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Abstract

The patterning of multicellular tissues is an essential process in embryonic development

involving dynamic, iterative interactions between components from the molecular to the

tissue scale. Mathematical modelling can help disentangle this complexity by integrating

disparate experimental observations in a systematic conceptual framework. To that end, this

thesis presents a suite of reaction-diffusion models of molecular to tissue scale patterning,

ranging from generic, tractable models amenable to mathematical analysis to more detailed

models that account for known biochemical interactions. At the molecular scale, we explore

the phenomenon of protein complex clustering by modelling transmembrane homodimer for-

mation. We identify conditions in which this model supports spatial patterns, corresponding

to clusters, as a Turing or wave-pinning instability. Moving up a length scale, motivated by

the ‘core’ planar polarity pathway in the fly wing, we model transmembrane heterodimer

complex formation in a one-dimensional line of cells. We explore how different forms of

molecular feedback interactions amplify initial asymmetries to drive this system to a spatial

pattern (corresponding to planar polarisation). We then extend this model into two spatial

dimensions and explore the existence and stability of different forms of patterning, including

planar polarisation. Finally, we consider a two-dimensional model of the Fat-Dachsous

planar polarity pathway, exploring the relative contributions of local feedback interactions

and tissue-scale signalling cues in generating observed levels of planar polarisation in this

system. Together, the contributions in this thesis advance the use of mathematical modelling

to help understand patterning processes in developmental biology.
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Chapter 1

Introduction

Embryonic development emerges from the complex interplay of cellular processes such as

proliferation, movement and fate specification. These processes are regulated through a

variety of forms of patterning, whereby structures that are initially (close to) spatially homo-

geneous evolve over time to become spatially heterogeneous in a robust and reproducible

manner. Over 100 years after D’Arcy Thompson’s On Growth and Form [1], and 70 years

after Turing’s The Chemical Basis of Morphogenesis [2], mathematical biology plays an

increasingly important role in advancing our understanding of patterning in developmental

biology. This thesis contributes to that endeavour through the construction and analysis of a

suite of mathematical models of patterning from the molecular to the tissue scale.

To provide a foundation for this work, in this chapter we discuss the relevant background

biology and approaches. The remainder of this chapter is structured as follows. In Section 1.1

we discuss patterning from the molecular to the tissue scale and highlight key open questions

at each scale. In Section 1.2 we discuss how mathematical modelling has been successfully

used to study developmental patterning. In Section 1.3 we discuss how planar polarity

provides an excellent exemplar for studying the principles of molecular to tissue scale

patterning. Finally, in Section 1.4 we summarise the key research questions to be tackled in

this thesis and present an outline for the remainder of the thesis.



2 Introduction

1.1 Molecular to tissue scale patterning

The patterning of multicellular tissues is essential for the formation of the organs that make up

our bodies. It relies on self-organisation, which emerges from dynamic, iterative interactions

between components from molecular to tissue scales [3].

At the molecular scale, there is increasing experimental evidence that proteins involved in

cellular signalling and communication do not accumulate uniformly within cells, but instead

form spatially localised clusters [4, 5]. An important example is the cell-cell adhesion protein

E-cadherin, which forms transmembrane complexes linking adjacent cells, and regulates

important cellular processes such as cell polarisation [6]. Super-resolution microscopy

has revealed that E-cadherin complexes form high-density nano-scale clusters [4, 7]. The

size, distribution, and dynamics of these clusters are likely to have consequences on local

adhesive forces and tensile force transmission [4], since they interact with the cortical actin

cytoskeleton [8]. Another example is provided by planar polarity proteins (see Section 1.3),

which have been shown to cluster into discrete stable membrane subdomains, or puncta [5, 9].

Experiments suggest that such clustering is functionally important for the generation of

cellular polarity [9]. However, the mechanisms underlying puncta formation, the stability

over the timescale of planar polarisation, and the nature of any feedback interactions that

amplify cluster sorting, still remain unknown [10, 11].

Local organisation of proteins into clusters does not suffice to explain self-organisation of

locally coordinated cell polarisation. Moving up a length scale, cellular symmetry breaking

and polarisation [12] emerge from the coordination of molecular interactions through intracel-

lular interactions. For example, during planar polarisation of epithelial tissues, intercellular

complex formation and feedback interactions result in the asymmetric distribution of polarity

proteins at opposite ends of the cell [13]. Heterogeneity and variability in protein interactions

have increasingly been recognised as playing an important role in cell-level patterning and

signal interpretation [14]. However, while reaction-diffusion networks [15] and gradients
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of post-translational modification [16] have been suggested to underlie cell-scale patterning

events, the precise mechanisms largely remain unclear.

Finally, at the tissue scale, intercellular communication and polarised behaviours such

as cell division and intercalation locally coordinate cell polarity, while long-range controls

have been posited to coordinate patterning across tissues [17]. For example, it has been

proposed that the alignment and orientation of planar polarity across a tissue many hundreds

or thousands of cells across can arise from a graded ‘global directional cue’ that could be

mechanical and/or chemical in nature [18, 19]. However, the source, timing, and persistence

of the mechanisms coordinating tissue-scale pattering remain unclear in many cases.

1.2 Mathematical modelling

Spatial patterns in biology have been inspiring mathematicians for decades, if not centuries.

The complexity of particular biological systems has given rise to new specialised research

fields, such as mathematical oncology [20]. Nevertheless, simplified mathematical models

are still helpful in explaining the – often non-intuitive – general mechanisms underlying

biological pattern formation.

Within developmental biology, a particularly successful modelling approach – whose

roots lie in the groundbreaking early work of Turing [2] – is to consider the biochemical

reaction kinetics and diffusive transport of key proteins or other signalling molecules that

form the spatial pattern of interest. Given suitable initial conditions and sufficiently large

differences in the diffusion rates of the state variables, reaction-diffusion systems share some

key mathematical properties including: (i) in the absence of any initial asymmetry, these

systems can exhibit stable self-organised patterns (spatially non-uniform steady states) [21];

(ii) different reaction/diffusion parameters are sufficient to produce a variety of distinct

patterns [22, 23]; and (iii) patterns formed via reaction-diffusion systems may be sensitive to

external perturbations [15, 24].
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Reaction-diffusion systems exhibiting pattern formation include the two-component

activator-substrate mechanism, whereby spatially localised peaks in chemical concentration

emerge via a rapidly diffusive substrate and a slowly diffusive activator. Such models have

been applied to processes from the molecular to the tissue scale. A relevant cell-scale

patterning example is the work of Mori et al. [25], who model the diffusion and the switch

between the bound active and inactive forms of the protein Rho-GDP that are found in the

cell membrane and cytosol, respectively. The authors find that the rate of protein diffusion,

and the total protein concentration within the cell and whether this is conserved over time,

play important rules in pattern formation in this system (Rho-GDP polarisation). We explore

other relevant models of patterning in more detail in Chapters 2–5.

In this thesis we shall make extensive use of reaction-diffusion based modelling. Nev-

ertheless, it is worth emphasising that not all developmental patterns are based on reaction-

diffusion systems or biochemical signalling more generally. Indeed, there is growing evidence

for the importance of cell adhesion and other mechanical contributions to many important

patterning events, such as follicle patterning [26]. The interactions between mechanics and

biochemistry in developmental patterning is a highly active area of current research, which

we return to in our concluding discussion in Chapter 6.

1.3 Planar polarity

An important exemplar for developmental patterning, which will motivate much of the work

presented in this thesis, is planar polarity. During embryogenesis, oriented cell behaviours

are required to ensure correct tissue structure, and to generate asymmetries such as the

head-tail axis [27]. Planar polarity, whereby cells become polarised within a particular plane,

is an important form of oriented cell behaviour [28]. Such behaviour is often observed

in epithelial tissues, which line the surfaces of organs and body cavities, and which are

composed of sheets of tightly adherent cells that typically adopt a polygonal packing [29].
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Planar polarity is involved in a variety of morphogenetic events, such as oriented cell

divisions and rearrangements, that help to determine the overall shape, size and structure of

developing organs. Hence, elucidating the mechanisms underlying the establishment and

maintenance of planar polarity helps us obtain a deeper understanding of how the behaviours

of individual cells are interpreted and coordinated to achieve tissue-scale patterning.

Loss of planar polarity is associated with failure of neural tube closure during early

embryogenesis [30], spermiation defects [31], cardiac patterning defects [32], and cellular

patterning defects in the cochlea that can cause deafness [33]. Understanding the mechanisms

underlying planar polarity therefore also offers the possibility of improved therapies for

developmental diseases, as well as other medical conditions such as cancer metastasis that

involve disruptions to tissue patterning.

A powerful yet cost-effective experimental model for studying planar polarity is the fruit

fly Drosophila. Planar polarity is demonstrated externally by the alignment of hairs on the

wings and the abdomen of the adult fly (Fig. 1.1), with each hair being produced by a single

cell (Fig. 1.2 c and d), and polarised with respect to the axis of the body or appendage [27].

For much of this thesis, we will be motivated by experimental studies of planar polarity in

the developing fly wing. However, it is worth emphasising that the principles seen in the

wing are conserved across many different tissues and species [28].

Fig. 1.1 Image of a wild-type Drosophila wing, showing uniform distal orientation of
trichomes, taken by Larra Trinidad. The fly schematic on the left is created with BioRender.

A key pathway involved in the establishment of planar polarity is the ‘core’ planar

polarity pathway [28]. The core pathway shows clear evidence of communication between
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neighbouring cells [13] and exhibits asymmetric subcellular localised ‘bridges’ formed of

several proteins within and across neighbouring cells. In the fly wing, planar polarity proteins

localise to the proximal (parts closer to the body of the fly) and distal sides of each cell’s

membrane. These transmembrane proteins act as gateways that permit signalling between

cells. During early wing development, the transmembrane protein Frizzled (Fz) and the

cytosolic proteins Dishevelled (Dsh) and Diego (Dgo) localise to distal cell edges. The

transmembrane protein Van Gogh (Vang) and the cytosolic protein Prickle (Pk), however,

localise proximally, while the transmembrane cadherin Flamingo (Fmi) localises to both the

distal and proximal sides of each cell (Fig. 1.2a) [28].

The molecular logic of the core pathway can be investigated by mutating a small group of

cells (clones) for a particular core protein and assessing if and how the polarity of juxtaposed

wild-type (genetically normal) cells are affected [17]. The removal of any core protein via

genetic manipulation disrupts polarisation and leads to ‘prehairs’ (the stage before a hair

emerges) often being formed at the wrong cell edge [34]. In fact, in most strong mutant

phenotypes, the trichomes instead form in the cell centre before adopting a wrong polarity as

they grow [35]. A domineering non-autonomous phenotype is observed [36] when a group of

cells lacking Fz activity induces neighbouring wild-type cells to polarise towards mutant cells

(Fig. 1.3a). Conversely, a group of cells mutated for Vang (Fig. 1.3b) induce neighbouring

wild-type cells to polarise away from the mutant cells [37, 38].

Another key planar polarity pathway is the Ft-Ds pathway. This pathway consists of

the two atypical cadherins, Fat (Ft) [39] and Dachsous (Ds) [40], that form heterodimers

via their long extracellular domain between adjacent cells (Fig. 1.2b). This pathway also

consists of the transmembrane kinase Four-Jointed (Fj) [41], which can modulate Ft and Ds

binding affinity [42–44], as well as another atypical myosin effector protein called Dachs [45].

Opposing tissue expression gradients of Ft and Ds along the proximal–distal axis of the
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Fig. 1.2 Planar polarity pathways from the molecular to the tissue scale. (a) Core pathway
components form asymmetric intercellular complexes at cell junctions. (b) The Ft-Ds
pathway proteins Ft (teal) and Ds (pink) form heterodimers between adjacent cells. (c)
Schematic of asymmetric localisation of two planar polarity proteins in the fly wing: Fz
at distal cell edges (green) and Vang at proximal cell edges (orange). (d) Schematic of
asymmetric localisation of Ft and Ds in the fly wing: Ft at anterior cell edges (teal) and Ds at
posterior cell edges (pink). Trichomes – microscopic outgrowths of hair (black triangles) –
emerge at the distal vertex of each cell as a result of polarity protein localisation (c, d). This
Figure is created with BioRender.
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Fig. 1.3 Schematic of polarity defects in the Drosophila wing, illustrating domineering
non-autonomy of a central group of cells lacking (a) Fz and (b) Vang activity, visualised
through disrupted orientation of neighbouring cells’ trichomes (black arrows). Based on
experimental observations [36]. This Figure is created with BioRender.

developing fly wing (reviewed in [46]) results in intracellular asymmetric localisation of the

Ft-Ds components to the anterior and posterior compartments of each cell (Fig. 1.2d).

1.4 Thesis outline

As summarised above, there are a number of outstanding questions concerning the mecha-

nisms underlying molecular to tissue scale patterning events in development, which mathe-

matical modelling can help shed light on. To address this, in Chapters 2–5 we present and

analyse a suite of mathematical models. The remainder of this thesis is structured as follows.

In Chapter 2, we focus on molecular scale patterning. Motivated by the example of

E-cadherin clustering, we construct an abstracted reaction-diffusion model of transmem-

brane homodimer complex formation along a one-dimensional continuous spatial domain,

representing a single cell-cell junction within an epithelial tissue. Using a combination
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of steady state, linear stability, bifurcation, and asymptotic analysis, as well as numerical

simulations, we explore under what circumstances this model supports spatially localised

patterns (corresponding to clusters, or puncta) as a Turing and/or wave-pinning instability.

In Chapter 3, we focus on cell-to-tissue scale patterning. Motivated by the example

of establishment of core pathway planar polarity across the fly wing, we construct an ab-

stracted reaction-diffusion model of transmembrane heterodimer complex formation in a

one-dimensional discrete spatial domain, representing several cells within a tissue. Using a

combination of steady state, linear stability, and bifurcation analysis, as well as numerical

simulations, we explore how different forms and mechanisms of nonlinear feedback interac-

tions could amplify initial asymmetries to drive the system to a spatial pattern (corresponding

to planar polarisation).

In Chapter 4, we extend our abstracted model from Chapter 3 into two spatial dimensions,

considering a static hexagonal cell packing representing the fly wing. Using a combination of

analytic and numerical approaches, we explore the existence and stability of different forms

of patterning, including planar polarisation, in this system.

In Chapter 5, we focus on a more biochemically detailed model of the Ft-Ds planar

polarity pathway, previously proposed by Hale et al. [44] for one spatial dimension, and

extend this model to two spatial dimensions. Through a range of numerical simulations, we

explore the scientific hypothesis that both weak positive feedback as well as a strong global

cue is required in order to generate the experimentally observed degree of planar polarisation

in this system.

Finally, in Chapter 6, we conclude with a summary of the major results in this thesis and

discuss possible avenues for future work.





Chapter 2

Turing and wave-pinning mechanisms of

protein complex clustering

2.1 Introduction

As described in Chapter 1, developmental patterning at the tissue scale has its roots in protein

interactions at the molecular scale. There is increasing recognition that pattern formation

at the level of membrane-bound protein complex clustering and asymmetric localisation

underlies important biological processes including cell-cell adhesion and planar polarisation.

However, the question of how transmembrane protein complexes locally cluster is still

unanswered. The most favoured hypothesis is that this ‘self-organising’ process may depend

on local positive feedback interactions [5, 47], although the mechanism and nature (for

example, whether they are self-limiting) of such interactions remain to be elucidated.

Reaction-diffusion models offer a flexible mathematical framework within which to

study the possible mechanisms underlying spatial pattern formation. As discussed briefly

in Section 1.2, one example of a well-known reaction-diffusion mechanism for pattern

formation is the Turing instability [48], which generates spatially periodic peaks and troughs

in the concentrations of key chemicals or proteins of interest. A mathematically related
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behaviour is the ‘wave-pinning’ instability [49, 50], which generates spatial subdomains with

uniform, separated phases of high and low concentrations connected by a ‘wavefront’. Both

these mechanisms have been posited in the context of molecular-scale pattern formation [51,

49, 50], though to date there has been little in the way of applications to protein complex

clustering in the context of cell-cell adhesion or planar polarity.

2.1.1 Aim of work

In this chapter, we propose a minimal reaction-diffusion model for the formation of protein

complex clusters at a cell-cell junction that incorporates some form of nonlinear feedback

interactions. Our direct motivation is to understand the formation of E-cadherin homodimer

clusters in cell-cell adhesion, though our framework could be naturally extended to explore

the clustering of complexes comprising two or more monomer species.

Our aim is to use a combination of analytic, asymptotic, and numerical methods to assess

the conditions under which spatially localised patterns are possible in this model. We are also

interested in addressing the following questions concerning properties of such patterns: (i)

When can ‘clusters’ (spatially localised non-uniform steady state solutions) form? (ii) Under

what circumstances can multiple stable clusters co-exist? (iii) How do cluster shape, size and

location depend on the hypothesised form of feedback interactions and parameter values?

We first consider a model in which the total mass of our protein of interest (monomers and

complexes) along the cell-cell junction is conserved. We then loosen this assumption by

introducing monomer trafficking and monomer/complex recycling into the model.

The remainder of this chapter is structured as follows. In Section 2.2 we first describe

our modelling assumptions and derive the governing equations for our model. We present

a steady state and linear stability analysis, as well as numerical simulations, to support the

occurrence of complex clustering in this model. We also use asymptotic analysis to obtain

some approximate expressions relating to the formation of a single cluster. In Section 2.3,
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we present a modified form of the model that is no longer conservative, and explore how this

affects the occurence and properties of complex clustering. We conclude in Section 2.4 by

discussing how our theoretical results may relate to E-cadherin compelx clusters in cell-cell

adhesion and to Fz/Vang complex puncta in the core planar polarity pathway.

2.2 Mass conserved reaction-diffusion model

In this section, we analyse a simplified model for pattern formation under the restriction of

mass conservation. We assume that a protein of interest can form transmembrane homodimer

complexes across a cell-cell junction, which for simplicity we model as a one-dimensional

line segment.

2.2.1 Governing equations

Let A(X ,T ) and A†(X ,T ) denote the concentrations of an unbound protein (or monomer) on

either side of a cell-cell junction at position 0 < X < L and time T > 0, respectively (Fig. 2.1).

Similarly, let C(X ,T ) denote the concentration of protein complex (or dimer), which we

assume forms from two protein molecules on either side of the cell-cell junction binding

reversibly according to the reaction

A+A† −−⇀↽−−C, (2.1)

with a forward rate coefficient k and a reverse rate coefficient v.

We assume that unbound protein on either side of the cell junction can diffuse within

the plasma membrane with a diffusion coefficient DA > 0, while complexes diffuse within

the plasma membrane with a coefficient DC, such that complexes diffuse much more slowly

than unbound molecules (DC ≪ DA). Relating this model to the motivating example of

the adhesion protein E-cadherin, we may expect slower diffusion of the complex, since
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Fig. 2.1 Schematic of a single cell-cell adhesion representing the biochemical reaction (2.1).
An unbound protein is spatially distributed on either side of a cell-cell junction (A: red dots
in one cell; A†: green stars in the other cell). The complex C is formed via the intercellular
binding of one unbound A protein and one unbound A† protein. This schematic is created
with BioRender.

adhesive complexes diffuse more slowly as soon as they attach to a cell cytoskeleton [4]. For

simplicity, we assume no-flux boundary conditions at X = 0 and X = L.

We assume throughout this chapter that DC, DA, and v are constants, while k may depend

on the local complex concentration. We assume that there is a monotonic increasing function

on the forward binding rate. From a biological point of view, considering nonlinear feedback

in the binding rate may correspond to binding affinity being affected by the local presence of

the complex.

The above assumptions give rise to the reaction-diffusion system

∂A
∂T

= DA
∂ 2A
∂X2 − kAA† + vC, (2.2)

∂A†

∂T
= DA

∂ 2A†

∂X2 − kAA† + vC, (2.3)

∂C
∂T

= DC
∂ 2C
∂X2 + kAA† − vC, (2.4)
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for 0 < X < L, T > 0, with zero-flux boundary conditions

∂A
∂X

=
∂A†

∂X
=

∂C
∂X

= 0 (2.5)

at X = 0 and X = L. The initial conditions are chosen to be close to spatially uniform with

no complex present such that

A(X ,0)≈ A0, A†(X ,0)≈ A0, C(X ,0) = 0. (2.6)

The system (2.2)–(2.4) has two conserved quantities, corresponding to the total (unbound

plus bound) amount of protein in each cell sharing the junction,

AT =
∫ L

0
(A(X ,T )+C(X ,T ))dX , (2.7)

A†
T =

∫ L

0
(A†(X ,T )+C(X ,T ))dX , (2.8)

where the values of AT and A†
T are determined by the initial conditions.

To non-dimensionalise the system (2.2)-(2.4), we write k = k0K , where k0 denotes a

baseline value for the forward reaction rate coefficient. We then let T = T0t, X = Lx, C = k0c,

A = k0a, A† = k0a†, and AT = k0aT , A†
T = k0a†

T , where x, t, c, a and a† denote dimensionless

variables. Finally, we take the domain length L to be the relevant length scale and choose

T0 = L/
√

v
√

DC and define the (positive) dimensionless lumped parameters

ε =

√
DC

L
√

v
, Da =

DA

vL2 , α =
k2

0
v
. (2.9)

In this non-dimensionalisation, L represents a typical cell diameter (on the order of microme-

tres). The dissociation constant of the reaction rate v is typically O(1) per second. The

diffusion coefficients are typically O(1) squared micrometres per second. Since ε ≪ Da, ε is

small, we let Da ≈ O(1) with respect to ε , i.e.
√

DC/v ≈ L. This assumption means that the
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protein can diffuse across the domain on the time scale of the biological reaction [49]. In

the majority of our simulations in Section 2.2.3, we consider the dimensionless time unit to

be approximately 10 seconds (s), although we also discuss the behaviour of the system over

faster (t = 0.5 s) and slower (t = 50 s) time scales.

Under this non-dimensionalisation, the system is given by

ε
∂a
∂ t

= Da
∂ 2a
∂x2 −αK (c)aa† + c, (2.10)

ε
∂a†

∂ t
= Da

∂ 2a†

∂x2 −αK (c)aa† + c, (2.11)

ε
∂c
∂ t

= ε
2 ∂ 2c

∂x2 +αK (c)aa† − c, (2.12)

with conserved quantities

aT =
∫ 1

0
(a(x, t)+ c(x, t))dx, (2.13)

a†
T =

∫ 1

0
(a†(x, t)+ c(x, t))dx, (2.14)

and zero-flux boundary conditions

∂a
∂x

=
∂a†

∂x
=

∂c
∂x

= 0 (2.15)

at x = 0 and x = 1.

2.2.2 Steady state and stability analysis

In this section, we first investigate the existence and uniqueness of any positive spatially

uniform steady state (SUSS) solution to the system (2.10)–(2.15). We then conduct a classical

Turing analysis to verify that a stable positive SUSS can exhibit a diffusion-driven instability

in this model.
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Existence and uniqueness of positive SUSS

We seek a positive SUSS of the system (2.10)–(2.12) of the form a(x, t)≡ a∗, a†(x, t)≡ a†∗,

c(x, t)≡ c∗. Substituting this into our model, we find that any SUSS must satisfy

αK (c∗)a∗a†∗− c∗ = 0, (2.16)

a∗+ c∗ = aT , (2.17)

a†∗+ c∗ = a†
T . (2.18)

Using equations (2.16)–(2.18) to write a†∗ and a∗ in terms of c∗, we obtain

αK (c∗)(aT − c∗)(a†
T − c∗) = c∗. (2.19)

In the absence of feedback (K = 1), equation (2.19) simplifies to a quadratic equation,

which has two real positive solutions since the model is conservative. Admissible solutions

must satisfy

c∗ ≤ max(aT ,a
†
T ). (2.20)

There is therefore a unique admissible root given by

c∗ =
1

2α

(
αaT +αa†

T +1−
√
(αaT +αa†

T +1)2 −4α2aT a†
T

)
. (2.21)

In this case, we have

a∗ =
1

2α

(
αaT −αa†

T −1+
√

(αaT +αa†
T +1)2 −4α2aT a†

T

)
, (2.22)

a†∗ =
1

2α

(
αa†

T −αaT −1+
√

(αaT +αa†
T +1)2 −4α2aT a†

T

)
. (2.23)
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This shows that the system (2.10)–(2.12) without feedback always has a unique SUSS, which

means that in this case patterning is never obtained. However, in the presence of feedback

(K is a monotonic increasing function of the complex), the existence and uniqueness of the

steady state depends on the type of feedback and the choice of parameters. We return to this

point when considering two specific forms of feedback in Section 2.2.3.

Linear stability of SUSS

We now examine the linear stability of any SUSS. We let a = a∗+ ã, a† = a†∗+ ã†, and

c = c∗ + c̃, where ã, ã†, c̃ are small perturbations. Substituting into (2.10)–(2.12) and

dropping higher-order terms, we obtain the linearised system

ε
∂ ã
∂ t

= Da
∂ 2ã
∂x2 −αa†∗K ã−αa∗K ã† +

(
1−αa∗a†∗K ′

)
c̃, (2.24)

ε
∂ ã†

∂ t
= Da

∂ 2ã†

∂x2 −αa†∗K ã−αa∗K ã† +
(

1−αa∗a†∗K ′
)

c̃, (2.25)

ε
∂ c̃
∂ t

= ε
2 ∂ 2c̃

∂x2 +αa†∗K ã+αa∗K ã† −
(

1−αa∗a†∗K ′
)

c̃, (2.26)

where K ≡ K (c∗) and K ′ ≡ K ′(c∗). After removing tildes, the above system can be

written in matrix form as

ε
∂w
∂ t

= D
∂ 2w
∂x2 + Jw, (2.27)

where

D =


Da 0 0

0 Da 0

0 0 ε2

 , J =


− fa − fa† − fc

− fa − fa† − fc

fa fa† fc

 . (2.28)
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Here, w = (c̃, ã, ã†)⊺ and

f (a,a†,c) = αK (c)aa† − c, (2.29)

such that fa, fa† and fc denote partial derivatives of f with respect to a, a† and c respectively.

For this model to exhibit patterning via a diffusion-driven instability, we require the

SUSS to be linearly stable in the absence of diffusion (Da = 0). In this case, eigenvalues of

the Jacobian of the system (2.27) satisfy the characteristic equation

−λ
3 −

(
1+a∗+a†∗

)
λ

2 = 0, (2.30)

which has roots λ1,2 = 0 and λ3 = fc − fa − fa† . The zero eigenvalues here reflect that

the three-variable system (2.10)–(2.12) is in fact a single-variable system once the mass-

conservation constraints (2.17) and (2.18) are applied. In the absence of feedback (K = 1),

we have λ3 =−1−a∗−a†∗, which is negative since the (in this case, unique) SUSS is positive.

Hence, the unique positive SUSS (a∗, a†∗, c∗) is linearly stable in the absence of diffusion

and feedback. However, in the presence of feedback (K is a monotonic increasing function),

then the linear stability of the SUSS requires ∆ < 0, where we define ∆ = fc − fa − fa† .

Hence, the linear stability of the SUSS largely depends on the choice of functional form for

the feedback and on parameter values.

In the presence of diffusion (Da ≥ 0), since no-flux boundary conditions are imposed we

seek a solution to (2.27) of the form

w(t) = w0eλ t cos(σx), (2.31)
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where w0 is a constant vector and σ = nπ for an integer n. Substituting this into (2.27), and

requiring a non-trivial solution, we obtain the characteristic equation

0 = λ
3 − τ2λ

2 + τ1λ +h(σ2), (2.32)

where

τ2 = fc − fa − fa† − (ε2 +2Da)σ
2, (2.33)

τ1 = (ε2 +Da)( fa + fa†)σ2 −2Da fcσ
2 +Da(2+Daσ

2)σ2, (2.34)

h(σ2) = ε
2Daσ

6 + ε
2Da faσ

4 + ε
2Da fa†σ

4 −D2
a fcσ

4. (2.35)

In the absence of feedback (K = 1) the coefficients (2.33)–(2.35) are all positive. By

Descartes’ rule of signs, the above characteristic (2.32) has no positive eigenvalues. Thus,

the positive SUSS (a∗, a†∗, c∗) remains linearly stable in the absence of feedback, even in the

presence of diffusion. In other words, this model cannot exhibit a diffusion-driven instability

in the absence of a feedback interaction.

In the presence of a feedback interactions, the stability of the SUSS can be examined

via the eigenvalues of the corresponding system (2.32). For σ = 0, the characteristic equa-

tion (2.32) has three solutions: λ1,2 = 0 and λ3 = fc − fa − fa† ≡ τ0. Hence, the SUSS is

stable for σ = 0 if τ0 < 0.

For σ ̸= 0, (2.32) has at least one root with negative real part if τ2 < 0 and h(σ2) > 0.

Now, since

τ2 =−(ε2 +2Da)σ
2 + τ0, (2.36)
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we see that τ2 < 0 if τ0 < 0. Also, we note that

h(σ2) = ε
2D2

aσ
6 − fcD2

aσ
4 + fcDaε

2
σ

4 − fcDaε
2
σ

4 + faDaε
2
σ

4 + fa†Daε
2
σ

4

= ε
2D2

aσ
6 − fc(D2

a − ε
2)σ4 − τ0ε

2Daσ
4 (2.37)

is positive if fc < 0, since D2
a ≫ ε2 by assumption. If instead fc > 0, then we define

0 < π ≤ σ , then

h(σ2)

σ4 = ε
2D2

aσ
2 − fc(D2

a − ε
2)− τ0ε

2

≥ ε
2Daπ

2 − fc(D2
a − ε

2)− τ0ε
2. (2.38)

This implies ε2(D2
aπ2 + fc − τ0)− fcD2

a > 0 as τ0 < 0, meaning that fc < fa + fa† . We can

then deduce the condition

D2
a > ε

2 >
fcD2

a
D2

aπ2 + fc
>

fcD2
a

D2
aπ2 + fa + fa†

. (2.39)

Hence, the right-hand side of (2.39) is less than D2
a. Therefore, the SUSS is stable to

perturbations as long as τ0 < 0 and D2
a > ε2; otherwise, the condition

τ0 ≡ fc − fa − fa† > 0 (2.40)

suffices for the SUSS to be unstable to perturbations.

In summary, we have shown that the SUSS is always stable in the absence of diffusion

and nonlinear feedback. In the presence of diffusion, the SUSS is still stable in the absence

of feedback, hence, patterning cannot be obtained in this case. In the presence of nonlinear

feedback, we hypothesise that the SUSS can lose stability if τ0 > 0, which depends on the
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choice of the functional form of the nonlinear function K . We verify our analytical results

using specific feedback functional forms numerically in Section 2.2.3.

2.2.3 Numerical simulations

In this section we verify the above analytical results numerically and explore the patterning

that can arise in this model.

We solve the system (2.10)-(2.12) numerically using the method of lines [52]. This

method involves discretizing space into a mesh xi = i∆x, for i ∈ {0, . . . ,N}, and approxi-

mating second spatial derivatives using a central finite difference approximation. Using

this method, the PDE system (2.10)-(2.12) is approximated by a large system of coupled

ODEs governing the temporal evolution of the monomer and complex concentrations at

each point in space. We then solve this ODE system numerically using a variable-step,

variable-order method (implemented using the function odeint from scipy.integrate in

Python). Unless otherwise stated, we use N = 100, so that ∆x = 0.01, having verified that

the numerical solution does not change significantly if a finer mesh is used.

Choice of feedback functions

For our numerical simulations, we must choose specific functional forms for our feedback

function K . We consider two functional forms, which reflect feedback that is either non-

saturating (in the sense that there is no upper limit on the magnitude of K ) or saturating (in

the sense that as the local complex concentration becomes large, K approaches some upper

limit). The dimensional form of each feedback function is given by:

k(C) =


u+ zC2 (non-saturating) (2.41)

u+
zC2

Km
2 +C2

(saturating) (2.42)
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for real positive parameters u and z. To obtain the non-dimensionalised form of (2.41)

and (2.42), we take k0 = u+ z to be the rescaling factor in (2.9), obtaining

K (c) =


β + c2 (non-saturating) (2.43)

β +
c2

ω2 + c2 (saturating) (2.44)

where we define β by u/z and u/(z(u+ z)2) in the non-saturating and saturating cases,

respectively, and we define ω by Km/(u+ z). Note that the rescaling factor k0 corresponds to

a baseline value of k(C) in the non-saturating case (2.41), but to the maximal value of k(C)

in the saturating case (2.41).

Pattern formation for saturating and non-saturating feedback

We start by numerically verifying the linear stability analysis presented in Section 2.2.2 for

the chosen functional forms of feedback (2.43)–(2.44). For a chosen parameter set, we plot

the largest eigenvalue of the characteristic polynomial (2.32) in each case, verifying that

there exists a range of values of σ for which this eigenvalue is positive, and thus we may

expect to observe patterns (Fig. 2.2).

(a) (b)

Fig. 2.2 Plot of the largest eigenvalue of the characteristic polynomial (2.32) of the conserva-
tive PDE system (2.10)–(2.12), in the case of (a) non-saturating and (b) saturating feedback.
Parameter values are α = 1, β = 0.05, ω = 1, Da = 1, ε = 0.01, aT = 2.5 and a†

T = 2.
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We next simulate the PDE system (2.10)–(2.12) using initial condition

a(x,0) = a0 +0.1ξ (x),

a†(x,0) = a†
0 +0.1ξ

†(x), (2.45)

c(x,0) = 0,

where ξ (x), ξ †(x) denote independent standard uniform random variables at each point

x, and the parameters a0, a†
0 are determined in each simulation such that the total protein

concentrations of a, a† have the chosen values aT , a†
T .

Fig. 2.3 shows the resulting dynamics over a timescale t ∼ O(1) for non-saturating and

saturating feedback. We see that with non-saturating feedback, the system quickly develops

multiple ‘spike’ in complex concentration, each with a different height (see the solution at

time t = 0.1 in Fig. 2.3a), which collapse onto a single spike over time. With saturating

feedback (Fig. 2.3b), the system also evolves to a pattern featuring multiple ‘peaks’, but these

are wider and more mesa-like than in the non-saturating case, and have not yet collapsed

onto a single peak by the end of the simulation.

(a) Non-saturating feedback. (b) Saturating feedback.

Fig. 2.3 Numerical solution of the mass conserved model (2.10)-(2.12) with no-flux boundary
conditions (2.15) and initial condition (2.45) over short time scales. Solutions c(x, t) are
shown at the indicated times. Parameter values are ε = 0.01, Da = 1, β = 0.05, ω = 1,
aT = 2.5, a†

T = 2 and α = 0.5.
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Running our simulations over a longer timescale sheds more light on the stability of each

pattern (Fig. 2.4.) Simulating each model up to t = 25, we find that for non-saturating feed-

back the system has quickly evolved to a stable, single spike solution (Fig. 2.4a). However,

for saturating feedback the system has still not evolved to a single mesa solution by t = 25,

with several additional smaller stable peaks still present by this time (Fig. 2.4b).

(a) Non-saturating feedback. (b) Saturating feedback.

Fig. 2.4 Numerical solution of the mass conserved model (2.10)-(2.12) with no-flux boundary
conditions (2.15) and initial condition (2.45) over longer time scales. Parameter values are
ε = 0.01, Da = 1, β = 0.05, ω = 1, aT = 2.5, a†

T = 2 and α = 0.5.

Pattern dependence on model parameters and initial condition

To explore the effect of total protein concentrations on the system dynamics, we next simulate

our model for a range of different values of aT , while a†
T is kept fixed. Fig. 2.5 shows that

while in the case of non-saturating the resulting spike becomes higher as aT increases

(Fig. 2.5a–2.5c), for saturating feedback the single mesa retains approximately the same

height (Fig. 2.5d–2.5e) for a range of values of aT , above which the complex formation

saturates over the whole domain and the system evolves to a SUSS (Fig. 2.5f).
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(a) (b) (c)

(d) (e) (f)

Fig. 2.5 Numerical solution of the mass conserved model (2.10)-(2.12) with no-flux boundary
conditions (2.15) and initial condition (2.45) for a range of values of aT . Upper row:
non-saturating feedback; lower row: saturating feedback. Blue: c; orange: a; green: a†.
Numerical solution shown at t = 10. Values of aT are: (a and d) 2.5; (b and e) 3.5; (c and f)
4.5. Other parameter values are ε = 0.01, Da = 1, β = 0.05, ω = 1, a†

T = 2 and α = 0.5.

We next extend our investigation to include the dependence of model dynamics on our

choice of initial condition. We replace (2.45) with the initial condition

a(x,0) = a0 +0.1(1+ cos(2π(kx+φ))),

a†(x,0) = a†
0 +0.1(1+ cos(2π(kx+φ))), (2.46)

c(x,0) = 0,

for specified values of phase angle φ ∈ [0,1) and wavenumber k, where a0, a†
0 are as described

for (2.45). By varying the parameter values in (2.46), we can investigate the dependence of

the pattern on the shape of our initial ‘stimulus’.

For non-saturating feedback, the results of our investigations are summarised in Fig. 2.6.

For non-saturating feedback with relatively weak feedback and relatively little total protein

concentration, we find that the system evolves to a single spike in complex concentration in
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the centre of the spatial domain (Fig. 2.6a). A greater total protein concentration aT results

in this spike ‘splitting’ into two shorter (though approximately similarly wide) spikes of

equal size, concomitant with a greater spatially uniform steady-state value of a (Fig. 2.6b

and Fig. 2.6c). Multiple spikes can also be observed with relatively low total protein

concentrations if instead we increase the feedback strength α (Fig. 2.6d and Fig. 2.6e),

though in this case a sufficiently high total protein concentration aT can result in a single,

broader spike (Fig. 2.6f). A further increase in feedback strength can result in more than two

spikes (Fig. 2.6g, Fig. 2.6h, and Fig. 2.6i).

In summary, for this choice of initial condition, we find that ‘overexpression’ of total

protein concentration in one cell junction (while the other is fixed) leads to multiple ‘stable’

spikes in the non-saturating feedback model. In contrast, there is a range of ‘intermediate’

feedback strengths for which the saturating system exhibits a mesa-like pattern, above which

it does not polarise.

We next explore the effect of varying the wavenumber k of the initial sinusoidal pertur-

bation in (2.46) on the resulting pattern. In the case of saturating feedback, we find that

the number of mesas increases as we increase the wavenumber of the initial ‘stimulus’ for

certain intermediate feedback strengths (Fig. 2.7b, Fig. 2.7e, and Fig. 2.7h). In addition,

increasing the feedback strength leads to narrower mesas (Fig. 2.7a, Fig. 2.7b, and Fig. 2.7c).

However, if the feedback strength is too high, and seemingly if the wavenumber of the initial

stimulus is too high, then the system no longer exhibits patterning (Fig. 2.7i). In the case of

non-saturating feedback, we observe a single spike that changes its position as we vary the

wavenumber k (results not shown).

We next verify that this model is capable of exhibiting multiple stable peaks, now

assuming initial condition (2.46). Fig. 2.8 confirms that multiple stable spikes and mesas do

seem possible in the case of non-saturating (Fig. 2.8a) and saturating (Fig. 2.8b), respectively,

in an appropriate parameter regime.
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(a) aT = 5, α = 0.5 (b) aT = 20, α = 0.5 (c) aT = 30, α = 0.5

(d) aT = 5, α = 2 (e) aT = 20, α = 2 (f) aT = 30, α = 2

(g) aT = 5, α = 5 (h) aT = 20, α = 5 (i) aT = 30, α = 5

Fig. 2.6 Numerical solution of the mass conserved model (2.10)-(2.12) with no-flux boundary
conditions (2.15) and initial condition (2.46), assuming non-saturating feedback, for a range
of feedback strengths α and total protein concentrations aT . Blue: c; orange: a; green:
a†. Numerical solution shown at t = 10. Parameter values are ε = 0.01, Da = 1, β = 0.05,
ω = 1, a†

T = 2, φ = 0, k = 2.

Continuing this investigation, we next determine the number of patterns that arise in the

system (2.10)-(2.12) relative to varying key parameters (Fig. 2.9). To generate this figure,

we numerically solve the system with non-saturating (Fig. 2.9a) or saturating (Fig. 2.9b)

feedback for different values of the feedback strength a and total protein concentration in

one cell aT , holding the total protein concentration in the other cell a†
T , along with all other

parameters, fixed. In each case, we simulate the model for a sufficiently long time (t = 50)

that it has appeared to numerically converged to a steady state. We then count the number of

peaks in the pattern that is obtained, and colour this ‘pixel’ of the relevant figure according

to whether: (i) there are no peaks, i.e. the system evolves to a SUSS; (ii) there is a single
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(a) k = 1, α = 0.5 (b) k = 1, α = 0.7 (c) k = 1, α = 0.8

(d) k = 2, α = 0.5 (e) k = 2, α = 0.7 (f) k = 2, α = 0.8

(g) k = 3, α = 0.5 (h) k = 3, α = 0.7 (i) k = 3, α = 0.8

Fig. 2.7 Numerical solution of the mass conserved model (2.10)-(2.12) with no-flux boundary
conditions (2.15) and initial condition (2.46), assuming saturating feedback, for a range of
initial wavenumber k and feedback strength α . Blue: c; orange: a; green: a†. Numerical
solution shown at t = 10. Parameter values are ε = 0.01, Da = 1, β = 0.05, ω = 1, a†

T = 2,
aT = 2.5, φ = 0.

peak; (iii) there are multiple peaks. As Fig. 2.9 shows, for both non-saturating and saturating

feedback, we find parameter sets for which (i)-(iii) are possible.

Of course, the ‘stable’ multiple peaks found in Fig. 2.8 and Fig. 2.9 may in fact be

meta-stable, and coalesce into single peaks over a much longer timescale; we revisit this

question in our concluding discussion.

In summary, our numerical simulations suggest that in general, higher total protein

concentrations aT lower the required feedback strength α for patterning to occur in this

model, and vice versa. Increasing the feedback strength results in either narrower mesas

or shorter spikes, depending on whether or not the feedback is saturating. However, while
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(a) Non-saturating feedback. (b) Saturating feedback.

Fig. 2.8 Numerical solution of the mass conserved model (2.10)-(2.12) with no-flux boundary
conditions (2.15) and initial condition (2.46) over longer time scales, assuming: (a) non-
saturating feedback with parameter values α = 5, k = 1, aT = 5; (b) saturating feedback with
parameter values α = 0.7, k = 2, aT = 2.5. Other parameter values are ε = 0.01, Da = 1,
β = 0.05, ω = 1, aT = 2.5, a†

T = 2, α = 0.5, φ = 0.5.

the number of mesas in the saturating feedback model depends only on the wavenumber of

the initial condition, the non-saturating feedback model can exhibit multiple spikes given

sufficiently high total protein concentration aT or feedback strength α .

2.2.4 Asymptotic analysis

So far, we have used steady state and linear stability analysis, as well as numerical simulation,

to explore the possible patterns that can arise in our mass-conserved model (2.10)–(2.12).

We have found that with a range of parameter sets, this model exhibits spike-like patterns

in the case of non-saturating feedback, and mesa-like patterns in the case of saturating

feedback. We shall now restrict our focus on the latter case, since it arguably represents a

more biologically plausible assumption, and because we are interested in the size, shape and

location of mesas in this case. To this end, here we use singular perturbation theory to obtain

an approximate half-mesa solution, and derive an algebraic expression for its spatial location.

We then discuss how this may be extended to construct a whole mesa solution.
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(a) Non-saturating feedback. (b) Saturating feedback.

Fig. 2.9 Characterisation of steady-state solutions of the system (2.10)–(2.12) with no-flux
boundary conditions (2.15) and initial condition (2.46) for a range of values of feedback
strength α and total protein concentration aT . Other parameter values are ε = 0.01, Da = 1,
β = 0.05, ω = 1, aT = 2.5, a†

T = 2, α = 0.5, φ = 0.5, and (a) k = 1, (b) k = 2. Steady state
approximated by numerical solution at t = 50. Pixels are coloured according to whether the
steady state exhibits no peaks (grey), a single peak (white), or multiple peaks (black).

Reduced mass conserved model

In the following, we make the following additional simplifying assumption that a(x, t) and

a†(x, t) follow identical dynamics (for example, due to having identical initial conditions

and total concentrations). This allows us to reduce our model (2.10)–(2.12) to a two-variable

PDE system, which is more amenable to mathematical analysis.

The focus of our asymptotic analysis is thus on the two-component reaction-diffusion

system given by

ε
∂a
∂ t

= Da
∂ 2a
∂x2 +F(c,a), (2.47)

ε
∂c
∂ t

= ε
2 ∂ 2c

∂x2 +G(c,a), (2.48)

with boundary conditions

∂a
∂x

=
∂c
∂x

= 0 (2.49)
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at x = 0 and x = 1, and the single conservation law

aT =
∫ 1

0
(a(x, t)+ c(x, t)) dx. (2.50)

Here, for ease in the following analysis, we introduce the notation

F(a,c) = α

(
β +

c2

ω2 + c2

)
a2 − c, (2.51)

G(a,c) =−F(a,c), (2.52)

reiterating that we shall restrict our focus to the case of saturating feedback throughout.

Existence of heteroclinic orbit and half-mesa solution

Recall from our numerical simulations (e.g. Fig. 2.7) that the full system (and thus, we shall

assume, the reduced system) can exhibit ‘mesa’ patterns. Here, a mesa is characterised as

two spatially uniform steady-state solutions, occupying distinct regions of space, which are

smoothly connected. Mathematically, this corresponds to a heteroclinic orbit connecting the

‘lower’ and ‘higher’ steady states of the system.

For two-variable PDE systems of the general form (2.47)–(2.48), it has been shown [49,

53] that if the nonlinear function F satisfy the following mathematical properties:

P1: for a fixed value of a ≡ A , F has distinct roots c±(A ) and cm(A ), such that

∂F
∂c

(A ,c±(A ))< 0 and
∂F
∂c

(A ,cm(A ))> 0; (2.53)

P2: The homogeneous steady states (A ,c±(A )) are the stable steady states of the

system;



2.2 Mass conserved reaction-diffusion model 33

P3: The Maxwell condition

∫ c+(A )

c−(A )
F(A ,s)ds = 0 (2.54)

is satisfied;

then the system admits a heteroclinic orbit, corresponding to an approximate ‘half mesa’

solution. In our model, this approximate solution is given by

a(x)≈


A +

F+

2
(ℓ2 − x2) if 0 ≤ x < ℓ,

A +F− (
(x− ℓ)+ 1

2(ℓ
2 − x2)

)
if ℓ < x ≤ 1,

(2.55)

and

c(x)≈


c++

F+F+
a

2G+
c

(ℓ2 − x2) if 0 ≤ x < ℓ,

c−− F−F−
a

G−
c

(
(x− ℓ)+ 1

2(ℓ
2 − x2)

)
if ℓ < x ≤ L,

(2.56)

where F±
a ≡ ∂F/∂a(A ,c±(A )) and G±

c ≡ ∂G/∂c(A ,c±(A )), and the location of the

transition is defined by

ℓ=
F−

F−−F+
. (2.57)

We now verify that our choice of saturating feedback function satisfies the above properties.

First, we note that equations (2.16)–(2.18) for the SUSS can be reduced to the quartic

equation

0 =α(1+β )c∗4 − (2α(1+β )aT +1)c∗3 +α(a2
T (1+β )+βω

2)c∗2 −ω
2(2αβaT +1)c∗

+αβω
2a2

T

≡ f (c). (2.58)
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By Descartes’ rule of signs, (2.58) has at least two positive roots (which we denote c±) if

a4 > 3ω2/α2(1+β )2. Fig. 2.10a illustrates this situation for some fixed parameters. For a

non-zero fixed value of a that is determined by aT , it is straightforward to see that c± are

both stable fixed points of the ODE dc/dt = f (c), while the two remaining roots (which we

denote cm ∈ (c−,c+) and cout > c+) are unstable fixed points. Hence, the properties P1 and

P2 are satisfied.

Next, consider the integral

I =
∫ c+

c−

[
α

(
c2

ω2 + c2 +β

)
A 2 − c

]
dc

= αA 2
{
(1+β )(c+− c−)−ω

(
tan−1

(c+
ω

)
− tan−1

(c−
ω

))
+ω

2(c−− c+)
}

− 1
2
(c2

+− c2
−). (2.59)

Fig. 2.10a provides a numerical example where the integral (2.59) vanishes, thus verifying

that property P3 is satisfied. We conclude by demonstrating that the linear stability condi-

tion (2.40) is satisfied for our chosen feedback function and parameter values (Fig. 2.10b).

Having verified that our choice of the function F in the reduced mass conserved model (2.47)-

(2.48) satisfy the properties P1–P3, we can now construct a half-mesa solution that connects

the lower SUSS (c−) to the upper SUSS (c+). This solution is given by (2.55)–(2.56). In

particular, the location of the half mesa (and thus the width of any mesas in a mesa-like

pattern) depends on the total concentration of a, the fixed value of A and the stable steady

states c±. These high and low states are connected by an interface region [54]. In the phase

plane, this interface region is characterised by a heteroclinic orbit in the case of mesa patterns

(and a homoclinic orbit in the case of spikes; results not shown) [55].
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(a) (b)

Fig. 2.10 Steady states and linear stability of the reduced mass conserved model (2.47)-(2.48)
in the case of saturating feedback with α = 0.955, β = 0.025, ω = 1 and aT = 2. (a) Graph of
f (c)≡ f (A ,c) defined by (2.58). Red dots denote the roots c− ≈ 0.2, cm ≈ 0.29, c+ ≈ 0.41,
and cout ≈ 4.1. For the chosen parameter values, the integral of f (c) between the first and
third roots is zero, and thus the Maxwell condition (property P3) is satisfied. (b) Numerical
verification that condition (2.40) is satisfied for the chosen parameter values.

Comparison with asymptotic analysis

We conclude this section by comparing the numerical solution of the reduced PDE sys-

tem (2.47)–(2.48) with saturating feedback, and the approximated location of the half-mesa,

with the approximate form obtained by asymptotic analysis. We use Newton’s method and

used a solution guess of the hyperbolic tangent that is closed to the actual mesa-type solution.

We then solve the boundary value problem associated with the PDE system (2.47)–(2.48).

The results are shown in Fig. 2.11a. We see a good agreement between the numerical

and asymptotic solution, with the former exhibiting a consistently slightly lower complex

concentration c than the latter.

Having identified the half-mesa solution (2.55)–(2.57), it is possible use this to construct

steady-state solutions of the reduced mass conserved model (2.47)–(2.48) featuring multiple

mesas, using the reflection theory proposed by Nishiura [56].

This theory precisely reflects the half-mesa solution and fits it into the spatial domain by

rescaling the diffusion coefficient of a: if we require n half-mesas in our pattern, then we
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replace Da by Da/n2. Fig. 2.11b illustrates an example construction featuring 4 half-mesas,

i.e. 2 full mesas. (We emphasise that these are solutions to the steady-state system, though

the reflection theory itself tells us nothing about their stability.)

(a) (b)

Fig. 2.11 (a) Comparison of numerical solution and asymptotic approximation of a half-mesa
exhibited by the reduced mass conserved model (2.47)–(2.48) with saturating feedback.
Solid curve: numerical solution obtained using Newton’s method; dashed curve: asymptotic
approximation (2.55)–(2.57). (b) Construction of higher-order solutions, corresponding
to multiple mesas, using the reflection theory proposed by Nishiura [56]. Blue/green: c;
orange/red: a. Parameter values are ε = 0.01, β = 0.05, ω = 1, D = 1 and a(0) = 2.5.

In this section, we applied perturbation theory to the reduced PDE system (2.47)–(2.48)

with the saturating feedback introduced in Section 2.2. We used techniques from the literature

to derive an algebraic expression for the location of the transition in the case of a half-mesa

solution. In the next section, we explore how our analytic, numerical, and asymptotic

results are affected if we ‘break’ the assumption of mass conservation by introducing protein

trafficking to and from the plasma membrane.

2.3 Breaking mass conservation through protein trafficking

The formation and regulation of membrane subdomains depends on the active exchange of

cytosolic material within the cell membrane [57]. This process is referred to as ‘recycling’.

Since the clustering process on its own could lead to ever larger clusters, it is reasonable to
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expect there is some form of removal mechanism to balance the distribution of cluster sizes.

One possible mechanism is endocytosis, a form of trafficking from the plasma membrane

to the cytosol that, in the case of the cell-cell adhesion protein E-cadherin for example,

may specifically target larger clusters [4]. In this section, we explore how such trafficking

affects the resulting formation of patterns in our model. In particular, we address whether the

addition of an extra constant source term and a linear degradation term to our original model

presented in Section 2.2 affects patterning.

2.3.1 Governing equations

Biologically, we may describe the flux of proteins and complexes to and from cell-cell

junctions, respectively, by introducing monomer trafficking and complex recycling. Math-

ematically, we assume that the molecules A and A† are deposited to the membrane at a

fixed rate Jon. Additionally, both monomers and the complex are assumed to be removed at

rates of JA
off and JC

off, respectively. Since in the present work we are not interested in the

distribution of puncta sizes, but just in the formation and stability of puncta of any size, we

assume that the complex C could generally represent a cluster of any size. Thus, the system

of governing equations for our adapted model given by

∂A
∂T

= DA
∂ 2A
∂X2 + Jon − JA

offA− kAA† + vC, (2.60)

∂A†

∂T
= DA

∂ 2A†

∂X2 + Jon − JA
offA† − kAA† + vC, (2.61)

∂C
∂T

= DC
∂ 2C
∂X2 − JC

offC+ kAA† − vC. (2.62)

Considering the same boundary and initial conditions (2.5)–(2.6), the above system is not

conserved. In the absence of cluster depletion Joff, the protein concentration on both cell

edges would eventually saturate to the junction in a monomeric form. On the other hand,

large clusters would only remain on junctions when monomer deposition rate Jon is absent.
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Using the same scaling in Section 2.2.1, and substituting into the system (2.60)–(2.62),

we obtain the non-dimensionalised system

ε
∂a
∂ t

= Da
∂ 2a
∂x2 + jon − ja

offa−αK (c)aa† + c, (2.63)

εa†
t = Da

∂ 2a†

∂x2 + jon − ja
offa† −αK (c)aa† + c, (2.64)

ε
∂c
∂ t

= ε
2 ∂ 2c

∂x2 − jc
offc+αK (c)aa† − c, (2.65)

where we define the dimensionless parameters

jon =
Jon

k0v
, ja

off =
JA

off

v
, jc

off =
JC

off

v
. (2.66)

and the parameters α , ε , and Da are as defined in (2.9). Note that we assume that only the

binding rate depends on the complex concentration, as in Sections 2.2 and 2.2.4.

Following a similar simplification to Section 2.2.4, we now further assume that the

unbound protein concentrations a and a† on either side of the cell-cell junction behave

identically (a ≡ a†). This leads to the reduced non-dimensionalised system

ε
∂a
∂ t

= Da
∂ 2a
∂x2 + jon − ja

offa−αK (c)a2 + c, (2.67)

ε
∂c
∂ t

= ε
2 ∂ 2c

∂x2 − jc
offc+αK (c)a2 − c, (2.68)

where as before, we either have K = 1 (corresponding to no feedback) or K is a monotonic

increasing function of the form (2.43) or (2.44) (corresponding to non-saturating or saturating

feedback, respectively).
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2.3.2 Steady-state and stability analysis

Existence and uniqueness of positive SUSS

As in Section 2.2.2, we seek positive spatially uniform steady-state solutions (SUSS) of the

form a(x, t) ≡ a∗ and c(x, t) ≡ c∗. Substituting into our model (2.67)–(2.68), we find that

any SUSS must satisfy

jon − ja
off a∗− jc

off c∗ = 0, (2.69)

jc
off c∗−αK (c∗)a∗2 + c∗ = 0. (2.70)

We use (2.69) to eliminate a∗ from (2.70) to get

( ja
off)

2 ( jc
off +1)c∗−αK (c∗)( jc

off c∗− jon)
2 = 0. (2.71)

In the absence of feedback (K = 1), (2.71) simplifies to the quadratic equation

α( jc
off)

2 c∗2 − (2α jon jc
off +( ja

off)
2 ( jc

off +1))c∗+α j2
on = 0, (2.72)

which has two real positive roots. The unique admissible root is the one that is given by

c∗ =
1

2α ( jc
off)

2

(
M−

√
M2 −4α2( jc

off)
2 j2

on

)
, (2.73)

where we define M ≡ 2α jon jc
off +( ja

off)
2 ( jc

off + 1). The corresponding root for a can be

obtained using (2.69).

In the presence of monotonic increasing feedback, the existence of the SUSS depends on

the feedback parameters. We examine the saturating and non-saturating feedback behaviours

numerically in Section 2.3.3.
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Linear stability of SUSS

To examine the linear stability of the positive SUSS (a∗,c∗), we introduce small perturbations

ã and c̃, such that a = a∗+ ã and c = c∗+ c̃, as in Section 2.2.2. Substituting into (2.67)

and (2.68) and dropping the higher-order terms, we obtain the linearised system

ε
∂ ã
∂ t

= Da
∂ 2ã
∂x2 − (2αa∗K + ja

off) ã+
(

1−αa∗2K ′
)

c̃, (2.74)

ε
∂ c̃
∂ t

= ε
2 ∂ 2c̃

∂x2 +2αa∗K ã−
(

1−αa∗2K ′+ jc
off

)
c̃, (2.75)

where K ≡ K (c∗) and K ′ ≡ K ′(c∗). This above system can be written in matrix form as

ε
∂w
∂ t

= D
∂ 2w
∂x2 + Jw. (2.76)

where w = (ã, c̃)⊺ and

D =

Da 0

0 ε2

 , J =

−2αa∗K − ja
off 1−αa∗2K ′

2αa∗K −(1−αa∗2K ′+ jc
off)

 . (2.77)

For spatial patterning in this model, in the absence of diffusion (Da = 0) we require the

SUSS to be linearly stable. Eigenvalues λ of the Jacobian of the system (2.76) satisfy the

characteristic equation

λ
2 +

(
2αa∗K +1+ ja

off + jc
off −αa∗2K ′)

λ + ja
off

(
1+ jc

off −αa∗2K ′)+2αa∗ jc
offK = 0.

(2.78)

In the absence of feedback (K ≡ 1), Descartes’ rule of signs implies that the roots of (2.78)

are all negative and hence, the spatially uniform steady state (a∗, c∗) is linearly stable. In the

case of nonlinear feedback (saturating or non-saturating feedback), the SUSS will always be
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stable as long as

α ≤ 1+ jc
off

a∗2K ′ . (2.79)

In the presence of diffusion (Da > 0), since no-flux boundary conditions are imposed we

seek a solution to (2.76) of the form

w(x, t) = w0eλ t cos(σx), (2.80)

where w0 is a constant vector and σ = nπ for an integer n. Substituting this into (2.76), we

obtain the characteristic equation

λ
2 +

(
2αa∗K + ja

off +σ
2Da +σ

2
ε

2 +1+ jc
off −αa∗2K ′)

λ +h(σ2) = 0, (2.81)

where

h(σ2) = σ
4Daε

2 +σ
2Da

(
1+ jc

off −αa∗2K ′)+σ
2
ε

2 (2αa∗K + ja
off) (2.82)

+
(
1+ jc

off −αa∗2K ′) ja
off +2αa∗K jc

off.

In the absence of feedback (K ≡ 1, K ′ = 0), we find that all roots of (2.81) are negative,

hence the SUSS is linearly stable even in the presence of diffusion. In the presence of

feedback, the SUSS becomes unstable if

τ0 ≡ 1+ jc
off −αa∗2K ′ < 0. (2.83)

The sign of τ0 depends on the choice of the feedback function and parameter values.

In summary, we find that the SUSS is always linearly stable in the absence of diffusion.

In the presence of diffusion, however, there are some restrictions regarding the model
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parameters, via the condition (2.83), for a patterning instability to arise in the presence of

feedback. In the next section we verify these analytical results numerically using specific

feedback functional forms numerically.

2.3.3 Numerical simulations

Throughout this section, we refer to the non-saturating and saturating feedback functions

defined by (2.43) and (2.44). We also assume that protein complexes are trafficked more

rapidly than unbound proteins ( jc
off ≫ ja

off). We simulate the system (2.63)-(2.65) numeri-

cally using the same boundary and initial conditions, and numerical method, as described in

Section 2.2.3.

Pattern formation for saturating and non-saturating feedback

We start by numerically verifying the linear stability analysis presented in Section 2.3.2 for

the chosen functional forms of feedback. For a chosen parameter set, we plot the largest

eigenvalue of the characteristic polynomial (2.81) in each case, verifying that there exists a

range of values of σ for which this eigenvalue is positive, and thus we may expect to observe

patterns (Fig. 2.12).

Fig. 2.12 Plot of the largest positive eigenvalue of the characteristic polynomial (2.81) of
the reduced non-conservative model (2.67)–(2.67). Parameter values are α = 1, β = 0.05,
ω = 1, Da = 1, aT = 2.5 and a†

T = 2.
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We next simulate the full non-conservative model (2.63)–(2.65) using initial condi-

tion (2.45). Fig. 2.12 shows the resulting dynamics over a timescale t ∼ O(1). We see that

with non-saturating feedback (Fig. 2.13a), the system quickly evolves to a single spike in

complex concentration, while with saturating feedback (Fig.2.13b), the system evolves to a

pattern featuring multiple mesas. These dynamics are similar to those observed in the mass

conserved model.

(a) Non-saturating feedback. (b) Saturating feedback.

Fig. 2.13 Numerical solution of the non-conservative model (2.63)-(2.65) with no-flux
boundary conditions (2.15) and initial condition (2.45), with (a) non-saturating and (b)
saturating feedback respectively, over short time scales. Solutions c(x, t) are shown at the
indicated times. Parameter values are aT (0) = 2.5, a†

T (0) = 2, α = 0.5, β = 0.05, ω = 1,
ja

off = 0.1, jc
off = 1.5, jon = 1, Da = 1, and ε = 0.01.

We next investigate the dependence of the pattern on the shape of our initial ‘stimu-

lus’ (2.46). In the case of non-saturating feedback, we find that multiple spike solutions

are obtained when varying the feedback strength and the initial total protein concentrations

(Fig. 2.14). For feedback strength α = 1, and sufficiently high initial concentration a, the

model generates multiple transient spikes in the middle of the domain (Fig. 2.14e and 2.14f).

However, these patterns are not stable.

The non-conserved system with saturating feedback also exhibits multiple mesas (Fig. 2.15).

In fact, the wavenumber of the initial ‘stimulus’, along with sufficiently high feedback

strength, determines the number of mesas: if the feedback strength α = 1, for instance, then

we can obtain up to four mesas within the domain depending on the initial wavenumber (k).
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(a) a(0) = 2.5, α = 0.5 (b) a(0) = 5, α = 0.5 (c) a(0) = 10, α = 0.5

(d) a(0) = 2.5, α = 1 (e) a(0) = 5, α = 1 (f) a(0) = 10, α = 1

(g) a(0) = 2.5, α = 2 (h) a(0) = 5, α = 2 (i) a(0) = 10, α = 2

Fig. 2.14 Numerical solution of the non-conservative model (2.63)-(2.65) with no-flux
boundary conditions (2.15) and initial condition (2.46), assuming non-saturating feedback,
for a range of feedback strengths α and initial protein concentrations a(0). Blue: c; orange:
a; green: a†. Numerical solution shown at t = 10. Parameter values are a†

T (0) = 2, α = 0.5,
β = 0.05, ω = 1, ja

off = 0.1, jc
off = 1.5, jon = 1, Da = 1, ε = 0.01, φ = 0.

Beyond that, the number of mesas will decrease again to a single final mesa, which localises

to the middle of the spatial domain.

Fig. 2.16b gives us more insight into the early generation of multiple mesas, and their

eventual coalesence into a single mesa over time, in the presence of saturating feedback.

Finally, we note that for certain parameter values, the complex concentration in the saturating

feedback model can exhibit spatio-temporal oscillations (Fig. 2.16b and Fig. 2.17). This

behaviour is qualitatively distinct to the stable patterns that we observed for all parameter

sets considered in the mass conserved model in Section 2.2. This behaviour may correspond

to an oscillation between two steady states that are close enough to each other.
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(a) k = 1, α = 0.5 (b) k = 1, α = 1 (c) k = 1, α = 2

(d) k = 2, α = 0.5 (e) k = 2, α = 1 (f) k = 2, α = 2

(g) k = 3, α = 0.5 (h) k = 2, α = 1 (i) k = 3, α = 2

Fig. 2.15 Numerical solution of the non-conservative model (2.63)-(2.65) with no-flux
boundary conditions (2.15) and initial condition (2.46), assuming saturating feedback, for
a range of initial wavenumbers k and feedback strengths α . Blue: c; orange: a; green: a†.
Numerical solution shown at t = 10. Parameter values are a†(0) = 2, α = 0.5, β = 0.05,
ω = 1, ja

off = 0.1, jc
off = 1.5, jon = 1, Da = 1, ε = 0.01, φ = 0.

(a) Non-saturating feedback. (b) Saturating feedback.

Fig. 2.16 Numerical solution of the non-conservative model (2.63)-(2.65) with no-flux
boundary conditions (2.15) and initial condition (2.45), with (a) non-saturating and (b)
saturating feedback respectively, over short time scales. Solutions c(x, t) are shown at the
indicated times. The initial total concentration of protein A is given by (a) a(0) = 5 and
(b) a(0) = 2.5, respectively. Other parameter values are a†

T (0) = 2, α = 1, k = 2, β = 0.05,
ω = 1, ja

off = 0.1, jc
off = 1.5, jon = 1, Da = 1, ε = 0.01, φ = 0.
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Fig. 2.17 Numerical solution of the non-conservative model (2.63)-(2.65) with no-flux
boundary conditions (2.15) and initial condition (2.45), with saturating feedback, over
longer time scales. Parameter values are a(0) = 2.5, a†(0) = 2, α = 0.5, β = 0.05, ω = 1,
ja

off = 0.1, jc
off = 1.5, jon = 1, Da = 1, ε = 0.01, k = 1, φ = 0.
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In summary, introducing breaking mass conservation by introducing protein/complex

recycling in our model can lead to the appearance of multiple, transient peaks in patterns of

complex concentration. Intriguingly, it can also lead to the occurrence of spatio-temporal

oscillations in complex concentrations, concomitant with temporal oscillations in the spatially

uniform concentrations of unbound protein.

We conclude by noting that in the case of saturating feedback, it is possible to con-

struct an approximate half-mesa solution using asymptotic analysis exactly as described in

Section 2.2.4, since that analysis does not require the model to be mass conserved.

2.4 Discussion

In this chapter, we have identified two qualitatively distinct forms of spatial pattern that can

arise in a reaction-diffusion model of local protein complex clustering. These are spikes

and mesas, and occur depending on whether the nonlinear feedback that locally stabilises

protein complexes is non-saturating or saturating, respectively. From a geometrical point of

view, wave-pinning patterns or mesas are associated with the existence of a heteroclinic orbit

between high and low steady states, whereas Turing patterns or spikes are associated with

the existence of a homoclinic orbit of the system.

A key difference between these two mechanisms with biological implications is that wave-

pinning systems require a sufficiently large initial perturbation to evolve to a pattern [58],

whereas an arbitrarily small perturbation can suffice to drive Turing systems toward a pattern.

Another key difference is that in the case of non-saturating (Turing) feedback, most early

peaks rapidly coalesce into single ‘spike’ if there is mass conservation [59] (Fig. 2.3a),

whereas for saturating (wave-pinning) feedback, mesas could exist in a meta-stable state over

a long time scale, depending on parameter values [50].

Our modelling suggests that whether the system is mass conserved can play an important

role in the shape, amplitude and the position of the resulting pattern. In general, our model
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always requires a spatially non-uniform initial unbound protein concentration and zero initial

complex concentration for patterning to occur.

Our work in this chapter is to some extent biologically motivated by E-cadherin cluster

formation in developing epithelial tissues [4, 60, 61]. E-cadherin clusters have been shown

to be more stable and less mobile than unbound proteins [4]. This is why we assumed that

complexes can diffuse but at a very low rate in comparison with unbound proteins.

Our modelling shares similarities with other models of mass-conserved reaction-diffusion

systems [25, 49, 59]. However, those models take into account only two chemical species,

and suggest that the corresponding kinetic reaction (a quadratic non-saturating feedback or

a saturating feedback with Hill coefficient 2) yields three SUSS solutions. In contrast, our

modelling considers three species and yields four SUSS solutions. There is scope for further

model comparison under different assumptions on the form of feedbacks. A further means of

of extending our work would be to apply local equilibria theory to characterise the dynamics

from a graphical perspective [62, 54]. Local equilibria theory is an approach that dissects

space into local compartments and allows spatial-temporal characterisation of dynamics on

the basis of the phase space of local reaction kinetics [54].

It is instructive to compare our modelling to an alternative model, tailored to E-cadherin

cluster formation, proposed by Quang et al. [4]. In that model, trans-membrane binding

is assumed to be irreversible, whereas we assume that unbinding may occur. In addition,

that model explicitly includes the presence of higher-order complexes, formed of multiple

unbound proteins in either cell; a potential avenue for future work would be to include such

additional ‘species’ in our modelling framework. Another natural avenue for future work

would be to incorporate multiple distinct protein species and allow for heterodimers; this

would be the first step toward modelling puncta in planar polarity pathway complexes [47],

for example.



Chapter 3

Feedback requirements for cell-to-tissue

scale planar polarity

3.1 Introduction

As described in Chapter 1, planar polarity involves the coordinated orientation of cells within

a tissue. In this process, each cell generates its own polarity due to the asymmetric localisa-

tion of certain proteins to different ends of the cell, where they form oriented transmembrane

protein complexes with adjacent cells. It is thought that this asymmetric localisation is estab-

lished through an initial ‘bias’ that is amplified via some form of feedback interaction [63].

Such feedback has been suggested to involve mutual stabilisation of ‘like’ complexes of

the same orientation and/or destabilisation of ‘unlike’ complexes of opposite orientations

(Fig. 3.1) and may amplify small biases in protein localisation induced by global cues [19].

The likely presence of nonlinear feedback mechanisms has precluded the intuitive un-

derstanding of cell-scale planar polarisation through experimentation alone. Mathematical

modelling can help us to disentangle this complexity by exploring whether the proposed mech-

anisms account for observed behaviours under normal and perturbed conditions [17, 34, 64].
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Fig. 3.1 Diagram of the intercellular complexes formed by core pathway proteins at a
junction between two neighbouring cells, highlighting possible feedback interactions. These
interactions may involve mutual stabilisation of ‘like’ complexes of the same orientation
(pointed arrows) and/or destabilisation of ‘unlike’ complexes of opposite orientations (flat-
headed arrows). This schematic is created with BioRender.

A notable mathematical model of planar polarisation was proposed by Amonlirdviman

et al. [38], who used a system of reaction-diffusion partial differential equations to simulate

the evolution of protein localisation over time in a two-dimensional cell grid relating to a part

of the fly wing. In their model, a Fz feedback loop is represented by reactions between Dsh,

Fz, Vang and Pk to form protein complexes, with a feedback inhibition term and a global

directional cue that is provided for each cell as an asymmetric input. This model explains

phenotypes in several Fz mutants, and predicts that non-autonomy occurs only in mutants

where Fz in one cell does not recruit Vang to neighbouring cells. However, the model does

not allow the authors to distinguish how the directional cue might influence the Fz feedback

loop.
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Another notable model, comprising a stochastic reaction-diffusion system, was proposed

by Le Garrec et al. [65]. In this model, a Fz gradient arises due to the graded formation

of Fmi-based asymmetric intercellular complexes. While the model explores whether Fmi

dimerisation is required for forming a Fz homodimer, it places strict limitations on the

strength, direction and duration of the assumed Fz activity gradient.

The involvement of the transmembrane core pathway proteins Fz, Vang, and Fmi in

cell-cell signalling is experimentally well-established [66]. However, it remains unclear

whether that signalling is transmitted between cells in a monodirectional (only by Fz on

Vang) or bidirectional form (also by Vang on Fz). In double clones lacking both Vang and

Fz, bidirectional signalling would – if the bidirectional signals are of equal strength – imply

that neighbouring cells have normal polarity, as they are not affected by mutant cells lacking

both Vang and Fz [66]. Monodirectional signalling would imply otherwise, since under

this hypothesis, Vang acts as a Fz receptor in which cells can sense the Fz levels of their

neighbouring cells [67]. Recent experiments have supported the existence of bidirectional

signalling mechanisms, though this is not yet definitive [66, 68].

In a recent interdisciplinary study, Fisher et al. [63] develop a mathematical model of the

core planar polarity pathway in the fly wing, abstracted to a one-dimensional line of cells, and

simulated wild-type and mutant clone behaviours under a variety of hypothesised feedback

mechanisms. The authors compare their simulation results qualitatively with experimental

data on polarisation in (i) normal tissue, (ii) cells neighbouring single Fz−, Vang− or Fmi−

clones, and (iii) cells neighbouring Vang−Fz− clones. Rejecting model assumptions for

which simulations cannot recapitulate these cases, particular (iii) where domineering non-

autonomy was experimentally observed to be inhibited, the authors deduce that some form of

bidirectional signalling must be present, mediated either indirectly via bidirectional feedbacks

or directly via differential protein binding affinities. Fisher et al. [63] note some differences

when comparing simulations of mutant clone phenotypes under stabilising and destabilising
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feedbacks. First, in the case of balanced stabilising feedback between ‘like’ complexes, cells

neighbouring Fmi− clones were found to propagate a ‘period two’ pattern, whereby every

other cell exhibits the opposite polarity. Second, due to the reduced sorting of complexes,

the system tends to polarise more slowly in the presence of stabilising feedback than with

destabilising feedback of equivalent strength.

The above studies involve detailed models of the core pathway and therefore do not lend

themselves easily to mathematical analysis. In an alternate approach, Schamberg et al. [69]

propose a simple feedback/diffusion model that abstracts the activity of planar polarity to two

variables per cell. For all parameter sets considered, the authors find that sufficiently strong

intercellular feedback and sufficiently weak intracellular diffusion suffice to achieve planar

polarisation [69]. However, it is difficult to link the ‘generic activity’ state variables in this

model directly to physical quantities such as protein concentrations and (un)binding rates.

3.1.1 Aim of work

While modelling has shed some light on planar polarisation, the circumstances under which

feedback interactions can sufficiently amplify initial biases to establish planar polarity remain

unclear. In particular, it is challenging to extract such conditions through mathematical

analysis of biochemically detailed models such as that of Fisher et al. [63]. To address this,

in this chapter we consider a minimal biochemically-motivated model to gain a qualitative

understanding of the requirements for (de)stabilising feedback to establish planar polarisation.

Our approach is based on the reversible binding of two protein species to form transmem-

brane complexes at cell-cell junctions and intracellular protein diffusion. For simplicity, we

consider a one-dimensional line of cells, each comprising two compartments corresponding

to its left and right edges. We explore a variety of different hypothesised feedback mech-

anisms, extending the work of [63] to consider feedback on rates of intracellular protein

transport and membrane trafficking in addition to (un)binding. In each case, we combine
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steady state, linear stability and bifurcation analysis with numerical simulations to explore

the conditions under which feedback interactions suffice for cell-scale polarisation and for

tissue-scale polarisation. We also consider the polarisation of cells neighbouring mutant

clones in which the total concentration and/or production rate of each protein is perturbed.

For ease of navigation, we summarise the various cases considered in Tab. 3.1.

Feedback
target

Feedback
type

Figures Single clone
prediction

Double
clone

prediction

Binding
Destabilising 3.3, 3.4a, 3.5a, 3.7, 3.9a Non-

autonomy
No non-

autonomy
Stabilising 3.4b, 3.5b, 3.8, 3.9b Non-

autonomy
Period two

patterns

Trafficking
Destabilising 3.10, 3.11a, 3.12a, 3.13, 3.15a Non-

autonomy
No non-

autonomy
Stabilising 3.11b, 3.12b, 3.14, 3.15b Non-

autonomy
Period two

patterns
Degradation Destabilising 3.16, 3.17, 3.18, 3.19, 3.20 No non-

autonomy
No non-

autonomy
Table 3.1 Summary of planar polarity models considered in this chapter.

The remainder of this chapter is structured as follows. In Section 3.2, we consider a

‘binding feedback’ model, where (de)stabilising feedback interactions modulate the rate of

protein (un)binding. In Section 3.3, we consider an alternative ‘trafficking feedback’ model,

where feedback interactions instead modulate the rate of intracellular protein transport. In

Section 3.4, we consider a ‘degradation feedback’ model, where – in contrast to the first two

models – the total concentration of each protein in each cell is not conserved, but instead

we include protein production and allow feedback interactions to modulate the rate at which

protein complexes are recycled from the cell membrane (i.e. degraded). We conclude in

Section 3.5 with a discussion of our theoretical results and their implications for advancing

our understanding of the role of feedback mechanisms in planar polarisation.
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3.2 Binding feedback model

We propose a simplified planar polarity system operating in a one-dimensional ring of N

cells (Fig. 3.2). In all of the models considered in this chapter two proteins, A and B are

allowed to bind and unbind across neighbouring cells to form an intercellular complex C

according to the reversible reactions

AL
i +BR

i−1 −−⇀↽−−CL
i , (3.1)

AR
i−1 +BL

i −−⇀↽−−CR
i−1, (3.2)

and diffuse between sides of each cell according to the ‘reactions’

AL
i −−⇀↽−− AR

i , (3.3)

BL
i −−⇀↽−− BR

i , (3.4)

for each cell i ∈ {0, . . . ,N −1}. In equations (3.1)–(3.4), superscripts L and R denote the left

and right edge of a cell, while subscript i denotes the ith cell, modulo N (Fig. 3.2). We assume

that reactions (3.1)–(3.2) each proceed with a forward rate coefficient k and a backward rate

coefficient v. We also assume that proteins A and B diffuse between cell compartments with

diffusion coefficients DA and DB, respectively. In this section, we assume that DA and DB

are constant, while v and k may depend on the local complex concentration.

3.2.1 Governing equations

Let A j
i (T ), B j

i (T ), and C j
i (T ) denote the concentrations of molecules A, B and C in cell i,

compartment j ∈ {L,R}, at time T . Using the Law of Mass Action, reactions (3.1)–(3.4)
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Fig. 3.2 Schematic of the biochemical reactions summarised in equations (3.1)–(3.4). This
schematic is created with BioRender.

may be converted into the ordinary differential equation (ODE) system

dAL
i

dT
=−kAL

i BR
i−1 + vCL

i +DA(AR
i −AL

i ), (3.5)

dAR
i

dT
=−kAR

i BL
i+1 + vCR

i +DA(AL
i −AR

i ), (3.6)

dBL
i

dT
=−kAR

i−1BL
i + vCR

i−1 +DB(BR
i −BL

i ), (3.7)

dBR
i

dT
=−kAL

i+1BR
i + vCL

i+1 +DB(BL
i −BR

i ), (3.8)

dCL
i

dT
= kAL

i BR
i−1 − vCL

i , (3.9)

dCR
i

dT
= kAR

i BL
i+1 − vCR

i . (3.10)
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As can be verified by taking suitable linear combinations of equations (3.5)–(3.10), the total

(bound and unbound) concentrations of A and B are conserved in each cell, that is

AL
i +AR

i +CL
i +CR

i = Atot, (3.11)

BL
i +BR

i +CR
i−1 +CL

i+1 = Btot, (3.12)

where the constants Atot and Btot are determined by the initial conditions.

We non-dimensionalise this model as follows. We write k = k0K and v = v0V , where

k0 and v0 denote baseline values for the forward and backward rate coefficients, respectively,

while K and V may be either equal to 1 (corresponding to no feedback in that reaction)

or given by some nonlinear function of the local complex concentration (corresponding to

feedback in that reaction). We write T = t/k0Atot and A j
i = Atota

j
i , B j

i = Btotb
j
i , C j

i = Atotc
j
i

for j ∈ {L,R}, where a j
i , b j

i , c j
i and t denote dimensionless variables. Finally, we define

dimensionless lumped parameters

ν =
v0

k0Atot
, γ =

Btot

Atot
, δ =

DA

k0Atot
, σ =

DB

DA
. (3.13)

Substituting into (3.5)–(3.10), and using dots to denote differentiation with respect to t, we

obtain the non-dimensionalised system

ȧL
i =−γK (cL

i )a
L
i bR

i−1 +νV (cR
i−1)c

L
i +δ (aR

i −aL
i ), (3.14)

ȧR
i =−γK (cR

i )a
R
i bL

i+1 +νV (cL
i+1)c

R
i +δ (aL

i −aR
i ), (3.15)

ḃL
i =−K (cR

i−1)a
R
i−1bL

i +
ν

γ
V (cL

i )c
R
i−1 +σδ (bR

i −bL
i ), (3.16)

ḃR
i =−K (cL

i+1)a
L
i+1bR

i +
ν

γ
V (cR

i )c
L
i+1 +σδ (bL

i −bR
i ), (3.17)

ċL
i = γK (cL

i )a
L
i bR

i−1 −νV (cR
i−1)c

L
i , (3.18)

ċR
i = γK (cR

i )a
R
i bL

i+1 −νV (cL
i+1)c

R
i , (3.19)



3.2 Binding feedback model 57

with non-dimensionalised conservation laws

aL
i +aR

i + cL
i + cR

i = 1, (3.20)

γbL
i + γbR

i + cR
i−1 + cL

i+1 = γ. (3.21)

The initial and boundary conditions are defined in Section 3.2.3.

3.2.2 Steady state and linear stability analysis

We next consider the existence and linear stability of any steady state(s). For simplicity, we

consider only homogeneous steady states and perturbations, where

aL
i (t)≡ aL(t), bL

i (t)≡ bL(t), cL
i (t)≡ cL(t), (3.22)

aR
i (t)≡ aR(t), bR

i (t)≡ bR(t), cR
i (t)≡ cR(t), (3.23)

for all i. However, we allow spatially non-uniform steady states, for which aL(t) ̸≡ aR(t),

bL(t) ̸≡ bR(t) and cL(t) ̸≡ cR(t). Equations (3.14)–(3.19) therefore simplify to

ȧL =−γK (cL)aLbR +νV (cR)cL +δ (aR −aL), (3.24)

ȧR =−γK (cR)aRbL +νV (cL)cR +δ (aL −aR), (3.25)

ḃL =−K (cR)aRbL +
ν

γ
V (cL)cR +σδ (bR −bL), (3.26)

ḃR =−K (cL)aLbR +
ν

γ
V (cR)cL +σδ (bL −bR), (3.27)

ċL = γK (cL)aLbR −νV (cR)cL, (3.28)

ċR = γK (cR)aRbL −νV (cL)cR, (3.29)
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with conservation laws

aL +aR + cL + cR = 1, (3.30)

γbL + γbR + cL + cR = γ. (3.31)

Existence and uniqueness of positive SUSS

We first seek positive spatially uniform steady state (SUSS) solution(s) of the homogeneous

system (3.24)–(3.29) of the form aL = aR = a, bL = bR = b, and cL = cR = c. Substituting

into equations (3.24), (3.30) and (3.31), we find that a, b and c must satisfy

−γK (c)ab+νV (c)c = 0, (3.32)

2a+2c = 1, (3.33)

2γb+2c = γ. (3.34)

We next consider the existence and uniqueness of the SUSS satisfying equations (3.32)–

(3.34). In the absence of feedback, the forward and backward rate coefficients do not depend

on complex concentrations, hence K = V = 1. In this case, eliminating b and c from

equations (3.32)–(3.34), we find that a must satisfy

2a2 +(γ +2ν −1)a−ν = 0. (3.35)

By Descartes’ rule of signs [70], regardless of the sign of γ + 2ν − 1, there is a unique

positive root of (3.35) given by

a =
1
4

(
1− γ −2ν +

√
(γ +2ν −1)2 +8ν

)
. (3.36)
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The corresponding values of b and c are also positive and are given by

b =
1
4γ

(
−1+ γ −2ν +

√
(γ +2ν −1)2 +8ν

)
, (3.37)

c =
1
4

(
1+ γ +2ν −

√
(γ +2ν −1)2 +8ν

)
. (3.38)

Thus, in the absence of feedback, the system has a unique positive SUSS.

In the presence of destabilising feedback, we assume that the higher the concentration

of c in one orientation between two neighbouring cells is, the faster the reverse reaction

proceeds in the opposite orientation. This corresponds to K = 1 and V being a monotonic

increasing function satisfying V (0) = 1. In this case, any SUSS must satisfy

4νcV (c) = (1−2c)(γ −2c). (3.39)

Since the left-hand side of (3.39) is monotonic increasing from 0, and the right-hand side is

monotonic decreasing from γ to 0 for c < min{1/2,γ/2}, there must be at least one positive

root, and hence at least one positive SUSS.

In the presence of stabilising feedback, we assume that the higher the concentration of c

in one orientation between two neighbouring cells is, the slower the reverse reaction proceeds

in the opposite orientation. This corresponds to V = 1 and K being a monotonic increasing

function such that K (0) = 1. In this case, any SUSS must satisfy the nonlinear equation

4νc = (1−2c)(γ −2c)K (c). (3.40)

It is less straightforward to show that in general there must be a positive root of (3.40), but

the numerical results presented in Section 3.2.3 support this claim.

By inspection of (3.39) and (3.40), it is clear that we cannot guarantee uniqueness of the

positive SUSS in the presence of feedback. In the following, when referring to a positive
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SUSS, we implicitly assume this to be that branch that tends to the unique stable positive

SUSS in the ‘limit’ of no feedback.

Linear stability of positive SUSS

We next examine the linear stability of the positive SUSS (a,b,c) to homogeneous perturba-

tions by letting

a j = a+ ã j, b j = b+ b̃ j, c j = c+ c̃ j (3.41)

for j ∈ {L,R}. Substituting into equations (3.24)–(3.29) and dropping higher-order terms,

we obtain the linearised system

˙̃aL =−(γK b+δ )ãL +δ ãR − γK ab̃R +(νV − γK ′ab)c̃L +νV ′cc̃R, (3.42)

˙̃aR =−(γK b+δ )ãR +δ ãL − γK ab̃L +(νV − γK ′ab)c̃R +νV ′cc̃L, (3.43)

˙̃bL =−K bãR − (K a+σδ )b̃L +σδ b̃R +
ν

γ
V ′cc̃L +

1
γ
(νV − γK ′ab)c̃R, (3.44)

˙̃bR =−K bãL − (K a+σδ )b̃R +σδ b̃L +
ν

γ
V ′cc̃R +

1
γ
(νV − γK ′ab)c̃L, (3.45)

˙̃cL = γK bãL + γK ab̃R − (νV − γK ′ab)c̃L −νV ′cc̃R, (3.46)

˙̃cR = γK bãR + γK ab̃L − (νV − γK ′ab)c̃R −νV ′cc̃L, (3.47)

where K ≡ K (c) and so on. Introducing the change of variables

sa = ãL + ãR, sb = b̃L + b̃R, sc = c̃L + c̃R, (3.48)

da = ãL − ãR, db = b̃L − b̃R, dc = c̃L − c̃R, (3.49)
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and writing s = (sa,sb,sc), d = (sa,sb,sc), we obtain the block diagonal system

 ṡ

ḋ

=

Ms 0

0 Md

 , (3.50)

where

Ms =


−γK b −γK a ν(V +V ′c)− γK ′ab

−K b −K a 1
γ
[ν(V +V ′c)− γK ′ab]

γK b γK a −[ν(V +V ′c)− γK ′ab]

 , (3.51)

Md =


−(γK b+2δ ) γK a ψ +φ −ν

K b −(K a+2σδ ) −1
γ
[ψ +φ −ν ]

γK b −γK a −[ψ +φ −ν ]

 , (3.52)

and φ ≡ ν − γK ′ab, ψ ≡ ν(V −V ′c).

Since (3.50) has block diagonal form, its characteristic polynomial F(λ ) is given by the

product of those of Ms and Md . These, in turn, are given by

Fs(λ ) =−λ
2[λ +K a+ γK b+ν(V +V ′c)+φ −ν ], (3.53)

Fd(λ ) =−λ
3 −α2λ

2 −α1λ −α0, (3.54)

where

α0 = 4σδ
2(ψ +φ −ν), (3.55)

α1 = 2δ [K a+σγK b+2σδ +(ψ +φ −ν)(1+σ)], (3.56)

α2 = K a+ γK b+ψ +φ −ν +2(1+σ)δ , (3.57)

In the absence of feedback (K = V = 1), the roots of (3.53) are given by λ1,2 = 0 and

λ3 =−a− γb−ν < 0. Considering Fd(λ ), since the SUSS and all parameters are positive,



62 Feedback requirements for cell-to-tissue scale planar polarity

so are α0, α1, α2, hence by Descartes’ rule of signs (3.54) has no positive roots. Therefore,

the SUSS is linearly stable to spatially homogeneous perturbations.

In the case of destabilising feedback (K = 1, V a monotonic increasing function), the

roots of (3.53) are λ1,2 = 0 and λ3 = −a− γb−ν(V +V ′c) < 0. The number of positive

roots of equation (3.54) can again be deduced using Descartes’ rule of signs, and depends on

ψ: (i) if ψ ≥ 0, there are no positive roots, hence the SUSS is linearly stable; (ii) if ψ < 0,

there is at least one positive root, hence the SUSS is linearly unstable.

The case of stabilising feedback (V = 1, K a monotonic increasing function) is similar.

In this case, the roots of (3.53) are λ1,2 = 0 and λ3 = −aK − γbK − (ν − γK ′ab) < 0,

while the number of positive roots of equation (3.54) depends on the sign and magnitude of

φ : (i) if φ ≥ 0, there are no positive roots of (3.54), hence the SUSS is linearly stable; (ii) if

φ < 0, there is at least one positive root, hence the SUSS is linearly unstable.

In summary, we have obtained inequalities that must be satisfied for the SUSS to become

linearly unstable to spatially homogeneous perturbations in our binding feedback model.

These inequalities (ψ < 0 for destabilising feedback, φ < 0 for stabilising feedback) may, if

a particular feedback function were chosen, be related to the minimum strength of feedback

required for the SUSS to lose stability to spatially homogeneous perturbations. Of course,

the SUSS might go unstable to spatially inhomogeneous perturbations at even lower feedback

strengths, but a more general stability analysis quickly becomes intractable.

3.2.3 Numerical simulations

In this section we verify our analytical results numerically. We also examine the behaviour

of the system in the case of verifying key parameters (feedback strength and sharpness; total

protein concentrations). Finally, we simulate a variety of mutant clones and compare our

findings to experimentally observed phenotypes such as domineering non-autonomy.



3.2 Binding feedback model 63

We solve the non-dimensionalised model (3.14)-(3.19) numerically using a variable-step,

variable-order method (implemented using the function odeint from scipy.integrate in

Python) for a ring of N = 30 cells of equal size (Fig. 3.2). We impose periodic boundary

conditions at the left edge of cell 0 and the right edge of cell N −1. Starting from specified

initial conditions (see below), the ODE system is solved numerically and allowed to evolve

to a steady state. Simulations are run to ensure that a steady state is achieved by plotting

solutions over time to ensure no further change in levels.

For simplicity, we assume that proteins a and b have the same diffusion coefficient

(σ = 1), and assume the same total concentration in each cell (γ = 1), unless stated otherwise.

We fix δ = 0.01 and ν = 0.1. We assume that initially no complex is present, with equal

concentrations of b on the left and right edges of each cell, and a slightly higher concentration

of a on the right rather than on the left edges [63]:

aL(0) =
1
2
− ε, aR(0) =

1
2
+ ε, bL(0) = bR(0) =

1
2
, cL(0) = cR(0) = 0, (3.58)

where ε = 0.01. Biologically, we may relate this initial bias to some directional cue [71]. It

is important to note that we are not explicitly modelling the source of such a cue; instead, we

are simply assuming that there is some upstream cue that leads to the initial conditions to be

asymmetric. We return to this point in the discussion (Section 3.5).

For our numerical simulations, we must choose specific functional forms for our feedback

functions V and K . We choose sigmoidal functions

V (c) = 1+
(η −1)cn

κn + cn , (3.59)

K (c) = 1+
(µ −1)cm

ρm + cm , (3.60)
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where η and µ denote the maximal relative level of destabilising and stabilising feedback in

the binding rate, κ and ρ denote the concentrations at which the corresponding feedback is

half-maximal, n and m represent the steepness of each type of feedback, respectively.

Polarisation in the presence of binding feedback

We first illustrate how the presence of binding feedback can result in polarisation in this

model. Fig. 3.3 shows numerical results in the case of destabilising feedback for an example

parameter set. Qualitatively similar results are obtained in the case of stabilising feedback

(results not shown). We find that for our chosen parameter values, the system exhibits planar

polarisation. Note that as a result of diffusion, the complex concentrations cL(t) and cR(t)

in each cell tend to different steady-state values, while the unbound protein concentrations

aL(t) and aR(t) tend towards the same value, as do bL(t) and bR(t) (Fig. 3.3a).

(a) (b)

Fig. 3.3 Numerical solution of the binding feedback model (3.14)–(3.19) with initial con-
dition (3.58) in the presence of destabilising feedback (3.59). Non-dimensional parameter
values are ν = 0.1, γ = 1, δ = 0.01, σ = 1, ε = 0.01, η = 30, κ = 1, n = 2. (a) Solid lines:
L; dashed lines: R. Numerical solution shown at t = 105.
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The tissue-scale polarised steady state is shown in Fig. 3.3b. Here, each cell has a lower

complex concentration on its left side than its right side; this is due to our choice of bias

in the initial condition (3.58). Note that in the absence of an initial bias, the system should

theoretically evolve over time to the positive SUSS; in practice however, roundoff errors can

lead the numerical simulation to evolve to a polarised steady state even in this case (results

not shown).

Polarisation dependence on binding feedback strength and sharpness

Next, we explore whether a certain strength, or sharpness, of feedback is required for

polarisation. Since we are interested in how the strength of feedback affects the linear

stability of the SUSS, we treat the feedback strength parameters η and µ , or feedback

sharpness parameters n and m, in (3.59) and (3.60) as bifurcation parameters and consider

all remaining parameters as ‘fixed’. For simplicity, we consider a single cell with ‘periodic’

boundary conditions rather than simulating the full tissue.

The upper graphs of Fig. 3.4 show the steady-state values of cL and cR (technically,

their values reached at t = 105) for feedback strengths η and µ ranging from 1 to 40. We

observe a pitchfork bifurcation, with the SUSS losing stability at critical values of η ≈ 19

(Fig. 3.4a) and µ ≈ 12 (Fig. 3.4b), respectively. The lower graphs of Fig. 3.4 show that

above these critical values, the terms ψ and φ defined in our linear stability analysis above

become negative. This confirms our theoretical finding that the SUSS is unstable with

destabilising feedback if and only if ψ < 0, and with stabilising feedback if and only if φ < 0.

In conclusion, sufficiently strong feedback is required to drive the system away from the

SUSS and into a stable polarised state.

We next examine how the feedback sharpness affects the system’s polarity for a fixed

feedback strength. Fig. 3.5 shows that for both feedback types, there is an intermediate

sharpness range for which the system exhibits polarity, before the bifurcation moves to a non-
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(a) (b)

Fig. 3.4 Bifurcation analysis of the binding feedback model (3.14)–(3.19) with respect to
feedback strength. Non-dimensional parameter values are ν = 0.1, γ = 1, δ = 0.01, σ = 1,
ε = 0.01, κ = 1, n = 2, ρ = 1, m = 2. Solid lines: L; dashed lines: R (upper panels).

polarised state. This finite range also matches the amplitude of the terms ψ and φ (see lower

panels of Fig. 3.5). Loosely speaking, we may interpret the feedback sharpness biologically

to the degree of cooperativity associated with the feedback interaction. In simpler enzymatic

reactions such as the binding of oxygen to haemoglobin, this can be related to the number of

molecules involved in a reaction. For more complex systems, however, care should be taken

with this interpretation [72]. Nevertheless, it is somewhat counter-intuitive that feedback

must be sufficiently sharp, but not too sharp, for polarisation to occur in this model.

Polarisation dependence on relative total protein concentrations

We next explore the effect of varying γ , the ratio of Btot to Atot, on polarisation. Here, we

consider the strength and sharpness of each form of feedback to be ‘fixed’. As shown in

Fig. 3.6, in both feedback cases we observe a bifurcation, with a critical value of γ above

which polarisation occurs. Comparing Fig. 3.6a with Fig. 3.6b (respectively Fig. 3.6c with

Fig. 3.6d), we find that for a stronger feedback, a lower value of γ suffices for polarisation to
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(a) (b)

Fig. 3.5 Bifurcation analysis of the binding feedback model (3.14)–(3.19) with respect to
feedback sharpness. Non-dimensional parameter values are ν = 0.1, γ = 1, δ = 0.01, σ = 1,
ε = 0.01, κ = 1, η = 30, ρ = 1, µ = 30. Solid lines: L; dashed lines: R (upper panels).

occur. In addition, comparing Fig. 3.6a and Fig. 3.6c, we find that a lower value of γ suffices

for polarisation in the case of stabilising feedback than in the case of destabilising feedback.

In summary, for a given strength of feedback, it is possible to induce polarisation if the total

concentration of protein b is sufficiently large relative to that of protein a in our model.
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(a) (b)

(c) (d)

Fig. 3.6 Bifurcation analysis of the binding feedback model (3.14)–(3.19) with respect to
the ratio of total protein concentrations in each cell. Non-dimensional parameter values are
ν = 0.1, δ = 0.01, σ = 1, ε = 0.01; feedback parameters are κ = 1, n = 2, ρ = 1, and m = 2.
Solid lines: L; dashed lines: R.
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Clone phenotypes

Having explored how different parameters affect the occurrence of polarisation in a normal

tissue, we next investigate the behaviour of cells neighbouring a group of cells in which

the abundance of each protein is perturbed. This corresponds biologically to the creation

of a mutant clone in which the relevant gene is over- or underexpressed (see Section 1.3).

In our model, a clone is defined as a set of cell indices i ∈ I for which 2ai +2ci = r < 1

and/or 2γbi +2ci = γr < γ , where the parameter r denotes the fraction of the normal total

concentration of protein a and or b in each cell. In the simulations shown below, we take

r = 0.1 and I = {13, . . . ,17}. We show results for: (i) clones in which only the total amount

of a in each mutant cell is underexpressed, referred to as ‘single a− clones’; (ii) clones in

which both a and b in each mutant cell are underexpressed, referred to as ‘double a−b−

clones’.

Fig. 3.7 and Fig. 3.8 show example simulations demonstrating perturbed polarisation

in cells surrounding single and double clones in the cases of destabilising and stabilising

feedback, respectively. For destabilising feedback with a single clone (Fig. 3.7a), we observe

that some cells outside the clone have ‘reversed’ polarity, in the sense that they reach a stable

steady state in which cL > cR, despite the opposing bias in the initial condition (3.58). This

corresponds to the domineering non-autonomy phenotype that we previously discussed in

the context of the core pathway in the fly wing (Section 1.3). This is largely ameliorated

in the case of a double clone (Fig. 3.7b), with most cells neighbouring the clone exhibiting

the ‘correct’ polarity. For stabilising feedback, single clones (Fig. 3.8a) induce domineering

non-autonomy in a qualitatively similar way to the case of destabilising feedback. However,

curiously the cells neighbouring a double clone (Fig. 3.8b) exhibit a ‘period two’ pattern,

with adjacent cells having opposing polarities throughout the tissue. (Note that if a larger

number of cells is used in the tissue, then we observe a finite extent of mispolarisation; results
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not shown.) In summary, the types of perturbation and feedback interaction both affect the

resulting tissue-scale polarisation in our simulations.

(a) (b)

Fig. 3.7 Perturbed polarisation in the binding feedback model (3.14)–(3.19), with destabil-
ising feedback, for cells neighbouring (a) a single a− clone and (b) a double a−b− clone.
Non-dimensional parameter values are ν = 0.1, γ = 1, δ = 0.01, σ = 1, ε = 0.01, η = 30,
κ = 1, n = 2. Numerical solution shown at t = 5×103.

Next, we explore how the range of domineering non-autonomy (measured by the number

of cells with reversed polarity at steady state) around single and double clones for each form

of feedback depends on the strength of feedback (Fig. 3.9). We identify two main differences

between the cases of destabilising (Fig. 3.9a) and stabilising (Fig. 3.9b) feedback. The

first difference is that for destabilising feedback the range of non-autonomy increases with

feedback strength up to η ≈ 20, then decreases significantly with higher feedback strengths;

whereas for stabilising feedback, the corresponding ‘maximum range of non-autonomy’

occurs at a lower feedback strength (µ ≈ 10), and the decrease at higher feedback strengths

is more mild. The second difference is that for destabilising feedback, the range of non-

autonomy is much higher around single clones than double clones; whereas for stabilising
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(a) (b)

Fig. 3.8 Perturbed polarisation in the binding feedback model (3.14)–(3.19), with stabilising
feedback, for cells neighbouring (a) a single a− clone and (b) a double a−b− clone. Non-
dimensional parameter values are ν = 0.1, γ = 1, δ = 0.01, σ = 1, ε = 0.01, µ = 30, ρ = 1,
m = 2. Numerical solution shown at t = 5×103.

feedback the range of non-autonomy appears to be independent of clone type, though the

double clone induces a period two pattern rather than simply reversing polarity.

The above results show that either destabilising or stabilising feedback can suffice to

drive the SUSS to be unstable and generate planar polarisation in this model. In each case, a

minimum strength or sharpness of feedback is required for polarisation to occur. Our clone

simulations suggest that the case of destabilising feedback may be more directly related to

the experimental findings of Fisher et al. [63], namely that inducing a double Fz− Vang−

clone in the fly wing largely rescues the domineering non-autonomy phenotype observed

for a single Fz− or Vang− clone. In the case of single clones, our simulations suggest a

counter-intuitive, nonlinear dependence of the range of non-autonomy on feedback strength.

In the next section we consider an alternative hypothesised mechanism, whereby an initial

bias may be amplified through the modulation of rates of protein trafficking within each cell.
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(a) (b)

Fig. 3.9 Range of domineering non-autonomy in the binding feedback model with (a)
destabilising and (b) stabilising feedback. Blue triangles: a− clone; orange circles: a−b−

clone. Non-dimensional parameter values are ν = 0.1, γ = 1, δ = 0.01, σ = 1, ε = 0.01,
ρ = 1, m = 2, κ = 1, n = 2. Numerical solution shown at t = 105.

3.3 Trafficking feedback model

We now suppose that feedback acts not on (un)binding rates, but instead on the rate of protein

trafficking within each cell, which for simplicity we model as a diffusive process. In this

model, we assume that the complex C can alter the local rate of endocytosis of unbound

proteins from the cell membrane, and hence their rate of transport away to the opposing cell

edge. Below, we present the governing equations for this model, which are modifications

of (3.5)–(3.10), for two cases: destabilising and stabilising feedback. Unlike Section 3.2, we

present each feedback case as a separate model, since it is not so straightforward to write a

general model that encompasses both cases.
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3.3.1 Governing equations

Destabilising feedback

Here, we assume that the higher the complex concentration of each orientation at a cell-cell

interface is, the higher the rate of diffusion of unbound proteins of the opposite orientation

away from that cell-cell interface is. This could be biologically interpreted as an increase in

the rate of endocytosis followed by unpolarised trafficking back to either the left or right cell

edge, as the complex concentration increases. The governing equations are thus given by

ȦL
i =−kAL

i BR
i−1 + vCL

i +DA1(CL
i+1)A

R
i −DA1(CR

i−1)A
L
i , (3.61)

ȦR
i =−kAR

i BL
i+1 + vCR

i +DA1(CR
i−1)A

L
i −DA1(CL

i+1)A
R
i , (3.62)

ḂL
i =−kAR

i−1BL
i + vCR

i−1 +DB1(CR
i )B

R
i −DB1(CL

i )B
L
i , (3.63)

ḂR
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i+1BR
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i+1 +DB1(CL
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i )B
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i , (3.64)

ĊL
i = kAL

i BR
i−1 − vCL

i , (3.65)

ĊR
i = kAR

i BL
i+1 − vCR

i , (3.66)

where unlike Section 3.2 the rate coefficients k and v are both assumed to be constant, while

the diffusion coefficients DA1 and DB1 may depend on the local complex concentration in a

monotonic increasing manner.

For consistency of analysis, we use the same non-dimensionalisation as in Section 3.2,

taking K = V = 1. We also take DA1 = Da1Atot and DB1 = Db1Btot, where Da1 and Db1

denote the dimensionless functions. This gives the non-dimensionalised system

ȧL
i =−γaL

i bR
i−1 +νcL

i +α
(
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i+1)a
R
i −Da1(cR
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ḃL
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ḃR
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i+1bR
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)
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ċL
i = γaL

i bR
i−1 −νcL

i , (3.71)

ċR
i = γaR

i bL
i+1 −νcR

i , (3.72)

where γ and ν are as defined in (3.13) and α = 1/k0. Note that Da1(0) = Db1(0) = 1, and

that the conservation laws given by equations (3.30) and (3.31) still hold for this system. In

the following, we assume that if a and b are both affected by destabilising feedback, then

they are so in an equivalent manner (Da1 = Db1 = D1).

Stabilising feedback

Here, we assume that the higher the complex concentration of each orientation at a cell-cell

interface is, the lower the rate of diffusion of unbound proteins of that orientation away from

that cell-cell interface is. Proceeding in a similar manner to the case of destabilising feedback

leads to the non-dimensionalised system of governing equations

ȧL
i =−γaL

i bR
i−1 +νcL

i +α
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i )a
R
i −Da2(cL

i )a
L
i
)
, (3.73)

ȧR
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ḃR
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ċL
i = γaL

i bR
i−1 −νcL

i , (3.77)

ċR
i = γaR

i bL
i+1 −νcR

i , (3.78)

where Da2 and Db2 may be monotonic decreasing functions of their arguments, and we

have Da2(0) = Db2(0) = 1. In the following, we assume that if a and b are both affected by

stabilising feedback, then they are so in an equivalent manner (Da2 = Db2 = D2).



3.3 Trafficking feedback model 75

3.3.2 Steady state and linear stability analysis

Having constructed our trafficking feedback model for the case of destabilising and stabilising

feedback, we next consider the existence of any positive SUSS (a,b,c) and its linear stability

to spatially homogeneous perturbations.

We first seek positive, homogeneous SUSS solution(s) of the system (3.67)–(3.72).

Substituting aL
i (t) = aR

i (t) = a, bL
i (t) = bR

i (t) = b, and cL
i (t) = cR

i (t) = c into (3.72), (3.30)

and (3.31), we find that a, b and c must satisfy

γab−νc = 0, (3.79)

2a+2c = 1, (3.80)

2γb+2c = γ, (3.81)

regardless of whether feedback is present or absent. A similar result is found in the case of

stabilising feedback. This means that, for both forms of feedback, there is always a unique

positive SUSS that is given (following the analysis presented in Section 3.2.2) by (3.36)–

(3.38). We next consider the linear stability of this SUSS under each form of feedback.

Destabilising feedback

Applying (3.41) to the system (3.67)–(3.72), linearising, then applying (3.48)–(3.49), we

obtain the system

ṡa =−γbsa − γasb +νsc, (3.82)

ṡb =−bsa −asb +
ν

γ
sc, (3.83)

ṡc = γbsa + γasb −νsc, (3.84)

ḋa =−(γb+2αDa1)da + γadb +(ν +2αaD′
a1)dc, (3.85)
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ḋb = bda − (a+2αγDb1)db −
(

ν

γ
+2αγbD′

b1

)
dc, (3.86)

ḋc = γbda − γadb −νdc. (3.87)

Similar to our analysis in Section 3.2.2, we find that the characteristic polynomial F(λ ) of

the Jacobian of (3.82)–(3.87) is given by the product of the two polynomials

Fs(λ ) =−λ
2(λ +a+ γb+ν), (3.88)

Fd(λ ) =−λ
3 −α2λ

2 −α1λ −α0, (3.89)

where

α0 = 4α
2
γ[νDa1Db1 − γab(Da1D′

b1 +D′
a1Db1)], (3.90)

α1 = 2α[Da1(a+ν)+ γDb1(ν + γb+2αDa1)− γab(D′
a1 + γD′

b1)], (3.91)

α2 = a+ γb+ν +2α(Da1 + γDb1), (3.92)

By inspection, the function Fs(λ ) has roots λ1,2 = 0 and λ3 =−a− γb−ν , the latter being

negative since all model parameters and the SUSS are positive.

In the absence of feedback (Da1 = Db1 = 1), we have

α0 = 4α
2
γν , (3.93)

α1 = 2α[a+ν + γ(ν + γb+2α)], (3.94)

α2 = a+ γb+ν +2α(1+ γ), (3.95)

which are all positive; hence, by Descartes’ rule of signs, (3.89) has no positive roots, and

thus the SUSS is linearly stable to spatially homogeneous perturbations.



3.3 Trafficking feedback model 77

In the presence of feedback, there are three cases to consider. If feedback acts upon the

trafficking of a alone (Db1 = 1), then there is exactly one positive root when νDa1−γabD′
a1 <

0. Similarly, if feedback acts upon the trafficking of b alone (Da1 = 1), then there is exactly

one positive root when νDb1 − γabD′
b1 < 0. Finally, if feedback acts upon the trafficking of

both a and b, then there is exactly one positive root when ∆ = νD1 −2γabD′
1 < 0, where

Da1 = Db1 = D1.

Stabilising feedback

Following a similar approach, in the case of stabilising feedback we find that the characteristic

polynomial F(λ ) whose eigenvalues determine the stability of the SUSS is given by the

product of the polynomial Fs(λ ) given by (3.88) and the polynomial

Fd(λ ) =−λ
3 −α2λ

2 −α1λ −α0, (3.96)

where

α0 = 4α
2
γ[νDa2Db2 + γab(Da2D′

b2 +D′
a2Db2)], (3.97)

α1 = 2α[Da2(a+ν)+ γDb2(2αDa2 +ν)+ γab(D′
a2 + γD′

b2)], (3.98)

α2 = a+ γb+ν +2α(Da2 + γDb2). (3.99)

In the absence of feedback, these coefficients simplify to

α0 = 4α
2
γν , (3.100)

α1 = 2α[a+ν + γ(2+ν)], (3.101)

α2 = a+ γb+ν +2α(1+ γ), (3.102)
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which are all positive; hence, by Descartes’ rule of signs, (3.96) has no positive roots, and

thus the SUSS is linear stable to spatially homogeneous perturbations.

In the presence of feedback, the situation is very similar to the destabilising case. If

feedback acts upon the trafficking of a alone (Db1 = 1), then there is exactly one positive

root when νDa2 + γabD′
a2 < 0. Similarly, if feedback acts upon the trafficking of b alone

(Da1 = 1), then there is exactly one positive root when νDb2 + γabD′
b2 < 0. Finally, if

feedback acts upon the trafficking of both a and b, then there is exactly one positive root

when Ω = νD2 +2γabD′
2 < 0.

In summary, we have obtained inequalities that must be satisfied for the SUSS to become

linearly unstable to spatially homogeneous perturbations in our trafficking feedback model.

3.3.3 Numerical simulations

In this section we verify our analytical results numerically and conduct a similar numerical

investigation to that presented in Section 3.2.3 for the binding feedback model. As before,

we consider a ring of N = 30 cells of equal size, imposing periodic boundary conditions and

the initial condition (3.58). Unless stated otherwise, we use the same parameter values as in

Section 3.2.3.

For our numerical simulations, we must choose specific functional forms for our feedback

functions Da1 and Da2 (equivalently, Db1 and Db2). We choose sigmoidal functions

Da1(c) = 1+
(ηD −1)cnD

κ
nD
D + cnD

, (3.103)

Da2(c) = µD +
(1−µD)cmD

ρ
mD
D + cmD

, (3.104)

emphasising that Da1 is monotonic increasing while Da2 is monotonic decreasing (assuming

ηD > 1 and µD > 1). Note that we use the same symbols for feedback strength and sharpness
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as in the binding feedback model (3.59)–(3.60), but include an additional subscript D to

highlight that these parameters relate to the trafficking (i.e. diffusion) feedback model.

Polarisation in the presence of trafficking feedback

We first illustrate how the presence of trafficking feedback can result in polarisation in this

model. Fig. 3.10 shows numerical results in the case of destabilising feedback for an example

parameter set. As with the binding feedback model, qualitatively similar results are obtained

in the case of stabilising feedback (results not shown). Note that in contrast to the binding

feedback model, here the unbound protein concentrations polarise as well as the complex

concentrations in each cell. We also see much stronger steady-state polarisation than for

the binding feedback model (compare Fig. 3.10b with Fig. 3.3b), although this of course

depends on the chosen parameter set.

(a) (b)

Fig. 3.10 Numerical solution of the trafficking feedback model with destabilising feed-
back (3.67)–(3.72) with initial condition (3.58). Non-dimensional parameter values are
ν = 0.1, γ = 1, ε = 0.01, α = 0.01, ηD = 30, κD = 1, nD = 2. (a) Solid lines: L; dashed
lines: R. Numerical solution shown at t = 105.
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Dependence of polarisation on trafficking feedback strength and sharpness

Next, we explore whether a certain strength, or sharpness, of trafficking feedback is required

for polarisation. We consider a single cell with ‘periodic’ boundary conditions rather than

simulating the full tissue.

The upper graphs of Fig. 3.11 show the steady-state values of cL and cR for feedback

strengths ηD and µD ranging from 1 to 30, in the case where feedback acts upon the diffusion

rates of both unbound proteins equally. As with the binding feedback model, we observe a

pitchfork bifurcation, with the SUSS losing stability at critical values of ηD ≈ 5 (Fig. 3.11a)

and µD ≈ 5 (Fig. 3.11b ), respectively. The lower graphs of Fig. 3.11 show that above these

critical values, the terms ∆ and Ω defined in our linear stability analysis above become

negative. This confirms our theoretical analysis and shows that sufficiently strong feedback

is required to drive the system away from the SUSS and into a stable polarised state. Note

that the critical feedback strengths for polarisation are much lower than those for the binding

feedback model, and holding all other parameters fixed, destabilising trafficking feedback

generates much stronger polarity than equivalent destabilising binding feedback.

We next examine how the feedback sharpness affects the system’s polarity for a fixed

trafficking feedback strength. As Fig. 3.12 shows, there is an intermediate set sharpness

values for which polarisation occurs. This is similar to our results for the binding feedback

model, albeit with quantitatively difference lower and upper critical values for the sharpness

parameters nD, mD compared to n, m.

Clone phenotypes

We next investigate the behaviour of cells neighbouring a group of cells in which the

abundance of each protein is perturbed. We implement single and double clones as described

in Section 3.2.3. Fig. 3.13 and Fig. 3.14 show example simulations demonstrating perturbed

polarisation in cells surrounding single and double clones in the cases of destabilising and
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(a) (b)

Fig. 3.11 Bifurcation analysis of the trafficking feedback model with (a) destabilising
feedback (3.67)–(3.72) and (b) stabilising feedback (3.73)-(3.78) with respect to feedback
strength. For each value of feedback strength, each system is solved numerically for one cell.
Non-dimensional parameter values are ν = 0.1, γ = 1, ε = 0.01, α = 0.01, κD = 1, nD = 2,
ρD = 0.1, mD = 2. Numerical solution shown at t = 105. Solid lines: L; dashed lines: R
(upper panels).

stabilising trafficking feedback, respectively. As with the binding feedback model, we find

that destabilising and stabilising feedback are both capable of generating non-autonomy

around single clones. Cells immediately neighbouring a single a− clone localise away

from the clone (Fig. 3.13a and Fig. 3.14a). These simulations also reveal a variety of non-

autonomy behaviours around double a−b− clones. For instance, for a high destabilising

feedback strength, we observe no non-autonomy around a double a−b− clone (Fig. 3.13b),

while for all stabilising feedback strengths (e.g. µD = 30; Fig. 3.14b), period two patterns

are observed.

Fig. 3.15 illustrates how the range of non-autonomy varies with feedback strength for

destabilising and stabilising feedback, respectively. In the case of a single a− clone, maximum

disruption is observed for an intermediate value of the feedback strength, whose value is the

same for destabilising and stabilising feedback (ηD = µD ≈ 5).
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(a) (b)

Fig. 3.12 Bifurcation analysis of the trafficking feedback model with (a) destabilising feed-
back (3.67)–(3.72) and (b) stabilising feedback (3.73)-(3.78) with respect to feedback sharp-
ness. For each value of feedback sharpness, the systems are solved numerically for one cell.
Non-dimensional parameter values are ν = 0.1, γ = 1, ε = 0.01, α = 0.01, κD = 1, ηD = 20,
ρD = 0.1, µD = 20. The solution is shown at t = 105. Solid lines: L; dashed lines: R (upper
panels).

For such clones, with even stronger feedback the range of non-autonomy decreases,

counter-intuitively. In the case of a double a−b− clone, the range of non-autonomy again

has a maximum for µD ≈ 5 in the case of stabilising feedback (Fig. 3.15b). However, for

destabilising feedback (Fig. 3.15a), the range of non-autonomy appears to decrease with

feedback strength, with no non-autonomy observed beyond a critical feedback strength

(ηD ≈ 10).

Taken together, these results suggest that if feedback interactions were to operate by

modulating unbound protein trafficking rates within each cell, then we may be able to

distinguish whether such feedback is destabilising or stabilising by observing whether there

is non-autonomy around double clones. Again, this has potential implications for how to

interpret experimental observations of mutant clone phenotypes in the core planar polarity

pathway. In the next section we consider a third hypothesised mechanism, whereby an initial
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(a) (b)

Fig. 3.13 Perturbed polarisation in the trafficking feedback model with destabilising feed-
back (3.67)–(3.72), for cells neighbouring (a) a single a− clone and (b) a double a−b− clone.
Non-dimensional parameter values are ν = 0.1, γ = 1, δ = 0.01, σ = 1, ε = 0.01, ηD = 30,
κD = 1, nD = 2. Numerical solution shown at t = 105.

bias may be amplified through the modulation of rates of protein degradation within each

cell.

3.4 Degradation feedback model

In our third model, we supposed that feedback acts on the rate of degradation of proteins

A and/or B. From a biological perspective, a destabilising feedback between complexes of

opposing orientations might occur via e.g. targeted ubiquitination [73]. The inclusion of

protein degradation in this model necessitates the inclusion of protein ‘production’ to avoid

the protein concentrations tending to zero over time. This also ‘breaks’ mass conservation, in

the sense that the total protein concentrations (3.11) and (3.12) are not conserved over time

in this model.
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(a) (b)

Fig. 3.14 Perturbed polarisation in the trafficking feedback model with stabilising feed-
back (3.73)–(3.78), for cells neighbouring (a) a single a− clone and (b) a double a−b− clone.
Non-dimensional parameter values are ν = 0.1, γ = 1, δ = 0.01, σ = 1, ε = 0.01, µD = 30,
ρD = 0.1, mD = 2. Numerical solution shown at t = 105.

3.4.1 Governing equations

In this model, we assume (as in the trafficking feedback model) that proteins A and B

undergo reversible binding according to (3.1)–(3.2) with constant forward and backward

rate coefficients k and v, respectively. In addition, we assume (as in the binding feedback

model) that proteins A and B undergo trafficking that may be described by diffusion between

cell compartments according to (3.3)–(3.4) with constant diffusion coefficients DA and DB,

respectively. However, in contrast to the two previous models, we assume that proteins A and

B are produced constitutively in each cell compartment according to the reactions

/0 −−→ AL
i , (3.105)

/0 −−→ AR
i , (3.106)

/0 −−→ BL
i , (3.107)
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(a) (b)

Fig. 3.15 Range of domineering non-autonomy in the trafficking feedback model with (a)
destabilising and (b) stabilising feedback. Blue triangles: a− clone; orange circles: a−b−

clone. Non-dimensional parameter values are ν = 0.1, γ = 1, δ = 0.01, σ = 1, ε = 0.01,
ρD = 0.1, mD = 2, κD = 1, and nD = 2. Numerical solution shown at t = 105.

/0 −−→ BR
i , (3.108)

with constant rate coefficients WA and WB, respectively. We also assume that the complex in

each cell compartment degrades according to the reactions

CL
i −−→ /0, (3.109)

CR
i −−→ /0, (3.110)

with shared rate coefficient q that may depend on the local complex concentration (of the

opposing orientation). Applying the above assumptions, the governing equations are thus

given by

dAL
i

dT
=−kAL

i BR
i−1 + vCL

i +DA(AR
i −AL

i )+WA, (3.111)
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dAR
i

dT
=−kAR

i BL
i+1 + vCR

i +DA(AL
i −AR

i )+WA, (3.112)

dBL
i

dT
=−kAR

i−1BL
i + vCR

i−1 +DB(BR
i −BL

i )+WB, (3.113)

dBR
i

dT
=−kAL

i+1BR
i + vCL

i+1 +DB(BL
i −BR

i )+WB, (3.114)

dCL
i

dT
= kAL

i BR
i−1 − vCL

i −q(CR
i−1)C

L
i , (3.115)

dCR
i

dT
= kAR

i BL
i+1 − vCR

i −q(CL
i+1)C

R
i . (3.116)

We non-dimensionalise this model as follows. We write q= q0Q, where q0 denotes a baseline

value of the degradation rate coefficient, and Q may be either equal to 1 (corresponding

to no feedback) or given by some monotonic increasing function of its argument. We

write T = t/q0 and A j
i = q0a j

i , B j
i = q0b j

i , C j
i = q0c j

i for j ∈ {L,R}, a j
i , b j

i , c j
i and t denote

dimensionless variables. Finally, we define dimensionless lumped parameters

β =
1

kq0
, θa =

DA

kq0
, θb =

DB

kq0
, ωa =

WA

kq2
0
, ωb =

WB

kq2
0
, ζ =

1
k
. (3.117)

Substituting into (3.111)–(3.116) and using dots to denote differentiation with respect to t,

we obtain the non-dimensionalised system

ȧL
i =−aL

i bR
i−1 +βcL

i +θa(aR
i −aL

i )+ωa, (3.118)

ȧR
i =−aR

i bL
i+1 +βcR

i +θa(aL
i −aR

i )+ωa, (3.119)

ḃL
i =−aR

i−1bL
i +βcR

i−1 +θb(bR
i −bL

i )+ωb, (3.120)

ḃR
i =−aL

i+1bR
i +βcL

i+1 +θb(bL
i −bR

i )+ωb, (3.121)

ċL
i = aL

i bR
i−1 −βcL

i −ζQ(cR
i−1)c

L
i , (3.122)

ċR
i = aR

i bL
i+1 −βcR

i −ζQ(cL
i+1)c

R
i . (3.123)
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3.4.2 Steady state and linear stability analysis

Existence and uniqueness of positive SUSS

We next consider the existence of any positive SUSS (a,b,c) and its linear stability to

homogeneous perturbations. We seek positive, homogeneous SUSS solution(s) of the

system (3.118)–(3.123). Substituting aL
i (t) = aR

i (t) = a, bL
i (t) = bR

i (t) = b, and cL
i (t) =

cR
i (t) = c into (3.118), (3.120), and (3.122) we find that a, b and c must satisfy

−ab+βc+ωa = 0, (3.124)

−ab+βc+ωb = 0, (3.125)

ab−βc−ζQ(c)c = 0. (3.126)

Equations (3.124) and (3.125) are incompatible (and thus there exists no SUSS) unless

ωa = ωb = ω . In this case, in the absence of feedback (Q = 1) there is a unique, positive

SUSS given by

(a,b,c) =
(

a,
ω(β +ζ )

ζ a
,
ω

ζ

)
, (3.127)

where a appears to not be unique, but instead determined by the choice of initial condition.

In the presence of feedback, we assume that the higher the concentration of c in one

orientation between two neighbouring cells is, the faster the complex of the opposite orienta-

tion degrades. This corresponds to Q = 1 being a monotonic increasing function satisfying

Q(0) = 1. In this case, any SUSS must satisfy

Q(c) =
ω

ζ c
. (3.128)
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Since the left-hand side of (3.128) is monotonic increasing from 1, and the right-hand side

tends monotonically to ∞ as c → 0+ and tends monotonically to zero as c → ∞, there must

be a unique positive root, and hence a unique positive SUSS.

Linear stability of positive SUSS

We next consider the linear stability of the SUSS under each form of feedback. Similar to the

previous two models, we apply (3.41) to the system (3.118)–(3.123), linearise, then apply

the change of variables (3.48)–(3.49). This leads to the system

ṡa =−bsa −asb +β sc, (3.129)

ṡb =−bsa −asb +β sc, (3.130)

ṡc = bsa +asb −
(
β +ζ (Q+Q′c)

)
sc, (3.131)

ḋa =−(b+2αθa)da +adb +βdc, (3.132)

ḋb = bda − (a+2θb)db −βdc, (3.133)

ḋc = bda −adb −
(
β +ζ (Q−Q′c)

)
dc. (3.134)

We find that the characteristic polynomial F(λ ) of this system is given by the product of the

two polynomials

Fs(λ ) =−λ [λ 2 +(a+b+β +ζX )λ −ζ (a+b)X ], (3.135)

Fd(λ ) =−λ
3 −β2λ

2 −β1λ −2β0, (3.136)

where

β0 = ζY (aθa +bθb +2θaθb)+2θaθbβ , (3.137)

β1 = ζ (a+b)Y +2(aθa +bθb)+2(θa +θb)(β +ζY )+4θaθb, (3.138)
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β2 = a+b+β +2(θa +θb)+ζY , (3.139)

and we have defined X := Q+Q′c and Y := Q−Q′c.

The three eigenvalues of (3.135) are λ1 = 0 and

λ2,3 =−1
2
(a+b+β +ζX )± 1

2

√
(a+b+β +ζX )2 −4ζ (a+b)X . (3.140)

Regardless of feedback, we have X > 0, hence all three of these eigenvalues are negative.

In the absence of feedback (Q = 1, hence X = Y = 1), since the SUSS and all parame-

ters are positive, so are β0, β1, β2. Thus, by applying Descartes’ rule of signs, there are no

positive roots of (3.136), and there are no positive eigenvalues of the system (3.129)–(3.134).

Therefore, the SUSS is linearly stable in respect of spatially homogeneous perturbations in

the absence of feedback.

In the presence of feedback, the presence of positive roots of (3.136) can be deduced

using Descartes’ rule of signs, and depends on Y : (i) if Y ≥ 0, then there are no positive

roots, hence the SUSS is linearly stable; (ii) if Y < 0, then there is at least one positive root,

hence the SUSS is linearly unstable. We verify these analytical results numerically in the

next section.

3.4.3 Numerical simulations

In this section we verify our analytical results numerically and conduct a similar numerical

investigation to that presented in Section 3.2.3 and Section 3.3.3 for the binding and trafficking

feedback models, respectively.

As before, we consider a ring of N = 30 cells of equal size, imposing periodic boundary

conditions and the initial condition (3.58). Unless stated otherwise, we use the same param-

eter values as in Section 3.2.3. For our numerical simulations, we must choose a specific
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functional form for our feedback function Q. We choose a sigmoidal function of the form

Q(c) = 1+
(Π−1)cp

τ p + cp , (3.141)

where Π is the maximal relative level of feedback in the complex degradation rate, τ denotes

the complex concentration at which the feedback effect is half-maximal, and p represents the

feedback sharpness.

Polarisation in the presence of degradation feedback

We first verify that the presence of degradation feedback can result in polarisation in this

model. Fig. 3.16 shows numerical results for an example parameter set. Note that similar

to the trafficking feedback model, and in contrast to the binding feedback model, here the

unbound protein concentrations polarise (slightly) as well as the complex concentrations in

each cell. A comparison of the time evolution to steady state (Fig. 3.16a) with the previous

conservative models (Fig. 3.3a and Fig. 3.10a) suggests that, at least for the parameter sets

considered, the degradation feedback model polarises much more quickly. This is due to the

diffusion process happening much more rapidly in this model. Note that below, we always

assume ωa = ωb to ensure that a, b, and c all reach steady-state values; simulations with

ωa ̸= ωb can exhibit unbounded growth in a or b (results not shown).

Dependence of polarisation on degradation feedback strength and sharpness

Next, we explore whether a certain strength, or sharpness, of degradation feedback is

required for polarisation. As for the previous models, we consider a single cell with ‘periodic’

boundary conditions rather than simulating the full tissue. The upper graphs of Fig. 3.17

show the steady-state values of cL and cR for a range of values of feedback strength Π and

sharpness p. As with the two previous models, we observe a bifurcation, with the SUSS

losing stability at a critical value of Π (Fig. 3.17a) or equivalently of p (Fig. 3.17b). The
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(a) (b)

Fig. 3.16 Numerical solution of the degradation feedback model (3.118)–(3.123) with initial
condition (3.58). (a) Solid lines: L; dashed lines: R. (b) Numerical solution shown at
t = 105. Non-dimensional parameter values are ε = 0.01, β = 0.1, ζ = 1, θa = 0.1, θb = 0.1,
ωa = 0.2, ωb = 0.2, Π = 30, τ = 0.1, p = 2.

lower graphs of Fig. 3.17 show that above these critical values, the term Y defined in our

linear stability analysis does indeed become negative.

Clone phenotypes

We next investigate the behaviour of cells neighbouring a group of cells in which the

abundance of each protein is perturbed. However unlike the two previous models, we cannot

implement single and double clones as described in Section 3.2.3, since the total protein

concentration in each cell is not conserved over time. One possibility is to alter the initial total

concentrations of a and/or b in each mutant cell; however as one might expect, this does not

lead to any effect on the surrounding cells in our simulations (results not shown). Therefore,

we instead simulate mutant clones assume either through lower production rates (Fig. 3.18)

or higher production rates (Fig. 3.19) than normal cells, implemented through varying the

parameters ωa and/or ωb. Biologically, this arguably provides a more realistic description
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(a) (b)

Fig. 3.17 Bifurcation analysis of the degradation feedback model (3.118)–(3.123) with
respect to feedback (a) strength and (b) sharpness. Non-dimensional parameter values are
ε = 0.01, β = 0.1, ζ = 1, θa = 0.1, θb = 0.1, ωa = 0.2, ωb = 0.2, Π = 30, τ = 0.1, p = 2.
Solid lines: L; dashed lines: R (upper panels).

of under- or overexpression within mutant cells. Fig. 3.18 and Fig. 3.19 show the results of

sets of example simulations demonstrating perturbed polarisation in cells surrounding single

and double clones in the cases of underexpression (Fig. 3.18) and overexpression (Fig. 3.19),

respectively. In the single clone simulations, the protein concentration a tends to a very low

steady state if its production rate is low (Fig. 3.18a). However, if its production rate is high,

then a becomes unbounded (Fig. 3.19a). Single b− clones show similar results to single a−

clones (results not shown).

Counter-intuitively, despite c polarising (mostly) correctly around double a−b− clones,

we find unpolarised period two patterns in the concentrations of a and b, regardless of whether

the clone exhibits underexpression (Fig. 3.18b) or overexpression (Fig. 3.19b). We note that

similar period two patterns have been observed in another abstracted planar polarity model

by Schamberg et al. [69], as alluded to earlier.
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(a) (b)

Fig. 3.18 Perturbed polarisation in the degradation feedback model (3.118)–(3.123) for cells
neighbouring (a) a single a− clone and (b) a double a−b− clone. Non-dimensional parameter
values are ε = 0.01, β = 0.1, ζ = 1, θa = 0.1, θb = 0.1, ωa = 0.2 = ωb = 0.2, Π = 30,
τ = 0.1, p = 2. Within clones, a(0) = b(0) = 0.1 and ωa = ωb = 0. Numerical solutions
shown at t = 105.

Fig. 3.20 illustrates how the range of non-autonomy (if it occurs) varies with feedback

strength in this model, in the case of underexpression (Fig. 3.20a) and overexpression

(Fig. 3.20b), respectively. We find that for a single a− clone, maximum disruption is

observed for an intermediate value of the feedback strength, whose value is the same for

(Π ≈ 12) regardless of under- or overexpression. This is largely abolished for double a−b−

clones. Indeed, in contrast to clone simulations in the two previous (mass conserved)

models, we do not observe any domineering non-autonomy for a wide variety of feedback

strengths (Fig. 3.20). This could be explained by the absence of a travelling wave propagating

away from the clone edges as there appeared to be in the previous mass conserved model

simulations.
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(a) (b)

Fig. 3.19 Perturbed polarisation in the degradation feedback model (3.118)–(3.123) for cells
neighbouring (a) a single a+ clone and (b) a double a+b+ clone. Non-dimensional parameter
values are ε = 0.01, β = 0.1, ζ = 1, θa = 0.1, θb = 0.1, ωa = 0.2 = ωb = 0.2, Π = 30,
τ = 0.1, p = 2. Within clones a(0) = b(0) = 0.1 and ωa = ωb = 2. Numerical solutions
shown at t = 105.
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(a) (b)

Fig. 3.20 Range of domineering non-autonomy in the degradation feedback model for
clones exhibiting (a) underexpression and (b) overexpression. Blue triangles: a− clone;
orange circles: a−b− clone. Non-dimensional parameter values are ε = 0.01, β = 0.1,
ζ = 1, θa = 0.1, θb = 0.1, ωa = 0.2 = ωb = 0.2, Π = 30, τ = 0.1, p = 2. Within clones
a(0) = b(0) = 0.1, with (a) ωa = ωb = 0, and (b) ωa = ωb = 2. Numerical solutions shown
at t = 105.
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Taken together, these results suggest that if feedback interactions were to operate by

modulating protein complex degradation rates within each cell, then we would not expect to

see domineering non-autonomy around double clones, but may expect to see counter-intuitive

period two patterns in unbound protein concentrations. As with the previous two models

considered in this chapter, these theoretical results have potential implications for how to

interpret experimental observations of mutant clone phenotypes in the core planar polarity

pathway.

3.5 Discussion

In this chapter we have considered a variety of different possible feedback mechanisms that

could underlie the amplification of initial asymmetries and drive a tissue to a planar polarised

state. For each model, we have shown the presence of a bifurcation whereby a positive SUSS

loses stability to homogeneous perturbations, but only given sufficiently strong or sharp

feedback.

While sharing many similarities, the three forms of feedback can lead to qualitatively

different behaviours in cells neighbouring mutant clones, with domineering non-autonomy

observed in simulations of both single and double clones in some cases, and only single

clones in other cases. We also found some counter-intuitive behaviours such as period two

patterns in unbound protein concentrations.

We have deliberately adopted a minimal modelling approach in this chapter, rather than

seeking to construct a detailed biochemical model of a particular planar polarity pathway, in

order to explore the generic features of and requirements for amplifying feedback interactions.

One particular abstraction in our model, which is worth discussing further in the context

of the literature, is our treatment of the initial asymmetry or ‘bias’ in one unbound protein

concentration within each cell. Generally speaking, such a bias could arise as an ‘internal’

mechanism, whereby planar polarity proteins are expressed as a gradient and themselves
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instruct local polarity; alternatively, an ‘external’ mechanism could operate, whereby the bias

comes from an external source to the system [74].

In the case of the core pathway, candidates for an external mechanism include secreted

Wnt ligands, which have long been hypothesised to act as a global cue for planar polarisation

in many developing tissues. In the fly wing for instance, trichomes along the wing margin

point toward the source of Wnts [75]. Although overexpression of Wnt signalling ectopically

results in trichomes reorientation [75], it is difficult to demonstrate the instructive role of

Wnts in trichome orientation during wing development using loss-of-function mutations

(reviewed by Aw and Devenport [19] and Harrison et al. [76]).

The Ft-Ds pathway has also been considered to be an upstream global cue for the core

pathway, either via direct interaction [77], or by biasing the apical microtubule cytoskele-

ton [78]. However, the Ft-Ds pathway mostly affects hair polarity away from the wing

margin [78], suggesting the existence of other potential mechanisms or additional signals

that generate the global cue; these could include mechanical forces [46].

Work has also been done to determine whether such a bias or cue can be transient, or

must be persistent, over the timescale of polarisation. For example, a model by Fischer et al.

[71] suggests that while polarisation can be generated using only a transient initial cue, such

cues are not enough to ensure the robustness of the resulting polarity.

Finally, we note that in the absence of feedback, the presence of a clone can still results

in weak tissue-scale polarity in our model, even if the bias in the initial condition (3.58) is

removed (results not shown). This suggests that clones can impose polarity and could work

as another resource of bias within the system (see Fig. 3.9, in the case that η and µ are 1).

It is important to emphasise that we restricted our analysis in this chapter to one spatial

dimension. In the next chapter, we extend this work to two spatial dimensions.





Chapter 4

Moving from one to two spatial

dimensions

4.1 Introduction

As discussed in Chapter 3, previous theoretical modelling of the core planar polarity pathway

has highlighted the importance of studying the mechanisms underlying tissue-scale polarity

coordination. Models that approximate a tissue by a one-dimensional line of cells, in

Chapter 3, are generally more amenable to mathematical analysis. However, it is also

instructive to consider the richer variety of behaviours of types of patterning that may arise

in two spatial dimensions.

Planar polarity models that include two-dimensional geometries vary in terms of biolog-

ical detail, ranging from those that are generic and abstract to those that consider a large

number of detailed biochemical interactions. An example of the former approach is the work

of Schamberg [79], who proposes an abstract model based on juxtacrine signalling in an

array of square cells to gain a broad understanding of planar polarisation requirements. The

author concludes that uniform initial conditions can lead to a polarised state in the case of a
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strong feedback and weak diffusion. However, it is difficult to relate this model directly to

protein/complex concentrations and specific biological systems.

More biologically detailed models include the works of Amonlirdviman et al. [38]

and Le Garrec et al. [65], who examine the roles of protein-protein interactions and global

cues in planar polarisation within the fly wing. Both studies show that intercellular inter-

actions of the key core regulators Fz, Dsh, Vang, and Pk can recapitulate experimentally

observed asymmetric localisation of these proteins. Although the two models by Amonlirdvi-

man et al. [38] and Le Garrec et al. [65] differ in the details of those interactions, the proposed

mechanisms in both cases consist of a persistent global cue and an inhibition feedback loop,

with both components required for polarisation.

Returning to less biochemically detailed modelling, detailed mathematical analysis

by Fischer et al. [71] in one and two spatial domains suggests that a global cue and positive

feedback mechanisms are both necessary for polarisation to occur. These authors explore

the requirements for which the two models by Amonlirdviman et al. [38] and Le Garrec

et al. [65] should generate polarisation in a single hexagonal cell. They find that depending

on the feedback strength and the intercellular diffusion, both models yield a stable ‘side’

polarised steady state or a ‘triangular’ polarised steady state; whereas the ‘vertex ’polarised

state is never robust to asymmetric perturbations in the initial condition (see Section 4.3 for a

detailed definition of these different steady states). However, it is unclear whether our own

modelling presented in Chapter 3 should yield the same qualitative results in 2D, in particular

regarding the lack of stability of a ‘vertex’ steady state.

4.1.1 Aim of work

In this chapter, we extend the planar polarity modelling work presented in Chapter 3 to

explore the feedback requirements for planar polarity in two spatial dimensions. We also

consider the stability of alternative forms of polarity, corresponding to different symmetries,
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in the presence or absence of feedback interactions. In addition, we investigate the behaviour

of cells neighbouring mutant clones in two spatial dimensions in our simulations, and relate

these to experimental observations and to previous modelling predictions as discussed above.

For simplicity, we restrict our focus to the ‘binding feedback’ model introduced in Chapter 3,

whereby feedback interactions amplify asymmetries through locally affecting the stability of

protein complexes of the same, or opposite, orientation.

The remainder of this chapter is structured as follows. In Section 4.2 we introduce

the model and governing equations. In Section 4.3, using steady state and linear stability

analysis, we explore what other types of polarisation the model yields in the case of different

(a)symmetric initial assumptions. In Section 4.4 we present the results of numerical simu-

lations of the model for both a single ‘periodic’ cell and for sheet of cells. We conclude in

Section 4.5 with a discussion of our results and how their implications for understanding

tissue-scale polarisation.

4.2 Governing equations

We consider a simplified planar polarity system operating in a doubly-periodic two-dimensional

sheet of M×N hexagonal cells (see Fig. 4.1). A motivating example for choosing hexagonal

cells is the surface of the developing fly wing, which comprises an array of cells that are

packed hexagonally immediately prior to trichome formation (i.e. during the timescale of

core pathway planar polarisation in this tissue) [80]. Two proteins A and B are allowed to

bind reversibly across neighbouring cells to form an intercellular complex C according to the

set of reversible reactions

Am
i, j +Bm+3

im, jm
−−⇀↽−−Cm

i, j, (4.1)
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where the subscript indices (im, jm) transform (i, j) to neighbouring indices in a way that

depends on the value of m, as follows:

(im, jm) =



(i, j+1) if m = 0,

(i+1, j+(i+1)mod2) if m = 1,

(i+1, j− imod2) if m = 2,

(i, j−1) if m = 3,

(i−1, j− imod2) if m = 4,

(i−1, j+(i+1)mod2) if m = 5.

(4.2)

Proteins A and B are also allowed to diffuse between neighbouring sides of each cell according

to the ‘reactions’

Am
i, j −−⇀↽−− Am±1

i, j , (4.3)

Bm
i, j −−⇀↽−− Bm±1

i, j . (4.4)

Here subscripts i ∈ {0, . . . ,M−1} and j ∈ {0, . . . ,N −1} refer to the relevant protein in the

cell occupying the ith column and jth row, modulo N, starting from the top left (Fig. 4.1),

while superscript m ∈ {0, . . . ,5} refers to the mth edge of the cell going clockwise from the

top; we emphasise that superscript indices are understood to be taken mod 6.

We assume that each of the reactions (4.1) proceeds with a forward rate coefficient k and

backward rate coefficient v. We also assume in reactions (4.3) and (4.3) that A and B diffuse

between cell compartments with diffusion coefficients DA and DB, respectively. Diffusion

is assumed to take place between the present side and the two adjacent sides of the same

cell. For consistency of analysis, we write k = k0K and v = v0V , where k0 and v0 denote

baseline values for the forward and backward rate constants (as in the 1D model). We assume



4.2 Governing equations 103

(0,0)

0
1

2
3

4

5

(0,1)

0
1

2
3

4

5

(0,2)

0
1

2
3

4

5

(0,3)

0
1

2
3

4

5

(1,0)

0
1

2
3

4

5

(1,1)

0
1

2
3

4

5

(1,2)

0
1

2
3

4

5

(1,3)

0
1

2
3

4

5

(2,0)

0
1

2
3

4

5

(2,1)

0
1

2
3

4

5

(2,2)

0
1

2
3

4

5

(2,3)

0
1

2
3

4

5

(3,0)

0
1

2
3

4

5

(3,1)

0
1

2
3

4

5

(3,2)

0
1

2
3

4

5

(3,3)

0
1

2
3

4

5

Fig. 4.1 Schematic of the cell and side numbering convention used in equations (4.1)–(4.4).

throughout that DA and DB are constant, while v and k may dependent on the local complex

concentration (see below).

Let Am
i, j(T ), Bm

i, j(T ) and Cm
i, j(T ) denote the concentrations of molecules A, B and C on

the mth side of cell (i, j) at time T . Using the Law of Mass Action, reactions (4.1)–(4.4)

may be converted into the ODE system

dAm
i, j

dT
=−k0K (Cm

i, j)A
m
i, jB

m+3
im, jm + v0V (Cm+3

im, jm)C
m
i, j +DA(Am−1

i, j −2Am
i, j +Am+1

i, j ), (4.5)

dBm
i, j

dT
=−k0K (Cm+3

im, jm)A
m+3
im, jmBm

i, j + v0V (Cm
i, j)C

m+3
im, jm +DB(Bm−1

i, j −2Bm
i, j +Bm+1

i, j ), (4.6)

dCm
i, j

dT
= k0K (Cm

i, j)A
m
i, jB

m+3
im, jm − v0V (Cm+3

im, jm)C
m
i, j, (4.7)

for i ∈ {0, . . . ,M−1}, j ∈ {0, . . . ,N −1}, and m ∈ {0, . . . ,5}. From (4.5)–(4.7), we see that

the total (bound and unbound) concentrations of A and B

Atot =
5

∑
m=0

(
Am

i, j +Cm
i, j
)
, (4.8)
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Btot =
5

∑
m=0

(
Bm

i, j +Cm+3
im, jm

)
(4.9)

are conserved in each cell, with their values determined by the initial condition (see below).

To non-dimensionalise this model, we let T = T0t and Am
i, j = Atotam

i, j, Bm
i, j = Btotbm

i, j

and Cm
i, j = Atotcm

i, j for i ∈ {0, . . . ,M−1}, j ∈ {0, . . . ,N −1}, and m ∈ {0, . . . ,5}, where am
i, j,

bm
i, j, cm

i, j and t denote dimensionless variables. Finally, we choose T0 = 1/k0Atot and define

dimensionless lumped parameters

ν =
v0

k0Atot
, γ =

Btot

Atot
, δ =

DA

k0Atot
, σ =

DB

DA
. (4.10)

Substituting into (4.5)–(4.7), we obtain the non-dimensionalised system

ȧm
i, j =−γK (cm

i, j)a
m
i, jb

m+3
im, jm +νV (cm+3

im, jm)c
m
i, j +δ (am−1

i, j −2am
i, j +am+1

i, j ), (4.11)

ḃm
i, j =−K (cm+3

im, jm)a
m+3
im, jmbm

i, j +
ν

γ
V (cm

i, j)c
m+3
im, jm +σδ (bm−1

i, j −2bm
i, j +bm+1

i, j ), (4.12)

ċm
i, j = γK (cm

i, j)a
m
i, jb

m+3
im, jm −νV (cm+3

im, jm)c
m
i, j, (4.13)

for m ∈ {0, . . . ,5}, where dots denote derivatives with respect to t, with non-dimensionalised

conservation laws

1 =
5

∑
m=0

(
am

i, j + cm
i, j
)
, (4.14)

γ =
5

∑
m=0

γbm
i, j + cm+3

im, jm. (4.15)
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4.3 Existence and stability of planar polarity and other

patterns

Next, we aim to gain insight into the possible steady states of the system. In a two-dimensional

tissue with hexagonal cells, steady states of (4.11)–(4.13) can potentially exhibit a variety of

symmetries, including ‘vertex’ state, ‘triangular’ or ‘side’ polarity state [71], which we will

discuss in more detail later in this chapter (see Fig. 4.2). In addition to planar polarity, vertex

polarity is arguably most biologically relevant, since the wild-type fly wing is covered with

hexagonal cells each with a distal pointing hair.

(a) Vertex polarity. (b) Triangular polarity. (c) Side polarity.

Fig. 4.2 Schematic showing the different types of steady state in two spatial dimensions.

For simplicity, in the following we consider only homogeneous steady states and pertur-

bations, where

am
i, j(t)≡ am(t), bm

i, j(t)≡ bm(t), cm
i, j(t)≡ cm(t), (4.16)

for all i, j. However, we allow spatially non-uniform steady states, for which am(t) ̸≡ an(t),

bm(t) ̸≡ bn(t) and cm(t) ̸≡ cn(t). Equations (4.11)–(4.13) therefore simplify to

ȧm =−γK (cm)ambm+3 +νV (cm+3)cm +δ (am−1 −2am +am+1), (4.17)

ḃm =−K (cm+3)am+3bm +
ν

γ
V (cm)cm+3 +σδ (bm−1 −2bm +bm+1), (4.18)
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ċm = γK (cm)ambm+3 −νV (cm+3)cm, (4.19)

for m ∈ {0, . . . ,5}, where dots denote derivatives with respect to t as before, and we hence

have the non-dimensionalised conservation laws

1 =
5

∑
m=0

(am + cm) , (4.20)

γ =
5

∑
m=0

(γbm + cm) . (4.21)

4.3.1 Existence and uniqueness of positive SUSS

Any positive SUSS of (4.17)–(4.19), such that am ≡ a, bm ≡ b and cm ≡ c, must satisfy

−γK (c)ab+νV (c)c = 0, (4.22)

6a+6c = 1, (4.23)

6γb+6c = γ. (4.24)

In the absence of feedback (K = V = 1), equations (4.22)–(4.24) reduce to

6a2 +(γ +6ν −1)a−ν = 0. (4.25)

Regardless of the sign of γ +6ν −1, we see that (4.25) always has a unique positive root,

that is given by

a =
1
12

(
1− γ −6ν +

√
(γ +6ν −1)2 +24ν

)
, (4.26)
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with corresponding values

b =
1

12γ

(
γ −1−6ν +

√
(γ +6ν −1)2 +24ν

)
, (4.27)

c =
1

12

(
1+ γ +6ν −

√
(γ +6ν −1)2 +24ν

)
. (4.28)

Thus, in the absence of feedback, there is a unique positive SUSS. In the presence of feedback,

however, any SUSS satisfies

36νV (c)c = K (c)(1−6c)(γ −6c). (4.29)

Since analysing the existence of the steady state in this case is complex, we resort to a

numerical investigation in Section 4.4. We next explore the existence and uniqueness of three

other possible homogeneous steady states of (4.17)–(4.19), each with a different symmetry.

4.3.2 Existence and uniqueness of ‘side’ steady state

We first consider any steady state of the form

(a5(t),b5(t),c5(t)) = (a0(t),b0(t),c0(t)) = (a1(t),b1(t),c1(t)) = (aU ,bU ,cU), (4.30)

(a2(t),b2(t),c2(t)) = (a3(t),b3(t),c3(t)) = (a4(t),b4(t),c4(t)) = (aD,bD,cD). (4.31)

Any such steady state must satisfy

0 =−γK (cU)aU bD +νV (cD)cU +δ (aD −aU), (4.32)

0 =−γK (cD)aDbU +νV (cU)cD +δ (aU −aD), (4.33)

0 =−K (cD)aDbU +
ν

γ
V (cU)cD +σδ (bD −bU), (4.34)

0 =−K (cU)aU bD +
ν

γ
V (cD)cU +σδ (bU −bD), (4.35)
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0 = γK (cU)aU bD −νV (cD)cU , (4.36)

0 = γK (cD)aDbU −νV (cU)cD, (4.37)

with conservation laws

3aU +3aD +3cU +3cD = 1, (4.38)

3γbU +3γbD +3cU +3cD = γ. (4.39)

From (4.32)–(4.35) and due to diffusion, we deduce that aU ≡ aD ≡ a and bU ≡ bD ≡ b.

Therefore, the steady state must satisfy

0 = γK (cU)ab−νV (cD)cU , (4.40)

0 = γK (cD)ab−νV (cU)cD, , (4.41)

1 = 6a+3cD, (4.42)

γ = 6γb+3cU +3cD. (4.43)

In the absence of feedback (K = V = 1), equations (4.41)–(4.43) have a unique solution,

which corresponds to the SUSS (cU ≡ cD ≡ c). We explore numerically whether any other

solution exists in the presence of feedback in Section 4.4.

4.3.3 Existence and uniqueness of ‘triangular’ steady state

Next, we consider any steady state of the form

(a0(t),b0(t),c0(t)) = (a2(t),b2(t),c2(t)) = (a4(t),b4(t),c4(t)) = (aT ,bT ,cT ), (4.44)

(a1(t),b1(t),c1(t)) = (a3(t),b3(t),c3(t)) = (a5(t),b5(t),c5(t)) = (aS,bS,cS). (4.45)
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Any such steady state must satisfy

0 =−γK (cT )aT bS +νV (cS)cT +2δ (aS −aT ), (4.46)

0 =−γK (cS)aSbT +νV (cT )cS +2δ (aT −aS), (4.47)

0 =−K (cS)aSbT +
ν

γ
V (cT )cS +2σδ (bS −bT ), (4.48)

0 =−K (cT )aT bS +
ν

γ
V (cS)cT +2σδ (bT −bS), (4.49)

0 = γK (cT )aT bS −νV (cS)cT , (4.50)

0 = γK (cS)aSbT −νV (cT )cS, (4.51)

with conservation laws

3aT +3aS +3cT +3cS = 1, (4.52)

3γbT +3γbS +3cT +3cS = γ. (4.53)

Following the same line of argument as the previous case, any solution of (4.46)–(4.51)

should satisfy

γ

(
1
6
− 1

2
(cT + cS)

)(
1
6
− 1

2γ
(cT + cS)

)(
K (cT )+K (cS)

)
= ν

(
V (cT )cS +V (cT )cS

)
.

(4.54)

In the absence of feedback (K = V = 1), the only solution of the system (4.46)–(4.51) is

the homogeneous unpolarised solution where cT ≡ cS. In the case of feedback, we investigate

the existence of such a solution numerically in Section 4.4.
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4.3.4 Existence and uniqueness of ‘vertex’ steady state

We next consider a vertex-like steady state where the concentrations of each species in the

top and bottom compartments of each cell is equal, while the concentration in the right and

left compartments is different:

(a0(t),b0(t),c0(t)) = (a3(t),b3(t),c3(t)) = (ā, b̄, c̄), (4.55)

(a4(t),b4(t),c4(t)) = (a5(t),b5(t),c5(t)) = (aL,bL,cL), (4.56)

(a1(t),b1(t),c1(t)) = (a2(t),b2(t),c2(t)) = (aR,bR,cR). (4.57)

Any such steady state must satisfy

0 =−γK (c̄)āb̄+νV (c̄)c̄+δ (aL −2ā+aR), (4.58)

0 =−γK (cR)aRbL +νV (cL)cR +δ (ā−aR), (4.59)

0 =−γK (cL)aLbR +νV (cR)cL +δ (ā−aL), (4.60)

0 =−K (c̄)āb̄+
ν

γ
V (c̄)c̄+σδ (bL −2b̄+bR), (4.61)

0 =−K (cL)aLbR +
ν

γ
V (cR)cL +σδ (b̄−bR), (4.62)

0 =−K (cR)aRbL +
ν

γ
V (cL)cR +σδ (b̄−bL), (4.63)

0 = γK (c̄)āb̄−νV (c̄)c̄, (4.64)

0 = γK (cR)aRbL −νV (cL)cR, (4.65)

0 = γK (cL)aLbR −νV (cR)cL, (4.66)

with conservation laws

2ā+2aL +2aR +2c̄+2cL +2cR = 1, (4.67)

2γ b̄+2γbL +2γbR +2c̄+2cL +2cR = γ. (4.68)
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From (4.58)–(4.63), we see that ā ≡ aL ≡ aR ≡ a and b̄ ≡ bL ≡ bR ≡ b. Hence, any such

steady state must satisfy

0 = γK (c̄)ab−νV (c̄)c̄, (4.69)

0 = γK (cR)ab−νV (cL)cR, (4.70)

0 = γK (cL)ab−νV (cr)cL. (4.71)

Applying (4.67) and (4.68) yields

γ

(
1
6
− 1

3
(c̄+ cR + cL)

)(
1
6
− 1

3γ
(c̄+ cR + cL)

)(
K (c̄)+K (cR)+K (cL)

)
= ν

(
V (c̄)c̄+V (cR)cL +V (cR)cL) . (4.72)

In the absence of feedback (K = V = 1), the only solution to (4.72) is the homogeneous

unpolarised solution where c̄ ≡ cR ≡ cL. Again, in the case of feedback we numerically

investigate the existence of such a solution in Section 4.4.

In summary, the homogeneous unpolarised steady state, where the concentrations of each

protein is equal in all compartments, always exists in the case of no feedback. In the next

section we use numerical simulations to investigate the linear stability of the various steady

states considered in this section in the presence or absence of feedback.

4.4 Numerical simulations

As in the model discussed in Chapter 3, we choose the following functional forms for the

cases of destabilising and stabilising feedback, respectively:

V (c) = 1+
(η −1)cn

κn + cn , (4.73)
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K (c) = 1+
(µ −1)cm

ρm + cm , (4.74)

where η and µ denote the maximal relative levels of destabilising and stabilising feedback,

κ and ρ denote the concentrations at which the corresponding feedback is half-maximal, and

n and m represent the feedback sharpness. Throughout this section, we use a standard set of

parameter values unless stated otherwise; these are listed in Table 4.1.

Parameter Destabilising feedback Stabilising feedback
Feedback strength η = 50 µ = 150

Concentration at which feedback is half-maximal κ = 0.1 ρ = 1
Feedback sharpness n = 2 m = 2

Binding affinity (v0/k0Atot) ν = 0.1
Ratio of total concentrations (Btot/Atot) γ = 1

DA/k0Atot δ = 0.01
Ratio of diffusion coefficients (DB/DA) σ = 1

Global cue (bias) ε = 0.01
Table 4.1 Set of parameter values used for the numerical simulations presented in this section.

4.4.1 Numerical simulations for a single hexagonal cell

We first simulate the ODE system (4.17)–(4.19) numerically for a single hexagonal cell

with six compartments using a variable-step, variable-order method (implemented using

the function odeint from scipy.integrate in Python). We apply periodic boundary

conditions in the intercellular interactions. We choose a variety of initial conditions for a,

each shown in the corresponding figure, but throughout we assume that initially b = 1/6 and

c = 0 in each compartment.

Fig. 4.3 presents an example of a vertex-like initial condition featuring a symmetric

distribution of a with respect to the horizontal axis and a slight imbalance to the right. This

choice of symmetry corresponds to the distal planar polarity seen in the fly wing, as described
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in Chapter 1. The steady-state complex concentration obtained from this initial condition

depends on whether there is destabilising (Fig. 4.3b), stabilising (Fig. 4.3c), or both types of

feedback (Fig. 4.3d) present in the model. In particular, we see that destabilising feedback

yields a lower-right weakly polarised state (Fig. 4.3b), whereas in the presence of both types

of feedback, the system evolves to a strongly polarised state towards the lower-right side

of the cell (Fig. 4.3d). It is important to note that these cases show an additional symmetry

breaking, unlike the stabilising feedback case (Fig. 4.3c).

(a)

(b) η = 50. (c) µ = 150. (d) η = µ = 50.

Fig. 4.3 Vertex steady state exhibited by the one-cell model. (a) Symmetric initial condition
with a small imbalance (of magnitude 0.1) in the concentration of protein a with respect to
the horizontal axis; b and c are initially spatially uniform (with c = 0). (b-d) Steady-state
concentration of c obtained from initial condition (a) and equations (4.17)–(4.19) in the case
of (b) destabilising, (c) stabilising, and (d) destabilising and stabilising feedbacks of given
strengths. Steady state approximated by numerical solution at t = 104. Parameter values are
given in Table 4.1.

For a certain stabilising feedback strength (µ = 150), an initial weakly vertex-like asym-

metry in a is amplified to yield a stable vertex-like distribution of complexes, c (Fig. 4.3c).
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Simulating the model for much longer (up to t = 1010) shows that this eventually resolves

into a side polarised steady state (results not shown), suggesting that the vertex polarised

steady state exists but is unstable (though meta stable). This lack of stability of the vertex

steady state is in agreement with modelling work by Fischer et al. [71].

In Fig. 4.4, we assume an alternative initial condition where a is asymmetric with respect

to the horizontal axis of the cell. The three top compartments are assumed to have a variety

of concentrations that are the same as the three bottom compartments if rotated 180◦ along

the x−axis (Fig. 4.4a). This gives rise to a triangular-like polarity in the case of destabilising

feedback (Fig. 4.4b). The triangular polarisation becomes slightly stronger if stabilising

feedback is also present (Fig. 4.4d). However, stabilising feedback alone leads to a strongly

symmetric polarised state towards the left-diagonal axis, with compartments 1 and 4 showing

high concentrations (Fig. 4.4c).

In Fig. 4.5, we investigate another choice of initial configuration, where a is asymmetric

between the top and bottom compartments of the cell. Figures 4.5b–4.5d show the resulting

steady-state complex concentrations arising given the presence of destabilising, stabilising,

and both types of feedback, respectively. We find that destabilising feedback leads to a

weakly symmetrical polarised steady state following the same configuration as in the initial

condition (Fig. 4.5a). On the other hand, strong stabilising feedback leads to a strongly

double-sided polarised steady state towards the upper left and right compartments (Fig. 4.5c).

A combination of both forms of feedback leads to a similar, but slightly weaker, polarity

(Fig. 4.5d).

In Fig. 4.6, we consider a triangular asymmetric distribution of a, where the horizontal

axis divides the cell into halves, each with a middle compartment having a different concen-

tration to the others. As shown in Fig. 4.6b–4.6d, we find that this initial condition leads to

an associated triangular polarised steady state distribution of c, as long as any feedback is
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(a)

(b) η = 50. (c) µ = 150. (d) η = µ = 50.

Fig. 4.4 Triangular steady state exhibited by the one-cell model. (a) Symmetric initial
condition with a small imbalance (of magnitude 0.1) in the concentration of protein a
between compartments; b and c are initially spatially uniform (with c = 0). (b-d) Steady-state
concentration of c obtained from initial condition (a) and equations (4.17)–(4.19) in the case
of (b) destabilising, (c) stabilising, and (d) destabilising and stabilising feedbacks of given
strengths. Steady state approximated by numerical solution at t = 104. Parameter values are
given in Table 4.1.

present. This result supports previous modelling work by [71], who demonstrate that the

triangular steady state is always stable.

If we instead simulate the model starting from a distinct asymmetric initial condition as

in Fig. 4.7, we obtain a steady state in which polarisation generally occurs towards the upper-

right half of the compartments. For a strong stabilising feedback, we obtain an upper-right

strongly polarised steady state (Fig. 4.7c). With both feedbacks, we obtain a steady state

where the cell is divided into two halves along its left-diagonal axis, with the right including

a middle compartment surrounded by high complex concentrations (Fig. 4.7d).
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(a)

(b) η = 50. (c) µ = 150. (d) η = µ = 50.

Fig. 4.5 Top/bottom steady state exhibited by the one-cell model. (a) Symmetric initial
condition with respect to the horizontal axis dividing the cell into three top and three bottom
compartments with an imbalance (of magnitude 0.1) in a; b and c are initially spatially
uniform (with c = 0). (b-d) Steady-state concentration of c obtained from initial condition
(a) and equations (4.17)–(4.19) in the case of (b) destabilising, (c) stabilising, and (d)
destabilising and stabilising feedbacks of given strengths. Steady state approximated by
numerical solution at t = 104. Parameter values are given in Table 4.1.

Finally, we consider a distinct asymmetric-side polarised initial condition, as shown in

Fig. 4.8. In this case, the cell is initialised with a direction which is opposite to that shown

in Fig. 4.7. For sufficiently strong destabilising feedback strength, the system evolves to a

weakly polarised triangular steady state (Fig. 4.8b). However, strong stabilising feedback

instead leads to a strong sided-polarity (Fig. 4.8c). Including both stabilising and destabil-

ising feedback leads to the same type of polarised state as the initial condition, with high

concentrations towards the lower-left, but the polarity is slightly weaker than the stabilising

case (Fig. 4.8d).
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(a)

(b) η = 50. (c) µ = 150. (d) η = µ = 50.

Fig. 4.6 Triangular steady state exhibited by the one-cell model. (a) Symmetric initial
condition with a small imbalance (of magnitude 0.1) in the concentration of protein a
between compartments; b and c are initially spatially uniform (with c = 0). (b-d) Steady-state
concentration of c obtained from initial condition (a) and equations (4.17)–(4.19) in the case
of (b) destabilising, (c) stabilising, and (d) destabilising and stabilising feedbacks of given
strengths. Steady state approximated by numerical solution at t = 104. Parameter values are
given in Table 4.1.

In conclusion, in the presence of an initial bias of any of the forms discussed in Section 4.3,

and in the absence of feedback, the system always evolves to a stable SUSS. The presence

of sufficiently strong feedback, however, drives the system to a stable side or triangular

polarised steady state. The vertex steady state exists for a symmetrical initial bias and strong

stabilising feedback, but is always unstable.
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(a)

(b) η = 50. (c) µ = 150. (d) η = µ = 50.

Fig. 4.7 Asymmetric steady state exhibited by the one-cell model. (a) Asymmetric initial
condition with a small imbalance (of magnitude 0.1) in the concentration of protein a
between compartments; b and c are initially spatially uniform (with c = 0). (b-d) Steady-state
concentration of c obtained from initial condition (a) and equations (4.17)–(4.19) in the case
of (b) destabilising, (c) stabilising, and (d) destabilising and stabilising feedbacks of given
strengths. Steady state approximated by numerical solution at t = 104. Parameter values are
given in Table 4.1.
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(a)

(b) η = 50. (c) µ = 150. (d) η = µ = 50.

Fig. 4.8 Asymmetric-side polarised steady state exhibited by the one-cell model. (a)
Asymmetric-side triangular initial condition with a small imbalance (of magnitude 0.1)
in the concentration of protein a between compartments; b and c are initially spatially uni-
form (with c = 0). (b-d) Steady-state concentration of c obtained from initial condition (a)
and equations (4.17)–(4.19) in the case of (b) destabilising, (c) stabilising, and (d) destabilis-
ing and stabilising feedbacks of given strengths. Steady state approximated by numerical
solution at t = 104. Parameter values are given in Table 4.1.
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4.4.2 Numerical simulations for a tissue of hexagonal cells

We next extend our numerical investigations to a tissue comprised a regular array of hexagonal

cells. We consider a sheet of 10×10 cells, but include an extra row/column of cells at each

boundary whose governing equations are modified to reflect ‘no flux’ boundary conditions,

thus mitigating boundary effects in our simulations. We experimented with different tissue

sizes, and found no major differences in behaviours. We assume throughout that proteins

a and b have the same total concentration, diffusion coefficients, and feedback parameters

(if present) in every cell of the tissue, assuming the absence of any mutant cells. We also

assume throughout that initially b = 1/6 and c = 0 in every compartment of every cell,

while a initially has a slightly higher concentration on the right side of every cell than

the left side. As before, we simulate the resulting ODE system (4.5)–(4.7) numerically

using a variable-step, variable-order method (implemented using the function odeint from

scipy.integrate in Python).

Fig. 4.9 shows the dynamics of a, b and c in each compartment of one cell in a tissue

simulation, in the presence of destabilising (Fig. 4.9a) and stabilising (Fig. 4.9b) feedback,

respectively. We find that a polarised steady state is reached quickly with destabilising

feedback, in this case corresponding to the side polarised steady state illustrated in Fig. 4.3b.

In contrast, the stabilising feedback model quickly evolves to a meta-steady uniform state

until t ∼ 2.5× 104, when it reaches another stable steady state. These results match our

one-cell investigations showing how the vertex polarised state appears to be stable, but

eventually switches to a stable side polarised steady state.

The resulting steady states are visualized in Fig. 4.10. We see that with stabilising

feedback, each cell tends to a strongly polarised side steady state (Fig. 4.10b). Similarly,

cells become right polarised in the presence of destabilising feedback (Fig. 4.10a), but

the difference between the right and left is much smaller than the stabilising case. Hence,
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(a) Destabilising feedback.

(b) Stabilising feedback.

Fig. 4.9 Numerical solution of the tissue model (4.11)–(4.13) for a tissue comprising 10×10
cells in the presence of (a) destabilising and (b) stabilising feedback. Initial conditions for
each cell are the same as in Fig. 4.3a. Different colours indicate different compartments.
Non-dimensional parameter values are given in Table 4.1.

introducing sufficiently strong feedback to the model drives the SUSS to a stable side

polarised steady state.
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(a) Destabilising feedback.

(b) Stabilising feedback.

Fig. 4.10 Numerical solution of the tissue model (4.11)–(4.13) for a tissue comprising 10×10
cells in the presence of (a) destabilising and (b) stabilising feedback. Initial conditions for
each cell are the same as in Fig. 4.3a. Complex concentration c shown at t = 106. Non-
dimensional parameter values are given in Table 4.1.
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4.4.3 Clone phenotypes

We next investigate the behaviour of cells neighbouring a group of cells in which the

abundance of each protein is perturbed. As discussed in Chapter 3, this corresponds to the

presence of a mutant clone of cells in which the relevant gene is over- or underexpressed. In

our 2D model, a clone is defined as a set of cell indices i ∈ I for which 6ai +6ci = r and/or

6γbi +6ci = γr, where the parameter r denotes the fraction of the normal total concentration

of protein a and or b in each cell. In the simulations shown below, for I denotes the indices

of the 7 central cells in the tissue, and we take r = 0.1 in the case of underexpression and 4.5

in the case of overexpression.

As in Chapter 3, we discuss (at least for the degradation feedback model) results for:

clones in which the total amount of a in each mutant cell is underexpressed, referred to as

‘single a− clones’; clones in which the total amount of b in each mutant cell is underexpressed,

referred to as ‘single b− clones’; and clones in which both a and b in each mutant cell are

underexpressed, referred to as ‘double a−b− clones’. In addition, we show results for:

clones in which a is overexpressed, referred to as ‘single a+ clones’; clones in which b is

overexpressed, referred to as ‘single b+ clones’; and clones in which both a and b in each

mutant cell are overexpressed, referred to as ‘double a+b+ clones’.

Fig. 4.11 and Fig. 4.12 show example simulations demonstrating perturbed polarisation

in cells surrounding clones featuring under- and overexpression, respectively, in the case of

stabilising feedback. We find that cells neighbouring the clone no longer display side polarity

(with the exception of a small number of cells showing disordered polarity). Instead, in the

case of an a− clone, cells above the clone are polarised towards it (Fig. 4.11a), while for a

b− clone, cells below the clone are polarised away from it (Fig. 4.11b). Perhaps counter-

intuitively, for a double a−b− clone we observe smooth symmetry along the horizontal axis

dividing the tissue into top and bottom halves. This resembles ‘swirling’ patterns, where



124 Moving from one to two spatial dimensions

non-mutant cells’ polarity rotates around the a−b− clone, apart from a small number of cells

lying on the symmetrical horizontal axis and on the tissue boundary (Fig. 4.11c).

(a) a− clone. (b) b− clone. (c) a−b− clone.

Fig. 4.11 Perturbed polarisation in the tissue model (4.11)–(4.13) with stabilising feedback,
for cells neighbouring (a) a single a− clone, (b) a single b− clone, and (c) a double a−b−

clone, in each comprising the seven central cells. Initial conditions for each non-mutant cell
are the same as in Fig. 4.3a. Complex concentration c shown at t = 104. Non-dimensional
parameter values are given in Table 4.1.

(a) a+ clone. (b) b+ clone. (c) a+b+ clone.

Fig. 4.12 Perturbed polarisation in the tissue model (4.11)–(4.13) with stabilising feedback,
for cells neighbouring a clone comprising the seven central cells, in which (a) a is overex-
pressed, (b) b is overexpressed, and (c) both a and b are overexpressed. Initial conditions
for each non-mutant cell are the same as in Fig. 4.3a. Complex concentration c shown at
t = 104. The total concentration of the overexpressed protein within each clone cell is 4.5.
Non-dimensional parameter values are given in Table 4.1.

For clones exhibiting overexpression and sufficiently strong stabilising feedback, we

find opposing results to equivalent underexpression clones (Fig 4.12). These simulations

also show a more strongly polarised phenotype. Cells neighbouring an a+ clone show

strong polarity away from the clone (Fig. 4.12a). In particular, cells below the clone show

the opposite polarised state to those above the clone. In the case of a b+ clone, however,
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neighbouring cells show an even stronger polarisation towards the clone (Fig. 4.12b). Cells

around the b+ clone show weaker polarity away from the clone. Similar to Fig. 4.11c,

in the case of a double a+b+ clone, cells neighbouring the clone show swirling patterns

(Fig. 4.12c). However, this case is less symmetrical, with cells immediately neighbouring the

clone polarising towards the clone.

Fig. 4.13 and Fig. 4.14 show results for the case of destabilising feedback. We find that

cells above and below a single a− or b− clone show different polarities, depending on the

specific protein: cells show an overall polarity towards an a− clone, but away from a b−

clone. In other words, only those cells above an a− clone (Fig. 4.14a) and below a b− clone

(Fig. 4.14b) have their polarities reoriented as a result of the clone.

(a) a− clone. (b) b− clone. (c) a−b− clone.

Fig. 4.13 Perturbed polarisation in the tissue model (4.11)–(4.13) with destabilising feedback,
for cells neighbouring (a) a single a− clone, (b) a single b− clone, and (c) a double a−b−

clone, in each comprising the seven central cells. Initial conditions for each non-mutant cell
are the same as in Fig. 4.3a. Complex concentration c shown at t = 104. Non-dimensional
parameter values are given in Table 4.1.
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(a) a+ clone. (b) b+ clone. (c) a+b+ clone.

Fig. 4.14 Perturbed polarisation in the tissue model (4.11)–(4.13) with destabilising feedback,
for cells neighbouring a clone comprising the seven central cells, in which (a) a is overex-
pressed, (b) b is overexpressed, and (c) both a and b are overexpressed. Initial conditions
for each non-mutant cell are the same as in Fig. 4.3a. Complex concentration c shown at
t = 104. The total concentration of the overexpressed protein within each clone cell is 4.5.
Other non-dimensional parameter values are given in Table 4.1.

Results for single overexpression clones in the presence of sufficiently strong destabilising

feedback are the opposite of those found for equivalent single underexpression clones

(Fig 4.13). Cells around an a+ clone (Fig. 4.14a) show an overall polarity away from

the clone, while normal cells generally polarise towards an a+ clone (Fig. 4.14b), with

those cells immediately neighbouring the clone showing stronger polarity. In the case of

a double overexpression clone (Fig. 4.14c), we observe similar behaviour to the double

underexpression clone (Fig. 4.13c). However, the cells immediately neighbouring the clone

show disordered polarity in this case.

Fig. 4.15 shows the result of varying the magnitude in the initial bias ε for normal cells

around a single b− clone, in the case of stabilising feedback. We find that with a stronger

initial imbalance (Fig. 4.15a), there is a shorter range of effect of the clone. Results in the

case of destabilising feedback are similar (not shown). These results are in agreement with

previous theoretical work by Schamberg [79].

Finally, we investigate planar polarisation behaviour in the complete absence of an initial

bias (ε = 0). Instead of initially biasing a towards a vertex state, we use spatially uniform

initial conditions (a = b = 1/6, c = 0) in each normal cell compartment, with appropriate
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(a) ε = 0.1. (b) ε = 0.01. (c) ε = 0.001.

Fig. 4.15 Perturbed polarisation in the tissue model (4.11)–(4.13) with stabilising feedback,
for cells neighbouring a single b− clone comprising the seven central cells, for a range
of values of the initial bias ε between the left and right sides of each normal cell. Initial
conditions for each non-mutant cell are otherwise the same as in Fig. 4.3a. Complex
concentration c shown at t = 104. Other non-dimensional parameter values are given in
Table 4.1.

scaling for mutant cells). We then simulate the model in the presence of destabilising and

stabilising feedback with a variety of different clones. The results obtained are shown in

Fig. 4.16 and 4.17, respectively. We find that with sufficiently strong destabilising feedback,

single and double clones result in neighbouring cells evolving to a triangular polarised state

(Fig. 4.16). Single a− clones are found drive neighbouring cells to disordered polarity in the

case of destabilising (Fig. 4.16a) and stabilising feedback (Fig. 4.17a). In contrast, in the

case of sufficiently strong stabilising feedback, double clones (Fig. 4.17b and 4.17c) drive

neighbouring cells into a complex pattern that more reminiscent of the period two patterns

observed in some clone simulations in Chapter 3. Single a+, b+ and b− clones have a similar

effect on the polarisation of neighbouring cells (results not shown).
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(a) a− clone. (b) a+b+ clone. (c) ab− clone.

Fig. 4.16 Perturbed polarisation in the tissue model (4.11)–(4.13) with destabilising feed-
back, for cells neighbouring (a) a single a− clone, (b) a clone in which both a and b are
overexpressed, and (c) a double a−b− clone, in each comprising the seven central cells, in the
absence of an initial bias (ε = 0). Initial conditions for each non-mutant cell are otherwise
the same as in Fig. 4.3a. In (b) the total concentration of each overexpressed protein within
each clone cell is 4.5. Complex concentration c shown at t = 104. Other non-dimensional
parameter values are given in Table 4.1.

(a) a− clone. (b) a+b+ clone. (c) a−b− clone.

Fig. 4.17 Perturbed polarisation in the tissue model (4.11)–(4.13) with stabilising feedback,
for cells neighbouring (a) a single a− clone, (b) a single b− clone, and (c) a double a−b−

clone, in each comprising the seven central cells, in the absence of an initial bias (ε = 0).
Initial conditions for each non-mutant cell are otherwise the same as in Fig. 4.3a. Complex
concentration c shown at t = 104. Other non-dimensional parameter values are given in
Table 4.1.
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4.5 Discussion

In this chapter, we have presented a detailed numerical investigation of a simplified planar

polarisation model in two spatial dimensions. As an extension to the binding feedback

model presented in Chapter 3, we started by considering a single hexagonal cell with six

compartments, and analysed the dynamics of this model with different types of possible

steady states in response to different initial symmetries. We then moved on to consider a

tissue comprising a sheet of cells, some of which may be mutant.

Throughout this chapter, we used the standard of the default baseline set of parameter

values given in Table 4.1. To obtain a similar tissue-scale polarisation to that observed in

the fly wing, our model shows that the initial conditions must be symmetric with respect

to the horizontal axis (Fig. 4.3). Although this vertex polarised state exists, it is not stable.

Nevertheless, asymmetric initial conditions for the same parameter values give rise to stable

configurations, but this is usually biologically undesirable. For instance, a triangular initial

state is always stable in the presence of sufficiently strong feedback (Fig. 4.6). One suggested

mechanism to ensure stable proximal polarity is the addition of a weak global bias to direct

tissue polarity [81].

Our numerical simulations show that the steady state reached in the presence of strong

feedback has the same orientation as the initial bias, in agreement with previous theoretical

modelling [38, 63, 71]. Simulation results using different initial states show that the triangular

and side steady states are stable, while the desired vertex polarised steady state in the fly

wing is not stable. This finding is in agreement with previous modelling by Fischer et al.

[71].

Clone analysis of our model with stabilising or destabilising feedback shows that the

loss of activity in a group of cells within a tissue can cause the wild-type neighbouring

cells to point towards the a− clone and away from the b− clone. However, overexpression

clones drive surrounding cells to polarise away from the clone. These results (with either
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stabilising or destabilising feedback) capture the experimentally observed event of domi-

neering non-autonomy [38], discussed in Chapter 1. Our findings may be related to the

experimental observation that wild-type cells neighbouring a Fz− clone polarise towards the

clone (Fig. 4.11a), while cells around Vang− clone are induced to polarise away from the

clone (Fig. 4.11b).

According to our simulations, overexpression of genes also provides results that are

similar to those discovered in fly wing mutant tissues. Experimentally, Fz+ clones have been

found to reorient surrounding wild-type cells to polarise away from the clone (Fig. 4.12a),

while the wild-type cells surrounding the Vang+ clones polarise towards the clone (Fig. 4.12b)

[38]. Notably, tissues with double mutant clones show strong symmetry along the horizontal

axis dividing the tissue into top and bottom halves. Given the same form of feedback, we

occasionally observe equivalents to the period two patterns in a 1D line of cells observed in

our simulations in Chapter 3.

In the case where no bias is applied, our simulations show that clones drive more

complicated patterns. Swirling hair patterns are an example of complicated patterns in the

fly wing, which have been observed in several experimental studies and have been deemed

to be a result of a variety of genetic mutations. In the core planar polarity pathway, for

example, swirling patterns are seen in dsh mutant clones [82, 83]. More recently, Fisher et al.

[63] found that double clones are able to generate non-autonomous phenotypes that in some

circumstances result in swirling hairs.

Overall, the results of our simulations are in agreement with those of the 1D model in

Chapter 3, which indicate that sufficiently strong feedback is needed for correct polarisation

if there is an initial imbalance between the proximal and distal ends of each cell. In addition,

under- or overexpression of proteins in a group of mutant cells can lead to an opposing effect

on their neighbouring wild-type cells. While an initial bias is essential for obtaining tissue

polarity [71], clones (or more generally, groups of cells with stochastically higher or lower



4.5 Discussion 131

protein concentrations within the developing tissue) might be considered as an additional

bias or cue, providing more complicated patterning such as triangular patterns in 2D and

period two patterns observed in our 1D model. In the next chapter, we extend this work to

consider the combined roles of feedback interactions and global cues in planar polarisation,

using a more biochemically detailed model tailored to the Ft-Ds pathway.





Chapter 5

Feedbacks and global cues in the Ft-Ds

pathway

5.1 Introduction

In Chapter 4 we developed a framework for modelling the intracellular diffusion and trans-

membrane binding of two abstract planar polarity proteins in a static 2D tissue comprising

hexagonal cells. In this chapter, we extend this framework to consider a much more biochem-

ically detailed model of a planar polarity pathway.

As discussed in Chapter 1, the establishment and maintenance of planar polarisation is

known to involve global cues such as tissue-level signalling gradients as well as local cell-cell

interactions. The Fat-Dachsous (Ft-Ds) pathway in the fly wing offers an excellent system

in which to study the relative contributions of these two mechanisms. The activity of the

Four-jointed (Fj) enzyme forms a gradient along a developing wing, and this tissue-level

gradient acts as a ‘global’ polarising cue [84], which is then converted into subcellular

asymmetries in the cadherin molecules Ft and Ds [19]. Ft and Ds bind heterophilically

between neighbouring cells using their cadherin repeats [85]. Fj acts as a kinase in the Golgi

apparatus, an organelle found within each cell, to phosphorylate Ft and Ds and modify their
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binding affinities [42]. As with the core pathway, local amplifying feedback interactions

have also been proposed to play a role in the asymmetric localisation of Ft and Ds [81].

An understanding of cell-to-tissue polarisation requirements depends upon integrating the

contributions of two important factors: first, the global cue that transfers polarisation signals

across the tissue; and second, the local feedback interactions that result in the asymmetric

localisation and stability of heterodimers within each cell. In the core pathway, the source

of global cue is still uncertain [86]. In contrast, it is well established that a gradient in Fj

activity is the source of global cue in the Ft-Ds system [76]. With regard to local feedback

interactions, it is worth noting that the core pathway consists of six proteins that can form a

variety of complexes of different stoichiometries [63], whereas in the Ft-Ds system there are

only two transmembrane proteins that form complexes. Nevertheless, the precise nature of

feedback interactions and the mode of action of Fj remain unclear. The Ft-Ds pathway thus

offers a tractable planar polarity system with which to employ more biochemically detailed

modelling than the approach we have taken elsewhere in this thesis.

Various mathematical models have been developed to explain how the Ft-Ds pathway

operates. One example is the model by Jolly et al. [87], who construct an ODE-based

system corresponding to a one-dimensional line of cells. Their model captures key molecular

interactions in the Ft-Ds pathway, including Ft-Ds complex formation, Fj phosphorylation,

and opposing tissue-level gradients of Fj and Ds. Analysis of this model suggests that

levels of Ft-Ds heterodimers at cell-cell junctions, and levels of phosphorylated Ft and

Ds in the cytoplasm, evolve over time to a unique globally stable steady state over time

regardless of initial conditions. The theoretical findings also suggest that phosphorylation

of Ft and the elevated distal gradient of Fj along the fly wing are essential for attaining

subcellular asymmetry localisation of Ft-Ds heterodimers, and consequently tissue-scale

polarity. However, boosting phosphorylation of Ds allows robustness to polarity across the

tissue. When Fj phosphorylation of Ft is lost, asymmetry of Ft-Ds complex is distributed,
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whereas loss of Fj activity on Ds does not influence asymmetrical localisation of Ft-Ds

heterodimers. However, it remains unclear how these authors’ findings, particularly with

respect to simulated clone phenotypes, extend to two spatial dimensions.

In other work, Singh et al. [88] consider a minimal mechanistic model in one and two

spatial dimensions of the Ft-Ds pathway to investigate the rule of global tissue-level gradients

and complex local asymmetric distribution. This model suggests that polarisation is tightly

related to a threshold membrane-bound protein concentration, above which Ft and Ds form

heterodimer complexes. Based on their theoretical analysis, the authors hypothesise a

sorting mechanism in which the stability of either Ft or Ds on junctions depend on the total

concentrations of one another on the opposite orientation. Although this work considers

Ft-Ds dynamics in two spatial dimensions, it is somewhat lacking in biological detail, and

provides limited insight into the factors that may affect heterodimer stability in this system.

A more biochemically detailed modelling approach is taken by Hale et al. [44], who

develop a computational model of Ft-Ds polarisation in a one-dimensional line of cells, each

comprising a left and a right compartment. In this model, in the absence of any feedback

amplification a linear gradient of Fj activity is sufficient to generate Ft-Ds polarisation

of similar degree to that observed experimentally in the fly wing. Testing their model

in vivo, Hale et al. [44] conclude that the removal of Fj gradient activity results in a reduction

in the Ft-Ds dimer stability using fluorescence recovery after photobleaching. Experimentally,

Fj is expressed as a gradient of approximately 3% between neighbouring cells along the

proximal-distal axis [44]. Consistent with their modelling predictions, the authors find that

the removal of Fj activity on Ds enhance Ft-Ds heterodimer stability, while the loss of its

effect on Ft reduces heterodimer stability.

A key feature of the computational model by Hale et al. [44] is the consideration of

different possible complexes between phosphorylated and non-phosphorylated forms of Ft

and Ds. Based on in vitro experiments [42, 43], the strongest binding affinity is formed
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by phosphorylated Ft and unphosphorylated Ds, and the weakest is the binding between

unphosphorylated Ft and phosphorylated Ds. However, it remains unclear to what extent

the results of Hale et al. [44] carry over to two spatial dimensions. In addition, recent

experimental observations [81] as well as previous work by [89, 42] suggest the possibility

of an amplifying feedback mechanism that enhances the gradient expression of Fj, which is

not considered in the model by Hale et al. [44].

5.1.1 Aim of work

Although the above models shed some light on the the factors that are essential for the

Ft-Ds system to achieve tissue-scale polarisation, the relative contributions of tissue-level

gradient and feedback interactions is still unknown. Our aim in this chapter is to determine

the mechanism by which a uniform tissue polarisation is obtained via sensing different levels

of gradient transcriptions between neighbouring cells. Here, we use the Ft-Ds pathway in the

fly wing to address this biological problem. The readout polarity of the Ft-Ds pathway is

visible via the asymmetrical distribution of Ft and Ds dimers along the tissue axis (Fig. 5.1).

In the fly wing, Fj is expressed as a tissue-level gradient, high distally at the wing tip and low

proximally towards the fly body. Both Ft and Ds are mobile and able to be redistributed to

their most favourable cellular edge.

Mathematical modelling suggests that the graded expression of Fj and Ds could be

sufficient to generate the observed cellular asymmetry in the absence of feedback amplifica-

tion [44, 87, 90]. Nevertheless, it is not yet clear whether the shallow gradient expressions

in vivo may result in the recognised cellular asymmetry. Thus, it has been suggested that

some feedback interaction may contribute [42, 44, 89]. Our aim in this chapter is to extend

the computational model by Hale et al. [44] to two spatial dimensions with the aim of

investigating whether enough polarity is obtained, given the input of a shallow gradient of Fj

activity.
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Fig. 5.1 Schematic of the localisation of Ft and Ds on the proximal and distal sides of each
cell in the developing fly wing. Ft is expressed uniformly along the tissue axis, while Ds is
expressed as a gradient from the proximal to the distal edge of the wing. Dachs, an effector
protein of the Ft-Ds system, is asymmetrically localised to the distal edge of each cell, while
Fj localises to the Golgi apparatus. This schematic is created with BioRender.

The remainder of this chapter is structured as follows. We first revisit the 1D model

by Hale et al. [44] in Section 5.2, and summarise their main findings. We then extend the

model to 2D in Section 5.3 and explore numerically whether a shallow Fj tissue-gradient

is sufficient to obtain experimentally observed levels of Ft-Ds heterodimer asymmetry. In

addition, we explore the effect of possible feedback amplification on the existing mechanism

and the overall polarity. We conclude in Section 5.4 with a discussion of our results and how

their implications for understanding Ft-Ds polarisation.
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5.2 Modelling Ft-Ds activity in one spatial dimension

5.2.1 Governing equations

Let Fm
i , Sm

i , F̃m
i and S̃m

i denote the concentrations of Ft and Ds proteins and their phos-

phorylated copies in cell i, compartment m ∈ {L,R} (the left and right edges of the cell,

respectively) at time t. Following Hale et al. [44], we assume that these proteins can bind

and unbind to form the complexes A j
i , B j

i , C j
i and D j

i according to the chemical reactions

F̃R
i +SL

i+1 −−⇀↽−− AR
i , (5.1)

F̃R
i + S̃L

i+1 −−⇀↽−− BR
i , (5.2)

FR
i +SL

i+1 −−⇀↽−−CR
i , (5.3)

FR
i + S̃L

i+1 −−⇀↽−− DR
i , (5.4)

and be trafficked between left and right compartments of each cell according to the reactions

FL
i −−⇀↽−− FR

i , (5.5)

F̃L
i −−⇀↽−− F̃R

i , (5.6)

SL
i −−⇀↽−− SR

i , (5.7)

S̃L
i −−⇀↽−− S̃R

i , (5.8)

for i ∈ {0,1, . . . ,N − 1}. We assume that reactions (5.1)–(5.4) proceed with forward rate

constant ki and backward rate constant vi, where i ∈ {a,b,c,d}, depending on the correspond-

ing complex type. In addition, we assume that Ft and Ds and their phosphorylated copies

are trafficked between cell compartments with effective diffusion rates δF , δF̃ , δS and δS̃,
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respectively. Applying the Law of Mass Action yields the following system ODEs for cell i:

dFL
i

dt
=−kcFL

i SR
i−1 − kdFL

i S̃R
i−1 + vcCL

i + vdDL
i +δF(FR

i −FL
i ), (5.9)

dFR
i

dt
=−kcFR

i SL
i+1 − kdFR

i S̃L
i+1 + vcCR

i + vdDR
i +δF(FL

i −FR
i ), (5.10)

dF̃L
i

dt
=−kaF̃L

i SR
i−1 − kbF̃L

i S̃R
i−1 + vaAL

i + vbBL
i +δF̃(F̃

R
i − F̃L

i ), (5.11)

dF̃R
i

dt
=−kaF̃R

i SL
i+1 − kbF̃R

i S̃L
i+1 + vaAR

i + vbBR
i +δF̃(F̃

L
i − F̃R

i ), (5.12)

dSL
i

dt
=−kaF̃R

i−1SL
i − kcFR

i−1SL
i + vaAR

i−1 + vcCR
i−1 +δS(SR

i −SL
i ), (5.13)

dSR
i

dt
=−kaF̃L

i+1SR
i − kcFL

i+1SR
i + vaAL

i+1 + vcCL
i+1 +δS(SL

i −SR
i ), (5.14)

dS̃L
i

dt
=−kbF̃R

i−1S̃L
i − kdFR

i−1S̃L
i + vbBR

i−1 + vdDR
i−1 +δS̃(S̃

R
i − S̃L

i ), (5.15)

dS̃R
i

dt
=−kbF̃L

i+1S̃R
i − kdFL

i+1S̃R
i + vbBL

i+1 + vdDL
i+1 +δS̃(S̃

L
i − S̃R

i ), (5.16)

dAL
i

dt
= kaF̃L

i SR
i−1 − vaAL

i , (5.17)

dAR
i

dt
= kaF̃R

i SL
i+1 − vaAR

i , (5.18)

dBL
i

dt
= kbF̃L

i S̃R
i−1 − vbBL

i , (5.19)

dBR
i

dt
= kbF̃R

i S̃L
i+1 − vbBR

i , (5.20)

dCL
i

dt
= kcFL

i SR
i−1 − vcCL

i , (5.21)

dCR
i

dt
= kcFR

i SL
i+1 − vcCR

i , (5.22)

dDL
i

dt
= kdFL

i S̃R
i−1 − vdDL

i , (5.23)

dDR
i

dt
= kdFR

i S̃L
i+1 − vdDR

i . (5.24)

The total (bound and unbound) concentrations of both phosphorylated and unphosphorylated

Ft and Ds are conserved in each cell:

FT = FL
i +CL

i +DL
i +FR

i +CR
i +DR

i , (5.25)
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F̃T = F̃L
i +AL

i +BiL + F̃R
i +AR

i +BR
i , (5.26)

ST = SL
i +AR

i−1 +SR
i +DR

i−1 +AL
i+1 +DL

i+1, (5.27)

S̃T = S̃L
i +BR

i−1 +DR
i−1 + S̃R

i +BL
i+1 +DL

i+1, (5.28)

for positive constants FT , F̃T , ST and S̃T . Following Hale et al. [44], we assume that the rate

at which Fj phosphorylates either or both Ft and Ds is proportional to its concentration at a

particular cell edge, and that phosphorylation is sufficiently rapid to be in quasi-steady state,

since Fj is based in the Golgi. Hence we do not explicitly include flux terms between the

phosphorylation and unphosphorylated forms of Ft and Ds, respectively. This explains why

we have a total of four conserved quantities (FT , F̃T , ST , and S̃T ) in each cell.

As discussed in Section 5.1, the Ft-Ds polarisation is ‘read out’ via differences in the

levels of total bound Ft and Ds on each cell edge. Mathematically, the total bound Ft and Ds

on the left and the right edges of cell (i, j), respectively are represented by

FL
T = AL

i +BL
i +CL

i +DL
i , (5.29)

FR
T = AR

i +BR
i +CR

i +DR
i , (5.30)

SL
T = AR

i−1 +BR
i−1 +CR

i−1 +DR
i−1, (5.31)

SR
T = AL

i+1 +BL
i+1 +CL

i+1 +DL
i+1. (5.32)

5.2.2 Numerical simulations

Having presented the governing equations for the 1D Ft-Ds model, we next conduct a

numerical investigation to verify the key results of Hale et al. [44]. For simplicity, we do

not carry out a formal non-dimensionalisation of this model as in Chapters 3–4, to facilitate

direct comparison with the results of Hale et al. [44]. Instead, we consider (5.9)–(5.24) to

already be in a non-dimensional form. Due to the size of the system, we also omit the usual

steady state and linear stablity analysis. This is in part because the spatially non-uniform
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influence of Fj means that, even in the absence of any feedback interactions, we do not expect

the system to evolve to a stable SUSS, but instead to a stable spatially non-uniform steady

state. Throughout the rest of this chapter, unless stated otherwise, we use the same parameter

values and assumptions regarding Fj activity as proposed by Hale et al. [44].

The Fj gradient acts as a morphogen that alters Ft and Ds cadherin affinities along the

tissue. The resulting polarity hence arises due to the local activity between adjacent cells and

the preferred binding affinities between phosphorylated Ft-Ds heterodimers. In this model,

binding rates of Ft and Ds are parameterised using the association constant (k/v). Relative

binding strengths for different species used in our simulations are such that phosphorylated

Ds inhibits its binding, while phosphorylated Ft promotes its binding. These relative binding

strengths are presented in Table 5.1. The difference between the left and right of each cell

represent the differences between proximal and distal cell edges in the developing fly wing.

Figure
Complex type

A (F̃ : S) B (F̃ : S̃) C (F : S) D (F : S̃)

Fig. 5.2 1 1/4 1/4 1/16
Fig. 5.3 1 1/2 1/4 1/4

Table 5.1 Set of the association constants (k/v) for different complex combinations of the
Ft-Ds model adapted from Hale et al. [44].

To simulate Ft-Ds binding between neighbouring cells relative to a Fj gradient, we

numerically solve the system (5.9)–(5.24) for a one-dimensional line of N = 20 cells of equal

size, each with two compartments, numerically using a variable-step, variable-order method

(implemented using the function odeint from scipy.integrate in Python).

Following Hale et al. [44], we implement no-flux boundary conditions at the left and

right tissue boundaries, through the inclusion of ‘half cells’ at these boundaries that mirror

the activity of the boundary cells.

We assume that initially, there are no complexes present, and unbound Ft and Ds (in both

phosphorylated and unphosphorylated forms) are distributed evenly within each cell. We
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further assume that the fraction of Ft and/or Ds that is initially phosphorylated varies with

the level of Fj activity in each cell, depending on the modelling assumption made in each

simulation. Thus, the initial condition for each simulation is given by

FL
i (0) = FR

i (0) = F0(1− pF(i)), (5.33)

F̃L
i (0) = F̃R

i (0) = F0 pF(i), (5.34)

SL
i (0) = SR

i (0) = S0(1− pS(i)), (5.35)

S̃L
i (0) = S̃R

i (0) = S0 pS(i), (5.36)

AL
i (0) = AR

i (0) = 0, (5.37)

BL
i (0) = BR

i (0) = 0, (5.38)

CL
i (0) =CR

i (0) = 0, (5.39)

DL
i (0) = DR

i (0) = 0, (5.40)

for i ∈ {0, . . .N −1}, where we assume the following linear forms for the Fj activity gradi-

ent [44]:

pF(i) =


p0 + i∆
p0 +N∆

if Fj acts on Ft

1 if Fj does not act on Ft,

(5.41)

pS(i) =


p0 + i∆
p0 +N∆

if Fj acts on Ds

1 if Fj does not act on Ds,

(5.42)

Unless stated otherwise, we use parameter values p0 = 80, ∆ = 3, F0 = S0 = 50 in our nu-

merical simulations. These and other model parameters are motivated by the experimentally

determined Fj gradient of around 3% between neighbouring cells along the proximal-distal

axis of the developing fly wing [44]. We choose values of k/v for different complex com-

binations such that A > B =C > D, with the complex of phosphorylated Ft and Ds having



5.2 Modelling Ft-Ds activity in one spatial dimension 143

the fastest, and Ft with phosphorylated Ds having the lowest ‘on’ rate among other complex

combinations to reflect different stable concentrations measured experimentally [42–44].

Fig. 5.2 shows the total bound proteins with different assumptions regarding Fj activity

on either or both Ft and Ds, with the association constant values shown in Table 5.1. As

expected, in the absence of Fj activity, the system does not polarise but instead shows an even

distribution of Ft and Ds between the left and right edges (Fig. 5.2a–5.2b). If instead Fj is

only allowed to act on either Ft or Ds, weak asymmetry of both bound Ft and Ds is observed

across the line of cells (Fig. 5.2c–5.2f). If Fj acts only on Ds (Fig. 5.2c, Fig. 5.2d), moving

towards high levels of Fj activity, a tissue gradient of high to low binding of Ft-Ds complexes

is observed with an average polarity of 0.7% in total bound Ft and Ds. Conversely, an overall

tissue gradient of low to high Ft-Ds binding is observed if Fj acts only on Ft (Fig. 5.2e and

Fig. 5.2f), with an average of 1.3% in the total Ft and Ds. However, an overall improvement

on cellular asymmetry (2.5% in total Ft and Ds) is obtained when Fj is permitted to act on

both Ft and Ds (Fig. 5.2g, Fig. 5.2h), with a further reduction of the relative tissue gradient.

The simulations in Fig. 5.2 suggest that Fj has an opposing activity on Ft and Ds

localisation, with a stronger effect on Ft. The association constants are hence adapted to

allow for phosphorylated Ds having less significant effect on binding to Ft [44]. In addition,

the rate for which phosphorylated Ds is allowed to inhibit its binding with phosphorylated Ft

is reduced, i.e. A > B >C = D. Fig. 5.3 shows the resulting total bound Ft and Ds at steady

state when the Ft-Ds binding affinities are modified to reflect that Ds binding to Ft is most

preferable if Ft is phosphorylated by Fj. Binding affinity is intermediate when Ft and Ds

are both phosphorylated, with an overall cellular asymmetry of 1.7% in the total Ft and Ds.

The overall tissue gradient of Ft-Ds binding follows the Fj gradient. The weakest binding

is confirmed in the case when Ft and Ds are both non-phosphorylated, or when only Ds is

phosphorylated. Thus, the model predicts that moving from a low-Fj region to a high-Fj

region, the stable Ft-Ds dimers accumulate at cell junctions.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5.2 Numerical solution of the 1D Ft-Ds model (5.9)–(5.24) with initial condition (5.33)–
(5.40) and no-flux boundary conditions, under different assumptions on the action of Fj on Ft
and/or Ds: (a, b) Fj does not act on Ft nor Ds; (c, d) Fj acts only on Ds; (e, f) Fj acts only
on Ft; (g, h) Fj acts on both Ft and Ds. Association constants are given in Table 5.1. Other
non-dimensional parameter values are δF = δF̃ = δS = δS̃ = 10. Teal: total bound Ft on each
cell edge (5.29)–(5.30); pink: total bound Ds on each cell edge (5.31)–(5.32). Numerical
solution shown at t = 20.
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(a) Fj acts on both Ft and Ds (b) Fj acts on both Ft and Ds

Fig. 5.3 Numerical solution of the 1D Ft-Ds model (5.9)–(5.24) with initial condition (5.33)–
(5.40) and no-flux boundary conditions, assuming that Fj acts more strongly on Ft than on Ds.
A Fj expression gradient of 3% is allowed to act on both Ft and Ds. Association constants
are given in Table 5.1. Other non-dimensional parameter values are δF = δF̃ = δS = δS̃ = 10.
Teal: total bound Ft on each cell edge (5.29)–(5.30); pink: total bound Ds on each cell
edge (5.31)–(5.32). Numerical solution shown at t = 20.

Overall our 1D simulations confirm the findings of Hale et al. [44] that, given a shallow

gradient of Fj activity along the tissue axis, there must exist extra two constraints on binding

strengths in order to recapitulate the observed even distribution of bound Ft-Ds complexes

at cell junctions. First, there must be a hierarchy of binding strengths across the tissue.

Second, Ds phosphorylation must act in an opposing gradient in order to counter the effect

of Ft phosphorylation. Hence, the effect of Fj on Ft/Ds phosphorylation results in an

opposing effect on their binding activity. However, our simulation results show relatively

moderate cellular asymmetries of bound Ft and Ds, yet Ds asymmetry can be up to twofold in

vivo [89, 91]. As suggested by Brittle et al. [91] and Ambegaonkar et al. [89], a local positive

feedback mechanism could amplify the shallow expression gradient to produce observed

asymmetrical distribution of Ft and Ds.

In the next section, we extend the Ft-Ds model to two spatial dimensions. We first verify

whether enough polarity is obtained given a shallow Fj gradient. We then explore the effect

of adding a positive feedback, representing in-cis or in-trans cooperative clustering [92, 93]

to investigate whether the system becomes capable of generating sufficient polarisation.
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5.3 Modelling Ft-Ds activity in two spatial dimensions

5.3.1 Governing equations

Extending the Hale et al. [44] model into two spatial dimensions, we now consider a two-

dimensional sheet of M×N hexagonal cells, as described in Chapter 4 (see Fig. 4.1). Let Fm
i, j,

Sm
i, j, F̃m

i, j and S̃m
i, j denote the concentrations of Ft and Ds proteins and their phosphorylated

copies in cell (i, j), compartment m ∈ {0,1, . . . ,5} at time t. The monomers F and S and

their phosphorylated copies F̃ and S̃ bind and unbind across neighbouring cells to form an

intercellular complexes A, B, C and D according to the set of reversible reactions

F̃m
i, j +Sm+3

im, jm
−−⇀↽−− Am

i, j, (5.43)

F̃m
i, j + S̃m+3

im, jm
−−⇀↽−− Bm

i, j, (5.44)

Fm
i, j +Sm+3

im, jm
−−⇀↽−−Cm

i, j, (5.45)

Fm
i, j + S̃m+3

im, jm
−−⇀↽−− Dm

i, j, (5.46)

where (as in Chapter 4) superscript indices are understood to be taken mod 6, and the

subscript indices (im, jm) transform (i, j) to neighbouring indices in a way that depends on

the value of m, as follows:

(im, jm) =



(i, j+1) if m = 0

(i+1, j+(i+1)mod2) if m = 1

(i+1, j− imod2) if m = 2

(i, j−1) if m = 3

(i−1, j− imod2) if m = 4

(i−1, j+(i+1)mod2) if m = 5

(5.47)
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Monomers are also allowed to diffuse between neighbouring sides of each cell according to

the ‘reactions’

Fm
i, j −−⇀↽−− Fm±1

i, j , (5.48)

F̃m
i, j −−⇀↽−− F̃m±1

i, j , (5.49)

Sm
i, j −−⇀↽−− Sm±1

i, j , (5.50)

S̃m
i, j −−⇀↽−− S̃m±1

i, j , (5.51)

for i∈ {0, . . . ,M−1}, j ∈ {0, . . . ,N−1}, and m∈ {0, . . . ,5}. As in the 1D model, we assume

that the reactions (5.43)–(5.51) proceed with a forward rate constant ki, and a backward rate

constant vi, where i ∈ {a,b,c,d}, depending on the corresponding complex type. In addition,

we assume that Ft and Ds and their phosphorylated copies diffuse between cell compartments

with diffusion rates δF , δF̃ , δS and δS̃, respectively. We also assume that the forward rates

are modified to be monotonically increasing functions, denoted by K and depend on the

concentration of the complex on the opposite orientation.

Using the Law of Mass Action, reactions (5.43)–(5.51) are converted into an ordinary

differential equation (ODE) system for cell (i, j). The full system of equations is thus given

by

(5.52)
dFm

i, j

dt
= −kcK (Cm

i, j)F
m
i, jS

m+3
im, jm + vcCm

i, j − kdK (Dm
i, j)F

m
i, jS̃

m+3
im, jm

+ vdDm
i, j + δF(Fm−1

i, j − 2Fm
i, j + Fm+1

i, j ),

(5.53)
dF̃m

i, j

dt
= −kaK (Am

i, j)F̃
m
i, jS

m+3
im, jm + vaAm

i, j − kbK (Bm
i, j)F̃

m
i, jS̃

m+3
im, jm

+ vbBm
i, j + δF̃(F̃

m−1
i, j − 2F̃m

i, j + F̃m+1
i, j ),

(5.54)
dSm

i, j

dt
= −kcK (Cm+3

im, jm)F
m+3
im, jmSm

i, j + vcCm+3
im, jm − kaK (Am+3

im, jm)F̃
m+3
im, jmSm

i, j

+ vaAm+3
im, jm + δS(Sm−1

i, j − 2Sm
i, j + Sm+1

i, j ),



148 Feedbacks and global cues in the Ft-Ds pathway

(5.55)
dS̃m

i, j

dt
= −kdK (Dm+3

im, jm)F
m+3
im, jm S̃m

i, j + vdDm+3
im, jm − kbK (Bm+3

im, jm)F̃
m+3
im, jm S̃m

i, j

+ vbBm+3
im, jm + δS̃(S̃

m−1
i, j − 2S̃m

i, j + S̃m+1
i, j ),

(5.56)
dAm

i, j

dt
= kaK (Am

i, j)F̃
m
i, jS

m+3
im, jm − vaAm

i, j,

(5.57)
dBm

i, j

dt
= kbK (Bm

i, j)F̃
m
i, jS̃

m+3
im, jm − vbBm

i, j,

(5.58)
dCm

i, j

dt
= kcK (Cm

i, j)F
m
i, jS

m+3
im, jm − vcCm

i, j,

(5.59)
dDm

i, j

dt
= kdK (Dm

i, j)F
m
i, jS̃

m+3
im, jm − vdDm

i, j.

Similar to Section 5.2, the total (bound and unbound) concentrations of both phosphorylated

and unphosphorylated Ft and Ds are conserved in each cell:

FT =
5

∑
m=0

(
Fm

i, j +Cm
i, j +Dm

i, j
)
, (5.60)

F̃T =
5

∑
m=0

(
F̃m

i, j +Am
i, j +Bm

i, j
)
, (5.61)

ST =
5

∑
m=0

(
Sm

i, j +Am
i, j +Dm

i, j
)
, (5.62)

S̃T =
5

∑
m=0

(
S̃m

i, j +Bm
i, j +Dm

i, j
)
, (5.63)

for positive constants FT , F̃T , ST and S̃T . As discussed in Section 5.1, the Ft-Ds polarisation

is then readout via differences in the levels of total bound Ft and Ds on each cell edge.

Mathematically, the total bound Ft and Ds on edge j of cell i, respectively are represented by

FT = Am
i, j +Bm

i, j +Cm
i, j +Dm

i, j, (5.64)

ST = Am+3
im, jm +Bm+3

im, jm +Cm+3
im, jm +Dm+3

im, jm. (5.65)
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5.3.2 Numerical simulations

We numerically solve the system (5.52)–(5.59) for a two-dimensional sheet of 10× 10

heaxgonal cells of equal size, each with six compartments, numerically using a variable-step,

variable-order method (implemented using the function odeint from scipy.integrate

in Python). Unless otherwise stated, we use the same parameter values and modelling

assumptions described in Section 5.2, and assume that the Fj gradient is aligned with the x

axis. We use a similar strategy to specifying no flux conditions on the left and right tissue

boundaries, and for simplicity we impose periodicity on the top and bottom tissue boundaries.

Similar to the 1D model, we assume that initially, there are no complexes present, and

unbound Ft and Ds (in both phosphorylated and unphosphorylated forms) are distributed

evenly within each cell. We further assume that the fraction of Ft and/or Ds that is initially

phosphorylated varies with the level of Fj activity in each cell, depending on the modelling

assumption made in each simulation. Thus, the initial condition for each simulation is given

by

Fm
i, j(0) = F0(1− pF(i)), (5.66)

F̃m
i, j(0) = F0 pF(i), (5.67)

Sm
i, j(0) = S0(1− pS(i)), (5.68)

S̃m
i, j(0) = S0 pS(i), (5.69)

Am
i, j(0) = 0, (5.70)

Bm
i, j(0) = 0, (5.71)

Cm
i, j(0) = 0, (5.72)

Dm
i, j(0) = 0, (5.73)
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for i ∈ {0, . . .M−1}, j ∈ {0, . . . ,N −1}, and m ∈ {0 . . . ,5}, and we assume the following

linear forms for the Fj activity gradient [44]:

pF(i) =


p0 + i∆
p0 +N∆

if Fj acts on Ft

1 if Fj does not act on Ft,

(5.74)

pS(i) =


p0 + i∆
p0 +N∆

if Fj acts on Ds

1 if Fj does not act on Ds,

(5.75)

As in Section 5.2.2, we use parameter values p0 = 80, ∆ = 10, F0 = S0 = 50 in our numerical

simulations unless stated otherwise. For simulations where stabilising feedback is present,

we use the same functional form as in Chapters 3 and 4, namely

K (c) = 1+
(µ −1)cm

ρm + cm , (5.76)

where m = 2, ρ = 1 and µ is specified in each simulation below.

We begin by checking whether the system evolves to a SUSS in the absence of feedback

and Fj gradient. Fig. 5.4 shows that the bound Ft and Ds do indeed reach stable unpolarised

steady states in the absence of a Fj gradient activity. Note that the extreme concentrations on

the cells further to the right and left of the tissue are due to boundary effects.

We next explore the case where there is no feedback (K = 1) and Fj acts to phosphorylate

either Ft or Ds. Fig. 5.5a and Fig. 5.5b show the total bound Ds and Ft, respectively, in the

case where Fj phosphorylates only Ft, while Fig. 5.5c and Fig. 5.5d show the case where

Fj acts to phosphorylate only Ds. In all of the cases of Fig. 5.5, we suppose that Fj activity

starts low at the proximal edge and increases by 10% towards the distal edge of the tissue.

The average total polarity between the proximal and distal cell edges in the bound Ft and Ds

for the first row of Fig. 5.5 is approximately 0.3%, and 0.4% for the second row. A shallow
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(a)
(b)

Fig. 5.4 Numerical solution of the 2D Ft-Ds model (5.52)–(5.59) with initial condition (5.66)–
(5.73) and no-flux conditions on the left and right boundary and periodicity on the upper and
lower boundary, in the absence of a Fj gradient. (a) total bound Ds on each cell edge (5.65);
(b) total bound Ft on each cell edge (5.64). Association constants are given in Table 5.1.
Other non-dimensional parameter values are δF = δF̃ = δS = δS̃ = 10. Numerical solution
shown at t = 20.

gradient of Fj on either Ft or Ds shows very weak proximal polarity on Ft and distal polarity

on Ds in the interior cells with an average of 0.3% between the proximal and distal cell edges.

Increasing the steepness of Fj activity (from 10% to 30%) slightly improves polarity by 0.1%

(results are not shown). However, Fj phosphorylation of both Ds and Ft results in a stronger

polarity across the tissue with an average of 1.2% (Fig. 5.6). The average polarity within

each cell is 0.8% (Fig. 5.6a–5.6b) and 1.2% (Fig. 5.6c–5.6d), which is still weak compared

to the expected polarisation strength observed experimentally (two-fold asymmetry in Ds

distribution) [91].
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(a) (b)

(c) (d)

Fig. 5.5 Numerical solution of the 2D Ft-Ds model (5.52)–(5.59) with initial condition (5.66)–
(5.73) and no-flux conditions on the left and right boundary and periodicity on the upper
and lower boundary, in the presence of a 10% tissue gradient in Fj activity, with Fj acting
(a, b) only on Ft or (c, d) only on Ds. (a, c) total bound Ds on each cell edge (5.65); (b, d)
total bound Ft on each cell edge (5.64). Association constants are given in Table 5.1. Other
non-dimensional parameter values are δF = δF̃ = δS = δS̃ = 10. Numerical solution shown
at t = 20.
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We next examine the behaviour of the model using association rates that are modified to

reflect Fj having a dominant effect on Ft [44]. We observe a weak asymmetry in the Ft/Ds

localisation if Fj is allowed to phosphorylate either Ft or Ds with an average polarity of 0.3%

(results not shown). If Fj is allowed to phosphorylate both Ft and Ds, the polarisation slightly

improves, with an average of 0.6% (results are not shown), but is still weak. Increasing the

Fj gradient further to 50% results in an average polarity of 1.3%.

We next explore how stabilising feedback interactions may improve tissue-scale polar-

isation. We suppose that the higher concentration of a certain complex on one orientation

between two neighbouring cells is, the slower the reverse reaction proceeds in the opposite

orientation. Results for the case of a Fj gradient acting on both Ft and Ds, with different

feedback assumptions, are shown in Fig. 5.7. In Fig. 5.7a and Fig. 5.7b, we assume that the

stabilising feedback depends on how much complex of the same type there is in a particular

cell edge. We observe an improvement in the average tissue polarity of 1.7%. In Fig. 5.7c

and Fig. 5.7d, we suppose that the feedback depends on the total complex present on the

same orientation of Ft and the opposite orientation for Ds. In this case, we obtain an average

polarity of 1.5%. If Fj is allowed to phosphorylate either Ft or Ds, weak feedback (µ = 3)

suffices to generate stronger polarisation (than seen on Fig. 5.5 without feedback) with an

average of 0.7% (results not shown). Simulations using modified association rates with Fj

having a dominant effect on Ft show an average polarity of 0.9% in the total bound Ft and

Ds, if allowing a Fj gradient of 30% steep and weak feedback (µ = 2; results not shown).

Consequently, neither a steeper gradient nor a stronger feedback predicts stronger polarisation

in this case.

Overall, our results suggest that the existence of a weak local positive feedback slightly

improves the overall polarisation of the system. The highest average polarity that we observe

in the total bound Ft and Ds is about 5.2% in the case of a Fj steepness of 50% and a feedback
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(a) (b)

(c) (d)

Fig. 5.6 Numerical solution of the 2D Ft-Ds model (5.52)–(5.59) with initial condition (5.66)–
(5.73) and no-flux conditions on the left and right boundary and periodicity on the upper and
lower boundary, in the presence of a (a-b) 10% or (c-d) 30% tissue gradient in Fj activity,
with Fj acting on both Ft and Ds. (a, c) total bound Ds on each cell edge (5.65); (b, d)
total bound Ft on each cell edge (5.64). Association constants are given in Table 5.1. Other
non-dimensional parameter values are δF = δF̃ = δS = δS̃ = 10. Numerical solution shown
at t = 20.
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strength µ = 10 (result is not shown). In this case, the obtained tissue gradient rises up to

14% in the total bound Ds and 6.4% in the total bound Ft.

5.4 Discussion

Several mechanisms are thought to affect planar polarisation during development. In partic-

ular, the coordination of cellular polarisation along a tissue axis is tightly regulated by an

upstream ‘global cue’ [18]. Through such regulation, hundreds of cells in epithelial sheets

become planar polarised. However, the source of such a global cue and how it is interpreted

at a molecular level, is still not well understood. One particular challenge is to determine

potential mechanisms by which a gradient is sensed across the tissue by individual cells,

ultimately resulting in uniform planar polarity across the tissue. In this chapter, we have

extended an existing one-dimensional model of the Ft-Ds planar polarity pathway in the

developing fly wing [44] to two spatial dimensions, and have examined the hypothesised

mechanism of a local positive interaction, in addition to a shallow Fj gradient, in driving

planar polarisation.

Our simulation results show that the system evolves to a stable unpolarised steady state

in the absence of feedback amplification or a tissue-scale of Fj activity (and hence of Ft

or Ds phosphorylation). In the absence of any feedback amplification, a linear gradient of

Fj activity is sufficient to recapitulate experimentally observed Ft-Ds patterns. This result

elevates the importance of the distal gradient of Fj along the tissue plane to attain asymmetric

localisation of the Ft-Ds heterodimer [44, 87], which consequently drives polarisation across

the tissue. Nevertheless, the relative tissue gradients obtained in our simulations under these

assumptions did not predict the experimentally observed distribution of Ds across the cell

axis, which is found to be about twofold [91]. We therefore modified the model to include a

nonlinear feedback that amplifies Ft and Ds binding.
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(a) (b)

(c) (d)

Fig. 5.7 Numerical solution of the 2D Ft-Ds model (5.52)–(5.59) with initial condition (5.66)–
(5.73) and no-flux conditions on the left and right boundary and periodicity on the upper and
lower boundary, in the presence of a 30% tissue gradient in Fj activity, with Fj acting on both
Ft and Ds, with an additional stabilising feedback interaction of strength µ = 2 that depends
(a-b) how much of the complex there is of the same type or (c-d) how much of the complex
involving Ft or Ds there is on the corresponding edge. (a, c) total bound Ds on each cell
edge (5.65); (b, d) total bound Ft on each cell edge (5.64). Association constants are given in
Table 5.1. Other non-dimensional parameter values are δF = δF̃ = δS = δS̃ = 10. Numerical
solution shown at t = 20.
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Recent theoretical models of the Ft-Ds system suggest that the stability of Ft-Ds het-

erodimers depend on the local concentrations of Ft and Ds on opposing cell junctions [88].

Such local interactions may then occur within each cell or between neighbouring cells [81].

Here, we considered two possible mechanisms of stabilising feedback. In the first case, we

assumed that feedback strength depends on the concentration of the corresponding com-

plex in the opposite orientation. In the second case, we assumed that feedback strength

instead depends on the total amount of the corresponding complex in the opposite orientation.

The resulting simulations suggest that Ft-Ds polarity establishment may require a potential

asymmetrical distribution of Ft and Ds via a graded tissue-level activity of Fj, which is then

amplified by weakly positive feedback. These results appear to support recent experimental

findings reached by Brittle et al. [81].

A natural avenue for future work in this area is to investigate in silio the effect of different

mutant clones on Ft-Ds polarity in surrounding wild-type cells within the fly wing. For

instance, f t mutant clones have been shown experimentally to exhibit marked swirls [94],

with similar phenotypes observed in the absence of Fj gradient expression [88, 95] given a

weak global polarity input and a local protein distribution. There is also significant scope

for exploring the mechanisms underlying the upstream generation of a Fj gradient and the

possible role of a moving boundary of Ds expression at the tissue boundary [91] as an

additional global cue, as well as the downstream regulation by planar polarised Ft and Ds

of cell growth and mechanics [17]. We discuss this further, and summarise the overall

contributions made in this thesis, in the next chapter.





Chapter 6

Discussion

The patterning of multicellular tissues is essential for the formation of the organs that make up

our bodies. It relies on self-organisation, which emerges from dynamic, iterative interactions

between components from molecular to cellular to tissue levels. Alongside experimental

approaches, mathematical modelling can help us to unravel such complexity, by testing

sufficiency of proposed patterning mechanisms under normal conditions and/or generating

experimentally testable predictions of behaviour under perturbed conditions.

In this thesis we have used mathematical modelling to investigate aspects of patterning

from the molecular to the tissue scale, motivated by recent experimental observations related

to three biological exemplars: (i) the clustering of E-cadherin protein complexes underlying

cell-cell adhesion; (ii) the presence of amplifying feedback interactions underlying ‘core’

planar polarity; (iii) the relative contributions of such feedback interactions and graded global

cues underlying Fat-Dachsous planar polarity. In this chapter we summarise our scientific

contributions, highlight the strengths and limitations of our research, and discuss avenues for

future work.
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6.1 Turing and wave-pinning mechanisms of protein com-

plex clustering

Tissue-scale polarity emerges, in part, from the self-organised spatial patterning of inter-

cellular protein complexes [5, 47]. In Chapter 2 we used reaction-diffusion modelling to

investigate how transmembrane homodimers, an abstraction of cell-cell adhesion complexes,

may become locally clustered within cell-cell junctions. Our analysis of the mass conserved

model revealed that pattern formation can occur, given a sufficiently strong stabilising feed-

back on local complex formation, and/or sufficiently high total protein concentration in

the system. While the conservative model exhibits multiple (meta)stable punctate regions

within a range of parameter values, we found that breaking the mass conservation via protein

trafficking fails to recapitulate stable complex clustering.

Existing mathematical models of mass-conserved reaction-diffusion systems vary in

the way that positive feedback mechanisms are formulated. However, they agree on the

requirement of such a feedback to obtain patterning. One set of models exhibit ‘peak’

formation via a Turing instability [25, 48, 59]. Depending on how large the domain size is

relative to a characteristic wavelength, these models can generate one or more peaks from an

initial condition that is close to homogeneous [15, 50]. However, even when multiple peaks

emerge, most of the smaller peaks eventually disappear through ‘competition’, ending with

a single large peak. This behaviour is thought to be due to the mass conservation property

[59]. In another set of models, patterns arise comprising spatial subdomains with spatially

uniform solutions connected by a ‘wave-front’, producing ‘wave-pinning’ behaviour [25].

Our numerical results when mass conservation is broken may be related to other theo-

retical analysis by Verschueren and Champneys [96], who explore the patterns arising in

a variant of a Schnackenberg reaction-diffusion model in the limit of mass conservation.

Through bifurcation and multiple-scale asymptotic analysis, these authors find that in the
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singular limit corresponding to mass conservation, localised regions become filled with spike

solutions that tend to wave-pinned fronts.

A biological motivation for our work in this chapter has been E-cadherin cluster for-

mation [4]. In our abstracted model, initial concentration fluctuations always generate a

single spike or mesa, depending on the type of feedback. For a sufficiently high total protein

concentration, however, our conserved system exhibits multiple (meta)stable peaks within the

domain. In the case of saturating feedback, the size of our simulated ‘clusters’ may be related

to the total protein concentration and other model parameters. It is interesting to compare this

behaviour with the results of Quang et al. [4], whose E-cadherin data suggests a truncated

power-law cluster size distribution. The emergence of such a distribution is likely to emerge

in part from the activity of key cortical regulators, coupling E-cadherin/actin with endocytosis

(corresponding to ‘degradation’ in our non-conservative model). In addition, for simplicity

our model considers only protein dimerisation and neglects higher order complexes, which

observations suggest E-cadherin can form [4].

An obvious avenue for future work is to extend our model to account for higher-order

protein complexes. Another natural extension is to generalise to more than one molecular

species, as we have considered in Chapters 3–5, and apply our modelling approach to

investigate possible mechanisms underlying the spatial clustering of core pathway protein

complexes [47]. Finally, we acknowledge a ‘missing length scale’ between our modelling

in Chapter 2 and Chapter 3, which is the emergence of cell-scale patterning due to the

coordination of molecular interactions across an individual cell. We have not focused on

bridging that length scale in this thesis, as it is arguably the most technically challenging, for

example in terms of requiring 1D reaction-diffusion systems defined at each cell-cell junction

to a 2D reaction-diffusion system defined in the cell bulk. Nevertheless, such coupling is

likely to provide fertile ground for future modelling efforts.



162 Discussion

6.2 Feedback requirements for cell-to-tissue scale planar

polarity

Moving up to the cell-to-tissue scale, in Chapter 3 we developed and analysed three minimal

models of transmembrane heterodimer formation and intracellular trafficking in a one-

dimensional ring of cells. This work was inspired in part by a recent detailed computational

model of the core pathway in the fly wing by Fisher et al. [63], and extends upon that work

by considering different hypothesised mechanisms of nonlinear feedback interactions that

could act to amplify small initial biases in this system and generate planar polarisation.

In the absence of feedback, we found a unique positive spatially uniform steady state

(SUSS) in each of our models, which is stable to spatially homogeneous perturbations.

Hence, patterning cannot occur in the absence of feedback. However, in the presence of

feedback, bifurcation and linear stability analysis proved the existence of a critical feedback

strength above which the SUSS loses stability, and the system becomes planar polarised.

For fixed parameter values within this bistable regime, simulation results revealed that the

polarised steady state depends on the choice of initial condition. Numerical simulations of

mutant clones revealed that the range of domineering non-autonomy in neighbouring cells

depends on both feedback strength and the mutation: single clones showed non-autonomy

phenotype, while double clones showed either weak or no non-autonomy, in line with recent

experimental observations of planar polarity in the fly wing [63].

In the case where feedback acts upon protein binding and trafficking, our simulations

exhibited some period two patterns in the concentration of unbound proteins. This was

also found in a more abstract planar polarity model by Schamberg et al. [69], who show

that sufficiently weak diffusion and strong feedback strength are enough to generate period

two patterns given inhomogeneous initial conditions. We also observed period two patterns

around double clones with stabilising feedback in our other two models. Period two patterns
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were previously observed by Fisher et al. [63] in Fmi− mutant tissues where stabilising

feedback acts on both Fz and Vang. This is an interesting behaviour that requires further

investigation.

In the present work, we have abstracted much of the known biochemical details of the core

planar polarity pathway and its key molecular players. This was deliberate: our intention was

to allow some mathematical analysis, and focus on the essential ‘rules’ governing different

forms of feedback in generalising planar polarity patterning. In comparison to the published

work of Fisher and Strutt [97], which focuses on the initial interpretation of the graded cue to

guide asymmetry in complex formation, our simplified approach allows us to take a simple

system, apply different types of feedback interactions and compare how they are interpreted

at the molecular level to drive wild-type and mutant polarity.

An obvious avenue for future modelling work is to revisit the more complex model

of Fisher et al. [63] in the light of our results, and explore alternate feedback mechanisms.

Of course, another next step is to consider whether certain experimental perturbations of core

pathway activity could help to test our model predictions, such as the requirement for an

‘intermediate’ feedback sharpness for polarisation to occur; relating experiments to model

predictions will become more straightforward as additional biochemical detail is added to

our models.

6.3 Moving from one to two spatial dimensions

In Chapter 4 we extended the feedback models proposed in Chapter 3 to two spatial dimen-

sions. We showed analytically that in the absence of feedback, the SUSS remains stable, and

we also explored the occurrence of other forms of pattern. These results were supplemented

by a detailed numerical exploration of the model behaviour, included planar polarisation in

normal and perturbed tissue, in a static hexagonal cell packing.
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Our results on the stability of different types of pattern in this model are consistent

with previous models [38, 79]. Simulations with strong feedback do not show distal-vertex

polarisation along the tissue, instead they evolving to a stable ‘side’ polarised steady state.

This suggests that sufficiently strong feedback is needed for polarisation provided there is

an initial imbalance between the proximal and distal ends of the cell. Hence, while the

global cue is important to establish and direct polarity, feedback controls the polarisation’s

strength [71, 81]. In the fly wing, each cell has an initial distribution of Fz, with a slight

proximal-distal bias. Intracellular interactions then drive both Fz and Vang complexes to

accumulate towards distally, which result in the observed ‘vertex’ polarisation. Our modelling

suggests that an analogous vertex steady state arises only from a symmetric initial condition

along the x-axis; however, the vertex steady state is unstable. One possible mechanism to

obtain stable vertex polarisation in the core system is to introduce an additional global bias.

Experimental evidence of the core pathway in the fly wing suggests that such a global bias

may be required to orient the direction of polarity [81].

Simulations of mutant clones in our 2D model recapitulated the aforementioned behaviour

of domineering non-autonomy [38, 98]. Relating this to the core pathway, wild-type cells

surrounding clones lacking Fz polarise towards the clone, while clones overexpressing Fz

induce cells to polarise away from the clone. The situation is reversed in the case of Vang

clones. This is also observed in previous planar polarity models [38, 63, 99].

A key difference between our 2D simulation results and those obtained in Chapter 3 is the

occurrence of ‘swirling’ patterns in cells surrounding mutant clones. This form of behaviour

has been observed experimentally in fly wings with single mutant clones in which either

Fz [100] or Pk [101] function is lost. Swirling patterns have been also observed in fly wings

around clones lacking the activity of both Fz and Vang [63]. The Ft-Ds pathway system also

shows this type of behaviour [102, 103] (see Chapter 5 and Section 6.4). In this work, we

observed swirling patterns in double clones for sufficiently strong stabilising feedback and in
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the absence of an initial cue. Note that using the same form of feedback, we observed period

two patterns in our 1D model.

Many of the proposed extensions discussed in Section 6.2 also apply to our 2D modelling

work. An additional natural avenue for future work is to consider different static cell packings,

reflecting more or less well ordered epithelial tissues. In our two-dimensional models, we

have assumed that all cells within the tissue have a hexagonal shape, for simplicity and also

motivated by the experimental observation that the fly wing comprises a hexagonal array of

epithelial cells. However, other planar polarised tissues exhibit different cell packings, and

indeed experimental observations suggest that cell packing may affect the propagation of

polarity in the fly wing [104]. Beyond static cell packings, one could also consider a dynamic

tissue that undergoes planar polarisation in the presence of cell flows [10], which could be

amenable to simulation using cell-based models such as the vertex model [105].

6.4 Feedbacks and global cues in the Ft-Ds pathway

In Chapter 5 we considered a more detailed model of a planar polarity pathway: the Fat-

Dachsous (Ft-Ds) pathway. This model was inspired by a one-dimensional computational

model of the Ft-Ds system in the fly wing by Hale et al. [44], which included an ‘upstream’

gradient of Fj activity across the tissue. The main findings of that model are in agreement

with more recent work, including a continuum model of two generic proteins that suggests

that tissue-scale expression gradients play an important rule in stable polarisation [106].

However, local feedback interactions are neglected in these works.

We first confirmed the one-dimensional results of the model by Hale et al. [44], then

extended it into two spatial dimensions using our framework developed in Chapter 4, with

the aim of exploring the possible relative contributions of feedback interactions along with

the Fj activity gradient in driving tissue-scale polarisation in the Ft-Ds pathway.
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Our numerical simulations suggest that in the absence of a Fj activity gradient and feed-

back interactions, the system fails to polarise, instead evolving to a SUSS. When Fj is allowed

to phosphorylate Ft and/or Ds in our simulations, thus altering their binding affinities [42, 43],

we observed weak proximal polarity on Ft and a distal polarity on Ds. Nevertheless, the

presence of a weak positive feedback improved the overall planar polarisation.

These theoretical findings raise the question as to the nature of possible local feedback

interactions in the Ft-Ds pathway. Recent experimental findings by the Strutt lab (School of

Biosciences, University of Sheffield) suggest that such interactions serve to locally stabilise

Ft-Ds complexes of the same orientations, at least within puncta [81]. This supports the

hypothesis that there exists a comparable combination of in-cis and in-trans clustering in

the local concentrations of Ft and Ds. Here, we have investigated two potential mechanisms

of local stabilising feedback: the first based on heterodimer stability depending how much

complex there is in the apposing edge of the neighbouring cell; and the second based on

the concentration of complexes involving both Ft and Ds on the corresponding edge. Our

simulation results suggest that both forms of hypothesised feedback can improve the overall

tissue-scale polarity.

There is also significant scope for extending our present analysis to include the predicted

phenotypes associated with various clones and other genetic perturbations, and then testing

these model predictions experimentally. Other natural avenues for future work in this area

include more detailed modelling of the processes downstream of Ft-Ds polarisation, in

particular the possible interplay of growth and mechanics [17].

6.5 Conclusions

In this thesis we have constructed and analysed a suite of mathematical models to study

mechanisms underlying molecular to tissue scale pattern formation. Our theoretical findings
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have implications for biological processes ranging from the clustering of cell-cell adhesion

proteins to core and Ft-Ds pathway planar polarisation in the developing fly wing.

A longer term aim is to further bridge the spatial and temporal scales between our models,

arriving at a truly multiscale description of emergent tissue-scale polarisation. With advances

in biophysical techniques such as single molecule imaging, there will be greater availability

of data at each scale with which to constrain and test such a model in a quantitative manner.

Nevertheless, we anticipate that simple, abstracted models of the form favoured in this

thesis will continue to offer an attractive, useful and complementary approach in aiding our

mechanistic understanding of biological pattern formation in health and disease.
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