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Abstract

Toxic comment classification is a core natural language processing task for com-

bating online toxic comments. It follows the supervised learning paradigm which

requires labelled data for the training. A large amount of high-quality training

data is empirically beneficial to the model performance. Transferring a pre-trained

language model (PLM) to a downstream model allows the downstream model to

access more data without creating new labelled data. Despite the increasing re-

search on PLMs in NLP tasks, there remains a fundamental lack of understanding

in applying PLMs to toxic comment classification. This work focuses on this area

from three perspectives.

First, we investigate different transferring strategies for toxic comment classi-

fication tasks. We highlight the importance of efficiency during the transfer. The

transferring efficiency seeks a reasonable requirement of computational resources

and a comparable model performance at the same time. Thus, we explore the

continued pre-training in-domain which further pre-trains a PLM with in-domain

corpus. We compare different PLMs and different settings for the continued pre-

training in-domain.

Second, we investigate the limitations of PLMs for toxic comment classifica-

tion. Taking the most popular PLM, BERT, as the representative model for our

study, we focus on studying the identity term bias (i.e. prediction bias towards

comments with identity terms, such as “Muslim” and “Black”). To investigate

the bias, we conduct both quantitative and qualitative analyses and study the

model explanations. We also propose a hypothesis that builds on the potential

relationship between the identity term bias and the subjectivity of comments.

Third, building on the hypothesis, we propose a novel BERT-based model to

mitigate the identity term bias. Our method is different from previous methods

that try to suppress the model’s attention to identity terms. To do so, we insert the

subjectivity into the model along with the suggestion of the presence of identity

terms. Our method shows consistent improvements on a range of different toxic

comment classification tasks.
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Chapter 1

Introduction

As user-generated contents thrive, so does the spread of toxic comment online.

There is a growing body of literature that recognises the importance of detecting

toxic comment and studies this problem from different perspectives. One main

area of studies in online toxic comments is using machine learning methods to

automatically detect toxic comments. This thesis belongs to this category, and

investigates the problem by focusing on using the more recent state-of-the-art

(SOTA) machine learning models based on pre-trained language models. This

chapter provides a background of this thesis, and sets the stage for the subsequent

chapters.

The remainder of this chapter is structured as follows. Section 1.1 explains

the motivation of this thesis, particularly why we study the pre-trained language

models for detecting toxic comments. Section 1.2 presents the three research

objectives that guide this thesis. Section 1.3 discusses the related ethical concerns.

Section 1.4 outlines the structure of this thesis. Last, Section 1.5 lists publications

published during the thesis.

1.1 Motivation

The rise of multiple social media platforms have revolutionised the way how we

communicate with and express ourselves to other people. Unfortunately, they have

also led to an increasing number of negative behaviours online. Such behaviours

are diverse, but include hate speech, cyberbullying, threats and abusive language

(Waseem et al., 2017).

Hate speech is commonly defined as any form of communication that dispar-

ages individuals or groups on the basis of a personal characteristic such as race,

1
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ethnicity, gender, sexual orientation, nationality or religion (Schmidt and Wie-

gand, 2017). Cyberbullying refers to online behaviours intended to hurt someone.

These include disseminating negative, harmful, false, or mean content about a

person (Committee, 2019). It can also include sharing personal or private infor-

mation about someone intending to cause embarrassment or humiliation (Com-

mittee, 2019). Undoubtedly, there are many other types of negative user generated

content (UGC) online. Several recent pieces of literature used the broad umbrella

term of “toxic comment” to generally refer to these different types of unhealthy

and negative UGC.

Unfortunately, toxic comments such as “kill yrslef a$$hole” or “they should all

burn in hell for what they’ve done” are not uncommon online (Nobata et al., 2016).

Duggan (2014) have shown that 73% of adult internet users have seen someone

harassed online in some way and 40% have personally experienced harassment

themselves. The Centers for Disease Control and Prevention (USA) has reported

an estimated 14.9% of high school students have been subjected to cyberbullying

in the past 12 months (Committee, 2019). In their study of social media, Oksanen

et al. (2014) have reported 67% of 15 to 18 years olds have witnessed cyberbully

on Facebook or YouTube, with 21% falling victim themselves.

The large prevalence of toxic comments harms the user experience and also

breeds radicalisation, incites violence and triggers real-world tragedy. Evidence

has shown that toxic comments on social media such as hate speech have con-

tributed to hate crimes (MacAvaney et al., 2019). For instance, several perpetra-

tors of recent hate-related terror attacks were found to have an extensive social

media history of hateful posts, suggesting social media can play a role in radical-

isation (Robertson et al., 2018; The New York Times, 2019).

Many countries have already established various relevant laws and regulations

to combat violent or bullying language. In England and Wales, relevant legisla-

tions include: the Offences Against the Person Act 1861, the Public Order Act

1986, the Malicious Communications Act 1988, the Protection from Harassment

Act 1997, and the Criminal Justice Act 2003 (Burnap and Williams, 2016). Ger-

many has enacted the Network Enforcement Act which aims to fight online hate

speech (Hilgendorf, 2021). In France, Denmark and the Netherlands, similar laws

and regulations are also in place. In the US, there are protections against posting

harassing language on the web without exposing personal identity (Burnap and

Williams, 2016). In spite of the existence of relevant legislation, toxic comments

on social media are still growing and becoming increasingly difficult to control. To

combat the plague of toxic comments, platform operators including Twitter, Face-
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book, Reddit, and Riot Games (gaming company) have tried to discourage toxic

comments by amending their user agreements (Saleem et al., 2017; MacAvaney

et al., 2019).

Despite these efforts, toxic comments continue to appear with increasing fre-

quency online, largely due to the perceived anonymity and the difficulty of identi-

fying individuals at scale (Burnap and Williams, 2016). The overwhelming volume

of continuously growing UGC online has rendered manual detection of toxic com-

ments infeasible. For this reason, automated identification of toxic comments is

becoming an active area of research in both natural language processing (NLP)

and machine learning. This is commonly known as toxic comment classification

(TCC).

Current methods primarily utilise supervised machine learning (a.k.a. super-

vised learning) to train a model to identify and classify toxic content. Supervised

learning requires labelled data to train the classification model (Schmidt and Wie-

gand, 2017). That is to say, the classification model needs labelled data (i.e.,

training data) to learn how to distinguish between toxic comments and normal

comments. The training data needs to be labelled manually by humans and this

process is laborious and consumes a lot of time and effort. Another key challenge in

constructing toxic comments datasets is that what constitutes toxic comments and

their categories can be quite subjective, with many competing definitions across

legal, regional, platform, and personal contexts (Waseem, 2016a; Rahman et al.,

2021). To cope with this challenge, previous studies have trained annotators with

specific standards and increased annotator numbers for each example (Waseem,

2016a; Kapil and Ekbal, 2020). However, both approaches increase the cost of

creating training datasets. In addition, these labelled training datasets are often

ad-hoc and not directly transferable between different tasks or scenarios. At the

same, many studies including our previous work have observed that inadequate

training data directly leads to the poor performance of classifiers (Deng et al.,

2014; Weiss et al., 2016; Pavlopoulos et al., 2017; Zhao et al., 2019; Tan et al.,

2018). In short, due to the high cost, it is non-sustainable to create new labelled

training data to improve model performance.

Further, training data of TCC tasks are frequently labelled by different schemes

(Waseem et al., 2018). For example, they have been labelled using different num-

bers of labels and different classification rules such as binary classification, multi-
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class classification1 or multi-label classification2. The labels are often different

too. For example, many papers have previously employed a binary classification

with the labels “hate” and “non-hate” or in a similar vein using a kind of toxic

comment “X” and its counter “non-X”. Examples of these papers are by Burnap

et al. (2015), Djuric et al. (2015), Nobata et al. (2016) and Unsv̊ag and Gambäck

(2018). In contrast, in Malmasi and Zampieri (2018)’s research, hate speech is

separated from offensive language. They used three labels, “hate”, “offensive”

and “okay”, in a multi-classification task. Other similar multi-classification stud-

ies include Davidson et al. (2017) and Badjatiya et al. (2017) and our previous

study that categorised text comments into six labels (Zhao et al., 2019).

All these problems mentioned above imply that, despite a significant amount

of work on developing TCC training data for different languages, granularity,

and tasks, it is often difficult to directly reuse one dataset in another scenario

or task in a “like-for-like” fashion (Leon et al.). However, a promising area of

machine learning research that looks at how to utilise dissimilar training data or

cross-domain model adaptation is transfer learning. Transfer learning transfers

knowledge learned by one task to a different task (Lu et al., 2015). The gen-

eral motivation behind is to utilise more data from different sources to generally

improve the target task’s performance.

In the last few years, using pre-trained language models is a popular approach

to adopt transfer learning in NLP tasks (Ruder12 et al., 2017; Howard and Ruder,

2018; Tan et al., 2018). The framework includes two main parts. First, a language

model is pre-trained with unsupervised learning that does not require labelled

data. This allows the pre-training to access a huge amount of training data as it

does not require human-labelled data. Second, the pre-trained language model is

transferred to a downstream task, such as toxic comments detection. The down-

stream task then can utilise the knowledge learned from the pre-training and tailor

the model to its own objective in the second part. This approach has become very

popular and in many contexts, replaced the earlier methods of transfer learning

(Tan et al., 2018; Devlin et al., 2019; Ruder, 2019). A number of pre-trained lan-

guage models have been developed and have been made available, such as BERT,

RoBERTa, XLM and GPT-2 for general usage, SciBERT, BioBERT and Clinical-

BERT for different domains (Devlin et al., 2018; Lample and Conneau, 2019; Liu

et al., 2019c; Radford et al., 2019; Beltagy et al., 2019; Alsentzer et al., 2019; Lee

1In multi-class classification, there are more than two classes and each instance will be as-
signed into only one class.

2In multi-label classification, there are more than two classes and each instance will be as-
signed into one or more than classes.
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et al., 2020).

However, by the time this work was conducted, only a few studies have ad-

dressed TCC tasks with pre-trained language models (MacAvaney et al., 2019).

Furthermore, these studies only investigate the performance of BERT with default

settings or with only one or two TCC tasks, which leads to limited insights into

using pre-trained language models on classifying toxic comments. This thesis is

therefore set in this context, and aims to develop understanding, and methods of

using pre-trained language models in TCC.

1.2 Research objectives

We aim to investigate current SOTA pre-trained language models (PLMs) on TCC

tasks and develop novel methods upon SOTA PLMs to improve the performance

on detecting toxic comment.

Our central research question is:

How to effectively use pre-trained language models on TCC tasks?

We will answer this question via addressing three specific questions:

1. How to configure a PLM-based TCC classifier that achieves optimal perfor-

mance and efficiency?

2. What are the limitations of SOTA PLM-based classifier for TCC?

3. In answering the second research question, we identify that SOTA TCC

classifiers tend to suffer from the “identity term bias”, in the way that the

model tends to predict false positives due to the presence of certain words

describing demographic information of individuals or groups. Therefore, our

last question is: how to handle the identity term bias found in TCC models?

1.2.1 Configuring PLM-based TCC models

As mentioned in the last section, it is expensive to create more labelled training

data to improve TCC model performance. Adopting a pre-trained language model

is a method to utilise more data but avoid labelling more data. However, what

exact features the pre-trained language model has learned and what features will

be transferred to the downstream task are unknown. Therefore, how to adopt a
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pre-trained language model and tailoring it to the downstream TCC task is impor-

tant. While we can always pre-train a language model from scratch, the process

will be extremely computationally expensive, requiring a significant amount of

resources that may be unavailable to many researchers and practitioners.

For adopting a pre-trained language model, there are several decisions to make

in terms of configurations and hyperparameters. How to set up these configura-

tions and hyperparameters is important as this will impact on how the PLM will

be tailored to the target task. Also, this directly impacts on the complexity of

the final model and therefore, the requirements for computation. For this reason,

a study on how these different transferring strategies perform on TCC tasks is

needed. Our first research question therefore, particularly looks into this problem.

1.2.2 The limitations of SOTA PLMs

Although deep neural network(DNN)-based models show strong performances on

a wide range of NLP tasks, a well-known problem of these models is its lack of

transparency in terms of decision making. Previous research has shown that DNN-

based TCC models demonstrate bias towards features that should not be linked to

toxic comments (Hovy and Spruit, 2016; Blodgett and O’Connor, 2017; Tatman,

2017; Dixon et al., 2018). That is, when a comment contains certain features,

such as using African-American English or containing certain keywords, DNN-

based models tend to classify it as toxic regardless of its content. This also applies

to PLMs (Tatman, 2017; Tan and Celis, 2019; Dixon et al., 2018; Kennedy et al.,

2020; Calabrese et al., 2021). A key motivation for developing TCC models is

to facilitate content filter and moderation and ultimately foster a friendly online

environment between different groups of people (Gallacher, 2021). However, a

biased model can potentially cause the conflicts to accelerate. Therefore, this

thesis investigates the bias in PLM-based TCC models. We aim to examine the

prevalence and the degree of the bias, particularly focusing on identity terms. This

is addressed in the second research question.

1.2.3 Addressing the identity term bias in PLM TCC mod-

els

Several existing research has studied methods to mitigate the identity term bias

in TCC models, which can be categorised into two groups: debiasing the dataset

and debiasing the model (Dixon et al., 2018; Davidson et al., 2019; Wiegand et al.,
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2019). Methods of debiasing the dataset aim to curate the dataset via different

approaches to “remove” bias-related features. However, it has been argued that

data curation may introduce new bias into the dataset and there is no standard

on the degree to which a dataset can be modified (Clark et al., 2019; Rogers, 2021;

Ribeiro et al., 2020; Garrido-Muñoz et al., 2021). On the other hand, methods

of debiasing the model aim to modify the model to mitigate the identity term

bias. These methods mainly follow the same principle, to suppress the model’s

attention to identity terms. However, identity terms are sometimes important for

classification decisions and therefore, ignoring them is not an optimal solution.

This thesis aims to develop novel methods that mitigate the identity term bias

and this is addressed in the third research question.

1.3 Ethical considerations

While we believe this thesis will provide important insights on the development

pathways of combating toxic comments online, it may raise concerns over ethical

implications, such as potentially being able to breach the privacy of toxic comment

authors. We would like to emphasise that all data used in this thesis are secondary

data published by previous studies. Also, we did not attempt to use any individual-

level information in our study. Yet, we aim to predict and detect toxic comments,

but only analyse the textual contents of comments. The Research Ethics Review

documentation and approval are attached in the appendix.

1.4 Thesis structure

Chapter 2 gives an overview of background information, concepts and techniques

that are relevant in order to understand the contents of this thesis. We review

literature pertaining to TCC with a focus on classification approaches. Here, we

will introduce essential concepts and techniques in text classification, machine

learning and NLP that are required for this research.

Chapter 3 investigates different strategies of transferring PLMs to TCC models.

Especially, we explore the design of downstream architectures and the continued

pre-training in domain. For both angles, we study the importance of transferring

efficiency. That is, maintaining comparable performance while minimising the

requirements for computational resources.

Chapter 4 examines the identity term bias in PLM-based TCC models on a

wide range of TCC tasks. This chapter also seeks to provide further evidences
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for the identity term bias with model explanations. Further, we conduct a novel

analysis of the identity term bias which links the bias to the subjectivity level of

comments.

Chapter 5 proposes a novel method to handle the identity term bias in PLM-

based TCC models. The method is evaluated on a wide range of TCC tasks and

compared to a range of SOTA models to provide deep insights of the identity term

bias issue.

Chapter 6 concludes this thesis with a summary of our main contributions,

discusses limitations of this research, and identifies future research directions.

1.5 Publications

The studies in this thesis mainly reflect the following peer-reviewed articles (in

order of publication date):

Zhao, Z., Zhang, Z., Hopfgartner, F. (2019). Detecting Toxic Content Online

and the Effect of Training Data on Classification Performance. In Proceedings of

20th International Conference on Computational Linguistics and Intelligent Text

Processing (Chapter 3)

Zhao, Z., Zhang, Z., Hopfgartner, F. (2021, April). A comparative study of

using pre-trained language models for toxic comment classification. In Companion

Proceedings of the Web Conference 2021 (pp. 500-507). (Chapter 3)

Zhao, Z., Zhang, Z., Hopfgartner, F. (2022). Utilizing subjectivity level to

mitigate identity term bias in toxic comments classification. Online Social Net-

works and Media, 29, 100205. (Chapters 4 and 5)

While not directly related, the following articles have come across to this the-

sis in terms of methodology. They have been published over the course of the PhD:

Clowes, M., Stansfield, C., Thomas, J., Shemilt, I., Paisley, S., Stevenson, M.,

Zhao, Z., Marshall, I., Kell, G., (2022). All is FAIR in health inequalities re-

search: using machine learning to build a new database of health equity studies.

European Association for Health Information and Libraries 2022. (Section 5.3.3)

Zhao, Z., G. Chrysostomou, K. Bontcheva and N. Aletras (2022). On the
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Impact of Temporal Concept Drift on Model Explanations. In Findings of the

Association for Computational Linguistics: EMNLP 2022.(Section 4.4.2)



Chapter 2

Literature review

TCC is a NLP task that aims to detect toxic comments based on their text content.

There are several other tasks and research areas related to TCC, such as sentiment

analysis that detects the implied sentiment of a text (Dos Santos and Gatti, 2014;

Touahri and Mazroui, 2021); sarcasm detection that identifies sarcastic behaviour

in the field of online social networks (Amir et al., 2016; Felbo et al., 2017; Javdan

et al., 2020; Ashwitha et al., 2021) and misinformation detection that identifies,

for example, fake news, click-bait, and false rumours (Jiang and Wilson, 2018; Lee

et al., 2021; Schroeder et al., 2021). In addition to investigating toxic comments on

the content level, some research focus on toxic user detection and toxic comment

diffusion analysis (Ribeiro et al., 2017; Mall et al., 2020; Gallacher and Bright,

2021). Tasks discussed above and TCC tasks have some shared concepts, methods

and techniques. This chapter does not cover these areas in detail, but only focuses

on content level TCC.

This chapter gives an overview of TCC tasks, covering its definition, method-

ology and challenges, to set the stage for the subsequent chapters. The purpose

of this chapter is to prepare the necessary knowledge and essential background for

this thesis, while in later chapters, we will cover more specific areas of research

that are more closely related to the topics of those chapters. We start by firstly

introducing the text classification framework in Section 2.1. This is because TCC

tasks are text classification tasks essentially, and they follow the same framework

of text classification methods. Then we review two fundamental concepts in text

classification: features and algorithms. Commonly-used features for TCC are in-

troduced in Section 2.2. Features are used by algorithms to represent data, and can

be grouped into manually engineered features and abstract features. Commonly-

used algorithms for TCC are divided into two groups that are discussed seperately

in Section 2.3. The first group is traditional machine learning algorithms, which

10
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conventionally work in concert with manually engineered features; the second one,

neural network-based algorithms, learns abstract features automatically during

the training process (Zhang et al., 2018c). Section 2.4 focuses on transfer learn-

ing, which is a SOTA NLP framework. Transfer learning forms the cornerstones of

the techniques studied throughout this thesis. Section 2.5 introduces the concept

of pre-trained language models (PLMs), which are nowadays the mainstream ap-

proach to transfer learning. The last part of this chapter, Section 2.6, summarises

research gaps in TCC that are relevant to this thesis.

2.1 Task definition

2.1.1 Text classification overview

Text classification is a common task in NLP. It aims to classify given texts or

documents into appropriate categories according to their content (Uysal, 2016).

One typical classification task is binary classification, where one data instance

(i.e., a text or a document) is classified as one or the other, e.g., yes or no, positive

or negative, and toxic or not toxic. In addition to binary classification, multi-class

classification and multi-label classification are another two common classification

frameworks. Multi-class classification tasks assign each data instance into one out

of multiple (more than two) classes. In multi-label classification, one instance can

be associated with one or more classes.

The appropriate classes are usually pre-defined by human annotators, which

makes text classification a supervised learning task. In supervised learning, train-

ing data are labelled by humans and therefore, also called “labelled data” and

“gold standard”. These are used to train a machine learning model. Unsuper-

vised learning, on the other hand, does not require labelled data. Intuitively

speaking, the learning process of the classification model is “supervised” by the

training data which has “golden standard” labels, i.e., the labels assigned by hu-

man to each text or document. The goal of the learning/training is to make a

prediction of labels as close to the “golden standard” as possible. A conventional

framework of supervised text classification task consists of data pre-processing,

feature extraction and representation, model training and model evalu-

ation (Schmidt and Wiegand, 2017).

The purpose of data pre-processing is to reduce the noise and complexity

in the text to make it easier for classifiers to decipher and process the text (Uysal

and Gunal, 2014). Common pre-processing techniques are stop-words removal,
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Actual label \Predicted label Positive Negative

Positive True positive (TP) False negative (FN)
Negative False positive (FP) True negative (TN)

Table 2.1: The confusion matrix of classification prediction

stemming and lemmatization (Manning et al., 2010). Stop-words are frequently-

appearing and meaningless words that have low discriminative power, such as

“the”, “a” and “that” (Lo et al., 2005). Stemming and lemmatization both trans-

form words in inflectional forms or derivational forms to a root form (Manning

et al., 2010). For examples, unhappy and happiness are derivational forms of the

root word happy. Therefore, if applying these techniques, the sentence “They’re

just beasts walking on two legs” could be “beast walk two leg” (Manning et al.,

2010). “They’re”, “just” and “on” have been removed as stop-words, “beasts”,

“walking” and “legs” have been transformed to their root form by stemming and

lemmatization.

Feature extraction and representation aims to represent textual data

with features, usually using numerical vectors or matrices (John, 2017). In ma-

chine learning, a feature is an individual measurable property of an instance which

is used to differentiate instances. A range of features constitutes a feature set, de-

ciding how an instance is interpreted by the classifier. Selecting discriminative

and informative features is crucial for training a model to effectively capture regu-

larities of different categories. In the context of text classification, features can be

words, phrases, part-of-speech and so forth. These features are further explored

in Section 2.2.

The next step is model training when a defined algorithm is trained on a

training dataset with golden standard labels. In this step, the model learns to gen-

eralize patterns over features observed in the training data. The derived patterns

are expected to capture “enough” characteristics of unseen data for classification.

Different algorithms for text classification will be given more details in Section 2.3

The final step is model evaluation which evaluates the performance of the

model with testing data, i.e., unseen data during training. The idea is to compare

the predicted labels by the model with the golden standard labels assigned by

annotators. Predictions by a model can be categorised into 4 groups as shown in

the confusion matrix, (shown in Table 2.1). Common evaluation metrics include

recall, precision and F1 score. Recall and precision are calculated as:

Recall =
TP

TP + FN
Precision =

TP

TP + FP
(2.1)
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As indicated in Equation 2.1, recall is the proportion of real positive cases

that are correctly predicted as positive (Powers, 2011; Buckland and Gey, 1994).

It measures the coverage of the real positive cases by the model. Precision is

the proportion of predicted positive cases that are real positives (Powers, 2011;

Buckland and Gey, 1994). F1 score considers both recall and precision. The

traditional F1 score or balanced F1 score is the harmonic mean of precision and

recall, calculated as:

F1 =
2

recall−1 + precision−1
= 2 · precision · recall

precision + recall
=

TP

TP + 1
2
(FP + FN)

(2.2)

In the context of multi-class and multi-label classification, the evaluation met-

rics need to take different labels into account. That is, the prediction of one data

instance can be true positive to one class and true negative to another class, false

positive to the third class. Different approaches have been designed to handle

the evaluation for multi-class and multi-label classification, such as hamming loss,

micro-average, macro-average and ranking loss (Zhang and Zhou, 2013; Sorower,

2010; Prajapati et al., 2012). We introduce micro-average and macro-average as

they are widely-used in text classification tasks (van Aken et al., 2018; Qian et al.,

2018; Wiegand et al., 2019; Ousidhoum et al., 2019; Zhao et al., 2019; Fagni et al.,

2019; Agarwal and Chowdary, 2021; Zhao et al., 2021). A macro-average com-

putes the metric independently for each class and then takes the average, whereas

a micro-average aggregates all categories’ contributions to computing the average

metric (Agarwal and Chowdary, 2021; Zhang and Zhou, 2013; Sorower, 2010).

Therefore, macro-average treats all categories with equal importance. The ability

of a model to behave well on categories with few positive examples, i.e., minor-

ity categories, will be emphasised by macro-average metrics and much less so by

micro-average metrics.

2.1.2 Toxic comment classification

The detection of toxic comments can be treated as a text classification problem,

which intends to classify comments into different categories, which are categories

of toxic comments (e.g., “sexist”, “racist”, “hate speech”, and “abusive language”)

and categories of non-toxic comments (i.e., “clean” or “healthy” comments), fol-

lowing the framework of text classification discussed above (Schmidt and Wiegand,

2017; Zhang et al., 2018c; Zhao et al., 2019). There is a wealth of research on de-

tecting different kinds of toxic comments such as hate speech, cyberbullying and
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abusive language.

The majority of research focuses on building a binary classifier to separate

one particular type of toxic comment from all the other comments (Fortuna and

Nunes, 2018). Kwok and Wang (2013), Burnap et al. (2015) and Djuric et al.

(2015) apply binary classification methods to classify each text into groups of

either “hate speech” or “non-hate speech”. Similarly, Nobata et al. (2016) and Che

et al. (2017) formulate binary classification tasks to distinguish between abusive

language and clean language, Dinakar et al. (2011) develops a binary classifier to

detect cyberbullying comments.

A few papers treat TCC as a multi-class or multi-label classification prob-

lem. For example, Park and Fung (2017) and Waseem and Hovy (2016) categorise

comments into three groups, “none”, “racism” or “sexism”, where each comment

belongs to only one class. In multi-label classification, one instance can be asso-

ciated with one or more labels. For example, in our earlier study, there are six

labels together, namely “severe toxic”, “toxic”, “obscene”, “threat”, “insult” and

“identity hate” (Zhao et al., 2019). Each data instance can be assigned with zero

to six of those labels at the same time. Therefore, a comment could be “toxic”,

“insult” and “identity hate” or other combinations of labels. However, if treated

as a multi-class classification problem, it could only be either “toxic”, “insult” or

“identity hate”.

Beyond challenges faced by generic text classification tasks, such as ambiguous

words and underrepresented classes, TCC faces additional difficulties due to its

nature (Wang et al., 2014; Taghipour and Ng, 2015; Nobata et al., 2016; Collins

et al., 2018). For one, toxic comments stem from user-generated contents, which

usually contain a lot of informal usage of languages, such as slang, cyberspeak,

typos, variants and emoji (Nobata et al., 2016). For instance, some posts replace

letters with similar looking numbers (“E”s with 3s, or “l”s with 1s, and so on).

Variants like this are extensive and include various combinations. Another issue

is that the toxicity of a comment largely depends on its context. Even many

expressions that are not inherently toxic can be toxic in some context, or vice

versa (ElSherief et al., 2018; Ullmann and Tomalin, 2020; Kovács et al., 2021). For

example, the usage of “nigger” within the group of Africa-American (also known

as in-group usage), e.g., an Africa-American uses it to refer to another Africa-

American, is usually not considered hateful; however, out-group usage, e.g., a

white American uses it to refer to an Africa-American, is deemed hateful (Halevy

et al., 2021). What is more, TCC usually handles short text, which provide less

information for the model to learn. Further, different TCC tasks suffer from a
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similar issue that the target behaviour, such as hate speech or cyberbullying, can

be subtle and indirect (Alorainy et al., 2019). Therefore simple methods that use

simple lexical features (e.g., words or phrases), can lead to a significant number

of false negatives (Alorainy et al., 2019).

2.2 Features

Before discussing different features, we first briefly introduce how to encode fea-

tures. One-hot encoding is a basic approach which uses binary identifiers (0 or

1) to indicate the presence or absence of a feature where each feature is repre-

sented as a unique dimension (Goldberg, 2016). To illustrate, we set up a micro

pseudo dataset which only contains four sentences as shown in Figure 2.1. In this

dataset, the corpus has 15 unique words and each one is represented as a single

feature, i.e., a dimension. The dimension of of feature vectors is equal to the size

of the vocabulary of the corpus, 15. As shown in the figure, the representation

for “good to know” has three “1”s for the words it contains, coupled with twelve

“0”s indicating the absence of the remaining words in the corpus.

Figure 2.1: An example of one-hot encoding: representing the sen-
tence of “good to know” in a pseudo dataset which only contains 4
sentences and 15 words.

In practice, the training process involves much larger datasets than the one in

Figure 2.1, consisting of thousands or even millions of instances. This creates a

very large feature space of high dimensionality. Each instance will have a large

dimensional vector with only a handful of non-zero values, resulting in a very sparse

feature space, known as sparse representation. The storage and computation of

sparse representation are extremely ineffective (Mikolov et al., 2013).

To address this issue, distributed representations of words have been developed

to represent words and texts with dense real-valued tensor (e.g., vector and matrix)

(Bengio et al., 2003; Mikolov et al., 2009; Pennington et al., 2014; Devlin et al.,
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2019). It is more often referred to as word embeddings (Bengio et al., 2003; Mikolov

et al., 2009; Pennington et al., 2014; Devlin et al., 2019; Founta et al., 2019).

In short, word embeddings represent textual instances with low-dimensionality

tensors and each element of the tensors is a non-zero value. These values are

difficult to interpret intuitively. In other words, these values represent abstract

features of a given textual instance. More details regarding word embeddings are

discussed in Section 2.2.2 as it is a key concept to this thesis.

The rest of this section introduces different features used to represent textual

instances, which have been grouped into manually engineered features and word

embeddings (distributed word representations) (Tang et al., 2014; Zhang et al.,

2015). Manually engineered features are concrete inputs which are easy to inter-

pret, in contrast to the demanding interpretability of word embeddings (Goldberg,

2016).

2.2.1 Manually engineered features

Surface features

N-gram is a single item or a continuous sequence of items from a given word or

text document. In other words, the n-gram model divides a word or a text into

n-chunks of items. For example, character level bigrams (2-grams) for “hate” are

ha, at, te; word level bigrams for “I hate you” are “I hate”, “hate you”.

Skip-gram is a variation of n-gram, which divides a word or comment by skip-

ping one or several items, capturing the information from non-contiguous and long

distance items (Chavan and Shylaja, 2015). To be more specific, a skip-gram is

defined in the format of k-skip-n-gram, referring to skip k and also less than k

items and construct the n-gram (Guthrie et al., 2006). As such, “2-skip-n-gram”

results include 2 skips, 1 skip, and 0 skips. For example, 2-skip-2-grams for “fuck

off u gay boy” include 2 skips = fuck gay, off boy, 1 skip = fuck u, off gay, u

boy, 0 skip = fuck off, off u, u gay, gay boy. It is widely agreed that by jumping

over words, skip-grams capture the longer distance dependencies between words

(Guthrie et al., 2006; Chavan and Shylaja, 2015; Malmasi and Zampieri, 2018).

Term Frequency-Inverse Document Frequency (TF-IDF) evaluates the impor-

tance of words or items in a text document based on how frequently they appear

across the whole training dataset (Sparck Jones, 1972; Rajaraman and Ullman,

2011). TF measures the frequency of a given word in a document. TF of a

word will be different depending on which document it is in. IDF assesses the

importance of the words by giving an inverse proportional score to the number
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of documents in which a word is found, indicating how frequent a word appears

in the entire training dataset. Therefore, the classifier will focus on more infor-

mative words. While words with less discriminative power, such as “the”, “a”,

“is”, although appearing often, will be given low IDF scores and thus be given

low TF-IDF scores. In short, TF-IDF of a word reflects the informativeness and

importance of a word and is decided by its frequency in the document (the data

instance) and the whole dataset.

N-grams and TF-IDF are usually applied together. To be more specific, each

n-gram is presented to the classifier with a TF-IDF weight. In this way, certain

expressions with high TF-IDF tend to give a greater impact on the classification

prediction. The combination of N-grams and TF-IDF is often reported to be

very effective and thus has been included in the feature sets of a wide range of

research (Schmidt and Wiegand, 2017). For example, in the task of hate speech

classification, Waseem (2016b) and Saleem et al. (2017) both incorporate uni-gram

and TF-IDF weights. In addition to uni-gram with TF-IDF, Chavan and Shylaja

(2015) also adds skip-gram with TF-IDF to enhance their feature set.

Sentiment analysis features

It is often safe to assume that hate speech carries negative connotations and there-

fore, negative sentiment (Schmidt and Wiegand, 2017). Consequently, toxic con-

tent detection and sentiment analysis are closely related. Researchers commonly

utilize sentiment analysis to derive latent sentiment features for TCC. Typically,

sentiment analysis leverages the type of polarity (i.e., positive and negative; sub-

jective and objective) expressed in a message as well as polarity intensity (Gitari

et al., 2015; Schmidt and Wiegand, 2017).

In the task of detecting cyberbullying, Van Hee et al. (2015) incorporate senti-

ment features by counting the number of positive, negative and neutral words in a

given text. Gitari et al. (2015) suggest that hate speech is laden with heavily sub-

jective expressions. Thereby, the presence of objective or subjective expressions

in a text is taken as a feature in their study of hate speech classification.

Lexical resources

Most toxic comments contain specific vocabulary such as slurs and insults (Schmidt

and Wiegand, 2017). For this reason, the presence of such words can be a pre-

dictive feature for detection. To capture these words, a task-specified vocabulary
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is required. There are several publicly available lexical resources1 related to toxic

comments which could be predictive (Schmidt and Wiegand, 2017). For instance,

Hatebase is a lexicon focusing on hate-related terms. It includes 3879 terms re-

garding hate speech towards different nationality, ethnicity, religion, gender, sexual

discrimination, disability and minority groups (Kennedy et al., 2018). HurtLex

is a hand-crafted lexicon of offensive, aggressive and hateful words. Its original

version is in Italian and then it is semi-automatically translated into 67 languages

(Bassignana et al., 2018). Off-the-shelf lexical resources are convenient and have

been employed by several papers of toxic comment detection (Xiang et al., 2012;

Burnap et al., 2015; Pamungkas et al., 2021).

Some researchers have compiled word lists as their lexical resources for specific

tasks rather than utilising the off-the-shelf lexical resources (Razavi et al., 2010;

Gitari et al., 2015; Alorainy et al., 2019). For example, for building a classifier

to detect hate speech, Gitari et al. (2015) develop a lexicon by compiling “hate”-

related verbs and incorporated them as additional signals in features. This is

because some verbs are commonly used to condone and encourage violent acts in

hate speech, such as “loot”, “riot”, “beat”, “kill”, and “evict” (Gitari et al., 2015).

This view and observation is supported by the research of Wester et al. (2016)

that investigates the effect of lexical, syntactic and semantic features on detecting

threats of violence messages. According to their results, the combinations of lexical

features outperform the use of more complex syntactic and semantic features,

highlighting the effectiveness of lexical resources in detecting violence-related toxic

comments (Wester et al., 2016).

Linguistic features

Due to the complexities in language grammar and syntactic relationships, it is

common for the same words to have different meanings when they appear in

different orders. Therefore, linguistic knowledge can be introduced to indicate

word relationships. Part-of-speech (POS) tagging and typed dependency parser

are two popular linguistic features.

POS tagging is the process of marking up a word in a text as corresponding to

a particular word category that indicates its syntactic role, such as plural noun,

adverb and adjective (Behzadi, 2015). POS tagging has been used for a variety

of NLP tasks to provide the linguistic signal. In the context of toxic content

classification, researchers often add POS tagging to enrich the feature set of their

1HurtLex: http://hatespeech.di.unito.it/ (accessed on 1 November 2021); Hatebase:
https://hatebase.org/ (accessed on 10 November 2019)
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model (Dinakar et al., 2011; Nobata et al., 2016).

Typed dependency relationship analyses the grammatical structure of a sen-

tence, identifying relationships between words. For instance, this encompasses

groups of words which go together as “phrase” and differentiates words as the

subject or object of a verb. Typed dependency can also preserve word order in

sentences and uses it as a feature for models (De Marneffe and Manning, 2008).

Overall, typed dependency relationship aims to extract textual relations and use

them as features in the task. For example, in the tweet, “Totally fed up with

the way this country has turned into a heaven for terrorists, Send them all back

Home”, one resultant typed dependency would be the nominal subject between

the fifth word “home” and the second word “them” (Burnap and Williams, 2016;

Fortuna and Nunes, 2018).

Othering language refers to the use of language to express divisive opinions

between the in-group (e.g., “us”) and the out-group (e.g., “them”). Othering is

an established construct in rhetorical narrative surrounding hate speech, and the

‘we-they’ dichotomy has long been identified in racist discourse (Meddaugh and

Kay, 2009; Wodak and Reisigl, 1999; Burnap et al., 2015). A few previous work

have used othering language as an feature for TCC tasks (Burnap et al., 2015;

Burnap and Williams, 2016; Alorainy et al., 2019). In their study, Alorainy et al.

(2019) identify the othering feature by the use of two-sided pronouns that combine

the in-group and out-group (e.g., your/our, you/us, they/we), and the use of

pronoun patterns, such as verb-pronoun combinations, which capture the context

in which two-sided pronouns are used (e.g., send/them, protect/us). Example

toxic comments to meet their hypothesis can be “we want to send them home”

and “we do not need them to take our jobs”. They have found that adding

this feature set improves the model performance on cyberhate detection tasks.

Burnap et al. (2015) have also found that othering language is a useful feature

for classifying cyberhate based on religious beliefs, specifically for identifying anti-

muslim sentiment.

User-based features

Features discussed above are all content-based, which only analyse the comments

themselves. As summarised by Salawu et al. (2017), more than 41 papers use

content-based features to detect cyberbullying, indicating their crucial role. In

contrast, user-based features utilise the user/publisher (i.e., who post the com-

ment) information, such as their age, gender, location, number of friends and
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social network, conventionally seen as auxiliary features of content-based features

(Nahar et al., 2014; Huang et al., 2014). It is believed by a few papers that the

background information of the content author is predictive for the detection of

toxic content (Schmidt and Wiegand, 2017). A simple example is that if users

are known to previously post toxic messages, they may post them again. Further-

more, in many cases, toxic comments cannot be determined solely based on the

text content (Founta et al., 2019). For instance, “Put on a wig and lipstick and be

who you really are” may not be regarded as a form of toxic comment when read

in isolation, however, it can be offensive when the context information is given

that this utterance has been directed towards a boy. As one could infer that this

is a remark to malign the sexuality or gender identity of the boy being addressed

(Schmidt and Wiegand, 2017).

Waseem and Hovy (2016) tested the effect of user-based features, gender, lo-

cation and the word length, in addition to simple surface features in TCC tasks.

Their results show that gender is the only additional feature that improves the per-

formance of detecting offensive tweets. They also identify a pattern which shows

that the gender distribution of hate speech in their dataset is heavily skewed to-

wards men. This may explain the accuracy improvement gained with the addition

of gender information. Similarly, by adding the gender feature, Dadvar et al.

(2012) observes improvements in their classification model of detecting cyberbul-

lying disclosures.

Also in the field of cyberbullying detection, Chatzakou et al. (2017) consider

network-based user information measuring the power imbalance between bully and

victim, as well as the bully’s popularity based on interaction graphs and the bully’s

position in the network.

2.2.2 Abstract features - word embeddings

Feature representation techniques above take individual features as discrete items

(Mikolov et al., 2013). In other words, these representations are arbitrary, ignoring

the semantic relationships and latent relationships between features. For exam-

ple, when adopting one-hot encoding as described above, “Muslim” and “Paki”

are represented as two independent features, which does not indicate the latent

relationship between them as shown in Figure 2.2. This means that the model will

treat “Muslim” and “Paki” separately, and what the model learned about “Mus-

lim” would not be leveraged when processing “Paki”. Another similar example

could be “African” and “Nigger”.
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Figure 2.2: An example of feature representations: Representing
individual words in vectors with one-hot encoding, where only uni-
gram is considered.

Another limitation of these feature representations is their high dimensionality.

High-dimensional representations have historically presented serious challenges to

machine learning models and the learning process. This is often referred to as

the curse of dimensionality (Aggarwal, 2014). Back to the example in Figure 2.1

on page 15, if the corpus has 20,000 unique words and phrases, then “good to

know” will be represented by a 20,000 dimensional vector with only three “1” and

19,997 “0”, which is extremely ineffective to compute and process. Furthermore,

these dominating ‘0’s may have an effect of “diluting” the really discriminative

features (Aggarwal and Zhai, 2012a). In short, a high number of dimensions leads

to complex computation and makes the prediction more difficult.

Several distributed word representation methods, also known as word embed-

dings, have been developed to capture the relationships between words or phrases

but also tremendously decrease the number of dimensions. A distributed repre-

sentation of a word is a vector (usually hundreds of dimensions) of continuous real

numbers which characterise the meaning of the word. Thus, a sentence or a text

of any length can be presented by a combination of these feature vectors. Figure

2.3 shows a pseudo representation of a sentence with 3 dimensional vectors.

Intuitively, one word vector corresponds to a point in a feature space, where

each dimension of that space corresponds to semantic or grammatical character-

istics of that word (Deng, 2014). As shown in Figure 2.4, similar or related words

are close to each other and certain semantic relationships between words pairs are

shown by following similar directions (Deng, 2014). The ideal hypothesis behind

this is that the geometric relationships in the feature space between two vectors

tend to indicate their semantic relationships.

In this way, the distributed word representations of words with related seman-
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Figure 2.3: A representation of a sentence with pseudo 3-dimensional
distributed word representations, where each word is represented by a
3-dimensional distributed vector and the sentence is therefore a 3*5
matrix.

Figure 2.4: Visualizations of distributed word representations in vec-
tor spaces, i.e., word vectors (Google, 2019)

tic meanings tend to be similar. Having said that, what each dimension exactly

means is difficult to interpret. But every dimension could be considered as a “la-

tent” concept or a combination of several topics, and hence “abstract” features

(Mikolov et al., 2013). By contrast, manual feature engineering combines all se-

lected features into the input vectors or matrices and then directly feed them into

the classifier, preserving a high-level interpretability (van Aken et al., 2018).

Context-independent embeddings

Word embeddings can be obtained via pre-training on a large corpus and then used

directly to represent words in downstream tasks. In this way, word embeddings

are stored in a look-up table and are independent from the context. Word2Vec and

GloVe are two prominent context-independent word embedding models (Mikolov

et al., 2013; Pennington et al., 2014; Camacho-Collados and Pilehvar, 2018). Their
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distributed word representations are trained on statistical language models, which

are based on the co-occurrence of words, phases or symbol combinations and then

mapped the derive high-dimension vectors into low-dimensional vectors by differ-

ent methods. Their approach is in accordance with the distributional hypothesis

proposed by Harris (1954), that words are similar if they occur in similar context

and the semantic meaning of the word can be indicated by its context.

Word2Vec is trained on language modelling tasks which aim to predict the

centre word based on the context (Continuous Bag-of-Words Model, as denoted

as “CBOW”) or to predict the context of the centre word (Continuous Skip-

gram Model), as shown in Figure 2.5. From the perspective of model training,

the objective function of Word2Vec is to maximise the log probability of context

words Wc given its input word Wt, i.e., log P (Wc|Wt), whereWc refers to Wt−2,

Wt−1, Wt+1, Wt+2 or any combination of them. Each word is mapped to a unique

vector, represented by a column in the matrix of the text. The word vectors are

initialised with random values and then those values are adjusted to optimise the

prediction during the training. By training, those word vectors eventually capture

semantics and the final word vectors are the by-product of the prediction task (Le

and Mikolov, 2014).

Figure 2.5: Two different versions of Word2Vec proposed by Mikolov
et al. (2013). Wt is the center word. Wt−1 and Wt+1 is the word before
and after centre word.

In contrast to the “predictive” model of Word2Vec, GloVe is a count-based

statistic language model, counting the co-occurrence of words in the context (Pen-

nington et al., 2014). It learns to construct aggregated global word-word co-
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occurrence matrix (word-word) to reflect how frequently a word appears in a

context (Pennington et al., 2014). The distributed word vector could be taken as

a by-product of the construction of the co-occurrence matrix.

Word2Vec and GloVe are the early, seminal work for context-independent em-

beddings. There are later works (e.g., Bojanowski et al. (2017) proposes FastText)

that we do not cover in details, because the fundamental ideas behind them are

similar and also the current trend shifts to context-sensitive embeddings which will

be covered in the next section. A limitation of context-independent embeddings

is that it treats polysemous words (words with multiple meanings) as a single en-

tity. In other words, context-independent embeddings assign each word a static

representation regardless of the context and the word meaning in the sentence,

but polysemous words have different meanings in different contexts (Deng, 2014).

In this way, the word embedding for “Nice” is the same regardless if its meaning

(“good” or the French city). In this way, the different senses of a word are encoded

into one vector.

Context-sensitive embeddings

To dynamically represent words in different contexts, context-sensitive embeddings

were proposed so that the word embeddings change according to their contexts.

CoVe and Elmo are two popular embedding systems belonging to this branch

(Deng, 2014).

CoVe stands for Contextualized Word Vectors, derived from a English-to-

German machine translation model (McCann et al., 2017). The sequence-to-

sequence machine translation model consists of an encoder and a decoder (Sutskever

et al., 2014). The encoder is pre-trained to encode the sequence of words, i.e., a

sentence, from the original language (English) to an “intermediate language” (also

can be thought as a intermediate representation). The decoder is to decode the

“intermediate language” into the target language (German). The pre-trained en-

coder is then transferred to the downstream model as additional functions for

the input embeddings. The output of the encoder is sequences of contextualized

vectors. The final CoVe representation of a word is composed by concatenating

its corresponding Glove Vector and its contextualized vectors derived from the

pre-trained encoder output (McCann et al., 2017).

The intention behind the GloVe-CoVe concatenation is intuitive, so to let the

GloVe vector provide the basic semantic information of the word and let the con-

text vector give the information of context. To be more specific, the encoder
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processes and encodes the text at a sequence level, the output is more sentence-

specific and therefore gives more information about the context. From a technical

perspective, contextual vectors in the CoVe word representations are functions

of the entire input sentence, rather than fixed vectors like context-independent

embeddings.

Elmo is a newer context-sensitive word embedding model proposed by Pe-

ters et al. (2018a) one year after CoVe was published. Like CoVe, Elmo is derived

from a pre-trained model, and is subsequently transferred to the downstream task.

Likewise, both models use layer-wise neural network algorithms which will be ex-

plained in Section 2.3. The main difference is that Elmo trains on an unsupervised

language model rather than a supervised translation model utilized by CoVe.

In summary, context-independent embeddings, Word2Vec and GloVe, serve as

dictionary resources to the model which can also be thought as static lookup ta-

bles. On the contrary, CoVe and Elmo are dynamically generated by incorporating

contextual text. Rather than having a dictionary ‘looking up’ corresponding vec-

tors for each word, CoVe and Elmo create vectors on-the-fly by passing input text

through their pre-trained neural networks. Alternatively, they are also taken as

pre-trained models, also known as a form of transfer learning (Devlin et al., 2018).

Take word representations in Figure 2.3 as an example, when using context-

independent embeddings, the word embedding for word “hate” is fixed as [0.753, 0.195, 0.031]

no matter what words surround “hate”. On the contrary, if using context-sensitive

embeddings, such as CoVe and Elmo, the representation for “hate” will not be

[0.753, 0.195, 0.031] but changes dynamically according to its context.

From word embeddings to paragraph embeddings

Since in TCC, sentences or paragraphs are classified rather than words, representa-

tion methods for sentences and paragraphs under the auspices of word embedding

are sought (Schmidt and Wiegand, 2017; Fortuna and Nunes, 2018).

A straightforward method is averaging or summing the word embedding of all

words in the sentence or the paragraph and taking the averaged or summed vectors

to represent the sentences or paragraphs (Wieting et al., 2015; Arora et al., 2016;

Nobata et al., 2016; Arora et al., 2016; Lee and Yoon, 2018; Fortuna and Nunes,

2018). As shown in Figure 2.6, when applying the averaging method (highlighted

in grey), the sentence vector dimension is equal to the word vector’s dimension.

The same situation goes for the summing method.

Theoretically speaking, the averaged/summed representation loses word order
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Figure 2.6: An illustration of composing a sentence vector by aver-
aging word vectors and composing a sentence matrix).

sensitivity in the same way N-gram models do (Le and Mikolov, 2014). However, a

few papers have shown that such a simple method works as good as or better than

other feature representation methods. In the task of detecting abusive language,

Nobata et al. (2016) have tested a group of features including averaged repre-

sentation which averages the word embeddings (Word2Vec) of all words in the

comment. The average of all word embeddings were reported to be outperformed

by word-level N-grams and character-level N-grams (Nobata et al., 2016). Arora

et al. (2016) proposed an “embarrassingly simple” sentence embedding method:

a weighted sum of word vectors (GloVe). They weighted each word vector by

the factor a
a+p(w)

where a is a hyper-parameter and p(w) is the (estimated) word

frequency. This is similar to IDF weighting, where more frequent words and terms

in the corpus are weighted down.

Another simple and widely-used approach is combining word vectors for each

word in a sentence into a sentence matrix as shown in Figure 2.6 (Kim, 2014).

In this way, each row corresponds to a word in the sentence and the order of

rows follows the order of words in each sentence. This approach is also called

concatenation. In the spatial 2-dimensional matrix, the horizontal rows capture

each word’s semantic meanings. Additionally, the vertical order of rows indicates

the words order that the averaged vectors and summed vectors discussed above

are unable to capture. However, the matrix approach may lose information when

using arbitrary sentence lengths since useful contents may be truncated. More

specifically, every text fed into the model need to be converted to a matrix of a

identical dimension. Therefore, the number of words in each text need to be the
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same for a identical vertical size. That is, when a sentence is shorter than the

predefined length, it will be padded with zero values, when a sentence is longer

than the length, it will be truncated to the length.

The methods above manipulate word embeddings to formulate new embed-

dings for whole sentences or paragraphs. In addition to these approaches, Le and

Mikolov (2014) have proposed paragraph vector (para2vec), which learns contin-

uous distributed vector representations for pieces of texts from scratch. Their

technique was inspired by Word2Vec by training the model to predict a certain

word based on surrounding words and then extracting word vectors generated in

the prediction task as word embeddings. The idea was extended to get para-

graph vectors in a similar manner (Le and Mikolov, 2014). They established a

prediction task much like Word2Vec but with the addition of a paragraph vector

alongside word vectors. After training the prediction model, the paragraph vector

is pulled out to represent the paragraph, which can then be intuitively taken as

the “byproduct” of the prediction task.

Para2Vec can potentially address limitations of averaging/summing approach

and matrix approach, such as losing information of words order and unable to

take arbitrary lengths of sentences. Further, Lau and Baldwin (2016) empirically

shows that para2vec requires a large external corpora for training for comparable

performance. However, Para2vec cannot dynamically compose vectors for unseen

sentences or paragraphs in the training data.

2.3 Algorithms

This section introduces algorithms, an essential aspect of text classification in con-

junction with features. Similar to the previous section on features, this section also

separates algorithms into two groups: first, traditional machine learning, which

conventionally works with manually engineered features; second, neural network-

based algorithms, known as deep learning, which typically uses word embeddings

to represent textual contents (Zhang et al., 2018c).

2.3.1 Traditional machine learning

There are a number of previous TCC studies using traditional machine learning

algorithms, and popular ones include Logistic Regression, Naive Bayes, decision

tree and Support Vector Machines (Dadvar et al., 2012; Chavan and Shylaja, 2015;

Wester et al., 2016).
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Logistic Regression is a special regression used to model the probability of a

certain class. It leverages the logistic function to take any input data and outputs

a value between zero and one, which can then be used to classify an instance by a

cut-off value (Westreich et al., 2010). Therefore, it solves classification questions

rather than regression questions.

Naive Bayes classifier calculates the probability of an event based on prior

knowledge of conditions that might be related to the event. In the task of text

classification, the Naive Bayes classifier computes the posterior probability of a

class based on the distribution of features in general in the document. This works

with the “bag of words” assumption (Aggarwal and Zhai, 2012b). In “bag of

words”, a sentence or document is represented as the pool of its words, disregarding

grammar and word orders (Aggarwal and Zhai, 2012b).

A decision tree classifier consists of decision nodes and leaf nodes. Each

decision node splits input data into two or more downstream nodes connected to it

according to a single feature (Stein et al., 2005). The downstream nodes repeated

this step according to another feature until passing the data to leaf nodes. Each

leaf node indicates a class that is the result of an instance (Stein et al., 2005). In

the context of text classification, each text document is the input data which will

be assigned to a class, i.e., a leaf node, after passing through layers of decision

nodes.

A Support Vector Machines model represents instances as points in a high-

dimensional feature space where each dimension is a feature (Tong and Koller,

2001). The basic concept of Support Vector Machines is to find the optimal

hyper-plane to separate training data points as much as possible according to

their classes (Korde and Mahender, 2012). The points of two classes closest to

the decision plane are called the support vector. The machine learning process is

to maximize the margin between support vectors from different classes (Tong and

Koller, 2001).

2.3.2 Neural network-based methods (deep learning)

Overview

A neural network is constructed by a collection of connected nodes called neurons,

inspired by the neurons in a biological brain. Each connection transmits a “signal”

from one neuron to another. A neuron that receives a “signal” can process it and

then signal additional neurons connected to it. This process will be repeated and

the signal will be iterated to achieve better results through the learning process
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(Lusci et al., 2013).

Figure 2.7: A generic deep neural network (Florance, 2018). Neu-
rons are represented by dots.

Each iteration can be explained with two phases. The first is “forward pass”

where the model receives the input signals and the input signals then traverse

the network and leave “information” to neurons until reaching the last level of

neurons (from left to right in Figure 2.7). The second is “backward pass” (from

right to left) where the “information” is adjusted according to the “errors” un-

covered during the forward pass. The adjustment is guided by the loss function

which calculates the difference between the current “prediction” and the “golden

standard”. In other words, the loss function monitors the degree of “error” of

the current model’s prediction and guide the model (i.e., parameters in neurons)

to adjust for better prediction. There are many different loss functions that cal-

culate the “error” level differently. Commonly-used loss functions include mean

absolute error, mean squared error, cross-entropy loss, negative log likelihood loss

and Gaussian negative log likelihood loss (Paszke et al., 2019; Ruder, 2019; Wolf

et al., 2019).

The iteration process is repeated, enabling the model to “learn” features. This

is much akin to the process of how we humans learn from our mistakes and revise

future judgment accordingly. The iteration process is the learning process. In

the context of neural network-based algorithms, the “signals” and “information”

consist of weighted values (usually in the form of a vector or matrix) and functions

(Lusci et al., 2013). These weights and functions are often mentioned as parame-

ters. Word embeddings discussed in Section 2.2.2 is an example of “signals”.

Neural network models are conventionally constructed in a layered architecture.
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They commonly contain neurons in three interconnected conceptual layers: input

layer, hidden layer and output layer. Input layers encode data to a form that can

be consumed by the neural network models such as vectors and matrix. Output

layers take the final feature vectors learned from the penultimate layer (the last

layer of hidden layers) and apply functions, like Sigmoid and Softmax, to output

the probability distribution over labels (Lepe and Vázquez, 2017; Zhang et al.,

2018b).

The hidden layers are between the input and output layers. These undergo the

iterative training and learn features, as shown in the Figure 2.7. When a neural

network consists of multiple hidden layers, it is called a deep neural network (DNN)

or deep learning (Deng, 2014; Zhang et al., 2018b). In DNN, layers close to the

input layer are conventionally called “lower layers”. Lower layers are thought to

learn superficial features like the shape and color of an image in computer vision

or the general grammar of a sentence in NLP (Day and Khoshgoftaar, 2017; Tan

et al., 2018). In contrast, layers close to the output layer are the higher layers

and are thought to learn higher level features (Day and Khoshgoftaar, 2017; Tan

et al., 2018).

When training a DNN, instead of feeding all data instances into a DNN model

at once, only a small sample of data instances will be fed into the DNN every

time. One sample collection of the data is called a batch. DNN processes the

data batch by batch. It is conventional to use batch sizes as a power of 22, such

as 32, 64, 128, 256. Conventionally, each data instance will be learned by a

DNN more than once. The number of times a data instance has been used to

train a DNN is called an epoch. In other words, for an epoch, DNN will work

through the entire training dataset once. Various settings of epochs have been

used and there is no general rule of thumb of an “optimal” number to use in

research. Although, several empirically practices of setting up epoch numbers are

commonly used which follow a similar principle that stop training when the model

performance no longer improves (Deng, 2014; Aggarwal and Zhai, 2012a; Peters

et al., 2018b; Founta et al., 2019; Kennedy et al., 2020; Zhao et al., 2021).

Parameters such as batch size and epoch times are called hyper-parameters.

They are a crucial component for a DNN as they directly control the behavior

of the training algorithm. Thus hyper-parameters have an important impact on

the performance of the model during training. Currently, considerable skill and

2Using a power of 2 number is for the alignment of the virtual processors (VP) onto the
physical processors (PP) of the GPU. Since the number of physical processors is often a power
of 2, using a number of virtual processors different from a power of 2 leads to poor performance
and a waste of virtual processors.
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experience is required to select sensible values for hyper-parameters (Deng, 2014).

Furthermore, sensible values for one hyper-parameter may depend on the values

chosen for another. However, hyper-parameter tuning especially for DNN is com-

putationally expensive (Deng, 2014).

Other important hyper-parameters include the number of hidden layers and

the number of hidden units (how many neurons comprise a layer). For different

DNNs, additional or alternative hyper-parameters may be required.

Overfitting is another essential concept in machine learning, which refers to the

unfavorable learning outcome of a model when the model corresponds too closely

or exactly to a particular dataset but fails to predict the other unseen dataset,

i.e., the model memorizes the irrelevant noise instead of learning the signal and,

therefore, performs less well on a subsequent new dataset (Yamashita et al., 2018).

In the context of DNN, there are techniques to prevent or mitigate overfitting, such

as dropout which cut out some neurons randomly; and regularization which adds

a penalty in the loss function to discourage the complexity of a model.

Neural network-based methods have proven to be effective in the tasks of NLP

(Goldberg, 2016). Many different DNNs have been explored in NLP. The Feed-

forward Neural Networks (FNNs) was the first and simplest type of neural

network devised (Schmidhuber, 2015). In this network, signals moves in only one

direction, forward, from the input neurons, through the hidden neurons and to

the output neurons. There are no cycles or loops in the network. A range of

more complex DNNs has been developed to make neural networks more powerful.

They distinguish from each other by their internal connection architecture, con-

figuration and learning mechanism (Chen et al., 2017). Popular DNNs for text

classification include Convolutional Neural networks, Recurrent Neural Networks

and Neural Networks with Attention (Zhang et al., 2018c; Yang et al., 2016).

Convolutional neural networks

Convolutional Neural Networks (CNNs) were originally developed for image

processing. They are inspired by the animal visual cortex where individual neu-

rons respond to stimuli only in a restricted region (Matsugu et al., 2003). When

recognizing an image, a CNN will “look at” a fixed sized region (sub-region) of

the image and interpret the sub-region as a higher-level abstract concept such as

a shape, or colour. In the context of processing text, a CNN will “look at” a

certain length of characters or words (sub-region) in each sentence and transform

each sub-region into one new abstract feature. How CNN extracts features from
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each sub-region will be decided by the CNN filter, whose size is equal to each

sub-region’s size.

We use Figure 2.8 as a simplified example to describe how CNN works. In this

example, we adopt 5-dimensional3 word embeddings as features and concatenate

them to represent a 7-word sentence. This leads to a 7x5 sentence matrix. We

define a CNN filter represented by the 2x5 yellow matrix in Figure 2.8. First,

the CNN filter overlays across the word vectors of “It” and “is” and performs

an element-wise product and then sum them up. This outputs a number, 0.51.

Then, the CNN filter moves down one word and overlays across the word vectors

of “is” and “a” and perform the same operation to get 0.53. This process will

be repeated until “be” and “islamophobia” have been “looked at” by the CNN

filter. To capture latent features in various lengths of characters or words, many

papers use multiple sizes of filters (Zhang and Wallace, 2015; Lepe and Vázquez,

2017; Zhang et al., 2018b). The filter size and the number of filters are both

hype-parameters of CNN models (Yamashita et al., 2018).

Figure 2.8: A simplified illustration of how a CNN filter reads sub-
regions one by one with stride size =1 and how max pooling works
subsequently.

CNN based models often utilise the pooling layer to further extract key fea-

tures and condense the dimensionality of feature representations. Commonly-used

pooling schemes are max-pooling and average pooling (Kim, 2014). They take the

maximum and the average value of each sub-region respectively (Kim, 2014). As

3As mentioned in Section 2.2.2, in real word embeddings, the dimension size is often bigger
than 100. We use 5-dimensional word embeddings to simplify the explanation.
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shown in Figure 2.8, we obtain a number, 0.53, for the first two elements in VC

when adopting max-pooling of size 2.

CNN filters enable CNN models to extract features in context and capture

‘local’ information such as semantic clues (Che et al., 2017; Zhang et al., 2018b;

Agrawal and Awekar, 2018). Due to this superiority, researchers have successfully

used CNN in various toxic comment detection tasks. Badjatiya et al. (2017) have

employed CNNs to classify tweets into three groups: racist, sexist and neither.

This method has significantly outperformed the traditional methods such as LR

and SVM. Gambäck and Sikdar (2017) have also investigated CNNs to detect

hate speech. They attempt to improve performance by adding character-level

features into Word2Vec, but discovered that CNNs with basic Word2Vec alone

worked best. In the task of abusive comment classification, Chu et al. (2016) have

explored CNNs featured with either word embeddings or character embeddings.

They found using CNNs trained with character embeddings alone reached higher

performance than word embeddings alone.

Recurrent neural networks

The central idea of Recurrent Neural Networks (RNNs) is to utilize the pre-

vious inputs and computations. CNNs assume that all inputs/sub-regions are in-

dependent of each other, while RNNs perform the same task for every element of a

sequence with the output being dependent on the previous computation (Ordóñez

and Roggen, 2016; Che et al., 2017). Accordingly, rather than processing all el-

ements of a data at the same time (as shown on the left of Figure 2.9), RNNs

process one element first and then process another element with the result of the

previous element. As noted in Figure 2.9, the non-RNN model on the left pro-

cesses data elements, X1, X2 and X3 at the same time (time step t1), while the

RNN model processes X1 first at time step t1 and then process X2 and the output

from X1 at t2, subsequently X3 will be processed at t3 with the output from X2

which contains the result information from X1. In the context of NLP, a character,

a word, or a phrase is from an ‘ordered sequence’, i.e., sentences. Therefore, they

can be taken as the equivalents of ordered X1, X2 and X3 in Figure 2.9. In this

way, a time step is associated with a character, a word, or a phrase, depending on

the setup.

An intuitive understanding of RNN is to think it processes each element in

a data instance one by one and it has a “memory” of what has been processed

previously. In the context of text processing, RNNs “remember” and “assess”
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Figure 2.9: An comparison of data processing methods between non-
RNN neural networks and RNN (Jiwon, 2019).

the context when trying to interpret the current word (Ruder, 2019). In theory,

RNNs can utilize information in arbitrarily long sequences, but in practice, they

are limited to looking back only a few steps. Information from long distances before

will vanish in the later time steps and the information from the close distances

will dominate. This can be compared to the situation that we will remember more

clearly what happened in the last minute and forget what happened a week or a

month ago.

Long Short-Term Memory network (LSTM) is a modified RNN model

which is good at learning long-term dependencies (Chiu and Nichols, 2016). It

is built on top of RNNs with additional functions of “forgetting” less important

information and “remembering” useful information for later time steps. Like RNN,

LSTM processes sequence data in order following a direction. The vanilla LSTM

“reads” text from left to right, just like we humans. To further capture the

sequence information of words and word dependency, Graves and Schmidhuber

(2005) proposed bidirectional LSTM (bi-LSTM) which can “read” text from not

only left to right but also right to left. Therefore, bi-LSTM captures both the

previous and following contexts of a word.

In general, CNNs are able to learn the information from surrounding words

or characters (i.e., the sub-regions as mentioned), but is weak at capturing the

information of long-distance dependency in texts (Wang et al., 2016a). LSTM on

the other hand, addresses this limitation by modelling texts across sentences in

sequence for its “memory” function (Wang et al., 2016a).

A slight variation of LSTM is the Gated Recurrent Unit (GRU) (Cho

et al., 2014). It combines the “forgetting” function and current word information

into a single updating function. The resulting model is simpler and faster to

compute.

In short, RNNs and their variations are good at learning orderly information
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(Zhang et al., 2018c). Their ability to use internal memory to process arbitrary

sequences of input has been found to be effective for text classification tasks (John-

son and Zhang, 2016; Agrawal and Awekar, 2018). Researchers have attempted to

utilise RNNs to classify toxic comments. Del Vigna et al. (2017) employs a bidi-

rectional LSTM fed with two word embeddings (concatenating two different word

embeddings)4 to detect hate speech in Italian. They have found that the accuracy

of their LSTM model was higher when using coarse-grained binary labels (“hate”

and “no hate”), compared to using fine-grained labels (“strong hate”, “weak hate”

and “no hate”). As discussed in the CNN section, character level features have

also been explored on RNN models. In a binary classification task with comments

being abusive or not, Mehdad and Tetreault (2016) have implemented a RNN

using n-gram (n = 1...5) characters5 as inputs instead of words. This approach

achieves an increase of approximately 8% in average class accuracy.

Beyond features, researchers have attempted to improve their model’s perfor-

mance by combining different DNNs. Zhang et al. (2018c) proposes a convolution-

GRU based deep neural network by incorporating a GRU layer on top of a con-

volutional layer to detect hate speech. They hypothesise that the CNN+RNN

structure will be more effective as it will be able to capture co-occurring word n-

grams as useful patterns for classification (Zhang et al., 2018c). For example, for

the sentence “These muslim refugees are not welcome in my Country they should

all be deported ...”, such pairs include “muslim refugees, deported” and “muslim

refugees, not welcome” (Zhang et al., 2018c).

Attention mechanism in deep learning

When inspecting objects, we humans usually look at certain specific parts with

more attention depending on the context. For example, when we see a photo of a

group of people, we tend to pay more attention to everyone’s face if we want to find

out who is in the group. Similarly, we will pay more attention to the environment

if we want to know where the photo is taken. This is the intuition behind the

“attention” mechanism in deep learning. Attention mechanism is first proposed

by Mnih et al. (2014) to capture the important regions in image classification tasks.

They added a “attention layer” on top of RNN layers. The attention layer learns

which area in the image is more informative to the final classification prediction.

4The author have not specified which are these two word embeddings lexicons
5Different from the character embeddings in Chu et al. (2016)’s model mentioned in the last

section on CNN, Mehdad and Tetreault (2016) adopted n-gram representations, one to five gram,
which can be taken as bag-of-character model.
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Then the corresponding features that RNN layers have learned will be given more

weights. Intuitively, the model learns to “pay more attention” to the important

regions in images.

Yang et al. (2016) were the first to apply the attention mechanism on text

classification tasks. Intuitively, it is natural to compare looking at an image to

reading text as we also pay different levels of attention to different words or sen-

tences during reading. However, texts have a hierarchical structure, where words

form a sentence and sentences form a paragraph or a document (Yang et al.,

2016). Therefore, Yang et al. (2016) include two levels of attention mechanisms

in their model, known as Hierarchical Attention Networks (HAN) (Yang

et al., 2016).

The overall architecture of the HAN is shown in Figure 2.10. It consists of four

main parts that serve two different attention mechanisms. First, the bidirectional

GRU on the bottom (also labelled as word encoder) encodes the input to word

embeddings initially. Second, the word attention layer extracts words that are

important to the meaning of the sentence and aggregate the representation of

those informative words to form a sentence representation. Following this, another

bidirectional GRU (also labelled as sentence encoder) takes the input representing

each sentence. Fourth, a sentence attention layer forms a document representation

for the whole text that rewards sentences which are clues to correctly classify a

document (Yang et al., 2016). The document representation then will be used as

features for text classification.

In 2017, Vaswani et al. (2017) propose Transformer, which heavily uses at-

tention mechanism. RNNs capture the orderly information and long dependencies

between words by “remembering” what has been processed before. Different from

the mechanism of RNNs, Transformer learns these information entirely relying on

the attention mechanism and it has achieved SOTA performance on a range of

NLP tasks. Many current SOTA DNN models are developed on top of Trans-

former (Radford et al., 2018; Devlin et al., 2018; Lample and Conneau, 2019; Liu

et al., 2019b).

Transformer is composed of encoders and decoders6. Each encoder and decoder

can be broken down into two sub-layers: the feed forward layer (in blue) and the

attention layer (in orange) as shown in Figure 2.11 (Alammar, 2018). Transformer

can also be simply taken as a FNN with full attention (Vaswani et al., 2017).

This configuration allows the transformer to learn an attention distribution for

6Recall that encoders and decoders are mentioned in Section 2.2.2 to explain the translation
model used by CoVe.
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Figure 2.10: Hierarchical Attention Network (Yang et al., 2016).

Figure 2.11: A broken down of one single encoder and decoder in
Transformer (Alammar, 2018)

each input word over the entire input (Lukovnikov et al., 2019; Brunner et al.,

2019). In other words, the attention distribution indicates how strong the input

word relates to each word in the rest of entire input text as shown in Figure 2.12.

For example, the attention between “law” and “its” is very sharp. This is because

“its” refers to the aforementioned “law” in the previous context.

In the tasks of cyberbully comments detection, Agrawal and Awekar (2018)

have compared four different DNN models, namely CNN, LSTM, Bi-LSTM, Bi-

LSTM with attention. They build these four DNNs which differ only in the neural

architecture layer (highlighted in yellow) as shown in Figure 2.13 while the re-

mainder of the structures is the same (Agrawal and Awekar, 2018). The models

are tested on three datasets with different labels built on Formspring, Twitter and
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Figure 2.12: The attention distribution captured by Transformer
(Vaswani et al., 2017).

Wikipedia. In the results, no models can consistently outperform others over all

three datasets.

Figure 2.13: The general model architecture of the four DNNs models
in Agrawal and Awekar (2018)’s paper. The main difference between
the fours (CNN, LSTM, Bi-LSTM, Bi-LSTM with attention) are the
“Neural Architecture” as highlighted in the figure.

Gao and Huang (2017) have explored Bi-LSTM with attention in hate speech

classification and found that by adding attention mechanism to Bi-LSTM, the

performance of the LSTM model improves by 5.7% in AUC score7. Pavlopoulos

et al. (2017) also show that the attention mechanism improves the performance

of the RNN model (GRU) when dealing with abusive comments in Greek from

Greek sports news portal.

7AUC is a measure metric for classification problems which will be introduced in later sections
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2.4 Transfer learning

2.4.1 Concepts

In the context of supervised text classification, for every task, a new model is

trained from scratch on a labelled training dataset whose labels are assigned by

human, i.e., “golden standard” labels. However, this manual labelling process

is expensive and use-for-once labelling is inefficient. Another issue is that the

appropriate size of the training set is difficult to determine. A dataset that is

too small is potentially insufficient to train an effective model. For these reasons,

it seems natural to seek methods that leverage other available datasets to train

a model. One popular approach to do so is transfer learning (TL), a machine

learning concept that transfers knowledge learned by one model to a second model

targeting a separate task (Lu et al., 2015). The first task and its knowledge to be

transferred are called the source task, the second task is usually referred to as the

target task or downstream task (Ruder, 2019). The source task and downstream

task do not need to share an identical label set. The source task do not even need

labels in some TL cases, which will be discussed later in Section 2.4.2.

For example, assuming we have two annotated datasets available for two sep-

arate text classification tasks. One is product review data with tens of thousands

of review comments labelled as either “positive”, “negative” or “neutral”. The

other is a Facebook dataset labelled as “racist” or “not racist”, which only con-

tains a few hundred comments for training. TL will allow for knowledge that has

been learned from product reviews to be transferred to help with the task of racist

content classification. Thus, the product review is the source task and racist con-

tent is the target task. From the source task, i.e., product review classification

task, the machine learning algorithm can learn generic features of human language

alongside other low-level features.

Although TL is not limited to neural network-based methods, more recent

TL research have primarily employed deep learning methods. One practical rea-

son encouraging the use of deep learning with transfer learning may be the rapid

development of deep learning since 2006 (Erhan et al., 2010; Deng, 2014; Kim,

2014; Lu et al., 2015; Yang et al., 2016; Zhang et al., 2018b). In addition, numer-

ous studies have demonstrated the superior performance of neural network-based

methods compared to traditional machine learning methods (Erhan et al., 2010;

Lu et al., 2015). Another possible explanation is the different feature representa-

tion issues that traditional machine learning methods with manually engineered



CHAPTER 2. LITERATURE REVIEW 40

features have to handle during TL. That is, the manually engineered features are

usually designed specifically for the specific task and thus are hard to transfer to

different tasks. Therefore, this thesis will focus on TL with deep learning, also

known as deep transfer learning (Tan et al., 2018). Unless stated otherwise, we

discuss each concept and method based on the use of DNN in the remainder of

this thesis.

The process of TL typically consists of two stages, pre-training and adaptation

(Ruder, 2019). In the first stage, the model is pre-trained on the source task. In

the second stage, the pre-trained model is adapted/transferred to a downstream

task and trained on the separate training data (Ruder, 2019). TL methods can be

distinguished from each other by different pre-training methods and adaptation

techniques, which will be discussed in the forthcoming sections.

2.4.2 Pre-training

In TL, what is transferred from the source task has a fundamental impact on

the performance of the downstream task. Further, whether the pre-training needs

labelled datasets or not also makes a big difference in the practicality of TL. Gen-

erally speaking, pre-training based on unlabelled datasets will have wider access to

source data than those requiring labelled datasets. This “supervision condition”

(i.e., using labelled or unlabelled datasets during pre-training) partially deter-

mines the difficulty and cost of TL. Therefore, the majority of literature separates

different pre-training methods based on the supervision condition of pre-training

(Ruder, 2019). This section discusses three TL pre-training methods according to

the taxonomy proposed by (Ruder, 2019).

Supervised pre-training

In supervised pre-training, the model is pre-trained on another labelled dataset

that is supposed to be a related task to the target task. In this way, creating new

labelled data in the target task is replaced by using labelled data in the source

task during pre-training. By making use of the extra data from a related task in

the pre-training, supervised pre-training TL increases the labelled training data

in general, allowing the classifier to learn from more labelled data. According to

(Day and Khoshgoftaar, 2017), when the source task has very little in common to

the target task, the transferred knowledge may harm the target model, also known

as negative transfer. For this reason, in many cases only suitable existing tasks

are chosen as source tasks for a particular target task (Raina et al., 2007). Having
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said that, this also limits the practical implementation of supervised pre-training

as it is not always easy to find a source task that is similar to the target task.

CoVe is one famous supervised pre-trained model as discussed in the previous

Section 2.2.2. Rather than text classification, CoVe is pre-trained on an English-

Germany translation task. The pre-training for the source task. i.e., English-

German translation, uses a parallel corpus for the two languages. The paired

German text for an English text that is to be translated to is the “golden standard”

for supervised learning.

Distantly supervised pre-training

Distantly supervised pre-training is a learning scheme where the classifier is learned

on a weakly labelled training set (Ruder, 2019). Here, data are labelled automati-

cally based on heuristics or rules instead of human annotators (Ruder, 2019). This

results in the training data having “loose standard” labels (also known as noisy

labels) rather than “golden standard” labels like supervised pre-training does (Go

et al., 2009).

A straightforward example, as well as the most common application is using

emoticons included in a comment as the comment’s label in sentiment analysis

tasks (Go et al., 2009; Suttles and Ide, 2013; Felbo et al., 2017). In this way,

the comments with the same emoticon will be categorised to one group under the

shared emoticon and the model is supposed to predict the emoticon. For example,

comments with smiling face will be classified into one group, and comments with

angry face will be in another group. The training objective is to predict which

emoticon the comment contains. Conventionally, researchers removed the emoti-

con from the comment and then trained the model to predict the emoticon in the

interest of ensuring the classification relied solely on the language (Go et al., 2009;

Suttles and Ide, 2013; Felbo et al., 2017). The intuition behind this was to take

the emoticons as the underlying indicator of sentiments in the comments. This

allows the model to learn the features of different sentiments. In addition to the

“emoticon” labels, distant supervision may also use hashtags as “loose standard”

labels for sentiment classifications (Purver and Battersby, 2012; Hasan et al., 2014;

Silva et al., 2016). In addition to sentiment analysis tasks, distantly supervised

pre-training have been employed in products review classification and movie re-

views classification by taking star ratings as “loose standard” labels (Silva et al.,

2016).

Undoubtedly, using emoticons, hashtags or star ratings as labels is not perfect
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as one group could have some mis-classified comments, i.e., the noisy data, that

do not fit in the comments group. For instance, a positive emoticon can indicate

sarcasm or a compliment in an otherwise negative text, i.e., a false positive instance

(Felbo et al., 2017). However, the advantage of this method is the wider availability

of training data. Increasing training data may compensate for the noisy instances.

The ideal algorithm will be robust to noisy data and able to learn from the larger

proportion of true positives. The underlying information of emoticons and review

ratings are usually closely related to TCC as the emoticons and review ratings

indicate the sentiment that are commonly used as features for TCC tasks (Purver

and Battersby, 2012).

Unsupervised pre-training

In contrast to supervised learning, unsupervised learning is a machine learning

concept that does not require pre-existing labels for the training data. Instead of

outputting predictions, the goal of unsupervised learning is to model the underly-

ing structure or pattern in the data in order to learn more about the data. Two

classic examples of unsupervised learning are clustering and dimension reduction

(Ghahramani, 2003). Clustering groups data according to its features, identifying

commonalities in the data and grouping data based on the presence or absence of

such commonalities. Dimension reduction aims to reduce the number of features.

In the context of NLP tasks, language modelling is the most widespread un-

supervised learning method (Howard and Ruder, 2018; Devlin et al., 2018). The

basic idea of language modelling is to calculate the probability of sequences of

words in a text, based on the appearing frequency of the sequences in the whole

corpus. In other words, it estimates the relative likelihood of different phrases in

a corpus, which is useful in many NLP applications. For example, if in a corpus,

“United” and “Kingdom” appear together many times, language modelling will

assign the sequence of “United Kingdom” a high probability. This can be used in

autocomplete where the system will suggest “Kingdom” as the next word when

a user inputs “United”. Due to the mechanism that the target a language model

aim to predict is in the raw input data, language modelling is also often referred

to as “self-supervised learning” (Naseem et al., 2021). Language modelling has

proved to be very effective to capture many facets of language, such as long-term

dependencies, hierarchical relations, and sentiment (Linzen et al., 2016; Radford

et al., 2017; Gulordava et al., 2018; Howard and Ruder, 2018).

Early language models are trained to predict the next token from either left-
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to-right or right-to-left. The probability of sequences then will be iterated based

on the prediction. Intuitively, it is reasonable to believe that a bidirectional model

is more powerful than a unidirectional model (Devlin et al., 2018). Peters et al.

(2018b) proposes a bidirectional language model that first independently trains

a language model predicting tokens from-left-to-right and a language model pre-

dicting tokens from-right-to-left, and then concatenate these two language models.

Also aiming for bidirectional pre-training, Devlin et al. (2018) first use masked lan-

guage model in their pre-training. Masked language model randomly masks some

part from the input and its objective is to predict the masked part on the con-

text. As explained in the previous Section 2.2.2, Elmo is pre-trained on language

modelling to generate contextualised word representation, which is also a form

of unsupervised learning (Ruder, 2019). Pre-training a language model is widely

used in TL and it demonstrates robust performances on a wide range of down-

stream tasks. Section 2.5 will introduce more different commonly-used pre-trained

language models in details as they are core techniques used in this thesis.

2.4.3 Adaptation

The previous section focused on different pre-training approaches for the first stage

of transfer learning. The second stage of “adaptation” transfers the knowledge

learned from the source task to the target task. Devlin et al. (2018), Houlsby et al.

(2019) and Ruder (2019) all categorise adaptation techniques into two groups:

features-based transfer and fine-tuning. Features-based transfer is also referred

to as feature extraction by Ruder (2019). In feature-based adaptation, the pre-

trained model is taken as the input, fed into the downstream model. As the name

suggests, the role of the pre-trained model is to build feature representations of

input data. In contrast, fine-tuning adapts a pre-trained model directly and trains

it on the target task (Ruder, 2019). A TL model can use either or both of the two

techniques.

Feature-based transfer

In feature-based TL, features are transferred as fixed parameters and weights in

transferred layers, known as feature representations or representations, from the

source task to the target task. A task-specific DNN model takes the representa-

tions, i.e., pre-trained layers, and is trained on the target task, where only the

DNN model is trained from scratch. Here, the task-specific DNN model stacks on

top of the transferred representations. The transferred model or representations
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are fixed which will not be updated during the training after adaptation.

As shown in Section 2.2.2, Word2Vec and Glove can be taken as examples of

feature-based adaption. They are both pre-trained on separate source tasks, i.e.,

language modelling. The representations learned from the pre-training are saved

as fixed-vectors that are fed to different downstream tasks.

Fine-tuning

In contrast, fine-tuning TL adapts the source task model to the target model and

updates the “knowledge” from the pre-trained model. In such a way, the pre-

trained model forms part of the target task model, which may contain other layers

that are configured to be task-specific and to be learned from scratch. However,

their “learning” may be “influenced” by the transferred, pre-trained model. This

can also be interpreted as replacing several layers in the model of source task

with new trainable layers so that a new model for the target task is built. The

training process of the new model is a fine-tuning process for the pre-trained part

(i.e., layers of the pre-trained model) and a learning-from-scratch process for the

new added layers. This allows the model to take advantage of the knowledge

learned from pre-training and also update the knowledge based on the new task.

However, the updating mechanism of fine-tuning has the risk of forgetting about

what features have been learned from pre-training, a challenge termed catastrophic

forgetting (French, 1999; Schmidhuber, 2015; Houlsby et al., 2019).

Different fine-tuning approaches have been developed to optimise the TL ef-

fectiveness and to avoid catastrophic forgetting. Universal Language Model Fine-

tuning (ULMFiT) is one of the most popular methods on fine-tuning on NLP

tasks proposed by (Howard and Ruder, 2018). ULMFiT uses a gradual unfreezing

manner to fine-tune the model (Howard and Ruder, 2018). It first unfreezes the

last layer and fine-tunes the model for one epoch. In this step, only one layer has

been updated. Next, ULMFiT unfreezes the adjacent lower layer and fine-tunes

all unfrozen layers for one epoch. This repeats until all layers are unfrozen and

fine-tuned.

2.4.4 Related work in TTC

There are a number of studies on toxic comments classification using transfer

learning in the last few years, along with the course of this PhD study.

Risch et al. (2018) have employed TL in a supervised pre-training manner

in an offensive language detecting task. According to Risch et al. (2018), since
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the target dataset only has 5,000 instances which do not work well with typical

deep learning methods, they pre-train their model on a pre-existing labelled toxic

comments dataset of 150,000 instances. The given target task aims to assign text

into four categories: profanity, insult, abuse and other, different from the source

task which has six labels: toxic, severe toxic, obscene, threat, insult and identity

hate 8. Wiedemann et al. (2018) believe the target task is similar to the source

task and therefore, they keep the first layer frozen to include general features from

the source task and add new layers on top of it to learn the target task. This can

be taken as supervised pre-training and feature adaptation TL.

In Agrawal and Awekar (2018)’s study, three cyberbullying classification datasets

from different social media platforms have been pre-trained for each other to check

if the knowledge gained from one dataset can be used to improve cyberbullying

detection performance on other datasets.

In their abusive content detection, Uban and Dinu (2019) pre-train the model

using distantly supervised learning, where content in the source dataset were au-

tomatically labelled as positive or negative based on emotions. The automated

labelling process assumes that any tweet with positive emoticons, such as “:)”, are

positive, and tweets with negative emoticons, such as “:(”, are negative. Next,

the pre-trained model has been transferred to two separate tasks, aggressive lan-

guage detection (12k comments from Facebook) and offensive language detection

(14k Tweets), to study the effect of transferring knowledge across tasks. Different

adaptation methods also have been tested in their experiments. First, they have

used fine-tuning to transfer features which either allows the model to update all

parameters in all layers or only update the rest layers except embedding layers

(Uban and Dinu, 2019). Second, they have tried feature-based transfer by only

sharing the first embedding layers (Uban and Dinu, 2019).

Aside from supervised pre-training and distant learning, unsupervised pre-

training have been tested in several studies of toxic comments detection. Ko-

rzeniowski et al. (2019) pre-train their model on PolEval, an unlabelled dataset in

Polish, using language modelling and then transfer it to the hate speech classifica-

tion task. They choose to adapt source task by ULMFiT fine-tuning. According

to their results, ULMFiT significantly improved the model performance.

In Wiedemann et al. (2018)’s research of offensive language detection, they

compare three pre-training methods. These are: 1. supervised pre-training on

dataset of detecting “inappropriate” and “discriminating” content, which can be

taken as a near-offensive classification task; 2. distantly supervised pre-training on

8The “clean” comments will not be assigned any label of these six labels
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tweets labelled with emoticons they contain; 3. pre-training by Latent Dirichlet

Allocation (LDA), an unsupervised learning algorithm that represents a text with

a topic distribution where each topic is defined with a word distribution. They

also have explored different fine-tuning methods for TL. Similar to ULMFiT, they

gradually unfreeze layers in the fine-tuning but tried with different unfreezing

orders. In their results, the unsupervised pre-training TL outperforms the other

two, while none of the fine-tuning methods demonstrate a significant advantage.

2.5 Pre-trained language model (PLM)

Language model (LM) has been briefly introduced in Section 2.4.2. It is an an

unsupervised learning method that aims to model the probability distribution over

sequences of words or tokens. Pre-trained language models (PLMs) are language

models pre-trained on source tasks and can be transferred to downstream tasks,

especially to supervised tasks. This section will discuss PLM in detail as it is

widely-used on a range of text classification tasks these years and several new

SOTA NLP models are built upon it. Also, it is an important component for

many TL applications. We do not aim to cover all fundamentals in PLM but

the essential concepts and techniques of PLM that are relevant to or used in the

research of this thesis. All concepts and techniques discussed are therefore in the

context of using DNN. We first introduce different pre-training language models

from the perspective of their pre-training tasks. Then we cover the popular PLM

used in NLP. Last, we discuss the studies of applying PLM to TCC tasks.

2.5.1 Training tasks for PLMs

In the context of neural network based language models, a classic language model

is the neural probabilistic language model proposed by Bengio et al. (2003), also

known as statistical language model, which has been applied in many related

studies (Mikolov et al., 2009, 2013; Han et al., 2021). Similar to traditional lan-

guage model, it aims to model the conditional probability of the next word given

all the previous ones. The two versions of LM used by Word2Vec (as introduced

in Section 2.2.2 and illustrated in Figure 2.5), Continuous Bag-of-Words Model

and Continuous Skip-gram Model, are variants built upon on traditional language

models. One main difference is that Word2Vec takes advantage of the context

before and after a given word rather than only words before it.

Masked language modelling (MLM) is a fundamental language modelling
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method more widely used in recent years. It is first adapted by Devlin et al.

(2019) in the context of DNN. The main idea behind it is to mask out some

random word tokens in the input sentences and then train the model to predict

the masked tokens based on the remaining tokens in the sequence. Intuitively,

MLM is efficiently trained as it only masks and predicts a part of tokens in the

sequence but all tokens interact as they are the context.

Two limitations of MLM have been identified by Yang et al. (2019). First,

MLM corrupts the input with masks. That is, the masked tokens appear in

pre-training but not in fine-tuning. Second, it neglects the dependency between

masked positions. For example, given a sentence “New York is a city”, if MLM

masks “New” and “York”, then the training objective would be:

log p(New | is a city) + log p(Y ork | is a city).

In such a way, the model fails to capture the dependency between “New” and

“York”. To handle such limitations, Yang et al. (2019) proposed permuted lan-

guage modelling. Permuted language modelling is trained to predict a token on

all possible permutation of the remaining tokens in the input sequence. Given the

same example above, Permuted language modelling predicts “New” based on the

remaining tokens, i.e., “York”, “is”, “a” and “city”, in different permutations9.

Permuted language modelling aims to capture the high-order and long-range de-

pendency of words in sentences via the different permutations.

Translation language modeling (TLM) proposed by Lample and Conneau

(2019) is an extension of MLM, which is trained on pairs of text in different

languages. Its training objective is, as MLM, to predict masked tokens based on

context in different languages. Take English and French as an example, given a

pair of text in English and French (as known as parallel text) where they are the

translated version to each other, the pair of text is first concatenated. For example,

the pair of “Hello” and “Bonjour” will become “Hello Bonjour”. Then the model

randomly masks some tokens and predicts those masked tokens as MLM does.

The intuition is to allow the model to learn from the context in both languages.

Especially when the context in the language of the masked one is not sufficient for

the model to infer, the model can leverage the context from the translated text.

9Note that, permuted language modelling only permutes the factorization order (tokens rep-
resentations in the embeddings) to reflect the different permutations of tokens, not the sequence
order.
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2.5.2 Popular pre-trained language models

BERT is one of the most widely-used PLMs. It has been commonly adopted in

various NLP tasks as it has achieved SOTA results on 11 NLP tasks and it is able

to generalise over a wide range of tasks (Devlin et al., 2019). A rich body of new

techniques and applications are built upon BERT (Huang et al., 2019; Beltagy

et al., 2019; Liu et al., 2019c; Sanh et al., 2019; Han et al., 2021; Wu and Ong,

2021).

BERT is trained on two tasks: MLM as discussed above, and predicting

whether two sentences follow each other. For BERT, its MLM process masks

15% of words in the input sequence. The MLM objective enables the model to

learn a representation based on its previous and following context. Its pre-training

corpus includes BooksCorpus (800 million words) and English Wikipedia (2,500

million words), with a total size of up to 16GB (Devlin et al., 2019). This very

large size of training data allows BERT to learn not only the superficial features

of human language such as grammar and part-of-speech but also the semantics.

Figure 2.14 illustrates the architecture of BERT in the context of its application

on text classification tasks.

Figure 2.14: Illustrations of a BERT model on classification tasks.
This figure is better viewed in colour.

As shown in Figure 2.14, BERT tokenizes sentences with WordPiece where

sentences are splits into words and some words are further split into subwords.

For example, the word “unhappy” will be split to 2 tokens of “un” and “happy”.

Using subwords has the advantage of reducing out-of-vocabulary tokens (Gillioz
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et al., 2020). BERT takes token sequences of fixed lengths where longer sequences

are truncated and shorter sequence are padded. Given a fixed length token se-

quence, BERT assigns each token an input ID (which is associated with a initial

embedding) and an attention mask as coloured in pink in Figure 2.14. The em-

beddings are learnt from the language model pre-training. The attention mask

indicates if the token is a padded token or not to avoid performing attention on

padded tokens. The attention mask value takes either 0 or 1, where 0 indicates

the token is a padded token for the fixed length so it will not be attended and 1

indicates the token is an actual token from the input text so it will be attended.

The main architecture of BERT is built on Transformers as discussed in Section

2.3.2. This includes 12 layers of bidirectional Transformer encoders. We show

these transformer encoders in grey in Figure 2.14. Embeddings and masks are fed

into the Transformer Encoder layers and the final output is passed to the pooling

and dropout layers for the final loss calculation with cross entropy in the training

and for the classification with softmax in the evaluation. Pre-trained BERT mod-

els are published in two main versions, BERT base and BERT large. BERT base

has a total of 12 attention heads and 110 million parameters. BERT large has 16

attention heads with 340 million parameters. BERT base has 768 hidden layers

whereas BERT large has 1024 hidden layers. Also, there are BERT versions for

different languages, such as Polish, Chinese, German and so on (Han et al., 2021;

K leczek, 2020; Risch et al., 2019; Cui et al., 2021).

Many later PLMs are built on BERT with modified training tasks or archi-

tectures to improve BERT. These models include, for example, RoBERTa, XLM,

XLNet, BART and CamemBERT (Liu et al., 2019c; Lample and Conneau, 2019;

Yang et al., 2019; Lewis et al., 2019; Martin et al., 2019). We briefly introduce

some as examples. RoBERTa uses a similar transformer-based architecture as

BERT but removes the Next Sentence Prediction task from BERT’s pre-training

and modifies the MLM with dynamic masking (Liu et al., 2019c). By dynamic

masking, the masked token changes during the training epochs. In other words, in

each training epoch, the masked tokens are different. This is different from BERT

that masks fixed tokens for each training epoch. What is more, RoBERTa en-

larges the pre-training corpus 10 times bigger. XLNet is another PLM built upon

Transformer. Different from BERT, it trains on permutation language modelling

(Yang et al., 2019). It also uses a much bigger pre-training corpus of 130GB (Yang

et al., 2019).

A few studies have paid particular attention to minimising the model size (i.e.,

total parameters) and speeding up the training process but maintaining com-
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parable or better model performances. For example, DistilBERT is trained to

reproduce the behaviour of BERT and it manages to achieve comparable perfor-

mance to BERT on the language understanding benchmark GLUE by using just

half the number of parameters of BERT base version (Sanh et al., 2019). AL-

BERT have further reduced the parameters to just about 11% of the BERT-base

model (Lan et al., 2019). By two designs for allocating the model’s capacity more

efficiently, ALBERT largely reduces the parameter numbers and also maintained

comparable performances across the benchmarks. First, the embedding matrix is

split between input-level embeddings with a relatively-low dimension (e.g., 128),

while the hidden-layer embeddings still use high dimension representations (768

as in the BERT case, or more). Second, the authors have observed that the net-

work often learned to perform similar operations at various layers, using different

parameters of the network (Lan et al., 2019). This redundancy is eliminated in

ALBERT by parameter-sharing across the layers, i.e., the same layer is applied on

top of each other.

Some research explores continued pre-training of the PLM using a large in-

domain corpus to tailor a PLM to tasks in specific domains. In other words, con-

tinued pre-training of a PLM takes a pre-trained LM and continue pre-training

it on the unsupervised language modelling task with an in-domain corpus. As

a result, the model for the downstream task is initialized with weights from a

further fine-tuned LM. Such further pre-trained PLMs include SciBERT for scien-

tific papers, ClinicalBERT for clinical notes and predicting hospital re-admission,

BioBERT for biomedical documents, FinBERT for financial sentiment analysis

and TweetBERT for Twitter text (Beltagy et al., 2019; Huang et al., 2019; Lee

et al., 2020; Araci, 2019; Qudar and Mago, 2020). Rather than for tailoring to

a specific domain, Gururangan et al. (2020) proposes task-adaptive pre-training

(TAPT) for tailoring to a specific task or dataset. TAPT uses unlabelled train-

ing data from downstream target task to further fine-tune RoBERTa. That is,

labels of the target task datasets are removed and this “unabelled” dataset is

used to further pre-train the LM using unsupervised LM tasks. Hence, the data

size for further fine-tuning LMs in domains has been largely reduced compared to

SciBERT, ClinicalBERT, etc. However, in their proposed TAPT, significant com-

puting resources are still required due to the high settings of hyper-parameters,

particularly due to the batch size and the epoch.



CHAPTER 2. LITERATURE REVIEW 51

2.5.3 Related work in TCC

As a sub-task of text classification, TCC follows a similar trend shift from tra-

ditional machine learning methods to DNN-based methods, and to PLM-based

methods. Especially since 2019, a number of TCC studies have begun to use

PLM.

A growing body of literature has investigated the PLM performances on non-

English TCC tasks as usually the TCC training dataset in non-English are very

limited. Some typical such works include Plaza-del Arco et al. (2021) for Spanish

with BERT, XLM and BETO; Pham et al. (2020) for Vietnamese with RoBERTa;

Banerjee et al. (2020) for Indian with RoBERTa, XLNet and DistilBERT; Farha

and Magdy (2020) for Arabic with BERT; and Lavergne et al. (2020) for Italian

with multilingual LM (mBERT and XLM-RoBERTa) and Italian LM (AlBERTo,

PoliBERT and UmBERTo). Most of these works are empirical comparison studies

that investigate whether PLMs perform better than non-transfer learning methods

or compare different PLMs on TCC tasks in non-English language models. A

few similar works on English TCC tasks emerged when BERT was published

(Baratalipour et al., 2020).

A few studies on TCC have explored strategies on how to transfer PLMs effec-

tively. Mozafari et al. (2019) transfer BERT to different downstream architectures

on two hate speech classification tasks. In the shared task on aggressive content

detection, TRAC-2, a few papers utilise pre-trained LMs but with a focus on im-

proving the model performance on one specific TCC task rather than generalising

their methods to multiple TCC tasks or pre-trained LM models (Kumar et al.,

2020). Most of them use BERT directly without complex downstream neural-

network or continued fine-tuning (Baruah et al., 2020; Samghabadi et al., 2020;

Gordeev and Lykova, 2020; Liu et al., 2020). It is unclear how other pre-trained

LMs, such as RoBERTa and XLM, perform and how generalizable they are on a

wide range of TCC tasks.

2.6 Research gap

This chapter laid out the background knowledge of text classification and TCC. It

also discussed two SOTA techniques, transfer learning and pre-trained language

model that this thesis is built upon. In this part, we review several challenges that

remain to be addressed in TCC and that are the focus of this PhD study.
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2.6.1 Gap 1: Transferring PLM to TCC tasks

Several studies on TCC have illustrated the strong performance of pre-trained

language models (Mozafari et al., 2019; Baruah et al., 2020; Samghabadi et al.,

2020; Gordeev and Lykova, 2020; Liu et al., 2020). This can be linked to the fact

that using pre-trained models on downstream tasks essentially increases the overall

training data size. Our previous work has also identified the correlation between

DNN models’ performance and the training dataset size, especially the number

of positive data (the number of toxic comments) (Zhao et al., 2019). In short,

the more training data, the better performance TCC models can achieve10. Given

the high cost of labelling training data, utilising pre-trained language models as a

means to “transfer” additional knowledge to the task has its practical utility.

By the time of conducting this study, there were a limited number of studies

on transferring pre-trained language models to TCC tasks, and most of them

focused on binary TCC tasks. On the other hand, multi-class and multi-label

classifications make the learning harder by nature, and different types of toxic

comments could have some intersectionality, hence increasing the complexity of

the problem. However, they are closer to the real-world scenarios (Fang et al.,

2017; van Aken et al., 2018; Liu et al., 2019a). Also, it is difficult to conclude

how to best make use of PLM for TCC tasks or how to transfer PLM to TCC

tasks effectively. This is because, as discussed in Section 2.4.4 and Section 2.5.3,

previous studies have investigated different TL techniques and different PLMs on

various TCC tasks with disparate focus, making their results difficult to compare.

In short, although a few TCC works have been done using PLM, there remains

scope for us to further exploit all benefits of PLM-based methods for TCC tasks.

Due to the complexity of PLM-based models and methods, there are many

perspectives from which this can be explored, such as downstream architectures,

hyper parameter settings and adaptation methods. Chapter 3 will explore these

different settings and components in PLM-based models.

2.6.2 Gap 2: Identity term bias found in TCC models

In the field of machine learning, a model or a system is considered to be “fair” when

its outcomes are not discriminatory according to certain attributes, like gender,

race or nationality (Garrido-Muñoz et al., 2021). On the contrary, a model demon-

strates “unfairness” if there is a clear bias on how decisions are made depending

10Although this pattern starts fading out after the positive data increase to 400, in many
cases, valid positive data of one class in a training dataset could be less than 400.
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on the values of that certain feature. This is also referred to as unintended bias

(Dixon et al., 2018). There have been many works that illustrate the vulnerability

of data-driven NLP systems in unintended learning biases (Bolukbasi et al., 2016;

Dixon et al., 2018). These studies have primarily focused on DNN-based methods.

This is because, first, DNN-based methods are widely used in recent applications.

In particular, PLM based methods have achieved SOTA performance on a wide

range of tasks. However, PLMs are pre-trained on very large natural language

corpora, which themselves may contain bias. As a result, PLMs can potentially

learn such bias that may subsequently affect the downstream applications. This is

different from traditional machine learning models that use manually-engineered

features, which can be designed in a way to avoid bias.

In the context of TCC, a few previous papers have narrowed down their focus

on gender bias, racial bias and dialect bias (Field et al., 2021). Typically, such bias

is reflected in language as phrases or terms that characterise a specific group of

people such as “Muslim” and “black”. This is known as identity term bias. These

works have investigated the identity term bias from different perspectives, such as

debiasing the training dataset to mitigate such bias or debiasing the algorithms

(Zhang et al., 2018a; Prost et al., 2019; Xia et al., 2020; Mozafari et al., 2020;

Kennedy et al., 2020). In short, identity term bias in TCC models is a research

area that has taken off in recent years. While despite increasing number of studies

looking to address identity term bias in TCC models, we identify a new angle to

study this problem: rather than looking at the imbalance distribution between

instances with and without identity terms, or how the model attends to identity

terms, we investigate the subjectivity of a comment with respect to identity terms.

We explore this further in Chapter 4.

2.6.3 Gap 3: Debiasing the model to mitigate identity

term bias

Current methods mitigate identity term bias from two perspectives: debiasing the

dataset and debiasing the model (i.e., algorithms) (Mozafari et al., 2020; Wiegand

et al., 2019; Dixon et al., 2018; Davidson et al., 2019). Methods of debiasing

the dataset curate the data, such as changing the distribution of the dataset

and adding adversarial data. Debiasing the model aims to design the model to

“be aware of” identity term bias. However, debiasing the dataset is essentially

modifying the dataset, and this has been seen as controversial in the NLP research

community (Bender and Friedman, 2018; Bender et al., 2021; Buckman; Rogers,
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2021).

On the other hand, methods of debiasing the model can be divided into two

groups: using an ensemble model and adding regularisation terms. Intuitively, an

ensemble model follows the idea that making one part of the model learn the bias-

related features and then the other part learn the rest “bias-free” features. Using

regularisation terms is to punish the model for using bias to make prediction.

In short, these two methods attempt to handle identity term bias with a similar

principle: encourage the TCC model to ignore or pay less attention to the identity

terms. We argue that this overlooks the fact that identity terms can be essential

and important features to make predictions. This thesis aims to explore a new

approach, which will be presented in Chapter 5.



Chapter 3

Improving the effectiveness of

transferring pre-trained language

models for toxic comment

classification tasks

As a mainstream approach, pre-trained language models (PLMs) have been ex-

plored in various NLP tasks, and they have approved their robust performances.

There are different factors that affect a PLM’s performance, and their effect might

not be consistent over different tasks. A large number of studies have explored

these factors to improve the performance of downstream tasks. However, these

studies do not focus on TCC tasks but explore a more general range of NLP tasks

such as Question Answering, reading comprehensive, generic text classification.

By the time this study was completed, there was a very limited number of studies

exploring how to best use PLMs on TCC tasks. Therefore, this study focuses on

this area.

The remainder of this chapter is structured as follows. Section 3.1 introduces

the research area of transferring a PLM to a downstream task, subsequently intro-

duce our research questions and then highlight the key contributions of our work

in this chapter; Section 3.2 reviews related work of using PLM on TCC tasks,

which are divided into three groups corresponding to the three aspects we will

investigate; Section 3.3 explains our experimental methods of transferring PLMs

to downstream TCC tasks. Section 3.4 presents our experimental implementation

details and results. Section 3.5 concludes the work and discusses future work.

55
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3.1 Introduction

Previous research has found that the increase of training data usually brings im-

provements in model performance. For all that, more training data does not

benefit the model learning proportionally to the effort of creating these data. In

other words, creating an amount of additionally labelled training dataset and using

it once for a limited performance improvement is not an effective method overall

as there is a “diminishing return” after the training data increases to a certain

size. For example, in our earlier paper on studying the impact of training dataset

sizes for TCC, we have tested one traditional statistical machine learning model,

Support Vector Machine, and two DNN-based methods, CNN and LSTM. For all

three models, their performance increase slows down after the amount of training

data reaches a certain point (Zhao et al., 2019). What is more, it is difficult to

decide how much data is enough for a new task in advance. Therefore, labelling

more data is not always an ideal method.

As mentioned in Chapter 2, to tackle the lack of training data in supervised

learning, current SOTA has shifted the focus to transfer learning, and in particular,

the use of PLMs as a way to transfer knowledge learned from separate unsupervised

tasks on massive unlabelled training data. This can be taken as an alternative

way to utilize more data overall. The basic idea is to extract the pre-trained

neural network layers from the PLM and add new neural network layers (i.e.,

“downstream architectures”) on top of them to tailor for the downstream task

(Gururangan et al., 2020). In other words, features from the PLM are transferred

to downstream architectures to build a model for the target classification task.

Intuitively, the knowledge learned from the pre-training will be helpful for the

downstream task, especially when the task has a limited training dataset.

Previous studies explore different approaches to transfer a PLM, such as using

different downstream network architectures as discussed in Section 2.5.3 and con-

tinued pre-training a PLM using in-domain corpus as discussed in Section 2.5.2

(Kennedy et al., 2020; Mozafari et al., 2019). Within the area of TCC research,

by the time this work was conducted, there were only a few studies that explored

how to best make use of such PLMs for TCC. Moreover, previous studies have

used different PLMs and different TCC datasets and tasks, making their results

difficult to compare. Further, existing widely-used PLMs are trained on formal

languages from books and news rather than colloquial online speech where toxic

comment can often be found. Therefore, it is unclear to what extent these existing

PLMs offer real value for TCC tasks. Our research adds to the current findings
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and gives a guideline for future research in this area.

We highlight two directions of transferring PLMs on TCC tasks that are to

be explored in this study. The first is the impact of downstream neural-network

architectures on the performance of TCC tasks. The second is the benefit of

continued fine-tuning PLMs for TCC tasks. What is more, we would like to

understand those two strategies cross different language models rather than a

single one. In this chapter, we present a study that focuses on these issues above

in order to better understand how to transfer PLMs to TCC tasks. We answer

the following research questions:

• First, how do different PLMs perform on different downstream TCC tasks,

especially multi-class and multi-label classification tasks, which are consid-

ered harder than binary tasks?

• Second, how do different downstream neural network architectures impact

on the performance on TCC?

• Third, can continued pre-training in domain improve the performance on

downstream TCC tasks and if so, can we further improve the effectiveness

of the training process while maintaining the performance?

Our results first confirm that using a simple linear neural network as the down-

stream architecture atop of PLMs for TCC tasks works better than using sophis-

ticated architectures such as CNN and Bi-LSTM, which contain more parameters.

Secondly, continued pre-training of a PLM is beneficial to the downstream TCC,

especially when the dataset is relatively small. The benefits are also noticeable

even with low hyper-parameter settings that make the overall model much more

effective compared to those previously reported. This has practical impact as it

means that such an approach can be more accessible to users with limited compu-

tational resources. Thirdly, the performance of different PLMs varies. BERT and

RoBERTa generally outperform XLM on a wide range of TCC tasks, while XLM

benefits more from continued pre-training of PLMs.

3.2 Related work

As a brief recap of some of the relevant sections in Chapter 2, traditional text

classification has used statistical machine learning methods such as Support Vec-

tor Machines, Näıve Bayes and Decision Trees (Schmidt and Wiegand, 2017).
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Since 2010 research has shifted towards deep neural networks (DNN)-based mod-

els such as Convolutional Neural Networks (CNN), Recurrent Neural Networks

(RNN), Bi-directional Long Short-Term Memory network (Bi-LSTM) and hybrid

neural networks, which combine different DNN configurations (Del Vigna et al.,

2017; Schmidt and Wiegand, 2017; Zhang et al., 2018c). Since the introduction

of transformer-based architectures, the use of PLMs in downstream text classi-

fication has become the mainstream (Devlin et al., 2018). The basic process is

to add task-specific layers for the downstream task atop of the PLM and then

train the new model, where only the task-specific layers (i.e., downstream archi-

tecture) are trained from scratch (Devlin et al., 2018; Lample and Conneau, 2019;

Liu et al., 2019c). Commonly-used PLMs include BERT, RoBERTa, XLM, etc.

(Devlin et al., 2018; Lample and Conneau, 2019; Liu et al., 2019c). These models

are pre-trained on extraordinarily large corpora, such as those containing over 3

billion words for BERT (Devlin et al., 2018).

Typically, the output layers (the last/bottom few layers following hidden lay-

ers) in a PLM are replaced with task-specific downstream architectures and then

the new model will be trained in a supervised fashion on the target text classi-

fication task. Two strategies are widely used for improving PLMs performance

on downstream text classification tasks: the design of downstream neural network

architecture and the continued, in-domain pre-training of PLMs (i.e., the “pre-

training” phase of the transfer learning in Section 2.4.2 before) (Chronopoulou

et al., 2019; Beltagy et al., 2019; Lee et al., 2020; Gururangan et al., 2020).

Downstream network architecture A basic downstream network architec-

ture for classification tasks is a linear transformation layer (Devlin et al., 2018).

For example, Munikar et al. (2019) and Mozafari et al. (2019) use a basic down-

stream architecture on BERT for sentiment classification and hate speech detec-

tion. Chronopoulou et al. (2019) extend the basic downstream architecture by

adding an extra LSTM layer with self-attention between the linear classifier layer

and the PLM. Beltagy et al. (2019) have added two layers of Bi-LSTM on top of

BERT. All these different networks, e.g., LSTM with attention, CNN, are added

on top of the PLM and are then fed into a classifier layer. There are many other

studies using a method of similar fashion. We do not cover them all in detail

but point interested readers to the work of Tang et al. (2019); Gao et al. (2019).

However, current studies (as at the point of this study) on downstream neural

network architectures are mainly based on BERT, and no study has looked at the

more recent PLMs such as RoBERTa and XLM.

Continued pre-training of language models Some research explores con-
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tinued pre-training of the PLM using a large in-domain corpus (to be referred to

as the “fine-tuned” PLM. However, note that this is different from the “fining

tuning” strategy in the “adaptation” phase of transferring an LM, as described in

Section 2.4.3) and then transferring the newly fine-tuned PLM to the target clas-

sification tasks. As a result, training of a model is initialised with weights from a

further fine-tuned PLM. This approach is also referred as “continued pre-training

in domain” (Gururangan et al., 2020).

SciBERT (Beltagy et al., 2019) and BioBERT (Lee et al., 2020) are two ex-

amples of “continued pre-training in domain”, which both fine-tune BERT using

large domain corpora. Although the continued pre-training in domain by SciB-

ERT and BioBERT only consume unlabelled raw text, they require significant

computing resources and time (Gururangan et al., 2020). For example, SciBERT

uses a single TPU v3 with 8 cores for one week and BioBERT uses 8 NVIDIA

V100 (32GB) GPUs for over 10 days to train BioBERT v1.0 and nearly 23 days

to train BioBERT v1.1 (Beltagy et al., 2019; Lee et al., 2020).

To address this, Gururangan et al. (2020) propose task-adaptive pre-training

(TAPT) that uses unlabelled training data from downstream target task to contin-

ued pre-train RoBERTa. To be more specific, in the stage of continued pre-training

of RoBERTa, the label for each data instance in the target task’s training dataset

is removed. The label-removed training data is taken as the unsupervised learning

corpus to further pre-train an existing RoBERTa model. After the continued pre-

training, the RoBERTa is trained in a supervised learning fashion on the target

labelled training data. This method should be taken differently to the continued

pre-training used by SciBERT and BioBERT. Because the continued pre-training

and target task fine-tuning of TAPT use the same training corpus, except that

in the former case, their labels are removed. On the other hand, PLMs such as

SciBERT, BioBERT and ClinicalBERT, use different training data for the con-

tinued pre-training and are then transferred to downstream tasks. In comparison,

TAPT significantly reduced the data size for continued pre-training. However, in

their proposed method, TAPT still requires significant computing resources, such

as the computing requirements for the high settings of batch size and the epoch

(Kennedy et al., 2020).

Although TAPT is essentially a method of continued pre-training PLMs in do-

main, in the remainder of this paper, we use “continued pre-training/fine-tuning

in domain” to refer to continued pre-training the PLM using a large unlabelled

in-domain corpus that is not the same as the training data from the target task.

TAPT, on the other hand, will be used to refer to the more specific idea of con-
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tinued pre-training in domain using the training data from the target task with

their labels removed (i.e., unlabelled target task training data)

3.3 Methodology

We focus on PLM-based methods for TCC and investigate two strategies of trans-

ferring PLMs to TCC tasks. First, we analyse the impact of the complexity of

the downstream network architectures; Second, we study the impact of contin-

ued pre-training PLMs following the TAPT method but using much lower hyper-

parameters to further reduce the computational requirements. We refer to this

as ‘TAPT-light’ (Gururangan et al., 2020). Third, we compare the performance

difference between PLMs.

In short, each model takes a PLM and adds a downstream network architec-

ture on top of it and then all parameters are jointly trained on a given supervised

TCC task. The differences between models are based on: the PLM used (Sec-

tion 3.3.1), the downstream architecture (Section 3.3.2), the continued fine-tuning

method of the PLM (whether it is fine-tuned or what is the number of epochs for

the fine-tuning, Section 3.3.3). Additionally, we evaluate our strategies using a

comprehensive set of TCC datasets, including ten different classes and both multi-

class and multi-label classification tasks. Details of these will be given in Section

3.4.1.

3.3.1 Pre-trained language models

To investigate the performance of different PLMs, we choose three of the most

cited PLMs to study the generalizability of our strategies applied to TCC tasks.

These are BERT, RoBERTa and XLM, representing the current state-of-the-art in

a wide range of tasks (Devlin et al., 2018; Lample and Conneau, 2019; Liu et al.,

2019c). Another reason we select RoBERTa and XLM is that, as mentioned in

Section 3.2, very few studies have used them on TCC, but they have been shown to

achieve good performance on other related classification tasks when compared to

BERT. Noted that, by the time this study was conducted, most studies of PLMs

on TCC tasks only explored BERT. We were the first study on TCC that included

two more non-BERT models.
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Figure 3.1: An example of utilizing BERT with different downstream
architectures atop.

3.3.2 Downstream network architectures

In terms of the downstream layers, we compare three architectures: linear classi-

fication layer, CNN + linear classification layer, Bi-LSTM + linear classification

layer (Devlin et al., 2018; Mozafari et al., 2019). We choose these for the follow-

ing reasons. First, Bi-LSTM and CNN are frequently used in text classification

tasks (Kim, 2014; Chiu and Nichols, 2016). Second, the linear classifier is the

simplest architecture and allows us to compare with other complex downstream

architectures and their effects on transfer learning performance on TCC tasks.

Figure 3.1 illustrates the three BERT models with different downstream neu-

ral network architectures, as an example of a pre-trained model set. RoBERTa

and XLM follow the same structure, and each one is tested on three different

downstream neural network architectures.

Linear classification layer In the linear layer, the output of the first token

(i.e., the output of [CLS]) from the final hidden state of the LM is used in the final

classification. The output of a default dimension of given LM is fed to a linear

layer and transformed to a dimension equal to the number of labels. A dropout

of 0.1 is applied before the linear transformation (Devlin et al., 2018).

CNN + linear classification layer The second architecture is built on the

first one but with convolutional layers inserted between the linear layer and the

LM. The convolutional layers and architectures have been discussed in the previous

Section 2.3.2, which are one of the representative DNNs used in TCC tasks. In

the context of our PLM model, the outputs of each layer of the LM (excluding the

language modelling head) are fed to a 3-layers convolutional network. This CNN
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configuration is the same as that proposed by Kim (2014), which includes three

filter window sizes of 3, 4 and 5, respectively. Each size has 100 feature maps.

The outputs from each convolutional layer are passed to a max-pooling layer and

then concatenated together before feeding to the final linear classification layer,

which is the same as mentioned above.

Bi-LSTM + linear classification layer This architecture is similar to

the CNN-based architecture, but the three CNN layers are replaced with a bi-

directional LSTM layer (Graves and Schmidhuber, 2005). LSTM has been intro-

duced in the previous Section 2.3.2, and it is also a representation DNN used in

related TCC studies. In short, the outputs of each layer of the LM are fed to a

Bi-LSTM neural network and the final two hidden states of the output are then

concatenated before feeding them to the final linear classification layer.

3.3.3 Continued pre-training in domain: TAPT-light

In this part, we explore the performance of continued pre-training in domain

using minimum computing resources on TCC tasks. We build our methods on

the work of TAPT and reduce the hyper-parameter settings of TAPT to further

minimise the computational resources required, which we refer to as TAPT-light

(Gururangan et al., 2020). To be more specific, the batch size is reduced to 16,

compared to 2048 in the original TAPT. Second, we experiment with different

epoch values respectively: 1, 5, 10, 20, 50, 100, compared to 100 in the original

TAPT. We focus on batch size and epoch values instead of other hyper-parameter

settings, e.g. learning rate, as these two are the main ones deciding the needs of

computation resources.

In summary, for each TAPT-light model, the training process is divided into

two stages. In the first stage, as highlighted in red in Figure 3.2, the PLM is

fine-tuned on unlabelled training corpus that is created from the downstream task

(Section 3.4.1). Models are trained for different epochs, respectively, for accessing

the impact of epochs later. In the second stage, as highlighted in blue in Figure

3.2, the output layer of the LM is replaced with a linear classification layer and

then the new classification model is trained in a supervised fashion on a TCC task,

where all parameters are trained jointly. Only the linear classification layers are

trained from scratch.
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Figure 3.2: The training process of a TAPT-light model.

Models illustration for the first part of experiment.

Dataset Data Source Data Numbers Labels Classification Tasks
Kumar (Kumar et al., 2018) Facebook 14,998 non-aggressive (42%), overtly aggressive (35%), covertly aggressive (23%) multi-class
Twitter 18k (Waseem, 2016b) Twitter 18,625 racism (11%), sexism (20%), both (69%), neither multi-class
Twitter 50k(Founta et al., 2018) Twitter 50,425 abusive (8%), hateful (3%), normal (73%), spam (16%) multi-class
Wiki (ConversationAI, 2017) Wikipedia 159,571 toxic (10%), severe toxic (1%), obscene (5%), threat (0.3%), insult (5%), identity hate (1%) multi-label

Table 3.1: Summary of the four toxic comment classification tasks.

3.4 Experiments

3.4.1 The task and datasets

Four TCC tasks are selected to assess the two strategies of transferring PLMs.

The first dataset is collected from Facebook (denoted as Kumar) (Kumar et al.,

2018). The second and third datasets are both collected from Twitter, denoted

as Twitter 18k (Waseem and Hovy, 2016) and Twitter 50k (Founta et al., 2018).

The fourth dataset is collected from Wikipedia Talk page and annotated in a

multi-label classification approach, denoted as Wiki (ConversationAI, 2017). We

aim to cover different social media platforms, dataset sizes and classification types

when selecting TCC tasks. The four selected datasets contain between 15,000 and

159,571 comments 1 and cover three different social media platforms with different

classification types (multi-class and multi-label). Table 4.1 lists the details of the

four datasets. The last three datasets are re-used and converted into binary format

in our other studies in Chapter 4 and Chapter 5, which are introduced again.

1The original version of Dataset Twitter 50k (Founta et al., 2018) included more than 80,000
tweets with tweets IDs published. We have successfully retrieved 50,425 valid tweets. The
remaining missing tweets failed to be retrieved due to their deletion.
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3.4.2 Baseline model

We create a baseline model for each PLM with the simplest components possible.

Therefore, each baseline model takes a PLM without continued pre-training, and

a linear classifier architecture is added on top of it, as shown by “Baseline Model”

noted in Figure 3.1.

We select the version for each PLM that is of a parameter number ranging

from 110 millions to 144 millions. This way, the three models are of a similar size.

Plus, these sizes are smaller than most of their peer versions so that their training

is faster. We use the following versions of BERT, RoBERTa and XLM: “bert-

base-cased” (12 layers, 768 hidden dimensions, 12 heads, 110 million parameters);

“roberta-base” (12 layers, 768 hidden dimensions, 12 heads, 125 million parame-

ters); “xlm-mlm-enfr-1024” (6 layers, 1024 hidden dimensions, 8 heads, 144 million

parameters).

3.4.3 Implementation

Pre-processing We constrain the maximum length of each input instance (i.e.,

a piece of comment) to be 100 tokens, given the available computation resources

and the standard practice found in literature (Zhang et al., 2018c). In this way,

we truncate the longer comment and pad the shorter messages with zero values.

Hyperparameters For all supervised learning in this work, i.e., the TCC

tasks, we train the model for 3 epochs using a batch size of 16, due to the compu-

tational resources and empirical experiments results. For all unsupervised learn-

ing, i.e., the first stage of TAPT-light, we train the model for different epochs as

stated in Section 3.3.3, using a batch size of 16. All training processes use Adam

optimizer and a learning rate of 5e-5. The learning rate of 5e-5 (Adam) is from

fine-tuning between 5e-5, 3e-5, 2e-5 as these settings are recommended as “pos-

sible values to work well” in downstream task-specific training by (Devlin et al.,

2018).

Hardware and Implementation We use a single Tesla V100-PCIE-32GB

GPU for all experiments. Compared with continued pre-training PLM in domain

described in works by Beltagy et al. (2019) (a single TPU v3 with 8 cores) and

Gururangan et al. (2020) (Google Cloud v3-8 TPU), our hardware requirements

are less powerful. This makes the reproduction of our results easier. Our im-

plementation uses the HuggingFace transformers 3.0.0 library (Wolf et al., 2019)

and PyTorch 1.5.1. All multi-class classification tasks use Softmax as the final

activation function and the multi-label classification tasks use Sigmoid instead.
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Kumar (15k) Twitter 18k (18.6k) Twitter 50k (50.4k) Wiki (159.6k)
Model micro F1 macro F1 micro F1 macro F1 micro F1 macro F1 micro F1 macro F1

BERT 0.5904 0.5805 0.8738 0.6196 0.7957 0.6071 0.7816 0.6372
BERT-CNN 0.5796 0.5665 0.8480 0.5971 0.7888 0.5929 0.7388 0.4800
BERT-BiLSTM 0.5750 0.5611 0.8469 0.5921 0.7929 0.5959 0.7504 0.5945
RoBERTa 0.5667 0.5441 0.8673 0.6159 0.8025 0.6315 0.7822 0.6510
RoBERTa-CNN 0.5313 0.4819 0.8491 0.5902 0.7892 0.5367 0.7357 0.4658
RoBERTa-BiLSTM 0.5450 0.5013 0.8426 0.5828 0.7769 0.5563 0.7405 0.5431
XLM 0.5646 0.5503 0.8464 0.5957 0.7989 0.6149 0.7594 0.5122
XLM-CNN 0.5525 0.5345 0.8362 0.5860 0.8023 0.6015 0.7233 0.4642
XLM-BiLSTM 0.5600 0.5409 0.8346 0.5794 0.7987 0.5751 0.7519 0.4690

Table 3.2: Comparing F1 (micro and macro) obtained by transferring
different language models (BERT, RoBERTa, XLM) to different down-
stream network architectures. The best performance for each PLM on
each task is boldfaced. The dataset sizes are in the brackets after the
datasets and “k” means a thousand or thousands.

3.4.4 Results: impact of downstream network architec-

tures

Table 3.2 shows the results comparing the different downstream network architec-

tures. “BERT”, “RoBERTa” and “XLM” represent the baseline model (as shown

by “Baseline Model” in Figure 3.1) for each PLM. As an example, “BERT-CNN”

represents the pre-trained BERT PLM with a CNN architecture on top as the

downstream network architecture.

We first compare macro F1 of each model as it highlights how well a model

handles minority classes on a unbalance dataset, compared to micro F1 (Zhang

and Luo, 2019). Most of the TCC tasks typically handle highly unbalanced data,

and as a result of that, model performance on minority classes (i.e., toxic com-

ments) is often overshadowed by the majority classes when only looking at micro

F1 (Zhang and Luo, 2019). As shown in Table 3.2, the macro F1 results indicate

that the baseline models consistently perform much better than their “complex”

counterparts where CNN or Bi-LSTM is used as the downstream network archi-

tecture.

In terms of micro F1, the baseline models obtained the highest F1 across all

datasets, with the exception of XLM on the Twitter 50k dataset. The biggest

difference compared to the CNN and Bi-LSTM downstream network architectures

were noticed on the smaller datasets, i.e., Kumar and Twitter 18k, and the multi-

label classification task (Wiki). For example, the micro F1 of RoBERTa-CNN

is reduced by 0.0465 and 0.0354, compared to the baseline model on the multi-

label classification task (Wiki) and the smallest dataset (Kumar) respectively, and

reduced by 0.0133 on Twitter 50k, whose dataset is multi-class and three times
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Kumar (15k) Twitter 18k (18.6k) Twitter 50k (50.4k) Wiki (159.6k)
Model micro F1 macro F1 micro F1 macro F1 micro F1 macro F1 micro F1 macro F1

BERT 0.5904 0.5805 0.8738 0.6196 0.7957 0.6071 0.7816 0.6372
BERT-e1 0.6050 0.5938 0.8737 0.6196 0.7981 0.6096 0.7422 0.5462
BERT-e5 0.6004 0.5899 0.8781 0.6198 0.7965 0.6185 0.7475 0.5648
BERT-e10 0.6029 0.5894 0.8824 0.7538 0.7957 0.6076 0.7804 0.6539
BERT-e20 0.6058 0.5926 0.8743 0.8176 0.7959 0.6079 0.7404 0.6206
BERT-e50 0.6092 0.5972 0.8727 0.8190 0.7914 0.6025 0.7426 0.5581
BERT-e100 0.6046 0.5898 0.8765 0.7479 0.7906 0.6046 0.7395 0.5196
RoBERTa 0.5667 0.5441 0.8673 0.6159 0.8025 0.6315 0.7822 0.6510
RoBERTa-e1 0.6075 0.5924 0.8690 0.6160 0.8106 0.6382 0.7393 0.5067
RoBERTa-e5 0.6075 0.5961 0.8808 0.6277 0.8019 0.6391 0.7606 0.5650
RoBERTa-e10 0.6146 0.6051 0.8711 0.6174 0.8060 0.6368 0.7530 0.5606
RoBERTa-e20 0.6063 0.5922 0.8711 0.6134 0.8011 0.6275 0.7736 0.5875
RoBERTa-e50 0.6146 0.6045 0.8759 0.8205 0.7997 0.6163 0.7711 0.6503
RoBERTa-e100 0.6167 0.6043 0.8743 0.7439 0.8027 0.6242 0.7683 0.6209
XLM 0.5646 0.5503 0.8464 0.5957 0.7989 0.6149 0.7594 0.5122
XLM-e1 0.5754 0.5566 0.8593 0.6063 0.8044 0.6248 0.7548 0.6247
XLM-e5 0.5883 0.5762 0.8593 0.6057 0.7987 0.6184 0.7600 0.5837
XLM-e10 0.6000 0.5896 0.8636 0.7364 0.8003 0.6170 0.7661 0.5952
XLM-e20 0.5988 0.5891 0.8695 0.7826 0.7987 0.6184 0.7712 0.6006
XLM-e50 0.6158 0.6091 0.8690 0.7384 0.7999 0.6178 0.7707 0.6427
XLM-e100 0.6196 0.6097 0.8727 0.7883 0.7985 0.6155 0.7748 0.6233

Table 3.3: Comparing F1 (micro and macro) of the baseline models
and their continued domain fine-tuning language model counterparts.
“BERT-e1” refers to fine-tuning the BERT language model for 1 epoch
and then transfer it to the target TCC tasks. The best performance for
each PLM on each task is boldfaced. The model whose result is worse
than its baseline model is italicized.

bigger than Kumar. Similar patterns are observed on results of BERT groups and

XLM groups. Comparing CNN and Bi-LSTM as the downstream architecture for

the PLM, there is no consistent pattern indicating which one is better.

The results above suggest that transferring a PLM to complex downstream

network architectures does not offer any benefits over a simple linear architecture

in the context of TCC tasks. One possible reason for this is that the complex

DNN might dilute or cannot interpret well the general representations that PLMs

learned from pre-training on extremely large corpora.

3.4.5 Results: impact of continued pre-training in domain

In summary, we have tested TAPT-light on four TCC tasks using three public

PLMs for six different epoch settings. In total, 72 models have been reported in

Table 3.3.

Firstly, as shown in Table 3.3, TAPT-light often leads to further performance

gain compared to the baseline models, with exceptions noted on the Twitter 50k

dataset and Wiki dataset when using BERT and RoBERTa. Particularly on the

smaller datasets, Kumar and Twitter 18k, the performance improvements gained
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from TAPT-lights are noticeable. For example, the macro F1 on Twitter 18k

has increased by 0.1994, 0.2046 and 0.1427 for BERT, RoBERTa and XLM re-

spectively, when further pre-training the PLM for 50 epochs using the unlabelled

downstream data. The higher increase of macro F1 than micro F1 also suggests

that continued pre-training particularly benefits small classes in the datasets, and

these are often classes of the toxic comment rather than the non-toxic comment.

While for Wiki, the biggest dataset among the four, the baseline models of BERT

and RoBERTa achieved a strong performance and TAPT-light demonstrates a

detrimental impact on its classification performance. The only exception is XLM.

The three continued PLMs give no noticeable advantages or disadvantages over

the Twitter 50k task.

Another finding is that there is no consistent pattern in terms of which epoch

setting is the best across the four tasks. However, for multi-class classification

tasks (i.e., Kumar, Twitter 18k and Twitter 50k), models fine-tuned for 10 or 20

epochs achieve the highest F1 scores or comparable results to their counterparts

that use a higher epoch value. For the multi-label classification task (i.e., Wiki),

as mentioned above, continued fine-tuning in domain does not show noticeable

benefits on this task. The dataset of this task is at least three times bigger than

the other three.

To summarise, our results suggest that TAPT-light is beneficial to TCC tasks

on relatively small datasets. This may be because a large dataset could have al-

ready supplied adequate information for the model to learn; thus, features from

PLM offer less value to the learning. Additionally, for TCC tasks, more training

epochs do not necessarily lead to performance benefits. Also, under these cir-

cumstances, a small batch size, e.g., 16, is workable. One possible explanation

is that a large number of epochs could have led to catastrophic forgetting that

useful features gained from the massive PLM pre-training could be erased during

the later TAPT-light training and thus lead to a decrease of model performance

(Ruder, 2019). Although we did not directly compare against TAPT, we believe

our findings are still encouraging for future researchers since a identical reproduc-

tion of TAPT is very resource demanding that is not accessible to most people in

realistic situations. Our results suggest that even with very low hyperparameter

settings, continued fine-tuning in-domain still contributes to TCC task especially

when the training dataset of the TCC is relatively small and unbalanced.
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3.4.6 Results: impact of different PLMs

As shown in Table 3.2, BERT generally outperforms RoBERTa and XLM when

an identical downstream architecture is applied. This pattern is clearer when

comparing their macro F1 and particularly on small datasets like Kumar. For

example, BERT-CNN gains a macro F1 of 0.5665 on Kumar, noticeably higher

than RoBERTa (0.4819) and XLM (0.5345).

With TAPT-light (results in Table 3.3), RoBERTa generally outperforms BERT

and XLM, especially when comparing their best TAPT-light models and baseline

models on each TCC tasks with regard to macro F1. Moreover, TAPT-light ben-

efits XLM more than RoBERTa and BERT, particularly on TCC tasks with rel-

atively small datasets. This can be observed as that all TAPT-light XLM models

outperform its XLM baseline in terms of macro F1.

One possible reason behind the above patterns is that XLM handles long sen-

tences or documents (4000 tokens composed of sentences) during its pre-training,

while TCC usually tackles short sentences and texts (Lample and Conneau, 2019).

TAPT-light uses in-domain data to fine-tune PLMs, and therefore, could have

helped XLM to ‘learn’ short texts. On the other hand, BERT and RoBERTa

were pre-trained on corpora whose maximum sequence length is 512 tokens that is

similar to many TCC datasets (Devlin et al., 2018; Liu et al., 2019c). This could

have explained why they generally outperform XLM and that they benefit less

from TAPT-light.

3.4.7 Limitations

The current experimental results do not demonstrate a consistent pattern over

4 datasets, which might lead to a weak takeaway for future researchers in TCC.

However, we argue that our work still contributes to the current understanding

of using PLM on TCC tasks and bridges the gap where there was a lack of com-

prehensive comparison of PLM models on a wide range of TCC tasks. We believe

our work also encourages future TCC studies to further consider the selection of

PLMs and parameters settings with an attention of the dataset size. Second, be-

ing limited to computational resources, this study lacks a set of experiments with

identical parameter settings to TAPT, which might give further information on

how TAPT-light compares to the original TAPT on TCC tasks. This is a common

issue of reproducibility for much research that require expensive hardware (Belz

et al., 2021). However, this is also our motivation to propose TAPT-light as it

require much less computational resources compared to the original TAPT. Again,
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due to the unavailability of the original datasets2 used in TAPT, we were unable

to directly compare our TAPT-light against TAPT on identical datasets. Another

unexplored factor is that each PLM and sophisticated architectures such as CNN

and Bi-LSTM could have their own favourable hyper-parameter settings. However,

those hyper-parameter settings are unified in our study according to the common

settings in previous studies but not further refined. Also, to what extent those

hyper-parameter settings impact on the performance is unknown.Similarly, differ-

ent versions of PLM (this study only tested the base version for BERT, RoBERTa

and XLM) might also tell us a different story. How different versions of PLM im-

pact the results is worth exploring in the future. Last, by the completion time of

this study, more PLMs are proposed in the latest research, such as TweetBERT,

DEBERTA (He et al., 2020; Qudar and Mago, 2020). It will add up to the current

understanding of using PLMs on TCC tasks if our studies can be generalized to

these newer PLMs.

3.5 Conclusion

This chapter studied transferring PLMs to TCC tasks. We focused on the impact

of different PLMs, downstream network architectures, and using the dataset of

the downstream task to continue fine-tuning the PLM before transferring them to

downstream TCC tasks, as well as the impact of lowering some of their training

hyper-parameters. Our comprehensive experiments have provided evidence-based

answers to the research questions proposed in the beginning of this Chapter.

First, regarding the performance of different PLMs on different downstream

TCC tasks, our results suggest that BERT and RoBERTa generally perform better

than XLM. Second, regarding the impact of different downstream architectures,

we have shown that using a simple downstream network architecture is a better

choice over a complex one, such as CNN and Bi-LSTM. Third, regarding the

effectiveness of TAPT even using less computational resources (i.e., TAPT-light),

our results of TAPT-light show that, all other variables being equal, a low epoch

setting will suffice to obtain the best achievable results of a model in most cases.

This potentially makes the TAPT-based methods more accessible and easier to

train.

Our future work will explore several directions. For example, we will explore

these studies in a different aspect of downstream tasks to see if our findings gen-

2Here we refer to the two datasets in the REVIEW domain that is a relatively similar domain
to TCC.
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eralise well on them; we will develop and test systematic methods of unfreezing

and freezing certain layers’ parameters in the PLM.



Chapter 4

The identity term bias in TCC

In the last chapter, we introduced SOTA DNNs, PLMs and investigated different

PLM transferring strategies for TCC tasks. While such methods benefit from

knowledge transferred from pre-training and avoid ad-hoc feature engineering,

there is less control over what features are learned by the model. A downside of

this is that the model can inherit unintended bias from data that are used for

pre-training. Several recent studies find that DNN-based models such as PLMs

can be biased toward identity terms on TCC tasks (Park et al., 2018; Dixon et al.,

2018; Kennedy et al., 2020). Therefore, this study aims to investigate this bias

on a wide range of TCC datasets to gain a deeper understanding of such bias.

We focus on the SOTA PLM, BERT, which is also the most frequently used NLP

model since 2017 (Vaswani et al., 2017).

The remainder of this chapter is structured as follows. Section 4.1 briefly

explains the concepts and our study. Section 4.2 reviews different bias types

studied by previous work on TCC and how related work approach bias. Section

4.3 explains the tasks, datasets and models we use to investigate the identity

term bias and defines the concept of “subjectivity”. Section 4.4 presents our

experiment details, including model explanations using rationales, the qualitative

and quantitative analysis of model prediction results (Lei et al., 2016; Jacovi and

Goldberg, 2020). Section 4.5 concludes this chapter and discusses future work.

4.1 Introduction

DNN-based toxic comment classification models are often found suffering from

unintended bias such as bias towards gender, race and nationalities. A few previous

TCC work have defined the issue as identity term bias (Park et al., 2018; Dixon

71
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et al., 2018; Kennedy et al., 2020). Identity terms are terms characterising a

specific group of people such as “Muslim” and “black”. When a model has identity

term bias, it tends to predict a comment as toxic if it contains identity terms. The

identity term bias is commonly reflected in false positive predictions, i.e. non-toxic

comments with identity terms. Such bias not only affects model performance

but also discourages an open and friendly discussion if found common in real

applications. Limited studies have been done to combat such bias which leads to

several research gaps that are worth addressing.

First, previous studies on the identity term bias are limited to using one or

two datasets that may not be representative of the problem. An investigation

of a wide range of TCC datasets will contribute to a deeper understanding of

the identity term bias and also produce generalizable findings. Second, although

previous studies have looked at the identity term bias, they mainly investigate

surface patterns, e.g., counts of comments with identity terms or what identity

terms are associated with false positive predictions. Evidence and analysis beyond

surface patterns over individual examples are needed. An investigation into the

decision-making rationales of the model can help understand the impact of the

identity term bias for a model. Third, to the best of our knowledge, no previous

studies of bias in TCC models have looked at the subjectivity level of comments.

A comment with a low subjectivity level expresses more factual information and

less personal feelings and opinions; while a comment with a high subjectivity

level contains more personal opinions but less factual information. Instead of

focusing on word-level features, we are interested in how the subjectivity level of

the comment interacts with the identity term bias.

Most toxic comments such as hate speech, aggressive language and abusive

language, tend to express hate or encourage violence towards a person or group

based on certain characteristics such as race, religion, sex, or sexual orientation

(Gitari et al., 2015). Such expressions are intuitively more a reflection of personal

feelings rather than fact-quoting. Therefore, we propose a hypothesis that when

a comment contains an identity term and has a low level of subjectivity, it tends

to be non-toxic. For example, the comment of

“that land has been the home of jews for 3000 years.”

should not be taken as a toxic comment as it attempts to express a factual in-

formation regardless of whether it is true. On the other hand, when a comment

contains an identity term and has a high level of subjectivity, it tends to be toxic.
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For example, “this jew idiot is sp ##ew ##ing nothing but propaganda.” should

be taken as a toxic comment as it expresses a subjective and offensive opinion.

Here, we are interested in examining the subjectivity level rather than taking it

as a binary detection problem as most related work have done. On top of it, we

propose different methods to examine the subjectivity level.

To address the limitations above, we conduct an investigation of the identity

term bias over a wide range of TCC tasks with both qualitative and quantitative

methods. Particularly, we investigate the interaction between the subjectivity

levels and the identity term bias, which is based on an explainable intuition as

mentioned above. Therefore, the research questions of this chapter are:

• First, to what extent is the identity term bias found in SOTA methods for

TCC tasks?

• Second, how can we identify the evidence of the identity term bias in a TCC

model?

• Third, what is the relationship between the subjectivity level of a comment

and the identity term bias of a TCC model?

Our investigation first confirms that the identity term bias is a common issue

found in TCC models. The model explanations we have extracted provide further

details of how the identity term bias impacts the model behaviour. Second, our

qualitative analysis and quantitative analysis demonstrates the relationship be-

tween the identity term bias and the subjectivity level of comments. Among com-

ments with identity terms, the false positive predictions, i.e., non-toxic comments,

tend to have a low level of subjectivity. While, the true positive predictions, i.e.,

toxic comments, tend to have a high level of subjectivity. However, this pattern

cannot be observed among comments without identity terms.

4.2 Related work

Machine learning models are designed to identify and use biased patterns in data

to help the prediction tasks. For example, a model trained to identify toxic com-

ments is intended to be biased towards features of toxic comments such that toxic

comments receive higher scores than those which are not toxic (Dixon et al., 2018).

Nonetheless, the model is not designed to discriminate people based on the groups,

classes, or other categories to which they belong to or are perceived to belong to,
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such as gender, religion and race. If it does, we refer to this type of “discrimina-

tion” learned by the model as unintended bias (Dixon et al., 2018).

A few previous work have discussed the harmful impacts of applying such un-

fair models for real-world tasks, while leaving the solutions open (Hovy and Spruit,

2016; Blodgett and O’Connor, 2017; Tatman, 2017; Dixon et al., 2018). For ex-

ample, Obermeyer et al. (2019) have found that an algorithm used in US hospitals

for allocating health care systematically discriminates against black people, since

it is less likely to refer black people than white people who are equally sick to

programs that aim to improve care for patients with complex medical needs. In

the field of computer vision, some facial recognition algorithms labels black people

as “gorillas” (Howard and Borenstein, 2019). In the field of audio processing, it is

found that voice-dictation systems recognize a voice from a male more accurately

than that from a female (Rodger and Pendharkar, 2004; Garrido-Muñoz et al.,

2021). What is more, Tolan et al. (2019) have identified that some risk assessment

systems are likely to predict people of certain races to be more likely to commit

a crime. In the field of NLP, Hovy and Spruit (2016) have found that restricted

language, like class specific language or scientific jargon, can hinder the expression

of outsiders’ voices from certain practices. Blodgett and O’Connor (2017); Dixon

et al. (2018) show that the use of dialect of African-American English can make a

comment more likely to be predicted as toxic regardless of its content. This bias

towards African-American English may cause relationships between different ethic

groups deteriorate.

As per the definition used by Hardt et al. (2016) and Dixon et al. (2018), a

model contains unintended bias if it performs better for some demographic groups

than others. A few recent work separate different unintended biases based on

demographic features, such as gender bias, racial bias, and dialectal bias (Tan

and Celis, 2019; Sap et al., 2019; Davidson et al., 2019; Zhou et al., 2021; Park

et al., 2018; Kennedy et al., 2020; Bolukbasi et al., 2016; Zhang et al., 2020; Vaidya

et al., 2020; Halevy et al., 2021). Studies by Davidson et al. (2019); Mozafari et al.

(2020); Xu et al. (2021) focus on racial bias against users using African-American

English. They find that tweets written in African-American English are predicted

as toxic significantly more often than those written in standard American English.

While this kind of bias is represented as dialectal bias, Mozafari et al. (2020) and

Halevy et al. (2021) both refer to it as racial bias. Bolukbasi et al. (2016) and

Zhang et al. (2020) study the gender bias found in the pre-trained Word2Vec

word embeddings. Bolukbasi et al. (2016)’s study show that Word2Vec contains

female/male gender stereotypes. For example, the words like “receptionist” and
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“she” are strongly associated to each other, so are “maestro” and “he”.

Park et al. (2018); Dixon et al. (2018); Kennedy et al. (2020) introduce “identity

term” bias. “Identity terms” (also known as “group identifiers”) are words or

terms referring to people with specific demographic characteristics, such as ethnic

origin, religion, gender, or sexual orientation. Park et al. (2018); Dixon et al.

(2018); Kennedy et al. (2020) point out that TCC models tend to assign too much

attention to such identity terms, resulting in incorrect predictions. Such bias

towards identity terms often reflects the false positive predictions, known as false

positive bias (Dixon et al., 2018; Halevy et al., 2021). For example, Park et al.

(2018) give an example in their study that “You are a good woman” is predicted as

“sexist”. One concept closely-related to “identity terms” is “bias sensitive words”,

proposed by Badjatiya et al. (2019). They define that a word w is defined as a bias

sensitive word for a classifier if the classifier is unreasonably biased with respect to

w to a very high degree. For example, as discussed in their work, “dirty”, “shit”,

“gotta”, “muslims”, “she” and “woman” are bias sensitive words (Badjatiya et al.,

2019). The main difference between “identity terms” and “bias sensitive words”

is that a bias sensitive word is unnecessarily an identity term referring to a group

of people. Another point worth mentioning is that racial bias and gender bias

cannot be taken as sub-concepts or sub-type of the identity term bias directly as

racial bias and gender bias in language do not have to contain identity terms. For

example, racial bias can be reflected in the bias against African-American English

and gender bias can be reflected in the gender stereotypes regarding professional

positions existing in the model.

The identity term bias often leads to false positive predictions in TCC. The

scenario is that a TCC model tends to predict a non-toxic comment as toxic when it

contains identity terms. Previous TCC studies on identity term bias have analysed

which terms are influential identity terms to a TCC model. For example, Kennedy

et al. (2020) utilize the Sampling and Occlusion (SOC) algorithm to capture the

tokens that account for the model predictions and then manually select identity

terms from those tokens. Dixon et al. (2018) link the identity terms bias to the data

distribution due to the disproportional usage of identity terms in toxic comments.

For example, in the dataset they study, the word “gay” appears in 3% of toxic

comments but only 0.5% of comments overall. They believe the disproportional

amount of toxic comments with identity terms in the training dataset leads to the

model overfitting. To the best of our knowledge, there are few published papers

studying the identity term bias in terms of the subjectivity levels of comments.

Previous studies show that toxic comments, such as offensive speech and hate
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speech, tend to be expressions of subjective feelings or opinions (Pang and Lee,

2004; Gitari et al., 2015; Burnap and Williams, 2016; Benito et al., 2019). A

few TCC studies have utilized subjectivity in classification. For example, Gitari

et al. (2015) assume non-subjective sentences are not toxic comments and there-

fore they filter out non-subjective sentences with a rule-based approach prior to

classification. These filtered sentences are considered automatically to contain

non-hateful content. The intuition is to make the classification task “easier” by

removing non-subjective sentences in advance. The study by Van Hee et al. (2018)

use the positive and negative opinion word ratios and the polarity calculated with

sentiment lexicons as the “subjectivity lexicon features” of a comment. They find

that subjectivity lexicon features prove to be strong features for cyberbullying

detection. In short, these studies have implied that the likelihood of a comment

being toxic is associated with its subjectivity. However, none of them attempts to

quantify the subjectivity level or utilize it in a non-binary fashion to improve the

model. Furthermore, none of them has looked into how subjectivity can be used

to address the identity term bias.

Although a few TCC studies explore utilizing subjectivity in TCC tasks, there

is a lack of consensus on how subjectivity should be defined. For example, Gitari

et al. (2015) briefly point out that “a subjective sentence expresses some feelings,

views, or beliefs.” Other studies, such as Lin et al. (2011) and Huo and Iwaihara

(2020), directly focus on subjectivity detection but none of them gives a precise

definition of subjectivity or an explanation of what kind of comments or texts are

supposed to be labelled as “subjective”.

In summary, a growing body of TCC research have studied the identity term

bias. However, these studies are limited to a small range of datasets in their

studies, which make the findings not generalizable enough. Furthermore, current

studies discern the identity term bias by analysing the prediction results and the

word-level features. Far too little attention has been paid to the evidence of the

identity term bias using model rationales. In other words, very litter work has

tried to explain the model’s behaviour of identity term bias from the perspective

of the model decision-making process. Last, no TCC research have investigated

the relationship between the subjectivity level and the identity term bias.

4.3 Methodology

We train a SOTA NLP model, BERT, on a wide range of TCC tasks separately to

investigate the identity term bias in TCC models. First, we look into the model



CHAPTER 4. THE IDENTITY TERM BIAS IN TCC 77

rationales on the false positive predictions that contain identity terms. The aim is

to seek the evidence of the identity term bias using a model’s rationales. Second,

we hypothesise that when a comment has identity terms, its subjectivity level can

be associated with its toxicity. Intuitively, a comment with an identity term tends

to be toxic if it has a high level of subjectivity, on the contrary, it tends to be non-

toxic if it has a low level of subjectivity. To verify this hypothesis, we conduct

qualitative and quantitative analysis of model prediction results, considering a

ternary relationship among the subjectivity level of a comment, the presence of

identity terms and the prediction results.

4.3.1 The task and datasets

We include four datasets in the analysis, with the aim to cover different social

media platforms, dataset sizes and text lengths. We reuse 3 datasets from the

last chapter, namely Twitter 18k (Waseem, 2016b), Twitter 50k (Founta et al.,

2018) and Wiki (ConversationAI, 2017). We replace the smallest dataset Kumar

(Kumar et al., 2018) with a hate speech dataset collected from a white supremacist

online forum (denoted as WS ) (de Gibert et al., 2018), which has a similar size

to Kumar (WS has 10,703 posts and Kumar has 14,998 posts). The main reason

for the replacement is that WS is employed by Kennedy et al. (2020) to study

the identity term bias, thus using the same dataset can allow fair comparisons to

their method. The WS dataset includes 10,703 posts in total and 1,196 of them

are “Toxic”, 9,507 are “non-Toxic” 1. For task Twitter 50k, we remove the data

labelled as “spam” to keep the focus of this chapter is on TCC tasks. This has

reduced Twitter 50k to 42,314. To distinguish the two versions of this task, we

denote Twitter 50k without “spam” as “Twitter 42k”.

Since the identity term bias is found in various types of toxic content and also

to follow the practice by Kennedy et al. (2020) which studies the identity term

bias in the context of binary classification, we group different toxic comments

into one group without distinguishing their specific types for task Twitter 18k,

Twitter 42k and Wiki. Therefore, the task in this work is a binary toxic comment

classification task where the model aims to predict if the comment is toxic or not.

Previous study has also followed a similar practice (Beatty, 2020). Table 4.1 as

shown below summarises the four datasets used in this chapter.

1The original binary labels are “hate” and “no hate”.



CHAPTER 4. THE IDENTITY TERM BIAS IN TCC 78

Dataset Source Data Numbers Original Labels Toxic Proportion Avg Text Length
WS (Kumar et al., 2018) Stormfront 14,998 non-aggressive (42%), overtly aggressive (35%)

covertly aggressive (23%)

11.17% 91

Twitter 18k (Waseem, 2016b) Twitter 18,625 racism (11%), sexism (20%), both (6.9%), neither 31.22% 96
Twitter 42k(Founta et al., 2018) Twitter 42,314 abusive (9%), hateful (4%), normal (87%) 13.48% 123
Wiki (ConversationAI, 2017) Wikipedia 159,571 toxic (10%), severe toxic (1%), obscene (5%),

threat (0.3%), insult (5%), identity hate (1%)

10.17% 398

Table 4.1: Summary of the four toxic comment classification tasks.
“Toxic Proportion” refers to the proportion of “Toxic” comments after
the conversion to binary classification.

4.3.2 Predictive model: BERT

Influenced by Kennedy et al. (2020), we use BERT as the classifier to demonstrate

the problem of identity term bias in TCC tasks. BERT would be a good baseline

as it is widely used in various NLP tasks and many pre-trained language models

are built upon it (Devlin et al., 2019; Liu et al., 2019c; Lample and Conneau,

2019). We ask readers to refer to Section 2.5.2 for details of BERT.

4.3.3 Model explanations with rationales

To study whether and how the BERT classifier is affected by the identity term bias

during its decision-making process, we look into methods of “model explanations”

to explain the rationalisation behind the model predictions (Lei et al., 2016; Ja-

covi and Goldberg, 2020; Chrysostomou and Aletras, 2021). One commonly-used

approach to obtain model explanations for DNNs is computing an importance

score for each input token to identify which parts of the inputs contributed the

most towards the model prediction (Jacovi and Goldberg, 2020; Chrysostomou

and Aletras, 2021). Tokens with high importance scores are taken as the evi-

dence or reasons for the model to make such predictions. These tokens are known

as rationales (Jacovi and Goldberg, 2020; DeYoung et al., 2020; Chronopoulou

et al., 2019). Intuitively, for a classification task, the model will potentially flip

the predicted label when taking inputs without these rationales. For example, the

rationale for the toxic comment “feminist is very stupid” could be “stupid” or “

‘feminist’ + ‘stupid’ ”. An ideal model should not predict the comment “femi-

nist is”, “is very stupid” or “feminist is very okay” as toxic when “feminist” or

“stupid” is removed from the input. Previous studies have used rationales to inves-

tigate the data or to gain insights from the data. For example, Jiang and Wilson

(2021) extract the rationales from a misinformation dataset and then cluster those

extracted rationales to investigate the misinformation types.

Different methods are used to compute the importance scores. One approach

is to calculate the gradients of a prediction with respect to the input token (Jain



CHAPTER 4. THE IDENTITY TERM BIAS IN TCC 79

et al., 2020; Atanasova et al., 2020). The intuition is that, for any tiny change

in the input, the gradient indicates how the output would change. The bigger

change in the output, the more the model takes the input token into account for

the prediction. Within transformers-based models, such as BERT, attentions for

the input are also commonly-used to calculate importance scores. Since attention-

based models calculate attention distributions over inputs given a token, prior work

assume that the attention over one token intuitively reflects the importance the

model assigns to tokens and tokens with high attentions potentially play important

roles in the model prediction (Wang et al., 2016b; Lee et al., 2017; Vaswani et al.,

2017). Further, Jain et al. (2020) believe that the attention-based importance

scores reflect the importance not of individual inputs, but rather of unknown

interactions between tokens and all input tokens.

The quality of extracted rationales are usually measured by the agreement

with human-provided rationales or assessments of faithfulness (DeYoung et al.,

2020). Faithfulness here refers to evaluation measures or metrics that do not

require human-provided rationales (Lei et al., 2016; DeYoung et al., 2020; Jacovi

and Goldberg, 2020). It reflects the degree to which the extracted rationale affects

the corresponding prediction (Lei et al., 2016; DeYoung et al., 2020; Jacovi and

Goldberg, 2020). For example, sufficiency is a faithfulness metrics that measures

the change of the model prediction performance when only using the rationales as

the input (DeYoung et al., 2020). Faithful rationales with a high level of sufficiency

are expected not to lead to a big drop of model prediction performances. On

the other hand, comprehensiveness measures the change of the model prediction

performance when masking the rationales in the input (DeYoung et al., 2020).

Faithful rationales with a high level of comprehensiveness are expected to see a

big drop of model prediction performances when rationales are masked in the

input.

Although there have been debates on the faithful performance by attention-

based explanations, rationales extracted by straightforward rules on attention

weights are demonstrated to be comparable to human-provided rationales (Wiegr-

effe and Pinter, 2019; Serrano and Smith, 2019; Jain et al., 2020). In this study, our

main focus is to investigate the model behaviour regarding the identity term bias

rather than to generate faithful rationales. Therefore, we take advantage of the

built-in access to both the gradients and the attention weights to computing the

importance scores for tokens. For attention-based importance scores, we calculate

the normalised attention weights for tokens (Jain et al., 2020). For gradients-

based importance scores, we multiply the input with its gradient computed with
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respect to the predicted class (Kindermans et al., 2016; Atanasova et al., 2020).

For both methods, we take tokens of the top 20% highest importance scores as

the rationales for the comment (Chrysostomou and Aletras, 2021). We apply this

analysis to false positives predicted by the model on the four datasets to analyse

the identity term bias.

4.3.4 Defining “Subjectivity”

To the best of our knowledge, there is no consensus on the definition of subjectiv-

ity. In this work, we adopt the definition of “subjectivity level” by TextBlob as

mentioned before: the subjectivity level describes the extent to which the comment

conveys personal opinion or factual information (Loria, 2018). A comment with

a high level of subjectivity indicates that the comment contains more personal

opinion and less factual information, vice versa.

The TextBlob2 library (Loria, 2018) is the tool this work uses to generate

subjectivity scores to facilitate our bias analysis. We have also identified another

similar tool, SentiWordNet (Sebastiani and Esuli, 2006). Given a text, both tools

assign a subjectivity score within the range from 0.0 to 1.0 where 0.0 is very

objective and 1.0 is very subjective. No report is found comparing the accuracy of

TextBlob and SentiWordNet. We conducted our own analysis and concluded that

TextBlob is more accurate at predicting subjectivity over the four TCC datasets.

First, we compare the subjectivity scores given by TextBlob and the ones by

SentiWordNet for each comment from the four datasets. As shown in Figure 4.1,

SentiWordNet assigns most texts an extreme score of “1” (very subjective). The

total percentages of “1” and “0” assigned by TextBlob over the four datasets are

39.76%, 42.44%, 32.86% and 21.85%. However, for SentiWordNet, the percentages

are 76.07%, 74.30%, 74.27% and 66.13% respectively. In other words, SentiWord-

Net has a distribution biased towards “1”, while TextBlob is less biased towards

the two extremes.

Second, we conduct a manual inspection, validating the output of the two tools

on a sample of 80 data instances from the 4 datasets (20 per dataset). We ran-

domly select these 80 comments whose subjective scores by the two tools have a

disagreement greater than 0.5. To give an example, the following comment:

“my mothers father is full blonde Irish. my mothers mother is English Irish

Scottish . my fathers father is a German with some Scottish and my fathers mother

2https://textblob.readthedocs.io/en/dev/#
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Figure 4.1: The subjective scores distribution of TextBlob and Sen-
tiWordNet over the four datasets. The X-axis is the comment count
of corresponding subjectivity scores indicated by the Y-axis. All four
plots are based on the training dataset.

is danish and Norwegian. making me 6ft4 blonde hair blue eyes with a big barrel

chest just like my german grandfather .”

is scored differently by TextBlob (0.0682 ) and SentiWordNet (1 ). In this case,

we take the score 0.0682 by TextBlob as the more accurate one. Our manual in-

vestigation shows that TextBlob is more accurate for 77.5% samples we validated.

The full comparison between TextBlob and SentiWordNet over the 80 comments

are presented in the appendix.

Based on this qualitative analysis and the score distributions, we believe the

subjectivity scores with a more refined granularity by TextBlob will offer the

model more information on the subjectivity level of comments. Therefore, we use

TextBlob to measure the subjective level.
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4.4 Experiments

4.4.1 Implementation

We train the initial base uncased version of BERT model (“bert-base-uncased”

from the software package by Wolf et al. (2019), the same one as described in

Section 3.3.2 with a linear classification layer atop) on the four TCC tasks sep-

arately and investigate their prediction results. For each task, a model runs 10

times independently to give a mean value on each evaluation metrics, following

the implementation in Kennedy et al. (2020).

We constrain the maximum length of each input instance to be 128 tokens for

WS, Twitter 18k and Twitter 42k, and 400 tokens for Wiki. The maximum length

is set up based on the average length of text in each dataset as detailed in Table

4.1, which aims to cover the full text of most data and saves computing resources

at the same time.

The hyperparameter settings follow those in Kennedy et al. (2020) to provide

a direct and fair comparison to their work. Accordingly, the batch size is set to

32. Adam optimization is implemented with a starting learning rate of 2 x 10-5.

The validation is performed every 200 steps and the learning rate is halved every

time the validation F1 decreases. The model stops training after the learning

rate halved 5 times. We also re-weight the training loss to handle the imbalance

labels as Kennedy et al. (2020) does. Note that several hyperparameters and

implementations are different from what we did in Chapter 3 as we aim to compare

with the work by Kennedy et al. (2020) in this study. Also, Chapter 3 studied the

impact of hyperparameters so different sets of hyperparameters were tested there.

But the impact of hyperparameters is not the focus of this study.

We used a single NVIDIA Tesla V100 GPU for all experiments. We build the

BERT model with the code provided by Kennedy et al. (2020), such that our

implementation uses the same software packages by Wolf et al. (2019) and Paszke

et al. (2019). Our rationalisation code is built upon the code by Chrysostomou

and Aletras (2021), which also heavily uses the packages by Wolf et al. (2019) and

Paszke et al. (2019).

4.4.2 Model explanations with rationales

Before analysing the model predictions on comments with identity terms, we inves-

tigate model decisions with respect to the identity term bias. We extract rationales

for false positive predictions whose comments contain identity terms There are a



CHAPTER 4. THE IDENTITY TERM BIAS IN TCC 83

total of 137 such comments across all datasets, and we manually analyse them.

Noted that, due to the nature of sensitivity of TCC tasks, we emphasise the im-

portance of handling identity term bias even identity term bias is only reflected

on a small part of instances. We find that 125 (91.24%) comments have rationales

with identity terms (attention-based or gradients-based or both). Examples are

shown in Table 4.2. The high importance scores assigned to the identity terms po-

tentially contribute to the erroneous predictions. Take comment 3 in Table 4.2 as

an example, if we simulate the model decision-making process where we pay more

attention to the rationales “whites” and “negroes”, we might label this comment

as toxic. However, if we examine the whole comment, we might change our deci-

sion from toxic to non-toxic as this comment is making a metaphor that indicates

“whites” and “negroes” are just different rather than one is better the other. In

short, our analysis has shown evidences that SOTA TCC classifiers over-attend to

identity terms, this could lead to false positive predictions.

4.4.3 The identity term bias and subjectivity: qualitative

analysis

Here we study the relation between the identity term bias and the subjectivity

level. Errors made by BERT are extracted for our analysis, i.e. false positive

predictions and false negative predictions. As mentioned before, we use TextBlob

to generate a subjectivity score for those comments (Loria, 2018). We investigate

those errors and select several representative examples as shown in Table 4.3. We

observe that to correctly predict the toxic comments with identity terms, we need

to account for the meaning of the whole sentence and the stance of the speakers.

Subjectivity level is possibly one perspective from which this can be captured.

For example, in the first pair which mentions “muslims” in Table 4.3, the toxic

comment compares “blacks” with “muslims” and asserts that “they (Muslims) are

worst than blacks” without any factual information, this indicates a high level of

subjectivity. While the non-toxic comment with the term “muslims” attempts to

describe an objective fact related to Muslims, although it contains comparison, it

attempts to include a specific figure to support the comparison3. This observation

inspires us that the subjectivity score of the comments can be a helpful indicator

when classifying a comment with identity terms.

3The “fact” and figure the comment provides are unnecessarily true but it is not the topic
we aim to study.
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4.4.4 The identity term bias and subjectivity: quantitative

analysis

To further analyse the relation between the subjectivity level and the identity

term bias at scale, we conduct a quantitative analysis of the subjectivity score

of false positive and true positive predictions. We separate those comments with

identity terms and those without identity terms to examine the identity term bias.

The identity term list is adopted from Kennedy et al. (2020) which includes 25

terms such as “muslim”, “jew”, and “women”, full list is shown below (in Table

4.4.4). The main reason we use this identity term list is that we want to build

up our method (in the next chapter) based on the observation in this quantitative

analysis and we would like to compare our method to the method by Kennedy

et al. (2020). Thus we use the same list as they do to avoid the impact of different

identity term lists on the model performance.

muslim jew jews white islam blacks muslims women whites gay black democat
islamic allah jewish lesbian transgender race brown woman mexican religion ho-
mosexual homosexuality africans

Table 4.4: 25 identity terms used for bias analysis.

In this way, all comments are essentially split into four groups: true positive

with identity terms (TPwIT), false positive with identity terms (FPwIT), true

negative without identity terms (TNwoIT) and false negative without identity

terms (FNwoIT). We plot the subjectivity score distribution over false positives

and true positives with box-plot diagrams. As shown on the left of Figure 4.2,

for comments with identity terms, the true positives (i.e., toxic comments) show

higher subjectivity levels than the false positives (i.e., non-toxic comments) across

all tasks. First, false positives have a lower median of subjectivity scores than

true positives across four datasets. Second, the false positive predictions have a

generally smaller and lower interquartile range than the true positive predictions

in the task. The lower subjectivity scores in false positive predictions may reflect

the real-word scenario that when speakers talk about a demographic group such as

female, Muslim or Asian in an objective way, e.g., describing the group neutrally,

the speech is less likely to be disrespectful or offensive. On the other hand, toxic

comments often involve subjective expressions.

Notably, the pattern of lower subjectivity level of false positives is consistent

only among comments with identity terms. The comments without identity terms,

as shown on the right diagram in Figure 4.2 do not indicate a consistent pattern
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between false positives and true positives. This shows that the feature of sub-

jectivity level could be indicative only when considering the presence of identity

terms at the same time. On the other hand, it also indicates that the identity

term bias can be addressed by considering the subjectivity level of a comment.

Nonetheless, this is not to assert that a text mentioning identity terms in a sub-

jective tone should be toxic. As shown in the left boxplot in Figure 4.2, there are

indeed non-toxic comments with identity terms (i.e., FPwIT in green) that have

been assigned with subjectivity scores over 0.5 on the dataset 42k and Wiki. We

looked into these comments and present two examples:

“mike ##pen ##ce not being able to have dinner alone with any woman other

than his wife etc is just like being a strict muslim. ironic” (score of 0.63).

“ga##bs whites got nothing for free you won t it s the way life work stop

w##hini##ng ab” (score of 0.8).

Figure 4.2: The comparison of subjectivity level scores between true
positive (i.e. toxic comments, as coloured in yellow) and false positive
predictions (i.e. non-toxic comments, as coloured in green) by BERT
over four TCC tasks. This figure is better viewed in colour.

4.4.5 Subjectivity level and sentiment polarity

We also conduct an analysis of the sentiment polarity and its relation to the

identity term bias. Same as our previous analysis, we use TextBlob to calculate a

sentiment score for each true positive and false positive from the BERT predictions

on the four TCC tasks. The sentiment score is a floating number within the range
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from -1.0 to 1.0. A comment with a score close to -1 indicates a negative sentiment

polarity, a score close to 1 indicates a positive sentiment polarity (Loria, 2018).

As shown in Figure 4.3, there is no consistent pattern observed over four tasks

regardless of their prediction results or if they contain identity terms or not. That

is, the sentiment scores over the four tasks demonstrate a random distribution

between true positive and false positive; and also a random distribution between

comments with and without identity terms. Such results suggest that the identity

term bias is hardly associated with sentiment polarity.

Figure 4.3: The comparison of sentiment polarity scores between true
positive (i.e. toxic comments, as coloured in yellow) and false positive
predictions (i.e. non-toxic comments, as coloured in green) by BERT
over four TCC tasks. This figure is better viewed in colour.

4.4.6 Summary

In summary, our study has shown that BERT over-attends to identity terms when

making predictions. This over-attention on identity terms can contribute to false

positive predictions. Furthermore, using the predictions by a BERT classifier, we

observe that when identity terms are present, false positives tend to have lower

subjectivity scores while true positives generally have higher subjectivity scores.

4.4.7 Limitations

An issue that was not addressed in this study was the absence of a clear defini-

tion of subjectivity and different levels of subjectivity. As mentioned above, to

the best of our knowledge, no previous study has provided a clear definition of



CHAPTER 4. THE IDENTITY TERM BIAS IN TCC 87

subjectivity in the context of toxic comment classification or related tasks. This

might lead to a debate of our findings. A clear definition of subjectivity is also im-

portant to communicate with the public when applying our findings to a real-life

scenario. Therefore, we believe it will be a meaningful direction for future studies

that define subjectivity and different subjectivity levels in the context of toxic

comments. The second limitation is that we only tested BERT. Although it is

the most representative PLM, other advance PLMs proposed later might demon-

strate different patterns. Another limitation lies in the fact that TextBlob uses a

simple lexicon-based approach, which can produce inaccurate subjectivity scores

for some comments. Last, a concern raised by this study is the list of identity

terms used in the experiment. Previous TCC studies of the identity term bias

have not drawn on any systematic research into defining identity terms. Research

up to now has been empirical on selecting identity terms. Although certain terms

such as “Muslim” and “black” are easy to decide, terms such as “heterosexual”

and “girls” can be controversial in different scenarios. Several related problems

are still open: should different TCC tasks use different identity terms? How to

evaluate the list has covered a proper range of different groups? How to handle

identity terms that has many variants names (e.g., slang and acronym)?

4.5 Conclusion

This chapter conducts a deep investigation into the identity term bias in one SOTA

TCC classifier, BERT. We investigated the model explanations and conducted

both qualitative analysis and quantitative analysis on four different TCC tasks.

From the model rationales, we observe the evidence across all tasks, showing that

BERT over-attends to identity terms during the model decision-making process.

This has addressed the first and the second research questions for this chapter:

we have shown that the identity term bias is prevalent in different TCC tasks,

and model rationales can provide evidence of this issue. From the predictions, we

observed that when identity terms are present, false positives tend to have lower

subjectivity scores while true positives generally have higher subjectivity scores.

However, this pattern did not exist among the false positives without identity

terms. This has addressed the third research question on the relationship between

the subjectivity level and the identity term bias. We also believe this relationship

can be utilized to mitigate the identity term bias in TCC tasks. We introduce our

method to leverage this in the next chapter.
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Tasks Comments Rationales by gra-
dients

Rationales by at-
tentions

1 WS there is no doubt the chinese and japs have giving the world culture. japs chinese japs chinese the
2 WS like was posted above blacks are waking up more whites then

prowhites.
prowhites blacks
waking

prowhites waking
up

3 WS i have always thought whites and negroes are as different as lions
and tigers.

negroes whites negroes whites

4 WS we are not filled with all the hate that the jewish media tells the
lemmings we are.

jewish lemmings .
hate

lemmings jewish
the we

5 WS yes and if i were a jewish - supremacist i’d want it that way, too. jewish supremacist
i

supremacist jewish
a

6 WS the reason they are killing themselves is because our weak liberal
goverment are too afraid to make them do any sort of training..

goverment liberal
weak

goverment they lib-
eral them them-
selves

7 WS yeah you can count on it, there will be lot of people on the streets
that day protesting against this jew government what we have here.

jew protesting gov-
ernment yeah this

jew government
this we streets yeah

8 WS i agree the defence is legitimate, 100%. but the taking up of arms
against and killing of other whites is the very last thing we need to
succeed in our cause.

whites killing the
the

whites of other
arms we

9 WS only 6 corporations control over 90 % of the television channels
these corporations are anti - white and are turning our people into
zombies let’s break the monopoly of news and information by sup-
porting alternative, pro - white media like stormfront.

zombies corpora-
tions corporations
white white storm-
front the the

zombies white
white stormfront
corporations into
are people corpora-
tions

10 Twitter
18k

@ nndabbour64 mohammed’s first wife khatya was his boss and was
a property owner before she married mohammed and before islam.

@ . khatya ’ and nndabbour64 mo-
hammed wife @
mohammed

11 Twitter
18k

if u call me a feminazi i will go feminazi on ur ass because ppl like
u are the reason we need feminism

the ur go a i feminazi feminazi
feminism are ppl

12 Twitter
18k

@ russell barth @ angry feminazi @ liamfinn19 @ pattyarquette
that does not include overtime.

feminazi @
liamfinn19 @

feminazi liamfinn19
pattyarquette over-
time

13 Twitter
18k

i was just called a ” feminazi ” which is sadly not unusual on the
show

a feminazi feminazi show i the

14 Twitter
18k

nigerian military kills 104 boko haram islam terrorists. egyptian
military kills 47 isis siani islam terrorist

siani islam nigerian islam kills
haram

15 Twitter
18k

a girl thats rly nice and cute just shared a post from anti - feminazi
on fb. i had so much faith in u. u

thats i and feminazi girl i fb rly
thats

16 Twitter
18k

if u use the term feminazi u can just go ahead and stay away from
me

the can feminazi
just

feminazi the me
away

17 Twitter
42k

rt la2ca women who claim they don t get wifed because they aren t
hoes are just as bad as dudes who claim they re overlooked bc the

the wifed dudes
hoes rt la2ca

women rt hoes
wifed dudes la2ca

18 Twitter
42k

college doesn t sound very good with all your lousy liberal brain-
washing thanks 2 u they hate us law history amp truth

lousy amp hate
brainwashing
thanks

hate law they lousy
liberal

19 Twitter
42k

we will see what happens. i just hope this does not cause muslims
hate. extremist if they did it

i extremist muslims muslims extremist
hate

20 Twitter
42k

celinedoux 22yo camgirl petite body 35b tits brown eyes and brown
hair. womancam gt gt

tits and celinedoux tits celinedoux
womancam

21 Twitter
42k

lt lesbian chronicle late at the office part 1 she ran her hands over
mariam s breasts

breasts lesbian the
s

lesbian breasts
mariam s

22 Wiki mcc or metropolitan community church is a church for all peo-
ple who believe in our lord jesus christ. a gay lesbian’s bisexuals,
transgengers, straight people. a church that never descreimanate,
whoever, whatsoever you are, we are all created by god equal.

you bisexuals les-
bian transgengers
for gay

bisexuals gay les-
bian is or god a

23 Wiki i agree. it is entirely logical that a person who enjoys the com-
pany of homosexuals is a homophile. a group of supporters and
friends of homosexuals - who are not themselves homosexuals - can
( should ) be called homophile. but an anglophile is someone who
likes england, but isn’t english. a group made up predominantly of
homosexuals cannot be called homophile, applying the same logic.
it can only be called homosexual.

homosexuals homo-
sexuals homosex-
uals homosexuals
homosexual ho-
mophile homophile
homophile i the the

i homosexuals ho-
mosexuals homo-
sexuals anglophile
homosexuals agree
entirely homosex-
ual

24 Wiki hi i’m angel of sadness i’m a 10 years old girl that love gay band
tokio hotel and you?

gay i i m m gay love

25 Wiki ok, i got it that not all gay mean speak this way but is it really
necessary to have 50 % of the article stating that this is a stereotype
and that some ( but not all! ) homosexuals speak this way?

gay the homosexu-
als it it ok

homosexuals gay i
mean but ok

26 Wiki fyi i am a gay man, if anyone wants to chat just comment plz fyi gay fyi plz gay

Table 4.2: False-positive prediction examples for those whose ratio-
nales contain identity terms. Punctuations are removed from ratio-
nales.
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Identity

Terms

Predictions Comments Subjectivity scores

muslim True Positive (toxic) i have been talking about it for years. the filthy muslims putting their

sight on africa. in some ways they are worst then blacks.

1

False Positive (non-toxic) @ kelly ##turn ##er ##9 ##9 @ bu ##eller ##ish ##ere moremus-

lims die in terrorist attacks than anyone else. for example, 80% of afghan

civilians killed by taliban

0

gay True Positive (toxic) if this guy isn ##t gay he is one seriously good actor !!!!! i’ve seen hayes

on will & grace and the way he acts so.... feminine he must be homosexual.

no straight man can act so convincing ##ly gay. but then again sean

acted pretty straight and normal in the movie where he played jerry lewis.

my opinion is still in favour of him being gay though.

0.6444

False Positive (non-toxic) f ##yi i am a gay man , if anyone wants to chat just comment pl ##z 0.3417

whites True Positive (toxic) black people in sa do not want to unite with whites to remove corruption

. we ’ d rather endure rot & amp; suffer! so sad!

0.6444

False Positive (non-toxic) i’ m reporting here that i haven’ t seen or heard anything on talk radio or

tv that even hints at jewish su ##pre ##mac ##ist ethnic cleansing of

whites from usa or europe .

0

women True Positive (toxic) rt @ mw##il##bu##r##6##2 i swear i am not sex ##ist , but

women ’ s tennis is the most boring sport to watch

0.75

False Positive (non-toxic) men and women are segregated in mosques . 0

jews True Positive (toxic) well i am sure that the jews have the cure for aids but they won ##t give

it to the fa ##gs cause they already served their pu ##rp ##oise

0.8888

False Positive (non-toxic) if a third world savage attacks a jew, is it all jew ##ey ’ s fault? 0

Table 4.3: Example comments that contain identity terms. Each
pair of comments contain the same identity terms, while one is true
positive and the other is false positive predicted by BERT.



Chapter 5

Mitigate the identity term bias

As studied in the last chapter, toxic comment classification models are often found

to suffer from identity term bias. Instead of training a model to pay less attention

to identity terms, we propose a different approach in this chapter. Built on the

findings from the last chapter, our approach leverages the notion of subjectivity

level of a comment and the presence of identity terms. We hypothesise that when

a comment contains an identity term that refers to a particular group of people,

the likelihood of that comment being toxic is associated with the subjectivity level

of the comment, i.e., the extent to which the comment conveys personal feelings

and opinions. Therefore, this chapter introduces a novel method that incorporates

this idea to mitigate the identity term bias on TCC tasks.

The remainder of this chapter is structured as follows. Section 5.1 first gives

a brief overview of our research background and research questions. Section 5.2

reviews previous methods of handling the identity term bias. Section 5.3 presents

the methodology used for this chapter. Section 5.4 explains our experiment details

and discuss the results. Section 5.5 concludes this chapter and proposes potential

research directions.

5.1 Introduction

Previous work have identified the identity terms bias in TCC models. Limited

studies have attempted to handle such bias and those methods can be categorised

into two groups: debiasing the dataset and debiasing the model (Dixon et al., 2018;

Davidson et al., 2019; Wiegand et al., 2019). The former group aims to mitigate the

identity term bias via modifying the dataset. The intuition is removing bias related

features from the dataset directly. The later group, debiasing the model, aims to

90
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modify the model itself to mitigate the bias. There are two main approaches

of debiasing the model by previous studies: using ensemble models and adding

regularisation terms (Vaidya et al., 2020; Halevy et al., 2021; Clark et al., 2019;

Zhang et al., 2018a; Prost et al., 2019; Xia et al., 2020; Mozafari et al., 2020;

Kennedy et al., 2020). These two approaches follow a simple principle: ignoring

or paying less attention to the identity terms. However, this overlooks the fact

that identity terms can be essential and important features to make predictions.

This chapter explores a new approach, which is based on the hypothesis dis-

cussed earlier. A comment with a low subjectivity level expresses more factual

information and less personal feelings and opinions; while a comment with a high

subjectivity level contains more personal opinions but less factual information.

Intuitively, when someone especially discusses a certain group of people, we pay

more attention to the overall subjectivity level of the whole comments regarding

the group rather than ignoring or paying less attention to that group the speaker

refers to. We hypothesise that when a toxic comment is made about a group of

people with an identity term, it is more likely to have a high level of subjectiv-

ity. Therefore, the likelihood of a comment being toxic can be associated with 1)

whether the comment contains an identity term, and 2) the subjectivity level of

that comment.

Building on the BERT model which is commonly used for multiple downstream

NLP tasks, we propose a novel structure, Subdentity-Sensitive BERT (SS-BERT),

where “Subdentity” denotes “subjectivity” and “identity”. SS-BERT makes use

of the special embedding structure of BERT to “activate” the subjectivity features

only when the comment contains identity terms. In measuring the subjectivity

level, we study two options. One is based on a SOTA tool for calculating sub-

jectivity of a text using pre-defined lexicon. The other is based on the idea of

calculating the similarity between a comment containing an identity term and the

Wikipedia summary text (to be defined later) regarding the identity term, and

using the similarity degree as a proxy to the “subjectivity”. Last but not least,

we also adapt our method to RoBerta to further validate the generalisation of our

method.

We answer the following research questions:

• First, how to create SS-BERT that effectively incorporates the subjectivity

level in BERT given the presence of the identity terms?

• Second, how to measure the subjectivity level of a comment and make it

usable by SS-BERT?
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• Third, to what extent can SS-BERT benefit from the subjectivity level and

the presence of the identity term with respect to mitigating the identity term

bias found on TCC tasks?

We compare our proposed methods against SOTA baselines (BERT and BERT+SOC

(Devlin et al., 2019; Kennedy et al., 2020)) and a few alternative models designed

for ablation analysis. We evaluate all models and methods on a wide range of TCC

tasks. The results shows that our method is able to mitigate the identity term bias

and improve toxic comment classification effectively. First, SS-BERT consistently

outperforms BERT, regardless of how subjectivity is measured. The performance

gain of SS-BERT is mainly attributed to predicting fewer false positives. This in-

dicates that our idea of considering subjectivity and the presence of identity terms

is helpful to mitigate the false positive bias, i.e., the identity term bias. Second,

SS-BERT consistently outperforms its alternative model SO-BERT(Subjectivity-

Only BERT), which only uses subjectivity without considering the presence of

identity terms. This indicates that simply learning the subjectivity level for all

comments is not enough, and it is more informative to combine subjectivity with

the presence of identity terms. Third, our Wikipedia-similarity based proxy to

subjectivity is shown to be more effective than the SOTA lexicon-based tool for

TCC as models based on this measure of subjectivity have outperformed their

counterparts on 3 out of 4 tasks. This suggests that given a comment containing

an identity term, comparing the meaning of that comment against a reference text

describing that identity term can, to some extent, reflect the subjectivity level of

the comment.

5.2 Related work

Recent studies show that TCC classifiers often suffer from unintended bias and

the identity term bias is one kind of such unintended bias (Park et al., 2018; Sap

et al., 2019; Davidson et al., 2019; Zhou et al., 2021; Field et al., 2021; Halevy

et al., 2021). TCC research has attempted to address unintended bias in two

different perspectives: biases associated with datasets and biases associated with

the model (Mozafari et al., 2020; Wiegand et al., 2019). Biases associated with

datasets mainly refer to the biases introduced by the data labelling or the collection

process (Dixon et al., 2018; Davidson et al., 2019; Wiegand et al., 2019). Biases

associated with the model refer to the biases learned by the model in the training

process. Debiasing the dataset and debiasing the model are two different
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but non-exclusive approaches to handle the unintended bias on TCC tasks. The

former one essentially curates the data to remove the bias from the dataset, while

the latter designs algorithms to mitigate the bias from the model.

Wiegand et al. (2019) investigate six TCC datasets to study why TCC datasets

contain biases and the bias degree of different TCC datasets. For instance, they

find that over 70% of tweets labelled as sexist originate from two Twitter authors,

which can contribute to the bias. Research on debiasing the dataset modi-

fies the dataset, implicitly assuming there are bias-related features in the dataset

that can be removed or reduced. Dixon et al. (2018) debias TCC datasets by

adding non-toxic comments with identity terms to “balance” the training data,

intuitively allowing the model to learn more features of non-toxic comments with

identity terms. Vidgen et al. (2020) create “balanced” TCC datasets following an

iterative procedure. The main idea is to let human annotators manually create

data that are challenging for the model to predict correctly. This kind of data,

also known as adversarial data or perturbations, manipulates the original text just

enough to flip the label (e.g., from “Hate” to “Not Hate”) (Kaushik et al., 2019;

Gardner et al., 2020). Adversarial data is believed to enrich current datasets that

are created in potentially biased ways. For example, some hate speech datasets

are created by collecting tweets containing hate-related keywords or containing

certain hashtags, and some datasets are annotated by a limited group of annota-

tors (Waseem, 2016b; Wiegand et al., 2019; Fortuna and Nunes, 2018). In their

method, the model is trained on a new dataset that contains half adversarial data

and half “originally entered content” (i.e., the collected real data). The prediction

results of the current round are then used to guide human annotators to provide

a new round of adversarial data. This process is repeated for four rounds. There-

fore, more new adversarial data is provided by human annotators in each round

to train a new model. Vidgen et al. (2020) have found that the model trained

on the data from all four rounds performs better than all the other models that

are trained on non-adversarial data or trained on different rounds of adversarial.

However, they also acknowledge the potential annotator bias in their method.

Interestingly, there is an emerging debate between “curating data” and “study-

ing the world as it is” in the NLP research community (Bender and Friedman, 2018;

Bender et al., 2021; Buckman; Rogers, 2021). Those favouring “curating data”

argue that the real data reflects the real world which has discrimination and cu-

rating data is a method to combat discrimination against different social groups

(Blodgett et al., 2020; Bender et al., 2021). Another supporting argument is that

machine learning models may memorise specific facts which can expose person-



CHAPTER 5. MITIGATE THE IDENTITY TERM BIAS 94

ally identifiable information. Curating data is a way to remove these identifiable

personal information for ethical reasons. What is more, deep learning models are

vulnerable to basic perturbations and attacks, such as adversarial data designed by

humans targeting on the specific bias of the model. This can be “solved” with shal-

low data curation (Ribeiro et al., 2020). However, those favouring “studying the

world as it is” argue for algorithmic solutions to address similar issues mentioned

above (Clark et al., 2019; Rogers, 2021; Ribeiro et al., 2020; Garrido-Muñoz et al.,

2021). Also, they argue that curation means making conscious choices about what

to include and what to exclude and this raises new questions: what is the stan-

dard for it, and what is the proper degree of curation (Rogers, 2021). Particularly,

Sambasivan et al. (2021) suggest that “conventional algorithmic fairness is west-

centric”. Changing the data possibly inserts new values and the “west-centric”

values which interpret the histories and cultures of non-western societies from a

Western perspective can be controversial1 (Amin, 1989; Blaut, 1993; Wallerstein,

1997). Last, Lissack (2021) argues that supports of curating data are “advocacy

rather than research” (Rogers, 2021). We would like to direct interested readers

to papers by Rogers et al. (2021), Bender and Koller (2020), Garrido-Muñoz et al.

(2021), Rogers (2021) and Sambasivan et al. (2021) for further details.

In contrast to debiasing the dataset, there are more studies on debiasing the

model. Two popular approaches are introduced in the literature: using ensemble

models and adding regularisation terms. In short, the idea of using ensemble

models involves adding an additional classifier to learn the bias-related features

and letting the main classifier learn bias-free features. In contrary, the idea of

adding regularisation terms is adding additional training objectives to penalise the

bias-related features (Vaidya et al., 2020; Halevy et al., 2021; Kennedy et al., 2020;

Clark et al., 2019). For an example of ensemble models, Clark et al. (2019) first

train a “bias-only” model on a dataset whose data has been added with deliberate

information, such as indicator features. These deliberate information can be taken

as artificially inserting bias into the dataset. They then train a second model in

an ensemble with the pre-trained “bias-only” model on the original dataset2. The

1Eurocentrism, also known as west-centric, refers to a discursive tendency to interpret the his-
tories and cultures of non-European societies from a European (or Western) perspective (Amin,
1989; Blaut, 1993; Wallerstein, 1997). Common features of Eurocentric thought include: ig-
noring or undervaluing non-European societies as inferior to Western; ignoring or undervaluing
what Asians or Africans do within their own society or seeing the histories of non-European
societies simply in European terms, or as part of ”the expansion of Europe” and its civilizing
influence (Amin, 1989; Blaut, 1993; Wallerstein, 1997).

2Their method involves changing the dataset. However, we group it into debasing the model
as their final model is only trained on the original dataset.
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intuition behind is to allow the second model to learn less bias-related features as

the “bias-only” model “absorbs” the bias-related features.

With respect to adding regularisation terms, more previous work includes

(Zhang et al., 2018a; Prost et al., 2019; Xia et al., 2020; Mozafari et al., 2020;

Kennedy et al., 2020). Kennedy et al. (2020) find that BERT neglects the con-

text around the identity terms, which has led to many false positives. They thus

propose BERT+SOC (Sampling and Occlusion), which is built atop BERT with

an extra regularisation term to predict an “importance score” of identity terms.

The idea is to minimise the prediction differences between when an identity term

is exposed to the model and when it is hidden from the model via the impor-

tance scores. Ideally, the “over-attended” identity terms will be assigned with

low importance scores and thus they will become less indicative of whether the

comment is hate speech or not. Therefore, their method encourages the model

to pay less attention to identity terms, which can sometimes be actually useful

features. Similarly, Prost et al. (2019) add a regularisation to penalise the depen-

dence between the distribution of predicted probabilities and protected features,

such as the dependence between toxic labels and identity terms. That is, the

model attempts to minimise the prediction difference between protected features

and other non-protected features. Another example is provided by Mozafari et al.

(2020) who use an regularisation term to re-weigh input samples to suppress the

effect of highly correlative n-grams found in the training set. Studies that follow

a similar direction include Zhang et al. (2018a) and Xia et al. (2020).

Zhou et al. (2021) compare the performance of debiasing the dataset and de-

biasing the model on one TCC task. In order to debias the dataset, they filter

out “too easy” data that might contain spurious correlations or biases. They test

different methods to find those “too easy” instances. For example, one method is

AFLite proposed by Le Bras et al. (2020) and its intuition is that examples pre-

dicted correctly by the simplest methods likely exhibit spurious biases. For debias-

ing the model, they insert additional training objectives to the model by adapting

the method by Clark et al. (2019). They have found that models trained on debi-

ased datasets (i.e., debiasing the dataset) achieve overall higher performance than

models with additional training objectives (i.e., debiasing the model), while the

latter performs better on lexical bias reduction. Here, lexical bias refers to the

bias towards a list of “bad words”, also known as “Toxicity Triggers” in their pa-

per. However, Zhou et al. (2021) have not compared their approach against other

SOTA methods that debias the model, such as adding an regularisation proposed

by Kennedy et al. (2020) and a multi-task-based method proposed by Vaidya et al.
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(2020). Another limitation is that Zhou et al. (2021) have experimented with only

one task and this limits the generalisability of their findings.

In summary, the identity term bias has become a focus of TCC study in recent

years. Existing approaches to addressing this bias either debias the data, or the

model. Methods of debiasing the dataset usually modify the dataset to make it

more balanced. However, it is unclear how such an approach can be generalised

and transferred to a different task or domain. Methods of debiasing the model

mostly follow a similar principle that encourages the model to ignore or pay less

attention to identity terms. However, this overlooks the important fact that in

particular situations, such terms are useful for prediction. As an example, given

the sentence “women cannot drive” and the sentence “children cannot drive”,

the identity terms “women” and “children” are crucial in correctly classifying the

sentences. Ignoring these terms may lead to false prediction. In this example,

“children cannot drive” expresses a common sense rather than disrespect or hate

towards children, while “women cannot drive” can be sexist.

In this work, we explore a new venue for debiasing TCC models, which take use

of the presence of identity terms in the comment and the subjectivity level of the

comment. The novelty is that we consider identity terms together with the extent

to which a message expresses subjective opinions (we refer to this as “subjectivity

level” in the following). We demonstrate this with an in-depth analysis in the next

section. Additionally, we propose that the semantic similarity between a comment

and an “objective” reference text can be used as a proxy to measure subjectivity in

our model. Specifically, given a comment containing an identity term, we compute

the similarity between the comment and a Wikipedia description of the identity

term and use the similarity as a proxy to the subjectivity level of the comment.

5.3 Methodology

We propose a BERT-based model that make use of the structure of BERT embed-

dings to add the information of subjectivity and the presence of identity terms.

The design drive is to enable the model to pay attention to the subjectivity of a

comment when the comment contains identity terms. When the identity terms are

not present, the model should not consider the subjectivity. To do so, in short, we

append an additional “token” to the end of the token sequence for each comment

to “notify” the model of the information of the subjectivity level and identity

terms existence. The following sections will explain this in detail regarding the

model construction and the subjectivity scores respectively.
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5.3.1 The task and datasets

Following the methodology outlined in Chapter 4, we study the problem in the

setting of binary classification tasks and use the same TCC datasets as shown in

Table 4.1 in Section 4.3.4. Each dataset is split to training, validation and test

datasets (80%, 10%, 10%). The results are reported on the testing dataset.

5.3.2 SS-BERT model structure

Figure 5.1: Illustration of a SS-BERT model on classification tasks.
This figure is better viewed in colour.

As shown in Figure 5.1, building on BERT, we append an additional “token”

to the end of the token sequence for each comment. We use the subjectivity score

for the embedding of the token. To be more specific, we create a 3-D tensor with

the same size of other token embeddings and each element’s value in the tensor

is equal to the subjectivity score. In the scenario of BERT, the dimension size is

768 and thus the tensor for the added “token” is a 3D-tensor of size [batch size,

1, 768]. The tensor is denoted as “Sentence Subjectivity Score” in Figure 5.1.

For the corresponding attention mask (highlighted in yellow with bold borders

in Figure 5.1), we set it to indicate the presence of identity terms so that if there

is no identity term in the comment, the appended “token” will be masked. While

if there is an identity term, the embedding of this “token”, i.e., the subjectivity

score, will be attended by BERT.
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5.3.3 Subjectivity score

We explore two different methods of measuring the subjectivity level of a comment.

The first method is simply using the TextBlob library as mentioned before. The

second is based on measuring the semantic similarity between the comment and

a related Wikipedia description for the corresponding identity term found in the

comment.

TextBlob

We use TextBlob as described in Section 4.3.4 to assign a subjectivity score to

each comment. The subjectivity scores range from 0.0 to 1.0 where 0.0 is very

objective and 1.0 is very subjective. TextBlob uses a lexicon-based approach

to compute subjectivity scores. It emphasises the impact of individual words

(Sebastiani and Esuli, 2006; Loria, 2018). To be more specific, TextBlob uses

a vocabulary and each word in the vocabulary is associated with a subjectivity

score. In the case of polysemous words, it returns the average subjectivity scores

over all the possible senses of that word. For out-of-vocabulary words, TextBlob

assigns a subjectivity score of 0 to the word. A comment’s final subjectivity score

is the mean subjectivity score of all its words.

Wikipedia based similarity

Inspired by Zhang and Yu (2006); Zhang et al. (2007); Kittur and Kraut (2008);

Mesgari et al. (2015), we make an assumption that the summary section of a

Wikipedia article regarding an identity term is a relatively objective description

of the identity term, and the similarity between the Wikipedia summary of a given

identity term and a comment mentioning the same identity term can reflect the

subjectivity level of the comment. The more similar they are, the more objective

the given comment is. Zhang and Yu (2006); Zhang et al. (2007) have made

similar assumptions that “all the contents of these pages (Wikipedia pages) are

assumed to be objective”. In their work of opinion retrieval (i.e., finding relevant

blog documents containing opinionated content for a given query topic), Zhang

et al. (2007) compare the vectors’ similarity between given documents and related

Wikipedia articles to find the opinionated content.

We propose to take the cosine similarity between a given comment and a

Wikipedia summary text regarding an identity term as a proxy to the subjectivity

of the comment. Specifically, given a comment with a certain identity term, e.g.,

“muslim”, “islam” and “lesbian”, we retrieve the first section (i.e., the “summary
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text”) of the corresponding Wikipedia article of the identity term. Then, the

summary is fed to BERT which gives an embedding for this summary3. Second,

we apply the same process to the given comment to create its corresponding BERT

embedding. We pool4 both embeddings (one for the Wikipedia summary and the

other one is for the given comment) to one dimension of size 768 (the hidden size

of BERT) and calculate their cosine similarity (
u · v

∥u∥∥v∥
).

The higher value of a cosine similarity, the more similar the comment is to

the Wikipedia summary. Since the Wikipedia summary is generally an objective

narrative of the topic (further discussed below), we hypothesize that this degree

of “similarity” may capture the degree of “objectivity” to some extent. Therefore,

the subjectivity of the comment, which is the opposite to objectivity, is calculated

as:

1 − u · v
∥u∥∥v∥

(5.1)

where u and v denote the two embedding vectors. For example, using this Wikipedia

based subjectivity measure, the subjectivity score for “women cannot drive” is

0.4011 and for “children cannot drive” is 0.2937. These scores indicate the former

has a higher subjectivity score, which is consistent with the discussion in Section

5.2 regarding these two sentences. This suggests that the Wikipedia summaries

may have provided useful background information that helps the interpretation of

the two messages that are only one-word different.

We acknowledge that this score is not a direct reflection of the subjectivity

level, however, we argue that this to some extent, reflects the subjectivity level

of a comment. Although Wikipedia articles are also user-generated content, their

collaborative authoring nature reduces the risk of creating subjective content.

Additionally, Wikipedia articles are scrutinized by a wide community which helps

ensure the descriptions regarding identity terms are accurate and objective (Kit-

tur and Kraut, 2008; Mesgari et al., 2015). In particular, articles about identity

terms are edited many times by different contributors and reviewers from different

backgrounds (Hu et al., 2007). Also, earlier studies showed that the summary

section of a Wikipedia article usually defines the topic in question (Ye et al., 2009;

Sankarasubramaniam et al., 2014). To sum up, the summary text of an Wikipedia

article of a certain identity term can be reasonably expected to be objective de-

3We constrain the maximum length of the summary to be 500 tokens. The 25 embeddings
(one embedding for one summary of its identity term) are saved as a lookup table to speed up
the training process.

4Here, each embedding is a 2D tensor with a size of [token length, 768]. 768 is the hidden
size of BERT. We average the first dimension which gives a 1D tensor with a size of [768].
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scriptions of the topic. We show empirically later in the experiments that this is

useful for our model. We call this method “Wikipedia based subjectivity” and

denote it as (Wikipedia) when a model uses this score as subjectivity scores, i.e.,

SS-BERT (Wikipedia) and SS-BERT+SOC (Wikipedia).

Since SS-BERT does not attend to the subjectivity level of comments without

identity terms and we cannot compute the Wikipedia based subjectivity for such

comments, their subjectivity will be assigned as zero. For comments with multiple

identity terms, we repeat the above process for each identity term and use the mean

value as the final subjectivity score.

5.4 Experiments

5.4.1 Comparative models, datasets and implementation

We design two baseline models and two variations of our SS-BERT, in order to

fully evaluate the effects of our design of SS-BERT. For SS-BERT and the two

variations, we experiment with the two different ways of calculating subjectivity

as detailed in Section 5.3.3.

Baselines The first baseline is an initial BERT, as explained in Section 4.3.2.

The second baseline, BERT+SOC, is an implementation of the SOTA method in

Kennedy et al. (2020), as described in Section 5.2. To the best of our knowledge,

Kennedy et al. (2020) is the only work that focuses on mitigating identity terms

bias found in BERT. Additionally, we show the result of using heuristics (rule

based) as a reference. It simply predicts any instance containing one or more

identity terms with a subjective level higher than 0.3 (RB-3), 0.5 (RB-5), or 0.8

(RB-8), as positive (“toxic”).

Subjectivity-Only BERT (SO-BERT) To examine if the subjectivity level

is generally helpful for TCC tasks regardless of the presence of identity terms, we

create a variation of our method, SO-BERT, which only captures the information

of subjectivity level but not the presence of identity terms. To do so, we adapt

from the SS-BERT model with the attention mask always attending the added

“token”. The rest of the model structure remains the same. We only test sub-

jectivity scores by TextBlob for this comparative model, denoted as “SO-BERT

(TextBlob)”, as our Wikipedia based subjectivity method cannot calculate the

similarity without the presence of identity terms (which are used to look up the

corresponding Wikipedia articles for comparison). Note that the SO-BERT is dif-

ferent from the previous TCC works incorporating subjectivity in their methods as
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Data RB-0 RB-3 RB-5 RB-8

WS 0.3253 0.2379 0.1656 0.1656
Twitter 18k 0.3985 0.2286 0.1510 0.1510
Twitter 42k 0.0807 0.0707 0.0521 0.0521
Wiki 0.0950 0.0884 0.0596 0.0596

Table 5.1: The prediction F1 results of using rule-based heuristics.
RB-3 represents a rule based threshold of the subjective level threshold
for labelling “toxic” is 0.3. Similar rules apply to RB-0, -5 and -8.

SO-BERT embeds the subjectivity level in a pre-trained LM directly rather than

using it prior to the model, such as the work by Gitari et al. (2015) as described

in Section 4.2, or as feature in a traditional machine learning fashion.

Subjectivity-BERT+SOC (SS-BERT+SOC) combines the method of

BERT+SOC by Kennedy et al. (2020) and our model (SS-BERT) to create a

hybrid BERT-based model, SS-BERT+SOC. In short, it learns the subjectivity

level and the presence of identity terms with the added “token” and also has an

extra regularisation term in its loss function which encourages the model to learn

more from the context of the identity term and less from the identity term. We

experiment with the two different subjectivity measures detailed in Section 5.3.3,

i.e., SS-BERT+SOC (TextBlob) and SS-BERT+SOC (Wikipedia).

5.4.2 Results: F1 comparison

Data Data Size Baseline Models SS-BERT

BERT BERT+SOC SS-BERT(TextBlob) SS-BERT(Wikipedia)

F1 std F1 std F1 std F1 std

WS 10,703 0.5811 0.0204 0.5885 0.0209 0.5952 0.0203 0.5970 0.0175
Twitter 18k 18,625 0.7780 0.0204 0.7780 0.0055 0.7804 0.0080 0.7803 0.0052
Twitter 42k 42,314 0.7637 0.0071 0.7643 0.0101 0.7683 0.0059 0.8000 0.0081

Wiki 159,571 0.7680 0.0175 0.7548 0.0135 0.7693 0.0086 0.7735 0.0086

Table 5.2: The comparison of F1 between SS-BERT and baseline
models on the 4 TCC tasks. The mean F1 score and its standard
deviation are from 10 independently runs for each model presented.

SS-BERT We first analyse the F1 performance of SS-BERT. Table 5.2 shows

F1 scores of the two baseline models and the two SS-BERT models with different

subjectivity measures on four datasets. Overall, both SS-BERT models outper-

form the two baseline models consistently across four datasets. Table 5.1 shows

F1 scores of using a simple heuristic (rule-based) model, indicating the weak per-

formance of using a heuristic model.
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Between the two baselines5, BERT+SOC is able to improve BERT on WS

which reflects the results reported in Kennedy et al. (2020). However, the F1

score is only marginally higher on Twitter 42k and remains the same on Twit-

ter 18k, but decreases on Wiki compared to BERT. The under-performance of

BERT+SOC on Wiki may indicate that BERT could have benefited from training

on the significantly larger dataset (compared to WS, Twitter 18k and Twitter

42k) such that the extra learning objective enhancing the contextual information

around identity terms may have had negligible influence on the model. In contrast,

our two SS-BERT models outperform BERT on all datasets. This suggests the

mechanism of attending to subjectivity based on the presence of identity terms

cannot be compensated by dataset size. Therefore, the results show that our

model brings unique benefits and that is the reason SS-BERT still outperforms

BERT on Wiki.

Between the two different subjectivity measures, SS-BERT (TextBlob) works

better on the two smaller datasets, WS and Twitter 18k, while SS-BERT (Wikipedia)

works better on the two bigger datasets, Twitter 42k and Wiki. A possible expla-

nation for this might be that the average comment length of Twitter 42k (123)

and Wiki (398) are longer than WS (91) and Twitter (96) 18k. They are in fact,

of more similar lengths to the Wikipedia summary text. A short comment in-

tuitively may contain less semantic information and may not provide sufficient

features for the similarity computation. Another possible explanation for this is

that the Wikipedia summary text has provided background information regarding

identity terms in addition to the target datasets.

Variation models using subjectivity We compare our method SS-BERT

against the other two variation models which also utilize subjectivity scores,

namely SO-BERT and SS-BERT+SOC. Table 5.3 shows models using subjec-

tivity scores by TextBlob on the top and those by models using Wikipedia based

subjectivity at the bottom. The model under-performing one of the baselines

shown in Table 5.2 are enclosed in parentheses “[ ]” and models under-performing

both baselines are enclosed in parentheses “[[ ]]”.

Comparing SS-BERT against SS-BERT+SOC, we notice the following pat-

terns. When using TextBlob for measuring subjectivity, SS-BERT consistently

achieves the best performance on all tasks. When using Wikipedia based subjectiv-

ity, SS-BERT noticeably outperforms SS-BERT+SOC on the two bigger datasets

5We notice that our results of BERT and BERT+SOC on the WS dataset are different from
that reported in Kennedy et al. (2020), as our F1 are higher. While our results are obtained by
re-running their code as-is, a possible reason for this difference is that the only version of the
data we can download has been modified from that used in the authors’ original study.
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Data Data Size SS-BERT Comparative Models with Subjectivity

SS-BERT(TextBlob) SS-BERT+SOC(TextBlob) SO-BERT(TextBlob)

F1 std F1 std F1 std

WS 10,703 0.5952 0.0203 0.5912 0.0216 0.5909 0.0247
Twitter 18k 18,625 0.7804 0.0080 0.7785 0.0050 [[0.7774]] 0.0055
Twitter 42k 42,314 0.7683 0.0059 0.7660 0.0056 [0.7636] 0.0061

Wiki 159,571 0.7693 0.0133 [0.7568] 0.0112 [0.7654] 0.0151

Data Data Size SS-BERT Comparative Models with Subjectivity

SS-BERT(Wikipedia) SS-BERT+SOC(Wikipedia)

F1 std F1 std

WS 10,703 0.5970 0.0175 0.5980 0.0272
Twitter 18k 18,625 0.7803 0.0052 0.7812 0.0036
Twitter 42k 42,314 0.8000 0.0081 0.7687 0.0068

Wiki 159,571 0.7735 0.0086 [[0.7539]] 0.0149

Table 5.3: The comparison of F1 of different methods utilizing sub-
jectivity scores on the 4 TCC tasks. The mean F1 score and its stan-
dard deviation are from 10 independently runs for each model pre-
sented. The model under-performing one of the baselines are enclosed
in parentheses “[ ]” and models under-performing both baselines are
enclosed in parentheses “[[ ]]”.

and achieves comparable results to SS-BERT+SOC on the two smaller datasets.

It is worth noting that the F1 scores by SS-BERT-SOC on WS and Twitter 18k

are only marginal higher than SS-BERT whereas SS-BERT+SOC obtains F1 that

are lower than the two baselines on the Wiki dataset. Overall, SS-BERT works

better than SS-BERT+SOC. A possible reason can be that the extra regulation

from SOC might dilute the impact that SS-BERT brings to the model.

Comparing SS-BERT against SO-BERT, we notice adding subjectivity infor-

mation to the model alone does not lead to improvement to BERT on most tasks.

In other words, the model that considers subjectivity regardless of the presence of

identity terms, does not consistently benefit TCC tasks. Only adding the infor-

mation of the subjectivity and the identity terms presence together consistently

improves over the baselines. This reflects the intuition we mentioned previously

and the pattern we identified in Section 4.4.4 that the subjectivity level of a com-

ment is an indicative feature for toxicity only if identity terms are present in the

comment.

Another important finding is that although BERT+SOC is designed to miti-

gate the identity term bias, it is not able to learn the subjectivity level of comments

with identity terms. Therefore, SS-BERT+SOC outperforms BERT+SOC consis-

tently, suggesting that adding the subjectivity level and the presence of identity
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terms can improve BERT+SOC performance.

5.4.3 Results: the identity term bias

DATA BERT SS-BERT(TextBlob) SS-BERT(Wikipedia)

False Positive False Negative False Positive False Negative False Positive False Negative

WS 34 57 34 55 36 54
Twitter 18k 149 117 146 117 149 114
Twitter 42k 227 78 214 81 134 101

Wiki 750 168 738 170 608 176

Table 5.4: Summary of false positives and false negatives of BERT
and SS-BERT on the 4 datasets. Mean values of the performance
across 10 runs are shown. The lowest False Positive on each task is
in bold.

We compare the erroneous predictions between SS-BERT and the baseline

BERT to further investigate SS-BERT’s performance, especially regarding the

model’s ability to handle the false positive bias and the identity term bias. First,

as shown in Table 5.4, SS-BERT is able to decrease the false positive predictions

in general. The dataset Twitter 42k benefits from this the most, considering

the number of reduced false positives with respect to the dataset size. This is

consistent with Figure 4.2 which shows a noticeable gap of subjectivity levels

between false positive and true positive predictions from BERT on Twitter 42k.

Reflecting on the improved performance on the two bigger datasets, Twitter

42k and Wiki, SS-BERT (Wikipedia) effectively reduces the false positives on

these two datasets. However, SS-BERT (Wikipedia) cannot effectively reduce

false positives on WS or Twitter 18k. Nevertheless, SS-BERT (Wikipedia) leads

to noticeable decrease of false negatives on these two datasets. This overall leads

to improvement in F1 (shown in Table 5.2) as SS-BERT (Wikipedia) maintains

the same levels of false positives on the two smaller datasets.

These results may be explained by the fact that the baseline model BERT

has more false positives than false negatives over the two datasets. To be more

specific, 74.43% and 81.70% erroneous predictions are from false positive cases for

Twitter 42k and Wiki, while the numbers are only 37.36% and 56.02% for WS

and Twitter 18k. The higher false positive percentage from the baseline model

indicates more room for improvements. Last, as we mentioned in Section 5.2 and

identified by Wiegand et al. (2019), the dataset Twitter 18k can be problematic

as over 70% of the tweets labelled as sexists were written by just two Twitter

users. We also identified some arguable labels in the two smaller datasets in our
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investigation.

5.4.4 Error analysis

We perform an error analysis to shed light on the limitations of the best performing

model (SS-BERT) with a focus on the identity term bias. First, the identity term

list we use may not “fit” the datasets well. An updated identity term list may bring

further improvement. Specifically, there is only a small percentage of comments

that contain the identity terms used in the model. For WS, Twitter 18k, Twitter

42k and Wiki, the ratio of comments with identity terms in the list are 21.20%,

19.90%, 4.22%, and 6.02% respectively. Therefore, only a small percentage of

the datasets could have benefited from our method. For example, we observe

that some false negatives and false positives contain identity terms like “liberal”,

“irish”, “asian”, and “chinese”, which are not included in the identity term list

used in our model. Examples are listed in Table 5.5 as shown below. Kennedy

et al. (2020) uses a supervised approach combined with manual screening to select

identity terms. One approach we have tried to address the issue is to create a

heuristics list of identity terms that covers as many identity terms as possible

which are suffering from identity terms bias. However, this attempt failed as

shown in the falling performances. We believe a non-heuristics solution to create

an identity term list that can improve the performance can be a future direction.

Comments Group identity terms SS-BERT Predictions

liberal is just the pc word for rap ##ist . liberal False Negative
i get what your saying and there are thousands of non
irish here who will never contribute anything to this land
.

irish False Negative

i suppose the concept of a male cow and a female cow
producing more cows , and the repeating process is too
much for them to understand .

female False Negative

traditionally , there have always been a lot of them de-
spite the fact that ne asian ##s are the extreme version
of our breeding strategy .

asian False Negative

there is no doubt the chinese and ja ##ps have giving
the world culture .

chinese False Positive

the reason they are killing themselves is because our
weak liberal gov ##er ##ment are too afraid to make
them do any sort of training . .

liberal False Positive

she came to hate the african po ##ache ##rs and
showed no mercy towards them .

african False Positive

these girls are not there for the cooking # mk ##r what
a joke .

girls False Positive

Table 5.5: Examples of false positives and false negatives with iden-
tity terms that are not included in the list by Kennedy et al. (2020).
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Second, the subjectivity scores given by TextBlob are not always accurate

for each comment with identity terms. We have found several limitations of its

method by investigating the implementation of TextBlob. For example, they sim-

ply take the mean subjectivity scores over all words in a comment, which may be

insufficient to capture the subjectivity level accurately if the comment contains a

large percentage of objective words that reduce the overall subjectivity level of the

comment. Also, TextBlob assigns out-of-vocabulary words a subjectivity score of

0 and this will penalise comments with many misspellings. We believe accurate

subjectivity scores can potentially help SS-BERT predict them more accurately.

For example, the false negative with the identity term “white”:

“why white people used to say that sex was a sin used to be a mystery to me

until i saw the children of browns and mixed race children popping up all around

me”

has been assigned a low subjectivity score of 0.125. The presence of identity

terms and the low subjective score might mislead the model to make the incorrect

prediction. More examples of this kind are shown in Table 5.6.

5.4.5 Generalization

To examine the generalization of our methods, we also test our method on RoBERTa,

which is another popular pre-trained LM for TCC tasks (Liu et al., 2019c; Baruah

et al., 2020). RoBERTa has a similar structure with BERT where each token is

given an embedding and an attention mask (Liu et al., 2019c). We add the in-

formation of subjectivity scores to the embeddings and the presences of identity

terms to attention masks, as exactly how we do with SS-BERT. To provide a fair

comparison, we use an initial RoBERTa as the baseline. The implementations

are similar to how we implement BERT-based models that details are shown in

Section 5.3. The RoBERTa model and the SS-RoBERTa model are built on our

code of BERT and SS-BERT. We use the pre-trained “roberta-base” version of

RoBERTa and adopt the subjectivity scores by TextBlob. The hyperparameter

settings and dataset processing are the same as the experiments of BERT-based

models. The results (Table 5.7) show that our method consistently improves the

baseline RoBERTa across 4 datasets with the maximum improvement up to 1.29%.

It is somewhat surprising that BERT outperforms RoBERTa in our experi-

ments as literature generally shows that RoBERTa performs better than BERT
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Comments Subjectivity Scores SS-BERT Prediction

@ mad ##dr ##11 there is not and never has been a country called
palestine, micro ##bra ##in. and that land has been the home of jews
for 3000 years.

1 False Positive

buying black jelly beans for my kids... in case they re cutting up and
need a chill pill. they hate them.

0.7444 False Positive

@ love egypt @ washington ##post start by reading the historian will
duran ##t. his book ” our oriental heritage ” describes the. muslim
invasion.

0.6000 False Positive

lt lesbian chronicle late at the office part 1 she ran her hands over maria
##m s breasts

0.6000 False Positive

homosexuality scientist discuss, if eugene was homosexual. see therefore:
bern ##d - ulrich her ##ge ##mo ##ller , mann fur mann , page 210
magnus hirsch ##feld , die homosexual ##ita ##t des mann ##es und
des wei ##bes, 1914 / 1984 , page 66 ##1 albert mo ##ll, be ##ru
##hm ##te homo ##se ##x ##uel ##le, wi ##es ##bad ##en,
1910, page 36

0.6667 False Positive

lo ##l no i meant its a shame its not in common . i have a lot of gay
friends so you don ’ t need to worry that i am against gay ##s : ) in
terms of the afc article i can promise i won ##t repeat myself but if
i have an advancing argument or need to respond to someone who is
clearly wrong then i will do so but in a polite manner only . how about i
ask you before i post something to it and if you agree i will ? the problem
with this though is that i am up at stupid hours and so you won ’ t be
up . ok i ’ ll look for

0.7238 False Positive

why white people used to say that sex was a sin used to be a mystery to
me until i saw the children of browns and mixed race children popping
up all around me .

0.1250 False Negative

saudi cleric believes earth does not rev ##ol ##ve around sun . there
must be 50 ways to return to the 7th century with # islam as your expert
guide

0 False Negative

this ata ##sca ##der ##o woman is accusing of physically abu ##sing
two elderly relatives faces felony charges

0.1429 False Negative

rt @ ashes ##cho ##w : women ’ s studies : learn how to tell other
women they should study something other than women ’ s studies rt @
eli ##ah r : http : / / t . . . .

0.3750 False Negative

no wonder this races achieve nothing . 0 False Negative
lack of compassion seems to go hand and hand with lack the of white
blood.

0 False Negative

Table 5.6: Examples of false positives assigned with high subjectivity
scores and false negatives assigned with low subjectivity scores.

DATA RoBERTa SS-RoBERTa

F1 std False Negative False Positive F1 std False Negative False Positive

WS 0.5879 0.0233 48 52 0.5955 0.0253 46 55
Twitter 18k 0.7975 0.0052 96 151 0.7992 0.0072 93 152
Twitter 42k 0.7512 0.0095 70 262 0.7543 0.0081 70 256

Wiki 0.7429 0.0077 143 876 0.7521 0.0123 126 858

Table 5.7: Performance comparison between SS-RoBERTa and
RoBERTa. The mean F1 score and its standard deviation, the mean
false negative and the mean false positive are from 10 independently
runs for each model presented. The better F1 result for each task is
highlighted in bold.

on many other NLP tasks (Liu et al., 2019c). While our results may appear incon-

sistent, some earlier studies reported similar results. For example, Baruah et al.

(2020) have shown that BERT (macro F1 0.6501) outperforms RoBERTa (0.6130)
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on the task of aggression identification. Mutanga et al. (2020) have shown that

BERT (0.73) outperforms RoBERTa (0.69) in terms of F1 on the task of hate

speech detection. One possible explanation can be that RoBERTa is trained on a

much bigger training corpus than BERT. The bigger training corpus of RoBERTa

(16GB BERT corpus + 144GB corpus from CC-NEWs, OPENWEBTEXT and

CommonCrawl) enhances the knowledge of the formal language. However, con-

tent in TCC datasets is written in much more informal language. Another possible

reason is that RoBERTa removes the training objective of next sentence predic-

tion from BERT. However, this could have helped the model consider the overall

context when interpreting a text.

5.4.6 Limitations

It is unfortunate that the study did not include one of the datasets used by our

comparative study due to the dataset availability. The second issue not addressed

in this study and will be studied in the future is generalising our method to

other pre-trained models which have different structures from BERT, such as

Transformer-XL that does not include attention masks (Dai et al., 2019). Third,

although the impact of hyperparameters is not the focus of this study, the opti-

mal hyper-parameter setting for each dataset might be different. The potential

under-performance due to non-optimal hyper-parameter settings would affect our

conclusions. Last, this study is limited to the inaccuracy of subjectivity assigned

by the TextBlob. The inaccurate subjectivity scores potentially affect the perfor-

mance of our methods.

5.5 Conclusion

The identity term bias is commonly found as a limitation of the recent SOTA

TCC methods. It affects TCC performance as it often leads to false positive

predictions. However, only a few studies have investigated the identity term bias

and they tackle the issue based on the same principle of paying less attention to

the identity term.

In this chapter, we proposed a novel approach to tackle the identity term bias.

This is achieved by training a model to pay additional attention to the subjectiv-

ity level of comments only when an identity term appears. Our approach utilises

the BERT embeddings structure to embed the information of both subjectivity

levels and the presence of identity terms. This has addressed the first research
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question for this chapter. In addition to the traditional lexicon-based method,

we proposed a new method to measure the subjectivity of a comment when it

contains an identity term. The novelty here is that instead of lexicon-based meth-

ods in previous works, our method uses the semantic similarity to the relevant

Wikipedia summary text of that identity term as a proxy to subjectivity. This

has addressed the second research question of measuring the subjectivity level.

Our extensive evaluation has answered the third research question: our model

SS-BERT outperforms SOTA methods on a wide range of TCC tasks. The results

reveal that our method can mitigate the bias toward identity terms and reduce

the false positive predictions effectively. Also, the results indicate that semantic

similarity calculated by our method potentially reflects the subjectivity level of a

comment.



Chapter 6

Conclusion

It is widely acknowledged that creating labelled data for training toxic content

classifiers is expensive, while transferring a PLM to a downstream TCC model

gets around this issue by allowing the TCC model to utilise a greater amount of

unlabelled data via the PLM. Throughout this thesis, we have made contributions

to three areas of efficient and effective use of PLMs on TCC tasks: fine-tuning

a PLM for TCC tasks (Chapter 3), identifying the identity term bias in PLMs

(Chapter 4), and incorporating the subjectivity level to mitigate the identity term

bias in PLM-based TCC models (Chapter 5). In this final chapter, we will reca-

pitulate the proposed methods, summarise our findings, and provide an outlook

into the future directions.

6.1 Synopsis

In this dissertation, we studied PLM-based methods for automatically detecting

toxic comments. Chapter 1 presented the motivation and a preview for this thesis.

Chapter 2 reviewed the related concepts and techniques in text classification, par-

ticularly deep neural network-based methods. This chapter also introduced trans-

fer learning and pre-trained language models in detail, which are essential foun-

dations for this thesis. Chapter 3 focused on two strategies of transferring PLMs

to TCC models: first, how to design the downstream architecture for the PLM;

second, how to continue pre-training the PLM in domain with limited computa-

tional resources. This chapter also compared different PLMs on TCC tasks and

their performances with the two transferring strategies mentioned above. Chapter

4 studied the limitations of SOTA PLMs on TCC tasks. We provided evidences

of the identity term bias with model rationales. We also conducted qualitative

110
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and quantitative analysis on false predictions of a simple BERT-based classifier to

further investigate the issue of identity term bias and identified the relationship

between the toxicity, the subjectivity level and the presence of identity terms.

Chapter 5 proposed a novel model built upon BERT to mitigate the identity term

bias. The model is intuitively explainable and inspired by the observation and

findings from Chapter 4. The model was evaluated on a wide range of TCC tasks

and compared to a range of SOTA models. Further, we proved the generalisability

of the method with other PLMs built on BERT.

6.2 Summary

6.2.1 Findings

This thesis investigated the techniques of using PLMs for TCC tasks. Over the

course of this thesis, we presented extensive comparisons and empirical studies.

We also proposed novel methods to improve the performances of current PLMs on

TCC tasks. We now recapitulate how our methods addressed the research ques-

tions we laid out initially and summarise our findings.

Research question one:

How to configure a PLM-based TCC classifier that achieves

optimal performance and efficiency?

There are a range of options for configurations and transferring techniques when

applying PLMs to a downstream TCC model. These options are important as it

affects what and how the TCC model learns. We addressed this research question

by exploring two strategies: the design of downstream neural network architecture

and the TAPT-light continued pre-training in domain.

For the first strategy, We conducted extensive experiments to compare dif-

ferent downstream architectures with different PLMs on a wide range of TCC

tasks. The results consistently showed that a simple linear downstream archi-

tecture performs better than complex ones such as CNN and LSTM. This was

an unexpected finding as those complex DNN models usually outperformed the

traditional machine learning models when they were used alone without PLMs in

previous studies. For the second strategy, we reduced the batch size to examine

the TAPT-light performance when using much less computational resources than

the original TAPT continued pre-training in domain. We also tested different

pre-training epoch values. We found that TAPT-light is beneficial to PLM-based
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TCC models, especially on relatively small datasets and the minority classes in

the dataset. Regarding the pre-training epoch value, more training epoch does

not necessarily bring further improvement. Generally, we recommend 10 or 20

epochs when using TAPT-light, based on the our experiment results. We also

compared different PLMs and our results showed that BERT generally outper-

forms RoBERTa and XLM when they use the identical downstream architecture.

Research question two:

What are the limitations of SOTA PLM-based classifier for TCC?

The current studies have shown promising performance of PLMs in NLP but

at the same time, unintended bias in various tasks. The second study of this

thesis focused on the limitations of PLMs on TCC tasks, particularly the identity

term bias. We addressed this research question by conducting quantitative and

qualitative analysis on the BERT predictions on a wide range of TCC tasks. We

also examined the model explanations for the erroneous predictions of BERT to

study the identity term bias.

Our first finding was that the identity term bias is a prevalent issue among TCC

tasks and it was related to the false positive predictions. Second, the identity term

bias could be reflected in the rationales of model explanations, which indicate that

BERT over-attends to the identity term of non-toxic comments. This potentially

contributed to the false positive predictions. Third, false positive predictions gen-

erally have a lower subjectivity level than true positive predictions, this implies a

potential relationship between the identity term bias and the subjectivity level of

comments.

Research question three:

How to handle the identity term bias found in TCC models?

Previous studies usually handled the identity term bias by suppressing the model’s

attention towards identity terms. We explored a different approach and addressed

this research question by taking advantage of the findings from the second study

regarding the relationship between the subjectivity level of the comment, the tox-

icity of the comment and the presence of identity terms. We proposed a novel

model, SS-BERT, to incorporate features of the subjectivity level and the pres-

ence of identity terms. We also used a method that measures “subjectivity” based

on calculating the similarity of a comment to a related Wikipedia page.

Our results led to several findings. First, our model SS-BERT was able to

improve PLMs performance by mitigating the identity term bias and decreasing
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the false positive predictions. Second, adding the subjectivity level to BERT alone

was ineffective as the model did not consistently reduce false positive predictions.

This proved our hypothesis that only when the comment contains identity terms,

the toxicity of a comment can be associated to the subjectivity level of the com-

ment. Third, the similarity between a comment and the Wikipedia summary for

the identity term shared between them potentially indicated the subjectivity level

of the comment.

6.2.2 Contributions

We now summarise this thesis’ contributions with regard to PLMs for TCC tasks

overall and each transfer learning area in particular:

In the first study, we provided a comprehensive comparison of different PLMs,

different transferring strategies and different TAPT-light settings on TCC tasks.

This empirical study contributed towards enhancing our understanding of applying

PLMs to TCC tasks. The findings will also be of interest to future applications

of PLMs beyond TCC tasks.

The second study shed new light on the evidence of the identity term bias on

TCC tasks via model explanations. The analysis of subjectivity levels undertaken

in the study also extended our knowledge of the identity term bias. It identified

the relationship between the presence of identity term, the subjectivity level of

comments and the toxicity of comments.

The last study proposed a novel method to mitigate the identity term bias.

Different from other methods of debiasing the model, our model is based on the

intuition that that when someone mentions an identity term, the comment tends

to be non-toxic if the comment is objective. To the best of our knowledge, our

study was the first one specifically making use of the subjectivity level to handle

the identity term bias. This study also showed that the similarity between a

comment and the Wikipedia summary regarding the identity term contained by

the comment potentially indicates the subjectivity level of the comment.

6.3 Future work

A number of limitations have been identified and future work is proposed. These

have been discussed in previous chapters, and are summarised in this section.

Additionally, we will also give an outlook into the future for using PLMs on toxic

comment classification in general.
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6.3.1 On individual studies

TAPT of high computational resource (Chapter 3) Due to our limited

computational resources, this study did not evaluate the original TAPT on all

TCC tasks. However, we compared their results on one TCC task and TAPT-

light achieved a comparable result. It is possible that performances for the other

three TCC tasks will be different. Future research might explore the original

TAPT further and improve our understanding of the continued pre-training in

domain.

Hyperparameters (Chapter 3) We used identical hyper-parameter settings

for models with different downstream architectures. This might lead to the under-

performance of certain models as some models can have different optimal hyper-

parameter settings. To what extent those hyper-parameter settings impact on the

performance is unknown. Further research could also be conducted to determine

the effectiveness of fine-tuning the hyper-parameters for each model.

New PLMs (Chapter 3) By the time that this study completed, more PLMs

are proposed in the latest research, such as TweetBERT and TimeLM which are

pre-trained on Twitter corpora and GPT-3 which is designed for few-shot learning

(i.e., a learning task with very limited training data) (He et al., 2020; Loureiro

et al., 2022; Brown et al., 2020). It is unknown how these new PLMs perform

on TCC tasks and whether they will follow the same patterns discovered in this

study. A comparative study of these new PLMs could add to our understanding

of using PLMs on TCC tasks.

Defining subjectivity levels (Chapter 4) One issue we have found from

this study is that among the current TCC studies, there isn’t a clear and unified

definition for the subjectivity level in the context of TCC or related tasks. This

might lead to a debate of our findings and also hinder the application of our

method. Therefore, one future research direction is developing a formal definition

of subjectivity and methods for quantifying subjectivity of a text. This can benefit

a wider range of applications and research that make use of this linguistic feature.

Defining identity terms (Chapter 4) Up to now there is a lack of studies

on how to define identity terms or systematically create a list of identity terms.

Several questions still remain to be answered. For example, should different TCC

tasks use different identity terms? And how to handle identity terms that have

many variations (e.g., due to synonyms)? A greater focus on defining identity

terms or compiling an identity term list could add values to future TCC research

on the identity term bias.
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Generalisability of SS-BERT (Chapter 5) One future direction of the

third study is to investigate the effect of our method on the other PLMs (Lample

and Conneau, 2019; Yang et al., 2019). Although we had examined our method

with RoBERTa, experiments with a wider range of PLMs will contribute to un-

derstanding the generalisability of our method. Additionally, our method was

limited by the dependence of the masking layer. We have not explored how to

apply our hypothesis to the PLMs that do not contain a masking layer, such as

Transformer-XL (Dai et al., 2019).

Inaccurate subjectivity scores (Chapter 5) It was found that some sub-

jectivity scores by TextBlob were not accurate, which would have misled the model

in learning the relationship between subjectivity and toxicity. Further research in

SS-BERT may explore other methods of measuring the subjectivity level of com-

ments. Also, we believe more accurate calculation of the subjectivity level can

potentially benefit a wide range of tasks.

6.3.2 On the overall research direction

On a broader note, we expect PLMs to be an integral part of TCC models in

the coming years. Currently, the usage of PLMs on TCC tasks are limited in

several directions. The first is the lack of transparency of the decision making

by PLM-based models. Although we have seen the rapid development in both

areas of PLMs and TCC methods, there are very limited studies looking at the

model behaviour and the model explanation. As mentioned in the survey paper by

(Min et al., 2021), “there is a lack of understanding of what actually makes these

paradigms (PLMs) so successful, and whether their success can be generalised

across models and languages.” TCC studies on the model explanation will help

answer such questions. Furthermore, the reasoning for the final model prediction

could not only provide us insights on improving the model and identifying po-

tential bias, but also contribute to the practical applications. Because the model

explanation can be used to assist providing explanations and evidences to the

moderation of toxic comments.

Second, due to the limited training data and the high cost of creating labelled

datasets, few-shot learning and zero-shot learning with the benefits of PLMs are

of great interest for future practical applications. Zero-shot learning is an extreme

case of transfer learning, where a model trained on one domain is employed to

predict samples from a totally unseen domain (Goodfellow et al., 2016; Zhong

et al., 2021; Pamungkas et al., 2021). In few-shot learning, the model is given
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only a few examples for each class (Miller et al., 2000; Lake et al., 2011). We

notice the growth of such research in recent years, such as work by (Nozza, 2021;

Pamungkas et al., 2021; Wang and Banko, 2021). However, these studies diverge in

terms of different research objectives, methods and evaluation tasks. Particularly

considering the chat-speak style of user generated content from various online

platforms such as social media, applying zero- or few-short learning in TCC tasks

can be very challenging, and existing research in these areas may not offer much

reference value (Nozza, 2021).

6.4 Closing statement

With the explosive growth of social media and discussion forums and the ever-

increasing user-generated-content, toxic comments have become a prominent issue

online. Although NLP techniques, especially neural networks, have been success-

fully applied to many practical applications, there is still room for improvement

in automated methods for detecting toxic comments online. Our study focused

on “transferring” pre-trained language models to TCC and addressing the model

bias based on model decision-making explanations. This helps towards building

TCC models that are less dependent on training data, and make fairer decisions.

Our study also leads to an under-explored direction of using these black-box style

deep learning models: manually identifying and applying potential features for a

specific task. This idea could be extended to other tasks beyond TCC. Overall,

we hope to see that NLP techniques can be used reliably in combating online dis-

crimination and in promoting a healthy and friendly communication environment.

We see great potential and bright future of using PLMs on TCC tasks.
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Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-

sentations using rnn encoder-decoder for statistical machine translation. arXiv

preprint arXiv:1406.1078, 2014.

Alexandra Chronopoulou, Christos Baziotis, and Alexandros Potamianos. An

embarrassingly simple approach for transfer learning from pretrained language

models. arXiv preprint arXiv:1902.10547, 2019.



BIBLIOGRAPHY 122

George Chrysostomou and Nikolaos Aletras. Enjoy the salience: Towards better

transformer-based faithful explanations with word salience. In Proceedings of the

2021 Conference on Empirical Methods in Natural Language Processing, pages

8189–8200, Online and Punta Cana, Dominican Republic, November 2021. Asso-

ciation for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.645.

URL https://aclanthology.org/2021.emnlp-main.645.

Theodora Chu, Kylie Jue, and Max Wang. Comment abuse classification with

deep learning. Von https://web. stanford. edu/class/cs224n/reports/2762092.

pdf abgerufen, 2016.

Christopher Clark, Mark Yatskar, and Luke Zettlemoyer. Don’t take the easy way

out: Ensemble based methods for avoiding known dataset biases. arXiv preprint

arXiv:1909.03683, 2019.

Edward Collins, Nikolai Rozanov, and Bingbing Zhang. Evolutionary data mea-

sures: Understanding the difficulty of text classification tasks. arXiv preprint

arXiv:1811.01910, 2018.

Bullying Prevention Steering Committee. What is cyberbullying, 2019. URL

https://www.stopbullying.gov/cyberbullying/what-is-it/index.html.

Last accessed 19 October 2019.

ConversationAI. Toxic comment classification challenge: Iden-

tify and classify toxic online comments, 2017. URL

https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, and Ziqing Yang. Pre-training

with whole word masking for chinese bert. IEEE/ACM Transactions on Audio,

Speech, and Language Processing, 29:3504–3514, 2021.

Maral Dadvar, FMG de Jong, Roeland Ordelman, and Dolf Trieschnigg. Im-

proved cyberbullying detection using gender information. In Proceedings of the

Twelfth Dutch-Belgian Information Retrieval Workshop (DIR 2012). University

of Ghent, 2012.

Zihang Dai, Zhilin Yang, Yiming Yang, William W Cohen, Jaime Carbonell,

Quoc V Le, and Ruslan Salakhutdinov. Transformer-xl: Attentive language

models beyond a fixed-length context. arXiv preprint arXiv:1901.02860, 2019.



BIBLIOGRAPHY 123

Thomas Davidson, Dana Warmsley, Michael Macy, and Ingmar Weber. Auto-

mated hate speech detection and the problem of offensive language. In Eleventh

international aaai conference on web and social media, 2017.

Thomas Davidson, Debasmita Bhattacharya, and Ingmar Weber. Racial bias in

hate speech and abusive language detection datasets. In Proceedings of the Third

Workshop on Abusive Language Online, pages 25–35, 2019.

Oscar Day and Taghi M Khoshgoftaar. A survey on heterogeneous transfer learn-

ing. Journal of Big Data, 4(1):29, 2017.

Ona de Gibert, Naiara Perez, Aitor Garćıa-Pablos, and Montse Cuadros. Hate
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Elise Fehn Unsv̊ag and Björn Gambäck. The effects of user features on twitter

hate speech detection. In Proceedings of the 2nd Workshop on Abusive Language

Online (ALW2), pages 75–85, 2018.

Alper Kursat Uysal. An improved global feature selection scheme for text classi-

fication. Expert systems with Applications, 43:82–92, 2016.

Alper Kursat Uysal and Serkan Gunal. The impact of preprocessing on text

classification. Information Processing & Management, 50(1):104–112, 2014.

Ameya Vaidya, Feng Mai, and Yue Ning. Empirical analysis of multi-task learning

for reducing identity bias in toxic comment detection. In Proceedings of the

International AAAI Conference on Web and Social Media, volume 14, pages

683–693, 2020.

Betty van Aken, Julian Risch, Ralf Krestel, and Alexander Löser. Challenges for
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De Pauw, Walter Daelemans, and Véronique Hoste. Detection and fine-grained

classification of cyberbullying events. In Proceedings of the international con-

ference recent advances in natural language processing, pages 672–680, 2015.

Cynthia Van Hee, Gilles Jacobs, Chris Emmery, Bart Desmet, Els Lefever, Ben

Verhoeven, Guy De Pauw, Walter Daelemans, and Véronique Hoste. Automatic
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Ethics Administrator 
Information School

Please note the following responsibilities of the researcher in delivering the research project:

The project must abide by the University's Research Ethics Policy:
https://www.sheffield.ac.uk/rs/ethicsandintegrity/ethicspolicy/approval-procedure
The project must abide by the University's Good Research & Innovation Practices Policy:
https://www.sheffield.ac.uk/polopoly_fs/1.671066!/file/GRIPPolicy.pdf
The researcher must inform their supervisor (in the case of a student) or Ethics Administrator (in the case of a member
of staff) of any significant changes to the project or the approved documentation.
The researcher must comply with the requirements of the law and relevant guidelines relating to security and
confidentiality of personal data.
The researcher is responsible for effectively managing the data collected both during and after the end of the project
in line with best practice, and any relevant legislative, regulatory or contractual requirements.



Application 031591

Section A: Applicant details

Date application started:
Mon 4 November 2019 at 00:28

First name:
Zhixue

Last name:
Zhao

Email:
zhixue.zhao@sheffield.ac.uk

Programme name:
INFR31 Information Studies (PhD/Info Studs (SSc) FT)

Module name:
Standard PhD Thesis
Last updated:
08/12/2019

Department:
Information School

Applying as:
Postgraduate research

Research project title:
Handling limited data with transfer learning in toxic comment classification tasks.

Has your research project undergone academic review, in accordance with the appropriate process?
Yes

Similar applications:
020777 ''Multi-Label Classification for Toxic Comments Detection at Scale with Machine Learning''

Section B: Basic information

Supervisor

Name Email

Ziqi Zhang ziqi.zhang@sheffield.ac.uk

Proposed project duration

3: Project code (where applicable)

Suitability

Start date (of data collection):
Sat 30 November 2019

Anticipated end date (of project)
Sat 31 December 2022

Project externally funded?
- not entered -

Project code
- not entered -

Takes place outside UK?
No

Involves NHS?
No

Health and/or social care human-interventional study?
No

ESRC funded?
No

Likely to lead to publication in a peer-reviewed journal?
Yes

Led by another UK institution?
No

Involves human tissue?
No

Clinical trial or a medical device study?
No

Involves social care services provided by a local authority?
No

Is social care research requiring review via the University Research Ethics Procedure
No

Involves adults who lack the capacity to consent?
No

Involves research on groups that are on the Home Office list of 'Proscribed terrorist groups or organisations?
No



Indicators of risk

Involves potentially vulnerable participants?
No
Involves potentially highly sensitive topics?
Yes

Section C: Summary of research

1. Aims & Objectives

The research aims to extend the understanding of using transfer learning to handle limited data in toxic comment classification tasks, especially from three perspectives (i.e. three research
questions): 
a). Discover the most beneficial existing pre-trained model (i.e. transfer learning methods) for Toxic Comment Classification (TCC) tasks, b). Explore the transfer learning model pre-trained on user
classification for TCC, and c). Explore the hybrid model combining transfer learning and multi-task learning for TCC tasks.

Based on the aims, the four objectives of the research are as follows: 
1. To review related literature and study the knowledge of text classification, supervised machine learning, transfer learning and multi-task learning. 
2. To build different transfer learning models and test them on a wide range of TCC tasks, giving a comprehensive comparison of transfer learning methods. 
3. To develop a transfer learning model pre-trained on user classification tasks and adapt it to TCC tasks, investigating the effect of this pre-trained model on TCC tasks. 
4. To develop a hybrid model which generally utilising more data and to investigate its impact on TCC tasks.

2. Methodology

This research mainly uses quantitative research methods, which compare different machine learning techniques and models on the tasks of toxic comment classification. It is essentially a
comparative study. In total, we have three studies, and each of them will address a research question described in the ''Aims & Objectives''. In each study, we will build several different prediction
models and one baseline model. All models will be evaluated on publicly available datasets to investigate their predictive performance on a wide range of tasks. Note that this research uses
''model'' to only refer to the machine learning models in natural language processing applications.

To be more specific: 
- In study one, to investigate the performance of different transfer learning methods on Toxic Comment Classification (TCC), we will compare existing publicly available pre-trained models on a wide
range of TCC tasks. The pre-trained models are available to download directly, which essentially are codes of the model with parameters learnt already. TCC tasks are publicly available datasets,
published by previous researchers or research organisations. They are also known as secondary data. We describe each of the datasets in detail and their publications information in the later
section of this application. For some datasets, we need to use Twitter APIs to gather some data since the published datasets do not contain the text directly. For example, dataset D4, as we specified
in the additional document section, contains the tweets IDs and labels for each instance. In such a situation, we need to use the Twitter API to collect the tweet content by querying with the tweet
IDs.

- In study two, we hypothesise that the user classification task model can help with the TCC tasks by transfer learning. To test this hypothesis, we will build a transfer learning model which transfers
the user classification model to TCC tasks. To do so, we will pre-train a model on user classification tasks first using user classification datasets and then transfer it (the model and its parameters) to
the TCC tasks. The TCC tasks are the same as mentioned in study one above. The user classification tasks are also publicly available published by previous researchers (we list two of them in
section F in this application form).

- In study three, we propose to build a hybrid model which combines transfer learning and multi-task learning, two machine learning paradigm, in one model. We will build the model first and then
test it on a wide range of TCC tasks. The TCC tasks will use the same datasets of the ones in study one and study two as described above.

Analysis: 
Our three studies in this research are essentially comparative studies. In short, we will compare the proposed model with each other, and also with the baseline model on the same tasks (TCC tasks)
using a unified measure metrics. By a wide range of comparison, we will be able to analyse each model and its advantages and disadvantages.

This research will mainly use quantitative research methods and thus will only report aggregated results rather than any original text. We may conduct some qualitative analysis to understand the
errors made in the model. In this situation, we will not publish any specific and complete textual content. We may use a snippet from one instance as an example to discuss our findings. Any specific
and related user information will not be published (any identifiable information already been removed from the dataset). For example, if we want to consider the effect of typos on models, we will
mention the typo word rather than the whole sentence or text.

3. Personal Safety

Have you completed your departmental risk assessment procedures, if appropriate?

Not applicable

Raises personal safety issues?

No

All the works of this research will be implemented using Python programming in computer Labs. No foreseeable physical risk. In terms of mental well-being, this research uses secondary data and
mainly assesses the model performance rather than the textual content to be classified itself. Therefore, researchers will barely be exposed to content which potentially impacts researchers' mental
well-being.

Section D: About the participants

1. Potential Participants

This research uses secondary dataset which does not require to recruit participants. Some datasets only released the tweet IDs (as shown by example B) rather than the real content (as shown by
example A). In these cases, we will retrieve the original tweet text to match the original dataset. Therefore, indirect participants are those that created these content or those that are involved in the
dataset. In any situation, any identifiable information of users will not be collected.

Example A: 
Instances of TCC dataset: 
normal; "I dont care how you think" 
aggressive; "go kill yourself"

Example B: 
Instances of TCC dataset (contains tweet IDs instead of tweet content):

normal, 683189274167095297 
aggressive, 683134555264528385

2. Recruiting Potential Participants

As described above, this research uses secondary dataset, which does not require to recruit participants. As explained above, we will use the Twitter API to collect tweets by using tweet IDs
provided in the secondary dataset.

2.1. Advertising methods

Will the study be advertised using the volunteer lists for staff or students maintained by CiCS? No

- not entered -

3. Consent

Will informed consent be obtained from the participants? (i.e. the proposed process) No

Firstly, according to the Twitter privacy policy (https://twitter.com/en/privacy), Twitter users that choose to make their profile public have accepted that their data will be publicly available via the
Twitter API to research uses.

Secondly, in legal terms, this does not breach the GDPR clause about "Lawfulness of processing". Article 6, 1 identifies six situations under which collecting and processing personal data is lawful.
Our research can be classified under 1(f) 'processing is necessary for the legitimate interests', as mentioned in Rectal 47 (http://www.privacy-regulation.eu/en/r47.htm). As set out above in the
Twitter policy, users who share their data publicly should reasonably expect that their public data can be used for research purposes by universities. Thus we argue this research represents
'legitimate interest'.



Thirdly, the scale of the data collection also means that obtaining explicit consent from tens of thousands of users is not applicable. Some data only contains the text without any user information
which makes it impossible to reach the participants. The data contains account IDs or screen-names will be represented by random digits rather than meaningful symbols.

Finally, in reality, users often choose not to read privacy policy entirely and as a result, may not understand that their data could be used for research purpose. We will mitigate this risk by ensuring
user identities are properly anonymised and that it is not possible to re-identify users from the disseminated work. Specifically: 
- We will make sure not to develop methods to identify individual users, but toxic comment classifier tools. The user metadata which is anonymised and represented by abstract numbers is
insufficient to re-identify individual users. 
- We delete any user's screennames and replace them with random and meaningless numbers. 
- We will only publish the performance of models. We will make sure not to release any individual user information in any form. Only the aggregated data, such as the demographic population
distribution. 
- We will follow ethical rules strictly and not share any data outside the research,

4. Payment

Will financial/in kind payments be offered to participants? No

5. Potential Harm to Participants

What is the potential for physical and/or psychological harm/distress to the participants?

There is no potential harm for the participants since they can not be identified via the data to be processed in this research.

How will this be managed to ensure appropriate protection and well-being of the participants?

We will make sure the data is fully anonymised.

Section E: About the data

1. Data Processing

Which organisation(s) will act as Data Controller?

University of Sheffield only

2. Legal basis for processing of personal data

The University considers that for the vast majority of research, 'a task in the public interest' (6(1)(e)) will be the most appropriate legal basis. If, following discussion with the UREC, you wish to use
an alternative legal basis, please provide details of the legal basis, and the reasons for applying it, below:

- not entered -

The University considers the most appropriate condition to be that 'processing is necessary for archiving purposes in the public interest, scientific research purposes or statistical purposes' (9(2)(j)) .
If, following discussion with the UREC, you wish to use an alternative condition, please provide details of the condition, and the reasons for applying it, below:

- not entered -

3. Data Confidentiality

What measures will be put in place to ensure confidentiality of personal data, where appropriate?

1. The data collection is only conducted on the University server machines. Once data collection is complete they will be anonymised and then encrypted and stored in only University drive. 
2. All following processing and experiments will only be conducted using university computers. 
3. Identifiable information will be discarded.

4. Data Storage and Security

In general terms, who will have access to the data generated at each stage of the research, and in what form

I and my supervisors, Dr Ziqi Zhang and Dr Frank Hopfgartner, will have access to the data which are anonymised.

What steps will be taken to ensure the security of data processed during the project, including any identifiable personal data, other than those already described earlier in this form?

We will only use the university computer to process and store data. Also, we do not have any identifiable personal data.

Please outline when this will take place (this should take into account regulatory and funder requirements).

All datasets will be anonymised once it is collected. Any identifiable personal data are destroyed within the project.

Will you be processing (i.e. collecting, recording, storing, or otherwise using) personal data as part of this project? (Personal data is any information relating to an identified or identifiable living person).
Yes

Will you be processing (i.e. collecting, recording, storing, or otherwise using) 'Special Category' personal data?
Yes

Will all identifiable personal data be destroyed once the project has ended?
Yes

Section F: Supporting documentation

Information & Consent

Participant information sheets relevant to project?
No

Consent forms relevant to project?
No

All versions

Additional Documentation

Document 1072302 (Version 1)
Summary of datasets and their source links

External Documentation

The detailed information of each dataset is listed in the additional documentation. The source of each dataset is as below:

Eight publicly available datasets (twitter dataset two and three are from the same source): 
D1 - 
Stormfront dataset: https://www.aclweb.org/anthology/W18-5102.pdf 
D2 - 
Facebook dataset: https://www.aclweb.org/anthology/W18-4401/ 
D3 - 
Toxic Comment Classification Challenge (Kaggle competition, Wikipedia dataset): https://www.kaggle.com/c/jigsaw-toxiccomment-classification-challenge 
D4 - 
Detecting Insults in Social Commentary (Kaggle competition dataset): https://www.kaggle.com/c/detecting-insults-in-social-commentary 
D5 & D6 - 
Twitter dataset one and two: https://github.com/zeerakw/hatespeech 
D7 - 



Twitter dataset three: https://www.aaai.org/ocs/index.php/ICWSM/ICWSM17/paper/download/15665/14843 
D8 - 
Twitter dataset four: http://www.yichang-cs.com/yahoo/WWW16_Abusivedetection.pdf

Example instances of TCC dataset: 
normal; "I dont care how you think" 
aggressive; "go kill yourself"

Example instances of TCC dataset (contains tweet IDs instead of tweet content): 
normal, 683189274167095297 
aggressive, 683134555264528385

Two user classification tasks: 
D9 - 
Hateful Users on Twitter(Kaggle competition): https://www.kaggle.com/manoelribeiro/hateful-users-on-twitter 
D10 - 
Twitter mean birds: https://arxiv.org/abs/1702.06877

Example instances of user classification datasets (D10 format, which does not contain tweet contents but tweet IDs): 
user_1 aggressor
657684957272387584,657695791134416896,656838718666493952,657193317709565952,657688224601632768,657771833853411328,657231280367673344,657253568878157824,656952531109724160,657707551967027200
user_2 aggressor 663286416676274176,663345753515945984,663271094904754176,663301981742592000,663304166995968000,663300853479018496,663297196054347776 
user_3 aggressor 683165798660206592,683189274167095297,683134555264528385,683110668699086849,683192428304662528 
user_4 aggressor 737427866032295936,737284416603492356,737327198533623808,737171166230511616,737398925301145602,737503355111542785

Section G: Declaration

Signed by:
ZHIXUE ZHAO
Date signed:
Thu 7 November 2019 at 00:36

Offical notes

- not entered -


