
University of Sheffield

Robot Localization in Pipe Networks

Rob Worley

Supervisor: Dr. Sean Anderson

A report submitted in partial fulfilment of the requirements
for the degree of PhD in Engineering

in the

Department of Automatic Control and Systems Engineering

November 2, 2022



i

Declaration

All work contained in this thesis is entirely the author’s own work, unless otherwise acknowl-

edged.

Acknowledgements

I would like to thank Sarah for being my best pal for life, for having the most faith in me,

and for making every day great.

I would like to thank all of my friends in (and formerly in) Sheffield for being in

my life for the last four years. I also want to thank my friends from Swadlincote for being

here (virtually) too, my friends from school now scattered around the country, my friends

from university now scattered across the world, and my parents and family. Time spent with

various combinations of these people walking in the peaks, playing D&D, at karaoke, on the

PlayStation, playing board games, playing more D&D, travelling the world, and at the pub,

has been invaluable in the production of this thesis.

Finally I would like to thank my supervisor Sean, and my colleagues Rui, Sarah,

Mat, Jonathan, Mila, Yicheng, Gavin, Richard, Tanmay, Ashutosh, Will, and Kirill.



ii

Abstract

Pipe networks transporting clean water and wastewater are critical around the world. This

infrastructure needs regular inspection and maintenance to reduce the effect of faults on

public health, the environment, and the economic cost of operation. These networks are

made of pipes mostly less than 300 mm in diameter, buried beneath roads in lengths of

around 50 to 200 metres. An autonomous robotic system could pervasively and persistently

monitor the infrastructure from within the network. Robot localization, the ability of a robot

to estimate its position in the environment, is required as it facilitates autonomous control

and allows the localization of faults. The buried pipe environment constrains the robot’s

sensing, locomotion, and computation, so localization is difficult. Pose estimation using GPS

and a magnetometer is unavailable, typical vision and rangefinding sensing is less effective in

this environment than usual, and the robot’s motion is more uncertain.

This thesis develops both the front-end perception and back-end state estimation. In

contrast to approaches found in the literature, it is shown that a hybrid continuous-discrete

approach to state estimation is well suited for localization in this application. For lower

computational cost, this approach shows an average error rate of 0 for values of uncertainty

larger than found in the literature, compared to an average error rate of around 0.25 for a

typical approach. It is shown that acoustic echo sensing gives effective perception in this

environment, adding to the literature a new means of observing features distant to the robot.

Incorporating echoes with a novel localization algorithm gives an average error rate of 0 for

larger values of uncertainty than found in the literature. These perception and estimation

aspects are shown to be easily integrated, but also function well independently.

Ongoing research develops other aspects of a robot system for this application. The

results presented here form part of this progress, informing the design of the overall system.

More generally, these results provide some evidence that careful design of the localization

system, from front-end to back-end, can provide better performance compared to a typical

approach. In particular, the hierarchical approach used here which considers different levels

of abstraction, scale, and precision, could be applied more broadly.
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t time index, usually at a regular interval

τ time index, at an irregular interval

k time index within the short period of time used to make a measure-

ment

T time index at the end of a sequence of time indices

xt the state to be estimated in localization, defined more specifically

elsewhere, but generally related to the location of a robot

x0:t the sequence of states to be estimated in localization

ut a measurement of a robot’s motion, relating the state at time t − 1

and time t

zt a measurement of a robot’s surroundings, made at time t

x a position in the x-axis of a Cartesian coordinate system, or the posi-

tion along the axis of a location in a local coordinate frame

y a position in the y-axis of a Cartesian coordinate system

θ an angle about the z-axis of a Cartesian coordinate system

i the index of a location in a discrete set of locations

d the discrete direction in a location relative to a local coordinate frame

∆ξ, ∆x a measured forward linear motion relative to a robot

∆θ a measured angular motion relative to a robot

p(·) the probability distribution or probability density function of a ran-

dom variable
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p(·|·) the conditional probability distribution or probability density function

of a random variable given another random variable

p(·, ·) the joint probability distribution or probability density function of

two random variables

b(xt) the belief, equal to the posterior distribution p(xt|u1:t, z1:t, x0)

fu(xt−1,ut) the probabilistic model of the state xt at time t given the previous

state and the measurement between the two states

fz(xt) the probabilistic model of the measurement zt at time t given the
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Σu the matrix of uncertainty in the model fu(xt−1,ut)

Σz the matrix of uncertainty in the model fz(xt)

w a value of random noise drawn from a distribution with uncertainty

given by Σu

v a value of random noise drawn from a distribution with uncertainty

given by Σz

Ω the inverse of a matrix of uncertainty

m a feature in the map M

s a measurable spatially varying property

ϕ a function giving the difference between a function y which is a mea-

surement of a spatially varying property, and fs which is the expected

value of a spatially varying property s

Σs the matrix of uncertainty corresponding to the measurement of spa-

tially varying property y

Fs the Jacobian of the function fs of expected value of spatially varying

property

J a cost function to be minimized, defining an optimization problem

gx(k) acoustic transfer function

ξn distance corresponding to component n of the acoustic echo response

µ the mean of a normal distribution of the state estimate

Σ the covariance matrix of a normal distribution of the state estimate
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Chapter 1

Introduction

1.1 Context and Motivation

1.1.1 Buried Pipe Networks

Water distribution and wastewater infrastructure is crucial for the supply of clean water and

the safe transport of wastewater in urban and rural areas around the world. This critical

infrastructure is ageing, with many networks now coming to the end of their expected lifetime

[1], and is therefore in constant need of costly inspection and maintenance for reducing impact

on public health, pollution, and disruption to services, as well as asset management [2]. This

is made difficult by both the size of the pipe networks and the inaccessibility of buried pipes.

In the UK, there is around 400,000 kilometres of water supply pipes, and 400,000 kilometres

of sewer pipes [3], which is the result of 250 billion pounds of investment [4]. In Germany

there is around 600,000 kilometres of sewer pipes in total [5], and in the US the figure is

around 2,000,000 kilometres [6]. In the UK, over 3000 million litres of water is lost to leaks

every day from water distribution pipes [7], and faults in wastewater pipes can cause pollution

and danger to public health, with around 50 serious pollution incidents per year in the UK

[7].

Wastewater pipe networks are complex branching systems [2], where pipes connect

1
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Figure 1.1: Example maps of buried pipe networks in two parts of the UK1. Left: A wastewater

network. Right: A water supply network.

individual properties together, and in turn larger pipes connect groups of properties together.

Main pipes which are typically buried beneath roads are connected together at manholes,

and along each main pipe will be lateral connections to pipes from properties along the

road. Water distribution pipe networks comprise of pipes connecting sources to consumers

[1], built with a looped and branched configuration [8], where connections to consumers are

made at arbitrary points along the pipeline [8]. While these general configurations can be

expected, both types of network will vary considerably in specific construction from location

to location. These networks function to move fluid from one location to another. Water

distribution networks move water in flat terrain by pressurisation [8] so the pipes are filled

with liquid, while water is moved in wastewater pipe networks by gravity with liquid filling

varying levels of the pipe cross-section, from empty to full [2]. Overall the two types of

network share a number of characteristics, including network structure, scale, function, and

conditions both inside and outside of the pipes.

Inspection and maintenance of water distribution and wastewater pipes is challeng-

ing. Inspection from within the pipe is desirable as investigation can be done while avoiding

disruption from excavations [2], but is difficult due to the dimensions of the pipes. These

dimensions are investigated by analysis of pipe data from an area in the UK2. This analysis is

based on a network which covers an area around 3 km in dimension, which contains around
2The data for this analysis were provided by Will Shepherd.
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Figure 1.2: Results from analysis of pipe network data for a small part of the UK. The bar charts

show the total length of pipe in the area which is made of pipes of the given length or diameter. Top:

Wastewater pipe data. Bottom: Water supply pipe data.

300 km of pipes in total length.

Figure 1.2 shows the diameter data from this analysis. From this, it can be seen

that most of the total length of wastewater pipe has a diameter of 150 mm to 225 mm, while

the most common water supply pipe diameter is around 100 mm. These figures are similar

to those found in the literature, where it is described that 80% of water supply pipes are less

than 150 mm in diameter [1], and 70% of wastewater pipes are less than 300 mm in diameter

[2]. This small size limits the size of sensors which can be moved through the pipe.

Figure 1.2 also shows the length data from this analysis. The length of pipes between

above-ground access points varies; 85% of wastewater pipes in the UK are around 25 and 100

metres long and 10% are around 5 to 10 metres long, while around 50% of water distribution

pipe networks are made of pipes around 100 and 200 metres long. This is supported by the

literature, where it is reported that construction standards in the UK for example require

above-ground access points to wastewater pipes to be placed at least every 90 metres or 200

metres, depending on the diameter of the pipe [2], for example. Sensors must be able to

observe pipes of these lengths while reporting the location of detected faults to a sufficient
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precision to allow maintenance.

Maintenance is done by excavating the ground above the pipe. While consistent

guidelines for this maintenance are not available, excavation is done using both mechanical

excavators and hand tools [9], and excavation will therefore be at the scale of around 1 metre

in dimension. This is consistent with the precision expected for the localization of buried

pipes according to the British Standards Institution’s (BSI) Publicly Available Specification

PAS 128 [10], consistent with example legal requirements for a minimum of 0.5 to 1 metre

wide excavations [11], and similar to values from construction standards, which require an

excavation width of 1.5 to 3 times the pipe diameter when constructing a wastewater pipe

[2]. These expected excavation dimensions can be used to give a target for acceptable fault

localization precision.

1.1.2 Pipe Inspection with Robots

Autonomous persistent monitoring of this difficult to access infrastructure could be done

using robots, which could pervasively inspect a network of pipes from within the pipes.

This could replace current methods which either involve manually controlled robots which

have to be physically tethered to the control system at the point of deployment, or involve

costly sensing from above ground using technology such as ground penetrating radar [12].

General methods for pipe inspection, including robotics, have been reviewed in the literature

[13], where it is concluded that as technology for this application matures, inspection of even

relatively low-risk parts of pipe networks will become justified. In the decade since this review,

robot technology for this application has matured [14], increasing the likelihood of successful

application. The use of robotics for pipe inspection in application to water, wastewater,

oil, and gas, has been reviewed elsewhere in more detail [15]. There, it is concluded that

autonomous, untethered robots could extend the range of inspection beyond what is possible

with existing methods with and without robots, and concluded that highly capable robots are

likely not feasible in this environment due to its constraints and size, and instead a system

of several less powerful robots is more realistic.
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Tables 1.1 and 1.2 give a nonexhaustive list of robots designed for operating in

pipes, importantly noting whether they are designed to work in air-filled, water-filled pipes,

or both. The diameter range that the robot can operate in is given if available. The type of

locomotion, and the sensors available on the robots are listed, and the level of autonomy is

described. Table 1.1 lists robots described in academic literature, while 1.2 lists commercially

available robots.

It is seen from this that robots exist for application both in air-filled and water-filled

pipes, at diameters ranging from 0.05 metres to 0.9 metres. A range of locomotion methods

is seen, reviewed elsewhere in more detail [16], which increases the range of pipe network

types and configurations which can be traversed by robots. The sizes of developed robots for

this application can be compared to the typical diameters of buried pipes, where it is seen

that robots exist for this application, however many existing solutions are too large for a

substantial amount of pipes, so further miniturisation, and therefore limitations on function,

will be needed for full inspection of a pipe network.

1.1.3 Robot Localization in Pipes

Whatever form the robot system takes, robot localization is an essential component when

autonomously inspecting buried pipes [14]. Robot localization is the problem of using sensory

perceptions of a robot’s motion and environment to make an estimate of the robot’s state

with respect to the environment [30]. Its output is useful for large-scale navigation, small-

scale control, for mapping an unexplored environment, and for locating the robot within an

environment. In application to pipe inspection robots, all of these functions are required in

different parts of the robot operation.

Typically, sensors are needed to improve upon odometry (or dead reckoning) where

only a measurement of the robot’s uncertain motion is used to estimate the robot’s position,

which is subject to accumulating uncertainty, or drift [14]. In this application, the robot’s

motion is expected to be more uncertain than in typical applications, due to challenges in

traction [16] from uneven surfaces, slippery surfaces, inclined surfaces, and fluid flow.
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Name Pipe

Type

Diameter

(min,max) (m)

Autonomy Locomotion Sensors

MOGRER [17] Air 0.13, 0.22 - Wall-pressing -

FERRET-1 [18] Air 0.09, 0.12 - Wall-pressing -

KURT [19, 20] Air 0.3, - High-level control Wheels Camera, radio IMU,

rangefinder

Makro [21] Air 0.3, 0.6 High-level control Wheels Cameras, rangefinders

PIRAT [22] Air 0.6, - Remote control Tracks Laser scanner, camera,

IMU, sonar

MRINSPECT VI+

[23]

Air 0.11, 0.11 - Wall-pressing Camera

Moritz [24] Air 0.6, 0.7 Low-level control Legs Encoders

Kantaro [25] Air 0.2, 0.3 High-level control Wheels Camera, laser scanner

MagneBike [26] Air - Low-level control Magnetic

Wheels

Camera

MIT-MRL [27] Water 0.1, - - Swimming -

PIPETRON I, II [28] Air 0.08, 0.08 Remote control Wall-pressing Camera, eddy current,

laser projector

PIPETRON VI [28] Air 0.1, 0.1 Remote control Wall-pressing -

PIPETRON VII [28] Air 0.15, 0.15 Remote control Wall-pressing -

Daisy [29] Water 0.052, 0.052 Passive Flow Pressure

Table 1.1: A list of robots for pipe environments developed for academic research.
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Name Pipe

Type

Diameter

(min,max) (m)

Autonomy Locomotion Sensors

KA-TE Air 0.1, 0.8 Remote control Wheels Camera

SSET Air - Remote control Tracks Camera, scanner, IMU

IBAK Air 0.15, - Remote control Wheels Camera

VersaTrax Either 0.2, - Remote control Tracks -

TriTrax Either 0.2, - Remote control Wall-pressing Camera

Magg Either 0.3, - Remote control Tracks Camera, magnetic

LineTrax Either 0.05, 0.15 Remote control Wall-pressing Camera

SmartBall Water 0.15, - Passive Flow Passive acoustics, IMU

Sahara Water 0.25, - Passive Flow, tethered Passive acoustics, cam-

era, radio

DT320 Mini Either 0.15, 0.45 Remote control Tracks Camera

Pipe Trekker A-200 Either 0.9, - Remote control Wheels Camera

Table 1.2: A list of robots for pipe environments developed for commercial appli-

cation.

Table 1.3 shows the accuracy of linear position estimate using odometry recorded

in the literature on robot localization in pipes. Robots in pipe networks will mostly travel on

straight paths through pipes. The error in the estimate of linear position is therefore a useful

quantity to motivate improvements to robot localization. The full range of literature on robot

localization in pipe networks is reviewed in Chapter 2, while here only results where the linear

odometry estimate error can be measured are compared. The error in odometry estimate

as a proportion of the distance travelled reported ranges from 0.8% to 35%, in different

environments, using different robots, and in different experimental conditions. Relating to

the target of 0.5 metres for localization precision described previously, an error of 5% of

distance travelled means that the estimate would likely be outside of the target precision

after 5 metres of travel, which is much shorter than the typical wastewater pipe length of

around 50 metres described previously.

The pipe conditions of each of these estimates are noted in the table. The dry pipes,

especially those in a laboratory setting, are expected to produce less uncertainty than pipes

in a field setting. It is not possible without further experimentation to directly estimate the

uncertainty in robot motion due to the various parameters describing a pipe network’s oper-
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Paper Error (lower,

upper bound)

(% of distance)

Pipe Diam-

eter (m)

Pipe Length

(lower, upper

bound) (m)

Pipe Type

[31] 5, 35 0.15 30 Dry, Lab

[32] -, 15 0.9 3000 Fluid, Field

[33] 7, 18 0.088 5 Water, Simulation

[34, 35] 3, 15 0.2 4, 20 Dry, Lab

[36, 37] -, 5 unknown 200 Water, Simulation based on Field

[38] 5, 7 4 60 Dry, Field

[39] 0.8, 1.6 0.6 50 Dry, Lab

Table 1.3: A comparison of estimates of linear odometry error taken from the

literature.

ation. From the literature however, wastewater pipes are often specified to have a minimum

flow velocity of 0.7 or 1 metres per second, and a flow velocity of 3 metres per second is con-

sidered high [2]. Permanent sediment deposits are present in 80% of wastewater pipes, and

effective surface roughness can become as large as 10% of the pipe diameter [2], which would

reduce the reliability of locomotion [21]. Clean water distribution pipes would be expected

to be clear of substantial obstacles such as sediment, however the flow of water in the pipe

would be expected. The small pipe diameter in water distribution networks places further

limitations on robots, such as a reduced energy capacity. Robots which move to some extent

passively with the flow of water have been developed for energy efficiency [29], but would

suffer further uncertainty in motion relative to the static pipe.

Robot localization in pipes has been reviewed elsewhere [40], where it is seen that

vision, odometry, and inertial measurements are the most common means of sensing. Vision

is a well established sensing mode for robot localization generally, and algorithms can be

easily deployed on vision data to assess the effectiveness in this application. From Table

1.2, cameras are seen to be common sensors for commercially available remotely controlled

robots, indicating the usefulness of camera data for human operators.

Figure 1.3 gives a set of example images that have been captured in a pipe using a
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Figure 1.3: Left: A set of example images that have been captured in buried pipes. Right: A

comparison of the number of ORB feature matches in different datasets with similar image resolution:

KITTI [41], SUB-T [42], and SIAR [43], and buried pipes (F2050 and ICAIR).

camera. A front-end process would take these raw images as inputs, and produce some kind of

measurement or observation which can be used in the back-end process. Some images contain

detectable features such as a joint between two sections of pipe and a connection to a manhole,

which could be used as observations. Most of the images contain some visual texture which

might appear similar in each image but could be used to recognise a previously observed

location, making a loop-closure measurement, or could be used to make a visual odometry

measurement. These images also serve to illustrate some of the challenges in localization

in a pipe network; the similarity between locations, relatively feature-sparse images, and

restricted scope of vision can all be seen.

Part of the challenge of applying vision sensing to localization in the pipe environ-

ment is the feature sparseness compared to other environments. To quantify the challenge,

this lack of features can be measured for a range of robot vision datasets. ORB features

[44] are detected in images and features are matched between consecutive images, which is

part of a typical vision-based approach to robot localization. The number of feature matches

between consecutive images is compared for different datasets in Figure 1.3. The KITTI

dataset [41] consists of vision data recorded from a road vehicle moving around both urban
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and rural roads, as well as data from a range of other sensors, and represents a typical envi-

ronment for which robot localization has been developed. The SUB-T dataset [42] used here

consists of data recorded by a robot during the DARPA Subterranean Challenge, which is

expected to be more challenging than typical environments due to poor lighting and limited

visual structure in the environment. The SIAR dataset [43] consists of data recorded by a

robot in a sewer tunnel environment, representing data from confined spaces similar to that

of the buried pipe environment. The F2050 and ICAIR datasets have been recorded using

a remotely controlled robot in buried wastewater pipes3, giving two examples of the target

application.

Figure 1.3 shows the comparison between the number of feature matches between

these five datasets. The KITTI dataset has a median of around 1800 feature matches between

consecutive images, illustrating the feature density of a typical outdoor robot environment.

The SUB-T and SIAR datasets have a median of around 500 features matches between

images, indicating an environment which is substantially more challenging for vision-based

localization than typical environments. The F2050 dataset has a median of 120 feature

matches between images, while the ICAIR dataset has a median of 7 feature matches. The

buried pipe environment has a reduction in this measure of vision sensing quality of one or

two orders of magnitude compared to typical robot environments and even other confined

underground environments. The buried pipe environment also therefore has a range of quality

of vision-based sensing. This quantifies the challenge in applying typical robot localization

methods to the pipe environment.

Another part of the problem with vision is the reduced perspective, in that all per-

ceivable visual features are positioned ahead of the robot, and there is a small parallax angle

between distant features. This can lead to a problem of an apparently shrinking environment

[45]. The limited perspective puts a limit on the number of loop-closures that can be made.

Further problems with vision sensing in the pipe environment include extreme lighting vari-

ations between images [46], and visual aliasing, where visually similar features are observed

in different locations.
3These data were recorded by Mathew H. Evans.
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1.2 Problem Statement

Given the above motivation and context, a problem statement can be made which defines the

constraints of the research area for this thesis. The aim of this thesis is to develop localization

for robots in water supply or wastewater pipe networks, which would be used for autonomous

and pervasive inspection of the pipe networks.

Robots in this environment will be constrained by the pipes of diameter 50 mm to

200 mm, and by the need to operate in water. Uncertainty in motion will come from fluid

flow and from rough surfaces, with linear position estimate error of up to 35% of distance

reported in the literature.

Robots will need to navigate, requiring position estimation to the precision of a single

length of pipe. Robots will need to estimate the location of detected faults for subsequent

maintenance, requiring position estimation to the precision of around 0.5 metres, which is

the scale at which maintenance excavations will be made. This precision is required while

the robot travels around 50 m to 200 m between junctions in the network. Network size will

vary from location to location, but a network might cover an area with dimensions of several

kilometres, with a total length of pipes of hundreds of kilometers.

The variation in dimensions in this environment is larger than in typical robot

localization problems, and covers several orders of magnitude from the pipe diameter, to

pipe length, to total network length. Figure 1.4 illustrates the different levels of scale in this

problem, and how they link to perception, state estimation, and control. This thesis develops

approaches for the medium-scale estimation of position in pipe axis and large-scale estimation

of location in network.

1.3 Aims and Objectives

The aim of this thesis is to improve methods for robot localization in a pipe network environ-

ment, in terms of accuracy, reliability, and efficiency. The brief investigation above shows the
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Figure 1.4: An illustration of the different scales of localization in this problem.

challenges for perception in the pipe environment, and the limited estimate accuracy found

in the literature.

To achieve this aim, the following objectives must be met.

1. Investigate the limitations of existing approaches to localization when applied to the

pipe environment, quantifying the effect of difference sources of uncertainty on perfor-

mance, which will inform the subsequent developments.

2. Investigate how to improve robot front-end perception in the constrained pipe environ-

ment, achieving a low rate of error in robot localization estimate along the length of a

pipe. This must be over a scale of around 100 metres, with motion uncertainty greater

than 35% of the distance travelled.

3. Investigate whether it is possible to improve the back-end estimation over a pipe network

by using the constraints of the environment, measured by an improvement to robustness

and computational cost. This must be done in a network of pipes covering an area
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several kilometres in dimension.

4. Investigate the effect of different front-end perception methods in the pipe network

environment, integrating with a back-end localization algorithm at the large network

scale.

1.4 Contributions

This thesis presents four key contributions to the literature.

Chapter 4 presents further development of the use of a hydrophone sensor for robot

localization in pipes. A novel augmented pose-graph optimization algorithm is proposed

and shown to give improved performance than alternative methods in terms of accuracy and

efficiency.

Chapter 5 presents the novel application of acoustic echo sensing to robots in pipe

networks, and presents a novel algorithm required for processing the sensor data in the

challenging environment which is shown to improve results.

Chapter 6 presents an application of the hybrid continuous-discrete state represen-

tation to localization in pipe networks, and develops on the typical approach with two novel

improvements to robustness required in this environment.

Chapter 7 presents a novel localization algorithm developed for the challenging pipe

environment, which shows an improvement over previous algorithms in terms of robustness

and efficiency.



Chapter 2

Literature Review

2.1 Introduction

In this chapter, three main aspects of the literature relating to this thesis will be reviewed.

Firstly, the literature regarding different state definitions. Secondly, the literature regarding

state estimation, which will cover the theoretical estimation formulation and practical imple-

mentations of filtering and smoothing. Thirdly, the literature regarding sensing as related to

localization.

In each section, the literature in general robot localization will be discussed first,

followed by a review of the literature specific to localization of robots in pipes or other similar

applications.

2.2 State Definition

Robot localization can be considered as a state estimation problem, where variables describ-

ing a dynamic state are estimated using measurements over time. This section will review

different definitions of this state in the literature. Defining the state to be estimated is the

task of specifying the exact question asked to the localization system. For example: Where

14
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is the robot now, in relation to its initial position, in [x, y] coordinates? Where has the robot

been previously, and what are its surroundings, relative to a map of the world? Which area of

this map is the robot in? Each question would lead to a different state definition, likely lead

to a different set of requirements for sensing, and lead to a different localization algorithm.

A robot application is likely best served by an answer to a particular question. An

aerial robot mapping a small, unknown environment could understand where it is in relation

to obstacles in the environment in an arbitrary six degree-of-freedom coordinate system. The

state would be the robot’s pose and positions of obstacles in three Cartesian axes and the

rotations about these axes. This state definition allows the flexible mapping of an environment

which could contain any arbitrary objects, and would facilitate obstacle avoidance from the

control system. A robot operating on roads in a city could understand where it is in terms

of a known road map, so the state could be a discrete index describing which road the robot

is on, with continuous variables describing the position and velocities of the robot, vehicles,

and pedestrians with respect to the centre of the road.

When defining a robot’s state, consideration should be given to how the environment

is understood in relation to the robot. The state definition will depend on how it will be used

by the robot, and how it will be estimated by the robot. This is true both for the spatial

and temporal aspects of the state. The problem statement in Chapter 1 describes two uses of

robot localization: to allow autonomous navigation, and to allow estimation of the location

of a fault in the pipe network. For navigation, a robot would need to estimate its location

to the precision of a single discrete pipe of junction, while usefully localizing a fault requires

a high precision of around 1 metre. For a robot to navigate towards a particular point in

a pipe network it may only need to estimate its current position; while for a robot to make

navigation decisions regarding inspection of a pipe network it may need to estimate where it

has been previously. For a robot to navigate it might need to understand the connectivity

between places in the environment, while to report the location of a fault in the pipe network

it might need to translate the location to global coordinates.
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Figure 2.1: Illustrations of different representations of the robot state and map state. Top-left:
the true map. Top-right: the map as a set of detected points in an arbitrary Cartesian coordinate

system. Bottom-left: the map represented by a metric occupancy grid. Bottom-right: a topological

map.
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2.2.1 Discrete Representation

A continuous space can be decomposed into a set of discrete, finite sized cells. The state could

then be defined as a discrete variable denoting which of the set of cells the robot is in. Some

early work in robot localization uses discrete representations of the environment defined by

distinctive places in a structured indoor environment [47, 48] or segments between distinctive

places, [49, 50]. However, works using a discrete representation of the space diverged: some

representations becoming known as topological maps, which to use a more coarse representa-

tion of the environment, such as dividing the environment into regions separated by narrow

passages [51] or into lines equidistant from two objects in the environment [52]; and some

representations becoming metric grid maps which use a finer grid representation which is

independent of the environment [53]. The latter approach can allow the state definition to

extend to the position of features in the environment as well as the position of the robot.1

These two representations are illustrated in Figure 2.1.

In much of the existing work using a topological representation, the focus is on

obtaining a topological map from metric sensor data, which is less challenging in a pipe en-

vironment because it is well described by only a topological map. Therefore, the methods

used in localization in a topological map could be easily and usefully applied to the pipe en-

vironment. This representation has been applied to localization in small pipe networks [20,

54] where the pipes are connected orthogonally at junctions, however, there is no attempt

to understand the effect of uncertainty on this approach in pipe networks in the literature.

Recent work using a topological space more generally adds the challenges of erroneous re-

peated observations of the environment at a topological map node, inclusion of information

assigned to nearby nodes, and failing to make an observation at a node [55]. Use of geo-

metric information on the robot’s orientation has been applied using prior knowledge of the
1It should be noted that, as described here, the literature tends to use the term discrete to refer to both

topological and metric grid approaches. This may cause confusion where the estimation of continuous variables

is often referred to as metric localization. A better terminology might be to use discrete to refer to quantitative

variables such as position in an arbitrary grid map, and to use categorical to refer to qualitative variables such

as one describing the room in a building in which a robot is located. However, this thesis will continue to use

the terminology preferred in the literature.
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orientation between two topological map nodes [56]. Solutions to challenges such as missing

observations are especially applicable where a robot has limited sensing ability as is the case

in a pipe environment, and these developments from more general environments could be

usefully applied here.

When using a topological representation, the state might be precisely defined as

xt =
(
it, dt

)
(2.1)

where it is the discrete index of the location of the robot, and dt is the discrete direction

of the robot. In a pipe network, each discrete place could be a junction, and each discrete

direction could relate to an adjacent pipe.

The grid representation allows a flexible representation of the position of features

in the map and the position of the robot, however, there is an inevitable loss in precision due

to the discretisation of the map. Mitigating this loss of precision can be done by reducing

the size of the grid cells, and memory efficient solutions to storing grids have been developed

for both two-dimensional [57] and three-dimensional maps [58, 59] to avoid requirements for

large amounts of memory. For robots in pipes, the fixed grid approach has more flexibility

than necessary, as the environment is expected to be made up of only a small range of

components. Unlike common indoor environments for robot operation, which contain many

orthogonal walls, the pipe environment is not expected to conform to a grid representation,

so a higher resolution may be needed to usefully describe the environment.

2.2.2 Continuous Representation

The use of continuous variables to represent a robot’s position was developed early in the

field of localization [60, 61]. Filtering methods were later developed which could extend the

use of continuous variables to any arbitrary distribution of possible robot positions [53]. In

these early works, the robot’s state was defined as

xt =
[
xt, yt, θt

]
(2.2)



CHAPTER 2. LITERATURE REVIEW 19

representing the robot’s position in a two-dimensional Cartesian coordinate frame, and its

orientation in rotation about the vertical axis. This could apply to a buried pipe network

environment, as networks exist in relatively flat urban and rural areas, and will extend over

a far larger area in the horizontal plane than in the vertical axis.

Later development has shown use of a range of state definitions. Some typical state

variables are the robot’s pose (position and orientation) in Cartesian coordinates relative to

a global coordinate frame, the configuration of the robot’s joints (such as the joints in a

manipulator arm), the robot’s velocity (in terms of pose and configuration), the location and

description of objects in the environment, and the velocities of these objects [30]. As well

as the use of Euler angles (roll, pitch, and yaw), rotation is often represented by rotation

matrices in the Lie group SO(3) [62] (the special orthogonal group of rotations in three

dimensions) which can be extended to homogeneous transformation matrices, and by unit

quaternions [63].

Variables describing the robot’s environment can similarly be described by con-

tinuous variables. Metric map models have been reviewed elsewhere [64] in detail. Two-

dimensional map definitions are mature enough that standards have been developed [65]. The

existing representations can be described as sparse landmark-based representations, dense

raw data-based representations, and representations of surfaces, volumes, and higher-level

objects. The drawbacks of these representations is that they don’t give any higher level un-

derstanding of the environment and they can inefficiently use a lot of variables to describe a

simple environment. This representation is illustrated in Figure 2.1.

The issue of inefficiency is especially problematic in the pipe environment, where

power and space for processing and storing data is limited, and where the environment is

made up of relatively simple shapes which could be represented simply without much loss

of accuracy. Despite this, the continuous variable representation has been applied in robot

localization in pipe networks. One-dimensional states have been used in single straight pipes

[33, 38], which is seen to be effective. Two-dimensional (three degrees-of-freedom) states

[66], and three-dimensional (six degrees-of-freedom) states [67, 68, 69] have been used in pipe

networks, however these approaches are seen to require additional computation to constrain
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estimates to the lower dimensional space of the pipe network, or additional computation is

required to give a useful understanding of the network [70]. Three-dimensional states have

been used in long single pipes with corners [35, 32], where the substantial mathematical

complexity required to incorporate information from different sensors is seen. Similarly, a

three-dimensional state has been used in a single curved pipe [31], where it is seen that the

position of the robot is unable to be directly estimated in this three-dimensional state using

a tether cable which only measures the one-dimensional distance travelled.

2.2.3 Hybrid Continuous-Discrete Representations

One final type of representation can be described, combining continuous metric variables

with discrete topological variables [71]. In this definition, the robot and its surroundings are

represented simultaneously in a high-level topological map describing different discrete places

of the environment and in a low-level metric map describing the continuous space within the

discrete place. Early work using hybrid continuous-discrete representations was done in

application to typical indoor environments [72, 73, 74] and in network-like environments [75],

the latter of which is especially applicable to the pipe network environment.

A continuous-discrete state might be defined as

xt =
(
it, xt, yt, θt

)
(2.3)

where it is the index of the discrete location of the robot, and xt, yt, θt is the position and

orientation of the robot in a two-dimensional plane within location it. In a pipe environment,

the state might instead be defined as

xt =
(
it, dt, xt

)
(2.4)

where xt is the position in the one-dimensional axis of a pipe with index it, and dt is the

discrete orientation of the robot along that pipe, where it could be oriented in either of two

directions. A more detailed state definition in a pipe environment might be given by

xt =
(
it, xt, rt, φt, θx,t, θr,t, θφ,t

)
(2.5)
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where the continuous state within discrete location it is described in cylindrical coordinates

relative to the pipe it with axial position xt, radial position rt, azimuth angle φt, and rotations

about each of these three axes θx,t, θr,t, θφ,t.

Recent work has applied this state definition to localization of vehicles in road net-

works [76, 77, 78]. The pipe environment has a number of similarities to the road network

environment, so there may be some use in these approaches. However there are a number of

large differences including the computation and sensing available for road vehicles in compar-

ison to robots in pipes, and the relatively good quality maps of road networks in comparison

to the often poorly mapped pipe networks.

It is recognised in the literature that the hybrid continuous-discrete representation

has advantages over the continuous representation when sensory information is unreliable,

costly, or unavailable [75], which is the case in the pipe environment, and in terms of efficiency

[76]. The literature describes how the hybrid representation allows correction of the robot

path without rebuilding a large continuous space map, and difficulty representing the robot

state accurately when it is far from the continuous coordinate origin [71]. It is also described in

the literature how hybrid continuous-discrete maps are advantageous over continuous maps

as they integrate easily with path-planning [71, 70]. In the pipe environment, all of the

advantages of the hybrid representation are available, and because the pipe network is well

described as a set of simple discrete places the general disadvantages of the representation,

such as loss of precision, are mitigated.

2.2.4 Comparison of State Definitions

Various state definitions have been considered: discrete, continuous, and a hybrid discrete-

continuous approach. While much of the literature focuses on estimating a continuous state,

the limitations of this approach in this application are described in Section 2.2.2, and Section

2.2.3 describes the advantages of alternative approaches in this application.

Further motivation to investigate alternative approaches comes from the specifi-

cation of inputs and outputs of the localization function in this application. The problem



CHAPTER 2. LITERATURE REVIEW 22

definition in Chapter 1 describes how the robot needs to estimate its position to the precision

of a single pipe for the purposes of navigation, and needs to estimate the position of a fault

along the length of a pipe to the precision of around 1 metre to facilitate maintenance.

In typical robot applications, such as the indoor built environment, tasks such as

navigation and precision localization in the environment are done at the same approximate

scale. Through its sensors, a robot can perceive a large amount of the environment including

several rooms. The obstacles in the environment are of a similar scale to the rooms in the

building, so the robot’s navigation can be done all at the same scale, with path planning and

obstacle avoidance achieved by the same system.

The pipe environment however, is very different. As described in Chapter 1, the

pipes are approximately 0.3 metres in diameter, around 50 to 100 metres long, and are in

a network covering a scale of several kilometres, so there is a difference of as much as two

orders of magnitude between the scale and scope of each aspect of the environment. Control

regulating the robot’s pose at the scale of the pipe cross-section is completely separate from

control for path-planning at the scale of a town. Typical sensors which can perceive nearby

features of the pipe are limited in scope and cannot perceive features further away.

There is therefore the motivation to develop a localization algorithm, connecting

perception to control, which acknowledges this natural variation in scale of the environment.

A state space defined as a set of discrete places each with its own continuous space, the hybrid

discrete-continuous approach, is therefore a sensible approach to take.

2.3 State Estimation

The state must be estimated given some prior information, and a sequence of uncertain

inputs and measurements. Acknowledging the unavoidable uncertainty in the measurements,

the question asked of the state estimation system can be framed as: What is the most likely

state? or What are all of the values the state could likely be, and what is the probability that

the system is in each state? Relating to the previous section, exactly what the state is best
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defined as varies depending on the application, and it might include simply the position of

the robot, or the full trajectory of the robot and the positions of all features it has observed in

its surroundings. In this section, the literature on solutions to this state estimation problem

will be described.

First, consideration must be given to what is being estimated. Acknowledging the

uncertainty in the measurements means also acknowledging the uncertainty in the state [30].

Therefore, rather than a single value for each state variable, a probability distribution over

each state variable is desired. This probability distribution could be defined as

p(xt|u1:t, z1:t,x0) (2.6)

where xt is the state at time t, x0 is the initial state or prior knowledge of the state, and u

and z correspond to the measurements given by

xt = fu(ut,xt−1) (2.7)

zt = fz(xt) (2.8)

respectively. The function in equation 2.6 describes a conditional probability, which is the

probability over xt given the inputs, measurements, and prior knowledge. This definition

implies that only the state at time t is to be estimated. If instead the state trajectory is

desired, the required probability distribution would be given by

p(x1:T |u1:T , z1:T ,x0) (2.9)

Fundamentally, these two probabilities are different, and this has important practical implica-

tions as the derivation of the state estimation can be different in each case. Mathematically,

the state will be considered as a Markov state, where the probability of future states depends

only on the value of the current state, and not on the value of previous states.

The probability distribution in equation 2.6 can be estimated recursively through

time t as follows [30]

p(xt|u1:t, z1:t,x0) ∝ p(zt|xt)
∫

p(xt|xt−1,ut)p(xt−1|u1:t−1, z1:t−1,x0)dxt−1 (2.10)
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The final term in the integral here is equal to the posterior estimated at the previous time

t− 1, giving a recursive process for estimating the posterior, using only the new information

at time t. This is known as a Bayes filter.

Similarly, the probability distribution in equation 2.9 can be estimated recursively

through time t as follows.

p(x0:T |u1:T , z1:T ,x0) ∝ p(x0)
∏
t

p(zt|xt)p(xt|xt−1,ut) (2.11)

The Bayes filter is a purely mathematical construct. In order to practically com-

pute the posterior distribution, an explicit representation of each probability distribution

is needed. A number of practical implementations exist for this mathematical Bayes filter.

The choice of implementation can depend on a number of factors but principally the state

estimation algorithm must be suited to the state to be estimated. Here, the algorithms used

for continuous and discrete state variables will be described.

2.3.1 Continuous State Estimation

The Kalman filter (KF) [79] represents the posterior distribution of the state as a linear mul-

tivariate Gaussian distribution, parameterised using the mean and covariance of the distribu-

tion. The extended Kalman filter (EKF) [60] and unscented Kalman filter (UKF) [80][81] allow

representation of nonlinear functions, where the EKF uses linearization and the UKF uses a

number of sample points. Referring to equation 2.10, the algorithm first computes a predicted

posterior using a physical model of the system and the previous estimated posterior (using

the integral of the product of the two distributions, p(xt|xt−1,ut)p(xt−1|u1:t−1, z1:t−1,x0)),

and then computes a corrected posterior by incorporating measurements (using p(zt|xt)).

The Kalman gain is computed at each time and determines the extent to which the updated

posterior is influenced by the physical model and by the measurements. The prediction step

is computationally simple, however the correction step involves a matrix inversion which is

much more computationally expensive.

Similarly to the Kalman filter, the information filter (IF) [82] represents the pos-
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terior distribution of the state as a multivariate Gaussian distribution, parameterised as an

information matrix and an information vector. This is effectively the opposite to the mean

and covariance used in the Kalman filter, so the implementations have many similar and

opposite properties. The algorithm similarly uses a prediction step and a measurement step,

however in this case the prediction step is computationally expensive, while the incorpo-

ration of measurements is computationally simple. The relative simplicity of incorporating

measurements is a useful feature when applying this algorithm to problems with multiple

robots.

The simple Kalman filter and information filter both use a unimodal probability

distribution for the posterior, given by a multivariate Gaussian distribution with a single

peak. This can be a poor representation of the posterior probability in the case where a

robot could equally likely be in one of many distinct places, but not between these places.

This might often be the case in the pipe environment, where the robot could be in one of

many pipes, but not inbetween them. These filters can be extended to represent the posterior

distribution as a mixture of Gaussian distributions, a sum of Gaussian distributions where

each Gaussian component is weighted depending on its likelihood. This is known as multi-

hypothesis tracking [30].

Unlike the parametric Kalman and information filters, the particle filter (or Monte-

Carlo localization) [83] uses a non-parametric representation of the posterior distribution.

Instead of a defined probability distribution, a number of particles are used which each repre-

sent a hypothetical robot state. These particles are all passed through a filter using a predic-

tion step similar to the parametric filters. Unlike the parametric filters, the correction step is

done through resampling, where some of the particles are kept and duplicated and others are

removed, depending on an importance factor found using the measurements. Variations of

this implementation exist which are structured slightly differently for improved effectiveness

or efficiency, including the Rao-Blackwellised particle filter [84] on which the FastSLAM al-

gorithms [85] are based. The particle filter is versatile; it can represent arbitrary probability

distributions without incurring error from linearization, including multimodal distributions.

The Kalman filter and information filter are used to solve the online SLAM problem,
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where state is to be estimated at the current time. When it is desired to estimate the state

trajectory over time, a solution is needed for the full SLAM problem. From equation 2.11,

pose-graph optimization [30] can be derived. Applying the Gaussian models for motion and

measurement to equation 2.11, and taking the logarithm, gives the log-likelihood which is a

sum of quadratic terms. This can be maximised, or minimised in the case of the negative

log-likelihood which is in the form of a least squares optimization problem. A number of

algorithms for computing this pose-graph optimization have been demonstrated, including

GraphSLAM [86], square root smoothing and mapping (
√
SAM) [87], incremental smoothing

and mapping (iSAM) [88], iSAM2 [89], multi-hypothesis iSAM (MH-iSAM) [90].

2.3.2 Discrete State Estimation

When estimating a discrete state, the system is typically referred to as a Markov Model.

Acknowledging that the state can’t be measured directly, and that measurements and motion

of the robot will have some uncertainty, the system can be thought of as a Hidden Markov

Model (HMM).

For the filtering problem, the probability distribution p(xT |z1:T ,u1:T ,x0) is desired.

The forward algorithm is used to compute this distribution, following an equivalent discrete

probability derivation [30] to that that gives equation 2.10 for continuous probability distri-

butions. This algorithm is described by

p(xt|u1:t, z1:t) = p(zt|xt)
∑
xt−1

p(xt|xt−1,ut)(xt−1|u1:t−1, z1:t−1) (2.12)

If the sequence of states is desired, the probability distribution p(x1:T |z1:T ,u1:T ,x0)

is to be found. The Viterbi algorithm [91] estimates the most likely sequence of states given

a sequence of measurements. This is the maximum a posteriori estimate, however the full

posterior distribution is not estimated. The algorithm estimates the probability of the most

likely sequence to each state xt in the state space recursively forward through time, using

the information in ut and zt, and the probabilities of each state xt−1. The idea here is that

only the most likely sub-sequence from state x0 to state xt will need to be considered further
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forward from time t, as a most likely sequence overall which passes through state x0 and state

xt will also take this most likely sub-sequence. By recording the most likely preceding state

to each state at time t, the sequence of states can be simply recovered by stepping backwards

through time.

A discrete map representation has been shown to be useful in navigation where a

HMM localization method is extended to a Partially Observable Markov Decision Process

(POMDP) [48]. Early work on localization in a pipe network [20] also uses a POMDP for

localization and navigation, where the transition model between states is described, as is the

observation model which finds the likelihood of an observation of the robot’s surroundings at

a junction corresponding to a known discrete type of junction.

2.4 Sensing for Localization

The use of a range of sensing methods has been demonstrated in previous research in in-pipe

robot localization, pipe fault detection, and pipe mapping. Different types of sensors provide

different types of information from the environment, which can be used in localization in

different ways. However, different sensors also suffer from different drawbacks, which could

be economic cost, size, power consumption, or reliability.

Conventional robots might use odometry measurements (which are measurements

of change in position over time) range finding measurements (which are measurements of dis-

tance to objects), feature recognition from images from visual sensors, and other application

specific sensing.

In this section, the range of sensing technologies applied to in-pipe inspection, either

for localization or for fault detection, will be reviewed with an emphasis on the application

to localization. The review will extend to localization with similar sensing methods not yet

applied to pipes where relevant.
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2.4.1 Visual Sensing

Although there is some overlap in the technology used, visual sensing for localization could be

separated into three broad categories: motion detection (or visual odometry), point feature

detection, and feature detection.

In motion detection, the aim is generally to estimate the instantaneous change in

position of the robot between images recorded by the camera. This estimated motion can

be integrated to give an estimate of the position of the robot. In point feature detection, the

aim is to recognise pixel-scale features in camera images that have been detected previously.

This might be used to estimate the change in position of the robot between two images as in

motion detection, or it might be used to recognise a location visited previously, providing a

loop-closure measurement. There is some overlap in the range of techniques used to achieve

these aims.

Motion detection methods such as LSD-SLAM [92] and DSO (direct sparse odome-

try) [93] are well developed for robotics, and optical flow has been well studied in the context

of robotics [94] and for general computer vision [95]. Point feature detection methods in-

cluding the SIFT [96], SURF [97], and ORB [98] algorithms are well developed in robotics.

The latter has been directly applied to localization as ORB-SLAM [44] [99]. Vision-based

algorithms can be augmented by inertial sensing [100].

Challenges in applying visual localization methods in pipes such as feature-sparseness,

reflection from lighting, and difficulty in focusing on the close surface, have been addressed

in the literature. The challenge from feature-sparseness specifically is investigated briefly in

Chapter 1. There, Figure 1.3 shows an estimate of the performance of the ORB-SLAM algo-

rithm in different vision datasets, from typical outdoor environments, to somewhat confined

tunnel environments, and very confined pipe environments. It is seen that the number of

feature matches between images is one or two orders of magnitude lower in buried pipes than

it is in a typical environment.

For robots with cameras pointing toward the pipe wall, the use of an inertial nav-
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igation system (INS) fused with motion detection has been demonstrated [101], where the

INS is used to predict the motion which informs the optimization based motion detection

of the likely motion, which reduces the computation required to find a match and increases

the accuracy of the estimation. Stereo cameras have also been used in this case [102], which

have the advantage over single camera systems of being able to estimate depth in images,

where SIFT-based feature detection is used to estimate motion. Other applications have

been demonstrated where the camera is directed along the axis of the pipe. Transforma-

tions are made to account for the radial motion of features observed by a camera moving

along the pipe, and SIFT-based [103] and Harris-based [68] methods are used to estimate

the motion. Despite the research for vision-based localization in pipes, there are still chal-

lenges to overcome. Comparison between different vision-based localization methods shows

how ORB-SLAM and DSO methods fail and lose track of the robot position, while methods

designed for pipe environments which use prior knowledge of the diameter of the pipes are

unable to eliminate the observed phenomenon of a reduction in estimated pipe diameter as

the estimation progresses [45].

In feature detection, the aim is to detect and locate a feature of interest in the

environment. In a water pipe the environment is largely featureless compared to a typical

robot’s environment, but features do exist in the form of junctions, corners, and faults. These

features can be used as landmarks in localization.

Early work on a human-operated robotic system [104] showed how the length of fis-

sures (small faults along the circumference of the pipe) can be detected using image processing

techniques. Augmentation of a camera system with a light ring generator is shown [105] to

highlight faults in the pipe which can be processed and classified using a neural network for

robust detection. With these technologies, a landmark can be created with the detection of

a fault, and the recognition of a specific fault might be achievable with the measurement of

length or other characteristic, improving the usefulness of the landmark in localization.

More research on this topic has focused on the detection of junctions and corners

as landmarks, either for localization or for motion planning. Where the environment can

be assumed to have t-junctions, elbows, or straight pipes, these features can be detected
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using imaging processing techniques [106]. Time-of-flight imaging has been demonstrated in

detection of t-junctions, y-junctions, and elbows, [107] where the image recorded is compared

to a synthetic image expected for a straight pipe. Structured light in various forms has been

used to detect corners and junctions, using the shadows formed due to the displacement

between illuminator and camera [108], using a projected laser spot array [109], and using

projected radial laser lines [54]. These methods are generally effective, with some chance

of misrecognition (both false positives and false negatives). Classification of junctions into

different types would likely be reliable, and although direct recognition of a specific junction

would likely not be possible due to the similarity between features of the same type, it may

be possible to achieve using data association techniques typical in localization.

The hardware requirement for visual sensing is difficult to assess. Many of the

reviewed methods have been demonstrated in larger pipes than would be expected in buried

pipe inspection, however cameras can currently be made to fit within this size constraint.

The illumination hardware would also likely be small, however these components add to the

total size and power consumption of the robot. The computational hardware may also be

significant in terms of size, cost and power consumption, however many of the methods using

structured light involve extracting features from the images which may result in a lower

computational load than processing a full image. Cameras are inherently directional, so it

is possible that the methods described here would be less effective if the robot were able to

move freely within the pipe, unlike the robots described here which are constrained to be

directed along the axis of the pipe. Cameras may be used for detecting and inspecting faults

in the pipe network, so use of the same camera and illumination for localization would be

efficient.

In conclusion, visual sensing for localization is well developed, and the range of im-

provements to both accuracy and cost could give good performance in the pipe application

as demonstrated in the literature, despite the constraints of the pipe environment. Through-

out this thesis vision is treated as a means of making the various measurements described

throughout this section, which may or may not be possible in the pipe application. For

example, vision is one potential method of obtaining an odometry measurement, and is a
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potential method of achieving feature detection or loop-closure.

2.4.2 Scanning Rangefinder Sensing

Rangefinder sensors function by emitting some kind of signal, typically either high frequency

acoustic (ultrasonic) signals or a laser (as in a lidar sensor), and measuring the time taken

for the signal to reflect back to the sensor from objects in the environment. Knowledge of

the speed of the wave can then be used to estimate the distance to a reflective object. Often,

these sensors are used in a scanning approach, where the emitted signal is sent across a range

of angles from the robot, giving either a scan in two or three dimensions.

This type of sensor has been used in robot localization for decades [110, 111], and

incorporated into influential work on robot localization [112]. Lidar in particular has been

used in localization of vehicles on roads [113, 114].

Rangefinder sensing has also seen limited application to localization of robots in

pipe networks [115]. This early work in the application used a scanning ultrasound sensor to

make a measurement at junctions in a pipe network which could be used to determine the

number and position of exits from the junction. Recent work has shown the use of a scanning

lidar sensor integrated with vision and IMU-based sensing to localize a robot in a penstock

(a tunnel-like structure which is part of a dam) [116]. In these works, the rangefinder sensor

is able to add information regarding the robot’s position with respect to the cross-section of

the pipe or tunnel, and information regarding a change in the direction of the pipe or tunnel.

The drawback of this type of sensor is that it is unable to give much information

about the position or velocity along the axis of the pipe due to the featureless nature of

the pipe surface. This is in contrast to typical robot environments where the geometry of

rooms and obstacles within them can be observed by a rangefinder sensor, and in contrast

to application on roads, which share the network structure of a pipe network, but typically

have many more informative features within them. Despite this limitation, some work has

shown the use of laser and sonar scanners to find a profile of the pipe wall in sewer pipes [22],

and identifying junctions and corners would also be possible using the same process. These
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methods offer similar results as found using visual techniques, and would likely come with

similar hardware requirements.

Overall, as typical rangefinder sensors are limited in range compared to the scale

of the pipe environment, the detection and recognition of features is limited to the robot’s

immediate surroundings. The sensor type could still be useful in small-scale localization with

respect to the pipe cross-section, and in detection and recognition of junctions.

2.4.3 Long-range Acoustic Sensing

Acoustic sensing methods can be used to acquire a range of information from the environment.

General acoustic SLAM has been developed outside of pipes, as a complement to

visual SLAM in complex environments. Using only received signals from the environment,

bearing-only SLAM (using only the direction, or bearing, of received signals, and not the

range) has been demonstrated [117], where multiple sound sources, or features, can be local-

ized even when the sound is intermittent and in the presence of noise and reverberation.

Using acoustic echoes for robot localization, where the robot actively emits a sound

and receives the resulting echo, requires an understanding of the acoustic response of the

robot’s surroundings. Techniques for estimating the acoustic room impulse response (RIR)

in different environments with variation in the position of acoustic transmitter and receiver

have been studied for decades [118], but a number of methods for acoustic robot localization

have been demonstrated in the last decade.

Recent work has shown the use of a single co-located acoustic source and receiver

to estimate the position of a robot in a structured room [119, 120], where perception from

the room impulse response is used in a filtering approach and in an optimization approach.

In this previous work, it is assumed that each echo is able to be distinguished, that there are

no multi-path echoes, and that each detected echo can be associated with a specific wall in

the room. These assumptions cannot be made in the pipe environment, where measurement

of acoustic echoes is more challenging due to noise from the robot and the environment,
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multi-path echoes are likely, and data association is not trivial.

The estimation of the parameters describing the impulse response in the presence

of noise has been improved by using an optimization approach in recent work [121, 122].

This method has been applied to localization using a single microphone [123] and using an

array of microphones, and the effects of signal to noise ratio, hardware transfer function [124],

nongaussian noise, and faulty microphones [121] have been evaluated. This idea has also been

applied to using robot ego-noise rather than additional noise for probing the environment

[125], although in this case a flying drone was used, which could have much more ego-noise

than a small terrestrial robot in a pipe.

The time of travel of sound can be used to estimate the distance it has travelled

over. Outside of robotics, the use of acoustic echoes for inspection of pipes is well established

as acoustic pulse reflectometry (APR). Using stationary sensing equipment, this approach has

been taken in gas pipelines, where blockages can be detected at distances up to as far as 10

kilometers [126], and can be done by measuring the difference between acoustic measurements

taken before and after a blockage has formed [127]. This approach has also been taken in

sewer pipes [128, 129], where the detected signal can be used to locate and characterise a

blockage.

Some work using APR in pipes has the acoustic source and receiver placed at the

edge of a pipe network, such that the measurement is made in only one direction. The

detection of faults in the pipe from the acoustic impulse response can be done by comparing

the measurement with a previously measured reference signal [127] or with a simulated signal

in the likely case that a reference signal is not available [130]. When making this comparison,

some prior knowledge of the pipe network or prior information from the pipe network is

needed, and the comparison between reference signal and measured signal is done manually

[130].

The challenge in this use of APR is in separating the waves reflecting from features in

the environment and reflecting from the acoustic source. This has been addressed by wave-

separation in the time domain [129, 131] and in the frequency domain [131], or by source
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termination [131]. Wave-separation requires multiple microphones, with requirements on

their relative position which might be difficult to achieve on a small robot. Source termination

requires nanosecond-order computation and emission of a signal to cancel acoustic waves

arriving at the source, which is demonstrated in the literature [131] for a static sensor using

laboratory-grade data acquisition and processing hardware, but is likely not possible for a

small robot platform where the computation time is reduced in comparison to the literature

due to the closeness of speaker and microphone and the lower computation power.

Some work on using APR in buried pipes has the sensing equipment placed in the

middle of a pipe network, so two directions of measurement are possible, and it is possible

to estimate the direction of the reflection using two microphones if sufficient separation is

available [130]. Only the distance to features can be measured, so in a network of connected

pipes, there is no way to determine the location of a feature beyond a junction between two

pipes with a single measurement [127, 130]. Instead, measurements from different locations

can be combined to estimate the location, although the required measurement positions will

depend on the unknown position of the feature and the complexity of the pipe network [127,

130]. The requirement for multiple measurements at different locations in a network could

be met by placing the sensing equipment on a mobile robot.

In wastewater networks, pipes are connected together at manholes, which are de-

scribed [128] and shown [132] to be highly reflective in the literature. This would limit the

sensing range possible with acoustic reflection detection for a static sensor, and motivates

the application of the sensing mode to a mobile robot.

With a tethered robot the time of travel of a sound wave from one end of the pipe

can be measured using the tether to synchronize the source and receiver [69]. The drawback

of use of a tether might be overcome by using echoes from corners or junctions, or by using

multiple robots to measure time of travel.

Overall, acoustic reflection measurement has been shown to be effective in measuring

the distance to features such as faults in a pipe. The advantage of using this method on a

mobile robot is that measurements can be taken autonomously from different locations in
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a pipe network, which is needed either to locate a fault in a network, or to inspect pipes

which are acoustically isolated from each other by reflective connections. The mobile robot

would also be able to use other sensing modes to thoroughly inspect the pipe network, so

localization of the robot using acoustics would improve the operation overall. The challenges

in the application to a small mobile robot is the limit in quality of acoustic hardware, limit

in computation available for active termination of multiple-order reflections, the subsequent

reverberant environment. Fundamentally the limitation is in the unknown location of the

robot, and therefore acoustic equipment. The challenge is in the estimation of a sequence of

robot positions in an unknown environment, rather than the precise estimation of distance

of a fault from a known position in a known environment.

In summary, acoustic sensing provides a range of sensing modes which could be

useful in the pipe environment. Acoustic echoes in particular have not been explored for

use by robots in pipes, while their effectiveness has been shown in sensing in pipe networks.

The propagation of acoustic waves through water filled pipes may have some complications

compared to air filled pipes which could be both advantageous and disadvantageous. Their

popularity in general pipe sensing might make it easier to use existing sensing technology,

and make it possible to efficiently use the same sensor for both inspection and localization.

2.4.4 Short-range Acoustic Sensing

As with visual sensing, acoustic methods can be used to locate and identify features in the

pipe environment. Ultrasonic sensing can also be used to find features along the length of

the pipe by receiving reflections from the ground outside of the pipe [133], which in the case

of water pipes contains more features than the pipe interior. Acoustic sensing has also been

demonstrated with passive sensing of sound from a leak in a pipe [134]. In this work the

sound measured is compared for different flow rates, surrounding media, and position of the

sensor relative to the leak. In localization, the distinct measured sound could be used to

recognize a previously observed fault, or could be used to estimate the distance or direction

to a fault.
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Acoustic methods can be used to measure a spatially varying field along the pipe.

As well as increasing the number of observable features, the use of ultrasound to measure

variation in the ground outside of the pipe can produce a spatially varying profile [133]. In

similar work, a hydrophone is used to excite a vibration in the pipe, where the response varies

in characteristics along the length of the pipe [135] [136]. Field detection could be used for

both precise localization within a single pipe, and recognition of a specific pipe in large scale

localization. A drawback in both cases is the possible directionality of sensors [134]. A range

of approaches to estimation have been taken in this previous work, where the effectiveness

of a particle filter and a Kalman filter in using information from this sensing mode is shown.

There is room for further development and evaluation of the related estimation algorithm

which could be based on an optimization approach.

This sensing mode could improve the feature density of the environment, as it is

able to observe aspects of the surroundings that can’t be perceived by vision or other sensors.

The use of similar sensing in the passive detection of leaks means that the sensor could be

used for localization and inspection, improving efficiency. However, the sensing mode is only

able to perceive nearby features, so could be used to recognise previously visited locations,

but not to directly measure the position of the robot along a pipe, for example.

2.4.5 Inertial Sensing

There are six components of an object’s pose in Cartesian coordinates: x-, y-, and z-position,

and roll, pitch, and yaw angles. Inertial navigation systems typically use accelerometers and

gyroscopes to measure linear acceleration and angular velocity respectively. These are of-

ten combined with magnetometers to measure the absolute angle. These devices are often

miniaturized as inertial measurement units (IMUs), and a variety of these devices are com-

mercially available [137]. Consumer grade IMUs have a cost of the order of 1 to 10 GBP, and

tactical grade IMUs have a cost of the order of 1000 to 10000 [138], so can each be used in

robotics in different contexts. In consumer grade devices, the low grade noisy accelerometer

is used only to measure the direction of gravitational force rather than being integrated to

form a position measurement. Even so, the combination of absolute measurements from the
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accelerometer and magnetometer is able to give a drift free estimate of attitude (roll, pitch,

and yaw), while the gyroscope provides a higher frequency measurement of change in angle

and aids in computing the estimates of attitude when the IMU is moving or accelerating. In

metal pipes [139] or underground [140], the Earth’s magnetic field is distorted such that a

magnetometer can’t be used. While the accelerometer can still be used to estimate the roll

and pitch angles, only the drifting relative measurement of angle from the gyroscope can be

used to estimate the heading angle.

A number of implementations have been demonstrated in applications from large oil

and gas pipelines to water distribution scale pipes. Inertial measurements can be combined

with an encoder on the robot’s tether cable which gives a measure of the distance travelled,

using the EKF [67] or pose-graph optimization [141] for data fusion. The tether is a limitation

of these methods, however there are alternative methods of acquiring similar information. For

untethered robots which use some kind of encoder to measure relative change in position, the

estimation can be improved by using information about known landmark positions [142] [143]

or by using measurements of pipe section length [35]. Landmark positions may be obtained

in water pipes as hydrants or valves, however detecting or recognizing a specific landmark

may be a challenge. The use of inertial measurements to detect features such as junctions has

been demonstrated [32] [144] [145], which is used in combination with known length of pipe

between junctions or used to reduce the drifting angular estimate where the pipe between

junctions is known to be straight. In a spherical rolling robot, inertial measurements can also

be used in combination with a magnetic switch which outputs a signal when in contact with

the pipe wall. [146] The phase difference between the inertial and magnetic switch signals

can be used to estimate the inclination of the pipe.

Inertial sensing is combined with other sensing methods elsewhere in the literature,

and is an important component of many implementations of in-pipe localization. Typically

the accuracy achieved using inertial sensing alone increases with the cost, size, and power

consumption of the sensors, but results have been demonstrated using the constraints of the

pipe as an advantage, which may allow accurate estimation with lower cost sensors. Inertial

sensing can be used to estimate the orientation of the sensor in Cartesian coordinates. This
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is useful generally in robotics, but may be less directly useful if the state to be estimated is

not defined in this coordinate system.

2.4.6 Magnetic Sensing

While the distorted magnetic field inside metal or buried pipes is not expected to be useful

for estimating the attitude of the robot [139, 140], the varying field along the length of a pipe

could be used as a recognizable spatial field, as has been demonstrated in the similar context

of drilling robots [140]. In this application, the robot moves forward and backwards along

the same path observing the same magnetic signal twice, which can be useful in loop-closure.

The robot also uses two sensors, at each end of the robot, so that an odometry estimate can

be made by comparing the out of phase spatial signals.

The detection and recognition of parts of an ambient magnetic field has been used in

robot localization in more typical two-dimensional indoor environments [147, 148, 149, 150].

In these applications, previously visited locations are recognised by matching the magnetic

field measurements at different points in time.

A similar method may be useful in pipes, especially in precise localization where

a robot would similarly move along the pipe to observe a fault two or more times. The

characteristics of the magnetic distortion would need further investigation. The sensing mode

could be used to increase the density of features in the environment, but it would be limited

to observing nearby magnetic properties so would be useful for recognising previously visited

locations rather than directly observing the robot’s position along a pipe. This sensing mode

would be expected to function differently in buried metal pipes and buried pipes made of

other materials.

2.4.7 Pressure Sensing

Leaks in water pipes have a range of characteristics, but generally will cause some change

in pressure, both locally and across the network, emit some acoustic anomaly, and will be
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some physical gap in the pipe wall. Methods to detect a leak using pressure have been

implemented where the millimetre-scale millibar pressure difference is detected either directly

using pressure sensors [151] or less directly using a membrane connected to mechanical system

[152] [29].

Detection of the location of a leak, both along the length of the pipe and the location

around the circumference, could offer a means of localization. Although in localization appli-

cations this is best suited for high precision localization as the presence of leaks in the network

is not guaranteed, a sensor of this type may be required on the robot for leak detection, so

using the information for localization where possible would not add to hardware costs. This

sensing mode would be limited to observing nearby leaks, so, like magnetic property sensing,

would be useful for recognising previously visited locations but not directly observing the

robot’s position along a pipe.

2.4.8 Radio Sensing

Three implementations of radio wave sensing in pipe localization are reviewed here. The first

uses the spatially periodic signal formed in a pipe from the properties of an emitted radio

wave as a map which can be used to localize the robot in the pipe [38], similarly to the

potential use of acoustic or magnetic spatially varying signals used elsewhere. To implement

this method, robots may be able to work in pairs, one transmitting the signal while the other

traverses the pipe. The second implementation uses the strength of a signal received from

transmitters placed on the ground above pipe [153]. There are challenges in implementing

these methods in water pipes. Multiple transmitters may be expensive to install across the

network, especially as water pipes are mostly buried below roads. The third implementation

uses radio beacons placed at various points in the pipe network to localize the robot when

it is nearby [154]. This approach gives an estimate to the precision of the spatial frequency

of the radio beacons; the position estimate is likely to be accurate when the robot is within

range of a beacon, but the robot has no extra information available for localization when it is

far from a beacon. Estimates for the range of radio-frequency communication in buried pipes

vary, as the range depends on the material inside and outside of the pipe and on the frequency
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of communications [155], as well as on the signal strength required for communication. The

range for radio-frequency transmission has been estimated to be around 3.2 metres [154], and

it has been concluded that the attenuation of radio-frequency signals along a buried pipe is

sufficiently large that relay stations would be required to communicate along a 100 metre

pipe [155].

2.4.9 Sensing in other Environments

For a comparison relevant to the pipe environment, this section will review sensing for robot

localization in other similarly confined environments. While the pipe application environment

is substantially different from other typical applications such as roads (shown in Chapter 1)

or the built indoor environment, there are applications that have some similarities to buried

pipes.

Recent work on localization of robots in underground mines has been done as part

of the DARPA Subterranean Challenge (SubT), which include tunnel and cave environments.

These have some similarities in structure to the pipe environment, in that typical sensors

such as vision and lidar are limited in scope and unable to perceive distant features.

Localization using lidar in the SubT mine environments is shown to have a low error

of 1.5% of the distance travelled [156], where the success is attributed to the use of the Ouster

OS0-128 lidar scanner (a high-resolution imaging sensor which gives a precision of less than

5 cm over a range of 50 metres, but typically costs more than £10,000 and is around 0.1

metre in each dimension), and plentiful surfaces and features suitable for this sort of sensing

[156]. The tunnel widths in the mine environments of around 5 metres [157] are an order

of magnitude larger than the typical pipe diameter described in Chapter 1 and this type of

sensing would be more challenging to apply to the pipe environment. The pipe environment

would present a challenge to this approach as it is made of long sections of uniform pipe which

are challenging to this type of localization [156], and it is made of sections with a diameter

typically around 0.3 metres, making it difficult for a robot to carry a similar high-quality

sensing payload. The cost of this sort of sensor is at the same order of magnitude as the cost
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of typical remotely controlled pipe inspection robots, while low-cost pipe inspection robots

have been proposed in the literature for 5% of the cost of this sensor alone [36].

Other results using a lidar scanner in the SubT mine environment show low estimate

error of 0.5% and 0.2% relative to the dimension of the whole environment in two different

locations [157, 158]. However, the odometry estimate using only measurements of the robot’s

motion, which will influence the subsequent improved estimate using lidar, has error of 1%

and 3.5% respectively. This is at the lowest end of the relative error observed for linear

motion in the literature in the pipe environment shown in Table 1.3. Additionally, the

localization system is reported to identify several hundred loop-closure measurements in each

case, where the robot recognises a previously visited location. As well as this, the localization

is performed using a laptop with Intel i7-8750H 12 core processor, with computation time of

around 1 hour [158]. This computation time on a more limited robot in a pipe environment

would be expected to be much larger. Finally, the feature density of the SubT environment

is assessed, where it is found that while some parts of the environment are featureless to the

lidar sensor, most of the environment has a sufficient number of features to allow recognition

of places [158]. While it is difficult to compare between measurements for different sensors,

Figure 1.3 shows a comparison of vision-based features for pipe environments and one of

the SubT environments, where it can be seen that there are one or two orders of magnitude

fewer feature matches in the pipe environments. While the results show low error in the mine

environment, there are several indications that this environment has many factors which

reduce the challenge for localization compared to the pipe environment.

Robot localization has been done in a similar mine environment, where camera and

lidar sensor data is combined to get an estimate accuracy of around 1 metre after several

traversals along a 2.6 km tunnel [159]. This is done using a sequential mapping and local-

ization approach, where a map is first built manually using prior knowledge of the mine,

which is reported as being essential for operation in this environment [159]. The requirement

for prior knowledge of the environment indicates the difficulty in localization without this

knowledge, which would be expected to be more severe in the pipe environment due to the

smaller number of features in pipes compared to mines illustrated in Figure 1.3.
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Overall, while localization in similar environments has been shown to be effective,

the current requirements for effective localization are not available in the pipe environment,

including sensor quality, environment features, low locomotion uncertainty, and computa-

tion power. Detailed prior knowledge is seen to be useful in compensating for challenges in

localization, which can be applied to an extent in the pipe environment.

2.4.10 Comparison of Sensing Modes

Here, the literature on various sensing modes has been presented both for general robot ap-

plications and for application in the pipe environment. Comparing the literature on various

sensing modes, it is seen that a range of alternatives to the vision sensing popular in contem-

porary conventional robots have been developed for application in the pipe environment.

In principle, vision has two main limitations in this environment which reduce its

appeal, despite its popularity in application to robot localization generally: Firstly, the qual-

ity and quantity of features available is lower in the pipe environment compared to a more

general case. Secondly, compared to a typical environment, the perspective of the robot is

very limited. In a typical room where the length of each of the walls is likely the same order

of magnitude, a robot can likely perceive a substantial amount of the features in the room

(whatever the features are) from a large range of poses. This is useful for estimating odome-

try and for producing regular loop-closure measurements. In the pipe environment however,

the length of the pipe is likely to be at least one order of magnitude larger than the diameter,

and a robot can likely only perceive relatively nearby features. Therefore each feature can

only be observed from a small range of poses which makes loop-closure measurements more

sparse.

Alternative sensing approaches explored in the literature could avoid these limita-

tions. Acoustic and magnetic sensing for example could allow detection of more features in

the environment, reducing the sparseness of features. Acoustic and radio sensing could be

used to detect distant features, which increases the perspective of the robot compared to

vision.



CHAPTER 2. LITERATURE REVIEW 43

Sensing Mode Sensing Advantages Sensing Disadvantages

Vision

Precise feature detection, de-

tailed features, easy to interpret

by human operator, well devel-

oped hardware

Pipe environment lacks features,

perspective is limited

Rangefinder Precise feature detection
Pipe environment lacks features,

range is limited

Long-range

Acoustic

Long-range feature detection,

can observe many features at

once

Reverberant environment, diffi-

cult feature association

Short-range

Acoustic

Increases feature density, sensing

can be also used for inspection

Short range, perspective is lim-

ited

Inertial Sensor cannot be occluded

Must be combined with another

sensing mode, short range, lim-

ited perspective

Magnetic Increases feature density
Depends on pipe material, short

range, limited perspective

Pressure Increases feature density
Requires pressure variation,

short range, limited perspective

Radio
Can transmit information, there-

fore no data association

Only works when robot is within

range

2.5 Literature Review Conclusions

This review of the literature has covered aspects of state definition, state estimation, and

sensing for both the general robot localization problem and for the problem of localizing

robots in a pipe network. From this, the gaps in the literature can be found.

It was concluded in section 2.2 that the hybrid continuous-discrete approach to state

definition is likely the most suitable for the pipe environment, and is also undeveloped in the
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literature for this application. This is a clear gap which can be addressed by the work in

this thesis, however as it is a hybrid of the alternative approaches (continuous and discrete),

these must be assessed in this application too.

It was concluded in section 2.3 that while each of the available fundamental ap-

proaches have been applied to localization in the pipe environment, their use has been pri-

marily to demonstrate an aspect of sensing. Therefore, there is a gap in the development of

a state estimation approach suited to this environment.

Finally, it was concluded in section 2.4 that acoustic or radio sensing could provide

measurements not possible in this environment using typical sensing methods like vision.

While acoustic sensing has been applied for localization in pipes, it has not been fully devel-

oped and while existing approaches in the literature are effective, they have some limitations.

There is therefore a gap in the literature to further develop acoustic sensing for this applica-

tion.

These gaps motivate the subsequent research presented in this thesis.



Chapter 3

Motivation: Continuous Space

Localization in Pipe Networks

3.1 Introduction

The literature review in Chapter 2 discussed the continuous, discrete, and hybrid continuous-

discrete state definitions that can be applied to robot localization. As in general robot

localization, the continuous representation has been used most in the pipe environment.

However, the literature develops the front-end of the localization problem (from sensing to

feature detection), and lacks a sufficient assessment of this localization back-end when applied

to the pipe environment.

Therefore, this chapter shows the results of the application of typical front-end

measurements to a typical back-end estimator, and aims to assess what the strengths and

weaknesses of the approach are. The scope of the chapter is both medium and large scale

state estimation, as illustrated in Figure 3.1.

The structure of this chapter is as follows. The problem definition used in this

chapter will be given, along with the data that will be used as an input to the localization

algorithm. The localization algorithm will be defined, and the results of a number of ex-

45
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Figure 3.1: An illustration of the scope of this chapter.
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periments will be shown. Finally, the conclusions will be used to motivate the subsequent

research presented in this thesis.

3.2 Methods

In robot localization, typically there are two aspects of the methodology: The specification of

the localization problem to be solved and the metric of success to be used, and the method

of localization used. This section will describe each separately.

3.2.1 Methods: Problem

Robot localization algorithms are typically demonstrated by performing localization on a

sequence of recorded sensor and motion inputs, estimating the trajectory and environment

map that most likely produced this sequence.

It would be useful to have a large set of data recorded from robots operating in pipe

networks on which robot localization can be demonstrated. In practice however, there are

two problems which limit the volume of available data:

1. Development of robots for the application to pipe networks is still in progress on all

aspects of the robot. The inaccessibility of the environment, unlike more typical envi-

ronments shared with people, means that a robot needs to have a relatively high level

of autonomy and capability in order to move around a large area and acquire data.

2. The buried pipe environment is largely made up of privately owned assets. Deployment

of robots in this environment is certainly possible in the future, but asset owners will

only allow deployment of a capable, reliable, robot. Therefore, the scale of practical

data available is limited to smaller networks of pipes in the laboratory.

The method used here is to use simulation to produce a large volume of simple

high-level data, suitable for the analysis required in this chapter. The map, Net3, is taken
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from the software EPANET, as an example of a relatively large network of connected pipes.

This software is typically used to simulate the dynamic behaviour of water inside pressurised

pipe networks, usually in application to water distribution. In this case though, the map is

used as a convenient representation of a real pipe network.

The motion of a robot through this network is simulated in Matlab. The mo-

tion is modelled coarsely, with the robot making a sequence of discrete motions though the

network. The robot is constrained to the network, and its motion is limited to effectively

one-dimensional movement along the pipes. Modelling simple locomotion, the robot travels

some input distance each discrete time step, with added Gaussian distributed uncertainty.

In practice this could be achieved by legged or wheeled motion in an air-filled pipe, or by

direct movement through the fluid in a water-filled pipe. This model is simple but is fairly

typical for models in robot localization in general, and therefore is suitable for this qualitative

analysis. The added uncertainty in motion could be made more complex, by adding some

time-varying uncertainty to model the effect of fluid flow on robot motion, or to model pipe

conditions varying along the length of a pipe.

When the robot’s motion would move it past the end of a pipe, the motion is

truncated, so that the robot moves precisely to the junction at the end of the pipe. The

robot detects a feature here, the junction or manhole, and in this chapter it is assumed that

the robot can recognise if it has visited this location previously. This functions as a loop-

closure measurement at a junction. The robot then turns towards a new pipe, making a

measurement of the angle turned through, which is recorded with some Gaussian distributed

uncertainty.

This system is repeated for 1000 time steps. The result is therefore a sequence

of odometry measurements of the robot’s change in position and angle at each time step,

a sparse sequence of detection and recognition of features, and a sequence of loop-closure

measurements. Prior knowledge of the relative position of features might be available, which

could be obtained from an existing map, or by observing features like manholes above the

ground in the area of the robot’s operation.
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In practice, there is some uncertainty in the measurement of each of these variables.

The nature of the uncertainty depends on the variable. For the odometry measurements

and the prior knowledge of feature position, there could be uncertainty in the continuous

measurements which could, for example, be represented by a Gaussian distribution. For

the loop-closure measurements and the detection and recognition of features there could be

uncertainty in the discrete measurements which would take the form of possible false positive

or false negative measurements. In this chapter, only the continuous uncertainty is applied,

and it is assumed that there is no discrete uncertainty.

These sequences and prior knowledge are used as inputs to a localization algorithm

which estimates the most likely robot trajectory given the inputs. Without explicit consid-

eration of the sensing required to make these measurements, the input measurements are

similar to those found in typical robot localization problems, but with some key differences

that motivate the analysis here.

1. The limited perspective of sensors in this problem results in loop-closure measurements

only between poses that are very close in space, and in relative odometry measurements

only between poses adjacent in time. In other applications, a sensor such as a camera

might be able to perceive the same features from a range of positions and more odometry

or loop-closure measurements could be found this way.

2. Detection of features is only intermittently available, when the robot arrives at a man-

hole feature. Subsequently, prior knowledge can only be related directly to a sparse set

of poses. In an environment with a more detailed structure, prior knowledge of a more

dense set of features such as corners in a room might be available.

3.2.2 Methods: Solution

This chapter aims to investigate the performance of a typical localization algorithm when

applied to the localization problem in a pipe network.

The typical pose-graph optimization-based localization algorithm is used to estimate
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the robot’s trajectory given the whole sequence of input measurements. As described in

Section 2.3.1, finding the mostly likely trajectory is equivalent to minimizing the negative

log-likelihood, given by

− log p(x0:T ,x
0:M |u1:T , z1:T ,x0) ∝

1

2

[∑
t

[
(xt − fu(ut,xt−1))

TΩu,t(xt − fu(ut,xt−1))

+
∑
m

(zmt − fz(xt,x
m))TΩz,m,t(z

m
t − fz(xt,x

m))
]] (3.1)

In this chapter, the state to be estimated is given by x0:T and x0:M . x0:T is the robot pose

xt =
[
xt, yt, θt

]
on a two-dimensional plane with position given by xt and yt and orientation

given by θt, for all times t ∈
{
0, 1, 2, . . . , T

}
. x0:M is the positions xm =

[
xm, ym

]
of some

arbitrary features in the environment. The variable ut relates adjacent poses in time, so in

this case is defined as ut =
(
∆ξt,∆θt

)
, where the two elements correspond to the forward

motion and the angular motion respectively. The variable zmt relates robot poses with features

in the map. In this case it is defined as zmt =
(
∆ξmt ,∆θmt

)
. The functions fu and fz give

the predicted value of the variables xt and zmt respectively, given the current model estimate,

described by

fu(ut,xt−1) = fu(∆ξt,∆θt,xt−1) =


xt−1 +∆ξt cos θt−1

yt−1 +∆ξt sin θt−1

θt−1 +∆θt

 (3.2)

and

fz(xt,x
m) =


√
(xm − xt) + (ym − yt)

arctan
(ym − yt)

(xm − xt)
− θt

 (3.3)

Finally, Ωu,t and Ωz,m,t are the inverse of the uncertainty in each measurement ut and zmt ,

which can vary with time t and measurement m.

Due to the nonlinear functions fu and fz, the problem becomes nonlinear least-

squares optimization, which can be solved as iterative linear least-squares optimization.

This is implemented in Matlab using a Gauss-Newton approach. In effect, the estimate[
x0:T ,x

0:M
]

is iteratively improved to reduced the weighted sum of the squared difference

between the uncertain measurements made by the robot and the measurements that would

be predicted by the estimate.
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3.3 Results

Given the method for simulating a robot trajectory through a pipe network and acquiring

measurements representative of the robot’s limited sensing, the effectiveness of the method

for estimating the most likely trajectory given these uncertain measurements can be analysed.

The magnitudes of linear and angular uncertainty can be varied, as can the propor-

tion of the map which is available as prior knowledge. The estimate error can be measured

using the euclidean distance between each estimated pose and the true pose. An error rate

can be defined as the proportion of estimates which have an error value above a threshold.

The threshold used here is 1 metre, based on the problem definition given in Chapter 1.

Figure 3.2 gives an example of the trajectory estimation in this experiment. The

dead-reckoning trajectory estimate can be seen to drift from the true path, with its error

increasing over time. The GraphSLAM estimate is seen to be improved by the use of prior

knowledge of the environment, as the estimate error is lower near to parts of the environment

where prior knowledge is available. The GraphSLAM estimate is seen to be self-consistent

even when the estimate error is nonzero. However, in this example, most of the estimate is

above the target accuracy of around 1 metre, so would be ineffective in localizing faults in a

pipe network.

Quantitative analysis requires variation over the various parameters which produce

uncertainty in the estimate. The trajectory simulation and estimation is repeated 20 times

and the average error in estimates can be compared. The range of linear uncertainty used

is representative of the uncertainty in odometry estimates found in the literature for robots

in pipes of up to around 30% of the distance travelled, described in Chapter 1 in Table 1.3.

For this experiment, it is estimated that there is a factor of approximately 0.45 between

the linear uncertainty parameter varied here and the relative error in estimate of distance

travelled down a single linear pipe section.

Figure 3.3 shows the variation of estimate error with linear noise, with zero angular

noise, and a range of amounts of prior knowledge. The estimate error is seen to increase
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Figure 3.2: An example of the trajectory estimate made using dead reckoning and using Graph-

SLAM. Part of the pipe network environment can be seen along with the true robot path. Prior

knowledge of some of the landmarks is available. The error in the two estimates is shown over time.
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Figure 3.3: The variation in trajectory estimate error with linear noise, for a range of amounts of

prior knowledge.
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of prior knowledge.
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linearly with linear noise, by an factor depending on the amount of prior knowledge available.

The estimate error rate therefore also increases with linear noise, quickly becoming close

to 1 when no prior knowledge is available, and increasing less for larger amounts of prior

knowledge. Even for full prior knowledge of the environment the estimate error and error

rate increase. This is expected, as while the prior knowledge of network junctions can improve

the estimate accuracy at junctions, no additional prior information is available to improve

the estimate in between these junctions, and therefore these parts of the estimate will have

some nonzero error.

Figure 3.4 shows the variation of estimate error with angular noise, with low linear

noise of 0.025 metres, and a range of amounts of prior knowledge. As with the variation in

linear noise, the estimate error and estimate error rate increase with increasing angular noise.

When full prior knowledge of the environment is available, a low error mean is expected for all

values of angular noise, as the prior knowledge should be able to correct any error in angular

estimate, an there is no contribution to estimate error in the linear pipe sections between

junctions from angular uncertainty. However, it is seen that the error increases substantially,

showing that the algorithm is unable to correctly estimate the trajectory in these conditions.

3.4 Conclusions

Overall, this quantitative assessment of a typical localization back end using a range of

measurement inputs has given some useful insight.

It can be seen that this typical pose-graph optimization method has low accuracy

with the relatively sparse measurements in this environment caused by the limited perspective

of sensors. However, while the lack of constraint to the network allows efficient nonlinear

least-squares optimization in a continuous space, parts of the estimate will likely be distant

from the real pipe network. This will impact the accuracy of the localization of features in

the network, such as faults detected by the robot, in global coordinates.

Prior knowledge and recognition of some of the nodes in the network is seen to
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be very effective at improving the accuracy of the estimate. This information effectively

constrains the estimate at various points, removing the uncertainty in the estimate at these

points, and reducing the accumulated uncertainty between these points. Even having prior

knowledge of only a small proportion of nodes is seen to give a large improvement to accuracy

in terms of the mean error. However, there is less improvement to the error rate, showing

that at this scale the even the low end of the range of values of linear uncertainty reported in

the literature will cause much of the estimates to be outside of the target accuracy threshold

for the medium scale localization along a length of a pipe. Prior knowledge of a large pro-

portion of the network is needed to produce a low error rate for most values of linear motion

uncertainty. However, even with full prior knowledge of the environment, angular motion

uncertainty has a large effect on the error rate, as the localization algorithm in continuous

space is unable to function as expected.

These conclusions inform the remaining work presented in this thesis. Prior knowl-

edge of the network is seen to be very useful, and the cost of acquiring it, which could range

from using existing network maps to surveying the area of operation to record the position

of the observable features above ground, would likely be worth the subsequent improvement

to localization. This prompts the investigation into localization, rather than localization and

mapping, in Chapter 6. A localization and mapping approach could certainly be valuable, but

is beyond the scope of this thesis. Problems and inefficiencies are found with the continuous

space localization algorithm used in this chapter, which motivates development of discrete

and hybrid continuous-discrete space definitions used in Chapter 6 and Chapter 7. The lim-

ited perspective of sensors is seen to be detrimental both at the large scale localization over a

network and medium scale localization along a pipe. Improvements to sensing are developed

in Chapter 4 and Chapter 5.



Chapter 4

Front-End: Hydrophone

Localization

4.1 Introduction

Chapter 3 evaluated the typical localization approach in the context of limited sensing in

the pipe environment. There it was seen that at a large scale, information found at the

connections between pipes in a network has a large effect on overall accuracy of the estimate.

However, even with full prior knowledge of the environment, error rate was found to increase

with uncertainty in linear motion, due to the error in estimation at the medium scale of

localization along a single pipe.

Therefore, detection and recognition of features observed as the robot moves along

a single pipe could improve the error rate of the trajectory estimate at the medium and

large scale. However, Chapter 1 and Chapter 2 concluded that, compared to typical robot

environments, features found using a typical vision approach are quite sparse, so recognition

of arbitrary features in the pipe could be difficult using conventional means.

Therefore, this chapter has two aims: firstly, to continue the development of a means

of acquiring information from arbitrary features in a pipe which is sparse in typical features,

56
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Figure 4.1: An illustration of the scope of this chapter, with the orange boxes indicating the scope

in the context of the rest of the localization system.
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and secondly, to measure the improvement in accuracy that can be found by recognising

features in a pipe.

This chapter contains work previously published in the paper Rob Worley et al.

“Robot localization in water pipes using acoustic signals and pose graph optimization”. In:

Sensors (Switzerland) (2020), pp. 1–23. doi: 10.3390/s20195584. url: https://www.

mdpi.com/1424-8220/20/19/5584. This paper continues previously published work [135,

33] of a coauthor Ke Ma. A localization algorithm is developed and evaluated here using

experimental and simulated hydrophone data. This experimental data was recorded by Ke

Ma, Michele M. Schirru, and Gavin Sailor. Figure 4.1 illustrates that this chapter consid-

ers aspects of both perception and of state estimation; this covers both the acquisition of

information from an atypical hydrophone acoustic sensor, and the incorporation of this in-

formation into a localization estimate. Figure 4.1 also shows that the localization problem is

confined only to a medium level of abstraction, considering the position of a robot along the

axis of a single pipe.

In previous work, a hydrophone emitter-receiver positioned on a robot has been

used to perform localization [135, 33]. The hydrophone emits a sound wave that interacts

with a pipe in a way that varies over space and so can be used to recognise location. The

limitation of previous work is that only online localization is done, which only estimates the

current location. Instead, in this work, the full trajectory is estimated which would allow

better estimation of the location of faults in the pipe detected by the robot. The objective,

information available, and methods used here are therefore different. This chapter presents a

novel solution for full trajectory estimation by augmenting a pose graph optimization method.

As described in Chapter 2, pose-graph optimization uses efficient, sparse, nonlinear

least squares methods to estimate the robot trajectory. This approach has been used to

estimate the large-scale robot trajectory in a network of pipes in Chapter 3, and the same

principles can be applied here to the medium scale, more precise localization in a single

pipe. These back-end estimation algorithms are commonly usable across application domains.

However, the front-end construction of the pose graph from sensor data can depend on the

application. Three alternative methods for constructing the pose graph from the spatially
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varying hydrophone acoustic signal are proposed and evaluated here: 1. quadratic fit, 2.

cross correlation, 3. phase correlation.

Chapter 2 described methods of using measurements of the ambient magnetic field

in an environment to improve robot localization. In much of this previous work, the robot

is moving in a two-dimensional environment, occasionally revisiting locations, and so the

approach is taken to find matches between measurements of the magnetic field. An approach

similar to this can be applied to the hydrophone measurements, which vary in a similar way

through the similarly one-dimensional environment. An expected limitation of the approach

in previous literature is the dependence on reliable matching between measurements, which

may not be possible.

The contribution of this chapter is that this work achieves a soft loop-closing effect

rather than only explicitly matching subsets of measurements to find loop-closures. This

exploits the continuous nature of the measured spatial field to reduce the sensitivity to ro-

bustness in feature detection and matching. This also exploits the fact that in this application

the robot is revisiting every point along its trajectory, rather than only occasionally revisiting

previously observed locations. This is shown to reduce the error rate in localization.

In order to evaluate the pose graph optimization algorithm, data recorded in a

5 metre long metal pipe filled with water, which is an order of magnitude longer than in

previous work [135, 33], is used. The performance of the algorithm is analysed in simulation

over much larger scales than can be achieved in a laboratory, which relates more closely to

real world pipe networks as described in Chapter 1. The simulations are based on synthetic

data that are derived from the experimental data to provide realistic evaluation.
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Figure 4.2: (a) Experimental acoustic signal data. (b) and (c) Synthetic acoustic signal data.

4.2 Methods: Acoustic Signal for Robot Localisation

4.2.1 Experimental Data

Buried pipes exhibit a vibration when excited by a sound wave. This vibration varies over

space and so can be used like a map for localization. The spatial field used in localization

is defined as a one-dimensional acoustic signal st varying along the pipe, observed at sample

time t.

Experimental measurement of a spatially varying acoustic signal st is available in

the literature [160]. This data was recorded using a hydrophone in a metal pipe to excite

a vibration in the kilohertz range in a 5 metre long water-filled pipe at 0.01 metre intervals

along the axis of the pipe. Figure 4.2(a) shows the experimentally measured spatial signal

[161].
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4.2.2 Synthetic Data

To evaluate the robot localization method over additional data sets and a larger spatial scale,

synthetic data sets are created using the experimental data. Figures 4.2(b) and 4.2(c) show

a signal simulated using the experimental data, which is used to extend the assessment of

the developed methods to challenging signals with some periodicity and similarity between

sections.

The robot’s motion is modelled at discrete time steps along the pipe, considering

only the motion along the axis of the pipe, and a measurement of the spatial field is taken

at each point. A trajectory is therefore made up of a set of discrete positions xr0:T and

corresponding measurements of the spatial signal s0:T and measurements of landmarks z0:T
if the robot is near to one. The robot’s velocity between each step is modelled as a random

process which results in drift in velocity from integrated additive Gaussian noise, giving

uncertainty in position, similar to in other work [69]. This is intended to model the effect

of variation in the robot’s pipe axis velocity depending on the small robot’s real orientation

and forward velocity within the pipe.

4.3 Methods: Robot Localisation using Pose Graph Optimiza-

tion

4.3.1 Pose graph optimization using a spatially varying signal

This section first defines the typical pose-graph optimization problem that can be used to

localise a robot in a pipe with respect to conventional features, such as pipe junctions and

corners. Secondly, the pose-graph optimization problem is augmented to allow flexible use of

a measured spatially varying signal.

It is assumed that a robot moves along a pipe according to the motion model

xrt = fu(ut, x
r
t−1) + wt (4.1)
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where xrt is the robot position in one dimension along the axis of the pipe at sample time t,

ut = ∆xt is an input motion, fu is the state transition function and wt is Gaussian random

state noise where wt ∼ N (0,Σu,t). In this case, fu is given simply by the linear function

fu(ut, x
r
t−1) = xrt−1 + ut (4.2)

however, for generality, the notation fu will be used here.

The robot is able to detect features such as junctions and corners in the pipe section,

where it is assumed that data association, the problem of estimating which measurements

correspond to which features, is known, giving the model

zmt = fz(x
r
t , x

i) + vt (4.3)

where zmt is the measurement at time t of landmark feature m, xm refers to environment

features m, fz is the nonlinear measurement function and vt is Gaussian random measurement

noise where vt ∼ N (0,Σz,t). The robot only makes measurements of features when they are

nearby, so for many time indices t there will be no measurements. Here is assumed that there

are two junction features, one at each end of a straight pipe.

The terms in equations 4.1 and 4.3 form the typical pose graph optimisation problem

[30], which is defined by the cost function

J = xrT0 Ω0x0

+

T∑
t

(xrt − fu(ut, x
r
t−1))

TΣu,t
−1(xrt − fu(ut, x

r
t−1))

+

T∑
t

M∑
m

(zmt − fz(x
r
t , x

m))TΣz,t
−1(zmt − fz(x

r
t , x

m))

(4.4)

where x0 is the initial state which has uncertainty Ω−1
0 , and T and I are the number of time

steps and features respectively.

It is desired to simultaneously optimize the trajectory estimate with respect to the

feature measurements and acoustic signal measurements. This would allow the incorporation

of prior knowledge, more feature measurements, or more signal measurements without further

alteration of the problem. Discrete features such as recognisable sequences of measurements
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could be detected in the signal which and recognised at different points in time, and could

be incorporated using equation 4.3. The novel approach taken here is to augment the cost

function with an additional term ϕ which defines a measure of inconsistency in the estimated

spatial signal measurements along the pipe. This allows the continuous spatial signal infor-

mation to be incorporated without requiring detection of discrete features. This augmented

cost function is given by

J = xrT0 Ω0x0

+
T∑
t

(xrt − fu(ut, x
r
t−1))

TΣu,t
−1(xrt − fu(ut, x

r
t−1))

+

T∑
t

M∑
m

(zmt − fz(x
r
t , x

m))TΣz,t
−1(zmt − fz(x

r
t , x

m))

+

T∑
t

ϕ(t,xr0:T , s0:T )TΣs,t−1ϕ(t,xr0:T , s0:T )

(4.5)

where x0 is the initial state which has uncertainty Ω−1
0 , and T and I are the number of time

steps and features respectively. x0:T and s0:T are positions and acoustic measurements along

the pipe, and Σs,t is the covariance of this field measurement model noise.

The function ϕ generally has the form

ϕ(t,xr0:T , s0:T ) = y(t,xr0:T , s0:T )− fs(t,xr0:T , s0:T ) (4.6)

where y is a function giving some measurement of the signal s and fs is a function giving the

expected value of that measurement, much like the terms z and fz respectively. Unlike the

typical cost function terms, this term can be a measure of difference in the abstract spatial

signal quantity, rather than difference in position in space.

The solution is sought as

x∗ = argmin
x

J(x) (4.7)

where x is given by

x =

xr0:T
x0:M

 (4.8)
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Figure 4.3: An illustrative block diagram outlining the process of incorporating spatially varying

acoustic signal measurements into pose-graph optimization.

This optimization problem is solved iteratively. The solution can either use analytical meth-

ods, where the gradient (or Jacobian) in the solution space is known, or can use numerical

methods to compute this gradient.

The process described here and in the rest of Section 4.3 is illustrated in Figure 4.3.

4.3.2 Spatial Signal Information Methods

This section presents two specific functions which can incorporate the spatial signal informa-

tion into pose-graph optimization. In this application, the robot moves twice along a pipe,

recording measurements of the spatial signal of vibration amplitude. These measurements of

the spatial signal can be used to improve the estimate of the robot’s trajectory.

The measured spatial signals will be distorted along the spatial axis due to the

uncertainty in the position along the pipe at which each measurement was taken. Aligning

the two signals, within the other constraints of the pose graph, increases the likelihood of

accuracy of the corresponding set of poses.

In this section, methods for incorporating information from the spatial signal mea-

surements to the pose graph are described, represented by the information methods block in

Figure 4.3.
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4.3.2.1 Quadratic Fit Prediction

For each pose, the poses and measurements within a chosen distance are used to create a

local quadratic fit, parameterized by θ2, θ1, and θ0. It is predicted that yt = st will lie on

this quadratic curve, as given by

fs,t = ŝt = θ2x
r2
t + θ1x

r
t + θ0 (4.9)

A multi-scale quadratic fit can be done, where the prediction is made for a number of window

sizes and all of the resulting information is incorporated into the optimization.

The Jacobian is needed to incorporate the prediction into the analytical optimiza-

tion, however in this case the calculation is difficult as the quadratic parameters θ2, θ1, and

θ0 are all functions of xrt . To simplify the calculation, θ2 and θ1 are treated as constants and

the Jacobian is computed as

Fs,t = 2θ2x
r
t + θ1 (4.10)

This approximation of θ2, θ1, and θ0 as constants means that the cost associated

with this prediction is only applied to one pose, xrt . There are therefore limitations on

the optimization methods that can be used (which are described in section 4.3.3) as the

information cannot be incorporated into Matlab’s poseGraph functions, for example.

In principle a prediction of the position of xrt could be made directly from the

quadratic fit. However in practice, for two signals of similar value the gradient of the linear

fit is very small and the prediction can be very far from the current estimate, leading to insta-

bilities in the optimization. Signals outside of the measurement axis range of the quadratic

function would have an undefined position estimate, so it is not always possible to do this at

all.

4.3.2.2 Phase-Correlation Prediction

The signal is split into two sets ([xrp1, sp1], [xrp2, sp2]), one for each traversal of the pipe.

Interpolation is used to create two sets of points ([xrq1, sq1], [xrq2, sq2]) of equal number Nq.
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These two sets of points can be split into arbitrary smaller sequences of the same length,

which could be denoted as s1 and s2. Phase-correlation can be used to find the relative shift

between two continuous signals, which could usefully be applied here. The phase-correlation

method is described by

C =
S1 ◦ S∗

2

|S1 ◦ S∗
2|

(4.11)

c = F−1[C] (4.12)

ĉ = max
x

c(x) (4.13)

∆x = argmax
x

c(x) (4.14)

where S1 and S2 are the Fourier transforms of s1 and s2, S∗
2 is the complex conjugate of S2,

F−1 is the inverse Fourier transform, and ◦ denotes the element-wise multiplication of the

two vectors.

The values used in equation 4.6 are given by

yt = 0 (4.15)

fs,t = ∆x (4.16)

The covariance can be set to be inversely proportional to ĉ. The Jacobian is simply defined

as

Fs,t = 1 (4.17)

4.3.2.3 Cross-Correlation Matching

Similarly to the process used in phase-correlation, the signal is split into two sets ([xrp1, sp1],

[xrp2, sp2]), one for each traversal of the pipe. Interpolation is used to create two sets of

points ([xrq1, sq1], [xrq2, sq2]) of equal number Nq. The normalized cross-correlation coefficient,

as used in related work [140], is then found between subsets of points ([xr1, s1], [xr2, s2]) of

smaller number (Ns and Ny), which are taken across the whole set of points. The normalized

cross-correlation coefficient is given by

γ =

∑
x(s1(x)− s1)(s2(x)− s2)√∑

x(s1(x)− s1)2
∑

x(s2(x)− s2)2
(4.18)
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and is a measure of the match between sets of points. Alternatively, as the magnitude of the

signals is seen in Figure 4.2 to be consistent at each point along the pipe, the sum of the

difference between the two subsets can also be used as a measure of a match, described by

η =

[∑
x

(s1(x)− s2(x))2
]−1

(4.19)

A value ϵ is found from

ϵ = ((1 + γ)η)2 (4.20)

If ϵ is greater than a threshold τγη, the poses corresponding to s1 and s2 are considered

matches and are added to the cost function term in equation 4.6 at poses corresponding to

the centre of the matching sections, x̃r1 and x̃r2. The measured distance and expected distance

are given by

yt = 0 (4.21)

fs,t = x̃r1 − x̃r2 (4.22)

Note that the choice to match the poses at the centre of each sequence is unlikely

to be accurate, however further matching within these sequences would give an increase in

computational complexity.

The correlation process to estimate the matching points x̃r1 and x̃r2 is dependant on

a number of poses in xr0:T , however, the simple approximation of fs,t in equation 4.22 allows

easy computation of the Jacobian as

Fs,t =
[
1,−1

]
(4.23)

The covariance Σs,t, can be set to be inversely proportional to the product of γ and

η, so that stronger matches are effectively weighted higher in the cost function in equation

4.4.

As described in Section 4.3.1, as this method makes an explicit match between two

features, the information could instead be incorporated into typical pose-graph optimization

formulation using equation 4.3.
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4.3.3 Optimization Solution Methods

To minimise the cost function in equation 4.5, the typical pose-graph optimization algorithm

uses the information form described by the parameters Ω and ξ, which is an inverse to the

covariance form, to parameterize the probabilistic estimation. This relationship is defined as

Ω = Σ−1, and ξ = Ωµ, for the covariance, Σ, and the mean, µ, of the probability distribution

of the pose estimate xr0:T .

The terms fu, fz, and fs in the quadratic cost function in equation 4.5 can be

linearized to derive an equation which is quadratic in x, the variable which is to be estimated.

This gives the linearised cost function

Jl = k + xrT0:TΩxr0:T + xrT0:T ξ (4.24)

where Ω is the information form matrix, which is a function of the uncertainty in mea-

surements and the Jacobian of the expected measurement models, and ξ is the information

form vector, which is a function of the same variables and also the measurements, expected

measurements, and current pose estimate.

The construction of this cost function corresponds to the construct pose-graph block

in Figure 4.3. The cost function in equation 4.24 can be minimized by using the relation

between the information form and covariance form to iteratively update the estimate of xr0:T .

This optimization corresponds to the final block in Figure 4.3.

The use of analytical optimization requires derivation of an analytical Jacobian

for the measurement and motion models. These tend to be known for the case of typical

mobile robot models, however the addition of the spatial field to the estimation can require

calculations which are difficult to derive in the case where large numbers of poses are used,

and can be prone to instability. Therefore, simplifications have to be made when using

this optimization method with some of the information methods described in Section 4.3.2.

These simplifications may add some uncertainty to the system being optimized, however the

iterative optimization is designed to function with uncertainty from the input data and from

the linearization required, so this is not a fundamental problem.
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The Gauss-Newton method, Levenbert-Marquardt method, and trust region meth-

ods, as examples, can be used to minimize a sum of squares function [162] by numerically

computing the Jacobian, rather than needing it to be explicitly defined. These methods, as

well as others, are implemented in Matlab’s Optimization Toolbox in the lsqnonlin function,

and Matlab’s Navigation Toolbox in the optimizePoseGraph function.

4.4 Results

The novel pose-graph optimization algorithm using an acoustic signal defined in equation 4.5

is evaluated in this section, comparing the three methods proposed above for incorporating

the acoustic signal into pose-graph optimization: quadratic fit, cross-correlation and phase-

correlation. These are compared to pose-graph optimization without using an acoustic signal,

just using landmarks features at each end of the pipe, as defined in equation 4.4. These pose-

graph optimization methods are also compared to dead reckoning (None).

The experimental data (shown in Figure 4.2(a)) and synthetic data (which is derived

from the experimental data, as described in section 4.2, and shown in Figure 4.2(b)-(c)), are

used to compare the effectiveness of the developed localization methods. The objective is to

estimate the trajectory of a robot that has travelled twice along a pipe.

The uncertainty in the robot’s position is modelled by integrated random normally

distributed noise on the robot’s velocity, which results in a drifting velocity. The variance of

the normally distributed noise added to the motion at each time step is equal to the noise

magnitude multiplied by the command motion. The robot’s motion is constrained between

0.2 and 1.8 times the command motion. This model is more complex than the model used in

the pose-graph optimization, given in equation 4.1, which assumes that the velocity is simply

given by a constant with additive normally distributed noise. This difference between the

localization model and the simulated reality is useful, as it reflects the practical application

where the model and true underlying motion process should be expected to differ.

An example of the use of the optimization methods is shown in Figure 4.4. The
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Figure 4.4: An example of the results of the one-dimensional pipe trajectory optimization illustrated

by the resulting spatial signal estimation, using the quadratic fit prediction and phase-correlation

methods.

optimized trajectory shown uses only the features at the ends of the pipe to improve the

estimate. The original dead reckoning estimate can be seen to differ substantially from the

true trajectory; the estimated trajectory is outside of the length of the pipe, and the shape

of the acoustic signal is shifted along the pipe. The original estimate can also be seen to be

inconsistent as the shapes of the signal recorded in each direction are not aligned. The pose

graph optimization trajectory uses a combination of the phase-correlation and quadratic fit

methods. It is seen that the estimate of spatial signal is more consistent, and more accurate

when compared to the true robot state.

The main result is shown in Figure 4.5 where the methods are compared using fifty

sets of random noise. The error rate is used as the metric to measure the performance of the

algorithm. The error in the estimate of each point in the trajectory is calculated, and the

error rate is defined as the proportion of the trajectory estimate for which the error is above

a threshold. In this case, the threshold is 0.5 metres, as established in Chapter 1 as a target

precision. This error rate is measured for each estimated trajectory.
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(b) 5m, 200 measurements
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(c) 20m, 100 measurements
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(d) 20m, 200 measurements
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(f) 30m, 200 measurements

Figure 4.5: A comparison of results from different methods of incorporating the acoustic spatial

signal into localization. Three different pipes are compared, each with two different numbers of

measurements.
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Figure 4.5 shows the error rate for each algorithm for three different spatial signals,

5 metres, 20 metres, and 30 metres long respectively, as illustrated in Figure 4.2. In each

case, the error rate is measured for 100 and 200 measurements. Boxplots are used to show

the distribution of error rate, which shows the quartile values and range, and outlier values

as red crosses.

The error rate using no sensing information (None) is seen to be substantial in all

cases, with a median of 0.4 in the 5 metre case, and with a higher value for the longer pipes.

This is expected as the longer trajectories allow for more accumulation of error in motion.

The use of Features is seen to reduced the error rate. In the 5 metre case, the median error

rate is zero, although there are some larger values, while is it reduced to 0.3 and 0.35 for the

20 and 30 metre cases. These values give a baseline for comparison for the methods using

acoustic sensing.

In the 5 metre case, the use of acoustic information is seen to reduce the error rate

further. Where the quadratic method (Quad) is used, the error rate is reduced so that all

nonzero values are considered statistical outliers. Similar results are seen for both 100 and

200 measurements. In the 20 metre case, it is seen that the use of acoustic information can

give a reduction in error rate, but this depends on the method. The CC and PC methods give

some improvement to performance, but the largest reduction in error rate is found when using

the Quad method, sometimes in combination with the CC or PC methods. The CC+Quad

method is seen to reduce the median error rate to zero when using 200 measurements, but

gives an increase in error when using only 100 measurements, showing a sensitivity to this

variable. A similar trend can be seen in the results for the 30 metre case, where the CC+Quad

method has a median error rate of less than 0.1.

For the 20 and 30 metre cases, which represent more realistic pipe lengths as de-

scribed in Chapter 1, the improvement to error rate can be quantified more easily. In the 20

metre case, the baseline Features method gives a median error rate of around 0.3. Relative

to this, the Quad and PC+Quad methods give around a 65% reduction in median error rate,

while the CC method gives a 50% reduction in median error rate, and the CC+Quad method

gives a 100% reduction in median error rate when there are sufficient measurements. In the
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30 metre case, the baseline Features method gives a median error rate of around 0.35. Com-

pared to this, the Quad and PC+Quad methods give around a 35% reduction in median error

rate, while the CC method gives a 15% reduction in median error rate, and the CC+Quad

method gives a 85% reduction in median error rate when there are sufficient measurements.

Each of the methods can also be compared by the upper quartile and range of

the error rate. While the median error rate can be reduced in comparison to the baseline

Features method by using the acoustic measurement information, the upper quartile error

rate is similar between the Features method and the acoustic methods in the 20 and 30 metre

cases. Even in the lowest case of median error rate found using the CC+Quad method, around

50% of trajectories have a nonzero error rate. Overall, these results therefore show the limits

on the improvement of the error rate of the localization estimate using this approach.

4.5 Discussion

The two aims of this chapter were firstly to develop a method of incorporating arbitrary

feature measurements made along a pipe in a localization estimate, and secondly to assess

the improvement to accuracy that can be found when using this information. The results are

discussed here in the context of these aims.

4.5.1 Summary of Results

This work has developed a pose-graph optimization algorithm that incorporates an acoustic

signal for robot localization in a pipe. The pose-graph optimization cost function in equation

4.5 was augmented with a novel term for incorporating information from a measured acoustic

property that varies along the robot’s trajectory. Three specific implementations methods of

incorporating information from an acoustic signal were developed and are compared in the

results (quadratic fit, phase-correlation and cross-correlation). It was found that the combi-

nation of quadratic fit and cross-correlation gives the best results when there are a sufficient

number of measurements. For the 20 and 30 metre pipe respectively, this method gives a re-
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duction in median error rate of 100% and 85%, relative to the typical pose-graph optimization

method. This improvement is larger than the cross-correlation method alone, which does not

require the presented augmentation to the pose-graph optimization, which gives a reduction

in median error rate of 50% and 15% for the 20 and 30 metre pipe respectively, relative

to the typical pose-graph optimization method. The proposed novel augmentation of the

pose-graph optimization method therefore shows an improvement to localization accuracy.

In the 20 metre case, the Quad method alone is seen to give an improvement to

performance, with a 70% reduction in error rate with 100 measurements, and a 60% reduction

in error rate with 200 measurements. The improvement found is smaller in the 30 metre

case, which could be due to either the properties of the spatial signal or the longer length of

trajectory. In the 20 and 30 metre cases, the CC method is seen to give an increase to the

median error rate when using only 100 measurements. This could be due to poor robustness

in the feature detection and matching process as predicted. Once an incorrect match has

been made, the spatial signal can become distorted so that further incorrect matches are

more likely to be made in subsequent iterations of the optimization. This effect from the

CC method varies between different cases, which indicates that the number of measurements

required to facilitate this method will vary across the environment. This method therefore

may not be reliable in application. In contrast, the Quad method is seen to perform similarly

with different numbers of measurements. The augmented pose-graph approach therefore

shows improved reliability and decreased sensitivity.

As described in Section 4.4, considering the upper quartile of the error rate showed

that even in the lowest case of median error rate, 50% of trajectories had a nonzero error

rate in the 20 and 30 metre cases. In the context of the application to locating faults in

pipes, discussed in more detail in Chapter 1, there is some chance that faults are not located

precisely enough to be found during excavation of the pipe.

Overall, the use of acoustic information can reduce the average trajectory estima-

tion error rate when the novel augmentation of pose-graph optimization is used. However,

the error rate is not reliably reduced, and many trajectory estimates contain erroneous es-

timates, which are more common in case of the longer pipes. This could be attributed to
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the properties of the signal used in this case, but could be expected as the longer trajectory

length allows more error to accumulate. This limited improvement to accuracy comes at the

cost of increased complexity in the design of the robot and the operation of the robot. This

motivates the use of alternative means of sensing which are able to more reliably improve

localization performance with a lower increase in complexity.

4.5.2 Comparison of Results

This quantitative result is difficult to compare to results found in the literature. The most

comparable results are from previous work using an acoustic signal to build a map for lo-

calization in a pipe [33] and other work using a magnetic field to improve localization in a

drilling robot [140]. In both cases, as in this work, the robot travels twice along the same

path and uses a continuous spatially varying field to improve localization. However, there are

differences in the aims and measures used in these other works that make a useful quantitative

comparison difficult to make.

In general, the principal difficulty is that methods in the literature compare the

dead reckoning approach with an estimate found using both knowledge of features and the

spatially varying signal. It is therefore difficult to decouple the effects of using a spatially

varying signal to better align estimates along the axis of motion, and the effects of simply

aligning the two parts of the trajectory using features. A second difficulty is that while

previous work uses the error, this work uses error rate to measure the performance of the

method. This measure is more useful as the result can be considered in the context of the

application, however it is therefore not possible to make a direct quantitative comparison

between these results.

In previous work using an acoustic field in a pipe, the error is reduced by 78%.

However, in this previous work the aim is for online localization, rather than full localization.

A measure of the total error would be larger for an online method than a full method,

so therefore a comparison to this result is not conclusive. This previous work also uses

deterministic uncertainty in motion, which limits the accumulation of uncertainty in the
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trajectory estimate.

In the case of the drilling robot, the error is reported to be reduced by 81% and

98% in the two experiments. However, in this case the robot’s position is estimated in three

dimensions, rather than one, so the dead reckoning error is very large as the uncertainty in

motion in each of the dimensions adds to the error when measured as Euclidean distance.

Therefore, pose-graph optimization should give a much larger relative improvement in a larger

number of dimensions, and a comparison to the results in this work would not be conclusive.A

similar improvement to accuracy might be found simply by aligning the two halves of the

trajectory in three-dimensional space, without consideration of the one-dimensional alignment

made using magnetic sensing.

Overall, this work therefore contributes a useful evaluation of the general method

of using measurements of a spatially varying property in pose-graph optimization, which

improves on previous work by using a more appropriate model of uncertainty, and by mea-

suring the trajectory error in the appropriate dimension. The results therefore show some

weaknesses and limitations of the general approach which are not clear in previous work.

4.5.3 Limitations

A fundamental limitation of the approach used in this chapter is described here. As described

previously, the approach is to construct an optimization problem which directly improves the

self-consistency of the estimate, which indirectly improves the absolute accuracy of the esti-

mate. While this approach is shown to be effective, the estimate error rate is not consistently

low.

The limited scope of the hydrophone sensor means that while sequences of local

features can be aligned to other local sequences, no measurement between distance features

in space can be made. This is expected to be the same case for features obtained using vision

in this environment; a camera would have a limited scope in a pipe compared to more general

applications and would only be able to observe nearby features, much like the hydrophone.

The consequence of this is that there is still some relative uncertainty between poses which
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is unlikely to be removed by combining the measurements made by only traversing the pipe

twice.

A sensor which could observe distant features, such as junctions at the ends of a

pipe, would be able to give an absolute, although still uncertain, measurement between poses

which would be useful for reducing the accumulated uncertainty.

4.6 Conclusions

The use of pose-graph optimization for localization of a robot in a buried pipe has been

demonstrated. As an alternative to visual localization methods, three methods of incorporat-

ing information from the measurement of an acoustic spatial field have been presented and

described, and compared using simulations based on experimental acoustic measurements.

The developed methods are designed to be applicable to any spatially varying property along

the robot’s trajectory, such as magnetic or electric fields.

The proposed best method for incorporating this acoustic information into local-

ization is a combination of a cross-correlation method and a quadratic fit method, which

requires a novel formulation of the pose-graph optimization problem. In experiments using

synthetic data over a 20 and 30 metre long pipe, the median error rate is reduced by 100%

and 85% when using this method compared to the typical pose-graph optimization method,

when sufficient acoustic measurements are available. In experiment using experimental data

in a 5 metre long pipe, the range of error rate values is reduced to zero when using this

method.

While the proposed novel approach shows an improvement to median error rate,

there is still a nonzero amount of estimate error shown experimentally. This limited im-

provement comes at the cost of increased complexity, and there is therefore motivation to

develop a sensing approach which efficiently reliably improves performance. The proposed

sensing approach was concluded to be fundamentally limited in scope, much like vision-based

sensing, and therefore methods to overcome this fundamental limitation are discussed in



CHAPTER 4. FRONT-END: HYDROPHONE LOCALIZATION 78

Chapter 5.

Further work could also be done on a number of aspects of this approach. The use of

pose-graph optimization in this work allows easy integration of other sensor measurements,

so improvements to the results could be found by integrating visual and inertial sensing.

The experimental evaluation could be improved by further real world testing in a number of

larger scale pipes, to investigate the robustness of the method to a range of acoustic data. The

method could also be extended to acoustic sensing in plastic pipes, where the hydrophone-

induced vibration found in metal pipes could be replaced with ultrasonic sensing which can

penetrate the plastic pipe. The sensitivity of the method to the experimental and algorithmic

parameters could be investigated, and a means of finding an optimal set of parameters could

be developed.



Chapter 5

Front-End: Acoustic Echo

Localization

5.1 Introduction

Chapter 2 concluded that low-frequency acoustic echoes could provide measurements not

possible with typical sensing methods such as video and lidar, which are limited in the pipe

environment. As illustrated in Figure 5.1, this chapter develops aspects of both perception

and state estimation using acoustic echoes, but focuses on these for medium-scale localization,

estimating the position of a robot along the length of a single pipe.

This chapter contains work from the paper Rob Worley, Yicheng Yu, and Sean

Anderson. “Acoustic echo-localization for pipe inspection robots”. In: IEEE International

Conference on Multisensor Fusion and Integration for Intelligent Systems (2020), pp. 2–

7. url: https://ieeexplore.ieee.org/document/9235225, and work from the paper

Acoustic Echo Sensing for Robot Localization in Pipe Networks, Rob Worley, Yicheng Yu,

and Sean Anderson, which is in preparation for submission to a journal. The former paper

presents an approach in a single pipe, while the latter paper expands the acoustic echo sensing

to a range of pipe configurations. Robot localization algorithms are developed and evaluated

79
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Figure 5.1: An illustration of the scope of this chapter, with the red boxes indicating the scope in

the context of the rest of the localization system.
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here using both experimental and simulated acoustic echo measurements. These acoustic echo

measurements have been made in collaboration with Yicheng Yu and Gavin Sailor, which is

noted again when the relevant data is discussed.

This chapter will be structured as follows: The general acoustic echo principles will

be described, then the localization method and result will be presented.

5.2 Acoustic Echoes in Pipes

If a robot has a loudspeaker and a microphone, it can emit a sound and listen to the response

which echoes from the environment, and use this information to make perceptions about its

surroundings. The acoustic impulse response, or transfer function, between the loudspeaker

and microphone is desired, which is the signal the microphone would detect if the speaker

emitted a single impulse of sound.

The received signal r(k) is given in discrete time, with time index k by [118]

r(k) = s(k) ∗ gx(k) =
t∑

j=0

s(j)gx(k − j) (5.1)

where the received signal r is given by the convolution of the transmitted signal s and the

pipe transfer function between the loudspeaker and microphone at robot state x through the

pipe, gx.

In practice it is not possible to directly acquire the impulse response, as an impulse

contains very low energy, and it cannot be produced by a speaker. Instead, the impulse

response can be estimated by sending a chirp signal containing a range of frequencies from

the loudspeaker, and using deconvolution between the measured and emitted sound, given

by

Gx(ω) =
R(ω)

S(ω)
(5.2)

where each term is the Fourier transform of the corresponding term above.

This impulse response will be a sum of a sequence of impulses, with a time delay

depending on the distance travelled between loudspeaker, source of reflection, and microphone
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[120, 164, 165]. This is represented as

gx(k) =

N∑
n=1

gnδ(k − κn) (5.3)

where each of N components is a Dirac delta impulse with magnitude gn and delay κn.

The time delay κn is converted to a distance to the source of reflection ξn by

ξn =
1

2
cκn (5.4)

where c is the wave speed. It is assumed that the wave speed is known, requiring calibration

in the case of operation in varying temperature and humidity.

The pipe environment can add some complexity to the propagation of acoustics,

while also containing the acoustic energy and therefore allowing the propagation over long

distances. At higher frequencies, the acoustic propagation in the pipe becomes more com-

plicated due to the dispersive wave effect, and the sound can effectively take multiple paths

along the pipe, making estimation of the time of arrival of acoustic echoes difficult. Only the

plane wave behaviour below this frequency is desired, where the sound travels directly along

the axis of the pipe. Therefore, a low-pass filter is applied to the transmitted and received

signals. A high-pass filter is applied to the response to remove low frequency oscillation in the

impulse response, allowing easier detection of each impulse component. This filtering adds

delay which is removed using cross-correlation between the filtered pipe impulse response

and the impulse response of the filter itself, and oscillation which is removed using envelope

detection.

5.3 Echo-Localization Measurements in Single Pipe

This section will describe the acoustic echo measurements made by a robot in a simple single

pipe environment, which gives a useful illustration of the properties of the measurements.

Several experimental measurements have been made in the single pipe environment

which can be used to demonstrate a localization algorithm based on acoustic echoes. Figure
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Figure 5.2: The pipe used to record acoustic echo data, and an illustration of the robot emitting a

sound which echoes from the ends of a pipe. Three different scenarios are shown, which have been

created experimentally. The ends of the pipe are either open, closed, or filled with absorber.

5.2 shows the experimental pipe, and an illustration of the acoustic echo concept in a single

pipe.1

Figure 5.3(a) shows the signal at different states of the signal processing: filtering,

correlation, and envelope detection. Figure 5.3(b) shows the response found from measure-

ments made in the 15 metre pipe seen in Figure 5.2, where the robot is 1.5 metres from

one end. Figure 5.3(c) shows the estimated impulse response in the form of Equation 5.3,

found using envelope detection, from which measurements ξn can be taken, as found by a

peak detection function which simply finds the most prominent parts of the impulse signal.

The first impulse corresponds to the direct path between the source and receiver,

and is ignored in the subsequent methods. The second and third impulses correspond to first

order echoes from the ends of the pipe. Figure 5.3(d) shows that as the robot moves, these

impulses move accordingly, so can be used as measurements of map features in localization.

The fourth impulse corresponds to the path equal to twice the length of the pipe,

giving a distance to the reflection source equal to the pipe length, 15 metres. In Figure 5.3(d)

an impulse at this distance is seen for every robot position, so is a static measurement which,

if used in the same way as the other measurements, would incorrectly appear to correspond

to a feature which varies in position.

The further impulses correspond to the first order echo signals which have then
1These measurements were taken in collaboration with Yicheng Yu.
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10-4 (a) Filtering Impulse Response
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10-4 (b) Acoustic Impulse Response
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(d) Motion of features
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Figure 5.3: An illustration of the acoustic signal processing used to estimate the distances to

reflective features in the pipe from the robot.
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travelled the path of the static measurement2, adding a further delay equal to the length of

the pipe. The multiple order echoes are simply offset in distance by multiples of the length of

the pipe. Therefore, they could be used as direct measurements of the positions of the echo

sources if the offset can be detected and removed, or as measurements of position of fictional

echo sources outside the pipe.

Evaluation of this front-end acoustic processing shows that the measured distances

are well modelled as normally distributed additive noise on the true distance, with a mean

of zero and a standard deviation of 0.09 metres.

5.4 Echo-Localization Methods in a Pipe Network

This section will describe the acoustic measurements, localization methods, and results from

experiments in a small network of connected pipes.

5.4.1 Experimental Acoustic Measurements

In this section, the pipe in which acoustic echo measurements are made is expanded in

complexity slightly compared to section 5.3. Figure 5.4(a) shows an experimental pipe which

is made up of a 27.6 metre long pipe, with a 2.2 metre long lateral connection at 21.6

metres from one end of the pipe. As described in Chapter 1, in practical infrastructure,

pipe networks are made up of large pipes like this which each have a number of lateral

connections, connecting to each house along a road for example. This experimental pipe is

therefore somewhat representative of the real infrastructure. The pipe is made up of separate

sections 3.6 metres in length. Several acoustic echo measurements have been made in this

pipe.3

In this experiment, the robot moved from a starting position of 4.5 metres from one
2Equivalently, signals which have travelled the path of the static measurement then the path of a first order

echo.
3Yicheng Yu and Gavin Sailor collected the data presented here.
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Figure 5.4: A photograph of the small pipe network used to record experimental acoustic echo data,

and an example set of acoustic echo measurements.

end, to 18.5 metres, making an acoustic echo measurement every 2 metres, and making an

odometry measurement between each acoustic measurement. Figure 5.4(b) shows a set of

acoustic impulse responses measured at different positions along the pipe. As observed in the

single pipe case, it can be seen that some impulses appear closer to the robot as it moves,

specifically the group of three impulses corresponding to the lateral connection, the end of

the lateral connection, and the end of the main pipe. Similarly, an impulse corresponding

to the other end of the main pipe appears further from the robot as it moves. As well as

this, impulses which do not vary in distance as the robot moves are seen, which are the static

impulses described previously. The more complex pipe geometry means that there are more

of these static impulses, which appear to correspond to the length of the main pipe, and also

the distance along the pipe to the lateral connection, and this same distance plus the length

of the lateral connection.

Overall, it can be seen that the slight increase in pipe complexity produces a sub-

stantial amount of additional impulses and an increase in the information observed from

the environment. The additional information does, however, increase the complexity of the

localization problem.
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5.4.2 Problem Definition

The robot moves along the axis of a pipe by a known input ut to position xt at time t with

the state-space model

xt = xt−1 + ut + wt (5.5)

where additive normally distributed noise wt is added to ut at each step. This models the

uncertainty in motion along the axis of the pipe due to obstruction to motion such as debris

and due to unmeasured motion off the axis of the pipe. The aim is to estimate xt in the

presence of noise wt. After moving, the robot stops and finds the acoustic impulse response

as a set of Nt distance measurements ξt =
{
ξ1t ξ2t . . . ξNt

t

}
In a practical application, the position of each end of the pipe may be available, as

the manhole features at each end are observable above ground. As described previously, and

illustrated in Figure 5.1, this chapter is focused on localization of a robot in a single pipe, so

the assumption that this prior knowledge is available is sensible. In future work, if a robot is

moving through a network of pipes, it may not know the length of the pipe with certainty,

so this assumption may need to be relaxed. Therefore, the localization algorithms described

in this Chapter are able to use prior knowledge of the position of features at each end of the

pipe, which is done similarly to the approach in Chapter 3.

5.4.3 Robot Localization Methods

5.4.3.1 Map and Measurement Model

From a computed acoustic echo impulse response, the distance to sources of reflection, or

features, in the environment can be estimated. It should be noted that the measurement

of distance does not correspond to the euclidean distance to the feature, but instead to

the distance along the pipe network to the feature. The distance measurement is therefore

one-dimensional, given by ξjt , which is the measurement of distance to feature j at time t.

Here it will be assumed that the pipe network is part of a drainage pipe network.
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Therefore, at each end of the pipe there will be a manhole, and along the main pipe there

will be an arbitrary number of lateral connections to small pipes, as described in Chapter 1.

The manholes and each end of the lateral connections will all cause acoustic echoes, and so

the model p(zt|xt,M) can be constructed which gives the measurements that are expected

at a given position xt.

Pipe i can be described by

Mi =
{
Mi

c =
{
0, 7, 15, 25

}
,Mi

l =
{
0, 2, 2, 0

}}
for a 25 metre long pipe with a manhole at either end, and five lateral connections which

are each 2 metres long. Relative to this, the robot’s position would be given in the same

one-dimensional coordinates, for example xt = 10. The measurement model would consist of

three sets of components: The first subset would describe the echoes from each of the lateral

connections and manholes, and would be a set of distributions centred around{
|mj − xt| : mj ∈ Mi

c

}
=

{
10, 3, 5, 15

}
which describes the distance to features along the main pipe. The second subset would

describe the echoes from the features at the end of each of the lateral connections, which is

more complex as the distance also includes the length of the lateral connections, described

by MlΛ. This is given by{
|mj

l − xt|+mj
l : j ∈

{
1, . . . , J

}
,mj

c ∈ Mi
c,m

j
l ∈ Mi

l

}
=

{
10, 5, 7, 15

}
The third subset describes the echoes from two features, where the sound travels from the

robot, to one feature, then another, then back to the robot. When the robot is between

any two features in the environment, there will always be a static echo which travels a total

distance equal to twice the distance between those two features. In this case this is given by{
|mj

c −mk
c |+ njlm

j
l + nklm

k
l :{

j, k ∈
{
1, . . . , J

}
,mj

c,mk
c ∈ Mi

c,m
j
l ,m

k
l ∈ Mi

l : m
j
c < xt,m

k
c > xt

}
, njl , n

k
l ∈

{
0, 1

}}
=

{
15, 25, 8, 18, 10, 20, 17, 12

}
While this description of the set of components is quite complicated mathematically, it is

simple to implement algorithmically. It might be desirable to denote each different type of



CHAPTER 5. FRONT-END: ACOUSTIC ECHO LOCALIZATION 89

feature as a subset of the features, for example if it was possible to distinguish between the

features. However, here the manhole and lateral connection features are all interpreted by

the algorithm to be from the same set of indistinguishable features.

5.4.3.2 Simple Localization Algorithm

Given the measurements zt and the probability distribution p(zt|xt), a practical means of

implementing Bayes optimization is needed.

For comparison to the advanced algorithm proposed in this Chapter, a simple algo-

rithm is implemented which is based on a typical robot localization approach. This simple

algorithm is based on pose-graph optimization, but is designed with the assumption that

static echoes have been detected and removed from the measurement sets, and with the

assumption that the robot does not pass lateral connections along the pipe axis.

A pose-graph optimization algorithm is used to estimate the robot’s trajectory and

the position of reflective features, given by x0:T , using all the measurements z1:T and u1:T

simultaneously, as in equation 2.11. The algorithm aims to find a value for x0:T which

minimizes, in a weighted least squares sense, the difference between the measurements z1:T

and u1:T , and the equivalent values from the models p(zt|xt) and p(xt|xt−t, ut).

A scan-matching [166] approach is used to estimate correspondence between features

detected in different measurement sets. The implementation of this approach here has been

specialised to the acoustic echo measurements made in this case, which allows for some

simplification as the space has one dimension rather than the typical two, but also requires

some additional complexity as the measurements are directionless.

5.4.3.3 Advanced Localization Algorithm

Again, given the measurements zt and the probability distribution p(zt|xt), a practical means

of implementing Bayes optimization is needed. This section describes in detail the implemen-

tation outlined in Algorithm 1.
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Algorithm 1 Echo Localization Algorithm
Get input variables
input ξ1:T =

{
ξ1, ξ2, . . . , ξt, . . . , ξT

}
input u1:T =

{
u1, u2, . . . , ut, . . . , uT

}
input Qt, Rt

Estimate measurement location[
τ0:T

]
=estimate-measurements-location

(
ξ1:T , Qt

)
Classify static measurements[
ξΛ1:T , ξ

z
1:T

]
= estimate-measurements-class

(
ξ1:T , τ0:T , Qt

)
Do pose-graph optimization[
x̂0:T ,m

]
= pose-graph-optimization-1D

(
ξ1:T , u1:T , x0

)
Classify lateral connections[
ξc1:T , ξ

l
1:T

]
= estimate-feature-class

(
x̂0:T , u0:T , ξ

z
1:T , τ0:T , Qt, Rt

)
Do pose-graph optimization[
x̂0:T ,m

]
= pose-graph-optimization-2D

(
ξc1:T , ξ

l
1:T , u1:T , x0

)
As in the simple algorithm, a pose-graph optimization algorithm is used to estimate

the robot’s trajectory and the position of reflective features, given by x0:T , using all the

measurements z1:T and u1:T simultaneously.

There is a nontrivial data association problem of estimating the correspondence

between measurements and features previously observed in the environment. As described in

Section 5.4.3.1, the sets of acoustic measurements contain useful acoustic echoes and static

acoustic echoes which need to be classified and processed differently, and the useful acoustic

echoes are both from features along the main pipe and from lateral connections.

Poses in the same section of pipe need to be identified to classify and process the

static acoustic echoes. Algorithm 2 describes a method of doing this using only acoustic

echoes. To do this, a pose-graph is constructed, where the edges between each node corre-

spond to the probability that the two nodes, or poses, are within the same section of pipe,

and therefore have the same static acoustic echoes. This probability is estimated using the

Kullback-Liebler Divergence, and k-means clustering is used to estimate a which values of

divergence correspond to two poses within the same section of pipe. Spectral graph partition-
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Algorithm 2 Estimate Measurement Location
input ξ1:T =

{
ξ1, ξ2, . . . , ξt, . . . , ξT

}
, Qt

Get static measurement probability distribution over space for each measurement set
for t =

{
1, 2, . . . , T

}
do

p(Λt|ξt) =
∑

nN (µ = ξn, σ
2 = Qt)

end for

Measure the difference between each distribution
for

(
t1, t2

)
=

{(
1, 1

)
,
(
1, 2

)
,
(
1, 3

)
, . . . ,

(
2, 1

)
, . . . ,

(
T, T

)}
do

Get Kullback-Liebler Divergence for each pair of time steps, creating matrix D

Dt1,t2 = D(p(Λt1 |ξt1)||p(Λt2 |ξt2)) =
∑

Λ p(Λt1 |ξt1)log
(
p(Λt1 |ξt1)
p(Λt2 |ξt2)

)
end for
DΛ = 1

2

(
D +DT

)
Determine threshold for similar measurement sets based on divergence{
DΛ

1 , D
Λ
2

}
= k-means

(
DΛ, N = 2

)
l = argmin

k∈
{
1, 2

} {
mean

(
DΛ
k

)}
δD = mean

(
DΛ
l

)
+ std

(
DΛ
l

)
Estimate probability that two measurement sets were taken in the same pipe section
p̂Λt1,t2 = p̂(Λt1 = Λt2 |ξt1 , ξt2) = −S(DΛ

t1,t2 , µ = δD, σ2 = Qt) using sigmoid function S

Construct pose graph with adjacency matrix P̂Λ
0:T,0:T

Use spectral graph partitioning
Do eigenvalue decomposition
LΛ = graph-laplacian

(
P̂Λ

)
find v2 using λ2 = v2

TLΛv2 where λ2 is the second smallest eigenvalue of LΛ

tΛi∈1,2,...,I = find-peaks (∆v2)

τi = tΛi:i+1, i ∈ 1, 2, . . . , I

Algorithm 3 Estimate Measurement Class
input ξ1:T =

{
ξ1, ξ2, . . . , ξt, . . . , ξT

}
input τi, Qt

Estimate the static measurements for each of the sets of time
for i ∈ 1, 2, . . . , I do

ξΛτi = find-peaks
(∑

t∈τi p(Λt|ξt)
)

ξΛt = ξΛτi , t ∈ τi{
ξzt
}
=

{
ξt
}
−

{
ξΛt

}
end for
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Algorithm 4 Estimate Feature Class
input x̂0:T , ξz1:T =

{
ξz1 , ξ

z
2 , . . . , ξ

z
t , . . . , ξ

z
T

}
input τi, Qt, Rt

Create sets of hypothetical features (xt, lt) for each measurement set through time
for t ∈

{
1, 2, . . . , T

}
do

for n ∈
{
1, 2, . . . , N

}
do

Project each measurement into the two-dimensional space (x, l)
x̂t ± ξnt = xnt + lnt defines a subspace occupied by each measurement
Hypothesise features in the two-dimensional space using pairs of measurements
for m ∈

{
1, 2, . . . , N

}
,m ̸= n do

Compute hypothetical feature based on features n and m
lmt = 0, ξmt = xmt = xnt , lnt = ξnt − xnt
Create feature pair (xt, lt) = (xm,nt , 0) , (xm,nt , lnt ) and add to vector (xt, lt)

end for
end for

end for

Find the most likely alignment between sets of features given (xt, lt)
for t1 ∈

{
1, 2, . . . , T

}
do

for t2 ∈
{
t1, . . . , T

}
do

pξ = corr ((xt1 , lt1) , (xt2 + δx, lt2) , Qt)
pu = N (µ = 0, σ2 = Σu,t (t2 − t1))(δx)
∆xt = argmaxδx

{
pξpu

}
(xt2 , lt2) ⇐ (xt2 , lt2) + (∆xt, 0)

end for
end for

Combine sets of features
p (m|xm, lm, ξz1:T ) =

∏
τ∈τ

∑
t∈τ

∑
nN

(
µ =

(
xnt2 , l

n
t2

)
,Σ2 = QtI

)
Measurements ξmt of features m where lm = 0 are added to the set ξct
Measurements of other features m are added to the set ξlt
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ing methods are used to separate the pose graph into different discrete regions with different

echo measurements.

With this estimation of relevant subgraphs, the static acoustic measurements can

be estimated by comparing measurement sets corresponding to nodes in each subgraph. The

probability distributions across the one-dimensional pipe axis space are summed, and the

largest peaks are identified as those which likely correspond to static measurements, as they

have been observed multiple times. This is described in Algorithm 3.

The pose-graph is then constructed and solved in the typical way [30], in a sim-

ilar way to the approaches in Chapter 3 and Chapter 4. This optimization is denoted as

pose-graph-optimization-1D in Algorithm 1.

The echo measurements now contain echoes from lateral connections and from the

lateral pipes. These again need to be classified to improve localization and allow mapping.

From one section of the pipe, lateral connections and laterals will be indistinguishable based

on position. Only when observing a lateral from both directions is it possible to make a

classification estimate, and it is not trivial. Algorithm 4 describes a method to make this

classification. A two-dimensional space (x, l) is defined, where one dimension corresponds to

the position along the pipe axis, and one dimension corresponds to distance from the pipe

axis. Each echo is projected into this space, and occupies a linear subspace. It is expected

that a lateral and lateral connection will exist as a pair at the same position along the pipe

axis. The subspace can then be reduced again to a set of points which likely correspond to a

lateral echo in the space. Sets of points in this space can be used to create a two-dimensional

probability distribution across the space, by applying a Gaussian kernel to each point. The

probability distributions corresponding to each set of measurements can be combined and

from the resulting distribution, features can be simply classified as either laterals or lateral

connections.

A second pose-graph optimization is done, named pose-graph-optimization-2D

in Algorithm 1. This pose-graph optimization can use the classification of lateral and lateral

connection features to reduce the confusion from measurements of the different types of
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feature. Simultaneously, the mapping of the environment can be done, giving a result in two

dimensions, in the space (x, l) defined above. Using the acoustic measurements described in

Section 5.4.3.1 alone, it is not possible to determine the direction of each feature from the

axis. This direction could be estimated by incorporating information from other sensors, or

by using more advanced acoustic processing, but is beyond the scope of this work.

5.5 Echo-Localization Results

This section presents results which evaluate the proposed localization method. This is done

first in comparison to a more simple algorithm for localization using acoustic echoes, and

then done over a variation in four parameters which describe the uncertainty in the simulated

robot’s motion and sensing.

5.5.1 Localization Algorithm Comparison

Figure 5.5 shows the performance of the Simple and Advanced algorithms measured in simu-

lation based on the experimental data shown in Figure 5.4. Each graph shows the error rate

of the algorithm when estimating a trajectory along a pipe which is the proportion of time

for which the trajectory estimate error is above 0.5 metres, as established as a threshold in

Chapter 1. This error rate is shown for 25 simulated trajectories as a boxplot, which shows

the median and quartile values. This measurement is shown for a range of values of odometry

measurement uncertainty, where σu can be related to the motion model in equation 5.5 as

the motion uncertainty wt is drawn from a normal distribution with a standard deviation of

σu. The simulated robot moves forwards by around 2.5 metres before stopping and making

an acoustic echo measurement. This motion is repeated along a 50 metre long pipe. In all

cases the algorithms incorporating acoustic echo sensing are compared to an estimate made

using only odometry.

As described in Section 5.4.3.2, the Simple algorithm is designed with the assump-

tions that static measurements are removed and that lateral connections are not passed by the
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Figure 5.5: A comparison of the Simple (red) and Advanced (blue) algorithms, in the case: (a)

without static measurements or lateral connections; (b) with static measurements; (c) with lateral

connections; (d) with both static measurements and lateral connections.
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robot. Figure 5.5(a) shows the performance of the Simple and Advanced algorithms in a case

where these two assumptions are valid. The two algorithms are seen to improve substantially

on the estimate made using only odometry for nonzero odometry uncertainty. However, the

Simple algorithm estimate error rate increases when odometry uncertainty becomes larger.

Figure 5.5(b) shows the comparison in the case that static measurements are not removed

from the measurement sets. In this case, the error rate of the Simple algorithm is still low for

very low odometry uncertainty, but increases quickly and substantially as odometry uncer-

tainty is increased, while the Advanced algorithm shows a low error rate. Figure 5.5(c) shows

the comparison in the case that the robot passes lateral connections along its trajectory. In

this case, the Simple algorithm error rate becomes substantial for even the lowest odometry

uncertainty, and increases as odometry uncertainty increases. Figure 5.5(d) shows the com-

parison in the case that both of the assumptions are not valid, so static measurements are

not removed and the robot passes lateral connections, which represents the most challenging

and realistic case. Here the Simple algorithm error rate is consistently high, while the Ad-

vanced algorithm error rate remains low, although it does increase with increasing odometry

uncertainty.

These results show the need for the Advanced algorithm when incorporating acoustic

echo measurements in the most realistic case, and justifies the additional complexity when

using the novel approach proposed here.

5.5.2 Localization Algorithm Evaluation

The performance of the Advanced algorithm described in Section 5.4.3 is evaluated over a

variation in different parameters describing the uncertainty in the robot’s motion and sensing.

The uncertainty in the robot’s motion σu and uncertainty in the measured distance

for each measurement σz are varied. To model error in the front-end measurement and

processing, a random number of false positive measurements can be added to the measurement

set at each time step, and a random number of true measurements can be removed from

the set, creating false negative measurements. This random number in each case is drawn
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Figure 5.6: An evaluation of the Advanced algorithm (blue) compared to the use of odometry (black)

and odometry and prior knowledge (grey) over variation in magnitude of four different sources of

uncertainty.
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randomly from 0 to θfp and θfn for false positives and false negatives respectively. Figure 5.6

shows the results for variation in each of these variables. The default values for each variable

are σu = 0.5, σz = 0.1, θfp = 1, and θfn = 1.

Simulation is used to measure the algorithm error rate over 20 trajectories. A 75

metre long pipe is simulated, with three lateral connections. The robot is set to move around

2.5 metres between making each acoustic echo measurement, so each trajectory is made of

around 30 positions. For comparison, two odometry-based methods are also used. The first

uses only odometry, and the second uses odometry and prior knowledge of the position of

each end of the pipe, as described in Section 5.4.2.

Figure 5.6(d) shows that the error rate of the two odometry-based methods increases

quickly with increasing odometry uncertainty. The use of prior knowledge is seen to reduce

the error rate in each case slightly, but not substantially. This is different to the results seen

in Chapter 4, where the use of prior knowledge of the pipe length decreased error rate. In

the case here the pipe is around three times the length used in Chapter 4, and while the

estimate error at each end of the pipe will be zero, there is a longer length over which error

can accumulate, and the probability is higher that an estimate will be above the threshold

of 0.5 metres.

Figure 5.6(a) shows that the Advanced algorithm is almost unaffected by false pos-

itive measurements, as the error rate does not increase over the tested values. As the false

positive measurements of distance to features are drawn from a random distribution, it is

unlikely that any of them would take a value which could cause errors in localization. Con-

versely, Figure 5.6(b) shows a substantial sensitivity to false negative measurements. A

function which detects measurements in the echo impulse response would have some balance

between probability of false positive and false negative detection. From these results, it can be

concluded that such a function should aim to prevent false negatives at the cost of increased

likelihood of false positives, to improve the subsequent localization estimate.

Figure 5.6(c) shows that the algorithm’s performance in the presence of increasing

measurement uncertainty. The error rate is seen to begin to increase when the measurement
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uncertainty becomes greater than 0.25 metres. This value can be compared to the uncertainty

in measured distance measured from the experimental data in Section 5.3 of 0.09 metres. This

shows that there is a large margin in the variation of quality of sensing which can be used for

successful localization. This is useful as in practice, measurements may be less precise than

in experiment due to a less controlled environment.

Figure 5.6(d) shows that the algorithm’s performance in the presence of increasing

motion uncertainty. The values of uncertainty are used to determine the noise added to

the command robot motion of around 2.5 metres. The localization error rate begins to

increase when the odometry uncertainty becomes larger than 1.25 metres. For larger values

of odometry uncertainty, the upper quartile error rate increases, while the median error rate

remains close to zero. The relative motion uncertainty can be compared to the values from

the literature shown in Table 1.3. A range of values of motion uncertainty are seen in the

literature, from as low as 1% of distance travelled to 35% of distance travelled. Here, the

acoustic echo localization error rate begins to increase when the motion uncertainty standard

deviation becomes greater than 50% of the distance travelled, while the odometry localization

error rate is greater than 80% at this value of uncertainty. Therefore, while the error measured

in the literature can not be compared directly to the standard deviation of uncertainty used

in this experiment, this result is an indication that the use of acoustic echoes for localization

is effective at all values of motion uncertainty seen in the literature.

While the sensing approaches taken here and in Chapter 4, acoustic vibration mea-

surement and acoustic echo measurement, may not both be possible in a given pipe environ-

ment, their performance can be compared. In both cases, the results measure the performance

of localization along the length of a single pipe using the error rate. The results can be com-

pared by finding values of uncertainty which give similar error rates for the odometry-based

methods in Figure 4.5 and in Figure 5.6, and then comparing the error rates for the estimates

made using the acoustic sensing.

In Figure 5.6, at the default value of odometry uncertainty of 0.5 metres, the error

rate of the odometry-only estimate is similar to the odometry-only estimates in Figure 4.5.

In Figure 4.5, the median error rate found using the acoustic vibration measurements can
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be as low as zero, while the upper quartile and range of error rates are around 0.4 and 0.8

respectively. In Figure 5.6, at the comparable value of odometry uncertainty, the median

error rate is zero, and the upper quartile and range of the error rate is below 0.1 for a large

range of values of other uncertainty variables. This shows that the acoustic echo approach

proposed in this Chapter gives a more reliable improvement to accuracy than the acoustic

vibration measurement proposed in Chapter 4.

Overall, the acoustic echo localization approach is seen to be robust to false positive

measurements, measurement uncertainty, and motion uncertainty. In the case of measure-

ment and motion uncertainty, the proposed approach is robust to larger magnitudes than

those seen experimentally or reported in the literature, which gives some confidence that the

approach will work when applied in practice.

5.6 Conclusions

The aim of this chapter was to develop a novel approach of using acoustic echoes well suited

for robot localization and mapping in the pipe environment. The acoustic sensing is able to

observe features at a larger distance than is possible for conventional sensors, which increases

the perspective of the robot. A typical estimation algorithm, pose-graph optimization, has

been augmented with additional processing which is shown to be necessary for realistic mea-

surements. This augmented Advanced algorithm has been shown to be able to incorporate

information from this acoustic echo sensing, and has been shown to benefit from additional

information which can be found from the measurements.

Detecting acoustic echoes from features in the environment has been shown to be

well suited for application in pipes as the sound propagates sufficiently long distances through

a network, as demonstrated experimentally. The novel Advanced localization algorithm has

been shown to be necessary in more realistic environments, and has been shown to give a

low error rate over the range of conditions expected from the literature. The approach, from

sensing to estimation, has been shown to be robust to various sources of uncertainty, and the

expected accuracy and reliability of the output estimate has been found experimentally for
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a wide range of parameters.

Further work could be done to evaluate the approach on a larger set of data, with a

larger range of pipe characteristics and configurations. Further developments are being made

in the methods for processing the acoustic echo measurements. Improvements to the signal to

noise ratio both from hardware and from the algorithmic approach are being made, allowing

more reliable detection of features in the environment. Work is being done to classify or

recognise the sources of acoustic echoes by the characteristics of the measured signal, which

could be easily and usefully incorporated into the localization estimate described here.



Chapter 6

Back-End: Hybrid

Continuous-Discrete Space

Localization

6.1 Introduction

As described in Chapter 2, while previous work on robot localization in pipe networks has

typically estimated the robot’s position in a continuous state space, the environment can be

easily described by a discrete state space, where the map is made up of a number of discrete

connected places. Chapter 2 also described the idea of a hybrid continuous-discrete state

space, where the environment is represented as a set of discrete connected places which each

have some continuous space within them. Chapter 3 concluded that these approaches offer

improvements over the typical continuous approach.

This chapter describes the development of back-end localization algorithms for the

pipe network environment, developing from state of the art algorithms for this environment,

and using novel approaches to provide substantial improvements to performance in terms

of efficiency and robustness. Additionally, the performance of these algorithms is measured

102
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Figure 6.1: An illustration of the scope of this chapter, with the blue boxes indicating the scope in

the context of the rest of the localization system.
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more thoroughly than in related literature.

First, the discrete state space approach will be developed, based on work published

in Rob Worley and Sean Anderson. “Topological robot localization in a pipe network”. In:

UKRAS20 Conference: “Robots into the real world” Proceedings (2020), pp. 59–60 and Rob

Worley and Sean Anderson. “Topological robot localization in a large-scale pipe network”.

In: Towards Autonomous Robotic Systems, TAROS 2020 1 (2020). doi: 10.31256/zw1wq5m,

and its limitations will be described. Secondly, the hybrid continuous-discrete state space

will be developed, based on work published in Rob Worley and Sean Anderson. “Robust

Efficient Localization of Robots in Pipe Networks using a Particle Filter for Hybrid Metric-

Topological Space”. In: 2021 European Conference on Mobile Robots (ECMR) (2021) and

Rob Worley and Sean Anderson. “Robot Localization in a Pipe Network using a Particle

Filter with Error Detection and Recovery in a Hybrid Metric-Topological Space”. In: 2021

IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems

(MFI) (2021), pp. 1–8. doi: 10.1109/mfi52462.2021.9591168, which shows substantial

novel improvement over existing comparable approaches.

Figure 6.1 illustrates the focus of this chapter on high and medium level localization,

and that the focus is not on the details of how the relevant measurements are acquired.

6.2 Problem Definition

6.2.1 Problem Definition in General

The robot’s environment consists of nodes (junctions and corners) connected by links (pipes).

An example of this environment is illustrated in Figure 6.2.

The robot localization algorithm estimates the posterior distribution p(xt|u1:t, z1:t),

which is the probability distribution over possible current states xt given the sequence of

uncertain observations u1:t and z1:t. The relationship between state xt and measurements ut
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Figure 6.2: An example network of pipes used in this work.

and zt is defined by

xt = fu(xt−1,ut) (6.1)

zt = fz(xt) (6.2)

which show that ut contains information about the transition between states xt−1 and xt,

and zt contains information about the observations made in the current state xt.

6.2.2 Problem Definition in Detail

6.2.2.1 State Definition

The trajectory of the robot is modelled as discrete time steps where the robot moves and

then makes a localization estimate. The robot’s pose xt at time step t is defined in a hybrid

continuous-discrete coordinate system as the triple

xt =
(
it, xt, dt

)
(6.3)

The time steps t are not necessarily at regular intervals. The localization estimate is instead

made either after some arbitrary time has elapsed, or when new information is available,

which is the case when the robot has executed a turn or when it arrives at a node. it ∈ I is

the discrete index of the link (pipe) or node (junction or manhole), from the set of all indices

I = {L,N} where L and N are the sets of all link and node indices. xt is the distance from
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the origin of the link or node. dt is the discrete direction in the link, where dt = dlt ∈
{
−1, 1

}
,

or node, where dt = ddt d
n
t , with dnt ∈

{
1, 2, . . . , Dn

}
where there are Dn adjacent links at

node n, and ddt ∈
{
−1, 1

}
so the sign of the index depends on whether the robot is arriving

or leaving from a direction.

The robot’s pose xτ at time step1 τ is defined in a discrete coordinate system as

xτ =
(
iτ , dτ

)
(6.4)

Here, the state is composed of two components. The first component is the robot’s discrete

position, which is the junction index iτ ∈ N at time index τ . The second is the robot’s

discrete direction dτ which is the index of the link which is has arrived from.

In both cases, the state is therefore effectively defined by a map, M, of the en-

vironment. This map could be defined specifically in a number of ways, but a minimal

representation would describe the neighbouring nodes and links for each node N , and de-

scribe the position in continuous space of each node N and the start and end position of

each link L. Because the map M defines the state space, it does not need to be explicitly

referenced in the equations for state estimation. It is assumed here that the robot has prior

knowledge of the map M.

The pose in these coordinate systems can be converted to a two-dimensional repre-

sentation of pose in global coordinates

xgt =
[
xgt , y

g
t , θ

g
t

]T
(6.5)

using the map of the poses of each link and node. This could also be extended to a three-

dimensional representation of pose.
1A different symbol for time index is used, so t refers to a short arbitrary time index, while τ refers to an

arbitrary time when the robot arrives at a node.
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6.2.2.2 Motion Definition

When the robot’s state is defined in the continuous-discrete state space according to equation

6.3, the robot’s linear position changes according to ∆xt, given by

xlt = xlt−1 +∆xtdt + vt (6.6)

∆xt is usually equal to a fixed command input, except when the robot stops as it arrives at

a node. In this work, two models for the uncertain linear robot motion are used. The first

uses uncertainty in motion drawn from a Gaussian distribution, where vt is given by

vt ∼ N (µ = 0, σ = σx∆xt) (6.7)

In the second model, vt is given by

vt = kvvt−1 + (1− kv)ṽt (6.8)

where ṽt is uniformly distributed noise in the range [−ux, ux]. This aims to model a more

challenging case.

If the robot’s state is defined in a discrete state space according to 6.4, the measured

distance travelled is integrated between junctions, giving a measurement mt.

When using a continuous-discrete state, at a node, the robot turns according to

dnt ∈ Dn, and correspondingly θnt ∈ Θn where Θn is the set of directions at node n. Change

in angle, ∆θt, is measured, given by

θnt = θnt−1 +∆θt + wt (6.9)

with Gaussian uncertainty wt given by

wt ∼ N (µ = 0, σ = σθ∆θt) (6.10)

which models the uncertain relative angular measurement that could be made using a gyro-

scope in an IMU, where the absolute angular measurement from the IMU is unavailable due

to the unreliable magnetic field in this environment.
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When using a discrete state, this change in angle can be used to define a discrete

action, aτ , which the robot has taken. If the uncertainty given by equation 6.10 is sufficiently

large in an instance, then the robot will be moving in a different discrete direction to what

would be predicted. Effectively the robot can incorrectly execute a turn action [20].

6.2.2.3 Measurement Definition

At the state xt the robot can make some observations of its surroundings. Here, it is assumed

that the robot can only make these simple observations.

A discrete measurement zt ∈
{
L,N

}
is made, corresponding to the detection of a

link or node respectively, with the following probabilities

p(zt = L|it ∈ L) = 1− βp (6.11a)

p(zt = L|it ∈ N ) = βn (6.11b)

p(zt = N |it ∈ L) = βp (6.11c)

p(zt = N |it ∈ N ) = 1− βn (6.11d)

where βp and βn are the probabilities of false positive and false negative detection of nodes

respectively.

When the discrete state space approach is taken, this discrete measurement is re-

dundant, as it is instead always zt = N . If a false negative detection of a node is made, then

the robot will continue moving in a random unknown direction, without updating the state

estimate [55]. However, when using the discrete state space approach, it is not possible to

incorporate the possibility that the robot makes a false positive detection of a node, as the

discrete state space only includes nodes, not the links between them.

Here, when using the discrete approach, a measurement ot, of the number of exits,

from a junction is made, which could be done using a camera, sonar, or a number of other

sensing modes, as described in Chapter 2.
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6.3 Discrete State Space Localization

This section describes a solution for discrete state space localization, and briefly discusses

the limitations of the approach.

6.3.1 State Definition

When the state xτ is defined in the discrete state space, given by equation 6.4, uτ is described

by

uτ =
{
aτ ,mτ

}
(6.12)

and zτ is described by

zτ = oτ (6.13)

The robot’s belief in the state is represented as a vector

b(xτ ) = p(xτ |x0,u1:τ , z1:τ ) (6.14)

over all possible values of the state, where each value is the estimated likelihood of being in

that particular state.

6.3.2 Localization Model

Models for motion and measurements are needed in order to estimate the state xτ . Incorpo-

rating the discrete variables aτ and oτ can be done using discrete probability distributions.

To incorporate the continuous measurement of distance travelled, mτ , the probability of mak-

ing a given continuous measurement must be found. For motion between two given discrete

places, iτ and iτ−1, there are a number of possible transition lengths, given by the number of

possible paths between the two places. The probability distribution over a range of possible

measurements is given by a sum of Gaussian distributions. A probability estimate is found
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as

p̃(ijτ |ikτ−1,mτ ) =
∑

υi
j

ik
∈Υij

ik

1

σ
υi

j

ik

√
2π

e

−
1

2

mτ −m
υi

j

ik

σ
υi

j

ik

2

(6.15)

where p̃(ijτ |ikτ−1,mτ ) is the relative probability estimate for a transition from ijτ−1 to ijτ given

measurement mτ , Υij

ik
is the set of paths between ijτ−1 and ijτ , and σ

υi
j

ik

and m
υi

j

ik

are the

standard deviation and mean of the distance travelled for path υi
j

ik
.

6.3.3 State Estimation

The forward algorithm is used to compute the discrete probability distribution over the

possible robot states. The algorithm in takes the form

b(xτ ) = p(zτ |xτ )p(xτ |xτ−1,uτ )b(xτ−1) = p(oτ |xτ )p(xτ |xτ−1,mτ , aτ )b(xτ−1) (6.16)

These probabilities are implemented as matrix-vector multiplication, which gives the practical

implementation of the Bayes filter the algorithm is derived from.

6.3.4 Results

An example of the result of the localization in the discrete space is shown in Figure 6.3. Fig-

ure 6.3(b) and (c) compare the estimation results without and with the use of the measured

distance mτ , which is seen to reduce the error rate from 0.75 to 0.2. This improvement is

expected as the the measured distance travelled provides more information, and the informa-

tion is more precise than the information from the observation of the number of exits from a

junction.

Further analysis is presented in the related paper Rob Worley and Sean Anderson.

“Topological robot localization in a large-scale pipe network”. In: Towards Autonomous

Robotic Systems, TAROS 2020 1 (2020). doi: 10.31256/zw1wq5m, which is not repeated

here for conciseness. It can be concluded that localization in this discrete state space is

effective, however, it has some fundamental limitations. The discrete state space definition
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Figure 6.3: (a) A network map with labelled states. (b), (c) The belief vector over each time

step, with and without use of mt. The darkness corresponds to the belief for each state, with correct

estimates in blue, and incorrect in red. Bordered cells show the true state.
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limits the robot behaviour and observations that can be modelled, and localization can only

be done at nodes in the network. While the state space is smaller than a continuous space in

the sense that it is a constrained set of discrete places, it is not possible to simply parameterise

an estimate like it is in a continuous state space, so efficiency is not necessarily improved.

A hybrid continuous-discrete approach addresses these problems. This expands the

restrictive discrete approach presented in this section, which should allow a larger range

of robot behaviour and sensing to be incorporated, but which still uses the information of

network topology to benefit localization. A particle filter is used in this continuous-discrete

approach, which benefits from the reduced size of the state space and provides a compact

and flexible representation of the state estimate in the form of a set of particles.

6.4 Hybrid Continuous-Discrete State Space Localization

This section describes a solution to localization in the hybrid continuous-discrete state space

approach. Novel approaches to improving performance in this application to robots with high

uncertainty in motion and perception are developed.

The algorithm presented here uses a particle filter to estimate the robot position,

as the non-parametric distribution works in the discontinuous network environment and can

give a multi-modal estimate [30]. The hybrid metric-topological representation reduces the

dimension of the state space compared to a continuous metric representation. This gives a

reduction in size of the space, which has been shown to improve the efficiency of particle

filtering [171, 172]. The use of map topology facilitates global localization which improves

robustness of the particle filter.

6.4.1 Particle Filter in General

Where other Bayes filters describe the posterior distribution parametrically, such as the

Kalman filter’s Gaussian distribution with a mean and covariance, the particle filter describes

the posterior distribution as a set of H hypotheses, or particles [30]. The likelihood of the
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state xht of particle h being included in the particle set Xt is proportional to the posterior, or

belief, b(xt), given by

xht ∼ b(xt) = p(xt|u1:t, z1:t) (6.17)

Like other Bayes filter approaches, the distribution b(xt) is recursively estimated using

b(xt) ∝ p(zt|x̃t)
∫

p(x̃t|ut,xt−1)b(xt−1)dxt−1 (6.18)

Implementing this recursive estimation in the particle filter, the state is predicted

by the set X̃t, which is sampled from the proposal distribution as

x̃ht ∼ p(xt|ut,xht−1) (6.19)

The particles are then weighted according to

αht ∝ p(zt|x̃ht ) (6.20)

Resampling creates Xt by drawing particles from X̃t using

p(xht ∈ Xt) ∝ αht (6.21)

Finally, the mode of the particle distribution is estimated, and output as the estimated robot

state. This process is repeated at each time step t, when new information is available.

Alternatively, the process of mixture distribution sampling can be used, where the

roles of the prediction and weighting processes from the typical particle filter are reversed for

a subset of the particles. As well as predicting particles from the particle set Xt−1, particles

can also be predicted from the measurement model as

x̃ht ∼ p(zt|xt) (6.22)

Subsequently, these particles are weighted according to

αht ∝ p(x̃ht |Xt−1,ut) (6.23)

Further alternative formulations can be used to construct the particle filter. One

example is to use an improved proposal distribution p(xt|zt,ut,xht−1) which incorporates the
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measurement zt into the process of sampling particles [30]. Therefore, sampled particles are

more likely to represent the robot state, which can improve the algorithm’s performance at

the cost of more complicated maths needed in both the sampling and weighting steps. This

approach is not used here.

6.4.2 Particle Filter Definition - Hybrid Metric-Topological Space

When using the state definition in equation 6.3, the variable zt can be defined as zt = zt,

and the variable ut can be defined as ut =
{
∆xt,∆θt

}
.

The particle filter algorithm functions differently over time depending on the robot’s

behaviour. In each case the particle filter function follows the general form described in the

previous section, however there are differences described here for when the robot believes it

is in a link or in a node.

When the robot believes it is in a pipe, or link, i.e. it has made an observation

zt = L, the robot makes a linear motion and the algorithm functions as follows.

For linear robot motion, state prediction is done by sampling particles using the

motion model as in equation 6.19. For each particle h in set Xt−1, the predicted state is

sampled using

x̃l,ht = x̃l,ht−1 +∆xtd̃
l,h
t−1 + ṽt (6.24)

where ṽt is sampled from a normal distribution with a variance equal to σ̃x∆xt, approximating

the noise variable vt. If x̃l,ht is greater than xLi or less than zero, the particle has passed a

node at the corresponding end of the link. With probability β̃n, which is an estimate of

the probability of false negative detection of a node βn, the particle moves to a new link by

choosing an index ĩt with uniform probability from the links adjacent to the appropriate node,

and updating d̃t and x̃l,ht accordingly. With the remaining probability 1 − β̃n, the particle

moves to the node at this end of the link, again updating d̃t accordingly. Each particle is
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then weighted according to equation 6.20, given by

αmt,L =


1− β̃n, if xht ∈ L

β̃n, if xht ∈ N
(6.25)

When the robot believes it has arrived at a node, i.e. it has made an observation

zt = N , the robot stops and the algorithm functions as follows. For normal operation there

are two time steps in this case; in the first time step the robot arrives at the node, and in

the second time step the robot turns towards the exit from the node.

When zt = N , mixture distribution sampling is used. With the metric-topological

state definition, mixture distribution sampling at i ∈ N is simple. Particles can be sampled

at all nodes i ∈ N in all discrete directions dn. As will be described shortly, the particle

weights, which are found using equation 6.20, will only be nonzero for locations where there

are particles nearby prior to this sampling. Therefore, particles can be sampled only at nodes

i ∈ N which are nearby to existing particles.

The weight of each new particle x̃ht is given by 6.20. Using the set of particles as a

distribution, this weight can be found by applying the motion model like in normal sampling,

and somehow estimating the probability that each of the particles in the set could take the

value of the new particle sampled from the measurement model. In general, this is described

by

αht =
∑
k

p(x̃ht |ut,xkt−1) =
∑
k

αh,kt (6.26)

Considering first the case where the linear motion model 6.6 is applicable, where ∆xt

is nonzero. A Gaussian kernel is applied to each particle k, therefore the desired probability

for each particle k is given by

αh,kt = p(x̃kt = xht ) =
1

σg
√
2π

e−(xl − x̃kt )
2/2σ2

g (6.27)

Considering second the case where the angular motion model 6.9 is applicable, where

∆θt is nonzero. For each particle k that has moved forwards to the node at the previous time

step t−1, the continuous angle predicted by the input ∆θt can be found using θ̃nt = θ̃nt−1+∆θt.
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The angular difference δθn,ht,k between θ̃nt and the angle of the newly sampled particle Θh
d̂t

can

be used to compute the weight as

αh,kt = e
−δθn,ht,k

2
/2σ̃2

θ (6.28)

The weights αht,L, αht,N , and αht,θ are used in particle resampling as in equation 6.21.

To improve on sequential importance resampling, a combination of stratified and low variance

resampling is used in this algorithm [30]. The use of the metric-topological state space results

in particles being naturally clustered in different discrete places. Stratified resampling can

then be used, where each strata corresponds to each discrete place. This is combined with low

variance resampling, which systematically selects particles, rather than randomly selecting

particles, ensuring all particles with an above average weight are sampled at least once [30].

These resampling methods are especially useful here where a small number of particles is

used, and losing important particles due to simple sequential resampling is more likely and

more detrimental.

6.5 Improvements to the Algorithm: Detection of Mislocal-

ization

In this section, a novel method for detecting failure in the previously described algorithm is

given.

If the parameters for the localization algorithm are accurate models of the robot

motion, it should be able to track the robot’s position. However, there are sources of un-

certainty which could cause mislocalization, where the algorithm loses track of the robot’s

position. The chance of mislocalization is increased by the possibility of false positive and

negative measurements. A long trajectory gives plenty of opportunity for unfortunate coinci-

dences to cause mislocalization, such as a false positive occurring at a time where an incorrect

hypothesis predicts a positive measurement, thus making it appear as though the incorrect

hypothesis is correct.



CHAPTER 6. BACK-END: HYBRID CONTINUOUS-DISCRETE SPACE LOCALIZATION117

Typical methods of estimating that the distribution Xt poorly represents the robot’s

pose calculate either the difference between the distribution before and after weighting,

(p(xt|ut,xt−1) and p(xt|ut, zt,xt−1)) [83], or the difference between the probability of mea-

surements (p(zt|xt)) and the normal measurement probability [30]. The principle is that if

the robot’s measurements are unlikely given the estimated distribution, then the estimated

distribution is likely a poor representation of the robot pose. Practically, these probabilities

can be found using the particle weights.

However, in the problem defined here, the measurements have limited information

to use to detect error. Most information is gained infrequently, when zt = N . This is reflected

in the set of weights At =
{
α1
t , α

2
t , . . . , α

h
t , . . . , α

H
t ,

}
, where most, if not all, elements will be

equal or close to 1 for a large proportion of times t.

The instantaneous, or temporally filtered, set of weights therefore can’t be used in

the same way as they would be in a more conventional problem where the weights are based

on sensors which give useful information at most times t. Using the weights for this detection

only when zt = N gives infrequent information, so the particle filter estimate could have

degraded further before mislocalization can be detected. This motivates a different approach

for this problem.

While the values of the weights can’t be used directly to estimate the estimate qual-

ity, they do still contain useful information. The novel approach proposed here is to compare

a sequence of mean weights ᾱτ over some set of recent times T =
{
t, t− 1, . . . , t− τα

}
, to

the weights expected for a good performance, ᾱg, and for a bad performance, ᾱb, which can

be learned from data where the performance has been measured. This is easy to do in sim-

ulation, where the performance can be easily measured for a large set of data. This allows

useful information to be found from the weights indirectly from their values. The intuition is

that if the sequence ᾱT appears to be more similar to what is expected for bad performance

than good performance, mislocalization is likely. In this algorithm, the mean weight is used,

and while the set of all weight values AT could be used, it wasn’t seen to be particularly

informative here.
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Figure 6.4: An example of the performance of the algorithm for detecting mislocalization. The

error in the particle filter estimate is shown in red, and the divergence measure, used as an indicator

of mislocalization, is shown in black.

To measure the similarity of ᾱT to the good and bad data, the Kullback-Leibler

Divergence, Dkl, or relative entropy, is used as a measure of difference between the probability

distribution of ᾱT , p(ᾱT ), and of the data, p(ᾱg) and p(ᾱb). Dg
T is defined by

Dg
T = Dkl

(
p(ᾱT )||p(ᾱg)

)
=

∑
p(ᾱT ) log

(
p(ᾱT )

p(ᾱg)

)
(6.29)

and Db
T is defined similarly. This measure is in the range [0,∞), where two identical distri-

butions give a value of 0.

It is seen that the distribution of weights p(ᾱT ) is substantially different for zt = L,

and zt = N . Therefore, a different probability distribution and corresponding divergence is

used for each case (e.g. p(ᾱLT ), D
gL
T ). It is also seen that both the short-term and long-term

sequence of weights can be useful for detecting mislocalization; using the short-term weights

allows the detection to be faster, while using the long-term weights allows the detection to

be more reliable. Therefore, in the proposed algorithm, two sets of time τs and τl are used,

with different time lengths ταs and ταl.

In total, there are four variable distributions, p(ᾱLTs), p(ᾱLTl), p(ᾱNTs), and p(ᾱNTl),

and four learned distributions, p(ᾱgL), p(ᾱbL), p(ᾱgN ), and p(ᾱbN ). The divergence is found

between each variable distribution and each learned distribution corresponding to the same

value of zt. Accordingly, eight divergences are calculated, used as follows to create a diver-
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gence measure for each value of zt.

DL
t = ηL

(
DgL

Ts −DbL
Ts +DgL

Tl −DbL
Tl

)
(6.30a)

DN
t = ηN

(
DgN

Ts −DbN
Ts +DgN

Tl −DbN
Tl

)
(6.30b)

where η is a constant which normalizes the measure by dividing by the divergence measured

between p(ᾱg) and p(ᾱb). For example ηN = Dkl

(
p(ᾱgN )||p(ᾱbN )

)−1
.

An overall divergence measure is given by

Dt = DL
t +DN

t (6.31)

In this algorithm, mislocalization is detected by comparing these divergence mea-

sures to a threshold of zero. If the measure is above zero, the distributions p(ᾱ) are closer to

the bad data than the good data, and mislocalization is likely.

The performance of this algorithm is shown in Figure 6.4.

6.6 Improvements to the Algorithm: Relocalization

In this section, a novel method for recovering from failure of the previously described al-

gorithm is given, based on the divergence measures described in the previous section. Two

aspects are described: firstly a simple algorithm for varying the number of particles, and

therefore the ability of the particle filter to model more broad distributions, based on the

divergence measures; secondly, an algorithm for estimating where to sample particles in the

case of mislocalization.

6.6.1 Varying the Number of Particles

This algorithm aims to increase the number of particles when the estimate is poor, temporarily

increasing the computational cost, to decrease the severity of mislocalization.
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A gain Kh is given by

Kh =


(
1 +

√
Dt

) H0

Ht−1

2

, if Dt > 0

1, otherwise

(6.32)

Where Dt is the divergence measure described in section 6.5, Ht−1 is the number of particles

at time t− 1, and H0 is the target low number of particles. The number of particles sampled

at time t is given by

Ht =


KhHt−1, if Dt > 0

Ht−1 +Kh0(H0 −Ht−1), otherwise
(6.33)

where Kh0 gives the rate of decay of the number of particles.

Therefore, when the estimate is poor, Dt > 0, the number of particles increases.

The exponent in equation 6.32 reduces the increase in number of particles as the number

of particles increases, designed to avoid an exponential increase in the number of particles.

When the estimate is good, Dt < 0, the number of particles exponentially decays towards the

target number. The slow change in the number of particles gives the algorithm robustness to

noise in the mislocalization estimate.

6.6.2 Multi-Hypothesis Filter for Metric-Topological Space

The typical method of using mixture distribution sampling over the whole state space for

relocalization [30] is impossible due to the limited information in measurements. Instead,

an algorithm is used here which estimates the pose of the robot in parallel to the particle

filter described in section 6.4.2, and uses this estimate to find the parts of the state space

where mixture distribution sampling would be useful. This multi-hypothesis filter algorithm

is designed to be approximate, but robust to false positive and negative measurements, so

that the overall algorithm should have improved robustness to this source of error. If other

sources of error were to be considered, the multi-hypothesis algorithm could be modified to

give robustness to the other sources too.
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The proposed multi-hypothesis algorithm is based on the same particle filter frame-

work described in section 6.4.2 with some key modifications, keeping within familiar methods

for particle filtering. Instead of using a large set of particles which is weighted and resam-

pled at each time t, a small number of hypotheses XMH
t with persistent weights over time

is used, each representing a more distinct hypothesis. Like the particle filter algorithm, each

hypothesis has a state xht and a weight αht .

For zt = L, the hypotheses are each moved in linear motion similar to equation 6.24,

but without added uncertainty. When a hypothesis h moves past the end of a link, instead

of uniformly randomly moving to an adjacent link, new hypotheses are created in each of the

l adjacent links i ∈ Ln. Each is given a weight equal to αht /l, and the weight of hypothesis h

is set to zero.

For zt = N , hypotheses are sampled at nodes near existing hypotheses. A proba-

bility pn is found using the same function as equation 6.26 using the new hypothesis h and

original hypothesis k, and the two hypotheses are given weights pnαht and (1− pn)αht respec-

tively. When the robot turns at a node, hypotheses in nodes are weighted according to a

similar expression to equation 6.28.

Unlike the particle filter, resampling is not done. Instead, the weights of the hy-

potheses are normalized so their sum equals one, and then hypotheses with a weight lower

than a threshold, αht < α0, are removed. Therefore, the approximate poses with a likeli-

hood greater than α0 are tracked through this algorithm. The algorithm is more robust to

false positive and negative measurements zt than the particle filter, as the hypotheses are

not weighted lower when they pass a node without making a measurement zt = N , and

hypotheses are not reduced in weight when they are in a link and there is a measurement

zt = N .

When Dt > 0, particles in the normal particle filter can be sampled at the set of

approximate hypotheses, XMH
t , given by the multi-hypothesis filter. Up to HD (typically a

value of 10) particles are sampled at each hypothesis h, each with probability equal to (αht )
2

when zt = L and equal to (αht )
1/2 when zt = N .
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Feedback from the particle filter to the multi-hypothesis filter is used so the two

estimates do not completely diverge. If there is no hypothesis there already, one is created at

each of the modes of the particle filter distribution. If each index contains H i
t particles, these

modes are measured as discrete indices i where H i
t is greater than µ

(
H i∈I
t

)
+ σ

(
H i∈I
t

)
,

which is the mean number of particles with each index plus the standard deviation of number

of particles with each index.

Overall, the approximate likely poses of the robot are tracked using an algorithm

which is robust to error in measurements, and these hypotheses are used to improve the more

precise particle filter estimate when necessary.

6.7 Experiments and Discussion: Comparison Between State

Definitions

This section contains the experiment and discussion originally published in the paper Worley,

R., & Anderson, S., Robust Efficient Localization of Robots in Pipe Networks using a Particle

Filter for Hybrid Metric-Topological Space, European Conference on Mobile Robots 2021.

Two algorithms are compared in this experiment:

1. Localization in 2D continuous space, as developed in the literature [66].

2. Newly developed localization in hybrid 1D continuous-discrete space, described in sec-

tion 6.4.2 (1D).

Both algorithms use the same prior knowledge of the environment, but incorporate it differ-

ently.

As the front-end is not investigated here, instead of limiting testing to a set of

practical experimental data, simulation of a large set of data is done. This allows exper-

imentation over a much larger sequence of inputs than would be possible experimentally,

and good investigation of the effectiveness and efficiency of the algorithms. In simulation,
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Figure 6.5: Illustrative results showing the algorithm performance. (a) Two estimates of the robot’s

trajectory over 10000 steps, corresponding to a total distance of around 44 km. (b) The absolute

error of the trajectory estimate over the first 2000 steps of the trajectory.

uncertainty can be added to the inputs to the localization algorithm, which serves to model

both the actual uncertainty in practical inputs, and also the uncertainty in the assumptions

made when simulating the robot motion and sensing. Care should be taken when applying

results from simulation to practice, but an algorithm shown to work well in simulation with

large uncertainty should be likely to work in practice despite uncertainty in modelling.

In the following experiments, the number of particles is assumed to reflect the com-

putational cost required. However, it should be noted that it is difficult to translate between

these measures. In testing, the computation time per particle for the 1D algorithm is seen

to be approximately half that of the 2D algorithm. The computation time depends on the

implementation of the algorithms, and the efficiency of both algorithms may be improved
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Table 6.1: Default parameters for the robot motion and measurement.

Parameter Symbol Value

Command input motion ∆x (normal) 5

Normal motion noise σx 0.2

Angular measurement noise σθ 0.1

Uniform motion noise ux 1 m

Motion noise constant kv 0.8

False positive rate βp 0

False negative rate βn 0

Map distortion ∆xM 0

Table 6.2: Default parameters for the localization algorithms

Parameter Symbol Value

2D

Motion model noise σ̃ψ 1.2σx
Angular motion model noise σ̃θ 1.2σθ
Angular motion model noise σ̃θ,min 0.1 rad

Link measurement std. σe ∆x m

Node measurement std. σm ∆x m

1D

Motion model noise σ̃x 1.2σx
Node transition std. σn ∆x m

Angular weight std. σ̃θ 10σθ
Kernel std. σg 5∆x m
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further. It is assumed here that, as both algorithms are based on the particle filter, they will

have approximately the same computational cost per particle.

For illustration, simulation over 10000 time steps, around 44 km in distance, is

shown in Figure 6.5 (for 1000 and 100 particles respectively for the 2D and 1D algorithms).

For evaluation of the localization algorithms, simulation of 100 trajectories of 1000 time steps,

around 4.5 km of distance in each trajectory, is used. These distances are of the same order of

magnitude as distances covered by inspection systems such as Pure’s SmartBall and WRC’s

Sahara.

The two localization algorithms are used to estimate the robot’s position, each with

100, 200, and 400 particles. Four sources of uncertainty are tested, and three magnitudes of

each source of uncertainty are compared in Figure 6.6.

In each case, the error rate is shown, which in this case is defined as the proportion of

time for which the estimated robot position is in an incorrect discrete location, This measures

the ability of the algorithm to estimate the position of a robot to a single discrete location,

which is useful for navigation and approximate localization of faults in the pipe network, as

described in Chapter 1. This is estimated by comparing the estimate error to a threshold

of 25 metres, which effectively computes the accuracy to the precision of a single discrete

location, while neglecting error in the estimate of continuous position within the discrete

location, which is not the aim of this experiment.

A violin plot is used to show the normalized probability density and median of

the error rate for the 100 trajectories. The default parameters used to describe the robot

operation as defined in section 6.2 are shown in Table 6.1. The default localization parameters

are given in Table 6.2, where the symbols relating to the 2D algorithm are explained in the

relevant literature [66]

The four sources of uncertainty are:

1. Gaussian motion noise using the motion model in equation 6.6, with variation in σx.

2. Angular measurement noise using the measurement model in equation 6.9, with varia-
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tion in σθ.

3. Integrated uniform motion noise using the motion model described by equation 6.8,

with variation in ux. A given value of ux gives approximately the same overall noise

frequency as 0.2 times the same value of σx.

4. False positive and false negative rates of detection of nodes, βp and βn.

The values of linear uncertainty used aim to cover the range of linear uncertainty

values found in the relevant literature, described in Table 1.3, as well as higher values which

are useful in assessing the suitability of the localization algorithm to more limited robots

than have previously been developed.

From Figure 6.6, it can be seen that in almost all the measurements, the average

error rate decreases with increasing number of particles, but with less improvement at larger

number of particles. In practice, the number of particles could be chosen based on the

required performance and cost.

For the lowest uncertainty in all aspects when Gaussian motion noise is used, the

2D algorithm performs equal to or better on average than the 1D algorithm, showing that

it is an effective algorithm when uncertainty is low, which is more likely to be the case for

larger, more capable robots. For integrated uniform noise, which models unmeasured drift in

robot velocity, the 1D algorithm performs better on average.

Larger magnitudes of uncertainty in all aspects reduces the performance of both

algorithms, but less so for the 1D algorithm. This is most prominent for angular measurement

noise and false measurement rate, where the 1D algorithm is robust.

While the error from the 1D algorithm is lower on average, both algorithms show

poor performance at the highest tested magnitudes of either type of motion noise, indicating

that good measurement of linear motion is important.

Overall, it can be seen that the two algorithms presented here have similar perfor-

mance when uncertainty is low. As uncertainty increases in all aspects tested, the proposed
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Figure 6.6: For two algorithms (red: 1D, blue: 2D), the error rate for variation in: (a) Gaussian

linear noise magnitude. (b) angular Gaussian noise magnitude. (c) integrated uniform noise in

linear motion. (d) measurement error rate.
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Table 6.3: Default parameters for the robot motion and measurement.

Parameter Symbol Value

Command input motion ∆x (normal) 5

Normal motion noise σx 0.2

Angular measurement noise σθ 0.1

1D algorithm is seen to have a better performance, at a similar computational cost, showing

that the algorithm is more efficient than the 2D algorithm in these cases.

6.8 Experiments and Discussion: Improvements to the Parti-

cle Filter Algorithm

This section contains the experimental results and discussion originally published in the

paper Worley, R., & Anderson, S., Robot Localization in a Pipe Network using a Particle

Filter with Error Detection and Recovery in a Hybrid Metric-Topological Space, IEEE MFI

2021 - International Conference on Multisensor Fusion and Integration.

Experiments are done in simulation to evaluate the performance of two algorithms:

the 1D algorithm as described in section 6.4.2, and the 1D+ algorithm which uses the im-

provements described in sections 6.5 and 6.6.

The experiment here aims to evaluate the two algorithms over an increase in mea-

surement uncertainty. The effectiveness of the algorithms is measured by the error rate, as

defined in section 6.7, and the failure rate, which is the proportion of trajectories where the

error at the last 100 steps is over a threshold 25 metres, an estimation of when the algorithm

has failed and the robot could be considered lost. As described in section 6.7, these measures

show the effectiveness of the algorithm in localizing a robot to the precision needed for nav-

igation and approximate localization of faults in the pipe network. The computational cost

of the algorithms is measured by the number of particles used by each algorithm.
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Figure 6.7: (a): Error rate for the 1D and 1D+ algorithms. (b): Number of particles in the

1D+ particle filter and multi-hypothesis filter, and the 1D filter. Top to Bottom: 50 particles, 100

particles, and 200 particles for 1000 steps, and 50 particles for 10000 steps.
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Table 6.4: Default parameters for the localization algorithms

Parameter Symbol Value

1D

Motion model noise σ̃x 1.2σx
Node transition std. σn ∆x m

Angular weight std. σ̃θ 10σθ
Kernel std. σg 5∆x m

1D+

Number of New Particles HD 10

Number of Particles Decay Constant Kh0 0.05

Divergence Short Time Constant ταs 20

Divergence Long Time Constant ταl 100

Hypothesis Weight Threshold α0 0.01

Figure 6.7 shows the results over sets of data recorded for several robot trajectories

through a pipe network. The performance of each algorithm on 50 trajectories of 1000 steps

is shown for a target number of particles of 50, 100, and 200 particles. For 100 particles, the

performance is shown for 5 trajectories of 10000 steps.

In practice, the trajectory length would depend on other aspects of the robot op-

eration. 1000 steps and 10000 steps correspond to a total distance of 4.5 km and 45 km

respectively. In the pipe network used, the median pipe length is 64 m, so the robot trav-

els through around 70 pipes on average over 1000 steps. Considering the trajectory lengths

in terms of pipes, and therefore measured features, might help translate results from this

experiment to other pipe configurations.

Figure 6.7 shows that for increasing measurement uncertainty (β), the error rate

increases for both algorithms. For the 1D algorithm, the chance of failure also increases,

especially for the 10000 step trajectories, which is expected as a failure is followed by a

longer period of error. The 1D+ algorithm is shown to be more robust; the failure rate

remains low, mostly zero. Both algorithms are seen to be largely effective however, with

median rates of error below 0.25 in most cases.
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The computational cost for the 1D+ algorithm is larger than the cost for the 1D

algorithm. The number of particles in both the particle filter and multi-hypothesis filter are

summed to give the total number of particles used in the 1D+ algorithm. While the number

of particles in the multi-hypothesis estimator is only around 25, this is substantial when

H = 50. As β increases, H increases as the number of detected mislocalizations increases.

Overall, it can be seen that the 1D+ algorithm has better performance, but higher

cost, than the 1D algorithm. Whether this extra cost is acceptable depends on how much

error is allowed, or the allowed likelihood of unrecoverable mislocalization. In practice, this

would depend on the robot’s parameters and other aspects of the robot’s operation.

6.9 Conclusions

Overall, this chapter has described and developed ideas for localization in both a discrete

state space and a hybrid continuous-discrete state space. The latter approach is concluded

to be less limited in this application. This section will summarise the results and discussion

around localization in the hybrid continuous-discrete space presented in sections 6.7 and 6.8,

and draw some conclusions which will motivate the work in the remainder of this thesis.

Over the two sets of experiments, three algorithms have been compared. Firstly,

the 2D algorithm, which estimates the robot’s position in the typical global metric space,

which is derived from an algorithm in the existing literature. Secondly, the 1D algorithm,

which estimates the robot’s position in the hybrid continuous-discrete space. Thirdly, the

1D+ algorithm, which uses the hybrid continuous-discrete space with novel improvements to

robustness.

The two experiments each had different aims. The first experiment looked at the

effect of different sources of uncertainty on the localization estimate for the 2D and 1D

algorithms, measuring the error rate of the algorithms. The second experiment looked at

the relative accuracy, reliability, and computational cost of the 1D and 1D+ algorithms,

measuring the error rate and failure rate of the algorithms.
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Overall, the first experiment shows that while the 2D algorithm is seen to be reliable

for a more capable robot with low values of each source of error, the 1D algorithm has better

robustness to the various sources of uncertainty measured. The second experiment shows the

further improvement to accuracy and reliability from the improvements in the 1D+ algorithm.

The improved algorithm presented in this Chapter is used as a comparison for

another novel approach presented in Chapter 7.



Chapter 7

Back-End: Advanced Hybrid Space

Localization

This chapter presents the culmination of the work presented previously in this thesis. The

back-end estimation approach developed through Chapters 3 and 6 is refined here, and

brought together with the front-end sensing and measurement approach described in Chapter

5. The back-end estimation approach takes the hybrid continuous-discrete approach devel-

oped in Chapter 6, and extends it from a filtering approach to an optimization approach.

Efficient optimization is achieved by reducing the sequence of states to a subset where infor-

mative measurements are made, while the remaining states can be simply estimated given the

optimized sequence of informative state estimates. This reduction in the sequence of states

also allows measurements made over a period of time to be integrated to make an observation

of the environment, which facilitates the incorporation of measurements from acoustic echoes

as described in Chapter 5, for example.

Figure 7.1 shows the scope of this chapter, which covers both a large and medium

scale of estimation. While various front-end measurement types are compared in this chapter,

the focus is less on how these measurements could be acquired, and more on how they affect

the back-end.

133
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Figure 7.1: An illustration of the scope of this chapter, with the green boxes indicating the scope in

the context of the rest of the localization system.
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This chapter is based on currently unpublished work. Producing a paper based on

the approach and results taken here is left for future work.

7.1 Introduction

Throughout this thesis, a number of approaches to the localization back-end estimation have

been discussed, developing towards an approach which is best suited for the pipe environment

and the constraints on the robot and on sensing that are present.

Chapter 3 described a typical localization approach applied to the pipe environment.

There, a robot’s trajectory was described in continuous space defined by the two-dimensional

position and angle of the robot, and estimated using pose-graph optimization. It was con-

cluded that the approach is effective and flexible as a means of incorporating measurements

made by the robot and prior knowledge of the environment. However, the approach is in-

efficient, as the information from measurements is sparse and much of the computation is

spent redundantly estimating poses with only a small amount of information relative to other

poses. It was also concluded that incorporating prior knowledge of the environment is useful,

but difficult when estimating in the two-dimensional continuous space.

Chapter 6 showed the opposite approach to Chapter 3 and described the estimation

of a robot’s position in a discrete state space, where each discrete place is a node connecting

two or more pipes. Prior knowledge of the environment is given by the pipe network topology,

describing the connectivity between discrete places. The state space is therefore reduced in

size, aiming to make estimation more efficient. It was concluded that while this approach

is effective, it is not flexible, and limits the information that can be incorporated into the

estimate. It was also concluded that while the state space is effectively smaller, estimation is

not fundamentally more efficient as the robot’s pose can’t be neatly parameterized as in the

approach in the continuous state space.

Chapter 6 then aimed to find a compromise between the continuous and discrete

approaches. The robot’s pose was estimated in a hybrid continuous-discrete state space,
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described by a set of connected places, either pipes or junctions, where each discrete place

has some continuous space within it. It was concluded that the approach allows effective,

robust, and low-cost localization, but that further improvements to the approach might be

found by estimating the robot’s trajectory rather than instantaneous position.

Overall, each of the approaches proposed previously are effective, and have both

advantageous and disadvantageous characteristics. The aim of this chapter is to develop an

approach to localization in a pipe network which takes the best characteristics of each of these

approaches. The previously described hybrid continuous-discrete approach has been shown

to be accurate, robust, and efficient, so will be used as a comparison for further development.

A number of front-end sensing approaches have been developed or discussed through-

out this thesis, giving a range of possible measurements which a robot can make relative to

its surroundings in the pipe environment. Detection of connections between pipes either from

vision, rangefinding, or other methods has been developed extensively in the literature as de-

scribed in Chapter 2, and these ideas have been applied to the back-end estimation approaches

discussed throughout this thesis. Vision-based localization approaches are a means of mak-

ing both odometry measurements and loop-closing measurements, but are fundamentally

limited to observations of only nearby features, as discussed previously. Chapter 4 showed

an alternative to vision for loop-closure measurements in feature-sparse environments using

a hydrophone sensor to measure an acoustic property of the surrounding pipe. The use of

low-frequency acoustic echoes in measuring the distance between the robot and distant fea-

tures was shown to be very effective in estimating the robot’s position in Chapter 5. Overall,

these measurement types, as well as others described later in this chapter, offer a range of

means of making a localization estimate. This chapter aims to demonstrate and compare the

use of these various measurement types.

This chapter will first develop the mathematical formulation of the localization

problem, then propose an approach to solving this problem, and finally demonstrate the

effectiveness of this approach using a range of types of measurement and prior knowledge of

the environment.
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7.2 Problem Definition

The problem formulation described here is similar to that used in Chapter 6. The state and

measurement definitions are repeated here for clarity.

The pipe network environment is made up of pipes, or links, and connections between

pipes, or nodes. The links are much larger in length than in width and than the size of the

nodes, so a close approximation of the network is a set of connected one directional places.

The state space of the robot is therefore defined in this hybrid continuous-discrete way, and

in this chapter is it assumed that the map of the pipe network, and therefore the state space,

is known a priori. This map M would at minimum describe the neighbouring nodes and

links for each node N , and describe the position in continuous space of each node N and

the start and end position of each link L. A minimum representation of the map would

have low required storage, however there may be some subsequent cost to computing useful

information regarding possible paths through the map. Computed information about paths

between places in the network is given by variable Υ.

A robot moves around in the network of pipes, modelled as small discrete time

steps. The aim is to estimate the pose of the robot at each step, thereby estimating the robot’s

trajectory. Specifically, the aim is to estimate the posterior distribution p(x1:T |u1:T , z1:T ,x0),

which is the probability distribution over possible state sequences x1:T given the sequence of

uncertain observations u1:T and z1:T , and an initial state x0.

The state sequence is equal to x0:T =
{
x0,x1, . . .xt, . . . ,xT−1,xT

}
. The relation-

ship between instantaneous state xt and measurements ut and zt is defined by

xt = fu(xt−1,ut) (7.1)

zt = fz(xt) (7.2)

As usual, ut contains information about the transition between states xt−1 and xt, and zt

contains information about the observations made in the current state xt. These two mea-

surement variables can be defined more specifically depending on the measurements available.



CHAPTER 7. BACK-END: ADVANCED HYBRID SPACE LOCALIZATION 138

The pose is defined in this case as the position and direction of the robot within the

hybrid continuous-discrete state space, while the small-scale robot pose defined with respect

to the pipe cross-section is decoupled from the large-scale estimate and can be estimated

independently. The instantaneous state is therefore given by

xt =
(
it, xt, dt

)
(7.3)

where it ∈ I is the discrete index of the link (pipe) or node (junction or manhole), from the

set of all indices I = {L,N} where L and N are the sets of all link and node indices. xt

is the distance from the origin of the link or node. dt is the discrete direction in the link or

node. In a link, dt = dlt ∈
{
−1, 1

}
. In a node, dt = ddt d

n
t , with dnt ∈

{
1, 2, . . . , Dn

}
where

there are Dn adjacent links at node n, and ddt ∈
{
−1, 1

}
so the sign of the index depends on

whether the robot is arriving or leaving from a direction.

The definition of the time index t is important to consider. When using the discrete

state space in Chapter 6, the time step was effectively defined as an arbitrary point in time

when a robot arrives at a node, so the time step was therefore large. When using the

continuous-discrete state space in Chapter 6, the time step was defined by a regular interval

in time, but where additional time steps were added whenever the robot arrived at a node

(or believed it had observed a node). In more general localization, the time step might be

defined as a regular interval, small enough that a robot would take several time steps to move

though even a small node such as a junction or manhole. The robot’s trajectory would then

be estimated at a high temporal precision, perhaps as finely as one pose per video frame for

example. In this chapter, it is assumed that the interval between time index t − 1 and t is

small, such that it takes many time steps for the robot to move from one node in the pipe

network to another. The sequence of time indices is described as

Tt =
{
0, 1, 2, . . . , t, . . . , T − 1, T

}
(7.4)
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7.3 Localization Definition

The approach taken to solving the problem defined in section 7.2 is motivated by the fact that

at most instances in time t the robot receives little information from its measurements ut and

zt. As was noted in Chapter 3, all odometry measurements in this case simply relate adjacent

states in time, and incorporating all of this information into the trajectory estimate is quite

costly and does not offer much improvement to the estimate. Therefore, a reduced set of time

indices τ ∈ Tτ ⊂ Tt is found which simply gives the set of time indices where an informative

measurement is made. An informative measurement in this case is a measurement which

gives more information than other measurements, in some sense. This information could

be quantified to make this definition more specific, but here it is defined more simply and

intuitively as a measurement which either:

• Makes an observation between the robot pose at time t and another robot pose that is

not time t− 1, and therefore provides more information than odometry, for example a

loop-closure measurement.

• Makes an observation ut between the robot poses xt and xt−1 which includes some

angular change, rather than purely linear odometry.

• Makes an observation which gives some information about the location of the robot

xt at time t given the understanding of the environment, i.e. results in a nonuniform

distribution p(zt|xt). This could be either:

– A simple observation that the robot is in a node. The majority of the space in the

network is made up of links and a small minority of the space (an infinitesimal

volume in the model, and small in reality) is made up of nodes, so an observation

of a node carries far more information than an observation of a link.

– An observation of some discrete or categorical quality of the robot’s surroundings,

such as the material or colour.

– An observation of some continuous metric quantity of the robot’s surroundings,

such as the length of a pipe, or the relative angles at which pipes leave a connection.
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For a short trajectory where informative measurements are made at t = 0, t = 9, t =

17, t = 45, and t = 77, for example, the reduced set of time indices would be given by

Tτ =
{
0, 9, 17, 45, 77

}
. However, for a clearer description of algorithms used in the rest of

this chapter, instead the time indices τ will be redefined and written as a sequence Tτ ={
0, 1, 2, 3, . . .

}
. An alternative consistent with the previous definition would simply have to

use notation like τ(k), τ(k − 1), when referring to adjacent informative points in time, for

example.

As for the regular discrete time t, the state at time index τ is defined as

xτ =
(
iτ , xτ , dτ

)
(7.5)

where iτ and dτ are discrete variables describing the location and direction of the robot at

time τ as defined previously for time t, and xτ is the continuous position of the robot in a

one dimensional pipe or simply equal to zero if iτ corresponds to a node. The relationship

between instantaneous state xτ at the reduced time index τ and measurements uτ and zτ is

defined by

xτ = fu(xτ−1,uτ ) (7.6)

zτ = fz(xτ ) (7.7)

The motion measurement uτ is given by

uτ =
{
∆xτ ,∆θτ

}
(7.8)

At the reduced time index τ , it is modelled that the robot turns, making a measurement of

change in angle ∆θτ by integrating over a period of angular motion, then moves, making a

measurement of change in position ∆xτ by integrating over a period of linear motion. This

integration can be written as

∆xτ =
τ∑

t=τ−1

∆xt (7.9)

The uncertainty in this measurement can be given by

σxτ =

√√√√ τ∑
t=τ−1

σxt
2 (7.10)
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If the value of uncertainty σxt at each time t is constant, this can be simplified to

σxτ =
√
T ττ−1σxt

2 =
√

T ττ−1σxt (7.11)

where T ττ−1 is the number of discrete time steps t between reduced time indices τ − 1 and

τ . A similar approach can be taken for angular motion, where it assumed that the turning

motion is purely angular motion and therefore the motion is linear in the angular dimension.

The decoupling of the two purely linear motions gives this approach its efficiency. As the

robot in this application is constrained to moving in a mostly one-dimensional environment,

sequences of purely linear odometry measurements can be simply integrated using a linear

motion model without adding the error which would be found when using a linear function

to represent the output from a nonlinear model. The cost of estimation can therefore be

reduced without adding error to the estimation.

The environment measurements zτ are defined more generally, as the specific mea-

surement depends on what information is available. In the case that no additional information

is found from sensors beyond odometry and the detection of nodes, zτ is always simply given

by

zτ = zτ = N (7.12)

as, by definition, the time index τ only exists when informative measurements are available,

such as the detection of a node. The corresponding measurement of zt ∈
{
L,N

}
has some

uncertainty, as defined here and in equation 6.11

p(zτ = L|iτ ∈ L) = 1− βp (7.13a)

p(zτ = L|iτ ∈ N ) = βn (7.13b)

p(zτ = N |iτ ∈ L) = βp (7.13c)

p(zτ = N |iτ ∈ N ) = 1− βn (7.13d)

If information from an observation of a discrete or categorical quality of the robot’s

surroundings is available, this could be defined as

zτ =
{
zτ ∈

{
L,N

}
, γτ , . . .

}
(7.14)
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where zτ is the detection of either a node or a link, and γτ is the colour of the surrounding

pipe or junction material, for example. If information from an observation of a metric quality

of the robot’s surroundings is available, this could be defined as

zτ =
{
zτ ∈

{
L,N

}
,Λτ ,Θτ . . .

}
(7.15)

where Λτ is an estimate of the length of the surrounding link which could be made using

acoustic echoes, and Θτ is a set of relative orientations of exits from a junction with respect to

the robot, for example. In any case, some of the variables contained in zτ might be empty for

some time indices τ , in which case they are not incorporated into the localization estimate.

These informative measurements may require observations that are made and inte-

grated over a sequence of time indices t. Small periods of integration such as the scanning

period of a scanning rangefinder sensor are already considered negligible in typical localiza-

tion definitions. Longer periods of integration such as those for detecting and characterising

a junction between pipes based on a point cloud created from visual feature detection are in

this case condensed into a single time index τ . Similarly, a sequence of observations zt = N

is condensed into a single time index τ .

Overall this approach condenses the measurements made at frequent time indices t

into a smaller set of integrated measurements at time indices τ . The result is a set of useful

measurements which shares the simplicity of the approach taken by the discrete approach

taken in Chapter 6, and has the flexibility of the continuous approach taken in Chapter 3

and of the continuous-discrete approach in Chapter 6 while also improving on some of the

problems found in these approaches. First the trajectory at time indices τ ∈ Tτ can be

estimated, then the sub-trajectories between adjacent indices τ ∈ Tτ at each index t ∈ Tt

can subsequently be estimated, where each sub-trajectory should be independent given the

estimates at indices τ ∈ Tτ .
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7.4 Localization Implementation

Given the approach defined in section 7.3, a practical implementation can be presented. This

is presented in two parts, describing first what specific informative measurements can be

incorporated into the estimate, and second how the posterior distribution is estimated given

these measurements.

The aim here is to find a method of estimating the posterior distribution, which is

described as p(x1:T |x0, u1:T , z1:T ). Ideally, a complete understanding of the posterior distribu-

tion would be found. However, using the hybrid continuous-discrete state space, it is difficult

to represent the full distribution without inefficient exhaustive computation. Instead, here a

maximum a posteriori estimate of the most likely sequence of states is found, which is the

mode of the posterior distribution. This optimization problem could be solved by a range of

means. Here, the solution is derived from the Viterbi algorithm [91], which is known to be

an optimal method of estimating a sequence in a discrete-time finite-state Markov process, a

description which fits the defined problem here reasonably well.

Compared to the previous approach of estimating the posterior distribution only

over the current state at time t, the estimation of the most likely sequence of states has

advantages in accuracy and robustness due to the use of information over all times. While

instantaneous information might mean that the true state at time t appears unlikely, informa-

tion from future time steps should, assuming that information in u1:T and z1:T is sufficiently

informative, mean that the true state at time t appears likely. The estimation of the full

sequence of states therefore gives an implicit means of recovering from mislocalization.

7.4.1 Viterbi Algorithm

The algorithm estimates the probability of the most likely sequence to each state xτ in the

state space recursively forward through time τ ∈ Tτ , using the information in uτ and zτ .

The algorithm also records the state at the previous time x̂τ−1 which most likely proceeds

each state at time τ . At the end of this forward recursion, at time T , the state at which
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Algorithm 5 The Viterbi algorithm
For each time index forward through time
for each time τ ∈ Tτ =

{
1, 2, . . . , T

}
do

Get the measurements for time τ
get uτ and zτ

for each state
for state xj , j ∈

{
1, 2, . . . , X

}
do

Find the probability of the most likely sequence that ends at this state
p(x̂j0:τ |x0,u1:τ , z1:τ ) = max

k
(p(xjτ |xk0:τ−1,uτ )p(zτ |xjτ )), k ∈

{
1, 2, . . . , X

}
Record the state index at the previous time in this sequence
Kj
τ = argmax

k
(p(xjτ |xk0:τ−1,uτ )p(zτ |xjτ )), k ∈

{
1, 2, . . . , X

}
end for

end for

Find the trajectory with the highest likelihood
JT = argmax

j
p(x̂j0:T |x0,u1:T , z1:T ), j ∈

{
1, 2, . . . , X

}
Get the state that ends this trajectory
x̂T = xJTT

For each time index backwards through time
for each time τ ∈ Tτ =

{
T, T − 1, . . . , 2

}
do

Get the recorded index of the most likely previous state
Jτ−1 = KJτ

τ

Get the state at this index
x̂τ−1 = xJτ−1

end for

the most likely sequence ends, x̂T , is found, and the most likely sequence is found using the

recorded most likely previous states starting with x̂T and stepping backwards through time.

This function is described by Algorithm 5.

7.4.2 Augmented Viterbi Algorithm

In this implementation, the state is defined as in equation 7.5. The inclusion of this continuous

variable means that the state space is infinite in the sense that there are infinitely many

possible values of the continuous variables in a given range. Therefore, the Viterbi algorithm

requires a small augmentation for use here.
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This augmentation is implemented here by computing and maintaining a set of

estimates or hypotheses at each time τ . Each estimate has a state xτ , a probability describing

the likelihood of a sequence from time 0 to time τ ending at the state, and a record of the

most likely previous state in this sequence, giving the required information for the function

of the Viterbi algorithm. The approach therefore is akin to a multi-hypothesis estimation, as

the probability distribution over the state space is computed only for a subset of the whole

state space. This approach facilitates the incorporation of the continuous variable xτ into

the estimation in an otherwise discrete state space. The multi-hypothesis approach means

that an arbitrary number of estimates could be made in the same link iτ each with a different

continuous position.

To improve efficiency, a threshold for probability is set, below which probabilities

are assumed to be zero. If a state at time τ − 1 has a probability of zero, the probability of

states at time τ originating from it will also be zero and therefore do not need to be computed.

The approach of computing a set of estimates facilitates the truncation of probabilities, as

sufficiently unlikely estimates can simply be removed from the set. This truncation allows the

feasible computation of probabilities in a state space which would otherwise be impractical

for this approach.

The states at time τ − 1 and τ could either be nodes or links, which gives four

different types of transition between states, each of which are worth describing separately. In

each case, the probability of a transition between a pair of states is found given a measured

distance travelled ∆xτ with uncertainty given by σxτ
√

T ττ−1, and the measured angle travelled

∆θτ with uncertainty given by σθτ . The likelihood of moving from a given state xτ−1 to a

given state xτ can be computed by comparing the odometry measurements to those that

would be expected given the known map of the environment. These are described below and

also illustrated in Figure 7.2, which shows the computation of probability of transition to a

new discrete location given the measured distance travelled, as well as the subsequent new

continuous robot position estimated within that discrete location.

• Node to Node: With the linear odometry measurement, there is a normally dis-

tributed model for distance travelled at time τ . The distance between a pair of nodes
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Figure 7.2: Estimation of the probability of a transition between two states. (a) shows the case for

a node state. (b) and (c) show the case for a link state.



CHAPTER 7. BACK-END: ADVANCED HYBRID SPACE LOCALIZATION 147

iτ−1 and iτ can be found, and the likelihood of this transition can be found by compar-

ing the expected distance to the normally distributed measured distance. If the node

states are modelled as having infinitesimal size, the probability that a given measured

uncertain distance moves the robot from one node state to another is zero. To solve

this problem, the node states are considered to have a nonzero size, which allows the

calculation of the desired probability by integrating the normally distributed model

over the interval in distance corresponding to the node. This is illustrated in Figure

7.2(a). The position xτ is set to zero. This process is followed for each direction dτ

arrived at. Often there are multiple paths which could be travelled between a given

pair of states, so each of these can be considered separately and consolidated later.

• Node to Link: The likelihood of moving from a given node iτ−1 to a given link iτ

can be found again by integrating the normally distributed model over the interval in

distance travelled, which is given by the distance to the near and far end of the link.

This is illustrated in Figure 7.2(b) and (c). As with the transition between a pair of

nodes, a number of possible paths may exist between a node and a link so each of these

are considered separately before being consolidated later. This process is followed for

each direction dτ ∈ (−1, 1) arrived at. The most likely position xτ is found as the mode

of the normally distributed model which is within the interval of the link.

• Link to Node: If the previous state xτ−1 is in a link, it has a continuous position xτ−1.

The computation of the likelihood of a transition to a node iτ can be found similarly to

the node to node case, where the normally distributed model for distance travelled from

the estimated position xτ−1 can be integrated in the interval in distance corresponding

to the node, and again each possible path can be considered separately. In this case,

the normally distributed model can consider the uncertainty in both the position xτ

and in the distance travelled. The standard deviation of the distance travelled is equal

to the square root of the sum of the squared standard deviation of the distributions for

position and for distance travelled.

• Link to Link: The likelihood of moving from a given link iτ−1 to a given link iτ can be

found by combining the approaches used above, taking the normally distributed model
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for distance travelled from position xτ−1 and integrating it over the interval in distance

corresponding to the link iτ .

In all cases, the probability density for the angle taken for a given transition is found from a

model of the uncertain angle measurement. A heavy-tailed distribution in the range [0, 2π)

is used for robustness.

7.4.3 Implementation of Viterbi Algorithm

The approach described previously is implemented as follows, where the probability over

states at time τ is computed from the estimated states at time τ − 1. This approach is

described in more detail in Algorithm 7. Algorithm 6 describes the implementation of the

Viterbi algorithm as a whole, including the forward and backwards parts, as described in

general in Algorithm 5.

The map of the environment defines the state space for the localization estimate,

so is available to the algorithm. For computational efficiency, the various expected distances

between each pair of places are computed prior to the estimation, denoted by Υ, and are

available in the map M used by the algorithm. This reduces computational time at the cost

of increased storage required.

For each estimated state xτ−1, the likelihood of a transition to each other node and

link state at time τ is found using the odometry information as described above. A further

truncation is used here for efficiency: states at time τ for which the minimum required distance

travelled from xτ−1 is much larger than the measured distance travelled are assumed to have

a probability of zero and are not computed exactly. For the transition between the state

xτ−1 and each other place, there will likely be a number of possible paths and corresponding

expected distances and angles travelled. For each of these paths, an estimated state and

likelihood is computed.

Once each state xτ−1 has been considered, the resulting estimates xτ can be con-

solidated. The first of two key aspects of the Viterbi algorithm is that the estimates in the
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Algorithm 6 The Viterbi algorithm implementation
For each time index forward through time
for time τ =

{
1, 2, . . . , T

}
do

Get the measurements for time τ
get uτ and zτ
get the set of estimates Xτ using Algorithm 7
X̃τ =

{
X̃ 1
τ , X̃ 2

τ , . . . , X̃
j
τ

}
, X̃ j

τ =
{
xjτ =

[
ijτ , x

j
τ , d

j
τ

]
, kjτ , p(x

j
0:τ |x0,u1:τ−1, z1:τ−1), σ

j
xτ

}
consolidate the set of estimates X̃τ using Algorithm 8
Xτ ⊂ X̃τ

end for

Find the trajectory with the highest likelihood
JT = argmax

j
p(xj0:τ |x0,u1:τ−1, z1:τ−1)

Get the state that ends this trajectory
x̂T = xJTT

For each time index backward though time
for time τ =

{
T, T − 1, . . . , 2

}
do

Get the recorded index of the most likely previous state
Jτ−1 = kJττ
Get the state at this index
x̂τ−1 = xJτ−1

end for

set are compared and for each subset with equal states xτ only the most likely is kept in

the set, including the record of its most likely previous state, while the other estimates are

removed. Then, the likelihood of each estimate in the resulting set is compared to a threshold

probability, and the estimate is removed if its likelihood is low. This process is followed for

each time index τ ∈ Tτ , computing the probabilities of likely sequences of states starting with

the known state x0. The second key aspect of the Viterbi algorithm is that once the most

likely sequence ending at time τ is found, the recorded most likely previous state can be used

to simply recover the sequence of states back through time.

7.4.4 Additional Measurements

While this algorithm has been derived to use inputs from integrated linear and angular

odometry in uτ and observations of either a node or a link in zτ , other information could
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Algorithm 7 The forward Viterbi algorithm implementation
Compute the likelihood of states for time τ and state estimate at time τ − 1
Get the measurements for time τ
get uτ and zτ
initialise Xτ = ∅
for each estimated state at time τ − 1
for state x̃kτ−1,∈ Xτ−1 do

get the state x̃kτ−1 =
[̃
ikτ−1, x̃

k
τ−1, d̃

k
τ−1

]
and uncertainty σkxτ

for each discrete index at time τ
for index i ∈ I do

For each discrete direction at time τ
for direction d ∈ Di do

get discrete state xjτ =
{
i, ∅, d

}
For each path between states
for υx

j

xk ∈ Υxj

xk do
get hypothetical discrete state xjτ =

{
i, ∅, d

}
Get the expected odometry interval and angular odometry for this path
uxj

xk = [∆xx
j

xk,1
,∆xx

j

xk,2
,∆θx

j

xk ] = f(υx
j

xk)
Get the probability distribution over distance travelled
p(∆xτ ) = N (µ = ∆xτ , σ =

√
σxτ

2 + σkxτ
2
)

Get the probability for discrete state xjτ and sequence p(xj0:τ |x0,u1:τ , z1:τ )

p(xjτ |xkτ−1,uτ , zτ ) = p(∆θτ |∆θx
j

xk)p(zτ |xjτ )
∫ ∆xx

j

xk,2

∆xx
j

xk,1

p(∆xτ )d∆xτ

p(xj0:τ |x0,u1:τ , z1:τ ) = p(xjτ |xkτ−1,uτ , zτ )p(x
k
τ−1|x0,u1:τ−1, z1:τ−1)

Get continuous state and uncertainty
∆̂x

j
τ = argmax

∆xτ

p(∆xτ ),∆xx
j

xk,1 ≤ ∆xτ ≤ ∆xx
j

xk,2

x̂jτ =


0 if ij ∈ N∆̂x

j
τ −∆xx

j

xk,1
if dj = 1

xL,i − (∆̂x
j
τ − xx

j

xk,1
) if dj = −1

if ij ∈ L

σjxτ =

{
0 if ij ∈ N√
σxτ

2 + σkxτ
2 if ij ∈ L

Add to estimate
X j
τ =

{
xjτ =

[
ijτ , x

j
τ , d

j
τ

]
, kjτ , p(x

j
0:τ |x0,u1:τ , z1:τ ), σ

j
xτ

}
Xτ ⇐= X j

τ

end for
end for

end for
end for
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Algorithm 8 The Viterbi algorithm implementation
Compare each state in the set of estimates
for each pair of estimates in the set of estimates
for X j

τ ,X k
τ ∈ Xτ , j ̸= k do

compare the two states
if xjτ = xkτ then

if the two states are the same, remove the state with the lower probability
L = argmin

l∈j,k
p(xl0:τ |x0,u1:τ , z1:τ )

XL
τ = ∅

end if
end for

be found either instantaneously or through integration over the time step τ which could be

incorporated into zτ .

The first source of additional information used here is the identification of a nearby

node which could be done by use of a beacon [154] which the robot can detect and uniquely

identify. This is implemented in the algorithm presented here as a simple multiplication of

the probability of each estimate xτ by a factor given by p(oτ |xτ ).

The second source of additional information is in loop-closures, where the robot

detects and recognises a previously observed feature, thereby observing that the state at two

different time steps is likely the same. If one estimate of the state is xτ , and a loop-closure has

been made between time τ and time τl, then the state xτl is found using the same method

that is used to find the full sequence from time 0 to T . The likelihood of the estimated

sequence given the loop-closure can be found by computing p(zlτ |xτl:τ ).

The third source of additional information is from the estimation of the length of a

link Λτ using means such as acoustic echoes seen in Chapter 5. This is simply implemented

in the algorithm presented here as a multiplication of the probability of each estimate xτ by

a factor given by p(Λτ |xτ ). To reflect the uncertainty in the measurement of the length of a

link using acoustic echoes, the following model is used to simulate the length measurement,

where a number of possible link lengths are found, as detailed in previously published work

Rob Worley, Yicheng Yu, and Sean Anderson. “Acoustic echo-localization for pipe inspection

robots”. In: IEEE International Conference on Multisensor Fusion and Integration for Intel-
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Table 7.1: Default parameters for the robot motion and measurement.

Parameter Symbol Value

Command input motion ∆x (normal) 5

Normal motion noise σx 0.2

Angular measurement noise σθ 0.1

Uniform motion noise ux 0.5 m

Motion noise constant kv 0.8

False positive rate βp 0.005

False negative rate βn 0.05

ligent Systems (2020), pp. 2–7. url: https://ieeexplore.ieee.org/document/9235225.

The true link length is found given the simulated robot’s position in the environment. There

is some uncertainty to the exact value of link length, there is some probability that the true

link length is not found, the set of lengths contains a number of multiples of the true length

and a number of random false measurements.

7.5 Results and Discussion: Comparison of Algorithms

This section presents an experiment and discussion comparing two algorithms:

1. The 1Dt algorithm presented in Chapter 6 (where it is there referred to as the 1D+

algorithm1), which is the novel improved version of the novel 1D algorithm, which itself

is an improvement to the 2D algorithm in the application to high uncertainty robots

which is presented in the literature [66].

2. The proposed 1Dτ algorithm presented in this chapter.

An example of the performance of these two algorithms, compared also with the 2D
1The name of this algorithm has been changed in this chapter to better describe the difference between it

and the algorithm it is compared to.



CHAPTER 7. BACK-END: ADVANCED HYBRID SPACE LOCALIZATION 153

Table 7.2: Default parameters for the localization algorithms

Parameter Symbol Value

1Dt

Motion model noise σ̃x 1.2σx

Node transition std. σn ∆x m

Angular weight std. σ̃θ 10σθ
Kernel std. σg 5∆x m

Number of New Particles HD 10

Number of Particles Decay Constant Kh0 0.05

Divergence Short Time Constant ταs 20

Divergence Long Time Constant ταl 100

Hypothesis Weight Threshold α0 0.01

1Dτ

Motion model noise σ̃x 4σxτ
√
T ττ−1

Angular motion model noise σ̃θ 2σθ
Angular motion model noise minimum σ̃θ,min 0.2

algorithm described in Chapter 6, is given in Figure 7.3. The trajectory estimated by each

algorithm is shown on a map of part of the pipe network used in this experiment, which shows

the large scale of the network compared to the length of the trajectory used, which is around

4.5 kilometers. The trajectory estimate error can be compared for each algorithm. The

estimate from the 2D algorithm is seen to eventually become incorrect and fail to relocalize.

The 1Dt algorithm is seen to successfully relocalize over the whole trajectory. The 1Dτ

algorithm is seen to have a consistently accurate estimate, as any periods of mislocalization

are relocalized over all time steps. These results are only shown for illustrative purposes.

The experiment over a large number of trajectories is described in the rest of this section.

As in Chapter 6, the algorithms are compared by using simulation to create a large

number of trajectories through a pipe network, with variation in uncertainty in motion and in

measurements. As described in Chapter 6, the two algorithms are compared in terms of error

rate, which is the proportion of time where the estimated position is in the wrong discrete

location. This is estimated as described in Section 6.7.
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Figure 7.3: Illustrative example results showing: (a) and estimated trajectory, and (b) the estimate

error. Three different estimate algorithms are compared, the 1Dt, 1Dτ, and 2D algorithms.

The error rate is compared for a range of values of different variables describing the

uncertainty in the input measurements.

1. Normally distributed uncertainty in measured linear motion. The robot is modelled as

moving forwards where its actual motion is equal to a measured motion with added

normally distributed uncertainty with standard deviation σx, as described by equations

6.6 and 6.7.

2. Uncertainty in measured angular motion, where the robot’s measured angular motion

is modelled as being equal to the actual motion with added normally distributed un-

certainty with standard deviation σθ, as described by equations 6.9 and 6.10.
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3. Integrated uniformly distributed uncertainty in measured linear motion. The robot is

modelled as moving forwards where its actual motion is equal to a measured motion

with added integrated uniformly distributed uncertainty, in the range ut, as described

by equation 6.8. The added uncertainty is therefore dynamic, which is challenging to

the algorithms which use a model of uncorrelated uncertainty.

4. Uncertainty in the detection of nodes, given by the rates of false positive and false

negative detection, described by equation 6.11.

The error rate is measured over different values of these uncertainty variables. For each value,

the error rate is measured over 50 trajectories through the pipe network. The default pa-

rameters describing uncertainty in the simulated robot’s motion and measurements are given

in Table 7.1. The parameters used by each of the two localization algorithms as described

earlier in this chapter and in Chapter 6 are given in Table 7.2.

It should be noted that these two algorithms take different approaches to the local-

ization problem, and the results are not easily to directly compare. The principal differences

are that the 1Dt algorithm iteratively estimates the instantaneous position of a robot at a

mostly regular interval in time t, while the 1Dτ algorithm estimates the full sequence of robot

positions at arbitrary instances in time τ where the robot makes an informative measurement,

as discussed previously in this chapter. However, while the two algorithms aim to achieve

different things, they can be compared in terms of accuracy, reliability, and efficiency. To

best compare the performance of the two algorithms, the estimates given by the 1Dt and

1Dτ algorithms will be evaluated only at nodes, as this is when the majority of information

is acquired by the robot, which avoids biasing the results towards the 1Dτ algorithm.

Figure 7.4 shows the results of this comparison. In each case, the results are sim-

ilar, and it is seen that the error rate for the 1Dt algorithm increases with the increase in

uncertainty, while the error rate for the 1Dτ algorithm remains constant or increases less.

Figures 7.4(a) and (b) show that the 1Dτ algorithm has a low median error rate of

less than 0.05 at the largest measured value of linear uncertainty, where the 1Dt algorithm’s

median error rate is above 0.1 and many trajectories have an error rate greater than 0.5.
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Figure 7.4: A comparison of the Error rate with variation in: (a) σxt . (b) uxt . (c) σθt . (e)
β. (d) [i]: σxt = 0.2, σθt = 0.1, β = 0, [ii]: σxt = 0.5, σθt = 0.2, β = 0.05, [iii]: σxt = 1,

σθt = 0.5, β = 0.1.
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Figure 7.5: A comparison of the computation time with variation in: (a) σxt . (b) uxt . (c) σθt .

(e) β. (d) [i]: σxt = 0.2, σθt = 0.1, β = 0, [ii]: σxt = 0.5, σθt = 0.2, β = 0.05, [iii]: σxt = 1,

σθt = 0.5, β = 0.1.
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For the linear uncertainty, a value of 2.5σx is approximately equal to ux in terms of average

measurement error produced, although the integrated uniform uncertainty produces dynamic

correlated error which could impact the estimate more. Chapter 1 described the range of error

in linear motion of robots in pipes in the literature as being up to 35%. The median error rate

of zero for linear motion uncertainty of 50% of the distance travelled shows that the algorithm

performs well for uncertainty comparable to that expected in practice, while the median error

rate of less than 0.05 for linear motion uncertainty of 100% of the distance travelled therefore

indicates that this method is robust to uncertainty that might be expected in application in

more challenging realistic pipe environments.

Figure 7.4(c) shows that the 1Dτ algorithm has a median error rate of 0 even at the

largest measured value of angular motion, where the median error rate of the 1Dt algorithm

is above 0.25.

Figure 7.4(e) shows the good performance of both algorithms in the presence of

large measurement error rate. The error rate of both algorithms stays low or at zero for a

measurement error rate of up to 0.3. However, the error rate of the 1Dτ algorithm increases

to a median value greater than 0.8 at larger measurement error rates, and increases much less

for the 1Dt algorithm, showing the expected robustness to measurement error as described

in Chapter 6.

Figure 7.4(d) compares the performance of the two algorithms over an increase in

all of these uncertainty parameters simultaneously. A similar trend is seen as in the other

comparisons, as the error rate of the 1Dt algorithm increases to a median value of greater than

0.5 with the increase in uncertainty, while the error rate of the 1Dτ algorithm stays low and

only increases to a median value of less than 0.2. From this it can be seen that while the 1Dτ

algorithm is robust to an increase in each source of uncertainty individually, its robustness is

still limited when using only the simple measurements used here as inputs. This motivates

the incorporation of additional information from observations of the environment.

Figure 7.5 shows a comparison of the computation time used by each algorithm

corresponding to the estimate error rate shown in Figure 7.4, over the same variation in
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uncertainty parameters. Generally, it can be seen that the computational cost of the 1Dτ

algorithm is lower than that of the 1Dt algorithm. Figure 7.5(a) and (b) show that as

uncertainty in linear motion increases, the cost of the 1Dt algorithm increases while the cost

of the 1Dτ algorithm remains relatively constant. Figure 7.5(c) shows a similar trend but with

a smaller difference between the two algorithms. Figure 7.5(d) shows that the computation

time for the 1Dτ algorithm increases for larger values of all uncertainty, which correlates

with the increase in error rate seen for the same uncertainty parameters. Figure 7.5(e) shows

that the computation time of the 1Dτ algorithm increases and becomes larger than that of

the 1Dt algorithm. This corresponds to the substantial increase in error rate of the 1Dτ

algorithm, and the small increase in error rate of the 1Dt algorithm. Overall, considering

both the results for error rate and computation time, it can be seen that the 1Dτ algorithm

is substantially more efficient than the 1Dt algorithm for most tested values of uncertainty,

with a lower error rate and lower computational cost. It is seen here that lower error rate

for a given algorithm corresponds to a lower computational cost, due to the less uncertain

inputs resulting in fewer likely possible states which reduces the chance of error and reduces

cost. However, both algorithms could likely be improved in required computational cost, so

this comparison is not necessarily conclusive.

7.6 Results and Discussion: Improvement to the Algorithm

This section presents an experiment and discussion investigating the incorporation of addi-

tional information from the environment into the 1Dτ algorithm. In the previous section, the

inputs to the algorithm were simply linear and angular odometry, and the detection of nodes

in the pipe network. In Section 7.4.4, three additional sources of information were proposed:

unique identification of a node, loop-closure, and estimation of the length of a link. Here,

the effect of these additional sources of information is measured in comparison to a estimate

using only simple inputs with the higher uncertainty values used previously which give a

median error rate of around 0.15. Figure 7.6 shows the results of these comparisons.

For each source of additional information, the frequency of measurements is varied
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Figure 7.6: The effect of additional information (1Dτ+) on localization. (a) and (b) Uniquely

identification of nodes. (c) and (d) Loop-closure measurements. (e) and (f) Estimates of link

length using acoustic echoes.
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to measure the improvement to the error rate for different amounts of cost from additional

sensing. The identification probability is varied which determines the proportion of nodes in

the network which can be identified. A subset of nodes, in the given proportion to the total

number of nodes, are chosen to be identifiable. As described previously, this measurement

could be obtained by having beacons which the robot can detect and identify placed around

the network. The increase in identification probability therefore corresponds to an increase

in cost of additional hardware. The loop-closure probability determines the probability that

the robot is able to recognise a location that it has previously visited. The increase in

probability therefore corresponds to an increase in the required perceptive ability of the

robot, and also to an extent adds some requirements to the path the robot takes. The echo

measurement probability determines the reliability and precision of the measurement of pipe

length made using acoustic echoes. As described in Chapter 5, the estimate of pipe length

is made probabilistically, and a probability density is found over the continuous space of

possible pipe lengths. This density is typically larger around the true pipe length, around

multiples of the pipe length, and around random values smaller than the true pipe length.

The precision at which this pipe length can be estimated also depends on the precision of

the acoustic echo detection, so the measured length is modelled as having added normally

distributed uncertainty.

Figures 7.6(a) and (b) show the effect of adding identification of nodes to the estima-

tion. The error rate is seen to decrease with increasing proportion of nodes being identified.

With identification probability of greater than 0.75, there are no measured error rates above

0.4. The median error rate is seen to decrease most substantially with the increase of identi-

fication probability from 0 to 0.25, and decreases less so for further increases in identification

probability. The modal error rate is seen to decrease almost linearly with increasing identi-

fication probability. This shows a clear improvement found for increasing cost of additional

sensing, but offers inconclusive evidence as to whether the relationship between cost and effect

is linear or not. Further experimentation would be needed to determine this relationship, and

further experimentation could also be done to determine the effect of a deterministic rather

than stochastic placement of identifiable nodes. The nonzero error rate for an identification

probability of 1 might be due to some estimates being made in links for which the estimate
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of continuous position could be greater than the threshold for error. It might also be because

the current implementation only incorporates the identification measurement into estimates

made using the simple odometry and node observation measurements. Therefore, if the cor-

rect node is not predicted by these simple measurements, the identification will not be able

to improve the estimate.

Figures 7.6(c) and (d) show the effect of increasing probability of loop-closures. The

error rate is seen to decrease only slightly, from a median of 0.16 to a median of 0.11, even

for a probability of 1 of making loop-closure observations. This could be explained by the

low probability that a given loop-closure observation occurs at a time when it improves the

estimate. With the current approach, in order to correct an otherwise erroneous estimate at

time τ , a loop-closure must occur between the current time and a previous time for which the

estimate is correct. The probability of this occurring is lower than the equivalent probabil-

ity of making an identification observation at a time when the estimate would otherwise be

erroneous, which only requires the coincidence of the timing of one observation rather than

the coincidence of the timing of two observations. It is possible that loop-closure measure-

ments would be much more impactful in a simultaneous localization and mapping application,

compared to this localization problem.

Figures 7.6(e) and (f) show the effect of increasing echo measurement quality and

rate of echo measurements on the estimate. It can be seen that the error rate generally

decreases when echo measurements of any quality are used, although the improvement to

accuracy is highest for the highest quality echo measurements. The incorporation of acoustic

echoes is likely to share some properties with the identification of nodes. Acquiring the

sequence of acoustic echo measurements needed to make an estimate of pipe length has

some cost. The estimate of pipe length is likely more accurate with more cost, so here the

reduction in error rate is found at increasing cost. The relative cost between making acoustic

measurements and placing beacons in the network for identification is beyond the scope of

the work presented here. An improvement to estimate accuracy is more likely to be found

when the estimate would otherwise have been wrong, which is dependent on the random

probability of making an echo estimate. This is shown in Figures 7.6(e) and (f) where the
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results found when using two different probabilities are compared, and the error is reduced

for a larger probability of echo measurement. Unlike the identification of a node using a

beacon placed in the network, acoustic echo measurements can be made by the robot at

any time. An improvement to localization efficiency might be found by taking an active

localization approach where the robot makes an acoustic measurement when the uncertainty

in its localization estimate is large, therefore efficiently acquiring useful measurements when

they are more informative.

The incorporation of node identification measurements, echo measurements, and

to a lesser extent loop-closure measurements, is seen to improve the performance of the

algorithm for the values of uncertainty investigated. The incorporation of these additional

measurements has some associated cost, either in additional hardware or in additional time

and energy required for sensing. While the experiment here has measured the improvement

in algorithm performance with relative cost for each additional measurement, further work

would be required to establish the absolute cost so that development towards an optimal

solution could be made.

7.7 Conclusions

This section will summarise the results presented in this chapter and draw some conclusions

which will motivate future work beyond the scope of this thesis.

The experiments here have compared the newly presented 1Dτ algorithm which

uses an approach derived from the Viterbi algorithm to estimate the most likely sequence of

states given the sequence of measurements, with the 1Dt algorithm which uses a particle filter

with additional processes to detect and recover from error. The 1Dt algorithm was shown

in Chapter 6 to improve on the reliability of the estimate compared to the 1D algorithm,

which itself was shown to improve upon the performance of the 2D algorithm in application

to limited measurements with large uncertainty. The 1Dτ algorithm is shown to be an

effective further development of the idea of making the localization estimate in a suitable

low-dimensional space. The 1Dτ algorithm is shown to have higher accuracy and robustness
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than the 1Dt algorithm for a given set of input uncertainty values, and is shown to require

less computation. For linear motion uncertainty, the 1Dτ algorithm is shown to have a low

median error rate for uncertainty larger than that expected in practical application from

the literature. Developments to the 1Dτ algorithm are likely possible which would further

improve the accuracy, robustness, and computational cost.

The refinement of the estimation problem to a subset of all time indices brings the

problem formulation closer to a form which could be solved analytically. Mathematical tools

which are beyond the scope of this thesis likely exist which could develop the localization

algorithm further. The design of the algorithm presented here could be improved, or an

alternative algorithm might be found. It may be possible to estimate an upper bound on the

performance of an algorithm, providing evidence beyond numerical and statistical analysis of

the accuracy and robustness of the algorithm. An investigation into the effect on the estimate

of the pipe network topology and geometry also might be possible.



Chapter 8

Conclusions

This thesis has improved robot localization systems for application in pipe networks in terms

of accuracy, reliability, and efficiency. With the understanding of the useful abstraction

to different scales present in this environment: small-scale localization within a pipe cross

section, medium-scale localization along a pipe axis, and large-scale localization in a pipe

network, localization approaches have been developed across different levels in scope and

precision. This achieves the thesis aims described in Section 1.3, as detailed here.

An investigation of the literature on existing front-end approaches for this applica-

tion in Chapter 2 determined that existing vision or rangefinding sensing is capable of small-

scale localization and of making observations of features useful for large-scale localization.

However, these typical approaches are limited in effectiveness for medium-scale localization

in this environment. Hydrophone sensing is investigated using experimental data and devel-

oped beyond previous work using the same data [135, 33] in Chapter 4. It is shown that it

can be used to detect more features in the otherwise feature-sparse environment, and a novel

augmented pose-graph optimization can be used to give a low error rate in localization, with

a median error rate of zero in the best case. However, the error rate is not reliably reduced,

with around 50% of the trajectory estimates having a nonzero error rate in the best case, as

this sensing approach is still limited in that it is only able to observe nearby features.
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A novel acoustic echo front-end, well suited for medium-scale localization in this

environment, has been developed and integrated into a localization back-end, which results

in good performance demonstrated with experimental measurements in Chapter 5. The use of

acoustic echoes has been demonstrated here in a complex realistic pipe environment, and the

use of a novel extended pose-graph optimization algorithm has been shown to be necessary,

and shown to produce a median localization error rate close to zero for values of uncertainty

greater than those required by the problem definition made in Chapter 1. Compared to the

approach in Chapter 4, the reliability of the acoustic echo approach is higher, as the upper

quartile of the error rate is reduced from 0.5 to less than 0.05 for comparable values of robot

uncertainty. This adds to the literature regarding alternative sensing approaches in this

environment, showing a more direct means of estimating distance to features, and showing

improvement to flexibility of operation compared to previous use of acoustic propagation

[69] and of other propagating waves [38]. Despite the effectiveness of the proposed method,

it should be noted that vision is still most prevalent in the literature on existing front-end

approaches. The conclusions here do not imply that vision is unsuitable in this application,

only that it is more limited in this application than in more typical environments. Effective use

of vision has been demonstrated previously [68], and further development has been seen since

then. A more thorough comparison between front-end approaches, considering the robot

system as a whole including information about the desired sensing method for pipe fault

detection, would be needed to better assess the optimal front-end for a given application.

The investigation of available back-end methods concludes in Chapter 6 and Chapter

7 that a hybrid continuous-discrete approach is well suited to large-scale localization of robots

in the pipe environment with limited sensor measurements. This approach usefully simplifies

and constrains the estimation problem compared to the continuous approach explored in

Chapter 3. It has been shown that the continuous-discrete approach can usefully incorporate

information from both existing and novel methods of front-end perception. This challenges

the consensus of the literature for this application which largely takes a continuous approach.

This consensus may be simply a default approach rather than a well evidenced method,

and this thesis contributes evidence to the literature that alternative approaches could be

considered which are especially well suited to this environment. A direct comparison is made
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between a continuous space particle filter algorithm presented in recent literature [66] which

is well suited for capable robots with low uncertainty perception, and a novel continuous-

discrete space particle filter algorithm designed for the large uncertainty perception of small

robots in this environment, which shows the advantages to accuracy, cost, and robustness

which can be gained using the proposed method. The proposed novel algorithm is shown

to have an average error rate of zero for problems within the definition made in Chapter 1.

This thesis also contributes a useful investigation into the effect and effectiveness of a range

of measurement types on localization.

Development of the localization solution for this problem is not yet complete. Local-

ization development is progressing alongside that of every other aspect of this robotic system.

This includes locomotion, sensing, control, and communication, and also includes aspects of

the system as a whole, such as whether the system should be made up of a group of powerful

robots, a swarm of simple robots, or a set of individual robots distributed around a network.

This thesis contributes work towards localization of a single robot in a largely known envi-

ronment which has been mostly assumed to be mapped accurately. However, further work

could contribute to the literature as follows.

Implementation of the developed localization approaches in online, real-time local-

ization would better demonstrate the feasibility of the approach to application in industry,

and also result in better understanding of the strengths and weaknesses of the approach.

Work in this direction would be a substantial contribution to the literature, and could pro-

duce data which could be used for further development of the robotic system. However,

it would come with the challenge of implementing all aspects of a robot system to a suit-

able level which was beyond the scope of this thesis, and the challenge of accessing suitable

experimental or field conditions.

Substantial work could be done in development of a simultaneous localization and

mapping method, which could localize a robot in an unknown map or a map that is partially

known either in the sense of some regions of the map being inaccurately mapped previously, or

in the sense that the map topology is known but not the metric detail. Similarly, substantial

work could be done in the development of localization of multiple robots. Complexity here
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could be found from the limits on possible communication and from the possible differences

in capabilities between robots. Integration between localization and control of the robot, or

robots, could produce more reliable localization than is possible otherwise. While this thesis

presented algorithms for detecting a likely error in localization, the subsequent recovery would

likely be more effective if a more active approach to recovery was taken. Investigation into the

effect of network topology and geometry on the localization result could be useful for improved

localization robustness and integration with robot control. In the work here, the presented

algorithms have been assessed in their performance over the network as a whole, but it is likely

that particular parts of a given network provide a greater or lesser challenge to localization.

For example, parts of the network consisting of a number of pipes of similar length may be

more challenging to localize in. Incorporation of the dynamics of the environment, either slow

changes in pipe condition or fast changes in fluid flow and the position of other robots, could

be useful for localization. Depending on the purpose of the network, these aspects might vary

periodically with daily use or be influenced by factors such as the weather. The continuous-

discrete state definition usefully acknowledges the network topology so could facilitate this

additional information. Established methods in the field of buried infrastructure modelling

could be usefully applied here, as could aspects from the increasingly popular idea of digital

twins, creating some integration between the robot localization system and the infrastructure

system as a whole.

Further work could be done in finding some analytical upper or lower limit on lo-

calization performance for a given algorithm. This would improve upon the results presented

in this thesis where the performance of the algorithms are evaluated numerically, showing

a statistical measure of performance measures such as error rate and failure rate. While it

is likely that methods not used in the work presented here would be required for this work,

taking it beyond the scope of this thesis, an analytical guarantee on performance would be

desirable both from an academic perspective and the perspective of industry.
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