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Abstract

Acute lymphoblastic leukaemia (ALL) is the most common cancer in children, and is

characterised by the proliferation of immature lymphoid cells in the bone marrow.

The fusion gene TEL/AML1, generated by the chromosome translocation t(12;21), is

the most common single genetic aberration in B-lineage ALL, and is formed from

the transcription factors TEL and AML1 (coded for by the genes ETV6 and RUNX1,

respectively). However, it is still not clear how the presence of TEL/AML1 causes

the development of leukaemia. In addition, the importance of a common secondary

mutation in TEL/AML1+ leukaemia, the loss of the untranslocated ETV6 allele, is

still subject to debate.

The role of TEL/AML1 in malignant haematopoiesis has been previously studied in

a variety of models, include in vivo mouse models, in vitro TEL/AML1+ cell lines,

and ex vivo patient samples. Each of these models has contributed great amounts to

our knowledge about TEL/AML1+ leukaemia; however, each type of model has its

disadvantages. Here, a new model is presented which aims to complement these

other models, based upon human embryonic stem cells (hESCs) expressing a

TEL/AML1 transgene. These transgenic hESCs were shown to be capable of

multipotent haematopoietic development, including towards B lymphocytes.

The consequence of the loss of TEL in TEL/AML1+ leukaemia is not fully known.

Here I provide two insights into this frequent secondary mutation. Firstly, a gene

expression microarray revealed the transcriptional role of TEL and illuminated how

its loss might contribute to progression of TEL/AML1+ leukaemia. Secondly, the

functional role of TEL in proliferation and apoptosis was further investigated, which

provided further insight about the clonal evolution of TEL/AML1+ leukaemia. In

addition, new discoveries were made of potential partners for heterodimeric

transcription factor complexes and targets for TEL repression, which provide new

avenues for future studies.

Taken together, the data presented in this thesis provides the basis for renewed study

into TEL/AML1+ leukaemia which could address remaining questions about the

disease.
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Chapter 1: Introduction

1.1 General features of leukaemia

1.1.1 Disease & Classification

The leukaemias are a group of cancers of the bone marrow involving the

proliferation of immature leukocytes called ‘blasts’, and make up about 2.5% of

cancers in the United Kingdom, with an incidence of about 1 in 10,000 (Office of

National Statistics, Cancer Registrations, 2008). Leukaemia can be classified as

either acute or chronic; acute leukaemias are fast progressing and are the most

common leukaemias in children, whereas chronic leukaemias can take months or

years to progress, involving more mature blasts, and commonly occur in adults.

These can be further subdivided into the haematopoietic lineage of the leukaemic

blasts, either lymphoid or myeloid. Combining these classifications gives the four

major groups of leukaemias (making up over 80% of all leukaemias), which are

Chronic Myelogenous Leukaemia (CML), Chronic Lymphocytic Leukaemia (CLL),

Acute Myelogenous Leukaemia (AML), and Acute Lymphoblastic Leukaemia

(ALL).

1.1.2 Acute Lymphoblastic Leukaemia

Acute Lymphoblastic Leukaemia (ALL) is a disease typified by the proliferation of

immature lymphocytes (termed lymphoblasts) in the bone marrow. The symptoms of

the disease probably result from the ‘crowding-out’ of normal haematopoietic cells

by these malignant lymphoblasts, and include anaemia, fatigue, frequent infections

and fever, and bruising caused by the loss of platelets. In addition, leukaemia blasts

infiltrate other organs, including the central nervous system (CNS), lymph nodes,

spleen, and liver. According to the Haematological Malignancy Research Network,

the incidence of ALL is roughly 1 in 100,000 in the United Kingdom, and peaks in

2-10 year olds, where it accounts for 80% of all leukaemias in this age group.

Lymphoid leukaemias can be either of B-cell, T-cell, or Natural Killer (NK)-cell

lineage, with B-cell lineage leukaemias making up approximately 88% of all

lymphoid leukaemias, and T-cell ALL accounting for 15 to 25% of ALLs

(Hoffbrand et al 2006; Knight 2010).
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1.1.3 Subtypes of B-lineage ALL

The most common single genetic cause of childhood B-lineage ALL is the

chromosome translocation t(12;21)(p13;q22), generating a fusion between two

transcription factors: the gene ETV6 (coding for the protein TEL) and RUNX1

(coding for AML1), often referred to as TEL/AML1. Affecting roughly 25% of

patients (1 in 10,000 children under the age of 15), the prognosis of TEL/AML1+

leukaemia is good, with around 90% of children cured (Moorman 2012). The

frequency of TEL/AML1 fusions in adult ALL is low, representing about 3% of

adult ALL cases (Kwong & Wong 1997; Lee et al 2005).

The fusion protein BCR-ABL1, resulting from the t(9;22)(q34;q11.2) translocation

(otherwise known as the ‘Philadelphia chromosome’), is more commonly associated

with adult ALL than childhood ALL, representing 30% and 3% of cases,

respectively. BCR-ABL1 is associated with a poor prognosis in ALL, despite being

associated with a good prognosis in CML (Knight 2010).

Other chromosome abnormalities associated with B-ALL include

t(1;19)(q23;p13)/E2A-PBX1, t(v;11q23)/rearranged MLL, and

t(5;14)(q31;q32)/IL3-IGH. Hyperdiploidy (chromosome numbers in excess of 50)

and hypodiploidy (fewer than 45 chromosomes) are also frequently observed in

B-ALL. In contrast, T-cell leukaemias do not have any defining cytogenetic

abnormalities for the purposes of classification (WHO Classification of Tumours of

Haematopoietic and Lymphoid Tissue, 2008).

Down’s Syndrome (DS, or Trisomy 21) is associated with a higher incidence of both

ALL and AML (Maloney 2011) with most of the standard chromosome

translocations represented in DS patients. The overall mortality rate in DS-associate

leukaemia is higher; this is likely due to the different frequencies of favourable and

unfavourable chromosome translocations in DS patients. For example, TEL/AML1+

leukaemia is less frequently observed in DS-associated ALL (Forestier et al 2008;

Maloney et al 2010).

~~~



CHAPTER 1: INTRODUCTION

16

The first part of this chapter starts with an introduction to haematopoiesis and B cell

development and function, followed by an overview of two cell processes critical in

cancer: proliferation and apoptosis.

1.2 Haematopoiesis

Haematopoiesis, the generation of all blood cells from haematopoietic stem cells

(HSCs), is one of the most studied tissue development systems in biology. Indeed,

HSCs are the archetypal stem cell; Till, McCulloch, and colleagues were the first to

prove that cells existed in the bone marrow that could give rise to multiple

differentiated cell types (Becker et al 1963) and that these cells were capable of self-

renewal (Siminovitch et al 1963), two defining characteristics of all stem cells. This

started a new field of stem cell research, to determine how the decisions were made

between self-renewal and differentiation (Iscove 2011).

Haematopoiesis is a vast subject, and it is neither possible nor necessary to

summarise the whole body of research in this introduction. Presented here is an

overview of the important features of haematopoiesis that are necessary background

for the chapters to follow.

Differentiated blood cell types are not generated directly from HSCs, instead they

arise via a series of intermediate progenitors. Figure 1.1 shows a current

understanding of the hierarchy of haematopoietic development, adapted from Reya

et al 2001. This model divides HSCs into three categories, based upon their ability to

self-renew; long-term self-renewing HSCs (LT-HSCs), short-term self-renewing

HSCs (ST-HSC), and multipotent progenitors with no self-renewal capacity. These

categories were determined by the speed at which transplanted cells could restore

haematopoiesis in mice subjected to lethal X-ray irradiation, and the duration for

which this could be sustained (Morrison & Weissman 1994; Morrison et al 1997;

Reya et al 2001).
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Figure 1.1 – Overview of haematopoietic development.
HSCs are divided into long-term and short-term HSCs (LT-HSC and ST-HSC, respectively), capable of self
renewal (indicated by circular arrow), and multipotent progenitors, not capable of self-renewal. These give rise to
Common Lymphoid Progenitors (CLP) and Common Myeloid Progenitors (CMP). CLPs give rise to B, T, and
NK cells. CMPs give rise to granulocyte/macrophage precursors (GMPs) and Megakaryocyte/Erythrocyte
Precursor (MEPs), which generate platelets and red blood cells through Megakaryocyte precursors (MkP) and
Erythrocyte precursors (ErP), respectively. Dendritic cells are believed to arise from both CLPs and GMPs.
Adapted from Reya et al 2001.
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1.2.1 Stages of haematopoietic development

Haematopoiesis in the mammalian embryo originates in the extra-embryonic yolk

sac (Dzierzak & Speck 2008). The emergence of the first haematopoietic cells,

primitive erythrocytes, coincides with the development of vasculature at embryonic

day 7.5 (E7.5). This lead to the discovery of what is believed to be a common

precursor to haematopoietic and endothelial tissues, called the haemangioblast (Choi

et al 1998; Fehling et al 2003), although there is still debate around the identity and

differentiation potential of the haemangioblast (Hirschi 2012).

Definitive haematopoietic stem cells (HSCs), capable of reconstituting irradiated

adult mice when transplanted, do not appear in the developing embryo until E10.5 in

the aorta-gonad-mesonephros (AGM) region (Muller et al 1994; Medvinsky &

Dzierzak 1996; de Bruijn et al 2000). HSCs emerge from the luminal surface of the

dorsal aorta (de Bruijn et al 2002; North et al 2002; Taoudi & Medvinsky 2007),

from endothelial cells which are collectively known as the ‘haemogenic

endothelium’ (Zovein et al 2008). The foetal liver is a major source of HSCs in the

developing embryo, but does not itself generate HSC de novo (Johnson & Moore

1975; Houssaint 1981); rather it is colonised by HSCs from the AGM and other

tissues to which the circulation has transported HSCs, e.g. the placenta and yolk sac

(Kumaravelu et al 2002; Gekas et al 2005).

Between the first haematopoietic cells in the yolk sac at E7.5 and the emergence of

the first definitive HSCs at E10.5, a series of multipotent haematopoietic cells are

also generated. After primitive erythropoiesis begins in the yolk sac and before blood

circulation commences at E8.5, multipotent myeloid progenitors are generated in the

yolk sac (Palis et al 1999). Similarly, before the onset of circulation,

lymphoid-myeloid precursors are generated in the para-aortic splanchnopleura, the

region which will become the AGM (Cumano et al 1996). Finally, a HSC population

capable of repopulating neonatal mice, but not adult mice, is generated

concomitantly in the yolk sac and the AGM region at E9 (Yoder et al 1997).

HSCs generated from the AGM region migrate to colonise the liver, and then the

spleen and thymus are colonised either directly from the AGM or from the liver
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(Bertrand et al 2006; Yokota et al 2006). However, it is likely that HSCs that

populate the bone marrow in adult mice are derived not from the HSCs emerging

from the embryonic AGM region, but from those in the yolk sac (Gothert et al 2005;

Samokhvalov et al 2007; Tanaka et al 2012). The bone marrow becomes the main

site of haematopoiesis as extra-medullary haematopoiesis in the liver, spleen, and

thymus subsides and ceases.

1.2.2 Cell surface markers of early haematopoietic development

The elucidation of early haematopoietic development has been facilitated by cell

surface markers that can be used to identify populations of cells by immunostaining.

The classical marker for endothelium is CD31, the cell-adhesion molecule

PECAM-1 (Platelet/Endothelial Cell Adhesion Molecule-1; Newman 1994), which

was used to identify that haematopoietic and endothelial cells arise from a common

precursor (Choi et al 1998; Fehling et al 2003; Zovein et al 2008).

The clear identification of human HSCs capable of long-term engraftment (so called

‘LT-HSC’; Kondo et al 2003) has been more complicated than the identification of

the mouse equivalent, due to the assays being used to functionally identify such

populations (Kondo et al 2003). HSCs are known to express CD34, but the majority

of CD34+ haematopoietic cells are committed progenitors (Hogge et al 1996).

CD34+ HSCs have been further characterised by the lack of expression of CD45RA

(Mayani et al 1993) and CD38 (Hao et al 1995; Bhatia et al 1997), amongst others

(Kondo et al 2003). A recent study has characterised human LT-HSCs further by

CD34+ CD38− CD45RA− Thy1+ CD49f + (Notta et al 2011a). In addition, CD43 has

been identified as the earliest exclusive marker of haematopoietic cells emerging

from differentiation of human embryonic stem cells, or hESCs (Vodyanik et al

2006).

1.2.3 Haematopoietic transcription factors

SCL (Stem Cell Leukaemia), also known as TAL1 or TCL5, is a basic

helix-loop-helix (bHLH) transcription factor (Massari & Murre 2000), and one of the

earliest-acting regulators of haematopoiesis (Lecuyer & Hoang 2004). SCL is
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essential for haematopoiesis in vivo (Shivdasani et al 1995), as SCL-/- ES cells do not

contribute to any haematopoietic lineage in chimeric mice (Porcher et al 1996; Robb

et al 1996). SCL appears to act at several stages of haematopoietic development:

SCL is essential for the production of primitive haematopoietic cells from

hemangioblasts in the yolk sac (Robb et al 1995), as well as definitive

haematopoiesis (Porcher et al 1996). In adult haematopoiesis, SCL expression is

highest in HSCs and progressively decreases in more committed cells in the

haematopoietic hierarchy (Elefanty et al 1998), but still remains high in cells

differentiating towards erythrocyte, megakaryocyte, and mast cell lineages (Lecuyer

& Hoang 2004).

EKLF, also known as KLF1, is a member of the Krüppel-Like Factor family of

transcriptional regulators (Siatecka & Bieker 2011). EKLF is essential for definitive

erythropoiesis in the foetal liver, but dispensable for primitive erythropoiesis in the

yolk sac (Nuez et al 1995), despite its expression throughout primitive

haematopoiesis (Southwood et al 1996). EKLF is not expressed in early

haematopoietic progenitors, but is expressed in common myeloid progenitors and

their megakaryocytic-erythroid progenitor progeny, and increases as cells commit to

erythrocyte lineage, whilst simultaneously inhibiting megakaryocytic differentiation.

(Frontelo et al 2007).

PU.1, also known as SPI-1, is a member of the ets family of transcription factors,

and is an important transcriptional regulator during definitive haematopoiesis

(Kastner & Chan 2008). PU.1 knockout mice die late in gestation and have defects in

multiple definitive haematopoietic lineages, including B- and T-lymphocytes,

monocytes, and granulocytes (Scott et al 1994). PU.1 is essential for the

maintenance of adult and foetal liver HSCs, and also for the differentiation of

committed myeloid progenitors (DeKoter et al 1998; Iwasaki et al 2005). PU.1 has

an important role in B cell development (Medina et al 2004), as B cell differentiation

and maturation is inhibited, but not blocked, in PU.1 deficient mice (Iwasaki et al

2005).

Two of the GATA family of transcription factors, GATA1 and GATA2, have major

roles in the regulation of haematopoiesis. GATA1 is an important regulator of
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various myeloid lineages (Crispino 2005): it is essential for erythropoiesis, as

GATA1 null mice embryos die at around E10.5 from anaemia, and are found to have

defective primitive red blood cell development (Fujiwara et al 1996). Definitive

erythroid development from GATA1-null ESCs is also blocked (Weiss et al 1994).

In erythropoiesis, GATA1 is known to interact with multiple other transcription

factors including PU.1 and EKLF (Cantor & Orkin 2002). Aside from its importance

in erythoid development, GATA1 has a role in megakaryocyte growth and platelet

genesis (Shivdasani et al 1997), eosinophil development (Crispino 2005), and mast

cell differentiation (Migliaccio et al 2003).

GATA2 also has an important role in haematopoiesis (Vicente et al 2012). GATA2

is required for the production, proliferation, and survival of definitive HSCs right

from their earliest emergences in the AGM region (Tsai et al 1994; Tsai & Orkin

1997; Ling et al 2004). In this role, GATA2 is known to interact with other

haematopoietic transcription factors FLI1 and SCL (Pimanda et al 2007). GATA2

also has an overlapping role with GATA1 in the regulation of erythroid and

megakaryocytic development (Ikonomi et al 2000; Grass et al 2003). Both GATA1

and GATA2 also exert effects on myeloid differentiation through the regulation of

expression of PU.1 (Chou et al 2009).

1.2.4 Assays used to investigate haematopoiesis

Research in haematopoiesis, including the origins of haematopoietic precursors, has

required a variety of standardised assays to test how haematopoietic development is

affected. Here an overview is given of a selection of these methods, what function

they perform, and examples of how they have been used to investigate

haematopoietic development.

Perhaps the ‘gold standard’ test for determining the haematopoietic potential of a

suspected stem cell is to transplant cells into an irradiated recipient mouse.

Definitive HSCs are defined by their ability to reconstitute full long-term

haematopoiesis in an irradiated recipient mouse and, by serial transplantation, that

the same population can be transplanted from the recipient mouse into another

irradiated mouse and reconstitute haematopoiesis once more, and so on. This can be
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used to determine, for example, the origin of definitive HSCs in the developing

embryo (e.g. Muller et al 1994), or the influence of certain genes on HSC

populations (e.g. Hock et al 2004). However, with adaptation it can be used for other

purposes. For example, it is assumed that only one HSC is necessarily to reconstitute

haematopoiesis in an irradiated recipient mouse, and thus by performing a serial

dilution of a suspected stem cell population before transplantation, one can

determine how many definitive HSCs exist in the starting population by calculating

backwards from the biggest dilution that allows full haematopoietic reconstitution.

This limiting dilution assay has been used to determine, for example, the effects of

Sonic Hedgehog (Shh) signalling on the numbers of HSCs in the bone marrow

(Bhardwaj et al 2001). Another adaptation is xenograft into immunodeficient mice,

such as the NOD-SCID mouse, to perform the same assays for human HSCs, either

derived from primary bone marrow aspirates or cord blood (e.g. Larochelle et al

1996; Broxmeyer et al 2011), or from hESCs (e.g. Wang et al 2005; Ledran et al

2008).

The colony forming unit (CFU) assay was first described by Till and McCulloch

(1961); irradiated mice that received injections of bone marrow were found to

develop nodules in their spleen. The number of these nodules varied linearly with the

numbers of cell injected, and these nodules contained a number of different

haematopoietic cell types. These colonies were later found to be clonal in origin, i.e.

derived from a single cell (Becker et al 1963). In vitro CFU assays today involve

growing suspected haematopoietic progenitors in a semi-solid media (most

commonly methylcellulose) with haematopoietic cytokines to promote

differentiation. The resulting colonies of haematopoietic cells can be enumerated and

different cell types identified to determine the frequency and haematopoietic

potential of the cells in the starting population. This technique has been used, for

example, to study how cells from different haematopoietic niches influence the

differentiation of hESCs (Ledran et al 2008).
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1.3 B cell development

To understand the progression of B cell ALL, it is important to give a brief overview

of the function of B cells, and human B cell development, both normal and

leukaemic.

1.3.1 Normal function of B cells

The primary role of B cells is to produce antibodies with affinity to foreign antigens.

These antibodies bind to foreign pathogens, marking them for destruction by

different cell types of the immune system, in a mechanism called the ‘humoral

immune response’ (Murphy et al 2008). Antibodies can be secreted by B cells as a

soluble protein, but can also be bound to the plasma membrane, where they form the

main component of a signalling complex called the B-cell receptor (BCR). Two

other essential components of the BCR are the invariable immunoglobulins Igα

(otherwise known as mb-1 or CD79A) and Igβ (CD79B), which provide most of the

cytoplasmic domains of the BCR (Borst et al 1996; Murphy et al 2008).

BCR signalling is enhanced by a co-receptor complex made up of the

transmembrane proteins CD19, CD21, and CD81 (Murphy et al 2008). CD19 is

expressed from early B cell development and is frequently used as a marker for

B lineage commitment as a result.

Diversity in antibody binding is generated by a variety of mechanisms, and is an

integral part of the development of B cells. The basic structure of an antibody

consists of two heavy chains and two light chains. Both heavy and light chains have

a “variable region” which come together to form the antigen binding surface, and an

invariable “constant region”, which forms the remaining antibody structure. The

variable regions are produced by the recombination of multiple gene segments at the

light and heavy chain loci. For heavy chains, this consists of roughly 65 ‘Variable’

(V) segments, 27 ‘Diversity’ (D) segments, and 6 ‘Joining’ (J) segments. Light

chains only have V and J segments; for the two light chain loci, called kappa and

lambda, there are 40 V and 5 J segments for kappa, and 30 V and 4 J segments for

lambda. (The numbers of segments are not the same for all people, and there are

multiple non-coding ‘pseudogenes’ in each loci which are not included in this
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number; Murphy et al 2008). Recombination of the segments is controlled by two

Recombination Activating Genes, RAG1 and RAG2 (Schatz & Ji 2011).

Additional diversity is conferred by the removal and insertion of nucleotides at the

joins between the V and J segments in light chains (and also partially in the sequence

of the D region in heavy chains). Nucleotides called N-nucleotides are added by the

gene Terminal deoxynucleotidyl Transferase (TdT; Komori et al 1993). Further

diversity in mature activated B cells can be gained through a process called ‘somatic

hypermutation’, which generates point mutations in the V gene segments. This

allows further editing to generate enhanced binding to antigen (Di Noia & Neuberger

2007).

1.3.2 The humoral immune response

Upon infection by a pathogen, B cells expressing a BCR specific for a particular

antigen will engulf the pathogen by phagocytosis. Once internalised, the pathogen is

degraded, and peptides from the pathogen are presented back onto on the surface of

the B cell by a MHC class II molecule. These peptides are recognised by

helper T cells (TH2 cells) specific for that peptide, which have been ‘armed’ by

professional antigen presenting cells such as dendritic cells and macrophages. This

causes the production of various cytokines by the helper T cell, which in turn causes

‘B cell activation’: the differentiation and proliferation of that B cell into a ‘plasma

cell’, producing antibodies specific for the antigen it recognised on the pathogen

(Parker 1993). How these antibodies are distributed throughout the body, and what

happens when these antibodies bind to the antigen, is defined by the isotype of the

antibody, which is controlled by the cocktail of cytokines produced by the helper

T cell (Murphy et al 2008).

When bound to pathogens, isotypes such as IgM and IgG can activate the immune

process of ‘complement’ and stimulate removal of the pathogen by phagocytes, such

as neutrophils and macrophages. Phagocytes can also be stimulated directly via

receptors which recognise the “constant regions” on the antibodies known as

Fc receptors (Ravetch & Clynes 1998). Similarly, small particles such as bacterial

toxins and cellular debris can be neutralised by most antibody isotypes, particularly
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IgG and IgA. These antigen-antibody immune complexes are carried on erythrocytes

in the blood by the activation of complement, and transported to the spleen or the

liver where they are cleared by macrophages (Murphy et al 2008).

IgG antibodies binding to Fc receptors on natural killer (NK) cells stimulate these

cells to kill the antibody-bound pathogen by a process called antibody-dependent

cell-mediated cytotoxicity (ADCC; Lanier et al 1988); NK cells release granules

containing perforin and granzymes, which kills the pathogen by creating pores in the

membrane, and activating internal apoptosis pathways, respectively. Finally,

antibodies of the IgE isotype bind to Fc recptors on mast cells, basophils, and

activated eosinophils, which release chemicals such as histamine, increasing blood

flow and making blood vessels more permeable, as a means to recruit more immune

cells to the site of infection (Sutton & Gould 1993).

1.3.3 Early B cell development in humans

B-lineage cells develop in multiple locations during embryonic development,

including the foetal liver, but from mid-gestation onwards, all B cells originate in the

bone marrow (LeBien 2000). From the haematopoietic stem cell (HSC) in the bone

marrow, B cell development goes through a Common Lymphoid Progenitor (CLP)

stage, which is capable of differentiating towards B cells or T cells, Natural Killer

Cells (NK), or Dendritic Cells (DCs; Galy et al 1995). CLPs then give rise to a cell

termed ‘Early-B’, which is the first B-lineage committed cell, before progressing

through ‘pro-B’, ‘pre-B’, and ‘immature B’ cell stages to make a functional naïve

B cell (LeBien 2000). In this regard, human B cell development is largely similar to

murine B cell development, though there are some differences and gaps in

understanding of human B lymphopoiesis (LeBien 2000; Hardy et al 2007; LeBien

& Tedder 2008).

CLPs are defined as CD34+CD45RA+CD10+CD19– cells, which give rise to B, T,

NK cells, and DCs, but lack myeloid and erythroid potential (Galy et al 1995). The

next stage of B cell development, ‘Early-B’ cells, is defined by the same cell surface

markers as CLPs, but has characteristics of B cell lineage rather than T, NK, or DC

lineage. As such, Early-B cells are negative for the pan-B marker CD19, but express
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RAG1 and RAG2 (Ryan et al 1997) and undergo DJ-recombination of the heavy

chain immunoglobulin (Bertrand et al 1997; Davi et al 1997). Early-B cells also

express Pax5 (Ryan et al 1997), as well as cytoplasmic Igα (Dworzak et al 1998) and

VpreB (Wang et al 1998b), components of the pre-B Cell Receptor (pre-BCR)

complex.

Pro-B cells are defined as expressing the cell surface markers CD34 and CD19, and

high levels of CD10 (Loken et al 1987). These cells also express cytoplasmic TdT

(Loken et al 1987), continue to express cytoplasmic VpreB (Wang et al 1998b), and

the majority have undergone VDJ recombination (Bertrand et al 1997; Davi et al

1997).

The next stage of development, the pre-B cell, can be further subdivided into two

stages. Pre-BI cells are large proliferating cells, and have lost some expression of

TdT and all expression of the RAG genes. Pre-BI cells also express on their cell

surface the mu-heavy chain (µHC), which had undergone VDJ recombination during

the preceding stages (Loken et al 1987; Ghia et al 1996) and will later form the

heavy chain of IgM. In addition, VpreB and the other components of the pre-BCR,

λ5, Igα and Igβ, are also expressed on the surface of pre-BI cells, forming the

pre-BCR complex (Benschop & Cambier 1999). The combination of VpreB and λ5

are known as the ‘surrogate light chain’ or ψLC, which, as the name suggests, take

the role of the light chain immunoglobulin before rearrangements of the VJ gene

segments take place. Pre-BI cells progress to form smaller, non-proliferating cells

referred to as Pre-BII cells. These cells cease to express extracellular pre-BCR, but

express once more the RAG genes and TdT, as VJ recombination of the light chain

immunoglobulins takes place primarily at the kappa-light chain (κLC) locus (Ghia et

al 1996). Therefore, the formation of the pre-BCR can be seen as an important

checkpoint in the development of B cells, as it marks the transition from pro-B to

pre-B cell, and allows the cell to progress to recombination of the light chain genes.

Once rearrangements of the VJ gene segments has ceased, the cell expresses

complete IgM on the surface and the cell is designated an immature B cell. In the

bone marrow, immature B cells are tested for autoreactivity; immature B cells that

react to auto-antigens are eliminated in the bone marrow, those that do not are
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allowed to mature and leave the bone marrow. Alternative splicing generates

delta-heavy chains (δHC) and so the mature B cells express both IgM and IgD on

their surface (Murphy et al 2008).

1.3.4 Control of B cell development

B cell development is controlled by a variety of mechanisms. Cell intrinsic

mechanisms consist of the checkpoints of V(D)J recombination as described above,

and the actions of networks of transcription factors, which stimulate the expression

of the others sequentially. These intrinsic mechanisms are also controlled by

extrinsic mechanisms of cytokines produced by the bone marrow stroma cells, on

which haematopoietic development takes place. In addition to the production of

certain chemokines necessary for B cell development, stroma cells also express cell

adhesion molecules which developing B cells can attach to, presumably to enhance

and enable the effects of soluble and membrane bound ligands described below.

In murine lymphoid development, the expression of the transcription factors PU.1

and Ikaros in multipotent haematopoietic progenitors promotes the expression of

FLT3, the receptor for a ligand expressed on bone marrow stromal cells called

FLT3-ligand. In CLPs, signalling through FLT3 acts together with PU.1 to induce

the expression of the IL-7 receptor (IL-7R) signalling, which induces the expression

of E2A. The production of the transcription factor Early B-cell Factor (EBF) is

stimulated by PU.1, E2A, and IL-7R, which commits the lymphoid cell to B-lineage

differentiation. Finally EBF promotes the expression of the pan-B marker Pax5,

which directs the expression of key components of the BCR signalling complex,

such as CD19, Igα, and BLNK (Singh et al 2005; Murphy et al 2008). Human B cell

development is similar, however, the role of IL-7 signalling is not clear, as it is

known that IL-7 is not essential for human B cell development (LeBien 2000).

1.3.5 B cell activation in secondary lymphoid tissues

As described above in section 1.3.2, B cells presenting peptides from a pathogen are

activated by the co-stimulation of a helper T cell. However, it is clear that the

chances of a B cell presenting peptides from a pathogen encountering a T cell that

recognises those peptides in the blood stream are very slim. Instead, the chances of
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such an encounter are increased by bringing B cells and T cells together in lymphoid

organs such as the lymph nodes. The binding of antigen to B cells, and the

recognition of peptides by T cells and subsequent differentiation to helper T cells,

activates the expression of specific cell adhesion molecules. This ‘traps’ both primed

helper T cells and antigen-bearing B cells within particular regions of the lymph

node, thus greatly increasing the chances of a B cell encountering the appropriate

helper T cell (Garside et al 1998).

Once a B cell is activated, it proceeds to differentiate into antibody-producing

plasma cells. Some B cells form a ‘primary focus’, where B cell differentiation

proceeds quickly; such primary foci form in the red pulp of the spleen or in the

medullary cords where lymph drains from the lymph node. Alternatively, some

B cells continue to proliferate and form a ‘germinal centre’, which could be

described as an ‘island’ of dividing B cells in a ‘sea’ of resting B cells (Murphy et al

2008). In germinal centres, B cells undergo somatic hypermutation to further edit the

variable regions of their antibodies, the aim being to improve the affinity of the

antibody for the antigen should the pathogen not be cleared from the body promptly.

Germinal centre (GC) B cells will differentiate to form plasma cells, as well as

memory B cells which confer long-term protection against future infections by the

pathogen (MacLennan 1994).

1.3.6 B cell development in ALL

The lymphoblasts that are present in the bone marrow of patients with TEL/AML1+

leukaemia frequently exhibit a pro-B (CD34+CD19+CD10+) phenotype with aberrant

expression of some myeloid antigens (Golub et al 1995; Borowitz et al 1998; De

Zen et al 2000), and the gene expression profile of TEL/AML1+ lymphoblasts is

similar to those seen in normal pro-B cells (Andersson et al 2010). This indicates an

impairment in B cell differentiation at the transition from pro-B to pre-B cells, which

is frequently (Tsuzuki et al 2004; Fischer et al 2005), but not always (Andreasson et

al 2001; Morrow et al 2004; Schindler et al 2009) recapitulated in transgenic mouse

models.
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Mouse models involving xenografts of human cells, either from leukaemia patients

themselves or from normal haematopoietic progenitors exogenously expressing

TEL/AML1, present an opportunity to study characteristics of B cell development in

the context of TEL/AML1+ leukaemia. These have indicated that TEL/AML1

confers increased self-renewal properties on a CD34+CD38–CD19+ population,

which is not observed in normal bone marrow, but whose closest normal equivalent

is pro-B cells (Castor et al 2005; Hong et al 2008).

Some of the symptoms of leukaemia are associated with a decrease in myeloid

haematopoiesis, though it is not clear from investigating patient bone marrow alone

whether this abnormal haematopoiesis is due to effects of TEL/AML1 on HSCs, or

whether it is a result of the ‘crowding out’ of normal cells in the bone marrow by

leukaemic blasts. Transgenic mouse models give indications of the effects of

TEL/AML1 in mammalian haematopoiesis. Bone marrow transduced with

TEL/AML1 has normal myeloid development (Morrow et al 2004; Tsuzuki et al

2004; Fischer et al 2005), even increasing myeloid progenitor self-renewal (Tsuzuki

et al 2004; Fischer et al 2005). However, it has also been shown that TEL/AML1

increases self-renewal in HSCs, and possibly decreases differentiation towards

lineage-specific progenitors (Fischer et al 2005; Schindler et al 2009).

A summary of the main gene expression changes during selected stages of B cell

development is shown in Figure 1.2 below:

Figure 1.2 – Diagram of B cell development.
Outline of differentiation from common lymphoid progenitor (CLP) to pro-B and pre-B cells, via the Early B cell. Expression
of CD markers (34 = CD34, etc.) and pre-B cell receptor components µHC and ψLC are shown on the outside of each cell, and
expression of transcript for Rag1/2, Tdt, mb1, Pax5, and VpreB are shown on the inside of each cell. Below the B-lineage cells,
the recombination status of the heavy chain VDJ genes is shown. Dotted line indicates the stage at which B cell differentiation
appears to be blocked in TEL/AML1+ leukaemia patients and mouse models.
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1.3.7 B cell development and other B cell malignancies

As with the resemblance of B-cell ALL to normal pro-B cells, many of the various

B cell malignancies also appear to be the counterparts of normal B cell

developmental stages. This can be manifested in their V(D)J rearrangements,

morphology, surface phenotype, and tumour site (Shaffer et al 2002; Murphy et al

2008). For example, Follicular Lymphomas tend to resemble germinal centre B cells:

located in lymph nodes, expressing the GC B cell marker CD10, and are frequently

infiltrated by follicular dendritic cells and T cells. A malignancy called Diffuse

Large B Cell Lymphoma has a heterogeneous phenotype, but can be divided into two

forms which resemble GC B cells (with somatic hypermutation) or activated

peripheral B cells (without somatic hypermutation; Alizadeh et al 2000). A similar

situation is found in Chronic Lymphocytic Leukaemia (CLL) where both gene

expression profiling (Klein et al 2001; Rosenwald et al 2001) and mutation status of

V gene segments (Hamblin et al 1999; Gurrieri et al 2002) have distinguished two

subtypes of the disease, resembling normal memory B cells and activated peripheral

B cells (Shaffer et al 2002).

1.4 Proliferation

Cancer is defined by the uncontrolled proliferation of cells, both by means of

self-sufficiency in growth-promoting signals, and insensitivity to growth-inhibitory

signals (Hanahan & Weinberg 2000). To describe how proliferation is affected in

leukaemia, a brief introduction to the cell cycle and how it is controlled is given

below.

1.4.1 The cell cycle

As a means to ensure that the processes of cell division (including DNA replication,

chromosome condensation, and separation of chromosomes into daughter cells) are

carried in the correct sequence and in a controlled fashion, these processes are

divided into phases of the cell cycle. DNA Synthesis, which takes place during

S-phase, and Mitosis, occurring during M-phase, are separated by two ‘Gap’ or

G-phases, so that the cell cycle proceeds sequentially through G1, S, G2, and

M-phase. G1-phase can be seen as an opportunity for a cell to pause to assess
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whether conditions (both external and internal) are favourable before committing to

the effort of cell division. In the case that conditions are not favourable, cells can

enter an optional resting phase known as ‘G0’, in which the cell can remain for

extended periods of time before restarting proliferation. Some differentiated cell

types, for example neurones and skeletal muscle cells, remain in G0 permanently and

will not divide again before they die (Alberts et al 2002).

Progression through the cell cycle, and thus the proliferation of cells, is controlled at

several checkpoints. As mentioned above, G1-phase is where the cell checks that the

environment is favourable for the cell to divide. Favourable external conditions for

cell division will include a ready supply of nutrients. In addition, transition through

the G1-checkpoint into S-phase can be stimulated by growth factors and mitogens.

Factors which might inhibit cell division include damage to DNA; the consequence

of DNA damage is for the cell to attempt to repair the damage, or to commit suicide

by apoptosis. The protein p53 is an important component in controlling this process.

The transition from G2-phase into M-phase, also known as the G2-checkpoint, occurs

in a similar fashion, by sensing DNA damage in the newly replicated DNA, and

either repairing the damage or triggering apoptosis in the cell. Finally, the metaphase

checkpoint can only be passed once, after the condensed chromosomes have aligned

in the cell and microtubule spindles have attached to each chromosome. This allows

the equal separation of sister chromatids, preventing an uneven distribution of

chromosomes in the daughter cells (Alberts et al 2002).

1.4.2 Internal control of the cell cycle

The molecular control of the progression of the cell cycle has several layers, the

foundation of which is the complexes formed by the cyclins and the

cyclin-dependent kinases (Cdks). The activity of these cyclin-Cdk complexes

increases and decreases cyclically, and the periods of activity for each complex, and

thus their names, roughly correspond to one phase of the cell cycle; the G1-Cdk

complex starts the progression of the cell cycle, the G1/S-Cdk complex commits the

cell to DNA replication, the S-Cdk complex promotes DNA replication, and the

M-Cdk complex promotes the events of mitosis (Morgan 1997; Alberts et al 2002).
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As suggested by the name, cyclin-dependent kinases are not active until bound by

cyclins. The full activation of the Cdk-cyclin complexes then requires

phosphorylation by protein complexes known as Cdk-activating kinases (CAKs); in

humans, this is performed by the kinase Cdk7 and its partners cyclin H and Mat1

(Morgan 1997). Further phosphorylation can also inhibit the activity of Cdk-cyclin

complexes, a process particularly important in controlling M-Cdk complex at the

onset of mitosis; phosphorylation by proteins related to the yeast kinase Wee1

inhibits Cdk-complexes, which can be reversed by phosphatases of the Cdc25

family. The formation and activity of Cdk-cyclin complexes can also be inhibited by

the binding of proteins called Cdk-inhibitor proteins (CKIs), which is a significant

regulatory mechanism during G1 and S-phase. In humans, well characterised

examples of such CKIs are p21-Cip1 (also known as CDKN1A), p27-Kip1

(CDKN1B), p16-Ink4A (CDKN2A), p15-Ink4B (CDKN2B), and p18-Ink4C

(CDKN2C; Morgan 1997; Pavletich 1999). Many of these genes that inhibit

progression of the cell cycle are known secondary mutations in leukaemias including

TEL/AML1+ acute lymphoblastic leukaemia, as described in section 1.9.2 below.

Destruction of cyclins during critical phases of the cell cycle is triggered by the

attachment of ubiquitin molecules to specific residues on the protein. Two protein

complexes that catalyse this reaction, known as ubiquitin-ligases, are important in

this control mechanism. The SCF complex targets cyclins and CKIs that control

S-phase initiation. The Anaphase-Promoting Complex (APC) ubiquitinates cyclins

involved in the regulation of mitosis. These ubiquitin ligases are controlled by

different mechanisms; ubiquitination by SCF is controlled by the phosphorylation

state of the target cyclins, whereas APC is controlled by the addition of subunits to

the complex, notably Cdc20 (Alberts et al 2002).

1.4.3 External control of the cell cycle

Cells can also receive cues from the environment to stimulate growth. This is

particularly important in complex multi-cellular organisms, where cell numbers need

to be controlled for the proper development of organs, limbs, and tissues, and when

cells need to be replaced after other cells die. As cell volume is intrinsically linked to

cell division, external factors can either promote proliferation by growth factors,
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which promote an increase in cell volume, or mitogens, which promote progression

in the cell cycle. Many factors can act as both growth factors and mitogens.

One well-known example of a mitogen signalling pathway that controls the cell

cycle is the MAP kinase pathway. This signalling cascade is triggered by the binding

of a growth factor (for example, EGF) to its receptor (e.g. EGFR), causing the

exchange of GDP with GTP in the GTPase protein Ras. This starts a cascade of

protein phosphorylation (made possible by GTPase), eventually leading to the

phosphorylation of MAPK, which in turn leads to the activation of a protein called

Myc. Myc is a transcription factor which stimulates the production of several cell

cycle genes, such as cyclin D, subunits of SCF, and a protein called E2F which

promotes transition into S-phase.

An example of growth factor signalling pathways which increase cell volume is the

activation of a PI3-kinase (PI3K), which phosphorylates inositol phospholipids in the

plasma membrane. These then act as docking sites for kinases with Pleckstrin

Homology (PH) domains which are then activated by phosphorylation, triggering a

phosphorylation cascade. An example of a protein phosphorylated in this pathway is

S6 kinase, which phosphorylates the ribosomal protein S6, eventually leading to an

increased production of ribosomes and thus an increase in protein synthesis (Stocker

& Hafen 2000; Alberts et al 2002).

Other signalling molecules inhibit growth; for example, the TGF-β family of

signalling proteins, which signal through cell surface receptors to alter the activity of

transcription factors of the SMAD family, can in certain situations be inhibitors of

cell cycle progression. TGF-β promotes the expression of p15-Ink4B and p21-Cip1,

CKIs which block the activity of Cdk-cyclin complexes and thus prevent the

phosphorylation (and inactivation) of the protein Retinoblastoma (Rb), an inhibitor

of G1 to S-phase transition (Datto et al 1997; Alberts et al 2002).

1.4.4 Dysregulation of proliferation in ALL

As described later in section 1.9.2, many genes frequently mutated in acute

lymphoblastic leukaemia are cell-intrinsic regulators of the cell cycle (for example,

CDKN2A; Takeuchi et al 1995). In addition to genes whose products dampen cell
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cycle progression, many mutations in ALL act to alter the response to external

factors – increasing sensitivity to growth factors and mitogens, and decreasing

sensitivity to growth inhibitory signals – and leukaemic cells become dependent on

these signalling pathways. For example, TEL/AML1 is known to reduce the growth

inhibitory effects of TGF-β signalling (Ford et al 2009). Mutations that

constitutively activate Ras signalling, and thus promote survival and proliferation

through the MAP kinase pathway, are found in many human cancers and at a rate of

about 15% in ALL (Perentesis et al 2004). Finally, PI3K signalling is required for

proliferation and survival in TEL/AML1+ leukaemia cells (Fuka et al 2011a) and

upregulation of the erythropoietin receptor, which acts via PI3K signalling, is

frequent (Ross et al 2003; Fine et al 2004). Taken together, the examples above

suggest that leukaemic cells become insensitive to both intrinsic and extrinsic growth

inhibitory signals, and more sensitive to proliferation promoting signals, resulting in

an increased cell growth.

1.5 Apoptosis

Apoptosis, the process of ‘programmed cell death’, is a critical mechanism

throughout embryo development and tissue homeostasis, and is not simply the

opposing force to proliferation. For example, during development, apoptosis is

critical for the shaping of the limbs and for the correct innervation of muscles, and in

normal immune development apoptosis eliminates self-reactive lymphocytes that

would otherwise cause autoimmune disorders. To describe the role of apoptosis in

leukaemia, a concise introduction to apoptosis is presented below.

1.5.1 The mechanisms of apoptosis

The mechanism of cell death is a controlled cascade of proteases called caspases,

which have a cysteine in their catalytic site and cleave other proteins at specific

aspartic acid residues. They are formed from an inactive procaspase, which is

cleaved by other caspases. To start the cascade off, specific procaspases called

‘initiator procaspases’ are brought together by adaptor proteins, resulting in a

complex of procaspases that mutually cleave each other. Once the initiator caspases

are active, they cleave other caspase molecules, resulting in an amplifying chain

reaction of caspase activation. Different caspases cleave cellular components, such
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as nuclear lamins, resulting in the disassembly of the nucleus, and DNAse precursors

which, when activated by cleavage, destroy the DNA in the cell. The cell dismantles

itself and is quickly taken up and digested by phagocytes such as macrophages

(Alberts et al 2002).

There are two routes by which the initiator caspases are brought together by adaptor

proteins: extrinsic and intrinsic routes. The extrinsic route involves the activation of

cell surface proteins called death receptors, an example of which is the protein Fas.

Binding of Fas ligand to Fas results in the trimerisation of Fas, which recruits

adaptor proteins such as FADD (Fas-Associated protein with Death Domain). FADD

then promotes the self-cleavage of procaspase-8, which then activates caspases

leading to apoptosis (Alberts et al 2002). Fas is a member of the Tumour Necrosis

Factor Receptor (TNFR) superfamily of death receptors (Wallach et al 1999).

Extrinsic death signalling is a common route for cytotoxic T lymphocytes to clear

infected cells and control lymphocyte numbers (Murphy et al 2008).

Cells can also activate apoptosis via the intrinsic pathway. This is understood to be

triggered by the release of cytochrome c from the mitochondria, which binds to the

adaptor protein APAF1 (Apoptotic protease activating factor 1), leading to the

activation of procaspase-9 (Green & Reed 1998). The intrinsic apoptosis activation

pathway is controlled by the various members of the Bcl-2 family of mitochondrial

proteins (Chao & Korsmeyer 1998). Bcl-2 and Bcl-XL both inhibit the release of

cytochrome c, whereas family members like Bax and Bak promote its release from

mitochondria. In addition, these core Bcl-2 family members are regulated by other

family members; Bad binds to inhibit the anti-apoptosis family members, and

pro-apoptotic members Bax and Bak are activated by Bid amongst others. It is

believed that the balance between Bcl-2 and Bax activity is a key determinant of the

sensitivity of cells to apoptotic signals (Chao & Korsmeyer 1998; Alberts et al

2002). Another apoptosis regulator family is the IAP (Inhibitor of Apoptosis)

proteins, which act primarily by binding to procaspases, preventing their cleavage

and subsequent activation (Deveraux & Reed 1999; Alberts et al 2002; Salvesen &

Duckett 2002).
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The activity of the Bcl-2 family members is controlled in part by the cell cycle

regulator p53, either transcriptionally by inducing the expression of pro-apoptotic

Bax, or by directly binding and inhibiting anti-apoptotic Bcl-2 family members

(Hemann & Lowe 2006). This therefore links the control of the cell cycle to

apoptosis, and providing one mechanism by which, for example, DNA damage that

cannot be repaired triggers cell death (Alberts et al 2002). The anti-apoptotic effects

of IAP proteins can be induced by growth factor or mitogen signalling, for example,

NFκB signalling (Salvesen & Duckett 2002) and PI3K signalling (Datta et al 1999).

1.5.2 Importance of apoptosis in lymphocyte development

Apoptosis is a major regulator of B cell development (see section 1.3.3), which in

turn is regulated in part by binding of auto-antigens to the pre-BCR and binding of

foreign antigens to the BCR (Niiro & Clark 2002). Bcl-2 expression can rescue

immature B cells at various stages of early development when they would otherwise

be eliminated, such as if a non-functional pre-BCR is produced (Marsden & Strasser

2003). In addition, whilst deletion of autoreactive B cells does not require Fas

signalling it can be inhibited by Bcl-2 or Bcl-XL; in transgenic mice, autoreactive

B cells that overexpress Bcl-2 are not eliminated (Cory 1995; Marsden & Strasser

2003). Fas signalling might instead mediate the control of B cell numbers by

cytotoxic T cells (Watanabe-Fukunaga et al 1992; Takahashi et al 1994; Marsden &

Strasser 2003). In this regard, activation of B cells by BCR signalling confers

resistance to Fas-mediated cell death induced by T cells (Rothstein et al 1995). Bcl-2

and Bcl-XL are essential for maintaining a pool of B cells in adults; mice deficient in

Bcl-XL show a significant reduction in mature B cells, whereas Bcl-2 deficient mice,

after initially showing normal post-natal B cell differentiation, quickly lose adult

B cells to apoptosis (Chao & Korsmeyer 1998).

1.5.3 Methods for studying apoptosis

DNA fragmentation during the late stages of apoptosis can be visualised by DNA

staining dyes such as DAPI, Propidium Iodide (PI), or 7-Aminoactinomycin D

(7-AAD). More accurate identification of nuclei undergoing DNA fragmentation is

permitted by an assay called a TUNEL (TdT dUTP nick end labelling) assay, to

identify the ‘nicks’ in the DNA made in this process by the addition of labelled
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terminal nucleotides by the enzyme Terminal deoxynucleotidyl transferases (TdT).

Additionally, DNA dyes can be used to label cells that have increased permeability

during the late stages of apoptosis, since live cells are not normally labelled by DNA

dyes without fixation; this can be exploited in fluorescent labelling for flow

cytometry.

Changes in the cell membrane can be used to indicate the earliest stages of apoptosis.

During apoptosis, the membrane phospholipid phosphatidylserine is translocated

from the cytosolic face to the exterior face of the plasma membrane, by an unknown

mechanism. Annexin-V is a protein that has high affinity for phosphatidylserine, and

so fluorescently labelled Annexin-V can be applied to identify cells undergoing the

early stages of apoptosis using, for example, flow cytometry. Other assays which can

also be used to measure apoptosis include, for example, the direct assessment of

activated caspase activity in cell lysates by cleaving recombinant proteins which

release fluorescent molecules.

1.5.4 Evasion of apoptosis in ALL

The PI3K signalling pathway is important in the survival of lymphoblasts in ALL

(Levy et al 2009). TEL/AML1 promotes survival of leukaemia cells via the PI3K

signalling pathway (Fuka et al 2011a), possibly through the upregulation of the

erythropoietin receptor EPOR (Inthal et al 2008; Torrano et al 2011). In addition,

TEL/AML1 is known to induce the upregulation of pro-survival factors HSP90

(which stabilises PI3K and proteins in its signalling pathway) and survivin (a

member of the IAP family; Diakos et al 2007). Activation of anti-apoptotic Bcl-2

does not appear to be sufficient for ALL, however; less than 15% of mice that

overexpress Bcl-2 have lymphoid malignancies, mostly lymphomas and mature

B cell leukaemias (Cory 1995; Marsden & Strasser 2003). Conversely, mutations in

the pro-apoptotic Bcl-2 family member Bax are frequently found in ALL cell lines

(Meijerink et al 1998). The above evidence suggests that lymphoblast survival in

ALL is mediated by increased insensitivity to pro-apoptotic signals.

~~~



CHAPTER 1: INTRODUCTION

38

The second part of this chapter looks specifically at TEL/AML1 leukaemia, starting

with an introduction to TEL and AML1 individually, and finishing with the

experimental study of acute lymphoblastic leukaemia.

1.6 TEL (ETV6)

Information about TEL, its role in haematopoiesis, and its involvement in

leukaemias and other cancers, is presented in depth in the introduction to Chapter 4.

The TEL gene, located at 12p13 and also known as ETV6, was discovered in the

context of Chronic Myelomonocytic Leukaemia (CMML; Golub et al 1994). TEL is

a member of the ets family of transcription factors, which are identified by the DNA-

binding region ets (Wasylyk et al 1993), and also shares with many of its family

members a helix-loop-helix polymerisation domain known as pointed or sterile alpha

motif (SAM) domain, which allows TEL to form homo- and heterodimers (Kim et al

2001). TEL is a transcriptional repressor, acting via two main mechanisms;

recruiting histone deacetylases (HDACs) via the binding of corepressors N-CoR

(Guidez et al 2000), SMRT and mSin3A (Chakrabarti & Nucifora 1999), or via an

HDAC-independent mechanism of chromatin condensation involving the binding of

L3MBTL via the pointed domain (Boccuni et al 2003). TEL itself is regulated by

phosphorylation via the MAPK/ERK pathway (Arai et al 2002; Maki et al 2004).

Little is known about the targets of transcriptional regulation by TEL.

TEL is ubiquitously expressed in the mouse embryo (Wang et al 1997; Wang et al

1998a), and ETV6–/– mice are embryonic lethal from defects in yolk sac angiogenesis

(Wang et al 1997). TEL is not intrinsically required for embryonic or adult

haematopoiesis, but rather acts as a selective regulator of haematopoietic stem cell

(HSC) survival by controlling the colonisation of the bone marrow in the adult

mouse (Wang et al 1998a; Hock et al 2004).

1.7 AML1 (RUNX1)

1.7.1 Discovery of AML1

The AML1 gene, located at 21q22.3, was first identified in the context of Acute

Myeloid Leukaemia. Breakpoints for the chromosome translocation t(8;21)(q22;q22)
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were found to cluster within a specific region on a NotI-digested clone from

chromosome 21. The surrounding cDNA clones were sequenced to identify a unique

gene with no homology to any other gene at the time, and was named AML1 after the

association of the t(8;12) translocation with acute myeloid leukaemia (Miyoshi et al

1991). Soon after, it was discovered that the AML1 gene had homology to a region in

the Drosophila gene runt (Daga et al 1992) which had DNA binding properties

(Ogawa et al 1993). AML1 and its two related genes AML2 and AML3 (Levanon et al

1994) were later renamed RUNX1, RUNX2, and RUNX3, short for ‘runt-related

transcription factor’ (van Wijnen et al 2004). The proteins from these genes are also

called Core Binding Factor alpha (CBFα) genes, as they form heterodimeric

complexes with CBFβ (with the AML1/RUNX1 gene coding for CBFα2 protein) to

regulate gene expression (Speck et al 1999).

1.7.2 AML1 structure

The DNA binding activity of AML1 is conferred by a domain homologous to the

Drosophila gene runt (Daga et al 1992), and has consequently been named ‘runt

homology domain’ (RHD), shared by all of the AML/RUNX gene family (Levanon et

al 1994). The second major domain of AML1, not shared by its family members, is

the ‘transactivation domain’ (Kanno et al 1998). This is required for binding to

variety of cofactors for both activation and repressors functions (Ito 1999).

AML1 is known to bind to a consensus sequence originally found in the enhancer

region of the gene SL3-3 (Amtoft et al 1997), the core of which is PyGPyGGTPy

(where ‘Py’ is a pyrimidine nucleotide, i.e. C or T), for example TTTGCGGTTA/T

(Thornell et al 1991). DNA binding by AML1 is greatly enhanced by the binding of

the CBFβ subunit, coded for by the CBFB gene (Kanno et al 1998). CBFβ does not

bind to DNA, but does bind to AML1 via the runt homology domain (Meyers et al

1993), increasing the activity of AML1-mediated transcription (Ogawa et al 1993;

Zhang et al 1996).

The AML1 protein has a series of self-inhibitory regions which regulate its DNA

binding (Ito 1999). A region N-terminal to RHD has a modest inhibitory effect on

DNA binding (Gu et al 2000), but the main source of auto-inhibition comes from the
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regions C-terminal to RHD (Kanno et al 1998), by masking the DNA-binding

surface of AML1 i.e. the RHD. This auto-inhibition must be removed before

heterodimerisation of AML1 and CBFβ can occur; one protein believed to be able to

induce unmasking of the DNA binding surface and subsequent promote

heterodimerisation is the ets family member ETS-1 (Ito 1999). Other proteins that

can fulfil this function are yet to be determined, but must exist since CBF acts in

tissues that do not express ETS-1.

1.7.3 AML1 activity

The CBF complex can act as both an activator and a repressor of gene expression,

through its association with either histone acetyltransferases (HATs) or deacetylases

(HDACs; Zelent et al 2004). AML1 recruits the adapter proteins p300 and

CREB-Binding Protein (CBP) via the transactivation domain (Kitabayashi et al

1998), which have intrinsic HAT activity (Ogryzko et al 1996) and recruit the HAT

protein P/CAF (Yang et al 1996). The decondensation of chromatin permits gene

expression; genes known to be regulated by AML1 / CBF activity include the T-cell

receptors TCRα and TCRβ (Ito 1999), TCRδ (Hernandez-Munain & Krangel 1994),

IL-3 (Uchida et al 1997) and PU.1 (Okada et al 1998).

There are two potential routes by which AML1 recruits HDACs to repress gene

expression. Firstly, via the C-terminal VWRPY motif, AML1 may recruit

Groucho-family corepressors (Aronson et al 1997; Levanon et al 1998), which may

act through HDACs (Chen et al 1999). Secondly, AML1 interacts with mSin3A

(Fenrick et al 1999), an interaction which is regulated by phosphorylation (Imai et al

2004).

AML1 and CBFβ, when dimerised, are known to interact with other transcription

factors, including c-Myb (Hernandez-Munain & Krangel 1995), C/EBP (Zhang et al

1996), MITF (Ogihara et al 1999), and SMAD proteins (Hanai et al 1999). It is

believed that the binding of Core Binding Factors to other proteins creates gene

expression complexes which enable specificity of expression in tissues and during

developmental stages; one such example is the expression of TCRα (Ito 1999).
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1.7.4 AML1 function

The role of AML1 and Core Binding Factor in haematopoiesis has been reviewed

extensively, e.g. de Bruijn & Speck 2004. Provided here is an overview of the main

functions of AML1 in embryonic and adult haematopoiesis.

AML1-/- mice are embryonic lethal at around E12.5 due to extensive haemorrhaging

in the CNS (Okuda et al 1996; Wang et al 1996b). Primitive yolk sac erythropoiesis

is unaffected in these mutants, but mice fail to initiate definitive haematopoiesis

from any site, and AML1-/- ES cells fail to contribute to haematopoiesis in chimeric

mice (Okuda et al 1996; Wang et al 1996b). The expression of only a specific set of

haematopoiesis-related genes is absent in AML1-/-, which include PU.1, Vav,

flk-2/flt-3, M-CSF receptor, G-CSF receptor and c-Myb (Okada et al 1998).

However, despite the critical role that AML1 plays in foetal haematopoiesis, the loss

of AML1 appears to have a subtler effect in adult haematopoiesis, as shown by

conditional mouse mutants in which Runx1 could be excised under the control of

Cre-loxP system. Normal haematopoietic development was maintained in adult mice

despite loss of Runx1, but a reduction in all white blood cells (particularly B- and

T-lymphocytes) and platelets was observed (Ichikawa et al 2004; Growney et al

2005). The Common Lymphoid Progenitor (CLP) population was unaffected with

loss of Runx1, indicating that it is the commitment to B- and T-lineage that is

affected in these mice (Ichikawa et al 2004). The HSC compartment in these mice

was increased but was otherwise functional. Interestingly, loss of Runx1 in adult

mice leads to mild myeloid expansion in the bone marrow and spleen, mirroring the

myeloproliferative disorders in patients with homozygous loss of RUNX1 (Growney

et al 2005).

1.7.5 AML1 fusion proteins in leukaemias

The importance of AML1 in haematopoiesis and leukaemia can be recognised by its

frequent involvement in fusion proteins resulting from chromosome translocations.

The t(8;21)(q22;q22) translocation, giving rise to the AML1-ETO fusion protein,

appears in about 18% of AML patients (Rowley 1973; Perry et al 2002). The rare

t(3;21) translocation fuses AML1 to any of a number of genes in the 3q26 region,
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including EVI1, MDS1, and EAP, and is often observed in AML, myelodysplasia

syndrome, and in the ‘blast crisis’ phase of CML (Nucifora et al 1993; Nucifora &

Rowley 1995; Perry et al 2002). Finally, the t(12;21) translocation was identified as

a recurrent genetic abnormality in ALL (Romana et al 1994) and was soon

discovered to fuse most of the AML1 protein with the N-terminus of the newly

discovered TEL protein (Romana et al 1995a). These fusions act to inhibit the

transcriptional activation activities of AML1 (Perry et al 2002).

1.8 TEL/AML1 and ALL

1.8.1 Discovery of TEL/AML1

The t(12;21) translocation was identified as a frequent feature of ALL by Romana

and colleagues (1994), where three out of eight B-cell ALL patients were shown by

Fluorescence In Situ Hybridisation (FISH) to harbour the t(12;21) translocation in

cells from their bone marrow. Shortly after the identification of TEL as the partner of

PDGFRβ in the CMML-associated translocation t(5;12)(q33;p13) (Golub et al

1994), it was discovered that in the t(12;21)(p13;q22) translocation, TEL was fused

to AML1 (Golub et al 1995; Romana et al 1995a). The TEL/AML1 fusion protein

was found to be frequently associated with childhood ALL (Romana et al 1995b), a

surprising discovery considering these genes had independently been identified in

the context of myeloid leukaemias (Miyoshi et al 1991; Golub et al 1994).

1.8.2 Structure of TEL/AML1

The fusion of TEL and AML1 commonly occurs between exons 5 and 6 of TEL and

exons 1 and 2 of AML1; i.e. in intron 5 of TEL and intron 1 of AML1 (Wiemels &

Greaves 1999). The TEL moiety of TEL/AML1 conserves the pointed domain,

required for hetero- and homo-dimerisation (Kim et al 2001) and the central

repression domain, to which HDACs are recruited (Wang & Hiebert 2001), but loses

the DNA-binding ets domain (Golub et al 1994). Almost the entire of the AML1 is

conserved, including both the DNA-binding runt homology domain (RHD; Levanon
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et al 1994) and the transactivation domain which can recruit both HATs and HDACS

(Kanno et al 1998).

1.8.3 Molecular biology of TEL/AML1

Whereas AML1 acts as both an activator and repressor of gene expression,

TEL/AML1 constitutively represses AML1 targets, as discovered using reporter

gene constructs of AML1 targets (Hiebert et al 1996; Fears et al 1997). One

mechanism of this action is the by the recruitment of HDACs by the interaction of a

complex containing N-CoR, SMRT, and mSin3A with TEL/AML1 (Fenrick et al

1999; Guidez et al 2000), which are recruited by domains present in both the TEL

and AML1 moieties (Chakrabarti & Nucifora 1999; Fenrick et al 1999; Guidez et al

2000). CBFβ is required for the binding of AML1 to its targets via RHD (Zhang et al

1996), and similarly it is required for functional TEL/AML1 activity (Roudaia et al

2009).

The pointed dimerisation domain of TEL appears to be important in the gene

repression activity of TEL/AML1, as its deletion removes most (but not all) of the

inhibition of reporter gene activation (Hiebert et al 1996; Fears et al 1997). This is

likely to be due to the stabilisation of interactions between TEL/AML1 dimers and

their corepressors, rather than any intrinsic properties of the pointed domain itself, as

the replacement of the pointed domain with a different oligomerisation domain

preserves the gene repression activities (Lopez et al 1999).

TEL and TEL/AML1 can form heterodimers in vitro (McLean et al 1996) through

their pointed domains. TEL does not appear to have any effect on the gene

repression activity of TEL/AML1 on AML1 targets (Hiebert et al 1996), but

TEL/AML1 can have a dominant-negative effect over TEL, inhibiting both its gene

repression activity and its ability to repress transformed-NIH3T3 cell growth (Gunji

et al 2004). Since the loss of TEL is a common secondary mutation in TEL/AML1+

leukaemia (Cave et al 1995), this dominant-negative effect of TEL/AML1 over TEL

is significant as it indicates a possible mechanism of leukaemogenesis through the

loss of heterozygosity of TEL. The role of TEL deletions in leukaemia will be

discussed in Chapter 4 (section 4.1.7).
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In addition to a negative effect on basal levels of expression of AML1 targets,

TEL/AML1 has a dominant-negative effect over AML1-mediated transcriptional

activation (Hiebert et al 1996) and the AML1-induced proliferation of NIH3T3 cells

(Gunji et al 2004). In vivo, TEL/AML1 dominant-negative effects on both TEL and

AML1 does not appear to copy the phenotype of knockouts of either of these genes

(Schindler et al 2009), indicating that the negative effects of TEL/AML1 on its

wild-type components is subtle, a contrast to observations in AML1/ETO-expressing

mice, for example (Yergeau et al 1997).

1.8.4 Prenatal origins of the TEL/AML1 fusion

It is known that the TEL/AML1 fusion occurs prenatally; the breakpoint of

TEL/AML1 in newly-diagnosed patients can be retrospectively matched by PCR

with DNA samples from their dried blood spot cards taken at birth (Wiemels et al

1999a) which are normally used to diagnose phenylketonuria. In addition, such

breakpoints are found to be identical in monochorionic twins (those that share a

placenta) diagnosed with leukaemia (Wiemels et al 1999b); the only feasible

explanation for this being the migration of a TEL/AML1+ cell from the bone marrow

of one twin, through the shared placenta, to the other twin (Greaves et al 2003).

It has been previously reported that TEL/AML1 has been found in 1% of cord blood

samples (Mori et al 2002), which is 100-fold more frequent than the incidence of

TEL/AML1+ leukaemia, implying that only 1 in 100 newborns positive for

TEL/AML1 will go on to develop ALL. However, the findings of Mori and

colleagues has been disputed by a recent paper (Lausten-Thomsen et al 2011), which

claims the frequency of the TEL/AML1 translocation event is closer to 0.01%, thus

implying that most if not all of TEL/AML1+ newborns will go on to develop ALL.

After the publication of the paper from Lausten-Thomsen and colleagues, another

group revealed in correspondence evidence apparently confirming the original report

by Mori and colleagues, that the TEL/AML1 transcript could be detected in

approximately 1% of neonatal cord-blood samples (Zuna et al 2011). An

examination of the methods used by the papers from Mori and Lausten-Thomsen and
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possible explanations for their discrepancy followed (Greaves et al 2011;

Schmiegelow et al 2011).

All three papers performed PCR for TEL/AML1 transcript on cDNA prepared from

cord blood samples and found 1% of cord-blood samples from healthy neonates were

TEL/AML1+. However, the frequency of TEL/AML1+ cells in the cord blood

samples (as measured by the relative expression of TEL/AML1 in the samples)

differed, with Mori estimating between 10–3 and 10–4 cells, and Lausten-Thomsen

estimating less than 10–5.

After this initial PCR screen, the three papers attempted to confirm the results using

different methods. Lausten-Thomsen and colleagues, having used fresh cord blood

samples for the first screen, re-performed the PCR on their TEL/AML1+ samples by

thawing out frozen samples and flow sorting for CD19+ cells. However, all of the

repeated samples were found to be negative for TEL/AML1; since they expected to

see an increase in the level of TEL/AML1 transcript in the CD19+ sorted

populations, they concluded that these samples were indeed negative. They attributed

the identification of TEL/AML1+ samples in their first screen as low level

contamination (Lausten-Thomsen et al 2011).

Mori and Zuna and their respective colleagues confirmed their TEL/AML1+ samples

by FISH after cell sorting for B cell markers CD19 and CD10 for the presence of

TEL/AML1 fusions. Mori and colleagues positively confirmed the presence of

TEL/AML1 fusions in the two TEL/AML1+ samples they investigated by FISH

(Mori et al 2002), and Zuna and colleagues confirmed TEL/AML1 in the one sample

they analysed (Zuna et al 2011).

Ultimately, the discrepancy between the results of Mori’s and Lausten-Thomsen’s

experiments has not yet been resolved, and it is likely there is a technical

explanation, rather than biological explanation (such as the nationalities of the

populations analysed). Both groups called for further, large scale investigations from

other scientists (Greaves et al 2011; Schmiegelow et al 2011).
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1.8.5 Progression of TEL/AML1+ leukaemia

It is clear that two very different models of the progression TEL/AML1+ leukaemia

emerge if the frequency of the translocation that generates the fusion gene is 1% or

0.01%, given that the incidence of TEL/AML1+ leukaemia in children is 1 in 10,000

(0.01%). If the latter is true, then the presence of TEL/AML1 is sufficient to cause

leukaemia; if the former is true, then TEL/AML1 is not sufficient for leukaemia, and

‘secondary hits’ are required to progress to overt leukaemia.

Beyond the translocation frequencies presented by Mori and colleagues, there are

several lines of evidence that support the ‘two-hit’ hypothesis, one of which is the

study of leukaemia in twins. If a TEL/AML1+ cell was all that was needed to cause

leukaemia, and if both twins of identical genetic makeup had the same transformed

clone (as it is known is possible via trans-placental transfer; Wiemels et al 1999b),

then one would expect that both twins develop leukaemia, and at roughly the same

time. However, from the few (albeit small) studies that have been performed on the

subject, it is known that this is not the case; despite shared TEL/AML1+ clones,

concordance of childhood leukaemia in twins is low, and there is often a delay from

the prenatal translocation and the presentation of overt leukaemia in both individual

twins and singletons (Greaves et al 2003).

Commonly mutated, deleted, and abnormally regulated genes in TEL/AML1+

patients have been identified through the analysis of patient material, which has

recently entered a new era with the use of high-throughput and large scale screens.

As such, screens for gene expression changes (Golub et al 1999; Fine et al 2004;

Andersson et al 2005a; Andersson et al 2005b; Gandemer et al 2007; Andersson et

al 2010), single nucleotide polymorphisms (SNPs) and copy number alterations

(CNAs; Mullighan et al 2007; Kawamata et al 2008; Bateman et al 2010; Kuster et

al 2011; Notta et al 2011b), chromosomal structural changes (Attarbaschi et al 2004;

Mullighan et al 2007), and epigenetically regulated genes (Starkova et al 2007) in

TEL/AML1+ leukaemia patient samples have identified genes and pathways

commonly disrupted in TEL/AML1+ leukaemia, and thus suggest a ‘two-hit’ model

of leukaemogenesis.
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Mutations likely to drive leukaemia progression are always discordant in twins

(Bateman et al 2010), and thus probably occur post-natally. One such common

mutation, deletions in the short arm of chromosome 12 where ETV6 is located, could

not be ‘backtracked’ to birth when comparing samples from patients and their

matched neonatal blood spot cards (Wiemels et al 2008).

A ‘two-hit’ model of disease progression in leukaemia has also been suggested in

animal models. Most mouse models expressing TEL/AML1 on its own have failed to

recapitulate overt B lineage ALL. Endogenous expression of TEL/AML1 under the

control of immunoglobulin heavy chain enhancer/promoter, EµVHP failed to cause

haematological malignancies (Andreasson et al 2001; Ford et al 2009). Exogenous

expression of TEL/AML1, by the viral transduction of haematopoietic precursors

from bone marrow or foetal liver, failed to induce leukaemia (Morrow et al 2004;

Tsuzuki et al 2004; Fischer et al 2005), but instead caused abnormalities in B cell

development, either causing increased self-renewal of B cell precursors (Morrow et

al 2004; Morrow et al 2007) or impairment of transition from pro-B to pre-B cells

(Tsuzuki et al 2004; Fischer et al 2005). The result is the accumulation of persistent

early B cell progenitors, which is believed to represent a ‘pre-leukaemic state’ that

predisposes individuals for further transformation and ultimately overt leukaemia.

1.8.6 Infection in the aetiology of ALL

An interesting area of study has been the role that early childhood infections might

play in the progression of ALL (Greaves 2006). This theory was originally

speculated on the basis of three observations: firstly, the peak incidence of ALL, in

children aged two to five, coincided strongly with that of common childhood

infections such as measles; secondly, the presentation of ALL was usually associated

with previous history or coincidence of respiratory infections; and thirdly, that that

certain haematological malignancies could be caused by specific viral infections

(such as adult T-cell leukemia/lymphoma by Human T-cell Lymphotropic Virus-1

[HTLV1] and Burkitt’s lymphoma by Epstein-Barr Virus [EBV]; Greaves 2006).

Epidemiological studies lead to the proposal of two possible mechanisms of an

immunological aspect of ALL. Firstly, the ‘population mixing’ hypothesis (Kinlen
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1988) arose from studies of clusters of ALL cases in remote towns (including those

of British towns with nuclear power plants such as Sellafield), and proposed that a

large influx of migrants exposes the endogenous community to previously

unencountered infections, such as a (symptomatically mild) virus. Secondly, the

‘delayed exposure’ hypothesis (Greaves 1988) arose from the observations of

increased incidence in more affluent (and therefore more ‘hygienic’) societies and

countries, and proposed that a delay in the exposure to common childhood infections

might inadvertently lead to an inappropriate proliferative response to such an

infection.

Kinlen’s ‘population mixing’ hypothesis has been supported by a series of events in

which populations mixed in a specific place at a specific time, the majority of which

results in a transient increase in the incidence of childhood leukaemia (McNally &

Eden 2004). There is an array of evidence to support Greaves’ ‘delayed exposure’

hypothesis; for example children who attend day-care or a nursery in their first years

of life (an indicator of increased exposure to infections) have a reduced risk of

leukaemia (Ma et al 2002; Gilham et al 2005). Similar hypotheses to Greaves’ have

been put forward to explain the increased incidence of immunological diseases such

as allergies (Wills-Karp et al 2001) and Type-I diabetes (McKinney et al 2000) in

affluent societies; indeed the distributions of these diseases correlate with that of

ALL (Stene & Nafstad 2001; Feltbower et al 2004).

It is worth noting that both of the theories are consistent with a ‘two-hit’ model of

leukaemogenesis, and that such an infectious influence isn’t a necessary component

of the natural history of ALL, but might contribute to its observed characteristics. In

this respect, Greaves (2006) proposes something akin to a ‘three-hit’ model; a

pre-natal fusion event, an expansion of the transformed clone as a result of an

infection, followed by subsequent genetic mutations in the transformed clone pool.

1.8.7 Clonal evolution

Clonal evolution of cancer is a concept parallel to that of Darwinian evolution of

species, and is the result of the study of multi-step carcinogenesis (Greaves & Maley

2012). As a concept it incorporates many features typical of cancers, such how
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mutations accumulated over time (i.e. during the lifetime of an individual) can lead

to cancerous growth, the genetic diversity found in tumours, and maintain the

potential for relapse after treatment.

Many random genetic changes in cells might be harmful for the cell, in which case

the cell will die. However, genetic changes that confer an advantage to a cell are

passed onto its daughter cells, and thus provide the opportunity for further mutations.

Here, ‘advantages’ for the cell include the abilities to proliferate and survive, and

thus resulting in populations of cells that rapidly proliferate and are resistant to

apoptosis, i.e. cancer. Mutations occur concurrently in different cells, and so there

may be several clones at any one point which have the ability to form a cancer, thus

representing a tree of divergence of clones, rather than a step-wise linear

progression. Typically however, only a minority of these will come to form the main

bulk of the tumour, as they dominate over their competitor clones.

The concept of clonal evolution has been applied to acute lymphoblastic leukaemia,

including the TEL/AML1+ subtype. In the case of monochorionic twins, the

concordance rate for childhood ALL is typically 10-15% (Greaves et al 2003). There

are published examples of such twins, discordant for TEL/AML1+ ALL, where the

‘healthy’ twin also harbours the pre-leukaemic clone (for example, Hong et al 2008).

Mutations present in the twin with leukaemia were not present in the pre-leukaemic

clone in the ‘healthy’ twin (Hong et al 2008). In addition, there are examples of

identical monochorionic twins concordant for TEL/AML1+ (e.g. Bateman et al 2010)

which are discordant for the mutations responsible for their leukaemia. These

examples not only indicate a requirement for further mutations beyond the t(12;21)

translocation event, but also the diversity of mutations that give rise to leukaemia,

even in the genetically identical backgrounds found in the twins with a shared

pre-leukaemic clone, support a branching, divergent model of leukaemia

progression.

The importance of this divergence has been illustrated in relapsed leukaemia

(Mullighan et al 2008). Access to samples of bone marrow from both the initial

diagnosis and relapse of leukaemia allowed the comparison of the genetic

differences between the clones present. By analysing the copy number alterations
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(CNAs) present in the dominant clones, Mullighan and colleagues were able to map

out the origins of the relapse clone with respect to the clone from the initial diagnosis

of ALL. In 6% of cases, there were no common CNAs in the diagnostic or relapse

clone, indicating the relapse might be a secondary, unrelated leukaemia. In 42% of

cases, CNAs present in the initial diagnosis clone were all present in the relapse

clone, indicating that these cases of relapsed leukaemia represented clonal evolution

from the original leukaemia. However, in the majority of the cases (52%), the

relapsed clone shared only a few of the CNAs present in the initial diagnosis clone,

indicating that the relapse clones were derived from ancestral clones to the initial

diagnosis clone, which remained in the bone marrow whilst the initial diagnosis

clone dominated during the overt primary leukaemia.

The ‘clonal architecture’ of TEL/AML1+ (Anderson et al 2011) and BCR-ABL1+

(Notta et al 2011b) ALL has also been plotted out using similar techniques to track

different clones within one bone marrow sample. An important finding of both of

these studies that the interaction and competition between the different clones is

dynamic; once bulk bone marrow is transplanted into immunodeficient mice,

individual clones would continue to evolve, leading to previously minor clones that

over time become the dominant clone. These findings are significant when

considering the treatment of relapse; relapsed leukaemias are likely to be divergent

from the primary leukaemias, and so therapies targeted at the initial diagnosis clone

may not be effective for the treatment of the relapse. Indeed, in one study analysing

CNAs in matched relapse and diagnosis samples from TEL/AML1+ patients, many

of the CNAs unique to relapse samples were in genes involved in glucocorticoid

signalling and so provide a potential mechanisms for acquired drug resistance at

relapse (Kuster et al 2011).

Study of clonal evolution in leukaemias has also allowed the identification genes

mutated at a higher frequency than expected, which are presumed to confer a

selective advantage to clones, and so are called ‘driver’ mutations. Other genes

which have a neutral effect on leukaemic clones are known as ‘passenger’ mutations,

since they will frequently be passed along with ‘driver’ mutations, but are not as

frequent nor believed to confer any advantage (Haber & Settleman 2007). In a study

of CNAs present in TEL/AML1+ leukaemia in identical twins (Bateman et al 2010),
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it was estimated that 5.1 CNAs were present in each case, 3.2 ‘driver’ mutations

(range 2-7) and 1.9 ‘passenger’ mutations (range 1-4). Ultimately the distinction

between ‘driver’ and ‘passenger’ mutations requires functional studies (Bateman et

al 2010).

1.9 Common secondary mutations in acute lymphoblastic leukaemia

The identification of genetic alterations in ALL has allowed for the elucidation of

common pathways of leukaemogenesis, as well as the investigation of mutations

specific to certain leukaemia subtypes and patient groups. Karyotyping allows for the

gross genetic changes such as translocations, deletions and amplifications, and

aneuploidy to be identified quickly and cheaply, and is still the method by which

many chromosome translocations that define subtypes of leukaemia are diagnosed.

Fluorescence In Situ Hybridisation (FISH) can be used to confirm certain fusion

genes resulting from translocations, and also to identify deleted alleles of specific

genes. However, karyotype analysis is subjective and can only identify large changes

in chromosome structure, far bigger than any single gene. FISH is labour intensive,

and by definition requires a probe for a specific gene with a known sequence,

precluding it from genome-wide studies.

Microarray platforms provide the opportunity for unbiased and detailed screens for

genetic alterations (Mullighan & Downing 2009). Comparative genomic

hybridisation (CGH) array screens use large fragments (up to ~200kb) of the human

DNA, cloned into bacterial artificial chromosome (BAC) vectors, allowing coverage

of most of the entire genome. Single Nucleotide Polymorphism (SNP) arrays use

much shorter (20-100 bp), and were originally designed to identify known single

nucleotide changes in the genome that are associated with susceptibility to certain

diseases. However, by virtue of the probes being able to identify both maternal and

paternal alleles, they can also be used to identify the copy number of genes, and as

such deletions or amplifications of regions of chromosomes, known as copy number

alterations, or CNAs. This ability of SNP arrays to detect CNAs added with the high

resolution and the small amounts of DNA required have resulted in their widespread

use to identify genetic alterations in acute lymphoblastic leukaemia.
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1.9.1 ETV6

Deletions in 12p, and specifically deletions at ETV6 locus, have been identified as a

common feature of ALL (Irving et al 2005; Kuiper et al 2007; Mullighan et al 2007;

Strefford et al 2007; Kawamata et al 2008; Bungaro et al 2009), in particular

TEL/AML1+ leukaemia (Raimondi et al 1986; Raynaud et al 1996; Cave et al 1997;

Attarbaschi et al 2004; Kawamata et al 2008). The role of ETV6 deletion in the

context of TEL/AML1+ leukaemia will be discussed in Chapter 4 (section 4.1.7).

1.9.2 Cell Cycle control genes

Recurrent mutations in a variety of proteins involved in cell cycle control have been

identified in the context of ALL, for example CDKN1B, CDKN2A, CDKN2B, and

RB1 (Irving et al 2005; Kuiper et al 2007; Mullighan et al 2007; Strefford et al

2007; Kawamata et al 2008; Bungaro et al 2009; Bateman et al 2010; Notta et al

2011b). CDKN2A, found on chromosome 9p21 and also known as P16INK4, is a

cyclin-dependent kinase inhibitor, an important regulator of cell cycle progression,

as discussed above in section 1.4.2. It is also a known tumour suppressor gene,

frequently mutated in various cancers (Smith-Sorensen & Hovig 1996). Deletions of

CDKN2A are frequent in both B- and T-lineage ALL (Takeuchi et al 1995), though

less frequent in TEL/AML1+ leukaemia (Sulong et al 2009), and genetic alterations

within 9p are associated with relapse and poor prognosis in ALL (Heerema et al

1999; Hann et al 2001; Calero Moreno et al 2002; Mullighan et al 2008). The

deletion of the CDKN2A locus in mice, in combination with exogenous expression of

TEL/AML1, gives rise to frequent leukaemias (Bernardin et al 2002), and the

deletion of CDKN2A in RAG knock-out mice induces B-ALL (Hauer et al 2011).

1.9.3 B cell development genes

Another group of genes frequently mutated or deleted in B-ALL are genes involved

in B cell development (Kuiper et al 2007; Mullighan et al 2007). PAX5 is a

transcription factor which induces B cell specification in lymphoid progenitors by

repressing alternative lineage pathways (Nutt et al 1999). Loss of functional PAX5 is

observed through a variety of mechanisms, including mono-allelic deletions, exon

deletions, small translocations, point mutations, and mutations in the PAX5 promoter
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(Mullighan et al 2007). Genes that are regulated by PAX5 are enriched in gene

expression patterns in leukaemic cells from B-ALL patients without a common

cytogenetic abnormality, indicating that the loss of PAX5 is of significant functional

consequence in these leukaemic cells (Mullighan et al 2007). Mutations in two

proteins that directly regulate PAX5 expression, EBF and E2A, are also often

identified in ALL (Kuiper et al 2007; Mullighan et al 2007).

1.9.4 Other genes associated with TEL/AML1+ leukaemia

Throughout this thesis, a selection of the many genes involved in leukaemia was

studied, in addition to some of those listed above. These genes, namely PIK3C3,

TNFRSF7, SMAD1, ANGPTL4, EPOR, and IKZF2, are described below, in terms

of their function and their relationship to TEL/AML1+ leukaemia.

PIK3C3, also known as VPS34, belongs to a family of Phosphoinositide 3-kinases;

PIK3C3 phosphorylates membrane-bound phosphotidylinositol which activates a

signalling pathway (introduced in section 1.4.3) that regulates a variety of membrane

transport functions such as endocytosis and biosynthetic trafficking (Simonsen et al

2001). PIK3C3 has been identified by three separate gene expression microarrays as

a gene upregulated in TEL/AML1+ leukaemia (Yeoh et al 2002; Andersson et al

2005b; Gandemer et al 2007). Upregulation of PIK3C3 was also observed in CML

patients (Li et al 2002), indicating that PIK3C3 upregulation may represent a

common pathway of haematological malignancies. PIK3C3 promotes survival of

T cell; a lack of PIK3C3 in T lymphocytes results in increased cell death and

reduced IL-7Rα (McLeod et al 2011). Mutations in another PI3K family member,

PIK3CA (p110α), which lead to its increased activity, have been frequently observed

in a variety of cancers (Karakas et al 2006).

TNFRSF7, also known as CD27, is a marker of memory B cells in humans

(Agematsu et al 2000). TNFRSF7 and its ligand, CD70, is found on both T and B

lymphocytes, and their interaction is believed to be important in the activation of

both lymphocytes in the germinal centre (Borst et al 2005). High expression of

TNFRSF7 has been associated previously with TEL/AML1+ leukaemia (Yeoh et al

2002; Fine et al 2004; Gandemer et al 2007). Similarly, high levels of TNFRSF7
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have been detected by flow cytometry on leukaemic B lymphoblasts (Nilsson et al

2005; Troeger et al 2008). In addition, TNFRSF7 in both membrane-bound and

soluble forms has been associated with Chronic Lymphoid Leukaemia and Non-

Hodgkin’s Lymphoma (van Oers et al 1993; Ranheim et al 1995). The function of

TNFRSF7 is not clear; however, it is believed to transduce pro-apoptotic signals

through Siva-1 (Prasad et al 1997; Yoon et al 1999; Xue et al 2002), but can also

activate both canonical and non-canonical NF-κB pathways (Ramakrishnan et al

2004), which are known to activate anti-apoptotic pathways (Borst et al 2005).

SMAD1 is a member of a family of signal transducers that act downstream from the

TGF-β family of ligands, and have a variety of roles in proliferation and

differentiation in many organs (Blank & Karlsson 2011). In haematopoiesis, the role

of SMAD1 and its family members is believed to be highly context specific, and so

the results from in vitro and in vivo data can sometimes be conflicting. In mice, a

pulse of expression of SMAD1 during early development increases the numbers of

haemangioblasts (Zafonte et al 2007), but SMAD1 appears to be redundant in adult

haematopoiesis (Singbrant et al 2010). In zebrafish, SMAD1 deficiency leads to

enhanced erythropoiesis but a lack of mature macrophages (McReynolds et al 2007).

In human B cell lymphoma, SMAD1 overexpression and activation decreases

proliferation (Munoz et al 2004). However, the role of SMAD1 in acute

lymphoblastic leukaemia is not known.

Angiopoietin-like 4 (ANGPTL4), along with its family member ANGPTL2, was

associated with leukaemia with TEL/AML1+ leukaemia compared to normal

haematopoietic populations (Andersson et al 2005b). In addition to their role of

influencing angiogenesis, angiopoietin-like proteins are known to promote expansion

of HSCs (Zhang et al 2006), and have been implicated in acute myeloid leukaemia.

The EPOR gene codes for the receptor for erythropoietin (EPO), a cytokine which

promotes the production of erythrocytes (red blood cells). In two independent gene

expression microarray studies, EPOR has been found to be consistently highly

expressed in TEL/AML1+ ALL compared to other subtypes (Ross et al 2003; Fine et

al 2004). In addition, a mutation in the promoter of EPOR which leads to its

upregulation has been identified as a mutation that contributes to leukaemogenesis in
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a recently published mouse model of TEL/AML1+ leukaemia (van der Weyden et al

2011), and two reports have shown that EPO signalling through EPOR promotes

proliferation and survival in TEL/AML1+ leukaemia (Inthal et al 2008; Torrano et al

2011).

IKAROS, encoded by the gene IKZF1, acts as a transcription factor via chromatin

remodelling, and is involved in lymphoid lineage commitment, B cell development

in particular (Georgopoulos 2002). A null mutation of Ikaros leads to the complete

absence of both foetal and adult B cells and foetal T cells (Wang et al 1996a) and a

reduction in the HSC pool (Nichogiannopoulou et al 1999). Deletions and

dysregulation of IKZF1 are commonly observed in B- and T-lineage leukaemia, and

are associated with poor prognosis and increased risk of relapse (Mullighan et al

2008; Mullighan et al 2009; Payne & Dovat 2011). Since abnormal B cell

development is a hallmark of TEL/AML1+ leukaemia, the frequent deletion of genes

associated with B lymphopoiesis provides a potential mechanism by which B cell

progenitors can persist, allowing for further mutations to be acquired for progression

towards overt leukaemia. In Chapter 4, the Ikaros family member IKZF2 (also

known as ‘Helios’) is studied in relation the impact of gene expression of the loss of

TEL. Deletion of IKZF2 has been identified as a recurrent mutation in relapsed B-

and T- lineage ALL (Mullighan et al 2008), and overexpression of certain isoforms

of IKZF2 has been associated with T-cell ALL (Nakase et al 2002) and adult T cell

leukaemia/lymphoma (Fujii et al 2003).

1.10 Experimental study of leukaemia

As more is revealed about the nature of TEL/AML1+ leukaemia, researchers will

continue to use model systems as tools to address questions about fundamental

aspects of the disease. Such model systems can be divided into three categories:

in vivo models using transgenic animals, models using patient-derived material either

ex vivo or in a xenograft animal model, and studies using cell lines in vitro. I will

discuss the use of model systems in the study of TEL/AML1+ leukaemia in more

detail in the introduction to Chapter 3, but here I will give an overview of each of

these.
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1.10.1 In vivo models

Firstly, in vivo mouse models, either by studying transgenic animals (Schindler et al

2009) or recipients of TEL/AML1-transduced bone marrow (Tsuzuki et al 2004),

which have been used to investigate the development and clonal evolution of

TEL/AML1+ HSCs. Using these models, it has been found that TEL/AML1

increases quiescence in HSCs (Bernardin et al 2002; Schindler et al 2009), but also

self-renewal in downstream multipotent precursors and B lymphoid precursors

(Morrow et al 2004; Fischer et al 2005), and that this activity requires domains

present in both the TEL and AML1 moieties of the fusion protein (Morrow et al

2007). In addition, these transgenic mice have demonstrated the necessity of

secondary mutations to provoke overt leukaemia (Schindler et al 2009; van der

Weyden et al 2011), a finding also confirmed in a zebrafish model of TEL/AML1

(Sabaawy et al 2006).

1.10.2 Xenograft models

Secondly, models using leukaemia patient-derived material (le Viseur et al 2008) or

TEL/AML1-transduced cord-blood samples (Hong et al 2008), either as a xenograft

or ex vivo, have been described. These have further revealed the self-renewal

capacity of committed progenitors (le Viseur et al 2008), and identified a serially

transplantable pluripotent cell population, akin to a ‘leukaemic stem cell’ (Hong et al

2008) which responds abnormally to TGF-β (Ford et al 2009).

1.10.3 Cell lines

Thirdly, patient-derived cell lines and in vitro studies have been used to investigate

molecular and cellular aspects of leukaemia. For example, using cell lines,

TEL/AML1 was found to interfere with the activities of both TEL and AML1 (Gunji

et al 2004), and bone marrow stromal cells were found to regulate chemotherapy

resistance via TGF-β signalling (Dosen-Dahl et al 2008). RNAi silencing of

TEL/AML1 in cell lines has revealed it is not necessary for survival of these cells

(Zaliova et al 2011), but maintains a malignant gene expression program that differs

to normal B cell precursors (Fuka et al 2011b).
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One of the most widely used cell lines for studying TEL/AML1+ leukaemia is the

REH cell line. The REH cell line was derived from the peripheral blood of a 15-year-

old in acute lymphoblastic leukaemia relapse (Rosenfeld et al 1977), making it the

first cell line representative of a B cell precursor leukaemia (Matsuo & Drexler

1998). It was later discovered to harbour TEL/AML1 (Uphoff et al 1997), shortly

after the discovery of the fusion gene in 1995 (Golub et al ; Romana et al ). It was

also shown that the REH cell line lacked the remaining untranslocated TEL allele; in

this case by a second translocation t(5;12)(q31;p13) resulting in the deletion of TEL

(Uphoff et al 1997). The use of the REH cell line in the study of TEL/AML1+

leukaemia is further discussed in section 4.1.10.

1.11 Gene delivery methods

The experimental study of the role of a particular gene, including the work presented

in the examples above and the current work presented in this thesis, often requires

the transfer of genes into cells by gene vectors. Summarised below are the two main

types of vectors used for gene delivery into mammalian cells; plasmid vectors and

viral vectors. In the introduction to Chapter 3 (section 3.1.9), the methods of

transgene expression in hESCs are further explored.

1.11.1 Plasmid vectors

DNA plasmid transfection is commonly used to transiently express proteins in cells

as it is relatively simple to construct a DNA plasmid, and there is not the same limit

on the size of the genetic material that can be delivered, unlike viral vectors (see

below). The stable expression of the transgene requires the integration of the plasmid

in the host genome, as plasmids are not commonly transferred to daughter cells when

cells divide, and so are ‘diluted out’ over time. However, both the transfection

efficiency and the efficiency of stable integration of plasmids is low, and certainly

much lower than that of viral vectors such as lentiviruses (Washbourne & McAllister

2002).
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The delivery of DNA plasmids across the plasma membrane into cells can be

performed by a variety of methods, loosely defined in two categories: chemical and

non-chemical methods. Chemical methods tend to induce endocytosis of DNA by

enhancing the ability of DNA to bind to the plasma membrane, a process that

generally does not occur normally because of the charged nature of DNA. For

example, calcium phosphate precipitation (Graham & van der Eb 1973) allows for

the binding of DNA to the plasma membrane. Alternatively, DNA plasmids can be

delivered into the cell in liposomes, small lipid-membrane vesicles that bind to the

plasma membrane and are taken into the cell by endocytosis. Non-chemical methods

involve the ‘forced entry’ of DNA into cell. In the case of plant cells, DNA can be

fired into the cell attached to tungsten particles in a method known as biolistics, but

the most commonly used method in animal cells is electroporation. The precise

mechanism of action for electroporation is unknown, but it is believed that firing a

pulse of electricity through the cell causes large pores to open in the plasma

membrane, through which charged particles like DNA can pass (Neumann et al

1982).

1.11.2 Viral vectors

The use of viral vectors for the expression of exogenous genes appears to be an

obvious choice – viruses have evolved to deliver genetic material into cells and

express it at high levels. As such, the advantage of using viral vector for gene

delivery is the high transduction efficiency of many different types of tissues. Viral

vectors used for laboratory research are frequently engineered for safety and thus

lack genes required for replication. However, the advantages of viral vectors are also

balanced by several disadvantages, namely the production of the high titres of

viruses required is time consuming and labour intensive, and the size of the gene

insert used is limited by the capacity of the virus.

Adenoviruses are DNA viruses that have a double-stranded DNA genome. They are

non-integrating viruses, and so are often only used for transient transduction of cell

lines. The cloning capacity of the virus is about 5-14kb, but the production of

adenoviruses is time-consuming at about four to six weeks (Ross & Parks 2009). As

such, adenoviruses are not often used in laboratory research, but closely related
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viruses, so-called adeno-associated viruses (AAVs), are showing promise as gene

delivery vectors for gene therapy, as unlike adenoviruses, AAVs do not elicit a

significant immune response in humans (Flotte & Carter 1995).

Retroviruses are a family of RNA viruses which integrate their genes into host

genomes using the enzyme reverse transcriptase to convert their genome into

single-stranded DNA. The cloning capacity of retroviruses is about 10kb (Trono

2000), but retroviruses are mostly only able to infect dividing cells, and tend to insert

randomly into the genome, which can lead to unintended consequences in host gene

expression. Lentiviruses are a genus of the retrovirus family, but have the advantage

over most retroviruses in that they are able to transduce both dividing and

non-dividing cells. The integration of lentiviruses into the genome occurs at less

random locations (Cattoglio et al 2007), and coupled with their high transduction

efficiency and long-term stable expression, lentiviruses are a commonly used viral

vector in laboratory gene expression experiments.

1.12 Conclusion and Aims

Acute Lymphoblastic Leukaemia (ALL) is the rapid proliferation of immature

lymphoblasts in the bone marrow, and is the most common cancer in children. The

t(12;21) translocation, generating the TEL/AML1 fusion protein, is the most

frequently identified initiating genetic lesion in childhood ALL, and is most likely to

occur prenatally, but further postnatal mutations are necessary for the progression to

overt leukaemia.

The transcription factors TEL and AML1 (coded for by the genes ETV6 and RUNX1,

respectively) are key players in normal and malignant haematopoiesis. TEL/AML1

appears to interfere with the normal activities of both wild-type TEL and AML1, but

little is known about the genes which are regulated by either, and how their aberrant

regulation leads to the ‘pre-leukaemic state’ of a persistent clone that is predisposed

to further mutations. In addition, it has not been directly proved in which

haematopoietic progenitor cell the translocation needs to occur to generate this



CHAPTER 1: INTRODUCTION

60

leukaemia initiating cell, although it is assumed to be early multipotent cells such a

HSCs (Schindler et al 2009).

A diagram showing a model of initiation and progression of TEL/AML1+ leukaemia

is shown in Figure 1.3. As depicted in Figure 1.3A, HSCs present in the developing

embryo are subject to the chromosome translocation t(12;21), which generates HSCs

of increase self-renewal (as described in Schindler et al 2009). These multipotent

HSCs are capable of differentiation along any lineage, but in the event of

commitment to B cell development, they can generate the a ‘pre-leukaemic clone’

(Hong et al 2008) with similar phenotype to pro-B cells, that have self-renewal

properties and a reduced capacity to differentiate into pre-B cells and further along

the B lymphocyte lineage. The main feature of this model is that TEL/AML1 on its

own is not sufficient for leukaemia. In the first chapter of this thesis, the

development of a model of TEL/AML1+ leukaemia is described, which provides

additional evidence to support this model.

From the TEL/AML1+ pre-leukaemic clone, overt leukaemia develops resulting in

lymphoblast population with TEL deficiency (Figure 1.3B), commonly manifested

either by the genetic deletion of the remaining TEL allele or a down-regulation of

TEL, as is observed in approximately 75% and 25% of TEL/AML1+ patients,

respectively (Cave et al 1997; Patel et al 2003). A third hypothetical possibility is

the loss of TEL function through the loss of downstream mediators of TEL activity,

or activation of opposing mechanisms, through either mutation or dysregulation.

What role this TEL deficiency plays in progression from pre-leukaemia to overt

TEL/AML1+ leukaemia is depicted as three possible models in Figure 1.3B. The loss

of TEL could be sufficient for progression into overt leukaemia (1), though this does

not take into other frequent mutations which may be significant (as described in

section 1.9) or the influence of infection (described in section 1.8.6). Another

possibility (2) is that TEL deficiency is a necessary requirement of the pre-leukaemic

clone, but is not sufficient for progression to overt leukaemia, which requires other

mutations or environmental factors (shown as a question mark). Finally, it is possible

that overt leukaemia can be triggered without the loss of TEL (3), but instead that

TEL deficiency confers an advantage to a leukaemic clone, such that it quickly
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becomes the dominant clone in the population. In the second chapter of this thesis,

these three possibilities for the role of TEL in the context of TEL/AML1+ will be

examined by over-expressing TEL in the REH leukaemia cell line. This aims to

illuminate the role TEL plays, both on a transcriptional and functional level, and thus

what is lost during TEL/AML1+ leukaemia progression.
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Figure 1.3 – Models for the progression of TEL/AML1+ leukaemia.
(A) TEL/AML1 increases self-renewal in transformed HSCs and can generate a persistent self-renewing
‘pre-leukaemic clone’ akin to a pro-B cell lineage, which has reduced ability to differentiate further along the
B lymphocyte lineage. (B) The progression of this TEL/AML1+ pre-leukaemic clone ends with TEL deficiency,
either through a genetic loss or a functional loss. This suggests one of three possible models for progression of
TEL/AML1+ leukaemia: (1) TEL deficiency is both necessary and sufficient for progression; (2) TEL deficiency
is necessary but not sufficient; (3) TEL deficiency is not necessary for progression to leukaemia, but confers a
selective advantage to a leukaemic clone such that it eventually becomes the dominant clone. See text for further
discussion of these models.

A

B

(1)

(2)

(3)
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Chapter 2: Materials and Methods

2.1 hESC culture

2.1.1 Culture of human embryonic stem cells (hESCs)

The human embryonic stem cell (hESC) line H9 was obtained from Peter Andrews

(Centre for Stem Cell Biology, University of Sheffield) with permission from

WiCell Research Institute (University of Wisconsin). hESCs were cultured on

irradiated mouse embryonic fibroblasts (iMEFs; MEFs obtained from UK Stem Cell

Bank) seeded onto gelatinised 6-well plates. hESC culture media was made using

Knockout Dublecco’s Modified Eagle Medium (KO-DMEM, Gibco), supplement

with 20% Knockout Serum Replacement (KO-SR), 2mM L-glutamine, 100µM Non-

Essential Amino Acids (NEAA, Gibco), 100µM β-mercaptoethanol (Gibco), 4ng/ml

human basic fibroblast growth factor (hbFGF), and 1× Penicillin-Streptomycin

(PenStrep, Invitrogen). Media was replaced every day, 2ml per well.

Stably transfected hES cell lines (‘T/A D1’, ‘T/A D2’, ‘T/A F1’, ‘T/A F2’, ‘GFP1’,

‘GFP2’, ‘ΔRHD5’, and ‘ΔRHD6’) were maintained as above, except for the use of

drug-resistant DR4 iMEFs (Tucker et al 1997; DR4 MEFs kindly provided by Peter

Andrews at University of Sheffield), and the media was supplemented with 1µg/ml

puromycin.

2.1.2 Preparation of mouse embryonic fibroblasts (MEFs)

To prepare frozen aliquots of low passage MEFs, E13.5 day mouse embryos were

homogenised using a scalpel and incubated with Trypsin-EDTA at 37ºC for

10-20 mins in a centrifuge tube. MEF Media (DMEM supplemented with 10%

Foetal Bovine Serum [FBS], 2mM L-glutamine, and 1× PenStrep) was added to the

tube, large chunks left to settle and then the supernatant transferred to one T75 flask

per embryo used, which was incubated at 37ºC until confluent. Cells were then

detached using Trypsin-EDTA, then frozen in one aliquot per flask, in freezing

media (FBS with 20% DMSO).
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2.1.3 Preparation of frozen aliquots of inactivated MEFs (iMEF)

To prepare frozen aliquots of iMEFs, a frozen aliquot of low passage MEFs (as

prepared above) was thawed and cultured in a T75 until confluent. These cells were

then passaged into several T175 flasks (commonly from one T75 to eight T175

flasks), and cultured until confluent. The cells were then harvested using Trypsin-

EDTA, and then resuspended in a small volume (~10ml) of MEF media in a 50ml

centrifuge tube. MEFs were inactivated by X-ray irradiation (40Gy), and then

counted. These iMEFs were centrifuged and resuspended in freezing media at a

concentration of 2 million cells per ml. Aliquots of 2 million cells are then frozen.

2.1.4 Preparation of iMEF plates for hESC culture

To prepare plates of iMEFs on which to culture hESCs, 6-well plates (Corning) were

gelatinised by diluting bovine Gelatin solution (Sigma-Aldrich) 1:20 in pre-warmed

Phosphate Buffered Saline (PBS; PAA), dispensing 2 ml per well, and incubating at

room temperature for at least 20 minutes. Frozen aliquots of 2 million iMEFs (as

prepared above) were thawed and resuspended in 10ml of MEF media. These were

centrifuged and resuspended in 12ml media, before dispensing into the gelatinised

6-well plate (after removing the gelatine solution) and incubating at 37ºC overnight.

2.1.5 Passaging hESCs

To split, cells were washed with PBS, and incubated with 1mg/ml Collagenase IV

(Gibco) in KO-DMEM for 20-30mins. Cells were harvested from the plate by

pipetting, centrifuged for 5 minutes at 200g, washed once with 2mls hESC media

and centrifuged, and seeded into a freshly prepared gelatinised iMEF plate at a split

ratio of between 1:6 and 1:10.

2.2 Transfection of hESC

Transfection of hESCs was performed using the NEON electroporation system

(Invitrogen). H9 hESCs were dissociated into single cells using 0.05%

Trypsin-EDTA, and resuspended at a concentration of 1×107 cells/ml, in

Resuspension buffer R. 10µl of cells (i.e. 1×105 cells) was mixed with 0.5µg DNA,

and was electroporated using the NEON transfection system, with 2 pulses of 1050V
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with a pulse width of 30ms. Cells were then dispensed into gelatinised 6-well plates

seeded with DR4 iMEFs, containing pre-warmed hESC media supplemented with

10µM Y-27632, a selective inhibitor of ROCK (Watanabe et al 2007). Media was

supplemented with 1µg/ml puromycin from two days after transfection, Y-27632

was supplemented to media until colonies with more than ten cells were visible.

2.3 Western Blot

Cell extracts were prepared using radioimmunoprecipitation assay buffer (RIPA

buffer, Sigma Aldrich) following manufacturer’s instructions. Protein samples from

hESC lines to detect TEL/AML1 were resolved on a 12.5% SDS-polyacrylamide

gel. Protein was transferred to a polyvinylidene fluoride membrane (Immobilon-P,

Millipore), and blocked in PBS with 5% (w/v) milk powder for one hour. Primary

antibodies were diluted in PBS with 5% milk and 0.1% Triton; 1 in 2000 for anti-HA

tag, and incubated overnight at 4ºC (more information and manufacturers for

antibodies used can be found in Table 2.1). Membranes were washed three times

with PBS-Triton for five minutes, and then incubated with a Horseradish Peroxidase-

conjugated secondary antibody at a dilution of 1 in 5000, in PBS with 5% milk.

Membranes were washed as before and proteins detected using the

chemiluminescent reagent ECL (GE Healthcare) and photographic film (Amersham

Hyperfilm, GE Healthcare).

2.4 Imaging of hESCs using immunocytochemistry

hESC lines were grown on chamber slides onto which DR4 iMEFs had previously

been seeded. After three or four days of culture, cells were fixed using 4%

Paraformaldehyde (PFA) for 15 minutes, washed with PBS for 5 minutes, and

permeabilised using PBS supplemented with 0.5% Triton X-100 and 3% goat serum

(hereafter referred as PBS-Triton-Serum) for 30 minutes. The anti-HA tag primary

antibody was diluted 1 in 500 in PBS-Triton-Serum and incubated for 1 hour. Cells

were washed three times with PBS-Triton for 5 minutes, and fluorescently-

conjugated primary and secondary antibodies applied (Goat anti-rabbit Alexa647 and

anti-GFP-Alexa488, diluted 1 in 500 in PBS-Triton-Serum) for 45 minutes. The cells

were washed three times for 5 minutes with PBS-Triton, with the first wash

containing DAPI at a dilution of 1 in 2000. Cells were post-fixed with 4% PFA for 5
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minutes, before being washed three times again with PBS-Triton. Finally,

PBS-Triton was removed and replaced with PBS to prevent cells from drying out.

Fluorescently labelled cells were imaged using a Multiphoton Zeiss LSM 780 NLO,

and images processed using Volocity software (PerkinElmer).

2.5 Preparation of samples for karyotyping

hESCs in exponential growth were incubated with colcemid solution (KaryoMAX,

Gibco), diluted to 2µg/ml in PBS, for four hours at 37ºC. Cells were detached from

the culture dish by Trypsin-EDTA and aspirated to form a single cell suspension,

which was transferred to a 15ml centrifuge tube, to which 6mls of prewarmed

hypotonic KCl solution (37.5mM in dH2O) was added, and incubated for 5 minutes

at 37ºC. The tubes were centrifuged at 100g for 8 minutes to pellet the cells, before

being fixed using a fixative (3:1 methanol:glacial acetic acid); the pellet was

resuspended in the fixative and centrifuged three times. After the final centrifuge

step, the samples ready for karyotyping were resuspended in the fixative and stored

at -20ºC. Karyotyping was kindly performed by Duncan Baker (Sheffield Children’s

Hospital). All cell lines were found to be karyotypically normal female (46, XX).

2.6 Haematopoietic differentiation of hESC

2.6.1 Differentiation culture

hESCs were differentiated towards haematopoietic lineage following the OP9

co-culture method as described in Vodyanik & Slukvin 2007. To summarise, on

day 0, hESCs were seeded onto overgrown OP9 cultures in 10cm dishes, in small

aggregates at a concentration equivalent to 106 cells per plate. Media used for

differentiation was Minimum Essential Medium Alpha-modification (α-MEM,

Gibco), supplemented with 10% Foetal Bovine Serum (FBS, HyClone), 100µM

monothioglycerol (MTG, Sigma-Aldrich), 50µM Ascorbic Acid (Sigma-Aldrich)

and 1× PenStrep. On day 1, medium was replaced with 20ml differentiation medium,

and on days 4 and 6, medium was half-changed, with 10ml fresh medium.
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2.6.2 Harvesting of differentiated hESCs

On day 8, the cells from the differentiation cultures were harvested by 20 minutes

incubation with Collagenase IV solution followed by 30 minutes in Trypsin-EDTA

solution. Cells were washed three times with ‘Washing Buffer’: Phosphate Buffered

Saline (PBS) without calcium or magnesium (PAA Laboratories), supplemented

with 5% FBS and 2mM EDTA. On the third wash, cells were passed through a

70-µm Cell Strainer (BD Biosciences) to remove any clumps, and then cells were

counted by trypan blue exclusion, either manually by microscope or automatically

using the Vi-CELL XR cell counter (Beckman Coulter).

2.6.3 Analysis of differentiation by flow cytometry

For flow cytometric analysis, the cell concentration was adjusted to 5 × 106 cells /ml

and 100µl of cells (i.e. 5 × 105 cells) were stained in 100µl staining volume for at

least 30 minutes using combinations of the following monoclonal antibodies:

CD31-PE, CD31-Alexa488, CD43-FITC, CD43-PE, and TRA-1-85-APC (more

information and manufacturers for antibodies used can be found in Table 2.1). For

dead cell discrimination, cells were stained with 7-Amino-actinomycin D (7-AAD).

Cells were analysed using the CyAn-ADP flow cytometer (Beckman Coulter), and

subsequent analysis was carried out using the Summit (Beckman Coulter) and

FlowJo (TreeStar) software programs.

2.6.4 Sorting of CD43+ cells by MACS and FACS

For MACS enrichment prior to sorting by FACS, harvested cells were subjected to

two MACS enrichments: dead cell depletion and enrichment on CD43.

First, for the dead cell depletion, cells were washed once with PBS (with added

magnesium, in the form of hydrous magnesium chloride at a final concentration of

0.1g/L) and then MACS Binding Buffer (Miltenyi Biotec). Cells were resuspended

in 100µl Dead Cell Removal Microbeads per 107 cells (Miltenyi Biotec) and

incubated at room temperature for 15 minutes. The mixture of cells and beads was

then passed through a LS positive selection column in a MACS separator, which was
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then washed four times with Binding Buffer. All the flow through was collected as

the live cell fraction.

Second, for the enrichment for CD43+ cells, the protocol described by Vodyanik &

Slukvin was adapted. Briefly, cells were centrifuged, and the pellet was resuspended

in an equal volume (i.e. if the pellet volume was 0.2ml, the pellet was resuspended in

0.2ml) – this is called the staining volume. The anti-CD43-PE antibody was added at

a 10th of this total volume (i.e. 40µl, in the above case), and the mixture was

incubated at 4ºC for 20 minutes. Cells were washed using Washing Buffer (PBS,

5% FBS, and 2mM EDTA), resuspended in the same staining volume as before, and

Anti-PE Microbeads added at a 10th of the volume. This mixture was incubated for

20 minutes at 4ºC. Cells were washed using Washing Buffer, and the cells were

passed through a LS positive selection column in a MACS separator. The column

was washed three times with Washing Buffer, removed from the MACS separator,

and then the cells adhering to the column were eluted in Washing Buffer.

For sorting of CD43+ cells directly by FACS, harvested cells were stained with

TRA-1-85-APC, CD43-PE, and 7-AAD, and cells were sorted using the MoFlo cell

sorter (Beckman Coulter) on the basis of lack of 7-AAD staining, expression of

TRA-1-85, and expression of CD43.

2.7 Haematopoietic Precursor Colony Forming Assay

To assess the haematopoietic capacity of differentiated hESCs, sorted CD43+ were

resuspended in 0.3ml differentiation media (αMEM, 10% FBS, 100µM MTG, 50µM

Ascorbic Acid, and 1× PenStrep), and added to a pre-aliquotted tube containing 3ml

of methylcellulose-based medium (MethoCult H4435, STEMCELL Technologies).

The tube was vortexed to mix and incubated in a 37ºC water bath for 10 minutes to

allow bubbles to dissipate. Using a blunt-end needle (STEMCELL Technologies)

and a 1ml syringe (BD Biosciences), cells in MethoCult were dispensed into three

35mm low adherence dishes (BD Biosciences), which were placed inside a square

petridish (Nalgene Nunc) with an open 35mm filled dish with dH2O. After two

weeks, the dishes were checked for colonies containing differentiated cells.
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2.8 Differentiation of hESC-derived haematopoietic precursors
towards B lymphoid lineage

Sorted CD43+ haematopoietic precursors from hESC differentiation were

differentiated towards B lymphoid lineage as described in Vodyanik et al 2006. To

summarise, sorted CD43+ cells were seeded onto Mitomycin-C-inactivated MS-5

stromal cell monolayers, at a density of 103 cells per well of 6-well plates (MS-5

cells kindly provided by Claudine Schiff, Centre d’Immunologie de Marseille

Luminy, Université de la Méditerranée). Differentiation media consisted of αMEM

supplemented with 10% FBS, 100µM MTG, 50ng/ml Stem Cell Factor (SCF),

50ng/ml Fms-related tyrosine kinase 3 ligand (Flt-3L), 20ng/ml Interleukin-7 (IL-7),

and 5ng/ml Interleukin-3 (IL-3; all cytokines from Peprotech). Media was

half-changed every 4 days, with media without IL-3. All cells were harvested on the

fourth week of culture (both adherent and non-adherent), and analysed by qPCR.

2.9 REH cell culture

The REH cell line was obtained from the American Type Culture Collection

(ATCC). Cells were cultured in RPMI-1640 (Gibco) supplemented with 10% FBS

and 2mM L-glutamine. Cells were passaged by centrifugation at 300g for 5 minutes

and were commonly split at a 1:10 ratio. Stably transfected REH cells (REH:TEL

and REH:pCIneo) were maintain in media supplemented with 600µg/ml G418 and

1× PenStrep.

2.10 Transfection of REH cells with DNA plasmids

Transfection of REH cells was performed using the NEON electroporation system

(Invitrogen). REH cells were resuspended at a concentration of 1×107 cells/ml, in

Resuspension buffer R. 10µl of cells (i.e. 1×105 cells) was mixed with 0.5µg DNA,

and was electroporated using the NEON transfection system, with 2 pulses of 1050V

with a pulse width of 30ms. Cells were then dispensed into 6-well plates containing

pre-warmed REH media. Two days after transfection, the media was replaced,

supplemented with 600µg/ml G418.
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2.11 Transduction of REH cells with viral vectors

Transduction of REH cells was performed by spinoculation; 106 REH cells were

resuspended in 500µl of media without FBS, and mixed with 500µl of viral

supernatant (either MSCV-TEL-IRES-eGFP or MSCV-eGFP, cited in Morrow et al

2007 and kindly provided by Owen Williams, Institute of Child Health, University

College London) and Polybrene (Hexadimethrine bromide, at a final concentration

of 5µg/ml, Sigma-Aldrich), and centrifuge at 800g for 45 minutes at room

temperature. Cells were resuspended in the supernatant, and plated out into a 6-well

plate. 1ml of media without FBS was added, and incubated at 37ºC. 24 hours later,

media was replaced with media containing FBS. Cells expressing GFP were sorted

by FACS 48 hours after the initial transduction.

2.12 Gene expression profiling by qPCR

RNA extract, cDNA synthesis, and qPCR for all cells followed the same protocol.

Cells were lysed by resuspending in 350µl RLT buffer (Qiagen), and RNA was

extracted using the RNAeasy Spin Column Kit (Qiagen), following manufacturer’s

instructions. RNA concentration was assessed using NANOdrop (Thermo

Scientific). cDNA was synthesised using the EZ-First Strand Kit (Biological

Industries), using between 0.5µg and 1µg of RNA, following manufacturer’s

instructions. cDNA was either used immediately or stored at -20ºC for future use.

Real-time quantitative PCR was performed with the SYBR Green PCR kit using the

ABI Prism 7300 system (Applied Biosystems) following manufacturer’s

instructions. Expression of target genes was normalised to GAPDH and expressed as

a fold change in expression using the change in cycle threshold (ΔΔcT) method.

Primer sequences for target genes are listed in Table 2.2.

2.13 Microarray

The integrity of the RNA samples was assessed using Agilent 2100 Bioanalyzer, and

were all deemed to be of good quality. RNA was subjected to a further RNA quality

control test; Figure 4.1C shows the fragments of amplified (complimentary) RNA

for loading onto the chip are of similar sizes between samples and within the
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necessary range (200-1000 nucleotides). Raw data from the microarray was

normalised so that median values and spread of data for both replicates in each group

were the same (Figure 4.1D). The microarray platform used was Agilent Human

Gene Expression 4×44k Microarray. The same RNA as used in the microarray was

used again to validate the expression of a selection of genes (Table 4.3) by qPCR

(Figure 4.3, Figure 4.8, and Figure 4.9).

2.14 EdU uptake assay

Proliferation of REH cells was assessed by directly measuring DNA synthesis using

the ‘Click-iT EdU Flow Cytometry Assay Kit’ (Invitrogen). Briefly, the nucleoside

thymidine analog EdU was added to cells in media at a final concentration of 10µM.

After incubating for one hour, cells were washed, fixed with 4% PFA, and

permeabilised with PBS-Triton (0.15% v/v), before reacting the EdU with a

fluorescently-labelled azide (either azide-Alexa488 or azide-Alexa647, depending on

the application) using the reagents included in the kit. EdU uptake was assessed by

flow cytometry.

2.15 Cell cycle analysis

REH cells transduced with either GFP or TEL-GFP oncoretrovirus were seeded into

culture for 96 hours. At 24 hour time points, samples were taken, and washed in PBS

by centrifugation. Cells were then fixed with 4% PFA, before being permeabilised

with PBS-Triton. The cells were finally stained with DAPI (1 in 2000 dilution in

PBS-Triton), washed in PBS, and analysed by flow cytometry.

2.16 Apoptosis assay

REH cells transduced with either GFP or TEL-GFP oncoretrovirus were seeded into

culture for 72 hours with or without staurosporine (STS; 1µM). At 24 hour time

points, samples were taken, washed once in PBS, and washed again in “Annexin-V

binding buffer” (10mM HEPES, 140mM NaCl, and 2.5mM CaCl2 in water), by

centrifugation. The cells were resuspended in 100µl binding buffer, to which 5µl

Alexa647-conjugated anti-Annexin-V antibody and 5µl of pre-diluted DAPI (1% v/v
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in binding buffer) was added. Cells were incubated at room temperature in the dark

for 15 minutes, before 400µl binding buffer was added, and the cells were analysed

by flow cytometry.

2.17 Statistical analysis

All statistical analyses were performed using GraphPad Prism 5 software. To

perform statistical analysis on the data from the differentiation of hESC (Figure 3.8),

I first assessed whether the data fitted a normal distribution using the in-built

D’Agostino-Pearson omnibus normality test (D'Agostino & Pearson 1973). None of

the data sets passed the test for normality, due to the small sample sizes used.

I therefore analysed data using non-parametric statistical tests, specifically the

Mann-Whitney test for comparing two groups (the non-parametric counterpart to

Student’s t-test), and Kruskal-Wallis test for comparing three or more groups (the

non-parametric counterpart to One-way ANOVA). Statistic significance was set to

p values less than 0.05.
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2.18 Antibody Table

Specificity Label Clone Isotype Manufacturer Host Use

Annexin-V Alexa647 n/a n/a Molecular Probes Goat FC

Anti-CD31 PE WM59 IgG1, κ BD Pharmingen Mouse FC

Anti-CD31 Alexa488 M89D3 IgG2a, κ BD Pharmingen Mouse FC

Anti-CD43 PE/FITC 1G10 IgG1, κ BD Pharmingen Mouse FC

Anti-GFP Alexa488 - IgG Molecular Probes Rabbit ICC

Anti-HA tag Purified n/a
(polyclonal)

IgG AbCam Rabbit WB,
ICC

Anti-SSEA-1 APC MC-480 IgM R&D Systems Mouse FC

Anti-SSEA-4 PE MC-813-70 IgG3 Millipore Mouse FC

Anti-TRA-1-60 FITC TRA-1-60 IgM Millipore Mouse FC

Anti-TRA-1-85 APC TRA-1-85 IgG1 R&D Systems Mouse FC

Anti-Rabbit
IgG secondary

HRP n/a
(polyclonal)

IgG AbCam Goat WB

Table 2.1 – List of antibodies used in this thesis
Abbreviations- PE: R-Phycoerythrin; FITC: Fluorescein isothiocyanate; APC: allophycocyanin;
HRP: Horseradish Peroxidase; FC: Flow Cytometry; ICC: Immunocytochemistry; WB: Western Blot.
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2.19 Primer list

Gene Target Forward Primer (5’  3’) Reverse Primer (5’  3’)

ANGPTL4 GGCCAAGCCTGCCCGAAGAA CGGTGCAGGCGGCTGACATT

BCL-2 GTACCTGAACCGGCACCTGCAC AGCCTCCCATTGCCCCAGGAG

CD10 TGCACAGGTGTGGTGTGGAACC TGCGGCAGTGAAAGGCTTCTGA

CD19 GCCGGTCGCCAGGACAATGG AGGGAGGTTGCTTCCCGGCT

CD34* TGGACCGCGCTTTGCT CCCTGGGTAGGTAACTCTGGG

CD43 GCCCCAGTGCTGCGTCCTTA GCTGTTGTGCTCCCCAGAGCG

CDKN1B AAGAGGCGAGCCAGCGCAAG GGCCGCGGGGGTCTGTAGTA

CDKN2A AGACCCAACCTGGGGCGACT CGAGTGCTCGGAGGAGGTGC

CLIC5 GGCGACAGCTAACGGGGACG CGCTGAGAGAAAGGACAGTTGCCG

EKLF* CGGACACACAGGATGACTTC GGCTGGTCCTCAGACTTCAC

EPOR TGGACCCCCTCATCCTGACGC AACTCGCTCTCTGGGCTCGGG

GAPDH AAGGTGAAGGTCGGAGTCAA AATGAAGGGGTCATTGATGG

GATA1* GGGATCACACTGAGCTTGC ACCCCTGATTCTGGTGTGG

GATA2* GCGTCTCCAGCCTCATCTT GGAAGAGTCCGCTGCTGTAG

HPRT § GTTGGATACAGGCCAGACTTTGTTG GTTGGATACAGGCCAGACTTTGTTG

IKZF2 GCACAAACACACGTTAGGCACAG ACCCCTCAAAGAGGAGGTGACAA

MB1 CCGCACAATAGCAGCAACAA CCACGTGTAGTTGCCATGGA

NANOG GCCCTGATTCTTCCACCAGTCCC TGACCGGGACCTTGTCTTCCTT

NETO ATCCCCCTGACCGGGAATGC TTTGCACTCCCAAGACGGTTCAA

OCT4 GCCACATCGCCCAGCAGCTT GCCCTTCTGGCGCCGGTTAC

p53 § GGGACAGCCAAGTCTGTTATGTGC CTGTCTTCCAGATACTCGGGATAC

PAX5 CGTTTAGTTTCAGCTCAGTGATCAG CGCTCACAGGTCGGAATAATTC

PIK3C3† GCCTTGGAACTTCTGGGAAAA CAACAGCATAACGCCTCACAG

PU.1* CACAGCGAGTTCGAGAGCTT GATGGGTACTGGAGGCACAT

RAG1 TTTGCCGGGTCTGCATTC TCAGTAGGGAAGCATGGATATCG

SCL* ATGAGATGGAGATTACTGATG GCCCCGTTCACATTCTGCT

SMAD1 GGCGGAGAAAGGAGAGGCCGAG GTCCGTGTGGGAGCACGAGTGG

TDT TTGCCCTGTTGGGATGGA CATAGCGCCGGAGGTCTCT

TTBK CGGGCGAGTGGAGCTACCTG ACTGGCCTGTCGGTCAGCGT

TEL‡ TCCCAACGGACTGGCTCGACT TAGTGGCGCAGGGCTCTGGA

TEL/AML1‡ CATCATGGTCTCTGTCTCCCCGCC TGGCATCGTGGACGTCTCTAGAAGG

TNFRSF7† AGGGACAAGGAGTGCACCG AAGGTAAGTGGGTGGGCTGAG

VpreB ACTGAAGACAGCAGAGGCAC GCTCCACCCTCTTCCATGAC

Table 2.2 – List of primer s used in this thesis
* Primers from Zambidis et al 2005
† Primers from Gandemer et al 2007
§ specific for mouse gene, all others specific for human genes
‡ Primers for TEL amplify across exon 7-8 of TEL, TEL/AML1 is across the breakpoint of TEL/AML1.
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Chapter 3: The effects of TEL/AML1 on haematopoietic
development of human embryonic stem cells

3.1 Introduction

There are critical aspects of TEL/AML1+ acute lymphoblastic leukaemia which are

yet to be elucidated. For example, it is commonly assumed that the original

translocation event occurs in the haematopoietic stem cell (HSCs), though that has

not been proven (le Viseur et al 2008). In addition, the frequency of the translocation

generating TEL/AML1 in the normal, non-leukaemic, population is subject to debate

(Mori et al 2002; Brown 2011; Lausten-Thomsen et al 2011). Also, the interaction

between different leukaemic sub-clones in a single patient, and their ‘evolution’ of

over the course of the disease (Anderson et al 2011; Notta et al 2011b), complicates

the interpretation of any study using whole bone marrow, and therapeutic

approaches.

As more is revealed about the nature of TEL/AML1+ leukaemia, researchers will

continue to use model systems as tools to address questions about fundamental

aspects of the disease. Such model systems can be divided into three categories:

in vivo models using transgenic animals, xenograft models using ex vivo

patient-derived material, and studies using cell lines in vitro.

3.1.1 In vivo models

Firstly, in vivo mouse models, either studying transgenic animals (Schindler et al

2009) or recipients of TEL/AML1-transduced bone marrow (Tsuzuki et al 2004),

have been used to investigate the development and clonal evolution of TEL/AML1+

HSCs. A common feature is that TEL/AML1 on its own is not sufficient to cause

leukaemia in most of the mouse models, consistent with predictions made from the

analysis of leukaemia in monozygotic twins (Wiemels et al 1999b). Neither

endogenous expression (Andreasson et al 2001; Ford et al 2009) nor exogenous

expression of TEL/AML1 (Morrow et al 2004; Tsuzuki et al 2004; Fischer et al

2005; Lyons et al 2010) caused overt leukaemia.
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Expression of TEL/AML1 in vivo increased quiescence in HSCs (Schindler et al

2009), and caused abnormalities in B cell development, either causing increased self-

renewal of B cell precursors (Morrow et al 2004; Morrow et al 2007; Lyons et al

2010) or impairment of transition from pro-B to pre-B cells (Tsuzuki et al 2004;

Fischer et al 2005). The result is the accumulation of persistent early B cell

progenitors, which is believed to represent a ‘pre-leukaemic state’ that predisposes

individuals for further transformation and ultimately overt leukaemia.

Other groups have focussed on the cooperation between TEL/AML1 and common

secondary mutations. Bernardin and colleagues (2002) transduced bone marrow with

TEL/AML1 and transplanted into syngeneic mice, and only 2 of 9 mice developed

leukaemia (one T-cell ALL, one B-cell ALL). Bone marrow from mice lacking

p16-INK4a and p19-ARF genes (a common mutation in childhood ALL; Takeuchi et

al 1995) transduced with TEL/AML1 gave rise to leukaemia in 6 of 8 recipient mice,

but none could be diagnosed as B-lineage. TEL/AML1+ transgenic mice described

by Schindler and co-workers (2009) have a predisposition for haematological

malignancies when exposed to chemical mutagens (though mostly T cell lymphomas

and leukaemias). Finally, a mouse model developed by van der Weyden and

colleagues (2011) expressed TEL/AML1 under the control of the endogenous Etv6

locus. Using this in combination with a ‘Sleeping Beauty’ transposase, they

performed an insertional mutagenesis screen to identify genes that when mutated

contribute towards leukaemia. 20% of the mice developed B lineage leukaemia, and

the screen gave an insight into cooperating mutations, both known and novel.

3.1.2 Xenograft models

Secondly, models using xenografts of patient-derived cells or cord blood

haematopoietic progenitors transduced with TEL/AML1 have been used to imitate

human disease features. There is an increased morbidity in SCID mice receiving

material from patients who suffered relapse shortly after discontinuing treatment

than those whose leukaemia relapsed later or did not relapse at all (Kamel-Reid et al

1991), a feature that could even be used to predict which patients would relapse

(Uckun et al 1995). Leukaemic cell invasion in NOD/SCID mice was commonly



CHAPTER 3: TEL/AML1 IN HAEMATOPOIETIC DEVELOPMENT

77

observed in the spleen, but only rarely into other organs, mimicking the human

disease (Nijmeijer et al 2001).

Subsequently, and following work from John Dick and contemporaries working in

Acute Myeloid Leukaemia (Lapidot et al 1994; Bonnet & Dick 1997) the most

common use of xenografts has been focussed on the identification of the cell which

gives rise to the leukaemia, referred to as the ‘leukaemic stem cell’, or LSC.

Cobaleda and colleagues identified from patients with the ‘Philadelphia

Chromosome’ subtype of ALL (‘Ph+ ALL’) a population of CD34+CD38– cells

which propagated leukaemia in SCID mice, also shown to be the engrafting

population from AML (Bonnet & Dick 1997) as well as normal bone marrow

(Cobaleda et al 2000). In TEL/AML1+ ALL it was found that CD34+CD38–CD19+

cells, a B lineage population not seen in normal bone marrow, were able to

self-renew in vitro and in vivo giving rise to TEL/AML1+ cells, whereas their CD19–

counterparts gave rise to TEL/AML1– cells of various lineages (Castor et al 2005).

This population could be observed in the peripheral blood of the healthy twin of a

TEL/AML1+ leukaemia patient (but not in that of an unrelated normal age-matched

control), and that, by VDJ rearrangement sequencing, they are likely to derive from

the same monoclonal population in both twins, indicating a pre-natal transfer from

one twin to the other (Hong et al 2008). In addition, the transduction of cord-blood

with TEL/AML1 generated the CD34+CD38–CD19+ population, which could

transfer a ‘pre-leukaemic’ state in serially transplanted mice. The concept of LSCs

has clinical relevance; it was found that bone marrow from ‘poor outcome’ ALL

patients lead to high engraftment in NOD/SCID/IL2Rγ-/- (NSG) mice, indicating

high numbers of LSCs (Morisot et al 2010).

However, there has been some ambiguity about the identity of the LSC. Kong and

colleagues (2008) showed that both CD34+CD38–CD19+ and CD34+CD38+CD19+

cells could initiate ALL in newborn NSG mice, whereas le Viseur and co-workers

(2008) showed that cells comprising of either CD34+CD19–, CD34+CD19+, or

CD34–CD19+ were able to re-establish all leukaemic cell phenotypes when

transplanted into NOD/SCID mice. Various technical explanations have been put

forward for these discrepancies, including sub-100% purity of flow-sorted

populations, the genetic backgrounds and ages of mice used for xenografts (Shultz et
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al 2007), and low levels of clearance of antibody-stained cells (Taussig et al 2008).

However, it has been suggested that the immunophenotypically defined populations

are more similar functionally than previously thought and that they fluctuate between

different states (le Viseur et al 2008).

3.1.3 Models using cell lines

Thirdly, patient-derived cell lines and in vitro studies have been used to investigate

molecular and cellular aspects of leukaemia. One of the caveats of this approach is

that cell lines may acquire genetic changes to adapt to growth factor-independent

proliferation ex vivo. Nevertheless, gene expression analysis of leukaemia cell lines

and primary leukaemia samples has shown that cell lines harbouring similar genetic

lesions cluster together, as well as with patients who also carry that lesion

(Andersson et al 2005a), indicating that the transcriptional profile in primary

leukaemia samples remains intact in cell lines despite extended ex vivo culture, and

so are a valuable tool for studying leukaemia.

Using leukaemia patient-derived cell lines, common chromosomal changes (Uphoff

et al 1997), other genomic changes (Tsuzuki et al 2007), and how TEL/AML1 is

processed in the cell (Chakrabarti et al 2000) have been identified and confirmed in

primary patient samples. In particular, the molecular biology of TEL/AML1 and its

transcriptional effects have been studied using cell lines. It was discovered that the

fusion of TEL to AML1 and its isoforms represses AML1 targets (Hiebert et al

1996), that TEL/AML1 can only have its suppressive effects on AML1 targets when

dimerised (Fears et al 1997), and that it also has an effect on wildtype TEL (Gunji et

al 2004).The role of the domains of TEL and AML1 in the DNA binding of the

fused TEL/AML1 has also been studied using TEL/AML1 mutants transduced into

cell lines (Morrow et al 2007).

The use of cell lines has also helped identify pathways that contribute to the survival

and pathogenesis of leukaemic cells. For example, the role of TCL-1 has been

identified and investigated using cell lines (Andreasson et al 2001; Fears et al 2002),

as well as the circumvention of the mitotic checkpoint (Krapf et al 2010) and the

anti-apoptosis networks that leukaemia cells exploit (Accordi et al 2007; Diakos et al
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2007; Fuka et al 2011a). The protection from chemotherapeutic drugs that bone

marrow stroma confers has been elucidated in leukaemia cell lines (Dosen-Dahl et al

2008). Cell lines have also been used to assess the effects of common mutations, for

example, by the overexpression of TEL (Tsuzuki et al 2007) or the RNAi-mediated

silencing of TEL/AML1 itself (Fuka et al 2011b; Zaliova et al 2011). The role of

microRNA (miRNAs) in leukaemia, a relatively new direction in cancer research,

has also been investigated using cell lines (Gefen et al 2009; Diakos et al 2010).

3.1.4 The prospect for a hESC-based model

Whilst important discoveries have been made with these models, each of these

approaches has its disadvantages. Haematopoietic development in animal models

does share many characteristics with that in humans, but there are subtle differences

that limit the application of results from transgenic animal models to human disease

(for a review of mouse models of leukaemia, see Bernardi et al 2002). For similar

reasons, the xenograft of human haematopoietic precursors into mice is dependent on

the mouse strain being used, some of which may skew haematopoietic development

toward certain lineages (Shultz et al 2007; McDermott et al 2010). However,

primary human material, whether in the form of bone marrow samples or cord blood

samples, is difficult to obtain, and the inherent genetic variability between donors

may conceal subtle but significant differences. Cell lines avoid this problem, but

there are still concerns about the adaptations made by these cells to survive in growth

factor free conditions (Matsuo & Drexler 1998), either as a result of their malignant

transformation, or by exogenous factors such as Epstein-Barr virus (Gerber et al

1969). In addition, cell lines at best only provide a ‘snapshot’ of a particular human

cell type and cannot provide information about its developmental origins.

The use of human embryonic stem cells (hESCs) as a source of haematopoietic

precursors for a model of TEL/AML1+ leukaemia would complement the above

models, but could also address some of their shortfalls. Working with a human

system enables a more direct comparison to the disease than might be possible with

mouse models, allowing, for example, gene expression changes to be compared with

array data from patients. The use of hESCs – pluripotent cell lines that can be

efficiently and genetically manipulated, expanded, and differentiated in vitro –
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provides a potentially limitless source of syngeneic human haematopoietic

precursors, capable of differentiating to mature blood cell types, and avoids the

difficulties of culturing human HSCs ex vivo.

3.1.5 Use of ES cells in models of leukaemia and other diseases

There have been examples of the use of mouse ESCs (mESCs) to study leukaemias.

The effects of BCR-ABL fusion gene (associated with Chronic Myeloid Leukaemia,

or CML) upon the differentiation capacity of mESCs has been investigated, and has

been shown to inhibit haematopoietic differentiation via activation of STAT3

(Coppo et al 2003), increasing the numbers of multipotent and myeloid-committed

haematopoietic progenitors whilst decreasing erythroid progenitors (Era & Witte

2000), consistent with observations in patients in the chronic phase of CML.

Haematopoietic progenitors derived from BCR-ABL-transduced mESCs cause

leukaemia upon injection into mice which recapitulated specific aspects of CML,

such as IL-3 production (Peters et al 2001).

Recently a hESC model of MLL/AF4+ leukaemia has been described (Bueno et al

2012). In infant pro-B ALL, MLL/AF4 (generated by the t(4;11) translocation) is

associated with a short latency and a poor prognosis. hESCs expressing MLL/AF4

(transduced with lentiviral vector) show an increased ability to generate

haemato-endothelial precursors, but that differentiation from these cells is skewed

towards endothelium and away from haematopoiesis. The significance of these

results is not known, although bone marrow mesenchymal stem cells carrying

MLL/AF4 have been reported in infant MLL/AF4+ B-ALL, suggesting a

pre-haematopoietic cell of origin for this leukaemia (Menendez et al 2009).

In addition, there have been several examples of the use of hESCs for modelling

other diseases. Pre-implantation genetic diagnosis of blastocysts has allowed the

identification of embryos carrying mutations for congenital diseases, which has

permitted the derivation of hESCs (Mateizel et al 2006) and their use to model

diseases such as Fragile-X syndrome (Eiges et al 2007), Turner’s syndrome (Urbach

& Benvenisty 2009), and Huntington’s disease (Niclis et al 2009). Homologous

recombination in hESCs has also been used to model disorders such as Lesch-Nyhan
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disease (Urbach et al 2004), Paroxysmal nocturnal haemoglobinuria (Zou et al

2009), and Ataxia-telangiectasia (Song et al 2010).

These studies into the use of mESCs and hESCs to study leukaemia and other

diseases demonstrate the potential of a hESC-based model which can be utilised at

multiple levels of leukaemia research.

3.1.6 Embryonic stem cells

Embryonic stem cells (ESCs) were first described in 1981 by two groups attempting

to culture the pluripotent cells in mouse pre-implantation blastocysts (Evans &

Kaufman 1981; Martin 1981). These cells are able to form teratocarcinomas

containing all three germ layers when injected into mice, a property previously

described in cells from germ cell tumours, termed embryonic carcinoma cells, or

ECCs (Kleinsmith & Pierce 1964). mESCs are also able to contribute to the embryo

when injected into mouse blastocysts.

The derivation of embryonic stem cells from human blastocysts (hESCs) was

demonstrated in 1998 by Thomson and colleagues, and shared the same

characteristics as mESCs, namely derived from the pre-implantation blastocysts,

indefinite pluripotent culture in vitro, and potential to form cells from all three germ

layers (Thomson et al 1998). As of December 2011 there were over 1,000 described

hESC lines, but three of the cell lines described in Thomson’s paper, H1, H7, and

H9, are still the most widely used today (Levine 2011).

3.1.7 Definition of hESCs by pluripotency markers

Embryonic stem cells are defined by two main characteristics – their capability for

indefinite self-renewal, and their pluripotency, usually demonstrated by their ability

to form teratomas containing tissues of all three germ layers when implanted into

immunodeficient mice (Thomson et al 1998). The expression of certain genes and

cell surface molecules has also been used as markers to define hESCs.

The transcription factor OCT4, coded for by the gene POU5F1, is a critical regulator

of pluripotency. OCT4 protein is present in the mammalian oocyte, and is expressed
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at low levels from the 4-cell stage of the fertilised zygote, before being upregulated

from the 8-cell stage (Pesce et al 1998). In the blastocyst, whilst the expression of

OCT4 remains high in the inner cell mass, its expression is lost upon differentiation

to form the trophoblast, which go to form the extra-embryonic tissues (Nichols et al

1998). Consistent with this, Oct4–/– embryos develop up to blastocysts stage, but fail

to form an embryo as the inner cell mass loses its pluripotency and differentiates

towards the trophoblast lineages (Nichols et al 1998).

NANOG is another transcription factor required for the maintenance of pluripotency

in hESCs. The loss of Nanog in mESCs caused a loss of pluripotency and

differentiation to trophoblast lineages (Mitsui et al 2003), similar to the effects of the

loss of OCT4. It has since been discovered that pluripotency is maintained by the

cooperation of OCT4, NANOG, and another transcription factor SOX2, by inhibiting

the expression of transcription factors involved in lineage specification, and

stimulating the expression of other transcription factors involved in pluripotency

(Boyer et al 2005). In addition, these transcription factors co-operate to stimulate

their own expression, and in so doing form a self-regulatory ‘feed-forward’ loop

(Boyer et al 2005).

The cell surface antigens Stage-Specific Embryonic Antigen-4 (SSEA-4) and

SSEA-1 are glycolipids used to distinguish between pluripotent and differentiating

cells. Production of SSEA-4 is high in undifferentiated pluripotent cells, such as the

embryonic carcinoma cell lines 2102Ep, but as pluripotent cells differentiate,

production of SSEA-4 ceases and SSEA-1 production increases (Kannagi et al

1983). TRA-1-60 is another antigen expressed on the cell surface of pluripotent cells

(Draper et al 2002), and has been identified as a glycosaminoglycans (Badcock et al

1999), which might be attached to the proteoglycan podocalyxin (Schopperle &

DeWolf 2007). The functions of these cell surface antigens are not known.

3.1.8 Haematopoietic differentiation of hESCs

Haematopoietic differentiation from hESCs was first described by Kaufman and

colleagues (Kaufman et al 2001), using a co-culture methods with murine bone

marrow stromal cells. Haematopoiesis from hESCs goes through waves of primitive
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and definitive stages (Zambidis et al 2005), mimicking the development of blood

lineages during embryonic development. To date, hESC have been differentiated to

functional cells comprising of almost the full range of adult haematopoietic cell

types, including megakaryocytes and platelets (Lu et al 2011), enucleated red blood

cells (Lu et al 2008), mast cells (Kovarova et al 2010), neutrophils (Yokoyama et al

2009), eosinophils (Choi et al 2009), monocytes and macrophages (Klimchenko et al

2011), dendritic cells (Slukvin et al 2006), T cells (Timmermans et al 2009), and NK

cells (Woll et al 2005, Vodyanik et al 2006). Differentiation towards B cells has

been demonstrated up to pre-B cell stage with multiple genomic D-JH

rearrangements (Vodyanik et al 2006; Carpenter et al 2011), but as of yet no VH-DH

rearrangements, and no secretion of antibodies typical of mature plasma cells.

Basophilic granulocytes have been produced (e.g. Ma et al 2007), but no functional

assays have been performed on such cells.

There are two main methods of haematopoietic differentiation of ES cells: embryoid

bodies and stromal co-cultures. Differentiation of ES cells by embryoid bodies, small

spheroid aggregates of ES cells, follows closely early embryonic development

(Keller 1995; Leahy et al 1999). The resultant spontaneous lineage specification in

human embryoid body cultures can be directed towards haematopoietic

differentiation using a cocktail of haematopoietic cytokines, for example Stem Cell

Factor (SCF), Flt-3 Ligand (Flt-3L), Interleukins 3 and 6 (IL-3 and IL-6),

Granulocyte Colony-Stimulating Factor (G-CSF), and Bone Morphogenic Protein-4

(BMP-4; Chadwick et al 2003).

Haematopoietic differentiation by co-culture is dependent upon the contact between

ES cells and stromal cell lines derived from sites of haematopoiesis (Wilson &

Trumpp 2006). The OP9 cell line, derived from the bone marrow of op/op mice

deficient in Macrophage Colony-Stimulating Factor (M-CSF) was first used to

differentiate mESCs (Nakano 1995), and later for hESCs (Vodyanik et al 2005). S17

cells, generated from a long-term bone marrow cultured to enrich for myeloid cells

(Collins & Dorshkind 1987), are another popular cell line used to differentiated

hESCs (Kaufman et al 2001; Qiu et al 2005). Cell lines derived from the first site of

definitive haematopoiesis in the mouse embryo, the aorta-gonad-mesonephros

(AGM) region, have also been used to induce haematopoietic differentiation in
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hESCs (Ledran et al 2008). One advantage of the co-culture systems is that they do

not require supplementary cytokines.

3.1.9 Methods of transgene expression in hESCs

The recent derivation of iPSCs from cord blood (Giorgetti et al 2009; Haase et al

2009; Ye et al 2009) and peripheral blood (Chou et al 2011) will undoubtedly lead to

models of haematological malignancies using iPSCs derived from leukaemia patients

in the future (see section 3.1.10). In the meantime, hESCs could fulfil this role by the

exogenous expression of TEL/AML1 (Lensch & Daley 2006; Bueno et al 2007). The

methods by which this could be achieved fall in to three broad categories:

constitutive exogenous promoters, inducible promoter systems, and the use of

endogenous promoters.

Constitutive and stable expression of GFP has been achieved using the

phosphoglycerate kinase 1 (PGK) promoter, cytomegalovirus (CMV) promoter,

human elongation factor 1 alpha (hEF1α) promoter, and chicken β-actin promoter

(Eiges et al 2001; Kim et al 2005). A chimeric promoter pCAG, containing elements

of human CMV, chicken β-actin, rabbit β-globin, and the virus polyoma mutant

enhancer sequence PyF101, was found to sustain high levels of expression in hESCs

over extended culture periods (Liew et al 2007). Other promoters have been

quantitatively compared using lentiviral vectors and show varying levels of

expression stability both in undifferentiated culture and upon differentiation

(Norrman et al 2010).

There is concern that the overexpression of any transgene can aberrantly affect cells

(including hESCs), presumably by the overloading of protein metabolism pathways,

in a phenomenon called ‘transgene toxicity’ (Vallier et al 2007; Zafarana et al 2009).

One solution to this problem is to express the gene under an inducible system. One

of the first instances of inducible expression in hESCs used a variant of a

Tetracycline-inducible system (Gossen et al 1995) to express GFP and

phosphatidylinositol glycan A (PIG-A; Zhou et al 2007). Later work showed that

inducible GFP expression could be maintained even upon directed differentiation in

vitro and in teratomas formed in vivo (Xia et al 2008).
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In this chapter, the inducible system I first used to express TEL/AML1 in hESCs is

called Tet-ON, and is based upon the tetracycline system (Gossen et al 1995), further

developed by Clontech. The expression of the gene-of-interest is controlled by the

binding of a constitutively-expressed recombinant tetracycline-dependent

transactivator (rtTA) to the tetracycline response element (TRE), which lies

upstream of a minimum CMV promoter. This binding only occurs in the presence of

doxycycline (a tetracycline derivative), so the expression of the gene-of-interest can

be “switched on” by administering doxycycline. The advantages of using an

inducible expression system, in particular a chemically inducible system like the

Tet-ON system, are three-fold: (1) the timing of expression can be controlled; (2) the

level of expression can be controlled by varying the concentration of doxycycline;

and (3) expression is controlled by a non-cytotoxic drug which would not have an

effect on non-transgenic cell lines, such as those used for co-culture differentiation

methods.

The use of endogenous promoters to appropriate the cell’s own gene expression

machinery has been demonstrated in hESCs. This work has mostly been described in

the context of the creation of ‘reporter genes’, where genes for fluorescent proteins

are expressed concurrently with a gene of interest, either indirectly under the control

of a promoter for the gene, or directly, by the disruption of one allele of this gene

with the fluorescent protein gene. For example, the expression of a GFP driven by

the Rex1 promoter in a extra-genomic plasmid vector (Eiges et al 2001) and the

disruption of the POU5F1 (Oct4) locus by homologous recombination (Zwaka &

Thomson 2003; Hockemeyer et al 2009) have been described to act as ‘pluripotency

reporter genes’, whereas the homologous recombination of a fluorescent protein

gene into the loci of Mixl1 (Davis et al 2008), Pitx3 (Hockemeyer et al 2009), Fezf2

(Ruby & Zheng 2009), and Olig2 (Ruby & Zheng 2009), all markers of

differentiation towards specific lineages, have also been demonstrated. In addition,

homologous recombination of transgenes has been achieved into loci such as the

human equivalent of the mouse ROSA26 gene (Irion et al 2007) and AAVS1

(Hockemeyer et al 2009), both of which contain genes ubiquitously and strongly

expressed in most cell types, and have been previously useful in the generation of

transgenic mice. Finally, homologous recombination has been used to disrupt genes

by insertional mutagenesis to demonstrate the use of hESCs to model diseases; for
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example, the X-chromosome HPRT gene to model Lesch-Nyhan disease (Zwaka &

Thomson 2003; Urbach et al 2004), X-chromosome PIG-A gene to model

paroxysmal nocturnal hemoglobinuria (Zou et al 2009), and bialleic disruptions of

p53 and ATM, recapitulating various cancers and Ataxia-telangiectasia respectively

(Song et al 2010).

3.1.10 Modelling human diseases with induced pluripotent stem cells

Differentiated somatic cells can be reprogrammed by transduction of transcription

factors active in embryonic stem cells (ESCs) to form cells resembling ESCs, called

‘induced pluripotent stem cells’, or iPSCs. This was demonstrated first in fibroblasts

taken from mice, where it was shown that the minimal set of genes required for

reprogramming, called ‘reprogramming factors’, comprised of Klf4, Sox2, c-Myc,

and Oct4 (Takahashi & Yamanaka 2006). These iPSCs would form teratomas when

injected subcutaneously into mice, and when injected into blastocysts would

contribute to embryonic development, two key tests of pluripotency. Soon after it

was shown that it was possible to generate iPSCs from human fibroblasts using the

same four factors (Takahashi et al 2007).

The impact of the technology to generate iPSCs goes beyond the study of

pluripotency or an alternative source of hESCs-like cells. The potential to use human

iPSCs for disease modelling and even drug screening was instantly recognised

(Zaehres & Scholer 2007). In theory, one could take fibroblasts from a diseased

patient to generate iPSCs, which could then be used to provide an unlimited source

of differentiated cells of any lineage to study their disease. This may be particularly

useful for diseases which do not have a suitable animal model or appropriate cell line

to study the disease (Saha & Jaenisch 2009). In addition, with respect to disease

modelling, iPSCs have an advantage over the alternative of genetically-modified

hESCs in that any disease-causing mutations do not necessarily have to be fully

identified before they can be modelled by iPSCs; all that is required is a patient

which to take cells from to be reprogrammed. However, there are challenges with

modelling human diseases with iPSCs, which fall roughly into three groups; firstly,

the reprogramming of human cells; secondly, the culture and differentiation of
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iPSCs; and thirdly, how amenably a specific disease is to being modelled in this

way.

The main concern with the method originally used to deliver the ‘reprogramming

factors’ into differentiated cell types, retroviral or lentiviral transduction, is that the

vectors will insert randomly into the genome and the genes will remain highly

expressed after reprogramming, which could affect the differentiation towards the

desired cell types, and/or any disease phenotypes from arising (Saha & Jaenisch

2009; Stadtfeld & Hochedlinger 2010; Grskovic et al 2011). To combat this, a

number of methods to generate ‘reprogramming factor-free’ iPSCs have been

developed. Integrating vectors can be removed by using either transposon vectors

such as piggyBac (Kaji et al 2009) or Cre-recombinase mediated excision (Soldner

et al 2009), but in the former the excision is inefficient and laborious, and the latter

still leaves behind viral promoters (Saha & Jaenisch 2009). Non-integrating vectors,

such as episomal vectors (Yu et al 2009), adenoviral vectors (Stadtfeld et al 2008),

or transient plasmid transfection (Okita et al 2008) have been used, though the

efficiency of transduction using these methods, and the possibility of fragments of

vector integrating, have been a concern. ‘DNA-free’ methods, such as the use of the

reprogramming factor proteins (Kim et al 2009), synthetic mRNA (Warren et al

2010), or miRNAs (Miyoshi et al 2011) have also been demonstrated, but

reprogramming with these methods remains low efficiency.

The theoretical possibility of deriving any cell types by the differentiation of human

ESCs or iPSCs in vitro is, in practise, much more difficult. Although various cell

lineages have been derived from these human pluripotent stem cells, assessed by

morphology and expression genetic and phenotypic markers, there have been only a

few examples of functional studies in differentiated cell types from hiPSCs; for

example with neural crest cell types (Lee et al 2009) and haematopoietic progenitors

(Raya et al 2009). There are additional problems if one wanted to use an iPSC- or

hESC-based disease model for drug screening, in that the large scale culture of

iPSCs in bioreactors is still a significantly more complicated process than normal

cell lines [ref]. In addition, the differentiation protocols required to differentiate

hESCs and iPSCs can take weeks, going through intermediate stages and producing
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a variety of different lineage which may not be the desired end product (Saha &

Jaenisch 2009; Grskovic et al 2011).

Ultimately, although the modelling of any human disease using iPSCs is an attractive

prospect, in reality some diseases will be less amenable to modelling in this way than

others. Diseases most likely to be modelled successfully will be cell-autonomous (so

that the phenotype of the disease will appear in the cells with little influence from

other cell types or the environment) and should manifest the phenotype rapidly with

high penetrance, so that the phenotype becomes apparent in a reasonable time-frame

for cells in culture (Grskovic et al 2011). Unfortunately, many diseases do not have

these traits; they are diseases that impact on multiple interacting cell types as well as

environmental factors (such as diabetes), or diseases which have a long latency

where symptoms manifest themselves over many years (such as Alzheimer’s

disease). It may be possible to replace some environmental influences and interacting

cell types, and accelerate disease progression with factors such as oxidative stress,

but the relevance of the model may then be called into question (Saha & Jaenisch

2009).

Researchers have already begun modelling a wide variety of diseases using iPSCs; a

list of these models can be found in Grskovic et al 2011. As a couple of illustrative

examples, I will give an overview of the iPSC models of Hutchinson-Gilford

progeria syndrome and familial Parkinson’s disease.

Hutchinson-Gilford progeria syndrome (HGPS) is a disease caused by a mutation in

the Lamin A (LMNA) gene, which is characterised by early onset of ageing, with

patients often dying in their teens from heart attack or stroke. Researchers studying

the disease derived iPSCs from HGPS patients (Zhang et al 2011) and differentiated

the cells towards the variety of mesenchymal cell lineages that are affected in the

disease, including vascular smooth muscle cells (VSMCs). The cells affected all

showed signs of DNA damage and nuclear abnormalities. The VSMCs from these

patients responded poorly to both hypoxic stress and electrical stimulation

attempting to mimic the pulse of blood circulation, compared to controls. This work

was confirmed by other researchers studying iPSCs derived from HGPS patients



CHAPTER 3: TEL/AML1 IN HAEMATOPOIETIC DEVELOPMENT

89

(Liu et al 2011); smooth muscle cells showed nuclear abnormalities and an

accelerated senescence, an indicator of vascular ageing.

Models of familial Parkinson’s disease using iPSCs have also been described, and

represent a rarer group of iPSC-based models of diseases which commonly manifest

themselves in adults. One example used iPSCs from a patient with a mutation in the

gene encoding leucine-rich repeat kinase-2 (LRRK2), the most common mutation

associated with Parkinson’s disease (Nguyen et al 2011). Dopaminergic neurones

derived from these iPSCs showed increased susceptibility to oxidative stress and

inducers of apoptosis, which is consistent with current understanding of the early

development of Parkinson’s disease. Since familial Parkinson’s disease has much in

common with the sporadic disease, it is hoped that this iPSC model and others like it

could be used to study the underlying biology of both.

So what are the prospects for acute lymphoblastic leukaemia models using iPSCs?

ALL meets some of the preferred criteria for modelling with iPSCs; it is a relatively

early onset disease (in children) that manifests itself rapidly (rapid progression

leading to death if left untreated) with a clear phenotype in a particular cell type (in

the form of lymphoblasts). Researchers have a choice of starting material to generate

iPSCs for haematological disease modelling, since efficient reprogramming has been

demonstrated from differentiated blood cells (e.g. Loh et al 2010) stem cells from

mobilised peripheral blood (Loh et al 2009), cord blood (Haase et al 2009), bone

marrow from both healthy donors and chronic myeloid leukaemia patients (Hu et al

2011), and even lymphoid cell lines (Choi et al 2011). In addition, methods for the

differentiation of both hESCs (Vodyanik et al 2006) and iPSCs (Carpenter et al

2011) toward B-lymphoid lineages (as well as T cells e.g. Timmermans et al 2009)

have already been established.

However, one potential obstacle to the modelling of ALL using a iPSC model are

that leukaemia as a haematological malignancy is not solely cell autonomous, as

there is evidence that leukaemia is as dependent on the interaction of the bone

microenvironment as normal haematopoiesis (e.g. Colmone et al 2008; Doan &

Chute 2012). In addition, it may be difficult to model the effects of infection in the

development of leukaemia as suggested by Greaves and contemporaries (described
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in the Introduction in section 1.8.6). Nevertheless, the opportunity to study

leukaemias using iPSCs derived from leukaemic blasts is attractive, and one that I

believe will be exploited in the near future. Such iPSCs could be used, for example,

to study the effects of mutations present in the blasts on their survival and

proliferation by the ‘correction’ of mutations using non-mutated transgenes.

3.1.11 Aims

The work presented in this chapter describes the development of a model of

TEL/AML1+ leukaemia, where transgenic hESCs expressing TEL/AML1 were

differentiated to generate haematopoietic progenitors. As controls for the effects of

TEL/AML1, I used hESCs expressing either GFP or a non-DNA binding mutant

TEL/AML1, which has a 39 amino acid deletion in the runt homology domain

(RHD) of the AML1 moiety of TEL/AML1 (the TEL/AML1-ΔRHD mutant ;

Morrow et al 2007). These transgenic hESCs were then differentiated towards

haematopoietic lineage and assessed for the expression of haematopoietic

transcription factors. The haematopoietic precursors produced during differentiation

were further directed B lymphocyte lineage to reproduce a leukaemic phenotype

in vitro. I assessed this by the expression of markers of early B cell differentiation,

and also tested for a selection of genes associated with TEL/AML1+ leukaemia.
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3.2 Results

3.2.1 Inducible expression system

To express TEL/AML1 in hESCs, I initially intended to make use of the

tetracycline-inducible expression system ‘Tet-ON’ (Gossen et al 1995; developed by

Clontech). A summary of the inducible expression mechanism was described in

section 3.1.9, and is shown in Figure 3.1A.

Using the TRE-TEL/AML1 and pCMV-rtTA plasmid constructs (provided by Owen

Williams, Institute of Child Health, UCL), I first tested the inducible expression

system by transfecting the TRE-TEL/AML1 plasmid into a MEF cell line which

contained the Tet-ON machinery to express a mutated form of p53 (Jiang et al 2001;

provided by Jo Milner, University of York); when doxycycline is administered, the

activated rtTA would bind not only to the TRE driving the expression of the mutant

p53 transcript, but also that driving TEL/AML1 expression. TEL/AML1 transcript

could then be detected by RNA extraction and cDNA synthesis, followed by PCR.

When doxycycline was administered to the transfected ‘Tet-ON MEFs’, a small

increase in the quantity of the PCR product for mutant p53 transcript was observed,

but no change in that for TEL/AML1 (Figure 3.1B). I subsequently discovered that

small quantities of the transfected TRE-TEL/AML1 plasmid remained in the RNA

extract despite performing an on-column DNA digest (Figure 3.1C). Any carryover

of the transfected plasmid DNA would end up acting as a template for the PCR.

To avoid any problems with significant TRE-TEL/AML1 plasmid carrying over into

the PCR reaction, it was decided to test the system ‘in reverse’ instead; that is, to

generate a stable cell line containing the TRE-TEL/AML1 (which has a neomycin

resistance gene as a selection marker), and transfect the pCMV-rtTA into the cell

line before administering doxycycline. However, despite several attempts, no

expression of TEL/AML1 could be detected in the transgenic HT1080 cells

transfected with the rtTA plasmid and treated with doxycycline (Figure 3.1D). It was

decided that a constitutive expression system would be developed instead.
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Figure 3.1 – Inducible expression system.
(A) Diagram showing mechanism of the Tet-ON inducible expression system. (B) RT-PCR showing no change
in quantity of PCR product for TEL/AML1 in the presence or absence of doxycycline, in the p53 mutant TET
cell line (C) RT-PCR showing presence of TRE-TEL/AML1 plasmid DNA in RNA extract, even after DNase
treatment. (D) Lack of inducible expression of TEL/AML1 in the presence of both rtTA and Doxycycline in the
‘reverse model’ (see text for details).

A

B

C

D



CHAPTER 3: TEL/AML1 IN HAEMATOPOIETIC DEVELOPMENT

93

3.2.2 Cloning of pCAG-TEL/AML1 plasmid

Constitutive expression of TEL/AML1 was controlled by the CAG promoter, a

CMV based promoter which does not lose expression in hESCs (Liew et al 2007).

I cloned the TEL/AML1 sequence into the pCAG-eGFP plasmid (provided by Peter

Andrews) after removing the eGFP sequence (Figure 3.2A). After several

unsuccessful attempts to make the plasmid using standard ‘restriction digest-ligation’

methods (not shown), the pCAG-TEL/AML1 construct was made by using the

InFusion cloning system (Clontech), outlined in Figure 3.2B. Primers were designed

to amplify the insert sequence that also contain a 15bp homology to the linearised

vector sequence either side of the insertion site (Figure 3.2C), and PCR conditions

optimised to give a single clean band by gel electrophoresis (Figure 3.2D). The

vector was then linearised using two restriction enzymes (AgeI and NotI, Promega),

excising GFP in the process (Figure 3.2E). Finally, the linearised vector and insert

are joined together using the InFusion cloning reagents, giving rise to plasmid

clones, from which clones comprising of both the vector and insert were selected

(Figure 3.2F).

3.2.3 Cloning of pCAG-TEL/AML1-ΔRHD plasmid

As a control for studying the effects of TEL/AML1 expression on haematopoiesis,

I used a non-DNA binding mutant TEL/AML1, which has a 39 amino acid deletion

in the runt homology domain (RHD) of the AML1 moiety of TEL/AML1 (Figure

3.3A, reproduced from Morrow et al 2007; construct provided by Owen Williams).

This TEL/AML1-ΔRHD sequence was inserted into the pCAG vector using a PCR-

based cloning method, as shown in Figure 3.3B. To summarise, primers were

designed to amplify the TEL/AML1-ΔRHD sequence and add restriction sites for

AgeI and NotI at the 5’ and 3’ ends, respectively, with an appropriate length ‘clamp

sequence’ (Figure 3.3C). The PCR reaction was optimised to produce a single clean

band corresponding to the size of the TEL/AML1-ΔRHD sequence, and this product

and the pCAG-eGFP vector were digested using AgeI and NotI restriction enzymes

(Figure 3.3D). Finally the linearised pCAG vector and the digested

TEL/AML1-ΔRHD PCR product were joined together by T4 Ligase (Promega),

from which clones comprising of both the vector and insert were selected (Figure

3.3E).
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Figure 3.2 – cloning of pCAG-TEL/AML1.
(A) Cloning strategy to construct the pCAG-TEL/AML1 plasmid. (B) Overview of the InFusion reaction. (C)
PCR primers used to amplify the TEL/AML1 insert for InFusion cloning, showing homology to pCAG vector
and TEL/AML1. (D) Optimisation of TEL/AML1 PCR amplification using the InFusion primers, to give single
clean band, indicated by the red box. (E) Digest of pCAG-eGFP, showing single digest with AgeI and NotI
enzymes, and double digest; note that the band representing double-digested vector has been cut out of the gel to
minimise mutagenesis by exposure to UV during imaging. (F) Gel showing the plasmid clones obtained after
InFusion ligation and transformation of bacteria. Clones #4 and #5 do not contain the TEL/AML1 insert, whereas
clones #1, #2, #3, and #6 do.
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Figure 3.3 – Cloning of pCAG-TEL/AML1-ΔRHD.
(A) Diagrams showing deleted regions in Runt Homology Domain (ΔRHD) mutant; reproduced from Morrow et
al 2007. (B) Cloning strategy for pCAG-TEL/AML1-ΔRHD (C) PCR primers used to amplify the
TEL/AML1-ΔRHD sequence for cloning, with restriction sites and ‘clamp’ regions indicated. (D) left, digest of
pCAG-GFP vector; right, PCR product of TEL/AML1-ΔRHD. (E) Gel showing plasmids (uncut and cut with
AgeI and NotI) from eight bacteria colonies after ligation and transformation, red boxes indicating lanes
containing fragments of the correct size.
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3.2.4 Characterisation of TEL/AML1 expression in transgenic hESC lines

The human embryonic stem cell (hESC) line H9 was transfected with

pCAG-TEL/AML1, pCAG-TEL/AML-ΔRHD, or pCAG-GFP, as described in

Chapter 2. Eight monoclonal transgenic cell lines were generated; four expressing

TEL/AML1 (referred to hereafter as T/AD1, T/AD2, T/AF1, and T/AF2), two

expressing GFP (GFP1 and GFP2), and two expressing TEL/AML1-ΔRHD (ΔRHD5

and ΔRHD6). Expression levels of TEL/AML1 and TEL/AML1-ΔRHD were

assessed by qPCR (using primers amplifying across the breakpoint of TEL/AML1,

which is unaffected in the ΔRHD mutant; Figure 3.4A), and are shown in Figure

3.4B, comparing with TEL/AML1 expression in REH cells, a TEL/AML1+

leukaemia patient-derived cell line (Rosenfeld et al 1977). Expression levels of

TEL/AML1 and the ΔRHD mutant were high (from 3-fold to 43-fold that of

TEL/AML1 expression in REH cells), with no TEL/AML1 expression in the GFP+

cell lines. TEL/AML1 and TEL/AML1-ΔRHD protein levels were assessed by

western blot against the HA-tag found at the 3’ end of both the TEL/AML1 and

ΔRHD mutant sequences. Protein levels are compared with the H9 hESC line, and

were consistent with transcript levels shown by qPCR (Figure 3.4B).

To identify the location of the TEL/AML1 protein in the cell, immunocytochemistry

was performed on cultures in glass chamber slides (as described in Materials and

Methods), and images were acquired using confocal microscopy. TEL/AML1 was

present in TEL/AML1-expressing hESC colonies and not in the ‘feeder layer’ of

iMEFs (Figure 3.5A; T/AD1 cell line), and with higher magnification TEL/AML1

can be seen localising to the nucleus (Figure 3.5B; colocalisation with DAPI,

staining double-stranded DNA). TEL/AML1 was not observed in GFP-expressing

hESC lines (Figure 3.5C), which were confirmed as positive for GFP (Figure 3.5D).
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Figure 3.4 – Characterisation of TEL/AML1 expression in transgenic hESC lines.
(A) Diagram indicating features the cDNA sequences of TEL/AML1 and TEL/AML1-ΔRHD, running 5’ to 3’, 
left to right. Oligonucleotide primers to test for expression of TEL/AML1 or TEL/AML1-ΔRHD are shown in 
red, across the breakpoint of the TEL and AML1 moieties of these fusion genes. The HA tag, against which
antibodies are used for Western blot and immunocytochemistry (see Figure 3.5) is shown at the 3’ end as a solid
black bar (B) Expression of TEL/AML1 or TEL/AML1-ΔRHD by qPCR, compared to REH cells, and by
Western Blot against HA-tag, compared to H9 hESCs (mean of three technical replicates).
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Figure 3.5 – Confocal images of transgenic hESCs.
Red = HA-tag. Blue = DAPI, Green = GFP; white scale bar = 100µm, yellow scale bar = 50µm. (A) T/AD1,
showing several colonies, on DR4 iMEFs. (B) Close-up view of A, showing co-localisation of TEL/AML1 and
DAPI in the nucleus. (C) GFP1, showing absence of TEL/AML1 expression. (D) GFP1, showing GFP
expression.
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3.2.5 Characterisation of pluripotency markers in transgenic hESC lines

To show that the expression of transgenes does not affect the pluripotency of hESCs,

the expression of pluripotency markers Nanog (Figure 3.6A) and Oct4 (Figure 3.6B)

was assessed by qPCR. All transgenic hESC lines showed no decrease in expression

of either pluripotency marker, though the expression levels are higher than H9 in

seven of the eight transgenic cell lines, the significance of which is unknown.

However, the expression levels of Oct4 and Nanog appeared to correlate in each cell

line. This is consistent with Oct4 and Nanog (along with Sox2), forming parts of a

self-regulatory ‘circuitry’ for pluripotency, consisting of ‘feed-forward’ loops to

maintain high levels of all pluripotency genes (Boyer et al 2005).

Next, the expression of cell surface markers of pluripotency SSEA4 (Figure 3.6C)

and TRA-1-60 (Figure 3.6D), and marker of differentiation SSEA1 (Figure 3.6E)

were assessed by flow cytometry. All transgenic cell lines were shown to be positive

for SSEA4 and TRA-1-60, and negative for SSEA1. Finally, all hESC lines were

karyotyped to identify any karyotypic changes (Figure 3.7), but all were found to be

of normal female karyotype (46,XX).

3.2.6 Differentiation of transgenic hESC lines

Differentiation of hESC lines was performed using an established differentiation

protocol was used (Vodyanik & Slukvin 2007), outlined in Materials and Methods.

Figure 3.8A shows the differentiation of hESCs, starting with a discrete hESC

colony on OP9 cells on day 1, to a less distinct mesodermal colony on day 4,

expanding on day 6, and generating small round cells of ‘cobblestone’ appearance by

day 8, which represent haematopoietic precursors. Cells from these OP9 co-cultures

were harvested and analysed by flow cytometry for cell surface markers of haemato-

endothelial differentiation (Figure 3.8B). The endothelial marker CD31 was

regularly present in about 5-15% of hESC-derived (TRA-1-85+) cells, and

CD31+CD43+ cells made up to 1% of hESC-derived cells. Since haematopoietic

differentiation progresses through an endothelial (CD31+CD43-) precursor before

gaining the early haematopoietic marker CD43, it was decided that CD31 would be

useful as a surrogate marker of haematopoietic differentiation.



CHAPTER 3: TEL/AML1 IN HAEMATOPOIETIC DEVELOPMENT

100

Figure 3.6 – Characterisation of pluripotency markers in transgenic hESC markers.
(A-B) Expression of pluripotency genes Nanog (A) and Oct4 (B) in the transgenic hESC lines by qPCR,
compared to H9 hESCs. (C-E) Flow cytometry histograms showing expression of pluripotency markers SSEA-4
(C) and TRA-1-60 (D), and differentiation marker SSEA-1 (E), in the T/AD2 cell line, compared to H9 hESCs.
Histograms are representative of all transgenic hESC lines
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Figure 3.7 – Karyotypes of transgenic cell lines.
All transgenic hESC lines were found to be karyotypically normal (46, XX). Shown are the karyotypes for (A)
H9, (B) T/AD1, (C) T/AD2, (D) T/AF1, (E) T/AF2, (F) GFP1, (G) GFP2, (H) ΔRHD5, and (I) ΔRHD6.
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Figure 3.8 – Differentiation of transgenic hESC lines towards haematopoietic lineages.
(A) Sequential bright-field images showing the differentiation of hESCs, starting from day 1 (after seeding)
ending at day 8 (when cells were harvested); Scale bar = 400µm. (B) Flow cytometry gating strategy for
assessment of differentiation. Following the arrows from left to right, Live-Dead stain (7-AAD), human-mouse
discrimination (human TRA-1-85 antibody), and CD31 vs. CD43. (C-F) Plot showing percentage CD31+ cells
derived from simultaneous differentiation trials with (C) T/AD1, T/AD2, GFP1, and GFP2, (D) T/AD1, T/AF1,
and T/AF2, (E) ΔRHD5 and ΔRHD6, and (F) all transgenic lines combined, with lines showing mean and
standard deviation. (G) plot showing percentage CD43+ cells in CD31+ to show consistent levels of
haematopoietic development from endothelium. Statistical analysis was performed using the non-parametric
Mann-Whitney and Kruskal-Wallis tests, as described in Material and Methods (section 2.17)
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Differentiation experiments took place in a series of ‘trials’, using different

combinations of transgenic cell lines each time. ‘Trial 1’ (Figure 3.8C),

differentiating the cell lines T/AD1, T/AD2, GFP1, and GFP2, showed a significant

difference in the differentiation capacity of T/AD1 and T/AD2, but no significant

difference between any of the TEL/AML1-expressing and GFP-expressing cell lines.

‘Trial 2’ (Figure 3.8D), differentiating T/AD1, T/AF1, and T/AF2, showed low

levels of expression for all cell lines, but no significant differences. Finally, ‘Trial 3’

(Figure 3.8E) showed no significant differences in the differentiation of the cell lines

ΔRHD5 and ΔRHD6.

Compiling the differentiation data together (Figure 3.8F), there is no general trend to

suggest that the overexpression of TEL/AML1 has a significant effect on the

haemato-endothelial differentiation of hESCs. There is a significant difference in the

level of differentiation between T/AF1 and GFP1, but since differentiation of T/AD1

during Trial 2 was low (which in Trial 1 gave rise to CD31+ cells at a rate of 10% on

average), it is possible that this significant difference is down to poor induction of

differentiation in Trial 2, as opposed to an intrinsic block of differentiation in T/AF1

and T/AF2.

The percentage CD43+ cells within the CD31+ population did not differ significantly

for the cell lines (Figure 3.8G), showing there was no block in differentiation from

endothelial (CD31+CD43–) to haemato-endothelial (CD31+CD43+) cells, apart from

in the T/AF2 hESC line. However, differentiation of T/AF2 was particularly low

(Figure 3.8D), so even small numbers of CD31+CD43+ cells would make up a large

percentage of the total CD31+ population.

3.2.7 Analysis of hESC-derived CD43+ cells

To further analyse haematopoietic precursors derived from the transgenic cell lines,

CD43+ cells were sorted from the bulk harvest by swapping the fluorescent colours

conjugated to the CD31 and CD43 antibodies (Figure 3.9A), using CD31-Alexa488

and CD43-PE instead of CD31-PE and CD43-FITC. This allowed for a much better

separation of the CD31+CD43+ population from the CD31+CD43– population, and
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also allowed for enrichment of the CD43+ population from the bulk harvested cells

by MACS, using anti-PE microbeads (Miltenyi Biotec).

Sorted CD43+ cells derived from the T/AD1 hESC were able to generate

differentiated haematopoietic colonies when incubated in semi-solid methylcellulose

medium. By the size and density of the colonies, it was concluded that they consisted

of monocytes and granulocytes (Figure 3.9B).

I investigated the expression of haematopoietic transcription factors in the

co-cultures, namely SCL, EKLF, PU.1, GATA1, and GATA2 (Zambidis et al 2005).

Genes were not found to be expressed in OP9 cells (Figure 3.9C) nor in hESCs, apart

from low levels of GATA2 (Figure 3.9D). Expression of these genes in the

differentiated transgenic hESCs was assessed using two approaches. Firstly, cDNA

was prepared from the ‘bulk harvest’ (i.e. all the cells in the dish, including OP9s

and undifferentiated hESCs) of differentiated T/AD1 and ΔRHD5 hESC lines

(Figure 3.9E). Secondly, cDNA was prepared from sorted CD43+ cells from day 8

and day 11 of co-culture of T/AD1 (Figure 3.9F). qPCR was performed on the

cDNA samples and Ct values were normalised to CD43 to take into account different

levels of haematopoietic differentiation in the co-cultures.

Comparing the T/AD1 and ΔRHD5 bulk cultures, no significant difference was

observed in the expression of any of the transcription factors (Figure 3.9E). In the

sorted CD43+ cells, expression of all transcription factors was reduced in cells taken

from day 11 of co-culture compared to day 8, apart from PU.1, which was highly

upregulated. PU.1 is a transcription factor associated with differentiation towards B

lymphocyte and macrophage lineages (DeKoter & Singh 2000), so this might

indicate a shift of the CD43+ cells from a ‘stem cell’ or ‘precursor’ identity towards a

more differentiated phenotype.
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Figure 3.9 – Analysis of differentiated transgenic hESC lines.
(A) Representative plot showing how the swapping of fluorophores on the antibodies enable clear discrimination
of CD31+CD43+ population (encircled in blue), which is the basis of MACS enrichment and FACS sorting. (B)
Representative images showing differentiated colonies derived from sorted CD43+ cells derived from T/AD1
hESCs cultured in methylcellulose based media for two weeks; Scale bar = 200µm. Colonies were made up of
granulocyte and monocyte lineage cells. (C) PCR products using early haematopoietic genes (SCL, EKLF, PU.1,
GATA1, GATA2) and CD43, showing no expression of these genes in OP9 cells (D-F) graphs showing the
transcript expression level by qPCR of early haematopoietic genes normalised to CD43 expression from (D)
undifferentiated hESC lines, (E) all cells harvested from co-cultures of T/AD1 or ΔRHD5 transgenic hESC lines
(‘Bulk Culture’), and (F) sorted CD43+ cells from day 8 or day 11 of co-cultures of T/AD1 (each bar represents
the mean of three technical replicates to measure one biological replicate per graph).
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3.2.8 B lymphopoiesis

I next examined the capacity of the transgenic cell lines to differentiate towards

B lymphocytes, by taking the sorted CD43+ cells from the OP9 co-cultures of

T/AD1, GFP1, and ΔRHD5, and co-culturing these with the bone marrow stromal

cell line MS-5, for four weeks, with additional cytokines (see Materials & Methods

and Vodyanik et al 2006). Figure 3.10A shows a basic schematic of the expression

of markers of B cell development (TdT, RAG1, PAX5, mb1, VpreB, CD19, CD10,

and CD34) from the haematopoietic stem cell (HSC), via the common lymphoid

progenitor (CLP), and through pro-B and pre-B cells (LeBien 2000; Sanz et al 2003;

Hystad et al 2007; Sanz et al 2010). The protein VpreB forms part of the ψ-light

chain (ψLC), which is a component of the pre-B cell receptor, expressed on the cell

surface of pre-B cells (Wang et al 1998b), and is also shown. The dotted line

indicates at which stage the impairment in B cell differentiation commonly occurs in

patients (Golub et al 1995), which is frequently (Tsuzuki et al 2004; Fischer et al

2005), but not always (Andreasson et al 2001; Morrow et al 2004; Schindler et al

2009) recapitulated in mouse models.

The numbers of CD43+ cells used in the MS-5 co-cultures were small (1,000 cells

per well of a six-well plate), and so it would have been difficult to sort these cells by

FACS. Therefore, I assessed the B lymphocyte differentiation in MS-5 co-cultures

by preparing cDNA samples from the entire culture (similar to the ‘bulk culture’

method used to analyses haematopoietic differentiation in Figure 3.9E) and

analysing gene expression by qPCR. B cell markers expressed in REH cells were not

expressed in MS-5 cells (Figure 3.10B), whereas the MS-5 co-cultures showed

expression of CD10 and CD19 transcript (Figure 3.10C), indicating that

differentiation towards B cell lineage in all co-cultures progressed at least as far as

pro-B cells. MS5 co-cultures from differentiated T/AD1 hESCs showed a

significantly increased level of CD34 compared to those from differentiated ΔRHD5

hESCs, possibly indicating a higher pro-B to pre-B ratio from TEL/AML1-

expressing hESCs. In addition, the expression of CD10 was significantly decreased

in MS5 co-cultures from differentiated GFP1 hESCs compared to those from

ΔRHD5 hESC, but the implication of this is not clear. Comparing B cell marker

expression within the MS-5 co-cultures of T/AD1-, GFP1-, and ΔRHD5-derived
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Figure 3.10 – B lymphopoiesis from transgenic hESCs.
(A) Outline of differentiation from common lymphoid progenitor (CLP) to pro-B and pre-B cells, via Early B
cell. Expression of CD markers (34 = CD34, etc.) and pre-B cell receptor components µHC and ψLC are shown
on the outside of each ‘cell’, and expression of transcript for Rag1/2, Tdt, mb1, Pax5, and VpreB are shown on
the inside of each ‘cell’. Below the B-lineage cells, the recombination status of the heavy chain VDJ genes is
shown. Dotted line indicates the stage at which B cell differentiation appears to be blocked in TEL/AML1+

leukaemia patients and mouse models. (B) Gel electrophoresis of qPCR products showing no expression of the
indicated genes in MS-5 cells. (C-D) Expression by qPCR of (C) CD19 and CD10 or (D) B cell markers in
MS-5 co-cultures of T/AD1-, GFP1-, and ΔRHD5-derived CD43+ cells, bars representing individual
experiments. Relative expression values are normalised against (C) REH and (D) one of the MS-5 co-cultures of
ΔRHD5-derived cells (each bar represents the mean of three technical replicates, p-values as calculated using
Mann-Whitney U test represented by asterixes: * p<0.05, *** p<0.01).
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CD43+ cells, there are no significant differences in expression between the different

cell lines, though there are slightly higher levels of expression of Pax5 and VpreB in

the T/AD1 MS-5 co-cultures than in those with GFP1 and ΔRHD5 (Figure 3.10D).

3.2.9 Leukaemia Associated genes

I also examined the expression of genes commonly associated with TEL/AML1+

acute lymphoblastic leukaemia that have been identified in gene expression

microarray screens of samples from ALL patients (Andersson et al 2005b;

Gandemer et al 2007). I hypothesised that any differences in the expression of these

genes would be best observed after B cell differentiation, since TEL/AML1+

leukaemia is exclusively a B lineage leukaemia (Uphoff et al 1997).

Andersson and colleagues generated a gene expression profile that distinguished

TEL/AML1+ leukaemia from other types of ALL. They then compared this profile to

the gene expression profile of normal haematopoietic cells, and identified expression

patterns for 67 genes that were unique to leukaemia cells (Andersson et al 2005b).

I compared this list to the TEL/AML1+ gene expression profile created by Gandemer

and colleagues (2007), and picked four genes (PIK3C3, TNFRSF7, SMAD1, and

ANGPTL4) for further analysis. PIK3C3 was identified by both microarray screens,

whilst family members of TNFRSF7 (identified by Gandemer’s study) were also

observed in Andersson’s study. SMAD1 was chosen for its involvement in the BMP

signalling pathway, known to regulate haematopoiesis and leukaemia (Bhatia et al

1999). Finally, ANGPTL4 was chosen as several of its related family members were

identified in Andersson’s study, which have been shown to support expansion of

HSCs (Zhang et al 2006) and implicated in myeloid leukaemia (Loges et al 2005).

Out of these genes, two – PIK3C3 and ANGPTL4 – were expressed in the transgenic

hESCs normally (Figure 3.11A), but not in MS-5 cells (Figure 3.11B). In the MS-5

co-cultures of CD43+ cells derived from the transgenic hESCs, TNFRSF7 and

SMAD1 were both significantly upregulated in the T/AD1 co-cultures compared to

the ΔRHD5 co-cultures. ANGPTL4 was significantly downregulated in co-cultures

using differentiated GFP1 hESCs compared to those from ΔRHD5 hESCs (Figure

3.11C).
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Figure 3.11 – Expression of genes associated with TEL/AML1+ leukaemia in transgenic hESCs.
(A) Expression by qPCR of leukaemia-associated genes in undifferentiated transgenic hESCs. (B) Gel
electrophoresis of qPCR products showing no expression of the indicated genes in MS-5 cells. (C) Expression by
qPCR of leukaemia-associated genes in MS-5 co-cultures of T/AD1-, GFP1-, and ΔRHD5-derived CD43+ cells,
bars representing individual experiments. Ct values are normalised to CD19, and relative expression values are
normalised one of the MS-5 co-cultures of ΔRHD5-derived cells. (each bar represents the mean of three technical
replicates, p-values as calculated using Mann-Whitney U test represented by asterixes: *** p<0.01).
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3.3 Discussion

The data presented in this chapter describes the creation of a model of TEL/AML1+

acute lymphoblastic leukaemia using hESCs as a source of human haematopoietic

progenitors. The stable expression of TEL/AML1 was not found to affect markers of

pluripotency in hESCs nor cause any karyotypic changes. Differentiation towards

haematopoiesis, performed using a co-culture method with OP9 cells, was not

affected by the presence of TEL/AML1. CD43+ hESC-derived haematopoietic

precursors expressed markers of haematopoiesis and were capable of differentiating

to mature blood cells. Directed differentiation of the haematopoietic precursors

towards B lineage lymphocytes, using a co-culture method with MS-5 cells, was able

to generate cells expressing markers of B cell development. The expression of

TEL/AML1 resulted in a slight increase in CD34 expression, and in the expression

of two of four genes investigated that have previously been associated with

TEL/AML1+ leukaemia.

3.3.1 Generating a model of leukaemia using hESCs

The hESC model of ALL presented here aims to complement previous models,

including mouse in vivo models (Tsuzuki et al 2004; Schindler et al 2009), xenograft

models (Hong et al 2008; le Viseur et al 2008), and models using cell lines (Diakos

et al 2007; Gefen et al 2009; Zaliova et al 2011). Whilst expanding HSCs from cord

blood, bone marrow, or mobilised peripheral blood, is still technically challenging

(Dahlberg et al 2011), hESCs can provide a theoretically limitless supply of human

haematopoietic precursors with which to study ALL.

The H9 hESC line was one of the original lines (along with H1 and H7) generated by

James Thomson in the first description of hESC (Thomson et al 1998). Previously,

I had used hESC lines developed at the University of Sheffield (SHEF1, SHEF3, and

SHEF4), but found in our lab that the efficiency of haematopoietic differentiation

from these cells was low; this was not necessarily surprising, since the capacity of

different hESC lines to differentiate towards various lineages is known to vary

significantly (Osafune et al 2008). I was granted access to H1, H7, and H9, and

found H1 and H9 to be the easiest of the three hESC lines to grow in cell culture.

These cell lines could be considered ‘gold standards’ with regards to haematopoietic
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differentiation, with the use of H1 in particular widely reported in the literature.

I chose the H9 cell line as the basis of our model as it was available to use first, and

was reported to have equivalent differentiation capacity as H1 (Vodyanik et al

2005).

I initially aimed to inducibly express TEL/AML1 for several reasons. Firstly, it

would allow the timing of TEL/AML1 expression to be controlled. This would avoid

any potential problems with inhibition of differentiation, previously observed whilst

expressing the acute myeloid leukaemia (AML)-associated fusion gene MLL/ENL in

hESCs (Mark Coles, unpublished observations), but also allow an investigation of at

which level of the haematopoietic developmental hierarchy TEL/AML1 has its

influence, which is still under debate (Schindler et al 2009). Secondly, it would

allow the control of the expression level of TEL/AML1, which would enable the

study of the effects of physiological levels of TEL/AML1, as opposed to superfluous

levels which may have unexpected effects. Unfortunately, I was not able to achieve

inducible expression of TEL/AML1 when testing in cell lines (Figure 3.1). This may

have been due to poor expression of or a mutation in the recombinant

tetracycline-responsive transactivator (rtTA), or similarly a mutation in the

tetracycline response element (TRE) to which rtTA binds.

It was decided to proceed instead with a constitutive expression system; however,

there were two main concerns with this method that needed to be addressed. Firstly,

a promoter needed to be selected that would consistently express TEL/AML1

without silencing, a problem often encountered with hESCs (Kim et al 2005). I opted

to use the pCAG vector, which has been demonstrated to drive stable expression in

hESCs, compared with other CMV derivatives (Liew et al 2007). Secondly, I wanted

to ensure that expression of a transgene, in this case a mutant transcription factor

associated with malignant haematopoiesis, would not cause the hESCs to

spontaneously differentiate, but would allow differentiation when induced. After

generating the pCAG-TEL/AML1 (Figure 3.2) and pCAG-TEL/AML1-ΔRHD

(Figure 3.3) plasmid constructs and transfecting these (along with pCAG-eGFP) into

H9 hESCs, I found the transgenic cell lines maintained their hESC morphology and

pluripotency markers (Figure 3.6). hESCs are prone to acquiring karyotypic changes

(Amps et al 2011) that are typically found in embryonic carcinoma cells, commonly
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affecting chromosomes 17 and 12, the latter the location of the ETV6 gene. To

confirm that the transgenic hESC lines had not undergone similar structural changes,

the cell lines were karyotyped, and were found to be normal (46, XX; Figure 3.7).

I was thus convinced that the overexpression of TEL/AML1 in hESCs was a valid

approach.

In absence of an inducible system which allowed the level of TEL/AML1 expression

to be controlled, several cell lines were generated to form a panel with varying

transgene expression. The resulting TEL/AML1 lines gave mRNA transcript levels

ranging between 3- and 43-fold more than that in the TEL/AML1+ cell line REH

(Rosenfeld et al 1977).

In summary, I believe that the expression of TEL/AML1 did not aberrantly affect

hESCs by itself, and that in the panel of TEL/AML1-expressing hESC lines I had

enough range of expression to minimise any potential affects resulting from the act

of overexpressing proteins, called ‘transgene toxicity’ (Zafarana et al 2009). In not

generating the system to inducibly expression TEL/AML1 I was not able to fully

control expression, so denying the opportunity to study, for example, the timing of

when TEL/AML1 might have an influence on hESC differentiation. Despite this, the

hESC lines generated provides the basis of a model for TEL/AML1+ leukaemia.

3.3.2 Haematopoietic differentiation of transgenic hESCs

Differentiation of hESC lines was performed using the OP9 co-culture method, first

set out by Nakano and colleagues (Nakano et al 1994), and adapted for hESC

differentiation by James Thomson’s group (Vodyanik et al 2005). I used an

established protocol for the ‘OP9 co-culture’ method (Vodyanik & Slukvin 2007),

and found this method to give consistent results over several weeks when a staggered

regime was implemented for the splitting of hESCs and OP9 cells, and the seeding,

feeding, and harvesting of co-cultures. I did attempt differentiation by the ‘embryoid

body’ method (Chadwick et al 2003) but found it to be inefficient (data not shown)

and more technically challenging, as well as the cost of supplemental cytokines to be

expensive.
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Differentiation of the various cell lines took place in a series of three ‘trials’, with

each trial differentiating a number of cell lines simultaneously (Figure 3.8C-E). The

TEL/AML1+ cell line T/AD1 from trial one was also used trial two to act as a

reference; whilst the level of differentiation for each cell line did vary, the levels

across the cell lines did appear to follow each other, so using T/AD1 in the second

trial gave an indication of the efficiency in that trial. It is not clear why the level of

differentiation in trial two was much lower compared to either of the other, but since

a fresh vial of OP9 cells was thawed for each trial, it is possible that Trial 2 made use

of an OP9 batch less able to induce hESC differentiation.

Overall there was little difference in the level of differentiation towards CD31+

haemato-endothelial precursors amongst the various cell lines (Figure 3.8F), and no

significant difference in the percentage of CD43+ cells in the CD31+ population

(Figure 3.8G). It had been previously reported that the level of differentiation

depended on the proliferation rates of the cell lines (Vodyanik & Slukvin 2007). In

normal maintenance culture, no differences in growth rates between the transgenic

cell lines were observed. However, in co-culture with OP9 cells, the proliferation

rates of the cell lines did vary; since the same number of cells for each cell line was

seeded onto each OP9 plate, the percentage of TRA-1-85+ (i.e. human) cells in the

total harvested cell suspension could act as a surrogate marker for proliferation. This

value varied from 11% to 82%, but no significant correlation was observed between

the percentage TRA-1-85+ cell count and the level of differentiation, neither for

individual cell lines nor for all cell lines combined (data not shown).

The lack of a significant effect of TEL/AML1 on the differentiation is consistent

with previous observations of the role of TEL and AML1 in embryonic stem cells

and early embryonic development, if it is assumed the influence would be

TEL/AML1 having a dominant negative effect on TEL and/or AML1 (Zelent et al

2004). Whilst ETV6-/- mice are embryonic lethal (due to angiogenic defects in the

yolk sac), ETV6-/- chimeric mice show no defects in haematopoiesis, instead showing

problems associated with the post-natal establishment of haematopoiesis in the bone

marrow (Wang et al 1998a). Similarly, whilst RUNX1-/- mouse embryos and

embryonic stem cells cannot transfer from primitive to definitive haematopoiesis

(Lacaud et al 2002), haploinsufficent ESCs are still capable of definitive
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haematopoiesis, showing accelerated haematopoietic commitment (Lacaud et al

2004). As such, any effects that TEL/AML1 expression might have on the

expression or activity of either TEL or AML1 (Zelent et al 2004) are unlikely to

have a significant effect during haematopoietic differentiation of hESCs.

I intended to use the CD31+CD43+ haematopoietic progenitors for three main

purposes: (1) to study the general haematopoietic capacity of these progenitors by

Colony Forming Unit (CFU) assays; (2) to investigate gene expression changes in

these progenitors by qPCR; and (3) to differentiate these cells towards

B lymphopoiesis by MS-5 co-culture for further analysis. The total number of cells

harvested each time was regularly ~108 cells, of which 40% on average were human

(TRA-1-85+), and of these up to 1% were CD31+CD43+, meaning roughly 400,000

CD31+CD43+ cells were available. However, it was found that the number of cells

that could be harvested from co-cultures (by FACS, sometimes in combination with

MACS) was much lower than should be present in the culture; the actual number of

cells harvested was rarely above 5,000. The likely reason was due to the ‘clumpy’

nature of endothelial cells, which prevents attaining single cell suspensions without

harsh physical detachment, leading to cell death. This meant that there commonly

were only enough cells to use for one of the three purposes above. I decided, given

the small CD31+CD43+ yield, to focus the use of the cells for the MS-5 co-culture, as

it was in B cell differentiation where I expected to be most likely to see significant

differences between the cell lines, given the known impact of TEL/AML1 on B cell

development in a variety of models (Tsuzuki et al 2004; Sabaawy et al 2006; Hong

et al 2008), and B lineage induction only required 1,000 cells per well of a six-well

plate (Vodyanik et al 2006). This unfortunately prevented meaningful numbers of

replicates for the CFU assays and gene expression analysis from being carried out.

One limitation of this study was that the different transgenic hESC lines were

differentiated in three separate trials. The differentiation capacity of T/AD1varied

significantly between the two trials it was used in, indicating that the conditions of

the three trials were not identical, and so limiting the strength of the conclusions that

can be drawn by direct comparison between trials. The differentiation of the

transgenic lines was divided in this way primarily because not all the hESC lines

were ready at the same time. To more reliably compare the differentiation capacity
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of these lines, the eight hESC lines would have to be differentiated at the same time

using the same batch of OP9 cells, but it would then become a very difficult task in

terms of cell culture. If these differentiation experiments were to be repeated and

remain divided into trials, it would be important to ensure uniformity in the OP9

batches used for differentiation, and to use one or more cell lines in all trials, to

allow for a more reliable comparison between the hESC lines.

3.3.3 B cell development from differentiated transgenic hESCs

Since there were not enough cells for analysis of B cell development in the MS-5

co-cultures by flow cytometry, I assessed the level of B lymphopoiesis by qPCR as it

has the advantage of being very sensitive to small amounts of transcript. For the

same reason, it is also more susceptible to contamination, but I found no expression

in MS5 cells of any of the B cell development markers (Figure 3.10B) or the

leukaemia-associated genes (Figure 3.11B). The genes analysed (Vodyanik et al

2006) are used to discriminate between different stages of B cell development (Ghia

et al 1996; LeBien 2000; Hystad et al 2007; Sanz et al 2010).

In the expression of genes for cell surface ‘CD’ markers, there is an upregulation of

CD34 in T/AD1 MS5 co-cultures compared to ΔRHD5 co-cultures (Figure 3.10C),

which might indicate an increase ratio of pro-B to pre-B cells (since it is during this

transition that CD34 expression is lost; Ghia et al 1996) which is consistent with the

pro-B to pre-B blockade observed in a number of mouse models investigating the

effects of TEL/AML1 on B cell development (Tsuzuki et al 2004; Fischer et al

2005). There was no significant difference between the expression of other B cell

markers in T/AD1 compared to GFP1 or ΔRHD5 (Figure 3.10D). Comparison of

these gene expression changes with mouse models of leukaemia is complicated since

most papers analyse B cell development using flow cytometry (as opposed to gene

expression; e.g. Tsuzuki et al 2004, Schindler et al 2009), and the stages of B cell

development in a mouse do not have direct equivalents in humans (Hardy et al 1991;

LeBien 2000). However, if the block in B cell development between the pro-B and

pre-B stages commonly observed in patients (Golub et al 1995) were to be observed

in this model, one might see much higher levels of TdT expression, higher levels of
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VpreB and Rag1, and lower levels of Pax5 as the proportion of pro-B cells compared

to pre-B cells increases (Hystad et al 2007).

Using the same method, I also investigated the expression levels of genes commonly

upregulated with TEL/AML1+ leukaemia. These genes (PIK3C3, TNFRSF7,

SMAD1, and ANGPTL4) were selected from studies of RNA samples from acute

lymphoblastic leukaemia patients of various subtypes analysed by gene expression

microarray (Andersson et al 2005b; Gandemer et al 2007). An increase in expression

of TNFRSF7 and SMAD1 in T/AD1 MS5 co-cultures compared to the ΔRHD5

co-cultures was observed (Figure 3.11C). Amongst these four genes originally

identified by Andersson and colleagues, only the genes also identified in the

microarray by Gandemer (namely PIK3C3 and TNFRSF7) were validated by qPCR

(Gandemer et al 2007). However, Andersson and colleagues found the genes in their

TEL/AML1+ profile to correlate significantly with those identified in a separate gene

expression profiling study of acute lymphoblastic leukaemia subtypes (Ross et al

2003).

Of course, the influence of TEL/AML1 has not been fully revealed by the analysis of

only four genes. Beyond testing the expression of other genes previously associated

with TEL/AML1+ leukaemia, one approach would be to conduct a gene expression

microarray to identify the differentially expressed genes in differentiated transgenic

hESCs. This would have the advantage of a direct list of genes affected by, and

reveal potential functional consequences of, the expression of TEL/AML1. Such an

approach would enable a more directed study of how TEL/AML1 affects

haematopoietic development and early B cells.

Nevertheless, the lack of a strong ‘leukaemia’ phenotype, in terms of a block in

B cell development and expression of genes commonly associated with leukaemia, is

consistent with previous studies in mouse models. Mice receiving bone marrow

transduced with TEL/AML1 do not show symptoms of leukaemia (Andreasson et al

2001; Tsuzuki et al 2004; Fischer et al 2005), but TEL/AML1 in combination with

secondary mutations does give rise to B cell ALL (Bernardin et al 2002; Schindler et

al 2009; van der Weyden et al 2011).
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3.3.4 Conclusions

The results presented in this chapter have not shown that TEL/AML1 alone has a

significant effect on the haematopoietic differentiation of hESCs. According to

previous studies of TEL/AML1+ leukaemia, the properties acquired by TEL/AML1

expression alone have been referred to as a ‘pre-leukaemic state’ (Greaves et al

2003), exemplified by high numbers of quiescent HSCs (Schindler et al 2009) and/or

an impairment – but not a block – of B cell differentiation (Fischer et al 2005). In

this model, I was not able to provide a strong demonstration of either of these two

hallmarks, due to the limited numbers of haematopoietic cells that could be

recovered from the OP9 and MS-5 co-cultures. However, if these technical

difficulties can be overcome, there is no reason why this model could not be used to

demonstrate these effects. Indeed, it is possible that these effects are an artefact of

mouse models, and that one might not observe a similar effect in a human model

such as the hESC model presented in this chapter. Nevertheless, our results are

consistent with previous studies in mice that conclude TEL/AML1 is not sufficient

for leukaemogenesis, and thus likely represents a ‘first-hit’ that gives transformed

cells properties which allow it to acquire further mutations leading to leukaemia.

The strength of the hESC model of leukaemia is its ability to recapitulate

haematopoietic differentiation at various stages. However, the technical challenges

involved in this have impaired the current study, although I would anticipate that

some of these challenges could be overcome with enough time to optimise methods

(for example, the isolation of CD31+CD43+ haematopoietic precursors). Further

technical challenges may be met, such as the culture of B cell precursors once

derived from haematopoietic precursors, although it has been shown that it is

possible to culture B cell progenitors from CD34+ cord blood cells for more than 12

weeks ex vivo, without significant changes to their cell surface markers (Rawlings et

al 1995), and B cells from peripheral blood for extended periods of culture (Wiesner

et al 2008). Whether such results could be gained from hESC-derived B cell

precursors remains to be seen.

In summary, this chapter describes the development of the first model of

TEL/AML1+ leukaemia using hESCs. Combining this study with the work of others
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in haematopoietic differentiation of hESCs, I have shown that

TEL/AML1-expressing hESCs are capable of haematopoiesis and differentiation

towards B lymphocytes. Overcoming the technical challenges of haematopoietic

differentiation of the transgenic hESCs will allow renewed study into TEL/AML1+

leukaemia using a human multipotent system.
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Chapter 4: The role of TEL in TEL/AML1+ leukaemia

4.1 Introduction

One of the most common secondary mutations in TEL/AML1+ leukaemia is the loss

of the untranslocated TEL allele (Raynaud et al 1996; Cave et al 1997). This

frequent bialleic loss of TEL indicates its importance in the context of leukaemia,

and yet there is relatively little known about the role of TEL in normal and malignant

haematopoiesis, particularly its regulatory targets. This knowledge has implications

for deepening the understanding of how leukaemia arises and for the discovery of

drugs that act against dysregulated pathways.

4.1.1 Discovery of TEL

The TEL gene, located at 12p13, was first discovered in the context of Chronic

Myelomonocytic Leukemia (CMML) by Golub and colleagues (1994). In this

disease, the gene coding for platelet-derived growth factor receptor beta (PDGFRβ)

was found to be frequently fused to an unidentified gene as a result of the

t(5;12)(q33;p13) chromosome translocation. It was found that this gene shared the

same DNA binding domain found in members of the ets family, and so it was named

TEL, after ‘Translocation, Ets, Leukaemia’ (Golub et al 1994). The TEL gene was

later renamed ETV6 (after ‘ETs Variant 6’) to avoid confusion with the abbreviation

for ‘telomere’; however, both names are still used interchangeably for both the gene

and the protein, though TEL is more commonly used when describing fusion

proteins.

4.1.2 TEL structure

The ets group of transcription factors are defined by an 80 amino acid DNA binding

domain called ets (Wasylyk et al 1993). The other domain that TEL shares with

many of its family members is the pointed domain, also known as a sterile alpha

motif (SAM), which forms a helix-loop-helix structure to form homo- and

heterodimers (Kim et al 2001). Finally, TEL has a central repression domain, which

is involved in the recruitment of co-repressors (Wang & Hiebert 2001). TEL is

unique amongst its family members as it always acts as a repressor, whereas the rest
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of the ets family can be activators or repressors of gene expression dependent on

context (Mavrothalassitis & Ghysdael 2000; Oikawa & Yamada 2003).

4.1.3 TEL activity

TEL represses the expression of its targets by chromatin condensation, via two

routes. The recruitment of histone deacetylases (HDACs) is mediated by

corepressors N-CoR (Guidez et al 2000), SMRT and mSin3A (Chakrabarti &

Nucifora 1999), which bind to the central region of TEL. Alternatively, L3MBTL,

which causes chromatin condensation independent of HDACs, has a domain similar

to the SAM domain and thus binds to the helix-loop-helix pointed domain (Boccuni

et al 2003). The homodimerisation of TEL, via the pointed domain, increases its

DNA binding affinity (Green et al 2010) and is necessary for its repression activities,

which is likely due to the stabilisation of the repressor-corepressor interactions

(Lopez et al 1999), rather than any intrinsic property of the dimerised pointed

domain.

Despite its apparent importance in the regulation of haematopoiesis and its

involvement in leukaemia and other cancers, little is known about the targets of TEL.

The DNA-binding specificity of the ets family members centres on a GGAA/T

consensus sequence (Karim et al 1990; Nye et al 1992), but appears in vivo to

depend largely on availability of binding sites (Wei et al 2010). TEL has been

demonstrated to bind to and inhibit the promoters for stromelysin-1 (Fenrick et al

2000; Wang & Hiebert 2001) and Bcl-XL (Irvin et al 2003). TEL has also been

shown to repress the expression of TCL1, a gene associated with CML (Fears et al

2002).

TEL is known to bind with other transcription factors to repress their gene

expression. TEL binds with the ets family member FLI-1 to inhibit the

megakaryocytic-specific GPIbα and GPIX promoters, which are normally activated

by FLI-1 (Kwiatkowski et al 1998). TEL also binds to STAT3 and represses its

growth-inhibiting activities (Schick et al 2004). TEL represses the activation of the

MCSFR promoter by AML1 and C/EBPα, and that the HLH pointed domain is

required for full repression (Fears et al 1997).
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Regulation of TEL activity is believed to occur through the Mitogen-Activated

Protein Kinases (MAPK) pathway, after the discovery of MAPK phosphorylation

sites in TEL (Poirel et al 1997). Two phosphorylation sites in particular have been

linked to MAPK-induced regulation, serine-213 and serine-257, which both lie in the

central region between the pointed and ets domains. Serine-257 is phosphorylated in

response to stress by p38-MAPKs (Arai et al 2002), whereas both serine-213 and

serine-257 are phosphorylated by Extracellular signal-Related Kinase (ERK), a

family of MAPKs (Maki et al 2004). The phosphorylation of TEL by p38 or ERK

MAPKs inhibits the gene repression activities of TEL by preventing DNA binding

(Arai et al 2002; Maki et al 2004).

4.1.4 TEL function

ETV6 is expressed in mouse embryos from embryonic day 7 (E7). Expression

increases through E8.5 and E9.5, where it can be observed throughout the embryo

and in the yolk sac. At E12.5, ETV6 is expressed at higher levels in lung, kidney and

liver, as well as neural tissues, before peaking at E17. ETV6 is expressed in many

tissues in the adult mouse, including heart, brain, spleen, lung, liver, skeletal muscle,

kidney, testes, and haematopoietic tissues (Wang et al 1997; Wang et al 1998a).

ETV6-/- mice are embryonic lethal, owing to faulty blood vessel formation in the yolk

sac at around E9.5 (Wang et al 1997). In addition, ETV6 knockout demonstrate

apoptosis in embryonic mesenchymal and neural tissues (particularly cranial nerve

ganglia), indicating that ETV6 expression is required for their survival. To observe

the role of TEL in the adult mouse, chimeric embryos with ETV6-/- ES cells were

generated (Wang et al 1998a). TEL was found not to be required for haematopoietic

commitment nor maturation in these embryos, but rather it is required for the

colonisation of bone marrow and maintenance of haematopoiesis in the adult. It was

later confirmed using conditional ETV6 mutant mice that TEL selectively regulates

adult HSC survival but is unnecessary for lineage-specification (Hock et al 2004).

4.1.5 TEL fusion proteins in leukaemias

The high frequency of chromosome abnormalities involving the short arm of

chromosome 12 (i.e. 12p) had been noted several years before TEL was identified
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(Raimondi et al 1986). After the ETV6 gene had been identified, it was found to be

the gene frequently involved in fusion proteins in leukaemias and other

haematological malignancies (reviewed in Bohlander 2005). The fusion partners of

TEL can be roughly divided into two groups: protein tyrosine kinases, and

transcription factors.

Genes for Protein Tyrosine Kinases (PTKs) that have been described as fusion genes

with TEL include the aforementioned PDGFRβ (Golub et al 1994), ABL1

(Papadopoulos et al 1995), ABL2 (Cazzaniga et al 1999), and JAK2 (Lacronique et

al 1997). The characteristic feature of all these TEL-PTK fusion proteins is that they

conserve the helix-loop-helix domain of TEL (known as pointed, and required for

dimerisation of TEL; Kim et al 2001) and the kinase domain of the PTK partner.

This result in a mechanism of action common to TEL-PTKs fusions; the protein

dimerises via the pointed domains of TEL, which constitutively activates the

auto-phosphorylation activity of the PTK partner, and leads to the phosphorylation

and activation of downstream targets required for cell survival and proliferation.

The most common transcription factor (TF) that has been found in fusions with TEL

is RUNX1, coding for AML1 (Golub et al 1995). Other TF fusion partners are much

rarer; they include MN1 (Buijs et al 1995), MDS1 (Peeters et al 1997), BTL (Cools et

al 1999), and PAX5 (Cazzaniga et al 2001). The TEL/AML1 fusion protein

conserves the pointed domain of TEL; the mechanism of action of TEL/AML1 is

discussed in the Introduction (section 1.8.3). However, the pointed domain of TEL is

not present in the other TEL-TF fusion proteins, and so there is little known about

their mechanism of action.

4.1.6 TEL fusion proteins in other cancers

The above fusion genes are all involved in haematological malignancies, but TEL

fusions have also been described in other cancers. The fusion of ETV6 to the gene

coding for neurotrophic tyrosine kinase, receptor type 3 (NTRK3) has been observed

in mesoblastic nephroma (Knezevich et al 1998a), congenital fibrosarcoma

(Knezevich et al 1998b), and secretory breast carcinoma (Tognon et al 2002).
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Ets family members related to ETV6 also contribute towards gene fusions in prostate

cancer (Narod et al 2008; Clark & Cooper 2009).

4.1.7 Role of TEL in TEL/AML1+ leukaemia

The most common secondary mutation in TEL/AML1+ leukaemia is the deletion of

the second untranslocated ETV6 allele (Raynaud et al 1996; Cave et al 1997). This

loss of heterozygosity has been detected in about 75% of TEL/AML1+ leukaemia

patients (Cave et al 1997; Patel et al 2003). ETV6 deletions do occur in TEL/AML1–

leukaemia, but at a much lower frequency (Attarbaschi et al 2004). Two separate

studies have shown that the gene expression profiles of TEL/AML1– leukaemia with

a ETV6 deletion are similar to the profiles from TEL/AML1+ leukaemia (Yeoh et al

2002; Attarbaschi et al 2004), indicating that the common biology is a result of the

impairment of the TEL gene, in either one or both alleles.

The frequent loss of heterozygosity of TEL in leukaemia (Cave et al 1995) – as well

as ovarian cancer (Hatta et al 1997) – suggests a tumour suppressor role for TEL.

Indeed, the expression of TEL in Ras-transformed NIH-3T3 cells inhibits their

growth and inhibits their tumour invasion in vivo (Fenrick et al 2000), whilst

predisposing them to apoptosis via the repression of Bcl-XL (Irvin et al 2003). It has

been shown that TEL/AML1 has a dominant negative effect on the growth

suppressive activity of wild-type TEL, by heterodimerisation via the pointed domain

(Gunji et al 2004), so providing a further mechanism how the loss of TEL activity

contributes to leukaemia progression. Tsuzuki and colleagues have also shown that

the forced expression of TEL in the TEL/AML1+ cell lines REH slows down

proliferation and cell division (Tsuzuki et al 2007).

However, few of the target genes of TEL are known, particularly in the context of

TEL/AML1+ leukaemia. Using two cell lines derived from the same

TEL/AML1+ ALL patient, one showing complete loss of TEL amongst other

chromosomal changes, Fears and colleagues showed T Cell Leukaemia/Lymphoma

Protein 1 (TCL1) was expressed at a higher level in the TEL-negative cell line, and

that it could be downregulated by overexpression of TEL in these cells (Fears et al

2002).
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4.1.8 Identifying targets of TEL repression

In addition to a core binding sequence (GGAA/T) which defines the DNA binding

activity of the ets domain (Karim et al 1990), recent work has elucidated the

preferred DNA sequences surrounding this motif to which the members of the

ets family binds, including TEL (Wei et al 2010). Using a high-throughput DNA

binding specificity assay, Wei and colleagues defined a series of high affinity

binding sequences for human ets family members, which they then grouped into four

clusters depending on their sequence preference. Representative members of each

group were assessed for in vivo binding specificity using chromatin

immunoprecipitation (ChIP); in the case of the group ETV6 belonged to, ELF1 was

used. They found that whilst the ChIP-determined binding sites were highly enriched

for the binding sequences defined in vitro, only a small fraction of the possible

binding sites for ets family members were occupied by those proteins. This suggests

that the binding of ets family members, including TEL, can be determined by

accessibility to the DNA, regulated by chromatin packaging (Wei et al 2010).

Other researchers have also shown that the targets of TEL are determined by factors

other than sequence specificity. Green and colleagues (2010) showed that the

binding affinity of TEL to sequences is dependent on polymerisation. Monomeric

TEL (in which two point mutations disrupt the activity of the pointed domain) has a

lower affinity than expected for a TEL-specific binding sequence. They explained

this by a C-terminal inhibitory domain (CID) to the DNA-binding ets domain,

reducing its binding to DNA. Conversely, dimers of TEL have a higher affinity to

DNA than monomeric TEL, and that DNA binding stabilises this dimer, evading the

autoinhibition of the CID. Thus, Green and colleagues argued that TEL acts more

readily at promoters with multiple binding sites (Green et al 2010), examples of

which have already been defined, in the promoters of known TEL targets Bcl-XL

(Irvin et al 2003) and stromelysin-1 (Wang & Hiebert 2001).

The examples above demonstrate that, to determine the role activity of TEL in

leukaemia, it is not enough to know to which DNA sequences TEL binds, and that

the activity of TEL, like that of any transcription factor, is context specific –

dependent on factors such as the availability of binding sites through chromatin
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packaging, and polymerisation. In addition, TEL is also known to regulate gene

expression through the heterodimerisation with other transcription factors, including

ets family members (Fears et al 1997; Kwiatkowski et al 1998; Schick et al 2004).

Therefore, to determine the consequences of a loss of heterozygosity of TEL,

I decided to pursue a more direct approach: analysing the changes in global gene

expression caused by TEL using a gene expression microarray.

4.1.9 Use of microarrays to determine gene expression patterns

Gene expression microarrays provide the opportunity to determine on a large scale

what genes are being expressed in a biological sample. Traditionally, mRNA

extracted from cells is converted into cDNA and labelled with a fluorescent dye (e.g.

Cy3); today, RNA synthesised from the extracted mRNA can be used instead of

mRNA, though this does depend on a high quality of RNA. The labelled cDNAs or

mRNAs are then hybridised with unique DNA probes printed onto a chip in spots;

each probe unique to one gene. The levels of expression of genes represented on the

chip can then be determined by measuring the fluorescence intensity of each probe

spot, which is proportional to the amount of hybridised labelled cDNA.

These raw intensity values need to be corrected to counteract factors such as the

concentration of the starting material, the intensity of the dye, the background

fluorescence of the chip, and other factors that might influence the measurement and

interpretation of fluorescence intensity values (Quackenbush 2002). Part of this

normalisation process can involve adjusting the range of intensity values so that the

average and spread for replicates within each group (e.g. condition or sample type) is

the same. The gene expression values from the different samples, derived from the

normalised intensity data, can be compared to give fold change in gene expression.

Following this, the data can be analysed depending on the question being addressed;

for example, to identify a population of cells, mathematical clustering can be used to

compare the gene expression profile to profiles from known cell profiles. For our

purposes, it was useful to know what kinds of genes were differentially regulated;

these could be identified by linking the gene expression changes to publicly available



CHAPTER 4: ROLE OF TEL IN TEL/AML1+ LEUKAEMIA

126

databases for the function of genes (gene ontology), which could identify genes

belonging to common pathways, such as proliferation, or apoptosis.

4.1.10 Studying leukaemia using cell lines

As discussed in the introduction to Chapter 3 (section 3.1.3), many molecular and

cellular aspects of leukaemia have been investigated using cell lines, with the REH

cell line in particular being frequently used to study TEL/AML1+ leukaemia.

Leukaemia cell lines that share specific genetic lesions with acute lymphoblastic

leukaemia patient samples also share gene expression profiles, and this holds true for

REH cells and lymphoblasts from TEL/AML1+ leukaemia patients (Fine et al 2004;

Andersson et al 2005a), endorsing its use as a model.

The REH cell line was used to demonstrate the molecular interactions of TEL/AML1

with its transcriptional corepressors Sin3A (Fenrick et al 1999) and N-CoR (Guidez

et al 2000). The transcriptional profile defined by TEL/AML1 was investigated

using REH cells and patient samples treated with HDAC inhibitors to remove the

effect of gene repression by TEL/AML1 (Starkova et al 2007).

REH cells have been useful in identifying interactions between lymphoblasts and the

stromal microenvironment, including how CXCR4 promotes chemotaxis (Burger et

al 1999; Burger et al 2001), and how bone marrow stroma confers resistance to

chemotherapy via TGFβ and BMP-6 induction of TIEG1 expression (Dosen-Dahl et

al 2008) and compensate for lost asparagines as a result of asparaginase

chemotherapy (Iwamoto et al 2007). In addition, REH cells have been used to

investigate the role of erythropoietin (EPO) signalling (Inthal et al 2008; Torrano et

al 2011), survivin (Diakos et al 2010; Tyner et al 2011), and miRNAs (Gefen et al

2009; Diakos et al 2010) in TEL/AML1+ leukaemia.

Finally, RNA interference (RNAi) has allowed researchers to knock down the

expression of genes, and such approaches have been used frequently to ablate the

expression of TEL/AML1 to investigate if and how it maintains the leukaemia

phenotype of REH cells (Diakos et al 2007; Zaliova et al 2010; Fuka et al 2011a;

Fuka et al 2011b; Zaliova et al 2011); results from these studies have indicated that
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TEL/AML1 is not necessary for the survival of REH cells, suggesting that it

becomes redundant after the initiation of leukaemia.

4.1.11 Aims

Given the loss of the untranslocated ETV6 allele is a frequent feature of TEL/AML1+

leukaemia, it is assumed to be the case that the loss of TEL confers some selective

advantage to pre-leukaemic cells. To investigate this concept further, it was decided

to overexpress TEL in the REH cell line so in effect reversing the progression of

TEL/AML1+ leukaemia. This would give an indication of what role TEL has in

normal and TEL/AML1+ ‘pre-leukaemic’ cells, and how its loss, or the dysregulation

of the genes its controls, might represent a step towards overt leukaemia.

Using viral transduction, the gene expression profile of TEL-expressing REH cells

was revealed using a gene expression microarray, and differentially expressed genes

relevant to ALL were validated. I further investigated the effects of TEL on

proliferation, cell cycle, and apoptosis.
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4.2 Results

4.2.1 Gene expression microarray

As described in the introduction, despite the importance of TEL in both normal and

malignant haematopoietic development, only a few of the targets of its

transcriptional repression activity are known. I wished to address the question of

why the loss of TEL is important in TEL/AML1+ leukaemia. To do this, I decided to

overexpress TEL in the REH cell line, which both carries the TEL/AML1 fusion

gene and also lacks an endogenous TEL allele. By analysing the expression profile

of TEL-overexpressing cells using a cDNA microarray, it could be determined what

function TEL fulfils in these cells, and thus give an indication of the reason why the

loss of TEL in the context of TEL/AML1+ leukaemia is important for the

progression of leukaemia.

To express TEL in REH cells, a Murine Stem Cell Virus (MSCV) oncoretroviral

vector was used (kindly provided by Owen Williams). An Internal Ribosome Entry

Site (IRES) allowed cells expressing TEL to be identified by simultaneous

expression of GFP, with an oncoretroviral vector coding for GFP alone used as a

control. The efficient of viral transduction was high; 48 hours after transduction,

around 99% of cells transduced with either GFP-oncoretrovirus or TEL-GFP-

oncoretrovirus were GFP-positive (Figure 4.1A).

REH cells transduced with either TEL-GFP or GFP oncoretrovirus were sorted by

flow cytometry, with a post-sort purity of 99.7%. (Figure 4.1B). RNA was extracted

from the sorted GFP+ cells, and subjected to a RNA quality control test; Figure 4.1C

shows the fragments of amplified (complimentary) RNA for loading onto the chip

are of similar sizes between samples and within the necessary range (200-1000

nucleotides). Raw data from the microarray was normalised so that median values

and spread of data for both replicates in each group were the same (Figure 4.1D).

The gene expression data from the microarray shows that, upon overexpression of

TEL, there were more genes down-regulated than upregulated (Figure 4.2A). This

might be expected, since TEL is a transcriptional repressor; however, not all the

genes downregulated in the microarray will be direct targets of TEL. Figure 4.2B
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shows the numbers of differentially expressed genes in graphical format, which

illustrates more clearly the difference between the numbers of up- and

downregulated genes and the levels of their expression. A heat map shows the

differentially expressed genes in clusters of red (upregulated) and blue

(downregulated) transcripts (Figure 4.2C)

A list of the top ten upregulated and downregulated genes in response to TEL

overexpression is shown in Table 4.1 and Table 4.2, respectively. A set of genes

were selected because of prior evidence of involvement in cancer or because of

strong differential regulation indicated by the microarray, and are shown in Table

4.3. For reference, the analysis of microarray data gave TEL a fold-change value of

60.6.
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Figure 4.1 – Quality control for gene expression analysis
(A) Histograms showing the expression of GFP in cells transduced with oncoretrovirus coding for GFP (middle
panel) or with oncoretrovirus coding for TEL and GFP (right panel); also shown is the percentage of cells in the
gate displayed, designated GFP-positive. (B) Flow cytometry plots of cells transduced with oncoretroviruses for
GFP (top row) or TEL-GFP (bottom row). (C) Electrophoretic plots to show RNA quality, from top to bottom,
GFP1, GFP2, TEL1, TEL2. (D) Boxplot showing log intensity values from the microarray, normalised within
each condition (GFP or TEL-GFP virus).
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A
up-regulated down-regulated

Differentially expressed (p ≤ 0.05) 710 915
>2-fold 84 361

Figure 4.2 – Gene expression analysis by microarray.
(A) summary of the number of differentially up- and down-regulated genes on TEL overexpression, including
those differentially expressed more than two-fold (B) graph showing the differentially expressed genes along the
x-axis against their fold-change on the y-axis; red dotted line indicates two-fold difference (C) ‘heat-map’
showing the differentially expressed genes; red colouring indicates upregulated genes, blue indicates
downregulated genes, and yellow indicates genes unchanged. Also shown are close-up views of selected regions
of the heat map.
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Gene code RefSeq Description
Fold-
change

H19 NR_002196
H19, imprinted maternally expressed transcript (non-
protein coding), non-coding RNA

13.02

AIF1L NM_031426
allograft inflammatory factor 1-like, transcript variant
1, mRNA

12.39

VANGL1 NM_138959 vang-like 1 (van gogh, Drosophila), mRNA 10.44

FXYD2 NM_021603
FXYD domain containing ion transport regulator 2,
transcript variant b, mRNA

9.39

ADARB2 NM_018702
adenosine deaminase, RNA-specific, B2 (RED2
homolog rat), mRNA

5.40

RPA4 NM_013347 replication protein A4, 34kDa, mRNA 5.33

MPO NM_000250
myeloperoxidase, nuclear gene encoding
mitochondrial protein, mRNA

5.12

IKZF2 NM_001079526
IKAROS family zinc finger 2 (Helios), transcript
variant 2, mRNA

5.02

CTGF NM_001901 connective tissue growth factor, mRNA 4.94

EPAS1 NM_001430 endothelial PAS domain protein , mRNA 4.77

Table 4.1 – Top ten genes up-regulated on TEL overexpression
(excluding TEL, which had a fold change value of 60.6)

Gene code RefSeq Description
Fold-
change

TTBK1 NM_032538 tau tubulin kinase 1, mRNA -56.64

C6orf222 NM_001010903 chromosome 6 open reading frame 222, mRNA -49.98

CLIC5 NM_016929
chloride intracellular channel 5, transcript variant 2,
mRNA

-46.16

CNN1 NM_001299 calponin 1, basic, smooth muscle, mRNA -27.70

C21orf90 NR_026547
chromosome 21 open reading frame 90, transcript
variant 1, non-coding RNA

-26.48

OSTalpha NM_152672 organic solute transporter alpha, mRNA -22.25

FAM69C NM_001044369 family with sequence similarity 69, member C, mRNA -19.35

TMEM154 NM_152680 transmembrane protein 154, mRNA -18.11

FLJ32810 NM_152432
Rho-type GTPase-activating protein FLJ32810,
mRNA

-15.15

ANGPTL4 NM_139314 angiopoietin-like 4, transcript variant 1, mRNA -14.87

Table 4.2 – Top ten genes down-regulated on TEL overexpression
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Gene code RefSeq Description
Fold-
change

CDKN1B NM_004064
cyclin-dependent kinase inhibitor 1B (p27, Kip1),
mRNA

1.66

BCL-2 NM_000633
B-cell CLL/lymphoma 2, nuclear gene encoding
mitochondrial protein, transcript variant alpha, mRNA

-1.83

EPOR NM_000121 erythropoietin receptor, mRNA -1.80

ANGPTL4 NM_139314 angiopoietin-like 4, transcript variant 1, mRNA -14.87

IKZF2 NM_001079526
IKAROS family zinc finger 2 (Helios), transcript variant
2, mRNA

5.02

CLIC5 NM_016929
chloride intracellular channel 5, transcript variant 2,
mRNA

-46.16

TTBK1 NM_032538 tau tubulin kinase 1, mRNA -56.64

NETO1 NM_138999
neuropilin (NRP) and tolloid (TLL)-like 1, transcript
variant 1, mRNA

-11.75

Table 4.3 – List of genes from microarray whose expression are validated in this chapter

4.2.2 Ingenuity Pathway Analysis

To identify the cellular functions affected by the gene expression changes as a result

of TEL overexpression, the data was further analysed by Ingenuity Pathway Analysis

(IPA) software. Functional analysis in the IPA depends upon knowledge about

which genes are involved in a particular function (for example, ‘differentiation of

B lymphocytes’), and whether these genes positively or negatively affect this

function. By comparing these genes set with the differentially expressed genes in our

microarray dataset, it can be predicted what functions are being affected and in

which direction (i.e. whether in our microarray the genes changed suggest an

activation or an inhibition of a particular function).

Table 4.4 lists all the functions predicted to be affected by gene expression changes

observed in the microarray. Each function is accompanied with the following

information:

 Activation state – whether the gene expression changes in our dataset suggest

either a decrease or an increase the function

 z-score – how strong directionally the association is, based upon how many

genes have expression direction consistent with the activation state, and how



CHAPTER 4: ROLE OF TEL IN TEL/AML1+ LEUKAEMIA

134

strongly each gene affects the function; negative values indicate the function

is predicted to be decreased, positive values indicate the function is

predicated to be increased (z-scores with absolute values larger than 2 are

considered significantly affected; only these are shown in Table 4.4)

 p-value – the statistical measure of the overlap between the genes associated

with the function and the differentially expressed genes in the microarray

(p-values less than 0.05 are considered statistically significant)

 # genes – how many genes identified in our microarray are known to be

involved in the function, whether they decrease or increase the function, or

have an unknown or ambiguous effect

Functions

Predicted
Activation
State z-score p-value # genes

proliferation of immune cells Decreased -3.372 5.98E-05 75
proliferation of lymphocytes Decreased -3.364 7.84E-05 71
proliferation of blood cells Decreased -3.155 1.46E-04 77
proliferation of T lymphocytes Decreased -3.118 3.66E-03 53
differentiation of leukocytes Decreased -3.105 2.97E-03 59
development of blood cells Decreased -2.918 4.04E-03 59
proliferation of B lymphocytes Decreased -2.795 4.46E-05 34
quantity of osteoclasts Decreased -2.750 8.69E-03 12
protein kinase cascade Decreased -2.667 7.03E-03 33
differentiation of mononuclear leukocytes Decreased -2.650 5.05E-03 49
differentiation of T lymphocytes Decreased -2.649 3.29E-03 35
activation of antigen presenting cells Decreased -2.580 3.15E-03 24
cell movement of endothelial cells Decreased -2.552 8.23E-03 24
differentiation of blood cells Decreased -2.510 3.85E-04 71
differentiation of lymphocytes Decreased -2.509 4.02E-03 46
proliferation of cells Decreased -2.368 1.72E-03 216
haematopoiesis Decreased -2.354 9.03E-05 89
cellular homeostasis Decreased -2.314 9.93E-04 114
differentiation of cells Decreased -2.311 5.70E-04 157
differentiation Decreased -2.233 2.46E-04 169
activation of macrophages Decreased -2.181 2.40E-03 18
function of blood cells Decreased -2.055 5.05E-03 53
proliferation of hepatocytes Decreased -2.015 2.21E-03 16
uptake of anion Increased 2.018 7.05E-03 6
infection by bacteria Increased 2.516 1.25E-03 40
infection by virus Increased 2.749 8.33E-03 105

Table 4.4 – Functions predicted to be affected by TEL overexpression, based upon gene expression
changes from the microarray
p-values are formatted as follows: 5.98E-05 = 5.98 × 10–5 = 0.0000598.
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Table 4.4 indicates that functions predicted to be decreased include the proliferation

of a variety of immune cell types, including T and B lymphocytes. This finding is

significant in our model, since it suggests that in the context of leukaemia, the loss of

TEL might result in an increase in proliferation of lymphoblasts. Several other

functions predicted to be decreased include differentiation of blood cells, including

lymphocytes. However, as leukaemic lymphoblasts are immature cells, it might be

expected that if the loss of TEL contributes to the progression of the disease, that the

overexpression of TEL might increase differentiation, rather than decrease. TEL

appears to reduce the number of osteoclasts, a bone-resorbing haematopoietic cell

derived from the monocyte/macrophage lineage (Boyle et al 2003). In addition, there

are functions that are affected that do not appear to have any direct relevance to

leukaemia; e.g. proliferation of hepatocytes, uptake of anion, infection by bacteria,

infection by virus. These may be indications of other functions of TEL in non-

haematopoietic tissues.

Since TEL is known to affect the function of other transcription factors by

heterodimerisation (Fears et al 1997; Kwiatkowski et al 1998; Schick et al 2004),

the gene expression data was subjected to an analysis for transcription factor activity.

IPA compares the gene expression data with the known targets of a database of

transcriptional regulators, in an attempt to identify which gene expression changes

might be associated with the inhibition or activation of a transcriptional regulator.

This produces a list of transcription factor proteins whose activities might be

affected; note that this list is not dependent on any gene expression changes of these

transcription factors, simply their respective targets. The output is a z-score for the

direction in which the transcription factor is affected (i.e. decreased or increased),

and a p-value to indicate the statistical significance of the overlap between the

known targets of the transcription factor and the differentially expressed genes in the

microarray dataset.

Table 4.5 shows the list of transcription factors predicted to be affected based upon

the gene expression changes observed in our microarray. Transcription factors

known to be regulated by heterodimerisation with TEL, for example STAT3 (Schick

et al 2004) and FLI1 (Kwiatkowski et al 1998), are not seen in this list. However, the

list of transcription factors might represent new partners of TEL. Of particular note is
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the transcription factor SPI1 (also known as PU.1), which is another member of the

ets family along with TEL and FLI1. PU.1 is known to be involved in both normal

haematopoiesis and leukaemia (Gupta et al 2006; Kastner & Chan 2008; Gupta et al

2009).

Transcription Regulator Predicted Activation State z-score p-value

WT1 Inhibited -2.671 2.70E-02
RELA Inhibited -2.618 7.12E-02
EP300 Inhibited -2.513 1.27E-01
Nfat family Inhibited -2.238 5.75E-03
HMGB1 Inhibited -2.216 9.47E-02
SPI1 Inhibited -2.175 1.07E-01
MYCN Inhibited -2.128 5.02E-01
HOXA9 Inhibited -2.072 2.49E-02
FOXC2 Inhibited -2.069 9.23E-02
NfkB-RelA Inhibited -2.012 1.39E-02
ESR1 Activated 2.064 7.81E-02
SMAD2 Activated 2.076 3.41E-01
SMARCA4 Activated 2.096 7.52E-02
PPARD Activated 2.619 2.58E-01

Table 4.5 – Transcription factors predicted to be affected by TEL overexpression, based upon gene
expression changes from microarray
In bold are predictions deemed statistically significant (p < 0.05)

In light of the importance of proliferation indicated by IPA I decided to further

investigate the effect on proliferation of overexpression of TEL in REH cells.

4.2.3 Effects of TEL transduction on proliferation

Previous work on the role of TEL in leukaemia has indicated that a loss of TEL

results in an increase in the proliferation (Fenrick et al 2000; Tsuzuki et al 2007).

Analysis of the gene expression data indicated that a gene involved in proliferation

and cell cycle control, namely p27-KIP1 (CDKN1B), was differentially expressed

(Table 4.3). p16-INK4A (CDKN2A), another gene involved in cell cycle control, has

been previously shown to be a common secondary mutation in acute lymphoblastic

leukaemia, as described in the Introduction chapter (section 1.9.2). However, when

the expression of these genes was analysed by qPCR, using the same RNA as used in

the microarray, I found no evidence of differential expression of either of these genes

(Figure 4.3A). Nevertheless, I decided to continue to investigate further the role of

TEL on the proliferation of REH cells.
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The effects of oncoretroviral transduction of TEL on proliferation were studied by

analysing DNA content by the double stranded DNA stain DAPI and analysed by

flow cytometry. DNA content histograms were deconvoluted by using FlowJo

software, giving an estimate of the numbers of cells in the stages of cell cycle as

shown in Figure 4.3B. Cells in a sub-G1 position on the DNA histogram represent

apoptotic cells undergoing DNA fragmentation.

Frequencies calculated using the FlowJo software were compiled from

GFP-transduced or TEL-GFP-transduced REH cells at 24 hour intervals over

96 hours. The expression of TEL in REH resulted in only subtle effects on cell cycle

progression, with a small increase in the numbers of cells in G1 phase (Figure 4.3C),

and small decreases in the numbers of cells in S (Figure 4.3D) and G2 phases

(Figure 4.3E). Also, there was a small increase in the numbers of sub-G1 cells

(Figure 4.3F) cells. Further replicates would have to be performed to show whether

this is reproducible and statistically significant, but they indicate the expression of

TEL results in only a slightly reduced proliferation in REH cells, and increased

apoptosis.

I investigated the effect of TEL overexpression on proliferation further using a

different expression method, that of DNA plasmid transfection. This would allow me

to rule out any possibility that the gene delivery method was affecting the results.

4.2.4 Cloning of pCI-TEL-neor

To generate a plasmid to over-express TEL in REH cells, TEL cDNA was inserted

into the multiple cloning site (MCS) of the pCIneo expression plasmid (Promega;

Figure 4.4A), by standard restriction-ligation method using SalI and NotI at the 5’

and 3’ end of TEL, respectively. Digests of both the library plasmid in which the

TEL cDNA was contained and pCIneo was performed (Figure 4.4B), and the

fragments ligated with T4 Ligase, giving rise to plasmid clone, several of which

were assessed to contain both the pCIneo vector and the TEL insert by restriction

digest (Figure 4.4C).
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Figure 4.3 – Effects of oncoretroviral transduction of TEL on cell cycle.
(A) Expression of genes associated with cell cycle control (CDKN1B, upper, and CDKN2A, lower), as analysed
by qPCR. (B) Representative histogram showing DNA content of cells, stained with DAPI after permeabilisation.
Histograms were analysed on FlowJo software and cell cycle populations were fitted to the histogram as shown.
(C-F) Percentage of cells transduced with GFP oncoretrovirus (open blue circles) or TEL-GFP oncoretrovirus
(closed red squares) populating G1 phase (C), S phase (D), G2 phase (E), or sub-G1 (F) against time after
transduction (n=1).
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Figure 4.4 – Cloning of pCI-TEL-neor.
(A) Cloning strategy used to construct the pCI-TEL-neor plasmid. (B) Digest of TEL clone and pCIneo vector
with SalI and NotI restriction enzymes. (C) Plasmid clones after ligation of digested TEL and pCIneo fragments.
Plasmid clones are digested to show presence of both pCIneo and TEL.
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4.2.5 Short term effect of TEL on growth

With the TEL plasmid, I first intended to investigate the short term effect of the

expression of TEL in REH cells. However, without a fluorescently labelled TEL

protein or a plasmid able to express a fluorescent label at the same time, and

knowing the transfection efficiency of REH was less than 100%, it would not be

obvious which cells were expressing TEL and which were not. I decided to

circumvent this problem by co-transfecting TEL with a separate expression plasmid

for a fluorescent protein.

Figure 4.5A demonstrates the phenomena of co-transfection using two fluorescent

plasmids, one for the fluorescent protein Citrine (a Yellow Fluorescent Protein

derivative; Griesbeck et al 2001) and one for Tomato (a DsRed derivative; Shaner et

al 2004). Transfection of REH cells with both plasmids fluorescent plasmids results

in cells that express both fluorescent proteins, and that the expression levels of

Tomato and Citrine increases linearly; i.e. cells expressing high levels of Tomato

express high levels of Citrine, and vice versa. There is also a subtle increase in the

transfection efficiency of both plasmids in co-transfection, compared to when each

was transfected individually (20% to 29% for Tomato, 40% to 43% for Citrine).

These phenomena were exploited to investigate the effect of TEL on the proliferation

of REH cells by co-transfecting REH with both Citrine and TEL plasmids. Based

upon Figure 4.5A, it could be assumed that most Citrine+ cells will also express

TEL, and that levels of Citrine expression could be used as a surrogate marker for

levels of TEL expression.

I assessed the proliferation of REH cells by measurement of DNA synthesis using

labelled nucleotide incorporation. In the current study, EdU taken up by the cell was

labelled with Azide-Alexa647. The intensity of Alexa647 fluorescence in each cell is

proportional to the amount of EdU incorporated into DNA by the cell (and thus the

amount of DNA synthesis) during the incubation period. Thus, mean fluorescence

intensity (MFI) of the fluorophore is a useful statistic to compare overall DNA

synthesis rates; cells that are proliferating at a faster rate have more cells
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synthesising DNA into which EdU is incorporated, resulting in a higher MFI than

slowly proliferating cells.

Figure 4.5B shows the effect that transfection of Citrine and the co-transfection of

Citrine and TEL (with co-transfection of Citrine & empty vector pCIneo as a

control) has on EdU uptake. Cells that were cotransfected with Citrine and either the

TEL plasmid or the empty vector frequently had a Citrine– fraction, the overall

transfection rate of Citrine being roughly 20%. It was found that the MFI of the

fluorescently labelled EdU in the Citrine– fraction varied between samples depending

on what they had been transfected with, even though it was assumed that such cells

would not be carrying any exogenous plasmids. To control for this variation, I used

the ratio between the MFI of the labelled EdU from the Citrine+ and Citrine–

fractions, assuming that the effect that was giving rise to this variation would affect

both fractions equally.

Figure 4.5C shows the MFI ratio was the same between cells transfected with Citrine

and cells co-transfected with Citrine and empty vector pCIneo, indicating that the

presence of the second plasmids had no intrinsic effect on the proliferation rate.

However, the MFI ratio was slightly lower in cells co-transfected with Citrine and

TEL, owing to a low MFI in the Citrine+ population, which I assumed (based upon

Figure 4.5A) has high levels of TEL expression.

One explanation for this reduction in the proliferation rate is that it is caused by the

‘burden’ of overexpressing any protein, regardless of what role it has. However, I did

not believe this to be the case in this instance, since the vector transfected as the

empty vector contains the gene for the protein to confer neomycin resistance

(Neomycin Phosphotransferase), which would also inflict such a ‘burden’ upon the

cells, but there was no change between cells transfected with Citrine alone and those

transfected with Citrine and the empty vector (Figure 4.5C). Therefore, I concluded

that the immediate effect of TEL after transfection (<48hrs) is a subtle reduction in

the proliferation in REH cells.
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Figure 4.5 – Effects of TEL plasmid transfection on DNA synthesis
(A) Cotransfection of REH with two fluorescent protein plasmids (Citrine and Tomato), showing uptake of both
plasmids and expression of both Citrine and Tomato at the same intensity. (B) Flow plots showing EdU uptake
(visualised by azide-Alexa647 staining) and Citrine expression, when REH is transfected with Citrine alone,
Citrine and pCIneo, or Citrine and pCI-TEL-neo. Numbers above gates indicate mean fluorescence intensity of
Alexa647 of the events in the gate. (C) Bar graph showing the ratio between the mean fluorescence intensity
(MFI) of EdU-Alexa647 staining of Citrine-positive cells and that of Citrine-negative cells (shown by gates in
(B)); n=1.
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4.2.6 Long term loss of TEL

REH cells were transfected with TEL or pCIneo, and the cultures were kept under

selection (G418, 600µg/ml) for up to 22 weeks. However, after eight weeks (by

which time all non-transfected REH cells would have been killed), the rates of EdU

incorporation between TEL and pCIneo selected populations was similar (Figure

4.6A), as were the growth rates in culture (Figure 4.6B), and rates of cell death in

response to Staurosporine (Figure 4.6C), a protein kinase inhibitor and apoptosis

inducer (Bertrand et al 1994).

It was discovered by qPCR that the expression of TEL mRNA in the transfected

REH cells decreased dramatically in the population between weeks 4 and 9, and

remained low (Figure 4.6D), despite constant antibiotic selection in culture. This is

consistent with the idea that TEL expression puts REH cells at a selective

disadvantage in culture; since cell culture conditions favour the fastest growing cells,

there is a strong selective pressure for any cells expressing genes which slow down

cell growth (as has been shown for TEL in Figure 4.5) to silence the expression of

these genes, and any cells doing so, by definition, will increase their numbers in the

total population.
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Figure 4.6 – Long term loss of TEL in culture.
(A) Comparing EdU uptake by flow cytometry in REH:pCIneo and REH:TEL cells after 8 weeks post-
transfection in culture under G418 selection. (B) Graph showing growth of REH:pCIneo and REH:TEL cells
seeded in triplicate, 12 weeks post-transfection in culture under G418 selection. (C) Graph showing death of
REH:pCIneo and REH:TEL cells caused by 1µM Staurosporine (STS) after 14 weeks in culture under G418
selection. (D) Graph showing the relative expression level by qPCR of TEL in the bulk culture of REH:TEL over
time (n=1).
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4.2.7 Monoclonal REH:TEL cell lines

In an attempt to avoid the problems with ‘bulk cultures’ observed in Figure 4.6,

I generated monoclonal cell lines to investigate proliferation. Fresh REH cells

recently transfected with TEL or pCIneo were seeded into 96-well U-bottom plates

in limiting dilution to ensure no more than one cell per well. Nine clones were

generated; from TEL-transfected REH cells: T1C8, T1E10, T1G8, T2C5, and

T2D10, and from pCIneo-transfected REH cells: p1C6, p1E9, p2B2, and p2D5.

A growth curve experiment was used to identify the slowest growing

TEL-overexpressing clones (Figure 4.7A), and an estimated doubling time for each

of the clones was calculated from these curves (Figure 4.7B). The doubling times

from the curves vary from 27 hours to 49 hours, 27 hours being the approximate

doubling time for untransfected REH cells (data not shown). However,

unexpectedly, the two fastest growing clones were TEL-overexpressing (T1G8 and

T1C5), and the slowest growing clone was a pCIneo-transfected clone (p2D5), and

there appeared to be no consistent pattern in terms of the doubling times for the other

TEL- or pCIneo-transfected clones.

To resolve this discrepancy, I assessed the transcript expression of TEL in the clones

to see if the difference in growth rates could be attributed to the expression levels of

TEL in the clones. TEL mRNA expression levels were all high in the clones from

TEL-transfected REH (apart from clone T2D10) and low in the clones from

pCIneo-transfected REH cells (Figure 4.7C). The expression levels of TEL did not

appear to correlate with the growth rates of the clones.
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Figure 4.7 – Growth of monoclonal REH:TEL cell lines.
(A) Growth curves over three days calculated by automated cell counts starting with 105 cells. Legend lists cell
lines in order of final cell count on day three, highest to lowest. Mean calculated from three technical replicates,
n=1. (B) Doubling time of cell lines calculated from growth curves (C) Expression of TEL transcript in the
monoclonal cell lines derived from REH transfected with TEL or pCIneo. Transcript expression level is
normalised to GAPDH and compared to Jurkat cells.
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4.2.8 Effects of TEL transduction on apoptosis

The microarray identified BCL-2, a gene associated with the control of apoptosis, as

down-regulated 1.8-fold in TEL-transduced REH cells compared to GFP-transduced

cells (Table 4.3). Analysis by qPCR, using the same RNA as was used in the

microarray, indicated that BCL-2 was down-regulated in TEL-transduced REH cells

compared to GFP-transduced cells (Figure 4.8A), but only by virtue of a high level

of BCL-2 expression in one of the GFP-transduced cells. To further investigate the

effect of TEL on apoptosis, cells were transduced with either GFP or TEL-GFP

oncoretrovirus, and treated with or without Staurosporine (STS), an inhibitor of

protein kinases, and a potent inducer of apoptosis (Jacobson et al 1993). The cells

were stained with an antibody for Annexin-V and DAPI and analysed by flow

cytometry to distinguish between live cells, and cells in the early or late stages of

apoptosis (Figure 4.8B). The experimental schedule is shown in Figure 4.8C; briefly,

REH cells were transduced with either GFP- or TEL-GFP-oncoretrovirus, and 24

hours later incubated with or without staurosporine, with samples taken at 24 hour

intervals from before the transduction to two days after staurosporine treatment.

The frequencies of the populations in each condition are shown in Figure 4.8C. In

the absence of staurosporine, the transduction of TEL did not increase either of the

apoptotic cell populations compared to GFP-transduced cells. Staurosporine induced

apoptosis in both GFP- and TEL-transduced cells, indicated by the dramatic decrease

in live cells and the increase in the early and late apoptotic populations; however,

there appeared to be no difference in the numbers of cells present in the apoptotic

cell fractions between the GFP- or TEL-transduced cells, indicating that TEL did not

have a significant effect on apoptosis in REH cells.
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4.2.9 Further investigation of genes identified in microarray

In addition to identifying genes associated with proliferation and apoptosis, the gene

expression microarray indicated other differentially expressed genes that have

previously been connected to leukaemia, namely EPOR (erythropoietin receptor),

ANGPTL4 (Angiopoietin-like 4), and IKZF2 (Helios; Table 4.3). Using the same

RNA samples as were used in the microarray, the differential expression of these

genes was further investigated by qPCR in Figure 4.9A. Despite being identified in

the microarray as genes with differential expression, by qPCR no difference was

observed in the expression of the genes in the GFP-transduced versus the

TEL-transduced cells (Figure 4.9A).

Many of the genes identified in the microarray have not been previously linked to

leukaemia, namely CLIC5, TTBK1, and NETO1. Each of these genes were strongly

differentially expressed (Table 4.3), and so warranted further validation by qPCR.

CLIC5 (chloride intracellular channel protein 5) is a chloride ion channel found on

internal membranes, that was originally identified in the microvilli of the placenta

and found to associate with the actin cytoskeleton (Berryman & Bretscher 2000).

CLIC5 has since been found in the cilia of hair cells of the inner ear, and is essential

for the functions of the cochlea for hearing and the vestibular system for balance

(Gagnon et al 2006). It is also highly expressed in skeletal muscle, and has a role in

proliferation and differentiation of myoblasts (Li et al 2010). High expression of

CLIC5 has been shown to be associated with TEL/AML1+ leukaemia compared to

other subtypes of ALL (Ross et al 2003), and also presented on murine follicular

dendritic cells, which help form germinal centres, sites of rapid B cell proliferation

(Huber et al 2005). Recently it has been identified as part of a multigene predictor of

triple-negative breast cancer patients who are at low risk of metastasis (Yau et al

2010).

TTBK1 (tau tubulin kinase 1) is a brain-derived kinase that phosphorylates tau,

β-tubulin, MAP2 and α-casein (Takahashi et al 1995). Variants of TTBK1 are

associated with Alzheimer’s disease (Vazquez-Higuera et al 2011; Yu et al 2011),
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and transgenic mice expressing human TTBK1 show impaired memory (Sato et al

2008).

NETO1 (neuropilin and tolloid-like 1) is a transmembrane receptor that interacts

with the NMDA receptor at neuron synapses, and is involved in memory and

learning (Ng et al 2009). Deletion of the chromosome arm 18q where the NETO1

locus is situated has been associated with autism (O'Donnell et al 2010). NETO1

itself is a receptor for Semaphorin-3F (Sema3F; Gay et al 2011). Semaphorins are a

class of signalling proteins involved in axonal guidance during neural development.

SEMA3F has no known connection to leukaemia, but semaphorin family members

have been linked to leukaemia in the past; for example, SEMA4D (also known as

CD100) has been shown to help promote proliferation of B cell Chronic Lymphoid

Leukaemia cells (Deaglio et al 2005). NETO1 has been shown to be upregulated in a

human B cell line in response to hypoxic conditions (Kim et al 2006), purported to

confer survival to leukaemia cells (Benito et al 2011).

Out of these three genes, two (CLIC5 and NETO1) were indicated by qPCR as being

downregulated in the TEL-transduced REH cells compared to the GFP-transduced

cells (Figure 4.9B). The expression of TTBK1 was not shown to be different

between TEL-transduced and GFP-transduced cells.
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Figure 4.9 – qPCR data from other genes.
(A) Expression of EPOR, ANGPTL4, and IKZF2, by qPCR. (B) Expression of CLIC5, TTBK1, and NETO1, by
qPCR.
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4.3 Discussion

The data presented in this chapter describes the investigation of the role of TEL

overexpression in the REH cell line, a model cell line of TEL/AML1+ leukaemia.

RNA extracted from REH cells after TEL or GFP transduction was run on a gene

expression microarray. Of the differentially expressed genes, there were several

genes involved in proliferation and apoptosis, two important factors in the

development and progression of cancer.

I first investigated the effects of TEL on proliferation. REH cells transduced with

oncoretroviruses expressing TEL and GFP only showed subtle changes in the

progression of the cell cycle, as demonstrated by a slight decrease of cells in S and

G2 phases, compared to those transduced with GFP alone. I decided to further pursue

the study of proliferation in REH by plasmid transfection. The early effects of the

transfection of a TEL expression plasmid were to slow down proliferation compared

to transfection with the empty vector, as demonstrated by reducing incorporation of

EdU, a nucleotide analogue. However, this effect was lost over time in the bulk

culture of TEL-transfected cells, concurrent with a loss of TEL expression,

indicating a strong selective pressure of TEL-transfected REH cells to silence their

TEL expression. The generation of monoclones gave conflicting results with regards

to TEL mRNA and protein levels, as well as growth rates.

I next investigated the role of TEL in apoptosis. Despite a slight increase in sub-G1

cells by cell cycle analysis, TEL transduction had no effect on cell death in response

to staurosporine, as shown by Annexin-V staining. Finally I confirmed the

differential expression of two sets of other genes from the microarray, one set of

three genes that have previously been linked to leukaemia, and another set that have

not had any connection to leukaemia before.

4.3.1 Gene expression microarray

There have been many examples of the use of gene expression microarrays to study

acute lymphoblastic leukaemia. These have been used to identify the molecular

subclasses of leukaemia and discover new subclasses (Fine et al 2004; De Pitta et al

2005; Den Boer et al 2009), and to generate a set of genes that can discriminate
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between specific groups of ALL patients, for example TEL/AML1+ patients

(Gandemer et al 2007). The findings from such studies are useful in discovering

what makes the subtypes different, which could be used in the future either for a

more detailed diagnosis or for ‘personalised treatment’ for a specific subtype.

However, if one hopes to answer a fundamental question of leukaemia – ‘what

makes leukaemia different to normal haematopoiesis?’ – then it would be more

appropriate to look at the differences between leukaemic and normal blood cells.

Analysing gene expression data to discriminate between different subtypes of ALL

will, by definition, ignore gene expression patterns that are common to many of

these subtypes. There are a few examples of studies that aim to identify the gene

expression differences between leukaemic and normal haematopoietic cells

(Andersson et al 2005b; Andersson et al 2010). Combining the results of these

studies with those looking at specific subtypes will shed light on how specific causes

can lead to common outcomes of malignant haematopoiesis. Similarly, the intention

of this study was to investigate how the loss of TEL fits into the bigger picture

molecular pathogenesis of leukaemia.

The differentially expressed genes were analysed by Ingenuity Pathway Analysis

(IPA), which is designed to link genes with their known functions and interactions.

Analysis of predicted perturbed functions in response to TEL overexpression

identified decreases in several functions such as ‘proliferation of immune cells’, and

‘proliferation of lymphocytes’ (Table 4.4). This indicates that TEL has a role of

suppression of proliferation in haematopoietic cells including B lymphocytes, which

fits with the hypothesis that the loss of TEL is an important step in the progression of

leukaemia, allowing lymphoblasts to proliferate unhindered. Genes whose

differential expression identifies such perturbed functions would be interesting

candidates for further analysis. In addition, other functions affected in this model,

such as ‘activation of antigen presenting cells’ and ‘activation of macrophages’ may

represent new functions for TEL. Other functions affected by TEL overexpression

include decreases in ‘quantity of osteoclasts’ and ‘cell movement of endothelial

cells’, and increases in ‘uptake of anion’, ‘infection by viruses, and ‘infection by

bacteria’ (Table 4.4). These may represent functions of TEL in other cells, but could
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also be a result of ‘false positives’ in the differentially expressed genes from the

microarray, and so not represent a physiological function of TEL.

Transcription factor analysis identified transcriptional regulators whose targets were

differentially expressed in the microarray, and therefore suggests transcription

factors whose activity may have been affected as a result of the overexpression of

TEL (Table 4.5). Of particular note is the prediction of a decreased activity in the ets

family member PU.1 (coded by the gene SPI1), which is involved in both normal

and malignant haematopoiesis (Gupta et al 2006; Kastner & Chan 2008; Gupta et al

2009). The transcription factors predicted to be inhibited may represent new targets

of TEL, and could be further investigated by protein binding studies.

I did not identify in the microarray genes previously shown to be regulated by TEL,

such as stromelysin-1 (Fenrick et al 2000; Wang & Hiebert 2001), Bcl-XL (Irvin et al

2003), and TCL1 (Fears et al 2002). It is possible that any differential expression of

these genes did not meet the threshold of statistical significance, or are not expressed

in REH cells. The expression of these genes could be analysed by qPCR.

The microarray identified some differentially expressed genes that have already been

linked to TEL/AML1+ leukaemia: for example, EPOR (Ross et al 2003; Fine et al

2004) and ANGPTL4 (Andersson et al 2005b). This was promising as it showed not

only that our model was relevant to leukaemia, but it also suggests that the loss of

functional TEL is a ‘driver’ mutation in TEL/AML1+ leukaemia progression; that

genes significantly associated with TEL/AML1+ leukaemia are in fact the result of

the loss of TEL. To identify further changes specific to TEL/AML1+ leukaemia that

could be caused by TEL, these results with other gene expression microarrays could

be compared using a computational biology approach.

However, many of the highest deregulated genes have not been previously associated

with leukaemia. I analysed three of the genes, CLIC5, NETO1, and TTBK1, all of

which have had some involvement in neurons, neuronal development, or memory.

TEL has been implicated in neuronal development and survival; TEL is expressed in

the embryonic brain and TEL-/- mouse embryos have defects of the neural tube and

ganglia (Wang et al 1997). Both CLIC5 and NETO1 were confirmed as being
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downregulated on overexpression of TEL (Figure 4.9B), which might suggest they

are targets of TEL, or that they could be downregulated by an indirect mechanism.

Whether either of these genes has any involvement in leukaemia is unconfirmed, but

could be further investigated. For example, NETO1 is a receptor for the signalling

protein Semaphorin-3F (Gay et al 2011), whose family members have been reported

to be involved in proliferation of B-CLL cells (Deaglio et al 2005). To determine

any effect of the loss of NETO1 in TEL/AML1+ leukaemia and in particular in the

role of the loss of TEL, using recombinant semaphorin-3F and anti-NETO1 blocking

antibodies, the proliferation of TEL-transduced REH cells in the presence of

semaphorin-3F could be assessed.

Nevertheless, out of the probes that were identified as differentially expressed in the

microarray, it would not be expected that all of these are indeed differentially

expressed in vivo. When comparing two groups for differentially expressed probes, a

statistical significance threshold of p = 0.05 allows for 5% of the probes to be

different purely by chance, or 1 in 20. For the 44,000 probe microarray, this equates

to 2,200 probes that would be appear to be ‘differentially expressed’ by chance. Our

microarray results show that roughly 1,600 probes are differentially expressed,

meaning I cannot be confident that the genes that represent these probes are

genuinely differentially expressed genes. A correction to adjust the p-values to take

this into account was not successful due to the small sample size in each group (Peter

Ashton, personal communication).

It was therefore decided to validate the differential expression of some of the genes

directly by qPCR. Out of the eight genes I chose to validated that were identified as

differentially expressed in the microarray, only three (BCL-2, CLIC5, and NETO1)

were found to be differentially expressed in the qPCR. Therefore, I cannot be

confident that the differentially expression of the probes identified in the microarray,

and the subsequent analysis, is reliable. The small sample size is a limitation of this

study; more replicate samples for each group would increase the statistical power of

the microarray analysis and subsequent validation by qPCR.
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4.3.2 The role of TEL in proliferation

As proliferation was predicted to be one of the main functions affected by the

overexpression of TEL, and since uncontrolled growth is the defining feature of

leukaemia and cancer, I decided to study the effects of TEL on proliferation of REH

cells.

There have been previous studies into the influence of TEL on cell growth in the

past. Fenrick and colleagues (2000) studied the effects of TEL on Ras-transformed

3T3 (fibroblast) cells. These transformed cells normally display growth in semi-solid

media (agar), but the expression of TEL slowed down this growth considerably. In

adherent cell cultures, TEL expressed in non-transformed 3T3 cells had no effect on

proliferation, but the proliferation of Ras-transformed cells was slowed down by

TEL expression. (Fenrick et al 2000). The growth inhibitory effect of TEL on

3T3 cells was also shown by Gunji and co-workers (2004).

Fears and colleagues (2002) derived two cell lines from samples taken from the same

TEL/AML1+ leukaemia patient, one at initial diagnosis (AT-1), which was positive

for TEL, and one at relapse (AT-2), which was negative for TEL. They showed that

the AT-2 (TEL-negative) cell line grew at a faster rate, although it was not discussed

whether this was due to the loss of TEL or caused by other genetic abnormalities that

arose in the AT-2 cell line, which includes a translocation involving chromosomes 1

and 17 (Fears et al 2002).

Tsuzuki and co-workers (2007) transduced REH cells with retroviruses containing

either GFP alone or TEL and GFP. By tracking the changes in the GFP+ population

amongst all cells transduced, they showed that TEL-GFP-transduced cells lost their

GFP expression quicker than cells transduced with GFP alone, and that cell division

occurs at a slower rate (Tsuzuki et al 2007).

However, I found that the expression of TEL on the proliferation of REH cells had

only a subtle effect of slowing down proliferation. I used a variety of different

methods of measurement, including doubling time, growth curves, DNA synthesis

analysed by EdU incorporation, and cell cycle analysis by DNA content. I also could
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not confirm differential expression of the cell cycle genes CDKN1B and CDKN2A by

qPCR (Figure 4.3A).

By oncoretroviral transduction, I measured the effects of TEL on the cell cycle, and

only found a slight reduction in the numbers of cells in S phase of 5-7 percentage

points (Figure 4.3D), and a similar reduction of cells in G2 phase of 2-3 percentage

points (Figure 4.3E). By plasmid transfection, I observed a modest decrease in EdU

uptake (Figure 4.5C), but inconclusive results using clones derived from stably

transfected cells when growth rate was assessed with growth curves and doubling

times (Figure 4.7A-B).

This conflicts with previous work on the effects of TEL on cell growth, but might be

explained by the differences between these studies and the work presented in this

chapter. The differences in cell growth of the AT-1 and AT-2 cell lines (Fears et al

2002) may not be solely due to the absence of TEL in the AT-2 cell line; detailed

spectral karyotyping identified a t(1;17)(q36;p13) translocation in the AT-2 cell line

not present in the slower growing AT-1 cell line. Whilst TEL inhibited the growth of

3T3 fibroblast cells (Fenrick et al 2000; Gunji et al 2004), it cannot be ruled out that

this effect is specific to 3T3 or fibroblast cells, and so it cannot be assumed TEL has

the same effect on REH cells. Finally, Tsuzuki and co-workers did show that the

transduction of REH cells with TEL slows down the proliferation of cells using a

competition assay, but there was no further analysis with regards to cell cycle

analysis or EdU uptake (Tsuzuki et al 2007).

I did observe some conflicting data in our results, particularly in the study of the

transduced REH monoclones (Figure 4.7). A growth curve was generated by

counting cells seeded into a cell culture plated over time (Figure 4.7A), and from

these curves, a doubling time for each clone was calculated (Figure 4.7B).

Unexpectedly, the fastest growing clones overall were not the empty vector clones,

but the TEL-transfected T1C5 and T1G8 clones. In addition, the slowest growing

clone, below the rest of the TEL clones, was the empty vector clone p2D5. Despite

the best efforts to ensure a consistent numbers of cells (100,000) at the start of the

experiment, if there were differences between the numbers of cells seeded due to

counting errors, this could explain the discrepancy between the growth curves and
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the doubling times of the clones. These experiments would have to be repeated for

this to be investigated. By qPCR, the TEL-transfected clones expressed high levels

of TEL, with the exception of T2D10 (Figure 4.7C). Low levels of qPCR

amplification could be detected in all of the empty vector clones, which could be due

to contamination, the expression of mutant transcripts in REH cells or none specific

binding of the primers. The expression of TEL in these clones did not appear to

correlate with their growth rate.

In summary, without additional replicates of the experiment, I cannot conclude that

TEL has more than a subtle inhibitory effect on the proliferation of REH cells. One

factor that was not examined was if TEL has an effect on the response of REH cells

to external stimuli that either induce or inhibit proliferation. For example, the

proliferation of REH cells has been shown to be stimulated by IL-3 (Accordi et al

2007) or seratonin (Prada et al 2011), and inhibited by IL-7 (Pandrau-Garcia et al

1994); an experiment using these in combination with TEL expression would reveal

how REH cells respond to such stimuli, and possibly identify a role for TEL in

signal transduction.

4.3.3 The role of TEL in apoptosis

In addition to proliferation, the evasion of apoptosis is an important feature of cancer

and leukaemia. The microarray also identified several genes involved in apoptosis,

so I decided to investigate further what role the expression of TEL has on the death

of REH cells.

There have been previous studies of the influence of TEL on apoptosis. Irvin and

colleagues (2003) found that TEL-transduced 3T3 fibroblast cells were much more

sensitive to apoptosis induced by serum-starvation than control 3T3 cells, and that

this correlated with a repression of the anti-apoptotic gene Bcl-XL by TEL. Yamagata

and co-workers (2006) discovered that the expression of TEL in the murine myeloid

cell line 32Dcl3 increase the sensitivity of these cells to apoptosis induced by G-CSF

through the upregulation of p53.

However, in REH cells overexpressing TEL, (Figure 4.8) I did not observe a

significant effect on cell death. When analysing the cell cycle profile TEL
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oncoretrovirus-transduced cells, I only saw a small increase in the number of the

‘sub-G1’ (apoptotic) cells of 1-2 percentage points (Figure 4.3F). However, when I

analysed TEL plasmid-transfected cells for Annexin-V staining (a marker of

apoptosis), I saw no difference in the apoptosis response to the apoptosis inducer

staurosporine (Figure 4.8D).

One explanation for the discrepancy between our results and that of previous work

(Irvin et al 2003; Yamagata et al 2006) could be that, similar to the work in studying

the effects of TEL in 3T3, the increase in sensitivity to apoptosis is due to cell-

specific effects. However, since apoptosis can be induced in different ways, it cannot

be ruled out that TEL does not have the influence on staurosporine-mediated

apoptosis that it might on other means of stimulating cell death.

As described in Introduction chapter (section 1.5.1), apoptosis triggered by intrinsic

signals is dependent on the balance between anti-apoptotic and pro-apoptotic signals

of the bcl-2 family of mitochondrial proteins (Tsujimoto 2003; Yamagata et al

2006). Although the apparent downregulation of BCL-2 in TEL-expressing cells

might only be due to a higher level of TEL expression in one of the GFP-transduced

clones (Figure 4.8A), a downregulation of BCL-2 might be expected to lead to

increased levels of apoptosis. However, the microarray indicated the downregulation

of a pro-apoptotic bcl-2 family member, BAK1, on TEL overexpression (data not

shown). The level of differential expression was low (1.16-fold down regulation),

which I did not confirm by qPCR, but the downregulation of BAK1 might have been

enough to balance out any real downregulation of BCL-2, and so lead to no net effect

on apoptosis of TEL overexpression.

As described in the Introduction chapter (section 1.5.2), the elimination of

self-reactive B cells is a critical stage in B cell development. Apoptosis of immature

self-reactive B lymphocytes is believed to occur via the B-cell receptor (Niiro &

Clark 2002), and acts via both caspase-dependent and -independent pathways

(Berard et al 1999). The mechanism of staurosporine-induced apoptosis is unclear,

but it is believed to act via both caspase-dependent and caspase-independent

pathways (Belmokhtar et al 2001; Zhang et al 2004), the latter which could act

independently of the bcl-2 family proteins (Zhang et al 2004). To fully investigate
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the effects of TEL on apoptosis, a variety of methods to induce apoptosis could be

used, including those relevant to B lymphocytes; for example, activation of apoptosis

via the B-cell receptor by anti-IgM antibody, and apoptosis via Fas by anti-Fas

antibody (Graves et al 1998).

4.3.4 Conclusion

The data presented in this chapter has not demonstrated more than subtle effect of

TEL on proliferation or apoptosis of the TEL/AML1+ cell line REH. This is in

conflict with previous work which has shown that forced TEL expression decreases

proliferation of cells and increases apoptosis.

One possible reason for our observations, as outlined above, could be that I did not

consider the use of methods to induce or inhibit proliferation, nor a variety of

methods to induce apoptosis, which could have revealed an influence of TEL that I

did not observe in this study. Another limitation of this study is the low number of

replicates used for the experiments. If the effects of TEL on proliferation and

apoptosis truly are as subtle as our results suggest, more replicates would increase

the statistical power of the data.

It may be that the loss of TEL is not in fact a ‘driver’ mutation of TEL/AML1+

leukaemia, or is only partially involved. It is possible that the loss of TEL is only one

mutation in a multi-step process to leukaemia, all of which are necessary but not

sufficient to bring about overt leukaemia. To this end, it would be necessary to

investigate how TEL along with other common mutations (outlined in the

Introduction, section 1.9) influence leukaemia.

However, given the frequency of the loss of the untranslocated ETV6 allele observed

in TEL/AML1+ leukaemia patients (Cave et al 1997; Patel et al 2003), it seems

unlikely that TEL only has a limited effect influence. To support this, when the gene

expression changes were analysed by the Ingenuity Pathway Analysis, most of the

functions predicted to be affected by TEL overexpression were proliferation of

various subtypes of haematopoietic cells (Table 4.4). It is more likely that the loss of

TEL results in changes in lymphoblasts that have not been studied in this chapter.

Cancer is a disease of many features, with increased proliferation and evasion of
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apoptosis just two such features, which can each be affected in many ways; for

example, a hypothetical cancer promoting mutation might not affect the baseline rate

of proliferation of a cell, but might change its sensitivity to a proliferation-inducing

signal, which in turn means that the cell proliferates faster in response. More

sophisticated experiments than the ones performed in this chapter would have to be

performed to reveal what role TEL has on proliferation and apoptosis. A more

directed approach would be to start with investigating the functions predicted by IPA

to be affected by TEL overexpression (Table 4.4).

Ultimately, some of the roles of TEL may not be revealed by models using cell lines,

and indeed, the limitation all model systems when studying any gene is that they

cannot individually reveal all aspects of what that gene does in an organism. As a

demonstration, mouse models were used to show that TEL is essential for adult

haematopoietic engraftment but dispensable for adult haematopoiesis itself (Wang et

al 1998a; Hock et al 2004), which would not have been possible to show using cell

lines alone. Similarly, whilst important aspects of the role of the loss of TEL in

TEL/AML1+ leukaemia can be revealed using cell lines, such a model would not be

appropriate for the study of, for example, how TEL influences B lymphocyte

development, since cell lines rarely represent more than a ‘snapshot’ of a particular

stage in development.
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Chapter 5: Discussion

The fusion gene TEL/AML1, generated by the t(12;21) chromosome translocation, is

the most common single genetic aberration in childhood leukaemia. However,

despite extensive research using a variety of mouse and human models, it is still not

clear how the activity of TEL/AML1 leads to leukaemia. In addition, the significance

of one of the most frequent secondary mutations, the loss of the remaining

untranslocated TEL allele, is still not known. The aims of this thesis were two-fold:

to generate a new model based on human embryonic stem cells in which the

aetiology of TEL/AML1+ leukaemia might be further investigated (Chapter 3), and

provide an insight into the role of the loss of TEL in the context of TEL/AML1+

leukaemia using a human leukaemia cell line REH (Chapter 4).

A model of leukaemia using hESCs would combine the advantages of in vivo and

in vitro models; it would demonstrate human multipotent haematopoietic

development, and would be amenable to genetic manipulation whilst maintaining a

reproducible genetic background. In Chapter 3 all of these characteristics were

demonstrated in the hES cell line H9 expressing the TEL/AML1 transgene.

Transgenic hESCs could generate haematopoietic progenitors, capable of

differentiation towards a variety of haematopoietic lineages, whilst also maintaining

genetic stability and pluripotency markers when cultured in an undifferentiated state.

To my knowledge there are no published examples of models of TEL/AML1+

leukaemia using hESCs, and thus the work presented in this thesis provides the basis

of first model of its kind.

Differentiation of transgenic TEL/AML1+ hESCs showed that there was no

significant effect of TEL/AML1 on the numbers of haematopoietic precursors

(CD43+CD31+ hESC-derived cells; Figure 3.8). This is consistent with previous

studies concerning the haematopoietic development in TEL and AML1 deficient mice

(Wang et al 1998a; Lacaud et al 2004), demonstrating that any dominant negative

effects that TEL/AML1 might have over TEL or AML1 (Zelent et al 2004) will not

have a significant effect on the differentiation of TEL/AML1+ hESCs.

TEL/AML1-transgenic mice show that the expression of TEL/AML1 increases the

self-renewal capacity of HSCs and an increase in myeloid progenitors with a
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reciprocal decrease in lymphoid progenitors (Schindler et al 2009). Unfortunately,

inefficient recovery of CD43+CD31+ haematopoietic precursors precluded a

thorough analysis by CFU assays of the influence of TEL/AML1 in the

haematopoietic capacity from the transgenic hESCs (Figure 3.9). However, it would

theoretically be possible to conduct a more in depth study of the self-renewal and

differentiation properties of TEL/AML1+ hESC-derived haematopoietic progenitors,

using both an in vivo approach by xenograft repopulation, with additional limiting

dilution and competitive repopulation assays, and in vitro approach with serial

transplantations in methylcellulose-based CFU assays (Schindler et al 2009).

Further differentiation of haematopoietic progenitors towards B cell lineage was

demonstrated in Figure 3.10. A slight increase in CD34 transcript expression was

observed in TEL/AML1+ differentiation cultures, which suggests an inhibition of

differentiation between pro-B and pre-B expression, consistent with murine models

of TEL/AML1+ leukaemia (Tsuzuki et al 2004; Fischer et al 2005). No study of the

proliferative or self-renewal capacity of these B lineage cells was performed, which

would have shed light on whether these cells contained a population of

‘pre-leukaemic’ blasts typical of TEL/AML1+ leukaemia (Morrow et al 2004;

Morrow et al 2007). Nevertheless, such studies could be performed by xenograft as

detailed above or in an in vitro culture system (Rawlings et al 1995). In addition,

harvesting of B lineage cells could enable further phenotypic studies of, for example,

surface expression of B cell markers and immunoglobulin gene rearrangements

(Carpenter et al 2011).

I demonstrated the upregulation of two genes, TNFRSF7 and SMAD1, associated

with TEL/AML1+ leukaemia in the B lineage differentiation cultures (Figure 3.11),

indicating that the association of these genes with TEL/AML1 might be directly

regulated by TEL/AML1 itself. However, if functional effects of TEL/AML1 in

haematopoietic and B-lineage progenitors could be demonstrated using the

experiments suggested above, it could be interesting to conduct a gene expression

microarray to observe the changes involved. This might shed light on the pathways

involved in maintaining the ‘pre-leukaemic’ state observed in TEL/AML1, and could

provide therapeutic targets with which to proactively reduce the risk of progression

to overt leukaemia. In any case it would be interesting to pursue the importance of
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SMAD1 and TNFRSF7 in TEL/AML1+ leukaemia, particularly the latter as previous

studies have demonstrated it has a clear link to leukaemia, as described in the

Introduction chapter (section 1.9.4).

A panel of hESC lines was generated that constitutively expressed TEL/AML1.

Although no adverse effects of the overexpression of TEL/AML1 were observed,

concerns about ‘transgene toxicity’ could be addressed by using homologous

recombination in hESCs, which could insert RUNX1 cDNA in the appropriate intron

of the ETV6 locus, similar to the systems used in some murine models (Schindler et

al 2009; van der Weyden et al 2011). This would enable the expression of

TEL/AML1 from the endogenous ETV6 locus, and so generate a model more closely

replicating the disease.

During the development of this model, I had attempted to set up a tetracycline-

inducible expression system for TEL/AML1. However, in practise no expression

could be induced when tested, and it was decided to switch to a constitutive

expression system. The inducible system would allow the investigation of at what

stage TEL/AML1 can contribute to leukaemogenesis, and so provide evidence as to

the ‘cell of origin’ in leukaemia. Studies in mice with inducible expression of

TEL/AML1 have shown that the presence of TEL/AML1 in HSCs can change the

self-renewal properties of multipotent and lymphoid cells (Schindler et al 2009), but

that TEL/AML1 expression restricted to lymphoid lineages has no effect

(Andreasson et al 2001; Schindler et al 2009).

To elucidate the importance of the loss of TEL in the progression of TEL/AML1+

leukaemia, TEL was overexpressed in the TEL/AML1+ cell line REH (Chapter 4).

A gene expression microarray showed that the presence of TEL had an effect on the

transcription of genes involved in functions of significance to leukaemia; for

example, TEL expression decreased genes involved in the proliferation of

lymphocytes (Table 4.4). In addition, differentially expressed genes included some

genes strongly associated with TEL/AML1+ leukaemia from previous studies (Table

4.3). These two results vindicate the approach taken as they indicate that this model

has some relevance to the clinical TEL/AML1+ disease. Supporting this, it has been

shown that despite concerns that culture adaptation of cell lines can result in cells
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that no longer represent real diseases, leukaemia cells lines have similar

transcriptional profiles to the leukaemia subtypes from which they were derived

(Andersson et al 2005a).

Regarding the genes differentially regulated by TEL overexpression, some genes

have been previously linked to leukaemia, and it might be interesting to use a

computational approach to further compare the data set generated in this thesis with

those of studies of ALL and/or TEL/AML1+ leukaemia. Analysis of gene expression

changes also identified gene expression patterns that were consistent with the

inhibition of various transcription factors (Table 4.5). Since TEL is known to form

heterodimers with other transcription factors and interfere with their transcriptional

profiles (Fears et al 1997; Kwiatkowski et al 1998; Schick et al 2004), this list of

transcription factors could be an interesting starting point for further studies of

functional heterodimer partners of TEL. Finally, through strong differential

expression of genes in the presence of TEL (Table 4.1 and Table 4.2), new potential

targets of TEL were identified, two of which, CLIC5 and NETO1, have been

validated by qPCR (Figure 4.9); it would be interesting to pursue these genes with

further studies as they have not been linked to leukaemia previously. It is our

intention to make this gene expression data set publicly available so that it could be

used by other groups for their own research, and thus would represent the first gene

expression data set looking at the transcriptional consequences of TEL in the context

of TEL/AML1+ leukaemia.

As an example of the further research that could be conducted on genes identified in

the TEL microarray, one could investigate the role of CLIC5 in leukaemia. As

discussed in Chapter 4 (section 4.2.9), CLIC5 is an intracellular chloride channel that

has already been associated with TEL/AML1+ leukaemia (Ross et al 2003) that is

associated with (Berryman & Bretscher 2000) and regulated by (Singh et al 2007)

the actin cytoskeleton. Interestingly, intracellular chloride ion concentration is

known to control, and be controlled by, progression through the cell cycle

(Blackiston et al 2009), evidence of which is observed in various cell types

(Valenzuela et al 2000; Miyazaki et al 2008), including lymphocytes (Bubien et al

1990). Connecting the actin cytoskeleton and proliferation is cell volume (Lang et al

1998), which has also been shown to be connected chloride concentration (Chen et al
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2002). From the data presented in Chapter 4, and from previous gene expression

studies of TEL/AML1 (e.g.Ross et al 2003), it is feasible that the upregulation of

CLIC5 in TEL/AML1+ leukaemia, with the subsequent loss of heterozygosity of

TEL, affects the intracellular chloride concentration, which could lead to a

dysregulation of the cell cycle, possibly mediate by changes in cell volume.

Experiments which could be performed to investigate this hypothesis could include

the overexpression and knockdown of CLIC5, in coordination with the use of

chloride-sensitive dyes, such as MQAE, to measure intracellular chloride

concentration. The intracellular chloride concentration can be altered through the use

of cell medium deficient in chloride (replaced instead with NO3
– , e.g. Miyazaki et al

2008). The effect of such alterations on cell volume can be measured using a variety

of techniques (Davis et al 2004), and on cell proliferation and cell cycle progression

through techniques including those demonstrated in this thesis.

Following the study of the transcriptional consequences of TEL overexpression, the

functional effects, namely proliferation and apoptosis, were investigated. It was

found that TEL had no consistent effect on proliferation. Whilst this is conflicting

with other studies of the role of TEL in proliferation (Fenrick et al 2000; Fears et al

2002; Gunji et al 2004; Tsuzuki et al 2007), there are several explanations for the

discrepancies between previous studies and the work presented in this thesis (see

section 4.3.2). In addition, the lack of a functional effect on proliferation may seem

surprising given the transcriptional effect on genes involved with proliferation (Table

4.4), but it is possible that the proliferative effects of TEL could not be demonstrated

in the experiments performed; one aspect that was not investigated was how TEL

affected the proliferation of cells in response to stimulants of growth and/or cell

division in REH cells, and so this would make a good starting point for further

studies. Similarly, no influence of TEL on the induction of apoptosis was observed

(Figure 4.8). Whilst I used an inducer of apoptosis in the form of staurosporine, it is

not clear through which mechanism this chemical causes apoptosis, and so cell-

specific differences in how apoptosis is controlled could account for discrepancies

between this work and previous studies into the role of TEL in apoptosis (Irvin et al

2003; Yamagata et al 2006). It would be interesting to investigate if TEL regulates

apoptosis by stimulating cell death through a better defined pathway, for example, by

the polymerisation and activation of Fas receptor using antibodies.
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In the introduction chapter, three possible models of the role of the loss of TEL in

TEL/AML1+ leukaemia were presented (Figure 1.3). The first showed that the loss

of TEL is both necessary and sufficient for progression of a TEL/AML1+ clone to

overt leukaemia. The second showed that TEL deficiency is necessary for this, but

other events (for example, further mutations) are needed for progression. Finally, the

third showed that, after an event that causes proliferation of the leukaemic clone, loss

of TEL is one of many mutations that could occur during this expansion, but that

TEL deficiency confers a significant proliferative advantage to a clone so that it

becomes the dominant clone in the leukaemia.

The first scenario seems unlikely to be true, based upon previous studies; the number

of genes that are frequently mutated in TEL/AML1+ leukaemia would indicate that

TEL is not the only important factor in progression; similarly, the lack of TEL as a

gene commonly mutated in other leukaemias not only suggest that it is the loss of

both alleles of TEL that is important but also that TEL loss by itself is not sufficient

for increased proliferation and survival. The work presented in this thesis also

supports this view, suggesting that TEL has no more than a subtle effect on

proliferation and survival. This also suggests that the third model is incorrect, in that

TEL deficiency allows enough expansion of a leukaemic clone to ‘out-compete’

other clones, which is not supported by the results.

In light of this, the second scenario appears to be the most likely; that TEL

deficiency is an essential feature of TEL/AML1+ leukaemia, that somehow

predisposes the pre-leukaemic clone to progress to overt leukaemia, but the ‘switch’

to progression appears to be in the form of another event, either another series of

mutations, or possibly an immunological mechanism as put forward by Greaves

(2006). The transcriptional changes observed as a result of the overexpression of

TEL, presented in Chapter 4, provide a starting point for further studies as to how

TEL deficiency poises pre-leukaemic clones for progression to overt leukaemia.

Thus the work presented as a whole in this thesis confirm the view that

Further study of the role of TEL deficiency could be performed in the TEL/AML1

transgenic hESC model. In the TEL/AML1+ background, the knockdown of TEL by

RNA-interference (RNAi) directed at exons 6 to 8 of TEL (so avoiding any
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knockdown of the TEL/AML1 fusion) could replicate TEL deficiency (Figure 5.1).

This would replicate TEL deficiency in the hESC model and thus allow the study of

TEL in a multipotent system, a valid approach given that TEL overexpression

identified gene expression changes consistent with an inhibition of haematopoietic

differentiation in various lineages (Table 4.4). This approach of changing the

expression of genes in a TEL/AML1+ background could be used, in theory, to

investigate the function of any gene in the context of TEL/AML1+ leukaemia. In

particular, such an approach could provide further evidence for the importance of

genes known to affect differentiation (e.g. Ikaros / IKZF1; Mullighan et al 2008), or

indeed investigate genes identified in the TEL overexpression model that have

previously not been linked to leukaemia (e.g. CLIC5 and NETO1). Recently, an

unbiased screen exploiting random insertion mutagenesis in a TEL/AML1-transgenic

mouse revealed a large number of genes that contribute to leukaemia, some of which

were known common secondary mutations in humans, and others which were novel

(van der Weyden et al 2011). Using standard overexpression or knockdown

methods, it would be possible in our hESC model to conduct preliminary studies into

what effects these novel mutations have on haematopoiesis and lymphopoiesis in a

human system, reducing dependence on expensive and time-consuming mouse

models.

Figure 5.1 – TEL knockdown in the TEL/AML1+ hESC model
Upon transfection of TEL/AML1, mRNA from both the TEL locus and TEL/AML1 cDNA is transcribed. RNAi
against exons of TEL not present in TEL/AML1 (i.e. exons 6 to 8) would knockdown the expression of TEL but
leave the expression of TEL/AML1 unaffected, and thus replicate TEL deficiency frequently observed in
TEL/AML1+ leukaemia.
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The work presented in this thesis makes two novel contributions to the field of

TEL/AML1+ leukaemia; firstly, a gene expression microarray data set showing the

role of TEL in this leukaemia subtype; and secondly, a model based on hESCs that

could be used to further investigate the roles of TEL and these differentially

regulated genes in haematopoietic development. Both the gene expression

microarray data set and the influence of TEL/AML1 in haematopoietic development

are consistent with previous studies in the field, and thus are relevant to the study of

ALL. This work has the potential to make further contributions to our understanding

of leukaemia, as well as potential therapeutic targets for the treatment of leukaemia,

and thus warrants further exploitation.
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