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Abstract

Micro-instabilities, turbulence, and zonal flows are central to achievable

tokamak performance. Knowledge of their poloidal structure would im-

prove theoretical models and experimental interpretation.

The poloidal structure ofmicro-instabilitiesmay be altered by global effects.

Global simulations can be computationally expensive, but global behaviour

can be recovered from an array of local simulations via the “local-global

method”. This method is, for the first time, demonstrated in the pedestal.

Local gyrokinetic simulations of a JET pedestal reveal that magnetic shear

causes narrowing in ballooning angle of kinetic ballooning modes via ideal

ballooning physics. Narrowing in ballooning angle is shown to decrease

local accuracy, but this may be mitigated by increased shear. The local-

global method is applied to a low shear pedestal-like case and compared

to global gyrokinetic and MHD simulations. Good agreement suggests the

local-global method is valid for toroidal mode numbers & 3 to 12. Simple

models show that global and kinetic effects can affect EPED-like calculations

by 0 to 110% in this case depending on the Peeling-Ballooning constraint.

Experimental measurement of zonal flows is difficult due to the limited

poloidal extent of relevant diagnostics. Knowledge of the poloidal structure

of zonal flow drive would improve interpretation of such data. Nonlinear

energy transfer functions calculated from local nonlinear gyrokinetic sim-

ulations reveal the poloidal structure of zonal flow drive for the first time.

This demonstrates that zonal flows are driven by a broad spectrumof turbu-

lence, and that zonal flows exhibit a limit cycle oscillation (predator-prey)

type response with marginal turbulence but enter a quasi-steady state with

strong turbulence. In both cases, zonal flow drive peaks on the outboard

side, and is correlated with but not proportional to the turbulent energy.
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Chapter 1

Introduction

1.1 Context

It is widely accepted that Global Mean Temperature (GMT) has risen com-

pared to pre-industrial levels, primarily due to human activity [5]. Each

degree of warming increases the risk of adverse effects [6] including, for

example: extinction of plant and animal species; considerable numbers of

human lives lost and damage to property due to extreme weather events;

displacement of populations due to coastal flooding; decreased availability

of food and water; and negative economic impacts.

The rise in GMT is primarily driven by an increase in the concentration of

atmospheric carbon dioxide (CO2) [7, p13], the majority of which comes

from burning fossil fuels for energy production [7, pp11–12]. Therefore,

significantly reducing or eliminating fossil fuel use in power generation

will greatly reduce CO2 emissions and thus help tomitigate climate change.

However, global energy demand is projected to rise significantly over the

coming decades [8, p73]. To meet this demand while reducing fossil fuel

usage, low-carbon energy sources are required.
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Electricity production using nuclear fusion could provide safe, sustainable,

widely-available, low-carbon baseload energywithout long-lived high-level

nuclear waste by the end of this century [9]. While significant progress

has been made over previous decades [10], net energy gain has yet to be

demonstrated.

The most advanced fusion energy concept, the tokamak [11], generates

power by confining a plasma at the temperature (∼ 100million
◦
C) and den-

sity (∼ 10
20

m
−3
) required for an appreciable fusion reaction rate. Confine-

ment of the plasma is achieved using a magnetic field. A toroidal topology

comprised of nested magnetic flux surfaces is used to avoid loss of high-

energy particles from the ends of the device as would be experienced with

a cylindrical geometry. In addition, a poloidal component of the magnetic

field is generated by driving a toroidal current in the plasma to avoid loss of

confinement due to particle drifts [12]. Despite these measures, tokamaks

still suffer loss of confinement beyond that predicted by collision models in

toroidal geometry (neoclassical transport); this so-called “anomalous trans-

port” is believed to be due to turbulent diffusion [11, §4.17]. Therefore,

understanding plasma turbulence in tokamaks will enable mitigation of

such losses, thus improving device efficiency, which will further progress

towards demonstration of net electricity production.

When the heating power applied to a tokamak is increased above a certain

threshold, turbulence in the edge of the plasma is suddenly and sponta-

neously suppressed [13], and the plasma is said to have transitioned from

low-confinement mode (L-mode) to high-confinement mode (H-mode) via

the low-to-high transition (L-H transition). This results in a region of steep

pressure gradient at the edge of the plasma, while the core gradient length-

scale remains largely unaffected, as if the core profile has been put up on a

pedestal; hence, the region of steep gradients is known as “the pedestal”.

Since the required temperature is set by the fusion reaction cross-section and

17



fusion power scales as density squared [11, Ch.1], a high pedestal increases

fusion power. Furthermore, since the core gradient length-scale remains

largely unchanged but is at a higher absolute pressure, the core pressure

gradient also increases, thus further increasing core pressure and fusion

power output. Therefore, maximising pedestal height is crucial for toka-

mak performance, and predictive models of pedestal growth such as EPED

[14] and Europed [15] will be key to achieving that goal. However, such

models are based on local (single flux surface) treatment of the underlying

plasma instabilities, so do not include global (many flux surface) effects,

whichmay be significant [16, 17], thus reducingmodel accuracy. This thesis

investigates global effects on plasma instabilities involved in the EPED and

Europed models (kinetic ballooning modes, KBMs) and how such effects

might impact the accuracy of EPED / Europed model predictions.

In addition, turbulence is regulatedby radially-shearedplasmaflowsknown

as zonal flows [18], which are involved in the L-H transition [19–27]. There-

fore, understanding zonal flows is critical for understanding the L-H transi-

tion, and thus ensuring entry toH-mode to achieve a highpedestal andmax-

imise tokamak performance. Unfortunately, experimental measurement of

zonal flows is difficult due to their symmetry and quasi-stationary nature.

While it is easier to experimentally measure the transfer of energy into

zonal flows [24], this approach is also difficult due to diagnostic limitations.

Therefore, this thesis also presents a simulation-based method to calculate

the expected transfer of energy into zonal flows in support of equivalent

experimentalmeasurements; this furthers our understanding of zonal flows

and their relationship with turbulence, thus making progress towards effi-

cient, high-performance tokamaks.
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1.2 Motivation

Plasma micro-instabilities, the turbulence they generate, and their interac-

tionwith zonal flowsare central to the achievable performance of a tokamak.

For computational efficiency, these phenomena are often simulated using

local (single flux surface) gyrokinetic models; however, their poloidal struc-

ture may be altered in position and intensity by global (many flux surface)

effects, with implications for experimental measurements and the accuracy

of theoretical models.

This thesis is split into two main parts: Part II studies global effects on

micro-instabilities in the pedestal, while Part III investigates the poloidal

structure of zonal flow drive. This chapter introduces the key concepts for

each of these parts, and describes the document structure.

1.2.1 Global Effects

Turbulent transport is a key loss mechanism that limits tokamak perfor-

mance. This occurs through anomalous transport (direct turbulent losses)

and the interplay between turbulent transport and pedestal growth. Lead-

ing ELM prediction models such as EPED [14] and Europed [15], which are

crucial to predicting tokamak performance, posit that pedestal growth is

constrained by the onset of kinetic ballooning modes (KBMs, one particu-

lar class of micro-instability). However, such models do not include global

effects, which may be significant [16, 17], thus reducing their accuracy. Fur-

thermore, such models often use ideal MHD ballooning modes (IBMs) as

a proxy for KBMs (for performance), thus neglecting kinetic effects such as

diamagnetic drift stabilisation, which may further diminish their accuracy.

To ensure the accuracy of such models, it is important to assess the impact

of global effects on KBMs in the pedestal, and compare this to the IBM

behaviour predicted by MHD.
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Previous work [17] has used global gyrokinetic simulations to study KBMs

subject to global effects in a pedestal-like equilibrium. This demonstrated

partial agreement with MHD, but some discrepancies remain unresolved.

Addressing these issues is difficult due to the high computational expense

of global gyrokinetic simulations, boundary effects, and the magnetic field

model in the particular code used (ORB5). Meanwhile, another line of re-

search [28–30] has shown that global effects may be captured by an array

of independent local gyrokinetic simulations for which the global coupling

is calculated afterwards. This method, referred to here as the local-global

method, has significantly reduced computational cost compared to global

gyrokinetics, avoids problematic boundary effects, and, used with the lo-

cal gyrokinetic code GS2 [1], enables the ORB5 magnetic field model to be

tested for accuracy. However, the local-global method has so far only been

demonstrated for core plasmas, but not in the pedestal. Therefore, it is im-

portant, for computational efficiency and investigating new physics, to test

the local-global method in the pedestal; this thesis takes a step towards this

by testing the local-global model in the pedestal-like equilibrium used in

[17], which features a pseudo-pedestal at mid-radius. Demonstration of the

local-global method in the pedestal will open up a new analysis method for

studying global effects on micro-instabilities in the pedestal, which will en-

able, among other things, a deeper analysis of the correspondence between

KBMs and IBMs, and examination of the consequences for EPED-like mod-

els. This may, in turn, improve the accuracy of such models so that we can

predict tokamak performance more reliably.

Having not yet tested the local-global method in pedestal-like equilibria,

there are a number of uncertainties around the validity of its application.

Will the steep gradients of the pedestal invalidate the use of the local ap-

proximation? Will there be any other unexpected issues arising from the

extreme conditions in the pedestal? And how can one determine the valid-
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ity of the local-globalmethod for a given case? Then, how accurately can the

local-global method capture global effects in a pedestal-like equilibrium?

What are the limits of validity of the local-global method in parameter

space? And to what extent does the agreement between the local-global

method and MHDmeet expectations? And once these questions have been

answered,whatdoes this tell us about the behaviour ofKBMs in thepedestal

relative to IBMs? And what are the implications for EPED-like models?

This thesis answers these questions by first testing local gyrokinetic mod-

els of an experimental JET pedestal equilibrium using GS2 (Chapter 4).

This highlights a potential issue with local pedestal simulations: that high

magnetic shear, common in pedestals, might invalidate the use of the lo-

cal approximation. Chapter 4 discusses the physics driving the magnetic

shear problem, the impact on ideal and kinetic ballooning modes, and the

implications for the accuracy of local models in regions of high magnetic

shear. Chapter 5 completes Part II by applying the local-global method to a

pedestal-like equilibrium (with low magnetic shear to avoid any potential

issues), comparing to previously published global gyrokinetic and MHD

simulations, and analysing the impact on EPED-like models.

1.2.2 Zonal Flows

Turbulence resulting from micro-instabilities is regulated by zonal flows in

a “predator-prey” relationship (where zonal flows are the predator and tur-

bulence is the prey) [18]. This governs the L-H transition (e.g. [19–27]) and

H-mode transport (e.g. [20, 23, 31]). While these theories are well supported

by simulations, experimental evidence is limited due to difficulty measur-

ing zonal flows, as they are poloidally and toroidally symmetric. However,

zonal flows are driven by nonlinear interaction of turbulent modes, which

can be measured in experiments more easily using nonlinear energy trans-

fer functions (NETFs) [22, 24, 32]. Unfortunately, the poloidal extent of
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this analysis is limited by the diagnostic measurement area. Therefore, the

poloidal structure of zonal flow drive would be invaluable in interpreting

zonal flow experiments.

NETFs have been applied to nonlinear micro-turbulence simulations for

other purposes (e.g. [33–35]), but the transfer between turbulence and zonal

flows has not yet been measured in simulations. Nonlinear transfer into

zonal flows could be calculated in simulations at arbitrary poloidal angles,

thus revealing the poloidal structure of zonal flow drive.

In performing this calculation for the first time, there are a number of

questions to address: Which turbulent modes are primarily responsible

for driving zonal flows? How does the spectrum of transfer relate to the

spectrum of turbulent activity? How do the turbulent and zonal energy

levels respond to nonlinear energy transfer? And the key questions:What is

the poloidal structure of zonal flow drive? And why does zonal flow drive

exhibit the observed structure?

Chapter 6 answers these questions by applying NETFs to local nonlinear

gyrokinetic simulations of ion temperature gradient (ITG) turbulence in

a reference equilibrium representing a tokamak core plasma (the Cyclone

base case, CBC [36]).

1.3 Document Structure

The structure of this thesis is as follows. Part I comprises this chapter and

Chapter 2, which describes the local gyrokinetic model used throughout

this thesis. Part II begins with Chapter 3, which describes the local-global

method used throughout this part. Chapters 4 and 5 investigate global

effects on KBMs in the pedestal, as described in Subsection 1.2.1. Part III

contains Chapter 6, which studies the poloidal structure of zonal flowdrive,
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as introduced in Subsection 1.2.2. Finally, Part IV contains Chapter 7, which

draws together overall conclusions from Parts II and III. Supplementary

information is contained the Appendices.
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Chapter 2

Background

2.1 Gyrokinetics

2.1.1 Introduction

Micro-instabilities are ion gyroradius sized plasma waves destabilised by

the equilibriumgradients andmagnetic geometry, and influenced by kinetic

effects such as collisions, wave-particle resonances, trapped particle effects,

and finite Larmor radius effects. Therefore, we need a model of plasma

dynamics that includes these effects – a kinetic model – to study micro-

instabilities.

The simplest kinetic model is to follow the path of each particle subject to

the Lorentz equation:

<
dv
dC

= /4(E + v × B) (1)

where< is theparticlemass,v its velocity,/ its chargenumber, 4 the elemen-

tary charge, E the electric field, and B themagnetic field; the fields would be

calculated from the particle trajectories usingMaxwell’s equations.Unfortu-
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nately, the computational expense of such models is prohibitive for realistic

cases due to the large number of particles, six-dimensional phase-space,

and the variety of length- and time-scales. However, we can exploit various

scale separations [37] to average over the gyromotion; thus, we restrict the

problem to the micro-instability length- and time-scales, and eliminate a

velocity dimension. This results in a model, known as gyrokinetics, that is

solvable on today’s supercomputers.

The following subsections summarise the assumptions and key steps re-

quired to derive a gyrokinetic model. More detailed derivations are avail-

able in [38, 39, and references therein].

2.1.2 Assumptions

First,we evolve a distribution function, 5 , rather than individual particle tra-

jectories. We assume 5 varies smoothly in phase-space, which is reasonable

for the thermal species of interest (fast particle effects, which are excluded

here, require special treatment, e.g. [40]). This leads to the collisional Vlasov

equation1:

% 5

%C
+ v · ∇ 5 + /4

<
{E + v × B} · ∇v 5 = �( 5 ) (2)

where C is time and �( 5 ) is the collision operator, which approximates the

rate of change of 5 due to Coulomb collisions.

Next, we assume the plasma is magnetised, i.e. the magnetic field is suf-

ficiently strong relative to the plasma temperature such that: (a) the ion

thermal gyroradius, �i = Eth/$ci, is much smaller than the plasma size, !;

or, equivalently, (b) the transit frequency (the number of times a particle

crosses the plasma per unit time), $t = Eth/!, is much smaller than the

1Also known as the Vlasov-Boltzmann or Vlasov-Fokker-Planck equation
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ion gyrofrequency (cyclotron frequency), $ci; and (c) the ion-ion collision

frequency, �ii , is much less than the gyrofrequency such that gyromotion

can occur without being overly impeded by collisions. For completeness,

�ii is given by [1] �ii =

√
2�=i/

4

i
44

ln(Λ)
4�&0

√
<i)

3/2
i

where =i is the ion number density,

Λ is the plasma parameter (ln(Λ) is the Coulomb logarithm) given by [41]

Λ =
4�&

3/2
0

343

)
3/2
i

=
1/2
i

, &0 is the vacuum permittivity, and )i is the ion temperature.

The assumption of a magnetised plasma defines a fast time-scale ∼ O($ci),

which is removed later by averaging over the gyromotion, and a slow time-

scale ∼ O($t), which is retained; i.e. by averaging over a gyro-orbit, dy-

namics on the fast time-scale are averaged out, such that we no longer have

the dynamics of a point-particle as in a fully-kinetic model, but rather the

dynamics of charged rings about the particle’s guiding centre, which vary

on the slow time-scale. Similarly, there is a short length-scale ∼ O(�i) that is

retained and a long length-scale ∼ O(!) that is removed. Thus, we restrict

the problem to the length- and time-scales of interest.

In addition, we assume that the drift velocities, ED, are slow compared

to the characteristic velocity of the gyromotion, which is the ion thermal

velocity, Eth =
√

2)i/<i. This restricts the drifts to the slow time-scale, which

is retained, so drifts remain in themodel to exert their (de)stabilising effects.

This assumption is reasonable for studying micro-instabilities that interact

with the drifts on the slow time-scale, which are the target here. Situations

with drifts on the fast time-scale would require a different model, such as

MHD [37] or a fully-kinetic approach (e.g. [42–44]).

Finally, we assume scale separation between the parallel and perpendicular

length-scales, !‖ and !⊥ respectively. This captures the fact that particles

can move quickly along magnetic field lines, while being constrained in the

perpendicular direction.

The above assumptions lead to the gyrokinetic orderings:
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�i

!
≡ $t

$ci

∼ �ii

$ci

∼ ED

Eth

∼ !⊥
!‖
� 1 (3)

Typical values for tokamak plasmas2 are ! ∼ O(1 m) and �i ∼ O(0.01 m);

recall that ! is the plasma size, e.g. the tokamak minor radius, and �i

is the ion thermal gyroradius, and their ratio, �i/! is similar to that of

the perpendicular and parallel length-scales, !⊥/!‖ (Eq. 3). Therefore, the

length- and time-scale ordering conditions are often valid. However, there

may be cases where this does not hold. This is discussed in Chapter 5. The

collision frequency ordering is also often a valid assumption for tokamak

plasmas3, since �ii ∼ O(10
4

Hz)while $ci ∼ O(10
8

Hz).

2.1.3 The � 5 Approach

Next, we split the fields and distribution function, denoted generically as

", into equilibrium and fluctuating parts. We assume the equilibrium part,

"0, varies on the long length-scale, !, and on a time-scale slower than $t so

that we may neglect changes to "0, i.e. we assume:

%"0

%C
= 0 (4)

Furthermore, we assume the equilibrium distribution function, 50, is Max-

wellian – again, reasonable for thermal species. Meanwhile, we assume the

fluctuations, "1, vary on the short length-scale, �i, and the slow time-scale,

$t, so they are retained. Furthermore, we assume small fluctuations:

"1

"0

� 1 (5)

2Assuming ) ∼ O(10 keV), < ∼ O(1 amu), / ∼ O(1), � ∼ O(1 T)
3Assuming typical values as above and =

i
∼ O(10

20
m
−3)
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This approach is known as � 5 (or delta- 5 ) gyrokinetics. Full- 5 methods are

available (e.g. [45–47]) for situations where these assumptions do not hold

(such asmodelling scrape-off layer filaments, or where transport relaxes the

distribution function), but are not used in this thesis.

2.1.4 Coordinate Transform

Next, it is convenient to transform to velocity coordinates that isolate the

gyrophase angle4, , as this is the dimension that is removed by averaging

over the gyromotion. For example, this could be done in terms of the paral-

lel and perpendicular velocities, resulting in (E‖ , E⊥ , ). Alternatively, one

could do this in terms of kinetic energy per unit mass, � = E2/2, and pitch

angle, � = E2

⊥/(�E2), resulting in (�,�, , �), where � is a binary coordinate

to indicate the direction of E‖ since this is lost by using E2
. The latter is used

in the gyrokinetic code GS2 [1] and Equation (6) below.

2.1.5 The Gyrokinetic Equation

Once in suitable coordinates, we further split 51 (the perturbed distribution

function) into a gyrophase independent part, 6, and a gyrophase dependent

part, 5̂1, which is removed by gyroaveraging. Carrying out the gyroaver-

aging (and the associated significant quantity of algebra), one eventually

arrives at the gyrokinetic equation; an example (in wavenumber space) is

as follows [38, eq. 3.65]:

[
%

%C
+ (E‖b + vD).∇

]
6 = −

[∇ 50
�
.b × ∇⊥ +

/i4

<i

% 50
%�

%

%C
+ ∇6

�
· b × ∇⊥

]
[
()1 − E‖�1‖)�0(:�i) +

E⊥
:
�

1‖ �1(:�i)
]

(6)

4This is the angle indicating where around the gyro-orbit the particle is
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where b is the unit vector parallel to the magnetic field, ) is the electrostatic

potential, � is the magnetic potential (B = ∇ ×A), �0 and �1 are the 0
th
and

1
st
order Bessel functions of the first kind (introduced as a consequence

of gyroaveraging), : is the wavenumber, and subscripts ‖ and ⊥ indicate

components parallel and perpendicular to the magnetic field respectively.

The left-hand side of Equation (6) indicates that this equation describes the

time evolution of 6, shown by the
%
%C term and the convective derivative term

within the operator (square bracket). On the right-hand side, the first square

bracket is the operator and the second square bracket contains the fields that

are operated upon. The first two terms of the operator are the linear terms

that capture the effect of the background density and temperature gradients

respectively in driving changes in the system. The third term in the operator

(the ∇6 term) is the nonlinear term that captures how the state of 6 drives

further changes in the system. The three terms in the fields bracket represent

the E + v × B part of the Lorentz equation (Equation (1)), with the gradient

operators necessary to get from potentials (e.g. )) to fields (e.g. E) contained

within the operator bracket.

2.2 Ballooning Theory

2.2.1 Introduction

The gyrokinetic model presented in Section 2.1 describes the fluctuating

fields and distribution function that represent plasma micro-instabilities.

These perturbations can be short-circuited by particles moving along mag-

netic field lines. Therefore, modes aligned with the magnetic field are the

most unstable. As a result, the instability of the mode with integer poloidal

and toroidal mode numbers< and = peaks on the flux surface with rational

safety factor, @, such that:
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@ = </= (7)

For a given =, Equation (7) indicates that different < peak on different flux

surfaces, assuming the realistic case of finite magnetic shear, B̂, which is the

normalised gradient of @ defined as:

B̂ =
A

@

%@

%A
(8)

where A is the minor radius coordinate.

The various = are linearly independent due to toroidal axisymmetry. There-

fore, we may Fourier decompose and ignore the toroidal direction, �; the

toroidal behaviour is thus encapsulated by = and described by exp[8=�].

However, the poloidal dependence of the equilibrium couples the various

<, causing interference and thus generating a global disturbance across

many flux surfaces. This also prevents a simple Fourier decomposition of

the form exp[8<�] in the poloidal direction.

The gyrokinetic equation could be solved numerically across a domain cov-

ering many flux surfaces to obtain the global mode directly. This approach

is known as global gyrokinetics (e.g. [48–50]). However, such methods are

computationally expensive compared to local (single flux-surface) gyroki-

netics. This is due to the need for global codes to use [49]: (a) a larger

simulation domain (hence a larger computational grid); (b) finite difference

methods rather than spectral methods (hence a larger computational grid);

and (c) additional interpolation and buffer regions in the radial direction

(hence additional computations and a larger computational grid respec-

tively). For example, [49] states that “for a typical two-species, nonlocal

and nonlinear trapped electron mode turbulence simulation for a medium-

sized tokamak . . . several 100 kCPUh can be expected”. In comparison, the
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single-species, local and nonlinear ion temperature gradient mode turbu-

lence simulations reported in Chapter 6 have a run-time ∼ O(1 kCPUh).

While the cases compared above are different from each other, the local

computation time is two orders of magnitude less than that of the global

simulations, hence the run-time difference is expected to remain significant

when comparing two cases that are equivalent to each other. Furthermore,

the difference between local and global run-times is evenmore pronounced

in the linear regime, since the use of spectral methods in local simulations

means that each wavenumber is independent, so each can be run in paral-

lel or only one need be run if that is all that is of interest; conversely, this

decoupling of radial modes is not available in global calculations due to the

need to use finite difference methods.

Given the computational expense of global gyrokinetics, we seek a more

efficient approachvia the so-called “local approximation”. Thankfully, in the

limit of high =, there is an additional scale separationwe can exploit between

the system size, !, and radial width of the global mode, characterised by

the rational surface spacing, Δ, given by5:

Δ =
1

=@′
(9)

where @′ =
%@
%A on the surface with @ = </=.

Equation (9) shows that Δ becomes small in the limit of high =. As this

happens, the destructive interference of poloidal harmonics occurs within

a shorter distance, so the radial width of the global mode becomes small

compared to !, and the relevant flux surfaces experience approximately

the same equilibrium conditions. Therefore, we seek to exploit the scale

separation:

5Since @ = </= and @ ± @′Δ = (< ± 1)/=, assuming a first order Taylor expansion of @ in

the radial direction near the </= surface

31



Figure 1: An example flux tube simulation domain. The cut-away shows the

last closed flux surface with the flux tube inside.

Δ

!
� 1 (10)

such that we need only consider the equilibrium conditions on a single

flux surface. Thus, we obtain a local model, which is the lowest order of an

expansion in the small parameter Δ, with the radial equilibrium variation

on the length scale ! parameterised at this order. This results in a simulation

domain, knownas aflux tube, that is localised arounda singlemagnetic field

line in theperpendiculardirectionswhile remaining extended in theparallel

direction, as shown in Figure 1. A flux tube is a much smaller domain than

that of global gyrokinetics, and thus much less computationally expensive.

The following subsections summarise the theoretical techniques used to

derive a local model. More detailed derivations are available in [38, 39,

and references therein]. The implications of the local approximation are

discussed in Chapters 4 and 5.
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2.2.2 The Ballooning Transform

Consider a linear global electrostatic potential fluctuation,)(G, �, �, C),where

G = A − A0 with A0 a suitable reference minor radius such as that of a rational

surface near the centre of the disturbance, � is the poloidal angle and � is

the toroidal angle.

First, we assume a separable time dependence:

)(G, �, �, C) = )(G, �, �) exp[−8ΩC] (11)

whereΩ = $+ 8� is the global complex frequencywith $ the real frequency

and � the growth rate. This assumption is valid since )(G, �, �) changes on

the equilibrium time-scale, which is much slower than Ω.

Next, as noted in Subsection 2.2.1, the � dependence is ignorable via toroidal

Fourier decomposition by assuming axisymmetry:

)(G, �, �) = )(G, �) exp[8=�] (12)

Also as noted in Subsection 2.2.1, thepoloidalmodes are coupled. Therefore,

we cannot performa simple Fourier decomposition in thepoloidal direction.

Instead, using the scale-separation of Equation (10), we seek an eikonal

representation of the form:

)(G, �, �) = �(G, �) exp[8=((G, �, �)] (13)

where the function �(G, �) captures the slow variation6 on the length-scale

!, while the exponential function captures the fast variation on the length-

scale Δ, with:

6The notation � for slow and ( for fast is used for consistency with the literature, e.g. [51]
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((G, �, �) = � + .(G, �) (14)

Unfortunately, this method of achieving an eikonal representation conflicts

with the requirement for periodicity in � for the realistic case of finite

magnetic shear [52]. Therefore, we employ the “ballooning transform” [53]

to go from the periodic � domain to the infinite � domain:

)(G, �) =
∑
<

∫ +∞

−∞
)̂(G, �) exp[8<(� − �)]d� (15)

In doing so, we transform from )(G, �) to )̂(G, �). The advantage of this

approach is that )(G, �) is automatically periodic in � provided )̂(G, �) → 0

as �→ ±∞.

To illustrate the physical significance of the ballooning transform, we use

the following identity, which is related to the Poisson summation formula

[54]:

∑
#

�(G + #2�) = 1

2�

∑
"

exp[8"G] (16)

where � is theDirac delta function. This allowsEquation (15) to be expressed

as a Dirac comb:

)(G, �) = 2�
∑
#

∫ +∞

−∞
)̂(G, �)�(� − � + #2�)d� (17)

This form shows that the periodic function )(G, �) may be constructed by

summing samples of the the function )̂(G, �) on the infinite domain � with

a sampling interval of 2�, provided )̂(G, �) → 0 as � → ±∞, which is

required for the integral to converge.
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Since )̂(G, �)does not have to be periodic, it can be represented by an eikonal

form known as the “ballooning representation” [51, 55]:

)̂(G, �) = )̂0(G, �) exp[−8=@′G(� − �0)] (18)

)̂(G, �) is the global mode structure in ballooning space, which is related to

the local mode structure, )̂0(G, �), by the exponential factor7. )̂0(G, �) varies

slowly in G due to its dependence on the equilibrium (which also varies

slowly in G). The exponential factor varies slowly in�when G is small and� ∼

�0 but rapidly in �when G and / or �−�0 are large. Therefore, as G becomes

large, the integration over � in Equation (15) will tend towards zero, thus

capturing the finite radial extent of the global mode. Combining this with

the assumption that =@′ is large results in the small radialwidth of the global

mode that was the original basis for seeking an eikonal representation.

Furthermore, when G is small, the contribution to the periodic global mode

structure comesprimarily from the regionwhere� ∼ �0, with�0 an arbitrary

phase that sets the origin of the local mode structure, and hence is known

as the ballooning angle, ballooning phase angle or ballooning parameter.

2.2.3 The Local Approximation

As noted in [53], “the calculation of linear oscillations in any axisymmetric

system can always be reduced to a two-dimensional eigenvalue problem”:

ℒ(G, �))(G, �) = Ω)(G, �) (19)

The ballooning transform allows transformation of Equation (19) from the

periodic � domain to the infinite � domain:

7Indeed, the local and global mode structures in ballooning space are equal where G = 0

or � = �
0
, since the exponential factor is exactly 1.
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ℒ̂(G, �))̂(G, �) = Ω)̂(G, �) (20)

where Equations (19) and (20) have the same eigenvalue, which is the global

complex frequency, Ω.

In transforming Equation (19) to Equation (20), the differential operators

in ℒ are mapped to corresponding operators in ℒ̂ by evaluating their ef-

fect upon the ballooning transform (Equation (15)). For example,
%
%G in ℒ

is mapped by evaluating the partial derivative with respect to G of Equa-

tion (15) (which is just the partial derivative with respect to G of Equa-

tion (18)), to obtain:

%

%G
→

(
1

)̂0

%)̂0

%G
− 8=@′(� − �0)

)
(21)

This procedure can then be repeated for the other operators in ℒ to obtain

ℒ̂ and thus the transformed problem.

The first term on the right-hand side of Equation (21) is the radial gra-

dient inverse length scale of the local mode structure, 1/!)̂0

. Multiplying

Equation (21) by Δ = 1

=@′ shows that this term can be ignored provided

Δ/!)̂0

� 1, which requires that )̂0 varies on the equilibrium length scale,

which it does. Similar observations can be applied to the other operator

mappings to eliminate terms that are small relative to =@′ (provided the

relevant quantities vary on the long length-scale – this is studied further

in Chapter 4). In doing so, the operator to lowest order in Δ, known as the

local operator, ℒ̂0, is derived. We then have the local eigenvalue equation:

ℒ̂0(�))̂0(�) = Ω0)̂0(�) (22)
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where the eigenvalue, Ω0, is the local complex frequency, which only de-

pends parametrically on G. Furthermore, we now have a one dimensional

eigenvalue problem, which is thus easier to solve than the 2D problem of

Equation (20). This approach necessarily excludes global effects, which are:

(a) poloidal mode coupling, since we only have a single flux surface, hence

a single @ value, and thus a single < for a given =; and (b) effects due to

radial profile variations, sincewe have assumed that inverse gradient length

scales are small. As such, this model tells us the local behaviour due to the

local gradients of the radial profiles.

2.3 GS2

The simulations reported in this thesis use the local � 5 gyrokinetics code

GS2 [1], which solves the gyrokinetic equation in a ballooning space flux

tube8, coupledwithMaxwell’s equations to obtain the perturbed gyrophase

independent part of the distribution function, 6, and the perturbed electro-

magnetic fields )1, �‖1 and �‖1. GS2 has the following features [56] that are

relevant as modelling assumptions for the work presented in this thesis:

• Pseudo-spectral methods in the perpendicular spatial directions for

performance and accuracy. Other dimensions use finite difference

methods.

• Periodic boundary conditions in the perpendicular directions (valid

for box-sizes larger than a few turbulence decorrelation lengths), and

a zero incoming particles boundary condition in the parallel direction.

• A range of initial conditions for 6.

• Linear or nonlinear mode.

8The � and �
0
nomenclature of Section 2.2 is consistent with the literature, e.g. [51]. These

quantities are called theta and theta0 in GS2.
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• A choice of initial value solver or eigensolver.

• An implicit time-stepping algorithm for linear terms and an explicit

algorithm for the nonlinear term.

• Collisions modelled as pitch angle scattering and energy diffusion.

• Adjustable numerical dissipationvia spatial and temporal decentering

and a hyper-diffusion term.

• Arbitrary species definitions with gyrokinetic or adiabatic treatment

for each.

• A variety of analytical magnetic equilibrium models. Various numer-

ical equilibrium formats are also supported.

• User-specified grid resolutions and extents.

• MPI parallel processing with excellent scaling up to thousands of

cores.

• Arbitrary equilibriumflowshear (set to zero for allwork in this thesis).
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Part II

Global Effects on

Micro-Instabilities
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Chapter 3

The Local-Global Method

3.1 Introduction

The local gyrokinetic model presented in Chapter 2 neglects the global ef-

fects of poloidal mode coupling and radial profile variation, which appear

at the next order of the expansion in Δ. However, as noted in Chapter 1,

global effects may be important [16, 17], but direct global gyrokinetic simu-

lations face issues including computational expense and boundary effects.

Conveniently, the local-global method retrieves the global solution from

local simulations [28–30]; this chapter describes the method.

To lowest order in Δ (the local model), the operator ℒ̂0(�) and, hence, the

eigenvalue Ω0 and mode structure )̂0(�), have a weak dependence on the

equilibrium via G and �0, which are free parameters at this order. This is

sometimes indicated with semi-colon notation9 as follows:

ℒ̂0(�; G, �0))̂0(�; G, �0) = Ω0(G, �0))̂0(�; G, �0) (23)

9Read as, for example, )̂
0
as a function of �, parameterised by G and �

0
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The global eigenvalue,Ω, andmode structure, )(G, �), are only determined

by considering the next order of the expansion in Δ (the global model).

Thankfully, as we shall see, the solution at the higher order depends only on

the results from the local model, and does not depend on the equilibrium

directly. Therefore, we may obtain the global solution from an array of

independent local results, with the global coupling calculated separately

afterwards.

3.2 Obtaining Global Behaviour from Local Simula-

tions

To show the connection between Ω0(G, �0) and Ω, we first combine the bal-

looning transform (Equation (15)) and the ballooning representation (Equa-

tion (18)), and represent Equation (18) by its Fourier transform, which leads

to the Fourier-ballooning representation [55]:

)(G, �) =
∫ +∞

−∞
)̂0(�; G, �0) exp[−8=((@0 + @′G)� − @′G�0)]�(�0)d�0 (24)

A more complete derivation of Equation (24) is given in Appendix A.

Equation (24) shows that the globalmode structure,)(G, �), is an integration

over ballooning phase angles (�0) of the product of four constituent parts,

viz. the generic poloidal fluctuation, exp[−8=(@0 + @′G)�], and the generic

radial fluctuation, exp[8=@′G�0], weighted by, respectively, the local mode

structure along the field line, )̂0(�; G, �0), and the so-called “amplitude

envelope”, �(�0), that governs the contribution to the global mode from

each local mode (i.e. each (G, �0)).

Calculating the global eigenvalue,Ω, and the globalmode structure,)(G, �),

via this method requires determination of the amplitude envelope, �(�0).
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To calculate the amplitude envelope, �(�0), we start from the Fourier-

ballooning representation, Equation (24), and reintroduce the explicit time

dependence:

)(G, �, C) =
∫ +∞

−∞
)̂0(�, C; G, �0) exp[8=@′G�0]

exp[−8=(@0 + @′G)�]�(�0)d�0

(25)

Then, noting the form of the time dependence in Equation (11), we take the

time derivative of Equation (25) to obtain:

∫ +∞

−∞
{Ω −Ω0(G, �0)})̂0(�, C; G, �0) exp[8=@′G�0]

exp[−8=(@0 + @′G)�]�(�0)d�0 = 0

(26)

Next, we Taylor expand Ω0(G, �0) to second order about G = 0, which is

valid since we have assumed the radial extent of the global mode is small

compared to the equilibrium length scale:

Ω0(G, �0) = Ω0(�0)|G=0 +Ω′
0
(�0)G + 1/2Ω′′

0
(�0)G2

(27)

where the primes indicate radial derivatives at G = 0.

Following this, we substitute Equation (27) into Equation (26) to obtain:

∫ +∞

−∞
{Ω−[Ω0(�0)|G=0 +Ω′

0
(�0)G + 1/2Ω′′

0
(�0)G2]}

)̂0(�, C; G, �0) exp[−8=((@0 + @′G)� − @′G�0)]�(�0)d�0 = 0

(28)

Since =@′�0 = :G0 is the Fourier conjugate variable of G, we can use the

standard properties of Fourier transforms to write:

Gℓ →
(
8

=@′

)ℓ
%ℓ

%�ℓ
0

(29)
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for any integer ℓ , so that Equation (28) becomes:

∫ +∞

−∞

{
Ω�(�0) −

[
Ω0(�0)|G=0 +

8Ω′
0
(�0)

=@′
%

%�0

−
Ω′′

0
(�0)

2(=@′)2
%2

%�2

0

]
�(�0)

}
)̂0(�, C; G, �0) exp[−8=((@0 + @′G)� − @′G�0)]d�0 = 0

(30)

For the integral in Equation (30) to be zero in a non-trivial case (i.e. with

non-zero )̂0), the terms in curly braces must be zero. Therefore, we have the

second order differential eigenequation:

[
Ω0(�0)|G=0 +

8Ω′
0
(�0)

=@′
%

%�0

−
Ω′′

0
(�0)

2(=@′)2
%2

%�2

0

]
�(�0) = Ω�(�0) (31)

that relates the local eigenvalues, Ω0(G, �0), to the global eigenvalue, Ω.

Notice the terms in the differential operator of Equation (31) only depend

on the the local eigenvalues, Ω0(G, �0), and derivatives thereof. Hence, we

may collect Ω0(G, �0) from an array of independent GS2 simulations, use

those results to compute the coefficients for the differential operator, and

solve Equation (31) to obtain global behaviour from local simulations.

In addition, there are two practical points. Firstly, to determine the global

mode structure, )(G, �), we evaluate the Fourier-ballooning representation

(Equation (24)). This requires )̂0(�; G, �0), which may be calculated from

)̂0(�; G, �0) using Poisson summation, e.g. via a Dirac comb similar to Equa-

tion (17), i.e.

)̂0(�; G, �0) = 2�
∑
#

∫ +∞

−∞
)̂0(�; G, �0)�(� − � + #2�)d� (32)

Secondly, for )(G, �) to be periodic in �, we must have �(�0) periodic in

�0, hence we solve Equation (31) numerically with periodic boundary con-

ditions. This means that: (a) Equation (31) is solved using the SciPy sparse
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linear algebra function eigs, which returns the eigenvalues and eigenvec-

tors of a square matrix; (b) the square matrix passed to the eigs function

is constructed to represent Equation (31) as a set of simultaneous equations

where the differential operators
%
%�0

and
%2

%�2

0

acting on �(�0) are computed

as discrete central differences,

(
%�
%�0

)
8
=

�8+1−�8−1

2Δ�0

and

(
%2�
%�2

0

)
8
=

�8+1+�8−1−2�8
Δ�2

0

;

and (c) the central differences at the limits of the periodic domain �0 = ±�

are computed using the elements of �(�0) from the other end of the domain

to capture the periodicity of �(�0). As shall be shown in Chapter 5, �(�0)

has a Gaussian-like shape that decays to zero at �0 = ±�. Therefore, for

simplicity, periodic boundary conditions (point (c) above) were achieved in

this thesis by setting �(�0 = ±�) = 0; this was tested against strictly en-

forced periodic boundary conditions and was found to give the exact same

eigenvalue and eigenfunction.
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Chapter 4

Kinetic Ballooning Mode

Narrowing in Ballooning Angle

4.1 Introduction

As discussed in Chapter 1, to ensure the accuracy of EPED-like models, it

is important to assess the impact of global effects on KBMs in the pedestal.

However, to do so using global gyrokinetic simulations can present issues

including computational expense and boundary effects. Thankfully, we can

avoid these issues by using the local-global method described in Chapter 3

to retrieve global behaviour from local gyrokinetic simulations.

The local-global method has so far only been demonstrated in core plasmas

(for ITGs [28] and KBMs [29]), but not in the pedestal. Therefore, to demon-

strate its validity for studying the pedestal, the local-global method needs

to be applied to a pedestal (or pedestal-like) equilibrium.

The first step in using the local-global method to study the pedestal is to

run local gyrokinetic simulations of such a case. This is done routinely

(e.g [16, 57–59]), but often without scanning the ballooning angle, �0, since
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�0 = 0 is usually the most unstable. To neglect �0 is problematic because we

cannot distinguish between: (a) stability at all �0 vs. (b) stability at �0 = 0

but instability at �0 ≠ 0; or (c) instability across a wide range of �0 about

�0 = 0 vs. (d) instability only within a very narrow range of �0 about �0 = 0.

Concerning case (a) vs. case (b), it has been known, even since the early

days of ballooning theory [60], that an equilibrium is unstable if there is

instability at any value of �0. Therefore, determining stability only at �0 = 0

would lead to an incorrect conclusion for equilibria subject to case (b).

With regard to case (c) vs. case (d), since :G0 (the radial wavenumber at

� = 0) is linearly proportional to �0, instability within a narrow range of �0

about �0 = 0 suggests a global mode that is radially wide. This is potentially

in violation of the local approximation, thus calling into question the use of

local gyrokinetics for equilibria subject to case (d). At the very least, such

equilibria are likely to have a large global correction, such that the resulting

global transport is much less than that predicted by the local model.

This chapter begins with local gyrokinetic simulations of a JET pedestal

equilibrium, including a scan of �0, that exhibit KBMs unstable over a very

narrow range of �0 around �0 = 0, i.e. case (d). It appears something similar

has been observed in local gyrokinetic simulations before [61], but was

dismissed as non-physical. Furthermore, this mode was absent from the

corresponding direct global gyrokinetic simulations andwas thus excluded

from their analysis.

The existence of apparently non-physical modes in local pedestal gyroki-

netic simulations presents a problem for applying the local-global method

(or, indeed, local gyrokinetics) in the pedestal: Given the local approxima-

tionmay be violated, is the local approximation (and, hence, the local-global

method) a valid tool for such study?
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After presenting the JET pedestal results, this chapter addresses this issue

by first determining the cause of the observed narrowing of KBMs in �0.

This is done using local linear gyrokinetic scans of magnetic geometry

parameters that differ between the core and pedestal cases. This shows that

the narrowing is due to high magnetic shear, B̂, in the JET equilibrium,

which is common in pedestal equilibria. The remainder of the chapter then

explores how B̂ leads toKBMnarrowing in�0, anddiscusses the implications

of this on the validity of using the local approximation and the local-global

method for studying KBMs in the pedestal.

4.2 Methods

To connect to previous work, the JET pedestal equilibrium is based on shot

#84795. The equilibrium is described in more detail in [62, and references

therein], but the relevant points for this work are:

• Density and temperature profiles were reconstructed by averaging

high resolution Thomson scattering (HRTS) measurements over mul-

tiple ELM cycles.

• Data was binned by percentage of the time between ELMs. The equi-

librium used here is that corresponding to the 80-99% time bin.

• Modified tanh functions were fitted to the profiles.

• The equilibriumwas constructed by solving theGrad-Shafranov equa-

tion with the tanh profiles as input, the output of which was provided

by the authors of [62] in HELENA [63] format. The profiles of safety

factor and pressure taken from the equilibrium data file, and themag-

netic shear and pressure gradient profiles calculated from them, are

shown in Figure 2. Notice the dip in magnetic shear in Figure 2 (c)

near the flux-surface chosen for analysis. This is due to the bootstrap
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Figure 2: Profiles from the JET equilibrium showing (a) safety factor, (b)

pressure, (c) magnetic shear, and (d) normalised pressure gradient inverse

length scale (as defined in Equation (33)). The red x markers indicate the

#N = 0.98 surface used in the analysis.

current, which is proportional to the pressure gradient, hence peaks

in the pedestal. This was calculated self-consistently during the HE-

LENA reconstruction [62] using the Koh-Chang pedestal bootstrap

current model [64], hence the calculated bootstrap current values con-

tain some uncertainty that comes from the experimental pressure

measurements (as noted in [62]).

• The flux surface at normalised poloidal flux #N = 0.98 was selected

for analysis, consistent with [62], as it was near the peak pressure

gradient.

This equilibrium was previously shown [62] to be marginally stable to

peeling-ballooning (PB) modes (as expected immediately before an ELM),

and the #N = 0.98 surface was shown to be in the second stability region

for IBMs, and stable to KBMs. However, IBMs and KBMs were found to
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be unstable at values of magnetic shear higher than the equilibrium value

(B̂ & 5.5 cf. the equilibrium value B̂ ∼ 3.5), and instability peaked at nor-

malised pressure gradient inverse length scale, �′, slightly smaller that the

equilibrium value, though within experimental uncertainty (�′ ∼ −0.13 cf.

the equilibrium value �′ ∼ −0.15 ± 0.03), where �′ is defined as:

�′ = �
1

?

%?

%#N

(33)

Therefore, the JET simulation was set to B̂ = 7.92 and �′ = −0.1294 to pro-

mote KBM instability; the equilibrium values were not used as this would

put the simulation in the second stability region so therewould be noKBMs.

While it may seem inconsistent to set B̂ somuch higher than the equilibrium

value, this is justified for three reasons. First, as shown in Figure 2 (c), the

gradient of B̂ is very steep in the pedestal, thus B̂ can be significantly different

on nearby flux surfaces. Indeed, the value used (B̂ = 7.92) occurs on the flux

surface at#N = 0.992 cf. the surface studied at#N = 0.98. (The reason to not

just use the #N = 0.992 surface is that we do not want to use higher B̂ per se;

we want to promote KBM instability to study KBMs, and this was achieved

by increasing B̂. The #N = 0.992 surface was not tested, and may or may not

be unstable to KBMs.) Secondly, notice that the#N = 0.98 surface is near the

dip in the B̂ profile caused by the bootstrap current. This introduces uncer-

tainty in B̂ due to the uncertainty of the bootstrap current model, combined

with the uncertainty of the Grad-Shafranov solver. Indeed, some numerical

error is even apparent in Figure 2 (c) resulting from the calculation of B̂

from @. Finally, this is a qualitative study of KBM behaviour, not a quanti-

tative comparison with the experiment. While this does mean an arbitrary

equilibrium could have been generated from scratch, this setup based on an

experimental equilibriumwas used because some unusual KBM behaviour

was observed previously in this equilibrium (see Subsection 4.3.1).
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Parameter CBC JET

� 1.0 1.56

�′ 0.0 2.21

� 0.0 0.23

�′ 0.0 0.63

A/0 0.5 0.98

Δ 0.0 -0.28

'0/0 3.333 3.121

'0/0 3.333 3.116

@ 1.4 4.26

B̂ 0.8 7.92

Parameter CBC JET

0/!) 2.54 17.5

0/!= 0.81 39.6

� 0.02 0.00116

�′ 0.0 -0.1294

= 39 24

�∗ 0.0066 0.0023

�ii 0.162 0.022

�ee 0.591 0.996

/eff 1.0 1.22

Table 1: Comparison of parameters for the CBC and JET cases, where �

is elongation, � is triangularity, primes indicate radial derivatives, A/0 is

the normalised minor radius of the flux surface simulated, Δ = A
0

d'
dA

is

the Shafranov shift, '0/0 and '0/0 are the normalised major radii of the

magnetic axis and the last closed flux surface, 0/!) and 0/!= are the nor-

malised temperature and density gradient inverse length scales, �∗ is the

normalised ion gyroradius, and �ii and �ee are the normalised ion-ion and

electron-electron collision frequencies.

For comparison with the JET pedestal equilibrium, we also run the core

equilibriummodel reported previously [28, 29] that uses Cyclone Base Case

(CBC) parameters [36] with concentric circular flux surfaces using the s-

equilibrium model [65, §III]. The JET and CBC parameters are compared

in Table 1, and the flux surface shapes of the two cases are compared in

Figure 3.

Table 1 and Figure 3 show that the CBC and JET cases differ inmany param-

eters, most obviously the plasma shaping /magnetic geometry parameters.

To facilitate easier investigation of these differences, a Miller equilibrium
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Figure 3: Comparison of CBC and JET flux surface shapes. The blue solid

line is the last closed flux surface, and the red dashed line is the flux surface

simulated.

model [65, §IV] representation of each case was made. The JET Miller

model was tested for numerical convergence and was found to be suit-

ably converged. The CBC setup is based on that previously reported in [29],

hence relies on the convergence tests reported there. The JET convergence

tests and a check of the CBC Miller model against the previously reported

s-model are shown in Appendix B. Methods for measuring the frequency

and growth rate from GS2 data, and for tracking sub-dominantmodes using

the GS2 eigensolver are described in Appendix C.

4.3 Results

4.3.1 JET Pedestal KBMs Narrow in Ballooning Angle

The ballooning angle, �0, was scanned in GS2 for both equilibria. Figure 4

compares the growth rates, frequencies and mode structures from the two

cases. This shows that in the CBC setup KBMs were unstable over a wide

range |�0 | . 0.3�, while in the JET case KBMs became sub-dominant within

|�0 | . 0.03�. Thus, Figure 4 shows thatKBMs in the JET case are significantly
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Figure 4: (a) Growth rate, (b) frequency, and (c) mode structure from the JET

and CBC simulations. Markers are shown to indicate the resolution used,

but are suppressed on the JET line in (b) for clarity.

narrower in �0 than those in the CBC setup. Given �0 is related to :G0 (the

radial wavenumber at � = 0) by:

:G0 = −=@′�0 = −:H B̂�0 (34)

this suggests a global mode in the JET case that is radially wide, thus poten-

tially violating the local approximation. However, notice that the magnetic

shear, B̂, enters here. As shall be shown, the narrowing is caused by B̂, hence

it turns out that narrow in �0 does not necessarily mean narrow in :G0.

To ensure the observed modes were indeed KBMs, the JET case was re-

run with 0/!) and 0/!= swapped; KBMs are pressure gradient driven,

so should be largely unaffected by this change. The results are shown in

Figure 5, where we see the growth rates before and after the change are
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Figure 5: (a) Growth rate, and (b) frequency from the JET simulations before

and after swapping 0/!) and 0/!= . Note the narrower range of �0 shown,

hence the wider appearance.

the same for |�0 | . 0.03� and the frequencies in that range follow the same

trend with a small upshift ∼ 0.14Eth/!ref. These observations are consistent

with KBMs in this range, hence the distinction between JETKBMs and other

modes in Figure 4. Interestingly, we can see in Figure 5 that with 0/!) and

0/!= swapped, therewas anothermode at �0 = 0 that became sub-dominant

within |�0 | . 0.0003�, which was the smallest non-zero value tested, i.e. the

mode has only been observed at �0 = 0. This mode is unlikely to be a KBM,

since it is affected by swapping 0/!) and 0/!= , hence was not investigated

further. Nonetheless, this observation shows that there may be effects that

only exist at �0 = 0, thus highlighting the importance of considering �0 ≠ 0.

The observation of KBMs narrow in �0 has not yet been repeated in an

alternative experimental pedestal equilibrium (apart from the similar ob-

servations reported in [61]). This was attempted in MAST pedestal simu-

lations, but was abandoned due to unidentified numerical issues. Despite

the limitation of not directly reproducing this observation in another ex-

perimental pedestal equilibrium, the results presented later in this chapter

demonstrate that this is a robust effect due to high magnetic shear, so is

expected in pedestals in which magnetic shear is high (which is often the
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case, e.g. in conventional inductive current drive scenarios [66], though not

always the case, e.g. in advanced non-inductive current drive scenarios [66]

such as those developed for ITER steady state operations [67] that have low,

zero, or negative magnetic shear due to the high bootstrap current fraction)

and indeed in any equilibria with high magnetic shear (i.e. not necessarily

limited to pedestals).

4.4 Discussion of Ballooning Angle NarrowingMech-

anism

4.4.1 MagneticGeometryEffects onKBMBallooningAngleWidth

To investigate the cause of KBM narrowing in �0, the parameters that differ

between the two cases (Table 1) were varied and �0 was scanned for each

value tested. The width in �0 was then measured for the resulting �0(�0)

as the full width at half maximum. The scans started from the CBC setup

because some parameters had a strong stabilising effect that caused KBMs

to be completely stabilised in the JET case. The parameters that affected the

width are shown in Figure 6; all other parameters had negligible effect on

the width.

Figure 6 shows that the KBM width in �0 is highly sensitive to B̂, with large

changes over a very narrow parameter range compared to the difference

between the JET andCBC B̂ values.Meanwhile, the other parameters require

nearly the full rangeof theCBC-JETdifference toproduce a similar change in

width. This is a clear indication that B̂ is the dominant parameter controlling

the KBM width in �0.

The identification of B̂ as the parameter responsible for KBM narrowing

in �0 was confirmed in two ways. Both confirmation methods varied the

magnetic geometry parameters starting frommodified setups. The first was
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Figure 6: KBM ballooning space width variation with magnetic geometry

parameters starting from the CBC setup. The width is normalised to the

value obtained for the baseline CBC setup. Each parameter is normalised

to the CBC and JET values of that parameter.

a modified CBC setup with higher instability drive (but the same ratio),

0/!) = 2.54 → 7.62 and 0/!= = 0.81 → 2.43. This was done so that

KBMs were unstable at all |�0 | 6 � for all parameter values tested to avoid

the width measurement being affected by marginal stability. The second

modified setupwasbasedon the JET case, butwith theCBCvalues of � = 0.2

and �′ = 0.0 to avoid KBMs being stabilised completely as the parameter

values were changed, which would render the width immeasurable (the

JET values of � and �′ produced stabilising effects on KBMs). In both cases,

the width was measured as before, and the results are shown in Figure 7.

Figure 7 (a) shows that the previously observed narrowing due to @ is now a

widening, suggesting that the previous width measurements were affected

by marginal stability. The B̂ measurements, however, show clear narrowing

as before. Figure 7 (b) similarly shows that the previously observed narrow-

ing due to � is negligible compared to that caused by B̂, again suggesting
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Figure 7: KBM �0 width variationwithmagnetic geometry parameters start-

ing from (a) a modified CBC setup, and (b) a modified JET case. The width

is normalised to the value obtained for the baseline setup (i.e. (a) CBC and

(b) JET). Each parameter is normalised to the CBC and JET values of that

parameter.

that the previous �measurements were affected bymarginal stability, while

the B̂ narrowing is a robust effect that is evident in all three cases (Figure 7

(a) and (b), and Figure 6).

4.4.2 TheSuydamandMercierCriteria of IdealBallooningModes

Having identified B̂ as the parameter responsible for the narrowing of KBMs

in �0 observed in the JET case, a mechanism was sought for how B̂ causes

this narrowing. As an initial source of explanation, we return to two fun-

damental theories of IBM stability, the Suydam and Mercier criteria. These

describe necessary (though not sufficient) criteria for IBM stability in cylin-

drical and toroidal geometry respectively. While somewhat removed from

the KBMs under investigation, these theories provide some insight into the

parameters that drive and stabilise IBMs and, thus, are expected to also be

involved in KBM instability.
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The Suydam and Mercier criteria [37] are very similar apart from the in-

clusion of flux surface averages in the Mercier criterion that complicate the

expression. It is sufficient, and thus clearer, for our purposes to just discuss

the simpler Suydam criterion, which is:

@2�′'2�A <
B̂2

4

(for stability) (35)

where �A is a coefficient to capture the effect of magnetic field line curvature

in cylindrical geometry, and �0 enters via B̂ as per Equation (34).

Equation (35) indicates that @, �′ and curvature are destabilising for IBMs,

while B̂ is stabilising. Checking the effect of these quantities in the CBC

setup using GS2 shows that KBMs are subject to the same (de)stabilising

effects from these parameters. More importantly, however, examining the

effect of these parameters at different �0 shows that the stabilising effect of

B̂ affects high �0 more than low �0, while the other parameters affect all �0

approximately equally. This is shown in Figure 8 for B̂ compared to @ as an

example; similar results were obtained for �′ (not shown), while changing

the curvature via the '0/0 and '0/0 parameters from the JET to CBC values

made negligible difference to both growth rate and width in �0.
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Figure 8 shows that the destabilising effect of @ (and �′, not shown) is

insensitive10 to �0. Meanwhile, B̂ stabilises high �0 faster than low �0, which

leads to the observed narrowing in �0.

4.4.3 Mechanisms of Ideal Ballooning Instability

Further to the conditions suggested by the Suydam and Mercier criteria,

IBMs are expected [60] in regions with: (1) unfavourable curvature; (2)

minimal field line bending; and (3) near zero integrated local magnetic

shear. The meaning of these quantities is as follows:

1. Unfavourable curvature refers to the region on the outboard side

where toroidal curvature enhances ballooning instabilities since it

acts in the same direction as the pressure gradient.

2. Stretched magnetic field lines provide a stabilising effect, so balloon-

ing instabilities are most unstable where bending is minimised.

3. Ballooning instabilities may be considered as an interchange of field

lines between neighbouring flux surfaces, hence are most unstable

where these are aligned, i.e. where there is near zero integrated local

magnetic shear.

These effects are captured in the local IBM eigenvalue equation [60]:

[
− (�) + %

%�
(�) %

%�

]
)̂0(�) = $2)̂0(�) (36)

where the coefficient (�) captures the stabilising effect of magnetic field

line bending:

10The results in Figure 8 also suggest that �
0
is not periodic in �

0
. This is consistent with

�
0
depending on :G0

, and with �
0
being in the infinite � domain.
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 =
4�2 5 (#)2
'2 |∇# |2 +

4�2 5 (#)4 |∇# |2
'2�2

�2 (37)

where � = |B| with:

B = 5 (#)∇� × ∇# + '6(#)∇� (38)

where 5 (#) is the poloidal magnetic flux function and 6(#) the toroidal

magnetic flux function with # the flux surface label (minor radius coordi-

nate), and � is the integrated local shear:

� =
1

5 (#)

∫
B

B · ∇�d�

= @′(� − �0) + @
∇# · ∇�
|∇# |2

(39)

where B is the local shear11:

B = −B × ∇#
|∇# |2 · ∇ ×

B × ∇#
|∇# |2 (40)

Meanwhile, the coefficient  (�) captures the destabilising effect of magnetic

field line curvature:

 (�) = −?′(�n + �g) (41)

where ? is pressure, prime indicates a radial derivative, and �n and �g are

the normal and geodesic components of the curvature, given by:

�n =
 2'2

'2

0
�2

[
%

%#

(
2? + �2

)
+ ∇# · ∇�|∇# |2

%

%�

(
2? + �2

)]
(42)

11The global shear, B̂, is the flux surface average of B
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and:

�g = −
 26(#)2
@�4

�
%

%�

(
2? + �2

)
(43)

where  is a geometrical factor defined as:

 =
'0

2�

∫
P

d�

'2

(44)

where the integral is over the plasma volume, and d� is the volume ele-

ment12.

Equation (39) shows that � ∼ @′(� − �0), where the ballooning angle, �0, is

a constant of integration that sets where � = 0. Furthermore, Equations (37)

and (43) show that  ∼ �2 and �g ∼ �, hence �0 also sets where �g = 0

and where  is minimised. The normal component of curvature, �n, which

is independent of �0, primarily sets the region of unfavourable curvature,

since the normal components of ∇? and ∇� are aligned on the outboard

side.

Equations (41) to (43) suggest negative  (unfavourable curvature) on the

outboard side, i.e. around � = 0. Therefore, as |�0 | increases away from zero,

the location where � ∼ 0 and  is minimised starts to move out of the region

of unfavourable curvature. This is the cause of �0 stabilisation in general.

Meanwhile, the @′ dependence of � and  shows that higher @′ narrows

the region in � where � ∼ 0 and  is minimised, which is the cause of B̂

stabilisation in general. The combination of narrowing in � due to @′ and

shifting in � due to �0 leads to an increased sensitivity to �0 stabilisation at

high B̂, which is why B̂ stabilises high �0 faster than low �0 as observed in

Subsection 4.4.2.

12 is also related to the Jacobian of the coordinate system, � = (∇# × ∇� · ∇�)−1 =  '2

2�'0
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These arguments are illustrated in Figure 9 for the CBC setup13 by plotting

 (�), (�) and �(�) at �0 = 0 and �0 ≠ 0 for B̂ = 0.8 and B̂ = 7.92:

• Figure 9 (a) shows that regions of negative  , minimal  and � ∼ 0 are

aligned since �0 = 0. There is a wide region of instability in � since B̂ is

low, and there is maximally destabilising curvature across the whole

region due to the alignment.

• Figure 9 (b) shows how �0 ≠ 0 shifts the regions of minimal  and

� ∼ 0 out of the region of negative  . There is still a reasonably wide

region of instability in �, but curvature is onlymarginally destabilising

across some of it, hence the net instability will be somewhat reduced

compared to Figure 9 (a).

• Figure 9 (c) exhibits narrowing in � of the region of minimal  and

� ∼ 0. There is still maximally destabilising curvature across thewhole

region, but the region is very narrow.

• Finally, Figure 9 (d) shows how the combination of narrowing in �

due to @′ and shifting in � due to �0 leads to a very narrow region

of minimal  and � ∼ 0, with only marginally destabilising curvature

across thewhole region, hence the net result will bemarginal stability,

compared to only reduced instability in Figure 9 (b).

4.4.4 Ballooning Angle Narrowing of Ideal Ballooning Modes

The ideal ballooning arguments in Subsection 4.4.3 suggest that IBMs

should be subject to the same narrowing observed for KBMs in Subsec-

tion 4.3.1. This hypothesis was tested using the GS2 auxiliary program

13The effects of plasma shaping and geodesic curvature are neglected for simplicity.

Similar results are obtained when they are included.
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Figure 9: Illustrations of �0 shifting and B̂ narrowing in � of the ideal MHD

eigenvalue coefficients  ,  and � for the CBC setup at (a) low B̂ and �0 = 0,

(b) low B̂ and �0 ≠ 0, (c) high B̂ and �0 = 0 and (d) high B̂ and �0 ≠ 0. The

yellow region indicates where  < 1, |� | < 0.1 and  < 0 (indicative of

unstable region only).
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Figure 10: IBM stability as functions of �0 with �′ = −0.13 showing (a) IBMs

narrow in �0 at high B̂, (b) IBMs wide in �0 at low B̂, and (c) IBMs stable at

�0 = 0 but unstable at some other values of �0 at slightly lower B̂

ideal_ball, which solves a local IBM eigenvalue equation equivalent14

to Equation (36). The ideal_ball solver sets the boundary condition )̂0 = 0

at one end of the � domain, calculates coefficients equivalent to  ,  and

%
%� , then calculates )̂0(�) using first-order finite difference integration. The

)̂0(�) obtained is unstable if it crosses zero. Thus, ideal_ball returns a

binary stable / unstable result, but not the eigenvalue.

ideal_ball calculates its result at �0 = 0. To measure IBM width in �0,

ideal_ball was modified to calculate at arbitrary �0. The modified code

was run on the JET case with �′ ∼ −0.13 (as before) for various B̂ over the

range |�0 | 6 �. The results, shown in Figure 10, exhibit narrowing of IBMs

in �0 with increased B̂ as expected.

Interestingly, at low B̂, the region of �0 unstable to IBMs splits such that

�0 = 0 is stable but there is instability at some non-zero values of �0 (Fig-

ure 10 (c)). This is also expected [60], due to the competition of pressure

gradient stabilisation through  and destabilisation through  that eventu-

ally leads to stabilisation at �0 = 0 while instability remains at other values

14The equation solved by ideal_ball differs fromEquation (36) due to the normalisations

used in GS2
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Figure 11: Modified s- diagram as a result of IBM splitting observed in

Figure 10 (c). The red region (positive width) shows the width of the IBM

stability region for (B̂ , �′)unstable at�0 = 0. The blue region (negativewidth)

corresponds to (B̂ , �′) stable at �0 = 0 but unstable at some other values of

�0, where the width covers both unstable regions in �0 and the stable region

in between. The cases from Figures 10 and 15 are indicated.

of �0. As the pressure gradient is increased further, the unstable region due

to � and moves further around in �0 until itmoves outside the region of un-

favourable curvature, leading to second stability. Therefore, as noted in [60]:

“Ballooning instabilities are predicted for those configurations that yield a

negative eigenvalue, $2 < 0, for some value of �0. That is, �0 must also be

varied to obtain a complete test.” Indeed, using the modified ideal_ball

to also scan �′ reveals a region of instability that extends into what would

have been the second stability region had �0 not been scanned, as shown in

the s- diagram in Figure 11.

The results in Figures 10 and 11 show that:

1. IBMs are subject to the narrowing mechanism described in Subsec-

tion 4.4.3 as expected, which suggests this mechanism may also be

responsible for the narrowing of KBMs observed in Subsection 4.3.1.

64



2. It is important that �0 ≠ 0 is tested! In this case, this has resulted in a

modified second stability region. While this may not be a concern for

cases that are primarily constrained by the first stability boundary, this

could explain observations such as those in [62], where the inter-ELM

pedestal growth appeared to follow no particular trend and second

stability access was found to be important. In such cases, if the second

stability boundary is affected by instability at �0 ≠ 0, then this could be

a reason why the IBM proxy appeared to show that pedestal growth

was not always KBM limited.

3. The initial onset of IBMs at the first stability boundary is narrow in

�0 for all B̂. This suggests global IBMs that are radially wide, and thus

the local approximation may be inappropriate, or at least require a

large correction. On the other hand, the width increases rapidly with

�′, especially at low B̂, which suggests any invalidity or inaccuracy is

quickly mitigated. In any case, this further highlights the importance

of considering global effects on IBMs and KBMs.

4.4.5 Ballooning Angle and Magnetic Shear in Gyrokinetics

Having established how the basic mechanisms of IBM stability suggest nar-

rowing in �0 at high B̂ (Subsection 4.4.3) and confirmed that this does indeed

cause narrowing of IBMs (Subsection 4.4.4), it is now important to examine

how these mechanisms affect KBMs. Since the ideal ballooning coefficients

 ,  and � are all derived solely from the magnetic geometry, it is expected

that these quantities will also affect the gyrokinetic equation. This can be

seen in the gyrokinetic equation, where: B̂ (or rather @′) and �0 enter via

the ballooning representation of ) (Equation 18); ) is operated upon in the

gyrokinetic equation (Equation 6) by ∇⊥ ∼ :⊥, which is derived from the

magnetic geometry, i.e. also depends upon B̂ and �0 (this relates to the �

ideal ballooning coefficient); and the time rate of change of the distribution
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function,
%6
%C , also depends on the convective derivative, which includes a

contribution from the magnetic drifts, vD · ∇, which also depends on the

magnetic geometry (∇?, ∇�2
, etc., i.e. relates to the  ideal ballooning co-

efficient). This was confirmed by inspecting the GS2 source code to see how

the parameters B̂ and �0 enter the gyrokinetic equation, details of which are

given in the next two paragraphs. This revealed that these parameters both

enter via the curvature and ∇� drifts, and via the perpendicular wavenum-

ber, :⊥, both of which are calculated from the same magnetic geometry

variables that are used in ideal_ball. As shall be shown, the drifts effec-

tively perform the role of  , while :⊥ produces an effect similar to that of

�.

InGS2, the curvature and∇�drifts are representedby theoperatorscvdrift,

cvdrift0, gbdrift and gbdrift0, which relate to the terms of Equation (41)

as follows:

• cvdrift represents the ∇? terms of �n and the �0 independent part

of �g

• cvdrift0 represents the ∇? term of the �0 dependent part of �g

• gbdrift represents the ∇�2
terms of �n and the �0 independent part

of �g

• gbdrift0 represents the ∇�2
term of the �0 dependent part of �g

These are then combined intowdrift_func (drift frequency function),which

effectively performs the role of  , and then enters the “source” variable,

which represents the convective derivative term (v · ∇) and right-hand side

of the gyrokinetic equation (Equation (6)) and is used to update the distri-

bution function at each timestep. This is how curvature enters GS2 and, cou-

pledwith the kinetic gradient drives, leads to the condition of unfavourable

curvature required to destabilise ballooning modes.
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Figure 12: The effect of drift scaling at various ballooning angles

The effect of thedrifts inGS2was testedbyvarying thedriftknobparameter,

which applies a multiplication factor to the drift operators (cvdrift etc.).

The results, presented in Figure 12, show that increasing the effect of the

drifts increases instability near �0 = 0, while leaving the growth rates largely

unchanged at higher �0. This is consistent with a deepening of the negative

well of  (�), such that peak instability near �0 = 0 increases, while the

marginally destabilising curvature ( ∼ 0) at higher �0 does not change

significantly. This demonstrates that B̂ does not cause narrowing of KBMs

via the drifts.

Meanwhile, the perpendicular wavenumber is defined as:

:2

⊥ = :
2

H + :2

G (45)

where :H is set15 by the = chosen in Table 1 and :G is given by:

:G = =@
′(� − �0) = :H B̂(� − �0) (46)

15The calculation of :H is non-trivial as it depends on the magnetic geometry. This is dealt

with automatically by GS2. As an example, for concentric circular flux surfaces without

Shafranov shift we have :H =
=@
A cos

[
arctan

(
A
0
&
@

)]
where & = 0/'

0
is the inverse aspect

ratio.
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The @′(� − �0) factor that also appears in Equation 39 further illustrates the

connection between :⊥ and �.

The perpendicular wavenumber then enters the gyrokinetic equation in

two ways: (1) via the collision operator, both directly and via the Bessel

functions16; and (2) via the Bessel functions in the “source” variable.

Collisions in GS2 are a kinetic effect, since they spread the distribution

function in velocity space. However, Subsections 4.4.2 to 4.4.4 suggest that

narrowing is caused by ideal ballooning effects. Therefore, it is expected

that B̂ causes narrowing of KBMs via the Bessel functions in the “source”

variable, but not by collisions.

The hypothesis that collisions do not cause narrowing of KBMs in �0 was

tested by repeating the B̂ = 0.8 simulations of Figure 8 (a) with collisions

turned off. A comparison of the resultswith andwithout collisions is shown

in Figure 13; similar results were obtained for other values of B̂. This shows

that collisions produce an effect similar to that of the drifts observed in

Figure 12, whereby collisions cause increased peak instability while leaving

higher�0 largelyunaffected. In comparison, thenarrowingdue to B̂ observed

in Figure 8 (a) leaves the peak instability at �0 ∼ 0 largely unaffected, while

stabilising higher �0 more quickly. This demonstrates that the use of B̂ via

the collision operator is not responsible for the B̂ dependence observed in

Figure 8 (a).

Finally, the hypothesis that B̂ causes narrowing of KBMs via the Bessel

functions in the “source” variable was tested. This is difficult in GS2 since

B̂ and �0 also affect �g but the driftknob parameters affect both �n and �g.

Similarly, the bess_fac (Bessel factor) parameter applies a multiplication

factor to the argument of the Bessel functions that includes :⊥, but this

16Recall that Bessel functions feature in the gyrokinetic equation (Equation (6)) as a result

of gyroaveraging
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Figure 13: The effect of collisions at various ballooning angles

affects both the B̂ dependent (:G) and B̂ independent (:H) part. Therefore,

to isolate the effect of B̂ via the Bessel functions in the “source” variable, it

was necessary to switch back to the s- equilibrium model, where GS2 has

the flexibility to turn off the �g terms of the drift operators, thus eliminating

the effect of B̂ via that channel.

In the default version of the s- equilibrium, the drift operators are defined

as follows:

cvdrift = 2&{cos(�) + [B̂� − Δ sin(�)] sin(�)} (47)

cvdrift0 = −2& B̂ sin(�) (48)

gbdrift = cvdrift (49)

gbdrift0 = cvdrift0 (50)

where & = 0
'0

is the inverse aspect ratio.

The B̂ and �0 scans of Figure 8 (a) were re-run using this version of the

s- equilibrium model with collisions turned off as a baseline. The results,

shown in Figure 14 (a), exhibit narrowing of KBMs in �0 as expected.

The normal_onlyversion of the s- equilibrium redefines thedrift operators

as follows:
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Figure 14: The effect of B̂ at various �0 (a) including and (b) excluding the

effect of B̂ via the drifts. Both data sets are collisionless.

cvdrift = 2& cos(�) (51)

cvdrift0 = 0 (52)

gbdrift = cvdrift (53)

gbdrift0 = cvdrift0 (54)

Thus, the �g terms have been removed from the drift operators and the

effect of B̂ removed from the drifts. Now, the only way that B̂ enters the

gyrokinetic equation is via the Bessel functions in the “source” variable

(provided collisions are turned off, which they were).

Re-running the B̂ and �0 scans using this version of the s- equilibrium

model yields the results shown in Figure 14 (b). These results exhibit nar-

rowing of KBMs in �0, thus demonstrating that B̂ does indeed, as expected,

exert its narrowing effect via :⊥ in the argument to the Bessel functions,

which affects the distribution function via the “source” variable. While the

Bessel functions themselves do not appear in the IBM calculation, the per-

pendicular wavenumber, :⊥, that forms part of the argument to the Bessel

functions is derived from the same magnetic geometry parameters that do

go into the IBM code. Therefore, KBM narrowing in �0 is primarily an ideal
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ballooning effect, rather than a kinetic effect, as one might expect given the

IBM physics discussed in Subsections 4.4.3 and 4.4.4.

Notice, however, that the narrowing in Figure 14 (b) is less pronounced than

in Figure 14 (a), which suggests that the narrowing effect is enhanced by the

destabilising effect of B̂ at �0 ∼ 0 via the drifts and collisions. Since collisions

are a kinetic effect, this suggests that KBM narrowing may be modified

as compared to IBM narrowing. Nonetheless, these results show that the

narrowing of KBMs in �0 is primarily driven by an increased rate of :G

stabilisation in �0. As shall be discussed in Subsection 4.5.1, this is consistent

with the  and � stabilisation of IBMsdiscussed in Subsection 4.4.3, andwith

the assertion that KBM narrowing in �0 is primarily an ideal ballooning

effect, rather than a kinetic effect.

4.4.6 Additional Kinetic Effects

Subsections 4.4.1 to 4.4.5 show that B̂ causes narrowing of KBMs and IBMs,

and that KBMs are primarily narrowed by the same ideal ballooning physics

that narrows IBMs. However, upon checking the split IBM cases (those

similar to Figure 10 (c), i.e. in the blue region of Figure 11) to see if KBMs also

exhibit splitting, a divergence of IBM and KBM behaviour was observed,

whereby KBMswere unstable at �0 = 0 even though IBMswere stable there.

To avoid the possibility of this being caused by proximity to the original or

modified second stability boundaries, a case was selected near the middle

of the modified second stability region, with B̂ = 7.0 and �′ = −0.41 (as

indicated in Figure 11). GS2 simulations were run to measure KBM growth

rates. The GS2 simulations were checked to confirm that the instabilities

observed are indeed KBMs (by swapping 0/!) and 0/!= as before), which

confirmed that KBMs are active over the full range of �0.
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Figure 15: A comparison of KBM growth rates against IBM stability for the

JET case with B̂ = 7.0 and �′ = −0.41.

A comparison of the KBM growth rates from GS2 against the IBM stability

from ideal_ball is presented in Figure 15. This shows that KBMs exhibit

a large peak �0 ∼ 3.6 Eth/!ref at �0 = 0 where IBMs are stable, with smaller

secondary peaks (�0 ∼ 2.4 Eth/!ref) aligned with the region where IBMs

are unstable (�/4 . |�0 | . �/2). This suggests that the secondary peaks are

driven by ideal ballooning physics, while the peak at �0 = 0 is driven by

additional kinetic effects.

The origin of the additional kinetic effects was not investigated due to time

constraints. Nonetheless, this shows that additional kinetic effects can be

important for KBMs in the modified second stability region. This further

highlights that using IBMs as a proxy for KBMs does not always give the

complete picture, especially if only �0 = 0 is considered.
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4.5 Discussion of Implications for Local Validity

4.5.1 TheRelationshipBetweenBallooningAngle andWavenum-

ber

As discussed in Subsection 4.4.3, ballooning modes are destabilised where

there is alignment of magnetic field lines on neighbouring flux surfaces.

Furthermore, as noted in Subsection 2.2.1, modes alignedwith themagnetic

field are the most unstable. The combination of these ideas suggests that

the stabilisation of ballooning modes with �0 due to the shifting of  and �

in � is equivalent to stabilisation with increasing :G0 (Equation (34)), which

shifts in � the regionwhere :G = 0 (Equation (46)). Furthermore, in the ideal

ballooning description, increased B̂ causes a narrowing of the region where

 is minimised and � ∼ 0, which leads to an increased sensitivity to �0

stabilisation. In terms of wavenumber, this translates to increased B̂ causing

a narrowing of the region where :G ∼ 0 – indeed, Subsection 4.4.5 showed

that B̂ exerts its narrowing effect on KBMs via :⊥. This raises the question

of whether B̂ also causes narrowing in :G0, which may be important for

determining the real-space radial width of the corresponding global mode

and, thus, whether the local approximation is valid for a given case.

To address this question, the results in Figure 8 (a) (shown again in Fig-

ure 16 (a) for ease of reference) were re-plotted against :G0 instead of �0,

where :G0 was calculated using Equation (34) and the value :H = 0.1678 / �i

was obtained from the GS2 output.

The plot against :G0 is presented in Figure 16 (b). This shows that:

1. There is no narrowing in :G0.

2. We observe an apparent narrowing in �0 because higher B̂ maps the

fixed range of |�0 | 6 � to a larger range of :G0, such that the fixed rate

of stabilisation in :G0 happens faster in �0.
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Figure 16: The effect of B̂ (a) at various ballooning angles (this is the same

data as Figure 8 (a) and is shown again here for ease of reference); and (b)

re-plotted against :G0.

Therefore, while modes that are narrow in �0 may at first appear to be in

violation of the local approximation, the fact that they remain the same

width in :G0 as B̂ increases suggests that they may in fact be the same width

in real-space. This raises the question of whether �0 or :G0 is the important

parameter to determine whether �0 varies sufficiently slowly such that the

local approximation is valid. This question is addressed in Subsection 4.5.2.

4.5.2 Conditions for Local Approximation Validity

To answer the question of whether �0 or :G0 is the important parameter

for local approximation validity, we return to the method of deriving a

local model, as described in Subsection 2.2.3. The transform of the radial

derivative operator,
%
%G , has already been evaluated in Subsection 2.2.3 to

reveal the mapping:

%

%G
→ −8=@′(� − �0) (55)

provided:
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1

)̂0

%)̂0

%G
� =@′ (56)

Applying a similar procedure for the radial scaling operator (i.e. multipli-

cation by G), results in the mapping:

G → − 8

=@′
%

%�0

(57)

provided:

1

)̂0

%)̂0

%�0

� =@′G (58)

Equation (34) shows that �0 = −Δ:G0. Therefore, re-formulating Equa-

tion (58) in terms of :G0, we find the mapping:

G → 8
%

%:G0

(59)

provided:

1

)̂0

%)̂0

%:G0

� G (60)

Therefore, we have different but equivalent conditions depending onwhich

parameter is used, �0 or :G0. For simplicity, the remainder of this discussion

will focus on �0.

To assess the implications of Equations (56) and (58) on any requirements

for �0 to be slowly varying in G and �0, we consider the amplitude of

)̂0. Assuming all local mode structures start at the same amplitude at an

arbitrary reference time (which is reasonable for an initial seed perturbation

of random noise), then the amplitude varies as:
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)̂0 ∼ exp[�0(G, �0)C] (61)

Since time is arbitrary, we set C = 1 to simplify the analysis. Substituting

Equation (61) into Equations (56) and (58) reveals the conditions:

%�0

%G
� =@′ (62)

and:

%�0

%�0

� =@′G (63)

This chapter has shown that
%�0

%�0

increaseswith B̂ = A
@ @
′
. However, notice that

the right-hand side of Equation (63) also contains @′. Therefore, as B̂ ∼ @′ acts

to increase
%�0

%�0

, the right-hand side of Equation (63) also increases. Further-

more, this chapter has shown that
%�0

%:G0

does not change with @′, and that the

change in
%�0

%�0

is a consequence of the fixed range of |�0 | 6 � being mapped

to a larger range of :G0 = −=@′�0 (Equation (34)). Therefore, neglecting other

effects such as the enhancement of narrowing by the drifts, the change in
%�0

%�0

is linearly proportional to @′. Hence, if Equation (63) is satisfied by KBMs

wide in �0 at low @′, then it is also satisfied by the same KBMs narrow in

�0 at high @
′
. In other words, KBMs narrow in �0 are not necessarilywide in

real-space nor do they necessarily contradict the assumptions of the local

approximation – it all depends on the corresponding value of @′.

The observation above suggests the impact of B̂ narrowing of KBMs on local

approximation validity may be mitigated by the corresponding increase

in =@′. To demonstrate this effect the local-global method was applied to

artificial but representative data, which was constructed as follows.
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The local growth rate, �0, was set as an inverted quadratic in G multiplied

by a Gaussian in �0 peaking with a value of 1 at (G, �0) = (0, 0):

�0(G, �0) =
(
1 −

(
G

FG

)
2

)
exp

[
−
�2

0

222

]
(64)

where FG ∼ 1/ %�0

%G is a measure17 of the width of �0 in the G direction such

that �0 = 0 at |G | = FG , and:

2 =
F�0

2

√
2 ln 2

(65)

where F�0
∼ 1/ %�0

%�0

is a measure18 of the width of �0 in the �0 direction such

that �0 ∼ 0 for |�0 | & F�0
.

The frequencywas set as $0 = �0,FG was set as 0.2, the safety factor at G = 0

was chosen as @0 =
4

3
, the initial magnetic shear was set as B̂ = 1 and the

minor radius as 0.5, which results in @′ = 8

3
, and the toroidal mode number

was chosen as = = 54, which results in =@′ = 144 and <0 = =@0 = 72. Local

mode structures, )̂0(�; G, �0), were set as Gaussians centred on � = �0 with

a full width at half maximum of
�
2
.

The global eigenvalue,Ω, and the global mode structure, ), were calculated

from these �0, $0 and )̂0 data using the local-global method as described

in Chapter 3. Three tests were run: varying F�0
, varying @′, and varying

@′ and F�0
consistently (constant

%�0

%:G0

). Similar results were obtained when

varying FG (not shown).

For each value tested within each of the three tests, the “local error” was

calculated as the difference between the local eigenvalue, Ω0, at (G, �0) =

(0, 0) and the global eigenvalue, Ω. In the results that follow, this is given

17Considering only G = 0 and G = FG

18Similarly, considering only �
0
= 0 and �

0
= F�0
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Figure 17: Local error as a function of

F�
0

Δ
. The “varying both” line comprises

9 data points at the same location.

as a percentage of Ω, with a positive value indicating that Ω0 was an over-

estimate compared toΩ. The smaller the local error, the more accurate and,

hence, more valid the local approximation.

GivenF�0
∼ 1/ %�0

%�0

andΔ = 1

=@′ , and since Equation (63) requires
%�0

%�0

� =@′G,

we therefore expect the local approximation to be more accurate when

F�
0

Δ
� 1. The local error from each of the three tests is plotted against this

metric in Figure 17.

Figure 17 shows that the local error increases as

F�
0

Δ
becomes small, as

expected by Equation (63). This is consistent with the original assertion that

�0(�0) narrowing could affect local validity. However, the “varying both”

results show that all 9 data points have the same

F�
0

Δ
and the same local

error. That is, the local error does not change when both @′ and F�0
are

varied consistently. This is because, as expected by Equation (63), local

validity depends on

F�
0

Δ
, which does not change when both @′ and F�0

are

varied consistently since F�0
∝ Δ. This demonstrates that the effect of B̂

narrowing on local validity ismitigated by the corresponding increase in @′

in the absence of other effects such as enhancement of the narrowing by the
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drifts. Therefore, KBMs that are narrow in �0 are not necessarily in violation

of the local approximation, especially if they are in a region of high B̂ (as

was the case for those observed in Chapter 4); indeed, KBMs that are wide

in �0 may be in violation of the local approximation if B̂ is low. Hence, it is

essential for confidence in the accuracy of local models to check the validity

of the local approximation by testing the sensitivity to �0 (and G) relative to

=@′.

4.6 Conclusions

This chapter has observed KBMs narrow in ballooning angle, �0, in local

gyrokinetic simulations of a JET pedestal. This suggests global modes that

are radially wide, which may significantly reduce the accuracy of the local

approximation, or even result in these local modes being non-physical.

The observed narrowing was shown to be caused by magnetic shear, B̂,

which stabilises high �0 faster than low �0, and this was shown to be a

robust effect in both the CBC and JET equilibria. Therefore, B̂ narrowing

is expected in any equilibria with high B̂, which includes most pedestal

equilibria, where B̂ is often high. This may explain previous observations of

apparently non-physicalKBMs in local gyrokinetic JETpedestal simulations

[61].

An explanation for how B̂ causes narrowing was provided by ideal balloon-

ing physics [60], whereby B̂ narrows the region of ballooning space where

field line bending isminimised andfield lines on neighbouring flux surfaces

are aligned. This effect was then shown to cause narrowing of both IBMs

and KBMs. Furthermore, this physics causes splitting of the IBM stability

region in �0, leading to a modification of the second stability region, which

highlights the importance of considering �0 ≠ 0.
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The narrowing effect of B̂ was shown to enter the gyrokinetic equation

via the perpendicular wavenumber, :⊥. This is consistent with the ideal

ballooning description of increased B̂ causing a narrowing of the region

where field lines on neighbouring flux surfaces are aligned; hence, KBM

narrowing is primarily caused by ideal ballooning physics. However, in the

split IBM case, additional kinetic effects appear at �0 ∼ 0 to result in unstable

KBMswhere IBMs are stable. Thismay explain observationswhere pedestal

evolution appeared to not be constrained by IBM stability at all times [62],

and recentwork that identifiedweakly unstable KBMs at �0 = 0where IBMs

were stable [68].

While B̂ causes narrowing of KBMs in �0, re-plotting this data against :G0

(the radial wavenumber at � = 0) shows that there is no narrowing in

:G0. Rather, stabilisation with :G0 occurs at the same rate, but higher B̂

maps the fixed range of |�0 | 6 � to a larger range of :G0. As a result, :G0

stabilisation happens faster in �0, hence we observe an apparent narrowing

in �0. Examining the assumptions of the local approximation reveals that

these parameters lead to different but equivalent requirements for �0 to be

slowly varying in �0 or :G0 (and also in G). These conditions suggest that, in

the absence of other effects such as the enhancement of narrowing by the

drifts, the impact of B̂ narrowing may be mitigated by the corresponding

increase in =@′ (neglecting other effects). This effect was demonstrated by

applying the local-global method to artificial but representative data, which

confirmed that the increase in local error due to B̂ narrowing is mitigated

by the corresponding increase in =@′. Therefore, KBMs that are narrow in

�0 are not necessarily in violation of the local approximation, nor do KBMs

wide in �0 necessarily satisfy the local approximation – it all depends on

the corresponding value of @′.

To summarise, this work raises some important warnings:
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1. While �0 = 0 is often the most unstable, this is not always the case.

Therefore, it is important to consider �0 ≠ 0, especially in the second

stability region.

2. It is important to consider kinetic effects that may impact the validity

of using IBMs as a proxy for KBMs.

3. Local calculations, whether gyrokinetic or ideal ballooning, need to

consider the impact of global effects on local validity. This is especially

true in regions of high B̂, whether pedestal or otherwise, where B̂

narrowing may make local modes non-physical (or just appear non-

physical) and this may or may not be mitigated by the corresponding

increase in =@′ depending on the strength of other effects such as

enhancement of narrowing by the drifts.

Finally, the conditions for local validity derived in this chapter require

knowledge of
%�0

%G and
%�0

%�0

. Therefore, it is not necessarily possible to de-

termine a priori whether the local approximation is valid for a given case;

rather, one must assume local validity, be sure to test the variation of �0

with G and �0, and, thus, verify local validity afterwards. This is the ap-

proach taken in Chapter 5, where the local-global method is applied to

KBM simulations in a pedestal-like equilibrium.
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Chapter 5

Local-Global Pedestal

Simulations of Kinetic

Ballooning Modes

5.1 Introduction

5.1.1 Chapter Overview

Chapter 4 showed that there arepotential issueswith local simulations of the

pedestal, and that it is not necessarily possible to determine a prioriwhether

the local approximation is valid for a given case. This chapter presents

application of the local-global method to a pedestal-like case. An artificial

case with lowmagnetic shear was used for consistency with previous work

[17] and to avoid the potential issues presented in Chapter 4. The validity

of the local approximation in this case is examined as part of the analysis.

The results are compared (favourably) to previously published [17] global

gyrokinetic and global MHD simulations. The results are then used to de-
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velop simple correction models for local MHD and assess their utility in an

EPED-like calculation.

The structure of this chapter is as follows. First, Subsection 5.1.2 motivates

the comparison of global (or local-global) gyrokinetics with MHD, before

Subsection 5.1.3 describes the equilibriummodel used to do so. Sections 5.2

to 5.4 then cover, respectively, the comparison of the new local-global results

against previouswork, development of simple correctivemodels, and appli-

cation to an EPED-like calculation. These sections include section-specific

discussion and conclusions subsections. Finally, Section 5.5 discusses points

that are general to the chapter as a whole, before Section 5.6 draws conclu-

sions for the chapter as a whole.

5.1.2 Motivation

Due to the gyrokinetic orderings of Equation (3), gyrokinetic turbulence

is inherently Larmor radius scale. However, MHD does not include finite

Larmor radius effects; indeed, this length scale does not feature in MHD.

Therefore, MHD effects are inherently system sized. As a result, MHD is

typically used to study large-scale (low =) instabilities, while gyrokinetics

is used to study small-scale (high =) modes. The exception is local MHD,

where the small length scale
1

=@′ is introduced with an assumption of large

= and finite @′ to provide the scale separation necessary to derive a local

model (see Subsection 2.2.3).

Given the differing wavelength regimes of gyrokinetics and MHD, it is

useful to compare these models to confirm agreement in the intermediate

wavelength regime as expected. However, it is yet more useful to assess

how well MHD-scale modes are captured by gyrokinetics and visa versa. To

what extent does MHD remain valid as = gets larger? To what extent does
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gyrokinetics remain valid as = gets smaller? And how far can we go in =

and still get accurate results from these models?

The answers to these questions will be useful for: (a) improving MHD-

based models used as proxies for gyrokinetic models where computational

efficiency is crucial, e.g. EPED [14] and Europed [15]; and (b) extending

gyrokinetics to capture MHD-scale physics to make gyrokinetics a more

complete model, rather than having to run both gyrokinetics and MHD

and risk missing interactions between Larmor radius scale and MHD-scale

modes.

Global gyrokinetics and global MHD have been compared previously [17],

where reasonable agreement was shown. However, the results also showed

some significant differences and a number of unanswered questions remain

about the origin of these differences. The work presented in this chapter ap-

plies the local-global method (see Section 3.2) to the same equilibrium used

in [17]. The local-global method is an attractive technique for such cases,

as it should be able to overcome some of the limitations and computa-

tional expense of global gyrokinetics. Furthermore, the separation of local

and global effects, and the use of an alternative gyrokinetic code will al-

low deeper investigation of the previously observed differences. In doing

so, this work will provide further evidence to explain the length scales at

which these models agree / disagree and why. This knowledge can then be

used to improve both models for use in various applications.

5.1.3 EquilibriumModel

The simulations presented in this chapter use the same equilibrium as [17],

which was provided by the authors. This equilibrium is consistent with the

Grad-Shafranov equation, and has a pseudo-pedestal at mid-radius, low

magnetic shear (to promote growth of ballooning modes), approximately
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circular flux surfaces, and non-zero Shafranov shift. The equilibrium also

features a flat density profile (at 7.37×10
19
m
−3
) so that the pressure pedestal

is governed solely by the temperature profile as this is expected to yield

better agreement with MHD [69]. This equilibrium was used for ease-of-

comparison with previous work [17] and to avoid issues associated with

high magnetic shear in the pedestal. Previous work [17] developed this

equilibrium with its pseudo-pedestal at mid-radius to avoid boundary ef-

fects in their global gyrokinetic simulations. Such issues could potentially be

avoided by using the local-global method (this is discussed in Section 5.5).

An overview of the equilibrium is given in Figure 18.

The global domain was selected as the region where KBMs are locally

unstable. Sensitivity tests showed that a larger domain did not significantly

affect the results.

The original equilibriumwasproducedby the CHEASE equilibriumcode [70].

The CHEASE equilibrium is used throughout this chapter. Sensitivity to the

equilibriummodel is tested in Subsection 5.2.3.2 using a Miller equilibrium

model [65] fit to the CHEASE equilibrium.

5.2 Assessment of the Local-Global Method

5.2.1 Local-Global Method – Practical Details

5.2.1.1 Running the Simulations

A reference surface was chosen with @ = </= = 4/3 to define the radial

origin G = 0. This value was chosen as it is near to the point of maximum

temperature gradient magnitude, which is expected to be near the centre

of the global disturbance. Sensitivity studies showed that the results are

insensitive to the exact location of the radial origin, provided it is indeed

near to the centre of the global disturbance.
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Figure 18: An overview of the pedestal-like equilibrium showing (a) flux

surfaces, (b) temperature profile with a pseudo-pedestal at mid-radius, (c)

pressure gradient inverse length scale, (d) safety factor profile and (e) mag-

netic shear profile. In all cases, the local-global simulation domain is indi-

cated by the dashed lines and the origin (G = 0) by the solid black line.
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The equilibrium normalised Larmor radius is �∗ ∼ 1/70. The previous

study [17] tested �∗ = 1/200, 1/400 and 1/800 to ensure the gyrokinetic

assumption of small �∗ was satisfied. For consistency with [17], this thesis

also uses �∗ = 1/200, 1/400 and 1/800.

Local GS2 simulations were run for a range of toroidal mode numbers with

normalised Larmor radius, �∗ = 1/200. This �∗ was used in GS2 to allow

flexibility to maintain integer = analysis as �∗ is changed in the calculation

of the global mode for the various �∗ listed above.

The simulations were run for all of the surfaces within the global domain

indicated in Figure 18 that were available within the equilibrium file. For

each surface, the ballooning parameter, �0, was scanned from 0.0 in steps

of 0.2 (determined by preliminary tests to be a suitable value to balance

accuracy and performance) up to � or until run-times became prohibitive

due to KBMs being stable.

An example of the local frequency and growth rate results obtained are

shown in Figure 19. This example is from the = = 7, �∗ = 1/200 case, as this

results in = = 28 when analysed using �∗ = 1/800, and this is the closest =

available to the baseline case from [17] with = = 30 and �∗ = 1/800.

5.2.1.2 Obtaining Fit Parameters

Having obtained Ω0(G, �0), the coefficients for the differential operator of

Equation (31)were calculated by fitting quadratics to the real and imaginary

parts of Ω0(G) for each �0. An example of Ω0(G) at �0 = 0 for the data from

Figure 19 is shown in Figure 20.

Figure 20 shows thatwe have approximately quadratic behaviour near G = 0

as required. Furthermore, the growth rate peaks near G = 0 at G ∼ 0.007

and is nearly symmetric, so we expect a quadratic fit of the growth rate

to have a relatively large G2
coefficient and a relatively small G coefficient.
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Figure 19: An example of the local (a) frequency and (b) growth rate results

as calculated by GS2 over the global domain indicated in Figure 18. The

solid black line indicates marginal stability.
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Figure 20: An example of the local (a) frequency and (b) growth rate results

as functions of G at �0 = 0.
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Meanwhile, the turning point in the frequency is somewhat offset from

G = 0 being instead at G ∼ −0.035. Therefore, we expect a quadratic fit

of the frequency in the region where G is small to have a relatively small G2

coefficient and a relatively large G coefficient. As a result of this coefficient

difference between the frequency and growth rate fits, which is itself a

consequence of the differing turning point locations, we expect the global

mode to take the form of a “mixedmode”with the global peak shifted away

from the outboardmidplane slightly, as opposed to an “isolatedmode” that

peaks at the outboard midplane (and occurs with matching turning point

locations) or a “general mode“ that peaks at the top or bottom (and occurs

when both the frequency and growth rate have small G2
coefficients and

large G coefficients) [30]. The reason for the differing turning point locations

has not been investigated due to time constraints. However, the Cyclone

base case equilibrium used in [29] produced isolated modes. Therefore, it

is reasonable to assume that the difference in expected mode type is due

to one or more of the differences between the two cases. For example, the

case in [29] varies 0/!) while holding ) constant, whereas 0/!) and ) are

varied consistently in the equilibrium used here.

Figure 20 also shows that the quadratic frequency behaviour breaks down

far from G = 0 as the growth rate approaches marginal stability. Such

frequency behaviour near marginal stability is common for KBMs (e.g.

[71]). Furthermore, in this case:

• � is relatively high, so ITGs are expected to be largely suppressed in

line with [72];

• the frequency does not change sign, which excludes a switch to an

electron driven mode such as the trapped electron mode (TEM) or

electron temperature gradient mode (ETG);
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• the local mode structures do not change from twisting (even) parity to

tearing (odd) parity, which excludes a switch to micro-tearing modes

(MTMs); and

• $ and � are continuous in G, which is consistent with the same mode

operating at at all values of G tested.

Therefore, this appears to be genuine KBM behaviour. In any case, this data

is likely to significantly affect the quadratic fit coefficients that are based on

an assumption of approximately quadratic behaviour near G = 0. Therefore,

these data have to be excluded from the fitting. This is justified because the

corresponding growth rates are approximately zero so these local modes

will not contribute significantly to the global mode.

To avoid having the quadratic fits skewed by data at large values of |G |, the

fittingwasweighted by aGaussianweighting function to favour data points

near G = 0, consistent with the assumption of a Taylor expansion about

G = 0. The weighting function used and an example of the fits obtained

with and without the weighting function are shown in Figure 21.

Figure 21 shows that the quadratic fit is greatly improved in the region near

G = 0 using theGaussianweighting function as compared to the fit obtained

without any weighting. The width of the weighting function was chosen

such that theweighting function decayed to approximately zero by the edge

of the region where Ω0(G) exhibits approximately quadratic behaviour. A

sensitivity study with an alternative weighting function (a clipped inverse

quadratic) showed the fitting to be insensitive to the fine details of the

weighting function.

90



−0.05 0.00 0.05
x

0.00

0.13

0.26

0.39

0.52

0.65

ω
0
/v

th
/L

re
f

0.0

0.2

0.4

0.6

0.8

1.0

w
(x
)(a)

Data and weighting f nction
ω0
w(x)

−0.05 0.00 0.05
x

Raw and weighted fits
(b) ω0

w=1
w=w(x)

Figure 21: (a) The local frequency data, $0, from Figure 20 alongside the

Gaussian weighting function, F(G), used to favour data points near G = 0

when fitting a quadratic function to the data; and (b) the same $0 data

alongside quadratic fits obtained with and without use of the Gaussian

weighting function (F = F(G) and F = 1 respectively).

5.2.2 Local-Global Results

5.2.2.1 Local Benchmarking

The local results were benchmarked against previously published data ob-

tained by digitising [17, Fig. 9 (a)], which shows the maximum local growth

rate found within the global domain. A comparison of that data with the

equivalent data from the new simulations is shown in Figure 22. The effec-

tive toroidal mode number, =eff, was calculated as:

=eff = =(�∗/�∗
0
) (66)

where �∗
0
is the equilibrium normalised Larmor radius with a value of

�∗
0
∼ 1/70. The GS2 normalised units of growth rate were converted to

physical units for ease of comparison with the data from [17].
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Figure 22: Comparison of the maximum local growth rate found within the

global domain against equivalent data from [17]

This comparison shows that using the CHEASE equilibrium results in local

growth rates that match those of [17] very well up to =eff ∼ 7 and match

reasonably well at higher =eff with slightly higher growth rates in the new

data. The reason for themismatch at high =eff was investigated through con-

vergence and sensitivity studies but a explanation was not found. However,

the difference is not expected to be significant for the local-global analysis

because the local growth rates are relatively small at these values of =eff, so

these mismatching local modes have a relatively small contribution to the

global mode.

Figure 22 also shows thatusing theMiller equilibriumresults in local growth

rates that match the trend of the new CHEASE results, though with a slightly

higher growth rate at all =eff. A small difference is expected when using

a different equilibrium model, so the data in Figure 22 can be taken as

evidence that the Miller representation is a reasonable approximation of

the numerical CHEASE equilibrium in this case. The effect of this in the

local-global analysis is tested in Subsection 5.2.3.2.
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5.2.2.2 Global Mode Structure

Havingobtained the coefficients for thedifferential operator of Equation (31)

(Subsection 5.2.1.2) and performed local benchmarking (Subsection 5.2.2.1),

the amplitude envelope, �(�0), and global eigenvalue, Ω, were calculated

by solving Equation (31) with periodic boundary conditions. The @′ value

used in the analysis was that on the reference surface at G = 0 with a value

of @′ ∼ 3.9. Sensitivity to this was not tested as this is the equilibrium value,

but the results in Chapter 4 suggest that the local correction should decrease

with increased @′.

The global mode structure, )(G, �), was then re-constructed using �(�0)

and )0(�; G, �0). The local mode structures calculated by GS2 are of arbitrary

absolute magnitude and phase and are of arbitrary magnitude and phase

relative to each other; only the relative magnitude and phase within a given

local mode structure is non-arbitrary. The correct relative amplitude comes

in part from the growth rates. The correct relative amplitude also comes

from �(�0) as does the correct relative phase; the absolute magnitude and

phase remain arbitrary. Therefore, the local mode structures calculated by

GS2 were normalised such that the data point with the peak magnitude

had a value of exactly 1.0 and was exactly real, i.e. such that all local mode

structures are of the same amplitude and phase. These were then scaled

by the corresponding local growth rates such that the peak amplitude was

equal to 4�0
, thus effectively assuming that all local modes have grown from

the same starting size at their individual growth rates for one normalised

time unit. This choice of time is arbitrary and was chosen for convenience.

Sensitivity tests show that the global mode structure is insensitive to the

time chosen for small times.

The resultingnormalisedandscaled)0(�; G, �0)was converted to)0(�; G, �0)

using Poisson summation (Equation (32)). Further correction of the ampli-
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tude and phase is then provided by �(�0) when the global mode structure

is calculated.

The global mode structure, )(G, �), was then calculated by substitution

of )0(�; G, �0) and �(�0) into the Fourier-ballooning representation (Equa-

tion (24)), direct evaluation of the generic poloidal and radial fluctuations,

exp[−8=(@0 + @′G)�] and exp[8=@′G�0] respectively, and evaluation of Equa-

tion (24). An example of the global mode structure obtained is shown in

Figure 23 alongside the global mode structure from [17] for comparison.

Both cases use �∗ = 1/800, and the case from [17] has = = 30, while the

case from the current work has = = 28 as this was the closest = available in

the current data due to running GS2 with �∗ = 1/200 and integer =. When

preparing Figure 23 (b), the poloidal angle � was plotted as the negative of

the “poloidal angle-like coordinate”, ", as defined in [17] and the CHEASE

equilibrium, because comparison of Subsection 2.2.2 and [17] show that

� ≡ −", with the minus due to a differing sign convention.

Figure 23 (a) shows that the amplitude envelope, �(�0), is as expected, i.e.

an approximately Gaussian shape, in this case peaking slightly away from

�0 = 0 consistent with the amplitude envelope expected for a mixed mode.

Figure 23 (b) shows that the globalmode structure looks as expected, i.e. has

a relatively narrow radial width, has the expected poloidal mode number,

and the peak is slightly shifted away (downwards in this case) from the

outboard midplane (notice the slight asymmetry about � = 0) consistent

with a mixed mode as predicted. These results (Figure 23 (a) and (b)) are

qualitatively consistentwith previous local-globalwork studying a different

case [28]. Finally, Figure 23 (b) and (c) show that the global mode structure

obtained from this analysis has some similarities and differences compared

to that obtained from ORB5 [17]. Both have a similar poloidal mode number

and radial width, as expected. However, the structures shear towards the

low-field side in the local-global case, but towards the top / bottom in
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Figure 23: An example of the global mode structure obtained from this

analysis showing (a) the amplitude envelope, �(�0); (b) the global mode

structure; and (c) a similar global mode structure from [17] for comparison.
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the ORB5 case. This difference was investigated, including examining the

possibility of a difference in sign convention in the poloidal angle coordinate

or magnetic shear definition, but the discrepancy could not be resolved.

5.2.2.3 Global Growth Rate

As noted in Subsection 5.2.1.1, the simulations were run for a range of

toroidal mode numbers, =. Therefore, �(�0) and Ω could be calculated for

each = to obtain Ω(=). Furthermore, = and �∗ = 1/200 were specified in the

GS2 input files, but GS2 uses :H internally, which is calculated from = and �∗

as follows:

:H,GS2 = =�
∗ d�

d#
(67)

where
d�
d# is calculated within GS2 from the magnetic geometry. Therefore,

the analysis may be repeated for different values of �∗ using the same

data (same :H) by changing the values of = used in the calculation of the

coefficients of Equation (31) accordingly, e.g. double = to half �∗. This was

done and the results are shown in Figure 24 labelled “GS2 (CHEASE, full)”

alongside the global MHD (MISHKA) and global gyrokinetics (ORB5) data

from [17] for comparison. Additional lines (CHEASE, reduced and Miller,

full) are shown for discussion in Subsection 5.2.3.

Figure 24 shows that the global growth rate obtained with the local-global

methodmatches that from direct global gyrokinetic simulations reasonably

well across a wide range of = and �∗. However, the local-global results

have a higher peak growth rate (at intermediate =), a lower growth rate

at high = and a higher growth rate again at very high = compared to the

direct global gyrokinetic results. Furthermore, the local-global resultsmatch

the global MHD results more closely than the match between the global

MHD and global gyrokinetic results. The reason for this is investigated in
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Figure 24: Local-global results for various �∗ from GS2 using the CHEASE

equilibrium with the full ��‖ model, reduced ��‖ model, and the Miller

equilibrium model, compared against global MHD (MISHKA) and global

gyrokinetics (ORB5) data digitised from [17, Fig. 7].
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Subsection 5.2.3. Finally, the local-global method breaks down at low = as

expected. However, in this case, this occurs at surprisingly low values of

3 . = . 12 depending on the value of �∗.

5.2.3 Discussion – Local-Global Comparison

5.2.3.1 Reduced ��‖ Model

Figure 24 shows that there is a difference between the global growth rates

predicted by the local-global method compared to the direct global gyroki-

netic simulations. The reason for this was investigated and found to be due

in part to the handling of parallelmagnetic field fluctuations, ��‖ , which are

neglected in ORB5. As a result, the global gyrokinetic simulations reported

in [17] use an ad-hocmodel to capture the effect of ��‖ , whereby the ∇� drift

was set equal to the curvature drift and the pressure gradient doubled. GS2

models ��‖ explicitly, so this is a potentially important difference between

the two sets of simulations. The flexibility of GS2 allows the handling of ��‖

to be turned off (by setting fbpar = 0.0) and the ad hocmodel of [17] to be

tested directly (via the gb_to_cv option). This was done and the results are

also shown in Figure 24, labelled “GS2 (CHEASE, reduced)”.

The “GS2 (CHEASE, reduced)” lines in Figure 24 shows that the use of the

reduced ��‖ model improves the match to the ORB5 data in the region of

peak growth rate (intermediate =) and towards lower = until the local-global

method breaks down. This suggests that the discrepancy between the GS2

local-global and ORB5 results in this region is due in part to the different

handling of ��‖ in the two codes.
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5.2.3.2 Miller EquilibriumModel

In addition to investigating the ��‖ model as above, the Miller equilibrium

model was also tested. The results are also shown in Figure 24, labelled

“GS2 (Miller, full)”.

The “GS2 (Miller, full)” lines in Figure 24 shows that the use of the Miller

equilibrium causes a slight increase in the local-global growth rate at in-

termediate and high = for all �∗. Meanwhile, there is little effect at low =.

The results continue to break down at very low =, except in the �∗ = 1/800

case, where the local-global method using the Miller equilibrium appears

to remain valid down to = = 4, which was the lowest value tested. The

intermediate and high = increase to the growth rate when using the Miller

equilibrium appears to be due to the difference in the local results shown

in Figure 22. This suggests that the global results are sensitive to the equi-

librium treatment. Therefore, while the GS2 local-global CHEASE results use

the same equilibrium as the ORB5 results, it is likely that the two codes han-

dle the equilibrium magnetic geometry differently and it is possible that

this is an additional source of the observed differences between the GS2

local-global results and the ORB5 results.

5.2.3.3 Other Factors

The discrepancy between the GS2 local-global and ORB5 results at high =

was investigated, but a definitive reason was not found. Notice that there

is also disagreement at high =eff shown in Figure 22 between the new GS2

and previously published GS2 data. As noted in Subsection 5.2.2.1, this was

also investigated but a reason was not found. However, the fact that there

is disagreement at high = even between two different uses of GS2 suggests

that the local results at least are sensitive to one or more input parameters

in this region and / or the code version used. Therefore, it is conceivable
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that the ORB5 simulations are also sensitive to one or more input parameters

in this region. In any case, the results in this region are less significant for

global KBM stability than those near the peak global growth rate, so this

discrepancy was not investigated further.

A number of other possible reasons for the observed difference between

the global MHD and global gyrokinetic results at low = were proposed

in [17, §9]. These were shown in the current work to be insignificant. The

proposed reasons are each addressed in turn in the following subsections

with an explanation of how each was eliminated.

Kink Drive

[17, §9] proposed the absence of kink drive from ORB5 but not from MISHKA

as a possible reasons for the observed difference between the results at low

=. However, kink drive is absent from both ORB5 and GS2, and an improved

match to the MISHKA data at low = was achieved using GS2. This suggests

that the absence of kink drive is not significant in this case.

Gyrokinetics Invalid at Low =

[17, §9] suggests that gyrokinetics may be fundamentally invalid for long

wavelengths, i.e. low =. This is certainly true of the local approximation,

which assumes large =. The consequence of this is evident in the break-down

of the local-global method at low = in Figure 24. However, for gyrokinetics,

the picture is more complicated. The gyrokinetic orderings of Equation (3)

assume �i � !, thus limiting the validity to fluctuations with a wavelength:

� � ! (68)

The wavelength can be approximated as:
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� ≈ 2�A0

=@
(69)

where we typically have !/2 . A0 . !. Taking A0 ∼ !/2 as is the case in the

current work and combining that with Equations (68) and (69), we find the

requirement on = to be:

= � �/@ (70)

or, since this is all rather approximate, simply:

= � 1 (71)

Equation (71) shows that it is technically true that gyrokinetics is strictly

invalid as = → 1. But how much greater than 1 does = need to be for

gyrokinetics to remain valid? Figure 24 shows that the local-global method

and hence both the local approximation and gyrokinetics remains valid

down to 3 . = . 12 depending on the value of �∗ and the equilibrium

treatment. In all cases, it appears that the local-global method remains valid

as = is decreased until the local-global results are approximately equal to the

global MHD results, and the local-global method breaks-down for = lower

than that. This suggests a cross-over regime around these values of = where

gyrokinetics and MHD agree, above which gyrokinetics is more accurate

than MHD, and below which MHD is more accurate than gyrokinetics.

Parallel Magnetic Field Perturbations

[17, §9] suggests that the work of [73] indicates that the ��‖ treatment is

unlikely to explain the observed difference between the global MHD and

global gyrokinetic results. However, Figure 24 shows that use of the reduced

��‖ model accounts for most of the observed difference. Furthermore, this
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also causes the local-global method to break down at a higher = in the

�∗ = 1/800 case compared to use of the full ��‖ model (12 . = . 16 rather

than 8 . = . 12). In addition, closer inspection of [73] reveals that they find

reduced ��‖ models can result in significant artificial stabilisation due to

perturbed magnetic curvature, consistent with the findings in the current

work.

Trapped Particles and Collisions

Effects related to trapped particles are cited in [17, §9] as a potential expla-

nation for the observed difference between global MHD and global gyroki-

netics at low =, as they are “absent in the collisional limit of MHD” (and,

indeed, in MHD models in general). Collisional effects more broadly are

also cited as a possible reason. However, simulations during the current

work varying trapped particle treatment and the handling of collisions in

numerous ways (not shown) indicate that the results are insensitive to these

parameters. This eliminates these suggestions from being the cause of the

observed discrepancies.

Expected Wavelength for Agreement

Another possible reason given in [17, §9] for the mismatch between global

MHDandglobal gyrokinetics is that, “Thederivation in the short-wavelength,

used to show thatMHD and gyrokinetics should agree in certain parameter

regimes, does not apply for long-wavelength modes.” It is not clear what

derivation this comment refers to. However, some observations of the actual

and expected wavelength for agreement between global MHD and the new

local-global results are discussed below.

The gyrokinetic orderings (Equation (3)) order the drifts slow compared

to the thermal velocity (
ED

E
th

� 1) and allows fast fluctuations (
"1

"0

� 1).

Conversely,MHDassumes no fast fluctuations ("1 = 0) and orders the drifts
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as fast as the thermal velocity (i.e the MHD ordering,
ED

E
th

∼ 1). Therefore,

these models are fundamentally aimed at different regimes, so it would

appear that they are not necessarily expected to agree except where the

orderings become equal.

The fluctuation ordering becomes equivalent as �i → 0. Indeed, Figure 24

shows that the local-global results approach the global MHD results as �∗

gets smaller.

To examine the velocity ordering, it is useful to consider the example of the

drift velocity as the E × B drift velocity and to recall the form of the E × B

drift and thermal velocities, which lead to:

EE×B
Eth

=
E × B

√
<i

�2

√
2)i

(72)

For a given equilibrium, the only variable in this is the electric field, which

is related to the electrostatic potential by:

E = −∇) (73)

In the short-wavelength limit, ) varies rapidly in space. Therefore, E av-

erages to a small value over a relatively short distance. This puts us in

the gyrokinetic regime. Conversely, in the long-wavelength limit, turning

points in ) are separated by large distances in space. Therefore, the electric

field acts in the same direction over a large distance so does not average

to a small value, even over relatively large distances. This puts us in the

MHD regime. The contrast of these two limits implies a cross-over regime

at intermediate =. This is consistent with the data in Figure 24, where the

local-global gyrokinetic and globalMHD results converge towards the same

value at some intermediate = of 3 . = . 12 depending on the value of �∗.
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At lower =, the global MHD results can be taken as more accurate, and visa

versa at higher =.

MISHKA Plasma Inertia Approximation

It is suggested in [17, §9] that the source of the discrepancy between global

MHD and global gyrokinetics at low = could be the approximation for the

plasma inertia used in MISHKA. However, the fact that the GS2 local-global

results agree well with the MISHKA results at low-to-intermediate = suggests

that the cause of the discrepancy ismore likely to be something that is absent

or approximated in ORB5 rather then MISHKA, such as the ��‖ treatment.

Perpendicular vs. Poloidal Wavenumber

It is noted in [17, §9] that ORB5 uses the poloidal wavenumber, :p, in place

of the perpendicular wavenumber, :H , as an approximation, and suggests

this could be the source of the discrepancy between globalMHD and global

gyrokinetics at low =. However, the angle, F, between the corresponding

wavevectors is:

F = arctan

[
2�A/<
2�'/=

]
= arctan

[
�
@

] (74)

Therefore, the ratio

:p

:H
is:

:p

:H
= cos[F]

= cos

[
arctan

[
�
@

] ] (75)

In this case, we have � ∼ 0.1 and @ ∼ 4/3, hence we have

:p

:H
∼ 0.997.

Therefore, this approximation makes a difference of less than 1% to the
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wavenumber in this case, which will have a similarly small impact on the

local-global results. Thus, we can conclude that the effect of this approx-

imation is insignificant in this case. Indeed, for this approximation to be

significant would require large � (e.g. spherical tokamaks) and low @, so is

unlikely to affect realistic pedestal simulations where @ is generally higher

than that used here.

Equilibrium Treatment

Finally, [17, §9] suggests the equilibrium treatment as a potential source of

discrepancy between the global MHD and global gyrokinetic results at low

=. As shown by Figure 24, the GS2 local-global results are quite sensitive

to the equilibrium treatment (i.e. the way in which the code calculates ge-

ometric factors for a given equilibrium model), giving different results for

different models of the same equilibrium (i.e. the local-global growth rate

increases by ∼ 3% when switching from the CHEASE to Miller equilibrium

model, which may be attributed to the equilibrium treatment, as discussed

in Subsection 5.2.3.2). Therefore, it is conceivable that the MISHKA and ORB5

results may also be sensitive to any equilibrium treatment differences be-

tween those codes.

5.2.4 Conclusions – Local-Global Comparison

Based on the evidence presented in Subsection 5.2.3, it appears that the

previously observed difference between global MHD and global gyrokinet-

ics is mainly accounted for by the reduced ��‖ model used in ORB5 and

possibly also the equilibrium treatment. Other factors suggested in [17, §9]

have been shown to have negligible effect.

The new local-global gyrokinetic results show an improved match to the

global MHD results due to the use of a fully self-consistent calculation of

��‖ effects. The local-global method appears to remain valid in this case
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down to relatively low = of 3 . = . 12 depending on the value of �∗.

This suggests that, in principle, it may be possible to include additional

MHD-scale physics (e.g. kink drive) in gyrokinetics to make a more com-

plete model that captures the interactions between Larmor radius scale and

MHD-scale modes. Furthermore, the apparent validity of the local-global

method down to low = suggests that the separation of local effects from

global effects is reasonable in this case down to these values of =. This is

of interest for pedestal simulations where global codes have concerns re-

lating to boundary conditions (see Subsection 5.5.1 for further discussion).

The results also demonstrate explicitly that low = stabilisation is due to

global effects (i.e. destructive interference of poloidal harmonics) and high

= stabilisation is due to gyrokinetic effects, namely the diamagnetic drift

stabilisation cited in [17], which is investigated further in Section 5.3. This

is evident in Figures 22 and 24, where the low = stabilisation is only present

in the global results (global MHD, global gyrokinetics and local-global gy-

rokinetics), while the high = stabilisation is only present in the gyrokinetic

results (local gyrokinetics, global gyrokinetics and local-global gyrokinet-

ics), which include diamagnetic drift stabilisation, but not in the global

MHD results, which do not include this effect.

5.3 Development of Simple Correction Models

Section 5.2 showed that local and global effects are separable, that low =

stabilisation is due to global effects, and that high = stabilisation is due

to gyrokinetic effects. The latter is expected to be the diamagnetic drift

stabilisation cited in [17]. To study this further, simple models of the global

and diamagnetic corrections are developed and applied to the gyrokinetic

and MHD data to see if the results of Section 5.2 can be reproduced using

only the simple corrective models. This will improve our understanding of
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Figure 25: Global growth rate as a function of =eff for various �∗ alongside

the corresponding local growth rates.

the underlying physics, and assist us in improving EPED-like models that

rely on rapid calculations covering many different inputs.

5.3.1 Global Correction Model

Figure 25 shows the local growth rates from Figure 22 alongside the local-

global growth rates from Figure 24 plotted against =eff to facilitate compari-

son. The data is now shown in GS2 units for convenience. The data at low =

where the local-global method breaks down has been removed for clarity.

Figure 25 highlights the nature of the global correction, i.e. that the global

growth rate is reduced compared to the peak local growth rate, and that

this effect is stronger for smaller = and larger �∗.

The local-global method’s second order differential eigenequation (Equa-

tion (31)) shows we can expect the reduction to the local growth rate due to

global effects to be an O
(

1

=@′

)
correction. Therefore, we start by fitting the

following model to the local-global GS2 results for each �∗ to obtain the fit

parameter 0:
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Figure 26: Fits of the global correction model (Equation (76)) to the data

from Figure 25 using 0 of 18.9, 21.0 and 20.7 for the �∗ of 1/800, 1/400 and

1/200 respectively

� = �0

(
1 − 1

=@′

) 0
(76)

This results in values for 0 of 18.9, 21.0 and 20.7 for �∗ of 1/800, 1/400 and

1/200 respectively. Plotting the model of Equation (76) with these values of

0 results in the curves shown in Figure 26.

Figure 26 shows that the global correction model of Equation (76) produces

a good approximation of the global growth rates for all �∗ tested, although

less so as �∗ increases. This includes a prediction of the peak global growth

rate that agrees with the local-global method to within 1%, 1% and 4% for

�∗ of 1/800, 1/400 and 1/200 respectively.

Figure 26 also shows that the magnitude of the global correction, Δ�global,

decreases with �∗, as expected. The reason for this is evident from exam-

ination of Equation (76). Applying the binomial expansion, we find that

Δ�global ∼ 0
=@′ . Indeed, this form of Equation (76) also produces a reason-

able fit (not shown) to the data for =@′ � 1 but not at low =. This is because

the power law form of Equation (76) also includes the gyrokinetic O((=@′)2)
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Figure 27: (a) Reverse application of the global correction model (Equa-

tion (76), solid orange line) to the global MHD data (blue dots). This also

shows the effective local MHD growth rate (black dashed line). (b) The local

GS2 growth rates (blue dots and solid line) for comparison.

corrections19, so can remain valid to lower =. Given the relationship between

= and =eff (Equation (66)), this suggests that Δ�global ∝ �∗, as observed.

The global correction model of Equation (76) may be tested further using

the global MHD data, �MHD. The local MHD growth rate, �0,MHD, is inde-

pendent of =. Therefore, we substitute the names �MHD and �0,MHD into

Equation (76) in place of � and �0 respectively (the values are still un-

known), and fit the model with 0 and �0,MHD as the fit parameters. The fit

was weighted to favour the region of the peak global gyrokinetic growth

rate of 10 . = . 40 since this is the primary region of interest. Thiswas done

using maximum weighting for all values within the desired range with the

weighting decreasing linearly with = outside that range. The result of the

fit is that we obtain: the effective �0,MHD corresponding to the global MHD

data, with a value of �0,MHD = 0.674 Eth/!ref; and the fit parameter 0, with

a value of 0 = 15.6. The result of this fit is shown in Figure 27.

19The power law form does not include other O(=2) corrections that are ordered out of

gyrokinetics, such as current gradient drive
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Figure 27 shows that theglobal correctionmodel of Equation (76) alsofits the

global MHD data very well. Furthermore, this produces an effective �0,MHD

that is slightly higher than the maximum �MHD and �0,GS2 as expected.

Therefore, we can conclude that the global model of Equation (76) is a

suitably accurate approximation in this case.

5.3.2 Diamagnetic Correction Model

To develop a simple corrective model to capture the effect of diamagnetic

drift stabilisation, we use the relationship between the gyrokinetic complex

frequency, Ω = $ + 8�, and the MHD eigenvalue, Ω2

MHD
, noted in [17, §3]:

Ω2

MHD
= Ω(Ω + $∗) (77)

where $∗ is the diamagnetic frequency, which is the product of the diamag-

netic drift velocity and the wavenumber in that direction (which happens

to be the binormal direction). Therefore, $∗ is given by:

$∗9 =
)9[eV]
/ 9

(
1

)9

%)9

%�
+ 1

= 9

%= 9

%�

)
1

�
:H (78)

where 9 is the species label. Alternatively, $∗ may be given in terms of =

thus:

$∗9 =
)9[eV]
/ 9

(
1

)9

%)9

%�
+ 1

= 9

%= 9

%�

)
=

�0

%�

%#
(79)

Due to the Hermitian nature of MHD, and hence the requirement for real

MHD eigenvalues, MHD eigenvalues withΩ2

MHD
> 0 are stable while those

with Ω2

MHD
< 0 are unstable and we have the conditions:

110



Ω2

MHD
> 0⇒ �MHD = 0⇒ ΩMHD = $MHD (80)

Ω2

MHD
< 0⇒ $MHD = 0⇒ ΩMHD = 8�MHD (81)

with $MHD and �MHD the real frequency and growth rate respectively.

Considering only unstable modes (i.e. Equation (81)) and combining this

with Equation (77) results in the following diamagnetic correction model:

�0 =

√
�2

0,MHD
− $2

∗
4

(82)

with the subscript 0 indicating that this will be applied to the local MHD

growth rate obtained in Subsection 5.3.1. This model is consistent with the

low-frequency correction noted in [74, §4].

Equation (82) shows that �0 will be reduced compared to �0,MHD, as re-

quired. Furthermore, since the reduction depends on $∗, which is propor-

tional to =, the correctionwill increasewith =, as required. Finally, themodel

is strictly only valid for �2

0,MHD
> $2

∗
4
. Therefore, in this study, �0 is set to

zero when this condition is violated, i.e. the mode is completely stabilised

when $∗ is sufficiently high, e.g. at high =. This is consistent with the plot

of the [74] model shown in [17, Fig. 9(a)].

Equation (79) shows that there is a problemwith themodel of Equation (82),

which is that $∗ varies across flux surfaces (since)9 , = 9 , � and
%�
%# vary across

flux surfaces) and $∗ varies along each flux surface (since � varies along

each flux surface). This variation is illustrated in Figure 28.

The variation of $∗ across and along flux surfaces shown in Figure 28 raises

the question of which value of $∗ to use. This was investigated, and it was

found that the best fit of Equation (82) to the data was obtained using the
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Figure 28: The variation of $∗ at = = 15 (a) across flux surfaces (at � = 0)

and (b) along a flux surface (at G = 0). The effective local MHD growth rate

(black dashed line) is shown for comparison. Other = show similar results.

maximum $∗ found within the global domain along with the introduction

of a fit parameter, 1, to fine tune the amount of diamagnetic correction:

�0 =

√
�2

0,MHD
− 1$

2

∗<0G
4

(83)

Equation (83) was fitted to the local GS2 data as a function of =eff. The results

of this fit is shown in Figure 29.

Figure 29 shows a near perfect fit to the data excluding the final three

data points. This cutoff corresponds to :H�8 ∼ 0.5. The reason for this

was investigated using an effective diamagnetic frequency, $∗eff, i.e. the $∗

that would be required to produce the observed correction at each =. It

was found that $∗eff follows an approximately bi-linear variation with =, i.e.

varies linearly with = for :H�i . 0.5 and then linearly with =with a different

gradient for :H�i & 0.5. The fit could be improved to remain near perfect at

low = and to become reasonable at high = by using a more complicated bi-

linear model for $∗. However, since we are primarily interested in the peak

global growth rate, which occurs within the region of near perfect fit with
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Figure 29: Fits of the diamagnetic correction model (Equation (83)) to the

local data from Figure 25 using 1 = 8.52 plotted against (a) =eff and (b) the

= corresponding to the �∗ values tested
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the model of Equation (83), the existing model was retained for simplicity

and the final three data points were excluded from the fitting process.

Notice that Figure 29 shows the �0,MHD line at 0.674 Eth/!ref as determined in

Subsection 5.3.1 (black dashed line) and themaximum GS2 local growth rate

line, max(�0,GS2), at 0.664 Eth/!ref (black dotted line). The fits obtained using

�0,MHD were excellent, but the fits using max(�0,GS2) were even better. The

reduction from �0,MHD to max(�0,GS2) was less than 2%, which is similar

to both the level of uncertainty in the global correction model and the

difference between the CHEASE andMiller equilibriummodels. Therefore,

it is reasonable to use max(�0,GS2) to generate the fits, which was done for

those shown in Figure 29.

Figure 29 (b) shows that the magnitude of the diamagnetic correction,

Δ�diamag, decreases with �∗, as expected. As with the global correction,

the reason for this is evident from examination of the model equation (in

this case, Equation (83)). Again, applying the binomial expansion, we find

this time that Δ�diamag ∼ $2

∗,max
. Given the relationship between $∗ and :H

(Equation (78)), this suggests that Δ�diamag ∝ :2

H , and, hence, Δ�diamag ∝

(=�∗)2. Thus, for a given =, we find that Δ�diamag ∝ �∗2, as observed. There-

fore, in theMHD limit of �∗ → 0, we find that Δ�diamag → 0 even as = →∞,

consistent with the local MHD and global MHD results.

5.3.3 Combined Global Diamagnetic Correction Model

Having developed and tested separate models for the global and diamag-

netic corrections, they may now be tested in combination. This was done by

substitution of the diamagnetic correction model (Equation (83)) into the

global correction model (Equation (76)) to obtain:

� =

√
�2

0,MHD
− 1$

2

∗max

4

(
1 − 1

=@′

) 0
(84)
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Figure 30: Global growth rates obtained from the combined global diamag-

netic correctionmodel (Equation (84)) alongside the GS2 local-global growth

rates for comparison.

Global growth rates were calculated using the model of Equation (84) with

the fit parameters for 0 of 18.9, 21.0 and 20.7 for the �∗ of 1/800, 1/400 and

1/200 respectively, 1 = 8.52, and �0,MHD = max(�0,GS2) = 0.664 Eth/!ref,

as obtained in Subsections 5.3.1 and 5.3.2. These values are not necessarily

universal; this point is discussed at the end of this subsection. The results

of these calculations are shown in Figure 30.

Figure 30 shows that the model of Equation (84) is an accurate approxi-

mation to the local-global data, especially in the region of the peak global

growth rate. The model does not predict the last three data points well. As

discussed in Subsection 5.3.2, the fit to these data points can be improved

through the use of a bi-linear diamagnetic frequency model, but the model

of Equation (84) was retained for simplicity since we are mainly interested

in the peak global growth rate. Indeed, themodel calculates the peak global

growth rate to within 1%, 2% and 5% of the local-global value for the �∗ of

1/800, 1/400 and 1/200 respectively.

The values for 0 and 1 have been obtained using only this case, so it is

unknown whether these values will apply to other cases. Therefore, it is
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recommended that this model is tested for a range of equilibria in future

work. It is expected that expanding the analysis to include other cases will

lead to at least a refinement of these values tomaintain a good fit to all cases.

However, it may not be possible to find a single set of values that provide a

good fit to all cases, so the parameters may need to be varied from case to

case. If that turns out to be true, then a model for determining the values of

0 and 1 based on the physical parameters of a given case would be needed

to avoid carrying out a lengthy and computationally expensive analysis as

above each time. The �0,MHD parameter is expected to vary across cases and

would need to be determined each time, but this can be done for relatively

low analyst effort and computational cost using MHD stability codes.

5.3.4 Conclusions – Simple Corrective Models

The evidence presented in Subsections 5.3.1 to 5.3.3 again highlight that low

= stabilisation is due to global effects, while high = stabilisation is due to

gyrokinetic effects. Furthermore, Subsection 5.3.2 shows explicitly that the

high = stabilisation is accounted for by diamagnetic drift stabilisation, as

expected. Finally, Subsection 5.3.3 demonstrates that the combined global

diamagnetic model of Equation (84) produces accurate estimates of the

global growth rates across a wide range of =, including the = at which the

global growth rate peaks, and this can be calculated using only the local

MHD (= = ∞) growth rate, �0,MHD, equilibrium parameters ($∗max, @
′
, etc.),

and the model parameters 0 and 1. In this work, �0,MHD has been obtained

from reverse application of the global model to global MHD data (which

varies with =) and was later taken as just the maximum local GS2 growth

rate, max(�0,GS2) (i.e. the maximum value from a function of =). However,

�0,MHD could conceivably be calculated directly by a local MHD stability

code (i.e. at = = ∞ only), which would be even more computationally

efficient than global MHD stability codes such as MISHKA (which calculate
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stability at various finite =). In addition, the model parameters 0 and 1

have been obtained here by fitting the data, and these are likely to depend

on the equilibrium. Future work may wish to investigate whether these fit

parameters can be derived from first principles, or otherwise generalised

from a wider range of equilibria.

The results in Subsection 5.3.3 show that the inclusion of global effects and

diamagnetic drift stabilisation via a simple (i.e. computationally inexpen-

sive) corrective model can predict the peak global growth rate to within

5% or less of the local-global growth rate depending on the value of �∗.

Meanwhile, these peak global growth rates are significantly reduced com-

pared to �0,MHD by 18%, 28% and 40% for the �∗ of 1/800, 1/400 and 1/200

respectively. It is not yet clear how this reduction in growth rate compared

to �0,MHD will affect the corresponding critical pressure gradient and, thus,

the EPED prediction of pedestal height and width at which an ELM will

occur. However, the global diamagnetic correction model of Equation (84)

allows this to be investigated, which is done in Section 5.4.

5.4 Global andDiamagneticCorrectionModels inEPED

5.4.1 Method Overview

Having developed the simple corrective model of Equation (84), the impact

of this on EPED-like calculations may now be assessed. This is done by

determining EPED-like KBM constraints with and without the corrections

of Equation (84), combining these with EPED-like PB constraints, and thus

determining the consequent impact on the final EPED-like prediction of

pedestal height and width at which an ELM would be triggered.

The EPED [14] KBM constraint represents the critical pedestal height for

the onset of KBMs as a function of pedestal width, which is determined
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using the “ballooning critical pedestal” (BCP) technique. This is done by

defining the pedestal profiles using modified tanh functions that include

the pedestal height and width as parameters, thus allowing modification of

these parameters to generate new equilibria. The modified tanh functions

also include the pedestal location as a parameter, which, combinedwith the

width parameter, defines the “EPED pedestal” region. Local IBM stability

(as a proxy for KBMs) is determined for each flux surface within the EPED

pedestal for each pedestal height and width tested. The critical height at a

given width is then taken as the value at which the central 50% of the EPED

pedestal is unstable to IBMs.

Themethod used here is built around amodified BCP technique as follows:

1. A localMHD stability code, ideal_ball (an auxiliary programwithin

the GS2 code-base, as used in Chapter 4), is used to obtain the critical

pressure gradient length scale, �′
crit

, for the onset of local IBMs. This

method is described in Subsection 5.4.2, including details of how to

deal with second stability. As with the BCP technique, the critical

value is that at which the central 50% of the EPED pedestal is unstable

to IBMs.

2. As an extra step to account for global and diamagnetic effects, Equa-

tion (84) is used to calculate a change in growth rate, Δ�, and local

gyrokinetic simulation data is used to determine the stiffness of KBM

onset, which is represented by the gradient
d�0

d�′ . These are combined

to obtain the corresponding change to �′
crit

that accounts for global

and diamagnetic effects.

3. The corrected and uncorrected values of �′
crit

are used to calculate the

corresponding EPED KBM constraints. As a modification to the BCP

technique (for convenience), only one equilibrium is tested to deter-

mine �′
crit

and this is used to calculate the critical pedestal height for
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various pedestal widths, rather than measuring the critical pedestal

height directly from various equilibria with different widths. This is

a valid approach since this is a qualitative study of the impact of

global and diamagnetic corrections, which are expected to exceed any

corrections from varying the equilibrium consistently.

4. Finally, we go beyond the BCP technique to the other aspect of EPED-

like calculations, the PB constraint. An approximate form is used to

calculate a range of representative PB constraints. These are compared

with the corrected and uncorrected KBM constraints, thus revealing

the potential impact of global and diamagnetic effects of the KBM on

EPED-like ELM predictions.

More detail about the method of each of these steps is given in the corre-

sponding subsections that follow, along with results of the application of

the method to the equilibrium used in this chapter.

5.4.2 Local MHD Stability

As noted in Chapter 4, the GS2 auxiliary program ideal_ball calculates

local MHD stability for a given equilibrium and returns a binary stable

/ unstable result. Therefore, ideal_ball can be used to find the critical

pressure gradient length scale for the onset of localMHDballooningmodes,

�′
crit,MHD

. This was done by running ideal_ball for each surface in the

equilibrium file within the global domain for a range of �′ values that were

known from the GS2 runs to cover the regions of first and second stability,

and peak instability. This runs in approximately 1 hour 40 minutes on 30

processors using a somewhat inefficient parallelisation algorithm for 662

�′ values across 38 surfaces, resulting in 25,156 (G, �′) points in total, i.e.

very high resolution. The high resolution ensured a well-defined first and

second stability boundary, even on surfaceswhere thesewere close together
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Figure 31: Comparison of �′
crit

for KBMs and IBMs (from GS2 and

ideal_ball respectively) overlaid on KBM growth rates. Also shown are

the IBM second stability boundary, and the equilibrium �′.

in �′. The run-time was deemed fast enough for the current investigation

but would be too slow for a real EPED-like application. However, tests

showed that this may be reduced to less than 5 minutes on 1 processor by

using a more efficient search algorithm (e.g. bisection) or even further with

improved parallel utilisation if required in the future. The bisectionmethod

tested was not used to generate the results reported in this thesis due to

issues on some surfaces in finding the stability boundaries. This occurred

because the starting points for the bisectionwere arbitrary so it was possible

to miss the unstable region if the first and second stability boundaries were

close together in �′. Further work would be needed to improve the bisection

method if it were to be adopted in the future.

The results of �′
crit,MHD

as a function of G as obtained from ideal_ball are

shown in Figure 31. Alongside this are the KBM growth rates as measured

with GS2 by scanning �′, and the contour of �′
crit,KBM

where the GS2 KBM

growth rate is zero (found by linear interpolation). The GS2 resultswere gen-

erated using (=, �∗) = (1, 1/70) to minimise diamagnetic drift stabilisation

and thus be as close as possible to the MHD case.
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Figure 31 shows that �′
crit,MHD

varies with G, but only by a relatively small

amount compared to �′
eq
. Furthermore, �′

eq
is greater than �′

crit,MHD
for the

majority of the pedestal region (which covers most of the G range shown,

depending on how the pedestal region is defined – see Figure 32). This is

consistent with the finding that KBMs are unstable over most of this region.

Finally, the �′
crit,MHD

values obtained from ideal_ball are similar to the

�′
crit,KBM

values from GS2. Interestingly, there is a region at high positive G

where KBMs are stable for all �′ tested while IBMs are not. This was not

investigated due to time constraints, but does offer an example of where

using KBMs as a proxy for IBMs may not be sufficiently accurate.

Figure 32 shows the same �′
crit,MHD

data alongside the local-global method

and EPED pedestal domains. This highlights the differing definitions of

these regions. The short vertical dotted lines indicate the central 50% of

these domains that could be used to calculate a single value for �′
crit

using

a BCP-like technique. The EPED definitions of the pedestal region and the

requirement for the central 50% to be unstable are both somewhat arbitrary.

Therefore, sensitivity to this was tested by requiring the middle 50% of the

local-global domain to be unstable or any 50% of the local-global domain

to be unstable. However, these alternative (also arbitrary) definitions made,

respectively, no difference or negligible (< 1%) difference. Therefore, for

simplicity and consistency with EPED, the original BCP requirement for

the central 50% of the EPED pedestal to be unstable was used. This results

in a value of �′
crit,BCP

= 0.116, as indicated in Figure 32.

5.4.3 �′
crit

Correction

The correction to �′
crit

is calculated in three steps:

1. Determine the change in growth rate, Δ�, due to Equation (84) at the

= at which Equation (84) peaks for each �∗
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Figure 32: Uncorrected �′
crit

(dashed red line) resulting from the BCP tech-

nique, defined as the minimum �′ required for the central 50% of the EPED

pedestal region (indicated) to be unstable, i.e. the maximum �′
crit,MHD

in

that region (solid blue line, circle markers, same data as corresponding line

in Figure 31). Also shown is the local-global method simulation domain for

comparison.

2. Measure the stiffness of KBM onset to get the gradient
d�0

d�′

3. Calculate the change to �′
crit

as Δ�/d�0

d�′

These steps are described inmoredetail alongside the corresponding results

in the following subsections.

5.4.3.1 Determining the Change in Growth Rate

The = at which Equation (84) peaks is the most unstable toroidal mode for

the corresponding �∗. Since thismodewill go unstable first as �′ increases, it

is thismode that will lead to increased turbulent transport, thus limiting the

pedestal pressure gradient. Therefore, the change in growth rate, Δ�, due

to the global and diamagnetic effects of the KBM is taken as the difference

between the local MHD growth rate and the peak corrected growth rate

produced by Equation (84).
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�∗ Δ� / Eth/!ref

1 / 800 0.11

1 / 400 0.18

1 / 200 0.26

Table 2: Change in growth rate, Δ�, for each �∗

It is possible to findΔ� analytically by substituting Equation (79) into Equa-

tion (84), and finding the roots of the derivative with respect to =. However,

the resulting analytical form is rather long and complicated and this accu-

racy is not needed anyway since =must be an integer. Therefore, it is clearer

to simply evaluate Equation (84) at each integer = from 1 upward until

the square root factor becomes imaginary, and then select the maximum

value. This was done, resulting in the Δ� values shown in Table 2, which

are consistent with Figure 30.

5.4.3.2 Measuring the Stiffness of KBM Onset

Now that we have Δ�, the corresponding change to �′
crit

, denoted Δ�′
crit

,

may be calculated using
d�0

d�′ .

Figure 32 shows that, in this case,wehave �′
crit
∼ 0.1. Sincewe are calculating

the correction to �′
crit

, we therefore measure
d�0

d�′ in this region. First, �′

was scanned using GS2 for each surface in the equilibrium file within the

global domain to obtain �0(G, �′) (the heat map in Figure 31). Next, the

gradient between each pair of neighbouring data points in the �′ direction

was calculated using a first order finite difference. Finally, the selected value

was the first gradient in the stiff region. An example of the results (at G = 0)

are shown in Figure 33 (a) and (b) alongside
d�0

d�′ as a function of G in

Figure 33 (c). As in Subsection 5.4.2, the GS2 runs use (=, �∗) = (1, 1/70) to

minimise diamagnetic drift stabilisation and thus be as close as possible to
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Figure 33: (a) �0 and (b)
d�0

d�′ , as functions of �
′
at G = 0 for (=, �∗) = (1, 1/70)

with �′
crit

(black dashed line) and the first gradient in the stiff region (or-

ange line / x marker) indicated. (c)
d�0

d�′ as a function of G with the G = 0

value (orange x marker) from (b), mean (black dashed line), and standard

deviation (black dotted lines) indicated.

the MHD case; other = show similar results, though less clearly due to the

less well resolved KBMs as a result of the lower growth rates.

Figure 33 (a) shows that KBMs exhibit a stiff onset in this case, as expected.

Furthermore, Figure 33 (a) and (b) show that the gradient
d�0

d�′ is relatively

constant in the region of �′
crit

, suggesting that a measurement of
d�0

d�′ is

appropriate to calculate Δ�′
crit

from Δ�. Finally, Figure 33 (c) shows that

d�0

d�′ is relatively constant across different surfaces, with a mean value of

8.1 Eth/!ref and a standard deviation of 1.2 Eth/!ref (14.5%). This indicates

that it may be appropriate to use the radially averaged value for simplicity.

5.4.3.3 Calculating the Change to �′
crit

So far, we have obtained a single value for the uncorrected �′
crit

(0.116,

Subsection 5.4.2), a value of Δ� for each �∗ (Table 2, Subsection 5.4.3.1) and

a surface averaged
d�0

d�′ (8.1 Eth/!ref, Subsection 5.4.3.2). Therefore, a �′
crit

value that is corrected for global and diamagnetic effects, denoted �′
crit,corr

,

may now be calculated as simply:
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�∗ �′
crit

% change

Uncorrected 0.116 n/a

1/800 0.129 12%

1/400 0.137 19%

1/200 0.147 27%

Table 3: Critical pressure gradients for the onset of MHD ballooning modes

corrected for global and diamagnetic effects for various values of �∗

�′
crit,corr

= �′
crit
+ Δ�′

crit
(85)

where:

Δ�′
crit
=

Δ�

d�0/d�′
(86)

This results in the corrected �′
crit

values shown in Table 3.

More advanced methods were tested for accuracy such as: (a) adjusting the

KBM �0(G) by Δ� and applying the BCP technique to the corrected �0(G)

to account for the variation of
d�0

d�′ with �′; and (b) applying the per surface

d�0

d�′ (Figure 33 (c)) to the per surface �′
crit

(Figure 31, blue solid line, circle

markers) before applying the BCP technique to account for the variation

of
d�0

d�′ with G. However, these methods made negligible difference (. 1%

and . 4% respectively). Therefore, we may conclude that the global and

diamagnetic effects are dominant over the effect of the variability of
d�0

d�′

with G and �′. Hence, the original version of the method (i.e. correcting the

single value obtained from the BCP technique using a surface averaged
d�0

d�′

as described above) was used for simplicity.

The use of �′
crit,MHD

as a proxy for �′
crit,KBM

is quoted [14] as being “accurate

(within 10%) . . . , due to the partial offset of destabilising . . . and stabilis-
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ing [kinetic] effects”. However, the percentage changes presented in Table 3

appear to contradict that finding. This suggests that global effects, which

are not included in the justification cited above, may produce differences

between the values of �′
crit,MHD

and �′
crit,KBM

beyond the 10% expected in

EPED-like models. However, the important result of an EPED-like calcula-

tion is the pedestal height and width at which an ELM is triggered. It is

unclear from the results presented so far how any inaccuracy in the value

of �′
crit

used in the model as a result of the above proxy will carry through

to the pedestal height and width prediction. Therefore, this is investigated

in Subsection 5.4.4.

5.4.4 The Effect of the �′
crit

Correction on the EPED ELM Predic-

tion

The corrections described so far are to �′
crit

. However, the primary output of

EPED-like models is a prediction of pedestal height and width at which an

ELMwill be triggered. The EPED prediction depends on both the KBM and

PB constraints, the former of which depends on the �′
crit

values corrected

in Subsection 5.4.3. Therefore, it is unclear from the results presented so

far how much these changes to �′
crit

will affect the EPED ELM prediction,

or even whether they will lead to an increase or a decrease in the pedestal

height andwidthpredicted byEPED-likemodels.Hence, the corresponding

KBM constraints and some representative PB constraints are calculated in

this subsection to assess the impact of the �′
crit

correction upon the EPED

ELM prediction.

5.4.4.1 EPED KBM Constraint

Snyder et al. [75] define tanh based functions to capture the general shape of

pedestal temperature and density profiles in terms of a number of parame-

ters such as pedestal height, width and location. For the current work, the
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following simplified form is sufficient to describe the profile shapes used in

this work with an approximately flat profile outside of the pedestal region:

)(G) = )sep +
(
)ped

2

) {
tanh

[
2

(1 − Gmid)
Δ

]
− tanh

[
2

(G − Gmid)
Δ

]}
(87)

where)sep,)ped,Δ and Gmid are the fit parameters representing, respectively,

separatrix temperature, pedestal height (temperature on axis minus )sep),

pedestal width and location of the pedestal centre. Fitting Equation (87) to

the equilibrium temperature profile results in values of )sep = 391 eV and

)ped = 758 eV in approximate agreement with the expected values of )sep

= 387 eV and )ped = 757 eV [17]. The corresponding location and width

parameters are Gmid = 0.038 and Δ = 0.182, resulting in the EPED pedestal

region indicated in Figure 32.

Holding Gmid and )sep constant, we may now use Equation (87) to generate

profiles of arbitrary height and width. The EPED KBM constraint is the

critical pedestal height for the onset of KBMs (using IBMs as a proxy) as a

function of pedestal width. We determine the critical height as the lowest

for which any 50% of the EPED pedestal has �′ higher than �′
crit

. The use

of any 50%, rather than the middle 50% has already been shown to have

negligible impact (Subsection 5.4.2) and was chosen here for convenience.

The critical height may be calculated using the uncorrected �′
crit

for a range

of pedestal widths to map out the uncorrected EPED KBM constraint. This

may then be repeated for the various corrected values of �′
crit,corr

to get the

EPED KBM constraints corrected for global and diamagnetic effects. This

was done for a typical range of widths used in EPED calculations and the

results are shown in Figure 34.
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Figure 34: EPEDKBM constraints showing critical pressure pedestal height,

?ped, as a function of pedestal width, Δ, calculated using the uncorrected

�′
crit

and the corrected �′
crit,corr

for each �∗

5.4.4.2 EPED PB Constraint

Fully self-consistent calculation of the PB constraint for the equilibrium

studied in this chapter is beyond the scope of this thesis20. This is because

that would involve using a Grad-Shafranov code to generate many alter-

native versions of the equilibrium with pedestals of different heights and

widths and running these through an MHD stability code to determine the

PB stability. However, Snyder et al. [14] note that the functional dependence

of the PB constraint is ?ped ∼ Δ3/4
. Therefore, to illustrate the potential impact

of the KBM constraint correction, wemay generate a range of representative

PB constraints using the following model:

?ped = 2Δ
3/4 + 3 (88)

20While this is not necessarily any more difficult than than performing the MISHKA

calculations used earlier in this chapter, theMISHKA simulations were already done as part

of previous work [17] and the calculations using that data reported here were necessary to

develop the simple corrective models.
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Values for the coefficients 2 and 3 were chosen to produce three limiting

cases:

1. A PB constraint with a positive gradient, resulting in a reduction as �∗

is increased of both the pedestal height and width at which an ELM

is predicted to occur.

2. A PB constraint with zero gradient, resulting in a reduction as �∗ is

increased of the pedestal width at which an ELM is predicted to occur

but no effect on the pedestal height.

3. A PB constraint with a negative gradient, resulting in a reduction of

the pedestal width prediction but an increase in the pedestal height

as �∗ is increased.

These three cases are shown alongside the KBM constraints in Figure 35 (a)

to (c). This shows that (in this case andwith the representativePB constraints

developed), the correction of the KBM constraint to account for global and

diamagnetic effects can potentially have a significant impact on the EPED

ELM prediction. In all cases, the uncorrected KBM constraint over-predicts

the pedestal width at which an ELM will occur relative to the corrected

constraints by 0 to 110%. Furthermore, whether the correction results in a

significant increase, decrease or a negligible change to the ELM-triggering

pedestal height (ranging from -19% to +69%) depends crucially on the

details of the PB constraint. The relative changes to the height and width

predictions as a consequence of accounting for global and diamagnetic

effects are summarised in Table 4.

Comparing the representative PB constraints developed here to previous

self-consistently calculated PB constraints (e.g. [14, 76]) suggests that a PB

constraint with a positive gradient (Figure 35 (a)) is the most likely. In this

case, we have the counter-intuitive result that an ELM is triggered at a

lower pedestal height even though the equilibrium is more stable to KBMs
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than calculations without global and diamagnetic effects suggest. This is

because the raising of the KBM stability boundary allows the pedestal to

grow steeper during the KBM constrained phase such that the PB constraint

is reached at a lower pedestal height. This may cause smaller ELMs to

be triggered more frequently, but may also limit the achievable pedestal

height. Previous EPED predictions (e.g. [14, 76]) were examined to see if

there was a systematic over-prediction of the pedestal height and width to

corroborate this finding, but this investigation was inconclusive due to the

large uncertainty on the experimental measurements.

5.4.5 Discussion – Corrective Models in EPED

Themethod of including global and kinetic effects in EPED-likemodels pre-

sented in this chapter introduces three fit parameters: the coefficient in the

1/= global correction model; the coefficient in the diamagnetic correction

model; and the gradient of growth rate with respect to �′ to measure the

stiffness of KBMonset and thus calculateΔ�′
crit

. This is undesirable since the

EPED philosophy is to calculate the prediction from first principles with-

out fit parameters. Furthermore, the method developed here introduces a

requirement to run more detailed simulations to calculate the above fit pa-

rameters. This is also undesirable since computational efficiency is required

for EPED-like calculations to rapidly assess a range of equilibria.

To address these issues, future work should investigate the variability of the

fit parameters for different equilibria. The aim of this would be to develop

a first principles model of the global and kinetic corrections without fit pa-

rameters, thus removing the requirement to runmore detailed simulations.

Nonetheless, the results presented in this section show that global and

kinetic effects can potentially have a significant impact on EPED-like ELM
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Figure 35: (a) - (c) Three representative PB constraints generated using

Equation (88) and the coefficient values shown, alongside the EPED KBM

constraints fromFigure 34, resulting in the EPEDELMpredictions indicated

by the markers.

131



Case 1

�∗ ?ped / kPa Δ

Uncorrected 1.13 (0%) 0.0403 (0%)

1 / 800 0.89 (+27%) 0.0287 (+40%)

1 / 400 0.78 (+46%) 0.0237 (+70%)

1 / 200 0.67 (+69%) 0.0192 (+110%)

Case 2

�∗ ?ped / kPa Δ

Uncorrected 1.25 (0%) 0.0443 (0%)

1 / 800 1.25 (0%) 0.0398 (+11%)

1 / 400 1.25 (0%) 0.0374 (+19%)

1 / 200 1.25 (0%) 0.0348 (+27%)

Case 3

�∗ ?ped / kPa Δ

Uncorrected 1.26 (0%) 0.0448 (0%)

1 / 800 1.39 (-9%) 0.0440 (+2%)

1 / 400 1.47 (-14%) 0.0435 (+3%)

1 / 200 1.56 (-19%) 0.0430 (+4%)

Table 4: Pedestal height and width of the corrected and uncorrected EPED

ELM prediction for each �∗. The value in brackets is the percentage error of

using the uncorrected value rather than the corrected value.
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predictions, depending on the PB constraint, so should be considered in

future EPED-like studies.

5.4.6 Conclusions – Corrective Models in EPED

This section has developed a method of including global and kinetic effects

on the KBM in an EPED-like calculation. This is based on EPED’s “balloon-

ing critical pedestal” (BCP) technique, with additional steps to correct the

local IBM �′
crit

for global and kinetic effects. The consequent impact on the

EPED KBM constraint has been calculated and compared against a range

of representative PB constraints. This shows that including global and ki-

netic corrections in EPED-like calculations can potentially have a significant

impact on EPED-like ELM predictions, depending on the PB constraint.

Therefore, the impact of such effects should be considered in future EPED-

like studies.

5.5 Discussion – General

5.5.1 Boundary Issues in Global Gyrokinetic Codes

Global gyrokinetic codes simulate many flux surfaces and thus require

boundary conditions on the surfaces at the edge of the simulation domain.

It is expected that these boundary conditions will have some impact on

the behaviour for regions within the simulation domain near the boundary

[49]. Therefore, previous work [17] developed the equilibrium studied in

this chapter with a pseudo-pedestal at mid-radius, rather than at the edge

as in real tokamaks, to avoid any influence from the boundary conditions

on the region of interest.

Local gyrokinetic codes, meanwhile, simulate within a flux tube simulation

domain centred around a single magnetic field line. The radial size of the

simulation domain is small compared to the equilibrium variation scale
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length but large compared to the decorrelation scale length of the turbu-

lence simulated. This allows the use of periodic radial boundary conditions,

which are not expected to adversely affect the simulation results. Therefore,

local gyrokinetics and, thus, local-global gyrokinetics are expected to be

relatively unaffected by the boundary issues faced by global gyrokinetic

codes. Furthermore, local-global gyrokinetics can accurately capture the

global behaviour of gyrokinetic instabilities (at least in this case), as shown

in this thesis. Therefore, local-global gyrokinetics may provide a method

for studying global gyrokinetic modes at the edge of magnetically confined

plasmas, including those in tokamak pedestals, without the complications

of simulation boundary effects (such as those present in, for example, [77,

78], where their effect was, respectively, not mentioned, or discussed briefly

but otherwise dismissed).

5.5.2 Validity of the Local Approximation

Chapter 4 concluded that it is not possible to determine a priori whether

the local approximation is valid for a given case; rather, one should assume

validity, run the simulations, and confirm validity afterwards. There are

two conditions to check: the gyrokinetic assumption, �∗ � !; and the local

assumption, Δ � !. The question is, “how much less is much less?”

In this case, the local-global results show excellent agreement with global

gyrokinetics and MHD within the expected range. Therefore, we can con-

clude that the gyrokinetic and local approximations are valid, and we can

compare the above parameters (�∗,Δ and !) to begin answering the question

of howmuch less is “much less” for the benefit of future studies that do not

have global gyrokinetics and MHD to compare against.

This work shows that the local-global method breaks down at low toroidal

mode numbers, =, as expected. In this case, this occurs at surprisingly low

134



=, with excellent agreement down to 3 . = . 12 depending on �∗. We also

have @′ ∼ 12± 1 (mean ± standard error of the mean across the local-global

domain). Therefore, we can calculate the limiting rational surface spacing

as Δ = 1/(=@′) = 1/(3 × 11) ∼ 0.03. This needs to be small compared to the

system length scale, !. Taking ! as the plasmaminor radius (1 in normalised

units), results in the conditionΔ/! ∼ 0.03 � 1 being sufficient. If we instead

use ! as the pedestal width (∼ 0.167 in this case), which is arguably a more

appropriate equilibrium variation length scale, then Δ/! could be a factor

of ∼ 6 larger, i.e. Δ/! ∼ 0.18 � 1 may be sufficient. This starts to provide a

quantitative answer to the question of howmuch less is “much less” for the

local approximation to be valid.

But what about the gyrokinetic assumption that requires �∗ � !? The

equilibrium in this case has �∗ ∼ 1/70 ∼ 0.014. However, the largest �∗

tested in [17] was 1 / 200 to ensure that the condition �∗ � ! was satisfied.

Indeed, the calculations presented in this chapter show excellent agreement

with global gyrokinetics and MHD for all of the �∗ values used in [17], viz.

1 / 200, 1 / 400 and 1 / 800. However, the local-global calculation produces

non-physical results (not shown) when the equilibrium value �∗ ∼ 1/70

is used, suggesting that this �∗ value is too large. Therefore, taking ! = 1

suggests that �∗/! = 0.005 � 1 is sufficient, while �∗/! ∼ 0.014 is not.

If we instead use ! as the pedestal width, then �∗/! ∼ 0.03 � 1 may be

sufficient but �∗/! ∼ 0.08 would not be sufficient. This also starts to provide

a quantitative answer to the question of how much less is “much less” for

gyrokinetics to be valid.

Interestingly, the analysis above suggests the gyrokinetic condition is more

stringent that the local condition by roughly an order of magnitude, hence

Δ � �∗ is allowable. This makes sense as we are ultimately calculating the

global gyrokinetic result, so even if the locality condition is not that well

satisfied, then it doesn’t matter too much in the end – we just get a larger
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global correction. Indeed, as = increases and so Δ decreases, the locality

condition is more strongly satisfied and the global result tends towards the

local result, as expected.

5.5.3 Future Work

Important future directions for this research include: (1) developing the

local-global method such that it can be used to study experimental pedestal

equilibria; and (2) incorporating the simple corrective model of Equa-

tion (84) into EPED and / or Europed to improve their predictions of

pedestal height and width.

Point (1) would give many benefits including an understanding of the ex-

pected degree of poloidal shifting of the global mode structure due to the

transition from isolated to general modes, and the consequent improved in-

terpretation of experimental measurements of turbulent fluctuations. This

would also support generalisation of the simple corrective model of Equa-

tion (84) to a wider range of equilibria in preparation for point (2). Once

point (2) is complete, it would then be beneficial to compare the improved

pedestal predictions to experimental measurements as validation of the

corrective model.

An important next step towards the goal of point (1) is to apply the local-

global method to a more realistic case where (a) the pedestal is at the edge

and (b) B̂ is high. Case (a) should be possible because local gyrokinetics (and,

hence, the local-global method) do not suffer from boundary effects in the

sameway that global gyrokinetics can, as discussed in Subsection 5.5.1. The

benefit of this is that it allows us to check effects that exist at the edge, such

as a significant trapped fraction or smaller surface aspect ratio (although

the tests reported in Subsection 5.2.3.3 and Chapter 4 suggest that these

particular examples are not expected to have a significant effect). Case (b)
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is useful to confirm that high B̂ does not adversely affect the validity of the

local approximation due to the mitigation of narrowing in �0 by increased

@′ as expected from Chapter 4.

5.6 Conclusions – General

This chapter has presented local-global simulations of KBMs in a pedestal-

like equilibrium. The results were compared favourably to global gyroki-

netic andMHD simulations, which suggests that the local-global method is

valid in this case. This comparison also showed that the global growth rate

is sensitive to the parallel magnetic field fluctuation model and the equi-

librium treatment, but largely insensitive to the other factors tested such as

trapped particles and collisions.

The comparison of the local-global results with global gyrokinetics and

MHD suggests that the local-global method is valid in this case down to

surprisingly low toroidal mode numbers of 3 6 = 6 12 depending on �∗.

This in turn suggests that it may be possible, in principle, to incorporate

additional physics such as kink drive into gyrokinetics.

Analysis of the local validity of this case suggests that Δ/! ∼ 0.03 � 1

may be sufficient for local validity taking ! as the plasma minor radius, or

Δ/! ∼ 0.18 � 1 taking ! as the pedestalwidth (arguably amore appropriate

equilibrium variation length scale). Similarly, �∗/! ∼ 0.005 � 1 may be

sufficient for gyrokinetic validity with ! as the plasma minor radius, while

�∗/! ∼ 0.014 may not be sufficient; or �∗/! ∼ 0.03 � 1 may be sufficient

with ! as the pedestal width, while �∗/! ∼ 0.08 would not be sufficient.

These values start to provide a quantitative answer to the question of how

much less is “much less” in terms of local and gyrokinetic validity.

137



This chapter also developed a simple corrective model to capture global

and diamagnetic effects, and this was shown to give a good approxima-

tion to the local-global results in the region of the peak growth rate. This

shows that the observed low = stabilisation of global KBMs is caused by

global effects while high = stabilisation is caused by kinetic effects (namely

diamagnetic drift stabilisation). Further work is required to generalise the

model’s fit parameters. Despite this limitation, this shows that it should be

possible to approximate global and diamagnetic effects using such a model

for applications where computational efficiency is paramount.

Finally, the utility of the simple corrective model was demonstrated in an

EPED-like calculation. Further work is required to generalise the stiffness

of KBM onset used in the method. Nonetheless, this showed that global

and diamagnetic corrections can potentially have a significant impact on

the ELM prediction of EPED-like models, depending on the PB constraint.

Therefore, future EPED-like calculations should consider the impact of

global and diamagnetic effects, which can be done using the method pre-

sented here.
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Part III

Poloidal Structure of Zonal

Flow Drive
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Chapter 6

Poloidal Structure of Zonal

Flow Drive

6.1 Introduction

Zonal flows in tokamaks are radially-sheared flows constant in the poloidal

and toroidal directions, and are driven by nonlinear energy transfer from

turbulent micro-instabilities. They are central to achievable performance

since they regulate turbulence and, thus, govern the L-H transition (e.g.

[19–27]) and H-mode transport (e.g. [20, 23, 31]).

To measure zonal flows experimentally is difficult due to the symmetry

of the flow and the small poloidal measurement area of the relevant di-

agnostics (discussed below). However, the poloidal structure of the drive

mechanisms of zonal flows is not necessarily symmetric. Therefore, inter-

pretation of zonal flow experiments would be greatly enhanced by knowl-

edge of the poloidal structure of zonal flow drive. For example, a factor

∼ 50 discrepancy between the nonlinear energy transfer and turbulent en-

ergy loss was observed on Alcator C-Mod and investigated using gas-puff
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imaging (GPI) diagnostic data [24]. The GPI study improved the agreement

between the measured nonlinear transfer and turbulence loss, but a factor

∼ 3.5 discrepancy remained due to the limited poloidal extent of the GPI

diagnostic. However, while the zonal flow is constant in the poloidal and

toroidal directions, the turbulence is not, hence there is no reason to assume

that the nonlinear transfer and turbulence loss are poloidally and toroidally

symmetric. A method to quantitatively determine the poloidal structure

of zonal flow drive would allow the GPI analysis reported in [24] to be

compared against corresponding measurements from simulations, thus fa-

cilitating a more in depth study of the observed discrepancy and validation

of the experimental nonlinear transfer measurements.

Zonal flow properties relevant for this thesis, including driving and damp-

ing mechanisms, are summarised below. A detailed review is given in [18].

Since zonalflows in tokamaksare toroidally andpoloidally constant, radially-

sheared E × B flows on a magnetic flux surface (i.e. excluding equilibrium

shear flow), they constitute the zero-frequency, = = < = 0 (or :‖ = :H = 0)

component of the electrostatic potential perturbation with :G ≠ 0. As a re-

sult of this symmetry, zonal flows cannot directly access the free energy

in the equilibrium density and temperature gradients and are, thus, lin-

early stable. Instead, they are driven by the nonlinear interaction of plasma

micro-instabilities (which do extract free energy from the gradients).

The poloidal and toroidal symmetry of zonal flows also makes direct ex-

perimental measurements of the flow difficult, since there is no poloidal

variation. However, the transfer of energy into zonal flows from turbulence

(i.e. zonal flow drive) is not necessarily subject to the same symmetry, and

thus can bemeasured in experimentsmore easily. This is done using nonlin-

ear energy transfer functions (NETFs), which are discussed in more detail
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below. This chapter aims to determine the poloidal structure of zonal flow

drive by applying NETFs to nonlinear gyrokinetic zonal flow simulations.

The primary drive mechanisms of zonal flows are parametric decay and

modulational instability21. Both processes constitute three-wave coupling,

whereby the convective nonlinearity, u · ∇ 5 , of a fluctuating quantity, 5 ,

(such as the density or velocity field) transfers energy between modes of

differing wavevectors. The convention used here is that the transfer is to

a target mode with wavevector k, from a source mode with wavevector

k′, and this occurs via their interaction with a mediator with k − k′ as

its wavevector22. Any of the three modes may be turbulent fluctuations or

zonal flows, hence these processes include the nonlinear transfer of energy

among turbulent modes, among zonal flows, and between turbulence and

zonal flows. The two scenarios examined in this chapter are where k − k′

is a zonal flow (i.e. the action of zonal flows on turbulence) or where k is a

zonal flow (i.e. nonlinear transfer into zonal flows).

The primary dampingmechanism of zonal flows is collisional friction. If the

rate of collisional damping is slower than the zonal flow growth rate due to

the drivemechanisms described above (as is often the case for hot and, thus,

low collisionality fusion plasmas), then zonal flows can develop. Further-

more, once established, zonal flows can persist in the absence of turbulence

to provide the drive, and will decay on a time-scale set by the collisional-

ity. The simulations reported in this chapter are collisionless, but include

an equivalent damping mechanism via a hyper-diffusion term. In addition,

zonal flows may be damped by various nonlinear processes such as tertiary

instability (e.g. Kelvin-Helmholtz (KH) instability or KH-like instabilities),

21There may be additional drive from poloidal asymmetry in the particle flux, known as

Stringer spin-up, but this is not examined directly in this thesis

22In the case of parametric decay, this is via the decay of k′ into k and k− k′, while in the

case of modulational instability this is by the scattering of k′ off of k − k′ into k
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nonlinear wave-packet scattering and nonlinear wave-packet trapping [18,

§3.4], all of which are included via the triad interactions described above.

These would manifest as reduced (or negative) transfer in the case where k

is a zonal flow, i.e. nonlinear transfer out of zonal flows.

Zonal flows, being E × B flows, occur readily in electrostatic (� = 0) simu-

lations and are, as such, primarily an electrostatic phenomenon (i.e. due to

turbulence generated by a fluctuating electric field without magnetic field

fluctuations). Electromagnetic effects (i.e. with magnetic perturbations) can

provide additional damping at low � or drive at high �, but this is neglected

in this thesis for simplicity. Furthermore, zonal flows are stronger for ion-

scale turbulence than electron-scale, due to the screening of electron-scale

zonal flow drive by the ion response. For these reasons (and to simplify the

numerics), the simulations reported in this chapter are of electrostatic ion

temperature gradient (ITG) turbulence with adiabatic electrons.

Zonal flows regulate turbulence in two ways. The first, is by the shearing of

turbulent eddies into progressively smaller structures. This constitutes an

increase in the radialwavenumber, known as a “forward cascade”. This con-

tinues until the turbulence at small scales is damped by viscosity; this is also

represented by the hyper-diffusion term in the simulations reported here.

The second way in which zonal flows regulate turbulence is by nonlinear

transfer. Given zonal flows are driven by a transfer of energy from turbu-

lence, this constitutes a corresponding decrease in the turbulent intensity.

This leads to the “predator-prey” model of interaction between turbulence

and zonal flows, where the turbulence is the prey and the zonal flows the

predator: as the prey population (turbulent intensity) increases, this feeds

the predator population (zonal flow intensity), which thus increases soon

after. This, in turn, reduces the prey population and the predator population

then also decreases, thus allowing the prey population to grow again.
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Depending on available turbulence drive, the predator-prey relationship

may result in a quasi-steady state solution or a limit cycle oscillation (LCO)

type response. The latter is thought to be responsible for the Dimits shift

[36], whereby the nonlinear onset of turbulent transport occurs at a higher

pressure gradient than the linear onset of instability. Two scenarios are

studied in this chapter: one fromwithin the Dimits region (zonal flow dom-

inated), and one from beyond it (turbulence dominated). Correspondingly,

both solutions (LCO-type response and quasi-steady state) are observed.

There is a growing body of experimental evidence to support the theory

of zonal flows, including experimental confirmation of their existence, and

their interaction with and regulation of turbulence and transport [79, and

references therein]. However, quantitative comparisons are few in number.

Furthermore,most experiments have focused on the related andmore easily

measured Geodesic Acoustic Mode (GAM), which includes coupling to the

< = 1 and < = 2 sidebands and thus features an oscillation; consequently,

measurements of the pure zonal flow, which is quasi-stationary (hence why

GAMs are easier to measure), are relatively limited.

Another reason that zonal flow measurements are relatively few in num-

ber is the diagnostic requirements. The strongest evidence of zonal flows is

measurement of the E × B velocity, radial electric field and/or electrostatic

potential. These data provide direct evidence of zonal flows and enable the

calculation of nonlinear energy transfer for corroboration against simula-

tions. Such measurements are available from various diagnostics includ-

ing Doppler back scattering (DBS), heavy ion beam probe (HIBP), charge

exchange recombination spectroscopy (CHERS), indirectly from motional

Stark effect (MSE) and beam emission spectroscopy (BES) [18], and gas-

puff imaging (GPI) using time-delay-estimation (TDE) velocimetry [24, 32].

However, for various reasons (such as the balance of resolution vs cost, and

competition for space with other diagnostics), these diagnostics typically
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have a poloidally localised measurement volume. Therefore, knowledge of

the poloidal structure of zonal flow drive would facilitate corroboration of

these poloidally limited measurements among the diagnostics listed above

and validation of nonlinear transfer models against experiments. Further-

more, knowledge of the relationship between the poloidal structure of zonal

flow drive and the corresponding turbulent intensity would allow corrobo-

ration against turbulent fluctuation measurements from other diagnostics.

The rate of transfer due to the nonlinear driving and damping processes

described above can be measured (in experiments and simulations) using

nonlinear energy transfer functions (NETFs). Such methods have been in

development since at least the 1980s [80, 81], and havematured significantly

since then [82–85]. More recently, these methods have been applied in vari-

ous studies [20, 34, 35, 86, 87], including measurement of nonlinear energy

transfer due to GAMs in experiments and simulations [33], into GAMs in

experiments [32], and into zonal flows in experiments [24]. However, none of

the literature to date measures nonlinear energy transfer into zonal flows

in simulations, nor does any measure the poloidal variation of nonlinear

energy transfer. Since simulations are not limited in their poloidal measure-

ment area, such calculations would reveal the poloidal structure of zonal

flow drive in support of experimental measurements of zonal flows.

Given the importance of zonal flows and the issues with experimental mea-

surements discussed above, this chapter determines the poloidal structure

of zonal flowdrive and its relationship to turbulent intensity. This is doneus-

ingNETFs applied to nonlinear electrostatic local gyrokinetic simulations of

core ITG turbulence. Section 6.2 describes the gyrokinetic simulation setup

and the method of calculating NETFs. Then, the poloidal structure of the

zonal flow drive of two selected cases (zonal flow dominated and turbu-

lence dominated) is presented and discussed in Section 6.3 before drawing

conclusions in Section 6.4.
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6.2 Methods

6.2.1 Simulation Setup

The simulations in this chapter are based on a Miller equilibrium model

[65] representation of the Cyclone Base Case (CBC) [36], as described in

Chapter 4. All parameters are the same as those used in Chapter 4 (Table 1)

with the exception of:

• '0/0 = '0/0 = 2.72 cf. 3.333 (minor difference, already shown in

Chapter 4 to be insignificant)

• B̂ = 0.78 cf. 0.8 (minor difference, insignificant)

• � = 0 cf. 0.02 (to make the simulations electrostatic – the �‖ and �‖

fields were also explicitly turned off)

• �ii = �ee = 0 (to make the simulations collisionless – the collision

operator was also explicitly turned off)

• multiple = are included (since the simulations are nonlinear)

• various 0/!) were tested (to obtain the zonal flow dominated and

turbulence dominated cases).

The simulations here also treat electrons adiabatically rather thankinetically

to simplify the numerical setup, and use a hyper-diffusion term to provide

numerical damping in the absence of collisions. The justification for these

changes, plus evidence of nonlinear convergence is given in Appendix D.

Equilibrium shear flows are also neglected for simplicity.

6.2.2 Nonlinear Energy Transfer Functions

Following the methods of previous NETF studies [24, 32, 33, 82, 85], we

evaluate the NETF, denoted as ), of a generic fluctuating field, 5 (x), as the
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partial time derivative at wavevector k of the spectral power, | 5̂ (k)|2, due to

that mode’s nonlinear interaction with modes of wavevector k′ and k − k′:

)5 (k, k′) ≡
[(
%| 5̂ (k)|2

%C

)
NL

]
k′

(89)

where 5̂ (k) ≡ ℱ { 5 (x)}, the round brackets and subscript #! on the right-

hand side indicate that we only consider nonlinear effects, and the square

brackets and subscript k′ indicate that we only consider a single k′ rather

than an integration over all k′.

To derive a calculable form for ), we begin by considering the fluctuat-

ing field, 5 (x), in real space. Retaining the rate of change due only to the

convective nonlinearity u · ∇ 5 , the total derivative is zero, hence we have:

(
% 5 (x, C)

%C

)
NL

= −u(x, C) · ∇ 5 (x, C) (90)

where u is the E × B velocity23.

Fourier transforming to wavenumber space, and applying the convolution

theorem, we obtain:

% 5̂ (k)
%C

= −
∑


∫ +∞

−∞
D̂(k − k′)% 5̂ (k′)dk′ (91)

where  are the directions of the coordinate system, D̂ is the component of

û in the  direction, % 5̂ ≡ ℱ {∇ 5 (x)} and the (· · · )NL notation has been

dropped for brevity.

Next, using the identity:

23Hence u is in the plane perpendicular to B, so the parallel component of the gradient

operator is not required
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%| 5̂ (k)|2
%C

≡ 2ℜ

[
5̂ ∗(k)% 5̂ (k)

%C

]
(92)

we find:

%| 5̂ (k)|2
%C

= −2ℜ

[∑


5̂ ∗(k)
∫ +∞

−∞
D̂(k − k′)% 5̂ (k′)dk′

]
(93)

where 5̂ ∗(k) is the complex conjugate of 5̂ (k) and ℜ indicates the real com-

ponent.

Since we desire the change due to a specific source mode, 5̂ (k′), we may

drop the integration, which yields the general form of a NETF:

)5 (k, k′) = −2ℜ

[∑


5̂ ∗(k)D̂(k − k′)% 5̂ (k′)
]

(94)

As noted above, the relevant flow velocity is the E × B velocity. Orienting

a magnetic field line following rectangular coordinate system such that

B = �ẑ (as per GS2), we find:

û = 1

�
(�̂H x̂ − �̂Gŷ) =

1

�
(%G )̂0ŷ − %H )̂0x̂) (95)

Next, we use:

% 5̂ (k) = 8: 5̂ (k) (96)

where : is the component of k in the  direction24.

24Since we do not require the parallel component of the gradient operator, we hence do

not require :‖
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Finally, substituting the local density fluctuation obtained from GS2, 5̂ = =̂0,

we obtain the density transfer function25:

)=(k, k′) =
2(k × k′ · ẑ)

�
ℜ

[
=̂∗

0
(k))̂0(k − k′)=̂0(k′)

]
(97)

Substituting instead the flow velocity, 5̂ = û, which we obtain from GS2’s

local electrostatic potential, )̂0, via Equation (95), yields the velocity (or

kinetic energy) transfer function:

)u(k, k′) =
2(k × k′ · ẑ)(k × ẑ) · (ẑ × k′)

�3

ℜ

[
)̂∗

0
(k))̂0(k − k′))̂0(k′)

]
(98)

Evaluating Equations (97) and (98) presents a computationally demanding

challenge, since k and k′ are each 2D, �, =̂0 and )̂0 are functions of poloidal

angle, and =̂0 and )̂0 are also functions of time. Therefore, a computer

program [4] was written to efficiently calculate transfer function spectra at a

single arbitrary poloidal angle, or net transfer into zonal flows as a function

of poloidal angle. Both functions can be calculated with or without time

averaging. The program is described in more detail in Appendix E.

6.3 Results and Discussion

6.3.1 Development of Selected Cases

6.3.1.1 Nonlinear Benchmarking

Having developed a numerically robust and well converged simulation

setup (see Appendix D), the physics of the simulations could be bench-

marked against previous work. To do this, we measure the critical tempera-

25The density transfer function has also been referred to as the “internal fluctuation

energy” [33] and “internal energy” [86] transfer function
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Figure 36: Maximum linear growth rate, �0,max, and the volume- and time-

averaged nonlinear heat flux, 〈&0〉+,C , as functions of normalised tempera-

ture gradient length-scale, 0/!) , exhibiting Dimits shift in agreement with

[36]. The circled points indicate the two nonlinear simulations selected for

further analysis.

ture gradient for the linear and nonlinear onset of ITG turbulence and, thus,

reproduce the Dimits shift [36].

Tomeasure the critical temperature gradient for the linear onset of ITGs, the

simulation setup was run linearly with various values for the normalised

temperature gradient length-scale, 0/!) . For each value of 0/!) , the bi-

normal wavenumber, :H , was also varied. Then, the maximum growth rate,

�0,max, was determined by spline interpolation of �0(:H) for each 0/!) value.

The results are shown in Figure 36. The linear critical temperature gradient

was then determined by linear interpolation as the value of 0/!) at which

�0,max(0/!))was zero.

In a similar way, the critical temperature gradient for the nonlinear onset

of ITGs was measured by re-running the simulation setup nonlinearly with
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various values for 0/!) . Since this was done with nonlinear simulations,

they already include many :H and their nonlinear interactions.

The nonlinear heat flux was used to measure the nonlinear critical temper-

ature gradient. This was done using the GS2 output quantity hflux_tot,

which is related to the heat flux density tensor, QB , which is defined as [41]:

QB(x, C) =
1

2

<B

∫ +∞

−∞
F2

BwB 5B(x, v, C)dv (99)

where subscript B is the species label (ions in this case), <B is the species

mass, wB = v − uB is the velocity of each particle relative to the bulk flow

velocity, and 5B is the species distribution function. hflux_tot is the mag-

nitude of the tensor contraction of the component of QB due to the non-

adiabatic part of the perturbed distribution function averaged over the flux

tube volume, denoted as 〈&0〉+ in this thesis. hflux_tot is normalised in

the GS2 output and 〈&0〉+ is normalised in this thesis; both are normalised

to the gyro-Bohm heat flux [56]:

&gB =
=ref)refEth�2

ref

2

√
2!2

ref

(100)

Heat flux was used because this provides a measure of energy transport

due to turbulence; the higher the heat flux, the faster energy is being lost

from themagnetic confinement. However, if themodes are linearly unstable

but the heat flux is low, this suggests that some other mechanism (namely,

zonal flow) is preventing the unstable modes from generating sufficient

turbulence to cause appreciable losses.

〈&0〉+ was averaged over time for each value of 0/!) . For simplicity, the

initial transient due to the overshoot of the linear growth phase before

nonlinear saturation was not excluded from the time average as this is

expected to have negligible impact for sufficiently long simulation times.
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The resulting volume- and time-averaged heat flux, 〈&0〉+,C , as a function

of 0/!) is shown in Figure 36 alongside the linear �0,max(0/!)). Figure 36

exhibits the Dimits shift, as expected.

The nonlinear critical temperature gradient was then determined by linear

extrapolation of the steep gradient section of 〈&0〉+,C as a function of 0/!) ,

as indicted in Figure 36. The critical value was taken as the value of 0/!) at

which the extrapolated 〈&0〉+,C was zero.

The results of this analysis indicate that the linear onset of ITGs is 0/!) =

1.30, while the nonlinear onset is 0/!) = 1.85, i.e. the nonlinear onset is

shifted up by ∼ 40% compared to the linear onset. In comparison, Dimits et

al. [36] calculate the linear onset as 0/!) = 1.6 for the most similar of the

available equilibrium models and the nonlinear onset as 0/!) = 2.4, cor-

responding to a shift of ∼ 50%. These results are in reasonable agreement,

albeit with some quantitative differences that are attributed to the use of

different gyrokinetic codes, equilibrium models and critical gradient cal-

culation methods. Nonetheless, this comparison shows that the nonlinear

simulations presented in this thesis are displaying the expected physical be-

haviour to a degree sufficient to support conclusions regarding the poloidal

structure of zonal flow drive, which are anyway qualitative for this first

study.

6.3.1.2 Overview of Selected Cases

Having developed a numerically and physically justified set of nonlinear

simulations, two cases were selected for further analysis as indicated in

Figure 36. These cases were selected because the one at 0/!) = 1.6 is within

the Dimits region, so is expected to be dominated by zonal flows, whereas

the one at 0/!) = 2.5 is beyond the Dimits region, so is expected to be

dominated by turbulence.
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Figure 37: Nonlinear volume-averaged spectral energy density of the elec-

trostatic potential fluctuation field,

〈
|)̂0 |2

〉
+
, as a function of time, C, along-

side the zonal and turbulent components thereof for the zonal (0/!) = 1.6)

and turbulent (0/!) = 2.5) cases. Notice the differing C and
〈
|)̂0 |2

〉
+
scales.

The selected cases were re-run with additional, more expensive simulation

diagnostics enabled to facilitate the transfer function calculations detailed

in Subsection 6.2.2. This resulted in dynamically different but statistically

similar data compared to those reported in Subsection 6.3.1.1. This is due

to the use of different initial conditions (random numbers from different

processors), different floating point and MPI operation order, etc.

Figure 37 shows the nonlinear volume-averaged spectral energy density of

the electrostatic potential fluctuation field,

〈
|)̂0 |2

〉
+
, as a function of time, C.

Also shown are the zonal and turbulent components thereof26. This shows

that the 0/!) = 1.6 case is indeed dominated by zonal flows, while the

0/!) = 2.5 case has amuchmore significant contribution from the turbulent

modes. Therefore, these cases shall be referred to as the zonal case and the

turbulent case, respectively.

26Calculated by summing over the relevant elements of the GS2 output quantity

phi2_by_mode taking account of GS2’s weighting of :H = 0 and :H ≠ 0 components
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To further demonstrate the zonal and turbulent nature of these cases, one

may define the zonality, /, as the fraction of the total energy in the electro-

static potential fluctuation field that is in the zonal flow component:

/ =

〈
|)̂0 |2

〉
+,zonal〈

|)̂0 |2
〉
+,total

(101)

Time-averaging / excluding the initial transient due to the overshoot of the

linear growth phase before nonlinear saturation (i.e. for C & 2000!ref/Eth

for the zonal case and for C & 400!ref/Eth for the turbulent case) shows

that the zonal case has / = 0.9808 ± 0.0005, while the turbulent case has

/ = 0.65 ± 0.01.

The spectra of the time- and field-line-averaged spectral energy density

of the electrostatic potential fluctuation field,

〈
|)̂0 |2

〉
C ,�

, for the zonal and

turbulent cases are shown in Figure 38. These show that the turbulence

has largely the same spectral structure in both cases, in agreement with

the linear result (not shown) that the structure of the :H spectrum does not

change significantly with 0/!) . However, the balance between turbulent

and zonal modes is different, with noticeably more turbulent activity in the

turbulent case, in agreement with the results shown in Figure 37.

Finally, the Fourier coefficients of the electrostatic potential fluctuation field

at the mid-point of the flux tube27, )̂0(C , :H , :G , � = 0), can be Fourier trans-

formed back to real-space to obtain )0(C , G, H, � = 0) and thus visualise

the structure of the turbulence in real-space by taking a snapshot in C. The

results of this operation are presented in Figure 39, which shows clear zonal

banding in the zonal case and a mixture of smaller scale eddies in the

turbulent case.

27From the GS2 output quantity phi0
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Figure 38: Spectra of the time- and field-line-averaged spectral energy den-

sity of the electrostatic potential fluctuation field,

〈
|)̂0 |2

〉
C ,�

, for the zonal

(0/!) = 1.6) and turbulent (0/!) = 2.5) cases selected for further analysis.

Notice the differing

〈
|)̂0 |2

〉
C ,�

scales.

Figure 39: Real-space snapshots of the electrostatic potential fluctuation

field, )0(G, H), at � = 0 for the zonal (0/!) = 1.6) and turbulent (0/!) = 2.5)

cases selected for further analysis. In both cases, the snapshot is at the last

available time point. Notice the differing )0 scales.

155



6.3.2 Transfer Function Spectrum

To verify the correctness of the transfer functions and the subsequent com-

puter implementation described in Subsection 6.2.2, the full 4-D transfer

function spectra, )(:G , :H , :′G , :′H), were calculated (at � = 0 as a representa-

tive location) for the cases selected in Subsection 6.3.1.2. As an illustrative

example, this subsection discusses the transfer function spectra for the tur-

bulent case time-averaged over the steady state period (C & 400!ref/Eth); the

transfer functions for the zonal case show similar results.

By the reality condition, 5̂ ∗(k) = 5̂ (−k), we expect the transfer functions to

be anti-symmetric about k = k′. To demonstrate the required symmetry, the

kinetic energy transfer function28, )u(:G , :′G), for a given fluctuation scale in

the binormal direction, :H = :′H = ±0.35, is shown in Figure 40. The chosen

binormal scale is the peak :H for the dominant (first) non-zero :G in the〈
|)̂0 |2

〉
C ,�

spectrum as shown in Figure 38 (b). Inspection of the transfer

spectrum for different values of :H = :′H shows similar results. Figure 40

shows transfer from :′G (vertical axis) to :G (horizontal axis)where the colour

represents the energy transfer rate with positive values (red) indicating

transfer from :′G to :G and negative values (blue) indicating transfer in the

opposite direction.

Each coloured box in Figure 40 represents a (k, k′) pair. Since the transfer

function spectrum in Figure 40 is shown for a given fluctuation scale in the

binormal direction, the box that is opposite across the line :G = :
′
G therefore

represents the same transfer channel but with source and target waves

swapped (i.e. k→ k′ and k′→ k). Therefore, the transfer function must be

anti-symmetric about the line :G = :
′
G , which is indeed the case in Figure 40.

Furthermore, the transfermust be zero along the line :G = :
′
G (modes cannot

transfer energy to themselves), which is also the case in Figure 40. Finally, if

28Calculated using the GS2 output quantity phi_t as )̂
0
in Equation (98)
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Figure 40: Kinetic energy transfer spectrum,)u(:G , :′G) for the turbulent case

at :H = :
′
H = ±0.35, � = 0 and time-averaged over C & 400!ref/Eth. The short

arrow highlights elements that indicate the same transfer channel but with

source and target waves swapped and the long arrow highlights elements

that indicate equivalent interactions due to waves travelling in opposite

directions.

we consider the interaction between three arbitrary wavevectors, k, k′ and

k − k′, and then reverse the sign on those wavevectors, then we have an

interaction between three waves of the same scales and relative directions

as the original interaction but the waves are now all moving in the opposite

direction. The combination of this fact with the reality conditionmeans that

we expect the transfer function to be invariant under the transformation

k → −k and k′ → −k′. This property can also be seen in the transfer

function spectrum by comparison of Figures 40 (a) and 40 (b).

The transfer spectrum in Figure 40 shows a cascade of energy from large

scales (small wavenumbers) towards small scales (large wavenumbers), as

indicated by positive )u values for |:G | > |:′G | and negative values for |:G | <

|:′G |. Since the data in Figure 40 is for :H = :
′
H , the interaction is mediated by

the zonal flow (:H−:′H = 0). Therefore, this shows that the action of the zonal

flow is to transfer kinetic energy from low :G velocity fluctuations towards
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high :G velocity fluctuations. This can be understood physically as zonal

flow shearing of turbulent eddies into progressively smaller structures. In

addition, being a cascade, this process is dominated by “local” transfer (i.e.

from one scale to the next), as opposed to “non-local” transfer (i.e. directly

from the largest scales to the smallest scales) as indicated by the strongest

transfer channels being those closest to the line :G = :′G . The observed

symmetry and the fact that we have a local cascade is in agreement with

previous work [33, 82].

The density transfer function29, )=(:G , :′G), for the same fluctuation scale

in the binormal direction as used for )u(:G , :′G) above, :H = :′H = ±0.35,

is shown in Figure 41. The symmetry and local cascade structure of the

transfer function is largely the same for )=(:G , :′G) in Figure 41 as compared

to )u(:G , :′G) in Figure 40. However, there is one key difference: )=(:G , :′G)

shows an inverse cascade towards large scales, whereas )u(:G , :′G) shows a

forward cascade towards small scales, as indicated by negative)= values for

|:G | > |:′G | (where)u is positive) and positive)= values for |:G | < |:′G | (where

)u is negative). This observation of a dual cascade in opposing directions is

expected and in agreement with previous work [82]. The fact that )= shows

an inverse cascade (and, indeed, the structure of the )= spectrum more

generally) is in qualitative agreement with previous work [33]30.

While the )= values can be compared across different cases (and likewise

for )u values), a direct comparison of the )= and )u values with each other

is not strictly valid as they are in different normalised units. The conversion

to comparable physical units is non-trivial and is not of great significance to

the arguments presented here so has been omitted. Despite this limitation

on direct comparison, the normalised units have been chosen such that

quantities are typically ∼ O(1). Therefore, the order of magnitude of the

29Calculated using the GS2 output quantity density_t as =̂ in Equation (97)

30A quantitative comparison is not possible as [33] gives results in arbitrary units.
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Figure 41: Internal energy transfer spectrum, )=(:G , :′G), for the turbulent

case at :H = :
′
H = ±0.35, � = 0 and time-averaged over C & 400!ref/Eth.

transfer in normalised units relative to ∼ O(1) may give an approximate

indication of the significance of the transfer. In this context, the transfer

spectra in Figures 40 and 41 suggest that the velocity transfer rate between

individual modes may be comparable to that of the density transfer.

To further verify the transfer function calculation and to investigate the

spectrum of which modes are transferring energy into the zonal flow, a

plot of )u(:H , :′H) for a given fluctuation scale in the radial direction, :G =

:′G = ±0.17, is shown in Figure 42. The chosen radial scale is the dominant

(first) non-zero :G . Inspection of the transfer spectrum for different values

of :G = :
′
G shows similar results. This again exhibits the required symmetry

(anti-symmetric about :H = :′H , zero along :H = :′H and invariant under the

transform k→ −k and k′→ −k′). Figure 42 also shows a forward cascade,

albeit much weaker than that in Figure 40. However, this is overshadowed

by non-local transfer from a spectrum of turbulent modes directly into the

zonal flows. The density transfer spectrum shows similar results but with

the colours reversed.

To further investigate the spectrum of transfer into the zonal flows, the

:H = 0 component of )u(|:G |, |:H |, |:′G |, |:′H |) is shown in Figure 43. The plot
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Figure 42: Kinetic energy transfer spectrum,)u(:H , :′H) for the turbulent case

at :G = :
′
G = ±0.17, � = 0 and time-averaged over C & 400!ref/Eth.

Figure 43: The spectrum of kinetic energy transfer into zonal flows,

)u(|:G |, :H = 0, |:′G |, |:′H |) for the turbulent case at � = 0 and time-averaged

over C & 400!ref/Eth for (a) |:′G | = 0.17 and (b) |:′H | = 0.35. Different values of

|:′G | and |:′H | show similar results. The highlighted elements represent the

same (k, k′) pairs.

is no longer expected to exhibit symmetry in the same way as Figures 40 to

42, as we are no longer plotting the same modes on both axes; rather, we

have zonal flows on the horizontal axis and turbulent modes on the vertical

axis. To simplify the plot in Figure 43, )u values have been summed over all

interactions involving fluctuations of the same scale.
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Figure 44: Internal energy transfer spectrum from turbulent density fluctu-

ations into the zonal component of the density fluctuations, )=(|:G |, :H =

0, |:′G |, |:′H |) for the turbulent case at � = 0 and time-averaged over

C & 400!ref/Eth for (a) |:′G | = 0.17, (b) |:′G | = 0.34 and (c) |:′H | = 0.35.

Different values of |:′G | show results similar to (b) and different values of

|:′H | show results similar to (c). The highlighted elements represent the same

(k, k′) pairs. Those within the solid lines are the same pairs highlighted in

Figure 43.

Figure 43 (a) shows that energy is transferred into the zonal flows with the

largest scales from a broad spectrum of turbulence in |:′H | and that smaller

scale zonal flows are actually losing energy to those same |:′H |modes.Mean-

while, Figure 43 (b) shows that energy is transferred into a broad range of

zonal flow scales from a broad range of modes in |:′G |.

Plots equivalent to those in Figure 43 but for )= are shown in Figure 44 (a)

and (c); an extra |:′G | value is shown in Figure 44 (b) as that shown in (a) is

not typical of the other |:′G | values while that shown in (b) is.

Figure 44 (a) shows that internal fluctuation energy is transferred into a

broad |:G | range of zonal components of the density fluctuations from a

broad spectrum of turbulence in |:′H | at the largest |:′G | scale apart from some

relatively small transfer out of the largest scale zonal components of the

density fluctuations into the largest scales of turbulence in |:′H |. However,
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Figure 44 (b) shows that a broad |:G | range of zonal components of the

density fluctuations are losing internal fluctuation energy to a broad range

of modes in |:′H |. Meanwhile, Figure 44 (c) shows that the dominant transfer

of internal energy into the zonal components of the density fluctuations

is that from low |:′G | modes (radial streamers) and that these zonal modes

are simultaneously losing internal fluctuation energy to high |:′G | modes.

Therefore, there is likely to be some cancellation between transfer in at low

:′G and transfer out at moderate :′G .

Figures 40 to 44 suggest a rather complicated physical picture of transfer

to / from zonal flows and the zonal component of the density fluctua-

tions. However, this picture is simplified by comparison of the transfer

spectrum against the turbulent activity level, which is shown in Figure 45.

This was done by plotting the transfer into the largest scale zonal flow /

zonal component of the density fluctuations with |:G | = 0.17 alongside the

corresponding elements extracted from the

〈
|)̂0 |2

〉
C ,�

spectrum in Figure 38

(b).

Figure 45 shows that the structure of the)u(|:′H |),)u(:′G) and)=(|:′H |) transfer

spectra closely match that of the turbulent activity level apart from regions

of reduced transfer from low wavenumber modes, while the )=(:′G) trans-

fer spectrum is dominated by transfer from the low :′G modes. This can

be understood in relation to the structure of the general form of a NETF

(Equation (94)), where we have: (i) the product of three fluctuating fields,

hence the strong dependence on the turbulent activity level; and (ii) a gra-

dient operator (or, when using potential as a proxy for velocity, two gradient

operators in the case of )= or four in the case of )u), hence the reduced

transfer at low wavenumbers. In the case of )=(:′G), the leading :-factor is

:G:
′
H − :H:′G . Therefore, with :H = 0, we have just :G:

′
H , which is constant for

the data shown in Figure 45 (b), hence we only have the turbulent activity

level dependence on =̂0 (not shown) and )̂0. Indeed, normalising the trans-
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Figure 45: (a) |:′H | and (b) :′G spectrum of turbulent activity level (solid blue

line) compared against transfer into the largest scale zonal flow (dashed or-

ange line) and transfer into the largest scale zonal component of the density

fluctuations (dotted green line). All lines are taken from the turbulent case

at � = 0 time-averaged over C & 400!ref/Eth.

fer to the turbulent activity level (also not shown) indicates that the high

wavenumber interactions are more efficient as transfer channels (effectively

highlighting the wavenumber dependence). Therefore, we have a balance

between more efficient transfer channels at high wavenumber against more

energy available for transfer at low wavenumber, resulting in a peak at

moderate wavenumbers.

In the case of )=(:′G), transfer at :′G = 0 is non-zero because the )= wavenum-

ber weighting is independent of :′G . It is unclear why the sign reverses at

moderatewavenumber. This shows that large scale radially elongated struc-

tures put energy into zonal flows, structures of moderate radial scale take
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energy out of zonal flows, and small scale structures exchange little energy.

One possible explanation is that large scale radially elongated structures

extend across different zonal bands so they can be sheared apart to feed the

zonal flow, while structures of moderate radial scale are the appropriate

size to be accelerated by the zonal flow in such a way that they take energy

out of the zonal flow. Meanwhile, the small scale structures are too small

compared to the zonal flow to have any significant interaction. In any case,

this change in sign indicates that there is likely to be significant cancellation

when summing over all source radial scales (:′G).

6.3.3 Time History

The transfer function spectra presented in Subsection 6.3.2 were, for com-

putational performance reasons, calculated only at � = 0. However, since

we are specifically interested in the transfer into / out of zonal flows, we

may calculate the reduced 3-D transfer function, )(:G , :′G , :′H) at :H = 0,

thus eliminating a significant fraction of the computation. This can then

be summed over :G , :
′
G and :′H to get the net transfer into / out of zonal

flows at the current � location and time point. This procedure can then be

repeated along the field line and through the time-history of the simulation

to get )(C , �). Finally, this can be summed over � to get the net transfer as a

function of time, )(C), or time-averaged to obtain )(�).

The procedure described above was applied to both of the cases selected in

Subsection 6.3.1.2 to obtain )(C). Continuing from the discussion in Subsec-

tion 6.3.2, let us first consider the turbulent case. Figure 46 shows the time

history of )u and )= alongside the time history of the turbulent component

of

〈
|)̂0 |2

〉
+
(the dotted green line from Figure 37 (b)). As with the spectrum

comparison in Figure 45, this shows that the transfer rate largely follows the

turbulent activity level.
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Figure 46: Time history of the turbulent case showing turbulent activity

level,

〈
|)̂0 |2

turb

〉
+

(solid blue line), compared against the net transfer rate

into zonal flows (dashed orange line) and into the zonal components of the

density fluctuations (dotted green line).All lines have been arbitrarily scaled

to fit on the same axes and to highlight the similarity in their structures.

Figure 47 shows the same time histories of )u and )= but this time alongside

the time history of the zonal component of

〈
|)̂0 |2

〉
+
(the dashed orange line

from Figure 37 (b)). This shows that the energy in the zonal flows rises and

falls with the rate of transfer into the zonal flows.

Figures 46 and 47 show that the transfer rate follows the turbulent activity

level and that the zonal flow energy follows the transfer rate, albeit not that

decisively. However, this observation is much clearer when we examine the

time history of the zonal case, which is shown in Figure 48.

Figure 48 shows that the transfer rate follows the turbulent activity level

very closely. Furthermore, the energy in the zonal flows rises sharply when

there is increased transfer and then decays on a slower time-scale during

periods of reduced transfer. These observations constitute the LCO-type

responsepredictedby thepredator-preymodel of the zonalflow–turbulence

relationship:
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Figure 47: Time history of the turbulent case showing energy in the zonal

flows,

〈
|)̂0 |2

zf

〉
+

(solid blue line), compared against the net transfer rate

into zonal flows (dashed orange line) and into the zonal components of the

density fluctuations (dotted green line).All lines have been arbitrarily scaled

to fit on the same axes and to highlight the similarity in their structures.
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Figure 48: Time history of the zonal case showing turbulent activity level,〈
|)̂0 |2

turb

〉
+
(solid blue line), and energy in the zonal flows,

〈
|)̂0 |2

zf

〉
+
(dash-

dotted red line), compared against the net transfer rate into zonal flows

(dashed orange line) and into the zonal components of the density fluctua-

tions (dotted green line). All lines have been arbitrarily scaled to fit on the

same axes and to highlight the similarity in their structures.

1. When there is little energy in the zonal flows, the turbulent energy

increases due to extraction of free-energy from the equilibrium gradi-
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ents via linear instabilities in the :H range indicated in Figure 38. This

is relatively unimpeded by zonal flow shearing (since the zonal flows

are weak) and by nonlinear transfer (since the transfer rate is low).

2. Next, when there is sufficient energy in the turbulent modes, the rate

of energy transfer into the zonal flows increases at the scales where

there is more turbulent energy available for transfer, consistent with

the observations in the turbulence and transfer spectra in Figure 45.

This causes the energy in the zonal flow to increase, as shown by

Figure 48.

3. This transfer reduces the energy in the turbulent modes. Plus, when

there is sufficient energy in the zonal flows, this leads to radial shear-

ing of turbulent eddies that transfers turbulent energy towards small

scales (where energy is dissipated, e.g. by viscosity), consistent with

the forward cascade observed in Figures 40 and 42.

4. Following on from that, when the energy in the turbulent modes has

dropped such that there is insufficient energy available for transfer,

the transfer rate also decreases, as seen in Figure 48.

5. Finally, when there is an established zonal flow and a low rate of

energy transfer into the zonal flows, the zonal energy decays (e.g. due

to collisional damping, represented here by hyper-diffusion) and the

cycle repeats, as can be seen in Figure 48.

In the turbulent case, the linear modes are driven so strongly by the steeper

equilibrium temperature gradient that the turbulent activity level remains

high even with the transfer of energy out of turbulence and into zonal flows

and with the radial shearing effect of the zonal flows. As a result, there is

a continuous supply of turbulent energy available to feed the zonal flows

such that there are no periods of low turbulent activity, low transfer and

zonal flow decay. Instead, an equilibrium is reached between the rate of
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energy gain by the linear modes, the rate of transfer into zonal flows and

towards small scales, and the rates of dissipation at small scales and zonal

flow damping. Hence, a quasi-steady state is achieved.

6.3.4 Poloidal structure

Instead of summing)(C , �) over� to get)(C) aswas done in Subsection 6.3.3,

one can instead average over C to get the time averaged )(�). This was done

for both of the cases selected in Subsection 6.3.1.2.

Figure 49 shows, from the turbulent case, the poloidal structure of )u and

)= alongside the poloidal structure of the turbulent and zonal components

of

〈
|)̂0 |2

〉
G,H,C

, where the subscripts indicate averaging over the steady state

period, C & 400!ref/Eth, and over the perpendicular directions (i.e. summing

over all perpendicular wavenumbers). Similar results (not shown) are ob-

served for the zonal case, for alternative time averaging windows and for

instantaneous poloidal structures (i.e. considering only a single time-step

with no time averaging).

Figure 49 shows that the rate of transfer into the zonal flows ()u, dashed

orange line) is strongly correlated with the poloidal structure of the tur-

bulent activity level (solid blue line), consistent with the turbulence and

transfer spectra presented in Figure 45 and the time histories in Subsec-

tion 6.3.3. Importantly, however, the transfer rate is not proportional to the

turbulent activity level, even in this relatively simple and symmetrical case.

The reason for this correlation without proportionality is unclear. However,

the data shows that, as the turbulent activity level decreases with �, the

turbulent power shifts to a different part of wavenumber space due to the

effect of magnetic shear. Therefore, one possible reason is that this shift in

the spectrum moves the energy to transfer channels that are more or less

efficient than those where the energy is at � = 0. In any case, this correlation
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Figure 49: Poloidal structures from the turbulent case showing the turbulent

activity level,

〈
|)̂0 |2

turb

〉
G,H,C

(solid blue line), and energy in the zonal flows,〈
|)̂0 |2

zf

〉
G,H,C

(dash-dotted red line), compared against the transfer rate into

zonal flows (dashed orange line) and into the zonal components of the

density fluctuations (dotted green line). All lines have been averaged over

the perpendicular directions and the steady state period, C & 400!ref/Eth.

without proportionality suggests that analysis such as this will be beneficial

for zonal flow experiments to relate the small measured region to the full

poloidal structure of turbulence and nonlinear transfer. For example, this

could explain the remaining factor ∼ 3.5 discrepancy between experimental

nonlinear transfer and turbulence loss measurements reported in [24].

The poloidal distribution of zonal flow energy (dash-dotted red line) has a

structure different from the turbulence. This is expected as the zonal flow

is, by definition, constant in the poloidal direction. Therefore, we expect a

flat line (< = 0) for the pure zonal flow with some coupling to the < = 1

and < = 2 sidebands (the GAM). A Fourier transform of the zonal flow

structure in the � direction, as shown in Figure 50, confirms that this is

indeed the case, with the majority of the energy in the pure zonal flow, a

little in the GAM and a negligible amount in the higher < sidebands.
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Figure 50: Fourier transform of the zonal flow poloidal structure

The net density transfer is effectively zero at all � at the scale shown. Zoom-

ing in on the poloidal structure of the density transfer (not shown) reveals

that )= ∼ O(10
−5) at all �with an apparent increase towards large |� |. Com-

paring this to the )= values in Figures 41 (inverse cascade), 44 (spectra of

density transfer into zonal flows) and 45 (turbulence and transfer spectra)

that show the density transfer from individual :′G modes is ∼ O(0.1), sug-

gests that there may be significant cancellation of transfer into and out of

the zonal component of the density fluctuations. Furthermore, comparing

Figure 43 (spectra of velocity transfer into zonal flows) with Figure 44 and

Figure 45 (a) with Figure 45 (b), notice that there is more negative trans-

fer (i.e. transfer out of zonal flows) in the density transfer than there is in

the velocity transfer. Indeed, further examination (not shown) of )=(:′G) for

selected individual values or sums over the other dimensions (:′H , :G and

�), confirms that the net density transfer ∼ O(10
−5) is a consequence of the

transfer into the zonal component of the density fluctuations at low |:′G | be-

ing cancelled out by the transfer out of the zonal component of the density

fluctuations at moderate |:′G |. Furthermore, the apparent increase in )= at

large |� |may be explained as follows. The turbulent activity level decreases
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with increasing |:′G | andwith increasing |� |. Meanwhile, there is some noise

in )(:′G) at high |:′G | due to the noise in the ) and = data at these scales. As

the turbulent activity at low and moderate |:′G | decreases with increasing

|� |, this allows the noise at large |:′G | to increase. This increases the transfer

from this part of the spectrum, which results in an apparent increase in the

net transfer at large |� |. However, this apparent poloidal structure should be

considered as numerical error and the net density transfer should be taken

as effectively zero at all �, as shown in Figure 49. Finally, while )u and )=

have different normalised units ()3

ref
/(�3

ref
�4

ref
) cf. =2

ref
)ref/(�ref�2

ref
) respec-

tively) so a direct comparison is not strictly correct, these are normalised

units so one would expect values ∼ O(1) to represent significant transfer.

Therefore, a difference of 5 orders of magnitude is sufficient to consider the

density transfer as negligible compared to the velocity transfer.

The reason why there is cancellation of the density transfer to a negligible

level is unclear.However, onepossible reason is theuseof adiabatic electrons

in the simulations, which is known to prevent particle flux. It may be that

adiabatic electrons are, in a similar way, preventing net density transfer.

This was not tested because including kinetic electrons in the simulations

requires a much larger computational grid in :G and :H , hence significantly

increased computational cost.

Figure 51 shows data from the zonal case equivalent to that of Figure 49

(which was for the turbulent case). This data was time averaged over the

entire quasi-periodic phase of the simulation, C & 2000!ref/Eth. Alternative

time averagingwindows and instantaneous poloidal structures (not shown)

exhibit similar results.

Figure 51 exhibits many of the same features as Figure 49 including: the

poloidal structure of the rate of transfer into the zonal flows is strongly

correlated with the poloidal structure of the turbulent activity level but
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Figure 51: As Figure 49 but for the zonal case. All lines have been averaged

over the entire quasi-periodic phase of the simulation, C & 2000!ref/Eth.

they are not proportional; the poloidal distribution of zonal flow energy

is dominated by the < = 0 pure zonal flow with a little activity in the

< = 1 and < = 2 sidebands (the GAM) and negligible energy in the < > 2

sidebands (confirmed by a Fourier transform in the � direction - not shown);

and the density transfer is effectively zero at all �. This shows that these

observations hold across the two cases examined, which suggest they may

hold for other cases too, thus supporting experimental searches for zonal

flows.
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6.4 Conclusions

This chapter has presented development of a method to measure the non-

linear transfer of energy between turbulence and zonal flows. This has been

successfully applied to nonlinear gyrokinetic simulations of ITG turbulence

to reveal, for the first time, the poloidal structure of zonal flow drive.

The results confirm the existence of a number of previously known phe-

nomena, including the Dimits shift, and a dual cascade (forward in velocity,

inverse in density). The predator-prey relationship between zonal flows and

turbulence respectively has been observed previously in simplified analyt-

ical models [18] and Limit Cycle Oscillations in experiments (e.g. [88, 89]),

and has been fitted to gyrokinetic simulations of turbulence and zonal flows

[89]. However, this work (Figure 48) goes beyond showing that the zonal

energy and turbulent intensity (predator and prey populations) rise and

fall in a synchronised fashion, and demonstrates directly for the first time

that the mechanism driving these predatory-prey dynamics is the nonlin-

ear transfer of energy from turbulence to zonal flows (in effect, observing

the predators catching their prey for the first time). This may be related

to previously reported gyrokinetic observations of turbulence suppression

following a momentary peak in the rate of Reynolds work [90]. In addition,

while the dual cascade seen in Figures 40 and 41 is in qualitative agreement

with previous work [33], the observation of transfer from a broad range of

turbulence directly into zonal flows (Figure 42) has not been shown previ-

ously.

In the cases studied, the density transfer is effectively zero due to cancella-

tion of transfer into zonal flows at low |:′G | with transfer out of zonal flows

at moderate |:′G |. The exact reason why there is such cancellation is unclear

but one possible reason is that the simulations modelled electrons adiabat-

ically, which is known to result in zero particle flux. Future work may wish
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to address the more computationally expensive case of including kinetic

electrons to see if that allows for significant density transfer. Furthermore,

this observation of cancellation may be an instance of the so-called “ficti-

tious” interactions cited by Maeyama et al. [91] as a potential issue with the

non-symmetrized style of transfer functions used here, whereby energy is

circulated amongst the three waves involved in a triad coupling. Further

analysis of the transfer functions calculated here may reveal that this is in-

deed the case. Future work may wish to investigate whether this analysis

could be improved by using the recently developed symmetrized and/or

directional transfer functions presented in [91].

In addition to investigating the effect of kinetic electrons, future work may

wish to test other parameters to progress towards more realistic simula-

tions, including plasma shaping, up-down asymmetry, electromagnetic ef-

fects, etc. At the same time, it will also be important to apply this method

to experimental data in the search for zonal flows. This will require ex-

perimental measurements of the velocity field using techniques such as

Cross-Correlation Time Delay Estimation [92] and Dynamic Time Warping

[93]. The ultimate aim of these two aspects of future studies is to work

towards comparison of experiment and simulation through the transfer

function method to identify experimental zonal flows.

To facilitate the above futurework, two specific improvements to themethod

developed here are recommended. The first is to address performance is-

sues in the transfer function calculation code. Due to compatibility issues

between the selective loading and parallelisation modules employed in the

software implementation [4] of the transfer function calculation (xarray and

multiprocessing respectively), full arrays of ) and = still had to be loaded

on all processors before dispatching parallel tasks. As a result, the program

had to be run on a computer with a large amount of memory available.

This could be improved by only loading the data required for each pro-
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cessor into the corresponding memory. This would require modification of

xarray and/or multiprocessing, or a differentmethod of selective loading

and/or parallelisation, e.g. porting the code to a high performance language

such as C++. The second specific recommendation is to derive the conver-

sion from GS2 units to physical units such that the velocity and density

transfer rates can be compared directly and so that simulation results can

be compared with experimental data.

One further consideration for future application of this work is as follows.

While this method has been developed to aid the experimental search for

zonal flows, it may have another application. If zonal flows can be identified

by other means, this technique could be used as a diagnostic for turbulence

without having to run expensive non-linear gyrokinetic simulations. For

such an application, the zonal flows could be measured experimentally,

then the method presented in this chapter could be used to work out the

turbulence that must have existed to generate those zonal flows and thus

infer the turbulence without direct simulation, although it is unclear at this

stage whether there would be a unique solution.

Finally, an additional avenue for future research could be the following.

The transfer functions employed in this chapter constitute a fluid model of

nonlinear energy transfer since they are basedon thefirst twofluidmoments

of the distribution function, = and u. While these transfer functions are

used for the current investigation due to connection to existing diagnostics

and previous work, it may be interesting for future studies to examine the

nonlinear transfer of the spectral power of the distribution function itself

– essentially a kinetic model of nonlinear energy transfer. This has been

studied in the literature [94, 95], though not extensively. Suchmethods have

the added complication that the distribution function is not necessarily

advected by the fluid velocity but rather by the kinetic velocity, i.e. different

parts of the distribution function are advected at different velocities. As a
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result, the calculation of the kinetic model transfer function is likely to be

quite similar to the calculation of the nonlinear term in gyrokinetic codes

such as GS2, which may provide a useful starting point for such work.

Most importantly, this analysis has, for the first time, revealed the poloidal

structure of zonal flow drive. For the velocity transfer, this is strongly cor-

related with the turbulent activity level. However, the rate of transfer into

zonal flows is not proportional to the turbulent activity level. This is an

important result for zonal flow experiments to relate the small measured

region to the plasma behaviour outside that region. The correlation is due

to the dependence of the transfer function on the magnitude of the fluctu-

ating fields, while the reason for the lack of proportionality is unclear. A

hypothesis related to the shifting of the turbulence spectrum due to mag-

netic shearwith increasing |� | has been offered but furtherwork beyond the

scope of this thesis is required to investigate this. Nonetheless, this shows

that zonal flow drive is not constant in the poloidal direction, andwhile it is

correlated with the turbulent activity level it is not proportional to it. These

findings may provide an explanation for the remaining discrepancy be-

tween experimental nonlinear transfer and turbulence loss measurements

reported in [24]. Furthermore, the method presented here may provide a

route to more detailed analysis of the discrepancy reported in [24] and sim-

ilar experimental observations by facilitating quantitative measurement of

the poloidal structure of nonlinear transfer in such cases and, thus, quan-

titative comparison with the GPI or other diagnostic measurements and

validation of nonlinear energy transfer models.
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Part IV

Conclusions
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Chapter 7

Conclusions

This thesis has investigated global effects on micro-instabilities and the

poloidal structure of zonal flow drive. This was done using the local gy-

rokinetic simulation code GS2.

Regarding global effects, the aim was to study global KBMs in the pedestal.

As a first step, a JET pedestal equilibriumwas simulated using local gyroki-

netics. This revealed KBMs that were narrow in ballooning angle, �0, which

suggests a globalmode that is radiallywide and thus potentially in violation

of the local approximation. The narrowing was shown to be caused by high

magnetic shear, B̂, which was in turn shown to exert its narrowing effect on

both IBMs and KBMs via ideal ballooning physics. This leads to a splitting

of the IBM instability region in �0, and hence a modification to the IBM

s- stability diagram, which in this case affects the second stability region.

This highlights the importance of considering �0 ≠ 0 in local simulations,

whether gyrokinetic, MHD or otherwise. While IBMs exhibit splitting, it

was shown that the KBM in such cases may be subject to additional ki-

netic effects, thus highlighting the importance of considering kinetic effects
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when using IBMs as a proxy for KBMs, which may affect the accuracy of

EPED-like models.

Analysis of the local approximation revealedvalidity conditions that require

the local frequency and growth rate to be slowly varying with respect to

minor radius, G, and ballooning angle, �0, compared to the rational surface

spacing, Δ = 1

=@′ . Re-formulating the �0 condition in terms of :G0 (the radial

wavenumber at � = 0, where � is the ballooning-space coordinate) reveals

a different but equivalent condition. Combined with the fact that the KBM

simulations discussed above showed no variation of thewidth in :G0 when B̂

was increased, this suggests that the impact on local validity of B̂ narrowing

in �0 may be mitigated by the corresponding increase in @′. This effect was

demonstrated through application of the local-global method to artificial

but representative data, which confirmed that local accuracy is reduced by

narrowing in �0, but that this is mitigated by a corresponding increase in @′

in the absence of other effects such as the enhancement of narrowing by the

drifts. This highlights the importance of considering global effects in local

simulations, especially in regions of high B̂, which can be low but is often

high in the pedestal.

Next, the local-global method was applied to a pedestal-like equilibrium.

This was compared favourably to global gyrokinetic and MHD simula-

tions from previous work [17], which suggests that the local-global method

is valid in this case down to surprisingly low toroidal mode numbers of

3 6 = 6 12 depending on the normalised Larmor radius. Simple corrective

modelswere developed to capture global and diamagnetic effects, and these

were shown to give a good approximation to the local-global results. The

utility of thesemodelswasdemonstrated in anEPED-like calculation,which

suggests that global and diamagnetic corrections can potentially have a sig-

nificant impact on the ELM prediction of EPED-like models, depending on

the peeling-ballooning constraint. Therefore, future EPED-like calculations
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should consider the impact of global and diamagnetic effects, which can be

done using the method presented in this thesis. Future work may wish to

develop a more general model for these corrections, where the fit param-

eters that were found empirically here are derived from first principles if

possible, or are otherwise measured from a broader range of equilibria and

reduced to a response surface for fast correction.

This thesis has also developed a method to measure the nonlinear transfer

of energy from turbulence to zonal flows, which has been successfully ap-

plied to nonlinear gyrokinetic zonal flow simulations. This has, for the first

time, demonstrated the mechanism underlying the predator-prey model

(namely, the nonlinear transfer of energy from turbulence to zonal flows)

through observations of a limit cycle oscillation type response in the zonal

flow dominated (marginally turbulent) case. Also for the first time, this has

shown clear and direct evidence of zonal flows being driven by the direct

transfer of energy from a broad range of turbulence. Finally, this has also

revealed, for the first time, the poloidal structure of zonal flow drive, which

is peaked on the outboard side and is correlated with but not proportional

to the turbulent activity level. This is an important result for zonal flow

experiments to relate the small measured region to the plasma behaviour

outside that region. Future work may wish to apply the transfer function

method from this thesis to simulations using experimental equilibria and

correlate with experimental measurements provide observational evidence

of zonal flows.
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Appendix A

The Fourier-Ballooning

Representation

To derive the Fourier-ballooning representation, we first substitute the bal-

looning representation (Equation (18)) into the ballooning transform (Equa-

tion (15)) to obtain:

)(G, �) =
∑
<

∫ +∞

−∞
)̂0(�; G) exp[8<(� − �)] exp[−8=@′G(� − �0)]d� (102)

Next, for convenience, we assume that the G and � dependencies of )̂0 are

separable31, i.e. )̂0(�; G) → (G))̂0(�). Then, taking the factors independent

of � and < outside the integral and summation gives:

)(G, �) = (G) exp[8=@′G�0]∑
<

∫ +∞

−∞
)̂0(�) exp[8<(� − �)] exp[−8=@′G�]d�

(103)

31This assumption is valid since these dependencies vary on different length scales

182



The summation and integral is of the same form as Equation (15), so Equa-

tion (103) can be written as:

)(G, �) = (G))̂0(�) exp[−8=@′G(� − �0)] (104)

Next, we represent (G) by its Fourier transform:

(G) = 1

2�

∫ +∞

−∞
�̂(:G0) exp[8:G0G]d:G0 (105)

where :G0 is the radial wavenumber at � = 0 given by :G0 = −=@′�0 (Equa-

tion (34)),which allows Equation (105) to bewritten in terms of �0 as follows:

(G) = 1

2�

∫ +∞

−∞
�̂(−=@′�0) exp[8=@′G�0]=@′d�0 (106)

For convenience, we re-define �̂(−=@′�0) as just a function of �0 (since −=

and @′ on the reference surface are constants), absorb the
1

2� and =@′ factors

into that definition, and split the result into two separate functions so that

one of themmay be prescribed, i.e.
1

2�=@
′�̂(−=@′�0) → �̌(�0) → �(�0)�(�0),

to write:

(G) =
∫ +∞

−∞
�(�0)�(�0) exp[8=@′G�0]d�0 (107)

For convenience and consistency with previous work [39, 55], we prescribe

�(�0) = exp[−8=(@0� + @′G�0)], where @0 = @(G = 0), so that we have the

Fourier-ballooning representation (Equation (24)):

)(G, �) =
∫ +∞

−∞
)̂0(�; G, �0) exp[−8=((@0 + @′G)� − @′G�0)]�(�0)d�0
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Appendix B

Linear Convergence

The JET equilibrium used in Chapter 4 was tested for numerical conver-

gence and was found to be suitably converged. Convergence test results for

timestep (delt), energy grid resolution (negrid), pitch angle grid resolution

(ngauss), and parallel grid resolution (ntheta) are shown in Figures 52 to

55 respectively. These all show clear convergence. The test of parallel grid

extent (nperiod) was less clearly converged, as shown in Figure 56, so the

local mode structures, )̂0(�), were also checked. These comfortably meet

the requirement that )̂0(�) → 0 as |�| → ∞with nperiod = 4, as shown in

Figure 57, hence this value was used. The converged numerical parameters

listed in Table 5 were used for the simulations reported in Chapter 4.

The CBC setup is based on that previously reported in [29], hence relies on

the convergence tests reported there. The newMiller representation is com-

pared to the previous B- results as a benchmark in Figure 58. This shows

that the results are suitably similar such that we can rely on the convergence

tests reported previously. The differences are due to the different geometry

models used and do not affect the conclusions of Chapter 4.
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1.6

1.8

γ 0
/v

th
/L

re
f

η0=0.0

0.20

0.25

0.30

γ 0
/v

th
/L

re
f

η0=0.1

101

negrid

1.2

1.3

ω
0
/v

th
/L

re
f

101

negrid

0.6

0.8

ω
0
/v

th
/L

re
f

Figure 53: Convergence of the JET equilibrium with negrid
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Parameter Value

delt 0.005

negrid 16

ngauss 8

ntheta 32

nperiod 4

Table 5: Converged numerical parameters used for the JET simulations in

Chapter 4
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Appendix C

Measuring Frequency and

Growth Rate, and Tracking

Sub-dominant Modes with GS2

The GS2 initial value (IV) solver reports (amongst other data) the frequency

($0), growth rate (�0) andmode structure ()̂0(�)) of themost unstablemode.

However, more reliable $0 and �0 results are obtained using the method

described in [29], which is, in brief:

• �0 is obtained by fitting a straight line to the natural logarithm of the

flux tube volume averaged squared magnitude of the electrostatic po-

tential fluctuation, ln

[〈
|)̂0 |2

〉
+

]
, as a function of time, C, and dividing

the gradient by two since )̂0 ∼ exp[8Ω0C]where Ω0 = $0 + 8�0.

• $0 is obtained by fitting a constant to the final 20% of the GS2 $0(C)

data.

The GS2 eigensolver is used to obtain $0, �0 and )̂0(�) of sub-dominant

modes. Eigensolver results use the reported $0 and �0 data directly.
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The CBC setup reported in Chapter 4 was run using the GS2 eigensolver

small step method described in [29], which is, in brief:

• Run the IV solver at �0 = 0 to get a preliminary measure of the

frequency and growth rate.

• Re-run �0 = 0 using the eigensolver to get the eigensolver $0, �0 and

)̂0(�).

• Run the next simulation with a small step in �0 ∼ �/60 using the

previously obtained $0 and �0 as a starting point in the search for

a solution, since the actual solution will be similar due to the small

step in �0. This offers improved performance compared to taking large

steps in �0 thanks to the eigensolver starting near to the solution and

thus finding the actual solution very quickly.

In addition, the following improvements to the above method were devel-

oped as part of the work presented in this thesis:

• Rather than using the previous $0 and �0, the previous two values

were used (from the third point onward) to perform a linear extrap-

olation to obtain more accurate starting values, as this was found

to improve the tracking of sub-dominant modes. Extrapolation past

marginal stability with a larger step was also tested to improve track-

ing of sub-dominant modes near marginal stability, although this was

only sometimes beneficial so was only used as required.

• Aswell as starting from extrapolated$0 and �0 values, the eigensolver

runs were also started from the previous mode structure to further

improve run-times.

• The previous version of the method was also coupled in the radial di-

rection. However, this was found to be unnecessary, sowas eliminated

to improve parallelisability.
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Appendix D

Nonlinear Convergence

Figure 59 shows the local linear frequency and growth rate as functions of

binormal wavenumber, and the mode structure of the most unstable mode.

These results are consistentwith ITGs and are in qualitative agreementwith

previously published work [28].

Figure 60 shows that the effect of the adiabatic electron model is significant,

resulting in a change in growth rate by a factor ∼ 2. However, running non-

linear simulations with kinetic ions and kinetic electrons is computationally

expensive. Therefore, as a simple first case, the simulations presented in

Chapter 6 use the adiabatic electron model.

Figure 61 shows that the nonlinear setup is converged with respect to the

baseline values of delt, negrid and ngauss, while ntheta = 64was required

for numerical stability.

Figure 62 shows that the number of points in the :G direction, nx = 64, was

converged, but in the :H direction, ny = 128 was required for numerical

stability.
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Figure 59: Local linear (a) frequency and (b) growth rate as functions of

binormal wavenumber, :H , and (c) mode structure of the most unstable

mode (corresponding to the vertical line in (a) and (b)). The solid line

indicates where ITGs have been captured reliably, while the dotted line

indicates where the simulations have switched to a different mode.

The cfl parameter controls when GS2 will change the timestep to avoid

violating the Courant-Friedrichs-Lewy (CFL) condition, with a higher cfl

value resulting in a larger safety margin. cfl = 1.5 exhibited improved

numerical stability and computational performance over the baseline value

of 0.1, so 1.5 was used for the nonlinear simulations presented in Chapter 6.

Figure 63 shows that the nonlinear results are statistically insensitive to

collisions. Furthermore, this test showed that the collisionless casewas faster

(computationally) than the collisional case by a factor of ∼ 2.3. Therefore,

the nonlinear simulations reported in Chapter 6 are collisionless.

192



0.0 0.5 1.0 1.5 2.0
kyρref

−0.5

0.0

0.5

ω
0
/v

th
/L

re
f

(a)

adiabatic
kinetic

0.0 0.5 1.0 1.5 2.0
kyρref

0.00

0.05

0.10

0.15

γ 0
/v

th
/L

re
f

(b)
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binormal wavenumber, :H , for adiabatic and kinetic electron models
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Figure 61: Nonlinear volume-averaged spectral energy density of the elec-

trostatic potential fluctuation field,

〈
|)̂0 |2
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+
, as a function of time, C, for

various values of the GS2 numerical parameters

Figure 64 shows that the nonlinear results are statistically insensitive to

the hyper-diffusion coefficient, �, for the values tested. Furthermore, this

test showed that the � = 10
−2

case was marginally faster (speedup of ∼
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Figure 62: (a) Nonlinear volume-averaged spectral energy density of the

electrostatic potential fluctuation field,

〈
|)̂0 |2

〉
+
, as a function of time, C, for

two different wavenumber grid resolutions; and (b) and (c) the correspond-

ing spectral energy density spectra averaged over C & 200!ref/Eth and all �

1.03 compared to the other cases). Therefore, � = 10
−2

was used for the

nonlinear simulations reported in Chapter 6.

Figure 65 shows that the nonlinear results are converged with respect to

wavenumber range for :H,max�ref = 1.5 and 2.0 but not for :H,max�ref = 1.0.

Since :H,max�ref = 1.5 also maximises :H resolution for a given number of :H

grid points compared to :H,max�ref = 2.0, the range used for the nonlinear

simulations presented in Chapter 6 is 0.0 6 :H�ref 6 1.5.

The final set of converged parameters are listed in Table 6.
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simulations with various :H ranges (for the same number of :H points,

hence various :H resolutions)

Parameter Reference value for

convergence tests

Value used in nonlinear

simulations

delt 0.2 0.2

nperiod 1 1

negrid 16 16

ngauss 2 2

ntheta 32 64

nx 64 64

ny 64 128

:H,max�ref 1.0 1.5

cfl 0.1 1.5

d_hyper 10
−4

10
−2

Table 6: Numerical parameter values
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Appendix E

Transfer Function Program

To address the computational challenges of evaluating NETFs, a program

[4] was written in Python that includes the following features:

• Selective loading and use of function scope for memory performance

• Pre-calculation of leading :-factors to avoid repeated calculations

• Re-ordering of arrays to maximise cache performance

• Use of NumPy array broadcasting for performance

• Transfer function spectra time-averaging parallelised in time

• Transfer into zonal flows as a function of poloidal angle,�, parallelised

in � (time-averaged or a function of C as required)

• Bi-coherence spectra or summed bi-coherence is also available (where

bi-coherence is a measure of the phase coupling, obtained by effec-

tively dividing the transfer function’s triple product by itsmagnitude).

This was investigated but the results did not reveal anything beyond

that available from the transfer functions, so were not reported.
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