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ABSTRACT 
This research is in threat analysis and countermeasures employing Artificial Intelligence (AI) 

methods within the civilian domain, where safety and mission-critical aspects are essential.  AI has 

challenges of repeatable determinism and decision explanation.  This research proposed methods for 

dense and convolutional networks that provided repeatable determinism.  In dense networks, the 

proposed alternative method had an equal performance with more structured learnt weights.  The 

proposed method also had earlier learning and higher accuracy in the Convolutional networks.  When 

demonstrated in colour image classification, the accuracy improved in the first epoch to 67%, from 

29% in the existing scheme.  Examined in transferred learning with the Fast Sign Gradient Method 

(FSGM) as an analytical method to control distortion of dissimilarity, a finding was that the proposed 

method had more significant retention of the learnt model, with 31% accuracy instead of 9%.  The 

research also proposed a threat analysis method with set-mappings and first principle analytical steps 

applied to a Symbolic AI method using an algebraic expert system with virtualized neurons.  The 

neural expert system method demonstrated the infilling of parameters by calculating beamwidths with 

variations in the uncertainty of the antenna type.  When combined with a proposed formula extraction 

method, it provides the potential for machine learning of new rules as a Neuro-Symbolic AI method.  

The proposed method uses extra weights allocated to neuron input value ranges as activation 

strengths.  The method simplifies the learnt representation reducing model depth, thus with less 

significant dropout potential.  Finally, an image classification method for emitter identification is 

proposed with a synthetic dataset generation method and shows the accurate identification between 

fourteen radar emission modes with high ambiguity between them (and achieved 99.8% accuracy).  

That method would be a mechanism to recognize non-threat civil radars aimed at threat alert when 

deviations from those civilian emitters are detected.  
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1 Chapter 1 

INTRODUCTION 

The chapter describes an overview of the research, its background, motivations, and applications, 

followed by the contributions made.    Several papers published during the research are referred to in 

further chapters within their discussions. 

1.1 Background 

An area of study is Cyber and Electronic Warfare (EW) brought together in the Cyber and 

Electromagnetic Activities (CEMA) doctrine [1], in which CEMA brought EW together with Cyber 

[2] in coordination.  CEMA is a cyber modernization of EW, from the collection and analysis to 

reprogramming into Information Warfare (IW) [3].  Although some might argue that if Alan Turing's 

Turing Test [4] was to be a successful electronic deception of a human, then EW has been around as 

long as there was a notion that deception in the electronic means was viable.  Logically EW can be 

considered as old as electronic engineering itself.  One of the first recorded uses of EW was during the 

American Civil War (1861-1865), when Confederate soldiers attacked and interfered with the 

telegraph system by providing falsified messages [5].  However, CEMA's cyber evolution has led to 

the incorporation of computers and networks such as C4I (Command, Control, Communications, 

Computers, and Intelligence) [6] and the collection, processing, analysis, manipulation, and 

exploitation of large amounts of information.  C4I applications have used Knowledge Graphs (KG) 

and Machine Learning (ML) methods, but there are still challenges with information de-biasing [7].  

C4I has adapted and evolved to C5I (Command, Control, Communications, Computers, Cyber, and 

Intelligence) with the inclusion of 'Cyber' [8], and a further challenge for C5I and CEMA is creating 

understanding from information that an opponent may present to conceal that understanding.  

Furthermore, as a step towards that challenge: an example in modern computing approaches with 

Artificial Intelligence (AI) uses sentiment analysis to reveal natural language understanding of human 

opinions [9].  With concern to unattended cyber systems, a paper by Petrovski et al. [10] proposed 

viability within a framework in applying ML in an aerial traffic surveillance system for anomaly and 

characterization of driving behaviours, establishing situation awareness.  Thus the application of AI to 

CEMA and Information Warfare is inevitable and becomes even more appropriate for research as AI 

evolves toward the challenges of Artificial General Intelligence (AGI) [11]. 

1.1.1 Motivation 

The broad motivation of the research is to apply AI techniques in EW, particularly in airborne and 

naval threat analysis applications [12], [13], where a method using a Bayesian Network (BN) has 

already been proposed [14], but as AI evolves research is required towards CEMA's Information 

Warfare using ML.  In particular to this research are AI techniques that can be validated and machine-

learnt for their applications to EW, threat analysis, and CEMA.  CEMA involves processing large 

amounts of geographical and virtual connected data such as social media personas to inform human 

decisions in real-time.  Currently, that real-time nature causes the pre-processing of data to meet that 

decision's deadline.  AI methods offer a proposition to aid in formulating a decision, offer a decision-

making aid, or offer potential live real-time optimal machine decisions.  CEMA also has a safety and 

mission-critical nature, and some areas of AI lack proof, particularly in neural ML approaches.  A 

challenge of CEMA is to decide to cause an action quickly using potentially large amounts of data; 

thus, the timeline can be critical for a Data to Decision (D2D) [15]. 

1.1.2 Application Area 

The research area concerns threat analysis to countermeasure tactics in the civil domain, where 

civil aircraft and shipping may be engaged in error.  In this area, the timeline is still short, as in the 

military domain, as the engagement from an aggressive threat has already potentially begun.  

Furthermore, a penalty for the D2D quality in the civilian domain is much less available data.  In the 

civil domain, there is a lack of threat analysis and threat detection, countermeasure tactics response 
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training, or any CEMA doctrine using secure data, and this forms a further penalty for decision 

making in that assistance to the civil domain.  An application would still need to reduce outcomes 

quickly to provide decision support and reduce information availability while being restricted to 

civilian sources.  This approach may require a network as a shared infrastructure, which might build 

upon future AI-equipped versions of Air Traffic Control (ATC) [16], [17] and marine Automatic 

Identification System (AIS) [18], [19] networks.  Where both of these networks have already been 

propositioned in research to use AI and could integrate into existing civil networks like Aircraft 

Communications Addressing and Reporting System (ACARS) [20], [21], [22], and Maritime Safety 

and Security Information System (MSSIS) [23], [24], [25], [26], which have also had proposals in 

research for AI incorporation.  Those shared networks may provide the communication backbone for 

a warning to avoid or aid the evasion and defeat of a threat in coordination using high endurance 

autonomous platforms as part of a Civilian CEMA-like doctrine, possibly as part of the Multi Domain 

Operation (MDO) approach [27], [28], [29], [30], [31], [32], [33], [34].  MDO is a step beyond the 

concept of Joint Operations (Army, Navy, Air force, and Marines) and reaches multi-domain both 

within and out with those forces (air, land, maritime, space, cyberspace) [35].  MDO has also 

employed some AI methods in decision-making assistance [36] and is stretching toward governmental 

and political constraints [37]. 

A civilian version of the MDO approach could be via a political agreement to avoid civilian 

accidence.  Although this research is not concerned with political standpoints or agreements, that 

possible implementation mechanism is suggested only to illustrate practicality.  This research is also 

not concerned with: latency, bandwidth, the number of access endpoints, or the specific data content 

of those existing or future civilian accessible networks.  The research is concerned with the challenge 

of AI methods such that they are hardened enough in proof to be reliable while assisting in threat 

detection and analysis towards intelligent countermeasure decisions.  The hardened proofs are more of 

a concern in the civil domain as flight and marine operators are litigation exposed [38], [39], and 

operators also need to be transparent in legal processes and accident investigations.  The legal 

standpoint for AI is urgent, as the UK Government predicts introducing driverless cars using AI in 

2022-2027 [40].  However, disregarding the legal law specifics, generally, in any system, some issues 

of safety surround: build quality verification, making a validated error prediction, and the limited data 

availability for low probability scenarios that can still be catastrophic, although some development 

processes can seek to reduce these [41].  Thus AI methods need validated and verified predictions, but 

some methods in AI like ML are harder to verify, as the content is not readily understandable, 

particularly when high dimensional data is used [42].  Other more verifiable approaches like Symbolic 

AI are less able to machine-learn to adapt a solution outside of the original programming, causing the 

verification to be constrained to validate the use-cases expected originally [43]. 

1.1.2.1 Current Applications of AI Methods 

Classical AI methods (called ‘Symbolic AI’) have more acceptable proofs but traditionally lack 

direct ML capabilities [44].  In contrast to ML, ML methods have lacked human proof.  One of the 

reasons for that is the black box nature with instabilities of the solutions learnt, as they differ 

depending on a start condition and thus lack repeatable determinism [45], which complicates a black 

box understanding, as such neural approaches to ML can be performance measured by a prediction 

accuracy and loss that can differ between learning sessions [46].  Random numbers in the initial 

condition provide a diversity of initial numbers as a stochastic coverage and support Monte-Carlo 

estimation in an update [47].  Although this also impairs the analysis of the ML solutions as random 

numbers lack repeatable determinism.  However, some methods can reuse the same random numbers 

for repeatability, and others may use a start condition learnt or optimized from a dataset.  Random 

numbers are still prevalently used [48], [49], as they are not dataset tethered as a general case but also 

have stochastic and Monte-Carlo qualities in the diversity of the random initial condition numbers 

used. 

Nevertheless, individual random number sequences still affect a model’s accuracy and loss after 

learning, which is visible over regularisation, lacking repeatable determinism.  This research worked 

on substituting the random numbers form, which provides an alternative that is still not coupled to a 

dataset but is repeatable and deterministic, and removing an unintentional noise re-colourization 
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opportunity when the initializing noise combines with the noise in the dataset, confining the stochastic 

and Monte-Carlo qualities to the dataset, rather than including re-colourized noise in with the initial 

condition from the outset of learning.  The early traditional ‘Symbolic AI’ techniques provide a higher 

level of proof but have higher abstraction levels to the computer in symbolic graph data structure 

methods, and they involve human involvement for analytics and adaption.  More actively researched 

neural ML techniques provide machine adaption methods in complex networks with lower computer 

abstraction and less human involvement, but these are harder to verify.  Interest areas of the research 

are techniques that allow validation and verification from ML, or Symbolic AI methods with ML, 

within the subject areas of ‘Explainable AI’ and ‘Neuro-Symbolic AI.’ 

1.1.2.2 Application to the Case Study Area 

The CEMA doctrine has the full spectrum of complexity, and within it, EW is also a broad 

subject, so a particular focus is EW within the civilian domain.  This aspect is threat analysis with a 

view to countermeasure tactics.  Threat analysis analyzes possible threats, how they work, and how to 

counter them.  Threat analysis involves collections of observational evidence followed by technical 

analysis.  The formation of rules for discriminating threats and cataloguing are applied using 

empirical observational evidence and a body of knowledge.  These rules provide the indications for 

less discernible discriminating aspects from more observable evidence in the collections.  Although 

EW has an obvious military application, it also has a civil application.  It is necessary to protect civil 

assets operating near threats, sometimes unexpectedly, and in recent years those threats have caused 

losses.  Threat analysis begins with identifying a threat and extends toward deploying tactics and 

countermeasures.  Both threat analysis and countermeasures have some decision-making effects for 

safety-critical liabilities that must be respected, particularly in the civil domain, as legality and 

conformance to Air Traffic Control (ATC) and coast guard traffic rules are law requirements.  As 

such, for the central part, the location of the decision-making authority could be placed into their 

controlling hands so they can coordinate with other decisions for safety. 

1.1.2.3 Challenges of Applying Artificial Intelligence  

Threat analysis is traditionally a human task, which supports equipment programming, detecting 

and recognizing a threat, and taking action or providing a cue to guide a human operator.  Therefore, 

threat analysis is the preliminary analysis and takes time to complete and verify, making the adaption 

in response to unexpected changes outside of the initial analysis a problem.  So it follows that if threat 

analysis can be adaptive to unexpected changes in threat observations with the incorporation of ML, it 

can be beneficial to make a judgment informed by new observations.  As such, the ML needs to be 

verified to be safe and validated. 

AI is also a broad subject, and a focus area is neural ML.  So, the focus area within the research is 

for 'Safety-Critical AI with ML'.  Many AI techniques can provide either ML or Safety-Critical AI.  

This research focuses on AI techniques with either safety-critical AI or ML capabilities.  The two 

primary AI methods in this research are 'Symbolic-AI's Expert System' method and 'ML within the 

Neural Network methods'. 

Symbolic AI techniques have a long track record and have a human abstraction level closer to the 

human consciousness of reasoning (as higher-order cognition); thus, they are easier to certify but 

cannot learn autonomously.  ML techniques arguably have an abstraction level closer to the human 

subconscious (as lower-order cognition) but are harder to verify and validate.  However, an existing 

method by Melen, Sartori and Grazioli (2015) [50] aimed to adapt an 'expert system' through time-

evolving scenarios and graded the rule knowledge base for rule-selection bias changes over time using 

a BN.  This work was limited to grading existing rules in response to operational environment 

changes rather than learning new rules.  Conceptually, in this work, every possible rule would need to 

be in the knowledgebase to have an ML capability that is complete for unexpected experiences 

outside the original rule-based analysis. 

Symbolic AI techniques lost focus in research in the mid-1990s.  However, from the late-1990s, 

research advances in ML, firstly in speech and then image processing, began to reach closer to human 

performances on lower-order tasks like categorization and segmentation.  Arguably, this was also 

because the ML techniques did not require such high levels of abstraction from the problems they 
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were solving and did not require human analytical involvement to create the machine representation.  

Also, their data requirements coincided with accessibility to larger datasets and the means of 

processing them, making it more practical.  Furthermore, ML and Deep Networks (DN) advances 

were less certifiable as they had increased complexity in a node distributed form, with a subtle learnt 

model content that could pertain to the problem space or be an artefact of sampling in the dataset 

used.  A method by King, Jupe, and Taylor used ML in power distribution networks for Power Flow 

Management (PFM) [51], and this method avoided the safety-critical validation aspects by limiting its 

decisions to the selection of algorithms.  The safety-critical aspects were internal to those algorithms 

selected, and the neural network was limited to defining state-based changes between those 

algorithms.  Another method, by Ullah et al. [52], used Artificial Neural Networks (ANN) for 

lightning strike prediction in building design, but that method limited its safety-critical validation to 

be an advisory tool.  Within ANN, 'rule extraction' is an approach to understanding the learnt content 

of an ANN's generalization model.  ANN also has some challenges when using random initializations 

and causes variations in the learnt weights and biases each time when training the network, affecting 

the system's resultant accuracy.  That is to say, the initialization can cause problems for repeatable 

determinism and is visible over regularisation. 

1.2 Research Gap 

The ‘gap’ for this research was for an ML technique that can be verified and make an inference in 

new operating conditions or learn new operating behaviours but with safety-critical verification.  

Outside of threat analysis, ML with safety-critical certification has applications in other domains such 

as industrial processes, automotive, aircraft autonomy, and even legal liability in ‘smart cities.’ It may 

also assist in solving intractable problems by providing machine-learnt understanding.  The 

application area was EW threat analysis in the aviation and naval civil domains and accessed and 

incorporated AI techniques.  The aviation and naval domains are areas where automatic control and 

decision-making systems become autonomous.  Advances in control systems have led to autonomous 

‘unmanned flight control systems’ when flown in un-segregated airspace with civil piloted passenger 

aircraft.  Military conflicts and the increasing use of long-range Surface to Air Missile Systems 

(SAMs) that are mobile and formed into Integrated Air Defence Systems (IADS) creates larger 

exclusion areas as an Anti-Access Area Denial (A2/AD), with the likelihood that those military 

systems ‘pop-up’ closer to civilian systems.  The application of self-protection in the civil domain has 

a growing need; however, the civil domain has less access to detailed threat analysis information.  

Safety hardened AI approaches might protect civil domain systems.  Perhaps in avoidance, mainly if 

the threat systems are ‘unmanned’ and ‘autonomous.’  AI methods that can be validated and verified 

within ML could bridge to explainable AI, and those methods also have applications beyond the case 

study area.  Neuro-Symbolic AI is a research area where Symbolic AI and neuron methods combine 

to provide a verifiable approach to ML.  Neuro-Symbolic AI bridges an abstraction gap between 

higher and lower order cognition, with higher order cognition in tasks of Symbolic AI approaches and 

lower order cognition in tasks of neuron ML methods. 

1.2.1 Contributions 

A description of the research contributions made in the research dissertation is in the following 

subsections as research threads.  However, those research threads are also in greater detail in later 

chapters referencing the publications made. 

1.2.1.1 Non-Random Initialization for Repeatable Determinism in Neural Networks 

This research offered an alternative initialization state method for dense and convolutional neural 

networks with repeatable determinism while decoupling from the dataset used, making this 

initialization state a general case of initialization rather than coupled by dataset pre-training or pre-

sampling.  In dense layers, the weights after learning are more structured to the training dataset image, 

which is advantageous to rule extraction, as the structure has clustered areas of higher weight values, 

meaning it is more generalized prior to a formula extraction method's generalization phase.  In 

convolutional networks, there are benefits of earlier learning and higher accuracy.  Using the 

MTARSI2 [53] dataset of colour images of airplanes on runways, the first epoch difference in 

learning was 29.31% accuracy, which increased to 67.2% with the proposed method.  In further 
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examination, the convolutional method retained more knowledge in transferred learning in a test case 

than in the existing random scheme. 

1.2.1.2 Numerical Discrimination of a Neural Network 

A method using several weights for separated activation strength value ranges in each dendrite-

activation of a dense layer formed from a 'number line' input as a fourth data dimension after height 

width channels; provides a simplification of the weight network representation in a single layer.  A 

formula extraction method after backward chaining arrives at the weight values, and those weights 

map from the input to output form with distortions of compression and offsets that reveal the discrete 

mathematical operators between the input and outputs.  When reversing the operators in operation, a 

numerical function is exposed.  The input format allows a layer to represent complex logic in a single 

layer, thus lowering depth, where depth can cause weight values to have vanishing gradients. 

1.2.1.3 An Algebraic Expert System with a Neuron Method 

Presentation of a symbolic AI method towards a Neuro-Symbolic AI method, using algebraic 

rules, is composed of a computational graph that virtualizes nodes of every possible calculation 

permutation in a neuron structure from the rule base body of knowledge.  The method is modular and 

structured into input, hidden, and output layers of neurons with calculated Bayesian confidences, 

which then perfect better prediction estimates based on all the confidences in a histogram method and 

provide a confidence and certainty metric.  An advantage in explanation is that each node has a 

unique receptive field and is mutually exclusive in semantics rather than in a neural network method 

where the semantics are overlapped and spread over nodes. 

1.2.1.4 Synthetic Datasets, ELINT Disambiguate Method using Image Classification 

An ELINT dataset generator method is proposed and demonstrated within a further image 

creation definition for an image classification method.  This method helps compensate for the low 

availability of ELINT datasets, and an image format method used in classification achieves 99.8% 

accuracy in identification between 14 ambiguous civilian marine emitter radar modes.  It is achieved 

via a synthetic dataset creator using a radar emitter mark-up language specified in Backus-Naur form 

(BNF) and implemented as C4L embedded into TensorFlow.  The synthetic dataset creator has a high 

fidelity in data dimensionality, reflecting actual physics and propagation effects. 

1.2.1.5 Threat Analysis, Data Availability, the Onion of Protection and Response 

An alternative method to threat destruction of A2/AD IADS threats, with counters to threat 

system earlier in an 'extended kill chain' in an 'onion of protection' structure, is proposed.  That onion 

of protection maps the threat's kill chain intention and data availability.  This ELINT and threat 

analysis method provides a 'measured response' that preserves intelligence data from being 

unnecessarily exposed while organizing strengths, weaknesses, vulnerabilities, and opportunities into 

set-mappings for matches in a countermeasure tactic selection. 

1.2.1.6 New datasets 

A new synthetic dataset that contains the civil marine radar modes as images for image processing 

methods is available as (SD_CMRM_Iv1) [54].  Furthermore, the existing MTARSI dataset [55] was 

reclassified from the existing images into 42 categories, extended with additional images using data 

augmentation methods, and made available as MTARSI2 [53]. 

1.3 Dissertation Outline 

The dissertation is structured as follows: 

 Chapter 1: includes the background and contributions, 

 Chapter 2: is a literature review, 

 Chapter 3: is the conducted research with a methodology, 

 Chapter 4: is the first research theme for an EW Threat Analysis method, 

 Chapter 5: is the second research theme for an Expert Systems method, as a step toward 

Neuro-Symbolic AI, 

 Chapter 6: is the third research theme for a Formula Extraction method as a step toward 

Neuro-Symbolic AI, 
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 Chapter 7: is the fourth research theme for a Safety-Critical AI for neural methods and 

with transferred learning, 

 Chapter 8: is the fifth research theme for an image classification method for emitter 

identification using a synthetic dataset (SD_CMRM_Iv1) [54], 

 Chapter 9: is the summary and conclusions, 

 Chapter 10: is the bibliography,   

 Chapter 11: contains further information on the Synthetic Dataset Creation model that 

demonstrates the numerical fidelity in the dataset. 

The five research threads and reasoning for them are shown within the block diagram of chapters 

in Figure 1. 

 

FIGURE 1 CHAPTER BLOCK DIAGRAM WITH RESEARCH THREADS 

 

  



7 

 

2 Chapter 2 

LITERATURE REVIEW 

This chapter contains the supporting literature, including the literature on the application area. 

2.1 Cyber and Electromagnetic Activities (CEMA) Doctrine and AI 

CEMA doctrine included Cyber with EW within Information Warfare as the greater area of 

CEMA military doctrine and now subsumes EW and Cyber as an integrated and coordinated approach 

for Information Warfare.  EW and Cyber Operations are now overlapping components of the CEMA 

doctrine [56], shown in Figure 2. 

 

FIGURE 2 CEMA VENN DIAGRAM OF OVERLAPPING AREAS OF EW AND CYBER [56] 

The CEMA Venn diagram in Figure 2 shows the area of EW overlapping with Cyber Operations 

and CNO (Cyber Network Operations) but also shows the EW supporting threat analysis area of 

SIGINT (as SIGnals INTelligence) that overlaps with EW as ES (as Electronic Support) and with 

Cyber as CNE (Cyber Network Exploitation).  The fusion of EW and Cyber caused the SIGINT 

analysis to modernize and combine their approaches.  Cyber and EW combine into layers from real-

world geographical to virtual social connections via personas and identities as a combined intelligence 

product.  The SIGINT analysis area was one of the challenges within the CEMA doctrine and 

integrated the formal military processes and reporting within the sub-branches of ELINT (ELectronic 

INTelligence) and COMINT (COMmunications INTelligence) with the modern processing 

capabilities and complex network-protocol exploitation of Cyber from geographical to social layers.  

This enhanced SIGINT capability between EW and Cyber could thus support collaborative planning 

and operations coordination.  An additional advantage is that Cyber may also be less obvious and 

provide an ability to make a military effect that could be an alternative to the more obvious 

conventional and EW force effects, independently or in coordination. 

2.1.1 Electronic Warfare (EW) Modernisation 

There was also a modernization within EW, and Lambrechts and Sinha [57] define EW in the 

three branch divisions in Figure 3.  Although this is quite widely accepted, not all literature is 

updated.  This modern form subsumed the older definitions of ECM (Electronic Countermeasures), 

ECCM (Electronic Counter-Countermeasures), and ESM (Electronic Support Measures), which are 

within the more modern accepted divisions of Electronic Attack (EA), Electronic Protection (EP), and 

Electronic Support (ES) respectively.  As such, the boundary of EW extended beyond the older EW 
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division's definitions predominantly based on platform self-protection.  That boundary change of EW 

embraced the new scope of Information Warfare and is described in the book by Curtis Schleher [58]. 

 

FIGURE 3 HIERARCHICAL STRUCTURE OF EW DIVISIONS [57] 

The research application area is primarily within ES, intending to support EA against EP, and it 

allows threat detection and recognition to enable threat avoidance and countermeasures for platform 

protection.  The division of EP is concerned with threat system hardening as protection against 

countermeasures and may also involve EMCON (Emissions Control) and JRFL (Joint Restricted 

Frequency List); this is still relevant as it affects the element of surprise and the restricted operations 

of equipment.  When the CEMA doctrine combines with the application area, the Venn diagram areas 

in Figure 2 of EW, ES, and SIGINT are directly relevant to EW.  The area of CNE is also directly 

relevant, as the modern influence caused the SIGINT area to become multi-disciplinary between EW 

and Cyber with a view to coordination between them. 

2.1.2 Artificial Intelligence (AI) 

A breakdown of AI techniques and approaches is provided by Galbusera et al. in 2019 [59], 

depicted in Figure 4.  The breakdown of AI techniques has three main branch elements: Symbolic AI, 

Evolutionary Algorithms, and Machine Learning (ML). 

 

FIGURE 4 HIERARCHICAL STRUCTURE OF AI DIVISIONS [59] 

In this breakdown, "Symbolic AI" (also known as Classical AI) is concerned with explicit 

declarative human knowledge representation [60] and, as a consequence, has higher abstraction from 
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the computer but is closer to human understanding [61].  By contrast, "Machine Learning" (ML) has 

lower abstraction to the computer and greater abstraction to the human [62].  "Evolutionary 

Algorithms" (also referred to as EA, but not in this research because of the confusion with the EW 

division name) offer an evolution of a solution, of which solution permutations can be concurrent.  

Concerning the application area, the branches of Symbolic AI knowledge representations, 

evolutionary algorithms, and ML offered promise, particularly if the abstraction gaps between the 

computer and the human can be bridged between Symbolic AI and ML. 

2.2 EW Threat Analysis and Countermeasures with AI  

Applications of AI to countermeasures have increased in prominence, and the US Department of 

Defense's BLADE programme aims to synthesize countermeasures based on detecting and 

characterizing new radio threats [63].  BLADE has a similar theme to DARPA's ARC (Adaptive 

Radar Countermeasures) programme [64].  Also, the interest in this area has reached into 

development processes in commercial entities, such as MASS Consultants Ltd [65], and anticipated 

research and development for block upgrades to military equipment capabilities [66].  One 

representation for a countermeasure in a mark-up language was called C3L.  C3L is a public domain 

Open Architecture (OA) specification [67], [68].  C3L was also furthered as a Model-Driven 

Architecture (MDA) [69] in EW for EA and platform protection applications. 

2.2.1 Military and Civilian Domain Threat Crossover 

These approaches are in the military rather than the civil domain, but they show that the 

application of AI to EW is relevant in future capabilities.  The publications associated with these 

approaches do not refer to the critical safety aspects of the techniques used.  However, it is worth 

noting that the detailed technology in this area is not widely published owing to the security 

sensitivity.  Brigadier General Alexus Grynkewich, in his article in 2007 [70], points out that, over 

several years, the build-up of military capabilities in the Pacific, Europe, Syria, and Iran introduced 

Integrated Air Defence Systems (IADS) for so-called Anti-Access Area Denials (A2/AD).  Beyond 

Brigadier General Alexus Grynkewich's article on military concerns, military build-ups also represent 

a hazard to civil aviation, as in a Malaysian flight MH17 scenario over Ukraine in 2014 [71], or 

Iranian forces shooting down of Ukrainian flight PS752 over Tehran in 2020 [72].  More historically, 

the failure to coordinate military activities has also resulted in civilian losses, notably in the case of 

the unprotected British charted civilian freighter the SS Atlantic Conveyor during the Falklands war 

in 1982 [73].  The issue of civilian protection in the broader sense has been around for some time.  An 

article provides many examples of civilian harm, the difficulty for civilians to protect themselves, and 

even their deliberate targeting [74].  Brigadier General Alexus Grynkewich (now Lieutenant General 

and Combined Forces Air Component Commander of the United States Central Command Southwest 

Asia) proposes that the future strategy of airstrikes from stand-off aircraft may need to combine with 

more Information Warfare and Cyber approach concepts like Data-To-Decision (D2D). 

2.2.2 Research Gap in Civilian Domain Threat Analysis with AI 

The gap for this research within the application area was that the use of countermeasures is reliant 

on EW threat analysis results, with the challenges of inaccurate and missing data, and that those threat 

systems can also change and evolve with their reprogramming capabilities.  Thus ML that is safety-

critical could provide an adaption that protects against changes in threat tactics or surprise war modes 

in a package that may require minor or limited specific predetermined analysis.  Such an adaption 

may free civil domain applications from a dependency on specific classified data or restrictions in 

dissemination by making it less specific and more adaptable.  ML may apply to the civil domain but 

must be safety-critical and, as such, may need to be constrained and validate-able.  Moreover, 

Symbolic AI offers validation potential, given that the abstraction is closer to human understanding 

for validation and verification.  When combined with safety-critical ML, this offers an adaption to 

cope with missing or low-quality available data and focuses on the gaps between safety-critical ML 

methods and Symbolic AI methods that incorporate ML. 

2.3 Symbolic AI 

Symbolic AI is a classical approach used in tightly bounded problems; one example: was Deep 

Blue (chess computer) that in 1997 succeeded in winning a chess game against Garry Kasparov.  

Deep Blue used a brute force method to search within nodes, arguably an 'exhaustive' method rather 
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than an intelligent one, but demonstrated real-time computation against a human opponent's 

intelligence [75].  The Symbolic AI methods are still used, with natural language processing within 

chatbots [76].  In Bologna's paper for 'rule extraction' in convolutional networks, methods for natural 

language processing have also featured in ML methods for sentiment analysis [77].  The Symbolic AI 

methods have been a candidate in combination with neural networks [78], which this research also 

aims at.  Some examples are more readily humanly readable and use a declarative form, although that 

human may need to be an expert.  These methods contain high-level abstracted representations of 

knowledge and involve human analytics.  As NEURO-SYMBOLIC AI, symbolic AI, and neural 

networks are being brought closer [79]. 

2.3.1 Symbolic AI's Expert System 

An example of a Symbolic AI technique is the expert system known as ES (but this research 

avoids confusion with the EW division name).  Expert systems are an area where their applications 

have already been in systems with liability, such as medicine in the case of MYCIN and ELIZA [60], 

and military data fusion engines with 'imprecise' information by Rauch [80].  Vardaraju's paper [81] 

provided insights into AI when used as part of a development process.  An expert system method was 

also proposed for decision support as DEX (Decision EXpert) by Bohanec et al. [82].  The intriguing 

part of this Bohanec et al. paper is that it symbolically represents quantities (like Low High) rather 

than numerical values as inputs, connects nodes in a rule structure, but calls on unity functions to 

apply aggregate function values from connected inputs with more primary attributes, and seems closer 

to a computational graph.  Although the rules are if-clauses, that method has aggregation and 

abstraction levels in the symbols, where knowledge abstraction changes within the connected nodes.  

A paper by Voskoglou in 2014 measured uncertainty and used a fuzzy model for confidence from 

classroom experiments [83], and this is more from a human psychological approach, but then a paper 

by Johnson-Laird [84] experiments with logic flows from human mental reasoning in a human 

reasoning theory standpoint, but mapping to calculus and associations.  Johnson-Laird also pointed 

out that there is no clear distinction between deduction, induction, and abduction in human reasoning, 

which can be because of different sequenced orders of learning as background knowledge.  In 

relevance to this dissertation, abduction may serve as akin to the expert system's knowledgebase 

content permutations, deduction as the inference output from those widely accepted facts in that 

expert system knowledgebase, and induction: when based on experiences in ML, and is interesting 

because in safety-critical applications, the use of prior captured knowledge, like in an expert system, 

may have risks when that knowledge is added to by induction ML.  So it follows that when an expert 

system is to learn, it needs an ML technique and must be validated or cross-referenced from abduction 

evidence, with the deduction conclusions to have confidence.  That lack of extended abduction 

evidence was a deficiency which could be 'background knowledge' generalizations or perhaps 

'common-sense,' and could have been part of the fall of Symbolic AI, and so a paper by Cook et al. 

[85] looked at confidence validation for rules as being heuristic rules with results from a database 

with image and textual content in the application of data mining. 

2.3.1.1 Expert Systems and Explanation 

A more historical approach is the Barzilay et al. [86] method; that method was an explanation 

built upon Explainable Expert System (ESS) and Reconstructive EXplainer (REX).  The interest in 

this paper was the division of types of knowledge and that this forms a kind of inspiration that 

separates the domain-reasoning and communication knowledge, such that reused knowledge can be in 

knowledge compartments.  It also asserts the need for security tracking against unintentionally 

revealing evidence combinations as a human counterpart might.  These knowledge compartments can 

map onto the 'intelligence life cycle' [87] as a human reasoning pursuit in the application case-study 

subject area. 

2.3.1.2 Expert Systems with Adaption 

In a mission-critical role, a paper by Khalak et al. in 2005 [88] presented a multi-hypothesis 

method within the aerospace safety-critical system domain for a system in degradation.  Rauch [80] 

looked at the probability conversion of expert system rules to probability data fusion quantities with 

'imprecise' data.  In an adaptive function, a Bayesian statistical analytical method for expert systems 

was proposed in a paper by Spiegelhalter et al. [89] to update rule probabilities and update the initial 
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specified probability values from the diagnostic results from the dataset.  This method relies on prior 

analytics but includes a machine adaption element in optimization.  A paper by Melen et al. [50] 

proposed an expert system with a learning capability to cope with environmental changes, using a 

rule-base controlled by a BN for the rule selection weighting adaption.  The Melen et al. method was 

a weighting change of a BN for rule selection within the existing set of rules and conceptually would 

require every possible rule to be programmed for an arbitrary rule to be constructed.  Therefore, this 

method is constrained to the original prior analytic rules, which may have been the intention.  

However, both Spiegelhalter et al.'s and Melen et al.'s methods were closer to a ML capability, 

although this is a machine adaption capability, and in that respect, the Melen et al. method is more 

advanced as the adaption is 'on-the-fly.' 

2.3.1.3 Expert Systems and Machine Learning 

There has been much research in Symbolic AI and expert systems particularly, and from the early 

beginnings, it solved the validation problem by including an expert.  Furthermore, as the concept has 

developed, it brings statistical methods to confidence and provides, in some cases, multiple graded 

answers.  The concept has graded its own rules; however, it has not generated new rules or machine-

learnt them.  Most of the expert system research stopped in the mid-1990s, and in the late-1990s, 

other techniques in ML that were furthering successes gained prominence.  It may also be that 

Symbolic AI methods have a human understanding abstraction level far removed from accessible 

datasets that were becoming practical to process in ML.  The ML methods furthering successes had a 

lower abstraction to the datasets but were harder to verify and limited to advisory roles in lower-order 

cognitive tasks. 

2.3.1.4 Expert Systems Guard Equations and Random Forests 

The expert system might have gained an ML capability by incorporating the ‘random forest’ 

algorithm.  The random forest algorithm was proposed by Leo Breiman in 1999 [90].  The random 

forest is ensembles of trees rearranged through random parameter selection and sampling and then 

aggregated over those ensembles.  A subsequent analysis in 2012 of the random forest algorithm by 

Gérard Biau [91] concluded that the algorithm was tolerant to sparsity and was not reliant on the 

number of noise variables.  The expert system method interest is the rearrangement of decision trees, 

and decision tree rearrangement was also a subject within a paper by Shaikhina et al. [92].  However, 

rearrangement is not the learning of new rules but rather the grading and optimizing of their score 

through the rearrangement of precedence in those trees.  This research dissertation establishes that the 

‘guard equations’ in the rules provide a ‘valid’ set of rules for a possible machine-learnt component 

within an expert system.  The guard equations define which rules are valid for inclusion with the final 

aggregated prediction.  This approach allows decision trees to enhance the expert system rule 

knowledgebase from datasets and ML, rather than relying on the expert.  That may also offer further 

enhanced understanding of the knowledge from a review process to verify the rule trust.  An 

interpretation of this method is that it is an alternative approach to the Spiegelhalter et al. and Melen 

et al. approaches but uses random forests rather than rule probabilities with a BN.  Furthermore, that 

approach would offer the node guards’ building, not just their rearrangement or grading, thus having 

some ML content. 

2.3.2 Symbolic AI Summary 

The area of Symbolic AI saw a rise and fall in interest and was an approach to general intelligence 

at one time [60].  However, the issue was the 'common sense problem,' or that common knowledge 

can be required to complete an understanding in adaption outside of the problem space, and this is 

what Johnson-Laird [84] referred to as 'abduction,' as an inference generalization with a measure of 

doubt.  This idea conceptually made the knowledge required to extend outside the problem space, 

perhaps to an undefined boundary.  Combined with this, the symbolic declarative nature of the 

knowledge representation meant that learning background knowledge requires crossing knowledge 

boundaries between differing human declared knowledge representations in the problem spaces and 

the available data available to the machine.  Symbolic AI methods were overtaken in interest by ML 

methods, but some of those ML methods had safety certification issues.  The strength of the Symbolic 

AI approaches, such as the expert system method, is that it is constrained but can be verified and 

validated by a human expert.  Interest then emerged in Neuro-Symbolic AI, which seeks to combine 
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Symbolic AI with the ML neural network methods.  Therefore, the knowledge gap crossed the 

abstraction boundary, and Symbolic AI approaches may have stalled rather than fallen.  The Symbolic 

AI methods like expert systems offered a human-understandable form to be validated by an expert.  

Their high level of abstraction representation had difficulty bridging to the dataset and machine 

abstraction levels to allow the machine to learn directly. 

Nevertheless, they still offered a symbolic form for humans to verify within, and when the 

abstraction gap can be bridged or converted between them, the Symbolic AI methods offer 

representations closer to human consciousness and reasoning as a representation bridge to ML.  That 

then provides a mechanism for inductive-abductive learning (as an ML approach to a background 

knowledge rule of thumb mechanism in the context of Johnson-Laird) but is in a reviewable human 

communication form, which crosses the boundary between high order and low order cognitive 

techniques. 

2.4 Machine Learning (ML) and Safety-Critical AI 

From the late 1990s onwards, ML research re-invigorated in intensity, particularly in the speech 

and imagery domains.  However, a drawback of some of the non-evolutionary ML methods is the 

need for large datasets.  The learning process and underlying technology can create a model that may 

not have a realistic solution.  In some cases, other methods such as fuzzy logic and expert systems 

were proposed in safety-critical applications instead by Ernest et al., Freitas et al., Lawson et al. [93], 

[94], [95], for UAV simulated air combat and feasibility in unattended space missions.  Those papers 

did prove the demand for a solution for safety-critical applications.  However, methods and 

techniques within ML were still relevant for adaption when datasets are known to be incomplete and 

thus are part of the literature review towards the application area. 

2.4.1 Statistical Based Methods 

Often statistical methods are also part of other methods or as a prelude to other techniques and 

can relate to framing, sampling, cleaning, scaling, and treating outliers before: model development, 

evaluation, configuration, selection, presentation, and prediction [96].  The BN method has been 

applicable in classifiers of ML and is also called a belief network [97].  These are parameters and a 

symbolic graph structure called a Directed Acyclic Graph (DAG).  The DAG is used with parameters 

to express the joint probability interdependence of conditions towards inference predictions [98].  

Within ML, a BN can be combined with neural network methods with noisy priors while also 

measuring uncertainty [99].  The Naive Bayes classifier was an example of a supervised method as it 

relied on the pre-classification in the dataset to prime the future prediction, and a BN can be most 

effective when the input data is independent [100].  A paper by Amor et al. uses the Naive Bayes 

classifier compared to decision trees applied to intrusion detection with competitive results [101].  

The Bayesian theorem applied to a classification problem is in the form of Equation (1), where: the 

probability of the current hypothesis case assertion being true given event evidence is the likelihood 

of evidence x being ‘true’ given the current hypothesis case (c) assertion P(x|c), times the prior 

posterior probability of the hypothesis case P(c) assertion being ‘true,’ and then normalized to the 

probability evidence P(x).  The probability evidence is the combined cases of being ‘true’ and the case 

of being falsely ‘false.’ This normalization of probabilities through the prior’s multiplication and 

division of the evidence is a valuable attribute feature of Bayesian probabilities that maintains scaling 

in iterations of use while enhancing the probability accuracy over those iterations.  It so can provide a 

helpful scaling over a recursive node structure too.  The expression of Bayesian probability is: 

       
           

    
                              

                                 

                        
  . (1) 

The Markov Model is a reinforcement learning method that predicts a better future state based on 

the current state and uses observations as the experience of that current state to statistically select a 

transition to a better future state based on rewards using gradient descent.  It is highly applicable to 

gameplay and simulation, or anywhere there are sequences like speech and text [102].  However, in 

the basic form, it assumes that only the current state applies to that prediction, and an enhancement is 

the Hidden Markov Model using the Markov Chain to take sequences of hidden states into account in 

the prediction.  Manogaran et al., in 2018, applied the Bayesian Hidden Markov Model with Gaussian 

Mixture clustering to DNA change detection in comparison with other existing techniques and 
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showed effectiveness [103].  Methods have also been dynamic with a Markov Model under a 

Bayesian framework as in the heard immunity paper by Haeussler et al. [104] and offered 

computational efficiency over other traditional dynamic methods like Ordinary Differential Equations 

(ODE). 

2.4.1.1 Linear & Logistic Regression 

In supervised learning, 'linear regression' is shown in Equation (2) [105], of which when there is 

one parameter has a 'straight-line graph' like form, and is known as simple regression, but can extend 

to multiple parameters and when it is, is known as multiple regression.  Where x is the value input for 

prediction, applied to a prediction function y(x) using the calculated intercept point (interceptpoint) and 

a gradient (sloperate) given the value of x and also a de-sensitization penalization term 

(errorregularisation).  Linear regression calculates a sloped hyper-plane (gradient) from least squares as a 

prediction, with R
2
 and P values as correlation metrics and a parameter significance measure used in 

optimization.  By contrast, logistic regression [105] provides classifications between discrete value 

predictions in a curved slope between those predictions based on a likelihood measure (see Equation 

(3)).  These methods assume the input dataset parameters are independent, and parameter 

independence is a regularisation subject [106].  Although regression dates back to the late 19th 

century by Sir Francis Galton, the applications to ML are widely known today.  A novel modern 

application by Prosperi et al. in ML coupled regression to a rule-based expert system, offering an 

improvement to retrovirus prediction over the rule-based method alone [107].  Also, advances in 

hardware were presented in a paper by Sun et al. [108], with resistive memory (memristors) in linear 

and logistic regression performed in a single step by calculating the pseudo-inverse matrix of the data 

within the memory.  The expressions of linear regression and logistic regression are: 

                                                                             , and (2) 

                            
                                              

   
                                               . 

(3) 

Generalized Additive Models (GAM) [109] is a generation of generalized linear models [110], 

which combines 'additive models' as a smooth function.  The 'generalized linear model' allows a non-

normal distribution through an iterative update method of a link function.  Wood et al. [111] used this 

form in an 'electricity grid' load prediction application, and where the problem was intractable using 

the big data, the smooth terms provided 'penalized regression' with splines. 

2.4.1.2 Regularisation, Variance, and Bias 

Regularisation (or de-sensitization) is a method to avoid over-fitting the training dataset; it 

primarily attempts to reduce prediction variances while minimizing the data points' bias [112].  

Principally, this is why the regressions are straight line derived rather than fitted poly-lines, such that 

there is a remaining cost within learning that assumes optimization has not seen all the data, which 

minimizes the error in prediction [113], also true when fitting curves to data, this is still based on 

straight lines but within sliding windows.  However, the expression in 'loess-regression' prediction can 

still be parabolas in place of straight lines [114].  Within ML, a regression can offer a fit for 

prediction, but that fit may have deviations (or bias), which minimizes the bias to lower the variance 

between datasets, most notably between the training and validation datasets [115].  Linear regression 

requires that the dataset be as large as the dimensionality [116].  However, ridge regression [117] 

(also known as L2 regression) offers a solution to optimize sensitivity penalties, which is used in 

cross-validation and pertains to all the parameters.  Lasso regression (also called L1 regression) is 

very similar, although it allows a slope of zero (dropout sparsity) and reduces or removes the 

influence of parameters that do not correlate [118].  A hybrid that will minimize Lasso and Ridge 

regression as a combined method is called Elastic Net regression [119] and arguably reduces the 

requirement for independent parameters in regression.  Rauschenberger et al. provide an Elastic Net 

regression method with a stack-based combination of weights [120]. 

2.4.1.3 KNN, Hierarchical Clustering, and Classifiers  

Clustering is an area of unsupervised learning, and K Nearest Neighbour (KNN) [121] is a 

prediction based on a new sample's shortest Euclidean distance from pre-clustered data.  The pre-

clustering performed can be by K Mean Clustering, where the value of K comes from an elbow graph 
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of the change in the reduction in variance using different values of K.  That reduction in variance will 

change when the value of K passes beyond the smallest category's population.  KNN differs from 

Hierarchical Clustering [122], a dendrogram method for reordering for clustering based on paired 

similarity, but in the Hierarchical case uses the Euclidean distance between the values rather than their 

positions.  A hybrid between them in 2019 provides a Hierarchical K means clustering method by 

Nguyen et al. [123]. 

2.4.2 Support Vector Machines 

Support Vector Machines (SVM) are a soft margin classifier using an affine subspace hyper-plane 

with a search for kernel functions to select a support vector classifier function operated in a higher 

order of dimensionality.  That is to say; it uses a hyper-plane intersection with a set of distortion 

functions applied to the data to find an optimal classification boundary.  Chang and Lin [124] provide 

a library of SVMs as LIBSVM.  The SVM method is aimed at classification tasks and is tolerant to 

outliers and noise in the dataset, which is the reason for the 'soft margin' rather than a 'maxima 

margin.'  The technique works well with balanced datasets (as an equal number of each classification 

in the dataset).  However, Batuwita and Palade [125] proposed a fuzzy SVM supporting imbalanced 

datasets. 

2.4.3 Decision Trees and Random Forests 

Decision trees [126] can be readily humanly-understandable, although if unmanaged, quickly 

become complex, also where over-fitting may occur.  Constructing decision trees from datasets uses a 

process to solve node precedence to minimize impurity equality using metrics like Gini.  For 

information gain, that idea can be considered trading entropy (average logarithms of probabilities).  

That is to say, the decision tree node precedence in some arrangements has a more significant 

information-gain and thus lower entropy; this reduces the tree depth for most probabilistic 

combinations [127].  When applied to a dataset, over-fitting could occur if the method is exhaustive.  

So the introduction of stochastic sampling in bootstrapping and bagging, such that the rearrangement 

is more probabilistic combinations to a probabilistic sampling, with the application of the random 

forest algorithm as proposed by Leo Breiman in 1999 [90].  The random forest algorithm helps 

optimize without over-fitting the dataset, assuming that the dataset is incomplete in future predictions.  

Decision trees are also a helpful form that applies to the expert system method in the rule-base and 

raises the information gain for unseen data while reducing entropy and thus raising efficiency.  

Decision trees can be highbred to select between clusters as regression trees [128]; these regression 

nodes can be arrived at computationally by reducing the Sum of Squared Residuals (SSR) to set the 

node precedence and arrive at the thresholds, and this least squared residual is where the regression 

part of the name is derived. 

2.4.4 Artificial Neural Networks (ANN) 

Artificial Neural Networks (ANN) [129] can be an unsupervised learning technique, supervised 

learning, self-learning Crossbar Adaptive Array (CAA), and reinforcement methods too.  They come 

in the primary types: Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), 

Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM).  Dense layers can be 

feed-forward or recurrent depending on the network type, where feed-forward is typical at the output 

layer of a CNN, in layers of MLP, and non-recurrent networks.  A mixture of layer types is often 

used, separated by activation and pooling functions.  When the number of hidden layers is more than 

one, they are said to be 'Deep,' and a recent trend was for 'Deep Networks.'  In the area of dataset 

quality for neural networks and databases, a conference paper by Abdella et al. [130], although being 

an evolutionary algorithm method applied against an ML method, suggests: genetic algorithms for 

this application and finds that a Radial Basis Function (RBF) outperforms MLP networks in this 

application.  Also, the application of RBF in a neural network instead of the back-propagation method 

was proposed by Pratiwi et al. [131] a year later in 2015. 

2.4.4.1 Validation and Verification of ANN 

The challenge of developing mission-critical applications focuses on development methodologies 

addressed by Kurd et al. [132].  Some of this effort is as part of validation assistance, and a survey 

paper by Zhang [133] encourages further research.  Schumann et al. [134] also presented a method for 

a process with a validation and verification life cycle, and they define verification as correctness and 
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validation to refer to accuracy and efficiency.  When applied to the traditional definitions: validation 

being correctness of the customer requirement capture process and verification meeting software 

specification, it thus implies the customer needs are accuracy and efficiency, and the model's 

requirement for correctness.  Also, a paper by Hull et al. [135] looks at safety-critical application 

validation using an external testing tool and verifies number ranges with a statistical process to reduce 

test cases.  A critical need for neural networks is datasets, and a paper by Tan et al. [136] reduces 

dimensionality by optimizing neural network inputs. 

An example presented in the book: 'Hello World: How to be Human in the Age of the Machine' 

[137] of a model that provides high accuracy in classifying Wolfs and Husky.  Paradoxically, that 

model would be using the snowy background for the classification rather than the canine in the photo.  

Therefore, by Schumann et al.'s definition, this example would be a failure of verification rather than 

validation, but these validation and verification techniques may not highlight that error.  Nevertheless, 

there is another method in neural networks research, which is very pertinent to validation for mission 

and safety-critical applications, and that is the area of 'rule extraction.' 

2.4.4.2 Rule Extraction 

Bologna, GopiKrishna, and Hailesilassie [77], [138], [139] provide methods, surveys, and reviews 

of techniques using Rule Extraction.  A list in Table 1 is from Hailesilassie's survey paper. 

TABLE 1 

SUMMARY TABLE CONTAINED WITHIN A SURVEY PAPER BY HAILESILASSIE [139] 

Algorithm Used ANN type Algorithm Type Extracted Rule form 

DIFACONminer MLP Decompositional IF-THEN  

CRED MLP Decompositional Decision tree 

FERNN MLP Decompositional M-of-N ,IF-THEN 

KT MLP Decompositional IF-THEN  

Tsukimoto’s Algorithm MLP and RNN Decompositional IF-THEN 

TREPAN MLP Pedagogical M-of-N split, decision tree 

HYPINV MLP Pedagogical Hyperplane rule 

BIO-RE MLP Pedagogical Binary rule  

KDRuleEX MLP Pedagogical Decision tree 

RxREN MLP Pedagogical IF-THEN 

ANN-DT MLP Pedagogical Binary Decision tree  

RX MLP Eclectic IF-THEN  

Kahramanli & Allahverdi MLP Eclectic IF-THEN 

DeepRED DNN Decompositional IF-THEN 

A safety-critical AI approach for ML in rule extraction is a step towards explainable AI.  There 

are three main classifications of rule extraction approaches: decompositional, pedagogical, and 

eclectic.  The mainstream methods are IF-THEN rules, decision trees, M of N, Binary Rules, and 

hyper-planes.  According to Hailesilassie [139], the IF-THEN can be on a node by node basis, in 

typically a decompositional or eclectic classification.  The form ‘if and input then an output’ can also 

apply a threshold to the IF condition to generalize.  The ‘M out of N’ searches for Boolean 

expressions that may generalize and be used in decompositional and pedagogical methods and convert 

to IF-THEN rules.  Decision trees are the most widely used for ML and data mining, as stated by 

Hailesilassie [139], as it provides structure and can convert to binary rules, whereas the hyper-plane is 

a clustering method.  The pedagogical method provides structural insights from a black-box method, 

whereas the decompositional method creates detailed equations that are then generalized.  The 

mainstream methods are for either MLP or RNN types of a neural network, but DeepRed extends the 

CRED method for Perceptron layers into Deep Neural Networks (DNN).  GopiKrishna’s paper [138] 

approaches the review from a sensitivity analysis in a pedagogical form and an opaque model (black 

box).  Bologna [77], this method is for the convolutional network type and was published in April 

2019, showing that the area of rule extraction is active.  It applies to a textual sentiment analysis 

application in sub-networks propagated back to the input layer as the antecedent n-grams.  The n-

grams allowed an explanation for why the classifier worked well or badly, rather than a rule 
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explanation.  Thrun’s method [140] is from interval analysis and applies to a robot arm as a seemingly 

intractable problem, and this parallels EW threat analysis, where seemingly intractable problems and 

their solutions would need validation and verification. 

2.4.5 ANN Hyper-Parameter Optimisation 

The area of the configuration of hyper-parameters becomes relevant, not least the 'number of 

nodes' and 'learning rate,' and a paper by Baydin et al. proposed dynamically updating learning rate as 

part of the model optimization [141].  Also, a paper by Bergstra et al. [142] proposed random searches 

to find hyper-parameters in place of grid and manual forms.  Nevertheless, a later paper by Bergstra et 

al. [143] argues that random searches for setting hyper-parameters can be efficient but insufficient in 

Deep Belief Networks (DBN).  Probst et al. [144] looked at that problem regarding large scales for 

Deep Learning (DL) networks, with methods for estimating defaults and subsequent practical 

estimations.  See section 2.4.10 for Meta-Learning use. 

2.4.6 Repeatable Determinism 

When testing safety-critical systems, desirable qualities are repeatability, and their assertion 

results are deterministic.  An effect on this quality is the application of stochastic influences with 

random initialization states.  Practical experiments showed that resultant model accuracy has 

variances in learning sessions with differing stochastic influences, visible above regularisation.  

Research experiments in this dissertation highlighted the ‘shuffle algorithm’ as an area of interest, and 

an alternative may provide further repeatable determinism by avoiding random sequences.  

Loshchilov et al. [145] also looked at the shuffle algorithm from a speed and performance point of 

view, but this research dissertation interest was from a repeatable determinism viewpoint.  Misra et al. 

[146] is a related work, which reorders images rather than shuffles them, but is an unsupervised 

method and could conceptually be a technique for defining a sequence for a shuffle or indeed a ‘kill 

chain’ order in the application area.  Although in the Misra et al. paper, the area is imagery, feature 

extraction of another type might extract sequences of signals in a radio spectrum. 

2.4.7 Reducing Model and Dataset Sizes 

Srivastava et al. [147] suggest dropout to prevent over-fitting and enhance regularisation.  Zeiler 

et al. [148] method is statistical pooling for regularisation as an easy implementation method.  Hinton 

et al. [149], supporting material shows some useful visualizations of clustering from the MNIST 

dataset [150], and Lin, Chen, and Wang [151] demonstrate differences in alternative pre-training 

strategies of reducing dimensionality through deep and shallow encoders using stacked Restricted 

Boltzmann Machines (RBM).  Requiring smaller datasets is desirable in the application domain, as 

the datasets are often classified or hard to come by.  However, other approaches to dataset scarcity are 

transferred-learning, the Generative Adversarial Network (GAN) method, and synthetic dataset 

generation, which are discussed later in this chapter. 

2.4.8 Synthetic Dataset Generation 

Due to dataset availability, research can generate datasets that contain the same or similar 

dimensionality of a real dataset but be available and unclassified while also in a controlled 

environment.  The Master's degree thesis titled: 'Towards Synthetic Dataset Generation for Semantic 

Segmentation Network' [152] and paper [153] used synthetic datasets in the automotive domain, 

gained insights into unseen weather effects, and identified techniques for robust sampling for training.  

This method may provide unlikely observed scenarios inclusion to a dataset for training and the 

application area cover: war modes or increase dataset sizes for platform dynamics.  Synthetic datasets 

are available from graphic engines and libraries [154], impact sound models [155], and Natural 

Language Generation (NLG) [156].  Also, in maritime surveillance, synthetic environment models 

can be enhanced by providing datasets to provide increased realism for generated synthetic datasets, 

as per Abdellaoui, Hubbard, and Duncan [157].  Jordanov and Petrov [158] used a real dataset after 

cleaning and transformation to compare with human judgment in an emitter recognition application, 

but the accessibility to these datasets in the civil domain is not assured.  The dataset was also limited 

to the accuracy of the human judgments rather than the truth data as it can be in a synthetic dataset 

generator.  Meta-Sim by Kar et al. [159] can automatically synthesize labelled datasets that could 

support a Generative Adversarial Network (GAN) method as the generative model of that network in 

place of the traditional generative neural method. 
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2.4.9 Generative Adversarial Network (GAN) 

When datasets are available, they can be limited in the application area, thus building on the 

synthetic dataset generation and converting to a generative model trained through a GAN method.  

Such techniques have been used successfully in the imagery domain [160], and improvements are 

using style-based transfers by Karras et al. [161].  A paper by Yao et al. [162] applied it to underwater 

acoustic communication signals for classification purposes and found it gains a better accuracy than 

deep convolutional neural networks (CNN), but also without the need for detailed signal processing 

knowledge.  Also, a paper by Zhang et al. [163] applied the GAN method to radar imagery, and that 

research improved a generative model's representation while providing a larger dataset.  Such datasets 

can then be used for ML and be subject to transferred learning.  More generally, the GAN method 

proposed in 2014 by Goodfellow et al. [164] had an optimization objective in Equation (4): 

min

 

max

  
                                                                     . (4) 

G is the Generator with data Pz(z), and D is the Discriminator with data Pdata(x).  Thus the 

optimization is the expectation, i.e., with noise removed from the Generator and Discriminator and 

moving in different directions using the 1-D(G(z)) in the second term, toward a global goal of 

minimizing the Generator and maximizing the Discriminator, and that is like a 'minimax game' form; 

However, the Generator objective would be equal to -V(D, G) strictly in a 'minimax game.'  It is 

similar to the Noise Contrastive Estimation (NCE) and Maximum Likelihood Estimation (MLE) 

forms that use identical quantities, as pointed out by Goodfellow et al. in a separate comparison paper 

[165].  Both NCE and MLE forms use a model learnt and generator ratio in the update of the 

Discriminator.  However, the GAN method uses a neural network with updates with ascents and 

descents of V.  Because the GAN architecture of that network used an adversarial relationship 

between two networks, the objective is combined with the genuine data D(x) and generated data 

G(D(z)) which are labelled and as such is a supervised method.  Figure 5 illustrates a Deep 

Convolutional GAN (DCGAN) method in applying text to imagery from a survey paper by Esfahani 

et al. [166] reproduced from Reed et al. [167]. 

 

FIGURE 5 THE (DCGAN) ARCHITECTURAL METHOD [167] 

In an update, the discriminator optimizes first to maximize cost, ascend the gradient, and allow 

convergence before updating the generator.  The generator minimizes the cost as a gradient descend 

using only the G(D(z)) term, as the generator is independent of the discriminator.  Arguably, the D(x) 

term independence in the generator and the precedence in an update target the weakness in the 

generator by first optimizing the discriminator to be in advance of the generator.  Furthermore, the 

independence also allows the generator to form different solution attempts, as the optimization is 

partial to the discriminator's objective.  So another advantage is that the GAN method allows for more 

than one solution, and when compared with Mean Square Error (MSE), Lotter et al. [168] found that 

the GAN method could provide a more detailed prediction than the single solution methods like MSE. 

and that is because the GAN is not averaging to a single generalized case objective.  The 

discriminator update precedence leads to the generator's objective (being part of the discriminator), 

and the result is multi-modal (or has separated clusters of solutions).  The diversity of clustered 

solutions and their validity is where state-of-the-art currently lies.  It would appear that diversity 

hinges on this update precedence and the partial optimization objective of the generator.  The control 

of the generator's optimization is from the changing objectives of the discriminator, and the only part 
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of the objective is in the generator objectives, so it does not converge to a single solution in 

optimization.  However, diversity can suffer from mode collapse, and previous solutions can be lost or 

generalized.  An area of interest is increasing the number of generators per Hoang et al. [169], using 

dataset sampling to reduce mode collapse and increase diversity.  Diversity relates to latent space, 

where a latent variable can provide a smooth transition between two qualities of several solutions in 

ML [170].  Diversity from those solutions can be mapped and found via the Latent Dirichlet 

Allocation (LDA) algorithm [171].  LDA has been applied to imagery, text, and music to provide the 

latent space variables.  Thus diversity and validity in multi modes solutions is a topic of the current 

research [166], but the current research is also the area of high resolution.  If such solutions can be 

valid and diverse with proper high resolution, this offers dataset creation with valid diversity and 

could also be a subject in transferred learning to provide comprehensive general datasets for 

subsequent specialization adaption. 

2.4.9.1 Predictability Minimisation and GAN Methods Controversy 

There was some controversy between Ian Goodfellow and Juergen Schmidhuber.  Schmidhuber 

claims that Predictability Minimisation (PM) is related to the GAN method, and the GAN method is a 

'special case' of Artificial Curiosity (AC), of which both AC and PM methods predate the GAN 

method.  AC and PM methods are unsupervised reinforcement learning methods that play a minimax 

game between two networks, although, as pointed out by Schmidhuber, the conversion from data to 

encoding is inverse in the GAN method.  Also, the RNN method is present in the equivalent generator 

network in the AC and PM methods [172].  That, however, makes the optimization objective have 

different quantities than the GAN method; also, the tagging of real and generated datasets at the input 

to the discriminator makes it a supervised or self-supervised method. 

Nevertheless, considering the structure is inversely related, if the GAN discriminator provides 

rewards, it could view it as a reinforcement method, but that similarity would relate to any 

reinforcement method between two networks.  Furthermore, the GAN method explicitly tags data 

between natural and synthetic datasets.  It views the overall objective as optimization rather than 

reward.  Hence, the update is also different as the GAN method's real data D(x) and generated data 

G(D(z)) makes tagged distinctions, where the discriminator is in advance of the generator and has a 

partial objective in the generator, making it an impure minimax game.  Whereas the AC and PM 

methods update predictions insight of rewards in a pure minimax game, the generator is in advance of 

the discriminator.  That difference in update precedence and partial objective in the generator makes 

an essential difference to the two methods, as AC and MP are creatively generating for the 

discriminator judgment. 

In contrast, the GAN method improves judgment to limit creativity, which arguably targets 

weakness.  It may also be that the GAN method's generator being in a lag of the discriminator 

provides guided diversity as the generator converges insight of differing directions from the 

discriminator.  That implies that, in GANs only, if there is differing sampling in several generators, 

increased diversity might occur, as per the findings of MGAN by Hoang et al. [169].  However, 

having several generators alone in the AC and PM methods may not have that effect, and arguably the 

equivalence might be to have several discriminators, and as such, the separated multi-mode solutions 

would be in different models.  Still, that may also require different dataset sampling to achieve 

different modal solutions and, as such, would become separated generator and discriminator pairings 

in the AC and PM case.  Schmidhuber argues that stochastically activating the encoders would re-

sample in different units, thus not relying on pairings. 

Nevertheless, the encoding conversion is inverse; thus, if they are related, they are opposites of 

each other, and the reinforcement of those two views is by Schmidhuber describing it as unsupervised 

and Goodfellow describing it as supervised.  Those views emerge from the tagging of data and 

precedence of updates with the notion of the start point in the block diagrams' chain.  Both methods 

differ in their approach.  Their objective and similarity are merely using two networks in a minimax 

game-like strategy, but the GAN method's precedence of update and partial objective in the 

generator's optimization courses a more considerable distinction than the similarity between them.  

Furthermore, arguably, the AC method is a step further toward general intelligence as it is 

unsupervised. 
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2.4.10 Transferred Learning and Meta-Learning 

Weiss et al. [173] and Tan et al. [174] provide surveys on Transferred Learning.  Closer to the 

application domain, Huang et al. [175] provide a paper on Transferred Learning for synthetic-aperture 

radar image target classification.  Furthermore, Zhu [176] used Transferred Learning with SVM for 

emitter recognition, which is very close to the application case-study area, and they used it for the 

same reasoning of the scarcity of datasets.  Meta-Learning, by contrast, is the learning of learning, and 

Hospedales et al. [177], provide classified algorithm designs in a survey of methods: Meta-Optimiser, 

Meta-Representations, Meta-Objectives, and also applications.  The neuro-evolution method [178] 

that GoogleAI used to learn network architectures through evolutionary algorithms is related. 

2.4.11 Model Architectures 

When considering model architectures, there have been significant developments.  Lecun et al. in 

1998 presented LeNet [179], which recognized handwritten numerical digits from black and white 

images.  In 2012 AlexNet [180] was similar to LeNet, but it was larger and introduced ReLU, 

Softmax, drop-out regularisation, and max-pooling; and was also implemented on GPUs.  AlexNet 

also won the ImageNet prize in image categorization of colour images.  The Visual Geometry Group 

(VGG) at Oxford launched VGG in 2014 [181], which was deeper instead of wider; it also added the 

concept of parameterized blocks of layers.  The extension in model size then led to the Network In 

Network (NIN) block [182] that used 1x1 convolutions instead of dense layers as an efficiency 

equivalence.  The diversity of architecture components and when to use them led to GoogLeNet 2014 

[183], which introduced the 'inception' block.  The Inception block used concatenated combinations of 

5x5, 3x3 convolutions, NIN, or multiple NIN blocks with max-pooling in parallel such that one of the 

parallel strategies would perform a benefit in the network, avoiding the block choice selection issue.  

In GoogLeNet version 3, 3x1 and 1x3 convolutions and later sequences of 1x7 or 7x1 convolutions 

provided column row sensitivity in those filters.  Due to deep network sizes, Batch Normalisation 

offered an efficiency using mini-batch averaging with a separate mean and covariance.  The Batch 

Normalization would turn out to have the effect of noise injection that would depend on the batch 

size, and as such, it can replace a drop-out layer role as a regularizer.  In 2015 ResNet by He et al. 

[184] used residual connections like a layer skip-link route in the architecture that approximated an 

identity function and was like a Taylor expansion, which led to experiments on where to place the 

batch normalization.  ResNext takes the ResNet partitioning into several channels and slices up the 

convolutions.  DenseNet by Huang et al. [185] extended the tailor series to higher orders for mixed 

resolution purposes.  By contrast, Squeeze Excite Net by Hu et al. [186] uses attention to focus on 

image locations with a global weight per channel.  In 2018 ShuffleNet by Zhang et al. [187] shuffles 

the convolution output from the channels.  MobileNet [188] would make separable convolutions 

within all channels. 

2.5 Evolutionary Algorithms and Case-Based Reasoning 

Evolutionary Algorithms [189] are stochastic search algorithms with heuristic optimization 

toward Genetic Algorithms (GA) and evolutionary programming [190]; they were also an inspiration 

from reproduction, mutation, inheritance, and selection in biological evolution [191].  Sometimes 

using metaheuristic (high-level partial search) methods [192] can yield a near-optimal solution in an 

adaption landscape, although it may not yield the optimal solution to the fitness landscape function 

[193].  That method also applies to intractable problems in parallel, but the solution may not be the 

only solution or fully optimal [194]. 

Case-Based Reasoning (CBR) is a step towards bridging Symbolic AI to ML [195]; it is primarily 

a memory-based method [196].  It is reasoning based on a previous similar experience of a case (or 

circumstance); as a generalization of similarity for adaption and experimentation to update the 

experience for a new generalization [197].  It can avoid high dependency on large prior organized 

datasets by constructing a generalization piecemeal from data exposed [198], and Low et al. present a 

multiple-retrieval method for incomplete datasets [199].  However, the performance by definition is 

more generalized when more problems are exposed.  The method retrieves generalizations, including 

reasoning, re-uses and adapts them, and makes revision predictions and retention as a new 

generalization.  It uses ensembles and stamps the definition of success or failure on the solution, and 

those solutions are variations.  The method uses K-Nearest Neighbour and the Euclidean distance 
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[200].  Li et al. [201] present a fusion of evolutional fuzzy-based case-based reasoning, and using 746 

publicly traded Taiwanese firms demonstrated an average accuracy of 92.36% in prediction; this 

supported experts' decisions.  Hence, as with neural methods, the safety criticality is at a level of 

advisory support.  CBR is a highly suitable method and may be forming a bridge between Symbolic 

AI and ML.  Although CBR depends on prior experience, the data required need not be significantly 

large, but by definition, the larger the data, the better the solution will be. 

When considered in the context of game-play with a platform-protection engagement software 

model, CBR and EA are quite well recognizable as practical solutions.  However, the novelty of that 

approach may be limited, not providing a noticeable scientific contribution within the context of the 

research dissertation, and could be closer to applied science.  The dissertation has chosen to research 

more novel methods in bridging Symbolic AI with ML, using a neural expert system combined with a 

formula extraction method, toward a higher potential for a contribution. 

2.6 Summary and the Applicability of AI Techniques 

The case study in EW threat analysis is in Electronic Support (ES) for analysis from collections, 

intending to support avoidance and Electronic Attacks (EA) and countermeasures, but also in the sight 

of the threat's own Electronic Protection (EP) hardening to those attacks.  AI into EW approaches is a 

subject area that is growing in interest [63], [64], [65], [66].  The EW subjects within ES are threat 

recognition and intercept analysis, identification, cataloguing, and discrimination.  Those may support 

countermeasure selection, tactic evolution, and optimization in forms that will reduce pre-analytics 

and increase adaption to new circumstances.  A gap in platform protection has seen losses in the civil 

domain [71], [72].  Partly due to the access to threats, secure data, and threat movements, but also 

because of the absence of threat warning and countermeasure equipment as well as the lack of data to 

program them, platform protection has become more urgent with an increased likelihood of operating 

near to extended range military systems.  High-ranking military stakeholders [70] have also identified 

that EW needs to incorporate more Information Warfare concepts from cyber like Data to Decision 

(D2D).  Some published representations are in the public domain as open architectures [68] [67], [69], 

and these are accessible in the civil domain.  The relevant areas of AI are Symbolic AI and ML.  It 

would appear that a gap between Symbolic AI and ML is the conversion of abstraction levels, and 

Symbolic AI provides benefits to validation review.  Others agree with this approach and are closer to 

a Neuro-Symbolic AI approach [60], [61].  When combined with ML, particularly neural methods, 

those methods need safety-critical hardening [202].  That critical safety hardening in neural methods 

may surround the issues of repeatable determinism and validation and verification.  In repeatable 

determinism, the area of initialization and shuffles were of interest, and the area of rule extraction 

provides a bridge from ML to Symbolic AI.  Symbolic AI is thus closer to validation and verification 

in a human reviewable form.  Symbolic AI comprises many techniques but has converged into more 

complex expert systems and chatbots.  However, Symbolic AI might represent a level of knowledge 

closer to a human consciousness level of reasoning and the neuron method at a sub-consciousness 

level.  A view of why Symbolic AI methods have stalled is the acquisition of background knowledge 

or extended abduction knowledge in the context of Johnson-Laird [84].  When combined, two 

methods that might provide an ML mechanism for Symbolic AI are the expert system and the random 

forest algorithm method [90].  The random forest algorithm could be applied from datasets to verify 

or establish guard equations in rules selection.  However, this may not be so far different from the 

methods of Spiegelhalter et al. [89] and Melen et al. [50] as an objective.  Although, the method could 

be applied in a different form and can be used to construct the node's logic boundaries as guard 

equations rather than rearrange or grade the hierarchical structure of nodes. 

Another approach is for mechanisms for establishing a standard format for knowledge in reuse, 

such that knowledge in other areas is compatible and aggregate-able.  That format may have 

restrictions in the representation at the outset and thus may not be free textual but algebraic.  

Mathematical algebraic forms may still have human review-ability as a human-to-computer analytic 

bridge, and this also relates closer to case-based reasoning and neuron methods, which are numerical 

representations.  Also, case-based reasoning may be a successor to expert systems, but it does not 

offer a humanly readable and reviewable form, thus not covering the human-computer abstraction 

gap.  Although piecemeal learning is attractive, other approaches like the GAN method may offer 
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more benefits with latent parameters.  The abstraction gap raised the interest in rule extraction 

methods in an algebraic form, with a consistent algebraic form also to be used in a Symbolic AI 

approach.  That would have applications to understanding intractable problems and provide a human 

reviewable form of a model solution, thus generating validate-able and reviewable rules.  That 

validate-able and reviewable form could also be a computationally compare-able form with existing 

compatible knowledge bridging the inducted abduction learning problem (as background knowledge 

acquisition).  Such a form can be applicable, such that there is less requirement of genuine dataset 

accessibility, although approaches to datasets, mainly synthesized datasets, is an area of interest, also 

adapted through GAN methods. 

The Bayesian method implies scaling in the iterative probabilities to the evidence and population 

and thus is extensible to problems that differ in populations of nodes, but Bayesian methods often 

require parameter independence.  Bayesian Hidden Markov Models may offer countermeasure states 

as a reinforcement learning model, although this may be applied science rather than a contribution.  

Data clustering techniques benefit classification, and the Elastic Net Regression has a role in 

establishing which represented parameters are significant to the discrimination.  The GAN method 

could apply to language parameter estimations using an accessible open architecture.  A compelling 

area is MGANs with multi-generators to increase multi-mode diversity [169], and multi-mode 

diversity could relate to multi-states as latent parameters of a threat's kill chain in the application area. 
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3 Chapter 3 

RESEARCH UNDERTAKEN 

The research undertaken is outlined in this chapter, considering the methodology for the methods 

developed. 

3.1 Research Threads 

There have been five research threads, which are: 

 EW Threat Analysis, Electronic Support to Countermeasures, 

 Neuro-Symbolic AI (Machine Learning Expert Systems and abstraction gap), 

 Numerical Discrimination with Formula Extraction, 

 Safety-Critical AI for Neural Approaches in Repeatable Determinism, 

 Synthetic Emitter Dataset Generation and ELINT classification. 

3.1.1 EW Threat Analysis Research 

The EW threat analysis for civilian applications proposes a novel method for programming non-

threats, as the data is more accessible in the civilian domain and defines alerts based on deviations 

from those civilian emitters.  It philosophically uses available data in an onion of protection where 

outer layers require less threat information and inner layers more.  It throttles the information 

requirement and reveals it by first using more accessible data.  That method also provided 

countermeasure design considerations that directly conflict with a threat's intention through the layers 

mapped to an extended kill chain.  That method also suggested diagramming and analysis methods 

based on first principle analysis with no prior knowledge.  This method is sceptical of the data as 

reliable and tests the data with the first principle analysis to reveal the capabilities of the information 

towards defining their intention within a threat or non-threat system. 

3.1.2 Neuro Symbolic AI Neuron-based Expert System 

Missing data and imbalanced datasets are issues for neuron methods; neuron methods are less 

palatable to Safety-Critical AI applications.  Expert Systems have been more accepted in applications 

closer to Safety-Critical AI but cannot learn new rules.  Neuron methods, in contrast, have a learning 

ability but have explanation problems.  The proposed method included virtualized neurons that map to 

individual input data and rule permutations and are semantically strong compared to a neuron method 

as the 'semantic' is over many neurons in the neuron methods.  The method provides certainty and 

confidence that can adapt to the data based on the confidence and fit the body of knowledge's scope in 

the expert system rules.  The method demonstrated is an EW threat analysis problem for antenna 

beamwidths.  The learning capability is from a Formula Extraction method forming a Neuro-

Symbolic AI method in the following research thread. 

3.1.3 Numerical Discrimination for Formula Extraction 

A neural network with an alternative input representation allowed more than one weight per 

activation and provided several weights for the activation's strength.  The weights in activation 

strength allow a more robust input value range for low values and define more complex logic in a 

single layer.  The method can also provide discriminating numerical operators deduced from the 

weights used in activation strengths.  The work further reduced the number of neurons showing that 

the weights alone provide the function representation within the network.  The formula operators 

extracted from weight relationships and the inputs can be reversed, revealing a hidden function, where 

this method's low loss and high accuracy are observations.  This method is towards learning a 

function and extracting it to be used with the previous research thread in expert systems as a formula 

rule and is allied to the algebraic representation within both methods. 
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3.1.4 Repeatable Determinism towards Safety-Critical AI 

An alternative non-random initialization state method was used to establish repeatable 

determinism in the neural methods, firstly in dense layers and then in convolutional layer methods.  

The latter used a method that demonstrated a better performance in image classification in both a test 

case and a challenging imbalanced colour image dataset of aircraft on runways.  The method of the 

initialization state was more predisposed to the application of image classification and invoked earlier 

learning with less unlearning of the initial state.  That work was also furthered with Transferred 

Learning using the FSGM method to provide a controlled distortion between that dataset as a control 

measure of dissimilarity, and the method was able to retain more of the original learning in that model 

and dataset. 

3.1.5 Synthetic Dataset Generation and Image Classification for Emitter Identification 

A synthetic dataset generator provided the (SD_CMRM_Iv1) [54] dataset and a machine learning 

framework with run-time programmable parameters to support future GAN work as a generative 

model.  An image format was defined using an ANN image classification method, and the synthetic 

dataset generator demonstrated in an emitter identification application scored highly at 99.8% 

accuracy. 

3.2 Methodology 

The Alan Bryman book [203] is handy when considering a research methodology considering 

quantitative and qualitative approaches.  These approaches are relevant to this research, as AI uses 

deductive, inductive, and transductive approaches, where the expert system method is a deductive 

reasoning approach, and the neural network method is an inductive reasoning approach.  Bryman 

defines the quantitative approach as deductive, and with the attributes of epistemologically orientated 

to positivism, and ontologically orientated to objectivism.  Bryman also defines the qualitative 

approach as inductive, with the attributes of epistemologically orientated to interpretivism, and 

ontologically orientated to constructivism.  That idea means it could consider the expert system 

method deductive, as it uses existing established knowledge in a quantitative approach.  Also, this is 

an objective approach as it has constrained the inputs and outputs in the rule-base, while those rules 

guide outputs as a positivist result.  By contrast, the neural network method is inductive and 

qualitative, wherein it constructs a generalized model that outputs results based on interpretation from 

known inputs and outputs to build new knowledge.  These research strategies are consistent with 

Aristotle and Sir Frances Bacon [204].  Also, Gill and Johnston [205] present 'deduction' as a theory 

tested through observation and present induction as observation to build a theory.  These ideas discuss 

the philosophical reasoning of the expert system and neural network methods toward Neuro-Symbolic 

AI.  Thus, that research looks at the current research output and the building blocks of two primary 

methods.  It is targeted towards a mixed-method, combining existing knowledge building blocks of 

neural networks, expert systems, and experiments for understanding new knowledge. 

3.2.1 Method 

The Neuro-Symbolic AI approach has interests in both neuron methods for ML (an inductive 

approach) and Symbolic AI in the form of an expert system (a human reviewable and deductive 

approach).  Therefore, it has both inductive and deductive techniques in the appreciation of the 

research area.  Aside from the research problem space, the methods applied to conduct the research 

also have these qualities as they will use those tools. 

3.2.2 Research Focus 

Forming the research questions focuses on tackling issues where their findings may better 

understand the best or most viable approaches for contributions.  The primary objective of this 

research is 'How can Machine Learning be applied in the mission and safety-critical field of EW 

threat analysis?'  That question immediately led to the questions: 'What Applications of EW threat 

analysis can these AI techniques apply to?' and 'How can Machine Learning approaches have 

verification and validation with safety or mission-critical assurances?'  A literature search showed 

growth in interest in this area, although it also identified that ML methods have challenges for 

certification and that Symbolic AI methods have challenges in ML.  However, a new area is emerging 

that is highly relevant called Neuro-Symbolic AI.  The area of Neuro-Symbolic AI led to the 

questions: 'How can Neuron approaches gain safety or mission-critical assurances?' and 'How can 
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Symbolic AI approaches perform machine learning?'  As such, Transferred Learning and ML methods 

are relevant. 

Figure 6 links the research questions to the research themes. 

 

FIGURE 6 RESEARCH QUESTIONS AND RESEARCH THEMES 

3.2.3 Main Methods of an Architecture 

An approach to the methods could be to train a neural network, then extract the formula rules 

from the weights and apply them to an expert system method as the rules, where the newly learnt rules 

combine with the existing knowledge.  This approach would be inductive and deductive, combined in 

a mixed-method, and arguably combining experience with knowledge.  Those methods rely on a 

common language of knowledge that is algebraic.  The neuron method with formula extraction will 

extract the body of knowledge for the expert system knowledge rules in a common algebraic form.  

These methods are data-driven, and a Synthetic Dataset Generator must provide the data source. 
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Figure 7 shows the research architecture linked to the application area problem. 

 

FIGURE 7 ARCHITECTURAL ORGANISATION OF RESEARCH THEMES 

In the case-study application, required research areas can be deductive (i.e., understandings from 

established knowledge).  Interest areas and gaps are deductive when combined with the literature 

review.  There are challenges, and as part of the case study, there is a scarcity of data characterized by 

sparse and imbalanced datasets.  Also, reducing the need for preliminary analysis could increase 

adaptability to environmental changes and coping with surprise.  The application area also has a 

critical safety aspect, and although neural network methods offer an ML approach, they have both 

review and repeatable determinism issues.  However, adding the application of a Symbolic AI 

approach to a neuron method aligns with the emerging research area of Neuro-Symbolic AI.  Also, 

dataset generation is of interest but predicated on its safety-critical foundation.  In the neural methods, 

the challenges were in repeatable determinism and are still in validation and verification; the literature 

review highlighted the area of rule extraction, addressed as formula extraction, although, in this case-

study area also needed to address repeatable determinism in terms of random influences used.  

Additionally, from the literature review of the Symbolic AI approach, the expert system method also 

provides a captured knowledge that is humanly reviewable. 
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4 Chapter 4 

EW THREAT ANALYSIS, ELECTRONIC SUPPORT 

TO COGNITIVE COUNTERMEASURES 

This research chapter focuses on EW and threat analysis within the application area with 

processes and procedures applied to AI methods.  There have been advances in threat technologies 

within the application area, and these technologies bring automation, autonomy, and faster response to 

threats.  Threat technologies are also including AI methods as well [206], [207], but combined with 

this, there is an evolution of Integrated Air Defence Systems (IADS), and those advancements have 

hypersonic engagements, increased range, higher reach geographically, and more abilities against 

stealth aircraft.  These problems focus commanders on combating these threats against Anti-Access 

Area Denial (A2AD), proposed with tactics prior to the launch and higher up the kill chain, with 

automation and adaption through ML. 

4.1 Platform Protection and Threat Analysis 

Designs of modern air and sea platforms include the integration of Command and Control (C2) 

and Defensive Aids Suites (DAS) in automation.  These systems are modular and built on Open 

Architectures (OA), which incorporate complex software systems in broader roles.  In the military 

domain, these systems rely upon mission data; without mission data, they can be less effective, as they 

depend upon it.  That mission data uses the initial threat analysis in operational support processes to 

develop countermeasure protection. 

Threat analysis is thus a sensitive and secretive process largely unpublished.  However, with the 

authorization of UK MOD, a paper was presented and published [C5
1
] at the Egyptian Military 

Technical College (MTC) in Cairo within their library and then later published in open access by the 

Institute of Physics (IOP) [J5
2
].  That paper introduced how threat analysis can prepare an 

understanding and how diagramming methods support that understanding in Modelling and 

Simulation (M & S).  Those diagramming methods support the analysis that can be synchronized and 

coordinated across platforms in cooperation, facilitating force protection. 

It can use a countermeasure description language as a mark-up language called C3L which can 

exchange and store countermeasures in a standard interface format.  The paper proposed an alternative 

to destructive military strike missions, and the general method is applied higher up an extended kill 

chain.  While also being structured into layers of an onion of protection mapped to a Venn diagram of 

countermeasure design intentions with different data needs.  As such, the model proposed makes a 

measured response preserving sensitive data while mapping those countermeasures to be a direct 

countermeasure to the threat's intention in every stage of the extended kill chain.  That extension of 

the kill chain also naturally embraces cyber approaches in the CEMA doctrine approach. 

Proposed with a similar approach to utilized civil shared networks that use AI methods in research 

for future systems, such as ATC [16], [17], AIS [18], [19], ACARS [21], [22], and MSSIS [24], [25], 

[26] networks.  These networks may also coordinate countermeasure effects from cooperating 

platforms to assist civilian protection.  Those shared networks thus provide a warning to avoid an 

engagement, evade the threat, or an attempt to defeat the weapon, as part of an MDO-like approach, 

but as a non-military force in coordination with dedicated standby capabilities, perhaps through 

deployment by a political agreement to avoid civilian losses.  Airstrikes are the traditional strategy for 

                                                      

1
 [Cn] Published conference papers are in a separate bibliography on page xv. 

2
 [Jn] Published journal articles are in a separate bibliography on page xv. 



28 

 

combating IADS but only apply in times of war.  This research, however, embraces the A2AD and 

IADS problem in more non-lethal strategies as an alternative and uses the EWOS (Electronic Warfare 

Operational Support) higher up the extended kill chain for air and sea protection at all levels of that 

extended kill chain simultaneously.  It is more applicable to the civil domain than military actions like 

the Suppression and Destruction of Enemy Air Defenses (SEAD/DEAD) as the alternative to that 

military strategy. 

4.1.1 Complex Platforms, Stakeholders, and Modernisations 

The 'projection of protection' requirement combines a diverse human stakeholder community.  

The communication strategies and analytical processes need to allow stakeholder types to contribute 

meaningfully to air and navy crews, mission production programmers, engineers, and scientists.  The 

communication strategies are a challenge such that the contribution can be complementary; as such, 

diagramming and processes used in the threat analysis need to aid this communication strategy in that 

community. 

Platforms and their threat weapon systems are increasingly more complex than their predecessors.  

These complexities increase relatively, and older platforms were already complex, but the pace of the 

complexity stretches as technology evolves with automation and autonomy.  This complexity increase 

is due to modernization, technologies, tactic evolution, a need to reduce human decision times in 

faster responses, and generally a higher required performance. 

Furthermore, threat platforms' roles are less confined and have broadened (as a role bandwidth).  

These evolutions use autonomous systems in the Integration of Air Defence Systems (IADS) and air 

and sea platforms with broader roles.  Autonomous platforms have developed toward unattended 

sensing and self-organizing cooperating systems in the Marine, Air, Land, Space, and Cyber domains.  

It follows that matching technology is required between the DAS and the integrated threat platforms, 

which requires threat data availability, and that is a challenge in the civil domain. 

4.1.2 Countermeasures, Threat Analysis, and Data Availability 

Figure 8 shows a Venn diagram of the data availability as 'Spheres of Influence' presented in the 

Master's degree thesis [69].  Those Spheres of Influence are the "Protected Platform/Force," the 

"Defensive Constraints," and the "Threat or Weapon System"; they overlap and overlay with 

countermeasure design considerations of Decreased Detect-ability, Deception, Distraction, Denial, 

Disruption, Destruction, Design Proving, and Decoy.  As stated in [69], it thus follows that the 

countermeasure considerations are coupled with the available data for the countermeasure tactic 

design.  As stated in [C5] and [J5], the countermeasure consideration of a countermeasure's design 

implies that different data is required. 

For example, when countermeasure considerations of Decreased Detect-Ability, Decoy, or 

Deception are in the design, the tactic can be more likely to use more protected platform/Force 

information and fewer data needs from the Threat or Weapon System and Defensive Constraints, as it 

is making a more attractive target and a less attractive Protected Platform or Force.  These 

countermeasure considerations are soft kill deceptions and stealth using the protected platform's data.  

Those countermeasures are more applicable to the civil domain where that data is available. 

When countermeasure considerations are Distraction, Denial, and Disruption and exploiting a 

weakness in the weapon system, fewer data can be available in the civil domain using more data from 

the weapon system. 

When a countermeasure consideration is Design Proving in a trial or a laboratory environment, 

then the countermeasure can be exploratory from empirical experiments for equipment readiness.   

Also countermeasures may not be releasable or employed via Defensive Constraints.  It follows 

that if the countermeasure considerations are Destruction and Disruption, then a restriction in use may 

also be implied from the Defensive Constraints. 
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FIGURE 8 SPHERES OF INFLUENCE AND CM DESIGN CONSIDERATIONS VENN DIAGRAM [69] 

Thus some kinds of countermeasures can reveal to an interceptor the detailed information 

available in the countermeasure design, for example, amplitude modulation timing or a frequency 

deviation.  Knowledge of this can be used in EP by the threat.  The countermeasure considerations in 

the design intention map to the information available, the onion of protection layers can also map to 

the countermeasure design considerations reserving that information to the inner layers and further 

along the kill chain.  The threat's kill chain stages map to the onion of protection layers as counter 

intentions to that threat in an order that makes the countermeasure proportional to the threat's 

intention at that kill chains stage and, thus, a measured response.  The onion of protection can make 

the detailed information only available within the inner layers of the onion of protection, mapping to 

more urgent kill chain stages.  These ideas and an analysis method were presented in papers [C5], 

[J5], leading to an extended kill chain where data availability and managing data revealing is in an 

onion of protection.  The onion of protection's outer layers applies to the civil domain in data 

accessibility.  However, inner layers in that onion of protection can still use countermeasure 

considerations in outer layers through the onion of protection's concept that unlocks that data 

available in those layers as the threat engagement progresses through kill chain stages.  Figure 12; 

presents the threat's intentions, and the countermeasure's counter-intention presents the extended kill 

chain. 

4.1.3 Engagement Dynamics 

Threat weapon systems have increased complexity and employed more technology towards their 

intentions, but the intentions have remained similar over time as defined roles.  However, the 

platforms holding those weapon systems have also increased their missions, making the platform even 

more complex as the intention relates to several mission roles.  For example, modern IADS has many 

role-specific missile types for intended targets [208].  Thus in civil protection, the engagement 

dynamics are further complicated as it may result from a miss-classification of that civil platform.  As 

such, the protection needs to be flexible to engagement errors made in different roles that can imply 

different missiles intended for different targets, but where all missile types are lethal to an un-

armoured un-defended civil platform.  In the Falklands war between Britain and Argentina, the loss of 

the civil chartered SS Atlantic Conveyor was due to a lack of coordination and cooperation while 

protecting it [73].   Thus an error in coordination and cooperation of protection can also have further 

complexities when those errors occur on the protection side.  Additionally, a further complication can 

be how sensors are employed and change ELINT emission sequences in a kill chain within an 

engagement.  Nevertheless, those ELINT sequences may also reveal a use-case of those sensors and 

thus indicate the kill-chain stage intention and the equipment used. 
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4.1.4 Available Digital Networks and Data Links in the Civilian Domain 

Air platforms: Operate under either Instrument Flight Rules (IFR) [209] monitored by ATC or 

Visual Flight Rules (VFR) [210] and are selected based on Visual Meteorological 

Conditions (VMC) or equipment failures.  IFR, specified under Bravo airspace 

(busy airports) and restricted airspace (including war zones), as such civilian air 

platforms already operate under ATC monitoring when near war zones, allowing 

for centralized coordination.  Aircraft Communications Addressing and 

Reporting System (ACARS) is a digital data-link service between aircraft and 

ground stations or satellites.  ACARS interfaces with the Flight Management 

System (FMS) and provides flight plan and weather warning information.  

ACARS is also a transceiver and sends health and connection status to the 

network.  The aircrews can receive and send messages via ACARS, and as such, 

ACARS can be a basis for a network for coordination.  

Sea platforms: Also have digital danger warning receivers and transceiver equipment.  The 

Navtex teleprinter [211], with a reception range of 200 NM, provides weather and 

other hazard notifications every 4 hours as an advanced warning.  The AIS 

system can be a transceiver and is part of the Vessel Traffic Services (VTS) [212] 

with a live update.  VTS is the equivalent of ATC, but for ships and has coverage 

in literal-water to deep-blue-sea with both terrestrial and satellite segments as a 

live network; as such, AIS and VTS can be the basis for a network for warnings, 

alerts, and coordination. 

4.2 Threat Analysis for a Countermeasure Process 

The military Threat Analysis approaches can be part of the Intel Life Cycle [87] and are highly 

data-driven with specialist collectors, exploitation equipment, and tools.  The papers in Cairo [C5] and 

[J5] presented a threat analysis method in three main views: the Operational View, the System View, 

and the recommendations; this also utilized modelling and simulation for exploitation, analysis, and 

diagramming methods to aid the threat analysis to create a digital twin software threat model.  Two 

views were from the Ministry of Defence Architecture Framework (MODAF) method [213].  

Although in MODAF, there are seven views (Strategic, Operational, Service Orientated, Systems, 

Acquisition, Technical, and All Viewpoints).  Arguably within threat analysis, five views are the same 

for any task as the task is constrained to threat analysis only.  The Cairo presented 'Operational View' 

captures the system makeup and prioritizes components in the subsequent 'System Views.'  MODAF 

has been replaced with NAFv4 (NATO Architecture Framework version 4) and uses architectural 

frameworks instead, but the 'Overarching Architecture' maps to the Cairo presented threat analysis 

'Operational View' as the "What" in NAFv4.  The 'Reference Architecture' maps to the 'System View' 

as "How" in NAFv4.  The 'Target Architecture' maps to the 'Recommendations' as the "With What" in 

NAFv4.  The general philosophy of the approach presented in Cairo is for a relevant countermeasure 

development and threat analysis within a compact scaled enterprise. 

4.2.1 Operational View Analysis: (the mapping from NAVv4 "What") 

The operational view of the threat analysis methodology presented defines what is relevant to a 

threat and how they are observed with sensors in data sources, chiefly in imagery, name referencing, 

and ELINT.  These sensor observations are called the observables and catalogue the system 

components as observable collections.  The threats have some observables that aid the recognition of 

threats, as observable artefacts of observation with a sensor and are called discriminators.  

Discriminators can thus help the employment of sensor mixes over other confusables systems to 

provide recognition when combined.  The operational view compiles a catalogue of the alternative 

components and the confusables systems with observable discriminators.  The structure of 

components also forms the capture of recognition specification and aids in filing new information in 

deducing if that data is relevant to the collection.  In Figure 9 are radar silhouettes of some of the 

SNR-75 Fan Song radar variants of the SA-2 Guideline SAM threat series.  Figure 9 shows that 

shapes of threat components can relate to variants with different capabilities as imagery observable 

discriminators and are highly applicable to image classification, detection, and segmentation in ML. 
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FIGURE 9 SNR-75 IMAGERY DISCRIMINATORS (LUMPS AND BUMPS) [J5] 

An AI perspective provides a basis for dataset creation, employing classification, object detection, 

or segmentation tasks.  AI methods are not limited to silhouettes and can use colour images on 

different angles and backgrounds.  This research dissertation in Chapter 7 demonstrated a mission and 

safety-critical approach to convolutional neural network initialization with an application to classify 

aircraft on runways with the MTARSI2 dataset [53].  The MTARSI2 dataset is a challenging 

imbalanced dataset with variations of different lighting, shadows, time of day, aspect angle, and 

image resolutions.  Additionally, the LSTM and RNN methods can be with Natural Language 

Processing (NLP) techniques from textual description sources.  Also, within this research dissertation, 

an AI method for ELINT classification was demonstrated in Chapter 8.  Combinations of these 

discriminators with those AI approaches can be applied to aid recognition and provide mechanisms 

for large-scale data processing. 

The threat system components prioritize the countermeasure development order urgency rather 

than a priority that a countermeasure might have precedence in an engagement.  Air threats are listed 

in the threat effector's range and classified into: dogfight, short, medium, long, and extended range.  

The classes are to remove range advantage from a threat and develop countermeasures employed in 

further ranges first.  Surface threats are first listed into range and kill chain positions, lowering the 

development priority of lower altitude scan volume reaching systems if the threat is not a threat in 

takeoff or landing for an air platform.  In Figure 10, the scan volumes of a threat system's components 

are shown with the system's functions (EW/HF/TTR), as this also shows the anticipated detection 

order when approaching a threat into the lethal area.  If the ELINT discriminators are different within 

the system's components and functions (which is highly likely), then it also follows that a 

classification method as proposed in Chapter 8 can assert the kill chain stage and thus the intention to 

be countered.  That method is also wideband and has higher data dimensionality than the traditional 

template method, providing a higher discrimination potential in classifying modes and functions. 

 

FIGURE 10 SAM SYSTEM SCAN VOLUMES AND REACHES [J5] 
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Jamming and ELINT detection system components can be further triage filtered for equipment 

capabilities in terms of their bands of operation and other restrictions.  Please note that the frequency 

limits provided in Figure 11 do not relate to actual equipment.  The method in Chapter 8 provides a 

further discriminator potential with the coordination in time and frequency of wideband emitters. 

 

FIGURE 11 S-75 RAINBOW SPECTRUM PLOT [J5] 

A list of references: [214], [215], [216], [217], [218], [219], [220], [221], [222], [223], [224] are 

the open sources used for the S-75 data presented including the frequencies and system understanding 

etc.  This understanding can therefore construct the extended kill chain.  In Figure 12, the extended 

kill chain was proposed in the Cairo paper and is an application of the ISTAR kill chain but applied to 

a SAM operator's point of view.  Thus the SAM operator's intention at each stage is to be directly 

countered by a countermeasure as a direct counter-intention to the SAM operator's intention.  This kill 

chain is extended higher up the kill chain (or earlier in the kill chain) and to more threat components 

of a threat embracing the nature of IADS. 

 

FIGURE 12 EXTENDED KILL CHAIN [J5] 
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 Find is the detection in partial coordinates like two-dimensional space and can 

relate to Early Warning functions. 

 Fix is where the coordinates are completed and could relate to height finding, 

ranging, or accuracy in positional fixing. 

 Recognise is a filtering activity to classify targets from background traffic. 

 Track is when the prediction of a target is improved. 

 Engage is when the engagement is decided on and may see signal changes in ELINT 

like illumination and idle guidance signals. 

 Prosecute is the launch or release of the effector missile when guidance is active. 

 Effect is the effector's terminal guidance, fusing, and detonation. 

The Operational View of the presented threat analysis method has defined "what" is to be 

defended from, catalogued the threat components, identified their discriminators, prioritized the 

countermeasure development work, and finished with an extended kill chain.  The threat components 

can now be applied to the system view in countermeasure development priority order and define 

"how" they work in each threat component. 

4.2.2 System View Analysis: (the mapping from NAVv4 "How") 

The system view of the presented threat analysis methodology considers the threat components in 

'How they work' from their observables, oriented towards building a digital twin in software 

engagement modelling for susceptibility assessments.  Commonly and repetitively, in each subsequent 

parametric analysis step, the ELINT parametric parameters are used with the data infilling of missing 

parameters from the neural expert systems method in Chapter 5 for sparse and imbalanced datasets. 

Within each threat analysis step of the presented methodology, the parameters are capability 

tested, and a compiled set of vulnerabilities, strengths, weaknesses, and opportunities in each analysis 

step bring towards a countermeasure tactic selection against a mode-line and its' deduced functional 

intention from this presented methodology's system view.  The completed captured threat parametric 

parameters are in the C4L emitter description language format for modelling with a digital twin using 

the emitter description portion of C4L of Chapter 8. 

4.2.2.1 Electromagnetic (EM) Carrier Parametric Analysis 

The EM carrier is fundamental to a system as it dictates the range of wavelengths that interact in 

the environment and has applications with atmosphere propagation while also relating to Doppler 

ambiguity.  EM carrier has properties like bandwidth, pulsed / Continuous Wave (CW) / Interrupted 

Continuous Wave (ICW), agility, and coherency in terms of their emissions; these may indicate the 

kind of transmission device used, and thus processing as well as the expected channel plan for de-

confliction against mutual interference.  The standard analysis step in section 4.2.2 is applied, in 

which the strengths, weaknesses, opportunities, and vulnerabilities are set Ua, mapped to the 

parametric parameters combination as Va and possible intention PIa, as A: Ua → {Va, PIa}. 

4.2.2.2 Antenna and Beam Parametric Analysis 

The antennas and beams can differ in transmission and reception, but the parametric beam 

parameters can also indicate the likely function from the beam orientation, geometry, and beam shape 

type, singular or cumulatively.  The antennas and beam parametric parameters are Effective Radiated 

Power (ERP), polarization, and the antenna's receive gain.  These are essential to how the energy 

interacts with the clutter environment, target, the Jamming to Signal Ratio (JSR), and the ability to 

detect the threat for triggering a countermeasure.  From imagery, estimates of the beam shape and 

antenna beam gain can be estimated from the carrier and aperture areas from the method in Chapter 5.  

The standard analysis step in section 4.2.2 is applied, in which the deduced strengths, weaknesses, 

opportunities, and vulnerabilities are set Ub, mapped to the parametric parameters combination as Vb 

and possible intention PIb, as B: Ub → {Vb, PIb}. 

4.2.2.3 Beam Scanning Parametric Analysis 

The beams scans can also differ in transmission and reception in each threat model mode, and an 

estimate of the threats' modal function can be from the: beam geometries, scanned volume, depth of 

modulation, and rate of revisit towards an angle measuring method or modal intention such as search, 
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acquisition, tracking, illumination, data linking, and clutter suppression.  The standard analysis step in 

section 4.2.2 is applied, in which the deduced strengths, weaknesses, opportunities, and vulnerabilities 

are set Uc, mapped to the parametric parameters combination as Vc and possible intention PIc, as C: 

Uc → {Vc, PIc}. 

4.2.2.4 Intra-Signal Modulation Parametric Analysis 

The intra-signal modulation relates to the modulations within a Continuous Wave 

(CW)/Interrupted Continuous Wave (ICW) or Pulsed modulation signal.  The intra­signal 

modulations parametric parameters may include frequency excursion, frequency offset, phase coding, 

and amplitude modulations.  They can be cumulative, contiguous, or in N-let pulse trains, providing 

an estimate of range resolution, bandwidth, and intra-signal processing gain, thus calculating the 

receiver's pass-band-filter bandwidth, tracking gate size, and parts of the processing gains can be 

estimated.  The intra-signal modulations can apply to resolution and range given their processing gain 

relative to their lower observable probabilities at different ranges.  The standard analysis step in 

section 4.2.2 is applied, in which the deduced strengths, weaknesses, opportunities, and vulnerabilities 

are set Ud, mapped to the parametric parameters combination as Vd and possible intention PId, as D: 

Ud → {Vd, PId}. 

4.2.2.5 Inter-Signal Modulation Parametric Analysis 

The inter-signal modulations are the modulations that change between the Intra-signal 

modulations, and these could be ramp directions and bandwidths, coding or changes in the rates, or 

inter-signal modulation periods such as modulation timing types of staggers, jitter, switch dwell, 

sinusoids.  Inter-signal modulations types are essential for processing, thus processing gains, mutual 

interference, clutter rejection features, and thus are tested with the inter-signal modulations against the 

instrumented range and range ambiguity, and the maximum tracking speed and Doppler ambiguity.  

The inter-signal modulation's repetition rates are treated as a Pulse Repetition Frequency (PRF) and 

classified into Low, Medium, and High PRFs (LPRF/MPRF/HPRF), defined by their Range and 

Doppler ambiguity.  A particular case is added as UPRF when the PRF is unambiguous in range and 

Doppler.  These inter-signal modulations are grouped and fitted to the known threat mode 

instrumented ranges and max tracking speeds.  Grouping across modulations repetition rate types of 

fixed continuous, sweep, stagger, jitter, switch and dwell highlight relationships within the groupings.  

That relationship may relate to sub-modes as features or where further processing is dependent, as 

they have the same operational range and Doppler constraints.  Those groups could imply different or 

further processing.  These sub-mode features can relate to further processing required and could 

represent a jamming opportunity when denied.  Also, sub-modes may relate to switches and buttons 

on the threat's panels, such as automatic and manual range tracking or high and slow speed target 

types. 

These sub-mode classes of operator sub-intentions may have ELINT discriminators for separate 

countermeasure triggers as their indicators.  Specific countermeasures can be reactive to the operator's 

switch positions during the engagement, thus directing the countermeasures to counter those operator 

sub-intentions.  The further analysis evaluates the sub-mode and groupings with the inter-signal 

modulations period sequences in the groups against processing objectives: range and Doppler anti-

eclipsing, MTI cancellation, False Returns Uncorrelated in Range (FRUIT) of second time around 

returns, observed frequencies from ambiguity for unfolding.  This step and further analysis can update 

the groupings and their intentions.  Applying the standard analysis step in section 4.2.2, where the 

deduced strengths, weaknesses, opportunities, and vulnerabilities are set Ue, mapped to the parametric 

parameters combination as Ve and possible intention PIe, as E: Ue → {Ve, PIe}. 

4.2.2.6 Mode Line Analysis 

Each parametric parameter tested was loosely coupled to other parameters for programming into a 

modelling solution.  The mode lines are the configuration combinations of the individual parametric 

parameter combinations.  Thus they represent the combination of the parametric parameters of 

observations of modes.  Those mode lines can relate to transmitting emissions and receiving 

processing in combination.  They can be combined with the protected platform signatures to calculate 

the JSR overhead required for a countermeasure technique and the detection thresholds needed for 
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triggering that countermeasure, which can help down-select the viable countermeasure techniques or 

identify that they need combining. 

 

FIGURE 13 MODE LINE PERMUTATION DIAGRAM FOR AUTO TRACK AS SWIM LANES [J5] 

The transition sequence analysis of the mode lines in the system-specific kill chain diagram is in 

Figure 13. 

The ELINT parametric parameters may have missing mode line data.  The neural expert systems 

method in Chapter 5 will infill those parameters using the method in the neural expert system; that 

method can also be used for the candidate countermeasure technique parameters when forming a 

pallet of tactics for later selection. 

The combined mode line (ML) parameters, capabilities, and the vulnerability, strength, 

weaknesses, and opportunities of each analysis step towards a countermeasure tactic (CM) selections 

are made against a mode-line with its' deduced functional intention, together with the entry and exit 

transitions in the kill chain as in Equation (5): 

ML = A(Va)  B(Vb)  C(Vc)  D(Vd)  E(Ve)  EntryTransition  ExitTransition (5) 

The collated individual parametric analysis results of each mode-line used and the tactics can be 

further down-selected from mapping mode line intention, countermeasure (CM) counter-intention, 

and the deuced system kill chain position and processing in Equation (6). 

CM → {KillChain_system, KillChain_Extend, SignalPx} → {ML   viable}} (6) 

The signal processing type (SignalPx) and their blocks captured for those states are in Figure 14 

with a non-SNR-75 example of a system signal processing diagram. 
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FIGURE 14 SIGNAL AND PROCESSING BLOCK DIAGRAM [J5] 

Compiling those states and motivations into a UML state transition diagram for capturing in 

modelling software is illustrated in Figure 15.  This mode line state model enriches the C4L emitter 

specification in Chapter 8 for the threat emitter modelling using the 'Schedule' lexicon token in the 

emission description language. 

 

FIGURE 15 UML S-75 STATE DIAGRAM [J5] 
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Within an engagement, the Phases of Flights of the effector (Missile or Bullets) implies 

governance in motivations for state changes of intentions with those phases of flight, and again a non-

S-75 example of the phases of flight diagram is shown in Figure 16, as S-75 is command guided only.  

The phases of flight diagram analysis also form the requirement for modelling for missile firing 

sequences in terms of guidance type and guidance laws, should they be different in different phases of 

flight or missile salvo sequences.  This method also prioritizes the countermeasure tactics in the pallet 

of viable countermeasure techniques. 

 

FIGURE 16 'PHASES OF FLIGHT' ILLUSTRATION [J5] 

A modelling environment such as CounterWorX-PROTECT can represent the mode lines, signal 

processing chain, phases of flight, and state model, so the analysis and diagramming presented are 

realizable at that fidelity.  The software model development methodology for arriving at the software 

model through the threat analysis presented here is part of this dissertation's research.  CounterWorX-

PROTECT also integrated the C3L episodic-countermeasures specification language into that threat 

modelling software, extended in this dissertation to include threat emitter descriptions with the 

countermeasures.  See Chapter 8 for the synthetic dataset creation method using an emitter 

classification method. 

4.2.3 The Onion of Protection Mapping Method 

An Onion of Protection concept in Table 2 was developed with the IADS and the A2/AD 

problems in mind, resulting from the threat analysis and modelling using the extended kill chain 

presented.  That method embraced the Cyber D2D concept by using the threat analysis data sparingly 

and directly countered the intention in every extended kill chain stage as a measured response; this 

aligns with the 'Spheres of Influence' (as the dominant data need) and the 'Countermeasure Design 

Considerations' in the technique selected for the tactic design. 
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TABLE 2 

ONION OF PROTECTION LAYERS [J5]. 

Onion 

Layer 

Kill Chain 

Intention 

Spheres of Influence 

(Dominant data need) 

CM Design 

Considerations 
Comment 

Layer 1 

Find  

 

(Outer most 

layer) 

Protected Platform Decreased 

Detectability 

Using knowledge of the Protected 

Platform's strengths and weaknesses, 

the tactics focus on the kill chain 

intention to be less conspicuous and 

stealthier in Early Warning, Air 

Search, or Ground Control Intercept 

radars.   The tactics are against the 

probability of detection and clutter 

suppression. 

Layer 2 

Fix 

Protected Platform Decreased 

Detectability  

Decoy & Deception 

The tactics 'degrade' information and 

counter a fix in altitude to counter 

Target Acquisition or Height Finding 

radars with deceptions and decoying. 

Layer 3 

Recognise 

Protected Platform 

Weapon System 

Decreased 

Detectability  

Decoy & Deception 

Distraction 

Denial 

Disruption  

The tactics cause confusion and 

'delay' in assessing the identity or 

classification.  Counter-recognition 

measures at target filtering based on 

radar modes like NCI and other 

discriminating behaviours. 

Layer 4 

Track 

Protected Platform 

Weapon System  

 

 

Decreased 

Detectability 

Decoy & Deception 

Distraction 

Denial 

Disruption 

The tactics countermeasure track 

convergence (and fusion) with 

distraction, disruption, and denials in 

target acquisition or higher data rate 

search and acquisition modes to 

counter the higher quality prediction. 

Layer 5 

Engage 

Defensive Constraints 

Protected Platform 

Weapon System 

Decreased 

Detectability  

Decoy & Deception 

Distraction 

Denial 

Disruption 

Destruction 

Using signal and sensor processing 

targeted tactics and break locks in 

tracking to defeat the threat, using all 

capabilities available in the hard and 

soft kill, but dependant on ROE, this 

is the traditional set of platform self-

protection tactics to evade and defeat 

a threat. 

Layer 6 

Prosecute / 

Effect 

 

(Inner most 

Layer) 

Defensive Constraints 

Protected Platform 

Weapon System  

Decreased 

Detectability  

Decoy & Deception 

Distraction 

Denial 

Disruption 

Destruction 

The tactics are against the seeker and 

sensors simultaneously and in 

coordination and with prioritized 

techniques in cooperation.  These are 

the traditional set of platform self-

protection tactics to defeat the threat 

towards a greater miss-distance. 

4.3 Platform Protection and Threat Analysis Summary 

This chapter provided a threat analysis methodology with analysis method steps for smaller-scale 

enterprises where that scale can employ AI methods with a shorter D2D cycle.  AI methods are 

applied in all steps calling on other research threads within this dissertation to promote automation.  

The threat analysis methodology applies to the military but is openly available to the civilian domain 

and has lower data need at the outer layers of an onion of protection concept, supporting sparse and 

imbalanced datasets with AI methods.  The methodology provides threat analysis with strengths, 
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weaknesses, opportunities, and vulnerabilities in set-mappings for countermeasure technique 

selections to build a proposed countermeasure tactic.  The threat analysis develops a software model 

for capturing a threat as a digital twin, provided by the threat analysis step methods for using the 

proposed countermeasures. 

The software modelling digital twin is exploited for countermeasure technique approaches, 

forming a tactic with less need for the actual system in susceptibility analysis and testing.  Using the 

proposed extended kill chain concept with the onion of protection method is an alternative to the pure 

threat destruction strategy and is applicable to the civilian domain.  The countermeasure design 

considerations map directly to the kill chain within the onion of protection and, as such, directly 

counter the intention of the threat.  Civilian accessible networks already proposed for AI incorporation 

in the research were highlighted as relevant network bearers for this D2D data approach with lower 

data need on the outer layers of the onion of protection.   The system view steps are readily 

implementable within a computer using Chapter 5's Expert System method.  Chapter 5 presents a 

neuron-based algebraic form of an Expert System with calculated confidence towards the live 

automation aim of this methodologies approach while embracing incomplete datasets in the civilian 

accessible domain.  Partial results were published in a peer-reviewed conference paper [C5] and a 

peer-reviewed journal version [J5]. 
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5 Chapter 5 

NEURAL EXPERT SYSTEM METHOD, A STEP 

TOWARD NEURO-SYMBOLIC AI 

Within the application area, threat data in the public domain is often incomplete, unstructured, 

imbalanced, and of unknown certainty, similar to Big Data and when building datasets.  In this case, 

threat data can also have differing security caveats based on discretion and origin.  Thus this proposed 

neuron-based Expert System allows rules in an algebraic form for threat analysis and known physics 

formulas to be programmed with imbalanced irregular inputs so that an estimation of the unknown 

values can complete and re-balance the dataset while also providing an estimate of confidence. 

5.1 Symbolic AI towards Neuro-Symbolic AI 

Symbolic AI methods are an area that has had much research already, but that research has 

primarily stopped in response to ML and DL developments diverting interest.  Symbolic AI represents 

an AI area with closer certification for safety-critical applications.  However, Symbolic AI approaches 

like the expert system has limited ML capability and thus cannot respond autonomously to new rules.  

Neuro-Symbolic AI is an area that seeks to bring Symbolic AI together with neural methods.  The 

challenge is bridging the gap between high machine abstraction methods of Symbolic AI and high 

human knowledge abstraction in neural methods. 

5.1.1 Modernised Neuron Based Expert System Method 

This research has proposed a modernized form of an expert system, which is closer in structure to 

a neural network.  That expert system proposed knowledge compartments to support reuse in input, 

hidden, and output layers like a neural network.  Those layered abstractions convert units into and out 

with the abstracted human level, reusable while containing a hidden core representation layer.  Thus 

the problem becomes a mapping of abstraction between layers.  The proposed form used algebraic 

rules to couple to another research theme within this dissertation and connected to a neural network 

back-propagation ML technique, which that research theme then used a formula extraction method.  It 

integrated the BN method into a ‘probability tree’ and the algebraic rules so that different input 

parameter populations would normalize and forward propagate, balancing the dataset.  The 

knowledge representation was based on ‘computational graph’ structures and formed into ‘Reverse 

Polish Expressions’ with lambda calculus for computation.  It included a histogram technique of value 

permutations and Bayesian probabilities to perfect the outputs based on all valid populations of rules 

and inputs and this virtualized the node structures as a hypothesis.  The BN was initially scored by the 

proportional numerical distance from other valid values as the prior and combined with other 

hypotheses.  In the histogram technique of the cumulative likelihoods of each value, it applied a 

centre of gravity to perfect a value based on the probability distribution of all the likelihoods; so an 

outliers’ influence is proportional to their numerical distance from other valid values. 

5.1.2 Modernised Expert System in the Application Area 

Within the application area, results are proportional to the mutual agreement in a result, given 

different algebraic rules of threat analysis and physics methods.  Results are also still proportional in 

confidence given the different number of source accounts of a value, controlled by 'guard equations' 

of valid rule populations from decision trees.   Guard equations allow the inclusion and exclusion of 

the threat analysis and algebraic physics rules based on sources or inferred from other rules.  A 

resultant value perfected also provides both a confidence and uncertainty measure in that perfected 

value as numerical qualifiers of the assertion.  The neuron approach to an expert system also has 

confidence and uncertainty based on the dataset, and rules applied are not inferred from a loss value 

of fitting like in a neural network method but are a BN.  As such, confidence and uncertainty can be 

independent of a regularisation method based on the data presented and the knowledge contained in 
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the rules.  However, from the related research in the formula extraction method, when deducing new 

rules, a loss value from a neural network method could still be applied to a rule as scaling and might 

be interpreted as a score of the rule accuracy in the formula extraction process.  This proposed form 

was novel to modernize the method and map an expert system closer to a neural network.  A peer-

reviewed paper was presented and published [C4
3
]; then furthered and published in a journal [J4

4
]. 

5.1.3 Reasoning and Current Expert System Methods 

Aristotle's deductive reasoning, Sir Frances Bacon's inductive reasoning [204], and transduction 

or transductive inference [225] can map towards computational methods like Expert Systems and ML.  

Commonly information within publicly accessible sources is not structured similarly, and confidence 

in that data is not always straightforward.  From a confidence point of view, understanding the 

number of possible interpretations could be more important than knowing what the interpretations are, 

as knowing that the data is incomplete is knowledge in itself, thus relating to the readiness to make a 

decision.  A method by Abdella et al. [226] uses a genetic algorithm and neural network mix for 

approximating missing data values in a database by minimizing the loss value with a genetic 

algorithm.  However, this may not identify missing permutations in methods to infilling in values but 

is a fitting optimization; it risks over-fitting and perhaps incompleteness. 

Additionally, humans need to be objective and unbiased in decision-making, which is not always 

possible in pressure circumstances.  Johnson-Laird [84] considered the types of knowledge that affect 

a judgment and the counterclaim examples supporting it.   An Expert System method called DEX is 

human assistance for decision-making by Bohanec et al. [82].  Measuring the confidence in decision 

permutations is a subject of Voskoglou's [83] experiments from a classroom mapped to a fuzzy logic 

model.  There is also a BN method by Wiegerinck et al. [227], but Melen et al. [50] method also used 

a BN to grade a rule-base to adapt the individual rules influences in a time-evolving scenario.  Cook et 

al. [85] presented a validation method of expert system rules confidences in data-mining applications 

within textual and imagery databases.  The Barzilay et al. [86] method separated knowledge types: 

communication and domain knowledge for explanation purposes.  Multi-hypothesis estimation was 

proposed by Khalak et al. [228] for a system in degradation for diagnosis and prognosis purposes.  

Proposed statistical probabilities decision tree rules are in a medical application by Spiegelhalter et al. 

[89].  Furthermore, a safety-critical application for military Data Fusion is proposed by Rauch [80].  

Connected to this chapter in this dissertation is the 'formula extraction' method [C3], [J3], and is 

discussed in Chapter 6. 

5.2 Knowledge Compartments toward the Neuron Method 

Concerning the Intelligence Life Cycle [87], which form six steps as shown in Figure 17. 

Knowledge can be structured into the following compartments and mapped onto AI methods:  

• Raw Data: The output of the 'Collection' stage of the Intelligence Life Cycle can map to a 

neural network's input layer or the input values in an expert system.  It can be source unique 

formatted with both relevant and irrelevant information combined.   

• Information:  The output of the 'Processing' stage of the Intelligence Life Cycle.  In neural 

networks, this is the output of the hidden layers; there is no direct translation in traditional expert 

systems methods unless used in libraries.  It filters valuable information with defined qualities and 

shared values in a standard format. 

• Intelligence: The output of the 'Analysis and Production' stage of the Intelligence Life Cycle; this 

is the output layer or the output knowledge in the expert system in a neural network.  Contextual 

understanding is combined with the information to answer a specific question. 

• Metadata: Quantities and conventions allow standardized understanding of the hidden layers 

and enable reuse. 

                                                      

3
 [Cn] Published conference papers are in a separate bibliography on page xv. 

4
 [Jn] Published journal articles are in a separate bibliography on page xv. 
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FIGURE 17 6 STEP INTELLIGENCE LIFE CYCLE [229] 

The six steps of the intelligence life cycle shown in Figure 17, and the data compartments in 

section 5.2 benefit from a standard knowledge representation format for re-use. 

5.3 A Language Method to an Algebraic Knowledge Representation 

The information representation is algebraic, such that rules of thumb and physics are formula 

rules; this means that the body of established knowledge is in a form that can re-use the knowledge 

compartments described in section 5.2 and represent both atoms and axioms commonly.  

Some knowledge can be selected based on a 'valid' body of knowledge; the guard equations can 

increase or reduce the scope.  When a scope of knowledge is selected, every rule (in scope) can 

calculate all the permutations using the known input values to infill missing parameters with perfected 

values.  Thus this represents the whole in-scope relevant body of knowledge towards the results 

balancing the dataset concerning the whole applicable body of knowledge in every case.  Data sources 

can have different exclusions for commercial or security reasons, so the security caveats track through 

all value permutations.  The sources and rule confidence can bias the confidence and prediction result.  

Using the formal Backus-Naur form (BNF) for a language syntax as published [J4] are expressed in 

Equations:  (7), (8), (9), (10), (11), (12), (13), (14), (15), (16), (17), (18), (19) and (20).  Equation (7) 

defines "Knowledgebase" as a list of 'Axioms' or 'Atoms' separated by semi-colons. 

<KnowledgeBase> ::=  <AxiomAtom> ";" [<KnowledgeBase>] ; (7) 

Equations (8) and (9) define that an Axiom or Atom is an assignment-equality to an expression 

and allows the attributes of a "When" clause for an equation guard, a "Security" caveat definition, and 

a "Confidence" expression weighting. 

<AxiomAtom> ::= <Symbol> "=" <Expression> [ "When" <Expression> ] 

[ "Security" <BIT_FIELD> ] [ "Confidence" <Expression> ] ; 

(8) 

<Symbol> ::= <Identifier> ; (9) 

Equations (10), (11), (12), (13), (14), (15), (16), and (17) define an expression in BODMAS 

precedence of brackets and comparative operators being later in evaluation then numerical operators. 
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<Expression> ::= <Term> [ <Relation> <Expression> ] ; (10) 

<Term> ::=  <Factor> [ <Operator> <Expression> ] ; (11) 

<Operator> ::= "+" | "-" ; (12) 

<Factor> ::= <Quantity> [ "*" | "/" <Expression> ] ; (13) 

<Relation> ::= "<" | "<=" | "==" | ">=" | ">" | "!=" ; (14) 

<Quantity> ::= <Value>  [ "&&" | "||" <Expression> ] ;  (15) 

<Value> ::= [ <Operator> ] <Parameter> ; (16) 

<Parameter> ::=   <Symbol> | <Function> | <Literal> | "(" <Expression> ")" ; (17) 

Figure 14 illustrates the ordering of the expressions to realize the associative nature of operators 

and their BODMAS precedence; please note that root and powers are defined as functions in this 

language and thus raised in the BODMAS precedence. 

 

FIGURE 18 HIERARCHICAL BNF EXPRESSIONS OF THE KNOWLEDGEBASE LANGUAGE 

In Figure 18, the logical operators (quantity) and comparative operators (relation) might appear to 

have the wrong precedence from the math operator convention.  However, there are also logical 

operators AND(), OR(), and NOT() as defined functions.  As such, there are two logical operator 

precedence levels.  The first precedence is as a function which is the math convention, and the other is 

the logical operator precedence.  In Chapter 6: Section 6.1.1, one interpretation of neuron content and 

networks: is an expectation that fuzzy logic gates are built within dense layers and may form fuzzy 

sets towards fuzzy rough sets.  A single layer's node can form a fuzzy logic gate such as an 'AND' and 

'OR' gate from the summation of the weight activations when applied to the bias threshold and 

activation function.  In a single layer's node, these are 'AND' gate or 'OR' gate, which can elaborate 

further to more complex logic such as XOR, NAND, and NOR gates, when the network becomes 

deeper.  The language expression thus is organized in the BNF for a single pass compilation and 

includes a provision for an expectation of a rule extraction complexity in precedence.  Equations (18) 

(19) and (20) define the remaining BNF definitions as primitive types and function calls. 

<Literal> ::= <Real> | <Integer> ; (18) 

<Function> ::= <Symbol> "(" [ <ParameterList> ] ")" ; (19) 

<ParameterList> ::= <Expression> [ "," <ParameterList> ] ; (20) 

This language thus can be used to represent both atoms and axioms as equation formulas with 

multiple alternative declarations for irregular population permutations of atom evidence using the 

same symbol name but with the multiple alternative hypothesis axiom for the body-of-knowledge.  
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Then rules and evidence values can be mixed with a scope selection as the known-valid-body-of-

knowledge via a Guard Equation in the "When" clause. 

5.4 Knowledge Representation Method 

Expert systems provide a structure of knowledge in a rule form and require an engineering 

approach to create.  A difficulty is that they are handcrafted and tend not to be very well transferable.  

The expert system rules are symbolic, but a formula form provides transferability.  The formula form 

of the expert system also provides the infilling of known unknown information of a dataset, and 

missing information can be learnt from other datasets and captured as rules.  Confidence in data is 

often problematic because it may reflect a notion of the data completeness rather than the knowledge 

itself.  It can reflect what is known to be unknown and what is known to be known.  It also may be in 

error as it may not qualify the unknown knowns or unknowns.  Outside of computational approaches, 

there is a reluctance to score Confidence highly, an artificial bias, and that bias can be prejudice in 

belief in an individual's knowledge completeness or competence rather than the evidence itself.  

However, in a computational method, the rigorous approach can reassure competence subject to the 

view of the current body of knowledge being complete while not repeating knowledge in different but 

equivalent forms.  In ML, residual errors in fitting can be extracted from the losses and applied as a 

probability of fitting to data seen, and cross-validation can offer another loss value as an expectation 

of fitting unseen data.  However, that expectation is that the unseen data matches the dimensionality 

because it splits a dataset.  Also, philosophically that method is artificial as regularisation is a 

deliberate biasing; it can be more explicit that losses are an accuracy error of a solution rather than a 

probability of expectation.  In the method presented, Confidence is a score of convergence between 

separate rules and values in the body of knowledge with all known values and can be regardless of 

their accuracy or trust bias.  Thus, considering every possible permutation with the current body of 

knowledge makes Confidence reflect the divergence of other possible outcomes proportionally from 

the complete known body of knowledge.  Every example of an answer is without prejudice except in 

convergence.  Thus the representation with the presented method builds a computational graph by 

parsing the language and forming a computational graph structure of nodes formed into 'Reverse 

Polish Expressions' with virtualized nodes for every combination of all possible outcomes.  The 

structure is data compartmentalized into input encoder, output decoder, and hidden layers like a neural 

network, but where the input and output layers constrain the abstraction in the hidden layer, as it could 

be from a rule or formula extraction method that deduced the rule. 

5.4.1 Building the Computational Graph 

When executed from the leaf nodes to the root node, a depth-first then breadth node recursion 

order is used to compute each node in a computational graph and converts to a reverse Polish 

expression for evaluation when adding each input as an equation compiled into the same 

computational graph structure, the captured knowledge is complete in one structure.  When many 

input values are required, many equation assignments use the same symbol name as fact atoms.  Rules 

are loaded into the same structure to compose a single tree for the knowledgebase using three parts: a 

symbol table, a hierarchical node structure, and a value list.  When unset, the use of the default values 

of 0x00000000 and 1.0 in the security caveat and confidence weighting value apply in the absence of 

values.  In evaluation, the hierarchical nodes are dependent on the node type for their computation, 

and the machine operation is different in node type cases: 

Literal value nodes use the symbol table for the value as in Equations (21), (22), and (23).  

               ,  as the value from the symbol table. (21) 

                  as the confidence from the symbol table (default 1.0). (22) 

                   as the security caveat from the symbol table (default 0x00000000). (23) 

Operator nodes are a list of values from the child node (Below) and the child node's same level 

node (Below.Same) to calculate value combinations. Confidences are the product of the operand 

values' confidences. Security caveats are the binary OR of the operands; see Equations (24), (25), and 

(26). 
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                                      , as the value applied to the operator's semantic 

function. 

(24) 

                     ,  as the product of the confidences. (25) 

                        ,  as the binary OR of the security caveats in a bit 

field. 

(26) 

Function nodes are the same as the operator's process but allow more operands at child same 

level nodes. 

Symbol nodes collate all the values for every matching symbol name in the tree; Confidence is 

the minimum fraction ratio between each other, scaled by the population and the symbol's confidence, 

and Security Caveats are from the matching symbol values as in Equations (27), (28), and (29). 

                      
 , as the values from a search of the matching 

symbols. 

(27) 

                  
 

 
 
 

 
  , as the minimum fraction between to values. (28) 

           
                      

 
   

 
            , as the confidences for the value set. 

(29) 

The compartmentalized knowledgebase structure supports input values first, so the computational 

graph values are resolved before computing the missing values. 

5.4.2 Estimation of Values 

Consistent with probability trees, the addition operation combines individual confidence 

likelihoods associated with each value permutations' prior through the computational graph's output, 

which the histogram combines into a joint probability.    The histogram is not the number of values 

that fit within a value interval as a bin but the summation of the cumulative confidences of all 

individual prior confidence associated with each value permutation; this converts the likelihood from 

value instance permutations to the joint probability of a value as a probability density function.  Given 

the probability density function, a centre of gravity can arrive at a sub-bin resolution perfected value.  

In Equations: (30), (31), (32), (33), (34), (35), (36), (37), (38) this process is described.  The number 

of value permutations is nV, restricted to the nH (as the histogram bin limit), which is the denominator 

of a resolution ratio of the scale between the maximum and minimum value of the permutation values 

(v[0..nV]) from the computational graph's output. 

                                    ,  as the numerical difference of the value. (30) 

    
  

                   
  ,  as the bin resolution of the histogram. (31) 

     
  

  
  ,  as the number of histogram bins. (32) 

                                     
 
   ,  as the sum of the product of histogram values. (33) 

                            
 
   ,  as the sum of the histogram bin index range. (34) 

                         
 
   ,  as the sum confidence probability. (35) 

               
   

           
,  as the centre of gravity for the perfected 

weighted value. 

(36) 

                 
   

                
  ,  as a certainty probability measure. (37) 

               
           

       
    ,  as an uncertainty metric in the value scales as 

a variance measure.  

(38) 

The Confidence is thus the total probability in the WeightedValue given all other possible 

values.  The WeightedValue is the centre of gravity given the convergence agreement in separate 

axiom rules and input atom facts and is reflective of every possible permutation in the body of 

knowledge.  The Certainty is a probability of accuracy given all other possible values.  Uncertainty is 

a variance measure concerning the WeightedValue for modelling for stochastic analysis variations. 
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5.5 Body of Knowledge and Valid Scope 

As the resultant perfected value is from the confidence probability density function in a 

histogram, which includes every permutation of possible answers within the body of knowledge, the 

proper scope of the body of knowledge is essential.  The different gains could be calculated for 

different antenna type assumptions when calculating the beamwidth of an unknown antenna type (as 

Z) applied to the application area.  The convergence method provides a value reflective of all the 

possible outcomes of the unknown antenna type.  When an antenna type is not unknown but 

ambiguous, the resultant values thus represent the scope of uncertainty to apply rules of the relevant 

body of knowledge.  So as there is more or less ambiguity in the antenna type, the body of knowledge 

is sampled and thus reflects the body of knowledge that is valid.  Using the k/D formula that 

calculates beamwidth for different Antenna Types, the knowledgebase representation is in Equations 

(39), (40), (41), (42), and (43). 

BeamWidth = 70.0 * Lamda / D When OR(AntType == Z AntType == UniformParaReflect); (39) 

BeamWidth = 60.0 * Lamda / D When OR(AntType == Z AntType == UniformParaDish); (40) 

BeamWidth = 57.0 * Lamda / D When OR(AntType == Z AntType == InUniformParaReflect); (41) 

BeamWidth = 66.468 * Lamda / D When OR(AntType == Z AntType == TelescopeReflect); (42) 

BeamWidth = 1.33 * Lamda / D When OR(AntType == Z AntType == Yagi); (43) 

The above values of k are from the following references [230], [231], [232], [233].  The whole 

body of knowledge is in scope when the beamwidth calculates with an unknown antenna type (Z).  In 

that case the InUniformParaReflect is 1.82 degrees with 0.3% confidence, UniformParaDish is 1.9 

degrees with 0.33% confidence, TelescopeReflect is 2.13 degrees with 0.29% confidence, 

UniformParaReflect is 2.24 degrees with 0.25% confidence and Yagi is 0.04 degrees with 3.9e-6% 

Confidence.  The Yagi is an outlier with little confidence, but it barely affects the weighted value of 

1.94 degrees and has a lower effect on the 34% certainty.  However, it does affect the total confidence 

and is reduced by 1.18%.  This impact on the total confidence reflects the human intuition that 

knowledge of an outlier causes doubt, but the certainty accuracy and weighted value are little affected.  

When adding the atom evidence for a quoted example value, the perfected value is 2.07 degrees 

nearer the main cluster; the weighted value estimated is steered with that evidence but still includes 

the entire body of knowledge, resulting in confidence and certainty reducing slightly.  The weighted 

value becomes 2.05 degrees with 1.16% Confidence and 30% Certainty.  Finally, suppose the antenna 

type is a Uniform Parabolic Reflector (UniformParaReflect).  In that case, the coverage of the body of 

knowledge reduces.  The weighted value is 2.15 degrees with a confidence of 92.5% and a certainty 

accuracy of 50%; as the selected rule and data example are close numerically confirming each other, 

the confidence increases significantly.  As a human intuition, this reflects a human bias in trust when a 

closer match in a value occurs: between an example answer and a body of knowledge rule; this raises 

the confidence in the prediction trust and thus accuracy for the deduced value.  When desired in the 

application, a confidence term can be added to the rules and data examples to promote additional bias 

towards data examples or rules. 

5.6 The Computational Detail 

Each input and rule and all permutations of computations are within virtualized node neurons, so 

the value and rule combinations are known for security tracking.  Therefore, that estimation is based 

on the scope of threat analysis and known physics but limited by guard equations.  As such, irregular 

populations of values and all possible rules can be made in a computation, thus filling the scope of 

uncertainty but limited by the data and known rules (known data values, known threat analysis, and 

known physics). 

The alternative input values (val) arrangement is in a matrix.  Those values derived may have 

been from irregular input values or several alternative rules. 

In this illustrative example, there are three values (n) within that matrix (val) see Equation (44): 



48 

 

     
 
 
 
  . (44) 

The minimum fraction function (minFract), which provides the fraction of numerator and 

denominator combination of the input values (A and B) that is less than one, is in Equation (28).   

The initial idea was that a dot product form (inner-product) probabilities [234], as in quantum 

mechanics, could generalize Euclidean vector space for comparison in dimensionality scales, and the 

fraction matrix (minFractMat) would be as follows in Equation (45).  Note that the zeros represent the 

numerator and denominator combination comparisons, which would make a comparison with itself, 

and are invalid.  The matrix multiplication with a matrix of one's takes the dot-product (inner product) 

to collapse the matrix to an un-normalized probability for each value based on the numerical 

fractional distance from all permutations of other valid values, cumulatively: 

            

 

                                       

                                       

                                       
   

 
 
 
   

   
      
    

 . 
(45) 

From those example results in Equation (45), without scaling, it can be seen: for the first value 

(val0), the value is 0.833, which is 0.5 + 0.333, as the value 1.0 is one-half of the value 2.0, and one-

third of the value 3.0.  For the second value (val1), the value is 1.167, which is 0.5 + 0.667, as the 

value 1.0 is one-half of the value 2.0, and the value 2.0 is two-thirds of the value 3.0.  For the third 

value, 3 (val2), the value is 1.0, which is 0.333 + 0.667, as the value 1.0 is one-third of the value 3.0, 

and the value 3.0 is two-thirds of the value 2.0.  Therefore it provides a summation of the numerical 

scaling difference between the values of the numerical factor as a cumulative sum.  The minFractMat 

matrix is then normalized (Pnorm) in Equation (46) to the population size (n) (as the evidence).  The 

scale is one 6th, as six is 2×3 with two numbers compared in a population of three values, and if there 

were a population of four values, then the scalar value would be one 12th as three numbers compared 

between a population of four, and so on, and is defined as: 

                  
 

       
  

     
     
     

 . (46) 

The example shows a one 6th scaling of the minFractMat probabilities as (Pnorm).  Those 

probabilities scaled by the node probability for this variable, defined in the knowledgebase, allows 

weighting strength to be assigned for the rule, and to illustrate this in this example, in Equation (47), it 

will be assumed to be 0.75 as (Pnode): 

               
     
     
     

 . (47) 

These probabilities now represent 75% of the dot product (as an inner product probability co-

alignment) of the numerical fractional scale difference between other values.  They are also scaled by 

the population of the valid answers and thus represent the cumulative probability of value 

convergence to other valid values proportionally.  The histogram of cumulative confidences as the bin 

value assignment provides a likelihood of each bin value rather than the voting population count.  The 

histogram then represents the cumulative likelihoods as a joint probability within the distribution; this 

is also proportional to an outlier value's confidence influence as the minimum fractional scale 

difference rather than a majority voting count. 

Nevertheless, as the research wants the network to operate over an arbitrary node structure 

iteratively, and the inner product concept is not as efficient as a probability tree when used with the 

histogram, as the node's confidences are not just multiplied longitudinally (depth) and then only 

summed in the histogram laterally (breadth).  So, to be consistent with probability trees and also with 

the summation being more optimally once in the histogram, the minFractMat matrix becomes, as in 

Equation (48): 
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 . (48) 

From the example results, the first value (val0) for the value 1.0 is 0.167, which is 0.5 × 0.333, as 

the value 1.0 is one-half of the value 2.0, combined with the scaling of one-third of the value 3.0.  The 

second value (val1) for the value 2.0 is 0.333, which is 0.5 × 0.667 as the value 1.0 is one-half of the 

value 2.0, combined with the scaling of value 2.0 as two-thirds of the value 3.0.  The third value (val2) 

for the value 3.0 is 0.222, which is 0.333 × 0.667, as the value 1.0 is one-third of the value 3.0, 

combined with the scaling of the value 3.0, which is two-thirds of the value 2.0; and this, therefore, 

provides a mutual numerical scaling difference between the values in terms of the numerical fraction 

and combined with all other factors and is mutually interdependent.  The minFractMat matrix is now 

only multiplied longitudinally and only summed in the histogram laterally.  The population 

normalization becomes Bayesian-like and is more straightforward, as in Equation (49), as the scaling 

is occurring in the multiplication of fractions, that then can be Pnode scaled in Equation (50), as before, 

and are as follows: 

                  
 

 
  

    
     
    

    and (49) 

               
    
    
    

 . (50) 

The relative probabilities between the values 1.0, 2.0, and 3.0 (val0-2) of the example are still 

representative of their mutual factor difference combined with all other combinations in each node, 

but rather than a dot product addition in each node, there is a consistency with probability trees, the 

longitudinal product is through nodes and lateral summation in a histogram.  Those probabilities 

represent mutual scaling in every node, and the accumulation is then in that subsequent histogram.  

The histogram uses the minimum and maximum limits in the range 1.0-3.0 of (val0-2) with a bin size 

of 1.  Then instead of assigning the population that matches the bin limits, the value's confidences are 

added (summated) for each bin of values that fall within each bin limit —Furnishing a histogram of 

cumulative confidences of values concerning all the value likelihoods proportionally.  A centre of 

gravity deduces a sub-bin resolution centroided weighted value as a perfected estimate based on the 

evidence likelihood, relative outlier's likelihood, and numerical position.  The centre of gravity 

centroided weighted value is the perfected estimated value based on all evidence's likelihoods in the 

body of knowledge, as in Equation (51).  Equations (52) and (53) are the certainty and confidence of 

that value.  The difference between confidence and certainty is: that certainty is a question of 

accuracy and possibility.  It is proportional to an outlier's position and likelihood, and confidence is a 

measure of a belief given all the values cumulative agreement in that value as a probability, defined 

as: 

         
                               

          
        ,  (perfected estimate value), (51) 

        
 
         

    
 

         
    

 
         

    
 

          
              (certainty in that value) and (52) 

                                   (belief or confidence). (53) 

Before the Pnode scaling in this example, the cumulative sum is 24.1%, instead of 50%, as it would 

have been with the dot product method, as it includes all other mutual combinations that have scaled 

the comparisons.  Nevertheless, 0.241=0.49 (49% or ~50%), as the dot product (inner product) 

method is equivalent via a square root.  The perfected value comes from the centre of gravity, using 

the values applied as likelihoods.  The certainty in that figure is with scaling from the sum of the 

likelihood values.  In Figure 19, Pnode scaling at the output does not affect the certainty or the 

perfected value but only the confidence in those results.  However, setting an input node's confidence 
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value (Pnode) like an input sample value (in val) would affect the perfected value and the certainty and 

confidence in that result.  This arrangement provides an extensible mechanism to operate across nodes 

structures, where the multiplication of probabilities occurs in the nodes, and the summation of those 

probabilities occurs outside of the node structure in a modified histogram technique, i.e., it 

accumulates the node confidences into the histogram bins as likelihoods, rather than merely the 

population.  The node confidences are centre of gravity centroided to provide a sub-bin resolution 

perfected value and certainty (accuracy), combined with the cumulative confidence of belief. 

1, (5.55556%) Confidence, 
2, (11.1111%) Confidence, 
3, (7.40741%) Confidence, 
HISTOGRAM 
╔═══════════════════════════════════════════════════════╗ 
║████████████████████████████                           ║ 1 
║███████████████████████████████████████████████████████║ 2 
║█████████████████████████████████████                  ║ 3 
╚═══════════════════════════════════════════════════════╝ 
Weighted value 2.07692 (24.0741% Confidence / Certainty 34.6154%) 
 
When scaled by the probability of Pnode it becomes: 
1, (0.0416667%) Confidence, 
2, (0.0833333%) Confidence, 
3, (0.0555556%) Confidence, 
HISTOGRAM 
╔═══════════════════════════════════════════════════════╗ 
║████████████████████████████                           ║ 1 
║███████████████████████████████████████████████████████║ 2 
║█████████████████████████████████████                  ║ 3 

╚═══════════════════════════════════════════════════════╝ 
Weighted value 2.07692 (0.180556% Confidence / Certainty 34.6154%) 

FIGURE 19 EXPERT SYSTEM PROTOTYPE'S HISTOGRAM WITH THE CENTRE OF GRAVITY AGGREGATION 

Thus, the node structure may combine values and rules in the nodes, and as this is an algebraic 

method, operators and functions increase in the population of value combinations.  Those population 

combinations would then be subject to the confidence probability method, as previously described, 

using the Bayesian probability tree and centre of gravity histogram technique.  In Equations (54) and 

(55), a node's inputs (valA and valB) in an operator-type node can be applied from the input vectors 

(valA and valB) to produce all combinations as a matrix, defined as: 
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So the input values valA and valB are applied as vectors to a matrix for both the values (val) and 

the probabilities (Pa and Pb) in those values (in Equations (56) and (57)) and are defined as: 
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As such, all the permutations of the inputs are as in Equation (58), and in this example, the node 

operation type is a divide operation, defined as: 
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The probabilities calculations are as previously described.  Other node types like equality or a 

constant value are more straightforward as they have one input-to-output relationship in a vector.  

Function nodes with more than two parameters use an ordered set for the parameter lists but are 

identical in operation, although a function replaces the operator. 

5.6.1 Dealing with Zero and Negative Numbers in the Inputs 

A drawback of this method is comparing input values of zero or a mix of signs in the input values.  

This drawback is an issue with input values such as differences but not absolute values more than 0 

like lengths or power measurements.  For example: when the magnitude is not essential, only the 

relative numerical difference in a number line is; then, to resolve this, a relative data type that will pre 

and post-offset the magnitude is required.  As such, for that data type, then consider the input values 

(val) to include zero and mixed signs in the number set as in Equation (59): 

     
    
   
   

 . (59) 

Then a value offset (valoffset) can be calculated, and in this example, the value two as the smallest 

input value (-1.0) is two number units different from the ratio 1.0, as in Equation (60): 

                      . (60) 

That offset (valoffset) can be added to the input values (val) as an adjusted value set (valadjusted) and 

then applied as before, with those adjusted values as in Equation (61): 

                          =  
   
   
   

 . (61) 

That offset (valoffset) can then be removed, from the established perfected value (CoGValue), at the 

output as (CoGValuereadjusted), as in Equation (62): 

                                      . (62) 

The relative data type, therefore, provides pre and post-offsets and allows the incorporation of 

numbers that would be relative by converting to an absolute scale.  Where that scale begins at the 

smallest value, all other input values will be of a relative magnitude and thus naturally provide 

relative confidence and certainty without further scaling or offsets.  Other data types are also future 

work: for angles with continuous measurements, which reset at values. 

5.7 Summary of Modernised Expert System Method 

The initial method using the inner product (dot product) is nominally equivalent to the Bayesian 

method and relates by a square root of the inner product being nominally equivalent to the Bayesian 

method.  The Bayesian method is computationally less expensive as the addition operation occurs 

once in the final histogram rather than in every node in the dot product.  The Bayesian method is also 

a more intuitive figure and is arrived at directly without the square root term.  The method is 

consistent with probability trees replacing the probability tree’s final summation in breadth (latitude) 

with a histogram and centre of gravity method when perfecting a better-estimated value.  The expert 

system has a software prototype built in the application area with a knowledge base.  In the 

application area, it can manipulate source raw data and, from more ‘observable’ raw data, create 

estimates for less ‘observable’ information via a rule set, and those rules are from textbooks, analysis, 

transforms, and equations as an established body of knowledge.  The modernized expert system has a 

virtualized node structure and knowledgebase organization (input, hidden, and output layers) closer to 

a neural network structure.  The method fills in the best values for missing data and forms the best 
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value from multiple and differing input values and alternative rules.  So it is highly applicable to data 

migration and knowledge conversions.  The method uses a Bayesian-like probability tree with 

measured confidence in a value propagated through the nodes rather than a probability in a rule.  

Thus, it provides a confidence metric and value commensurate with all possible alternative results.  

The technique converts BN probability trees into neural network structures.  It also constructs the BN 

probability trees from algebraic rules in an input language.  That input language can be an open 

architecture interface from an existing neural network rule extraction technique or the formula 

extraction technique presented in this dissertation. 

Each variable amount of input values virtualizes nodes in that neural network structure.  Those 

virtualized node semantics pertain to just one combination of possibilities rather than in a neural 

network where each node contains many and mixed possibility combinations.  The node semantic 

makes it easier to certify as the nodes’ semantics are directly derivable.  The knowledge structure 

organization aids reuse, with compartments of input, hidden, and output knowledgebase structures, as 

a convenience for data-migration applications and the reuse of knowledgebase rules toward extended 

abduction knowledge reuse.  Extended abduction knowledge or ‘background knowledge’ 

generalizations are closer to ‘common-sense’ in reuse as they are numerical and algebraic.  The 

ultimate aim is to enhance the rule-base by experience from a neural network extracted from this 

dissertation’s formula extraction research.  Partial results were published in a peer-reviewed 

conference paper [C4] and a journal version [J4]. 

Furthermore, one current research approach toward general intelligence is a middle ground called 

Neuro Symbolic-AI, termed Broad-AI as a distinction from the single method AI approaches such as 

Symbolic AI, Evolutionary AI, and ML, known as Narrow AI.  As such, Broad AI is a combination of 

Narrow AI methods.  In IBM Watson Lab's opinion, Broad AI is the precursor to General AI and is 

multi-domain and multi-mode distributed and explainable [235].  IBM Watson Lab has invested in 

this area using the combined Neuron ML, Symbolic-AI, and language generation methods.  

Combining the following chapter's method with this chapter's method also forms a neuro-Symbolic AI 

method.  This research dissertation uses a modified expert system and a neural network numerical 

extraction method but with different methods from Watson's lab.  Watson's lab's application is a 

visual explanation, coupling image processing with symbolic AI and language generation.  In 

comparison, the methods in this dissertation are an algebraic neuron-based expert system with a 

formula extraction method of a neural network. 
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6 Chapter 6 

FORMULA EXTRACTION TOWARDS NEURO-

SYMBOLIC AI 

The subject of this chapter is related to rule extraction as part of an Explainable AI theme but is 

more specifically Formula Extraction.  This research supports the neural expert systems method 

presented in Chapter 5, but this chapter forms the backward chaining element of a Neuro-Symbolic AI 

method when combined with Chapter 5.  The outcome of this chapter's method is a new formula rule 

learnt from a neural network to provide a new rule in the neural expert system method of Chapter 5.  

The content of a neural network is still not well understood.  However, research has progressed in 

Rule Extraction using perceptron and Recurrent Network layers. 

6.1 Neural Network Content 

Intuition for the content of a neural network can fall into two main theories of interpretation: the 

Fuzzy Logic view and the Numerical Function view.  These are valid interpretations, but the proper 

interpretation can be a mixture.  A perceptron dense layer network structure is presented in Figure 20 

to illustrate the symbols, nodes, and indexing to examine these interpretations. 

 

FIGURE 20 DENSE LAYER NEURAL NETWORK NODE STRUCTURE 

6.1.1 Weighting, Scaling, and Dissimilarity 

A single node's  (weight) is associated with an input activation () and a node Bias ().  An 

activation function such as ReLU is associated with the nodes and thus the node output.  The node 

output is the sum of activations pre-scaled by the weights, which is a form of loose normalization for 

the value variations, as the weights are initialized initially to variations within limits derived from the 

population of the activations at the outset.  However, the weight scaling will adapt the value variations 

in back-propagation, but the initial condition avoids saturation by normalization scaling.  Although 

the weight initialization has a variety of values scaled up to an initialization value limit, the weights 

are normalization variations based on a normalization limit.  The distribution in use also affects those 

variation limits values.  In some forms, such as He et al. and Glorot/Xavier initialization, the 

calculated variation limits are from the number of nodes, activation population, and distribution used 

[236].  That means the more prominent the weight scale limit, the smaller number of nodes or 

activations.  The variation within the limit values supports the scale limits for the more significant 
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number of activations at different influence strengths.  However, the primary intention for the 

distribution under the limit is to provide different start conditions for activations, such that weights 

have different and more unique updates to a dataset as unseen prior to learning.  The maximum 

weight limit applied to an activation scale should there be full activation; thus, it can be more likely to 

retain scaling without saturation at the output.  The set of quasi-mean average limited start points with 

distributions for the weight values allows dissimilarity of nodes in updates, up to a normalization 

scale from the outset of learning given a dataset unseen but a known architecture.  The weight updates 

given a dataset shall yield an adjusted mapping of weight values.  The weight updates lead to some 

interpretations of what those adjustments to the weights from the dataset mean. 

6.1.1.1 The Fuzzy Logic and Fuzzy Rough Sets Interpretation 

A neuron's (n) output in a fuzzy logic-gate interpretation will form an 'AND' or 'OR' gate 

combination (as an activation selection combination of the inputs).  The node's activation function and 

bias () threshold provide an output logical non-linearity function to provide a more robust logic 0 or 

1 state at the output of each node gate; these are non-linearity functions as they convert the linear 

input into a logic output when combined with the bias () threshold.  Without them, nodes may 

collapse in the update and not form a gate logic exclusively, removing logic representation potential.  

As such, a single dense layer (a broad network) is limited in those gates' complexity, for example, no 

eXclusive OR (XOR).  When adding layers for a deeper network, then an 'XOR' can be formed as: 

(XOR = AND (OR, AND), and this greater complexity of fuzzy logic aids linear separation in 

classification (i.e., it allows more than one classification boundary).  Another advantage of a deeper 

network allows numerical scaling of large numbers or small magnifying activations (NOR or NAND), 

and the reuse of activated node structures can reuse functions within them.  Thus the network breadth 

(broad) provides input activation selections with a quasi-averaging set, and the depth provides more 

complex logic terms (for greater linear separation) combined with the opportunity for nodal reused 

logic structures.  That view extends across neurons (nx,1..3) in breadth as rough sets of knowledge 

regions where those regions approximate classification boundaries.  The concept of rough sets uses 

approximations for subsets of inclusion, exclusion, and possibly included sets toward approximating a 

crisp set of the upper and lower approximations.  Fuzzy sets are 'uncertainty sets' that have a degree of 

membership, and the interpretation follows that fuzzy logic groups are further grouped in a deeper 

layer (n2,1), forming Fuzzy Rough Sets from other layers. 

6.1.2 The Numerical Function Interpretation 

Each node's input is a vector of activations (), and each activation is the product of a uniquely 

associated weight () to that activation.  Then the weight activation products () are accumulated, 

and a bias () for that node offsets the value before the output and the activation function.  Therefore, 

when only one weight is one, and all the other weights are zero, this forms a straight-line graph 

computationally as y=mx+c (or y=+).  As the more significant form is y=()+, this means 

that more than one activation () and weight () product sums up prior to the bias offset.  So in the 

straight-line graph interpretation, several straight-line graphs with the same or similar bias threshold 

() requirement enrich the representations proportionally from the activation they pertain to with a 

normalization effect in the weights (see Weighting and Scaling 6.1.1).  The straight-line graph form 

also provides a sub-node resolution between individual nodes and is more continuous than discrete at 

the output.  The straight-line graph form reduces the number of nodes required to represent a function 

and has a linear function related to a set of activations with an activated receptive field. 

The network node breadth thus provides node variations in proportion to the input influences of 

activations and thus allows different activation sets to select between straight-line graph combinations 

from activated nodes.  As those are selected based on the same activated inputs, a complex function 

becomes reactive to those inputs with different bias selection thresholds in a sub-node resolution.  If 

excluding the activation function, then when layers are added in-depth, the form will become 

y=((()+))+, and as the biases are zero after initialization, this simplifies to an accumulation 

of weighted activated inputs.  At the outset of learning, the weight scales are by the populations of 

inputs and outputs and are thus a quasi-mean average like normalization in the initial condition.  The 

activation function is thus required to avoid a linear input to output relationship causing an 

equivalence simplification in Back Propagation.  So a non-linearity function is used to separate the 
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layers to not collapse to an equivalence simplification and is y=ReLU((ReLU(()+))+).  The 

ReLU or other non-linearity function also provides a non-linearity to a logic scaling between the 

layers.  However, the non-linearity function also provides the complex logic separation forms and 

decomposition for reused node structures mentioned in the Fuzzy Logical Interpretation section 

6.1.1.1.  In particular, the ReLU function acts with the bias value () as a threshold on the output 

switching on or off further activations in depth.  So generally, a network can be (but is not guaranteed 

to be) like a math function that calls another primitive function in different layers in-depth, where 

each function representation is a set of nodes that have straight-line graph combinations selected from 

the weight of the activation to that layer.  A neural network combines a logic function and a 

numerical, straight-line graph set.  These are then selected from input weighted activations to a neuron 

and can provide a continuous representation output between the discrete input weighted activations by 

the straight-line graph combinations. 

6.2 Input Representation to a Network 

Traditionally an input representation for a non-imagery computational method can be, as shown in 

Figure 21, an example of an ANN Fractional PID Adaptive Controller Design [237].  In that 

application, r is the input sample, y is the last output, and e is the error.  The output values are the 

controller design coefficients, integrals, and differential indexes.  Each scalar value's input is 

individually and uniquely defined. 

 

FIGURE 21 NEURAL NETWORK STRUCTURE IN THE PAPER [237] WITH SCALAR INPUTS 

Each input value will be the product with the activation with a weight value as strength to a node, 

and then each node's non-linearity function and bias threshold can be applied for the output to the next 

layer.  Other nodes or inputs in breadth provide proportions of activations with other weights, and 

each node's bias threshold and non-linearity function can be a product in the subsequent layer.  This 

reliance on the subsequent layer implies that depth is required.  However, selecting the node and input 

activation via the bias implies that breadth is also required.  Also, in an imagery format, r, y and e 

could be pixels, and the network coding map could also have that image's height, width, and channels.  

Nevertheless, given that all nodes are inter-connected in dense layers, their actual position is not 

significant in the network, only that they originated from a pixel and thus have independence.  

However, this is not true in convolutional layers, as the weights are filters swept across the image 

rather than mapping directly to the input image pixels. 

6.2.1 Value Scale Representation for Strength-Based Activation Weight Set 

As the values of r, y and e have a single weight () for all the values of the activation strength.  

There is another way to include more weights coupled to restricted value ranges of r, y, and e, 

allowing weights to have a unique weight for an activation value strength range.  A number-line as an 

input format de-complicates the node structures for interpretation while including a quadratic quality, 

as the straight lines can have different weight values map to different activation value strength ranges 

of a neuron. 

6.2.1.1 Number Line as an Input Representation 

Thus, representing an arbitrary function within a network and extracting it causes an input 

representation consideration.   The presented form in Figure 21 represents the algebraic function input 

parameters as numerical values activating the nodes.  However, when combined with the weight, 

using that form would require different weights based on the activation value, meaning that low 

values can be weaker weighting strength regardless of their semantic prior to the bias () and the 
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subsequent layer in depth.  Ideally, that might require more than one weight per activation with a 

restricted activation value range.  An alternative input representation can provide a set of weight 

groups that can be activation value restricted and independent; this is a vector number line such that 

the position in the vector is the coded value with more than one weight for the encoding into that 

vector position based on the value as it is positional.  That means that the weight value pertains to 

separated input variables' value range in a restricted number range instead of the whole number range 

of an input variable.  The activation strengths in the input vector can be in up to two positions at the 

coded position where those two positions are adjacent to represent the vector's sub-resolution position 

of the value and add up to 1 in all cases.   There will be at least one weight value for each input 

representation value case, and the minimum activation value of at least one of the activations will 

range between 0.5 and 1.0 in all value cases.  So there is a substantial activation value guaranteed 

compared to possible faint image pixel values or low scalar value inputs.  In the numerical 

interpretation in section 6.1.2, the straight-line graph combinations of the node will provide sub-

resolution linearity between the nodes along with the input value range.  That form is also like a 

monochrome image encoding of a single row of an image where the network could have a prediction 

based on pixel positions, so as such has a high expectation of working.  More rows can be added to 

the input to add more algebraic function input parameters, but the number line has to be the same 

length for each parameter as it is a matrix.  So for the flexibility of input ranges and the possible 

different weights activations resolution, the first layer of a dense layer network would be a flattening 

layer, so the added parameters are a single contiguous vector of all the vector parameters combined.  

Thus the number of weights and parameter ranges can be varied per algebraic function input.  An 

illustration of the number line numerical representation is in Figure 22, with three-parameter symbols 

using three contiguous number lines of proportional sub-resolution positions to encode the values to a 

position. 

 

FIGURE 22 NUMBER LINE INPUT REPRESENTATION 

In Figure 22, the format is similar to the categorization output format but at the input.  However, 

the sub-resolution positions are not a categorization feature as the categorization outputs are 

independent and may not represent a linear scale between them. 

6.2.1.2 Weight Values at the Start Point of Learning 

Traditional weight initialization schemes use random numbers with limits on the distribution 

derived from the population of activation inputs and sometimes the number of nodes in that layer.  

The limits differ depending on the distribution between the most common distributions, which are 

'normal' and 'uniform.'   The initialization limits vary between the Glorot and He initializations.  

Glorot takes both the activation and node population into account, and He only the activation 

population, of which the He initialization results in higher numerical limit values and has less dropout 

potential in deep networks and is the more advanced method.  Random numbers provided coverage 

and variation of values in the initial condition and were envisaged as a Monte Carlo or stochastic 

analysis approach to overcome incomplete and imbalanced dataset expectations.  However, a 
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drawback is that random initialization states affect the resultant learning accuracy and cause a 

variation in learning accuracy from learning session to learning session that is visible over 

regularisation, and this is the subject of Chapter 7.  The random forms also may have a further 

unintentional noise re-colourization effect when multiplying the activations and weights, i.e., the 

noise from the weights colours with the noise from a sensor's activations.  Chapter 7 presents non-

random forms for dense and convolutional layers, using Glorot or He limits with linear ramps, 

sinusoidal slopes, and non-random reordering.  These forms provide repeatable determinism from 

learning session to learning session.  The intuition for why they work in dense layers is that the layer 

nodes are connected fully between the layers, so the order of the nodes is not significant, only the 

amount in value variation on offer within the defined limit values.  The intuition for why they work in 

convolutional layers is that the non-random reordering shuffle alternative to the random numbers is 

more predisposed to the application area. 

Nevertheless, in this chapter, the weights are positionally encoded based on an activation value, 

and the initial weight values are 1.0.  The method is fair for all activation value ranges at the outset 

when translated from the input representation.  The parameter values become encoded into up to two 

positions where the summation of those positions is 1.0; this also provides repeatable determinism in 

the formula extraction method.  A more mature method could use the repeatable determinism 

initialization state in Chapter 7 and then subtract the initial weight values after the back-propagation 

when deducing the formula; however, this input may not be necessary for illustration.  However, for a 

clear illustration of the method, the initial weight values are 1.0. 

6.2.1.3 Input Representation Encoder 

The next step was to examine a possible formula extraction method with a single dense layer.  To 

be compatible with the Symbolic AI expert systems method in Chapter 5, as a symbolic algebraic 

form of a neural network expert system mix, this method of formula extraction required an input 

representation to represent values for a formula.  The input representation is a vector and is not unlike 

the image pixels of an image when flattened.  See Equation (63) to Equation (67) for the encoding of 

the value (v) into a number line (NL) of the length NLn, and in the full activation value range between 

Vmin to Vmax. 

  
           

        
   as the resolution of the number line. (63) 

   
       

 
 

as the offset ratio for value and position. 
(64) 

       ,  as the left hand index in the number line. (65) 

      ,  as the right hand index in the number line. (66) 

                       , value assignment into the number line (NL). (67) 

6.2.1.4 Input Representation Decoder 

See Equations (68), (69), (70), and also including Equation (63) for decoding the number line 

(NL) in a value (v) captured within that input representation.  The decoder can verify the input 

activation encoding and conceptually might be like an activation function for the conversion back to 

scalar representations in the next layer. 

                    , as the weight vector for a centre of gravity. (68) 

             , as the weighted centre of gravity vector. (69) 

    
            

     
    

        
   
   

 
, 

as the value from a centre of gravity calculation. (70) 

The encoding method at the input is similar to categorization coding generally used at the output 

layer, but this scheme can have values between the tensor vector elements proportionately, 

representing a continuous number line in a discrete resolution.  The generated dataset has a range of 
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values from 0 to 9.9999 in steps of 0.0001, which applies to the simple dense layer neuron model in 

Figure 23. 

6.3 The Formula Extraction Architecture 

The formula extraction method's model architecture is in Figure 23, which is the weights' back-

propagation training model. 

 

FIGURE 23 SIMPLE NEURAL NETWORK MODEL FOR FORMULA EXTRACTION [J3] 

To demonstrate the method, a simple function y = sin(x) × x forms a generated dataset, where y is 

the output and x is the input 0 to 9.9999 in steps of 0.0001.  Figure 24 shows the input in Blue, in Red 

is the pre-calculated expected y values and in green dashed is the actual predicted output, with no 

shuffle in Figure 24 left, and the shuffle enabled in Figure 24 right both with a Learning Rate of 1.0. 

 

FIGURE 24 MODEL OUTPUT & EXPECTATION LEFT UN-SHUFFLED, RIGHT SHUFFLED [J3] 

When un-shuffled (Figure 24 left), the order of update has caused a skew in the difference 

between the expected results (in red) and the model prediction output (in green); there is also a lower 

amplitude and an offset in those values.  When the shuffle is used (Figure 24 right), there is a 

reduction in the offset and skew as the updates do not have an update direction implied in the dataset 

like a sweeping filter, and this shows that dataset order is significant and when the dataset order is 

varied this provides less skew, offset and more significant amplitude response.  Although there is an 

improvement in the skew and offset (Figure 24, right), the amplitude is still reduced compared to the 

pre-calculated expected results (in red).  The dataset could have more updates in higher resolution of 

the input, but also other methods: Momentum in the gradient descent, additional epochs, and further 

adaption of the Learning Rate can be applied.  The last two methods (epoch and Learning Rate) 

depend less on the model architecture in future models.  Increasing the Epochs will increase the 

updates shown in Figure 25 left.  However, keeping a single epoch and setting the learning rate to 

10.0 will increase the influence of each of the current number of updates, as shown in Figure 25 right. 
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FIGURE 25 MODEL OUTPUT & EXPECTATION LEFT [LR=1 10 EPOCH] RIGHT [LR=10 1 EPOCH] [J3] 

Figure 25, left and right, are identical and both show that the input representation is working at 

this point, and the learning creates the model prediction function (in green) within a network that 

matches the expected pre-calculated dataset values (in red but eclipsed by the green line).  More 

updates (i.e., epochs) of minor influences (i.e., lower learning rate) will provide a higher accuracy but 

with a risk of over-fitting as the back-propagation nudges in Gradient Descent are minor; thus, that 

method is favourable as over-fitting is desirable to extract the formula.  There is still a minor 

discontinuity in both results at the higher end of the value range; this will reduce as more parameters 

to the formula are added.   Although learning creates a prediction function, the regularisation is also 

unset as the method wishes to over-fit the model for extraction purposes as it reduces the x to y 

influence in regression.   Also, the activation function is disabled as the full linear value range is 

required, and this is effectively regression, where that regression is applied to different value ranges 

along the input representation number line.  Traditionally in an ANN, the absence of the activation 

function can collapse the layers as there can be numerical equivalence in single layers; traditionally, a 

single layer cannot solve more complex logic like the XOR as there is a single layer weight for all 

strengths of activation.  However, in this input form, it can, as weights connect to the activation 

strength value ranges directly and exclusively.  Weights of different node activations can modify 

activations, and the weight can be sensitive to only some input activation value ranges.  This method 

uses a different input representation for a formula extraction to yield a newly learnt rule supporting 

the algebraic expert system method in Chapter 5 as a component of a Neuro-Symbolic AI method. 

6.3.1 Discriminating Division and Multiply Operator Relationships 

Further extending the function to two input parameters: x, and z, where the prediction output is y= 

sin(x)×z, and the z input is z=x/2.  Then the resultant learnt model prediction is as in Figure 26 left, 

again with the model prediction in the green dashed line and the predetermined function expectation 

in the red line, where the green line prediction exactly overlays the pre-calculated expectation values. 

 

FIGURE 26 RESULTANT WEIGHT TENSOR FOR FORMULA EXTRACTION WITH 2 INPUT PARAMETERS [J3] 

Furthermore, the weight vector from the two-parameter input model in Figure 26, left and right, 

shows the predicting function weights for parameters x and z.  The prediction function y value 
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mapping is in both parameters, but parameter z has been compressed as the number line input only 

used half the vector as per the z=x/2.  Thus given the input representation, a divide operator has a 

compression in the weights connected to that input range used.  The expectation is that divide 

operators compress that representation relatively given the number range used, and multiply operators 

will expand it.  Note that the un-used vector still contains the initialization weight value of 1.0.  In this 

case, the relationship of y to z is half that of y to x as derived from the weight observations. 

6.3.2 Discriminating Addition and Subtraction Operator Relationships 

Further extending the inputs with a parameter v. the function parameters now become v=z+4, 

where z=x/2 and y=sin(x)×z+v.  Figure 27 left has the expected y values in red, the input vectors are 

in Blue, and the Greenline is the model prediction.  The weights after learning are in Figure 27, right, 

and the same relationship to x can be seen in compression but is offset by the value 4, as per the value 

in the v parameter's addition operation. 

 

FIGURE 27 RESULTANT WEIGHT TENSOR OF FORMULA EXTRACTION WITH 3 INPUT PARAMETERS [J3] 

Intuitively the resultant weights from the simple neural model, when exposed to that dataset, are 

subject to regression (least squares) optimized with Stochastic Gradient Descent (SGD), and the 

numerical input representation caused the model optimization to distribute the influence of the input 

parameters, towards the output over many weight values.  These weights individually represent the 

inputs to output, allowing the weights to characterize the math operator used between those inputs.  

However, some machine learning features were disabled for clarity (regularisation and activation), as 

this model would not be used to predict unseen data, nor did it want the number representation to be 

limited.  It used a single layer, anticipating that the method repeats per layer and fewer layers might 

be required, and the layer type was dense. 

6.3.3 Optimising Learning Rate and Number of Nodes 

When a common denominator reduces the Number of Neurons and Learning Rate, it sustains the 

loss measurements, as shown in Table 3 with the same values coloured in the same colour.  Note that 

the high number of significant digits in the results allows for the grouping of the exact result values. 

TABLE 3 

LEARNING RATE AND NUMBER OF NEURONS OPTIMISATION 

Division 

Factor 

No of 

Neurons 

Learning 

Rate 

Mean Square Error Mean Absolute Error 

1 100 1.0 1.6964304450084455e-05 0.0015970466192811728 

2 50 0.5 1.6964357200777158e-05 0.001597068621776998 

4 25 0.25 1.6964357200777158e-05 0.001597068621776998 

5 20 0.2 1.6964289898169227e-05 0.001597053837031126 

10 10 0.1 1.6964289898169227e-05 0.001597053837031126 

20 5 0.05 1.6964289898169227e-05 0.001597053837031126 

25 4 0.04 1.6964319001999684e-05 0.00159705919213593 

50 2 0.02 1.6964319001999684e-05 0.00159705919213593 

100 1 0.01 1.6964282622211613e-05 0.0015970563981682062 
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Table 3 demonstrated that the method is robust to different Numbers of Neurons in different 

architectures.  The neuron reduction works because the input format representation exploits extra 

weights for activation strengths (as value ranges) connected to each neuron, as per section 6.1.2.  

Therefore, the number of neurons is less critical than the number of activation weights as the linear 

regressions operate over the different numerical ranges as a weighting of those segmented activation 

value ranges.  The discrete weighted activations provide a set of straight-line graphs to a neuron 

segmented to different activation value ranges from the input format.  The relationship between the 

Learning Rate and the Number of Neurons when there is a common denominator is that there are 

fewer neurons to update, there are fewer classification boundaries possible, and that lowers the 

resolution making the learning step in update more significant in gradient descent, so the more minor 

learning step couples to the sustainment of the performance.   Figure 28 left shows the prediction 

function in green and the expected y value in red eclipsed by the prediction with only one neuron. 

 

FIGURE 28 RESULTANT WEIGHT TENSOR FROM FORMULA EXTRACTION WITH 1 NEURON 

The numerical operators are still interpretable as the number of activations is unchanged.  Only 

one neuron is needed in this case, as this method exploits the weights attributed to different value 

strengths.  As such, the classification boundaries are also paired to the activation strengths coding in 

the input representation. 

6.3.4 Revealing Further Learnt Content 

The learnt weights indicate the deduction of the mathematical relationships between the inputs to 

outputs.  However, when those deduced mathematical operators were reversed in operation and 

applied to the prediction outputs, the residual of a sine function remains (See Figure 29) that was 

deliberately not in the inputs, so exposing a learnt mathematical function in that layer that was present 

in the training data but not in the inputs to that layer. 

 

FIGURE 29 RESIDUAL OF THE LEARNT SINE FUNCTION IN PREDICTION [J3] 
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6.4 Summary of Numerical Discrimination 

A variation of simple mathematical operators was combined and, in this case, used primitive add 

and divide operations; this demonstrated that a symbolic formula representation with a high degree of 

accuracy is possible.  However, the weights could also establish the relationships between y and the x, 

z, and v inputs.  Add and subtract operators displaced the learnt y pattern in the weights, multiplying 

and dividing stretched and compressed them.  This method observed a very high degree of accuracy, 

with low losses, as there was no noise and regularisation.  Also, the residual of the hidden function 

was recognized when reversing the deduced math operations. 

Confined to dense layers, this was early work towards a formula extraction method in support of 

Neuro-Symbolic AI, but rather than a rule extraction, it is an alternative method.  That is to say, the 

output is naturally generalized rather than a dense set of logic equations in some rule extraction 

methods that need to be generalized.  The method forms a decompositional approach, which would 

operate layer by layer, examining weight relationships to the layer inputs and exposing available 

residuals of learnt mathematical functions not present in the inputs, but only in the learnt weights for 

prediction outputs.  In the context of Neuro-Symbolic AI, regression and SGD can be utilized in a 

different form using a numerical representation of input symbol number ranges, and those weights 

discriminate the input-to-output relationship.  Further work is required for more complex math 

functions like exponential and trigonometric functions, perhaps using convolutional layers or other 

filters as recognizers and discriminators.  However, this work establishes a repeatable deterministic 

experiment environment and a rule extraction thread to solve intractable problems with a neural 

network.  The new rules can then be a subject for the neural expert system method in Chapter 5.  

Partial results were published in a peer-reviewed conference paper [C3
5
] and a journal version [J3

6
]. 

6.4.1 A Benefit to ANN by Augmenting with the Input Representation 

More generally, the input representation might enhance image processing by reducing model 

depth, as model depth can increase the potential for vanishing gradients.  The method makes a colour 

image 4 Dimensional, where those dimensions are: height, width, colour channels, and activation 

strength value ranges.  That activation strength dimension thus captures some logic and numerical 

representation, which would otherwise require model depth for other value ranges of an activation 

input by having more than one weight per activation associated with different number ranges.  The 

activation strength dimension would be prior to the activation function used.  The activation strength 

dimension might also benefit the low activation values as the activation used in small values will be 

between 0.5 and 1.0, which might avoid vanishing gradients.  The extra weights required might also 

be omitted from the population count in the initialization scheme limit calculation as proven with a 

single initialization value.  An augmented method to ANN might use the current node He et al. or 

Glorot Xavier limited value for that whole weight dimension of each input activation weight set.  

Finally, that dimension can be more interpretable with primitive add and divide operations.  The 

representation may cause a network to be more interpretable in Safety-Critical AI towards explainable 

AI.  However, repeatable determinism for safety-critical aspects of the application area and accuracy 

in analysis support is addressed further in Chapter 7. 

  

                                                      

5
 [Cn] Published conference papers are in a separate bibliography on page xv. 

6
 [Jn] Published journal articles are in a separate bibliography on page xv. 
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7 Chapter 7 

SAFETY-CRITICAL AI FOR NEURAL METHODS 

AND TRANSFERRED LEARNING 

Explaining the content of a neural network is challenging to establish neural networks as palatable 

in the application area, but some insights are in Chapter 6.  Neural networks also need a repeatable 

and deterministic quality, so testing and qualification are repeatable.  A significant impact on this is 

random weight initializations, and an alternative non-random scheme with the same or better 

performance as the existing random weight initializations is required.  This chapter examines non-

random weight initialization schemes for dense and Convolutional layer types.  The chapter will also 

employ the adversarial attack with the Fast Sign Gradient Method (FSGM) for evaluating the weight 

initialization impact in transferred learning between two datasets, where one dataset has a controllable 

distortion via the FSGM approach relative to the other. 

7.1 Safety-Critical Aspects 

Both within and out of the application area, safety-critical AI aspects apply and thus also relate to 

applications in human life like Smart Cities [238], [239], and these applications also have public or 

legal liabilities [240], particularly in hazard avoidance [241].  A general goal of AI is to reach a 

performance that is better than a human baseline and is free from human error [242], [243], [131].    

Thus AI that can be trusted is a challenge [244], both in verification and validation and within the 

processes used [245].  In many cases, AI applications have been used as decision assistance rather 

than decision making, avoiding that liability [52], [246], [247], [248], [249], [250], [251]. 

Leaving aside the legal and ethical standpoints of a machine making decisions, technologically, a 

variation of performance results in repeated sequences of learning sessions is a problem for safety and 

quality.  It suggests that more than one valid solution exists and questions how many more possible 

solutions there are and which ones are both optimal and safe.  Indeed it questions if there is 

catastrophic content in some of them. 

Another approach is to have a repeatable result from every learning session, which allows for 

higher investment in a solution's qualification testing while permitting a regression testing approach to 

be more acceptable.  Thus repeatable determinism is desirable when combined with other approaches 

as part of safety-critical AI, but repeatable determinism also aids other safety-critical AI development 

and testing approaches.  With this in mind, using random number initializations that vary in each 

solution and yield a variance in visible results over regularisation can be a problem.  A repeatable and 

deterministic non-random number initialization is desirable to focus critical safety approaches to 

fewer or single solutions in testing.  Two main random number variations used are the epoch shuffle 

and the random number initialization state. 

The question of random numbers and hidden structures are questioned and explored by Fang et al. 

compared to quantum mechanics [252] and Duch et al. in initialization [253].  However, the research 

aim in this chapter is an alternative to the random number initialization, such that there is a single 

solution that is singularly deterministic and repeatable. 

7.1.1 Unexpected Random Number Source 

It is common to assume that seeding the random number generators would provide a repeatable 

result; this was not the case in some frameworks using CPUs.  An unexpected problem arose when 

experimenting with the tools.  When running on a CPU, the model accuracy varied whenever training 

the model even if there was no change, and also, the random number generator was seeded.  More 

concerning, when using non-random initialization values: for the weights as part of the research, 

shuffles were disabled, but the variations in accuracy continued, threatening repeatability.  The CPU 
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and multi-task scheduling events problem was solved using 'processor affinity' and 'real-time priority' 

in critical code sections, denying the task scheduler and avoiding the internal 80bit extended precision 

floating-point register to not be rounded on task scheduling events.  Critical code sections made CPUs 

available in applications with repeatable determinism where GPUs are unavailable; a GPU might be 

too power-intensive in some Smart Cities applications.  This solution also provided greater 

Information Assurance (IA) in AI development by avoiding a rounding truncation and increasing 

model accuracy. 

7.1.2 Current Initialisation Schemes 

Currently, there is the everyday use of, Glorot/Xavier and the He et al. initialization schemes 

[254], where the method suggested by He et al. is regarded as the more advanced method, but where 

both are not coupled to the dataset, providing signal gain normalization based on the input activation 

populations only and attains a distinct minimum quicker.  

There has been some questioning of whether random initialization is a thing of the past [255], 

which states that random numbers cause an unlearning of the initial condition, and an asymmetry 

could be an advantage if it matches the after-learning state.  Both Glorot/Xavier and the He et al. 

initializations use random numbers.  However, those two schemes relate mainly to set limits to the 

random numbers given different random distribution and activation functions rather than the random 

numbers themselves. 

Time evolution is a subject of RNN and LSTM networks, but outside of ANN, Melan et al. [50] 

used a BN to grade rules progressively in learning sessions.  Learning of an initial condition with pre 

training or learning is a theme but couples the initialization state to the dataset specifically and still 

requires unlearning of an original initial condition.  More ideally, the initial condition would be a 

general case and thus use more of the dataset from the outset of learning rather than investing some of 

it for deriving that initial condition. 

There has been an appetite for mission-critical applications of ANN for some time, and examples 

are uncrewed air vehicles [93], crewless space missions [94], and unattended communication fault 

diagnoses [95].  As such, an alternative to the random numbers used in Glorot/Xavier and the He et al. 

initialization schemes is desirable such that learning when unattended can have a repeatable 

deterministic outcome should retraining be required remotely or progressively. 

7.2 Repeatable Determinism: Dense Layer Networks 

There were two publications for dense layer models, and the first publication [C2
7
] used fixed 

value limits derived from the baseline model; this would show that a non-random form was viable but 

was slightly underperforming in the accuracy score with the Glorot/Xavier baseline.  However, 

resolving the unexpected random number source problem provides repeatability.  The second 

publication [J2
8
] extended that work using the Glorot/Xavier initialization limits.  i.e., replacing the 

random numbers only, and achieving an equal performance to the baseline in direct comparison, 

showing the non-random form can be equivalent. 

7.2.1 A Familiar and Well Understood Baseline Model 

Initially using a dense layer network with the MNIST dataset [150] of black and white 

handwritten numbers, the model architecture in Figure 30 used TensorFlow, Keras, and NumPy to 

form the experiment model for further experiments.  The dataset and model architecture is familiar, 

trusted, and well understood by researchers. 

                                                      

7
 [Cn] Published conference papers are in a separate bibliography on page xv. 

8
 [Jn] Published journal articles are in a separate bibliography on page xv. 



65 

 

 

FIGURE 30 ARCHITECTURE OF THE BASELINE MODEL [J2] 

7.2.2 Experiments and Method 

In the more advanced MLP research in the journal version [J2], several experiments and an 

experimental model were defined in Figure 31, forming the experiment method.  The baseline 

performance would be the experiment control case, with a further variation of initial weight state 

defined in four classes:  Class one is the experiment control shown in green; Class two uses Fixed 

Values at limits shown in blue; Class three uses Linear Ramps, testing number ranges with a fixed 

slope shown in orange, and finally Class four used Sinusoidal slopes to make a variation to the slope 

gradient shown in red.  Please note that all the measurements are from a cross-validation dataset. 

 

FIGURE 31 ARCHITECTURE OF THE EXPERIMENT'S DESIGN [J2] 



66 

 

The model results are in Table 4 using the ten epochs of that model and run over ten separated 

learning sessions, showing the accuracy variation due to the random number start conditions and the 

unexpected random source caused by task scheduling events rounding the internal extended floating-

point register. 

TABLE 4 

BASELINE RESULTS WITH A RANDOM INITIAL CONDITION WITH 10 EPOCHS [J2] 

10 Epochs Run Each Loss Accuracy 

1st Random Learning Session 0.06106613632314256 98.18 

2nd Random Learning Session 0.06175447308695293 98.16 

3rd Random Learning Session 0.07186600035531446 97.72 

4th Random Learning Session 0.06600431568695349 98.18 

5th Random Learning Session 0.06500834331280785 98.13 

6th Random Learning Session 0.06586962914280885 98.01 

7th Random Learning Session 0.07172874092692509 97.96 

8th Random Learning Session 0.08020385432066396 97.65 

9th Random Learning Session 0.0815817079940578 97.71 

10th Random Learning Session 0.07415228985190625 97.94 

Mean Average 0.069923549 97.964 

Variance 5.19614E-05 0.042737778 

Standard Deviation 0.007208428 0.206731173 

Table 4 shows the accuracy variance due to different random number sequences is about 0.043 

and a standard deviation of 0.2 around a mean of 97.964% accuracy.  Those results achieved about 

~98% of that model's stated accuracy.  As the first epoch after learning is the epoch of interest, being 

the epoch after the initialization, the results include a single epoch with no dataset shuffling to 

disregard that random effect too, and thus Table 5 also shows the results for a single epoch un-

shuffled. 

TABLE 5 

BASELINE RESULTS WITH A RANDOM INITIAL CONDITION IN A SINGLE EPOCH UN-SHUFFLED [J2] 

Run Loss Accuracy 

1st Random Learning Session 0.1266106634631753 95.91 

2nd Random Learning Session 0.1216393306143582 96.21 

3rd Random Learning Session 0.13143637651763856 95.62 

4th Random Learning Session 0.1323663795016706 95.74 

5th Random Learning Session 0.12944038207307457 95.83 

6th Random Learning Session 0.13047181819714607 95.69 

7th Random Learning Session 0.13344295675437898 95.7 

8th Random Learning Session 0.13349654669184238 95.58 

9th Random Learning Session 0.12230887789316476 96.14 

10th Random Learning Session 0.12589706211015583 95.93 

Mean Average 0.128711039 95.835 

Variance 1.92267E-05 0.045316667 

Standard Deviation 0.004384824 0.212877116 

In Table 5, the accuracy variance and standard deviation are similar; however, around a ~2% 

lower mean of 95.835% accuracy, and as the learning, after initialization is with disregard to epoch 

random shuffle sequences, this forms the 'baseline experiment' control performance case of the 

learning. 

7.2.2.1 Fixed Value Scheme 

Expecting that fixed weight values will not be as high performing as the initial condition, like the 

weights, when set to the same value, in back-propagation, many nodes may calculate the same nudged 

values; as such, the update lacks diversity in the network, and caused the duplication of node updates, 

lowering the network's efficiency.  Each of the results over ten separated learning sessions is in Table 
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6.  Note that the variance in the results is due to the unexpected random number source caused by the 

task scheduler events rounding the CPU's internal floating-point extended precision register. 

TABLE 6 

FIXED VALUE SCHEME OF WEIGHT INITIALISATION [J2].  

Experiment Loss and Accuracy Comment 

Fixed value 1.0   Accuracy Loss 

Mean 10.1% 14.49016949 

Var 0 0 

StdDev 0 0 

This scheme is the lowest score. 

However, it still may have some 

applications to reserve a network area 

for later use, like unused input vectors. 

Fixed value 0.0   Accuracy Loss 

Mean 11.52% 2.301160769 

Var 0 5.88128E-15 

StdDev 0 7.66895E-08 

Low performing and compares with the 

negative number experiment.  However, 

it may have some applications for a 

network area to be disregarded. 

Fixed value 

Upper Glorot 

limit   

 Accuracy Loss 

Mean 28.156% 1.791479329 

Var 0.124671111 8.40606E-06 

StdDev 0.353087965 0.00289932 

Although low performing, the highest 

score shows that the Glorot value has 

benefit, although only using that value 

is under-utilized the network. 

Fixed value 

Lower Glorot 

limit   

 Accuracy Loss  

Mean 11.35% 2.301160767 

Var 0 3.49831E-15 

StdDev 0 5.91465E-08 

It compares with the zero number 

experiment and may conflict with the 

use of ReLU in the first dense layer. 

As expected, a Fixed Value scheme is low-performing, as a fixed number used in the weights 

lacks diversity in updates.   However, the green row shows that the upper Glorot value is the highest 

performing, even with that lack of diversity.  In comparison with the research in Chapter 6, which 

used a fixed-value initialization state of 1.0 successfully, that success in Chapter 6 was because of the 

different input representation and the use of multiple weights per input, assigned to different 

activation strengths, of which these results use the traditional single weight per input for all activation 

strengths; as such, the outcome is not so successful as Chapter 6. 

7.2.2.2 Linear Ramp Scheme 

The Linear Ramp provides a diversity of weight values with a range of weight values in the 

network.  The distribution is uniform as per the random form in the baseline.  The experiment tests a 

number range with the same or similar slopes but is a fixed slope.  

TABLE 7 

LINEAR RAMP SCHEME OF WEIGHT INITIALISATION [J2] 

Experiment Loss and Accuracy Comment 

Ramp through 

Glorot range. 

 Accuracy Loss 

Mean 94.269% 0.184886392 

Var 0.276676667 0.00024044 

StdDev 0.526000634 0.015506117 

The result is only 1.5% lower 

accuracy from the baseline in this 

case of substituted random numbers. 

Same Slope as 

the Glorot range 

but slid up to 

positive numbers. 

 Accuracy Loss 

Mean 91.475% 0.268064027 

Var 0.024094444 9.9364E-06 

StdDev 0.155223853 0.003152205 

The result is 4% lower accuracy from 

the baseline in this case. 

Change in slope 

but in positive 

and Glorot 

limited. 

 Accuracy Loss  

Mean 92.448% 0.239309289 

Var 0.105462222 9.02308E-05 

StdDev 0.324749476 0.009498988 

The result is 3% lower accuracy from 

the baseline in this case.. 

Same slope as the 

above experiment 

but  negative 

values and -

Glorot  limited. 

 Accuracy Loss 

Mean 11.35% 2.30116078 

Var 0 2.33796E-15 

StdDev 0 4.83524E-08 

Accuracy is low performing, and the 

ReLU activation function may have 

affected learning from the outset by 

being lower than the bias threshold. 
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In Table 7, the linear ramp scheme within the Glorot range is the highest performing and is in 

green.  Although the unexpected noise source is still causing variance in those results as the task 

scheduler event is still rounding the internal extended precision floating-point register. 

7.2.2.3 Sinusoidal Slope Scheme 

The sinusoidal slope scheme provides a variation in the steps in values within the number range; 

as such, it varies the gradient in the weight diversity and the steps within that diversity.  Table 8 

provides results from different number ranges and varying gradients. 

TABLE 8 

SINUSOIDAL SLOPE SCHEME OF WEIGHT INITIALISATION [J2].  

Experiment Loss and Accuracy Comment 

Sinusoid slope in 

Glorot Range. 

 Accuracy Loss 

Mean 94.886% 0.168972311 

Var 0.022937778 8.76335E-06 

StdDev 0.151452229 0.002960295 

The result is almost the same score as the 

same number range with the equivalent 

linear ramp experiment. 

Sinusoid slope 

from twice the 

Glorot upper limit 

to 0. 

 Accuracy Loss 

Mean 91.413% 0.279573134 

Var 0.01189 2.41043E-05 

StdDev 0.109041277 0.004909613 

The result is almost the same score as the 

same number range with the equivalent 

linear ramp experiment. 

Sinusoid slope 

from Glorot 

upper limit to 0. 

 Accuracy Loss 

Mean 92.628% 0.243604778 

Var 0.08944 7.93523E-05 

StdDev 0.29906521 0.008907991 

The result is almost the same score as the 

same number range with the equivalent 

linear ramp experiment. 

Sinusoid slope 

from 0 to lower 

Glorot limit. 

 Accuracy Loss 

Mean 11.35% 2.301160704 

Var 0 6.39136E-15 

StdDev 0 7.9946E-08 

The result is almost the same score as the 

same number range with the equivalent 

linear ramp experiment. 

In Table 8, the Glorot range is again the highest performing and slightly higher than the 

equivalent linear ramp, but the task scheduler event still compromises the internal extended precision 

floating-point register. 

7.2.3 Avoiding a Misleading Conclusion 

Using the two highest-scoring schemes of sinusoidal slope and linear ramp but with ten epochs 

and the shuffle enabled, a comparison to the original baseline performance is in Table 9 and Table 10. 

TABLE 9 

SINUSOIDAL SLOPE SCHEME OF WEIGHT INITIALISATION 10 EPOCHS SHUFFLED [J2] 

Run Loss Accuracy 

1 0.06873708092225715 97.99 

2 0.07566913830568082 97.75 

3 0.06941359058758244 97.81 

4 0.07690233801202849 97.75 

5 0.07229105311079184 98 

6 0.07870250816526823 97.79 

7 0.06857179706634488 97.98 

8 0.07224223068275024 97.86 

9 0.07307772935463581 97.75 

10 0.07484171458326745 97.87 

Mean 0.073044918 97.855 

Var 1.22188E-05 0.010494444 

StdDev 0.003495545 0.102442396 
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TABLE 10 

LINEAR RAMP SLOPE SCHEME OF WEIGHT INITIALISATION 10 EPOCHS SHUFFLED [J2] 

Run Loss Accuracy 

1 0.06948850467810408 97.93 

2 0.0810321348624304 97.66 

3 0.07320999270802131 97.81 

4 0.0818435779891268 97.49 

5 0.06348531504337443 97.95 

6 0.07764026021502214 97.67 

7 0.08206962382048369 97.53 

8 0.07047365378377726 97.86 

9 0.07122972569263075 97.9 

10 0.06634688437929144 97.93 

Mean 0.073681967 97.773 

Var 4.42831E-05 0.029801111 

StdDev 0.006654552 0.172629983 

Table 9 and Table 10 both present the highest performance in run five, shown in green, and the 

sinusoidal slope's mean average is higher with lower variance and standard deviation.  However, the 

maximum and minimum performances between the sinusoidal slope and the linear ramp are 

overlapped, as shown in Figure 32, left and right. 

 

FIGURE 32 ACCURACY OF HIGHEST SCORING SCHEMES, SINGLE EPOCH LEFT 10 EPOCHS RIGHT [J2] 

From Figure 32, left and right, these results could be misleading to conclude the random number 

initialization sequences are superior probabilistically, although other non-random sequences could be 

equivalent.  However, the probabilistic content in what is to be deterministic content means that the 

known variances put a different perspective on the results. 

Figure 32 actually shows the vulnerability sensitivities of those methods to the unexpected 

random number source.  If that unexpected random number source is a 'numerical instability' or 

rounding corruption, then the random number initialization sequences are less sensitive to it, which is 

what Figure 32 shows.  When termed as a 'numerical instability' rather than a noise source, the notion 

of a corruption or an IA (Information Assurance) threat is imperative to resolve that numerical 

instability to gain the true clarity of the results. 

As such, the task scheduler was denied via real-time priority [256] with a single processor affinity 

[257] to preserve the integrity of the 80-bit internal floating-point register [258].  Upon which the 

results became deterministic and repeatable in every separate learning session.  The sinusoidal slope, 

linear ramp, and random number scheme are re-measured within Table 11. 
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TABLE 11 

RE-MEASURED SINUSOID, LINEAR AND RANDOM: WITHOUT UNINTENTIONAL RANDOM SOURCE 

Type Loss Accuracy 

Sinusoidal slope 0.06988054851347116 97.93 

Linear Ramp 0.06633297475341242 98.05 

Random Numbers  0.061059941675240405 98.05 

Table 11 shows that the linear ramp achieves an equal score to the random form shown in green 

without the numerical instability.  The intuition for this is that the order in which the weights are in 

the network is not significant with the fully connected dense layers.  As the random form is also 

uniformly distributed, it matches the distribution of the linear ramp and thus is equivalent. 

7.2.4 Summary of MLP Dense Layers 

The research initially used a pure dense layer network and non-random schemes for weight and 

bias initializations.  That research found that the number range rather than the gradient was necessary 

and showed an almost equal performance using a linear ramp between the values -0.05 and +0.05.  

That number range would match the test case model, and subsequently, the journal paper version [J2] 

used the Glorot/Xavier limit values instead, making it adaptive to other models and achieving an 

equal accuracy result in a non-random initialization.  Also, accuracy was arrived at in the first 

learning session and was repeatable, whereas the random form had variations and took several 

learning sessions to achieve the highest score.  Intuitively the substitution of a linear ramp for a 

random form achieving equality in performance is understood by the nature of dense layers being: 

fully and feed-forward connected, meaning that the node order is not relevant, only the numerical 

steps and the distribution.  That supports the finding that a gradient change was not beneficial; 

however, avoiding the value zero and Glorot/Xavier limit values would also avoid potential dropout 

and saturation. 

 

FIGURE 33 ORIGINAL RANDOM SCHEME,  

WEIGHTS AFTER LEARNING [J2] 

 

FIGURE 34 NON-RANDOM SCHEME,  

WEIGHTS AFTER LEARNING [J2]

Additionally, the non-random initialization state provided a structure to the weights, which may 

benefit subsequent rule extraction, and grew the weights in a structured form (See Figure 33 and 

Figure 34 for comparisons).  Figure 33 shows the weights after learning with the random scheme, and 

Figure 34 shows the weights after learning but with the non-random linear ramp scheme.  Both 

schemes achieve equal model accuracy and are equivalent, although perhaps reordered, but Figure 33 

(right) shows that the non-random scheme has a structure along the 'Number of Nodes' axis and 

correlates with the 'Tensor length' axis at pixel positions.  That correlation may have value to rule 

extraction, as the weights are linear aligned, and as such, the node semantics index to adjacent nodes 

that pertain to pixels, and in the non-random form, the weights are aligned and clustered, making the 

generalization step easier in a rule extraction method.  Blumenfeld et al. [259] also asserted that 

random numbers are unnecessary for the initialization state in a paper with experiments of zeroing 

weights in a convolutional network. 
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7.3 Repeatable Determinism: Convolutional Networks 

The previous dense layer work was limited to MLP networks and dense layers, and repeated 

research is for convolutional layers.  In the imageNet challenge, convolutional layers reached 

prominence with better than human performance in Alex Krizhevsky's paper in 2021 [180].  

Convolutional layers have more significant complexities as the weights are differently used and are 

affected by the image size and the filter dimensions.  Convolutional layers operate in a sliding 

window operation, making a weight order significant to receptive fields.  The dense layer work would 

not be directly applicable, and a new method would be required.  The safety-critical challenges still 

exist in AI [240], [260], [242], [243] as applied to applications: ship classification for riverside 

monitoring [261], traffic accident detection from social media [262], driverless cars [263] and in 

research at least there is an appetite for safety-critical applications for aircraft taxiing [264] and 

situation awareness in autonomous ships [265]. 

7.3.1 Current Related Methods 

In 2017, an alternative method to initialization, proposed by Seyfioğlu et al. [266], outperformed 

the random method but with two methods selected based on dataset size.  Used in radar microDoppler 

where only small datasets are available, they applied transferred learning and unsupervised 

Convolutional AutoEncoder (CAE).  Their findings were that both methods were superior to random 

methods with CAE on larger datasets (greater than 650 samples) and transferred learning on smaller 

datasets.  Also, in 2017, Seuret et al. [267], in document analysis, outperformed the random 

initialization method, using Principal Component Analysis (PCA) parameters to initialize neural 

layers from an auto-encoder.  These methods fit the initial state to the dataset and are thus coupled to 

the dataset, making them less of a general case. 

Later in 2019, Zhang et al. [268] highlighted the area of initialization as an active research topic 

and proposed a modification to other initialization methods to limit values using FIXUP Initialization.  

The claim is that FIXUP allows 10,000 layers without normalization but with the proper 

regularization.  Again in 2019, Humbird et al. [269] proposed a method that sampled a normal 

distribution in the bias values but still employed random numbers in the weights.  This method is 

called Deep Jointly Informed Neural Network (DJINN) and uses decision trees searching for the 

"warm start" condition and a dataset in back-propagation.  Ferreira et al. [270] used a De-noising 

Auto-Encoder (DAE) to classify tumour samples through dataset sampling, a data sample convergent 

method to weight initialization. 

In 2020, Wang et al. in 2020 [271] proposed a convolutional networks initialization method, 2D 

Principle Component Analysis (2DPCA), adjusting the weight difference values to promote back-

propagation.  This method uses samples of the dataset as a convergent dataset method and avoids 

random numbers.  In the area of fundus lesions images, Ding et al. [272] proposed a shuffle leapfrog 

algorithm method with random Gaussian forms in update and initialization.  The method contains 

random numbers in an initially Gaussian distribution and then optimizes with the shuffle leapfrog 

algorithm.  

Later again, in 2021, in neuroevolution, Lyu et al. assessed Xavier and Kaiming (also known as 

He) during mutation and crossover operations with two neuroevolution Lamarckian weight 

inheritance methods [273].  Lyu et al. find that Lamarckian weight inheritance is superior in crossover 

and mutation operations.  Lyu et al. identify creation, offspring, and mutation as weight initialization 

points for use with their Evolutionary eXploration of Augmenting Memory Models (EXAMM) 

neuroevolution algorithm.  This method generated network types: RNN: ∆-RNN, Gated Recurrent 

Units (GRU), LSTM, Minimal Gated Units (MGU), and Update Gate RNN (UGRNN). 

7.3.2 Inspiration for this method 

Part of the inspiration for this method was the connection to Hubel and Wiesel's work in brain 

anatomy [274], [275] and their experiments on cats and spider monkeys under light anaesthetic while 

stimulating the retina with images of spots and stripes.  Generally accepted, there is a connection with 

spots and stripes forms in early layers of convolutional networks as part of hierarchical feature 

extraction [276], [277].  As such, spot and stripe forms also result after learning within image 

classification applications.  The assertion thus follows that if an initial state is to be closer to the learnt 
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state generically, then it may have the ability to outperform the current random initialization state.  

Furthermore, if it is non-random in nature, it can also have a repeatable deterministic quality for 

safety-critical image classification applications. 

7.3.3 The initial baseline model 

The initial baseline dataset is the MNIST dataset [150] for direct comparison with the previous 

work in MLP networks.  Torres's initial baseline model is a Convolutional network version [278], 

with a stated accuracy of ~97%.  Another Convolutional network model for the MNIST dataset is 

Kassem [279] which has a higher stated accuracy of ~99%, but the high number of epochs (50) is a 

dominant effect of the random shuffle.  Also, interest is primarily in the first epoch after initialization, 

and 99% does not provide much headroom to show an improvement.  Convolutional networks used 

the weights in a more complicated inherited form see Figure 35, for the weights and image size effects 

in the test case with the layer types. 

 

FIGURE 35 FILTER AND IMAGE SIZE TO EFFECT THE NUMBER OF WEIGHTS [J1] 

The weight sizes using the layer inheritance in Figure 35 collate into Table 12, and three layers 

with weight values are associated.  These are the two convolutional layers and the last dense layer in 

green. 

TABLE 12 

WEIGHTS AND IMAGE SIZE PARAMETERS: BY LAYER IN THE TORRES BENCHMARK MODEL.  

Layer Filter/Pool/Neurons Depth Image/Tensor Size Weights 

Input 28x28x1 N/A 1 (B/W image) 28x28  (748) N/A 

Conv Layer 1 5 by 5 by 32 filters 1 24x24  (576) 800 

Max Pooling 2 by 2 32 12x12  (144) N/A 

Conv Layer 2 5 by 5 by 64 filters 32 8x8  (64) 51200 

Max Pooling 2 by 2 64 4x4   (16) N/A 

Flatten Layer N/A 1 1x(4x4x64)  1024 N/A 

Dense Layer 10 1 10x1024  (10240) 10240 
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These three layers' weight values calculate the Glorot /Xavier limits as per the Torres baseline 

model as in Equations (71),  (72), and (73).  However, for later analysis of He et al. robustness, the He 

et al. calculated limits are in Equations (74), (75), and (76). 

              
 

                  
           ,  Glorot/Xavier limit for Layer 2, (71) 

            
 

                   
     , Glorot/Xavier limit for Layer 4,  (72) 

            
 

             
           ,  Glorot/Xavier limit for Layer 7, (73) 

              
 

       
           , He et al. limit for Layer 2, (74) 

            
 

        
           , He et al. limit for Layer 4, and (75) 

            
 

        
           ,  He et al. limit for Layer 7, (76) 

7.3.4 The Proposed Method 

Utilized here with modification to allow odd number vector lengths, a least adjacent dataset non-

random shuffle algorithm was previously published as part of this research [C3], [J3], and that 

algorithm had attractive properties to this application and provided spots, stripes, and curved patterns.  

It is also in tune with the Hubel and Wiesel intuitions [274], [275] as an inspiration for its use.  When 

using the non-random shuffle, the algorithm outputs set y of reordering from an input set x.  With zero 

indexed subscripts addressing in  and ,  Equation (77) defines a recursive function for nFilter 

iterations LayerNo in Equation (78).  Equations (79) and (80) define the subscript sets  and  for the 

reordering within each recursive shuffle iteration, where n is the standard subscript set size. 
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The length of the tensor is in Equation (81).  Each value within this subscript rearrangement is 

based on a layer type as in Equation (82), where t is the layer type and l is the limit value calculated 

by Glorot/Xavier or He et al. initialization limits.  The layer type is required because a finding will be 

that linear ramps work best with dense layers and sinusoidal slopes with convolutional layers.  Values 

of m and cnt are calculated from filters or image size, depending on the layer type in Equations (83), 

(84), (85), and (86).  The set limits are in Equations: (87), (88), (89), (90), (91), and (92).  See 

Equations (93) and (94) for the indexing order in the layer types. 
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As a disruption to the zero index location in both sets, the subscript location is in reverse order in 

every second iteration see Equation (96), doubling the number of filters on offer and disrupting the 

first value index.  Equation (97) applies the iterative shuffle on each pair.  For convenience, this is a 

transposed matrix see Equations (95) and (98). 
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For illustration, using the cnt values rather than the valSet function response as the cnt values are 

the indexes, then in the case of filters = 5, channel depth = 4, width = 3 height = 2, that example is in 

Equations (99), (100), and (101) in each stage: 
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To illustrate the algorithm steps for clarity, Equation (99), Equation (100) and Equation (101), 

show the main three algorithm reordering components included as piecemeal steps.  Equation (99) is 

the indexing without the shuffle or the vector reversing alternation.  Equation (100) is the indexing 

reordering with the vector reversing alternation but without the shuffle, and Equation (101) is the 

indexing reordering with both the shuffle and vector reversing alternation. 

The maximum number of filters on offer is in Equation (102), but in practice, in some filter 

geometries, the number of filter permutations can repeat early in aliasing, which is a further research 

subject. 

                                                        (102) 

As each layer's receptive field mapping depends on the last layer, see Figure 45, and with dense 

layers, the algorithm varies slightly depending on the layer prior. 

7.3.4.1 Comparison with the Random Scheme 

The research work re-used a variation of the non-random shuffle [C3], [J3], as it had properties of 

rotating lines and creating stripes that would be consistent with the expectations of feature extraction 

[280], [276], and is also consistent with observations from Hubal and Wiesel with cats and spider 

monkey experimentations [274], [275].  These results would exceed the baseline random initialization 

target using a non-random numbers set.   

Figure 36 shows the generated filter initialization weights in a convolutional network before and 

after learning as used in that work. 

  



76 

 

 

 

 

FIGURE 36 CONVOLUTIONAL LAYER FILTER INITIALISATION NUMBER SET SEQUENCES [J1] 

When the non-random method runs against the benchmark model, with the model in successive 

numbers of 1 to 5 epochs, the results are in Table 13 from cross-validation.  The most significant 

improvement is in the first epoch, which might be expected with a better initialization method, being 

the epoch after initialization.  As the more advanced limit calculation method, Table 14 shows further 

improvements in the interests of robustness to He et al. initialization.  Table 14 also compares to the 

previous Table 13 Glorot/Xavier results and compares with the random initialization using He et al. 

limits.  In all cases, the non-random replacement for the random numbers added benefit. 

TABLE 13 

NON-RANDOM WEIGHT (GLOROT/XAVIER LIMIT) RESULTS IN CONVOLUTIONAL NETWORK [J1] 

Epochs Accuracy  

(Cross-val.) 

Loss  

(Cross-val.) 

Gains over existing (random) method 

5 Shuffled 97.5% 0.085728347 +0.599% (Cross-validation gain) 

4 Shuffled 97.11% 0.097854339 N/A 

3 Shuffled 96.85% 0.114757389 N/A 

2 Shuffled 95.96% 0.141269892 N/A 

1 Shuffled 93.77% 0.230065033 +2.642% (Cross-validation gain) 

1 No Shuffle 93.28% 0.230725348 +3.705% (Cross-validation gain) 

TABLE 14 

NON-RANDOM WEIGHT (HE ET AL. LIMIT) RESULTS IN CONVOLUTIONAL NETWORK [J1] 

Epochs He et al. (Non-Rnd) measure He with proposed method gains over: 

Accuracy Loss Glorot (Non-Rand)  

[Table 13] 

He (Rnd) 

5 Shuffled 97.55% 0.082669578 +0.05% +0.7% 

4 Shuffled 97.19% 0.093996972 +0.08% +0.91% 

3 Shuffled 96.97% 0.10997723 +0.12% +1.49% 

2 Shuffled 96.15% 0.134461805 +0.19% +1.83% 

1 Shuffled 94.11% 0.214723364 +0.34% +5.13% 

1 No Shuffle 93.57% 0.217569217 +0.29% +4.27% 

The non-random method is higher-performing with convolutional networks with repeatable 

determinism benefits for mission and safety-critical applications [240], [260], [242], and [243].  That 

work used Glorot/Xavier limits, but the work is robust with He initialization [254].  The non-random 
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scheme would also induce earlier learning, and in the first epoch, which is the epoch after 

initialization, the losses in learning reduce quicker in Figure 37 (right). 

7.3.4.2 Invocation of Earlier Learning 

The reasoning for this benefit would be that stripes and curved forms are more allied to image 

classification.  Figure 37 showed the loss in learning with the shuffled dataset compared to the 

random scheme left and the non-random scheme right, both using the Glorot/Xavier limits.  Figure 38, 

again using the Glorot/Xavier limits, showed the loss in learning when a shuffle is used, with the 

random scheme left and the non-random scheme right.  The non-random scheme's loss has lowered 

earlier in the learning, at the 100 batch mark.  Thus, the non-random scheme uses more of the dataset 

more effectively and is robust to shuffling.  

 

FIGURE 37 LOSSES 1ST EPOCH: RANDOM (LEFT) AND NON-RANDOM (RIGHT) WHEN SHUFFLED [J1] 

 

FIGURE 38 LOSSES 1ST EPOCH: RANDOM (LEFT) AND NON-RANDOM (RIGHT) WHEN UN-SHUFFLED [J1] 

1st epoch Shuffled 

Proposed Non- Random 
Method shows 2.0 at 

batch 100 point. 

1st epoch Shuffled 

Existing Random 

Method shows 2.2 at 

batch 100 point. 

1st epoch Un-

Shuffled Existing 

Random Method 
shows 2.2 at batch 100 

point. 

1st epoch Un-Shuffled 

Proposed Non- Random 
Method shows 2.0 at 

batch 100 point. 
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The losses in Figure 37 (right) and Figure 38 (right) show that the loss has reduced quicker with 

the non-random form, demonstrating that in the period after initialization that there is less unlearning 

of the initialization state, where the initial state’s influence is more decisive than later learning.   

Subsequently, the loss is still lower but by less margin, as the effect of the initialization state’s 

influence is less in subsequent learning.   

Partial results were published in a peer-reviewed conference paper [C1
9
] and a peer-reviewed 

journal version [J1
10

] with Transferred Learning and FSGM Adversarial Attack as an analytical 

method. 

7.3.5 Transferred Learning and FSGM 

This work with convolutional networks was extended, using convolutional and dense layers.  

Using the Fast Sign Gradient Method (FSGM) with transferred learning introduces a controlled 

distortion causing dissimilarity between the transferred learning and the subsequent new learning.  

The FSGM approach is convenient for providing a controlled distortion for progressive dissimilarity. 

The FSGM approach was proposed by Ian Goodfellow [281], [282] as an adversarial attack to 

cause a miss-classification and usefully has a strength to that attack in an Epsilon () value (See 

Equation (103)).   

                           . (103) 

The FSGM adversarial attack can cause distinct scaling of perturbing images.  Equation (103) is 

modified from its usual form to Equation (104) and includes image clipping of the perturb images to 

be fairer on the perturb images concerning the actual images; this would be as if both actual and 

perturb images were value clipped in pre-processing. 

                                              . (104) 

7.3.5.1 The Analytical Method using FSGM in Transferred Learning 

The Torres [278] model combines with the Theiler method [283] to model defence from the 

FSGM perturbation adversarial attack.  The two model architectures combine as an architecture 

framework for transferred learning assessment, with test points 1, 2, and 3 shown in Figure 39.   

Theiler's model architecture adapts to the Torres model by modifying the number of epochs in the 

later learning model defence by considering the Torres model number of epochs instead.  The ratio of 

back-propagation is similar between the transferred learning model and the adaption learning, 

respecting Theiler's method.  The Torres model also uses higher-performing He et al. initialization 

limit values. 

                                                      

9
 [Cn] Published conference papers are in a separate bibliography on page xv. 

10
 [Jn] Published journal articles are in a separate bibliography on page xv. 
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FIGURE 39 EXPERIMENT MODEL FOR AN ANALYTICAL METHOD WITH FSGM [J1] 

Test point 1 is cross-validated with the perturbed images before the model defence, and this is 

how successful the FSGM attack is on the model before the defence. 

Test point 2 is after the transferred learning model defence and cross-validated with the perturb 

cross-validation dataset and shows how the model adapts to the new dataset. 

Test Point 3 is also after transferred learning model defence but with the original non-perturbed 

cross-validation dataset. 

This model architecture thus forms the experiment model.  The FSGM epsilon () value is varied 

in increments on each experiment as the test variation, and those experiments are in two 

configurations.  Configuration one is the random initialization, and the other is the non-random 

initialization.  A research question in this experiment is: If a non-random initialization invoked earlier 

learning, will the total learning be more of the discriminatory content rather than the noise in the 

image, and will that aid transferred learning to transfer more helpful content.  Also, a hypothesis is 

that the non-random scheme may have removed an unintentional random noise source in the learning.   

When random numbers are in the weight initialization, they combine with the noise in the dataset and 

re-colour with the noise when the activation and weight multiply within the dot-product of a 

convolutional filter.  It also can be noted that Schwinn et al. [284] proposed noise injection as a 

method for defence from FSGM attacks.  However, Schwinn et al. require a 'dataset coupling' learning 

regularization step, which is not the approach in this research section of the dissertation. 
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7.3.6 Perturbation Datasets 

To verify that the generated perturbation dataset is correct, Figure 40 shows the first 20 images of 

the perturbation datasets, with the left using the random initialization of the model and the right using 

the non-random initialization. 

    

FIGURE 40 PERTURBED IMAGES: LEFT RANDOM, RIGHT NON-RANDOM INITIALISATION [J1] 

In Figure 40, the epsilon value increases from 0.0 to 1.0 from the upper to lowest row in steps of 

0.5.  The images coloured in green are the correctly classified images with their original tag, and red 

is the images that did not classify to their original tag.   

As such, with zero perturbation influence (=0), all images in the row are classified correctly, and 

in lower rows, with an increasing value of (), the images are less well classified, with less human 

discernible discrimination in the images as well. 

  



81 

 

7.3.6.1 Test Point 1 How Susceptible is the Method to Dissimilarity 

 

FIGURE 41 TEST POINT 1: ACCURACY AND LOSS WITHOUT TRANSFERRED LEARNING [J1] 

7.3.6.2 Test Point 2 How Adapted the Model is after Transferred Learning 

 

FIGURE 42 TEST POINT 2: ACCURACY AND LOSS WITH TRANSFERRED LEARNING [J1] 

7.3.6.3 Test Point 3 How Compromised is the Model after Transferred Learning 

 

FIGURE 43 TEST POINT 3: ACCURACY AND LOSS WITH TRANSFERRED LEARNING [J1] 

7.3.7 Transferred Learning Findings 

In these experiments, the only difference is using the model's non-random initialization state with 

the transferred learning method.  Test point 1 cross-validated the model with a perturbation attack 

dataset.  When applying the FSGM method with increments of the Epsilon value, the accuracy falls 

off in a similar slope in both the non-random and random schemes, as shown in Figure 41.  Figure 41 
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shows that both initialization methods are affected by the FSGM attacks, although the non-random 

scheme has a lower loss at higher epsilon values.  Test point 2 cross-validated the model with a 

perturbation attack dataset after transferred learning.  With larger epsilon value increments, the 

accuracy decreases with a higher loss in the non-random method, as shown in Figure 42.  The 

transferred learning has less adapted in the non-random form.  Test point 3 cross-validated the model 

with the original cross-validation dataset after transferred learning.  With larger epsilon value 

increments, the accuracy is more significant with a lower loss in the non-random method, as shown in 

Figure 43.  The non-random form has retained more of the earlier learning in the transferred learning. 

7.3.7.1 A Random Epsilon Value Dataset 

After assessing both initialization schemes with uncontrolled epsilon values, i.e., random epsilon 

values, the findings are the same, as shown in Table 15.   

TABLE 15 

RANDOM EPSILON DATASET RESULTS [J1] 

Initialization method used prior to 

model defense and transferred 

learning. 

Non-Attack 

cross-validation dataset  

Attack  

cross-validation dataset 

Loss (Cross 

Val) 

Accuracy 

(Cross Val) 

Loss (Cross 

Val) 

Accuracy 

(Cross Val) 

Proposed (Non-Random) Method 0.9854 67.01% 1.3331 61.82% 

Existing (Random) Method 1.2736 61.05% 0.8366 78.41% 
The proposed non-random scheme still has higher accuracy and lower loss when cross-validated 

with the original cross-validation dataset.  Thus it shows more significant retention of the original 

learning after transferred learning, whereas the random initialization scheme had a more noticeable 

adaption to the attack dataset at the expense of the original learning.  When the controlled epsilon 

value steps are compared, the effect is more substantial with higher epsilon values.  The intuition is 

that the earlier learning in the non-random form is more fitted and has used the dataset more 

effectively in the original data learning. 

7.3.8 Colour Images and a Dissimilar Model Architecture 

Convolutional networks in image classification operate on colour images with more than one 

colour channel.  Aligned with the application area, the MTARSI dataset [55] of different aircraft on 

runways is a representative challenge.  This dataset is quite challenging as it has varying light, aspect 

angle, backgrounds, and image resolutions in an imbalanced dataset.  The MTARSI dataset was 

developed further with data augmentation and classification into 42 categories as MTARSI2 [53] and 

was made available to other researchers.  For image examples from MTARSI2, see Figure 44. 

 

FIGURE 44 MTARSI2 DATASET EXAMPLES [53] 
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The model used for the MTARSI2 dataset is in Figure 45 and features three convolutional layers 

and two dense layers.  As such, the receptive field of the layer is different depending on the layer 

prior, and Figure 45 also includes three cases where the algorithm differs. 

 

FIGURE 45 COLOUR IMAGE MODEL IN DISSIMILAR ARCHITECTURE AND MTARSI2 DATASET 

After nine epochs, the model accuracy fluctuates in cross-validation accuracy and thus is testing 

an over-fitting recovery from that state rather than the after initialization state, so nine epochs are the 

limit.  The L1L2 regularisation (where L1 is Lasso and L2 is Ridge regression, and L1L2 is Elastic 

Net regression) was selected based on the image discriminators not having pre-determined importance 

as there is an unknown classification and two general classes in the dataset. 

Table 16 contains the cross-validation-dataset results from the MTARSI2 dataset and the model 

architecture in Figure 45 and shows a benefit with the non-random method shown in green.  The first 

epoch accuracy difference is in bold increased from 29.31% with the traditional random method to 

67.2% with the proposed non-random method. 

TABLE 16 

COLOUR IMAGE MTARSI2 DATASET RESULTS 

Model Results at Test States Accuracy in the first 

epoch of learning and 

also a single epoch in 

transferred learning) 

Accuracy after nine 

epochs, and also four 

epochs in transferred 

learning. 

Non-Radom Initialisation 

Cross-Validation on the original image dataset 
67.2% 86.03% 

Random Initialisation 

Cross-Validation on the original image dataset 
29.31% 84.81% 

7.3.9 Summary of Convolutional Networks 

The non-random initialization scheme promotes the palatability of neural networks in roles closer 

to the mission and safety-critical applications.  The scheme achieves repeatable determinism, as the 

quality of dependable systems in testing and deployment.  The non-random initialization replaces the 

random numbers and complements both Glorot/Xavier and He at al. initializations.  The inspiration 
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for the non-random form was from Hubel and Wiesel's work [274], [275] in brain anatomy and used 

striped, spotted, and curved forms that are generally accepted to be relevant to hierarchical feature 

extraction.  The non-random scheme invoked earlier learning by being more allied to image 

categorization from the outset of learning. 

Further interest in the non-random convolutional initialization is that the start condition, having 

more stripes, is less resolution-specific than the spotted forms of the random form.  As such, it might 

be that earlier learning is more able to get underway irrespective of the kernel geometries.  Also, that 

might impact model architectures originating from a multi-resolution motivation like Inception and 

ResNet. 

7.4 Summary of Safety-Critical AI 

A non-random scheme can be equivalent in MLP networks but with the advantage of structured 

weights.  However, in convolutional networks, it is superior.  Repeatable determinism is a quality of a 

dependable system for Safety-Critical AI, and as such, ML is closer to palatability.  The convolutional 

networks, the non-random method, invoked earlier learning and had advantages in transferred 

learning, retaining 22% more accuracy (as 31% - 9% = 22%) and also with earlier learning.  However, 

more work is required for different applications and extending the number of available filters.  The 

non-random method offered better accuracy and was further assessed in transferred learning with the 

FSGM adversarial attack to provide a controlled dissimilarity between two datasets.  The findings 

were that the non-random scheme retained more original learning ~31% instead of ~9%, particularly 

with higher epsilon values (i.e., with higher distortions, as a more significant dissimilarity between the 

datasets.  The non-random scheme can be transferable to new learning while retaining earlier learning.  

If the MNIST dataset [150] included a hexadecimal category, then the new initialization scheme 

would remember more of the numbers of the original learning than the existing initialization scheme, 

rather than just being a warm start condition.   The method was also applied to colour images in a 

different model architecture and with a more challenging dataset than the original analysis 

(MTARSI2), and also found an advantage of accuracy with the non-random initialization scheme 

accuracy increasing from 29.31% to 67.2% in the first epoch. 
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8 Chapter 8 

SYNTHETIC EMITTER DATASET GENERATION 

AND EMITTER IDENTIFICATION 

Firmly within the application area, this research proposed an alternative method to emitter 

identification using image classification.  There are few or no publicly accessible datasets; this 

research also proposed and implemented a synthetic emitter dataset generator, integrated into an AI 

framework and supported by a mark-up language for emitter behavioural descriptions; see Figure 46 

for that proposed architecture.  The method presented here is for emitter identification with image 

classification and would be after a previous de-interleaving process, with generated images generated 

from this method as a training dataset source. 

 

FIGURE 46 SYNTHETIC EMITTER DATASET GENERATOR ARCHITECTURE 
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8.1 Architecture for Synthetic Data Generation for Emitter Classification 

This architecture could also be a generative model of a GAN to perfect emitter behaviours to 

similar fidelities or create other datasets for discriminators in their adversarial generalization.  The 

Synthetic Dataset Generator has complexity and modularity.  Figure 46 shows the architecture in three 

significant components to understand the design and is also described in the following sections. 

8.1.1 Architectural Component: C4L Emitter Mark-Up Language 

The architecture for the Dataset Generator is data-driven by the emitter mark-up language through 

a C3L upgrade to C4L made as part of this research.  The C3L baseline allows concurrent activities of 

elements scheduled without the user requiring any experience of process synchronization or message 

passing paradigms.  It has constructs to allow specification elements to schedule: concurrently, 

sequentially, selectively, or iteratively.  When updated to C4L within this research, the language 

allows the system states of parameter modulations as a specification for a radar emitter and receiver 

model.  The language allows parameter adaption at runtime for modelling reactive behaviours and can 

use simultaneous or state-full sequences with asynchronous updates that are code generated into a 

single process thread for data integrity for IA.  Thus, the scheduled elements added to C4L allow 

emitters or radars to describe behaviour specifications that also separate the modulations for 

transmitting and receiving emissions and scans.  C4L cross-compiles to code-generate in a 3rd 

generation programming language called c, and that c code is highly portable and is used to generate a 

64bit DLL, with an Application Programming Interface (API) as a standard interface for other 

modelling systems.  That interface then links to an Emitter Dataset Generator within the python and 

TensorFlow AI framework permitting neural network development of methods. 

8.1.2 Architectural Component: Emitter Dataset Generator 

The dataset generator uses a scenario linked to the radar emitter and receiver states and modes 

model within the DLL; that then applies to a python physics library for free-space propagation, also 

developed in this research.  The physics library applies to transmitting and receiving beams, scans, 

Pulse, and PRI modulations with propagation losses and noise for high bandwidth I/Q data.  That high 

bandwidth I/Q data is used to generate still colour images in a dataset format for image classification.  

A video generated from those images is for the user's review in developing the C4L specification.  

The dataset synthesizes y values as the categories; these are the radar and operation identities tags.  

The x dataset is the images of those radars and modes of operation. 

8.1.3 Architectural Component: Machine Learning Environment 

The machine learning environment thus has a dataset of images and categories that can be split 

into separate training and validation datasets and apply the python and TensorFlow neural network 

framework to that dataset. 

8.2 Related Work in Synthetic Datasets 

Many ML methods require available datasets.  In new developments, this is not always the case, 

and synthetic datasets can be required to prove the viability of a technology.  Synthetic datasets are 

available from graphic engines [153], impact sound models [155], and Natural Language Generation 

(NLG) [156].  Synthetic datasets [157] can also provide the incorporation of low probability test cases 

towards proving a Safety-Critical outcome.  There is work related to radar emitter analysis for a 

machine learning method [158].  A language method by Hoag et al. [285] used XML and features in a 

survey of general techniques [286].  However, this paper presents a programming language with a 

BNF and contains both Data and Operations.  In this application, complexities exist in the physics, the 

emitter sequencing, concurrency, and control logic.  The method of Greig et al. provides high fidelity 

I/Q data for air and surface targets [287], but the presented method in this paper's contribution is for 

ELINT analysis through an emitter behaviour language, although it does extend to radar data 

generation too.  Another method is the Generative Adversarial Network (GAN) [159], but although it 

ideally requires existing real data for the discriminator, a synthetic dataset generator such as proposed 

in this chapter could be a generator in a GAN method too. 

8.3 Traditional Methods to Emitter Identification 

Emitter identification begins with recognizing an emitter type in the operating environment of 

radar pulses overlapped and interleaved in time.  The approach separates the pulse chains using de-
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interleaving methods [288], [289].  Processing streams of Pulse Descriptor Words (PDWs) captured 

from a Radar Warning Receiver (RWR), Electronic Support Measures (ESM), or ELectronic 

INTelligence (ELINT) equipment sensor that records: Time of Arrival (TOA), Pulse Width (PW), and 

Amplitudes from the receiving antennas to generator PRI pattern that matches with templates and the 

received signals for recognition.  These methods may use more than one antenna amplitude to 

measure a Direction of Arrival (DOA).  That DOA can use methods such as Multi Signal 

Classification (MUSIC) [290], Angle of Arrival (DOA), interferometry or Time Difference of Arrival 

(TDOA), and Frequency Difference of Arrival (FDOA), where TDOA and FDOA use the 

multilateration (MLAT) method for geo-location and other use kinematic ranging or triangulation.  As 

such, a signal's template match identification can plot on an angle, where that signal's identification 

may match to a template of an emitter in a particular emitter mode and provides a warning of lethality, 

allegiance, and threat level of an emitter as a display distance, as a Situation Awareness (SA) of that 

emitter.  Where ESM types of equipment provide more accurate estimates than RWR equipment, 

some more advanced methods in ELINT equipment can identify a particular emitter in a Specific 

Emitter Identification (SEI) process.  These types of equipment emphasize mission data and the 

templates for matching with threats, which has a security limitation when applied to civilian 

applications. 

8.4 Applying the Research to a Civilian Application 

Aside from using early kill chain approaches with less sensitive data, the method proposed in this 

research within Chapter 4 could be closer to a negative correlation approach.  It proposes using the 

identification of civilian emitters, where they can be distinct from military emitters, and the secure 

data limitation does not apply.  The mission data templates thus contain civilian accessible data, and 

the deviations of intercepted emissions from those mission data templates provide the warning of a 

non-civilian emitter.  Tracking civilian emitters complicates the mission data as many emitters look 

similar, obeying the same industry standards.  Military emitters can be more diverse and have more 

distinctions, making the templates for matching more detailed and increasing the data requirement.  

However, the method demonstrated here uses the high dimensionality discrimination potential of the 

neural ML methods.  The generated dataset demonstrated is within civil marine radars in X-Band 

(9.2-9.5 GHz) and S-Band (2.9-3.1 GHz) [291] and also within different radar modes and 

configurations to boat fits but within the same industry standards.  Marine radars in X-Band are very 

common at (~9.4 GHz) and contribute to an area of the spectrum called the busy band, which 

generally is a well-known ambiguous problem in identification.  As such marine radar modes in the X 

and S-bands are in the dataset for the method demonstration that will also differ in the parameters 

scan-speed, PD, and PRI. 

8.4.1 Image Dataset Construction  

The construction of images used in the ML method from ELINT emitter data specifications used a 

three-channel image and captured Pulse Duration (PD), PRI, carrier frequency, power, timing, and 

phase timing, with also the modulation of those parameters within a single image over time, and this 

has the potential for a high level of discrimination.  See Figure 47 for examples of the constructed 

images from different emitter radar modes. 

 

FIGURE 47 THREE IMAGES GENERATED IN THE DATASET GENERATOR ARCHITECTURE 
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This method took some experimentation as the size of an image could quickly become large, so 

low rate sampling over long durations is employed in constructing the image, and the geometry 

required to have pixel clusters that map directly to the discriminate-able emitter information.  Each 

channel has an independent kernel filter until combined, as each channel is a 2D convolution rather 

than 3D, so the filter encoding in the channels also has some independence to be respected in radar 

emissions.  The existing template methods can use frequency and PRF modulation for matching, so 

coding two channels with the I/Q pulse phase provides PD and PRI modulations, while the third 

channel is the Fourier transform, providing frequency and power and scanning and beam shaping 

discriminate-able emitter information.  In Figure 47, the machine learning dataset images are RGB, 

where the Red channel is a spectrogram, and the Blue and Green channels are I/Q channels.  The 

images have a fast and slow time duration definition, where the fast time is 10ms, as the duration for a 

sample rate of 50kHz (in this LPRF example), for the row values in the image and synchronized to the 

first pulse.  10ms is longer than many anticipated Pulse Repetition Intervals (PRI), providing no blank 

lines in the image on continuous operation.  The slow time duration is 1 second over all the rows in 

the image and is the period to experience a scan modulation.  That image format provides an image 

where the first pulse is in the top left corner and has a cascade of pulses in the rows and columns 

depending on the PRI and pulse width modulations.  These will vary in the Blue and Green channels, 

depending on the power and phase content in those pulses.  The Red channel is the Fourier transform 

of the rows and therefore shows frequency domain modulations from the pulses and carrier together 

with beam scan gains.  The images use a convolutional network, so the three colours become channels 

and are subject to filters in feature extraction in the layers.  They will be passed on to subsequent 

convolutional layers and combined later in the network in a dense layer, and those channels provide 

overlaps in the discriminator dimensionality information of the emitters.  From a collected group of 

46 radar modes from manuals, the 14 selected had a diminutive level of discrimination, being from 

the same radar sets in different configurations, so many parameters are the same.  They would require 

more parameters in a template in the traditional method.  See Table 17 for a list of the radar modes 

with their respective classification tags. 

TABLE 17 

MARINE RADAR MODES FOR IDENTITY CLASSIFICATION AND DISCRIMINATION [J1] 

Radar Mode / 

Classification 

Tag 

RF (GHz) 

and Agility 

Tx 

Coherent 

ERP 

(dBw) 

PD and 

Excursion 

(us/MHz) 

PRI (us) Beamwidth / 

Side Lobes 

(deg/dBi) 

Scan 

Speed 

(rpm) 

S-band Kelvin 

Hughes SharpEye 

24NM Fast Scan  

3.1-2.9 non 

agile 8 

chans 

Non-

Coh. 

52.3 128/ 

5 FMOP 

434.782

6 Fixed 

1.9 Az 26 El 

-30 Az -20 

El 

46 

S-band Kelvin 

Hughes SharpEye 

24NM Slow Scan  

3.1-2.9 non 

agile 8 

chans 

Non-

Coh. 

52.3 128/ 

5 FMOP 

434.782

6 Fixed 

1.9 Az 26 El 

-30 Az -20 

El 

24 

S-band Kelvin 

Hughes SharpEye 

48NM Fast Scan  

3.1-2.9 non 

agile 8 

chans 

Non-

Coh. 

52.3 128/ 

5 FMOP 

847.457

6 

Fixed 

1.9 Az 26 El 

-30 Az -20 

El 

46 

S-band Kelvin 

Hughes SharpEye 

48NM Slow Scan  

3.1-2.9 non 

agile 8 

chans 

Non-

Coh. 

52.3 128/ 

5 FMOP 

847.457

6 

Fixed 

1.9 Az 26 El 

-30 Az -20 

El 

24 

S-band Kelvin 

Hughes SharpEye 

96NM Fast Scan 

3.1-2.9 non 

agile 8 

chans 

Non-

Coh. 

52.3 128/ 

5 FMOP 

1562.5 

Fixed 

1.9 Az 26 El 

-30 Az -20 

El 

46 

S-band Kelvin 

Hughes SharpEye 

96NM Slow Scan 

3.1-2.9 non 

agile 8 

chans 

Non-

Coh. 

52.3 128/ 

5 FMOP 

1562.5 

Fixed 

1.9 Az 26 El 

-30 Az -20 

El 

24 

X-band Kelvin 

Hughes SharpEye 

96NM Fast Scan 

9.48-9.22 

0.3MHz 

Agile 

Non-

Coh. 

52.3 40/ 5 

FMOP 

1562.5 

Fixed 

0.45 Az 26 

El 

-30 Az -30 

44 
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El 

X-band Kelvin 

Hughes SharpEye 

96NM Slow Scan 

9.48-9.22 

0.3MHz 

Agile 

Non-

Coh. 

52.3 40/ 5 

FMOP 

1562.5 

Fixed 

0.45 Az 26 

El 

-30 Az -30 

El 

22 

X-band Kelvin 

Hughes 1262 

SharpEye 24NM 

Fast Scan 

9.48-9.22 

0.3MHz 

Agile 

Non-

Coh. 

52.3 40/ 5 

FMOP  

434.782

6 

Fixed 

0.45 Az 26 

El 

-30 Az -30 

El 

44 

X-band Kelvin 

Hughes 1262 

SharpEye 24NM 

Slow Scan 

9.48-9.22 

0.3MHz 

Agile 

Non-

Coh. 

52.3 40/ 5 

FMOP 

434.782

6 

Fixed 

0.45 Az 26 

El 

-30 Az -30 

El 

22 

X-band Kelvin 

Hughes 1262 

SharpEye 48NM 

Fast Scan 

9.48-9.22 

0.3MHz 

Agile 

Non-

Coh. 

52.3 40/ 5 

FMOP 

847.457

6 

Fixed 

0.45 Az 26 

El 

-30 Az -30 

El 

44 

X-band Kelvin 

Hughes 1262 

SharpEye 48NM 

Slow Scan 

9.48-9.22 

0.3MHz 

Agile 

Non-

Coh. 

52.3 40/ 5 

FMOP 

847.457

6 

Fixed 

0.45 Az 26 

El 

-30 Az -30 

El 

22 

RayMarine HD 9.405  

25MHz 

Agile 

Coh. 36 0.9/ 0 

Fixed  

1219.5 

10% 

Jitter 

4.9 Az 25 El 

-35 Az -35 

El 

24 

RayMarine 

Quantum 

9.354-9.446 

92MHz 

Agile 

Non-

Coh. 

13 14.7/ 32 

FMOP 

1086.95 

10% 

Jitter 

4.9 Az 20 El 

-35 Az -35 

El 

24 

These radar modes were then captured into C4L for synthetic dataset generation as the time-

varying parameters of radar behaviour.  An example is in Figure 48, where the setting of semi-

dynamic parameters is at the beginning of a simulation (with default parameter values provided).  The 

"Schedule" command implies that what is within the blocks statement is run in sequence or 

concurrently.  The assignments make a calculation either sequentially or concurrently.  The 

TxScanConfig command is configured for a single circular radar scan and is the exit criteria (as 

ScanGen) of the SurvScan Schedule.  Concurrently there is a TxModConfig for the PRI generation, 

which will repeat until the SurvScan exit criterion is complete.  The "Assignment" statements within 

the SurvScan concurrent schedule command provide varying pulse parameters within the scan. 

Schedule RayMarineQuantum Sequenced 

{ 

    Parameter SemiDynamic RF              = ((9.354+9.446)/2); 

    Parameter SemiDynamic RFAgilityBW = 91; 

    Parameter SemiDynamic TxPower = 13.0; 

    Parameter SemiDynamic RxAmp  = 10.0; 

    Parameter SemiDynamic PulseDuration  = 14.7; 

    Parameter SemiDynamic PulseExcustion = 32; 

    Parameter SemiDynamic PRIValue  = 1.08695; 

    Parameter SemiDynamic PRIJitterPerc = 10; 

    Parameter SemiDynamic TxNonCoherent = 0.0; 

    Parameter SemiDynamic RxCoherent  = 1.0; 

    Parameter SemiDynamic ScanSpeed   = 144; 

    Parameter SemiDynamic AzBeamWidth = 4.9; 

    Parameter SemiDynamic ElBeamWidth   = 20; 

    Parameter SemiDynamic AzSideLobeSupp = 35; 

    Parameter SemiDynamic ELSideLobeSupp = 35; 
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    Assignment CarrierRF      = (RF * 1000000000.0); 

    Assignment RFExcustion  = (PulseExcustion * 100000.0); 

    Assignment PulseWidthVal = (PulseDuration/1000000.0); 

    Assignment PulseRep       = (PRIValue/1000.0); 

    Assignment TxStart               = (-RFExcustion/2); 

    Assignment TxEnd                 = (+RFExcustion/2); 

 

    Assignment PulseBandwidth = (1.0/PulseWidthVal); 

    Assignment ButterWorthFiltRatio  = (sqrt(2.0)); 

    Assignment RxBandwidth     = (PulseBandwidth*ButterWorthFiltRatio); 

    Assignment RxStart         = (min((-RxBandwidth/2),TxStart)); 

 

    Assignment RxEnd           = (max((+RxBandwidth/2),TxEnd)); 

    Assignment ScanPos       = 0; 

    Assignment ScanInc       = ((PulseRep/ScanSpeed)); 

    Assignment ScanPeriod    = (360.0/ScanSpeed); 

 

  SurvScan Emitter On Radar SensorProgram BoatRadar Concurrent ExitCriteria (ScanGen) 

    { 

        Assignment PhaseVal    = ((random() *360.0-180.0)*TxNonCoherent); 

 

        Assignment TxPhaseVal  = (PhaseVal*TxNonCoherent); 

        Assignment RxPhaseVal  = (PhaseVal*RxCoherent); 

 

        Assignment PRI  = (PulseRep+(random()*(PulseRep*(PRIJitterPerc/100.0)))); 

        Assignment RF   = (CarrierRF + (random()*(RFAgilityBW*1000000.0))); 

 

 

        ScanGen Sensor ChanNum 1 

TxScanConfig Repeat Start 1 WaveNum 0  

PointAngle Azimuth Position Start (-180) End (180-ScanInc) Rate (ScanSpeed) Elevation 

Position Start (0) RollAxis Position Start (0) x Position Start (0) y Position Start (0) z Position 

Start (0) ScanCentre Horizon ElOnAzMount HorizonStablised Beamwidth Azimuth 

Position Start (AzBeamWidth) Elevation Position Start (ElBeamWidth) RollAxis Position 

Start (0) Suppression Position Start (AzSideLobeSupp) Position Start (ElSideLobeSupp) Pol 

Linear Position Start (90) Purity Position Start (100); 

 

 

Syncroniser Sensor ChanNum 1 

TxModConfig Repeat Start 1 WaveNum 0  

Carrier Position Start (RF) GapDuration Position Start (0) Duration Position Start 

(PulseWidthVal) StartRF Position Start (TxStart) EndRF Position Start (TxEnd) Phase 

Position Start (TxPhaseVal) Gain Position Start (TxPower) RepetitionInterval Position Start 

(PRI) TargetAcquire EWSearch; 

 

 

        InAction TimeDelay (ScanPeriod); 

 

    }; 

 

} 

FIGURE 48 EXAMPLE C4L SCRIPT FOR GENERATING TIME-VARYING RADAR BEHAVIOUR 
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8.4.2 Neural Network Model Architecture in Emitter Classification 

The neural model in Figure 47 is simple, and is not unlike the Torres model used in Chapter 7 

with the MNIST dataset [150], but with adapted convolutional layer kernel filters and an RGB colour 

image input. 

 

FIGURE 49 EMITTER IDENTIFICATION MODEL ARCHITECTURE 

See Appendix A to examine the higher dimensionality fidelity used in the dataset generation, and 

also developed as part of this research. 

8.5 Summary of Synthetic Dataset Generation with Emitter Identification 

When testing the synthetic emitter dataset generator against emitter ambiguity, the dataset 

generated (SD_CMRM_Iv1) [54], when applied to an image classifier, achieved 99.8% accuracy in 

identity classification between the 14 emitters, which contained the same or similar exchanged 

parameters; this is a very high level of disambiguation.  Some might describe it as unprecedented 

disambiguation compared to traditional template methods. 

The high dimensionality in the ML methods in learning a template can provide a high level of 

disambiguation.  At the same time; also, the matching PRI patterns from PD and PRI modulations are 

more trivial in this image format as the individual pixels in the Blue and Green channels are sensitive 

to the PRI modulations being present or not, while also capturing progressive scan beam and side-lobe 

gains in the Red Channel.  Additionally, the scan speed, beamwidth, and PRI time base provide 

discrimination of radar modes with fast or slow scan outfitting configurations.  In this respect, the 

proposed image format has the potential for higher dimensionality templates derived from an ML 

method, where that method is more palatable when combined with the Chapter 7 findings in 

repeatable determinism. 

This method is broadband as the images cover 16 GHz of the spectrum as 2-18 GHz in the 

spectrogram and can also capture other CW, ICW, or Pulsed emitters that might work in combination 

as a discriminator of a mode.  That broadband quality is equally relevant to identifying military radar 

groups of IADS and civilian emitter networks on aircraft or port approaches, mainly when the 
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emissions are time or scan synchronized.  However, this method is currently an ML method for 

emitter identification using image classification and would need to extend to object detection and 

segmentation methods for an ML de-interleaving method.  Furthermore, the dataset generation 

method could be a standard with exceptionally high disambiguation potential.  
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9 Chapter 9 

Summary and Conclusions 

This chapter forms the summary and conclusions with the opportunities for further research. 

9.1 Summary 

The research dissertation is in Cyber and Electromagnetic Activities (CEMA) for applications of 

AI to civilian platform protection when civilian platforms are operating near threat systems.  In this 

field of work, the certainty and accuracy of the information available are challenges for practicality.  

Part of this research offered a method with a BN inside an Expert System in an ANN format for data 

infilling and perfecting better values based on the evidence.  Another part of the research offered 

greater palatability of neural ML approaches with methods for repeatable determinism and 

explanation, and that research proposed a non-random initialization method and a formula extraction 

method.  Some Threat analysis applications within case studies were demonstrated and led to new 

datasets, but those applications also demonstrated an advantage in those methods. 

More specifically, Chapter 4 examined the application area of platform protection with a method 

to use an onion of protection mapped to kill chain stages.  The kill chain stages provided management 

of data sources while unlocking countermeasure types with different countermeasure design 

considerations.  That chapter also proposed some diagramming and analytical processes based on first 

principle analysis as a civilian accessible method, which tested the data for its capability to assert the 

emitter functions in a lower data trusting approach.  The sensing and processing equipment was to be 

within existing shared civilian network infrastructures.  A centralized control of the network can also 

offer access to private aviation and yachting with minimal additional equipment.  The threat analysis 

method used set mappings for countermeasure tactic selection and was to combat the data availability 

and the lack of publication of methods with a method accessible to the civilian domain that was UK 

MoD cleared for publication. 

In support of the Threat Analysis method proposed, Chapter 5 proposed a neuron-based expert 

system method that can apply rules from emission intercepts to infill missing parameters, apply 

analysis, or derive values for a parameterized countermeasure defined in C4L.  That method was 

algebraic for data transferability; it could provide better-perfected values based on evidence combined 

with a body of knowledge within the rules.  The Expert System was ANN structured with virtualized 

nodes for hypothesis permutations and provides confidence and certainty values based on that known 

body of knowledge.  Compared with mandraulic approaches to threat analysis, confidence in an 

answer is often a human heuristic approach or based on a source-trust rather than the rigorous 

computation of the evidence's match to known physics and existing knowledge.  This method was one 

part of an approach to a Neuro-Symbolic AI approach. 

Also aligned to the Neuro-Symbolic AI approach, Chapter 6 provided a formula extraction 

method to understand neural network content using a different input data representation.  That method 

complements the neuron-based expert systems method as the other part of the Neuro-Symbolic AI 

approach.  The method increases the number of weights for different weights for activation value 

strengths.  When back-propagated, this method reduces the complexity of the representation in a 

single layer as it allows activations strengths assigned to strength-based unique weights.  That method 

used back-propagation, regression, and SGD, providing a high level of accuracy in the prediction and 

would then be extracted from the distortions in the weights after ML. 

Chapter 7 brought repeatable determinism with a non-random initialization method for dense and 

convolutional layers in image classification with neural network methods.  An advantage of the 

method for dense layers was structured weights towards rule extraction generalization while providing 

comparable performance to the existing random method but with repeatable determinism between the 

learning sessions.  An advantage of the method for convolutional layers was earlier learning with less 

unlearning of the initial state.  That method had stripes, curves, and spots in a Hubel and Wiesel 
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intuition [274], [275] toward feature extraction; that method also had higher retention in transferred 

learning, for example, with repeatable determinism between the learning sessions.  Combined within a 

CNN, those methods would improve accuracy in the first epoch from 29% to 67% with a challenging, 

complex imbalanced colour image dataset related to the application area. 

In Chapter 8, synthetic dataset generation has advantages in that the dataset can be balanced and 

includes low likelihood observation test cases that probabilistically would not be in real datasets from 

ELINT collection.  With the lack of emitter datasets accessible in the civilian domain, a synthetic 

generation method was proposed that extends the C3L language baseline for countermeasure tactics to 

C4L to include new emitter signal descriptions.  A demonstration of the synthetic dataset for emitter 

identification made with an image formation method in image classification had very high levels of 

disambiguation and achieved 99.8% accuracy.  The demonstrated accuracy was in a problem area 

where the existing template methods would have a higher level of ambiguity and thus low accuracy in 

identification.  So the level of disambiguation is an unprecedented performance in comparison and 

shows a promise towards a future approach to identify the emitter mode and the system, which also 

can map on to a possible kill chain or identify that emitter as a background emitter. 

9.1.1 Research Questions, Answered 

Chapter 3 focused on research aims in the form of research questions mapped onto research 

threads answered in this section. 

9.1.1.1 How can machine learning be applied in the mission and safety critical field of EW threat 

analysis? 

As noted in Chapter 4, the mission and safety-critical nature of EW threat analysis requires a 

measured assurance.  As threat analysis deals with uncertain and inaccurate information, thus key to 

this is a measure of confidence in those results.  See Chapter 5 for the confidence calculation and 

optimizing value estimating method within the virtualized neuron-based expert system method.  In the 

military, the employment of AI is emerging, as are trials for ground truth, but aside from those 

methods, the employment of AI requires repeatability and determinism expectation measures in those 

results.  See Chapter 7 for a repeatable and deterministic method in ML with advantages in accuracy 

and transferred learning.   As part of the EWOS life cycle, ML can provide an influential tool for 

dealing with large-scale data.  However, the data is less available in the civilian domain and requires 

data convergence (or 'data fusion') from multi-sources and imbalanced inputs.  Chapter 4 provides the 

first principle analytical steps to threat analysis where data is not trusted.  Chapter 5 provides the 

confidence estimating and optimizing method where a body of knowledge of rules of thumb and 

known physics can be applied to test the data for correlation in a machine reasoning deductive 

approach. 

Furthermore, Chapter 6 provides a method for establishing new rules in an inductive machine 

reasoning approach, where the loss in that method may translate to accuracy in that inductive machine 

reasoning approach in terms of certification.  Chapter 6 also explains learning in layers in a 

decompositional method.  Chapter 7 demonstrated the repeatable determinism from the ML learning 

sessions required in fitting and prediction when fielded.  Chapter 8 provides dataset generation where 

datasets can be scarce in the civilian domain. 

9.1.1.2 What applications of EW threat analysis can AI techniques apply to? 

There are many applications where AI methods can apply in threat analysis or CEMA, but with 

the scope of the research conducted: Chapter 4 provides insights into the threat analysis methods and 

challenges for the civilian domain and provides a civilian accessible methodology for threat analysis.  

When applying the virtualized neuron method to an expert system in Chapter 5, an example of 

calculated beamwidth was demonstrated with varying scopes to the body of knowledge, based on the 

uncertainty of the antenna type providing a perfected prediction and confidence and certainty in that 

prediction.  This method also applies to infilling other missing database or dataset parameters.  It also 

provided a perfected value with a confidence value based on the body of knowledge in a 'valid' scope.  

Chapter 6 provided the link for establishing new rules for the body of knowledge via a formula 

extraction method.  The body of knowledge can be initially filled with existing knowledge in a 

deductive approach and then augmented with the formula extraction method for new rules in an ML 
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inductive approach.  Also, in section 4.2.1 (Operational View) of Chapter 4, the analysis starts with 

cataloguing discriminators, and image classification is a benefit.  The results shown in Chapter 7 

demonstrated 86% accuracy classification of aircraft on runways in colour images using the 

MTARSI2 dataset [53].  Also, in Chapter 8, image classification used the generated 

(SD_CMRM_Iv1) [54] ELINT dataset and demonstrated emitter identification accuracy of 99.8% in 

emitter classification of an emitter system's identification and its' mode of operation. 

9.1.1.3 How can machine learning approaches have verification and validation with safety or 

mission-critical assurances? 

Using Schumann et al. [134] definition of verification and validation for AI approaches.  In 

verification, Chapter 7 provided a non-random initialization state with repeatable determinism, and as 

such, the network has a stable, testable output.  Removing an unexpected computational numerical 

stability noise source avoids re-colourizing noise from the sensor when combined in the activations 

and weights.  Within validation, Chapter 7 also provides a weight order in MLP networks that is more 

translatable to the input activation as they correlate with pixel position and neurons and may benefit 

rule extraction methods.  Also, in convolutional networks, the receptive field was derivable, and the 

non-random initialization accounted for it.  That initialization state was also more aligned to image 

classification, and the non-random initialization method arrived at a higher learnt accuracy.  In both 

verification and validation, Chapter 6 also explains the learning.  Using an input representation and 

extra weight values for value ranges simplified the representation and lowered the models' depth to 

avoid dropout potentials.  That input representation also provided higher numerical values with 

weights organized uniquely for value ranges.  When combined with faint pixels or low numerical 

values scalar inputs, the numerical value is higher when combined with the weight and is more 

uniformly fair in numerical representation across activation strength value ranges. 

9.1.1.4 How can neuron approaches gain safety or mission-critical assurances? 

Safety or mission-critical assurance is a broad subject, but concerning this research:  In Chapter 7, 

a non-random initialization method provided repeatable determinism in every separated learning 

session as an advantage for testing.  Removing a numerical instability provided repeatable 

determinism with higher IA.  In MLP networks, the non-random initialization learnt weights resultant 

are clustered and aligned to neighbours, which can be an advantage to rule extraction, simplifying a 

generalization step.  In convolutional layers, non-random initialization provides earlier learning and, 

with less unlearning of the initial state, as the non-random method is more aligned to the application 

of image classification.  The non-random initialization state's accuracy is higher with the same 

deterministic and repeatable result in every separated learning session.  In Chapter 6, a formula is 

extracted from a network layer, providing a level of explanation of the learning.  It used an input 

representation method with weights assigned to input value number ranges and, as such, could be 

commutable to general neural networks, reducing the model depth and simplifying the representation 

for later extraction.  In Chapter 8, a synthetic dataset generator allowed a high discrimination rate as 

an alternative to template matching for emitter identification as a motivation to gain safety or mission-

critical assurance; this employed image classification with images of emitters that are still humanly 

interpretable.  The synthetic dataset generator provides an ability to control the balance of datasets by 

understanding regular observations and controlling the proportions of safety cases. 

9.1.1.5 How can Symbolic AI approaches perform machine learning? 

In Chapter 5, is a virtualized neuron method in an expert system where those virtualized neurons 

have a unique semantic derived from the imbalanced and irregular input of atom facts and axiom 

rules.  Those combinations of graded atoms and axioms aim at the confidence of the agreement as 

applied in all permutations and provide a better value with a confidence metric.  The rules were 

algebraic and formed a body of available knowledge.  The confidence and value steering pertained to 

the matching agreement in the available 'body of knowledge' and updated the estimate.  In Chapter 6, 

a formula extraction method to a neural network forms new algebraic rules from back-propagation.  

Combining both methods is a basis for the Neuro-Symbolic AI approach, where the symbolic AI 

method in Chapter 5 combines with the ML and formula extraction method in Chapter 6. 
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9.2 Conclusions 

AI generally offers immense potential in the application area, of which ML methods have been 

more demanding to certify given the black-box nature of the cross-validation accuracy and limited 

understanding of the content, also compounded by the lack of repeatability in learning sessions 

combined with a diversity of solutions to know which are safe.  This research provided a single 

solution initialization method via an optimized initialization state that is repeatable and deterministic, 

which also benefits accuracy and learnt model retention in a transferred learning case.  Required 

further work is in the shuffle algorithm used for the non-random initialization state in convolutional 

layers to resolve aliasing in the number of filters on offer, which occurs with some filter dimensions.  

A Symbolic AI method called the expert system has been more palatable in advisory roles, as they 

are reviewable.  This research examined this method with a virtualized neuron-based form with 

algebraic rules.  That form also generated confidence that estimated better values given the rules 

'valid' body of knowledge.  This method uses an ML approach for the expert system to form new 

algebraic rules via a formula extraction method.  The formula extraction method exploited regression, 

SGD, and back-propagation with an input representation that used multiple weight values in 

activation strengths of layer input value ranges.  This form simplified the representation into a 

shallower network as it could represent more in a single layer, given that number ranges of activations 

are represented uniquely in a layer.  The number of nodes was less critical as the learnt weights were 

in those dendrite activations.  That method made numerical discriminations of math operators 

concerning the input relationships.  That method also could be integrated into the mainstream ML 

approaches to extend the input dimensions and include activation strength as an input dimension 

along with height, width, and channels.  The method demonstrated with the TensorFlow AI 

framework has a higher expectation of successful integration.  Required further work is for more 

complex numerical relationship discrimination and integrating the two methods.  However, further 

work could exploit the virtualized neurons in the modified expert systems method, forming a method 

closer to Neuro-Symbolic AI. 

The non-random initialization methods provided repeatable determinism in dense and 

convolutional layer types, where the repeatable determinism quality is more palatable to safety and 

mission-critical applications in testing.  Combined with a CNN, the approaches provided higher 

accuracy with earlier learning.  The convolutional layer method is Hubel and Wiesel inspired [274], 

[275], plus observations of feature extraction.  The dense layer method had correlated pixels and 

neurons in the weight structure, which has an advantage for generalization in rule extraction.  The 

convolutional layer method has an aliasing issue with some window dimensions, which is a research 

subject for increasing the number of filters on offer across all window geometries. 

Image classification of aircraft on runways was demonstrated with repeatable determinism in a 

challenging imbalanced dataset varying in light aspect, viewing angle, and image resolution using the 

MTARSI2 dataset [53], with an increase in the accuracy from 29% to 67% in the first epoch with this 

initialization method.  Overall, the cross-validation accuracy was 86%, and further research is for 

higher classification performance.  Also, Image classification in an emitter identification application 

where a synthetic dataset generator generated ambiguous civilian marine radar emitters using the 

same emission standards (SD_CMRM_Iv1) [54], and as employed in an image classification method, 

shows a very high level of disambiguation at 99.8% accuracy.  Further work is required to exploit 

further AI approaches in object detection and segmentation into this method toward de-interleaving.  

However, this method demonstrated identification between fourteen radar modes, which may derive 

kill chain positions from those radar modes and indicate civil emitter emissions.  Further work may 

also look at the robustness against the adversarial attack approaches such as FSGM. 

A method of threat analysis using first principle analytical steps and further research should apply 

more AI methods to those steps.  The expert system method can be employed to automate those steps, 

while the rule extraction method learns new rules and characterizes unknown emitters.  The threat 

analysis method also provides set mappings from the steps toward making countermeasure tactic 

selections.  The threat analysis method is published here with the UK MOD authority as a civilian 

accessible method in the scarcity and absence of publishing of other threat analysis methodologies, 

which could be more classified. 
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C3L countermeasure specification language was adapted to emitter descriptions and used in the 

synthetic dataset generator as C4L.  C4L provides an unclassified dataset source to compensate for the 

lack of publically accessible datasets in ELINT.  That synthetic dataset generator can also allow more 

AI methods for generating images toward a mechanism for warning and as a trigger for 

countermeasures.  C4L also provides live parameter updates allowing live adaption, and future work 

will use parameter fitting in a GAN approach. 

9.2.1 Further Research 

A list of different further research themes is provided below from the research conducted in this 

dissertation: 

9.2.1.1 Non-Random Initialization method  

The non-random initialization method used for convolutional layers and networks exhibits 

numerical aliasing issues with some filter dimensions, which causes a filter sequence to repeat earlier 

than other filter dimensions; this means fewer filter permutations are on-offer in some cases.  

Therefore, that means that some filter dimensions have better performance and some less if numerical 

aliasing occurs when some filter permutations are required.  Further research is required to resolve 

aliasing in the shuffle algorithm limiting the number of kernel filters on-offer used in the non-random 

convolutional layer initialization method.  Other sequences of inspirations in other applications may 

also exist, where the data is not imagery but is sound, textual, radar, or ELINT, but where another 

predisposed warm-start format may be applicable and where it is still not dataset coupled.  Further 

work may also look at the impact on model architectures such as Inception and ResNet with the non-

random initialization state, as that initialization state may be less resolution coupled at the outset as it 

has more stripes across the kernels rather than only speckles and spots at the kernel resolution in the 

random form. 

9.2.1.2 Formula Extraction method and a 'Condensed Network' 

The formula extraction method must examine more weight distortion indicators of more complex 

numerical operators and functions.  Also, in a more general case, the extra weights for the activation 

strengths could be integrated and tested with more dataset types of imagery, sound, video, and text.  

Low-level activation values may have importance, such as the numerical value activation within the 

network has a higher numerical value: 0.5 to 1.0 in at least one of the values used in the numerical 

representation.  This focus may lead to a network requirement that is 'condensed' rather than 'deep' as 

this format can represent more in a single layer and within a single node of that layer.  That may be in 

a form already predisposed to an extractable form. 

9.2.1.3 ELINT Imagery Classification method 

The (SD_CMRM_Iv1) [54] dataset may also be a subject for object detection and segmentation 

methods to perform emitter de-interleaving when more than one emitter overlaps with other emitters.  

There may also be extra complexities in congested broad-spectrum analysis, which may cause a 4D 

image where the fourth layer of the image is a frequency band as the fourth dimension after height, 

width, and colour channels.  Additionally, with the GAN approach, research for a production process 

for producing C4L descriptions, where the parameters of the C4L are the stimulus for the generator, 

and the discriminator provides judgment from captured samples, which may provide a humanly 

readable format for a human validation approach.  That leads to research into the effect and protection 

of adversarial attacks like FSGM.  Furthermore, the MTARSI2 dataset [53] and model may include 

research for further categorization, data augmentation, noise injection, orientation, stretching, 

compressing, and translation of the images towards achieving higher classification accuracy. 

9.2.1.4 Furthering the Neuro-Symbolic AI method 

The expert system virtualized neurons for each permutation of the rules in the body of knowledge 

and evidence inputs available toward perfected values and confidences.  The formula extraction 

method intends for the backward chaining ML method to establish new algebraic rules as the Neuro-

Symbolic AI approach.  That backward chaining ML method provides many weights indexed on 

activation weights' strength as an input dimension as an array of weights of what would traditionally 

be a single weight.  Further research will characterize the weight array values to provide a matching 

function realized as an algebraic rule. 
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9.2.1.5 Development of the Threat Analysis method 

The threat analysis approach is a methodology that has low trust in the data provided.  That is to 

say, it is not reliant on high confident data sources but is inferred based on testing the data for its 

strengths, weaknesses, opportunity, and vulnerabilities within the contexts of the data provided.  The 

methodology is automatable by testing the data presented to it to assert possible functions and then 

combining them in groupings as a complete understanding.  When considered in a kill chain 

requirement, further research may be in the set mappings to establish missing functions and 

observations with a collection viewpoint. 

9.2.1.6 Countermeasure Generation and Selection 

Countermeasure techniques captured in C4L are defined in schedules of elements to be adaptable 

to a changing engagement.   Those C4L techniques have parameters that allow the countermeasure 

technique to configure for a specific threat and protected platform engagement.  When they are 

configured and combined, they form a specific countermeasure tactic.  In further research, an 

adversarial or software annealing approach might optimize the parameters for a tactic.  Furthermore, 

automatic countermeasure technique selection based on the threat kill chain stage's intentions, and the 

set mappings from the threat analysis method may provide countermeasure technique selection for the 

tactic generation, and further research may look at approaches to matching and optimizing tactics with 

fallback approaches compliant to the onion of protection's content. 
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11 Appendix A 

FURTHER EXPLANATION OF LANGUAGE 

SPECIFICATION MODIFICATION 

The C4L language specification builds upon the C3L baseline and refers to the Master's degree 

thesis [69], which explains the execution and numerical concepts of C3L as they differ from most 

other languages.  The extension of C3L was to include both emission and receiver behaviour 

specifications.  Although only used in this work for emitters, it is also applicable to radar receivers for 

processing.  The language elements for an emitter specification are scheduled within C4L and needed 

to represent different modulations of frequency, pulses, PRIs, antenna beams, and scans defined with 

different modulations, either concurrent sequences or as part of a state change selection or iteration. 

Since the Master's degree thesis [69], there has been an additional parameter feature within C3L, 

and it can now define a parameter as Static, Semi-Dynamic, or Dynamic:  

 Static: parameters do not change when executing but provide a standard script to be re-

configured with specific values.  Static parameters permit a countermeasure or 

emitter technique to be generalized and configured for specific platform 

equipment features or limitations. 

 Semi-Dynamic: parameters are use-case-specific configurations.  They provide adaptability to a 

specification for a specific engagement circumstance.  Semi-Dynamic parameters 

permit a countermeasure or emitter technique to re-configure and match a 

specific platform and threat engagement. 

 Dynamic: parameters are updated constantly and make countermeasures reactive.  C3L 

compiles to a single execution thread for data integrity for dynamic updates.  

Dynamic parameters permit a countermeasure or emitter technique to adapt 

during the engagement reactively. 

The following updates to the C3L language were made during this research to support the 

synthetic dataset generator for radar emitters: 

11.1 Scheduling Specification 

The BNF definition extends to having a SensorElement within the definition of the Elements.  See 

Figure 50 for the SensorElement inclusion shown in red and BNF language chaining shown with 

arrows. 

<Behaviour>  ::= “Schedule” [<Identifier>] <ScheduleType> [<SuccessCriteria>] 

[<FailureCriteria>] <RequirePrescript> [<Behaviour>]  

<RequirePrescript> ::= <BlockStatement> | <Behaviour> 

<BlockStatement> ::= “{”<ElementaryProg> “}” | <Element> “;” 

<ElementaryProg> ::= [<Identifier>] <Element>“;” | [<ElementaryProg>]  |[<Behaviour>]  

[<ElementaryProg>]  

<Element>  ::= <ChaffElement> | <FlareElement> | <DecoyElement> | <EcmElement> | 

<ManoeuvreElement> | <InActionElement> | <SensorElement> 

FIGURE 50 SCHEDULING LANGUAGE BNF  

11.2 Sub-Scheduling Specification 

The SensorElement can sub-schedule an Element with or without countermeasures.  See Figure 51 

for the SensorElement, allowing the sub-scheduling of a SensorProgram command. 
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<SensorElement> ::= "Emitter" [<Identifier>] ["On" | "Off"] {<EmitterTechnique>} ";" 

<EmitterTechnique> ::= “SensorProgram” [<Identifier>] <ScheduleType> 

[<SuccessCriteria>] [<FailureCriteria>] <SensorPrescript> [<EmitterTechnique>] ; 

<SensorPrescript> ::= <SensorBlockState> | <EmitterTechnique> 

<SensorBlockState> ::= “{”<SensorProgram>“}” | <SensorTechnique> 

<SensorProgram> ::= <Identifier> <SensorTechnique> “;” [<SensorProgram>] | 

[<EmitterTechnique>] [<SensorProgram>] 

<SensorTechnique> ::= “Sensor” "ChanNum" <Integer> [<TxScanConfig>] [<RxScanConfig>] 

[<TxModConfig>] [<RxModConfig>] [<InActionElement>] 

FIGURE 51 SUB-SCHEDULING LANGUAGE BNF  

The sub-scheduling of a SensorProgram allows definitions to be partial in the Transmit (Tx) and 

Receive (Rx) configurations of scans and modulations, which means that the configurations can be at 

different hierarchical levels and differ in transmit and receive, shown in red within Figure 51, such 

that the Scan-on-Receive-only modes are isolated from the transmit scan and PRI modulation 

definitions. 

11.3 The Scan and Beam Configurations 

The Scan Configurations on either transmit or receive can define the scan and beams as in Figure 

52 shown in red, with the parameters to modulate the beamwidth and scan, and as such, an electronic-

scan antenna's beam broadening effect can modulate in the same statement for convenience. 

<TxScanConfig> ::= “TxScanConfig” <ScanParameters> 

<RxScanConfig> ::= “RxScanConfig” <ScanParameters> 

<ScanParameters> ::= <RepeatType> "WFNum"<Integer>  [“PointAngles” <DirectionVar> 

["RollAxis"<TermParam>]] [<Location Var>] ["ScanCentre" <ScanCentre>] 

[<ScanMounting>] [<ScanStabilisation>] ["BeamWidth" <DirectionVarBW> ["RollAxis" 

<TermParam>]] ["Suppression" <Suppression>] ["Pol"<PolType>] ["Purity" <TermParams>] 

<DirectionVar>  ::= ["Azimuth"<TermParam>] ["Elevation"<TermParam>] 

 <DirectionVarBW> ::= ["Azimuth"<TermParam>["CoSec"]] ["Elevation" <TermParam> 

["CoSec"]] 

 <LocationVar>  ::= ["x"<TermParam>] ["y"<TermParam>] ["z"<TermParam>] 

 <ScanCentre>   ::= "RelativeTo" | "Horizon" | "Target" <Integer> 

 <ScanMounting ::= "AzOnElMount" | "ElOnAzMount" 

 <ScanStabilisation>  ::= "HorizonStabilised" | "PlatformStabilised" 

 <Suppression>   ::= <TermParams> <TermParams> 

 <PolType>  ::= "Linear" <TermParams> | "Clockwise"  | "AntiClockwise"  

FIGURE 52 SCAN CONFIGURATION LANGUAGE BNF  

Each scan data element parameter relates to a definition in the Threat Analysis method in Chapter 

4, and as such, values for these parameters become known.  Missing parameters can use the modified 

expert system method in Chapter 5 to estimate better values.   Also, the certainty value concerning the 

perfected value in the modified expert system method may assist in establishing value ranges for 

Monti-Carlo and stochastic modelling. 

11.4 The Modulation Configurations 

The Modulation Configurations on either transmit or receive can define the Power, Gain, Pulse, 

PRI, Frequency, and timings, as in Figure 53 shown in red. 



121 

 

<TxModConfig>::= "TxModConfig" <ModParameters> 

<RxModConfig>::= "RxModConfig" <ModParameters> 

<ModParameters>::= <RepeatType> "WFNum" <Integer> ["Carrier"<TermParam>] 

["GapDuration"<TermParam>] ["Duration"<TermParam>] ["StartRF"<TermParam>] 

["EndRF"<TermParam>] ["Phase"<TermParam>] ["Gain"<TermParam>] 

["RepetitionInterval"<TermParam>] ["NoiseFigure"<TermParam>] 

["Temperature"<TermParam>] [<PxTags>] 

<PxTags>::= ["Probe"] ["DataLink"] ["Interrogator"] ["Transponder"] ["Illuminator"] 

["ECMListen"] ["Calibration"] ["TargetTrack"] ["TargetAcquire"] ["EWSearch"] ["AirSearch"] 

["IDRecognise"] ["HeightFind"] ["Effect"] ["Engage"] ["Prosecute"] ["CSD"] ["RMI"] 
 

FIGURE 53 MODULATION CONFIGURATION LANGUAGE BNF  

The GapDuration, Duration, and RepetitionInterval define the Transmitter's pulse delay, the 

Pulse width, and the PRI.  The receiver defines the Dead Time, Listen Time, and PRI, allowing 

modelling Pulsed and CW functions, and this allows the Listen Time to be swathe over the target for 

Target Tracking Radars.  Also, the phase values allow coherent, non-coherent, or coherent on receive 

configurations.  The StartRF, EndRF, and Carrier definitions allow agility and FM modulation on the 

transmit side and allow the receiver bandwidth and Local Oscillator (LO) offsets on the receiver side, 

supporting; Bi-polar or Uni-polar receivers.  The processing tags (PxTags) can define the ground truth 

of the emitter function code towards a kill chain stage match.  Again each modulation data element 

parameter relates to the Threat Analysis method in Chapter 4 and missing parameters to the modified 

expert system method in Chapter 5 to estimate better values and stochastic ranges. 

11.5 Channel and Waveform Configurations 

In Figure 51, Figure 52, and Figure 53, the parameters can be combined or separated using 

waveform number (WFNo) and Channel Number (ChanNum).  Using different ChanNum values 

declares that many WFNo configurations are separated to define beams for mono-pulse.  Using the 

same ChanNum value with a different WFNo allows them to be combined to define contiguous pulses, 

phase modulation on the pulse, and complex beam shapes; and this can define several discrete 

transmitters or receivers, to support many isotropic beams with varying phase offsets applied for 

beam-forming as in an Electronically Scanned (E-Scan) array.  Figure 54 is a result from a Matlab 

model developed in this research that illustrates the transmit pulse propagation at a moment in time 

and shows the effect of combining emitters with phase offset steps in those emitters. 

 

FIGURE 54 E-SCAN BEAM STEERING ILLUSTRATION  

Figure 54 left is in power and right is in phase, but the sample rate needs to be above the Nyquist 

of the carrier frequency, which is too much memory usage in this application, but the same emitter 

DLLs and architecture are modular and reusable in other applications. 
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11.6 Variable Step Simulation Support 

The numerical representation allows value calculation for any time step, even variable steps, and 

defines integral functions rather than discrete values, and these are called TermParams.  TermParams 

define start, stop, rate, and step as a slope over time and include ten numerical derivatives in Figure 55 

in the BNF language syntax. 

<TermParams> ::= [<Position> [<Velocity> [<Acceleration> [<Jerk> [<Snap> [<Crackle> 

[<Pop> [<Lock> [<Drop> [<Shot> [<Put>]]]]]]]]]]] 

<Position> ::= “Position” <ParamSet> 

<Velocity> ::= “Velocity” <ParamSet> 

<Acceleration> ::= “Accel” <ParamSet> 

<Jerk> ::= <JerkAmbiguity> <ParamSet> 

<JerkAmbiguity> ::= “Jerk” | “Jolt” 

<Snap> ::= <SnapAmbiguity> <ParamSet> 

<SnapAmbiguity> ::= “Snap” | “Spasm” | “Jounce” | “Surge” | “Sprite” 

<Crackle> ::= “Crackle” <ParamSet> 

<Pop> ::= “Pop” <ParamSet>  

<Lock> ::= “Lock” <ParamSet> 

<Drop> ::= “Drop” <ParamSet> 

<Shot> ::= “Shot” <ParamSet> 

<Put> ::= “Put” <ParamSet> 

<ParamSet>  ::= <StartVal> [<End> <Rate> [<Step>]] 

<StartVal> ::= “Current”| <Start> 

<StepPrams>  ::= <Start> [<End> <Rate>] 

<Start> ::= “Start” <RegularExpression> 

<End> ::= “End” <RegularExpression> 

<Rate> ::= “Rate” <RegularExpression> 

<Step> ::= “Step” <StepPrams> 

FIGURE 55 NUMERICAL REPRESENTATION FOR VARIABLE STEP SIMULATION 

11.7 Emitter Physics & Propagation Library 

The Data Generator uses the DLL with an Emitter Physics Propagation Library developed in this 

research.  The emitter mark-up language defines radar behaviours, although in this example the 

receiver is an ELINT collector rather than a radar receiver.  The ELINT collector parameters are 

defined as parameters, so the same DLL can also be used for radar modelling. 

11.7.1 Noise Floor 

The noise figure (fn) can be defined on both transmit and receive for receiver Noise and support 

Noise Radar.  The definition of the noise level is as per [292] and uses the Box-Muller Transform 

[293].  Equations (105), (106), (107), (108), (109), (110), (111), and (112) define the noise floor in 

both I and Q components. 
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11.7.2 Delta Phase Offset 

Other distortions may occur for off-bore-sight squint angles as a delta phase (Δϕ) offset and 

support phase comparison mono-pulse Interferometry.  The positional displacement of beams sets a 

Δϕ offset between different channels.  The positional displacement is in metres in the x, y, and z.  The 

Δϕ value calculations are as per [294] and in Equations (113), (114), (115), (116), and (117).  
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When plotted progressively on off-bore-sight angles, the physics library test module developed in 

this research, the cos(∆θ) shown in Figure 56 left shows the Δϕ phase effect.  The x or y value can be 

inverted to invert the Δϕ pattern in Figure 56 right, supporting phase comparison mono pulse. 

 

FIGURE 56 DELTA PHASE (ΔΦ) OFFSET FOR OFF BORE-SIGHT ANGLES (TEST MODULE) 

11.7.3 Scan & Point Angles 

The scan configurations define the scan point angles [295] in the scan configurations; they include 

a Scan Centre to define if the angle concerns a target, the horizon, or the relative point, making the 

definition reusable in a different scenario.  The Scan Orientation defines if the scan angle is space or 

platform stabilized and also if the elevation gimbals are mounted on the azimuth gimbals or vice versa 

to support, definitions for Air Intercept (AI) radars and many Anti-Aircraft Artillery (AAA) or 

Surface to Air Missile (SAM) systems.  The trigonometrically transformed angle starts with a 

comparison of positions as in Equation (118): 

                                                               . (118) 
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When the emitter or receiver scan stabilization is: azimuth () gimbals mounted on the elevation 

() mount, then less gain is required in the azimuth motor, and the transform is as Equation (119).  

That gimbals mounting is consistent with Air Intercept (AI) radars that scan the horizon in search. 

                 

                                                                                              . 

 (119) 

Where axisAI is defined by (120) to (135):  
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When the scan's stabilization is: the configuration: Elevation gimbals mounted on the Azimuth 

mount, then the extra gain will be required in the azimuth motor, and this configuration is consistent 

with many Anti-Aircraft Artillery (AAA) or Surface to Air Missile (SAM) systems and the coordinate 

transform is as in Equation (136) instead. 
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 (136) 

The scanner system will point to the beam of the emitter or receiver, but the beam itself has a 

shaping that will modify the power in that beam. 

11.7.4 Beam Shaping  

Beam shapes are defined with the beamwidth as the dimension across the beam at the 3dB point 

(half power) using sin(x)/x form as in [296], [297] see Equation (137).  This approximation typically 

requires a numerical method for the 3dB power-point for every defined beamwidth.  However, the 

method presented in this research dissertation results in that point without the need for a numerical 

method.  Figure 57 shows the BLoss1 beam shape shown in a Redline, the BLoss2 in Green, and the 

average in the Blue-line.  That Blue-line crosses at the 3dB point without a numerical method. 

                                                      (137) 

 

FIGURE 57 BEAM SHAPING FOR ACCURATE 3DB POINT LOCATION TO ANGLE (TEST MODULE) 

See Figure 57.  There are no losses when the off bore-sight angle (bore) is precisely on bore-sight, 

and the loss factor is 1.0.  However, in the case of the off-bore-sight angle (bore) is within a 

beamwidth (bw) but not precisely on bore-sight then Equations (138), (139), (140), and (141) are 

used: 
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(141) 

In the case that the off bore-sight angle (bore) is out with the beamwidth (bw), then the different 

Equations (142), (143), (144), (145), and (146) are used: 

        
         

    
   , (142) 
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Nevertheless, there is more than one classification of beam shape when considered in two 

dimensions for Rectangular and Concentric beam shapes of side lobes.  Concentric beam shapes are 

for illuminators or conical scanners, and rectangular beam shapes are for surveillance and some 

airborne radars as a rule of thumb. 

11.7.4.1 Rectangular Beam-shape 

Azimuth and Elevation losses combine as a cumulative beam loss in Equation (147):  

            
                     

 
     

                      

 
   . (147) 

The rectangular beam shape in Figure 58 left can rotate to support diagonal scans shown in Figure 

58 right, such as the SNR-125 radar (SA-3 Low Blow).  Figure 58 left and right are examples from 

the physics library test module. 

 

FIGURE 58 BEAM SHAPE OF A RECTANGULAR BEAM IN ORIENTATIONS (TEST MODULE) 

                                 . (148) 

Where the angles rotate by  in azimuth  and elevation () in Equations: (149), (150), (151), 

(152), and (153), note that this angle transform is in u/v space, and the coordinates system is in the 

axisAI, and axisSAM transforms. 

                    , (149) 

                    , (150) 

              , (151) 
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   . (153) 
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Thus the rectangular beam loss for a point angle can be calculated in Equations: (154), (155), and 

(156). 

                                                         , (154) 

                                          

                                                                  , 

(155) 

                                 . (156) 

11.7.4.2 Concentric Beam-shape 

The indication of a concentric beam shape is by one of the beam shape values being set to zero in 

the language, in either azimuth or elevation, as in the physics library test module example shown in 

Figure 59: 

 

FIGURE 59 BEAM SHAPE OF A CONCENTRIC BEAM (TEST MODULE) 

Again, when the off bore-sight angle (bore) is precisely on bore-sight, there are no losses, and the 

loss factor is 1.0. 

In the case of the off bore-sight angle (bore) is within a beamwidth (bw) but not precisely on 

bore-sight, then the Equations are: (157), (158), (159), (160), (161), and (162): 
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11.7.5 Polarisation Miss-Matches 

The polarisation type and polarisation angles are defined for both transmit and receive beams, as 

miss-matches in polarisation types will cause losses [298].  Some radars use different polarisations on 
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transmit and receive or multiplexed.  Cross-polarisation influences are in support of ChanNum and 

WFNo. 

If both the transmitter and receiver are linear, then Equations (163), (164), (165), (166), and (167) 

are used: 
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If both the transmitter and receiver are circularly polarised but are miss-matched in handedness, 

then Equations (168), (169), and (170) are used: 

              
        

   
   , (168)    

               
        

   
   , (169) 

                                . (170) 

If there is a mix in the transmitter and receiver polarisation between linear and circular, then 

Equations (171), (172), and (173) are used: 
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If the transmitter and receiver polarisations are a match in the circular type, then Equations (174), 

(175), and (176) are used: 
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                                                             . (176) 

11.7.6 Emission Waveforms 

The Tx Configuration allows Frequency Modulation (FM), and the Rx Configuration uses these 

for a receiver bandwidth. 

With the different WFNo with the same ChanNum, more than one definition can combine to 

support more complex waveforms that are nonlinear, are phase modulated, or have a contiguous 

pulse. 

Figure 60, left and right, shows the Phase and Amplitude results for a linear chirp from the test 

module of the physics library developed as part of this research. 
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FIGURE 60 WAVEFORM MODULATION LINEAR CHIRP EXAMPLE (TEST MODULE) 

The waveform phase (WF  ) in Figure 60 is a test module example from the physics library 

generated from the Equations (177), (178), (179), (180), (181), and (182): 
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(182) 

After the waveform is applied, a frequency is mixed for the receiver's bandwidth relative to the Tx 

Carrier, so the waveform appears at the right frequency concerning the ELINT collector receiver.  

The TxGain represents the ERP and includes the transmitter power and antenna gain.  The RxGain is 

the receive antenna gain and amplification stages, and both are in the radar-range-equation [299].  A 

phase rate is applied along the pulse to support FMCW radar processing and between the pulses to 

support Pulse-Doppler processing radar configurations. 

11.7.7 Spreading Losses 

Set in the language, the emitter power and receiver gain with f as the carrier frequency, and 

TxGain represents the ERP, which includes the transmitter antenna gain and transmitter power.  The 

RxGain is the receive antenna gain and any amplification stages combined. 
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(185) 

                      . (186) 

Equations (183), (184), (185), and (186) define the spreading loss, and the spreading loss for a 

single direction of propagation (as in this case) and is when rslantIn is 0 metres and an RCS of 0dBsm. 

11.7.8 Phase Offset 

The emitter 'phase offset' and receiver 'phase offset' can support the following radar 

configurations: coherent, non-coherent, and coherency-on-receive.  

11.7.9 Doppler Effect 

The calculations of radial-velocity of targets, emitter, and receiver are in Equations: (187), (188), 

(189), (190), and (191). 
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(191) 

When confined to just the emitter and receiver (as in this case of an ELINT collector), the radial-

velocity value is with the emitter's position and velocity set to the targets.   

The calculation of Phase Increment per pulse and sample is in Equations (192) and (193). 
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11.7.10 Sampling Rate 

The sample rate would naturally be relatively high to capture all phases and modulations.  

However, the aliasing of that bandwidth is by the collector sample rate, and the waveform and 

modulations are aliasing at the collector's sample rate (50KHz) for this LPRF case.  The aliasing is 

modifying the waveform's generation to apply an Intermediate Frequency (IF) conversion.  That 

lowers the emitter signal frequency relative to the sample rate and generates the signal aliased to the 

collector sample rate using the waveform's start and end frequencies in Equations (194) and (195). 
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11.8 Signal Generation and Image 

The In-phase (I cos component) and Quadrature (Q sin component) generate with the noise for a 

collector, and the emitter PRI waveforms are added at the received power at the emitter PRI timing 

forming a matrix of complex numbers.  That matrix width is 10ms wide by several rows in height 
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equivalent to 1 second (100).   The red channel is a Hanning window Fourier transform as a 

spectrogram, and the green and blue channels are In-phase and Quadrature phase values multiplied by 

their magnitude.  The images are created in this form in a sliding window of PRI as a pulsed 

synchronized image set forming the (SD_CMRM_Iv1) [54] dataset.  In Figure 61 are three images 

from the dataset generator in their original pixel aspect ratio. 

 

 

 

FIGURE 61 THREE EXAMPLE IMAGES FROM THE DATASET GENERATOR 
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