
Active Subtraction: A Viable
Method of Self-Reconfiguration for

Modular Robotic Systems

Matthew D. Hall

Supervisors: Dr. Roderich Groß

Dr. Shuhei Miyashita

Department of Automatic Control and Systems Engineering
The University of Sheffield

A Thesis Submitted for the Degree of
Doctor of Philosophy

September 2022

Abstract

Modular robotic systems comprise individual robots, termed modules, that physically connect
to one another to create a system that is more capable than the sum of the individuals. The way
in which the modules connect together alters the attributes of the formed configuration. The
ability to change between configurations enables the systems to adapt to match the demands
of a task. For example, a system could form a long, narrow shape to navigate a pipe, before
being configured to a large, strong shape capable of lifting heavy objects. The problem of
autonomously changing between these configurations provides a unique challenge, as modules
must coordinate to allow for movement, remain connected, and position themselves correctly.
One reliable and robust method of reconfiguration is through subtraction, where modules
are removed from an initially connected structure to leave behind the configuration desired.
This thesis is concerned with the development and analysis of novel control algorithms to
achieve this subtractive reconfiguration without external intervention, instead using modules
that are able to remove themselves. The approach is termed active subtraction. To enable
deployment on a variety of modular robotic systems, a variety of control strategies are developed,
that utilise centralised or distributed control and allow modules to move sequentially or in
parallel. It is formally proven that the algorithms enable a system to form arbitrary shapes via
active subtraction, and maintain the connectedness of the configuration throughout, preventing
collapse. The time-based performance of each algorithm is formally characterised, as well as
being validated through the simulation of thousands of randomly generated configurations and
configurations specifically designed to compare active subtraction to existing reconfiguration
solutions. In addition to these algorithmic contributions, multiple existing modular robotic
systems are assessed in detail, identifying their suitability for the use of the proposed active
subtraction algorithms as a method of self-reconfiguration.

Acknowledgements

I would like to begin by thanking my supervisor, Dr. Roderich Groß. His support and guidance
have helped me to become an academic capable of producing an entire thesis, something that,
until writing the final words of it, I wasn’t sure would be possible. Furthermore, his expertise
and work ethic have been inspirational, and I am truly grateful to him for all that he has passed
on to me. I would also like to thank my second supervisors, Dr. Tony Dodd and Dr. Shuhei
Miyashita, for their academic and personal assistance.

It has been my pleasure and privilege to be a part of the Natural Robotics Lab, and I would
like to thank every member, past and present, that I had the honour to work alongside. I would
also like to extend a hearty thanks to the members of F01—my colleagues in work, coffee and
procrastination—they’ve all been amazing friends and I couldn’t have done it without them.
Extra thanks go to Anıl for being a mentor to me throughout my academic pursuits, as well as
at the pub.

I want to acknowledge all the friends and family near and far who have helped me along
the way; the list of people who have made this possible is too long to fit on the page, so if you
are reading this and think that you should have made the cut, I’ll buy you a drink instead.

Finally, to Mum and Dad: your encouragement, support, wisdom and love are what keep
me going and I wouldn’t be where I am—or who I am—if not for you. Thanks for everything.

“I forgot my mantra.”

JEFF GOLDBLUM

Annie Hall (1977)

Table of contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Definition . 4

1.3 Aims and Objectives . 4

1.4 Preview of Contributions . 5

1.5 Publications . 5

1.6 Thesis Overview . 6

2 Background and Related Work 9

2.1 Introduction . 9

2.2 Modular Robotic Systems . 9

2.3 Control of Modular Robotic Systems . 29

2.4 Reconfiguration Methods . 32

3 Introducing Active Subtraction 37

3.1 Introduction . 37

3.2 Problem Formulation . 38

3.3 System Considerations . 40

3.4 Simulated Environment . 41

3.5 Conclusion . 47

viii Table of contents

4 Centralised Active Subtraction 49

4.1 Introduction . 49

4.2 Controller Design . 50

4.3 Mathematical Analysis . 52

4.4 Simulation Studies . 57

4.5 Conclusion . 67

5 Distributed Active Subtraction 69

5.1 Introduction . 69

5.2 Excluded Row Removal . 70

5.3 Solution Design . 73

5.4 Example Priority Order Index Assignment Process 80

5.5 Mathematical Analysis . 83

5.6 Simulation Studies . 86

5.7 Conclusion . 100

6 Active Subtraction on Real World Systems 103

6.1 Introduction . 103

6.2 Comparison of Systems . 104

6.3 Conclusion . 114

7 Conclusions and Future Work 117

7.1 Conclusions . 117

7.2 Future Work . 119

References 121

Chapter 1

Introduction

1.1 Motivation

Since their inception, robots have been destined to aid, assist and, in some cases, replace
humans in many aspects of our lives. As the development of robotic systems progresses, these
systems become better and better at outperforming humans for specific tasks; what started as
solutions for simple, laborious and repetitive tasks such as assembly in industry, warehouse
transportation and mass production, have evolved to replace humans in many other aspects
such as precision surgery, personal assistance and the exploration of complex environments.
A shortcoming that most robotic systems have, however, is that they are still designed for
specific tasks and their performance suffers when deployed to solve a problem that they were
not designed for. Furthermore, they often create a single point of failure in a system, where a
failure on the part of the robotic system would cause a failure for the entire operation.

Modular robotic systems is a specific vein of robotic systems that aims to negate these
shortcomings. Modular robots are groups of robotic units, termed modules, that combine their
abilities and attributes to become a system that is greater than the sum of its parts. They do this
by physically connecting together, and can do so in different ways to form morphologies with
varying characteristics. Through the collaboration of these lesser parts, the whole can complete
tasks that would be challenging for the individual, much like living cells [3] or a colony of
ants [4]. Compared to traditional, specialised robotic systems, modular robots grant a number
of benefits. Firstly, they are adaptable systems, due to their reconfigurability. This means that,
rather than requiring multiple robots to complete a task, a single modular robotic system can
reconfigure to meet the demands of the task. For example, a system that can manufacture a
small sports car, before reconfiguring to produce a large SUV, would be of much greater use to

2 Introduction

a manufacturer than an assembly line that requires replacement for each product. Similarly, a
robot exploring unknown environments that can separate into individual modules to fit through
small spaces, before reconnecting to combine their strength to lift heavy loads, would be able
to get much further than a robot with fixed size and strength. The systems also grant robustness
due to the ease with which modules can be replaced; a single interchangeable module being
inexpensive and more easily replaced than a specialised robot. Once autonomy is introduced
the benefits are increased even further.

As the hardware of modular robotic systems advances [5], the question of further advancing
the technology moves towards considerations of how the systems can be made autonomous.
For modular systems to become autonomous, it is required that they are able to change their
morphology without intervention from a user. This is termed self-reconfiguration and more
specifically concerns a connected group of modules changing their physical properties by
adding, subtracting or changing the position of individual modules. With a variety of systems
comes a variety of solutions, many of which are specific to the system for which they are
designed, with no generic solution apparent.

The majority of reconfiguration solutions consist of adding modules to an existing con-
figuration [6–9], known as additive reconfiguration, or rearranging them to form the desired
shapes [10, 11], termed morphing reconfiguration. Comparatively, Gilpin et al. developed a
method of achieving modular reconfiguration through disassembly, whereby a group of robots
in a given starting formation can detach unnecessary modules to create a desired shape [12].
This is known as subtractive reconfiguration, and has been researched considerably less than
additive reconfiguration, despite the promise it holds.

Research into subtractive reconfiguration is motivated by a number of potential advantages:

Problem simplification The problem of optimally reconfiguring from an initial, possibly ran-
dom, configuration to a desired one is computationally intractable [13, 14]. By addressing
situations where the desired configuration is a subset of the initial configuration, as with
subtractive reconfiguration, a reliable solution with at least relatively good performance,
if not optimal, could be produced.

Ease of communication As discussed by Gauci et al. [15], an initially connected structure en-
ables the modules to communicate from initialization. Because of this, vital information
can be passed between all members, and potentially processed, before reconfiguration
begins.

Increased reliability of module movement Typically, modules require high precision to form
connections between themselves, unless connections are already present in the starting

1.1 Motivation 3

configuration, as is the case in a subtractive approach. Although accurate alignment
between connectors could still be required, modules that begin connected to neighbours
will have reference points with which to align, rather than converging from potentially
arbitrary locations, as with additive reconfiguration.

Physical stability There is also the increased potential for guarantees of physical stability as,
if the initial configuration is physically stable and each subsequent removal of a module
does not violate the stability rules, the resulting configuration will also be physically
stable. In the case of the work of Gilpin et al., this amounts to ensuring that the target
structure is one connected entity [12]. In the case of two-dimensional reconfiguration on
a flat surface [16], the considerations are removed entirely as physical stability does not
require the modules to be connected given that they are resting on a stable surface.

Although promising, the subtractive approach from Gilpin et al. requires external inter-
vention to reconfigure, so cannot be considered an autonomous self-reconfiguring solution.
Without any locomotion capabilities, the modules rely entirely on external forces to remove
from the structure, such as human intervention or falling due to gravity. This approach has
limited applicability for real-world use; as previously discussed, a key benefit of modular
robotic systems is their flexibility, notably in environments that are unsafe or inaccessible
for humans, however, if the system is incapable of autonomous self-reconfiguration then this
benefit is negated. Furthermore, when relying on gravity or some other limiting extraction
technique to remove modules, the shapes that can be formed are limited, as modules must be
able to fall or be reachable from the exterior of the configuration. Finally, if modules remove
by falling they could sustain damage, which is especially unsuitable if expensive or delicate
modules were to be used.

By utilising modules capable of locomotion, and extending the solution to enable their
autonomous removal, these drawbacks could be overcome, as modules could safely remove
themselves without the need for intervention. The configurations formed could be complex
shapes, with deep corridors, as the modules would be able to navigate to the exterior them-
selves. The guarantees of physical stability would be harder to maintain, as the connectedness
and support would need to be ensured while modules move across the structure. Neverthe-
less, the concept of applying subtractive reconfiguration to a system capable of autonomous
reconfiguration holds potential, and is thus the focus of the studies presented in this thesis.

4 Introduction

1.2 Problem Definition

In the aforementioned works of Gilpin et al. [12, 16], reconfiguration through subtraction
is introduced, but limited to modules incapable of locomotion, instead relying on external
forces to be removed. This style of reconfiguration is therefore called passive subtractive
reconfiguration. By contrast, this thesis considers a solution to the self-reconfiguration problem
that uses actuated modules that are able to actively remove themselves. This is termed active
subtraction.

The goal of active subtraction is as follows. Given a regular, densely populated, fully
connected starting structure comprising modular robots extending vertically from the ground,
and a desired structure that is a subset of the former, create a reconfiguration solution by which
the modules that are not part of the desired structure remove themselves from the starting
structure with no intervention. To be considered removed the modules must move along the
boundary of the structure and reach a sink location, external to the structure and situated on
the ground. The desired structures can be arbitrary, with the stipulation that they contain no
hollow spaces, as this would prevent modules from removing themselves [12]. Throughout the
removal process, the reconfiguration solution must guarantee that all modules that are not yet
removed must remain connected in some way, so as to avoid collapse.

1.3 Aims and Objectives

Given the aforementioned problem statement, the main focus of this thesis is the creation,
analysis and iteration of self-reconfiguration algorithms for modular robotic systems. More
specifically, utilising the under-researched concept of shape formation via the disassembly of
initially connected modules. By applying this concept to modular robotic systems that are
capable of autonomously reconfiguring, it will be shown that actively subtracting modules to
yield a desired configuration is a valid, and effective, method of self-reconfiguration.

The specific objectives to fulfil this aim are:

• To conduct a state-of-the-art literature review into modular robotic systems, and the
control algorithms that are used for their reconfiguration.

• To develop a novel and viable method of self-reconfiguration for modular robotic systems
in a two-dimensional environment.

• To create control algorithms for the realisation of such a method.

1.4 Preview of Contributions 5

• To analyse and characterise the performance of the control algorithms, both mathemati-
cally and through simulation.

• To iterate new control algorithms to improve overall performance and robustness.

• To assess the viability of the developed solutions on real-world modular robotic systems.

1.4 Preview of Contributions

The following form the contributions presented in this thesis:

• A centralised control strategy utilising a subtractive approach for modular reconfigurable
robotic systems, by which extraneous modules actively remove themselves from a vertical,
rectangular starting configuration, to leave behind a given structure. Throughout the
reconfiguration process, the structures remain connected and stable.

• An expansion to the control strategy, allowing multiple modules to move simultaneously.
In this case the centralised controller conducts more complex computation.

• Design of an alternative control strategy for the same problem, allowing for distributed
control, that is, without the need for any centralised entity. Here the modules may also
move simultaneously.

• Mathematical analysis of all control strategies, proving the structural stability of the
solutions at all times and characterising the completion times. The alternative (distributed)
control strategy is shown to be asymptotically optimal.

• Simulation studies to further verify the solutions and analyse the completion time for a
variety of scenarios.

• Discussions as to how these control strategies could be deployed on a selection of existing
real-world modular robotic systems.

1.5 Publications

This thesis comprises original contributions to scientific knowledge made by the author. The
work presented herein has so far led to the peer-reviewed paper:

6 Introduction

[1] M. D. Hall, A. Özdemir and R. Groß. “Self-reconfiguration in two-dimensions via active
subtraction with modular robots,” in Robotics: Science and Systems XVI, RSS Foundation,
2020.

This paper provides the foundation for Chapter 4 and was presented virtually by the author at
the first fully online Robotics: Science and Systems Conference (RSS). This presentation is
available online [17].

Additionally, the author contributed to a separate project not presented in this thesis, this
led to the publication of the following peer-reviewed paper:

[2] A. Özdemir, M. Gauci, A. Kolling, M. D. Hall, and R. Groß, “Spatial Coverage Without
Computation,” in 2019 IEEE International Conference on Robotics and Automation
(ICRA), pp. 9674–9680, IEEE, 2019.

This work was also presented by the author in Montréal, Canada, at the 2019 IEEE International
Conference on Robotics and Automation (ICRA).

1.6 Thesis Overview

The structure of this thesis is as follows:

• Chapter 2 serves as a background for the work contained in this thesis, presenting and
discussing related works. Section 2.2 introduces modular robotic systems, outlining a
number of design characteristics that must be considered in their creation. Section 2.3
presents methods of control for modular robotic systems, detailing the differences be-
tween centralised and distributed control in existing systems. Finally Section 2.4 presents
reconfiguration methods for modular robotic systems, specifically highlighting the bene-
fits and drawbacks of additive, morphing and subtractive reconfiguration.

• Chapter 3 introduces the concept of active subtraction as a method of self-reconfiguration
for modular robotic systems. An overview of the concept is presented in Section 3.1.
Section 3.2 formulates the problem, specifying the environment in which the problem
will be solved, and giving the objective for the solutions to fulfil. Considerations about
modular robotic systems that can employ active subtraction are presented in Section 3.3.
Section 3.4 details the modelled system used in Chapters 4 and 5, as well as the control
algorithm that the modules use to locomote around configurations. Section 3.5 concludes
the chapter.

1.6 Thesis Overview 7

• Chapter 4 presents a centralised solution to the problem definition outlined in the pre-
ceding chapter. Two centralised control solutions for the reconfiguration problem are
then presented in Section 4.2, of which one allows for sequential movement and the
other parallel. In Section 4.3, the solutions are formally proved to be correct, and the run
time performance is analysed. Following this, Section 4.4 reports the simulation studies
carried out using the solutions, assessing the performance over a range of criteria, and
discussing the results in depth. Consequently, Section 4.5 concludes the chapter. This
chapter is based on the author’s original work, given in [1].

• Chapter 5 presents a novel, distributed solution to the problem. Section 5.1 outlines the
shortcomings of the solution from the previous chapter, and details ways in which a
distributed solution would overcome these. Details of this distributed solution are given in
Section 5.3, presenting the multiple phases of the control algorithm. Section 5.5 contains
formal proofs for the correctness of the new solution, as well as analysis of the run time
performance. To verify the performance, numerous simulation studies were conducted,
the results of which are reported in Section 5.6, including user-defined scenarios and
randomly generated ones, alongside discussion of the results. Section 5.7 then concludes
the chapter.

• Chapter 6 presents considerations on how the solutions of Chapters 4 and 5 could be
applied to existing real world systems. In Section 6.1, the relevant considerations are
outlined before an overview table is presented in Section 6.2, illustrating the suitabil-
ity of various modular robotic systems with regards to self-reconfiguration via active
subtraction, alongside detailed analysis of the potential each system holds. Section 6.3
summarises this comparison and concludes the chapter.

• Chapter 7 summarises and concludes the thesis. In Section 7.1 the contributions are dis-
cussed, before possible directions for the future of the work are presented in Section 7.2.

Chapter 2

Background and Related Work

2.1 Introduction

This chapter consists of three sections. The first, Section 2.2, details the history of modular
robotic systems by explaining various aspects of design that must be considered during their
development. Examples of systems that demonstrate each facet of design are given, and
the advantages and disadvantages of each are explored. This gives context for the more
specific work involved in this thesis, that is, the development of control algorithms for the
reconfiguration of such systems. Section 2.3 outlines the types of control algorithms that
exist for modular robotic systems, comparing the advantages and disadvantages of each.
Section 2.4 introduces existing reconfiguration methods for modular robotic systems, detailing
the overarching concepts behind different approaches, as well as some specifics as to how these
approaches are implemented.

2.2 Modular Robotic Systems

Modular robotic systems are collections of robots that combine their abilities and attributes to
become a system that is greater than the sum of its parts. Through the collaboration of these
lesser parts the whole can complete tasks impossible for the individual, much like a colony of
ants, or a swarm of bees [4].

Since the concept of a modular robotic system was first presented by Fukuda et al. as a way
to overcome the shortcomings of existing robotic platforms [3], the research and development
of such systems now spans decades. In that time, many modular robotic systems have been

10 Background and Related Work

(a) (b) (c)

Fig. 2.1 Examples of heterogeneous modular robotic systems; (a) RMMS joint and link modules
connected to form a manipulator arm © 1996 IEEE, (b) Backbone, Active Wheel and Scout
modules from the Symbrion and Replicator projects connected as a single configuration © 2010
IEEE, (c) Odin system composed of joint and link modules © 2008 IEEE. Reprinted from [18–
20], respectively.

developed, each with the goal of advancing the field in some way by introducing a novel
aspect of design or implementation. Included in these design aspects are the methods of
locomotion, the ways in which modules connect to one another, the structures formed when
they are connected and many task specific considerations. The following is a brief overview of
some existing modular robotic systems and their approaches to these facets of design.

2.2.1 Modular System Type

Modular robotic systems fall into two categories in terms of the type of modular system they
can be. The first is heterogeneous, where modules are varied and have specific capabilities. In
this case, the system will not function at its full potential without a combination of the different
modules. The second is homogeneous, where all modules are the same, and the system can
function with any number of modules.

Heterogeneous

Heterogeneous modular robotic systems are commonplace in manufacturing applications, where
the robot retains a certain level of specialism, whilst being adaptable within that limitation.
One such example of heterogeneous modular robotic systems in manufacturing is the concept
of modular manipulators. These systems are heterogeneous as they generally consist of a base,

2.2 Modular Robotic Systems 11

a number of hinges to grant the manipulator degrees of freedom (DoFs), either modules of their
own or comprising joint and link modules, and an end effector to grasp. One such example is
the CMU RMMS by Schmitz et al. [21], seen in Figure 2.1(a). The system requires joints and
links to be connected in order to form a fully operational manipulator. These joints are either
pivot joints or rotational joints, and can be combined to add DoFs in many planes. Although
not the first modular manipulator, it does introduce the concept of reconfigurability by adding
connectors to the end of each module that allow for easy connection and disconnection. Similar
systems have since been developed such as TOMMS by Matsumaru [22] and ModMan by Yun
et al. [23].

Much focus has also been paid to researching control methods for the manipulators, as the
kinematics of such systems become much more complex as more DoFs are introduced. The fact
that the systems are modular and reconfigurable also leads to some interesting challenges as the
system should be able to autonomously react to changes in the configuration. The connection
methods also introduce some level of misalignment as it is impossible to create a completely
seamless connection. Even if small, this error would be propagated through the system and
magnified by the length of the manipulator. Because of these factors, much research is involved
in developing robust kinematic and control schemes [24–26].

A disadvantage of heterogeneous systems is that specific modules are required for specific
roles, which could hamper deployment when the task or environment is not fully known. How-
ever, specialised modules do have the benefit of being able to better perform their designated
task, as well as allowing for smaller or simpler modules, as was discovered by Kernbach et al.
in the development of the Replicator and Symbrion projects [19, 27, 28]. The initial design
for the project was a homogeneous swarm of small reconfigurable robots, but with increased
functional requirements the decision was made to develop a heterogeneous system, so that
the different modules could be more capable when performing a specific function without the
excessive complexity that would be required for each module to perform all functions. The
resulting system comprises Backbone, Active Wheel and Scout types of modules, each of
which can be seen in Figure 2.1(b). The Backbone module features four connection points,
and has limited manoeuvrability due to a unique screw drive mechanism. It also has a strong
hinge joint in the middle, enabling it to hold other modules in desired positions, hence the
name Backbone. The Active Wheel module is equipped with omnidirectional wheels to allow
motion in all directions, two connection points, and a hinge in the centre to lift away from the
ground. The Scout module is similar in size to the Backbone, but features tracks around the
edge for easier movement across challenging terrain. The module also has sensors to extract
information from the environment, and four connectors, one of which can be moved on a hinge
which is less strong than the Backbone, meaning that it cannot lift other modules. Although

12 Background and Related Work

envisioned as a homogeneous system, the transition to heterogeneity has enabled Kernbach et
al. to develop the system in a way they deem most effective.

A heterogeneous modular system that was designed to be that way from the start is EDHMoR
by Faíña et al. [29]. The system comprises a small number of primary active modules, capable
of various motions, that can be combined with specialised modules such as manipulators or
sensors. Similarly, systems such as SMART by Baca et al. [30] and Mom’s Friend by Ahn et
al. [31] are heterogeneous modular robotic systems that make use of task specific modules.

Conversely, a heterogeneous modular robotic system where the core functions require
differing modules is Odin by Lyder et al. [20], shown in Figure 2.1(c). This system is composed
of spherical ball-joint modules with many connection points, and link modules which connect
between two ball-joint modules and are capable of extending and retracting. Without both types
of modules present in a configuration, the system cannot function. This type of configuration
is referred to as truss type, and is further discussed in Section 2.2.2. SABER by Romanov et
al. [32] is not a truss type system, but requires both module types to operate. It is composed of
modular track pieces and a platform that can locomote along the track. The track modules are
able to join in a continuous wheel to allow omni-wheeled movement in free space, or flatten to
create a structured space for the platform to traverse.

These heterogeneous systems all benefit from the advanced capabilities afforded by spe-
cialist modules; however, the benefits from Section 1.1 are minimised somewhat. Due to the
fact that multiple types of modules are involved, the ease of production is reduced, as is the
repairability. The redundancy of the system also suffers, as modules which fail must be replaced
by identical modules. These shortcomings can be removed by using identical modules, as in
homogeneous systems.

Homogeneous

Homogeneous systems are more commonplace in modular robotics as they more fully realise
the benefits outlined in Section 1.1. The identical modules are also popular in research as
they afford more generalised control schemes and can be more easily applied to other research
areas, such as swarm behaviours [33]. The work contained within this thesis is concerned
with homogeneous systems. As such, the remainder of systems discussed in this chapter are
examples of homogeneous systems, unless otherwise stated.

2.2 Modular Robotic Systems 13

2.2.2 Configuration of Modules

Although there are many ways of classifying various modular robotic systems, the most
common is by discussing the type of structure the modules create when connected. This
structure is known as a configuration. The characteristics granted by the type of configuration
are very important as it could determine what tasks a system is suited for.

The types of configurations that modular robotic systems can create form a growing list of
categories [5, 34–36]. One of the most common is a chain configuration, where the modules
connect end to end, sometimes capable of branching, but with no fixed positions within a
space. Another common architecture is lattice based, where the robots are restricted to a regular
lattice configuration. More recently however, a configuration type known as hybrid has been
introduced, whereby the modules are able to connect together as either a chain or a lattice, or
both, depending on the configuration requirements. There also exists the mobile robot system,
where the modules are capable of moving freely in a space before connecting together, as well
as the truss type, consisting of joints and links, and free-form systems that defy characterisation
into any of these categories.

Chain

A characteristic of chain type modules is that they have few DoFs individually, but when
connected are capable of complex macro-locomotion, such as caterpillar or rolling wheel, as
discussed in Section 2.2.5. They are capable of forming linear or branching structures so can
also form legged walkers for macro-locomotion. These structures grant the system high levels
of versatility, as the number of DoFs can be increased with each module added. While the
kinematics are well understood, the control can become complex with an increase in DoFs, and
errors in angle control can propagate through the system to greater detriment, as was the case
with the previously discussed modular manipulators.

Examples of this type of robot include Polypod by Yim [37] which comprises cubic modules
with two connection faces and two compressible faces, allowing the modules to expand, contract
and change angle, depicted in Figure 2.2(a). Yim demonstrates the capabilities of the system
by forming configurations comprised of many Polypod modules. These range from simple
open-ended chains to connected loops to complex walkers.

Also in this category are systems such as CEBOT by Fukuda et al. [3], CONRO by Castano
et al. [38], the successor to the Polypod, the PolyBot, also developed by Yim et al. [39] and

14 Background and Related Work

(a) (b) (c)

Fig. 2.2 Examples of modular robot systems that form chain configurations; (a) Polypod
modules, one fully extended and one retracted on one side, (b) Polybot modules connected in
a chain © 2002 IEEE, (c) simulated 2DxoPod modules mimicking a vertebrate1. Reprinted
from [37, 42, 41], respectively.

shown in Figure 2.2(b), KAIRO 3 by Pfotzer et al. [40] and 2DxoPod by Sankhar Reddy CH. et
al. [41], seen in Figure 2.2(c).

Lattice

Lattice modules are those which form regular patterns when connected together. They can be
further separated into sub-categories in a number of ways, such as the number of dimensions in
which the lattice extends. There are those that form two-dimensional lattices, such as Fractum
by Murata et al. [43] which forms a hexagonal lattice, the Crystalline system by Rus and
Vona [44] which is a compressible module forming a square or rectangular lattice depending
on the state and can be seen in Figure 2.3(a), or Robot Pebbles by Gilpin et al. [16] which form
a square lattice and can be seen in Figure 2.6(a). There also exists CHOBIE II by Koseki et
al. [45] which forms a square lattice, but vertically, or the Distributed Flight Array by Oung et
al. [46], which forms a hexagonal lattice, but of modules equipped with propellers for flight,
shown in Figure 2.6(f). Similarly, the MHP by Doyle et al. [47] forms a square lattice, but on
the surface of water, shown in Figure 2.3(b).

There are also modules capable of forming three-dimensional lattices, such as the 3-D Unit
by Murata et al. [49], Miche by Gilpin et al. [12] as seen in Figure 2.3(c), 3D M-Blocks by

1Reprinted by permission from Springer Nature: Springer Journal of Intelligent & Robotic Systems, “2DxoPod
– a modular robot for mimicking locomotion in vertebrates,” S. Sankhar Reddy CH, Abhimanyu, R. Godiyal, T.
Zodage and T. Rane, © 2021.

2.2 Modular Robotic Systems 15

(a) (b) (c)

Fig. 2.3 Examples of modular robot systems that form lattice configurations; (a) a Crystalline
module © 2000 IEEE, (b) MHP modules connected in a square lattice formation on the surface
of a body of water © 2016 IEEE, (c) Miche modules connected vertically in a square lattice to
form a humanoid structure © 2008 Sage Publications. Reprinted from [48, 47, 12], respectively.

Romanishin et al. [50], Soldercubes by Neubert and Lipson [51] and 3D Catoms by Piranda et
al. [52].

A shortcoming of lattice configurations is the fact that modules in densely populated
lattices are restricted by their neighbours. However, by creating modules that have spherical
footprints within cubic lattices (or circular footprints in square lattices for two-dimensions),
some modules are capable of rotation or movement within a dense lattice. This is achieved
simply by conceiving spherical modules such as FreeBOT by Liang et al. [53], or quasi-
spherical modules, such as 3D Catoms by Piranda et al. [52], although the modules are not
fully spherical, so some limitations still apply. Another method, conceived by Parrott et al.
with the HyMod system [54], seen in Figure 2.4(c), is to create connectors that retract when not
in use, allowing for in-place rotation, although the HyMod system is capable of forming chain
structures too, so is considered a hybrid system.

Another method of classifying lattice robots is to characterise the way in which the modules
move within the lattice [55]. These categories include translational lattice, where modules
slide around neighbours to move, demonstrated by CHOBIE II [45], rotational lattice, where
modules rotate around a point to alter their position in the lattice, such as ATRON [56], seen in
Figure 2.4(b), morphable lattice, where the physical characteristics of the modules are altered
to allow movement, as with the Crystalline [44] system of Figure 2.3(a), and fixed lattice,
where modules are incapable of changing position within the lattice, like Miche [12] and Robot
Pebbles [16] seen in Figures 2.3(c) and 2.6(a), respectively.

16 Background and Related Work

(a) (b) (c)

Fig. 2.4 Examples of modular robot systems that form both chain and lattice configurations,
known as hybrid systems; (a) M-Tran III modules demonstrating lattice and chain configura-
tions © 2008 Sage Publications, (b) ATRON modules connected in chain and lattice configura-
tions2, (c) a HyMod module. Reprinted from [10, 56, 54], respectively.

Hybrid

Modules that are capable of existing in both a lattice or a chain architecture are termed hybrid
modules and combine the benefits of each architecture [34]. Due to these combined benefits
and as technology has progressed, the capabilities of individual modules has improved to the
point where hybrid modules are among the most prevalent type of module.

A common method of achieving such behaviour is to create a module that works in effect
like a meta-module, where two identical (or similar) halves are connected in the centre by a
joint or hinge. An early example of this is the M-TRAN module by Murata et al. [57], which
features two cubic ends, one with active connectors and one passive, that are connected in
the centre by a link, around which each module can rotate 180°. This was iterated upon with
M-TRAN II by Kurokawa et al. [58]. This version features magnetic connections and a smaller
form factor, but is still capable of hybrid configuration formation, as demonstrated by the
authors. A further version, M-TRAN III was also created by Kurokawa et al. [10], this time
reverting to the mechanical connections of M-TRAN, while maintaining the smaller form factor
of M-TRAN II. Examples of M-TRAN III modules in lattice and chain formations can be seen in
Figure 2.4(a). This approach to hybrid systems inspired similar systems, such as SuperBot by
Salemi et al. [59], and Roombots by Sproewitz et al. [60], which can be seen in Figures 2.6(b)
and 2.6(d), respectively.

Other hybrid systems comprise what could be considered one half of the M-TRAN modules,
and require connections in order to enable micro-locomotion within the lattice, as discussed

2Reprinted by permission from Springer Nature: Springer Autonomous Robots, “Design of the ATRON
lattice-based self-reconfigurable robot,” E. H. Østergaard, K. Kassow, R. Beck, and H. H. Lund, © 2006.

2.2 Modular Robotic Systems 17

in Section 2.2.4. Examples include ATRON by Østergaard et al. [56], seen in Figure 2.4(b),
Molecubes by Zykov et al. [61], which more closely resemble half of a Roombots module and
can be seen in Figure 2.5(e), SMORES by Davey et al. [62] and SMORES-EP by Jing et al. [63],
depicted in Figure 2.5(d) and 2.6(c), M3 and its successor, M3 Express by Kutzer and Wolfe
et al. [64, 65], UBot by Bie et al. [66], seen in Figure 2.7(f), as well as the HyMod system by
Parrott et al. [54], a module of which is shown in Figure 2.4(c).

Truss

Truss modular robots consist of links, which are usually the part of the system that morphs,
and joints, making them heterogeneous systems, as discussed in Section 2.2.1. An example
of a truss type system with morphable links is the aforementioned Odin by Lyder et al. [20],
shown in Figure 2.1(c). The links are telescopic bars and the joints are spherical in nature
with twelve female connections for the links to be manually inserted in to. The Tetrobot by
Hamlin and Sanderson is another example of a truss based robot which comprises active and
passive links, and concentric multi-link spherical joints to join them [67]. Spinos et al. more
recently introduced the Variable Topology Truss [68]. The system advances the technology of
truss modular robots by enabling autonomous self-reconfiguration to alter the topology of the
structure.

Free-Form

The term free-form is given to modular robots that deny categorisation by any other structure,
for example, programmable matter that could theoretically take any form. This is shown with
the original Catoms modules, as part of the Claytronics system. The modules are cylindrical
robots of diameter 44 mm, equipped with twenty-four electromagnets around the perimeter to
connect to, and to move around, neighbouring modules [69]. Another example is the Slimebot
by Shimizu et al., which are cylindrical robots equipped with Velcro connectors on all sides
that are equipped with telescopic arms. The robots also have anchors so that while one robot
extends its arm it can push the other away whilst anchored to the surface, before releasing the
anchor and retracting the arm to move towards the moved robot [70]. Liang et al. take the
concept even further with FreeBOT, a fully spherical module with an internal magnet capable
of being positioned at any point to allow freedom of connectivity between modules [53]. The
internals also include motorised rubber wheels, which drive the spheres as well as alter the
position of the internal magnet.

18 Background and Related Work

2.2.3 Connection Methods

The method by which modules connect to one another is an important design consideration, as
it is one of the defining features of reconfigurable modular robots. Multiple methods have been
conceived of and implemented, each with advantages and disadvantages associated with them.

Mechanical

One such method is through mechanical means, the most rudimentary of which is to provide
holes or fasteners that require human intervention to actuate the docking and undocking. This is
demonstrated on the YaMoR system by Moeckel et al. [71] which uses Velcro-like connections,
as seen in Figure 2.5(a), but which was later replaced with screw and pin connections that
still required manual connection [72]. GZ-I by Zhang et al. [73] and iMobot by Ryland
and Chang [74] also require manual connections, as well as Odin, which requires a human
intervention to insert the links into the joints and create the desired configuration, an example
of which is seen in Figure 2.1(c) [20].

Another mechanical solution is the use of pins, with a latch to grip once inserted into
the neighbouring module. However, this requires male and female components, reducing the
rotational symmetry of the modules. This method has been demonstrated with the CONRO
modules [75], seen in Figure 2.7(a). More simply, M-TRAN III [10] modules are equipped with
extending pins, but which grip onto the connecting face themselves when actuated, meaning
the female connector is passive. The extended pins can be seen on the black half of the module
in Figure 2.5(b), with the receiving holes of the female half of the connector on the white side.
Similar connection methods are employed with Roombots [60] shown in Figure 2.6(d). This
type of connection, needing a male and female connector for docking, is termed gendered
connection.

Similarly, SuperBot, in Figure 2.6(b), uses a connector developed by Shen at al. called
SINGO [76], which consists of sliding jaws to establish a connection between modules through
mechanical methods. This improves upon the connectors from CONRO and M-TRAN III by
removing the need to have male and female connectors, instead allowing all connectors to
both provide and receive connections. As such, this type of connection is known as genderless.
HyMod modules are equipped with custom mechanical connectors termed HiGen connectors,
which are also genderless [77]. HiGen connectors also allow for single-sided disconnection, that
is, only one connector needs to retract for the modules to no longer be connected. This attribute
is particularly useful when considering how robust a system is, as it means that a module which
experiences a failure can be removed from the system, even if it cannot actuate its connectors.

2.2 Modular Robotic Systems 19

(a) (b) (c)

(d) (e) (f)

Fig. 2.5 Examples of connectors utilised by modular robotic systems; (a) YaMoR modules,
which require connecting manually via the Velcro-like strips © 2005 IEEE, (b) an M-TRAN
III module with the connection pins extended, (c) an extended HiGen connector, four of
which are used on a HyMod module © 2014 IEEE, (d) a SMORES module, equipped with
four permanent magnets and a slot in the centre of each face used to misalign the magnets
for disconnection © 2012 IEEE (the electromagnetic version, SMORES-EP, can be seen in
Figure 2.6(c)), (e) an original Molecube module with electromagnets to aid connection © 2007
IEEE, (f) two connected Soldercubes, shown fully connected and pulled slightly apart as the
solder is heated3. Reprinted from [78, 10, 77, 62, 79, 51], respectively.

Parrott posits that this is the true definition of a genderless connector, and connectors that
are identical, but require both connectors to actuate in order to form or break connections are
bi-gendered connectors. An extended HiGen connector can be seen in Figure 2.5(c).

One aspect of the pin-connection mechanisms that can be improved upon is how precise
the alignment needs to be in order to form a connection. This is addressed with the s-bots,
which use mechanical jaws to grip to a designated rail around other modules [80], as can be

3Reprinted by permission from Springer Nature: Springer Autonomous Robots, “Soldercubes: A self-soldering
self-reconfiguring modular robot system,” J. Neubert and H. Lipson, © 2015.

20 Background and Related Work

seen in Figure 2.7(e). The connection can be initiated at any point around the system by simply
attaching the jaw of one module to the rail of another.

Permanent Magnets

Permanent magnets are a reliable means of connecting modules as it avoids the need for any
complex electronics or potential failures of the magnet mechanism. However, it does require
that a specialised disconnection strategy is employed. The M-TRAN and M-TRAN II modules
make use of a shape memory alloy to push apart from one another and disconnect the magnetic
connections [57, 58]. The Fracta system uses permanent magnets to initiate a connection, and
a switch electro-magnet to separate when desired [43]. M-Blocks and 3D M-Blocks, shown in
Figure 2.6(e), also rely on magnetic connection for forming lattices, overcoming the attractive
force with the force generated by the inertial motor discussed in Section 2.2.4 [50, 81]. Another
solution, employed by SMORES, is to use a key to extend from the centre of one module face
into the face of another, holding it in place while the module rotates, misaligning the magnets
and causing a repelling force [62]. A SMORES module can be seen in Figure 2.5(d) Although
effective, it has since been replaced with electromagnets [63].

Electromagnets

Electromagnets allow fine control of connections, and do not require any moving parts to operate.
Zykov et al. use them as connection mechanisms on the original Molecubes [79], shown in
Figure 2.5(e). In later versions, however, they move away from focussing on reconfiguration
and replace the magnets with passive connectors [61]. The Miche and Robot Pebbles modules,
of Figures 2.3(c) and 2.6(a), respectively, also make use of electromagnets, using the electric
current to switch the polarity of the magnets rather than turn them on or off, thus reducing the
power necessary to maintain connection [12, 16]. As mentioned, SMORES were also iterated
upon, changing to using electromagnets in SMORES-EP by Jing et al. [63], and can be seen in
Figure 2.6(c). This allows the connectors to be simpler, meaning that the modules themselves
can be more complex whilst retaining a similar footprint.

Other Connection Methods

A unique method of connection is employed by the Soldercube modules, where small areas of
solder are heated and can be used to connect to neighbouring modules, seen in Figure 2.5(f).

2.2 Modular Robotic Systems 21

Not only does this provide enough structural support to lift up to ten modules, but also allows
for the passing of signals and power [51].

Another solution is demonstrated with the 3D Catoms modules, where the modules are
sufficiently small that electrostatic forces are able to provide connective forces [82].

2.2.4 Micro-Locomotion of Modules

When designing a modular robotic system, an important aspect to consider is the movement
of a single module, termed micro-locomotion [83]. This characteristic becomes especially
important when the system is desired to be self-reconfigurable, as it allows for the modules to
position themselves in a configuration, as well as add or remove themselves from it, as detailed
in Section 2.4.

Externally Propelled

The simplest method of micro-locomotion is to have no internal locomotion at all and rely
on external forces to move the modules. The aforementioned Robot Pebble [16], is a one
centimetre cube, with the ability to connect magnetically to a neighbouring module but has no
self-locomotion capabilities. The authors propose that the modules reside on a vibrating table
in order to move together and apart stochastically, attaching to or detaching from neighbouring
modules if required. Figure 2.6(a) shows a variety of Tetris inspired shapes formed by Robot
Pebble modules. This lack of propulsion is much like its predecessor, Miche [12], seen in
Figure 2.3(c), which also has no locomotion capabilities but is capable of connections in three-
dimensions and relies on gravity to disassemble. Whilst being a novel and simplistic method of
movement, it limits the usefulness of the system, and restricts the reconfiguration of the systems,
as modules can only be removed if the external forces allow. Another method of moving cubes
without locomotion capabilities could be to use magnets, as shown by Bhattacharjee et al. [84].
They demonstrate simple magnetic cubes, similar to Robot Pebbles, being controlled on a
magnetic table, locomoting and forming various configurations.

Other systems that rely on external forces for movement include the Stochastic systems by
White et al. [88], the Programmable Parts system by Bishop et al. [89], and the evo-bots by
Escalera et al. [90] all of which use an air-table to enable movement, and further air currents or

22 Background and Related Work

(a) (b) (c)

(d) (e) (f)

Fig. 2.6 Examples of modular robotic systems that utilise a variety of methods for micro-
locomotion; (a) Robot Pebbles modules which are incapable of micro-locomotion © 2011
IEEE, (b) a SuperBot module, capable of using hinges to slide across a surface in the same
manner as an inchworm4, (c) a SMORES-EP module, equipped with differential drive wheels,
(d) Roombots modules locomoting across a structured space5, (e) M-Blocks modules, which
utilise a spinning flywheel to move freely © 2015 IEEE, (f) the Distributed Flight Array
comprising multiple propeller based modules in order to take flight © 2009 IEEE. Reprinted
from [85, 86, 63, 87, 50, 46], respectively.

excitation of the platform to propel the modules. There also exists the X-bots system developed
by White and Yim [91], which uses an actuated stage to move free modules around a fixed
module before attaching to one another. These systems, while demonstrating simplistic modules
and novel solutions to locomotion, still suffer from a limited usefulness when translating to
real-world use cases, as the lack of predictability makes any planning a difficult and time-
consuming task. However, with vast numbers of modules, statistical planing can create a viable

4Reprinted by permission from Springer Nature: Springer Towards Autonomous Robotic Systems, “Dy-
namic power sharing for self-reconfigurable modular robots,” C.-A. Chen, A. Kamikura, L. Barrios and W.-M.
Shen, © 2014.

5Reprinted from Robotics and Autonomous Systems, Vol. 62, No. 7, A. Spröwitz, R. Moeckel, M. Vespignani,
S. Bonardi and A. J. Ijspeert, “Roombots: A hardware perspective on 3D self-reconfiguration and locomotion
with a homogeneous modular robot,” 1016–1033, © 2014, with permission from Elsevier.

2.2 Modular Robotic Systems 23

control strategy, as shown by Tolley et al. [92] and Neubert et al. [93] and further discussed in
Section 2.4.1.

Inchworm

More commonly the movement of modules is enabled through an inchworm method, whereby
the modules have at least one DoF and can bend in their centre, pulling the rear towards the
front, before straightening again to move forward slightly. Examples of this method include all
iterations of the M-TRAN robots, by Murata et al. [57], seen in Figure 2.4(a), the SuperBot by
Salemi et al. [59] which can be seen in Figure 2.6(b), the four degrees of freedom system by
Chu et al. [94], Transmote by Qiao et al. [95], the Xmobot by Wang et al. [96], and ModRED
by Baca et al. [97]. This method of micro-locomotion allows the modules to retain symmetry
as no extra parts are needed to enable the movement, unlike wheeled locomotion. However, the
range of movement is limited to back and forth, and can be hard to control depending on the
environment and surface.

Wheeled Micro-Locomotion

Also commonly used, with increasing popularity, are wheeled modules with differential
drive [83]. This is seen in systems such as Swarm-Bots by Dorigo et al. [80], the afore-
mentioned M3 and, M3 Express [64, 65], SMORES-EP [62], depicted in Figure 2.6(c), KAIRO
3 [40] and in the HyMod system [54], shown in Figure 2.4(c). Through the use of differential
drive, the modules are easily controlled and can move freely through an unstructured envi-
ronment. They do, however, forgo a level of symmetry and simplicity as the wheels must
extend from the module to allow ground clearance, must be able to freely rotate and contain the
necessary motors and drivers for the added capability. These shortcomings can be integrated
into the design, as with HyMod, where the rotation of the wheel also rotates the connector,
adding extra DoFs when forming connections.

The iMobot, by Ryland and Cheng [74], makes use of wheeled ends for differential drive,
and a joint in the middle to employ the inchworm method. The wheels are rounded squares,
so do not protrude from the module unless rotating, meaning that the robot can move in tight
spaces in any direction, as well as being able to lift itself.

24 Background and Related Work

Structured Space

Another method of micro-locomotion is the use of a structured space, as shown by Sproewitz et
al. with the Roombots system [60]. Although the modules are capable of movement through
rotation, without being affixed at one point, they do not locomote. With a grid of connectors
the Roombots modules can rotate to move to adjacent spaces, connecting at the new location
and disconnecting from the old one, even moving up vertical surfaces, as seen in Figure 2.6(d).
This method of locomotion lends itself well to precision tasks as it is always known exactly
where a module is, and also enables fast and reliable communication methods. This has been
demonstrated with the HyMod system, utilising the concept of meta-modules [98] to traverse a
grid of fixed connectors in a simulated setting [55].

The concept of utilising a structured space to aid in micro-locomotion can be extended to
consider the use of static modules as a structure over which to traverse. By using the movements
that are possible with Roombots or M-TRAN, or meta-modules of robots with central joints
such as SMORES or HyMod, a connected structure of modules could be traversed, similar to
a structured space. This was demonstrated with the ATRON system, the individual modules
of which are incapable of micro-locomotion, but three modules combined as meta-modules
are demonstrated in simulation traversing a configuration [99]. Similarly, but on a module by
module basis, Leal-Naranjo et al. present a method of moving across a structure of modules by
using connectors on hinges that can extend out from the cubic body of each module to facilitate
movement [100]. This micro-locomotion is particularly useful for the reconfiguration of a
structure of modules, and further discussed in Section 2.4.

Other Methods of Note

A novel micro-locomotion scheme is employed by Romanishin et al. with the M-Blocks [81]
and 3D M-Blocks [50]. By spinning a weight very fast in the centre of the module before
applying rapid braking, the M-Blocks transfer the momentum to the chassis of the module and
flip to move across a surface or over one another, overcoming the magnetic attraction keeping
them connected. This solution is unique and allows for movement across both an unstructured
environment and other M-Blocks. It does, however, require that the modules be simple cubes,
as can be seen in Figure 2.6(e), limiting the usefulness in applications other than structural.

A system concerned with locomotion in a different space is the Distributed Flight Array [46],
shown in Figure 2.6(f). Although the system aims to create a flying modular robot, individual
modules are equipped with only a single propeller, and as such are not stable enough for
micro-locomotion in the air. For this reason each module has three small omni-wheels on the

2.2 Modular Robotic Systems 25

bottom, to enable micro-locomotion on a surface, before docking with other modules and then
flying.

Another form of locomotion in a different space is the previously discussed MHP [47], from
Figure 2.3(b). The modules exist on the surface of water and route fluid through themselves
to locomote across the surface of the water. Doyle et al. go on to propose an iteration of the
system, called MFP, that would be capable of routing fluids in three-dimensions, suitable for
use underwater or in zero gravity environments [101].

There are many more modular systems that lack individual locomotion capabilities, but
when connected together can produce methods of movement not possible alone, as detailed in
the following section.

2.2.5 Macro-Locomotion of Configurations

The other locomotion consideration to make in the field of modular robotic systems, is that of
how a configuration of robots will move once the modules are connected together, termed macro-
locomotion. It is possible that the combination of movements produced by the modules creates
a locomotion gait, but also possible that locomotion is achieved through the reconfiguration of
the modules.

Caterpillar

A common method of macro-locomotion, especially for chain type robots, is that of a caterpillar
motion. The modules need only have one DoF and, when properly sequenced, a chain of
modules can lift the front to perform a sinusoidal movement to locomote. This solution has
been employed in many robotic systems, such as the aforementioned M-TRAN I, II & III
robots [58] which can be seen in Figure 2.4(a), SuperBot [102], Transmote [95], ModRED [97]
and MSR by Chu et al. [94]. As well as other systems not capable of micro-locomotion, such as
PolyBot [39] and CONRO [103], shown in Figures 2.2(b) and 2.7(a), respectively.

This is only one method of movement for a chain or hybrid type configuration, allowing
for movement over uneven terrain at a slow pace. From a simple straight line, it has been
hypothesised that it would be a simple task to autonomously join the ends together to make
a rolling-loop for more rapid locomotion [104]; however, this proved more difficult than first
expected [35] with much work devoted to finding a reliable solution [105, 106]. Many of the
aforementioned systems have demonstrated macro-locomotion as a rolling loop, as evidenced

26 Background and Related Work

by Yim et al. with PolyBot in Figure 2.7(b), but without the self-reconfiguration between the
two. This concept is further discussed in Section 2.4.2.

Walking

Another frequently demonstrated method of macro-locomotion is through walking. Some
systems are able to be configured with varying numbers of legs that afford locomotion on
uneven terrain and in various directions for effective exploration. This has been demonstrated
with the previously discussed CONRO [103], M-TRAN [58], shown as a walker in Figure 2.7(c),
2DxoPod [41] and Roombots [107]. As well as other systems such as Y1, developed by
Gonzalez-Gomez with the walker movement proved by Ranganath et al. [108] and CoSMO
by Liedke et al. [109]. This has also been shown with the truss based Tetrobot [67]. Further-
more, certain heterogeneous systems have developed specific leg modules in order to enable
walking locomotion, such as the aforementioned SMART system [30], which can be seen in
Figure 2.7(d).

Wheeled Macro-Locomotion

For the wheeled modules capable of complex micro-locomotion, it is possible to continue to
use the wheels when connected together, provided the configuration is such that there is not an
excess of friction perpendicular to the desired direction of travel. This problem is negated by
s-bots through their ability to align their wheels in the direction of travel [80], demonstrated in
Figure 2.7(e). Wheeled macro-locomotion has been shown with KAIRO 3 [40], and SMORES
modules [63, 110]. Although not individually wheeled modules, the ATRON system has been
shown in a configuration that can make use of the rotational DoF in the centre of the module to
act as wheels [56], shown in the final configuration of Figure 2.4(b).

A number of heterogeneous systems make use of wheeled modules to enable macro-
locomotion. The CEBOT [3] consists of binding joint modules, rotation joint modules and
wheeled mobile modules, which can combine to form different structures but primarily use the
wheeled modules to locomote. This technique is also employed in the system developed for
the Symbrion and Replicator project, which can be seen in Figure 2.1(b), using the previously
described Active Wheel module for macro-locomotion when connected, but with each module
capable of micro-locomotion too [19].

2.2 Modular Robotic Systems 27

(a) (b) (c)

(d) (e) (f)

Fig. 2.7 Examples of modular robot systems that utilise a variety of methods for macro-
locomotion; (a) a single CONRO module and a chain configuration of CONRO modules
locomoting via a caterpillar motion © 2002 IEEE, (b) PolyBot modules connected together
to form a rolling loop © 2002 IEEE, (c) M-TRAN III modules walking as a quadruped con-
figuration © 2008 Sage Publications, (d) SMART system modules configured as a 4-legged
walker6, (e) connected s-bots using their ability of aligning their wheels to move as a connected
configuration7, (f) simulated UBot modules using macro-locomotion via reconfiguration to
navigate rough terrain8. Reprinted from [103, 104, 10, 30, 80, 111], respectively.

6Reprinted from Robotics and Autonomous Systems, Vol. 60, No. 4, J. Baca, M. Ferre and R. Aracil, “A
heterogeneous modular robotic design for fast response to a diversity of tasks,” 522–531, © 2012, with permission
from Elsevier.

7Reprinted by permission from Springer Nature: Springer 1st International Workshop on Swarm Robotics,
“The SWARM-BOTS project,” M. Dorigo, E. Tuci, R. Groß, V. Triani, T. H. Labella, S. Nouyan, C. Ampatzis,
J.-L. Deneubourg, G. Baldassarre, S. Nolfi, F. Mondada, D. Floreano and L. M. Gambardella, © 2005.

8Reprinted by permission from Springer Nature: Springer Journal of Intelligent and Robotic Systems, Vol. 79,
“A simplified approach to realize cellular automata for ubot modular self-reconfigurable robots,” Y. Zhu, D. Bie, S.
Iqbal, X. Wang, Y. Gao and J. Zhao, © 2014.

28 Background and Related Work

Macro-Locomotion through Reconfiguration

For those lattice or hybrid based modules not capable of micro-locomotion, one method of
locomotion is via reconfiguration. Through moving the modules from a rear location in
the configuration to the front, the overall position of the system is changed. This shifts the
purpose of reconfiguration from task based to locomotion based, requiring a different mindset
to consider the control of the system. There are a number of two-dimensional systems that
have shown such macro-locomotion, such as the Fractum [43], the self organising robots in
the virtual plane by Hosakawa et al. [112], the shape memory alloy based micro-robot by
Yoshida at al. [113], and CHOBIE II by Koseki et al. [45]. This has also been demonstrated in
three-dimensions by Murata with M-TRAN [57], Butler et al. with the heterogeneous Molecule
robot [98], Bonardi et al. with Roombots [87] and Bie et al. with UBots [66], simulated
modules of which are shown locomoting via reconfiguration in Figure 2.7(f). The movement of
a module across the surface of a configuration has also been demonstrated in simulation with
the HyMod system [55], although the full extent of locomotion via reconfiguration is yet to be
analysed.

The previously mentioned Odin system, consisting of trusses and joints and depicted in
Figure 2.1(c), also locomotes through reconfiguration [20]. However, it is through a changing of
the physical structure of the modules rather than a reordering of the modules. By extending or
retracting the beams, the system changes its shape and can move. This altering of the physical
attributes of each module as a method of locomotion has been employed by other authors too. In
two-dimensions there are examples such as the Metamorphic System by Chirikjian [114], where
the hexagonal modules can deform at the vertices, and Crystalline [44], where the modules
can expand outwards to make themselves larger in a lattice. In three-dimensions this has also
been shown by Suh et al. with the Telecubes system [115], employing a similar technique to
Crystalline but on all six faces of the cube.

There are also a number of heterogeneous systems that use reconfiguration to locomote.
Most commonly they have a passive type of module and an active type, with the active type
performing the reconfiguration of the passive modules, thereby moving the overall system.
This is demonstrated by Ünsal et al. with the I(CES)-Cubes system [116], which comprises
cubic passive modules and active link modules that can move these, as well as by Hjelle and
Lipson with their hinge robot that travels along trusses and can reconfigure them [117].

2.3 Control of Modular Robotic Systems 29

2.3 Control of Modular Robotic Systems

The control of modular robotic systems presents a number of challenges when compared to the
control of traditional robotic systems. Firstly, the systems comprise multiple entities, sometimes
in the thousands. Secondly, each entity interacts with and can affect upon the other entities in
the system. Furthermore, the individual modules could have varying levels of computational
capabilities ranging from comprehensive, to no internal processing at all. Because of these
factors, control schemes for modular robotic systems often depend heavily upon the specific
platform for which they are designed.

There are two approaches when it comes to the design of control schemes for modular
robotic systems: centralised control, whereby a single control unit sends instructions to each
member of the system for them to follow, and distributed control, in which each module is
responsible for its own actions given its own knowledge.

Each approach offers a number of advantages and disadvantages. As such, there are existing
examples of both, a selection of which are detailed as follows.

2.3.1 Centralised Control

As previously outlined, the defining characteristic of centralised control is a single, central
control unit. In terms of modular robotic systems, this could be a leader module within the
system, or an external computer that can communicate with the modules.

One type of modular robotic system that primarily relies on an external computer for
centralised control is the aforementioned modular manipulators. For these systems, it makes no
sense to utilise a leader module within the system as the systems tend to be static, so can be
easily connected to an external controller. Furthermore, the levels of computation required to
calculate the kinematics of the structure can be very complex with many degrees of freedom,
so a designated computer that has more computational power than a module can accommodate
is required, as discussed by Matsumaru in the design of the previously discussed TOMMS
system [22].

Another aspect of modular robotic system control that is often centralised regards the
macro-locomotion of a configuration. As explored in Section 2.2.5, much collaboration is
required between modules to locomote an entire system, something that a central controller
is more suited to. A common way to achieve this is by using a gait control table [37]. A
gait control table comprises pre-defined movements for each module in a system that, when

30 Background and Related Work

combined, produce the desired locomotion. The central controller is able to synchronously
send instructions from the table to each module to do so. While being a reliable method of
locomoting through pre-determined means, the movements are static, and the systems unable
to adapt. Yim demonstrates this approach with the Polypod modules, moving via caterpillar
and rolling methods [37]. The concept is exploited by Jing et al. too, but for the reconfiguration
of SMORES-EP modules between pre-defined configurations, rather than locomotion [63].

A further concept that is utilised in centralised control is that of hierarchical planning. Due
to the aforementioned problem of optimal reconfiguration planning being a computationally
intractable one [13], certain heuristics can be used, of which hierarchical planning is one
example. Despite being solvable, the solutions are still computationally demanding, so are used
in centralised control. The concept is that a high level planner initially creates a movement
plan by ignoring physical constraints of the system, before a low level planner uses these plans
to generate the detailed actions of each module. Ünsal et al. propose and develop such a
solution for the previously detailed I(CES)-Cubes system [118, 119], while Jing et al. create
something similar for simulated SMORES-EP modules [63]. Kotay and Rus go on to adapt the
hierarchical planner to account for meta-module level micro-locomotion [120], as discussed
in Section 2.2.4. While effective for creating a plan on a centralised controller, it limits the
granularity of the movement within the system.

In general, the central controller in a system is limited by computational power, so using a
leader module is favoured in heterogeneous systems, or for systems where there is no great
need for computational complexity. This is demonstrated by Zykov et al. with the previously
introduced iteration of the Molecubes system [61]. Here a controller module is developed,
which uses local communication to deduce the morphology of the system, before using an
evolutionary controller to produce movement for the system.

While effective for controlling systems, including computationally expensive control,
centralised control suffers from the fact that the single controller compromises the robustness
of the system. The failure of the controller, or disconnection from it, results in the failure of the
entire modular robotic system.

2.3.2 Distributed Control

Distributed control requires no central leader, instead having each module in the system run
identical algorithms to create emergent behaviour. This approach means that there is no single
point of failure in the system; if one module fails, the others continue to operate as they
previously had done. The modules also operate based on local information only, not requiring

2.3 Control of Modular Robotic Systems 31

knowledge of the entire system. This means that the system can be dynamically scalable, as the
behaviour of each module is not defined by how many modules are present in the configuration.
As such, distributed control has been employed in a number of scenarios.

A major inspiration for distributed control comes from nature, where swarms of living
organisms are able to collaborate to perform tasks without any centralised control [4]. This
can be achieved through the use of hormone signalling. Members of the swarm react to the
hormones they detect from neighbours and in turn release their own hormones to signal what
they and their neighbours should do. Similarly, modules in a robotic system can pass messages
to neighbours to create emergent behaviours. This has been illustrated in simulation many
times, including in two-dimensions by Walter et al. [121], and subsequently in three-dimensions
by Yim et al. [122]. This has also been demonstrated on hardware by Yoshida et al. with the
Fractum modules [123], Shen et al. with the previously mentioned CONRO modules [124],
Kernbach et al. with the Replicator and Symbrion project [27], Escalera et al. with evo-bots [90]
and Gilpin et al. with the Miche modules [12], among many others. Although an effective way
to enable distributed control, each module must be aware of all possible hormones, or messages,
it could receive, and the steps that it must perform in response.

Similarly, Støy and Nagpal use hormone inspired control to create a method of additive
reconfiguration [6]. Here, rather than the messages being used to directly dictate how the
modules react, the strength of a message is instead used to influence where in a configuration
a module moves towards. The authors do not consider how the modules are able to move or
connect to one another, rather focussing on the high level control of the system via simulation.

Piranda and Bourgeois propose a distributed method of morphing reconfiguration in two-
dimensions [125]. In this work, they demonstrate shapes being formed in two-dimensions on a
flat surface, by conceptual modules capable of movement by sliding across neighbours. The
modules reconfigure from an initial shape to a goal shape, where these shapes are next to one
another in the environment, and at least one module overlaps them. The shapes are limited
to those that do not contain holes, and do not contain spaces around the edge that are only
wide enough for one module to fit into. The algorithm consists of the modules in the outer
layer of modules in the initial shape, moving from their starting positions to a position that
is inside the goal shape. This is achieved by forming trains of modules that move together
along the periphery of the shape. A variation of this is presented by Naz et al. [126]. Here,
the rules for the shapes are the same, but the authors investigate shapes the vertical plane,
using the cylindrical Catoms modules as the basis of the work. Trains of modules are not used,
instead modules maintain a gap between moving neighbours, so as to avoid collisions. It is

32 Background and Related Work

required that the modules know both their location within the configuration, and the goal shape,
a requirement that is unrealistic for the Catoms modules in practice.

2.4 Reconfiguration Methods

In order for a modular robotic system to form a variety of shapes, a reconfiguration strategy
must be created. The majority of strategies are additive, where modules are added to locations
around a configuration to form the new configuration. These modules are ones that were not
yet involved in the configuration. Another reconfiguration strategy is to not alter the number
of modules in a configuration, but to relocate modules from positions in the configuration
where they are no longer needed to positions where no module currently resides but is required.
This method is termed morphing reconfiguration. The final type of reconfiguration strategy is
subtractive reconfiguration, where connections are broken to remove modules from the initial
configuration, leaving behind the desired shape. A number of instances of each strategy are
outlined below.

2.4.1 Additive Reconfiguration

Autonomous additive reconfiguration is concerned with a shape being built up from an initial
seed module, to which connections are made to form the desired shape. This may occur with a
configuration of multiple modules that is already constructed and only requires one connection
to be made, or from a single seed module with many more modules building around it. Many
systems are based on the concept of additive reconfiguration, though few have managed to
demonstrate it in practice.

Groß et al. demonstrate this method with the aforementioned s-bots [127], as shown in
Figure 2.7(e). In this work the s-bots are placed in a bounded environment, with a single
module acting as a seed. By illuminating red LEDs around its circumference, it attracts other
modules to connect. When these modules connect to the seed, they also illuminate red LEDs,
attracting more robots to themselves, expanding the configuration. The design of the connection
method helps with the success of the strategy, as it is not required that the s-bots specifically
or accurately align to connect to one another. The wheeled micro-locomotion is also a factor
to the success as it means that modules can independently integrate themselves into the final
structure. Another demonstration of autonomous additive reconfiguration is shown by Bishop
et al. [89] with the aforementioned Programmable Parts. In simulation, Sproewitz et al. have
shown the Roombots modules performing a similar method of additive reconfiguration, utilising

2.4 Reconfiguration Methods 33

meta-modules to enable the movement and testing four different strategies to determine the
order of reconfiguration [7].

As previously mentioned, Støy and Nagpal use hormone inspired message passing control
to create a gradient of message values in order to direct modules towards a seed module [6].
The work here is accomplished in simulation, but provides a solid example of how simple
control could lead to effective additive reconfiguration solutions. However, the authors do not
consider the low level movement of the modules, or how they would be able to connect to one
another.

A simple solution for this problem is presented by Neubert et al. with an iteration of the
Soldercubes modules [93]. In this work the modules reside within a fluid filled environment. The
authors present a concept whereby a powered seed module initiates a configuration, but rather
than modules locomoting to specifically construct a configuration, they move stochastically due
to fluid flow, only connecting with the seed if they come into contact with a face that requires
connection to a module, and are perfectly aligned. The seed module is the only member of
the configuration capable of computation, so is responsible for accepting or declining each
potential connection. The concept is demonstrated with simplified models of modules by Tolley
et al. [92]. Escalera et al. present a similar concept with the evo-bots, using the fluid flow of air
currents for stochastic movement on an air table [90]. Here though, modules make connections
where possible, and will disconnect from one another if the types of modules that connect
together are not the ones desired.

Baca et al. demonstrate a simple additive reconfiguration scheme with ModRED [97]. In
simulation they show varying number of modules congregating together and connecting to
form chains of different lengths of modules.

Additive reconfiguration is also demonstrated by Romanishin et al. with the M-Blocks
and 3D M-Blocks [50, 81], modules of which are shown in Figure 2.6(e). As the connection
mechanism is simply magnetic, the modules are able to easily connect to, and travel across,
configurations of other modules. The authors are not specifically concerned with reconfigu-
ration in the works cited, instead demonstrating the movement of the modules. They show
modules moving towards one another autonomously, based on light detection, which is additive
reconfiguration, as well as across one another in a pre-defined way, which would be morphing
reconfiguration if used for the purposes of reconfiguration.

In an effort to allow systems to form large and complex structures, Thalamy et al. propose
the use of a porous scaffold structure, around which the details of the final structure can
be added [8]. Here they use a large three-dimensional scaffold tile, comprising 3D Catoms
modules. The authors use simulations to illustrate the formation of initial supporting structures

34 Background and Related Work

consisting of these scaffold tiles, before further 3D Catoms modules locomote along the scaffold
to form the final configurations. They demonstrate that the approach enables reconfiguration in
O(N

2
3) time, but require excess modules in the formation of these supporting scaffolds.

2.4.2 Morphing Reconfiguration

Morphing reconfiguration can be considered the act of reconfiguration without changing the
number of modules in a configuration. For chain based systems this could simply be the
configuration altering the position of its modules in continuous space. However, for lattice
based systems, modules are required to alter their position within the lattice, either by movement
across the structure, or by being moved by another module in the configuration.

Kurokawa et al. demonstrate morphing reconfiguration as a method of locomotion, using
M-TRAN III modules to create configurations [10]. From these configurations, groups of
M-TRAN III modules at the rear end of the configuration locomote across the structure to the
front, thereby reconfiguring the structure through morphing. The process is shown in progress
in Figure 2.4(a). This approach is utilised for reconfiguration in other works too, as discussed
in Section 2.2.5.

In an effort to simplify the problem of generalised reconfiguration, Parada et al. introduce a
new meta-module concept [128]. Here they present a relatively large meta-module consisting
of either twelve modules with hinges connecting two halves, such as M-TRAN or Roombots, or
twenty-four modules with integrated hinges, such as Molecubes or HyMod modules. By using
meta-modules constructed to the specification given, the systems would be able to expand and
contract each meta-module in each direction, and could use this motion to move meta-modules
around the structure.

An example of morphing reconfiguration concerned with fewer connections is shown by
Yim et al. with the PolyBots [104]. The work is concerned with reconfiguring a chain of
PolyBots from a simple straight line into a closed loop, as shown in Figure 2.7(b). Due to
the complications associated with aligning two ends of a chain in a three-dimensional space,
the experiments reduce the problem to a single plane by lying the configurations flat on a
surface. They also reduce one end to a single module and the other to an arm of six modules,
both attached to a fixed surface. The authors outline a complex control strategy using a three-
phase docking process. This is required as, for a connection between PolyBots to be made
they must accurately align, highlighting a major stumbling block associated with traditional
reconfiguration methods. A similar example is shown by Castano et al. making use of CONRO

2.4 Reconfiguration Methods 35

modules to reconfigure from a snake like configuration to a ring [38], and again by Qiao et al.
with the Transmote system [95].

2.4.3 Subtractive Reconfiguration

Subtractive reconfiguration is a comparatively less researched area of reconfiguration. In this
instance, modules are initialised in a connected structure and unnecessary modules removed in
order to reveal the final configuration.

There are fewer instances of subtractive reconfiguration being fully demonstrated with a
modular robotic system. Using the aforementioned Miche system, Gilpin et al. demonstrate
subtractive reconfiguration in three-dimensions [12]. The Miche modules are small cubes,
equipped with magnetic connectors on the six faces. Initialising in a cubic lattice the modules
are able to determine whether or not they are required in the final configuration and disconnect
from their neighbours if they are not. In an effort to minimise the size of the modules, external
actuation is used to move the unnecessary modules. This is achieved in this case using
gravity. The authors demonstrate the presented concepts with twenty-eight Miche modules,
forming a variety of shapes autonomously, such as a dog and a humanoid structure, as seen in
Figure 2.3 (a). Gilpin et al. go on to demonstrate subtractive reconfiguration with the Robot
Pebbles system too [16]. The Robot Pebbles are smaller scale robots, inspired by Miche, but
with connectors on only four of the faces, thereby restricting the lattice to two-dimensions.
Again, the modules feature no internal locomotion, instead relying on a vibrating table to
locomote the modules, as discussed in Section 2.2.4.

One demonstration with a swarm of robots that are not modular is by Gauci et al. [15]. In
this work the author uses a swarm of 725 Kilobots, a small-scale robot designed for research
in swarm applications [129]. The Kilobots are initiated in a tightly packed group and given a
user defined goal shape. Those robots that are not required in the final configuration remove
themselves through the combination of collision avoidance, phototaxis and anti-phototaxis.
Phototaxis is the movement of a robot towards a light source, anti-phototaxis is movement
away from the source. The collision avoidance means that the robots will not remove from the
structure until there is a clear path ahead, and will not disturb the goal shape in doing so. The
phototaxis and anti-phototaxis are used in combination to move the unwanted robots away from
the goal shape, and is employed depending on the desired shape and location of the light source.
The work shows the strategy successfully yielding certain types of shapes when the correct
combination of phototaxis and anti-phototaxis is used. The author discusses the scalability of
this approach, hypothesising that the time taken is bounded by the longest path that a robot

36 Background and Related Work

must take to exit the shape, resulting in O(
√

n) for a square starting shape, or the diameter of
the shape in other cases.

The fact that a removal order can be derived by robots simply waiting to be able to move
has more general use cases for modular reconfiguration as shown by Tolley et al. [130]. In this
work the authors are concerned with additive reconfiguration, utilising simulated modules that
are able to float as though in a fluid. However, to obtain an order in which to construct the
goal shape, the authors use subtractive reconfiguration. They begin with the goal structure and
remove modules that are on the exterior layer and able to move, much like the order in which
Kilobots move in the aforementioned work by Gauci et al. [15]. From this they determine
an order in which modules are able to be removed which, when reversed, yields an order
in which the additive reconfiguration can occur. The authors demonstrate physical modules
forming a humanoid structure, similar to that presented by Gilpin et al. [12], through additive
self-assembly, using an assembly order derived by simulating subtractive reconfiguration. In
the worst case, the computation requirements of the assembly planner scales with O(kn4),
where n is the number of modules and k is the sampling rate at each step.

Chapter 3

Introducing Active Subtraction

3.1 Introduction

As presented in Chapter 2, there are numerous ways in which a modular robotic system is
able to reconfigure, the majority of which involve adding modules or rearranging them to form
shapes, known as additive and morphing self-reconfiguration, respectively. Also described
was the concept of subtractive reconfiguration, where a desired shape is formed by initiating
a group of modules in a given starting formation, before having unneeded modules detach
themselves. This starting formation is a dense, rectilinear structure. Research into subtractive
reconfiguration is motivated by a number of factors, as explained in Section 1.1. One such
motivation comes from the increased reliability it lends. Typically, modules require high
precision to form connections between themselves, unless these connections are already present
in the starting configuration, as is the case in a subtractive approach. Furthermore, as discussed
by Gauci et al. [15], an initially connected structure can guarantee that the modules are able to
communicate from initialization. Because of this, information such as the initial configuration
or the control scheme can be easily passed to all members before reconfiguration begins.

Previously, Gilpin et al. presented subtractive reconfiguration with modular robots using the
Miche and Robot Pebbles systems in three- and two-dimensions respectively [12, 16]. However,
in these works the modules feature no internal locomotion, instead relying on a vibrating table
to locomote once disconnected from the structure.

Subtractive reconfiguration is also possible with non-modular robots, as demonstrated by
Gauci et al. [15]. As described in Section 2.4.3, the authors demonstrate a swarm of Kilobots
initiated in a tightly packed group, forming a user-defined goal shape through the extraneous

38 Introducing Active Subtraction

robots locomoting away from the initial group. In this case the reconfiguration is active, as the
robots actively remove themselves.

Combining and building on these concepts, and employing lattice-based modular systems
with internal locomotion, such as M-TRAN [57], SMORES [62], M-Blocks [81] or HyMod [54],
it could be possible to have modules remove themselves from an initial starting square or cube,
leaving behind the desired structure. This process is termed active subtraction.

The problem of reconfiguring via active subtraction is particularly challenging in the
presence of gravity, as the redundant modules may have to leave in a particular order to prevent
the structure from collapsing at any time. As such, the work contained within this thesis
focusses on configurations that extend vertically from the ground. However, the problem of
autonomously reconfiguring in three-dimensions is an order of magnitude more difficult than
in two-dimensions. One example of where this complication has large ramifications is in the
development of a distributed movement algorithm, as explained in Section 3.4.1. Because of
this, the work contained within this thesis is concerned with two-dimensional structures, in the
vertical plane. Despite this focus, Section 7.2 contains discussion of expanding the work in this
thesis to allow for reconfiguration in three-dimensions.

The remainder of this chapter is concerned with the introduction of active subtraction and is
structured as follows. Section 3.2 first formalises the problem of self-reconfiguration via active
subtraction. Context with regards to modular robotic systems and the more general problem of
their reconfiguration is then presented in Section 3.3. With this in mind, Section 3.4 details the
simulated system used for the work presented in this thesis. Finally, Section 3.5 concludes the
chapter.

3.2 Problem Formulation

This section details the formulation of the problem of self-reconfiguration using active sub-
traction. Solutions to this problem are presented as the main contributions of this thesis, in
Chapters 4 and 5.

Consider a group of modules arranged to fill a two-dimensional, rectangular space in a
vertical plane. The environment is bounded in one of the four directions by a static surface,
which is referred to as the ground. In the remaining three directions there exists free space, at
least large enough for a module to move into. By default, the modules must remain connected
to themselves and to the ground, as otherwise, the structure would collapse due to gravitational
forces. The modules, ground, and all connections are considered to be infinitely rigid. A

3.2 Problem Formulation 39

number of modules in this initial configuration are required to remove themselves, to leave
behind only modules in a predefined configuration, known as the desired configuration. As
is the case with all existing subtractive reconfiguration, hollow spaces are not permitted in
the desired configuration, as modules that are to leave the hollow space behind would not be
able to remove themselves [15, 16]. A sink location is nominated, which is at ground level
and adjacent to the structure. When a module reaches the sink location, it is assumed to be
automatically removed from the configuration.

The modules in the desired configuration are henceforth referred to as included modules and
are stationary throughout the reconfiguration. The excess modules that are to be removed are
referred to as excluded modules. Whilst in the process of removing itself from the configuration,
a module is termed an active excluded module. The task is considered complete when all
excluded modules have managed to reach the sink location.

3.2.1 Objective

Formally, a robot’s configuration is represented as a graph, G = (V,E). Each node v ∈ V
corresponds to a module with coordinates (vx,vy) ∈ N×N+. Edges represent connections
between modules; a pair of modules are connected if and only if their Manhattan distance is 1.
Let G′ denote the augmented configuration that includes the original graph, G, as well as an
additional node, g, representing the ground, connected to all nodes v where vy = 1. Formally,
G′ = (V ′,E ′) with V ′ =V ∪{g} and E ′ = E ∪{{g,v}|v ∈V andvy = 1}. A configuration G is
referred to as feasible (i.e., non-collapsing) if the augmented configuration, G′, is a connected
graph.

It is given that the modules are initially arranged in a rectangular configuration G0 =

(V0,E0), of width xmax and height ymax, where V0 = {(x,y) |1≤ x ≤ xmax,1≤ y≤ ymax}. Let
Ginc = (V inc,E inc) denote a desired, feasible, non-hollow configuration, where V inc ⊆V0 are
the included modules. For the robot to self-reconfigure from G0 to Ginc, the excluded modules,
V exc =V0−V inc, must be removed. For a module to be removed, it has to reach the sink, which
is located at (0, 1).

The reconfiguration problem consists of identifying a finite sequence of configurations
G1,G2, . . . ,GT such that

• For all k = 1,2, . . . ,T : Gk is feasible;

40 Introducing Active Subtraction

• For all k = 1,2, . . . ,T : Gk can be reached from Gk−1 via one module executing a valid
movement, which is potentially followed by removing the module if it has reached the
sink;

• GT = Ginc.

3.3 System Considerations

Following the problem definition and conceptualisation of the novel self-reconfiguration method
of active subtraction, it is important to address the requirements for the system that will be used
to develop active subtraction as a method of self-reconfiguration. As detailed in Chapter 2, there
are many different types of modular robotic systems, with different attributes and capabilities.
This section presents a discussion of characteristics relevant to active subtraction, from both
a hardware and software perspective, before Section 3.4 details the idealised system that is
utilised in the work presented within the following chapters. Chapter 6 presents a more detailed
analysis of how the solutions to the self-reconfiguration problem may be transferred to real
world systems.

The first consideration to be made is that of the type of modular system, as introduced in
Section 2.2.1. Systems can be heterogeneous, with distinct module types, or homogeneous,
where all modules are identical. In the case of modular robotic systems, homogeneous systems
are preferable as they allow any module to fill any required cell in a configuration. However,
for the centralised solutions of Chapter 4, a leader module is required, which must be capable
of computation for successful reconfiguration. In the case of very large configurations, this
computational requirement will only grow. Despite only one module needing this as a leader, a
homogeneous system would require all modules to be identical, which will become impractical.
However, it is possible for the leader to be external to the system, such as a connected computer,
or the surface extension of the HyMod system [54]. As such, a homogeneous system is
appropriate for active subtraction, with an external leader being utilised if needed.

A further consideration is the configuration of the modules, as explained in Section 2.4. In
the case of active subtraction, a lattice or hybrid system would be most suitable, as they can
form regular initial configurations from which the modules are able to remove themselves. As
previously stated, the work in this thesis is concerned with two-dimensional configurations in
the vertical plane. As such, a square or cubic lattice makes the most sense, as the modules will
be able to directly support those above and the number of movement directions are limited when
compared to more complex shaped lattices. The modules should also have a sufficient number

3.4 Simulated Environment 41

of connectors to allow for the creation of such lattices, and have strong enough connections
to support neighbours during the reconfiguration process. Examples of appropriate modular
systems for this requirement are M-TRAN [57], SMORES [62], M-Blocks [81] or HyMod [54].

The system must also be capable of reliable and quickly passing messages between modules.
As demonstrated by Gilpin et al. [12], it is important for messages to be passed in order to
successfully reconfigure via subtraction. This requirement will be even more important when
modules are able to self-reconfigure, as their position within the lattice will change. The precise
method of message passing can be achieved in a number of ways, such as each module having a
unique identifier and addressing messages to the relevant module. Another method could be by
using connectors that are capable of passing messages through them, and sending messages in
the direction of the module that the message is intended for. For this to be possible the modules
would require a method of determining its orientation, i.e. which way is up. This is utilised
for the distributed algorithms in the thesis, where modules are concerned only with the state
of their immediate neighbours. For the centralised solutions, the modules can use an initial
message passing process to determine their location in the lattice, by simply passing messages
with incrementing coordinate values in the relevant direction. Following this, the leader module
can address messages to modules in specific coordinates.

3.4 Simulated Environment

This section details the idealised, simulated system that is used for the development of active
subtraction. Each solution in the following chapters is first conceptualised and proven to be
correct in an abstract way, before applied to the simulator to evaluate the performance under a
wide range of conditions. The program developed for this is called Modular Active Subtraction
Simulator for 2-Dimensions (MASS2D) and is available as an open source project [131].

The work presented in this thesis uses a model of a robot that, while having similar attributes
to the aforementioned lattice-based modular systems, implements them in a simplified manner,
akin to the sliding square method of movement [112]. The possible movements can be separated
into two types, adjacent and diagonal movement, shown in Figure 3.1(a) and (b), respectively.
The movements are expressed in terms of a module’s Moore neighbourhood, illustrated in
Figure 3.2. Adjacent movement is where a module traverses by a distance of one unit along
only one axis, that is North (N), East (E), South (S), or West (W). This takes one time step
to complete, as a module will move a total distance of one unit. For diagonal movement, a
module traverses a distance of one unit along both axes, that is, North-West (NW), North-East
(NE), South-East (SE), or South-West (SW), taking two time steps to complete in total. For

42 Introducing Active Subtraction

(a)

(b)

Fig. 3.1 Example of an active module employing (a) adjacent movement to travel West, taking
one time step, followed by (b) diagonal movement to travel South-West, taking two time steps.
Dark purple modules are included modules while cream coloured modules are active excluded
modules.

visualisation purposes, modules move each part of the diagonal movement in one time step, so
can appear suspended in the illustrations, as in Figure 3.1(b). In the simulation friction between
modules is ignored.

Each module is aware of the state of its connectors, that is, whether each is connected to
a neighbour or not. It is assumed that connected modules are able to communicate with one
another and can pass messages through the system, including through the ground, as is possible
with the HyMod surface extension [54]. Through this communication, the modules are able to
establish their relative position and orientation within a global coordinate system, if required by
the solution. The time required to pass messages is negligible compared to the time required to
complete a movement, so a time step is considered to have passed each time a module moves,
i.e. the messages are transmitted instantaneously. As the specifics of message passing is not
the focus of this work, the process is simplified within the simulated system, and messages are
sequentially resolved, with all messages being resolved within a single time step. As such, the
messages can be considered immediately passed to a neighbour in the simulated system.

The concept of a time step is used throughout the simulator as a way to represent the
synchronisation of the modules. Each module is able to pass and receive multiple messages
in a time step, as these are considered instantaneous, but may only move a distance of one

3.4 Simulated Environment 43

Fig. 3.2 Illustration of the Moore neighbourhood of a module.

unit. The problem of synchronising a system is not a simple one [132], especially when
considering a system in which modules will be moving. However, this is not a focus of the
work contained within, so is simplified within the simulations. The work is also not concerned
with the optimisation of how long a time step is, just the minimisation of the number of time
steps. As such, a time step could be arbitrarily long in order to ensure the synchronisation of
the system. This synchronisation is also necessary for the movement, as modules will test in
real time that the space they wish to move into is free, before moving simultaneously.

The modules also have a limited memory to store simple values and states. As previously
discussed, the modules pass messages for a number of reasons, and so must be able to store
values passed within these messages, such as a coordinate for localisation. The distributed
solution presented in Chapter 5 uses a state based solution, so each module must have the
memory to store the actions that each state dictates. As explained in Section 3.3, a homogeneous
system is preferable for active subtraction, but with an external leader for scenarios that demand
high amounts of computational resources. In the case of the simulator, the external leader is
provided by the simulator itself, so a homogeneous system is used.

As explained in the problem formulation, the environment contains a single sink location,
external to the initial configuration. A single sink is used in this work to simplify the develop-
ment of the initial active subtraction algorithms contained within this thesis. Note that adding a
second sink, one on each side of the structure, has the potential to allow the formation of the
desired structure to be twice as fast. However, this would require modules to have knowledge of
their locations in the system, as well as their path to the sink, something that is not required for
the locomotion algorithm (detailed in the next section). It would also introduce the possibility
of two moving modules colliding with one another when locomoting towards sinks, if they
choose opposite sink locations but have to cross paths to reach them. Finally, a future goal for
this work, as discussed in Section 7.2, is to extend the configurations in to three-dimensions, at

44 Introducing Active Subtraction

Algorithm 1: Active Excluded Module Movement Algorithm
1 SD← {S, SW, W, NW, N, NE, E, SE}
2 while position ̸= sink do
3 D← null
4 forall d ∈ SD do
5 if can move in direction d and D = null then
6 D← d

7 move in direction D
8 SD←{D−2,D−1,D,D+1,D+2,D+3,D+4}

which point the number of potential sink locations increases dramatically, further increasing
the complexity. As such, a single sink is used and the process simplified.

Also outlined in the problem formulation is the fact that connections are considered infinitely
rigid. As such, any module with an adjacent module is considered supported by that neighbour.
If a module does not have an adjacent neighbour then it is not supported and as such will fall
due to gravity. A consideration for the active subtraction process is to ensure that all modules
are supported by a connection to the ground. This could be via direct connection to the ground
or connected through any number of modules in a tree to the ground. Proofs of this support
is included in the presentation of the solutions. For the purposes of simulation gravity is not
modelled, but any configuration that has an unsupported module is considered invalid.

The modules must be capable of locomotion in order to reach the sink. If achieved in a
distributed way, the same movement algorithm can be used for both centralised and distributed
solutions to the self-reconfiguration problem. The following is the distributed algorithm used
in simulation by the excluded modules in order to locomote to the sink, which can be translated
onto a real-world system in the future.

3.4.1 Active Excluded Module Algorithm

In order to remove themselves from the structure, the excluded modules require a movement
algorithm to locomote towards the sink. Algorithm 1 shows a solution that enables a module to
reach the sink with only knowledge of its Moore neighbourhood.

The first step is to determine an order, SD, of directions in which to probe the state of
neighbouring cells in its Moore neighbourhood (given a direction d ∈ SD, let cell(d) be empty
if the corresponding neighbour cell is not occupied or is occupied by an active excluded

3.4 Simulated Environment 45

(a)

(b)

Fig. 3.3 Example of a stalemate when using (a) static prioritisation, and (b) dynamic prioritisa-
tion avoiding the stalemate.

Fig. 3.4 Example of a module escaping a dead-end by checking all possible directions of
movement, including opposite to the direction it already travelled.

46 Introducing Active Subtraction

module1). By defining the sink at position (0, 1), the module has a location to aim for, which
is always either South, West or South-West. The module therefore prioritises a South-bound
direction, continuing in a clockwise order through the directions of the Moore neighbourhood
(line 1).

For non-rectilinear structures, such as the one shown in Figure 3.3, the aforementioned
fixed priority sequence may result in a deadlock. The active module would first move to the
North-East but is then able to move South, which is the prioritised movement, before moving
West as the next highest prioritised movement. It would then repeat these three movements
indefinitely, not making progress towards the sink, as seen in Figure 3.3(a).

To avoid such situations, the movement of the active module is informed by the direction
it last travelled, D. This information is used to alter the priority (i.e., set SD) by which the
next direction is decided (line 8). The numeric alteration consists of steps around the Moore
neighbourhood in a clockwise direction. The five Moore neighbourhood positions that do not
constitute a ‘backward’ movement, that is, D−2,D−1,D,D+1,D+2, are given priority over
the other three possible directions, D+3,D+4, so as to avoid retreading the same path, where
possible. It is not necessary to check D+5, as D+4 will always be a possibility, due to it being
the direction that the module just came from. Figure 3.3(b) shows this dynamic prioritisation
resolving the previous stale-mate.

In some situations, such as in Figure 3.4, a module could find itself at a dead-end. Movement
directions D+ 3 or D+ 4 become relevant and are probed in this sequence. This act of
dynamically prioritising directions to move means that the active module can always reach the
sink, although not necessarily by taking the shortest possible path.

Each movement that a direction, d, would imply falls into the category of adjacent movement
or diagonal movement. For an adjacent movement it is simply necessary that cell(d) be empty,
and if this is the case then the direction to move, D, can be set to direction d. In the case of a
diagonal movement, it is required that an adjacent cell be passed through to reach the potential
location. The next neighbouring cell in the Moore neighbourhood is checked in this scenario
(if the previous cell was empty, it would have already been selected). This process is implicitly
represented on line 5.

Once D has been set, the module moves to the neighbouring cell located in direction D,
re-prioritises the order of directions in SD and repeats the process. This continues until the
module reaches the sink, at which point it can be considered removed, and informs the leader
accordingly.

1Active excluded modules are considered empty cells as they will no longer occupy the location they are
currently in once a time step is complete. This is relevant when considering parallel movement as in Section 4.2.2.

3.5 Conclusion 47

3.5 Conclusion

In this chapter, the concept of active subtraction for modular robotic systems was introduced.
The problem of self-reconfiguration using active subtraction was formalised, and discussions
of system requirements presented. An idealised simulated system was detailed and the first
algorithm, a distributed movement algorithm, was presented to be used in the work in the
coming chapters.

Chapter 4

Centralised Active Subtraction

This chapter is based on, and expands upon, the author’s original contributions to the publica-
tion [1].

4.1 Introduction

In the previous chapter, the concept of active subtraction was introduced. Also presented was a
simulated modular robotics system, which is to be used to develop a solution to the problem of
autonomous self-reconfiguration for modular robotic systems, the formulation of which was
also detailed. This problem is addressed in this chapter, where a solution for reconfiguration
in two-dimensions using active subtraction is presented. Two such solutions are presented:
one where modules operate purely sequentially, while the other allows for parallel movement.
Both solutions require some level of centralisation, where a leader module is required. Through
the development of this solution, it can be seen that active subtraction is a viable method of
self-reconfiguration.

This chapter is structured as follows. The solutions to the problem formulated in Section 3.2
are presented in Section 4.2. Section 4.3 presents formal analysis of the validity and run-time
performance of the solutions. Subsequently, simulations of the solutions in a range of scenarios
are shown in Section 4.4, along with the results. Finally, Section 4.5 concludes the chapter.

50 Centralised Active Subtraction

4.2 Controller Design

The following section presents two solutions for the problem described in Section 3.2. The first
solves the problem while having modules actively remove themselves one at a time, termed
Sequential Active Subtraction (SAS). The second builds on the first but grants the modules
parallel movement, greatly reducing the overall reconfiguration time, which is Parallel Active
Subtraction (PAS). Both solutions require at least one module to have full knowledge of the
system and make centralised decisions for the reconfiguration to be completed successfully.

4.2.1 Sequential Active Subtraction (SAS)

This section details the creation of a control algorithm that allows a leader module to select
modules to be removed from the structure. When selected, an excluded module becomes an
active excluded module and employs Algorithm 1 (see Section 3.4.1) to locomote to the sink
location, removing itself from the structure. This will leave behind a set of connected modules
that form a given desired configuration.

All modules execute an identical distributed algorithm based solely on local knowledge,
except for the leader module, the identity of which can be chosen at initialisation, and which
requires knowledge of the initial and desired configurations. The most Westerly included
module on the ground is a suitable candidate for the leader module. This is a unique module, as
there exists only a single block of included modules on the ground (because no hollow spaces
can exist between modules and the ground), and only one of these has a Westerly neighbour
that is not an included module. As all modules are initially connected, the location of each
module can be defined relative to a single point within the system, by passing a message and
incrementing the relevant value. The tuple of coordinate values can be used to identify the
modules. The leader module is responsible for choosing and informing sequential excluded
modules to remove themselves, one at a time. It does so by executing Algorithm 2.

Algorithm 2 requires the leader module to have knowledge of which modules are excluded
(V exc) and which are included (V inc). Assuming that the set of excluded modules is not empty,
the leader chooses one module to be removed. The leader can infer from V exc and V inc how
many inactive connectors each excluded module has. Let Fv denote the number of inactive
connectors for module v ∈V exc. For a module v to be considered for removal, the case must
be that Fv > 0. A module where Fv > 0 is termed a free module, as it is free to move in the
directions where it has an inactive connector. The leader module first determines the highest
horizontal layer of the structure that contains at least one excluded module with Fv > 0. It

4.2 Controller Design 51

Algorithm 2: Leader module (SAS)
1 Require V exc and V inc

2 while V exc ̸= /0 do
3 V top←

{
u ∈V exc |uy = maxv∈V exc{vy |Fv > 0}

}
4 m← argminv∈V top vx
5 notify m ▷ send signal to activate m
6 V exc←V exc \{m} ▷ update the set of excluded modules
7 wait m ▷ wait for m to reach sink

denotes by V top the set of excluded modules with Fv > 0 in this layer (line 3). It then chooses
from V top the module furthest West, m, which is also nearest to the sink (line 4). It informs the
chosen module to remove itself from the configuration (line 5) and updates the set of excluded
modules accordingly (line 6). The leader then waits for the active excluded module to reach the
sink, which it can be informed of through the structure, or through the ground (line 7). The
process is repeated until V exc is empty. As the process is sequential i.e., only one module can
be an active excluded module at any time, modules cannot possibly collide.

4.2.2 Parallel Active Subtraction (PAS)

To reduce the time cost of reconfiguration, a version of active subtraction that allows modules
to move in parallel has also been designed, termed PAS. It requires at least the leader module to
be capable of conducting simulations. Active excluded modules continue to use Algorithm 1
(see Section 3.4.1). PAS differs from SAS by the timings that the excluded modules are activated.
However, it preserves the order in which the modules arrive at the sink.

Algorithm 3, which is executed by the leader module, requires the module to simulate
Algorithm 1 to obtain the order in which the excluded modules reach the sink, ϕ(·), along
with the number of time steps that the ith module reaching the sink was active, ∆i, where
i = 1,2, . . . , |V exc|. For example, if excluded module m was the second module to arrive at
the sink and was active for 20 time steps, ϕ(m) = 2 and ∆2 = 20. The start time of the first
module, s1, is set to 0. Its arrival time, a1, is set to ∆1, with all other modules assigned an arrival
time of infinity. Subsequent modules must arrive at the sink after their predecessor. Moreover,
collisions among active modules must be prevented. A collision is defined as an active module
residing within the Manhattan neighbourhood of another active module, meaning the modules
could intersect within one time step. Only the Manhattan neighbours are considered, that is
neighbours to the North, East, South and West, as it takes two time steps to perform diagonal
movement. Without collisions, interaction between active modules is avoided, which could

52 Centralised Active Subtraction

Algorithm 3: Leader module (PAS)
1 Require ϕ(·), ∆ ▷ Obtained by simulating Algorithm 2
2 s1← 0
3 a1← ∆1, a j ̸=1← ∞

4 forall i = 2 to |V exc| do
5 si←max(0,ai−1 +2−∆i)
6 removal← false
7 while removal = false do
8 V sim←V inc∪{u ∈V exc |aϕ(u) ≥ si}
9 collision← simulate V sim

10 if collision then
11 si← si +1
12 else
13 removal← true

14 ai← si +∆i

15 notify j at s j ▷ send signals to modules at start times

otherwise affect the direction in which they move (see Algorithm 1). As a consequence, the
arrival times of subsequent modules must differ by at least two. The earliest possible start time
for the module in question is chosen accordingly (line 5). The leader module then simulates
the active subtraction process, to determine whether the module in question is successfully
removed without any collision (line 9). To lessen the computational load, it is only necessary
to simulate the movement of modules that have not reached the sink by the time the newly
considered module is deployed (line 8). Excluded modules that are yet to be assessed are
included in the configuration, but as they have no designated start time, their movement is not
simulated. If a collision occurs, the start time of the module in question is delayed by one time
step and the simulation is repeated. Once a valid start time has been found, the arrival time is
calculated accordingly (line 14). Once all excluded modules have been assigned a start time,
the leader can begin the reconfiguration of the system. It initializes a clock and activates the
excluded modules at their corresponding starting times (line 15). Note that multiple modules
may be activated on the same time step.

4.3 Mathematical Analysis

This section formally analyses the correctness and run-time performance of both SAS and PAS.

Lemma 1. If V exc ̸= /0, then lines 3 and 4 of Algorithm 2 identify a module to be removed.

4.3 Mathematical Analysis 53

Proof. Consider the set of excluded modules that have at least one inactive connector, B =

{v ∈V exc |Fv > 0}. If B = /0, then every excluded module is surrounded by other modules. The
number of excluded modules is finite, therefore, the excluded modules would have to be fully
encapsulated by the included modules. However, this is not possible, as the desired structure
(made of the included modules) is non-hollow. Therefore, B ̸= /0. As B is finite, it follows
that there exist modules in B that have maximal height, that is, V top ̸= /0. From these modules,
the algorithm chooses the most-Westerly one. The choice is unique, as no two modules have
identical coordinates.

Lemma 2. The module chosen by Algorithm 2 can be removed without the configuration
becoming unfeasible.

Proof. The included modules form, by assumption, a feasible configuration. Hence, module m
is not required to support any included module. Let us assume that removing m would make the
configuration unfeasible. Consider a vertical block of u excluded modules, that is surrounded
by two empty cells at coordinates (x,y) to (x,y+u+1). One can show that u has to be 0:

1. If (x,y+ u+ 1) was removed before (x,y), then (x,y+ u) would have been removed
before (x,y) as well.

2. If (x,y) was removed before (x,y+ u+ 1), then (x,y+ 1) would have been removed
before (x,y+u+1).

Hence, u must be 0. As a consequence, any excluded module is supported (directly or indirectly)
from below by either an included module or the ground, or from above by some included
module.

Lemma 3. If Algorithm 2 chooses a module, m, to be removed, Algorithm 1 constructs a valid,
finite path from m to the sink.

Proof. Let Gs be the graph, where the nodes are the free faces of any module in the config-
uration, excluding the focal module m, and where the edges link any pair of adjacent faces.
As m is the module to be removed, it must have at least one free face, implying it is adjacent
to one or more faces in Gs. It is known that Gs is connected at all times. Each free module
face can only be adjacent to one other face per side, that is, each node has two edges, meaning
Gs is a path graph of finite length. The sink, s, is located at the ground and adjacent to the
configuration. Thus, s is always at one end of the path graph. As m is connected to a module
whose free face(s) belongs to Gs and the proposed movement framework allows m to move

54 Centralised Active Subtraction

along a new direction, that is, an edge (see Algorithm 1), m always reaches an end of Gs. If
the end that is reached is not s, implying the module was traversing the path in a clockwise
direction around the configuration, it will re-traverse Gs in the opposite (counter-clockwise)
direction. This causes the module to inevitably reach s.

Theorem 4. By employing Algorithms 1 and 2, SAS is guaranteed to remove all excluded
modules.

Proof. The theorem is proved by induction. If there are no excluded modules, nothing is
to be shown. Assume that the theorem is true if there are k ≥ 0 excluded modules. Let
|V exc| = k + 1. According to Lemma 1, the leader module identifies a module, m, to be
removed, and activates this module. It follows from Lemma 2, that removal of module m does
not cause the configuration to become unfeasible. As stated by Lemma 3, module m traverses a
finite path from its initial position to the sink. As only active modules move, and as m is the
only active module, module m reaches the sink in finite time. Once the sink is reached, the
module is removed, and deactivated, resulting in a configuration of only k excluded modules.
For this configuration, all excluded modules are guaranteed to be removed, meaning the proof
is complete.

Theorem 5. Using SAS, the number of time steps required to reach the desired configuration is
bounded by O(|V0|2).

Proof. While executing Algorithm 1, the active excluded module moves along the perimeter of
the remaining structure. Initially, this may happen in a clockwise direction. Once the module
moves in a counter-clockwise direction around the structure, however, it keeps doing so until
reaching the sink. The path length along the perimeter is bounded by |V0|+1, where V0 is the
initial configuration (defined in Section 3.2.1). Therefore, the module must reach the sink in at
most 2|V0|+2 time steps. As at most |V0| modules are to be removed, the number of time steps
to reach the desired configuration is bounded by

2|V0|2 +2|V0|= O
(
|V0|2

)
. (4.1)

Theorem 6. PAS guarantees that all excluded modules are removed, each following the same
path as in SAS. The order in which modules arrive remains the same as in SAS.

Proof. The theorem is proved by induction. If there are no excluded modules, nothing is
to be shown. Assume that the theorem is true if there are k ≥ 0 excluded modules. Let

4.3 Mathematical Analysis 55

|V exc|= k+1 and the modules be labelled in the order by which they would arrive at the sink
when employing SAS: 1, . . . ,k+ 1. If module k+ 1 was changed to be an included module,
all statements would be true. That is, the k excluded modules would reach the sink at times
a1 < a2 < .. . < ak, each one following the same path as in SAS. Algorithm 3 determines
the arrival times a1 < a2 < .. . < ak independent of whether module k+1 is excluded or not.
According to line 5 of Algorithm 3,

ak+1 = sk+1 +∆k+1 ≥max
(
0,ak +2−∆k+1

)
+∆k+1, (4.2)

ak+1 = max
(
∆k+1,ak +2

)
. (4.3)

Hence, module k+1 starts no earlier than at time 0, and the order of arrival is preserved. If
ak+1 = ak + 1, one module would reside within the Manhattan neighbourhood of the other,
resulting in a collision. Hence, ak+1 = max(∆k+1,ak +2) would be the earliest possible arrival
time. The leader module emulates the movements of modules 1 to k+1 to check for possible
collisions. Any possible collisions among modules 1 to k have already been resolved. If
a collision involving module k + 1 occurs, sk+1 (and hence ak+1) is incremented, and the
process repeated (see line 11 of Algorithm 3). As ak+1 = ak + 2+∆k+1 could not result in
any collision, the number of iterations is bounded. In each iteration, at most ∆k+1 +max j≤k ∆ j

steps have to be simulated: If module k+1 reaches the sink without any collision, arrival times
a1 < a2 < .. . < ak < ak+1 have been determined. Moreover, as no collision remains, none of
the other excluded modules (1 to k) will ever reside within the Manhattan neighbourhood of
module k+1. In other words, module k+1 follows exactly the same individual path as for SAS.
The movements of module k+1 can hence not render a configuration unfeasible, meaning the
proof is complete.

Theorem 7. Using SAS or PAS, in the worst-case, the number of time steps required to reach
the desired configuration is Θ(|V0|2).

Proof. According to Theorem 5, the number of time steps required to reach the desired
configuration is O(|V0|2), where V0 is the initial configuration (as defined in Section 3.2.1). In
other words, the time grows at most quadratically with the number of modules in the initial
configuration. This result equally applies to PAS. What remains to be shown is that quadratic
growth is indeed possible, that is, the number of time steps required to reach the desired
configuration may be Ω(|V0|2). Consider the initial configuration shown in Figure 4.1(a). It
comprises two horizontal blocks of included modules. Although each block contains 7 modules
in Figure 4.1, in a more generalized configuration, each block contains V exc

0
2 modules, where

V exc
0 can be arbitrarily large. To obtain a lower bound for the number of time steps required

56 Centralised Active Subtraction

(a) (b) (c)

Fig. 4.1 Example of a complex shape with a long corridor that excluded modules must traverse.
As before, dark purple modules are included modules and cream coloured modules are active
excluded modules. Additionally, light purple modules are the inactive excluded modules.
Shown at (a) initialisation, (b) after the top row of excluded modules is removed, and (c) part
way through the removal of the lower row of excluded modules. Animated versions of the
reconfiguration process available online [133].

to reach the desired configuration, it is assumed that the excluded modules in the upper block
have already removed themselves from the structure, as shown in Figure 4.1(b). Any excluded
module from the lower block will fully explore the upper corridor, as it cannot determine using
local knowledge alone that this is a dead-end, seen in Figure 4.1(c). To prevent collisions,
subsequent modules need to be sufficiently separated in time. Formally, the times at which
any pair of subsequent modules arrive at the sink have to differ by |V exc

0 |. The |V
exc
0 |
2 excluded

modules in the lower block hence need time steps at least equal to(
|V exc

0 |
2
−1

)
|V exc

0 |= Ω
(
|V exc

0 |2
)

(4.4)

in order to be removed. In this example,

V0 = 4+2|V exc
0 |, (4.5)

as such the time steps required corresponds to

Ω
(
|V0|2

)
. (4.6)

4.4 Simulation Studies 57

4.4 Simulation Studies

In this section, a number of simulation studies are presented, demonstrating the capabilities
of SAS and PAS. The algorithms are implemented in Python. The implementation allows the
user to input a desired configuration (see Section 4.4.1) or generate random configurations (see
Section 4.4.2), as well as graphically illustrating the paths of the excluded modules, if required.
The program is called Modular Active Subtraction Simulator for 2-Dimensions (MASS2D)
and is available as an open source project [131].

The performance of a simulation trial is quantified by the number of movements required
for all excluded modules to be removed, referred to as time steps. To account for structures of
different sizes, normalised values are presented, that is, the total time steps taken are divided by
the number of excluded modules in the initial configuration. Formally,

Tnorm =
Ttotal

|V exc
0 |

. (4.7)

A simulation is considered successful if all excluded modules are removed, without the config-
uration becoming unfeasible at any moment in time.

The performance is also compared to a calculated best-case time for both sequential
movement, sequential best-case time (BCTS), and parallel movement, parallel best-case time
(BCTP). The best-case time is a theoretical lower bound for a given configuration. The A*
algorithm [134] is employed to determine the shortest possible route that each excluded module
could take to reach the sink, via empty cells or those occupied by excluded modules, while
still circumnavigating the included modules. This yields the best-case time for each excluded
module separately. BCTS is calculated by summing these times together. BCTP is calculated by
ordering the best-case times for each module, starting with the shortest time. These times are
then assessed in much the same way as line 5 from Algorithm 3. That is, each time is taken in
the ordered set of individual best-case times, and the gap between the arrival times of adjacent
arriving modules is compared. If the gap would be less than two, then two is added to the total
to avoid collisions. If the gap would be more than two, that larger value is added. This process
is repeated until the best-case time for every module has been assessed. Formally, BCTP is,

BCTi+1 = BCTi +max(2,BCTi+1−BCTi) (4.8)

BCTP = BCTn (4.9)

58 Centralised Active Subtraction

Fig. 4.2 The graphical user interface designed to enable a user to input configurations for
simulation.

where BCT1,BCT2, . . . ,BCTn are the ordered best-case times for each excluded module. BCTS

and BCTP may not be possible in practicality, as a module’s shortest route could rely on another
excluded module not having been removed and these dependencies could be cyclical.

4.4.1 User-Defined Configurations

In this section, a range of user-defined desired configurations are investigated.

To aid with the production of the configurations, a graphical user interface (GUI) was
created. By selecting modules to be removed, the user is able to input any configuration they
desire, although only feasible configurations are simulated. Figure 4.2 shows the GUI being
used to input a desired configuration from a 5×5 initial configuration.

Figure 4.3(a) shows how SAS subtracts excluded modules to reconfigure from a 4×4 starting
square to a simple U-shape, similar to the one considered by Gauci et al. [15]. Such a shape
could be useful for collecting tasks or grasping tasks, once it has been formed. When employing
SAS, the reconfiguration takes 51 time steps. The same simulation in PAS takes only 17 time
steps, a reduction of 67%, and is shown in Figure 4.3(b). The BCTS and BCTP are 51 and 17
time steps, respectively. As can be seen, the time-based performance of SAS and PAS match the
best-case times, meaning each module follows the shortest possible path to the sink.

In the works on Miche and Pebbles by Gilpin et al. [12, 16], a humanoid structure is formed.
As shown in Figure 4.4(a), this is not a feasible configuration in the problem formulation
of Section 3.2 (which involves vertical 2-D structures and a ground), because the indicated
module is enclosed by included modules and the ground. One possible solution is to rotate
the configuration to a feasible one, shown in Figure 4.4(b). This reconfiguration from a 5×5

4.4 Simulation Studies 59

(a)

(b)

Fig. 4.3 Example of a user-defined U-shape being formed in simulation. (a) SAS shown at
time steps 0, 22, and 34. (b) PAS shown at time steps 6, 12 and 18. Animated versions of the
reconfiguration process available online [133].

(a) (b)

Fig. 4.4 A humanoid shape configuration that is shown as (a) impossible to form due to the
enclosed module indicated, and (b) a feasible rotated version of the same shape.

60 Centralised Active Subtraction

(a)

(b)

Fig. 4.5 The steps taken to form an inverted humanoid from a 5×5 grid in simulation. (a) SAS
shown at time steps 0, 26, 54, 76, 100 and 127, and (b) PAS shown at time steps 6, 16, 24, 32,
37 and 45. Animated versions of the reconfiguration process available online [133].

4.4 Simulation Studies 61

(a)

(b)

Fig. 4.6 Example of (a) SAS, and (b) PAS, being used to form a large humanoid structure from a
20×20 grid. Shown at time steps (a) 0, 2129, 3593, 4500, 6682 and 8490, and (b) 8, 138, 350,
496, 538 and 661. Animated versions of the reconfiguration process available online [133].

62 Centralised Active Subtraction

Fig. 4.7 Example of a randomly generated configuration, of size 10×10 and inclusion density
(ρ) of 40%.

starting square takes 159 time steps using SAS, and can be seen in Figure 4.5(a). PAS, shown
in Figure 4.5(b), takes only 45 time steps, a reduction of 72%. The BCTS and BCTP for this
scenario are 125 and 29 time steps, respectively.

Another solution, shown in Figure 4.6, could be to increase the size of the initial con-
figuration and have one side of the desired configuration slightly removed from the ground.
Here the initial configuration is set to 20×20 modules. It takes 9554 time steps to reach this
configuration when employing SAS, shown in Figure 4.6(a). The same 20×20 humanoid shape
was also simulated using PAS. From Figure 4.6(b), one can see the benefits of multiple modules
moving at once. PAS takes only 661 time steps, a reduction of 93%. The BCTS and BCTP for
this scenario are 8190 and 487 time steps, respectively.

4.4.2 Randomly Generated Configurations

This section presents studies where the desired configurations are randomly generated, making it
possible to systematically characterise the performance under a wide range of conditions. Initial
configurations of different sizes are considered, alongside desired configurations of different
inclusion densities. Inclusion density, ρ , is defined here as the percentage of modules within
the initial configuration that are retained in the desired configuration, that is, the percentage of

4.4 Simulation Studies 63

included modules. Formally,

ρ =
|V inc|

|V exc∪V inc|
×100%. (4.10)

To generate a desired configuration from a given initial configuration size, all modules in
the configuration are initially assigned to be included modules. A set of candidate modules is
created, originally consisting of modules that are in the exterior layer of the initial configuration.
From the candidate set, a module is randomly chosen to be an excluded module and removed
from the set. Each Manhattan neighbour of this new excluded module is assessed in turn,
checking whether it is already in the candidate set, and whether changing this module to
an excluded module would yield an unfeasible configuration. If neither of these conditions
are true, then the neighbour is added to the candidate set. Once each neighbour has been
assessed, the random selection of an excluded module from the candidate set is repeated. This
process continues until the number of included modules satisfies the given inclusion density.
Figure 4.7 shows an example of a randomly generated configuration of 10×10 modules with
40% inclusion density.

Influence of Density of Included Modules

The performance of SAS and PAS are studied for different inclusion densities, from 10% to 90%,
in steps of 10%. Three sizes of initial configurations are considered for each inclusion density:
10×10, 20×20 and 30×30. For each combination of density and initial configuration size, the
same 100 randomly generated desired configurations are used for simulating both SAS and PAS.

The effect that the inclusion density has on the number of time steps it takes the modules to
remove themselves from the structure is depicted for both SAS and PAS in Figure 4.8. Separately,
box plots of the results when using SAS or PAS are shown separately in Figure 4.9(a) and (b),
alongside line graphs of the median BCTS and BCTP for each.

Influence of Configuration Size

The way in which performance of SAS and PAS scale with the configuration size is also studied,
considering sizes of 5×5, 10×10, 15×15, 20×20, 25×25, and 30×30. For each case, the
inclusion density is 60%. The same 100 randomly generated desired configurations are used
for both approaches. The results are shown in Figure 4.10.

64 Centralised Active Subtraction

Fig.4.8
L

ine
plots

of
the

norm
alised

tim
e

taken
by

excluded
m

odules
to

rem
ove

them
selves,leaving

behind
random

ly
generated

desired
configurations

of
various

inclusion
densities

(100
sam

ples
per

10%
inclusion

density
step).

Initialconfigurations
of

sizes
10×

10,20×
20

and
30×

30
are

sim
ulated.Tim

e
steps

are
norm

alised
by

the
num

berofexcluded
m

odules
in

the
initialconfiguration.

4.4 Simulation Studies 65

(a)

(b)

Fig. 4.9 Separate box plots of the simulated performance of (a) SAS and (b) PAS for the
randomly generated desired configurations of inclusion densities between 10% and 90% for
initial configurations of sizes 10×10, 20×20 and 30×30. Line plots of the median BCTS and
BCTP for each scenario are overlaid on the respective box plots.

66 Centralised Active Subtraction

Fig. 4.10 Box plots of the normalised time taken by excluded modules to remove themselves
from configurations of various sizes. The desired configurations were generated randomly
with inclusion density 60% (100 samples per box). Time steps normalised by the number of
excluded modules.

4.4.3 Discussion of Results

In every case simulated, both user-defined and randomly generated, all excluded modules were
able to reach the sink and left behind only the desired configuration, thereby demonstrating the
algorithms performing as intended.

PAS far outperforms SAS in terms of time steps taken for the same configurations, requiring
the data to be shown on separate graphs in order to be fully assessed.

In Figure 4.9(a), the performance of SAS over varying inclusion density exhibits an interest-
ing behaviour, where it can be observed to rise to a point and fall again. It is believed that this
is due to the configurations that can be generated rather than SAS itself. Desired configurations
of low density may have less chance of containing overhangs and dead-ends, geometry that
is time-consuming to circumnavigate. As the density then increases, so does the likelihood
of creating more complex geometry. However, once it becomes very high, areas that featured
complex geometry are more likely to be filled again. This theory is reinforced by inspecting
the performance of PAS in Figure 4.9(b), where a similar behaviour can be seen.

4.5 Conclusion 67

The disparity between best-case performance and real performance can be seen to be
proportionally larger between BCTP and PAS. This is due to the fact that the module order is
changed to find the true lower bound; in practice this would create a longer route for subsequent
modules, an effect that is ignored when the A* algorithm obtains the individual best-case times.
The BCTP tends towards a performance of 2 time steps, as can be seen in Figure 4.9(b). This is
because the gap in individual best-case time performances for adjacent modules is 1 time step.
It can be seen in Equation 4.9 that the minimum effect that each subsequent module can have
on the overall best-case time performance is 2 time steps.

In Figure 4.10 the change in performance attributed to configuration size can be clearly
observed. When using SAS, the normalised time that excluded modules take to reach the sink
increases with configuration size, while the theory predicts a linear growth (or quadratic, if not
normalised). However, when using PAS, the normalised time remained reasonably consistent.
Although each module still individually travelled a further distance in a larger configuration,
this also allowed for more modules to move in parallel, almost negating the effects of the
increased travel distance. This is corroborated by the increased performance of PAS when
simulating the configurations in Figures 4.4(b) and 4.6. These findings are in line with the
proof in Theorem 7, where it was shown that the predicted growth was linear (i.e., quadratic
growth, if not normalised) in the worst-case scenario.

The trade-off between computational cost and performance means that both SAS and PAS
have potential use cases. SAS is able to run on simple hardware at the expense of reconfiguration
speed, yet is still able to reconfigure large structures. Moreover, the relatively small increase
in performance that comes with using PAS over SAS in smaller systems may not justify the
need for more capable modules. Whereas, for larger scale systems the improvement may be
sizeable enough to negate the cost of complex modules. Where PAS proves computationally
too demanding for a leader module, the computations could also be off-loaded to an external
computer.

4.5 Conclusion

In this chapter, a novel subtractive reconfiguration approach by which extraneous modules
actively remove themselves from a starting configuration, to leave behind a given structure was
presented. This approach is referred to as active subtraction. Two solutions were presented,
one with purely sequential movement, the other with parallel movement. The correctness was
formally proved, and the worst-case performance characterised for both solutions. Simulations
that validated the solutions in a wider range of conditions were also presented, exploring the

68 Centralised Active Subtraction

effect that varying the sizes and compositions of initial and desired configurations had on the
time required for the modules to remove themselves.

Chapter 5

Distributed Active Subtraction

5.1 Introduction

In the previous chapter, centralised control schemes were presented to solve the problem of self-
reconfiguration in two-dimensions with modular robots. These solutions, while successful in
reconfiguring from an initial structure to a desired structure, display a number of shortcomings.

Firstly, the run-time performance is suboptimal, with modules needing to travel great
distances due to the removal order in some cases. The performance worsened dramatically
for structures with cavities for both Sequential Active Subtraction (SAS) and Parallel Active
Subtraction (PAS). A cavity is defined as a space within the bounding box of the configuration
that comprises excluded modules at initialisation, and will therefore be empty by the end of the
reconfiguration process. As shown in Theorem 7 in Section 4.3, the performance in the worst-
case increases quadratically with configuration size, due to cavities in the desired configuration.
Optimisation is possible by altering the order in which modules remove themselves from the
structure. This chapter details a method of reconfiguration that will improve the time-based
performance when applied to configurations with cavities. This will be achieved by optimising
the order in which excluded modules are removed, giving priority to modules in cavities further
from the sink, thereby negating the need for excluded modules to climb in to and out of cavities
as they self-reconfigure.

Secondly, the solutions also require a leader module to operate, which has to perform
some relatively involved computation in the case of PAS. By creating a distributed solution to
the problem, that would require no central control, the effort on the part of a leader module
would be removed. This would also lead to a more robust system, as there would be no

70 Distributed Active Subtraction

single point of failure, a desirable attribute in the case of modular robotic systems. The
solutions presented in this chapter will accomplish self-reconfiguration entirely through message
passing, meaning that the process is distributed. As such, the following solutions are termed
Distributed Ordering Sequential Active Subtraction (DO-SAS) and Distributed Ordering Parallel
Active Subtraction (DO-PAS). As PAS outperformed SAS by such a large margin, this chapter
is concerned with further optimising PAS in terms of time-based performance, as well as
minimising computational load by removing the centralised computation. Therefore, the
following will be focussed on DO-PAS, with the performance of DO-SAS being shown in the
simulation studies for completeness.

This chapter presents a solution to the problem of self-reconfiguration in two-dimensions
that overcomes these shortcomings. This is achieved via message passing to remain distributed,
and deciding the order in which modules are removed based on these messages, inspired by the
hormone based control discussed in Section 2.3.2. The problem formulation remains the same
as the one presented in Section 3.2, but the approach to solving the problem that is presented in
this chapter is a novel one.

The modules used in this chapter are identical to those in Chapter 4, the details of which are
presented in Section 3.4. The movement algorithm employed (Algorithm 1, see Section 3.4.1)
is distributed, and requires only local knowledge, so remains unchanged for the work in this
chapter.

This chapter is structured as follows. Section 5.2 contains details of a new metric to help
quantify any improvement in performance, and of a pre-reconfiguration phase for the new
solution. Following this, Section 5.3 presents the core machinations of the distributed solution
to the self-reconfiguration problem by describing the distributed state based behaviour of the
modules. Section 5.4 then shows a step by step demonstration of the reconfiguration process.
Formal analysis is presented in Section 5.5, comprising proofs for the correctness and run-time
performance of the solution. Subsequently, simulations of the solution in a range of scenarios
are shown in Section 5.6, along with the results. Finally, Section 5.7 concludes the chapter.

5.2 Excluded Row Removal

To help quantify any improvement in performance, a metric is defined here called the maximum
travel distance (MTD). The MTD is defined as the number of units the free module farthest
from the sink must travel in order to reach the sink when employing the movement given by
Algorithm 1. Recall from Section 4.2 that a free module is an excluded module with at least

5.2 Excluded Row Removal 71

(a) (b) (c)

Fig. 5.1 Depictions of the MTD for a configuration at various stages of reconfiguration via SAS.
Shown with an MTD of (a) 19, (b) 25 and (c) 31. As in Chapter 4, dark purple modules are
included modules, light purple modules are excluded modules and cream coloured modules,
not present in this figure, are active excluded modules.

one inactive connector, meaning there exists a free space on that side, and as such can move
in that direction. Figure 5.1 demonstrates MTDs for a configuration with various numbers of
excluded modules removed through SAS. As can be seen, the modules that are removed via
the order given by SAS cause an increase in the MTD. Through the improvements made by
DO-PAS this will be mitigated.

DO-PAS consists of an initial phase and a main phase that, in combination, are able to
achieve self-reconfiguration. The first phase comprises the removal of any rows at the top of
the configuration that are composed entirely of excluded modules. This is done to minimise the
MTD before the main subtraction phase begins, as it means that the vertical distance modules
on the side farthest from the sink must climb is reduced. This process is achieved via distributed
message passing.

Upon initialisation, the module at the most North-Easterly point in the configuration, vNE,
checks whether it is excluded or included.1 If it is an included module then the top layer
cannot be entirely composed of excluded modules, so the module sends a priority message
with value 1 to the most South-Easterly module, vSE, to begin the main phase of assigning P
values, the process of which, and details of the message types are introduced in Section 5.3.
This case is shown in Figure 5.2(a). However, if vNE is an excluded module, it sends a message
to its Western neighbour, to begin checking whether the entire row is excluded. Each excluded
module that receives this message continues to pass it to the West, as in Figures 5.2(b)-(d). If
an included module receives the message, a different, priority message is returned towards vSE

1Modules at the corners of the configuration can deduce their position from the state of their connectors i.e.,
module vNE is the only module in the configuration with a free North and East facing connector, module vSE is the
only module whose south facing connector is connected to the ground and a free connector on its East face etc.

72 Distributed Active Subtraction

(a) (b) (c) (d)

Fig. 5.2 Examples of how messages are passed between modules to assess whether a row is
composed entirely of excluded modules. Red arrows indicate a negative message, while green
indicates positive. The arrow attached to the × is the first message sent.

via vNE, indicating that the row is not entirely excluded, and as such the outer layer assessment
should begin. This case can be observed in Figure 5.2(b), where the red arrow indicates the
negative message. If the message reaches the most Westerly module in that row, and it is also
excluded, then the entire row must be excluded. That module then sends a positive message to
the East, and begins to remove itself from the structure. Subsequent modules in the row that
receive the positive message as it is passed towards vNE also begin moving, one time step after
they receive the positive message, ensuring a gap of two time steps between each module. The
modules can be seen passing the positive message to the East in Figures 5.2(c) and (d). This
process is repeated on descending rows until a row that is not entirely excluded is found. In the
case shown in Figure 5.2(c), the first module in the row is included, so the negative message is
immediately sent to vSE. However, in Figure 5.2(d) the most Easterly module in the second
row is excluded, so passes the positive message West until it reaches an included module. In
all cases a message is sent to vSE as soon as an included module is reached, and vSE begins the
main phase.

The process of the modules autonomously removing themselves is illustrated in Figure 5.3.
By inspecting Figure 5.3, the benefits of excluded row removal can be seen, as the MTD
reduces from 23 to 19. The reduction of four can be attributed to the travel distance being
lessened by two units of movement North and two South.

5.3 Solution Design 73

Fig. 5.3 Example of two rows composed entirely of excluded modules being removed from a
configuration. Animated versions of the reconfiguration process available online [133].

5.3 Solution Design

The main phase consists of modules using message passing to assign all remaining excluded
modules a priority order index, P before removing themselves from the structure. This index
dictates the order in which modules remove themselves, and is decided before any movement
takes place.

Following the removal of entire rows of excluded modules, the challenge of ensuring the
remaining excluded modules do not travel further than absolutely necessary becomes more
complex, especially under the constraint that the movement and ordering process remain
distributed. The movement algorithm that the modules use is deterministic, so their preferred
route can be deduced. Using this knowledge, messages can be passed through the excluded
modules following a set of rules, assigning each a value indicating its position in the removal
order. This value is known as the priority order index, P, and will have a unique value between
1 and |V exc|, where V exc is the set of excluded modules in the configuration. All P values are
assigned before any excluded modules begin moving.

Throughout the self-reconfiguration process, the excluded modules will exist in a number
of states, each of which has different behaviours and responses to messages. As such we can
consider a module to execute a different algorithm depending on the state it is in. Figure 5.4
shows an overview of the four states and how a module transitions between them.

An excluded module will always begin in the idle state. It will then transition to either
the prioritised state if it receives a priority message or the waiting state if it receives a wait
message. A module in the waiting state will transition to the prioritised state upon receiving a
priority message. Finally, modules that are in the priority state will enter the moving state
once they receive a move message.

74 Distributed Active Subtraction

Fig. 5.4 Overview of the behaviour of each module state and the way in which a module
transitions between them. Boxes indicate actions for the module to take, while diamonds
indicate decisions, with the relevant options attached to the arrows.

5.3 Solution Design 75

To enable the distributed behaviour there are a number of messages which can be passed by
each module in order to assign P values and switch between states. They are summarised here:

Priority The message type which contains the P value to assign to the receiving module, or be
passed to the module which should be assigned the next priority order index.

Wait The message that is sent to a module to transition it to the waiting state.

Move The message sent to an excluded module that will transition it to the moving state, upon
which it becomes an active excluded module.

Using these messages, modules will transition between the states shown in Figure 5.4, as
well as assign P values to determine the removal order. A more detailed explanation of each
state is given here, before an example of the process is presented in Section 5.4.

5.3.1 Idle State

An excluded module begins in the idle state, where it has not yet received a message from any
neighbours and as such has no P value assigned to it. Upon receiving a message, the module
sets its parent direction as the direction from which this message was received. If the module is
the entrance module (explained below) then the parent direction is set as its free face, to ensure
that the correct neighbours are given messages when in the prioritised state (See Section 5.3.2).
The behaviour is then determined based on the message type received.

If the message is a wait message, the module in question transitions to the waiting state,
detailed in Section 5.3.3.

If the message is a priority message then the module action depends on whether it is in the
outer layer or not. If it is not in the outer layer then the module assigns its own P value as the
value contained within the priority message, it then enters the prioritised state, explained in
Section 5.3.2. However, if the module is in the outer layer then it must decide whether it is
the entrance module or not. The entrance module is defined as the excluded module within
a cavity that has the shortest path to the sink. Figure 5.5 shows examples of this, where the
marked modules are the entrance modules for their respective cavities. To deduce whether it is
the entrance module or not, the module in question will check whether the next neighbour in
the outer layer is also included. If so, it is the entrance module, so enters the prioritised state.
Otherwise, the next neighbour is also excluded, so it passes the priority message to its next
neighbour and resume awaiting a message in the idle state.

76 Distributed Active Subtraction

Fig. 5.5 Illustration of which excluded module acts as the entrance module for each cavity,
some of which have multiple excluded modules in the outer layer.

If the next neighbour in the outer layer is an included module, then the module in question
must be the entrance module for the cavity. It assigns its own P value to be the value associated
with the message it received and enters the prioritised state, explained in Section 5.3.2.

5.3.2 Prioritised State

Once a module sets its P value, it is in the prioritised state, where it can pass messages to help
assign other excluded modules their priority values and waits to begin moving.

When the module first enters the prioritised state, it sends messages to its neighbours
not in the parent direction. Messages are only sent to excluded neighbours2 and the type is
determined by where the neighbour is, relative to the parent direction, as shown in Figure 5.7.

The neighbours are assessed in a clockwise manner, starting with the first after the parent
direction. The first excluded neighbour that the module assesses is sent a priority message
with the value p+1, provided it is not the final neighbour to be assessed. This can be seen
in Figures 5.7(a)-(d). After a priority order index has been passed, all remaining excluded
neighbours are sent a wait message, as in Figures 5.7(a), (b) and (d). The final neighbour
is always told to wait, seen in Figures 5.7(a), (b) and most obviously in (e). This avoids a

2Except for the entrance module, as included neighbours are required to help pass the priority message to the
next cavity once a cavity is fully assessed, shown in Section 5.4 and further explained below.

5.3 Solution Design 77

(a) (b) (c)

Fig. 5.6 An example of why an excluded module must send a wait message to an excluded
neighbour in the final direction, and why modules that are in the waiting state must check for
neighbouring waiting modules before assigning P values. (a) shows the moment at which the
proposed behaviour is important. (b) shows an unfeasible priority order when this is not done.
(c) shows the correct priority order when following this rule.

situation where modules are assigned a priority value in such a way that excluded modules
fully surrounding another excluded module are not prioritised over the central one. If the final
neighbour of the module in Figure 5.6(a) with P= 4 (the neighbour to the North) is immediately
given a priority message, rather than first being given the wait message, then the final priority
order will be as shown in Figure 5.6(b). As before, this is an unfeasible priority order, as the
module with P = 10 will not be supported when the other modules have removed themselves.
Figure 5.6(c) shows the final priority order following the module with P = 4 sending a wait
message to its Northern neighbour instead, as in Figure 5.6(a). As can be seen, this yields a
feasible removal sequence.

If the module has no neighbours that can be sent a priority message, as in Figures 5.7(e)
and (f), then the sending of the priority message is unsuccessful. In this case the module will
check if it has a neighbour in the waiting state that can be sent the priority message, as in
Figure 5.6(a). If it has no neighbours in the waiting state then the priority message is instead
passed in the parent direction. By doing this, the priority message will propagate through the
system towards the nearest module in the waiting state, and the assignment of P values will
continue. This is demonstrated in Section 5.4.

Once the module has done this initial passing of messages, it awaits a message from a
neighbour. In the case of a priority message, the same behaviour as above is exhibited, passing
the priority message to either a neighbour in the waiting state or the module in the parent

78 Distributed Active Subtraction

(a) (b)

(c) (d)

(e) (f)

Fig. 5.7 Examples of situations where an excluded module that is not in the waiting state would
send priority and wait messages to neighbours in response to receiving a priority message and
setting its own priority order index to the received value. (P.D. stands for parent direction.)

5.3 Solution Design 79

direction. In the case of a move message, the module transitions to the moving state, explained
in Section 5.3.4.

Not shown in the diagram but important to the operation of the solution is the behaviour of
the entrance module upon receiving a priority message when already in the prioritised state.
In this case, the module passes the priority message around the outside layer, via included
modules, to enable the next cavity to begin the priority order index assignment process. Once
module vSW, which is the module closest to the sink, receives a priority message and is either in
the prioritised state or is an included module, then all modules must have been assigned a P
value. It then sends a move message around the outer layer to the module with a priority order
index value of P = 1 and the excluded modules begin the process of removing themselves.

5.3.3 Waiting State

The waiting state is entered when a module receives a wait message. This indicates that the
module has been considered for priority index assignment but the module that sent the message
has neighbours that should have a higher priority.

When in the waiting state the module is awaiting a priority message from a neighbour.
Upon receiving this message the module first checks whether it has any waiting neighbours
of its own, discounting the direction that the priority message was received from. If so, the
priority message that it received is passed to that waiting neighbour and the module returns to
waiting for a priority message.

If, however, the module has no waiting neighbours in the remaining directions, then it
assigns its own P value as the value contained within the priority message, it then enters the
prioritised state, explained in Section 5.3.2.

5.3.4 Moving State

Following the assignment of all P values, excluded modules can begin moving. When they do
so they are in the moving state, where they will locomote to the sink and send a move message
to transition the next highest priority module to the moving state. Each module must begin
moving after the module that is prioritised one value higher than itself does to preserve the
priority order. For example, a module with a priority order index of P = 2 leaves after the
module with P = 1.

80 Distributed Active Subtraction

When a module receives a move message and enters the moving state, it first waits one time
step. It is required to wait one time step so that the number of time steps between two active
excluded modules arriving at the same position is maintained at a value of two.

The module then locomotes to the sink using the distributed active excluded algorithm,
Algorithm 1 (see Section 3.4.1). Upon reaching the sink a module is considered removed. Once
all excluded modules have reached the sink then the self-reconfiguration process is complete.

5.3.5 Distributed Ordering Sequential Active Subtraction (DO-SAS)

As previously outlined, DO-SAS is not focussed on here, due to DO-PAS negating the downsides
of PAS whilst improving on the performance. However, for completeness, DO-SAS would
operate in the same manner to DO-PAS for the majority, differing when modules enter the
moving state. Here the move message would be sent only once a module reaches the sink
location, rather than as soon as possible, and this message would be propagated through the
system by flooding, to reach the module with the next priority order index, irrespective of
where that module is located.

By combining the states shown here and the transitions between them, a complete solution
to the self-reconfiguration problem is produced. This is demonstrated in the next section and
subsequently proven in Sections 5.5 and 5.6.

5.4 Example Priority Order Index Assignment Process

To demonstrate how the state behaviours and transitions enable self-reconfiguration, an exam-
ple of a configuration using the proposed design to assign priority order indexes and begin
reconfiguration is shown in Figure 5.8 and explained here.

All modules are initially in the idle state and have not been assigned a P value (P = 0). In
Figure 5.8(b), a priority message with a value of 1 is sent by vSW. As the first two excluded
modules have excluded neighbours in the outer layer, they pass this message until reaching the
entrance module of the cavity. Upon receiving this message, the entrance module transitions to
the prioritised state and sets its priority order index, P = 1. It then sends a message to its only
excluded neighbour, to the South. That message is a priority message and contains the value
P+1, which in this case is 2.

In Figure 5.8(c), the module receives this message, assigning a priority order index of
P = 2 to itself. Figure 5.8(d) shows that the module with P = 2 has two excluded neighbours.

5.4 Example Priority Order Index Assignment Process 81

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

82 Distributed Active Subtraction

(m) (n) (o)

(p) (q) (r)

(s) (t) (u)

Fig. 5.8 A visual representation of excluded modules initialised with values of P = 0 and in the
idle state, passing messages and transitioning between states to set their priority order indexes
and successfully self-reconfigure.

5.5 Mathematical Analysis 83

It received a message from, and subsequently set its parent direction as, North. As such it
will prioritise its neighbours in the order East, South then West (See Section 5.3.2). It can be
seen that the module sends a priority message South, leading the module below to enter the
prioritised state and assign itself P = 3, and a wait message to the West, causing that module
to enter the waiting state.

As can be seen in Figure 5.8(d), the module with P = 3 has no unassigned excluded
neighbours and no neighbours in the waiting state, so will send a priority message with a
value of 4 in its parent direction, in this case North. The neighbour to the North, that is the
module with P = 2, has a neighbour in the waiting state, so passes the priority message to that
neighbour, which sets its priority order index P = 4.

This continues in the same way up until the stage shown in Figure 5.8(k), at which point
all modules within the first cavity have been assessed. At this point, each module within the
cavity is in the prioritised state, so will pass a priority message with a value of 10 through
parent directions until reaching the entrance module. As previously described, the entrance
module must then pass the priority message through included modules to find the next cavity,
and subsequently the next entrance module, as seen in Figure 5.8(l).

The process continues until all excluded modules have been assigned a priority order index
(are in the prioritised state) and module vSW receives the priority message, as in Figure 5.8(s).
At this point module vSW sends a move message around the outer layer, intended for the excluded
module to be removed first, the one with a priority order index of P = 1, shown in Figure 5.8(t).
This module then enters the moving state, sending a move message to the module with the next
priority order index before locomoting to the sink, as can be seen in Figure 5.8(u). Snapshots
of the modules removing themselves can be seen in Figure 5.10(a).

As can be seen from this demonstration, the states and messages introduced in Section 5.3
create a distributed solution to the problem introduced in Section 1.2. This is further proven in
the following sections.

5.5 Mathematical Analysis

This section formally analyses the correctness of DO-PAS, and characterises its run time
performance.

Lemma 8. Any excluded module in the initial configuration must either have a free face, or be
connected to a module with a free face, via a path of excluded modules.

84 Distributed Active Subtraction

Proof. The statement is proven by contradiction. It is assumed that there exists an excluded
module, v, for which the statement is not true. Sv denotes the set of excluded modules that are
connected to v via a path of excluded modules. As v ∈ Sv, Sv ̸= /0. For the contradiction to
hold, none of the modules in Sv can have a free face. This means that the modules in Sv must
be fully enclosed by included modules, and potentially the ground. As the modules in Sv are
fully enclosed by included modules and the ground, once all excluded modules are removed,
the resulting configuration, which by definition is the desired configuration, would contain a
hollow space. However, by definition the desired configuration cannot contain hollow spaces.
Therefore, this desired configuration cannot exist, meaning that Sv cannot exist, and the Lemma
must be true.

Lemma 9. Assuming the entrance module of a given cavity receives a priority message of
value n, the excluded modules of this cavity are assigned unique priority order index values of
n,n+1,n+2, . . . ,n+ |V exc

cav |, where V exc
cav is the set of excluded modules within the cavity.

Proof. If the initial configuration does not contain a cavity, there is nothing to be shown. A
particular cavity is considered. Let ε ∈V exc

cav denote the module with the shortest path to the
sink, that is, the entrance module. Module ε receives a priority message of value n. This
module is considered to be the root of a tree. The root cannot be in the waiting state, and hence
assigns its priority order index to n. If the cavity is of size one, there is nothing more to be
shown. Otherwise, the root will consider all its neighbouring excluded modules to be nodes,
in a manner similar to a depth-first search3. According to Lemma 8, all excluded modules
are connected via a path of excluded modules to a module with a free face, and hence they
are also connected via a path to the entrance module4. As such, all excluded modules will be
discovered by the tree search (a). Every time a priority order index is assigned to a node of the
tree, the priority message value is incremented. As the depth-first search explores the nodes
sequentially, no two nodes in the cavity can have the same priority order index (b).

Therefore, all excluded modules of the cavity are assigned priority order index values (a),
each of which is unique and incremented by one after the node before it (b), giving the modules
values of n,n+1,n+2, . . . ,n+ |V exc

cav |.

Lemma 10. At no point during the removal of excluded modules from a cavity does a module
become unsupported, rendering the overall structure unfeasible.

3The variation comes from assigning a waiting state to any neighbours that are not immediately explored, or
that are in the final direction to be checked. Further explanation can be found in Section 5.3.

4All modules in a cavity that have a free face are directly connected to one another, one of which is the entrance
module. It is not possible to have two entrance modules as this would render the desired structure unfeasible.

5.5 Mathematical Analysis 85

Proof. The statement is proven by induction. Consider the tree that corresponds to the priority
order index assignments, with the root being the entrance module of the cavity (as defined in
Lemma 9). Let Sn be the set of modules in this tree for which the shortest path to any leaf is of
length n. n = 0 is considered as a base case. The modules in S0 have a path of length 0 to a
leaf, so are the leaves themselves. At the time the tree was constructed, the modules that end
up as leaves are exactly those that must have initiated return messages (had they sent priority
messages then this would have created a child node). The cases in which a module can send a
return message are as follows:

• The remaining neighbours that do not have a priority order index assigned are included
modules. In this case, the module is implicitly supported by the included modules.

• The module has at least one excluded module as a neighbour, and all neighbouring
excluded modules are in the waiting state. In this case, the module already has a priority
order index, but the waiting neighbours do not yet. According to Lemma 9, each module
has a unique priority order index that increments as they are assigned, therefore these
neighbours must have higher priority order indexes and will support the module in
question.

• The module rests upon the ground and has no neighbours to pass a priority message to.
In this case, the module is supported by the ground.

From this it can be seen that all modules in S0 are supported until they begin moving. Assume
that the statement is true for n = k, that is all modules in Sk are supported. For n = k+1, a
module in Sk+1 is considered, and labelled m. As n = k+1≥ 1, this m cannot be a leaf. The
shortest path from module m to any leaf is of length k+1. As a result, module m must have a
child node for which the shortest path to any leaf is k. As such, module m will be supported by
a neighbour in Sk until it begins moving. Therefore, the induction is complete.

Theorem 11. At no point during the reconfiguration of an entire structure does a module
become unsupported.

Proof. If a configuration has entire rows of excluded modules at the top, then the process of
excluded row removal begins reconfiguration. This is achieved using a top-down approach,
as was employed in SAS and PAS. It was shown in Lemma 2 that modules can be removed
in this way without the structure becoming unfeasible. Following this, cavities are identified,
and the modules removed from each in turn. Lemma 10 shows that during the removal of
modules from a cavity, no module becomes unsupported. As can be seen in Lemma 3, the

86 Distributed Active Subtraction

movement algorithm (Algorithm 1) gives a feasible path for each module to reach the sink.
Hence, modules are able to move themselves from their initial positions to the sink while
remaining supported throughout.

Theorem 12. Using DO-PAS, the time-based performance grows linearly with the size of the
configuration.

Proof. Consider a configuration, V0, of width W and height H, with |V exc
0 | excluded modules.

The first module to move when using DO-PAS is the entrance module furthest from the sink. In
the worst case, this module is in the South-East corner of the configuration. The distance that
this module would have to travel is 2H +W +2, taking one time step per movement. As shown
in Lemma 9 the modules within each cavity form a connected tree. As such, each module
within a cavity can follow its predecessor, maintaining a gap of two time steps. It can be seen
that, as the cavities are assessed starting with the furthest from the sink then moving closer, one
by one, that the modules from cavities further from the sink will pass over the entrance module
of any cavities closer to the sink. When this happens, an entrance module is able to follow the
final module from the preceding cavity5. Moreover, all active excluded modules move at the
same speed, one step at a time. Therefore, all modules following the first one will arrive at
the sink two time steps after the preceding module. As such the time it will take to remove all
remaining excluded modules after the first is 2(|V exc

0 |−1). The total time will then be

2H +W +2+2(|V exc
0 |−1) = O

(
|V0|
)

(5.1)

The time complexity of any algorithm cannot be better than Θ(|V0|) as it takes at least 2n time
steps for n excluded modules to arrive at the sink. As such, while the algorithm is not optimal,
it is asymptotically optimal.

5.6 Simulation Studies

This section presents a number of studies, carried out in simulation, proving the effectiveness of
DO-PAS, as well as DO-SAS for comparison. The results demonstrate the improved performance
when compared to PAS and SAS. The solutions are implemented in Python, and allow a
user to input a desired configuration (as in Figure 4.2), or generate a random configuration
of a given size and ratio of included to excluded modules. The program is called Modular

5As the value of the priority order index is retained between cavity assignments (see Section 5.3), the final
module from one cavity will have a priority order index one greater than the entrance module of the next cavity, so
each entrance module will know when to begin moving.

5.6 Simulation Studies 87

Active Subtraction Simulator for 2-Dimensions (MASS2D) and is available as an open source
project [131].

The performance of each solution is measured by the number of movements required to
remove all excluded modules, referred to as time steps. As previously outlined, the time and
energy required to pass messages is negligible when compared to the requirements for a module
to move, so time steps increment only when a module moves. In general, a simulation is
considered a success if all excluded modules are removed without the configuration becoming
unfeasible at any point.

The parallel best-case time (BCTP) and sequential best-case time (BCTS) are also compared
against, as in Section 4.4. The BCTP and BCTS are calculated by first using the A* algorithm
to obtain the shortest path each excluded module could take to the sink, while circumnavigating
included modules. To obtain the BCTS these values are summed together. However, to calculate
the BCTP, these values are combined, with gaps of two time steps between module arrival
times being ensured. The formal calculation is more thoroughly detailed in Section 4.4. The
BCTP and BCTS may not be feasibly achievable, as the path determined by A* may rely on
excluded modules that could have already removed themselves in practice.

5.6.1 User-Defined Configurations

In this section, a number of user defined configurations are simulated to assess the effectiveness
of DO-PAS, and to compare with other examples of subtractive reconfiguration from Chapter 4
and existing works.

Figure 5.9 shows DO-PAS being employed by the excluded modules to reconfigure from an
initial configuration of a 4×4 starting square to a simple U-shape, similar to the one considered
by Gauci et al. [15], and also in Section 4.4.1. The performance of the simulation using PAS
took a minimum of 17 time steps. When employing DO-PAS, the reconfiguration also takes
17 time steps. This is due to the fact that the order in which the modules are removed in
Section 4.4.1 is the same as the order that given by DO-PAS, as can be seen when comparing
Figures 4.3(b) and 5.9. This can be attributed to the simplicity of the desired configuration,
comprising only a single, rectangular cavity. The BCTP also gives a value of 17 time steps,
so in this case the optimal performance had previously been achieved. The same can be said
when comparing SAS, DO-SAS and the BCTS, which all take 51 time steps to fully reconfigure.
Again, this suggests that the order of all is optimal, as well as the route taken by the modules.

A more complex shape, with multiple cavities and less simple geometry is the one shown
in Figures 5.1, 5.3 and 5.8. The reconfiguration to this shape from a 5×5 starting square using

88 Distributed Active Subtraction

Fig. 5.9 Example of excluded modules employing DO-PAS to self-reconfigure from an initial
configuration of a 4×4 square to a U-shape. Shown at time steps 0, 6, 12 and 17. Animated
versions of the reconfiguration process available online [133].

DO-PAS can be seen in Figure 5.10(a). Using DO-PAS, the reconfiguration process takes a total
of 43 time steps. However, as can be seen in Figure 5.10(b), there are situations where the
performance when using PAS will be much worsened. This is confirmed by the reconfiguration
time of PAS, requiring 98 time steps, meaning DO-PAS grants a reduction of 56%. The BCTP is
33 time steps. The shorter time can be attributed to the fact that the first module to be removed
with DO-PAS requires 17 time steps to reach the sink (See Figure 5.8(u)), with subsequent
modules only leaving afterwards. Conversely, the calculation for best-case parallel time allows
the module closest to the sink to move first, meaning the first module reaches the sink in 4
time steps for the given desired configuration. In this situation, the excluded modules that
move later would not feasibly be able to follow their shortest paths in reality, as they would
have to enter the cavity left by the modules closest to the sink, as in Figure 5.10(b). Applying
SAS to the desired configuration given in Figure 5.10 yields a performance of 292 time steps.
Comparatively, using DO-SAS reduces this performance to 220 time steps, a reduction of 25%.
The BCTS also gives a performance of 220 time steps, suggesting that the order determined by
DO-SAS is optimal for the formulated problem.

Another configuration with large cavities that affect the time-based performance is the large
humanoid from Section 4.4.1, inspired by the work of Gilpin et al. with the Miche and Robot
Pebbles systems [12, 16]. PAS yields a reconfiguration time of 661 time steps. However, when
using DO-PAS, the excluded modules are able to remove themselves from the structure in only
520 time steps, a reduction of 33%. Snapshots of the reconfiguration process using DO-PAS
can be seen in Figure 5.11 The BCTP is 487 time steps, but again would not be possible as this
performance relies on the modules closest to the sink being removed first, which would not
allow the later modules to follow the shortest path in practice. Note again that the difference
between the performance of DO-PAS and the BCTP is the difference between the time it takes
the first entrance module to reach the sink, which is the first module to begin moving with
DO-PAS, and the time it takes the module closest to the sink to reach the sink, as the calculation
of the BCTP takes as the first module. This suggests that, by using DO-PAS, the modules follow

5.6 Simulation Studies 89

(a)

(b)

Fig. 5.10 Example of active subtraction, reconfiguring from a 5×5 starting square to a given
shape. (a) DO-PAS shown at time steps 0, 6, 11, 16, 25, 30, 35, 39 and 43. (b) PAS shown at
time steps 28, 50 and 66, demonstrating situations where PAS causes modules to take longer
routes than necessary. Animated versions of the reconfiguration process available online [133].

90 Distributed Active Subtraction

Fig. 5.11 Snapshots of the reconfiguration process when employing DO-PAS, beginning from
a 20×20 initial configuration and ending with a large humanoid structure. Shown at time
steps 0, 71, 181, 386, 453 and 520. Animated versions of the reconfiguration process available
online [133].

the optimal routes, but that it is not possible to follow these routes in the order given by the
BCTP calculation. When using SAS, the performance was considerably worse for the large
humanoid structure, taking 9554 time steps. Using DO-SAS, the performance is reduced to 8190
time steps, a reduction of 14%. This is again the same number of time steps as given by the
best-case sequential time.

In Section 4.3, the worst-case performance of PAS is determined, using a specific desired
configuration to demonstrate it. This can be seen again in Figure 5.12(a). Figure 5.12(b) shows
why this configuration is so time-consuming for PAS, where modules must fully traverse the
length of the upper cavity, and each subsequent module must delay its movement while the
preceding module navigates the corridor. Figure 5.12(c) shows the order that the modules
remove themselves in when DO-PAS is used. In this case, no module is required to traverse the
cavity, greatly improving performance. The original reconfiguration time of 140 time steps is
reduced to 44, a reduction of 69%. The BCTP is 42 time steps. The reason for the difference of
2 time steps can be easily deduced by inspecting Figure 5.12(a), where it can be seen that the
entrance module from the top layer of modules would require 2 time steps fewer to reach the

5.6 Simulation Studies 91

(a) (b) (c)

Fig. 5.12 Example of a desired shape with two long cavities, (a) shown at time step 0. Demon-
strating how DO-PAS mitigates the time-based performance issues of PAS when traversing long
cavities, (b) the reconfiguration using PAS is shown at time step 39, and (c) reconfiguration
using DO-PAS at time step 8. Animated versions of the reconfiguration process available on-
line [133].

(a) (b) (c)

Fig. 5.13 Desired shapes with two long cavities of varying widths, simulated to assess the
performance comparison between PAS in the worst-case and DO-PAS. The widths shown are (a)
2, (b) 4, and (c) 8.

sink than the bottom. However, as evidenced by comparing PAS and DO-PAS, if the top layer of
modules moved first in practice then the lower layer would have to traverse the resulting cavity,
greatly worsening the time-based performance.

To confirm that DO-PAS reduces the worst-case time-based performance of PAS from
Θ(|V0|2), similar desired configurations are also simulated. For these configurations, the
number of excluded modules in each of the two cavities is equal to one module less than the
width. The height remains at four modules, while the widths vary from two modules to forty
modules. A selection of these desired configurations is demonstrated in Figure 5.13. The results
of this simulation can be seen in Figure 5.14. To account for the variable sizes of configurations
and the number of excluded modules, values are normalised by dividing the total time steps
required for reconfiguration by the number of excluded modules in the initial configuration. As
can be seen, the normalised performance for DO-PAS does not worsen with increased widths,
unlike PAS. For all widths, the BCTP is two time steps shorter than the performance of DO-PAS.
This affirms the aforementioned reasoning, as the time taken by the entrance module of each

92 Distributed Active Subtraction

Fig. 5.14 Graph comparing the performance of DO-PAS to that of PAS for a selection of desired
configurations with two long cavities of varying widths. Shown is the normalised time taken by
excluded modules to remove themselves from initial configurations, leaving behind the desired
configurations. Time steps are normalised by the number of excluded modules in the initial
configuration.

cavity to reach the sink will differ by two time steps, irrespective of width. It can also be seen
that, with wider configurations, the performance of DO-PAS tends towards two time steps. This
is because all modules arrive two time steps after the preceding module, other than the first
module which must traverse the configuration to reach the sink before any modules have been
removed. For larger configurations, the number of modules that are removing themselves two
time steps after the one before becomes larger and larger, so the affect that the length of time it
takes the first module to reach the sink has on the overall performance is minimised.

The equations for the performance of each can be determined from the results. When the
width of the configuration is equal to two, as seen in Figure 5.13(a), the number of excluded
modules in each cavity is only one, so with PAS no modules have to wait for their predecessor
to traverse the upper cavity. Because of this, the performance of PAS is simply the distance that
the module furthest from the sink must travel, as it is able to begin moving at the first time step.
If we define T as the total time taken to reconfigure and H and W are the height and width of
the initial configuration, respectively, then the number of time steps required to traverse the

5.6 Simulation Studies 93

exterior of the configuration will be:

T = 2H +W +2, (5.2)

where the extra 2 time steps are required for the movement around the corners of the structure.
The time required to navigate the upper cavity must also be considered, which will be two
further time steps:

T = 2H +W +2+2. (5.3)

Here the height and width are known to be four modules and two modules, respectively, so the
performance can be calculated to be fourteen time steps.

However, once the number of modules in a cavity is greater than one, the performance of
PAS degrades quadratically. This is due to the fact that modules in the lower cavity must traverse
the upper cavity once the modules have been removed. Subsequently, each module in the
lower cavity must wait for its predecessor to fully negotiate the upper cavity, further increasing
the time. Taking this into account, the performance of PAS for the corridor configurations of
various widths can be expressed as

T =
|V exc|2

2
+5W +2. (5.4)

This confirms the fact that the worst-case time-based performance of PAS is relative to Θ(|V0|2).
Once normalised by the number of excluded modules in the initial configuration, the relation
between the width of the configuration and the time steps required becomes linear, as seen in
Figure 5.14.

Conversely, for DO-PAS the equation characterising the performance is much more simple.
As with the equation for the instance of PAS where the width was two, the amount of time steps
it takes the module furthest from the sink to traverse the configuration is important. In DO-PAS
though, there is no need to include time taken to navigate a cavity, as the module furthest from
the sink is removed before an upper cavity is formed. For this reason, the time it takes the
module furthest from the sink to traverse the configuration is the same as in Equation 5.2. The
remaining modules, |V exc|−1, in the configuration are able to follow the preceding module
out with a gap of two time steps between arrivals at the sink. As such the equation for the
performance when using DO-PAS is

T = 2
(
|V exc|−1

)
+2H +W +2, (5.5)

94 Distributed Active Subtraction

or, more simply as the height remains constant,

T = 2|V exc|+8+W. (5.6)

When normalised for the number of excluded modules in the initial configuration, this gives
a linear relation between configuration width and time steps required for reconfiguration, as
can be observed in Figure 5.14. This demonstrates DO-PAS yielding an asymptotically optimal
performance of Θ(|V0|), as was shown in Theorem 12.

There are situations where the performance of DO-PAS does not improve upon PAS. This
is the case when the amount of time that it takes the module with P = 1 to travel to the sink
is greater than the benefit of it not having to navigate the cavities left behind by modules
closer to the sink were PAS to be used. An example of such a configuration can be seen in
Figure 5.15. The priority order given by DO-PAS is shown in Figure 5.15(a), where it can be
seen that the module with P = 1 must traverse the entire structure before the module with P = 2
can begin moving. This traversal takes 12 time steps, after which the other two modules can
arrive two time steps after their predecessor, giving a total reconfiguration time of 16 time steps.
Inspecting Figure 5.15(b), the order that is given when using PAS can be seen. In this case the
module farthest from the sink still begins moving at the first time step, as do the modules closer
to the sink. By the time the module labelled 3 reaches the West face of the configuration, the
modules labelled 1 and 2 have already removed themselves, leaving a cavity for module 3 to
navigate. However, this cavity only increases the total time it takes module 3 to navigate the
structure by two time steps. This yields an overall reconfiguration time of 14 time steps, a
reduction of 12.5% when compared to DO-PAS.

5.6.2 Randomly Generated Configurations

Along with the user defined configurations, randomly generated configurations are simulated,
allowing for performance analysis under a wide range of conditions. The effects of both variable
initial configuration size, and inclusion density are considered. As in Section 4.4.2, inclusion
density is the percentage of modules within the initial configuration that are not removed in the
formation of the desired configuration, that is, the percentage of included modules. Formally,

ρ =
|V inc|

|V exc∪V inc|
×100%. (5.7)

5.6 Simulation Studies 95

(a)

(b)

Fig. 5.15 A configuration where using DO-PAS, (a), for reconfiguration requires more time steps
than using PAS, (b). DO-PAS requires 16 time steps overall and is shown at time steps 0, 10 and
14, while PAS takes 14 time steps to fully reconfigure and is shown at time steps 0, 2 and 11.

The configurations used for the simulations of DO-PAS and DO-SAS are the same as those
generated for SAS and PAS in Section 4.4.2, allowing for direct comparison between the
solutions. The way in which these configurations are generated is detailed there. Fig. 5.16
shows an example of a randomly generated configuration of size 20×20 with 50% inclusion
density.

The performance of DO-PAS is compared to that of PAS from Chapter 4. Randomly gener-
ated configurations for inclusion densities ranging from 10% to 90%, and at initial configuration
sizes of 10×10, 20×20 and 30×30 are considered. For each combination of criteria, 100 de-
sired configurations were generated and here the performance of both approaches was simulated
and compared, the results of which can be seen in Figure 5.17. Figure 5.18(a) shows box plots
of the results for DO-PAS, with line plots of the best-case parallel times overlaid.

96 Distributed Active Subtraction

Fig. 5.16 Example of a randomly generated configuration, of size 20×20 and inclusion density
(ρ) of 50%.

In Figure 5.18(b), box plots of the performance of DO-SAS for the same set of randomly
generated configurations are shown, alongside line plots of the median best-case sequential
time.

The way in which the performance of PAS and DO-PAS scale with the configuration size is
also studied, considering sizes of 5×5, 10×10, 15×15, 20×20, 25×25, and 30×30. For each
case, the inclusion density is 60%. The same 100 randomly generated desired configurations
are used for both approaches, and are the same as those used in the similar comparison of
Section 4.4.2. The results are shown in Figure 4.10.

5.6.3 Discussion of Results

For every simulation, employing DO-PAS or DO-SAS resulted in a successful reconfiguration
from the initial configuration to the desired configuration, without the configurations becoming
unfeasible at any point. As well as this, the time-based performance outclassed PAS and
SAS for the same configurations. Moreover, Figure 5.18(b) clearly demonstrates that the
median performance of DO-SAS follows the best-case sequential time, as is also observed in
Section 5.6.1. This shows that the routes the modules take are optimal. However, the method in
determining the routes to the sink remain the same as in Chapter 4, so it can be surmised that
the order of removal given by DO-SAS is the reason that the modules follow their optimal paths.
The same order is also used for DO-PAS, meaning that the modules will follow the same optimal

5.6 Simulation Studies 97

Fi
g.

5.
17

L
in

e
pl

ot
s

of
th

e
no

rm
al

is
ed

tim
e

ta
ke

n
by

ex
cl

ud
ed

m
od

ul
es

to
re

m
ov

e
th

em
se

lv
es

,l
ea

vi
ng

be
hi

nd
ra

nd
om

ly
ge

ne
ra

te
d

de
si

re
d

co
nfi

gu
ra

tio
ns

of
va

ri
ou

s
in

cl
us

io
n

de
ns

iti
es

.
Sh

ow
n

fo
r
PA

S
an

d
DO

-P
AS

.
10

0
co

nfi
gu

ra
tio

ns
ar

e
ge

ne
ra

te
d

fo
r

ea
ch

10
%

in
cl

us
io

n
de

ns
ity

st
ep

.I
ni

tia
lc

on
fig

ur
at

io
ns

of
si

ze
s

10
×

10
,2

0×
20

an
d

30
×

30
ar

e
si

m
ul

at
ed

.

98 Distributed Active Subtraction

(a)

(b)

Fig. 5.18 Box plots of the simulated performance of (a) DO-PAS and (b) DO-SAS for the
randomly generated desired configurations of inclusion densities between 10% and 90% for
initial configurations of sizes 10×10, 20×20 and 30×30. Line plots of the median BCTP and
BCTS for each scenario are overlaid, respectively.

5.6 Simulation Studies 99

Fig. 5.19 Box plots of the normalised time taken by excluded modules to remove themselves
from configurations of various sizes. The desired configurations were generated randomly
with inclusion density 60% (100 samples per box). Time steps normalised by the number of
excluded modules.

routes when using that approach too. Although the performance shown in Figure 5.18(a) does
not follow the BCTP, it is worth noting that the scale along the y-axis is very small. It can
also be seen that the scenarios with the fewest overall excluded modules are the ones where
the performance is furthest from BCTP. This further confirms the previous reasoning for the
difference in performance, where the calculations for BCTP use the module with the shortest
path to the sink as the first value, while in practice DO-PAS must use the entrance module of
the furthest cavity to maintain the optimal routes. Modules arrive two time steps after their
predecessor, with the exception of the very first module, which for DO-PAS takes many more
time steps to reach the sink than the first module in BCTP. For scenarios with fewer excluded
modules overall, this difference will have a much greater effect.

The performance demonstrated by the simulation studies, as well as the distributed nature of
DO-PAS and DO-SAS, can be considered to be improvements when compared with PAS and SAS.
However, as showed by the results when simulating the configuration shown in Figure 5.15,
in some cases PAS still delivers better performance. A combination of the approaches could
be considered, centralising the ordering process to a degree, in order to obtain the optimal
removal order. Figure 5.20 shows a configuration that is not optimal for DO-PAS or PAS. If

100 Distributed Active Subtraction

(a) (b) (c)

Fig. 5.20 Example of a configuration where the order given by both (a) DO-PAS and (b) PAS
can be improved upon by the creation of (c) an order determined by hand.

DO-PAS were to be used, the priority order would be that of Figure 5.20(a), which has the same
issue as was explored in Section 5.6.1 with Figure 5.15, where the module with P = 1 takes a
long time to reach the sink, in which time no other modules can begin reconfiguration. This
would take 35 time steps for complete reconfiguration. Yet, by employing PAS as shown in
Figure 5.20(b), the large cavity in the centre would be evacuated before the module labelled 10
reaches it, increasing reconfiguration time. In this case it takes 30 time steps for reconfiguration.
Combining the benefits of each approach, a better order could be determined. By calculating
how long it takes the module in the South-East corner to reach the modules in the cavity to the
West, and how many more time steps it would take that module to navigate any cavities left
by the modules, an optimal order could be derived. This has been manually achieved here for
the sake of illustration, and is shown in Figure 5.20(c). The module with P = 5 would begin
moving at the same time as the module with P = 1, and arrive once the modules up to P = 4
have already removed themselves. By using this proposed order the performance is improved,
taking 29 time steps. The improvement that could be granted through this approach would have
to be compared with the cost of computation and the re-centralisation of control before it could
be considered a suitable solution to the problem.

5.7 Conclusion

In this chapter, the concept of active subtraction applied to modular, self-reconfigurable robots
was expanded upon, introducing a distributed method for determining a removal order for
unwanted modules in a configuration. The newly proposed distributed method offers not
only the benefit of requiring no centralised controller, but also outperforms the previous
active subtractive approach substantially. The correctness of the solution was formally proved,

5.7 Conclusion 101

with the run time performance being characterised. Specific simulations confirm the run
time performance, and vast numbers of randomly generated simulations demonstrate this
performance in a variety of simulated scenarios.

Chapter 6

Active Subtraction on Real World Systems

6.1 Introduction

In Chapters 4 and 5, the concept of reconfiguration via active subtraction was introduced, and
algorithmic control solutions for its application to modular robotic systems were presented.
However, these control solutions were shown in a simulated environment, using models of the
modules, configurations and physics that were idealised in a number of ways.

The implementation of sliding square movement means that modules in the simulation
did not need to consider collisions between themselves, as their footprint within the lattice
remained constant—the height and width of one module. In practice, however, a more realistic
method of movement would be via hinge movement, which could cause the footprint of a
module to extend beyond the size of a single module while moving. This would mean that
modules may be unable to remove themselves from narrow corridors in structures, that are
only the width of one module. Moreover, some modular robotic systems may be incapable of
moving individually in practice, requiring the formation of meta-modules, or the assistance of
neighbours.

Furthermore, the constraint of gravity was included, and the solutions proven to not collapse,
but the effect of gravity on the modules was limited to simply causing modules to fall if not
supported, rather than causing strain on modules and their connections. Because of this, in the
simulation, a desired configuration that is infinitely wide on the second layer, but supported
below by a single module was considered valid; in reality this is clearly not the case.

In this chapter, the feasibility of Sequential Active Subtraction (SAS), Parallel Active Sub-
traction (PAS), Distributed Ordering Sequential Active Subtraction (DO-SAS) and Distributed

104 Active Subtraction on Real World Systems

System Dim.
Foot-
print Movement MCW

Connection
Method

Conn./
Faces

Effort
Req.

Idealised System 2D 1×1
Sliding
(Planar) 1 N/A 4/4

3D Catoms [52] 3D 1×1
Rolling
(Omni) 2

Electro-
static 12/6 Med.

3D M-Blocks [50] 3D 1×1
Pivoting
(Planar) 2

Permanent
magnets 6/6 Med.

CHOBIE II [45]
2D

Vert. 1×1
Sliding
(Planar) 1 Mechanical 4/4 Low

HyMod [54] 3D 1×1
Hinged
(Planar) 2 Mechanical 4/6 Low

M-TRAN III [10] 3D 2×1
Hinged
(Planar) 2 Mechanical 6/10 High.

Roombots [60] 3D 2×1
Hinged

(Diagonal) 3* Mechanical 10/10 High

Table 6.1 A table comparing the characteristics of various modular robotic systems with regard
to the application of active subtraction as a method of self-reconfiguration. (MCW stands for
minimum cavity width.)

Ordering Parallel Active Subtraction (DO-PAS) are considered in relation to a number of real-
world modular robotic systems. When referring to all of the active subtraction solutions of the
previous chapters (SAS, PAS, DO-SAS and DO-PAS), they will be denoted by *AS. The chosen sys-
tems represent a number of unique characteristics within the field of modular robotics, and the
analysis presented is designed to highlight the promise of *AS as a method of reconfiguration.

The chapter is structured as follows. Section 6.2 presents a comparison of the various
characteristics of the chosen modular robotic systems and the relevance when considering the
application of *AS. Subsequently, Section 6.3 concludes the chapter.

6.2 Comparison of Systems

Table 6.1 presents an overview of certain characteristics of six modular robotic systems that
have the potential to employ *AS as a form of self-reconfiguration.

6.2 Comparison of Systems 105

The first characteristic compared is the number of dimensions in which the modular robotic
systems can operate. As *AS is concerned with reconfiguration in a vertical space, the majority
of the applicable systems operate in three-dimensions. An outlier is CHOBIE II, which is able
to operate in two-dimensions in the vertical plane.

Next, the impact of the module footprint is explored, which describes the size of a single
module in terms of unit squares it inhabits. For example, the simulated modules of previous
chapters would have a module footprint of 1×1 as they each inhabit one unit square. However,
modules such as M-TRAN III and Roombots consist of two cubic halves, so have a module
footprint of 2×1. This is an important characteristic of a system, as it means that a number
of considerations must be made before *AS can be used, such as the construction of the initial
structure, the way in which modules can move, and the valid desired configurations that can be
formed.

Also considered is how a module is able to move within a configuration. Here the style
of movement is important, as it may affect the connectivity considerations. Furthermore, the
direction in which a module can move relative to its own facings must be assessed, as it could
enable or prohibit more complex movement and configurations.

A related characteristic that must be considered is the minimum cavity width (MCW). The
MCW is the minimum width that a cavity must be to allow the modules to extract themselves.
This is important to consider as it limits the possible desired configurations.

The methods by which modules form connections are also compared. This facet of the
system influences power requirements, the speed of reconfiguration, and the reliability of
connections for supporting neighbouring modules. Additionally, any heterogeneous connection
mechanisms will add complexity to the planning required to form valid configurations.

The table presents a comparison of the number of connectors a module has compared to the
number of candidate faces that could be adjacent to a neighbouring module. This is important
as a connection to a neighbour will enable communication and connectivity of a configuration,
but may not be possible if a module has limited connectors.

Finally, a rating as to how much effort would be required to map the *AS solutions to these
systems is presented. This rating is relative between the systems, and more information on the
required effort is given in the following sections.

The first row in the table is the idealised system described in Section 3.4 and is shown to
make it possible to compare the capabilities of real world systems.

106 Active Subtraction on Real World Systems

Fig. 6.1 Illustration of 3D Catoms modules forming a face-centred cubic (FCC) lattice.
Reprinted from [135] with permission from Benoît Piranda.

The following provides a discussion of how the aforementioned characteristics affect how
good of a candidate each modular robotic system is for the application of *AS.

6.2.1 3D Catoms

The 3D Catoms are modules developed by Piranda et al. [52] as part of the Claytronics project,
where the authors aim to create a programmable matter. The 3D Catom is a quasi-spherical,
millimetre scale module that is actuated through electro-static forces. Here, their suitability as
a system for utilising active subtraction is assessed.

From Table 6.1, and the name of the modules, it can be seen that the system is able to form
shapes in three-dimensions. Existing work with 3D Catoms is concerned with face-centred
cubic (FCC) lattices, where layers on a plane are regular, densely populated square lattices,
but each layer in the vertical direction is offset from the one below, meaning modules have
twelve neighbours in a dense, three-dimensional shape [8, 52, 135]. An example of a small
FCC lattice formed of simulated 3D Catoms modules can be seen in Figure 6.1. Taking a
vertical slice of one of these configurations for use with *AS would not work, as modules in
alternating layers would only be directly connected to a module in the layer above and below,
not any neighbours in the same layer. However, a regular, densely populated square lattice
could be formed vertically, fulfilling this requirement for *AS.

The next characteristics shown in Table 6.1 are the module footprint and MCW. As each 3D
Catoms module is quasi-spherical and occupies one square in a square lattice, is has a footprint
of 1×1.

The reason that 3D Catoms modules are quasi-spherical, is to enable rolling movement.
This gives each module the ability to move across the modular robotic structure unaided by
neighbouring modules, a very desirable characteristic when considering active subtraction. The
fact that this movement is possible in all directions means that the system may be able to apply

6.2 Comparison of Systems 107

a future iteration of active subtraction in three-dimensions, although the previously discussed
FCC lattice issues may prohibit this.

A truly spherical module in a square lattice would be capable of navigating a cavity one
module wide. However, the 3D Catoms modules are not entirely spherical, requiring flat
surfaces for the connectors. As the lattice size is determined by the distance between opposite
faces on a module, this means that the lattice formed by 3D Catoms is of a slightly smaller
scale than their spherical bounding box, preventing movement in a cavity one module wide. As
such, the MCW for 3D Catoms is two. This is less desirable than an MCW of one, as it means
that shapes formed by 3D Catoms through *AS will be limited, as well as the way in which
these shapes must be formed.

The way the modules move, and how they form connections, is through electrostatic
actuation. As the scale of the 3D Catoms modules is so small, using electrostatic forces allows
for connections to be made. Although the movement has not been physically demonstrated
in this way, the connectivity has been shown by Misumi et al. [82]. The adhesive strength of
the connection is demonstrated in this work, but as the final weight of a 3D Catoms module is
unclear, it is not known how large the structures that use this type of connection could be, a
vital consideration for the deployment of *AS.

In order to form connections with neighbours, the modules must have enough connectors in
the correct places to do so. In the case of 3D Catoms, the number of connectors is much larger
than necessary for a two-dimensional square lattice. Each module is equipped with twelve
connectors, but in a two-dimensional lattice, they will only require four of these. In considering
three-dimensions, the fact that the modules are designed to form an FCC lattice means that
the connectors are not correctly arranged to form a cubic lattice. This means that, despite the
modules being equipped with twelve connectors, only four of these would be useful when
employing *AS in three-dimensions, something to consider for future iterations of *AS.

6.2.2 3D M-Blocks

3D M-Blocks are cubic modules developed by Romanishin et al., whose novelty comes from
their method of micro-locomotion [50]. The system holds promise for the application *AS, and
the modules can be seen in Figure 2.6(e).

As the name would again suggest, 3D M-Blocks are capable of forming structures in
three-dimensions, enabling them to form the vertical structures required for *AS. The modules
also have a footprint of 1× 1, so they can form initial configurations without any need for
adjustment.

108 Active Subtraction on Real World Systems

As previously mentioned, the 3D M-Blocks and their predecessor M-Blocks locomote by
flipping forward using a transfer of momentum. The modules have been demonstrated pivoting
to adjacent spaces in a configuration, and even around corners. It is also possible for the modules
to jump multiple spaces in one movement, depending on how the braking to the flywheel is
applied. The progress from M-Blocks to 3D M-Blocks comes from the introduction of a system
to realign the flywheel within the module, allowing movement in different directions. The
flywheel is locked into place facing one of the three axis of the cube, and can rotate in either
direction, meaning the modules are able to move in any planar direction depending on the
alignment of the flywheel. This allows the modules to perform *AS, as well as be a potential
platform for future, three-dimensional active subtraction solutions. However, when the modules
pivot to move they rotate end of end, causing them to be out of alignment with the cubic lattice,
and hence requiring an MCW of two units. Movement across multiple neighbours with one
motion may require an even greater MCW, but this is not a limiting factor for current versions
of *AS.

3D M-Blocks use permanent magnets as their connection method, which helps with aligning
the modules once they have pivoted. This is a desirable attribute for any form of reconfiguration,
including *AS. However, it is not a very strong method of connection, limiting the shapes that
can realistically be formed. Many shapes formed in Sections 4.4 and 5.6 would not be possible
with 3D M-Blocks because of gravitational forces overcoming the magnetic ones.

The connectors are present on every face of the modules, and are non-gendered connectors,
so 3D M-Blocks can attach to any face of a neighbouring module. This is useful in that the
movement algorithm used in *AS (Algorithm 1) could be deployed directly. Furthermore,
the connections on all faces coupled with the ability to move in any planar direction, would
enable a transition to three-dimensional active subtraction relatively easily from a movement
perspective.

6.2.3 CHOBIE II

The next modular robotic system to be considered is CHOBIE II by Koseki et al. [45].

The CHOBIE II system operates in two-dimensions, unlike the other systems presented
in this chapter. The plane that CHOBIE II modules inhabit is the vertical one, meaning that
they are suitable for forming shapes via *AS. Furthermore, the modules occupy a 1×1 area,
granting easy applicability of *AS.

The unique concept behind the system is that each module is able to slide along the surface
of its neighbours to locomote, and was introduced by Inou et al. with CHOBIE [136]. To

6.2 Comparison of Systems 109

Fig. 6.2 Illustration of a CHOBIE II module. Reprinted from [45]1.

achieve this, each module is equipped with a groove on two faces, and a matching set of wheels
that fit into the groove on the other two faces, as seen in Figure 6.2. When driven, the wheels
create friction on the groove of the neighbour, and cause the unanchored module to slide along
the relevant face. This has been demonstrated to work with individual modules locomoting
across configurations, as well as locomotion while carrying other modules. Although very
similar to the sliding square movement of *AS, the CHOBIE II modules are unable to perform
diagonal movement around corners in the way that is shown in Figure 3.1(b). However, if a
neighbouring module is available to assist, it could be used as a supporting neighbour module,
enabling the modules to navigate corners, as shown by Koseki et al. [45]. The authors also
demonstrate the modules shifting entire layers of modules, which could be useful in completing
reconfiguration through active subtraction, but may have little applicability to the solutions of
*AS.

Thanks to the sliding movement employed by CHOBIE II modules, they require an MCW
of one, the narrowest of any modules considered for *AS. This is highly desirable as it means
that even the most intricate shapes can be formed by the system. In fact, a cavity width of one
aids CHOBIE II modules in their movement, as it means a neighbour will always be present on
at least two sides of the module, so, when inside a cavity, an active excluded module will be
able to perform diagonal movement around a corner without needing any neighbours to move.

The aforementioned wheel and groove mechanism that provides locomotion to the module
also acts as the connector between them, providing a mechanical link. The connection, while
strong, causes high levels of friction between the wheels and grooves when multiple modules

1Reprinted by permission from Springer Nature: Springer 6th International Symposium on Distributed
Autonomous Robotic Systems, “Cellular robots forming a mechanical structure,” M. Koseki, K. Minami and N.
Inou, © 2007.

110 Active Subtraction on Real World Systems

are supported by one connection. Inou et al. equip each module with strain gauges to measure
these effects, deducing that many modules can be supported, but it can be difficult for a module
to move while carrying others [136]. In the case of *AS, this type of movement is not necessary,
so only the benefit of a strong mechanical connection needs to be taken into account.

Although every face that can make connections in the two-dimensional lattice is equipped
with a connector, it should be noted that the connection mechanism is a heterogeneous one,
meaning that the modules must match a face with a groove to a neighbouring face with a wheel
and vice versa. As the modules cannot rotate or change their orientation in any way, provided
that all modules are assembled in the same orientation at initialisation, the correct matching of
connectors will be maintained throughout reconfiguration using *AS.

6.2.4 HyMod

Another system that holds promise for the application of *AS is HyMod by Parrott et al. [54], a
module of which can be seen in Figure 2.4(c).

HyMod modules are capable of operating in three-dimensions, able to extend vertically in
free space, or through the use of the surface extension, also developed by Parrott et al. [54].
For the purposes of employing *AS, the surface extension would provide a stable base for any
configurations, and allow communication between modules that are connected only by the
ground. Each module has a spherical bounding box within the cubic lattice that the modules
create, so the footprint of each HyMod module is 1×1.

The modules are equipped with joints that can infinitely rotate on two sides, that form
wheels. However, in terms of movement within the considerations of *AS, the continuous
movement granted by the wheels would not be utilised. Instead, the central hinge of each
module would provide movement for the modules, rotating ±90° inline with the central axis
of the modules, creating planar movement. A single module actuating its own hinge does not
move, rather, HyMod modules require the collaboration of neighbours to produce movement
within a lattice formation. This can be achieved through the use of meta-modules, where two
connected HyMod modules are considered a single entity that is capable of locomoting across
the configuration. In this case, the MCW is two, as the meta-module would require enough
space to walk end over end through the cavity. This approach limits the granularity of the
system, effectively turning the footprint of a single “module” from 1×1 to 2×1. To avoid this,
movement algorithms could be developed to enable neighbouring HyMod modules to aid one
another in their movement. In this case, the MCW remains at two, as a module manoeuvring
across the configuration would need to be lifted by its neighbours in order to locomote.

6.2 Comparison of Systems 111

Fig. 6.3 Example of a model of a HyMod module reorienting itself, and the connections required
to complete each movement. Adapted from [55].

As detailed in Chapter 2, the connectors used on the HyMod modules are called HiGen [77].
These are high-speed mechanical connectors, capable of making connections in 0.2 seconds.
They utilise extending hooks to connect, and the strength of the connection allows a HyMod
module to lift 1.8 modules. The limiting factor is the material that the current generation of
HiGen connectors are made from, a brittle plastic. If future iterations are machined from metal
or a stronger plastic, then the connections would be much stronger and prove a suitable basis for
applying *AS. Another advantage of HiGen connectors is the fact that they are genderless. This
means that only one side of the connection is required to actuate to make or break a connection.
As such, a HyMod module that has failed can be removed, even if it is unable to retract its own
connectors, increasing the reliability. It also allows for passive HiGen connectors that can be
used in other ways, such as in the aforementioned surface extension, which could provide a
surface on which to perform *AS.

Each HyMod module is equipped with four HiGen connectors, leaving two faces without a
connector. However, thanks to the previously described central hinge, the faces that do not have
connectors can be altered. Furthermore, the HyMod modules possess the ability to perform
in-place rotation, as their bounding box is a sphere within the cubic lattice. This means that not
only can the modules use the central hinge to change the location of the faces with connectors,
but they can rotate as well. Through investigation, it has been found that a HyMod module is
able to reorient itself to have connectors on specific faces between any two orientations, given
it has at least two neighbours, and that at least one neighbour is connected to at least one face
in the initial and end orientations. An example of the steps required to achieve a reorientation
can be seen in Figure 6.3, using a simulated model of a HyMod module for demonstration.
The ability to reorient itself in place, means that the HyMod module, while not possessing a
connector on every face, still proves a promising candidate for the deployment of *AS.

112 Active Subtraction on Real World Systems

6.2.5 M-TRAN III

M-TRAN III by Kurokawa et al. [10] should also be considered as a potential platform for the
realisation of *AS.

These modules lend themselves to chain type configurations, given that they are longer than
most modules on this list and feature heterogeneous connectors on their end faces. However, the
modules have also been demonstrated forming lattice based configurations in three dimensions.

Similar to the suggested meta-modules of the previous section, each M-TRAN III module
has a footprint of 2× 1. It is made of two cubic halves, connected in the middle by a joint,
around which each half can pivot by ±90°. This larger footprint means that the granularity of
the configurations that M-TRAN III modules can form must be considered, as well as the fact
that each module is not uniform in dimensions. It could be possible to create initial and desired
configurations where all modules are oriented the same way, but this limits the configurations
possible. Furthermore, each half of the module features either active or passive connectors,
making the connection method heterogeneous. As such, the gender of each connector must
be taken into account when designing the initial and desired configurations. One solution to
enable uniform units within the configurations, could be to use a meta-module as a unit. Parada
et al. propose a meta-module design that could be formed by M-TRAN III modules [128]. It
would create a uniform unit for the lattice, and enable unique movement options that they
term scrunch and relax. Although promising, this type of movement has not been considered
for current iterations of *AS, and the size of the meta-modules is much larger than a single
M-TRAN III module, so may not be suitable.

The hinge in the centre of a module, around which the two halves can pivot, allows a single
M-TRAN III module to locomote across a configuration by moving end over end. This process
means that the modules require an MCW of two, further limiting the configurations that the
system can form using *AS.

As previously discussed, the connection method used by M-TRAN III modules is a hetero-
geneous one, consisting of an active and passive side. The active side extends small hooks,
that are able to latch onto holes on the passive side. This method provides a strong connection,
and M-TRAN III modules have been demonstrated lifting multiple other modules thanks to
it. However, the heterogeneous nature of the connection method means that the active and
passive halves must be adjacent throughout reconfiguration. Furthermore, the design of the
hinge between the two halves mean that only three faces of each cubic half are equipped with
connectors. This gives the system a total of six connectors per module, three active and three

6.2 Comparison of Systems 113

Fig. 6.4 Depiction of a Roombots module and an illustration of the rotational axis of the three
joints. Reprinted from [60] © 2009 IEEE.

passive, out of a possible ten2. In practice, the M-TRAN III modules would be able to use even
fewer connectors if employing *AS. As the modules are unable to rotate in any way, they must
face the direction of travel at all times. In the case of the two-dimensional reconfiguration of
*AS, this is parallel to the configuration. The layout of the connectors on the modules mean
that four of the six connectors would be facing outward in this case, unable to connect to any
neighbours. This renders the modules entirely unsuitable for reconfiguration via *AS, as the
number of connections between the modules in the system would be too few to allow any
movement to occur.

6.2.6 Roombots

The final active modular robotic system to be considered in Table 6.1 is Roombots, by Sproewitz
et al. [60]. This is a system whose primary reason for development was to create adaptable
furniture, that would reconfigure to meet the needs of the user.

The Roombots modules can exist horizontally or upright, and have been demonstrated
creating three-dimensional configurations in free space, as well as in a structured space [87] as
with HyMod. Similarly to M-TRAN III, each Roombots module consists of two cubic halves
joined together in the centre, creating a module footprint of 2×1. However, the two halves
of the Roombots modules are connected with a rotational joint that allows each cubic half to
rotate with respect to the other, as can be seen by the blue joint in Figure 6.4. This means that
the central hinge is not used for the movement of a module.

Instead, each module locomotes by rotating the diagonal joint in one half of the module,
providing that half is fixed in place using a connector. These are the red joints in Figure 6.4.

2Each module could have ten connectors that face neighbouring modules as the modules are comprised of two
cubic halves, which would have six faces each, but one face from each half is attached to the other half.

114 Active Subtraction on Real World Systems

This allows the module to transition from a horizontal position to an upright one, and vice
versa. However, the movement extends beyond the two dimensional plane, so it is harder
to categorise the requirements in terms of MCW. The movement requires a cavity width of
three, as the connecting faces are flat, so when the modules rotate the diagonal joints, the
faces extend slightly beyond the module footprint. Moreover, the movement extends into the
third dimension, so the MCW is insufficient to fully characterise the space required. If the
configurations remain in two-dimensions, with free space either side, then this does not affect
the Roombots modules’ ability to perform *AS. If future iterations of *AS form the basis for
self-reconfiguration in three-dimensions, then this type of movement and the space required
could be a limiting factor in the applicability of the Roombots system.

As previously mentioned, the connection method employed by Roombots modules uses
flat faces, equipped with hooks and holes. Each connector is able to accommodate both the
necessary hooks and the respective holes, creating a homogeneous connection method. This
means that modules can connect to any face of a neighbouring module. It is also possible
for passive connectors to be used, either in the modules or as a structured surface to which
the modules can attach [87]. As with M-TRAN III modules, each Roombots module has a
maximum of ten locations at which a connector could be located. In this case, all ten do house
connectors, as the hinge mechanism between halves is entirely self-contained, unlike the hinge
in M-TRAN III modules. This gives the system great flexibility with how configurations can be
formed, as the modules do not have to align male and female connectors, nor consider which
faces do not have connectors.

6.3 Conclusion

In this chapter, a number of modular robotic systems and their attributes relating to the
realisation of *AS were considered. Each of the modular robotic systems offer both benefits
and hindrances when considering the application of *AS. For example, CHOBIE II seems
promising in that it is able to most closely replicate the sliding square method of movement,
and requires an MCW of only one, but is unable to navigate the corners of a configuration
without collaboration with a neighbour. Similarly, HyMod is capable of in place rotation, so
would prove logical for manoeuvring through the system, but also requires the assistance of
its neighbours to locomote. M-TRAN III and Roombots are able to locomote as individual
modules, but their footprint is irregular, M-TRAN III can only use two connectors on each
module and Roombots is unable to move in only two-dimensions. Comparatively, 3D Catoms
and 3D M-Blocks have uniform, minimal module footprints and are able to move individually,

6.3 Conclusion 115

but require an MCW of two and their connection mechanisms may not be sufficient to support
neighbouring modules.

It is clear that, while *AS provides a sound and effective self-reconfiguration solution in
simulation, further work must be undertaken before it can be deployed on real world systems.

Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis has presented a number of control algorithms to enable self-reconfiguration via
active subtraction with modular robots. The first algorithms, presented in Chapter 4, utilised
centralised control to achieve this, having either a leader module or external controller inform
modules when they should begin removal. Subsequently, a distributed algorithm was presented
in Chapter 5, enabling modules to determine a removal order, and be informed of when to begin
moving, entirely through message passing, The solutions granted successful self-reconfiguration
when modules moved either sequentially or in parallel, as demonstrated by formal proofs and
extensive simulations. The application of these solutions to real world systems was then
assessed in Chapter 6.

In order to facilitate active reconfiguration, a decentralised movement algorithm was first
devised. By prioritising movement towards a predefined sink location, the behaviour was akin
to a wall following algorithm, and enabled modules to locomote towards the sink irrelevant of
starting location and the morphology of the configuration. Subsequently, centralised algorithms
were developed to determine a removal order for given starting and desired configurations. The
centralised controller used a top down approach, informing the free module in the highest row
and closest to the sink to begin moving when necessary. For sequential movement, this was
each time the preceding module reached the sink. To introduce parallel movement, planning
simulations were performed so that the central controller could ensure no modules would
collide with one another. A requirement for successful self-reconfiguration is that the modules
maintain connectedness throughout reconfiguration, something that was formally proved for
the centralised solution with both sequential and parallel movement. Also formally proved was

118 Conclusions and Future Work

the worst-case time, which increased quadratically with configuration size. The formal analysis
was complemented by extensive simulations, demonstrating that parallel movement yields
better time-based performance than sequential movement, as would be expected. However,
the requirement to perform extensive planning simulations for parallel movement means that
a more capable controller is required, and this trade-off must be considered when deciding
whether parallel movement is possible to realise on a system.

In an effort to alleviate the high computation required by a centralised controller, and to
create a more robust system without a single point of failure, a distributed control algorithm was
also created. Utilising the same distributed movement algorithm as the centralised solution, the
modules used message passing to determine a removal order, and when to begin moving given
that order. Given the connectedness of an initial configuration, these messages could be passed
through the system so that each module is aware of its place in the removal order before any
movement begins. Following this, the modules begin removing themselves, informing the next
in the order to begin moving afterwards, either by a direct message for parallel movement, or
by flooding a message through the configuration upon reaching the sink location for sequential
movement. The correctness of this approach was formally proved, and again the time-based
performance assessed, here yielding a linear increase in time with configuration size. The same
simulation environment was used to confirm the performance, and provide a comparison to the
centralised approach. In almost all scenarios the distributed approach was able to outperform
the centralised solution, only being slower in specific situations. This demonstrates that an
even faster method of self-reconfiguration could be devised by combining the approaches to
determining removal order, but it is posited that this is not possible through solely distributed
methods. As well as being a faster method of self-reconfiguration, the distributed approach also
removes the need for a centralised controller. Although each module must be able to send and
receive messages, as well as react accordingly when receiving a message, the computational
requirements for this are dwarfed by those of the central controller for the previous solution.

The practical implementation of the self-reconfiguration algorithms requires that a suitable
system be identified. Through extensive research and analysis, a comparison of a number of
potential candidate systems was presented. The information was summarised in the table, and
focussed on a number of specific characteristics. A detailed analysis of each system was also
presented, highlighting the potential, and possible caveats, of transferring the current iteration
of active subtraction control algorithms directly to real-world systems.

It is believed that the research presented is meaningful within the broader context of
self-reconfiguration for modular robotic systems. The demonstration of a novel method of
self-reconfiguration in simulation, and considerations for deployment on physical systems,

7.2 Future Work 119

will hopefully inspire future work, either expanding on this particular solution, or with new,
innovative solutions to the problem.

7.2 Future Work

While the results of the work discussed in the previous section demonstrate active subtraction
to be a promising solution to the self-reconfiguration problem, they also show that more work
is necessary before it can be considered generally applicable to modular robotic systems.

One such area for expansion could be the integration of more thorough physics constraints.
A number of modular robotic systems that are equipped with force sensors have been designed,
such as the Blinky Blocks by Kirby et al. [137] or the Force-Aware Robots by Bray and
Groß [138]. These systems have been demonstrated giving real-time feedback on the stability
of a configuration [138, 139], which has also been shown to be something that can be calculated
on a distributed system [140]. By integrating this work with the algorithms contained in this
thesis, a method of active subtraction that maintains the physical stability of a real system
throughout the reconfiguration process could be developed.

Another possibility for further research could be to analyse the efficacy of the message
passing used during reconfiguration. Because of the comparatively short amount of time
required to send a message compared to the time required to perform a movement, messages
are assumed to be instantaneous in the work presented here. However, if a configuration has a
high number of modules, and many messages are required to be passed, such as when flooding
the system in DO-SAS, then the time and power required may not be negligible. Analysis of
this type has been undertaken when considering distributed reconfiguration algorithms in the
past [126, 141]. Further investigation could be concerned with the effects of information loss
with direct messages compared to messages flooded through the system. This would provide
insight into the trade off between robustness and efficiency in terms of message passing.

A key area that holds much promise for future work is by progressing the control solutions
to operate in three-dimensions, where the initial configuration would be a cuboid. This would
present a number of challenges if directly addressing a three-dimensional approach. For
example, the movement algorithm currently used would no longer work, as it would not be
guaranteed that modules would be heading towards the sink, and it would be impossible to know
which direction is the correct one using only local knowledge. One solution to this is to partition
the configurations into two-dimensional vertical slices, and apply the algorithms presented in
this thesis to these sub-configurations. The reconfiguration would be far from optimal in this

120 Conclusions and Future Work

case, but has been proven correct, so would provide a suitable starting point. Furthermore,
the goal configurations would be severely limited, as each vertical slice would need to fulfil
the requirements of a feasible configuration for the algorithms to work; a module could be
supported by a neighbour that is in a separate vertical slice, so would appear unsupported
when assessing each slice separately. Nonetheless, the reconfiguration of three-dimensional
configurations would be key to proving the general applicability of active subtraction as a
method of self-reconfiguration.

A goal for self-reconfiguration is the ability to reconfigure between arbitrary shapes. The
problem of finding the optimal method of reconfiguring between two arbitrary shapes is
computationally intractable [13, 14], so finding a feasible way to reconfigure between arbitrary
shapes requires a heuristic. One such solution is to use an intermediate shape, such as a
simple chain demonstrated by Casal and Yim [142], or a “melted” structure, demonstrated
by Rus and Vona [44]. The same idea could be implemented using the active subtraction
algorithms presented in this thesis, where the intermediate structure is the initial configuration.
By using a centralised planner to simulate active subtraction from the initial configuration to a
desired configuration that is actually the starting state for the arbitrary reconfiguration, the steps
required by each module can be generated and then reversed, so the modules form what has
been referred to as the initial configuration. From this it has already been seen that it is possible
to form arbitrary configurations. This is just one possibility for achieving self-reconfiguration
between arbitrary shapes.

References

[1] M. D. Hall, A. Özdemir, and R. Groß, “Self-reconfiguration in two-dimensions via
active subtraction with modular robots,” in Robotics: Science and Systems XVI, RSS
Foundation, 2020.

[2] A. Özdemir, M. Gauci, A. Kolling, M. D. Hall, and R. Groß, “Spatial coverage without
computation,” in 2019 International Conference on Robotics and Automation (ICRA),
pp. 9674–9680, IEEE, 2019.

[3] T. Fukuda and S. Nakagawa, “Dynamically reconfigurable robotic system,” in 1988
IEEE International Conference on Robotics and Automation (ICRA), pp. 1581–1586,
IEEE, 1988.

[4] E. Bonabeau, M. Dorigo, and G. Théraulaz, Swarm intelligence: From natural to
artificial systems. Oxford University Press, 1999.

[5] S. Chennareddy, A. Agrawal, and A. Karuppiah, “Modular self-reconfigurable robotic
systems: A survey on hardware architectures,” Journal of Robotics, vol. 2017, pp. 1–19,
2017.

[6] K. Støy and R. Nagpal, “Self-reconfiguration using directed growth,” in 7th International
Symposium on Distributed Autonomous Robotic Systems (DARS), pp. 1–10, Springer,
2004.

[7] A. Sproewitz, P. Laprade, S. Bonardi, M. Mayer, R. Moeckel, P.-A. Mudry, and A. J.
Ijspeert, “Roombots – towards decentralized reconfiguration with self-reconfiguring mod-
ular robotic metamodules,” in 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 1126–1132, IEEE, 2010.

[8] P. Thalamy, B. Piranda, and J. Bourgeois, “Distributed self-reconfiguration using a
deterministic autonomous scaffolding structure,” in 18th International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 140–148, IFAAMAS, 2019.

[9] A. L. Christensen, R. O’Grady, and M. Dorigo, “SWARMORPH-script: A language for
arbitrary morphology generation in self-assembling robots,” Swarm Intelligence, vol. 2,
no. 2-4, pp. 143–165, 2008.

[10] H. Kurokawa, K. Tomita, A. Kamimura, S. Kokaji, T. Hasuo, and S. Murata, “Distributed
self-reconfiguration of M-TRAN III modular robotic system,” The International Journal
of Robotics Research, vol. 27, no. 3-4, pp. 373–386, 2008.

122 References

[11] K. Støy, W.-M. Shen, and P. M. Will, “A simple approach to the control of locomotion
in self-reconfigurable robots,” Robotics and Autonomous Systems, vol. 44, no. 3-4,
pp. 191–199, 2003.

[12] K. Gilpin, K. Kotay, D. Rus, and I. Vasilescu, “Miche: Modular shape formation by
self-disassembly,” The International Journal of Robotics Research, vol. 27, no. 3-4,
pp. 345–372, 2008.

[13] G. Chirikjian, A. Pamecha, and I. Ebert-Uphoff, “Evaluating efficiency of self-
reconfiguration in a class of modular robots,” Journal of Field Robotics, vol. 13, no. 5,
pp. 317–338, 1996.

[14] Z. Ye, M. Yu, and Y.-J. Liu, “NP-completeness of optimal planning problem for modular
robots,” Autonomous Robots, vol. 43, no. 8, pp. 2261–2270, 2019.

[15] M. Gauci, R. Nagpal, and M. Rubenstein, “Programmable self-disassembly for shape for-
mation in large-scale robot collectives,” in 13th International Symposium on Distributed
Autonomous Robotic Systems (DARS), pp. 573–596, Springer, 2016.

[16] K. Gilpin, A. Knaian, and D. Rus, “Robot Pebbles: One centimeter modules for pro-
grammable matter through self-disassembly,” in 2010 IEEE International Conference on
Robotics and Automation (ICRA), pp. 2485–2492, IEEE, 2010.

[17] M. D. Hall, “RSS 2020, spotlight talk 14: Self-reconfiguration in two-dimensions via
active subtraction with modular robots.” https://youtu.be/RgGi_mc4tOQ, 2020.

[18] C. J. J. Paredis, H. B. Brown, and P. K. Khosla, “A rapidly deployable manipulator
system,” in 1996 IEEE International Conference on Robotics and Automation (ICRA),
vol. 2, pp. 1434–1439, IEEE, 1996.

[19] S. Kernbach, O. Scholz, K. Harada, S. Popesku, J. Liedke, H. Raja, W. Liu, F. Caparrelli,
J. Jemai, J. Havlik, E. Meister, and P. Levi, “Multi-robot organisms: State of the art,” in
2010 IEEE International Conference on Robotics and Automation (ICRA) Workshop
on“Modular Robots: The State of the Art”, pp. 1–10, IEEE, 2010.

[20] A. Lyder, R. F. M. Garcia, and K. Støy, “Mechanical design of Odin, an extendable
heterogeneous deformable modular robot,” in 2008 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 883–888, IEEE, 2008.

[21] D. Schmitz, P. Khosla, and T. Kanade, “The CMU reconfigurable modular manipulator
system,” Carnegie Mellon University Reseach Showcase, 1988.

[22] T. Matsumaru, “Design and control of the modular robot system: TOMMS,” in 1995
IEEE International Conference on Robotics and Automation (ICRA), vol. 2, pp. 2125–
2131, IEEE, 1995.

[23] A. Yun, D. Moon, J. Ha, S. Kang, and W. Lee, “ModMan: An advanced reconfigurable
manipulator system with genderless connector and automatic kinematic modeling al-
gorithm,” IEEE Robotics and Automation Letters (RAL), vol. 5, no. 3, pp. 4225–4232,
2020.

https://youtu.be/RgGi_mc4tOQ

References 123

[24] L. Kelmar and P. K. Khosla, “Automatic generation of kinematics for a reconfigurable
modular manipulator system,” in 1988 IEEE International Conference onRobotics and
Automation (ICRA), pp. 663–668, IEEE, 1988.

[25] J. Han, W. K. Chung, Y. Youm, and S. H. Kim, “Task based design of modular robot
manipulator using efficient genetic algorithm,” in 1997 IEEE International Conference
on Robotics and Automation (ICRA), vol. 1, pp. 507–512, IEEE, 1997.

[26] C. Nainer, M. Feder, and A. Giusti, “Automatic generation of kinematics and dynamics
model descriptions for modular reconfigurable robot manipulators,” in IEEE 17th Inter-
national Conference on Automation Science and Engineering (CASE), pp. 45–52, IEEE,
2021.

[27] S. Kernbach, E. Meister, F. Schlachter, K. Jebens, M. Szymanski, J. Liedke, D. Laneri,
L. Winkler, T. Schmickl, R. Thenius, P. Corradi, and L. Ricotti, “Symbiotic robot
organisms: REPLICATOR and SYMBRION projects,” in 8th Workshop on Performance
Metrics for Intelligent Systems, pp. 62–69, ACM, 2008.

[28] S. Kernbach, F. Schlachter, R. Humza, J. Liedke, S. Popesku, S. Russo, T. Ranzani,
L. Manfredi, C. Stefanini, R. Matthias, C. S. F. Schwarzer, B. Girault, P. Alschbach,
E. Meister, and O. Scholz, “Heterogeneity for increasing performance and reliability of
self-reconfigurable multi-robot organisms,” arXiv preprint arXiv:1109.2288, 2011.

[29] A. Faíña, F. Bellas, F. López-Peña, and R. J. Duro, “EDHMoR: Evolutionary designer
of heterogeneous modular robots,” Engineering Applications of Artificial Intelligence,
vol. 26, no. 10, pp. 2408–2423, 2013.

[30] J. Baca, M. Ferre, and R. Aracil, “A heterogeneous modular robotic design for fast
response to a diversity of tasks,” Robotics and Autonomous Systems, vol. 60, no. 4,
pp. 522–531, 2012.

[31] H. S. Ahn, Y. M. Beak, I.-K. Sa, W. S. Kang, J. H. Na, and J. Y. Choi, “Design of
reconfigurable heterogeneous modular architecture for service robots,” in 2008 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 1313–1318,
IEEE, 2008.

[32] A. M. Romanov, V. D. Yashunskiy, and W.-Y. Chiu, “SABER: Modular reconfigurable
robot for industrial applications,” in IEEE 17th International Conference on Automation
Science and Engineering (CASE), pp. 53–59, IEEE, 2021.

[33] Y. Mohan and S. G. Ponnambalam, “An extensive review of research in swarm robotics,”
in 2009 world congress on nature & biologically inspired computing (NaBIC), pp. 140–
145, IEEE, 2009.

[34] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins, and G. S.
Chirikjian, “Modular self-reconfigurable robot systems,” IEEE Robotics and Automation
Magazine, vol. 14, no. 1, pp. 43–52, 2007.

[35] K. Støy, D. Brandt, and D. J. Christensen, Self-reconfigurable robots: An introduction.
The MIT Press, 2010.

124 References

[36] K. Gilpin and D. Rus, “Modular robot systems,” IEEE Robotics and Automation Maga-
zine, vol. 17, no. 3, pp. 38–55, 2010.

[37] M. Yim, Locomotion with a unit-modular reconfigurable robot. PhD thesis, Stanford
University, 1994.

[38] A. Castano, W.-M. Shen, and P. Will, “CONRO: Towards deployable robots with inter-
robots metamorphic capabilities,” Autonomous Robots, vol. 8, no. 3, pp. 309–324, 2000.

[39] M. Yim, D. G. Duff, and K. D. Roufas, “PolyBot: A modular reconfigurable robot,”
in 2000 IEEE International Conference on Robotics and Automation (ICRA), vol. 1,
pp. 514–520, IEEE, 2000.

[40] L. Pfotzer, S. Ruehl, G. Heppner, A. Rönnau, and R. Dillmann, “KAIRO 3: A modular
reconfigurable robot for search and rescue field missions,” in 2014 IEEE International
Conference on Robotics and Biomimetics (ROBIO), pp. 205–210, IEEE, 2014.

[41] S. Sankhar Reddy CH., Abhimanyu, R. Godiyal, T. Zodage, and T. Rane, “2DxoPod
– a modular robot for mimicking locomotion in vertebrates,” Journal of Intelligent &
Robotic Systems, vol. 101, no. 23, pp. 1–16, 2021.

[42] M. Yim, Y. Zhang, and D. Duff, “Modular robots,” IEEE Spectrum, vol. 39, no. 2,
pp. 30–34, 2002.

[43] S. Murata, H. Kurokawa, and S. Kokaji, “Self-assembling machine,” in 1994 IEEE
International Conference on Robotics and Automation (ICRA), pp. 441–448, IEEE,
1994.

[44] D. Rus and M. Vona, “Self-reconfiguration planning with compressible unit modules,”
in 1999 IEEE International Conference on Robotics and Automation (ICRA), vol. 4,
pp. 2513–2520, IEEE, 1999.

[45] M. Koseki, K. Minami, and N. Inou, “Cellular robots forming a mechanical structure,”
in 6th International Symposium on Distributed Autonomous Robotic Systems (DARS),
pp. 139–148, Springer, 2007.

[46] R. Oung, A. Ramezani, and R. D’Andrea, “Feasibility of a distributed flight array,” in
48th IEEE Conference on Decision and Control, held jointly with the 28th Chinese
Control Conference (CDC/CCC), pp. 3038–3044, IEEE, 2009.

[47] M. J. Doyle, X. Xu, Y. Gu, F. Perez-Diaz, C. Parrott, and R. Groß, “Modular Hy-
draulic Propulsion: A robot that moves by routing fluid through itself,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA), pp. 5189–5196, IEEE,
2016.

[48] D. Rus and M. Vona, “A physical implementation of the self-reconfiguring crystalline
robot,” in 2000 IEEE International Conference on Robotics and Automation (ICRA),
vol. 2, pp. 1726–1733, IEEE, 2000.

[49] S. Murata, H. Kurokawa, E. Yoshida, K. Tomita, and S. Kokaji, “A 3-D self-
reconfigurable structure,” in 1998 IEEE International Conference on Robotics and
Automation (ICRA), vol. 1, pp. 432–439, IEEE, 1998.

References 125

[50] J. W. Romanishin, K. Gilpin, S. Claici, and D. Rus, “3D M-Blocks: Self-reconfiguring
robots capable of locomotion via pivoting in three dimensions,” in 2015 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 1925–1932, IEEE, 2015.

[51] J. Neubert and H. Lipson, “Soldercubes: A self-soldering self-reconfiguring modular
robot system,” Autonomous Robots, vol. 40, no. 1, pp. 139–158, 2016.

[52] B. Piranda and J. Bourgeois, “Designing a quasi-spherical module for a huge modular
robot to create programmable matter,” Autonomous Robots, pp. 1–15, 2018.

[53] G. Liang, H. Luo, M. Li, H. Qian, and T. L. Lam, “FreeBOT: A freeform modular
self-reconfigurable robot with arbitrary connection point-design and implementation,”
in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2020.

[54] C. Parrott, T. J. Dodd, and R. Groß, “HyMod: A 3-DOF hybrid mobile and self-
reconfigurable modular robot and its extensions,” in 13th International Symposium on
Distributed Autonomous Robotic Systems (DARS), pp. 401–414, Springer, 2016.

[55] C. Parrott, A hybrid and extendable self-reconfigurable modular robotic system. PhD
thesis, University of Sheffield, 2016.

[56] E. H. Østergaard, K. Kassow, R. Beck, and H. H. Lund, “Design of the ATRON lattice-
based self-reconfigurable robot,” Autonomous Robots, vol. 21, no. 2, pp. 165–183,
2006.

[57] S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, and S. Kokaji, “M-
TRAN: Self-reconfigurable modular robotic system,” IEEE/ASME Transactions on
Mechatronics, vol. 7, no. 4, pp. 431–441, 2002.

[58] H. Kurokawa, A. Kamimura, E. Yoshida, K. Tomita, S. Kokaji, and S. Murata, “M-
TRAN II: Metamorphosis from a four-legged walker to a caterpillar,” in 2003 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), vol. 3, pp. 2454–
2459, IEEE, 2003.

[59] B. Salemi, M. Moll, and W.-M. Shen, “SuperBot: A deployable, multi-functional, and
modular self-reconfigurable robotic system,” in 2006 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 3636–3641, IEEE, 2006.

[60] A. Sproewitz, A. Billard, P. Dillenbourg, and A. J. Ijspeert, “Roombots – mechanical
design of self-reconfiguring modular robots for adaptive furniture,” in 2009 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp. 4259–4264, IEEE,
2009.

[61] V. Zykov, W. Phelps, N. Lassabe, and H. Lipson, “Molecubes extended: Diversifying ca-
pabilities of open-source modular robotics,” in 2008 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) Workshop on “Self-Reconfigurable Robotics”,
pp. 22–26, IEEE, 2008.

[62] J. Davey, N. Kwok, and M. Yim, “Emulating self-reconfigurable robots-design of the
SMORES system,” in 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 4464–4469, IEEE, 2012.

126 References

[63] G. Jing, T. Tosun, M. Yim, and H. Kress-Gazit, “An end-to-end system for accom-
plishing tasks with modular robots.,” in Robotics: Science and Systems XII, p. 25, RSS
Foundation, 2016.

[64] M. D. M. Kutzer, M. S. Moses, C. Y. Brown, M. Armand, D. H. Scheidt, and G. S.
Chirikjian, “Design of a new independently-mobile reconfigurable modular robot,” in
2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 2758–
2764, IEEE, 2010.

[65] K. C. Wolfe, M. S. Moses, M. D. M. Kutzer, and G. S. Chirikjian, “M3 Express: A low-
cost independently-mobile reconfigurable modular robot,” in 2012 IEEE International
Conference on Robotics and Automation (ICRA), pp. 2704–2710, IEEE, 2012.

[66] D. Bie, I. Sajid, J. Han, J. Zhao, and Y. Zhu, “Natural growth-inspired distributed
self-reconfiguration of UBot robots,” Complexity, vol. 2019, pp. 1–12, 2019.

[67] G. J. Hamlin and A. C. Sanderson, “Tetrobot: A modular system for hyper-redundant
parallel robotics,” in 1995 IEEE International Conference on Robotics and Automation
(ICRA), vol. 1, pp. 154–159, IEEE, 1995.

[68] A. Spinos, D. Carroll, T. Kientz, and M. Yim, “Variable topology truss: Design and
analysis,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 2717–2722, 2017.

[69] S. C. Goldstein, J. D. Campbell, and T. C. Mowry, “Programmable matter,” IEEE
Computer, vol. 38, no. 6, pp. 99–101, 2005.

[70] M. Shimizu, A. Ishiguro, and T. Kawakatsu, “Slimebot: A modular robot that exploits
emergent phenomena,” in 2005 IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 2982–2987, IEEE, 2005.

[71] R. Moeckel, C. Jaquier, K. Drapel, E. Dittrich, A. Upegui, and A. Jan Ijspeert, “Exploring
adaptive locomotion with YaMoR, a novel autonomous modular robot with bluetooth
interface,” Industrial Robot, vol. 33, no. 4, pp. 285–290, 2006.

[72] A. Sproewitz, R. Moeckel, J. Maye, and A. J. Ijspeert, “Learning to move in modular
robots using central pattern generators and online optimization,” The International
Journal of Robotics Research, vol. 27, no. 3-4, pp. 423–443, 2008.

[73] H. Zhang, J. Gonzalez-Gomez, Z. Me, S. Cheng, and J. Zhang, “Development of a
low-cost flexible modular robot GZ-I,” in 2008 IEEE/ASME International Conference
on Advanced Intelligent Mechatronics (AIM), pp. 223–228, IEEE, 2008.

[74] G. G. Ryland and H. H. Cheng, “Design of iMobot, an intelligent reconfigurable mobile
robot with novel locomotion,” in 2010 IEEE International Conference on Robotics and
Automation (ICRA), pp. 60–65, IEEE, 2010.

[75] A. Castano and P. Will, “Mechanical design of a module for reconfigurable robots,” in
2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
vol. 3, pp. 2203–2209, IEEE, 2000.

References 127

[76] W.-M. Shen, R. Kovac, and M. Rubenstein, “SINGO: A single-end-operative and
genderless connector for self-reconfiguration, self-assembly and self-healing,” in 2009
IEEE International Conference on Robotics and Automation (ICRA), pp. 4253–4258,
IEEE, 2009.

[77] C. Parrott, T. J. Dodd, and R. Groß, “HiGen: A high-speed genderless mechanical
connection mechanism with single-sided disconnect for self-reconfigurable modular
robots,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 3926–3932, IEEE, 2014.

[78] D. Marbach and A. J. Ijspeert, “Online optimization of modular robot locomotion,” in
2005 IEEE International Conference on Mechatronics and Automation (ICMA), vol. 1,
pp. 248–253, IEEE, 2005.

[79] V. Zykov, E. Mytilinaios, M. Desnoyer, and H. Lipson, “Evolved and designed self-
reproducing modular robotics,” IEEE Transactions on Robotics, vol. 23, no. 2, pp. 308–
319, 2007.

[80] M. Dorigo, E. Tuci, R. Groß, V. Trianni, T. H. Labella, S. Nouyan, C. Ampatzis, J.-L.
Deneubourg, G. Baldassarre, S. Nolfi, F. Mondada, D. Floreano, and L. M. Gambardella,
“The SWARM-BOTS project,” in 1st International Workshop on Swarm Robotics, pp. 31–
44, Springer, 2004.

[81] J. W. Romanishin, K. Gilpin, and D. Rus, “M-Blocks: Momentum-driven, magnetic
modular robots,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 4288–4295, IEEE, 2013.

[82] K. Misumi, G. Ulliac, N. Usami, B. Piranda, Y. Mita, A. Higo, and J. Bourgeois, “Micro-
scale electrostatic attach-detach device for self-reconfigurable modular robotic system,”
in 2020 Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS
(DTIP), pp. 1–4, IEEE, 2020.

[83] A. Brunete, A. Ranganath, S. Segovia, J. P. de Frutos, M. Hernando, and E. Gambao,
“Current trends in reconfigurable modular robots design,” International Journal of
Advanced Robotic Systems, vol. 14, no. 3, pp. 1–21, 2017.

[84] A. Bhattacharjee, Y. Lu, A. T. Becker, and M. Kim, “Magnetically controlled modu-
lar cubes with reconfigurable self-assembly and disassembly,” IEEE Transactions on
Robotics, 2021.

[85] K. Gilpin, K. Koyanagi, and D. Rus, “Making self-disassembling objects with multiple
components in the Robot Pebbles system,” in 2011 IEEE International Conference on
Robotics and Automation (ICRA), pp. 3614–3621, IEEE, 2011.

[86] C.-A. Chen, A. Kamimura, L. Barrios, and W.-M. Shen, “Dynamic power sharing for
self-reconfigurable modular robots,” in 14th Towards Autonomous Robotic Systems
(TAROS), pp. 3–14, Springer, 2013.

[87] A. Spröwitz, R. Moeckel, M. Vespignani, S. Bonardi, and A. J. Ijspeert, “Roombots: A
hardware perspective on 3D self-reconfiguration and locomotion with a homogeneous
modular robot,” Robotics and Autonomous Systems, vol. 62, no. 7, pp. 1016–1033, 2014.

128 References

[88] P. J. White, K. Kopanski, and H. Lipson, “Stochastic self-reconfigurable cellular robotics,”
in 2004 IEEE International Conference on Robotics and Automation (ICRA), vol. 3,
pp. 2888–2893, IEEE, 2004.

[89] J. Bishop, S. Burden, E. Klavins, R. Kreisberg, W. Malone, N. Napp, and T. Nguyen,
“Programmable parts: A demonstration of the grammatical approach to self-organization,”
in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 3684–3691, IEEE, 2005.

[90] J. A. Escalera, M. Doyle, F. Mondada, and R. Groß, “Evo-bots: A simple, stochastic
approach to self-assembling artificial organisms,” in 13th International Symposium on
Distributed Autonomous Robotic Systems (DARS), Springer, 2016.

[91] P. J. White and M. Yim, “Scalable modular self-reconfigurable robots using external ac-
tuation,” in 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 2773–2778, IEEE, 2007.

[92] M. T. Tolley, M. Kalontarov, J. Neubert, D. Erickson, and H. Lipson, “Stochastic modular
robotic systems: A study of fluidic assembly strategies,” IEEE Transactions on Robotics,
vol. 26, no. 3, pp. 518–530, 2010.

[93] J. Neubert, A. P. Cantwell, S. Constantin, M. Kalontarov, D. Erickson, and H. Lipson,
“A robotic module for stochastic fluidic assembly of 3D self-reconfiguring structures,”
in 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 2479–
2484, IEEE, 2010.

[94] K. D. Chu, S. G. M. Hossain, and C. A. Nelson, “Design of a four-DOF modular self-
reconfigurable robot with novel gaits,” in 2011 ASME International Design Engineering
Technical Conferences and Computers and Information in Engineering Conference,
pp. 747–754, ASME, 2011.

[95] G. Qiao, G. Song, J. Zhang, H. Sun, W. Wang, and A. Song, “Design of Transmote: A
modular self-reconfigurable robot with versatile transformation capabilities,” in 2012
IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1331–1336,
IEEE, 2012.

[96] W. Wang, G. Qiao, G. Song, Y. Zhang, and Y. Wang, “Design and implementation of a
new intelligent modular reconfigurable robot,” in 2013 IEEE International Conference
on Information and Automation (ICIA), pp. 799–804, IEEE, 2013.

[97] J. Baca, S. G. M. Hossain, P. Dasgupta, C. A. Nelson, and A. Dutta, “ModRED: Hardware
design and reconfiguration planning for a high dexterity modular self-reconfigurable
robot for extra-terrestrial exploration,” Robotics and Autonomous Systems, vol. 62, no. 7,
pp. 1002–1015, 2014.

[98] Z. Butler, K. Kotay, D. Rus, and K. Tomita, “Generic decentralized control for lattice-
based self-reconfigurable robots,” The International Journal of Robotics Research,
vol. 23, no. 9, pp. 919–937, 2004.

[99] D. J. Christensen, E. H. Østergaard, and H. H. Lund, “Metamodule control for the
ATRON self-reconfigurable robotic system,” in 8th Conference on Intelligent Au-
tonomous Systems (IAS), pp. 685–692, 2004.

References 129

[100] J.-A. Leal-Naranjo, S. Fichera, and P. Paoletti, “Towards a modular robotic platform for
construction and manufacturing,” in 2021 29th Mediterranean Conference on Control
and Automation (MED), pp. 1197–1202, IEEE, 2021.

[101] M. J. Doyle, J. V. A. Marques, I. Vandermeulen, C. Parrott, Y. Gu, X. Xu, A. Kolling, and
R. Groß, “Modular fluidic propulsion robots,” IEEE Transactions on Robotics, vol. 37,
no. 2, pp. 532–549, 2020.

[102] W.-M. Shen, F. Hou, M. Rubenstein, H. Chiu, and A. Kamimura, “Recent progress of
SuperBot,” in 2010 IEEE International Conference on Robotics and Automation (ICRA)
Workshop on“Modular Robots: The State of the Art”, pp. 13–16, IEEE, 2010.

[103] K. Støy, W.-M. Shen, and P. M. Will, “Using role-based control to produce locomotion
in chain-type self-reconfigurable robots,” IEEE/ASME Transactions on Mechatronics,
vol. 7, no. 4, pp. 410–417, 2002.

[104] M. Yim, Y. Zhang, K. Roufas, D. Duff, and C. Eldershaw, “Connecting and disconnecting
for chain self-reconfiguration with PolyBot,” IEEE/ASME Transactions on Mechatronics,
vol. 7, no. 4, pp. 442–451, 2002.

[105] K. Payne, J. Everist, F. Hou, and W.-M. Shen, “Single-sensor probabilistic localization
on the SeReS self-reconfigurable robot,” in 9th International Conference on Intelligent
Autonomous Systems (IAS), pp. 207–216, 2006.

[106] W. Liu and A. F. T. Winfield, “Implementation of an IR approach for autonomous
docking in a self-configurable robotics system,” in 13th Towards Autonomous Robotic
Systems (TAROS), pp. 251–258, 2009.

[107] S. Pouya, J. Van Den Kieboom, A. Spröwitz, and A. J. Ijspeert, “Automatic gait genera-
tion in modular robots: “To oscillate or to rotate; that is the question”,” in 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 514–520, IEEE,
2010.

[108] A. Ranganath, J. Gonzalez-Gomez, and L. M. Lorente, “Morphology dependent dis-
tributed controller for locomotion in modular robots,” in 2012 Post-Graduate Conference
on Robotics and Development of Cognition (RobotDoC-PhD), pp. 44–47, Citeseer, 2012.

[109] J. Liedke, R. Matthias, L. Winkler, and H. Wörn, “The collective self-reconfigurable mod-
ular organism (CoSMO),” in 2013 IEEE/ASME International Conference on Advanced
Intelligent Mechatronics (AIM), pp. 1–6, IEEE, 2013.

[110] J. Daudelin, G. Jing, T. Tosun, M. Yim, H. Kress-Gazit, and M. Campbell, “An integrated
system for perception-driven autonomy with modular robots,” Science Robotics, vol. 3,
no. 23, p. eaat4983, 2018.

[111] Y. Zhu, D. Bie, S. Iqbal, X. Wang, Y. Gao, and J. Zhao, “A simplified approach to realize
cellular automata for ubot modular self-reconfigurable robots,” Journal of Intelligent &
Robotic Systems, vol. 79, no. 1, pp. 37–54, 2015.

[112] K. Hosokawa, T. Fujii, H. Kaetsu, H. Asama, Y. Kuroda, and I. Endo, “Self-organizing
collective robots with morphogenesis in a vertical plane,” in 1998 IEEE International
Conference on Robotics and Automation (ICRA), pp. 2858–2683, IEEE, 1998.

130 References

[113] E. Yoshida, S. Murata, S. Kokaji, A. Kamimura, K. Tomita, and H. Kurokawa, “Get
back in shape! A hardware prototype self-reconfigurable modular microrobot that uses
shape memory alloy,” IEEE Robotics and Automation Magazine, vol. 9, no. 4, pp. 54–60,
2002.

[114] G. S. Chirikjian, “Kinematics of a metamorphic robotic system,” in 1994 IEEE Interna-
tional Conference on Robotics and Automation, pp. 449–455, IEEE, 1994.

[115] J. W. Suh, S. B. Homans, and M. Yim, “Telecubes: Mechanical design of a module for
self-reconfigurable robotics,” in 2002 IEEE International Conference on Robotics and
Automation (ICRA), vol. 4, pp. 4095–4101, IEEE, 2002.

[116] C. Ünsal, H. Kiliççöte, and P. K. Khosla, “I(CES)-cubes: A modular self-reconfigurable
bipartite robotic system,” in 1999 SPIE Conference on Sensor Fusion and Decentralized
Control in Robotic Systems II, vol. 3839, pp. 258–270, SPIE, 1999.

[117] D. Hjelle and H. Lipson, “A robotically reconfigurable truss,” in 1st ASME/IFToMM
International Conference on Reconfigurable Mechanisms and Robots (ReMAR), pp. 73–
78, ASME, 2009.

[118] C. Ünsal, H. Kiliççöte, and P. K. Khosla, “A modular self-reconfigurable bipartite
robotic system: Implementation and motion planning,” Autonomous Robots, vol. 10,
no. 1, pp. 23–40, 2001.

[119] K. C. Prevas, C. Ünsal, M. O. Efe, and P. K. Khosla, “A hierarchical motion planning
strategy for a uniform self-reconfigurable modular robotic system,” in 2002 IEEE
International Conference on Robotics and Automation (ICRA), vol. 1, pp. 787–792,
IEEE, 2002.

[120] K. Kotay and D. Rus, “Algorithms for self-reconfiguring molecule motion planning,”
in 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
vol. 3, pp. 2184–2193, IEEE, 2000.

[121] J. E. Walter, J. L. Welch, and N. M. Amato, “Distributed reconfiguration of metamor-
phic robot chains,” in 19th Annual ACM Symposium on the Principles of Distributed
Computing, pp. 171–180, ACM, 2000.

[122] M. Yim, Y. Zhang, J. Lamping, and E. Mao, “Distributed control for 3D metamorphosis,”
Autonomous Robots, vol. 10, no. 1, pp. 41–56, 2001.

[123] E. Yoshida, S. Murata, K. Tomita, H. Kurokawa, and S. Kokaji, “Distributed formation
control for a modular mechanical system,” in 1997 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), vol. 2, pp. 1090–1097, IEEE, 1997.

[124] W.-M. Shen, B. Salemi, and P. Will, “Hormone-inspired adaptive communication and dis-
tributed control for CONRO self-reconfigurable robots,” IEEE transactions on Robotics
and Automation, vol. 18, no. 5, pp. 700–712, 2002.

[125] B. Piranda and J. Bourgeois, “A distributed algorithm for reconfiguration of lattice-based
modular self-reconfigurable robots,” in 24th Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing (PDP), pp. 1–9, IEEE, 2016.

References 131

[126] A. Naz, B. Piranda, J. Bourgeois, and S. C. Goldstein, “A distributed self-reconfiguration
algorithm for cylindrical lattice-based modular robots,” in IEEE 15th International
Symposium on Network Computing and Applications (NCA), pp. 254–263, IEEE, 2016.

[127] R. Groß, M. Bonani, F. Mondada, and M. Dorigo, “Autonomous self-assembly in
swarm-bots,” IEEE Transactions on Robotics, vol. 22, no. 6, pp. 1115–1130, 2006.

[128] I. Parada, V. Sacristán, and R. I. Silveira, “A new meta-module for efficient reconfig-
uration of hinged-units modular robots,” in 2016 IEEE International Conference on
Robotics and Automation (ICRA), pp. 5197–5202, IEEE, 2016.

[129] M. Rubenstein, C. Ahler, and R. Nagpal, “Kilobot: A low cost scalable robot system
for collective behaviors,” in 2012 IEEE International Conference on Robotics and
Automation (ICRA), pp. 3293–3298, IEEE, IEEE, 2012.

[130] M. T. Tolley and H. Lipson, “On-line assembly planning for stochastically reconfigurable
systems,” The International Journal of Robotics Research, vol. 30, no. 13, pp. 1566–
1584, 2011.

[131] M. D. Hall, “Modular Active Subtraction Simulator for 2-Dimensions (MASS2D).”
https://gitlab.com/natural-robotics-lab/mass2d, 2021.

[132] A. Naz, B. Piranda, J. Bourgeois, and S. C. Goldstein, “A time synchronization protocol
for large-scale distributed embedded systems with low-precision clocks and neighbor-to-
neighbor communications,” Journal of Network and Computer Applications, vol. 105,
pp. 123–142, 2018.

[133] M. D. Hall, “Supplementary animations for Active Subtraction: A Viable Method of
Self-Reconfiguration for Modular Robotic Systems.” https://youtu.be/RgGi_mc4tOQ,
2022.

[134] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination
of minimum cost paths,” IEEE transactions on Systems Science and Cybernetics, vol. 4,
no. 2, pp. 100–107, 1968.

[135] P. Thalamy, B. Piranda, and J. Bourgeois, “Engineering efficient and massively paral-
lel 3D self-reconfiguration using sandboxing, scaffolding and coating,” Robotics and
Autonomous Systems, vol. 146, no. 103875, pp. 1–18, 2021.

[136] N. Inou, K. Minami, and M. Koseki, “Group robots forming a mechanical structure
- Development of slide motion mechanism and estimation of energy consumption of
the structural formation,” in 2003 IEEE International Symposium on Computational
Intelligence in Robotics and Automation, vol. 2, pp. 874–879, IEEE, 2003.

[137] B. T. Kirby, M. Ashley-Rollman, and S. C. Goldstein, “Blinky blocks: a physical
ensemble programming platform,” in CHI ’11 extended abstracts on human factors in
computing systems, pp. 1111–1116, AMC, 2011.

[138] E. Bray and R. Groß, “Distributed self-assembly of cantilevers by force-aware robots,”
in 2021 International Symposium on Multi-Robot and Multi-Agent Systems (MRS),
pp. 110–118, IEEE, 2021.

https://gitlab.com/natural-robotics-lab/mass2d
https://youtu.be/RgGi_mc4tOQ

132 References

[139] B. Piranda, P. Chodkiewicz, P. Hołobut, S. P. A. Bordas, J. Bourgeois, and J. Lengiewicz,
“Distributed prediction of unsafe reconfiguration scenarios of modular robotic pro-
grammable matter,” IEEE Transactions on Robotics, vol. 37, no. 6, pp. 2226–2233,
2021.

[140] P. Hołobut and J. Lengiewicz, “Distributed computation of forces in modular-robotic
ensembles as part of reconfiguration planning,” in 2017 IEEE International Conference
on Robotics and Automation (ICRA),, pp. 2103–2109, IEEE, 2017.

[141] T. Tucci, B. Piranda, and J. Bourgeois, “A distributed self-assembly planning algorithm
for modular robots,” in 17th International Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), pp. 550–558, International Foundation for Autonomous Agents
and Multiagent Systems, 2018.

[142] A. Casal and M. Yim, “Self-reconfiguration planning for a class of modular robots,” in
1999 SPIE Conference on Sensor Fusion and Decentralized Control in Robotic Systems
II, vol. 3839, pp. 246–258, SPIE, 1999.

	Table of contents
	1 Introduction
	1.1 Motivation
	1.2 Problem Definition
	1.3 Aims and Objectives
	1.4 Preview of Contributions
	1.5 Publications
	1.6 Thesis Overview

	2 Background and Related Work
	2.1 Introduction
	2.2 Modular Robotic Systems
	2.3 Control of Modular Robotic Systems
	2.4 Reconfiguration Methods

	3 Introducing Active Subtraction
	3.1 Introduction
	3.2 Problem Formulation
	3.3 System Considerations
	3.4 Simulated Environment
	3.5 Conclusion

	4 Centralised Active Subtraction
	4.1 Introduction
	4.2 Controller Design
	4.3 Mathematical Analysis
	4.4 Simulation Studies
	4.5 Conclusion

	5 Distributed Active Subtraction
	5.1 Introduction
	5.2 Excluded Row Removal
	5.3 Solution Design
	5.4 Example Priority Order Index Assignment Process
	5.5 Mathematical Analysis
	5.6 Simulation Studies
	5.7 Conclusion

	6 Active Subtraction on Real World Systems
	6.1 Introduction
	6.2 Comparison of Systems
	6.3 Conclusion

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	References

