA model of a CV using the configuration provided in Paxton

et al. (2015). The rise in τKH relative to τṀ becomes significant at ∼ 0.1M⊙,

around the mass the donor enters the adiabatic τKH ≫ τṀ period bouncer phase

c.f. §1.5.3.
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Figure 6.2: Showing how the two timescales, τKH and τṀ vary with donor mass
below the period gap in CV donors, as modelled by MESA (Paxton et al., 2015;
Pala et al., 2017).
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Figure 6.3: Showing the radius and mass loss extracted from MESA models at
0.1M⊙. The black line is a series of singleton models with constant mass loss,
and the red line is a series of CV models with gravitational AML amplified by
x = 1 → 6, with the lowest AML rate on the left. The blue dotted line shows
Ṁ for a CV with 2.47× gravitational braking strength as predicted by a MESA
CV model.

The range of donor masses for which τKH ∼ τṀ can be determined using

MESA models. First, a series of singleton models (this time using the MESA

configuration given in §3.4.1) were evaluated with varying amounts of fixed mass

loss rates, uniformly spaced between log(Ṁ,M⊙yr
−1) = −9.9 → −10.8. Then,

a series of MESA CV models were run with gravitational losses amplified by

x = 1 → 6, using the configuration and AML amplification in §6.1. Finally, each

model has its radius, R, and Ṁ extracted at 0.1M⊙. Since the CV models have

varying Ṁ and the singleton models do not, if Ṁ history does not affect radius

inflation the radii between the two sets of models will match, and a disagreement

indicates that history plays a significant role in radius inflation. Figure 6.3 shows

this, and little divergence between the two sets of radii is visible. Note that higher

Ṁ show a small but increasing degree of divergence, as might be expected since

higher Ṁ corresponds to lower τṀ .

Now, by looking at what level of divergence historical changes in Ṁ induces

at various donor masses, the allowable mass range can be evaluated. By instead
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Figure 6.4: The inflation of CV model radii, RCV (whose Ṁ is time-dependent),
over singleton model radii, RS (whose Ṁ is constant), from Figure 6.3, for a range
of masses. The stars on each line show the Ṁ and inflation for a model with grav-
itational braking at 2.47× strength, mirroring the Knigge et al. (2011) optimal
track. The red dashed line shows the upper limit for acceptable disagreement,
and the black dashed line shows perfect agreement.

plotting the difference between the two sets of models, and repeating the same

process for a range of masses, Figure 6.4 is produced. The upper limit on mass

must be 0.2M⊙, as this is the enforced mass of the period gap, and for a lower

limit I impose an acceptable level of disagreement of 3%. It can be seen that the

minimum acceptable mass is then 0.08M⊙.
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6.3 Tuning star spot parameters to observations

With star spots implemented in MESA in §3.4.2, the Brown relation can now

be reproduced. For simplicity, xspot is fixed at 0 and fspot is varied. Since ra-

dius increases monotonically with fspot, a bisection optimisation is performed

(see §3.1.3), optimising for ∆R = RMESA − (1.045 × RBrown) = 0 at a stellar age

of 2 Gyrs for a range of masses. The 4.5% radius increase is to compensate for

the non-spherical Roche geometry of the donor, c.f. Knigge et al. (2011). The

resulting M-fspot relation is shown in Figure 6.5.

Below masses of ∼ 0.12M⊙, the required fspot becomes slightly negative, i.e.

default MESA models are larger than observations plus the 4.5% non-spherical

correction. Since a negative coverage fraction is unphysical, negative values of

fspot are set equal to 0 and it should be emphasised that derived mass loss rates

may become somewhat unreliable below this mass. However, the clear trend in

fspot towards 0 prior to this, and the close proximity to fspot = 0 below 0.12M⊙

suggests that the MESA radius calibration given here is still valid.

There is significant scatter in the Brown mass-radius relation that is not cap-

tured in these models. The inherent scatter in radius for the observations is ∼ 3%

between 0.1 and 0.2 M⊙, which adds to the uncertainty in modelled radius in-

flation, and thus mass loss rate. Below ∼ 0.1M⊙, the scatter is not able to be

characterised. Whilst this may skew an individual system, on average the inferred

mass loss from model radius should be accurate. Therefore, this effect should not

corrupt the Ṁ results with a large enough sample size. Since the uncertainties

I report here do not include the effects of the scatter in the Brown mass-radius

relation, they are underestimates of the true uncertainty. However, due to the

very poor constraints on the scatter, this effect is ignored until more information

is available.
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Figure 6.5: Top: The required fspot that is applied to tune M dwarf MESA models
to match the Brown relation, plus an added 4.5% inflation due to non-spherical
Roche geometry. Bottom: the residuals from the best-fit value of fspot. The
dotted lines show the acceptable deviation from perfect agreement in order to
terminate the bisection method optimisation, and the dashed line shows the
target inflation. Note that when finding the necessary value of fspot to match the
Brown relation xspot ≡ 0, and negative values of fspot were allowed. However,
in all subsequent modelling, negative fspot were set to 0. Red squares show
evaluated MESA models.
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6.4 Inferred mass and angular momentum loss

rates from CV donors

Overall, there are 33 systems with eclipse-modelled characterisations available

with donors in the correct mass range of 0.08M⊙ < Mdonor < 0.20M⊙, catalogued

in Table 6.1.

Table 6.2 shows the AML rates, J̇ , calculated using Equation 3.46 for the

systems for which Ṁ could be calculated from donor properties. Also shown is

the AML expected from gravitational losses alone for that system, and the ratio

between the observed and expected values.

Two systems appear to have less AML than is predicted by gravitational losses:

ASASSN-17fo (from Chapter 5) and SDSS J0903 (Savoury et al., 2011), and an

erroneous eclipse model result can be eliminated in each case. ASASSN-17fo is

confidently eclipse modelled, with distinct, well modelled eclipse features and a

good white dwarf flux fit, so is unlikely to be unreliable. SDSS J0903 also has a

confident eclipse model fit. Whilst the bright spot features of this system are less

distinct, the fitting results are satisfactory. However, the inferred Ṁ is contingent

on a chain of assumptions all holding true; the eclipse modelling must be robust,

the MESA configuration must be accurate for the specific donor being considered,

and the equilibrium radius of the donor in question must be well-described by the

Brown relation. A failure in any of these steps will produce incorrect values of Ṁ

and J̇ , and the consequences of the breakdown of these assumptions is discussed

in §6.4.1.

Aside from these two cases the inferred Ṁ are generally physically reasonable,

suggesting that the general data set is acceptable for preliminary analysis. In the

interests of honest analysis, the two sub-gravitational loss CVs are still included

in the following examination of the data.

6.4.1 Systematic issues with mass loss estimation

It is critical to treat these mass loss rates with caution. The sample as given here

is subject to systematic bias as a result of the sparse nature of the data used

to calibrate the Brown relation, and the validity of Ṁ and J̇ is sensitive to the

validity of the MESA configuration for the donor model. Whilst the majority of

CV donors are probably well-described by my MESA configuration, it cannot be

assumed that all donors will be; the configuration could easily be invalidated by,
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Table 6.1: The inferred Ṁ for eclipse-modelled CVs. For the Source column,
‘W22’ are from Chapter 5, ‘M19’ are systems modelled by McAllister et al. (2019),
‘M17b’ is from McAllister et al. (2017b), ‘S11’ are from Savoury et al. (2011)

System Name: Source Mdonor,M⊙ Rdonor, R⊙ log10(Ṁ, M⊙/yr)

ASASSN-14hq W22 0.097± 0.002 0.157± 0.001 −9.897± 0.008
ASASSN-15pb W22 0.148± 0.008 0.209± 0.003 −9.997± 0.164
ASASSN-17fo W22 0.109± 0.001 0.144± 0.001 −10.859± 0.137
AY For W22 0.106± 0.005 0.162± 0.002 −9.918± 0.024
CSS090419 W22 0.087± 0.016 0.152± 0.006 −9.859± 0.003
CSS090622 W22 0.105± 0.009 0.155± 0.004 −10.046± 0.074
MASTER OT J0014 W22 0.123± 0.006 0.165± 0.002 −10.279± 0.328
OGLE82 W22 0.132± 0.003 0.170± 0.001 −11.686± 1.078
SDSS J0748 W22 0.085± 0.010 0.128± 0.005 −10.438± 0.152
SDSS J1524 W22 0.097± 0.003 0.144± 0.001 −10.210± 0.030
CSS080623 M19 0.081± 0.005 0.128± 0.002 −10.343± 0.041
CSS110113 M19 0.105± 0.007 0.149± 0.003 −10.272± 0.129
OY Car M19 0.093± 0.004 0.139± 0.001 −10.278± 0.046
SDSS J0901 M19 0.138± 0.007 0.182± 0.003 −10.547± 0.368
SDSS J1152 M19 0.094± 0.016 0.147± 0.006 −10.062± 0.156
SSS100615 M19 0.083± 0.005 0.128± 0.002 −10.384± 0.038
ASASSN-14ag M17b 0.093± 0.010 0.135± 0.007 −10.416± 0.211
CTCV J2354-4700 S11 0.101± 0.003 0.146± 0.001 −10.245± 0.030
OU Vir S11 0.116± 0.002 0.163± 0.001 −10.067± 0.026
XZ Eri S11 0.091± 0.004 0.135± 0.001 −10.352± 0.054
SDSS J0903 S11 0.099± 0.004 0.136± 0.002 −10.677± 0.155
SDSS J1227 S11 0.089± 0.002 0.137± 0.001 −10.243± 0.017
SDSS J1502 S11 0.078± 0.001 0.124± 0.001 −10.377± 0.008
ASASSN-14kb W22 0.134± 0.003 0.164± 0.001 -
CTCV 1300-3052 M19 0.166± 0.006 0.211± 0.002 -
DV UMa M19 0.187± 0.012 0.215± 0.005 -
IY UMa M19 0.141± 0.007 0.177± 0.002 -
SSS130413 M19 0.140± 0.012 0.163± 0.004 -
V713 Cep M19 0.176± 0.018 0.208± 0.005 -
Z Cha M19 0.152± 0.005 0.182± 0.002 -
CTCV J1300-3052 S11 0.177± 0.021 0.215± 0.008 -
DV UMa S11 0.196± 0.005 0.218± 0.001 -
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Table 6.2: The inferred AML rates for the CVs in this sample. J̇total is calculated
from the inferred Ṁ , and J̇GR is the calculated gravitational AML rate. Sources
are keyed the same as Table 6.1.

System Name: Source log(J̇total, J) log(J̇GR, J) J̇total/J̇GR

ASASSN-14hq W22 27.157± 0.009 26.681± 0.007 2.996± 0.081
ASASSN-15pb W22 27.091± 0.162 26.796± 0.013 2.115± 0.818
ASASSN-17fo W22 26.240± 0.137 26.711± 0.004 0.355± 0.114
AY For W22 27.184± 0.026 26.705± 0.015 3.021± 0.204
CSS090419 W22 27.158± 0.039 26.634± 0.058 3.381± 0.548
CSS090622 W22 26.994± 0.078 26.699± 0.028 2.011± 0.388
MASTER OT J0014 W22 26.842± 0.325 26.745± 0.014 1.661± 1.488
OGLE82 W22 25.428± 1.083 26.767± 0.009 0.980± 8.280
SDSS J0748 W22 26.645± 0.156 26.629± 0.053 1.116± 0.442
SDSS J1524 W22 27.027± 0.031 26.723± 0.043 2.027± 0.234
CSS080623 M19 26.705± 0.042 26.615± 0.026 1.238± 0.141
CSS110113 M19 26.895± 0.128 26.701± 0.019 1.633± 0.502
OY Car M19 26.844± 0.046 26.666± 0.014 1.517± 0.168
SDSS J0901 M19 26.536± 0.368 26.780± 0.014 0.815± 0.870
SDSS J1152 M19 26.954± 0.157 26.656± 0.073 2.149± 0.894
SSS100615 M19 26.730± 0.039 26.625± 0.024 1.282± 0.138
ASASSN-14ag M17b 26.587± 0.215 26.657± 0.056 0.968± 0.526
CTCV J2354-4700 S11 26.899± 0.032 26.691± 0.008 1.616± 0.122
OU Vir S11 26.992± 0.027 26.729± 0.005 1.837± 0.117
XZ Eri S11 26.721± 0.054 26.659± 0.015 1.164± 0.151
SDSS J0903 S11 26.427± 0.154 26.685± 0.012 0.587± 0.217
SDSS J1227 S11 26.848± 0.018 26.652± 0.010 1.572± 0.075
SDSS J1502 S11 26.669± 0.009 26.602± 0.005 1.169± 0.026
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Figure 6.6: Illustrating how scatter about the Brown relation can corrupt inferred
Ṁ rates. The upper solid black line shows the observed radius of a donor, and
the lower three lines show possible zero Ṁ radii. The dotted black line shows
the radius predicted by the Brown relation. The arrows show the amount of
inflation induced by Ṁ , with longer arrows requiring more Ṁ . The black arrow
shows the reported value, but assumes the donor would exactly agree with the
Brown relation. If the zero-Ṁ radius of a donor corresponds to star A (blue line),
some extra Ṁ will be incorrectly attributed to the system (shown as the dotted
section). If the zero-Ṁ radius of the donor corresponds to star B (red line), some
amount of Ṁ will be ignored (again shown as the dotted section).

for example, the presence of a more evolved donor, or one with a substantially

different metallicity from typical M dwarfs. This would alter the mass-radius

exponent of the donor (ζ in Equation 3.46) and corrupt the inferred J̇ .

Beyond a potentially incorrect MESA configuration, there is a more serious

problem with the unknown scatter in the Brown relation. Consider a star which

lies below the Brown relation, i.e. one with a smaller zero-Ṁ radius than its mass

suggests. If this star begins to experience mass loss, and its radius is measured to

be inflated beyond the Brown relation (after factoring for Roche geometry), the

corresponding mass loss rate found will be lower than reality, as some amount of

the star’s inflation – the amount required to inflate it to agree with the Brown

relation – is ignored. This is illustrated in Figure 6.6. This will also cause some

stars to fail to have Ṁ inferred. If the zero-Ṁ radius is small enough, it be-

comes likely that the amount of inflation induced by mass loss is not sufficient

to bring the star up to the radius assumed by the Brown relation. Such a donor

would not be possible to reproduce using this methodology, and 9 such donors

(approximately a quarter of the sample) are seen in Table 6.1.

The combination of these two effects makes our dataset as a whole systemat-
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ically over-estimate Ṁ . This is because systems with donors that scatter below

the Brown relation are preferentially removed from the sample – they are more

likely to have inflations that lie below the baseline radius (i.e. they lie below the

dotted black line in Figure 6.6), and are systems which would have had their Ṁ

under-estimated. Donors which scatter above the Brown relation are not removed

in this way, so over-estimated Ṁ become over-represented in the sample. Some

portion of systems are, for the same reasons, reported with abnormally low Ṁ

– i.e. ASASSN-17fo and SDSS J0903 – as their donors scatter below the Brown

relation, but not by enough as to remove them from the sample. Finally, since

our reported Ṁ do not consider the intrinsic scatter in the M dwarf population,

the uncertainties in Ṁ reported are likely to be significantly under-estimated.

Although this bias presents a problem for quantitative analysis, the general

trends that these data show can still be considered generally correct, with the

caveat that these are preliminary results. A larger sample of M dwarf masses and

radii in the M < 0.2M⊙ range to give a better mass-radius relationship is highly

desirable, and is likely to be provided in the near future with the release of Gaia

DR3. With a proper characterisation of the intrinsic population scatter, it will be

possible to marginalise over the scatter to remove the over-estimation of Ṁ , more

faithfully report uncertainties, and perform more rigorous quantitative analysis

of the data.

6.5 Inferring mass loss from white dwarf prop-

erties

The white dwarf temperature also reveals information on the mass transfer rate,

and the following summary is described more quantitatively by Townsley &

Gänsicke (2009). In brief, as accreted material strikes the surface of the white

dwarf its kinetic energy is converted to thermal energy, heating the white dwarf

surface. The degree of this heating is related to the rate at which material falls to

the surface – if more material falls in, more heating is induced. Since, in general,

it can be assumed that the rate material falls onto the white dwarf is roughly

equal to the rate at which material enters the accretion disc from the donor, the

white dwarf Teff becomes a proxy diagnostic of the donor Ṁ . Simulations demon-

strate that even through successive Nova eruptions, the core temperature of the

white dwarf is stable over timescales of ∼ 108 years (Epelstain et al., 2007), so
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if the accretion rate falls, the white dwarf Teff is able to cool to the appropriate,

lower temperature and remain accurate to the present-day accretion rate.

The white dwarf temperature approach holds a major advantage over using

the donor properties: measurements of white dwarf temperatures are easier to

gather in large sample sizes. However, the white dwarf temperature is capable

of responding to changes in Ṁ on τTwd ∼ 103 − 105 yrs (Townsley & Gänsicke,

2009), as opposed to the ∼ Gyr timescales of the donor-based method described

in §6.4, thus the Ṁ inferred from the white dwarf is averaged over τTwd and only

provides a short-term snapshot of the Ṁ and is susceptible to corruption from

outbursts.

The short-term average mass loss rate, ⟨Ṁ⟩, is ultimately a function only of

white dwarf mass, and temperature, given in Equation 6.3.

Teff = 1.7× 104K

( ⟨Ṁ⟩
10−10M⊙yr−1

)1/4(
Mwd

0.9M⊙

)
(6.3)

Recently, Pala et al. (2021) used spectroscopically estimated Teff and Mwd to

infer the Ṁ of 65 CVs. One finding from this analysis was an inverse correlation

between Mwd and Ṁ , contrary to the prediction of gravitational wave braking

that lower mass systems should have lower AML rates driving lower Ṁ . As the

eclipse modelling of CVs also produces a measure of Teff , the systems analysed for

this thesis can be processed with both techniques, and have their results compared.

Table 6.3 shows the resulting Ṁ from the white dwarf parameters.
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Table 6.3: The Ṁ found using the white dwarf properties for each system with a
Ṁ measurement from donor properties. Sources are keyed the same as Table 6.1

Name Source Mwd,M⊙ Teff , K log(Ṁ,M⊙yr
−1)

ASASSN-14hq W22 0.67± 0.01 14800± 800 −9.93± 0.02
ASASSN-14kb W22 0.74± 0.02 17700± 1000 −9.90± 0.03
ASASSN-15pb W22 0.72± 0.03 19200± 1600 −9.85± 0.04
ASASSN-17fo W22 0.85± 0.01 14800± 600 −10.03± 0.02
AY For W22 0.78± 0.02 18200± 500 −9.91± 0.02
CSS090102 W22 0.62± 0.03 14800± 1200 −9.90± 0.04
CSS090419 W22 0.59± 0.08 18200± 9000 −9.79± 0.28
CSS090622 W22 0.67± 0.06 9800± 1500 −10.11± 0.08
MAS0014 W22 0.86± 0.03 17300± 1000 −9.97± 0.03
OGLE82 W22 0.84± 0.02 18000± 4400 −9.95± 0.12
SDSS J0748 W22 0.80± 0.05 28400± 3300 −9.73± 0.06
SDSS J1524 W22 0.99± 0.01 12500± 900 −10.17± 0.03
ASASSN-16kr W20 0.95± 0.02 11500± 300 −10.19± 0.01
ASASSN-17jf W20 0.70± 0.03 12020± 850 −10.03± 0.04
SSSJ1502-3505 W20 0.76± 0.02 22800± 1500 −9.80± 0.03
CSS080623 M19 0.71± 0.02 15500± 1700 −9.94± 0.05
CSS110113 M19 1.00± 0.05 14500± 2200 −10.11± 0.07
CTCV 1300-3052 M19 0.72± 0.02 11000± 1000 −10.09± 0.04
DV UMa M19 1.09± 0.03 17400± 1900 −10.07± 0.05
GY Cnc M19 0.88± 0.02 25900± 2300 −9.81± 0.04
IY UMa M19 0.96± 0.01 18000± 1000 −10.00± 0.02
OY Car M19 0.88± 0.02 18600± 2800 −9.95± 0.07
SDSS J0901 M19 0.75± 0.02 14900± 2000 −9.98± 0.06
SDSS J1006 M19 0.82± 0.11 16500± 2000 −9.97± 0.08
SDSS J1152 M19 0.62± 0.04 15900± 2000 −9.87± 0.06
SDSS J1501 M19 0.72± 0.02 14900± 1000 −9.96± 0.03
SSS100615 M19 0.88± 0.03 13600± 1500 −10.09± 0.05
SSS130413 M19 0.84± 0.03 24000± 3000 −9.82± 0.06
V713 Cep M19 0.70± 0.02 17000± 6000 −9.89± 0.19
Z Cha M19 0.80± 0.01 16300± 1400 −9.97± 0.04
SDSS J1057 M17a 0.80± 0.02 13300± 1100 −10.06± 0.04
ASASSN-14ag M17b 0.63± 0.04 14000± 2100 −9.93± 0.07
PHL 1445 M15 0.73± 0.03 13200± 700 −10.02± 0.03
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Table 6.4: Table 6.3, continued

Name Source Mwd,M⊙ Teff , K log(Ṁ,M⊙yr
−1)

CTCV J1300-3052 S11 0.74± 0.01 11100± 800 −10.10± 0.03
CTCV J2354-4700 S11 0.94± 0.03 14800± 700 −10.08± 0.02
SDSS J1152 S11 0.56± 0.03 12400± 1400 −9.93± 0.06
OU Vir S11 0.70± 0.01 22300± 2100 −9.77± 0.04
XZ Eri S11 0.77± 0.02 15300± 1900 −9.98± 0.06
SDSS J1702 S11 0.91± 0.03 15200± 1200 −10.05± 0.04
SDSS J1035 S11 0.84± 0.01 10000± 1100 −10.20± 0.05
SDSS J1507 S11 0.89± 0.01 11300± 1000 −10.17± 0.04
SDSS J0903 S11 0.87± 0.01 13300± 1700 −10.09± 0.06
SDSS J1227 S11 0.80± 0.02 15900± 1400 −9.98± 0.04
SDSS J1433 S11 0.87± 0.01 12700± 1500 −10.11± 0.05
SDSS J1502 S11 0.709± 0.004 11800± 1200 −10.05± 0.04
IP Peg C10 1.16± 0.02 12500± 2500 −10.24± 0.09
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This chapter concerns the implications of the data gathered in previous chap-

ters, as well as in other studies. As discussed in Chapter 1, the different explaina-

tions for the apparent excess AML in short period CVs may be discriminated by

correlations with each of the component masses; eCAML expects a correlation

with the white dwarf mass, whilst the residual magnetic braking prescriptions

expect a correlation with donor mass and period.

First, however, the mass loss rates of the Ṁ inferred from donor properties

are compared with the mass loss rates inferred from the white dwarf properties.

Figure 7.1 plots the Ṁ from each method as a function of period – note that this

figure plots all the white dwarf based Ṁ regardless of if they were able to have

donor based Ṁ found, so not every CV has two data points plotted.

It is immediately obvious that the white dwarf properties indicate a generally

higher Ṁ than the donor properties, and do not follow the modelled donor tracks

as the CV ages. Conversely, the donor-derived Ṁ closely follows the ‘optimal’

MESA model with gravitational braking amplified by a factor of 2.47, even ap-

pearing to follow the period bounce regime though this is unlikely to be a real

effect and is discussed later. Interestingly, the white dwarf properties also sug-

gest a much more consistent mass loss rate across the CV population, with little

scatter about ∼ 10−10M⊙ yr−1 across the full period range.

This result is somewhat surprising given the expectation for the donor prop-

erties to over-estimate Ṁ (§6.4.1), but Figure 7.1 shows little indication of this.

Further, an explicit assumption in the white dwarf based Ṁ to be the total system

Ṁ is that all material lost by the donor is accreted onto the white dwarf – this is

unlikely to be a robust assumption, as some material will be lost from the system

without being accreted and would cause the white dwarf properties to indicate a

lower system-wide Ṁ than reality. Despite these factors, generally higher Ṁ are

observed with the white dwarf properties than with the donor.

The white dwarf indicating a higher mass loss rate may be a result of recent

dwarf novae (i.e. periods of intense accretion onto the white dwarf), which cause

the surface to temporarily heat up. After a dwarf nova has subsided, the white

dwarf will take some time to readjust its temperature to the lower accretion rate,

and for that period will appear to have an exaggerated accretion rate. OV Bootis

(Schwope et al., 2021) was observed to be ∼ 9000K hotter than equilibrium 5

months after an outburst, and observations of GW Lib (Szkody et al., 2016) show

that the white dwarf is ∼ 3000K hotter than equilibrium 8 years after an outburst.
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Whilst such outburst could feasibly inflate the inferred Ṁ , this would require a

very recent outburst and would be extremely unlikely to affect every system in

the sample. Further, the measurement uncertainty of the white dwarf Teff in

this sample is, on average, ∼ 2000K - comparable to what one might reasonably

expect from a recent dwarf nova. Assuming a recent nova heats a white dwarf

by 5000K, the apparent Ṁ would be increased only by log(Ṁ,M⊙ yr−1) ∼< 0.2

and should not radically alter the conclusions drawn from these data. At this

time, the source of this discrepancy is unknown and more work is necessary to

understand the tension between the two methods.

A system can be categorised as a period bouncer based on either the observed

Mdonor, or the observed Ṁ . Despite this sample explicitly removing donors with

masses typical of the post period minimum regime, three CVs have donor-inferred

Ṁ that are consistent with the Ṁ of a period bounce CV: SDSS J0903, ASASSN-

17fo, and OGLE82, though OGLE82 has an extremely uncertain Ṁ measurement

of log(Ṁ,M⊙ yr−1) = −11.686± 1.078. This raises the question of an exception-

ally poor understanding of the period minimum and period bounce regimes, but

it must be noted that SDSS J0903 and ASASSN-17fo are peculiar systems for

reasons previously mentioned in §6.4, and later revisited in §7.2. These two sys-

tems are instead more likely an artefact of systematic bias, discussed in §6.4.1,

and only coincidentally lie on the period bounce donor track.

Hereafter, when values of Ṁ are used they are the values derived from the

donor properties.
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Figure 7.1: Top: Plotting the Period - Mdonor relationship for the systems for
which the white dwarf mass was determined. The MESA donor tracks are also
plotted; the blue dashed line shows the purely gravitational wave driven model,
and the green dashed line shows the model with gravitational braking amplified
by a factor of 2.47. The symbols denote the source of the data: circles are
the systems from Chapter 5, upright triangles are data from McAllister et al.
(2019), squares are from Savoury et al. (2011), and the inverted triangle is the
supplementary system from McAllister et al. (2017b). Bottom: Comparing the
mass loss rates inferred from the donor properties (red data) with those inferred
from the white dwarf properties (black data). Symbols are similar to the top
panel.
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7.1 Mass loss rate correlations

Recall from the discussion in §1.5.7 that if the missing AML from CV models

is rooted in residual magnetic braking, and these prescriptions correctly describe

how magnetism scales with stellar properties, one would expect to see a correlation

between Mdonor and Ṁ , and see no such correlation with Mwd. This is because

both magnetic braking prescriptions considered are dependent on the Rossby

number, a function of the rotational period, which itself is a function of donor

mass for short period CVs. Note that the allowed mass range of the method used

here forces us to omit period bouncer systems. If, however, the CAML or eCAML

model is correct, and the missing AML arises from white dwarf ejecta, (refer to

§1.5.6), one would expect a correlation between Mwd and Ṁ , as in both cases

there is a dependence of AML on the total system mass, which is dominated by

Mwd. Of course, the two sources of extra AML are not mutually exclusive and

may co-exist.

To probe for these correlations the χ2 test is insufficient, since both axes have

significant uncertainty. The orthogonal distance between the line and data is

minimised, similar to §5.2.1. Pearson correlation coefficients and their associated

p values are reported, computed based on the means of the data, and do not

consider the uncertainty in the measurements. Since uncertainty is ignored, these

correlation coefficients are not technically correct, however, these values serve as a

useful rough guide and are often easily corroborated by inspection of the relevant

plots1.

Figure 7.3 shows the data for Ṁ(Mwd), and Figure 7.4 shows Ṁ(Mdonor). The

correlation between Mwd and Ṁ , is reasonably confident; ignoring errors, these

data have a Pearson rank correlation coefficient of −0.502 and a p value of 0.012,

indicating a high likelihood of a mild correlation. Fitting a straight line to these

data supports this, finding a best-fit gradient that is 4.5σ from the null-hypothesis

of 0. However, no correlation is found between Ṁ and Mdonor. These data have a

Pearson coefficient of 0.089 with a p value of 0.68, and attempting to fit a straight

line to the data results in an unconstrained gradient.

The relationship between Mwd and Ṁ has been previously observed, and jus-

tified theoretically by Pala et al. (2021). The luminosity of the white dwarf is

1Pearson correlation coefficients range from −1 (perfect negative correlation), to +1 (perfect
positive correlation), with 0 indicating no correlation between the data. The p value is the
probability of the null hypothesis, i.e. that the data are uncorrelated, and values of p < 0.05
are generally accepted to indicate confidence in a correlation.
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related to both the radius and temperature, and the mass and mass loss rate,

L ∝ R2
wdT

4
eff ∝ ṀM0.4

wd (7.1)

By disregarding the weak mass relationship on the right side of this equation,

Ṁ ∝ R2
wdT

4
eff (7.2)

Rwd as a function of Mwd can be retrieved from the Bergeron et al. (1995) cooling

tracks for a given Teff . Pala et al. (2021) demonstrate that there is no observable

correlation between white dwarf temperature, and white dwarf mass, so Teff can

be assumed to be the mean of the Pala et al. (2021) sample, ∼ 15000K. Note

that whilst the gradient is weakly dependent on the chosen value of Teff , the

difference within the range of reasonable CV temperatures (∼ 5000 − 30000K)

is negligible. The constant of proportionality is chosen by Pala et al. (2021) to

reflect Ṁ = 7× 10−10M⊙yr
−1 at Mwd = 0.8M⊙, and this is mirrored here.

Thus, a prediction for approximate typical mass loss rates is found from the

white dwarf sample in Pala et al. (2021). Figure 13 from Pala et al. (2021) is

reproduced in Figure 7.2, and shows both the lack of correlation betweenMwd and

Teff , and the loose agreement between observations and Equation 7.2. Similarly,

Equation 7.2 is compared in Figure 7.3 alongside the best fit straight line, where it

can be seen that this relationship agrees with the 3σ threshold of the best fit but

appears less steep than the data suggests. The mass loss rates found from donor

properties are loosely consistent with the recent findings of Pala et al. (2021) –

specifically, that mass loss rates estimated from donor radii show a similar trend

with WD mass as those estimated from WD temperatures. However, as discussed,

the mass loss rates from the donor are slightly lower and show a stronger trend

with Mwd.

Figure 7.1 shows a reasonably tight agreement between the model MESA

donor tracks and observed Ṁ and P . One might expect to see this reflected

in a plot of Mdonor vs. Ṁ given the strong dependence of Mdonor on P , but the

agreement is more ambiguous with many data lying between the two model tracks.

This is likely related to the scatter about the models in Figure 5.53. As the mass-

period relationship is synonymous with the mass-radius relationship, the scatter

in Figure 5.53 propagates forward.

Based on these results, it appears unlikely that residual magnetic braking (in
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Figure 7.2: Reproduced from Pala et al. (2021), Figure 13. The subset of modelled
systems, with P < 3hr are shown. Circles and stars are pre- and post-period
bounce systems derived by Pala et al. (2021), and diamonds and pentagons
are pre- and post-period bounce systems taken from the literature. Left: The
Teff is plotted against Mwd, and no correlation can be seen. Right: log⟨Ṁ⟩ is
plotted against Mwd, though now the data are correlated along the white dwarf
mass-radius relationship outlined by Pala et al. (2021), Mwd ∝ R2

wd, shown by
the black line.

the forms given in §1.5.7) is responsible for the excess AML in CVs, but still

possible that the drag imposed by nova material is the cause. However, there

are a few factors to consider when deciding how convincing these findings are,

beyond the important factors mentioned in §6.4.1. The sample size is still small,

only 24 systems, and the uncertainty in these measurements is significant. More

importantly, the parameter space between 0.12M⊙ < Mdonor < 0.20M⊙ is sparsely

populated, and has particularly large uncertainties. This makes the search for

correlation dominated by data in the narrow range of 0.08M⊙ < Mdonor < 0.12M⊙,

and thus less robust; gathering more data for short period CVs with higher Mdonor

may yet reveal a correlation between donor mass and mass loss rate. Also, the lack

of correlation with Mdonor may be a consequence of even the amplified ‘optimal’

model Ṁ not varying by much across the donor mass range, a problem that may

similarly be solved by expanding the available sample.
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Figure 7.3: Showing the correlation between the white dwarf mass and mass loss
rate. The black circles are the systems from Chapter 5 and have their system
names labelled, gold upright triangles are data from McAllister et al. (2019),
grey squares are from Savoury et al. (2011), and the brown inverted triangle
is the supplementary system from McAllister et al. (2017b). The red line shows
the best fit to the data, with the shaded red region showing the coverage of
the uncertainty in the line parameters. The darkest region is 1σ, the middle
region is 2σ, and the lightest region shows 3σ. The best fit line has the form
log(Ṁ, M⊙ yr−1) = (−2.62 ± 0.60)(Mwd,M⊙) − (8.18 ± 0.44). Also shown as
the dashed green line is the mass loss expected corresponding to a typical CV
white dwarf Teff , following the relationship described in Equation 7.2
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Figure 7.4: Showing the donor masses and mass loss rates. Observations are
styled similarly to Figure 7.3. The dashed blue line shows the value predicted
by the ‘standard’ MESA CV model, and the dashed green line is the ‘optimal’
MESA CV track.
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7.2 Measured angular momentum loss

It is possible to more directly probe the AML of the CVs – Equation 3.46 shows

how the AML can be calculated from Mwd, Mdonor, Ṁ , and a. Figures 7.5 and 7.6

show the J̇ excess, J̇ex, which has had J̇GR subtracted, against the two component

masses.

Note that there are two peculiar systems in the sample, ASASSN-17fo and

SDSS J0903, which were raised in §6.4 as having exceptionally low Ṁ and J̇

estimates and are likely the result of the systematic bias described in §6.4.1. Here,

it can be seen that these systems appear to have sub-GR angular momentum loss,

which is unphysical. Whilst there remains serious doubt on the validity of these

systems, they are still considered in the following analysis.

The Mwd and J̇ex data appear to be loosely correlated, with a Pearson corre-

lation of −0.514 and a p-value of 0.010. Fitting a straight line to the data finds

(J̇obs − J̇MESA) = (−8.3± 1.6)× 1027(Mwd,M⊙) + (6.9± 1.3)× 1027 Joules.

However, similarly to the log(Ṁ) data, there is no sign of correlation between

Mdonor and J̇ex – these data have a correlation coefficient of 0.032 and a p-value

of 0.884, strongly indicating that the data are uncorrelated and again suggesting

that the magnetic braking prescriptions outlined in §1.5.7 do not cause excess

AML in short period CVs.

Based on period excess, three possibilities for the form of excess AML were

suggested in §5.2.1: the excess AML declines in strength, but more slowly than

gravitational losses; excess AML is roughly constant across the range of Mwd or

Mdonor; or excess AML increases in strength towards lower Mdonor or Mwd. The

evidence suggests that excess AML appears to increase in strength towards lower

Mwd, and is uncorrelated with Mdonor.
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Figure 7.5: Showing the correlation between the donor mass and angular momen-
tum loss rate, J̇ . Observations are keyed similarly to Figure 7.3, though here the
dashed blue line shows perfect agreement between observations and gravita-
tional angular momentum loss. The dashed green line shows the 2.47× donor
track.
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Figure 7.6: Showing the correlation between the white dwarf mass and angular
momentum loss rate, J̇ . Observations are keyed similarly to Figure 7.3, and the
best fit line has the form (J̇obs − J̇MESA), J = (−8.3 ± 1.6) × 1027(Mwd,M⊙) +
(6.9± 1.3)× 1027.
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7.3 A closer look at CAML

Recall from §1.5.6 that under eCAML, the efficiency parameter ν is given by

C/Mwd, and typical values of C are roughly chosen to be 0.3 − 0.4 to reproduce

the observed CV population distribution (Schreiber et al., 2016).

J̇ex
J

= ν
Ṁdonor

Mdonor

(7.3)

J̇ex
J

= C
Ṁdonor

MdonorMwd

(7.4)

C can be fit to the measured excess AML, again minimising the orthogonal dis-

tance. Doing so finds a best-fit C = 0.59±0.02, shown in Figure 7.7, much higher

than the previously estimated range of 0.3− 0.4, which is also plotted.

Such a high value of C is incompatible with the existence of short-period

CVs, as this degree of CAML would render all short period systems dynamically

unstable, which is clearly not the case. Whilst the sample size is small and

the uncertainty in these measurements remains large, these preliminary results

might be interpreted as a tension between the eCAML calibrated from population

synthesis models by Schreiber et al. (2016), and the calibration reported here.

However, such an interpretation is premature. As discussed in §6.4.1, the values

reported here are subject to uncharacterised systematic bias, which likely causes

an over-estimation of Ṁ and thus likely an over-estimation of C. Using the sample

to calculate C is therefore unwise, but the general trend present in these data

remains promising. The measured J̇ex/J clearly lie on a straight line, C is only

a factor of 2 higher than expected, and the data are clearly strongly correlated

with the quantities predicted by eCAML, implying that the theory is likely to

supported by a future, more robust dataset.

A further comparison with the previous eCAML calibration is possible by

calculating ν for each system. The ν values are plotted as a function of white

dwarf mass in Figure 7.8, alongside the predicted ν for eCAML, ν = C/Mwd. As

the uncertainties in both J̇/Jtot and Ṁ/Mdonor are large, the uncertainty in the

calculated ν is too large to draw confident conclusions; however, it still provides a

useful indication of what might be expected from future results. Whilst some data

are consistent with the Schreiber et al. (2016) eCAML calibration, it appears to

generally under-estimate the mass loss from short period CVs with a significant

portion of the data consistent with ν ∼ 0.9.
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Figure 7.7: Showing the observed quantities relevant to Equation 7.4 and the
best-fit value of C for short period CVs, based on donor properties. Symbols are
as in Figure 7.3, and the dashed blue line shows the relationship for C = 0.35.
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Figure 7.8: Showing the calculated values of ν for each short period CV in this
sample. Symbols are as in Figure 7.3, though note that for clarity the error
bars here are partially transparent. The dashed black line shows the eCAML
prescription for ν = 0.35/Mwd, and the red dashed line shows ν = 0.59/Mwd.
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I have extended the CV eclipse model to allow for a tiered structure of shared

eclipse parameters as a logical progression of the work by McAllister (2017).

Using this new hierarchical eclipse model I characterise the component masses

and radii, separations, white dwarf temperatures and surface gravities of 15 new

short-period CVs. Future work should be directed to improving the optimisation

of the eclipse light curve modelling – the Affine invariant sampler with parallel

tempering that is employed here is inefficient for problems with more than ∼ 5

parameters, and the model frequently has more than 100 free parameters. While

the optimisation works, it is likely sub-optimal. Unfortunately, the optimisation

of expensive, non-differentiable models with many free parameters is inherently

difficult, and it remains to be seen how significant an improvement is possible.

Some issues were encountered during the modelling of a handful of systems,

which are recommended for UV spectroscopic follow-up studies to probe them in

more detail: Teff of the white dwarf in SSSJ0522−3505 appears to be ∼10000K

higher than is typical for a CV, and the white dwarfs of CSS090419 and CSS090622

appear to brighten in the i′ band, contrary to models. However, I justify the asser-

tion that these problems do not significantly impact the final results of modelling.

The newly extended sample of eclipse modelled CVs follows the canonical

CV donor evolutionary tracks, though with significant scatter that suggests the

possibility of a less unified donor track than is typically thought. A significantly

larger sample is necessary before more concrete claims can be made.

I demonstrate the effectiveness of MESA in modelling CV evolution, and

produce a configuration that replicates the canonical CV donor evolutionary se-

quence. I also note that with some additional work, MESA should be capable

of even closer agreement. Instead, I focus on an empirical reproduction of the

observed M dwarf mass-radius relationship of Brown et al. (2022) by introducing

star spots to MESA. By adjusting the star spot parameters, I am able to exactly

reproduce the Brown mass-radius relation.

Based on prior work by Knigge (2006); Knigge et al. (2011), I use these MESA

M dwarf models to deduce the mass loss rates of the M dwarf donors of eclipse

modelled CVs by comparing their measured masses and radii with those of MESA

models with varying degrees of mass loss. As such, I present the first sample of

donor-derived secular mass loss rate estimates for CVs, and use these data to

interrogate the source of the long-standing excess AML implied by CV prior ob-

servations. The data are preliminary, and are contingent on the validity of the
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M dwarf masses and radii to calibrate the MESA models. The best available

M dwarf mass-radius sample is sparsely populated below ∼ 0.12M⊙, so I cannot

marginalise over the intrinsic scatter in the M dwarf mass-radius relationship, bi-

asing the sample towards higher Ṁ while also polluting it with some unphysically

low Ṁ systems. Future observations of low mass M dwarf masses and radii should

be able to rectify this shortfall.

The results here are considered preliminary for a few reasons. Primarily, the

mass-radius relationship used to calibrate the MESA model radii at zero mass loss

is poorly sampled and incomplete, reverting to theoretical models at 0.121M⊙ –

the majority of my data lie in this poorly understood mass range. In addition,

significant further work is needed to grow the population of eclipse modelled low-

Mdonor CVs and improve these statistics, and continued eclipse modelling target-

ing short period CVs will be invaluable to confidently determining the source of

excess AML. Specific effort should be targeted towards confident characterisation

of CVs at slightly higher Mdonor of ∼ 0.15 (i.e. a period of ∼ 1.8 − 2.2 hours),

where existing data are somewhat sparse and have large uncertainties. The clus-

tering of confident data at lower masses leaves the current sample subject to an

over-reliance on data with donor masses below ∼ 0.12M⊙.

These results suggest that magnetic braking is a poor description of the excess

AML inferred from eclipse modelling of CVs, and indicate that eCAML continues

to be a better descriptor of the data. The basic prediction of eCAML – that the

relationship between J̇/J and Ṁ/(MdonorMwd) follows a straight line – is seen in

the data, though I suggest in §6.4.1 that my Ṁ are systematically over-estimated

so cannot yet be used to calibrate eCAML. It must be reiterated, however, that

the data presented here are themselves not well-described by eCAML. Calibrat-

ing the eCAML free parameter from these data results in a higher constant of

proportionality and concludes that virtually all CVs are dynamically unstable,

which is not self-consistent.
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Rezzolla L., Uryū K. ō., Yoshida S., 2001, MNRAS, 327, 888

Ritter H., 1985, A&A, 145, 227

Ritter H., 2010b, Memorie della Societa Astronomica Italiana, 81, 849

Ritter H., 2010a, Mem. Soc. Astron. Italiana, 81, 849

Ritter H., 2012, Memorie della Societa Astronomica Italiana, 83, 505

Ritter H., Kolb U., 1998, A&A Suppl., 129, 83

Ritter, H. Kolb, U. 2003, A&A, 404, 301

Roberts S., Osborne M., Ebden M., Reece S., Gibson N., Aigrain S., 2012, Philo-
sophical Transactions of the Royal Society of London Series A, 371, 20110550

http://arxiv.org/abs/astro-ph/0403118
http://dx.doi.org/10.1086/177423
http://dx.doi.org/10.1086/381958
https://ui.adsabs.harvard.edu/abs/2004ApJ...604..817P
http://dx.doi.org/10.1086/518997
https://ui.adsabs.harvard.edu/abs/2007ApJ...665..663P
http://dx.doi.org/10.1086/159772
http://dx.doi.org/10.1086/161569
http://dx.doi.org/10.1088/0004-637X/746/1/43
https://ui.adsabs.harvard.edu/abs/2012ApJ...746...43R
http://dx.doi.org/10.1088/0004-637X/692/1/538
https://ui.adsabs.harvard.edu/abs/2009ApJ...692..538R
http://dx.doi.org/10.1051/0004-6361:20020622
https://ui.adsabs.harvard.edu/abs/2002A&A...389..485R
http://dx.doi.org/10.1007/978-94-009-8500-1_48
http://dx.doi.org/10.1046/j.1365-8711.2001.04796.x
http://adsabs.harvard.edu/abs/2010MmSAI..81..849R
https://ui.adsabs.harvard.edu/abs/2010MmSAI..81..849R
http://dx.doi.org/10.1051/aas:1998175
https://ui.adsabs.harvard.edu/abs/1998A&AS..129...83R
http://dx.doi.org/10.1098/rsta.2011.0550
http://dx.doi.org/10.1098/rsta.2011.0550


BIBLIOGRAPHY 252

Savoury C. D. J., et al., 2011, Monthly Notices of the Royal Astronomical Society,
415, 2025

Savoury C. D., Littlefair S. P., Marsh T. R., Dhillon V. S., Parsons S. G., Cop-
perwheat C. M., Steeghs D., 2012, Monthly Notices of the Royal Astronomical
Society, 422, 469

Schaefer B. E., 2010, ApJS, 187, 275

Schenker K., Kolb U., Ritter H., 1998, MNRAS, 297, 633

Schönberg M., Chandrasekhar S., 1942, ApJ, 96, 161

Schreiber M. R., Zorotovic M., Wijnen T. P. G., 2015, arXiv e-prints, p.
arXiv:1512.03310

Schreiber M. R., Zorotovic M., Wijnen T. P. G., 2016, Monthly Notices of the
Royal Astronomical Society, 455, L16

Schwope A., Worpel H., Traulsen I., 2021, A&A, 646, A181

Shafter A. W., Holland J. N., 2003, PASP, 115, 1105

Shakura N., Sunyaev R., 1973, Astronomy and Astrophysics, 24, 337

Shappee B. J., et al., 2014, ApJ, 788, 48

Sharma S., 2017, ARAA, 55, 213

Simonsen M., et al., 2014, J. Am. Ass. of Variable Star Observers, 42, 177

Sion E. M., Godon P., 2022, Galaxies, 10, 43

Skumanich A., 1972, ApJ, 171, 565

Smith N., 2014, ARAA, 52, 487

Smith J. A., et al., 2002, The Astronomical Journal, 123, 2121

Solheim J. E., 2010, PASP, 122, 1133

Somers G., Pinsonneault M. H., 2015, ApJ, 807, 174

Soszynski I., et al., 2016, VizieR Online Data Catalog, p. J/AcA/65/39
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A.1 Eclipse modelled CV sample

The following data are also available in machine-readable format upon reasonable

request to the author.
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Table A.1: The system parameters found for the 12 CVs analysed in Chapter 5. The reported parallax, π, is the posterior
distribution from fitting the white dwarf fluxes, c.f. §3.3.2.

ASASSN-14hq ASASSN-14kb ASASSN-15pb ASASSN-17fo AY For

Mwd/M⊙ 0.67± 0.01 0.74± 0.02 0.72± 0.03 0.85± 0.01 0.78± 0.02
Rwd/R⊙ 0.0119± 0.0001 0.0113± 0.0002 0.0115± 0.0005 0.0099± 0.0001 0.0106± 0.0003
Mdonor/M⊙ 0.097± 0.002 0.134± 0.003 0.148± 0.008 0.109± 0.002 0.106± 0.006
Rdonor/R⊙ 0.157± 0.001 0.164± 0.001 0.210± 0.004 0.1436± 0.0007 0.162± 0.003
q 0.145± 0.002 0.182± 0.002 0.206± 0.004 0.1267± 0.0005 0.136± 0.004
P , hours 1.78384800(7) 1.63453(1) 2.23896(3) 1.477147(2) 1.790756(1)
a/R⊙, 0.681± 0.004 0.670± 0.005 0.824± 0.014 0.646± 0.003 0.717± 0.007
i,◦ 80.35± 0.06 84.4± 0.1 79.4± 0.1 84.23± 0.03 84.0± 0.2
Kwd, km/s 58.0± 0.9 76.2± 1 75± 2 60.2± 0.4 57.8± 2.0
Kdonor, km/s 399± 2 419± 3 364± 6 468± 2 425± 4
π, mas 3.40± 0.07 2.78± 0.11 1.0± 0.2 1.79± 0.36 2.12± 0.16
Teff , K 14819± 800 17700± 1000 19200± 1600 14800± 600 18100± 500
log(g), cgs 8.11± 0.02 8.21± 0.03 8.17± 0.06 8.37± 0.02 8.28± 0.04
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Table A.2: Table A.1, continued.

CSS090102 CSS090419 CSS090622 OGLE82 SDSS J0748

Mwd/M⊙ 0.62± 0.03 0.59± 0.08 0.67± 0.06 0.83± 0.01 0.68± 0.02
Rwd/R⊙ 0.0126± 0.0004 0.0122± 0.0009 0.0112± 0.0007 0.0099± 0.0002 0.0121± 0.0004
Mdonor/M⊙ 0.060± 0.003 0.087± 0.011 0.104± 0.009 0.131± 0.004 0.066± 0.004
Rdonor/R⊙ 0.119± 0.002 0.152± 0.007 0.155± 0.005 0.170± 0.002 0.117± 0.002
q 0.094± 0.002 0.146± 0.003 0.159± 0.008 0.157± 0.002 0.095± 0.004
P , hours 1.49723786(5) 1.81062621(6) 1.702302(6) 1.7263398(6) 1.39947(1)
a/R⊙, 0.582± 0.008 0.660± 0.030 0.661± 0.020 0.720± 0.006 0.575± 0.007
i,◦ 88.7± 0.6 80.9± 0.1 88.2± 0.6 83.9± 0.1 81.7± 0.2
Kwd, km/s 40.9± 1.2 56.0± 2.7 63.7± 2.5 68.5± 1.0 42.2± 1.8
Kdonor, km/s 431± 6 381± 16 408± 12 435± 3 450± 5
π, mas 1.41± 0.30 1.42± 0.69 2.02± 0.27 3.82± 0.12 1.83± 0.14
Teff , K 14800± 1200 18200± 9000 9800± 1500 18000± 4000 22500± 3000
log(g), cgs 8.00± 0.33 8.04± 0.12 8.16± 0.08 8.37± 0.03 8.11± 0.03
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Table A.3: Table A.1, continued.

MASOT0014 SDSS J1524

Mwd/M⊙ 0.86± 0.03 0.80± 0.04
Rwd/R⊙ 0.0097± 0.0003 0.0103± 0.0005
Mdonor/M⊙ 0.122± 0.007 0.074± 0.008
Rdonor/R⊙ 0.165± 0.003 0.132± 0.005
q 0.142± 0.004 0.093± 0.007
P , hours 1.7167077(5) 1.56764953(2)
a/R⊙, 0.722± 0.008 0.652± 0.01197
i,◦ 84.8± 0.3 86.7± 1.1
Kwd, km/s 63.2± 2.0 42.9± 3.4
Kdonor, km/s 445± 5 461± 7
π, mas 2.42± 0.11 1.92± 0.19
Teff , K 17300± 1000 12500± 1100
log(g), cgs 8.37± 0.04 8.32± 0.06
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Table A.4: The system parameters found for the three CVs with peculiar white dwarf colours. Here, the reported π is the
posterior distribution from fitting the white dwarf fluxes, c.f. §3.3.2.

ASASSN-16kr ASASSN-17jf SSSJ0522−3505

Mwd/M⊙ 0.952± 0.018 0.669± 0.031 0.760± 0.023
Rwd/R⊙ 0.0083± 0.0002 0.0120± 0.0004 0.0112± 0.0003
Mdonor/M⊙ 0.042± 0.001 0.060± 0.008 0.042± 0.004
Rdonor/R⊙ 0.105± 0.002 0.112± 0.004 0.105± 0.004
q 0.044± 0.002 0.085± 0.006 0.055± 0.003
P , hours 1.470862368(2) 1.36297(2) 1.492642(2)
a/R⊙, 0.653± 0.005 0.567± 0.009 0.614± 0.007
i,◦ 86.4± 0.4 83.7± 0.5 83.8± 0.3
Kwd, km/s 22.7± 1.5 39.5± 4.2 26.0± 1.8
Kdonor, km/s 515± 3 462± 5 470± 4
π, mas 6.58± 0.22 2.09± 0.19 1.81± 0.11
Teff , kK 10− 12 8− 13 ∼ 25
log(g), cgs 8.55± 0.03 8.15± 0.05 8.22± 0.04
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Table A.5: System parameters for 15 eclipsing systems from McAllister et al. (2019).

CSS080623 CSS110113 CTCV 1300 DV UMa GY Cnc IY UMa

Mwd/M⊙ 0.710± 0.019 1.00 +0.04
−0.01 0.717± 0.017 1.09± 0.03 0.881± 0.016 0.955 +0.013

−0.028

Rwd/R⊙ 0.0117 +0.0001
−0.0004 0.0080± 0.0003 0.01133± 0.00021 0.0072± 0.0004 0.00976 +0.00021

−0.00018 0.0087 +0.0003
−0.0001

Mdonor/M⊙ 0.081± 0.005 0.105± 0.007 0.166 +0.006
−0.003 0.187 +0.003

−0.012 0.394 +0.016
−0.022 0.141± 0.007

Rdonor/R⊙ 0.1275± 0.0024 0.149± 0.003 0.2111 +0.0025
−0.0014 0.215 +0.001

−0.005 0.446 +0.006
−0.009 0.1770± 0.0028

q 0.114± 0.005 0.105± 0.006 0.233± 0.004 0.172 +0.002
−0.007 0.448 +0.014

−0.021 0.146 +0.009
−0.001

P (hours) 1.429895304(72) 1.585220897(3) 2.134576795(41) 2.060463139(17) 4.210617576(144) 1.773814276(5)
a/R⊙ 0.593± 0.005 0.711 +0.009

−0.003 0.805± 0.007 0.889 +0.006
−0.012 1.429± 0.012 0.765 +0.004

−0.009

i,◦ 80.76± 0.19 79.94± 0.19 86.9 +0.5
−0.2 83.29 +0.29

−0.10 77.06 +0.29
−0.18 84.9 +0.1

−0.5

Kwd km/s 50.8± 2.3 51.1 +2.9
−2.4 86.4± 1.4 76.1 +0.9

−2.9 125± 4 66 +4
−1

Kdonor km/s 449 +1
−6 487± 3 371± 3 444± 4 278.0± 2.4 453± 3

d, pc 550± 60 430± 60 340± 40 380± 40 320± 30 –
Teff(K) 15500± 1700 14500± 2200 11000± 1000 17400± 1900 25900± 2300 –
log(g), cgs 8.15 +0.01

−0.04 8.63± 0.03 8.186± 0.019 8.77± 0.04 8.40± 0.019 8.54± 0.03
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Table A.6: Table A.5, continued.

OY Car SDSS 0901 SDSS 1006 SDSS 1152 SDSS 1501 SSS100615

Mwd/M⊙ 0.882 +0.011
−0.015 0.752 +0.024

−0.018 0.82± 0.11 0.62± 0.04 0.723 +0.017
−0.013 0.88± 0.03

Rwd/R⊙ 0.00957 +0.00018
−0.00012 0.01105 +0.00022

−0.00029 0.0102± 0.0013 0.0129± 0.0006 0.01142 +0.00016
−0.00022 0.0095± 0.0003

Mdonor/M⊙ 0.093 +0.004
−0.001 0.138± 0.007 0.37± 0.06 0.094 +0.016

−0.009 0.061± 0.004 0.083± 0.005
Rdonor/R⊙ 0.1388 +0.0018

−0.0003 0.182± 0.003 0.457 +0.022
−0.026 0.147± 0.006 0.1129 +0.0025

−0.0016 0.1276 +0.0028
−0.0024

q 0.1065 +0.0009
−0.0029 0.182 +0.009

−0.004 0.46± 0.03 0.153 +0.015
−0.011 0.084± 0.004 0.095± 0.004

P (hours) 1.514902211(6) 1.869132770(12) 4.461914568(312) 1.625992862(7) 1.364190385(5) 1.4089080(96)
a/R⊙ 0.662± 0.003 0.739± 0.007 1.46± 0.07 0.627± 0.014 0.574± 0.004 0.628± 0.007
i,◦ 83.27 +0.10

−0.13 81.4 +0.1
−0.3 83.1 +1.2

−0.7 82.6± 0.5 83.89 +0.20
−0.27 85.1± 0.3

Kwd km/s 50.4± 0.9 73± 3 124± 9 62± 5 39.5 +2.2
−1.3 46.5 +2.2

−1.7

Kdonor km/s 475.9± 2.1 401± 3 270± 13 402± 7 468± 3 493± 5

d, pc 90± 5 600± 70 – 610± 80
400± 30 (2004)
338± 21 (2012) 350± 30

Teff(K) 18600 +2800
−1600 14900± 2000 – 15900± 2000

13400± 1100 (2004)
14900± 1000 (2012) 13600± 1500

log(g), cgs 8.422 +0.017
−0.013 8.228 +0.022

−0.025 8.33± 0.13 8.01± 0.05 8.182 +0.016
−0.019 8.43± 0.03



A
ppen

dix
2
6
3

Table A.7: Table A.5, continued.

SSS130413 V713 Cep Z Cha

Mwd/M⊙ 0.84± 0.03 0.703 +0.012
−0.015 0.803± 0.014

Rwd/R⊙ 0.0102 +0.0006
−0.0002 0.01173 +0.00020

−0.00015 0.01046± 0.00017
Mdonor/M⊙ 0.140 +0.012

−0.008 0.176 +0.007
−0.018 0.152± 0.005

Rdonor/R⊙ 0.163± 0.004 0.208 +0.002
−0.005 0.1820± 0.0020

q 0.169 +0.011
−0.006 0.246 +0.006

−0.014 0.189± 0.004
P (hours) 1.578462967(29) 2.050044192(29) 1.787982314(7)
a/R⊙ 0.680 +0.007

−0.011 0.781± 0.006 0.734± 0.005
i,◦ 82.5± 0.3 81.7± 0.3 80.44± 0.11
Kwd km/s 75± 4 91 +2

−5 78.4 +1.4
−1.8

Kdonor km/s 443 +3
−7 367.6 +2.6

−2.3 413.2 +2.5
−2.0

d, pc 240± 40 320± 30 103± 6
Teff(K) 24000± 3000 17000 +6000

−3000 16300± 1400
log(g), cgs 8.35± 0.04 8.147 +0.017

−0.014 8.304± 0.016
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Table A.8: System parameters derived by Savoury et al. (2011).

CTCV J1300-3052 CTCV J2354-4700 SDSS J1152+4049 OU Vir

Mwd/M⊙ 0.736± 0.014 0.935± 0.031 0.560± 0.028 0.703± 0.012
Rwd/R⊙ 0.01111± 0.00018 0.0089± 0.0003 0.0135± 0.0004 0.01191± 0.00017
Mdonor/M⊙ 0.177± 0.021 0.101± 0.003 0.087± 0.006 0.1157± 0.0022
Rdonor/R⊙ 0.215± 0.008 0.1463± 0.0016 0.142± 0.003 0.1634± 0.0010
q 0.240± 0.021 0.1097± 0.0008 0.155± 0.006 0.1641± 0.0013
P (mins) 128.0746325(14) 94.3923889(14) 97.518753(4) 104.696803(7)
a/R⊙ 0.813± 0.011 0.692± 0.008 0.606± 0.010 0.686± 0.004
i,◦ 86.3± 1.1 89.26± 0.28 82.38± 0.23 79.60± 0.04
Kwd km/s 90± 8 51.9± 0.6 60± 3 66.4± 0.6
Kdonor km/s 372.2± 2.5 482± 6 387± 6 403.0± 2.3
d, pc 375± 13 674± 19 543± 21 570± 70
Teff(K) 11100± 800 14800± 700 12400± 1400 22300± 2100
log(g), cgs 8.21± 0.02 8.51± 0.04 7.93± 0.05 8.13± 0.02
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Table A.9: Table A.8, continued

SDSS 1035 DV UMa XZ Eri SDSS 1702 SDSS 1501

Mwd/M⊙ 0.835± 0.009 1.098± 0.024 0.769± 0.017 0.91± 0.03 0.767± 0.027
Rwd/R⊙ 0.00991± 0.00010 0.00703± 0.00028 0.01081± 0.00022 0.0092± 0.0004 0.0107± 0.0003
Mdonor/M⊙ 0.0475± 0.0012 0.196± 0.005 0.091± 0.004 0.223± 0.010 0.077± 0.010
Rdonor/R⊙ 0.1047± 0.0008 0.2176± 0.0018 0.1350± 0.0018 0.252± 0.004 0.122± 0.005
q 0.0571± 0.0010 0.1778± 0.0022 0.118± 0.003 0.248± 0.005 0.101± 0.010
P (mins) 82.08965(29) 123.6278190(20) 88.069667(7) 144.11821(13) 81.85141771(28)
a/R⊙ 0.5977± 0.0022 0.892± 0.006 0.621± 0.005 0.945± 0.012 0.588± 0.008
i,◦ 83.98± 0.08 82.93± 0.10 80.02± 0.12 82.55± 0.17 82.8± 0.5
Kwd km/s 28.5± 0.6 78.9± 1.0 53.6± 1.5 94.0± 2.2 48± 5
Kdonor km/s 499.3± 1.5 443± 3 452± 3 380± 4 470.5± 3.2
d, pc 174± 12 504± 30 371± 19 270± 16 306± 21
Teff(K) 10000± 1100 15500± 2400 15300± 1900 15200± 1200 10800± 1500
log(g), cgs 8.37± 0.01 8.78± 0.04 8.26± 0.03 8.47± 0.05 8.26± 0.04
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Table A.10: Table A.8, continued

SDSS 1507 SDSS 0903 SDSS 1227 SDSS 1433 SDSS 1502

Mwd/M⊙ 0.892± 0.008 0.872± 0.011 0.796± 0.018 0.865± 0.005 0.709± 0.004
Rwd/R⊙ 0.00956± 0.00013 0.00947± 0.00019 0.01052± 0.00022 0.00962± 0.00006 0.01145± 0.00005
Mdonor/M⊙ 0.0575± 0.0020 0.099± 0.004 0.0889± 0.0025 0.0571± 0.0007 0.0781± 0.0008
Rdonor/R⊙ 0.0969± 0.0011 0.1358± 0.0020 0.1365± 0.0013 0.1074± 0.0004 0.1241± 0.0003
q 0.0647± 0.0018 0.113± 0.004 0.1115± 0.0016 0.0661± 0.0007 0.1099± 0.0007
P (mins) 66.61192(6) 85.065902(13) 90.661019(10) 78.106657(3) 84.82984(7)
a/R⊙ 0.5329± 0.0019 0.632± 0.003 0.640± 0.005 0.5869± 0.0012 0.5844± 0.0013
i,◦ 83.47± 0.12 82.09± 0.19 84.29± 0.10 84.36± 0.05 88.35± 0.17
Kwd km/s 35.1± 1.0 54.6± 2.0 51.3± 0.8 33.8± 0.3 50.4± 0.4
Kdonor km/s 543.7± 1.2 481.7± 1.9 460± 3 511.1± 0.9 456.5± 0.8
d, pc 168± 12 299± 14 400± 13 226± 12 175± 11
Teff(K) 11300± 1000 13300± 1700 15900± 1400 12700± 1500 11800± 1200
log(g), cgs 8.45± 0.01 8.42± 0.02 8.29± 0.02 8.41± 0.01 8.17± 0.01
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Table A.11: System parameters from assorted other sources: McAllister et al. (2015) (M15), McAllister et al. (2017a) (M17a),
McAllister et al. (2017b) (M17b), Gänsicke et al. (2010) (C10), Shafter & Holland (2003) (S03),

PHL 1445 SDSS J1057+2759 ASASSN-14ag IP Peg

Mwd/M⊙ 0.733± 0.006 0.800± 0.015 0.63± 0.04 1.16± 0.02
Rwd/R⊙ 0.01122± 0.00008 0.01040± 0.00017 0.0126± 0.0006 0.0081± 0.0013
Mdonor/M⊙ 0.0637± 0.0007 0.0436± 0.0020 0.093± 0.013 0.55± 0.04
Rdonor/R⊙ 0.1092± 0.0004 0.1086± 0.0017 0.135± 0.007 0.46± 0.02
q 0.08701± 0.0005 0.0546± 0.0020 0.149± 0.016 0.47± 0.03
P , days 0.0529848884(13) 0.0627919557(6) 0.060310665(9) 0.1582061029(3)
a/R⊙, 0.550± 0.011 0.629± 0.004 0.583± 0.015 1.472± 0.009
i,◦ 85.2± 0.9 85.74± 0.21 83.4± 0.7 83.81± 0.45
Kwd, km/s 42± 3 26.2± 0.9 63± 7 151± 3
Kdonor, km/s 482± 5 478± 3 422± 9 317± 2
d, pc 220± 50 367± 26 146± 20 151± 14
Teff , K 13200± 700 13300± 1100 14000± 2100 12500± 2500
log(g), cgs 8.2± 0.3 8.307± 0.017 8.04± 0.05 -
Source M15 M17a M17b C10
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