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ABSTRACT 

Flooding is the most prevalent disaster worldwide accounting for 43% of all recorded global disaster 

events in the past 20 years leading up to 2018 Choy (2018). While migration from rural settlements to 

urban areas often mirrors economic advancement, it also presents socioeconomic and environmental 

challenges. Rapid urban growth strains existing infrastructure and also discourages the preservation of 

natural habitat in favour of building more developments causing urban flooding. Climate change and 

urbanisation have been reported as the major contributors to the increasing damaging effects of 

flooding to lives and livelihoods worldwide (Aerts et al., 2014). There is  lack of adequate research 

focused on the dual impacts of climate change and urbanisation on urban flooding and water quality 

in rapidly developing urban areas of the world – a gap that will result in an increase in fluvial and 

pluvial flood risk, and further reduction in water quality (Miller and Hutchins, 2017).  

 

This study highlights the importance of the use of free global datasets in the development of a city-

scale 2D hydraulic model that assesses the impact of land use change and climate change on urban 

pluvial flooding in rapidly developing cities. This thesis presents three key results chapters assessing 

the ability of a simplified city-scale hydrological and hydraulic models to estimate urban pluvial flood 

inundation in a large catchment, before going on to establish the impacts of climate change and land 

use change on flood hazard. Topography has been identified as a key dataset of estimating flood 

extent (Horritt and Bates, 2001) and models of flood extent rely on DEMs in order to simulate paths 

of water flow, flood extent and depth. Errors in Digital Elevation Models (DEMs) can substantially 

affect the results of flood models (Stephens et al., 2012, Hawker et al., 2018).  

 

Therefore, in order to increase the accuracy of the outputs from the hydrological and hydraulic models 

used in this study, a methodology for the correction of building error in DEMs was developed in 

Chapter 4 for removing building elevation artefacts from six global DEMs namely: (i) NASADEM, 

(ii) SRTM, (iii) MERIT, (iv) ALOS, (v) TanDEM-X 12 m, and (vi) TanDEM-X 90 m. The findings 

show that the removal of building elevation artefacts/error from global DEMs resulted in the 

improvement of the vertical height accuracy of global DEMs. The findings show that building density 

has an influence on vertical accuracy of global digital elevation models (DEMs).  

 

This finding was a key step prior to research undertaken in subsequent chapters. In chapter 5, a city-

scale hydrological and hydraulic model of the Nairobi catchment is built. The purpose of creating the 

models is to use the raw DEM and corrected global DEM derived in Chapter 4 to estimate the impact 

of land use change and climate change on urban pluvial flood hazard at city-scale level using global 

datasets.  
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The HEC-RAS software is used to create five categories of models for the extreme rainfall event of 1st 

to 13th of March 2018; a baseline model (S1-Baseline), S2-2000LU model, S3-CP4uplift model, S4-

P25uplift model, and the S5-RawDEM model. The five sets of models are created in 2D and make use 

of the diffusive wave equation for simplification. The results showing a lot of promises by providing 

evidence for the hypothesis that urban flood models built at city-scale level using free global datasets 

have a good level of skill and are proficient enough to accurately estimate urban flood inundation 

depth and extent in rapidly developing cities characterised by sparsity of data. 

 

Chapter 6 discusses the results of the flood inundations and flood hazard vulnerability maps from the 

HEC-RAS 2D hydraulic model under 5 different scenarios. It is found that topography plays an 

important role in flood inundation maps and that the accuracy of flood inundation maps can be 

improved simply by using urban corrected DEMs over raw DEMs as key input data when conducting 

both hydrological and hydraulic modelling. The findings also show that urban pluvial flooding is 

affected by both change in climate change and land use change, however, climate change is found to 

contribute significantly to surface water runoff and exacerbate the problems of urban flooding. The 

results also show that the baseline model using the urban corrected DEM as input data produced flood 

inundation and flood hazard vulnerability maps with better accuracy in comparison to a similar 

baseline model using the raw DEM as key input data. 

 

Chapter 7 further explored the influence of climate change and land use change that is due to rapid 

urbanization on urban pluvial flood hazard. Chapter 7 focuses on the synthesis of the results obtained 

from the results of the 5 set of 2D hydraulic models discussed in chapter 6. Results demonstrated that 

climate change had more influence on urban pluvial flood hazard than land use change. It is found 

that climate change, rather than land use change is a bigger threat to urban area in terms of flood risk. 

Specifically, the effects induced by climate change under the CP4 and P25 climate rainfall models are 

much higher than the effects induced by land use change due to urbanisation in Nairobi from 2000 to 

2020.  

 

The findings show that the changes caused by current and future changes in rainfall intensities and 

frequencies are most likely to render most large urban areas vulnerable to extreme rainfall and pluvial 

flooding due to lack of resilience in existing drainage infrastructure and flood mitigation systems. 

Assessment of land use changes alone cannot fully account for hydrological and hydraulic alterations 

in the urban context and it is important for policy makers and people with responsibilities for 

managing urban flood risks to consider adaptation and mitigation strategies that considers increasing 

threat of urban flooding emanating from increased runoff from climate change rainfall. 
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This thesis has subsequently enhanced our understanding of the value of free global hydrological and 

hydraulic models developed at city-scale to model the impacts of climate change and land use change 

on urban pluvial flood hazard in data-sparse context of rapidly developing cities where availability of 

high-quality data for urban flood studies are a rarity. Finally, one of the key findings of this study is 

that in the context of conducting urban flood modelling in data sparse regions in rapidly developing 

cities across the world, it is possible to leverage the opportunities provided by the growing availability 

of free, global datasets to develop urban flood models. Traditional urban flood models rely on the use 

of high-quality datasets as key input data and require computers with high computational efficiency to 

run detailed flood inundation models. Most importantly, the study has demonstrated that it is possible 

to achieve a trade-off between complexity and resolution by the use of simplified 2D hydraulic flood 

models that use global dataset as key input data. 
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1.0      INTRODUCTION 

1.1 Background 

Land use change due to increasing urbanisation is a major cause of pluvial flooding in urban areas. 

Pluvial flooding occurs when surface water runoff accumulating from the result of intense rainfall 

saturates the urban drainage system, and the excess water cannot be absorbed. Climate change and 

urbanisation pose significant threats for flooding and water quality in urban areas (Miller and 

Hutchins, 2017). The flooding experienced in many urban areas of the world is significantly 

influenced by the changes to the timing and magnitude (flood extent, depth, and velocity) of rainfall 

brought about by climate change (Ashley et al., 2005a, Wheater and Evans, 2009). Changes in land 

use and land management affect the hydrology that determines flood hazard, water and the transport 

and dilution of pollutants and it is increasingly recognised that the management of land and water are 

inextricably linked (Wheater and Evans, 2009). Similarly, (Suriya and Mudgal, 2012) found that the 

rapid increase in population and the change in land use patterns are the major reasons for occurrence 

of flooding in the Thirusoolam sub watershed.  

 

Whilst urbanisation generally increases the size and frequency of floods and expose communities to 

increasing flood hazards, various studies have highlighted the difficulties in modelling flood 

inundation extent in data sparse regions of the globe (Komi et al., 2017). Until recent years, flood 

mapping and forecasting tools were available only in few areas of the globe, given their high demand 

of resources and data for development and maintenance (Dottori et al., 2016). However, the situation 

is changing nowadays: the development of high-resolution flood hazard models have become feasible 

at continental and global scale, and their application in developing countries and especially data-

scarce regions is becoming extremely helpful to increase preparedness of populations and reduce 

catastrophic impacts of floods. 
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1.2 Significance of this study 

The impact of pluvial flooding can be very devastating especially in densely populated areas of 

rapidly developing cities. With increasing infrastructure development and building density, increase in 

paved areas, ageing drainage infrastructure and climate change come increased frequency of pluvial 

flooding. The lack of reliable data in urban centres of developing countries constitute the biggest 

challenge to urban pluvial flood modelling (Gebremichael and Hossain 2010). The general aim of the 

PhD study is  to develop a city-scale hydrologic and hydraulic model to model the impact of climate 

change and land use change on pluvial flood hazard in the context of rapidly developing cities by 

using global datasets.  Specific aims and objectives of the study are reported below including research 

matrix tables in Appendix 1 of the thesis. 

 

1.3 Research Aims and Objectives  

 Aim 1:  

To identify global datasets and models that could be used for modelling of city scale-pluvial flood 

hazard in data scarce areas. 

Objectives 

 Types of data sets (remote sensing-based sources for: climate change rainfall, digital elevation 

model (DEM), and urban land use etc) required to build a city scale model will be identified 

and extracted from open sources.  

 Data appropriate numerical flood model for city scale urban flood modelling - identify 

physical processes that are required in model, and their appropriate application scale. 

Compare available models for computation speed, and process representation. 

 The data from both sets will be synthesised and harmonised together to prepare for use as key 

input data sets in a city scale model.  
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Aim 2: 

To derive urban corrected DEMs with global datasets using Nairobi as a test city. 

Objectives 

 Using Nairobi as a case study, raster data for six global DEMs will be pre-processed,  

resampled and transformed to the WG WGS84 (G1150) ellipsoid to EGM96 Geoid using the 

NOAA’s VDatum transformation tool.  

 DEM error for six global DEMs will be calculated including calculation of building density 

using – use of QGIS raster algebra tool to calculate the vertical accuracy for the six global 

DEMs and creation of DEM error maps and building density maps.  

 The data sets and outputs from above will be used to determine DEM error  relationship with 

building density using QGIS tools - plots of DEM error versus building density will be 

created for all six global DEMs. 

 The error relationship determined above will be applied to derive urban corrected global 

DEMs.  

 The same procedure described above for the Nairobi city and the central business district area 

will be applied to the Kibera slum area and the Embakasi residential area of Nairobi. 

Aim 3: 

To build and test a city scale urban pluvial flood model with global datasets using Nairobi as a test city. 

Objectives 

 Outputs from the processes described above will be extracted to build a city scale model using 

Nairobi as a test location - baseline model and different model scenario will be developed, run 

and analysed using historical flood events.  

 Local data sets relating to urban flooding will be collected across government offices, private 

firms, NGOs, and International organisations headquartered in Nairobi city. 

 Sensitivity of model behaviour, results of choice of datasets, assumptions made in model 

build etc will be quantified.  

 The model will be validated by comparison of baseline model results with historical flooding 

observations. 
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Aim 4: 

To test if the model is suitable for exploring factors affecting urban pluvial flooding by scenario 

analysis. 

Objectives 

 The impacts of climate change on urban flooding will be investigated. 

 S3-CP4uplift and S4-P25uplift models will be created and run using inputs from climate 

rainfall models.  

 The impacts of land use change on urban flooding will be investigated. 

 S1-Baseline and S2-2010LU land use models will be created and run using inputs from 

landuse maps for 2010 and 2020 for the test location.  

 

1.4 Thesis structure 

Chapter 1 introduces the research, with the background of the study, problem statement, research aim 

& objectives, research questions and the hypothesis. In Chapter 2 the literature is reviewed. Chapter 

3 covers the general methods & data used in the study. The urban correction of global DEMs using 

building density for Nairobi, Kenya is developed in Chapter 4. Chapter 5 covers the development of 

hydrologic & hydraulic models to simulate the impact of climate change and land use change on 

urban pluvial flood hazard in rapidly developing cities using Nairobi, Kenya as a case study. Chapter 

6 covers the scenario analysis of the five scenarios of the HEC-RAS 2D hydraulic models developed 

in Chapter 5. Chapter 7 is a synthesis of the findings for the whole thesis together with discussion. In 

Chapter 7, conclusions are drawn, contributions of this study to the research community are 

highlighted, limitations are identified, and recommendations for further research outlined. 
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2.0      LITERATURE REVIEW 

2.1 Global flood model data scarcity challenge 

The key challenge for urban flood studies in many of the world’s rapidly developing cities is sparsity 

of data (Hawker et al., 2018). Even if there was data, the context is evolving so rapidly that it would 

be out of date within few years. Terrain and hydrological data are scarce in many developing regions 

of the world and the absence of flow gauges on flood-prone reaches make flood inundation modelling 

challenging in these regions (Komi et al., 2017). With the advent of computational methods and 

computer processing power, the ability to tackle urban floods at the catchment level is clearly 

emerging, making it possible to apply an integrated approach to modelling rainfall-runoff processes 

along with surface flows (Courty et al., 2018). Thus, new datasets through remote sensing and 

modelling as well as faster computing are transforming our capability to model flooding globally and 

could be a potential solution to the rapidly developing urban contexts where there is little data. The 

development of a reliable approach to adequately describe urban floods processes has been recognized 

as a challenging task (Coulthard, et al. 2015 & Courty et al. 2017). 

 

The growing availability of remotely senses data has fostered the implementation of hydraulic flood 

modelling in poorly gauged regions leading (Domeneghetti, 2016, Donald Houston, 2011) to test  two 

different procedures for inferring the river bathymetry under water surface level by assessing the 

suitability of spaceborne topographic and remotely sensed altimetry data for implementing and 

calibrating hydrodynamic models. Results showed the efficiency of the statistical metrics of satellite 

borne data similar to those obtained with benchmark models. 

 

(Gutenson et al., 2017) provided insight into how recent advances in generation of global datasets is 

improving the capability to model riverine inundation at nearly any location on Earth. The authors 

demonstrated how flood inundation model can be developed on a large scale by combining 

continental scale hydrologic simulations, the TanDEM-X DEM data, and the AutoRoute software. 

The study showed how together these data and models function to quickly and effectively model 

inundation on large geographic scales in data sparse environments.  
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2.2 Urbanization, land use change and pluvial flooding 

Land use change due to increasing urbanisation is a great contributor to pluvial flooding in urban 

areas. Pluvial flooding occurs when surface water runoff accumulating from the result of intense 

rainfall saturates the urban drainage system, and the excess water cannot be absorbed by the ground. 

Pluvial flood risk accounts for approximately one-third of flood risk in the UK, whilst, approximately 

2 million people in UK urban areas are exposed to an annual pluvial flood risk of 0.5 per cent or 

greater (‘1-in-200 year’ event), (Houston, 2011). Today, the most urbanized regions of the world 

include Northern America (with 82% of its population living in urban areas in 2018), Latin America 

and the Caribbean (81%), Europe (74%) and Oceania (68%) (UN, 2019). The level of urbanization in 

Asia is now approximating 50%. In contrast, Africa remains mostly rural, with 43% of its population 

living in urban areas (UN, 2019). It is very clear from these statistics that most of future urban growth 

will be witnessed in developing regions of the world where cities continue upward growth in 

population and outward growth in boundary.   

 

Flooding is the most prevalent disaster worldwide accounting for 43% of all recorded global disaster 

events in the past 20 years leading up to 2018 (Choy, 2018). While migration from rural settlements to 

urban areas often mirrors economic advancement, it also presents socioeconomic and environmental 

challenges. Rapid urban growth strains existing infrastructure and also discourages the preservation of 

natural habitat in favor of building more developments causing urban flooding. The urban population 

in 2015 accounted for 54% of the total global population, up from 30% in 1950 This figure is 

expected to increase to 60% of world population by 2030 and the global urban population is expected 

to grow approximately 1.84% per year between 2015 and 2020 (UN, 2019). By 2030, the world is 

projected to have 43 megacities with more than 10 million inhabitants, most of them in developing 

regions. However, some of the fastest-growing urban agglomerations are cities with fewer than 1 

million inhabitants, many of them located in Asia and Africa. While one in eight people live in 33 

megacities worldwide, close to half of the world’s urban dwellers reside in much smaller settlements 

with fewer than 500,000 inhabitants (UN, 2019).  

 

According to (Schmid, 2015), the challenge is to improve our understanding of contemporary 

urbanization processes and to decipher their implications and effects. The increase in impervious 

areas disrupts the natural water balance. Reduced infiltration increases runoff and leads to higher 

flood peaks and volumes even for short duration low intensity rainfall events (Suriya and Mudgal, 

2012). For example, urbanization is taking place rapidly in Nairobi, Kenya as the city experiences 

dramatic growth. The increase in human settlements is as a result of increased migration from rural 

areas into the city, with its population pushing upward and its boundaries pushing outward in Kiambu, 

Machakos, and Kajiado counties that form the Nairobi metropolitan area.  
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Various researches have highlighted how rapid urbanization processes have influenced flood 

behaviour and contributed to flooding (Braud et al., 2013, Chen et al., 2017b, Donald Houston, 2011, 

Miller and Hutchins, 2017, Sanyal et al., 2014, Suriya and Mudgal, 2012). They found that physical 

growth of urban areas, amongst others characterized by the increase of impervious surfaces lead to the 

decrease in infiltration rate thus to an increase of overland flow. Removing vegetation and soil, 

grading the land surface, and constructing drainage networks increase runoff to streams from rainfall 

and snowmelt. As a result, the peak discharge, volume, and frequency of floods increase in nearby 

streams. Roads and buildings constructed in flood-prone areas are exposed to increased flood hazards, 

including inundation and erosion, as new development continues. Floodplains can alter the capacity of 

a channel to convey water and can increase the height of the water surface corresponding to a given 

discharge. In particular, structures that encroach on the floodplain, such as bridges, can increase 

upstream flooding by narrowing the width of the channel and increasing the channel’s resistance to 

flow. As a result, the water is at a higher stage as it flows past the obstruction, creating a backwater 

that will inundate a larger area upstream.  

 

(Konrad, 2003) observed sediment and debris carried by floodwaters can further constrict a channel 

and increase flooding whilst (Sliuzas, 2013) found similar hazard is greatest for upstream of culverts, 

bridges, or other places where debris collects. Small stream channels can be filled with sediment or 

become clogged with debris, because of undersized culverts. This creates a closed basin with no outlet 

for runoff. A very modest rainstorm that earlier would be absorbed by soil storage in a rural 

catchment produces more surface runoff in an urban catchment. Also, (Miller and Hutchins, 2017) 

reviewed the evidence concerning the combined impacts of urbanization and climate change on the 

urban water environment of inland catchments of the United Kingdom and found climate change and 

urbanization pose significant threats for flooding and water quality in urban areas. In addition, the 

study also found urban densification and inadequate urban drainage design to be primary drivers of 

pluvial and sewer flooding in the UK. Detailed estimates of UK pluvial flood risk indicate 

approximately 2 million people are exposed to a 0.5% AEP risk (Houston, 2011) and the figures from 

the Environment Agency (EA) suggests that as many as two thirds of all the flooding events of 

summer 2007 across the UK was attributed to inadequacies in surface water drainage systems (Pitt, 

2008).  

 

(Suriya and Mudgal, 2012) found that the rapid increase in population and the change in land use 

pattern between 1976 and 2005 are the major reasons for occurrence of flooding at the Thirusoolam 

sub watershed in Chennai, China. The land use pattern of the Thirusoolam was classified into a built-

up area and the results reflect that the increase in impervious area has altered the water cycle and 

obstructed natural runoff, which in turn led to flood risks to inhabitants. Similarly, (Konrad, 2003) 
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found, generally, urbanization increases the size and frequency of floods and expose communities to 

increasing flood hazards. Urbanisation affects hydrological processes, often detrimentally and the 

growth of urban population, combined with an increase of extreme rainfall events due to climate 

change call for a better understanding and representation of urban floods (Courty et al., 2018). One of 

the key aims of this study is to assess the impact of urbanization and the consequent changes in land 

use and land cover on pluvial flooding at a city-scale. 

 

2.3 Climate change and urban flooding 

Flooding in urban areas is characterized by strong intensity and a short response time that would 

cause enormous human and economic losses (Apel et al., 2009). With changes in global climate and 

urbanization, urban flood is increasing, and resultant damage has been reported worldwide (Aerts et 

al., 2014). Flood dynamics across urbanized areas are difficult to understand because of the complex 

urban infrastructures, underlying surface conditions and drainage systems (Wu et al., 2018). 

Urbanisation affects hydrological processes, often detrimentally and the growth of urban population, 

combined with an increase of extreme rainfall events due to climate change call for a better 

understanding and representation of urban floods (Courty et al., 2018). Without proper planning and 

management can lead to increases in peak flows.  

 

Africa is acutely vulnerable to the effects of climate change (Dunning, 2018). The large proportion of 

the population dependent upon rain-fed agriculture for their source of income and subsistence means 

that future changes in rainfall over Africa have high potential for detrimental socioeconomic 

consequences. Climate change and urbanization pose significant threats for flooding and water quality 

in urban areas (Miller and Hutchins, 2017). Previous studies have examined the impact of climate 

change on annual or seasonal rainfall totals over Africa, (Dunning, 2018, Hunt and Watkiss, 2011, 

Kundzewicz et al., 2014, Miller and Hutchins, 2017, Murray and Ebi, 2012), (Dunning, 2018), 

highlighting the challenges posed by a combination of climate change and rapid urban development 

on urban flooding. (Dunning, 2018) found over the Horn of Africa rainfall during the “short rains” 

season is projected to increase by over 100 mm on average by the end of the twenty-first century 

under the RCP8.5 scenario. Average rainfall per rainy day is projected to increase, while the number 

of rainy days in the wet season declines in regions of stable or declining rainfall (western and southern 

Africa) and remains constant in central Africa, where rainfall is projected to increase.  

 

Rapid urban growth puts strain on existing infrastructure and discourages the preservation of natural 

habitat in favour of new housing developments, shopping malls, urban infrastructure, etc. that can 

exacerbate the problem of urban flooding.  Flooding is the most prevalent natural disaster, often  

characterised as a high intensity event that requires rapid emergency service response in order to 
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minimise substantial  human and economic losses (Apel et al., 2009). Climate change and 

urbanisation have been reported as the major contributors to the increasing damaging effects of 

flooding to lives and livelihoods worldwide (Aerts et al., 2014). There is  lack of adequate research 

focused on the dual impacts of climate change and urbanisation on urban flooding and water quality 

in rapidly developing urban areas of the world – a gap that will result in an increase in pluvial and 

pluvial flood risk, and further reduction in water quality (Miller and Hutchins, 2017). Changes in the 

seasonality of precipitation over Africa have high potential for detrimental socioeconomic impacts 

due to high societal dependence upon seasonal rainfall.  

 

(Dunning, 2018) found that over the Horn of Africa rainfall during the “short rains” season is 

projected to increase by over 100 mm on average by the end of the twenty-first century under the 

RCP8.5 scenario. Average rainfall per rainy day is projected to increase, while the number of rainy 

days in the wet season declines in regions of stable or declining rainfall. (Miller and Hutchins, 2017) 

reviewed the evidence concerning the combined impacts of urbanization and climate change on the 

urban water environment on inland catchments in the United Kingdom and reached a conclusion that 

there is an acceptance that combined population and climate change projections are a pressing 

challenge and represent critical urban flood risks. The uncertainty of climate change projection and 

suitability are part of recurring factors that limit the utility of evidence for managing the urban 

environment. One of the main aims of this research is to assess the current and future combined 

impacts of urbanization and climate change on pluvial flooding in rapidly developing cities of the 

world using global data.  

 

In the period from 1951 to 2012, global temperature increased at the rate of 0.8 C to 0.14 C (IPCC, 

2014a). (Mirza, 2011) found the frequency of extreme floods to be on the rise in Bangladesh, India 

and Pakistan due to climate change. Climate change has led to increasing temperature in some places 

while increasing precipitation and streamflow at the other places (Khadka and Pathak, 2016). Recent 

studies have shown there is a strong link between climate change and increase in the intensity of 

rainfall over Africa due to increase in global warming (Finney et al., 2020, Kendon et al., 2019). 

Various studies focusing on climate models have predicted a significant increase in East African 

rainfall (Shongwe et al., 2011a, Wainwright et al., 2021, Otieno et al., 2018, Kent et al., 2015). In 

particular, the IPCC projections suggest the increase in  rainfall over the Horn of Africa as a sign of 

climate change (Collins et al., 2013).The short rains witnessed in East Africa between October – 

December [OND] in 2019 were one of the wettest in recent decades, adversely affecting over 2.8 

million people across the region (Wainwright et al., 2021). East Africa is prone to climate and weather 

extremes with a highly variable climate, and the Long-Rains wet season of March–May (MAM) over 

Kenya in 2018 was one of the wettest on record (Kilavi et al., 2018). The strong sub-seasonal 
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variability in the Long-Rain has been linked to the irregular impact of the Madden–Julian Oscillation 

(MJO) influenced by climate change (Zaitchik, 2017).  

 

2.4 Global Digital Elevation Models (DEMs) and correction   

Rapid urban growth puts strain on existing infrastructure and discourages the preservation of natural 

habitat in favour of new housing developments, shopping malls, urban infrastructure, etc. that can 

exacerbate the problem of urban flooding.  Flooding is the most prevalent natural disaster, often  

characterised as a high intensity event that requires rapid emergency service response in order to 

minimise substantial  human and economic losses (Apel et al., 2009). Climate change and 

urbanisation have been reported as the major contributors to the increasing damaging effects of 

flooding to lives and livelihoods worldwide (Aerts et al., 2014). Topography has been identified as a 

key method of estimating flood extent (Horritt and Bates, 2001) and many models of flood extent rely 

on DEMs in order to simulate paths of water flow, flood extent and depth. Errors in DEMs  can 

substantially affect the results of flood models (Stephens et al., 2012, Hawker et al., 2018). 

 

Global DEMs used in flood models are representations of physical ground surface and the spatial 

resolution of a DEM refers to the area of land being represented by single regular or irregular grid, 

with the value of each grid element representing the height of the ground at the corresponding datum 

(Vaze et al., 2010). There are many open access global scale DEMs such as the Shuttle Radar 

Topography Mission (SRTM), and its derivatives, the Multi-Error-Removed Improved-Terrain DEM 

(MERIT DEM) and NASA DEM (NASADEM), as well as Advanced Spaceborne Thermal Emission 

and Reflection Radiometer (ASTER) DEM and TerraSAR-X add-on for Digital Elevation 

Measurement (TanDEM-X 90m) etc. The global coverage of these DEMs makes them highly suitable 

for use in scientific applications where they are used extensively in flood models and have been 

critical in facilitating important flood studies, particularly in data-sparse areas, where local data is 

often difficult to access or unavailable (Hawker et al., 2018).  

 

Chen and Hill (Chen and Hill, 2007) investigated the influence of DEM resolution on flood hazard 

modelling in urban areas and found that both vertical height error and spatial resolution of DEMs can 

impact on flood inundation depth and extent in urban flood modelling. Although, spaceborne DEMs 

provide fundamental input to many geoscience studies, they suffer from non-negligible height errors 

(Yamazaki et al., 2017). Sources of error in spaceborne DEMs include: (i) incomplete spatial 

sampling; (ii) measurement errors, such as positional inaccuracy, data entry errors; and (iii) 

processing errors such as computational numerical errors, interpolation errors, and classification and 

generalisation errors (Burrough, 1986). Global DEMs suffer from many different types of errors, 

some of which are significant at local scales; for example, (Rodríguez et al., 2006) reported a global 
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mean and standard vertical height error of 8.2 ± 0.7 and 6.9 ± 0.5 m for SRTM X- and C-band data, 

respectively. There is a number of published work on the correction of errors in global DEMs, 

especially vegetation errors. (Falorni et al., 2005, Bhang et al., 2007, Dong et al., 2015, Gallant et al., 

2012, Baugh et al., 2013, O'Loughlin et al., 2016, Chen et al., 2018).  Also, there are many previous 

studies focused on the assessment of the vertical height accuracy of DEMs by comparing elevation 

values of DEMs to that of a reference local DEM having a higher vertical accuracy. A more accurate 

reference DEM such as the Light Detection and Ranging (LiDAR) is required in order to make an 

assessment of the vertical accuracy of global DEMs (Dong et al., 2015, Wessel et al., 2018, Acharya 

et al., 2018).  

 

Although many studies (Robinson et al., 2014, Yamazaki et al., 2012, Yamazaki et al., 2017) have 

developed new vegetation-corrected DEMs, by either editing or adjusting existing global DEMs. 

However, despite significant advances in developing vegetation-corrected DEMs, there is limited 

understanding of DEM errors that can be attributed to building heights and building density in urban 

areas. Local DEMs that are based on airborne light detection and ranging (LiDAR) are preferential 

over open access, global DEMs due of their superior vertical accuracy, horizontal resolution, and 

ability to distinguish between ‘bare earth’ from built structures and vegetation (Yamazaki et al., 

2017). However, (LiDAR) DEMs (<10 m horizontal resolution) are only available for a very small 

percentage of Earth's land surface (~0.005%), and data acquisition is often expensive (Hawker et al., 

2018).  

 

Building heights and building density inhibit the ability of radar signals to penetrate land surfaces, 

especially in densely populated urban areas where higher DEM resolution does not necessarily ensure 

accurate mapping (Rossi et al., 2012). Gridded elevation datasets, such as the radar-measurement-

derived SRTM, exhibit signal reflection from built structures and vegetation so that further data 

processing may be required to enable accurate flood modelling (Sanders, 2007b). (Kim et al., 2020) 

selected the SRTM and Sentinel 2 multispectral imagery to train the artificial neutral network in order 

to improve the quality of SRTM DEM and then evaluated the performance of the resulting SRTM 

DEM over two dense urban cities. The ‘new’ DEM (iSRTM) showed better results than the original 

SRTM, achieving 38% reduction in the root mean square error (RMSE). Similarly, (Klonner et al., 

2015) leveraged on the advantages of the Airborne Laser Scanning (ALS) and the Open Street Map 

(OSM) to create an up-to-date Digital Surface Model (DSM) combining 2D OSM and ALS data. 

 

Digital surface models (DSMs) can provide a good source of high quality data for the extraction of 

building height maps in urban areas and (Alganci et al., 2018) explored the feasibility of using open 

access DSMs, such as the Advance Land Observing Satellite, ALOS (AW3D30), ASTER, and SRTM 

datasets, for extracting digital building height models and compared their accuracy. The potential for 
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DSMs as a rich data source for the extraction of building height data has been highlighted as a 

significant challenge in their use at the same time as representations of DTM in urban flood modelling 

(Alganci et al., 2018). Despite efforts made in the processing of global DEM data prior to making the 

data publicly accessible, DEMs frequently contain artefacts such as spikes, holes and line errors. 

(Hirt, 2018) recommended that all DEM datasets undergo a complete global screening for artefacts 

prior to public release, further advising users to check quality before using global DEMs. Despite 

recent advances in removing error components from DEMs, such as tree height bias, speckle noise, 

stripe noise and absolute bias, much work remains in the urban correction of building biases in global 

DEMs.  

 

According to (Hawker et al., 2018), there is no forthcoming high-accuracy open-access global DEM, 

therefore, for the foreseeable future, the primary means of improving flood simulation will be to use 

editing or stochastic simulation using existing DEM data. Urban correction of existing global DEMs 

remains a key research challenge. One of the key aims of this research is to develop a methodology 

for the urban correction of global DEMs, using building density data. This methodology was applied 

to the city of Nairobi, Kenya.  

 

2.5 Urban flood models 

In (Dawson et al., 2008) pluvial flooding in urban areas represents a particular challenge to modellers 

and flood risk managers because of the complex interactions of surface water flow, inadequate urban 

drainage system, poor planning, land use change etc.  The prevalence of flooding events and the 

associated risk in the urban areas is an increasingly important issue of global significance and more 

critical for the developing countries where’s there’s sparsity of data for urban flood modelling 

(Nkwunonwo et al., 2020).  (Komi et al., 2017) highlighted the difficulties in modelling flood 

inundation extent in data scarce areas, particularly in generating realistic flood flows.  The study 

explored a methodology for simulating flood extent in data scarce areas using a hydrological model 

and flood inundation model. Hydrological and hydraulic models are required to first simulate peak 

flows or high-water levels and then simulate inundation to identify flood prone areas. With the advent 

of computational methods and computer processing power, the ability to tackle urban floods at the 

catchment level is clearly emerging, making it possible to apply an integrated approach to modelling 

rainfall-runoff processes along with surface flows (Courty et al., 2018). Thus, new datasets through 

remote sensing and modelling as well as faster computing are transforming our capability to model 

flooding globally and could be a potential solution to the rapidly developing urban contexts where 

there is little data. The development of a reliable approach to adequately describe urban floods 

processes has been recognized as a challenging task (Li et al., 2021).   
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(Trigg et al., 2016) highlighted how quantifying flood hazard is an essential component of resilience 

planning, emergency response, and mitigation, including insurance. The study further highlighted how 

global flood hazard models are becoming a practical reality due to improvements in numerical 

algorithms, global datasets, computing power, and coupled modelling frameworks. Outputs of these 

models are vital for consistent quantification of global flood risk and in projecting the impacts of 

climate change. (Chowdhury and Akter, 2021) developed a city-scale flood hazard map through using 

the Hydrologic Engineering Centre-hydrologic modelling system (HEC-HMS) developed by the US 

Army Corps of Engineers. The simulated runoff showed a reasonable match with field records at three 

different outlets with R2 values of 0.782, 0.719 and 0.768 respectively. (Guo et al., 2021) 

 

(Trigg et al., 2016) compared multi-probability flood hazard maps for Africa from six global models 

and the results showed wide variation in their flood hazard, economic loss and exposed population 

estimates, which has serious implications for model credibility. Results from the study, which was the 

first study to compare flood hazard models showed that even at continental scales, there are 

significant differences in hazard magnitude and spatial pattern between models, notably in deltas, 

arid/semi-arid zones and wetlands. The study presented an important step towards a better 

understanding of modelling global flood hazard, which is urgently required for both current risk and 

climate change projections. Flood models used for assessing the impacts of climate change on global 

flood risk will require credible skill at representing currently observed flooding before climate change 

impacts can be predicted with certainty. As models are improved, there is a parallel need to address 

scale and accuracy limitations in exposure and vulnerability datasets, which are used together with the 

flood model output for global scale risk assessments. One of the aims of this research is to address this 

gap. 

 

(Sanyal et al., 2013) observed there is a lack of focus on flooding as a natural hazard when it comes to 

hydraulic modelling in data sparse regions. When tools for flood predictions and warnings are 

developed, they are conventionally focussed on modelling extreme flow events with an accuracy that 

is acceptable in flood management and planning practices. Whilst the study noted the use of the global 

DEMs for routing high magnitude floods at a regional scale is likely to require some additional 

reference data in order to correct the systematic bias and noise present in them and increase the details 

of topographic representations where it is absolutely necessary. However, in spite of all the 

constraints associated with use of global datasets for hydraulic flood models, there is an increasing 

trend of utilising freely available terrain data for hydraulic modelling of pluvial floods (Sanyal et al., 

2014). Hydrological modelling usually provides an excellent basis regarding the generation of surface 

runoff for drainage network planners, designers and engineers and one of the aims of this study is to 

leverage on the opportunities provided by the user-friendly tools of the HEC-HMS to derive net 
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precipitation data for use as key input data for the HEC-RAS hydraulic model and generate surface 

runoff over the catchment area. 

 

2.6 Summary 

Topography has been identified as a key dataset of estimating flood extent (Horritt and Bates, 2001) 

and models of flood extent rely on DEMs in order to simulate paths of water flow, flood extent and 

depth. Errors in Digital Elevation Models (DEMs) can substantially affect the results of flood models 

(Stephens et al., 2012, Hawker et al., 2018). Open-access global DEMs are not only useful tools for 

estimating flood risks, but they also provide baseline data for flood studies. Urban flood models that 

use ground height surface models, such as Digital Elevation Models (DEMs), to predict flood 

inundation rely on DEM accuracy for predicting flood events, extent, and depth. Global DEMs have a 

significant influence on the outcome of flood modelling, with higher levels of DEM vertical accuracy 

resulting in more accurate flood modelling. 

 

The accuracy of such DEMs is a key point for these applications and DEM is one of the most 

important inputs in hydrodynamic models as it controls the accuracy of the model outputs (Sanders, 

2007a) in particular flood extents and depths. (Carabajal and Harding, 2005) validated the SRTM 

DEM using ICESat, a satellite laser altimeter, and discovered that the errors in SRTM increased with 

increasing tree cover. This was because the C-band radar used by SRTM could not fully penetrate 

the vegetation canopy to the ground. (Berry et al., 2007) utilised satellite radar altimeters to validate 

the SRTM DEM and supports the findings of (Carabajal and Harding, 2005).  

 

While these errors can clearly be attributed to vegetation, their correction requires knowledge about 

canopy heights and radar penetration depths. The correction of vegetation biases associated with these 

DEMs require global vegetation height map that was only first published in 2010 (Lefsky, 2010), 

followed by a more accurate vegetation map the following year (Simard et al., 2011). Despite the 

importance of Artefact removal methods have been very important in correcting vegetation errors in 

SRTM data but was found to  have been rather simple and have only applied static corrections, i.e. 

they removed a spatially uniform fixed percentage of vegetation height from the DEM (O'Loughlin et 

al., 2016). Therefore, (O'Loughlin et al., 2016) developed the first global ‘Bare-Earth’ Digital 

Elevation Model (DEM) based on the Shuttle Radar Topography Mission (SRTM) for all landmasses 

between 60N and 54S.  
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The new ‘Bare-Earth’ SRTM DEM combines multiple remote sensing datasets, including point-

ground elevations from NASA's laser altimeter ICESat, a database of percentage of tree cover from 

the MODIS satellite as a proxy for penetration depth of SRTM and a global vegetation height map in 

order to remove the vegetation artefacts present in the original SRTM DEM. The final ‘Bare-Earth’ 

SRTM product showed global improvements greater than 10 m in the bias over the original SRTM 

DEM in vegetated areas compared with ground elevations determined from ICESat data with a 

significant reduction in the root mean square error from over 14 m to 6 m globally.  

 

(Zhao et al., 2018) used a linear regression based method to estimate the original SRTM DEM error 

and therefore corrected the SRTM DEM data. The results showed that the original SRTM DEM data 

is around 6 m higher than the actual land surfaces on average across all vegetation types. (Yamazaki 

et al., 2017)  Introduced a high-accuracy global DEM at 3″ resolution (~90 m at the equator) by 

eliminating major error components from existing DEMs. The study separated absolute bias, stripe 

noise, speckle noise, and tree height bias of the original SRTM DEM by using multiple satellite data 

sets and filtering techniques to create the Multi-Error-Removed Improved-Terrain DEM (MERIT). 

After the error removal, land areas mapped with ±2 m or better vertical accuracy were increased from 

39% to 58%. Significant improvements were found in flat regions where height errors larger than 

topography variability, and landscapes such as river networks and hill-valley structures, became 

clearly represented. The newly developed MERIT DEM has enhanced many geoscience applications 

which are terrain dependent.  
 

The previous studies dealt only with vegetation biases and do not develop methodologies for the 

correction or removal of biases due to built structures in urban areas. Despite recent advances in 

developing vegetation corrected DEMs, the effect of building height errors in DEMs in urban areas 

are still poorly understood, and their correction remains a challenge. This study will present the first 

urban corrected global DEM using building density data, locally for Nairobi, Kenya. By comparing 

six global DEMs (SRTM, MERIT, AW3DD30, NASADEM, TanDEM-X 12 m, and TanDEM-X 90 

m DEM) with a local reference DEM for the study area, a relationship is established between building 

density, derived from urban footprint map of the study area, and DEM error.  

 

Despite recent advances in developing vegetation corrected DEMs, the effect of building height errors 

in DEMs in urban areas are still poorly understood, and their correction remains a challenge. There is 

lack of adequate research focused on the impact of building density on the vertical accuracy of global 

DEMs and how these errors can be assessed and corrected especially for urban areas. This research 

will aim to address this research gap by deriving a methodology for correcting building errors in 

freely available global DEMs with Nairobi, Kenya as a case study and can be applied to any other 
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case study anywhere in the world where building density data and local reference DEM data are 

available.  

 

Flooding is the most prevalent disaster worldwide accounting for 43% of all recorded global disaster 

events in the past 20 years leading up to 2018 Choy (2018). Rapid urban growth strains existing 

infrastructure and also discourages the preservation of natural habitat in favour of building more 

developments causing urban flooding. Climate change and urbanisation have been reported as the 

major contributors to the increasing damaging effects of flooding to lives and livelihoods worldwide 

(Aerts et al., 2014). There is  lack of adequate research focused on the dual impacts of climate change 

and urbanisation on urban flooding and water quality in rapidly developing urban areas of the world – 

a gap that will result in an increase in fluvial and pluvial flood risk, and further reduction in water 

quality (Miller and Hutchins, 2017). This research aims to focus on the dual impacts of climate 

change and land use change (urbanization) of pluvial flooding in rapidly developing cities of the 

world in order to address this research gap and by doing so contribute to existing knowledge in this 

area.  

 

This research will aim to highlight the importance of the use of free global datasets in the 

development of a city-scale 2D hydrodynamic models that assesses the impacts of land use change 

and climate change on urban pluvial flooding in rapidly developing cities. The built of a city scale 

hydrodynamic models will aim to assess the ability of a simplified city-scale hydrological and 

hydraulic models to estimate urban pluvial flood inundation in a large catchment, before going on to 

establish the impacts of climate change and land use change on flood hazard.  
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3.0      METHODS & DATA 

3.1 Introduction 

This study describes the development and testing of the HECRAS (2D) hydraulic model in terms of 

its ability to simulate surface water flows in rapidly developing urban cities using global datasets. 

Flood mapping is a crucial element of flood risk management since it provides the delineation of 

flood depth and extent in flood-prone areas. The creation of flood maps is usually performed using a 

combination of hydrologic and hydraulic models (Vojtek et al., 2019). Therefore, this study involves 

the development, testing and validation of hydrologic (HEC-HMS) and hydraulic (HEC-RAS) 2D  

flood model scenarios developed at a city-scale to simulate the impact of climate change and land use 

change on urban pluvial flood hazard in rapidly developing cities by using global datasets.  

 

Five specific model scenarios (S1-S5) are developed and applied to a 5751 km2 catchment (C1) of the 

city of Nairobi and environs. The S1-Baseline scenario uses the urban corrected DEM, 2020 land use 

map and March 2018 precipitation data as key input data. The S2-2010LU scenario is developed 

using the same key input data as S1-Baseline model apart from using land use the 2010 land use map 

for the catchment. The S3-CP4uplift scenario is developed using the 2020 land use map, the urban 

corrected DEM and future CP4 climate change rainfall model. The S4-P25uplift model uses the 2020 

land use map, the urban corrected DEM and future P25 climate change rainfall model. The S5-

RawDEM model is similar to the S1-Baseline model but uses a raw DEM as key input data instead of 

an urban corrected DEM. The five model scenarios are developed to simulate the impact of climate 

change and land use change on urban pluvial flood hazard in Nairobi, Kenya.  

 

S1-S3 use a historic rainfall event between 1st and 13th March 2018, i.e. the S1-Baseline, S2-2010LU, 

and S5-RawDEM scenarios. The simulation of future flood events under climate change scenarios 

was undertaken using uplift factors derived from the CP4 and P25 climate rainfall models for the 

development of the S3-CP4uplift and S4-P25uplift models respectively. Also, this study involves the 

analysis of the scenario outputs for  three sub-catchments (C2-Kiambu, C3-Nairobi, C4-Machakos), 

804 km2, 1015 km2, and 723 km2 respectively within the within the (C1) main catchment, Figure 33, 

Figure 34, Figure 35, and Figure 36. The purpose of the more focused analysis on the sub-catchments 

is to understand impacts more locally in different types of catchments.   
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3.2 Urban Flood Modelling Tools 

Flood hazard and flood risk maps are key elements for flood risk management around the world. 

They are an essential tool for flood warning, mitigation of property damage and loss of life and for 

flood risk communication to the stakeholders (Costabile et al., 2020). Global climate is changing with 

increases in the frequency and intensity of extreme events, such as coastal flooding, extreme 

precipitation and heat waves (IPCC, 2014). This, together with rapid urbanisation and land use 

change, will cause even more severe floods and damage to urban areas in the near future (Zhou et al., 

2012). Urban flooding has become one of the most significant natural hazards due to climate change 

and rapid urbanization (Wang et al., 2018) and significant efforts have been made to improve 

accuracy and efficiency of urban flood modelling through enhanced methodology and numerical 

methods (Bates et al., 2010). Therefore, the utilisation of computer models to simulate flood extent, 

depth, duration and flow velocity and their associated damages, using many flooding scenarios i.e. 

future climates and landuse change due to urbanization, is paramount (Jamali et al., 2018). 

Hydrodynamic models are applied to simulate fluvial and pluvial flooding. In pluvial applications, 

water is routed through typically urban areas and is driven by water originating from rainfall 

(Sampson et al., 2013).  

 

3.3 2D Hydrodynamic Model Choice 

A summary of the characteristics pertinent to urban flood models and a comparative summary of the 

relative advantages and disadvantaged of different models is presented in Table 1 and   

Table 2. A comparison of the HEC-HMS & HEC-RAS models used in this study with other shallow 

water equation models is presented in the tables. Urban flood modelling tools are in demand to predict 

surface water inundation caused by intense rainfall and to manage associated flood risks in urban 

areas. Kalihua et al. (2021) presented a comprehensive review of the advanced urban flood models 

and emerging approaches for predicting urban surface water driven intense rainfall. Hydrodynamic, 

shallow water-based models built upon simplified or full shallow water equations (SWEs) have 

demonstrated strong capabilities in providing more detailed flood information in urban areas, such as 

distributed floodwater depths and velocities.  

 

Hunter et al. (2008) undertook the benchmark testing of six two-dimensional (2D) hydraulic models 

in terms of their ability to simulate surface water flows in a densely urbanize area and found all the 

models tested produced plausible results. Terrain data used as part of the study were found to be 

sufficiently accurate and resolved for simulating urban flows. Even though the simulations show that 

flows in urban environments are characterised by numerous transitions to supercritical flow and 



 
 

43 
 

numerical shocks. However, the study found the effects of these are localised and they do not appear 

to affect overall wave propagation.  

 

 Criteria for Choice of Model 

For the purpose of this research, the 2D hydraulic model used was selected based on the following 

criteria: 

Rain on grid capabilities. 

Suitability for a data sparse context of rapidly developing cities Not found to be data intensive 

i.e. 

Ability to represent flood inundation over a large city-scale catchment  

Computational efficiency to run multiple scenarios simulations at city-scale. 

Less complexity and can achieve a trade-off between model complexity and resolution. 

 

The HEC-HMS hydrological and HEC-RAS (U.S. Army Corps of Engineering, 2016) models are 

chosen for this study based on these criteria. The HEC-RAS model is a rain on grid model that is 

suitable and appropriate for extremely large catchment such as Nairobi, Kenya – the case study area. 

According to (Di Baldassarre, 2012a. ), and as shown in Figure 1, as the model complexity increases, 

the bias (error) tends to decrease, but the uncertainty tends to increase. The main objective of 

choosing the 2D hydraulic model is to identify a modelling tool that will achieve a trade-off between 

model complexity and resolution of the input datasets. Model resolution can have a large impact on 

simulation time because model simulation time can increase by an order of magnitude by halving the 

model resolution (Savage et al., 2015).  

 

Model computational time and model computational efficiency were a big factor in the choice of the 

modelling tools and the model should ideally take in order of minutes to hours to run at different 

resolutions under all the modelling scenarios considered in this study. When considering model 

application, data available, computational resources, time available, and the other criteria listed above, 

the HEC-HMS hydrologic and the HEC-RAS hydraulic models became the best models that give the 

required information and achieve the intended outcomes, whilst reasonably fitting the data. Because 

of the above, the choice of HEC-HMS and HEC-RAS models is justified. The models don’t rely on 

sophisticated data inputs making them appropriate for data-sparse environments similar to the case 

study area considered in this study. 
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Figure 1. A concept of trade-off between bias (grey) and uncertainty (black) in model complexity. Adapted from (Di 
Baldassarre, 2012a. ).  

 

3.4 Shallow Water Equation Based Models 

In recent years, hydrodynamic simulation of overland flows based 2-D shallow water equations 

(SWEs) has become increasingly popular and SWE models have proven to be capable of reproducing 

surface water flow reasonably well for flooding in urban areas, accurately predicting velocity, flood 

extent and water elevation level (Kaihua et al., 2021). Simplified SWE-based models have been 

typically used in larger-scale urban flood modelling with coarser grids and simplified treatment of 

urban features at city/continental scale because of the relatively low computational costs and the 

capability in simulating surface water dynamic (Yu et al., 2016, Xia et al., 2017).  Consideration was 

given to the use of the HEC-HMS and HEC-RAS in this study, given the city-scale nature of the 

catchment and the coarse nature of the input datasets.  

 

3.5 HEC-RAS Hydrodynamic Model for Surface Water Runoff 

The HEC-RAS model has the ability to perform two-dimensional unsteady flow routing with either 

the full Shallow Water Equations (SWE) or the Diffusion Wave approximation of the SWE (DWE). 

HEC-RAS has three separate solvers that can be used to solve for the flow moving over the 

computational mesh, the Diffusion Wave equations; the original Shallow Water equations (SWE-

ELM, which stands for Shallow Water Equations, Eulerian-Lagrangian Method), and a new Shallow 

Water equations solution that is more momentum conservative (SWE-EM, which stands for Shallow 

Water Equations, Eulerian Method). The 2D flood inundation modelling for this study was carried out 

using HEC-RAS 2D (U.S. Army Corps of Engineering, 2016). The HEC-RAS software is a 2D model 
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grid model that is capable of simulating flooding caused by rainfall as well as river flooding (U.S. 

Army Corps of Engineering, 2016). The HEC-RAS 2D hydraulic model solves the full 2D Saint 

Venant equations and the 2D diffusive wave equation as described below (U.S. Army Corps of 

Engineering, 2016). The shallow water equations are shown in Equation 1, Equation 2 and Equation 3 

and the diffusive wave equations used in this study are shown in equations 4 and Equation 5. 
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           Equation 4 

  

Where t is time, u and v are the velocity components in the x- and y- direction respectively, g is 

acceleration due to gravity and Sf represents slope of the energy grade line. 

 

The diffusive wave equation is a simplification of the shallow water equation wherein inertial forces 

are neglected and only considers pressure, gravity and frictional forces. The diffusive wave equation 

option is the default option in HEC-RAS and gives a model output with better flood extent. 
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Where g is acceleration due to gravity, Vt is the Eddy viscosity coefficient, R is the hydraulic radius, 

Sf represents slope of the energy grade line, 
∇

 is the vector of the partial derivative operators 

represents bed slope and u,h represent velocity components under X and Y axis respectively.  
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Table 1. A summary of the characteristics pertinent to urban flood models (Kaihua et al., 2021). 

Representative models Model Equations 
Acceleration 

Method 
Rainfall 

runoff 
drainage network 

module 
Status 

Drainage 
network 
models 

Djordjevic et al. (1999) ID Saint-Venant 
equations 

No No Yes Research 

Schmitt et al. (2004) ID Saint-Venant 
equations 

No No Yes Research 

SWE-based 
models 

FloodMap (Yu, 2010) 2D diffusive wave 
model 

MPI Yes 
 

Research 

LISFLOOD-FP (Bates et 
al. 2010) 

Inertial formulation 
of 2D 
SWEs 

OpenMP No 
 

Research 

[JIM (Chen et al. 2012) 2D diffusive wave 
model 

No Yes HEC- 1 Research 

P-DWave (Leandro et al. 
2016) 

2D diffusive wave 
model 

OpenMP Yes 
ID SaintVenant 

equations Research 

PRIMo (Sanders et al. 
2019) 

2D SWEs based on 
upscaled grids 

single 
process multiple 

data parallel 
algorithm 

Yes No Research 

RMA (Rao 2005) simplified 2D SWEs MPI Yes  Research 

UPFLOOD (Huang et al. 
2019) 

2D diffusive wave 
model 

No Yes No Research 

 TRENT (Villanueva et 
al. 2006) 

21) full SWEs No No No Research 



 
 

48 
 

Representative models Model Equations 
Acceleration 

Method 
Rainfall 

runoff 
drainage network 

module 
Status 

Porosity-based models 
(e.g. 

Guinot et al., 2017; 
Bruwier et al., 2017) 

2D full SWEs 
with porosity in 

coarse grids 
No No No Research 

CityCAT (Glenis et al. 
2018) 

2D full SWEs Amazon Cloud Yes 

MFPmodel 
(Bourdarias et al. 

2011) 
Research 

Hou et al. (2018) 2D full SWEs GPU Yes No Research 

HiPIMS (Xia et al. 2019) 2D full SWEs GPU Yes 
ID SaintVenant 

equations Research 

Henonin et al (2015) 2D full SWEs No Yes No Research 

Liu et al. (2019) 2D full SWEs GPU Yes No Research 

HEC-RAS (Brunner, G. 
2016) 

2D full SWEs and 
diffusive wave 

equations. 
No Yes No Research 

Hydrogeomo
rphic 

approaches 

Nardi et al (2018) 
hydrogeomorphic 

paradigm 
No Yes No Research 

GeoFlood (Zheng et al. 
2018) 

hydrogeomorphic 
paradigm 

No Yes No Research 

Other 
methods 

CADDIES-caflood 
(Guidolin et al., 2016) 

cellular automata GPU No No Research 

Bermudez et al. (2018) ANNs No Yes Yes Research 
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Table 2. Comparative summary of the relative advantages and disadvantages of different urban flood models (Kaihua et al., 2021). 

Method Strength Limitation Suitability 

Drainage network models 

computationally efficient 
suitable for various temporal 
and spatial scale evaluations 
quantification of flow in 
drainage systems 

coarse spatiotemporal resolution 
no/little flow dynamics validation 
is very data and time demanding 
(large number of drainage nodes 
and pipes) 

drainage system design and evaluation 
quantification of outflow of urban catchments 
a reference for other inundation models a tool 
coupled with surface water model 

2D 
SWE 
based 

models 

Simplified SWEsbased 
models 

dynamic simulation of 
urban flooding within 
relative cheaper 
computational cost 

cannot capture shock flood wave 
Less numerical accuracy 
compared with full SWEs no pipe 
flow consideration 

urban flood mapping without high 
requirement on detailed flow dynamics faster 
urban flood simulations 

Full SWEsbased models 

• full dynamic simulation 
shock-captured be able to 
simulate the flow 
infrastructure interactions 

computationally expensive 
• high requirement for data inputs 

no pipe flow consideration or 
over assumption 

quantification of local urban flood dynamics 
without pipe urban flood model in urban areas 
with high-quality DEM/DSM 

• design and evaluation of flood infrastructures 

Coupled with drainage 
network 

can simulate drainage floods 
have potential to simulate 
urban flooding more 
accurately 

computationally expensive 
requirement of good-quality data 
input 

• quantification of drainage flooding simulation 
of local urban flood dynamics with pipe urban 
drainage design and evaluation 

Coupled with hydrological 
methods 

computational efficient plus 
the strength of its coupled 
hydraulic models 

currently no pipe consideration 
plus the limitation of its coupled 
hydraulic models 

large-scale catchments where natural areas 
have equal runoff contribution with urban 
areas 
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Method Strength Limitation Suitability 

Hydro-geomorphic approaches 

Less sensitive to data scarcity 
and time series data 
unnecessary Computationally 
efficient 

cannot include the role of 
infrastructures and altered 
geomorphic signature in urban 
areas uncertainty of empirical 
data no flow dynamics re 
resentation 

Preliminary identify inundation areas a 
reference for physically representative 
models. 
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3.6 HEC-HMS Hydrologic Model 

The HEC-HMS (Centre for Hydrological Engineering - Hydrological Modelling Systems, US Army 

Corps of Engineers) rainfall runoff model is a software program that models the complete hydrologic 

process of dendritic watershed systems. The HEC-HMS software includes hydrologic analysis 

procedures such as event infiltration, unit hydrographs, and hydrologic routing including procedures 

necessary for continuous simulation of evapo-transpiration, snowmelt, and soil moisture accounting. 

HEC-HMS deals with the basic water balance equation and the transformation of the runoff from 

precipitation in the HEC-HMS model is governed by landuse, soil type, evapotranspiration, and 

storage. 

 

The purpose of using the HEC-HMS hydrologic model for this study is to obtain runoff (net 

precipitation) from the precipitation data with HEC-HMS model. The obtained net runoff data is then 

simulated in HEC-RAS model and the output of HEC-RAS exported to QGIS software for flood plain 

mapping and analysis. The HEC-RAS 2D hydraulic model can simulate runoff based on channel 

morphology and generate flood inundation extent within the catchment. However, coupling the two 

models will aid in the assessment of flood inundation of the study area for the March 2018 storm 

event. The coupled model will be used for landuse change and climate change flood plain mapping 

with the future rainfall climate change rainfall data and landuse change scenarios described in chapter 

5 and chapter 6. Details of the rainfall data, terrain data, soil types and landuse data used in the HEC-

HMS model are shown in Table 3. 

 

It is worth noting that the latest version of HEC-RAS (v6.1), available after this work for this thesis 

was completed, allows calculation of infiltration losses which could be used instead of using HEC-

HMS in calculate net rainfall. 

 

Table 3. Key Input Data for the HEC-HMS hydrologic rainfall runoff model. 

SN Data Data source 

1. 3 arc second MERIT Digital 

elevation Model (DEM) 

Multi-Error-Removed Improved-Terrain DEM (MERIT 

DEM)http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/ 

2. Land use data 2020 Globeland 30m resolution landuse data. 

http://www.globeland30.org/ 

3. Soil type Data FAO/UNESCO Soil Map of the World. 

https://www.fao.org/soils-portal/data-hub/soil-maps-and-

databases/faounesco-soil-map-of-the-world/en/ 

4. Rainfall, Evapotranspiration 

data 

Kenya Meteorological Services. Ngong Road. Nairobi. Kenya. 
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3.7 The March 2018 Rainfall Events 

Over the greater Nairobi region and indeed Kenya as a whole, 2018 saw the wettest March, April and 

May seasons over the 119-year record of the Global Precipitation Climatology Centre (GPCC) data, 

and the 118 years of CenTrends data (Kilavi et al., 2018). Locally in Nairobi, the capital city of 

Kenya, total rainfall values at the five stations exceeded the normal amounts by two to three times in 

March and one to two times in April (Kilavi et al., 2018). Precipitation data for the watershed was 

obtained from the Kenya Metrological Service for the March 2018 extreme rainfall from four rainfall-

gauging stations at different locations within the watershed and shown in Table 4. 

 

Table 4. Observed rainfall data (March 2018) at five rainfall stations in Nairobi, Kenya. 

STATION  March Total Rainfall (mm)  Source 

Dagoretti 260.3  

 

Kenya Meteorological Service 

JIKA 216.8 

Machakos 236.8 

Thika 375.3 

 

3.8 Weighted Average Curve Number 

The SCS (NRCS) Curve Number is used for the quantification of infiltration loss during runoff 

calculation and can range from 0 (100% infiltration) to 100 (impervious, no infiltration). The overall 

CN of a watershed is the area-weighted average CN of each combination of soil type and land cover 

type. A weighted average curve number for the watershed will be required for use as input in the 

HEC-HMS model. Therefore, a three-step method for calculating area-weighted average curve 

number from landuse and hydrologic soil group (HSG) data was developed.   

 

Step 1: Pre-process raster data. Global land cover map for 2019 and soil data for the study area 

were downloaded from https://lcviewer.vito.be/2019 and the Global Hydrologic Soil Groups (HSG) 

for Curve Number-Based Runoff Modelling website 

https://webmap.ornl.gov/ogc/dataset.jsp?ds_id=1566 respectively. The Global land cover data are 100 

m resolution global maps of land cover & cover changes of different areas over certain years. The 

HYSOGs250m represents a global, gridded dataset of hydrologic soil groups (HSGs) with a 

resolution of approximately 250 m. It is important that the landuse raster file has the same extent, 

projected coordinate reference system and resolution value as the HSG raster file so that the two files 

can align together to create a Curve Number raster file. Therefore, the landuse and soil group data 

were resampled to 30 m using raster calculator tools in QGIS 
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Step 2: Reclassification of Landuse map. Using the Reclassify by layer tool in QGIS, the landuse 

raster file is reclassified to reduce landuse types to 4 and a CSV txt file for landuse class breaks is 

created and added to QGIS layer panel. The reason for the reclassification of the of the landuse 

categories is to simplify and streamline the curve number CN calculation procedure. The original 

landuse data for the study area in its 12 different types of land cover types will end up with 12 x 3 = 

36 different combinations for CN assignment when combined with HSG soil types (1, 2, & 3).  

 

Step 3: Combination of land cover raster file and soil HSG raster file. The final step involved the 

combination of the two raster files described above using GDAL Raster calculator of QGIS to create a 

Curve Number (CN) raster file. A simple logic equation expression is created for the CN calculation. 

Finally, using Zonal statistics tool of QGIS, a watershed boundary shapefile was loaded and 

parameters count, sum and mean are selected for statistics to calculate and use Curve Number (CN). 

Three new fields are added to the watershed boundary shapefile and the area-weighted average (curve 

Number (CN) for the watershed area is calculated as 86.122.  

 

3.9 Model Validation  

An essential component of hydrodynamic model evaluation is the ability to validate the predictions 

against previous recorded measurements. A one-week filed visit was undertaken to three flooding 

hotspots located within the study area between 20th and 27th March 2018 and involved travelling from 

Leeds, UK to Nairobi, the capital city of Kenya.  The purpose of the site visit was to collect historic 

flood height level data to compare with the results of the models. The methodology for the setup of 

survey equipment and collection, pre-processing and processing of survey data is described below.   

 

3.10 Extension of Controls and Topographic/Levelling Survey 

The Control survey was undertaken using Differential Global Navigation Satellite Systems (DGNSS) 

technique. The GNSS Receiver used was a set of Topcon GR3 model with Serial Numbers 1888, 223. 

The existing control points were far from the some of the flooding hotspot sites visited, therefore, 

extension of controls was set up at the Westgate car park and at a location near the Thika super 

highway, and control points fixed. Geodetic GNSS receivers in static mode were used to do the 

observations. The points were established and fixed using iron pins in concrete (IPC). One set of the 

GNSS receivers was used as the base receiver whilst the other two receivers were set as the rovers.  
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The established points were continuously observed for two hours. During the observation, raw data 

were automatically recorded in the equipment after every ten seconds. The recorded raw data files 

were then downloaded from the equipment in TPS files being the file format for the Topcon 

equipment. The TPS files were then converted to rinex format using the toplink software. The rinex 

format files were then post-processed using Kolida Geo Office (KGO) post processing software to get 

the XYZ coordinates for the point.  

 

 

3.11 CP4 & P25 Africa Rainfall Models 

The Long-Rains wet season of March–May (MAM) over Kenya in 2018 was one of the wettest on 

record. Nairobi is frequently hit by large storms, which pose an immense threat to life and destruction 

of infrastructure. Due to climate change, the frequency and intensity of these events are increasing. 

Using the river catchments of Nairobi River & the Ngong River, the main aim of this chapter was to 

investigate and model the extent to which rapid urbanization and climate change increases flood 

hazard vulnerability to the local residents and infrastructure in Nairobi. The impact of climate change 

on the future pluvial flood hazard for the Nairobi & Ngong river catchment in Nairobi was 

investigated using future climate change rainfall uplift factors of 48% & 96% for 24-hour, 48-hour, 

72-hour, 96-hour, 120-hour and 144-hour duration provided from the CP4 Africa & P25 future 

climate models (Stratton et al., 2018).  

 

The CP4-Africa uses a 4.5-km horizontal grid spacing at the equator and run without a convection 

parameterization, nested within a global atmospheric model driven by observations at the sea surface, 

which does include a convection scheme. The results from the CP4-Africa simulation show 

substantial improvements in JJA average rainfall compared to the parameterized convection models, 

with most notably a reduction in the persistent dry bias in West Africa, giving an indication of the 

benefits gained from running a convection-permitting simulation over the whole of African continent. 

The model realistically captures hourly rainfall characteristics, unlike coarser resolution models. 

CP4A shows greater future increases in extreme 3-hourly precipitation compared to a convection-

parameterised 25 km model (R25).  

 

The dataset simulating current climate over Africa with a CP model at 4.5-km grid spacing (CP4), and 

a parameterized convection model at ~25-km grid spacing (P25), has been shown to improve the 

representation of both intensity and timing of rainfall associated with deep convection (Kendon et al., 

2019). CP4A also shows future increases in dry spell length during the wet season over western and 

central Africa, weaker or not apparent in R25. These differences relate to the more realistic 
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representation of convection in CP4A, and its response to increasing atmospheric moisture and 

stability (Stratton et al., 2018). One of the key objectives of this research is to model the impact of 

climate change i.e. climate rainfall on urban pluvial flooding at cityscale. Therefore, to achieve this 

objective, the CP4 Africa & P25 rainfall models have been adapted for use in the development of the 

S3-CP4uplift model and the S4-P25uplift model used in this study 

 

The model produced current (MAM 2018) and future pluvial flood maps for a range of durations, 

which were then combined into the current and future lower & upper band worst-case scenarios for 

the CP4 Africa & P25 models respectively. These were used to assess the impact of climate change on 

pluvial flood hazard in the catchment. This included analysis on flood extent, depth, velocity, and 

hazard, comparing by current and future worst-case and by duration. The Long-Rains wet season of 

March–May (MAM) over Kenya in 2018 was one of the wettest on record. This paper examines the 

nature, causes, impacts, and predictability of the rainfall events, and considers the implications for 

flood risk management.  

 

Several studies have been undertaken to examine eastern African climate change concluding on a 

broad range of rainfall projections (Cook and Vizy, 2013, Giannini et al., 2018, Ongoma et al., 2018, 

Osima et al., 2018, Rowell et al., 2016, Shongwe et al., 2011b, Thiery et al., 2016). The fast-growing 

population in East Africa is vulnerable to changing rainfall and extremes. (Finney et al., 2020), 

investigated both climate change response of key mesoscale drivers of eastern African rainfall, such 

as sea and lake breezes, and the spatial heterogeneity of rainfall responses. The results of the explicit 

model showed widespread increases at the end of the century in mean (~40%) and extreme (~50%) 

rain rates across the region. The effects of climate change are potentially disastrous for East Africa 

(Bornemann et al., 2019). (Nicholson, 2017), examined several aspects of the climate of eastern 

Africa and found that because of long-term climatic change, the region has become a major focus of 

meteorological research in recent years. Eastern Africa comprises of majorly ten countries including 

Rwanda, Kenya, Djibouti, Burundi, South Sudan, Uganda, Ethiopia, Somalia, Eritrea & Tanzania. 

The region has a history of extreme and devastating floods and out of the seven most flood-prone 

countries in Africa, five are in eastern Africa (Li et al., 2016).  

 

These extreme rainfall events especially events which occur from March to May (MAM) have had 

devastating effects on the population in the region, especially when occurring in the same year 

(Nicholson, 2017). There is serious concern for the region's future because of the strong consensus 

that climate change will have a major effect on rainfall (Nicholson, 2017). East Africa is particularly 

vulnerable to extreme weather and climate events, due to limited resources and low adaptation 

capacity and (Bornemann et al., 2019) described the spatial character and large intermodel uncertainty 
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of changes in temperature and rainfall metrics in the region. (Yang et al., 2014), examined how the 

East African long rains will respond to the warming climate forced by anthropogenic emissions of 

greenhouse gases (GHGs) and suggested the wet area getting wetter and the dry area getting drier. 

(Thiery et al., 2016), showed that Lake Victoria is projected to be a hotspot of future extreme 

precipitation intensification by using new satellite-based observations, a high-resolution climate 

projection for the African Great Lakes and coarser-scale ensemble projections. The study found the 

future increase in extremes over Lake Victoria is about twice as large relative to surrounding land 

under a high-emission scenario, highlight a major hazard associated with climate change over East 

Africa and underline the need for high-resolution projections to assess local climate change. 

 

Rapid urban sprawl is taking place in East Africa, and according to (UN-DESA, 2018) the urban 

population in East Africa increased from 21 to 27% during 2000 to 2015, and the expectation is that 

the trend will continue by 2030 to reach 34% resulting in increased pressure on urban infrastructure 

and frequent urban flooding. Nairobi, Kenya is chosen as the case study city for this research because 

it is imperative that urban flood modelling tools that can model the impacts of urbanization and 

climate change on flooding (LREA) of the MAM months are available for use to decision makers, 

policy makers etc. within a framework that enables prioritisation of climate-resilient development, 

utilising cost-effective measures to tackle risks. 

 

Until CP4, future climate projections across Africa have been provided by relatively coarse resolution 

(order 10–100 -km grid spacing) climate models (Christensen et al., 2007). These models rely on a 

parameterisation scheme to represent the average effects of convection that introduces error into the 

model, especially in the tropics where convection is integral to circulation and extremes (Kendon et 

al., 2019). Convection parameterisation schemes often produce very intermittent rainfall and fail to 

capture organised propagating systems, instead simulating unrealistically widespread light daily total 

and insufficient heavy rain (Stephens et al., 2010). The uncertainty with climate change-projection for 

Africa makes it difficult to predict the impacts of climate change and develop adaptation strategies 

(Rowell et al., 2016). The Pan-African Convection-Permitting Regional Climate Simulation with the 

Met Office Unified Model: CP4-Africa is a convection-permitting multiyear regional climate 

simulation using the Met Office Unified Model has been run for the first time on an Africa-wide 

domain. The model was run as part of the Future Climate for Africa (FCFA) Improving Model 

Processes for African Climate (IMPALA) project (Stratton et al., 2018). 

 

3.12   Summary 

This chapter has outlined methods and approaches of how floods are modelled and a provided a 

discussion of the choice of HEC-HMS and HEC-RAS for the hydrodynamic modelling used in this 
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thesis. Further discussion of the setting up and development of the HEC-HMS and the HEC-RAS 

models are described in further detail in subsequent chapters. This chapter also covers the climate 

model choices for future climate scenarios and field work methods used for model validation. Further 

chapter specific methods and data are detailed in each chapter as needed. 
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4.0      URBAN CORRECTION OF GLOBAL DEMS 

4.1 Introduction 

Rapid urban growth puts strain on existing infrastructure and discourages the preservation of natural 

habitat in favour of new housing developments, shopping malls, urban infrastructure, etc. that can 

exacerbate the problem of urban flooding.  Flooding is the most prevalent natural disaster, often  

characterised as a high intensity event that requires rapid emergency service response in order to 

minimise substantial  human and economic losses (Apel et al., 2009). Climate change and 

urbanisation have been reported as the major contributors to the increasing damaging effects of 

flooding to lives and livelihoods worldwide (Aerts et al., 2014). Topography has been identified as a 

key method of estimating flood extent (Horritt and Bates, 2001) and many models of flood extent rely 

on DEMs in order to simulate paths of water flow, flood extent and depth. Errors in DEMs (DEMs) 

can substantially affect the results of flood models (Stephens et al., 2012, Hawker et al., 2018). 

 

Global DEMs used in flood models are representations of physical ground surface and the spatial 

resolution of a DEM refers to the area of land being represented by single regular or irregular grid, 

with the value of each grid element representing the height of the ground at the corresponding datum 

(Vaze et al., 2010). There are many open access global scale DEMs such as the Shuttle Radar 

Topography Mission (SRTM), and its derivatives, the Multi-Error-Removed Improved-Terrain DEM 

(MERIT DEM) and NASA DEM (NASADEM), as well as Advanced Spaceborne Thermal Emission 

and Reflection Radiometer (ASTER) DEM and TerraSAR-X add-on for Digital Elevation 

Measurement (TanDEM-X 90m) etc. The global coverage of these DEMs makes them highly suitable 

for use in scientific applications where they are used extensively in flood models and have been 

critical in facilitating important flood studies, particularly in data-sparse areas, where local data is 

often difficult to access or unavailable (Hawker et al., 2018).  

 

Chen and Hill (Chen and Hill, 2007) investigated the influence of DEM resolution on flood hazard 

modelling in urban areas and found that both vertical height error and spatial resolution of DEMs can 

impact on flood inundation depth and extent in urban flood modelling. Although, spaceborne DEMs 

provide fundamental input to many geoscience studies, they suffer from non-negligible height errors 

(Yamazaki et al., 2017). Sources of error in spaceborne DEMs include: (i) incomplete spatial 

sampling; (ii) measurement errors, such as positional inaccuracy, data entry errors; and (iii) 

processing errors such as computational numerical errors, interpolation errors, and classification and 

generalisation errors (Burrough, 1986). Global DEMs suffer from many different types of errors, 

some of which are significant at local scales; for example, (Rodríguez et al., 2006) reported a global 

mean and standard vertical height error of 8.2 ± 0.7 and 6.9 ± 0.5 m for SRTM X- and C-band data, 
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respectively. There is a number of published work on the correction of errors in global DEMs, 

especially vegetation errors. (Falorni et al., 2005, Bhang et al., 2007, Dong et al., 2015, Gallant et al., 

2012, Baugh et al., 2013, O'Loughlin et al., 2016, Chen et al., 2018).  Also, there are many previous 

studies focused on the assessment of the vertical height accuracy of DEMs by comparing elevation 

values of DEMs to that of a reference local DEM having a higher vertical accuracy. A more accurate 

reference DEM such as the Light Detection and Ranging (LiDAR) is required in order to make an 

assessment of the vertical accuracy of global DEMs (Dong et al., 2015, Wessel et al., 2018, Acharya 

et al., 2018).  

 

Although many studies (Robinson et al., 2014, Yamazaki et al., 2012, Yamazaki et al., 2017) have 

developed new vegetation-corrected DEMs, by either editing or adjusting existing global DEMs. 

However, despite significant advances in developing vegetation-corrected DEMs, there is limited 

understanding of DEM errors that can be attributed to building heights and building density in urban 

areas. Local DEMs that are based on airborne light detection and ranging (LiDAR) are preferential 

over open access, global DEMs due of their superior vertical accuracy, horizontal resolution, and 

ability to distinguish between ‘bare earth’ from built structures and vegetation (Yamazaki et al., 

2017). However, (LiDAR) DEMs (<10 m horizontal resolution) are only available for a very small 

percentage of Earth's land surface (~0.005%), and data acquisition is often expensive (Hawker et al., 

2018).  

 

Building heights and building density inhibit the ability of radar signals to penetrate land surfaces, 

especially in densely populated urban areas where higher DEM resolution does not necessarily ensure 

accurate mapping (Rossi et al., 2012). Gridded elevation datasets, such as the radar-measurement-

derived SRTM, exhibit signal reflection from built structures and vegetation so that further data 

processing may be required to enable accurate flood modelling (Sanders, 2007b). (Kim et al., 2020) 

selected the SRTM and Sentinel 2 multispectral imagery to train the artificial neutral network in order 

to improve the quality of SRTM DEM and then evaluated the performance of the resulting SRTM 

DEM over two dense urban cities. The ‘new’ DEM (iSRTM) showed better results than the original 

SRTM, achieving 38% reduction in the root mean square error (RMSE). Similarly, (Klonner et al., 

2015) leveraged on the advantages of the Airborne Laser Scanning (ALS) and the Open Street Map 

(OSM) to create an up-to-date Digital Surface Model (DSM) combining 2D OSM and ALS data. 

 

Digital surface models (DSMs) can provide a good source of high quality data for the extraction of 

building height maps in urban areas and (Alganci et al., 2018) explored the feasibility of using open 

access DSMs, such as the ALOS (AW3D30), ASTER, and SRTM datasets, for extracting digital 

building height models and compared their accuracy. The potential for DSMs as a rich data source for 

the extraction of building height data has been highlighted as a significant challenge in their use at the 
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same time as representations of DTM in urban flood modelling (Alganci et al., 2018). Despite efforts 

made in the processing of global DEM data prior to making the data publicly accessible, DEMs 

frequently contain artefacts such as spikes, holes and line errors. (Hirt, 2018) recommended that all 

DEM datasets undergo a complete global screening for artefacts prior to public release, further 

advising users to check quality before using global DEMs. Despite recent advances in removing error 

components from DEMs, such as tree height bias, speckle noise, stripe noise and absolute bias, much 

work remains in the urban correction of building biases in global DEMs.  

 

According to (Hawker et al., 2018), there is no forthcoming high-accuracy open-access global DEM, 

therefore, for the foreseeable future, the primary means of improving flood simulation will be to use 

editing or stochastic simulation using existing DEM data. Urban correction of existing global DEMs 

remains a key research challenge. In this context, the present paper develops a methodology for the 

urban correction of six global DEMs, tested using building density data from the city of Nairobi, 

Kenya. Although the scope of this study is currently limited to the use of building density data, 

however, we anticipate that once building height data becomes globally available, our methodology 

can be extended to urban correction of DEMs using building height data.   

 

4.2 Study Site 

Nairobi is the capital and largest city of Kenya and chosen as the study area for this research due to its 

rapid urban expansion within the last two decades, Figure 2.  Nairobi has witnessed a population 

growth from 0.51 to 4,397,073 million people at a growth rate of 3 to 4% per year in past 50 years 

leading up to the 2019 national census (KNBS, 2019). The lies within an administrative area of 

696 km2 (269 sq mi), whilst the metropolitan area has a population of 9,354,580. The city lies on 

the River Athi in the southern part of the country and has an elevation of 1,795 metres (5,889 ft) 

above sea level (Nippon, 2014). Approximately 2 million people that make up nearly half the 

population of Nairobi live in the informal settlement area (5%) of the city occupying meagre 1% of 

the total 696 km2 land area (Amnesty-International, 2019) 
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Figure 2. Map of the study area showing Nairobi  

 

In their recent work (Henderson et al., 2016), developed a dynamic model of a growing city that 

shows the urban expansion of Nairobi, Kenya. The study highlighted the nature of the intensified land 

use within Nairobi and its increasing building heights, with a key distinction between formal and 

informal, or slum sectors. The study painted a picture of the built environment of Nairobi, both in the 

spatial cross-section and its evolution through time between 2003 and 2015. The built volume of the 

whole city increased at 3.9% p.a., expanding by 59% between 2003 and 2015. The growth and 

expansion within the central business district and formal sector redevelopment increased building 

volume by 35%. The expansion in the city was achieved by the demolition of over one third of 

buildings and redevelopments that saw three times increase in building heights. The study painted a 

picture of a monocentric city with tall but variable building height at the centre and then diminishing 

moving away from the centre of the city.  
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4.3 Dataset Description 

Global DEMs derived from spaceborne and remote sensing data, and which are used in many global 

flood studies, are important data sources of ground surface height information (Hawker et al., 2018). 

DEMs are a type of raster, regular or irregular grids of spot heights that provide a three-dimensional 

(3D) model of the earth surface that can be categorised into two groups: (i) digital terrain models 

DTMs, which are free of trees, buildings, and all other types of object; and (ii) digital surface models 

DSMs (Figure 3), which reflect the earth’s surface, including all man-made, natural objects and other 

features elevated above the ‘Bare Earth’ (Martha et al., 2010, Maune and Nayegandhi, 2017).  

 

 

Figure 3. Difference between DSM and DTM (both DEMs) 

 

DTMs are obtained by different methods such as the interpolation of contour lines that include not 

only heights and elevations, but also other geographical elements and natural features such as rivers, 

ridge lines, and so on (Moore et al., 1991). Whilst DSMs are mostly used for landscape modelling and 

applications for projection of cities in 3D, etc, DTMs have applications for global flood modelling,   

geoscience studies, drainage modelling, land use studies etc (Rayburg et al., 2009, Alganci et al., 

2018).  In this study, we focused on six of the most widely used global DEMs as fundamental input 

for many geoscience studies: SRTM; MERIT; ALOS; NASADEM; TanDEM-X  12 m; and TanDEM-

X  90 m.  Figure 4 provides an illustration of the visual comparison of the six global DEMs over the 

study area of Nairobi, Kenya whilst Table 5 shows a summary of the characteristics of the global 

DEMs used in this study. 
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Table 5. Characteristics of the six global DEMs used in the study. 

DEM Resolution (m) Vertical 
accuracy (m) 

Reference 

SRTM 90 
6 m (MAE)a 

 
(Farr et al., 2007) 

MERIT 90 
5 m (LE90)b 

 
(Yamazaki et al., 2017) 

ALOS 30 4.4 m (Tadono et al., 2016) 

NASADEM 30 < 6 m ((MAE)a) (Buckley et al., 2020) 

TanDEM-X 12 & 90 <10 m (Mason et al., 2016) 
  
a  Mean error 

b  90th percentile linear error 

 

 

 

Figure 4. Visual comparison of the six global DEMs, applied in Nairobi. 

4.4 Global DEMs 

The Shuttle Radar Topography Mission (SRTM) was a joint endeavour of NASA, the National 

Geospatial‐Intelligence Agency, and the German and Italian Space Agencies that flew in February 

2000. It used dual radar antennas to acquire interferometric radar data, processed to digital 

topographic data at 1 arc sec resolution (Farr et al., 2007). Three official versions of SRTM have been 
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released. Version 1.0 is the (almost) raw data obtained during the mission and its quality is considered 

research-grade. The Non-Void Filled version 2.1 is the data from Version 1 cleaned-up to correct 

processing errors and to clip data to water boundaries. This version still contains "void" areas for 

which there is no elevation data. These void areas are due to problems obtaining data using the radar 

methodology, such as in areas with steep terrain, and areas of low reflectivity such as flat deserts. The 

last official version of the SRTM (V3 or “SRTM Plus”) ) data with 01″ resolution (∼30 m at the 

Equator) removes all of the void areas by incorporating data from other sources such as the ASTER 

GDEM and was publicly released in 2014 (Kolecka and Kozak, 2014).  
 

The Multi Error removed Improved Terrain (MERIT) DEM was developed by removing multiple 

error components (absolute bias, stripe noise, speckle noise, and tree height bias) from the existing 

spaceborne DEMs (SRTM3 v2.1 and AW3D-30m v1) using multiple satellite data sets and filtering 

techniques (Yamazaki et al., 2017).  MERIT represents the terrain elevations at a 3sec resolution 

(~90m at the equator), and covers land areas between 90N-60S, referenced to EGM96 geoid.  

Following the removal of the various error components, land areas mapped with ±2 m or better 

vertical accuracy were  

increased from 39% to 58%. Significant improvements were found in flat regions where height errors 

larger than topography variability, and landscapes such as river networks and hill‐valley structures, 

became clearly represented (Yamazaki et al., 2017).  
 

SRTM produced an unprecedented near-global DEM of the world (Farr et al., 2007). Since its release, 

the SRTM DEM is widely used in many research studies, commercial, and military applications. The 

objective of the NASADEM project was to improve the SRTM DEM vertical height accuracy and 

data coverage. The improvements were achieved by reprocessing the original SRTM radar echoes and 

telemetry data with updated algorithms and auxiliary data not available at the time of the original 

SRTM production (Crippen et al., 2016, Vaka et al., 2019). One known issue of the SRTM DEM is 

the observed height ripples caused by uncompensated SRTM antenna boom motion. The NASADEM 

compensate for these elevation ripples based on a high-resolution correction of strip data in radar 

geometry (Crippen et al., 2016). The NASADEM data is available for download via 

https://lpdaac.usgs.gov. 

 

The TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurements) is a spaceborne radar 

interferometer that is based on two TerraSAR-X radar satellites flying in close formation since 2010 

to map all land surfaces at least twice and difficult terrain mapped even up to four times. Krieger et al. 

(2007). The TanDEM-X Digital Elevation Model (DEM) is a DEM with a complete global coverage 

at 3 arc-seconds resolution (~90 m at the equator) of the earth’s surface (Zink et al., 2016). The 

TanDEM-X 90 m resolution DEM product is open and free for download from 

https://download.geoservice.dlr.de/TDM90/ but the 0.4 arc second (12 m resolution) version is only 
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free to the science community for educational purpose. An application was made to the German 

Aerospace Centre for the release of TanDEM-X 12 m DEM used in this study.  

 

Accuracy assessment of the TanDEM-X  90 m DEM used in this study has been undertaken by 

different studies to determine their suitability for global flood modelling and found the TanDEM-X  

DEM has improved flood inundation predictive capacity when compared to other DEMs, but not 

MERIT (Wang et al., 2012, Yan et al., 2015, Mason et al., 2016).  (Hawker et al., 2019), carried out 

error accuracy assessment of the TanDEM-X DEM on the freely available TanDEM-X 90 for selected 

floodplain sites in comparison to other popular global DEMs with results indicating that the average 

vertical accuracy of TanDEM-X 90 and MERIT are similar and are both a significant improvement on 

SRTM. Also, results suggested that TanDEM-X 90 is the most accurate global DEM in all land cover 

categories tested except short vegetation and tree-covered areas where MERIT is demonstrably more 

accurate.  

 

The ALOS World 3D – AW3D30 (ALOS) global DEM data were produced using the data acquired 

by the Panchromatic Remote Sensing Instrument for Stereo Mapping (PRISM) operated on the ALOS 

from 2006 to 2011 (Takaku et al., 2016). The operator of the satellite is the Japan Aerospace 

Exploration Agency (JAXA) and the mission led to the production of the global ALOS DEM using 

approximately 3 million images. The free version of the DEM has a 1″ resolution, which is equivalent 

to approximately 30 m at the Equator and model is downloadable in 1°×1° tiles. The grid elevations 

(m) are referenced to the EGM96 geoid and the geographic coordinates are referenced to the GRS80 

ellipsoid (Caglar et al., 2018). The dataset is downloadable from: 

www.eorc.jaxa.jp/ALOS/en/aw3d30. 

 

4.5 Facebook High Resolution Settlement Layer (HRSL) Data 

Facebook, in partnership with the Centre for International Earth Science Information Network 

(CIESEN) at Columbia University developed population grids dataset for 140 countries by using 

machine learning applied to high resolution satellite imagery (Tiecke et al., 2017).  The high 

resolution settlement layer (HRSL) provides estimates of human population distribution at a 

resolution of 1 arc-second (approximately 30 m) using population estimates assigned to settlements 

delineated by machine learning algorithm in both urban and rural areas. Each 30 m grid has a 

population value assigned to an identified structure. For building density purposes, the data assumes 

grids with no population have no buildings and those with population have a building covering the 

whole grid. The Data is accessible via 

https://data.humdata.org/dataset/highresolutionpopulationdensitymaps 
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4.6 Sentinel-1 SAR Data Derived Global Building Map 

(Chini et al., 2018), introduced a technique for automatically mapping built-up areas using synthetic 

aperture radar (SAR) backscattering intensity and interferometric multi-temporal coherence generated 

from Sentinel-1 data. The data represents global building maps in 20 m resolution and derived from 

multi-temporal InSAR coherence, a systematic and consistent feature that allows for a better 

characterization of urban areas. The urban footprint data are on average in 92% agreement with the 

Global Urban Footprint (GUF) map derived from the TerraSAR-X mission data (Chini et al., 2018).  

 

4.7 Reference Topography Relief Map Data  

As a reference raster, we used data from an interpolated contour map of Nairobi, which has an 

estimated vertical error of ± 2 m and is derived from aerial photogrammetry. The detailed contour 

map was produced  in 2003 by the Japanese International Co-operation Agency (JICA) for the 

government of Kenya (Nippon, 2014). In 2003, JICA performed an aerial triangulation that mapped 

the entire city of Nairobi (595 km2), excluding the Nairobi National Park (~107 m2); the mission 

required 15 aerial photography flight strips over Nairobi, including 20 GPS validation photo points. 

The standard deviation (SD) of the final coordinates of all the newly installed photo control points 

was within an acceptable limit (within 30 cm vertical height error). JICA released this data for use in 

the present study, providing the original topography contour map as a vector file which we converted 

to a raster elevation file using the TIN Interpolation plugin conversion tool in QGIS. 

 

4.8 Methodology 

4.9 Procedure for urban correction of global DEMs 

A five‐step method is developed for removing building density error from the six global DEMs 

namely: (i) NASADEM, (ii) SRTM, (iii) MERIT, (iv) ALOS, (v) TanDEM-X 12 m, and (vi) 

TanDEM-X 90 m.  presents a flowchart of the datasets and methodology used in the five-step method, 

and each step is also described in detail. 

 

This five-step method is first applied to the whole of greater Nairobi area, followed by a separate 

application to just the Central Business District. The CBD area is the commercial hub of Nairobi and 

is composed of tall buildings, skyscrapers, government offices etc. and it should provide some 

insights into the effect of building heights on DEM errors.      
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Figure 5. Flowchart of the datasets and methodology used to correct building density errors in global 
DEMs in our five-step method. This can be applied to any spatial extent. 

 

Step 1: Pre-process raster data. To allow for consistent geospatial analysis, all six global DEMs 

data were transformed to the EGM96 Geoid, if not already, and resampled to a 90 m raster resolution. 

This was carried out for all six global DEMs and for the reference DEM. The resampling was carried 

out using the bilinear method using QGIS (v3.12) raster resampling tools. The SRTM, MERIT, 

ALOS, NASADEM elevation data are orthometric heights referenced to the EGM96 Geoid, whilst the 

TanDEM-X 12 & 90 m elevations are referenced to the WGS84 (G1150) ellipsoid. Therefore, in order 

to compare elevations, the TanDEM-X 12 m & TanDEM-X 90 elevations were transformed to the 

EGM96 Geoid using the NOAA’s VDatum transformation tool, version 4.0.1 accessible via 

(https://vdatum.noaa.gov/). Using QGIS Triangulated Irregular Network (TIN) interpolation plugin 

tool, we created a DEM raster map of the study area from the original topography contour map of the 

study area to serve as the reference DEM, resampled to 90 x 90 m grids to match the horizontal 

resolution of the global DEMs.   

 

Step 2: Calculate global DEM error. Using the GIS raster algebra tool, vertical accuracy is 

calculated for the six global DEMs by creating error maps as shown in Figure 6. The error rasters are 

produced by subtracting elevations of the JICA reference DEM, which has a higher vertical accuracy, 

from the six global DEMs of the study area, (Equation 1). The root-mean square error (RMSE), mean 

error (ME), standard deviation (SD) and median (M) are then calculated for each global DEM. The 
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differences in the elevations of global DEMs are analysed by using error metrics, density distribution 

plots and the DEM error maps. 

 

  

Figure 6. Error map of global DEMs at 90 m resolution 
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where Y is elevation in metres, GD refers to the global DEM, and ref refers to the reference JICA 

elevation.  

 

Step 3: Calculate building density. The building density rasters are calculated by processing the 

Facebook high-resolution settlement layer data (HRSL) and the Sentinel-1 SAR urban footprint map 

developed by LIST to generate building density maps. We resampled the HRSL and Luxe bough 

Institute of Science & Technology (LIST) building maps to a coarser grid size and using GIS raster 

aggregation tools, an aggregate is computed over all of the input raster grids whose centres lie within 

the output grid of a coarser resolution (270 x 270 m) urban footprint map of the study area. QGIS 

tools (qgis/grass/r.resamp.stats) are used to resample the building maps to a coarser grid using 

aggregation to generate building density maps. An aggregate is computed over all of the input raster 

grids whose centres lie within the output cell. The aggregate uses the values from all input raster grid 

cells of 20 m resolution of the LIST building map which intersect the coarser resolution (270 m) 

output cell, weighted according to the proportion of the source cell which lies inside the output cell to 

generate building density maps for the study area. The aggregate uses the weighted values to create a 

building density raster with a building to land area fraction within the study area of between 0 and 1 

Figure 7.  

 

A visual comparison of the Facebook HRSL and the LIST data with google earth image of the study 

area show that the LIST urban footprint map is of better agreement with building footprint of the 

study area. Therefore, the building density map derived from the LIST urban footprint map is found to 

be of higher accuracy in comparison to the output building density map derived from the HRSL 

population density map, Figure 7. The higher resolution nature of the LIST data i.e. 20 m compared to 

the 30 m for the Facebook HRSL data is a plausible explanation for the differences in the results and 

accuracy of the two output maps. Consequently, the study is progressed based on the use of the 

building density map derived from the LIST urban footprint map for the study area.  
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Figure 7. Building density raster of Nairobi derived from (a) the Facebook HRSL population density 
map, and (b) global urban building map. 

 

Step 4: Determine DEM error relationship with building density. In order to calculate the building 

density error for each tile of the global DEMs, a relationship is established between DEM error and 

building density. Using the gdalqxyz plugin in QGIS tools, raster values for the error maps and 

building density maps are exported from the GIS platform and converted the exported data to csv 

format for further processing.  Plots of DEM error versus building density are created for all six 

global DEMs represented by a linear regression fit and R2 values as illustrated in Figure 10. As is 

common in other DEM correction studies, a linear relationship is used due to the noisiness of the data 

(Baugh et al., 2013) and (O'Loughlin et al., 2016). The resulting DEM error coefficient for each DEM 

represented increases in mean error measured in meters for every increase in building density and set 

between 0 and 1, with zero representing areas of no buildings at all and value of 1 for very dense areas 

respectively. 

 

Step 5: Apply error relationship to correct global DEM. The next step is to remove the fraction of 

vertical error component that is associated with building density. This is calculated for each DEM 

grid, grid-by-grid from the linear regression functions by using the DEM error coefficient, building 

density predictor, and a constant value, (Figure 10). The procedure is repeated for all six global 

DEMs. Subsequently, using the raster calculator tool in QGIS, a building density error map is created 

for each of the global DEMs with an example for the SRTM DEM shown in Figure 11a. The building 

density error maps are created using the linear regression function for each of the global DEMs and 

the building density map derived from the LIST urban building map. To create the new urban 

corrected DEM for all six global DEMs, building density error map is subtracted from the original 

global DEM to arrive at the final product illustrated with the SRTM DEM in Figure 11b. The new 
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product is the urban corrected NASADEM, SRTM, MERIT, ALOS, TanDEM-X 12 m, TanDEM-X 

90 m DEM for Nairobi, Kenya.  

 

The Central Business District (CBD) area (Figure 8) of Nairobi features many tall buildings, 

government offices, skyscrapers etc. and we wanted to understand if taller buildings will provide 

some further insights into the nature of the error. Therefore, the analysis of the urban correction of the 

global DEMs is extended to the CBD area by repeating the 5 steps described above for the CBD area.  

 

 

Figure 8. Map of the Central Business District (CBD), Nairobi 
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5.0      Results and Discussion 

5.1 Distribution of Vertical Errors 

The results show the MERIT DEM with the smallest vertical height deviation from the reference 

DEM, with an SD of 2.97 m, followed by TanDEM-X 12 and TanDEM-X 90, which had similar SDs 

of 3.03 m and 3.29 m, respectively. Figure 9 provides an illustration of comparison of density 

distribution plots for the six global DEMs. The error statistics for the six global DEMs are shown in 

Table 6. The SRTM, NASADEM & ALOS DEMs show a standard deviation of 5.92 m, 3.46 m, and 

4.34 m respectively.  

 

The results show that the MERIT and TanDEM-X 12 m & 90 m global DEMs have lower vertical 

height errors in comparison to the NASADEM, SRTM & ALOS DEMs if the SD metric only is 

considered. In addition, if the RMSE metric of the errors is considered alongside mean and median 

values, MERIT still provides lowest overall values and highest accuracy of all six global DEMs. The 

MERIT DEM is a multiple error-reduced improved version of SRTM (Chen et al., 2018)  with tree 

height bias, stripe noise, absolute bias, and speckle noise removed from the original SRTM. MERIT is 

a corrected version of the SRTM, therefore, providing a plausible explanation for its higher accuracy.  

 

(Hawker et al., 2019) investigated the vertical height accuracy of the TanDEM-X  DEM 90 m, in 

comparison to other popular global DEMs by using high resolution (<10 m) LiDAR (Light Detection 

and Ranging) DEMs as a reference dataset. Their results show mean error values of 1.09 m, 1.30 m 

and 1.06 m for the MERIT, SRTM and TanDEM-X 90 DEMs respectively. The results correspond 

well with our own mean error magnitudes of 0.77 m, 0.87 m, and 1.72 m for the MERIT, SRTM and 

TanDEM-X 90 m DEMs.  

 

The density distribution plot for all six global DEMs shown in Figure 9 demonstrates that all six 

global DEMs have a unimodal distribution, except for SRTM which shows a weak bi-modal 

distribution. The kurtosis of the error distribution for all six global DEMs are generally positive for 

MERIT, NASADEM, ALOS, TanDEM-X 12 and TanDEM-X 90 m DEMs, but is less positive for the 

SRTM DEM by showing a less acute peak around the mean than the other DEMs. SRTM, MERIT, 

and NASADEM DEMs show a nearly symmetric error distribution with a near zero skewness whilst 

ALOS, TanDEM-X 12 and TanDEM-X 90 m DEMs all have positive skewness and show more 

extreme positive outliers than negative ones.  

 

The while the SRTM DEM shows a relatively low positive mean error (+0.87 m), this is only as a 

result of averaging cancelling out a large positive and negative spread of errors, evidenced by the 
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highest Standard Deviation (5.32 m) of all the DEMS. The MERIT and NASADEM are derivatives of 

the SRTM DEM, with improvements made to reduce errors and in MERIT’s case also remove 

vegetation bias. Unsurprisingly therefore these have better error characteristics than SRTM. However, 

neither MERIT nor NASADEM have been corrected for urban bias and this perhaps explains some of 

the remaining positive error bias (overprediction of elevation), which is larger for the NASADEM 

(+1.99 m) compared to the MERIT (+0.77 m). The higher mean error of NASADEM is likely 

explained by the lack of vegetation correction compared to MERIT. TanDEM-X, another radar 

instrument derived dataset also suffers from a similar positive error bias (for 12 and 90 m, 1.83 and 

1.87 m respectively) presumably also for the lack of vegetation and urban error correction.  

 

There are only minor differences between the 12 m and 90 m TanDEM-X DEMs in our analysis, 

unsurprising as the 90 m DEM is derived from the 12 m DEM in the first place. However, we might 

expect if we were resampling from 12 m to 90m this may reduce random noise error due to the 

averaging process. This does not seem to be the case here, indicating that the positive bias is indeed 

related to a systematic bias, likely vegetation and urban artefacts (and possibly other errors). The most 

unusual error characteristics are observed in the ALOS DEM. 

 

Figure 9. Comparison of density distribution plots for the six global DEMs: ALOS (AW3D30), SRTM, 
MERIT, NASADEM, TanDEM-X 12m, and TanDEM-X 90 m 

 

Table 6. Statistical error parameters for the global DEMs, in metres, before (and after) urban 
correction 
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DEM SRTM MERIT NASADEM ALOS TanDEM-X 12 TanDEM-X 90 

Mean -0.87 (-0.72) 0.77 (0.35) 1.99 (1.76) -1.92 (-1.25) 1.83 (1.68) 1.87 (1.72) 

RMSE 0.99 (0.85) 0.88 (0.48) 1.41 (1.33) 1.54 (0.92) 1.35 (1.22) 1.37 (1.28) 

SD 5.92 (5.32) 2.97 (2.53) 3.46 (3.28) 4.34 (3.53) 3.03 (2.89) 3.29 (2.60) 

Median -0.41 (-0.36) 1.02 (0.70) 1.45 (1.19) -1.39 (-1.26) 1.28 (0.98) 1.42 (1.17) 

 

The error statistics for our urban corrected global DEMs are also shown in Table 6 along with the 

original DEM error statistics to allow direct comparison.  

 

5.2 DEM Error and Building Density Relationships  

We found that there is a linear and positive, but noisy relationship between DEM error and building 

density Figure 10.  All the DEMs show a noisy relationship; with SRTM having the noisiest  Figure 

10(b)) and TanDEM-X  DEMs the least noisy (Figure 10(e) & (f)). At zero building density the DEM 

error is not necessarily zero. For each DEM, the highest error in all DEMs is found at the highest 

building density of 1 as shown in Table 8.  

 

The CBD features many of Nairobi’s important buildings, government offices, headquarters of 

business and corporations – both national & international, skyscrapers etc. The scatter plots of 

building density of the CBD area against DEM error for the six global DEMs is shown in Figure 10. 

The analysis of the urban correction of the global DEM for the Central Business District area (Figure 

8) of Nairobi consisting of taller buildings provided some further insights into the nature of the errors. 

Similar to the results of the analysis undertaken at a city scale for Nairobi, we found that there is a 

linear and positive, but noisy relationship between DEM error and building density. All the DEMs 

show a noisy relationships and the statistical error parameters for the six global DEMs both before 

(and after) the urban correction for the CBD area is shown in Table 6.  

 

The relationships for both CBD area and Nairobi appear to be weak when the values of the R2 are 

considered. However, the very sensitive nature of the impacts of vertical height accuracy on DEMs 

means that these results are real and can be significant. We noticed a higher error for the CBD area 

across all error metrics of ME, RMSE, and SD for all six global DEMs. For example, Table 7 shows a 

comparison of the error parameters for the SRTM and the TanDEM-X 90 m DEMs for Nairobi city 

wide and for the CBD area both before and after the urban correction. The error parameters in the 

CBD area is between 15 to 45 percent higher than those of the Nairobi city wide area for the DEMs. 

The very tall nature of the buildings in the CBD area appears to have contributed to the percentage 

increase in the errors. The focus of this study is on building density error and the results obtained for 
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the CBD area show building heights can be an important contributor to DEM errors in urban areas and 

is worthy of further study. 

 

Table 7. Statistical error parameters for SRTM & TanDEM-X 90 m DEMs in Nairobi city wide and 
the CBD area, in metres, before (and after) urban correction 

DEM 
SRTM 

(Nairobi) 

SRTM 

(CBD) 

TanDEM-X 

90 (Nairobi) 

TanDEM-X 90 

(CBD) 

Mean -0.87 (-0.72) -1.25 (-1.04) 1.87 (1.72) 2.49 (2.01) 

RMSE 0.99 (0.85) 1.39 (1.02) 1.37 (1.28) 2.18 (1.85) 

SD 5.92 (5.32) 6.84 (6.24) 3.29 (2.60) 4.84 (4.04) 

Median -0.41 (-0.36) -0.88 (-0.49) 1.42 (1.17) 1.94 (1.52) 

 

We corrected the DEMs by applying a correction based on the linear error relationship fitted to each 

DEM (Table 8). For example, to correct the SRTM DEM we calculated the vertical error for the given 

building density of a corresponding DEM grid using the regression equation in Table 8 to create a 

building density error raster Figure 11a. Subsequently, the building density error map is subtracted 

from the original DEM to create the urban corrected DEM in Figure 11b. 

 

It should be noted that there will be the requirement for a local reference DEM data of vertical height 

accuracy higher than the global DEMs before the methodology described in this paper can be adapted 

for similar urban case study areas. Accuracy assessment of the global DEMs will involve the 

subtraction of elevation values belonging to each grid cell of the reference DEM from the 

corresponding cells of the global DEMs. Also, the six global DEMs and the reference DEM datasets 

used in the study were acquired over different periods spanning decades and could be a possible factor 

influencing the higher accuracy of the most recent DEMs. 

 

Building error DEM artefacts in urban areas have two major components: building density and 

building height. Ideally, both of these components should be removed from DEM data; however, 

building height data is unavailable on a global scale. Therefore, this paper only addresses errors due to 

building density biases. Our results show that global DEMs can be usefully corrected for building 

density errors in urban areas, even where specific building height data are not available.  
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Table 8. Correction error of global DEMs at highest and lowest measured building densities (BD) 

DEM 
Regression 

equation 

Correction error 

(m) at highest BD 

Correction error 

(m) at lowest BD 

SRTM 4.73x + 0.34 5.07 0.34 

MERIT 0.73x + 0.52 1.25 0.54 

NASADEM 2.21x + 2.26 4.47 2.26 

ALOS 0.53x + 1.74 2.27 1.74 

TanDEM-X 12 1.49x + 1.56 3.05 1.56 

TanDEM-X 90 1.53x + 1.81 3.34 1.81 
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Figure 10. Scatter plots of building density with DEM error, with superimposed linear regression 
lines of best fit for the tested global DEMs, applied to Nairobi: (a) ALOS; (b) SRTM; (c) MERIT; (d) 
NASADEM; (e) TanDEM-X 12 m and (f) TanDEM-X  90. 

 

 

 

Figure 11. (a) Building density error raster for SRTM DEM, (b) urban-corrected SRTM DEM. 
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 Figure 12. Scatter plots of building density with DEM error, with superimposed linear regression 
lines of best fit for the tested global DEMs, applied to Central Business District (CBD): (a) ALOS; (b) 
SRTM; (c) MERIT; (d) NASADEM; (e) TanDEM-X 12 m 
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Table 9. Statistical error parameters for the global DEMs in the CBD area, in metres, before (and 
after) urban correction 

DEM SRTM MERIT NASADEM ALOS TanDEM-X 12 TanDEM-X 90 

Mean -1.25 (-1.04) 1.05 (0.68) 2.47 (1.96) -2.32 (-1.46) 2.15 (1.87) 2.49 (2.01) 

RMSE 1.39 (1.02) 1.28 (0.88) 2.06 (1.73) 2.19 (1.43) 2.09 (1.72) 2.18 (1.85) 

SD 6.84 (6.24) 3.02 (2.87) 3.98 (3.60) 4.95 (3.99) 4.36 (3.73) 4.84 (4.04) 

Median -0.88 (-0.49) 1.33 (0.91) 1.98 (1.64) -1.74 (-1.51) 1.61 (1.15) 1.94 (1.52) 

 

5.3 Analysis of DEM error versus building density relationships for Kibera 
slum area and Embakasi residential area. 

The Central Business District (CBD) area of Nairobi is characterised by tall buildings, office towers, 

historical buildings, parking lots and less housing compared to other areas within the city. Buildings 

from 0-1 km of the Nairobi city centre average 10 stories, at about 3m, a storey. (Henderson et al., 

2016). In order to determine the extent of the residual building height error remaining in the corrected 

DEMs, the analysis for the correction of the global DEMs is extended to the Kibera slum area (Figure 

13) and the Embakasi residential area (Figure 14) of the city of Nairobi.  

 

Kibera is a large slum area to the southwest of the central business district of Nairobi city and often 

referred to as Africa’s largest slum (Henderson et al., 2016). The slum of Kibera is located directly 

south-west of the centre, ranging from about 3-5 km of the central business district.  The majority 

(about 55%) of housing walls are corrugated iron sheets and building height values ranging from 2m 

to maximum 4 m high (Henderson et al., 2016)  

 

Embakasi is located east of the CBD of Nairobi. Embakasi district neighbours Mihango estate to the 

east, Embakasi and Fedha estates to the south, Kayole and Donholm estates to the West. Embakasi is 

considered part of Nairobi's Eastlands area, lying 15km to the south-east of Nairobi province. Jomo 

Kenyatta International Airport, the main airport of Nairobi is located in Embakasi. As a residential 

estate it houses mostly middle to lower income citizens. Most of the residential houses are four to 

eight storey flats. 
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Figure 13. Map of the Kibera slum area of  Nairobi city 

 

 

Figure 14. Map of the Embakasi residential area of  Nairobi city 
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The scatter plots of building density of the Kibera slum area and Embakasi residential dwelling area 

against DEM error for the six global DEMs is shown in Figure 16 and Figure 17. Similar to the 

results of the analysis undertaken at a city scale level and for the central business district area of the 

city, the results show that there is a linear and positive, but noisy relationship between DEM error and 

building density for the Kibera and Embakasi area. However, the results of the relationships for the 

Kibera slum area and Embakasi residential area appear to be stronger when the values of the R2 are 

considered against the results for the central business district area and the results for the Nairobi city 

analysis. A comparison of the scatter plots for all four areas of Nairobi investigated in this study 

reflects the nature of the settlements (density) across the four areas and the specific impacts building 

density can have on DEM error.  

 

The very sensitive nature of the impacts of vertical height accuracy on DEMs means that these results 

are real and can be significant, especially in very densely populated areas where the ratio of building 

density to available space is very high and up to the value of 1. The results show a higher error for the 

Kibera slum area followed by the Embakasi area, the Central CBD and lastly the Nairobi city wide  

area across all error metrics of ME, RMSE, and SD for all six global DEMs. For example, Table 10 

shows a comparison of the error parameters for the SRTM DEM for Nairobi city wide area, CBD 

area, Kibera slum area, and Embakasi residential area, both before and after the urban correction of 

the DEMs.  

 

The p values (with a threshold of 0.05) for the DEM error versus building density for the analysis the 

Kibera slum area and the Embakasi residential area is shown in Table 11. When comparing p values 

for the Kibera slum area and the Embakasi residential area, the results show the relationships for the 

Kibera area with more significance than the DEM error vs building density relationships for the 

Embakasi residential area. It is concluded that the very high building density of the Kibera area is 

responsible for the smaller p values of the shown in the DEM error versus building error relationships 

for the area when compared to the Embakasi residential area. A comparison of the p values for all four 

study areas (Nairobi city wide; Nairobi Central Business District (CBD); Kibera slum area; and the 

Embakasi residential area) is also shown in Table 11. The results show the Kibera slum area with the 

smallest  p values for the error relationships for all DEMs followed by the Embakasi residential area, 

the central business district (CBD) and the Nairobi citywide scenario.   

 

Table 10. Statistical error parameters for SRTM  DEM in Nairobi city wide, CBD, Kibera slum and 
the Embakasi residential area, in metres, before (and after) urban correction 

DEM 
SRTM 

(Nairobi) 

SRTM 

(CBD) 

SRTM 

(Kibera) 

SRTM 

(Embakasi) 
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Mean -0.87 (-0.72) -1.25 (-1.04) 1.88 (1.09) 2.16 (1.62) 

RMSE 0.99 (0.85) 1.39 (1.02) 1.76 (1.27) 1.42 (1.05) 

SD 5.92 (5.32) 6.84 (6.24) 4.17 (3.89) 4.46 (4.31) 

Median -0.41 (-0.36) -0.88 (-0.49) 1.69 (1.21) 1.83 (1.49) 

 

 

  

 

   

 

  

Figure 15. Scatter plots of building density with DEM error, with superimposed linear regression 
lines of best fit for the tested global DEMs, applied to Central Business District (CBD): (a) ALOS; (b) 
SRTM; (c) MERIT; (d) NASADEM; (e) TanDEM-X 12 m 
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Figure 16. Scatter plots of building density with DEM error, with superimposed linear regression 

lines of best fit for the tested global DEMs, applied to the Kibera slum area of Nairobi city: (a) ALOS; 

(b) SRTM; (c) MERIT; (d) NASADEM; (e) TanDEM-X 12 m 
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Figure 17. Scatter plots of building density with DEM error, with superimposed linear regression 

lines of best fit for the tested global DEMs, applied to the Embakasi residential area of Nairobi city: 

(a) ALOS; (b) SRTM; (c) MERIT; (d) NASADEM; (e) TanDEM-X 12 m 
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Table 11. p values for DEM error vs Building Density relationships for the Nairobi city, Nairobi Central Business District 
(CBD), Kibera slum area and Embakasi residential area. 

DEM error vs Building density 
relationships 

P values 

Nairobi 
Citywide 

Nairobi 
CBD Kibera Slum 

Embakasi 
Residential 

Area 

Reference DEM vs Building Density 0.05 0.03 1.13 x 10-5 0.008 

MERIT DEM vs Building Density 0.08 0.05 2.28 x 10-5 0.01 

SRTM DEM vs Building Density 0.09 0.05 2.28 x 10-5 0.02 

TanDEM X 12m DEM vs Building Density 0.09 0.06 3.13 x 10-5 0.03 

TanDEM X 90m DEM vs Building Density 0.11 0.08 3.58 x 10-5 0.04 

NASADEM DEM vs Building Density 0.12 0.07 2.57x 10-5 0.05 

ALOS DEM vs Building Density 0.13 0.09 2.91 x 10-5 0.04 

 

 

5.4 Summary  

Open-access global DEMs are not only useful tools for estimating flood risks, but they also provide 

baseline data for flood studies. Despite significant advances in developing vegetation-corrected 

DEMs, there is limited understanding of DEM errors that can be attributed to building heights and 

building density in urban areas. Current global DEMs are not corrected for building errors. Because 

building height data is unavailable on a global scale, this paper addresses errors due to building 

density biases.  

 

In this study a methodology for building error correction is developed that can be applied to any other 

case study, where building density data and a local reference DEM data of vertical height accuracy 

higher than the global DEMs are available. In this study, quantified the building error is quantified for 

the city of Nairobi, Kenya for six of the most widely used global DEMs: SRTM; MERIT; ALOS; 

NASADEM; TanDEM-X  12 m; and TanDEM-X  90 m. The results show building error at highest 

building density varying between 1.25 m and 5.07 m for the DEMs used. The results show the 

MERIT DEM with the smallest vertical height deviation from the reference DEM, with an SD of 2.97 

m, followed by TanDEM-X 12 and TanDEM-X 90 (3.03 m and 3.29 m respectively). In addition, if 

the RMSE metric of the errors is considered alongside mean and median values, MERIT still provides 

the lowest overall values and highest accuracy. A plausible explanation for its higher accuracy is that 

the MERIT DEM is a multiple error-reduced improved version of SRTM with tree height bias, stripe 

noise, absolute bias, and speckle noise removed.  
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By deriving a relationship between DEM error and building density the evaluated building error is 

corrected. It was found that there is a linear and positive, but noisy relationship between DEM error 

and building density.  All the DEMs show a noisy relationship; with SRTM having the noisiest and 

TanDEM-X 12 m & 90 m DEMs the least noisy. The findings show that the removal of building 

density error from global DEMs resulted in the improvement of the vertical height accuracy of the 

global DEMs of up to 45% for MERIT and 40% for ALOS. Thus, the results show that global DEMs 

can be usefully corrected for building density errors in urban areas, even where specific building 

height data are not available. 

 

This study also shows the results of the methodology for the Central Business District (CBD) area of 

Nairobi which is characterized by taller buildings and high building density. Results show the error 

parameters in the CBD area is between 15 to 45 % higher than those of the Nairobi city wide area for 

the six global DEMs. These results provided some further insights into significance of building 

heights contributing to errors in global DEMs. Therefore, future work is required to understand the 

nature of building height errors in global DEMs and how these errors can be corrected.  

 

The additional analyses undertaken for Kibera slum and Embakasi residential areas to determine the 

extent of the residual building height error remaining in the corrected DEMs show a relationship that 

is strongest for the Kibera slum area, followed by the Embakasi residential area and lastly the Central 

business district area when R2 and p values are considered. A comparison of the p values for all four 

test locations considered under this study also show similar trend of largest p values for the Nairobi 

citywide error relationships and smallest p values when considering the error relationships for the 

Kibera slum area. A comparison of the scatter plots for all four areas of Nairobi investigated in this 

study reflects the nature of the settlements (density) across the four areas and the specific impacts 

building density can have on DEM error.  
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6.0      CITY-SCALE MODELLING OF THE NAIROBI CATCHMENT  

This section outlines the development, running and testing of five model scenarios using the HEC-

HMS hydrologic model and the HEC-RAS model (v6.0.0) to simulate the rainfall and subsequent 

runoff of the 1st to 13th March rainfall events in Nairobi, Kenya.  

 

S1-Baseline model uses the urban corrected DEM, 2020 land use map and March 2018 

precipitation data as key input data 

S2-2010LU model is developed using the same key input data as S1-Baseline model apart 

from using land use the 2010 land use map for the catchment  

S3-CP4uplift model is developed using the 2020 land use map, the urban corrected DEM and 

future CP4 climate change rainfall model 

S4-P25uplift model uses the 2020 land use map, the urban corrected DEM and future P25 

climate change rainfall model 

S5-RawDEM model is similar to the S1-Baseline model but uses a raw DEM as key input 

data instead of an urban corrected DEM 

 

The 2D hydraulic model with five sets of scenarios are created in 2D and make use of the diffusive 

wave equation for simplification. A 6-step method detailing the procedure for the creation of the 5 

models using the HEC-HMS hydrologic model and the HEC-RAS model is presented in Figure 18. 

The characteristics of the five sets of models are as shown in Table 12.  

 

 

 

 

 

 

Table 12. Characteristics of five sets of model scenarios created in HEC-RAS 2D v6.0.0 software using the diffusive wave 
equation. 

Model Scenarios Land use data Rainfall data DEM 

S1-Baseline 2020 LU March 2018 Corrected DEM 

S2-2000LU 2000 LU March 2018 Corrected DEM 

S3-CP4uplift 2020 LU CP4 future 

climate rainfall 

Corrected DEM 

S4-P25uplift 2020 LU P25 future 

climate rainfall 

Corrected DEM 

S5-RawDEM 2020 LU March 2018 Raw DEM 
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Figure 18. Six-step method flowchart of the datasets and methodology used to create the five model scenarios (S1-Baseline, 
S2-2000LU model, S3-CP4uplift model, S4-P25uplift model, and the S5-RawDEM model.) using HEC-HMS and HEC-RAS 
software. 

 

6.1 Hydrologic Modelling System (HEC-HMS) of the Study Area 

The United States (U.S.) Army Corps of Engineers’ (USACE) Hydrologic Engineering Centre 

Hydrologic Modelling System (HEC-HMS) is a commonly used, and freely available, modelling 

framework that has been employed for a variety of purposes in both natural and urban systems. The 

HEC-HMS software includes hydrologic analysis procedures such as event infiltration, unit 

hydrographs, and hydrologic routing including procedures necessary for continuous simulation of 

evapo-transpiration, snowmelt, and soil moisture accounting. HEC-HMS deals with the basic water 

balance equation and the transformation of the runoff from precipitation in the HEC-HMS model is 

governed by landuse, soil type, evapotranspiration, and storage. 

 

The software is used to model the flood peaks and volumes for the March 2018 rainfall events in 

Nairobi, Kenya in conjunction with the Hydrologic Engineering Centre River Analysis System (HEC-

RAS) for the study area. The HEC-HMS model was calibrated to the 1st to 13th March 2018 runoff 

events primarily to generate the excess net rainfall to be applied to the HEC-RAS model. The HEC-

HMS software consists of four sub-models: a basin model, meteorological model, control 
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specifications, and time-series data. It offers the possibility to use numerous flood routing, unit 

hydrograph and infiltrations methods. A typical representation of watershed runoff within the HEC-

HMS hydrologic model used in this study is shown in Figure 19. 

 

 

 
Figure 19. Typical representation of watershed runoff within the HEC-HMS hydrologic model (U.S. Army Corps of 
Engineering, 2016) 

 

One of the key features of the HEC-HMS software is the ability to allow users to select among 

various infiltration loss parameterizations relating to the model. The Soil Conservation Service (SCS) 

Curve Number (CN) method was selected as the loss model in the HEC-HMS v4.8.0 and the SCS 

Unit Hydrograph method was chosen to transform excess precipitation into channel flow. A daily  

flow was selected for the 1st to 13th March storm events for the baseline model (S1-Baseline). The 

Muskingum-Cunge Standard Section was selected for channel routing and the SCS loss method was 

used to estimate the amount of precipitation, Pe, that contributed to runoff during individual storm 

events. Excess precipitation for the five model scenarios is calculated using precipitation for a given 

storm, P; an estimate for the initial abstractions, Ia; and the potential maximum retention, S. The 

potential maximum retention is computed using estimates of the CN assigned to the study area. Pe, P, 

and Ia have dimensions of inches, and CN and S are dimensionless. The empirical relationships for 

these terms are as described in the equations below: 

 

Pe  = (௉ିூೌ
)మ

௉ି ூೌା ௌ
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           Equation 11 

𝐼௔ = (0.2) 𝑠              Equation 12 
𝑆 =  

ଵ,଴଴଴

஼ே
 - 10 

            
           Equation 13 

        

The following input parameters are required in each basin (or subbasin) for the SCS method: an 

estimate of Ia, CN, and the percentage of area that is impervious. Initial abstractions were calculated 

using the standard SCS formulation shown in Equation 12. The SCS unit hydrograph is adopted as a 

transform method to estimate runoff rate and the Muskingum routing method is selected to calculate 

the channel routing. The SCS unit hydrograph is based on a computed lag time or time of 

concentration (as a function of slope, hydraulic length, and basin storage. Land use and land cover 

modification by humans are among the most important agents of environmental change at local to 

global scales and have significant implications for ecosystem health, water quality, and sustainable 

land management (Foley et al., 2005).  

 

 

 

The purpose of developing the HEC-HMS hydrologic model for this study is to obtain runoff (net 

precipitation) from the precipitation data with HEC-HMS model. The obtained runoff data is the 

simulated in HEC-RAS model and the output of HEC-RAS exported to QGIS software for flood plain 

mapping and analysis. The HEC-RAS 2D hydraulic model can simulate runoff based on channel 

morphology and generate flood inundation extent within the catchment. However, coupling the two 

models will aid in the assessment of flood inundation of the study area for the March 2018 storm 

events. Details of the rainfall data, terrain data, soil types and landuse data used in the HEC-HMS 

model is tabulated in Table 13. Key input data into the HEC-HMS hydrologic rainfall runoff model 

Table 13. 

 

 

 

 

 

 

 



 
 

92 
 

Table 13. Key input data into the HEC-HMS hydrologic rainfall runoff model 

SN Data Data source 

1. 3 arc second MERIT Digital 

elevation Model (DEM) 

Multi-Error-Removed Improved-Terrain DEM (MERIT 

DEM)http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/ 

2. Land use data 2020 Globeland 30m resolution landuse data. 

http://www.globeland30.org/ 

3. Soil type Data FAO/UNESCO Soil Map of the World. 

https://www.fao.org/soils-portal/data-hub/soil-maps-and-

databases/faounesco-soil-map-of-the-world/en/ 

4. Rainfall, Evapotranspiration 

data 

Kenya Meteorological Services. Ngong Road. Nairobi. Kenya. 

 

6.2 The March 2018 Rainfall Events 

Over the Kenya-core region and indeed Kenya as a whole, 2018 saw the wettest March, April and 

May seasons over the 119-year record of the Global Precipitation Climatology Centre (GPCC) data, 

and the 118 years of CenTrends data (Kilavi et al., 2018). Locally in Nairobi, the capital city of 

Kenya, rainfall totals at the five stations exceeded the normal amounts by two to three times in March 

and one to two times in April (Kilavi et al., 2018). Precipitation data for the watershed was obtained 

from the Kenya Metrological Service for the March 2018 extreme rainfall from four rainfall-gauging 

stations at different locations within the watershed and shown in Table 14. 

 

Table 14. Observed rainfall data (March 2018) at five rainfall stations in Nairobi, Kenya (Source Kenya Meteorological 
Service) 

STATION  March Total Rainfall (mm)  

Dagoretti 260.3 

JIKA 216.8 

Machakos 236.8 

Thika 375.3 

 

6.3 Weighted Average Curve Number 

The SCS (NRCS) Curve Number is used for the quantification of infiltration loss during runoff 

calculation and can range from 0 (100% infiltration) to 100 (impervious, no infiltration). The overall 

CN of a watershed is the area-weighted average CN of each combination of soil type and land cover 

type. A weighted average curve number for the watershed will be required for use as input in the 

HEC-HMS model. Therefore, a methodology was developed for calculating area-weighted average 

curve number from landuse and hydrologic soil group (HSG) data as described below.   
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6.4 Pre-processing of Raster Data 

The Globeland30 Land use data for 2020 is used as baseline land use data in the HEC-HMS and 

HEC-RAS models. Land use change in the catchment were analyzed based on the GlobeLand30 land 

use data for 2000 and 2020 downloadable from http://www.globallandcover.com/. The GlobeLand30 

is a 30m resolution LULC datasets comprising 10 land cover types: cultivated land, forest, grassland, 

shrub land, wetland, water bodies, tundra, artificial surfaces, bare land, and permanent snow and ice 

(Chen et al., 2017a). In this study, the 10 land cover categories were reclassified into seven aggregate 

types Table 15, including cultivated land, forest, grassland, shrubland, waters, urban, and bareland. 

 

Table 15. Landuse and Landcover (LULC) Classification 

Class Specific land cover 

  

Cultivated  Land for agriculture such as irrigated farmland, dry farmland, and 
vegetable garden. 

Forest  Land covered by trees such as forests, scrubland, and woodland. 

Grassland  Land covered by grass such as pasturage and urban green space. 

Waterbodies   Land covered by water such as river, lake and reservoir. 

Wetland Land covered by wetland plants, tidal flat, and swamp. 

Urban Land covered by artificial buildings such as residential, commercial, 
factories, roads, and airports. 

Bareland Land with vegetation coverage <10%, which includes sandy field, 
saline and alkaline land, bare rocks 

  

 

 

The Global Hydrologic Soil Groups (HSG) cover data are 100m resolution global maps of land cover 

& cover changes of different areas over certain years and downloadable from 

https://webmap.ornl.gov/ogc/dataset.jsp?ds_id=1566 . The HYSOGs250m represents a global, 

gridded dataset of hydrologic soil groups (HSGs) with a resolution of approximately 250m. It is 

important that the Globeland30 landuse raster file has the same extent, projected coordinate reference 

system and resolution value as the HSG raster file so that the two files can align together to create a 

Curve Number raster file. Therefore, the landuse and soil group data were resampled to 30 m using 

raster calculator tools in QGIS. 
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6.5 Reclassification of Land use map 

Using the Reclassify by layer tool in QGIS, the landuse raster file is reclassified to reduce landuse 

types to 4 and a CSV txt file for landuse class breaks is created and added to QGIS layer panel. The 

reason for the reclassification of the of the landuse categories is to simplify and streamline the curve 

number CN calculation procedure. The original landuse data for the study area in its 12 different types 

of land cover types will end up with 12 x 3 = 36 different combinations for CN assignment when 

combined with HSG soil types (1, 2, & 3).  

 

6.6 Combination of Land use and HSG soil group raster files 

The final step involved the combination of the two raster files described above using GDAL Raster 

calculator of QGIS to create a Curve Number (CN) raster file. A simple logic equation expression is 

created for the CN calculation. Finally, using Zonal statistics tool of QGIS, a watershed boundary 

shapefile was loaded and parameters count, sum and mean are selected for statistics to calculate and 

use Curve Number (CN). Three new fields are added to the watershed boundary shapefile, where and 

the value under the column of Mean is the area-weighted average CN (Mean) for the watershed area is 

69.898 and 82.122 in 2000 and 2020 respectively.  

 

6.7 Net / excess rainfall values from HEC-HMS 

Figure 20 shows the watershed, sub-basins and reach of the study area from the HEC-HMS model and 

Table 16Table 19 shows the net model output flow results from the HEC HMS model following 

model runs for the five model scenarios (S1-Baseline, S2-2010LU, S3-CP4uplift, S4-P25uplift & S5-

RawDEM). Consequently, the net rainfall data output from the HEC HMS model were used for the 

development of the rain on grid model in HEC-RAS.   
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Figure 20. A screenshot from the HEC-HMS hydrologic model showing the sub-basins and reach of the Nairobi catchment. 

 

Table 16. HEC HMS net model output flow result. 

 

Date 

 

Net Daily Rainfall Derived from the HEC-HMS Model (mm) 

S1-Baseline S2-2000LU S3-CP4uplift S4-P25uplift S5-RawDEM 

01/03/2018 0.51 0.32 1.11 1.56 0.51 

02/03/2018 3.43 1.73 6.33 8.24 3.43 

03/03/2018 56.76 38.15 91.7 113.86 56.76 

04/03/2018 14.73 11.57 23.47 29.03 14.73 

05/03/2018 8.37 5.79 13.33 16.48 8.37 

06/03/2018 17.85 13.07 28.41 35.13 17.85 
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6.8 HEC-RAS 2D Hydraulic Model Computational Setting  

The hydraulic model is set up to simulate a 13-day period to replicate the extreme flood events of 1st 

to 13th March 2018 and therefore the rain-on-grid model will be run in HEC-RAS using the 2D 

unsteady diffusion wave equation set and will run for a duration of 13 days to better capture the 

processes happening in the catchment for the extreme flood events of March 2018. The simulation 

time Window was set from 00:00am 1st March 2018 to 23:59pm. 13th March 2018. The computational 

and advanced time step will be varied based on keeping the Courant value between 0.75 and 2 in 

order to keep the value as close to 1 as possible and generate reliable results. The computational 

settings used in the HEC-RAS model simulation are summarized in Figure 24 & Figure 25 

respectively. The flowchart for the five-step method flowchart of the datasets and methodology used 

to create the five model scenarios (S1-Baseline, S2-2000LU model, S3-CP4uplift model, S4-P25uplift 

model, and the S5-RawDEM model.) using the software is shown in Figure 21. 

 

 
Figure 21. Five-step method flowchart of the datasets and methodology used to create the five model scenarios (S1-Baseline, 
S2-2000LU model, S3-CP4uplift model, S4-P25uplift model, and the S5-RawDEM model.) using the software. 
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Figure 22. A screenshot from the HEC-RAS model showing the set-up of the 2D flow area boundary used for the five model 
scenarios. 

 

 

Figure 23. 2D flow area computational points created within the HEC-RAS model. 
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Figure 24. Computational settings used in the HEC-RAS 2D hydraulic simulation model. 

 

 
Figure 25. Advance time step settings used in the HEC-RAS 2D hydraulic simulation model. 

 

6.9 Watershed and Stream Network Delineation 

The hydraulic modelling was performed in HEC-RAS after delineating the catchment basin model 

using various plugins in QGIS environment. Flow direction and accumulation rasters were derived in 

QGIS environment using the GRASS GIS tool r.watershed tool. The tool allows the calculation of 

several parameters to derive the flow accumulation and direction rasters. The r.watershed plugin tool 

was used to define the main river outlet and delineate the watershed.  With the catchment delineated, a 

raster layer was produced and the final steps involved the conversion of raster layer to a vector file 

using the r.t.vect plugin tool in QGIS to generate the river catchments of the study area as shown in 

Figure 26. A screenshot from QGIS software environment showing the Strahler order of each stream 

segment, sub-watershed draining into each stream segment (reach). This tool produces a vector 



 
 

99 
 

network and shapefile from the stream raster grid. The flow direction grid was used to connect flow 

paths along the stream raster. The sub-watershed draining to each stream segment (reach) is also 

delineated and labelled with the value identifier that corresponds to the WSNO (watershed number) 

attribute in the Stream Reach shapefile. The tool orders the stream network according to the Strahler 

ordering system as shown in Figure 27. Delineated Watershed and Stream Network of Study Area. 

 

 
Figure 26. A screenshot from QGIS software environment showing the Strahler order of each stream segment, sub-
watershed draining into each stream segment (reach). 

 

Streams that don’t have any other streams draining in to them are order 1. When two stream reaches 

of different order join, the order of the downstream reach is the order of the highest incoming reach. 

When two reaches of equal order join the downstream reach order is increased by 1. When more than 

two reaches join, the downstream reach order is calculated as the maximum of the highest incoming 

reach order or the second highest incoming, reach order + 1. This generalizes the common definition 

to cases where more than two reaches join at a point.  
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Figure 27. Delineated Watershed and Stream Network of Study Area 

 

Manning’s n (Roughness Coefficient) for HEC-RAS 2D Modelling 

The HEC-RAS 2D modelling software used for the study has manning’s n values (Roughness 

Coefficient) for 2D flow area that are associated with land cover types to account for energy friction 

losses of overland flow and/or channel flow. Certain factors such as, overland surface type and 

texture, pervious or impervious areas, 2D flow depth impact on the manning’s n values for 2D 

hydraulic flood modelling. The HEC-RAS 2D Manual provides an estimate of manning’s n value for 

each NLCD (land cover) and they are summarized in Table 17 below.  
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Table 17. Example Manning's n values for various NLCD Land Cover Types. 

 

NLCD 

Value 

Manning's n 

Value 

range 

Normal 

Manning's 

n value 

 

Description 

 

11 

 

0.025 -0.05 

 

0.035 

Open Water- areas of open water, generally with less than 

25% cover of vegetation or soil. This is for natural streams on 

mild to moderate slopes. 

 

12 

 

n/a 

 

n/a 

Perennial Ice/Snow- areas characterized by a perennial cover 

of ice and/or snow, generally greater than 25% of total cover. 

 

 

 

21 

 

 

 

0.03 - 0.05 

 

 

 

0.040 

Developed, Open Space- areas with a mixture of some 

constructed materials, but mostly vegetation in the form of 

lawn grasses. Impervious surfaces account for less than 20% of 

total cover. These areas most commonly include large-lot 

single-family housing units, parks, golf courses, and 

vegetation planted in developed settings for recreation, 

erosion control, or aesthetic purposes. 

 

22 

 

0.06 - 0.12 

 

0.100 

Developed, Low Intensity- areas with a mixture of constructed 

materials and vegetation. Impervious surfaces account for 

20% to 49% percent of total cover. These areas most 

commonly include single-family housing units. 

 

23 

 

0.08 - 0.16 

 

0.080 

Developed, Medium Intensity -areas with a mixture of 

constructed materials and vegetation. Impervious surfaces 

account for 50% to 79% of the total cover. These areas most 

commonly include single-family housing units. 

 

24 

 

0.12 - 0.20 

 

0.150 

Developed High Intensity-highly developed areas where people 

reside or work in high numbers. Examples include apartment 

complexes, row houses and commercial/industrial. Impervious 

surfaces account for 80% to 100% of the total cover. 

 

 

31 

 

 

0.023 - 0.030 

 

 

0.025 

Barren Land (Rock/Sand/Clay) - areas of bedrock, desert 

pavement, scarps, talus, slides, volcanic material, glacial 

debris, sand dunes, strip mines, gravel pits and other 

accumulations of earthen material. Generally, vegetation 

accounts for less than 15% of total cover. 

 

41 

 

0.10 - 0.20 

 

0.160 

Deciduous Forest- areas dominated by trees generally greater 

than 5 meters tall, and greater than 20% of total vegetation 
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NLCD 

Value 

Manning's n 

Value 

range 

Normal 

Manning's 

n value 

 

Description 

cover. More than 75% of the tree species shed foliage 

simultaneously in response to seasonal change. 

 

42 

 

0.08 - 0.16 

 

0.160 

Evergreen Forest- areas dominated by trees generally greater 

than 5 meters tall, and greater than 20% of total vegetation 

cover. More than 75% of the tree species maintain their leaves 

all year. Canopy is never without green foliage. 

 

43 

 

0.08 - 0.20 

 

0.160 

Mixed Forest- areas dominated by trees generally greater 

than 5 meters tall, and greater than 20% of total vegetation 

cover. Neither deciduous nor evergreen species are greater 

than 75% of total tree cover. 

 

51 

 

0.025 - 0.05 

 

0.040 

Dwarf Scrub- Alaska only areas dominated by shrubs less 

than 20 centimetres tall with shrub canopy typically greater 

than 20% of total vegetation. This type is often co-associated 

with grasses, sedges, herbs, and non-vascular vegetation. 

 

52 

 

0.07 - 0.16 

 

0.100 

Shrub/Scrub- areas dominated by shrubs; less than 5 meters 

tall with shrub canopy typically greater than 20% of total 

vegetation. This class includes true shrubs, young trees in an 

early successional stage or trees stunted from environmental 

conditions. 

 

71 

 

0.025 - 0.50 

 

0.035 

Grassland/Herbaceous- areas dominated by graminoid or 

herbaceous vegetation, generally greater than 80% of total 

vegetation. These areas are not subject to intensive 

management such as tilling but can be utilized for grazing. 

 

72 

 

0.025 - 0.50 

 

0.040 

Sedge/Herbaceous- Alaska only areas dominated by sedges 

and forbs, generally greater than 80% of total vegetation. This 

type can occur with significant other grasses or other grass like 

plants, and includes sedge tundra, and sedge tussock tundra. 

 

73 

 

n/a 

 

n/a 

Lichens- Alaska only areas dominated by fruticose or foliose 

lichens generally greater than 80% of total vegetation. 

 

74 

 

n/a 

 

n/a 

Moss- Alaska only areas dominated by mosses, generally 

greater than 80% of total vegetation. 
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NLCD 

Value 

Manning's n 

Value 

range 

Normal 

Manning's 

n value 

 

Description 

 

81 

 

0.025 - 0.50 

 

0.030 

Pasture/Hay-areas of grasses, legumes, or grass- legume 

mixtures planted for livestock grazing or the production of 

seed or hay crops, typically on a perennial cycle. Pasture/hay 

vegetation accounts for greater than 20% of total vegetation. 

 

 

82 

 

 

0.020 - 0.15 

 

 

0.035 

Cultivated Crops -areas used for the production of annual 

crops, such as corn, soybeans, vegetables, tobacco, and cotton, 

and also perennial woody crops such as orchards and 

vineyards. Crop vegetation accounts for greater than 20% of 

total vegetation. This class also includes all land being 

actively tilled. 

 

90 

 

0.045 - 0.015 

 

0.120 

Woody Wetlands- areas where forest or shrubland vegetation 

accounts for greater than 20% of vegetative cover and the soil 

or substrate is periodically saturated with or covered with 

water. 

 

95 

 

0.05 - 0.085 

 

0.070 

Emergent Herbaceous Wetlands- Areas where perennial 

herbaceous vegetation accounts for greater than 80% of 

vegetative cover and the soil or substrate is periodically 

saturated with or covered with water. 

 

 

Once imported into the HEC-RAS software, the land covers were assigned a Manning’s value based 

on their respective land categories. The different land cover used and their corresponding Manning’s 

coefficients are in line with the National Land Cover Database (Jin et al., 2019). The land cover types 

for the landcover maps are shown in Figure 28.  
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Figure 28. A screenshot from the HEC-RAS hydraulic model software of the land cover data types, Manning’s roughness 
coefficient values data for the 2008 & 2018 land maps for the study area and their respective Manning’s value. 

 

Once the Land Cover/Manning’s n layer was developed within the HEC-RAS model, the next step is 

to associate the Landcover/Manning’s data with a specific Geometry data that will only be applied to 

that specific Geometry data set, Figure 29. 

 

 
Figure 29. A screenshot from the HEC-RAS 2D hydraulic model of the Manage Layer Association showing the association 
of Land Cover/Manning’s n layer with a specific Geometry data set. 
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6.10 Flood Hazard Assessment 

Flow depth and velocity typically are the flow base data used when assessing flood hazard. In order to 

quantify the hydraulic output from the HEC-RAS model, the combined flood hazard curves of flow 

depth and velocity of the study area are taken from the Australian Rainfall and Runoff (Ball et al., 

2019b). The hazard curves are incorporated into the HEC-RAS 2D hydraulic model for five modelling 

scenarios under (1). 2020 baseline landuse conditions: S1-Baseline, (2) 2000 historical landuse 

conditions: S2-2020LU (3). Future 20yr return period rainfall with uplift factor: S3-CP4uplift, and 

(4) Future 20yr return period rainfall with uplift factor: S4-P25uplift, at a fixed profile time of 3rd 

March 2018 05:00 when flowrate is at its maximum. The vulnerability classifications are calculated 

by multiplying the depth (d) of flow and velocity (v) of flow.  

 

The raster calculator script below (Figure 31) is used as input in the HEC-RAS model and matches the 

APR flood hazard mapping which draws from (Smith et al., 2014) as referenced in Australian Rainfall 

and Runoff guidelines (Ball et al., 2019a).  Each section is then assigned a certain limit, as shown in 

Table 18 adapted from (Smith et al., 2014). The process of quantifying flood hazard involved the 

interpretation of the output/flood behavior information generated by the HEC-RAS 2D model directly 

into the flood hazard classification index Figure 30, adapted from (Smith et al., 2014). This involved 

combining the mapped depth (D) and velocity (V) information from the HEC-RAS model into a 

velocity-depth product (D x V) and categorizing this product value using the hazard vulnerability 

curves.  

 

The combined hazard curves – vulnerability thresholds classification limits has been applied in this 

research to describe the flood behavior of the study site. This chapter describes the process of flood 

hazard quantification of the study area by, first, quantifying the defined flood event using the HEC-

RAS model. Second, quantify the flood hazard by using a combination of flood depth and flood 

velocity. The hazard vulnerability curve adapted from (Smith et al., 2014) is applied to quantify the 

flood hazard to people, buildings and infrastructure. The safety of people on flood path or flooded 

streets is of major concern in urban storm water design and floodplain management (R. J. Cox et al., 

2010). The safety of people can be compromised when exposed to flows, which exceed their ability to 

remain standing and/or traverse a waterway. The current Australian Rainfall and Runoff (ARR) 

guidelines (Smith et al., 2014) stipulate that “to prevent pedestrians being swept along streets and 

other drainage paths during major storm events, the product of velocities (V) and depths (D) in streets 

and major flow paths generally should not exceed D.V = 0.4 m2 /s”. For example, when considering 

the safety of driving a vehicle during a flood event, the hazard values above the D x V thresholds for 

vehicle stability based on the hazard vulnerability curve will indicate a potential hazard, similar to 

potential hazard to people during a flood event. It is possible that maximum hazard value during a 
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flood event may not occur at the peak flow rate or peak flood level, but on some combination of D x 

V (Smith et al., 2014).  

 
Figure 30. Combined flood hazard curve developed by (Smith et al., 2014). 
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‘——————————————————- 

‘ rasscript for Flood Hazard mapping based on 

‘ WRL Technical Report 2014/07 Flood Hazard 

‘ by G P Smith, E K Davey and R J Cox 

‘ UNSW Water Research Laboratory 

‘ https://knowledge.aidr.org.au/media/2334/wrl-flood-hazard-techinical-report-september-2014.pdf 

‘ As cited in ARR 2019 Book 6: Flood Hydraulics Chapter 7: Safety Design Criteria 

‘ http://book.arr.org.au.s3-website-ap-southeast-2.amazonaws.com/ 

‘ Figure 5-5 and Table 5-2 

‘ Requirements: Terrain, Depth, ‘d’ and Velocity, ‘v’ 

‘——————————————————- 

If d = NoData OrElse v = NoData Then 

Output = NoData 

ElseIf d > 4 Or v > 4 Or d*v > 4 Then 

Output = 6 ‘H6 unsafe for people, vehicles & all buildings 

ElseIf d > 2 Or v>2 Or d*v>1 Then 

Output = 5 ‘H5 unsafe for people, vehicles & some buildings 

ElseIf d > 1.2 Or d * v > 0.6 Then 

Output = 4 ‘H4 unsafe for people & vehicle 

ElseIf d > 0.5 Then 

Output = 3 ‘H3 unsafe for vehicle and vulnerable people 

ElseIf d > 0.3 Or d * v > 0.3 Then 

Output = 2 ‘H2 unsafe for small vehicles 

Else 

Output = 1 ‘H1 generally safe for people, vehicles, & buildings 

End If 

 

Figure 31. The Australian Rainfall and Runoff guidelines raster calculator script  (Smith et al., 2014), 2014) used for the 
calculation of flood hazard mapping in the HEC-RAS model. 
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The combined flood hazard curves presented in Figure 30 shows the hazard thresholds that relate to 

the vulnerability of people living in the catchments of the study area when interacting with 

floodwaters. The combined curves (Smith et al., 2014) are divided into hazard classifications that 

relate to specific vulnerability thresholds as described in Table 18. 

  

          Table 18. Combined hazard curves – vulnerability threshold classification limits. 

Hazard 

Vulnerability 

Classification 

 
 

Description 

Hl Generally safe for vehicles, people and buildings. 

H2 Unsafe for small vehicles. 

H3 Unsafe for vehicles children and the elderly. 

H4 Unsafe for vehicles and people. 

 
H5 

Unsafe for vehicles and people. All buildings vulnerable to 
structural damage. Some less robust buildings subject to failure. 

H6 
Unsafe for vehicles and people. All building types considered 
vulnerable to failure. 
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7.0      SCENARIO ANALYSIS  

This chapter describes the scenario analysis of the five model scenarios developed in the HEC-HMS 

and HEC-RAS 2 D hydraulic models in this study: a baseline model (S1-Baseline) for the extreme 

rainfall event for 1st to 13th of March 2018 with 2020 landuse; the 2000 landuse model (S2-2000LU) 

with 2000 landuse; the CP4 future 20yr return period uplift model (S3-CP4uplift with 2020 landuse; 

the P25 future 20yr return period uplift model (S4-P25uplift) with 2020 landuse and (S5-RawDEM) 

model with 2020 land use data. The rainfall hydrographs used in the five sets of model scenarios 

developed in this study for the March 2018 rainfall events is shown in Figure 32. The area under the 

hyetograph for the S1-Baseline mode and S5-RawDEM The hydrograph for the S1-Baseline and S5-

Raw DEM model is combined in Figure 32. Analysis will be undertaken for the five model scenarios 

to investigate the impact of landuse change and climate change on flooding over the overall catchment 

area (C1-Combined) and sub-catchments Kiambu (C2-Kiambu), Nairobi CBD (C3-Nairobi) and 

Machakos (C4-Machakos) sub-catchment areas shown in Figure 33, Figure 34, Figure 35 & Figure 36 

respectively. 

 
Figure 32. Rainfall hydrographs for the five sets of models (S1-Baseline, S2-2000LU, S3-CP4uplift, S4-P25uplift and S5-
RawDEM) developed in this study for the 1st to 13th March rainfall evens of 2018.   
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Figure 33. A screenshot from QGIS software of the overall catchment area (C1) used in the model 
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Figure 34. A screenshot from QGIS software of the Kiambu sub-catchment area (C2) used in the model. 

 
Figure 35. A screenshot from QGIS software of the Nairobi district sub-catchment area (C3) used in the model.  

 

 
Figure 36. A screenshot from the QGIS software of the Machakos sub-catchment area (C4) used in the model. 
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7.1 Land use change and Climate change impact scenario analysis 

In performing the unsteady flow analysis for the four different model scenarios in this study, the RAS 

Mapper within the HEC-RAS software application was used  to build  various type of inundation 

maps (Depth(max), Velocity(max), Water Surface Elevation, WSE(max), D*V(max)) and visualize 

HEC-RAS software application results in a map-based format (Figure 37). Flow hydrographs at the 

outlet sections of the catchments C1, C2, C3 and C4 draining into the River Athi are plotted below in 

Figure 38, Figure 39, Figure 40, and  showing flow in (m3/s) plotted against the time of simulation. 

The hydrographs for S1-Baseline, S2-2000LU, S3-CP4uplift and S4-P25uplift generally follow 

similar pattern for C1, C2, C3 and C4. Peak flows of 5,200 m3/s, 600 m3/s, 600 m3/s and 1,100 m3/s 

were reached on 5th March 2018 for the S1-Baseline, S2-2000LU, S3-CP4uplift and S4-P25uplift 

respectively. The maximum flood depth and velocities for the model results for S1-Baseline, S2-

2000LU, S3-CP4uplift and S4-P25uplift are shown in Figure 42, Figure 43, Figure 44, and Figure 45. 

There are two distinctive peak flows on 5th and 8th March corresponding to the rainfall data input for 

the HECRAS model. The S3-CP4uplift and S4-P25uplift hydrographs show significantly higher peak 

flows than S1-Baseline and S2-2000LU suggesting that the impact of climate change is more 

pronounced than change in landuse across C1, C2, C3 and C4 catchments.  

 

 
Figure 37. A screenshot showing the results of the various type of inundation maps (Depth(max), Velocity(max), Water 
Surface Elevation, WSE(max), D*V(max), and Flood Hazard Maps) generated using the RAS Mapper within the HEC-RAS 
software application. 
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Figure 38. A screenshot from the HECRAS model of flow hydrograph for C1 outlet to River Athi. 

 
Figure 39. A screenshot from the HECRAS model of flow hydrograph for C2-Kiambu outlet to River Athi. 

 
Figure 40. A screenshot from the HECRAS model of flow hydrograph for C3-Nairobi outlet to River Athi. 
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Figure 41. A screenshot from the HECRAS model of flow hydrograph for C4-Machakos outlet to River Athi. 

   
Figure 42. A screenshot from the HECRAS model of maximum flow depth (left) and velocity (right) for S1-Baseline over C1 
catchment. 
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Figure 43. A screenshot from the HECRAS model of maximum flow depth (left) and velocity (right) for S2-2000LU over C1 
catchment. 

 

  
Figure 44. A screenshot from the HECRAS model of maximum flow depth (left) and velocity (right) for S3-CP4uplift over C1 
catchment. 
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Figure 45. A screenshot from the HECRAS model of maximum flow depth (left) and velocity (right) for S4-P25uplift over C1 
catchment. 

 

7.2 Urban Land Use Transition  

The landuse for 2000, 2020, and change in landuse between 2000 and 2020 for the catchments C1, 

C2, C3 and C4 are shown in Figure 46, Figure 47, Figure 48, and Figure 48 respectively. The 

transition matrix showing Landuse and landcover (LULC) change in C1, C2, C3 and C4 between 

2000 and 2020 are also shown in Table 19, Table 20, Table 21, and Table 22 respectively. The change 

in landuse across C1 change revealed there’s increase/decrease of 4.46%, 0.77%, -3.64%, 0.12%, -

0.03%, 0.41%, and -1.98% in cultivated land, forest, grassland, shrubland, waterbodies, urban area, 

and bareland respectively between 2000 and 2020. The increase in cultivated land by 4.46% from 

32.5% in 2000 to 36.9% in 2020 was due to direct result of grassland and bareland converted to 

cultivated land in 2020. The most predominant landuse change class across C1, C2, C3, and C4 is 

cultivated land. The trend of increase in cultivated land in witnessed in C1 in 2020 is similar for C3 

and C4 sub-catchments, except for C2 sub-catchment where there is a small decrease (-0.12%) in 

cultivated land between 2000 and 2020. The increase in cultivated land area across C1, C3, and C4 is 

undoubtedly a contributing factor to the peaks witnessed in the hydrographs, especially with C4 where 

there was a significant increase (7.59%) in cultivated land area between 2000 and 2020.   
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A comparison of landuse change in forested area across C1, C2, C3 and C4 revealed a percentage 

increase of 0.77%, 1.09% across C1, C3 and C4 with the exception of C2 which unsurprisingly being 

predominantly an urban area witnessed a decrease of 0.7% in forested area between 2000 and 2020.    

between S1-Baseline and S2-2000LU reveal the impact of change in landuse on the hydrograph 

between 2000 and 2020. A comparison of changes in urban landuse classification across C1, C2, C3, 

C4 revealed a percentage increase of 0.41%, 0.003%, 1%, and 0.44 respectively. The significant 

change in urban landuse classification witnessed across C3 is unsurprising considering the urban 

nature of the sub-catchment, Nairobi city. The increase in peak flow as seen in the flow hydrograph 

for C3 and shown in Figure 40 can be attributed to the change in urban land use between 2000 and 

2020.   

 

 
Figure 46. Year 2000 land use map for C1 catchment, (B) Year 2020 landuse map for C1 catchment, (C) Urban area 
transition landuse map for C1 catchment between 2000 and 2020. 
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Figure 47. Year 2000 landuse map for C2 sub-catchment, (B) Year 2020 landuse map for C2 sub-catchment, (C) Urban area 
transition landuse map for C2 sub-catchment between 2000 and 2020. 

 
Figure 48. Year 2000 landuse map for C3 sub-catchment, (B) Year 2020 landuse map for C3 sub-catchment, (C) Urban area 
transition landuse map for C3 sub-catchment between 2000 and 2020. 
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Figure 49. (A) Year 2000 landuse map for C4 sub-catchment, (B) Year 2020 landuse map for C4 sub-catchment, (C) Urban 
area transition landuse map for C4 sub-catchment between 2000 and 2020. 
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Table 19. Transition matrix showing Landuse and landcover (LULC) change in C1-Combined catchment between 2000 & 2020. 

Ref 
Landuse 
Classification 

C1 - Catchment 2000 Landuse C1 - Catchment 2020 Landuse 
Percent % 
Change in 
Landuse 
between 
2000 & 
2020 

Percent % 
Change 
between 
2000 & 
2020 

Pixel 
Count Area (m2) 

Area 
(km2) % Pixel Count Area (m2) 

Area 
(km2) 

Percent 
(%) 

10 
Cultivated 
Land 

2077188 1869469200 
1869.5 32.5% 

2362535 2126281500 
2126.3 36.9% 256812300 4.461% 

20 Forest 326416 293774400 293.8 5.1% 375462 337915800 337.9 5.9% 44141400 0.767% 
30 Grassland 2844691 2560221900 2560.2 44.5% 2612309 2351078100 2351.1 40.9% -209143800 -3.637% 
40 Shrubland 101113 91001700 91.0 1.6% 102138 91924200 91.9 1.6% 922500 0.016% 
60 Waterbodies 12181 10962900 11.0 0.2% 10148 9133200 9.1 0.2% -1829700 -0.032% 
80 Urban 615598 554038200 554.0 9.6% 641692 577522800 577.5 10.0% 23484600 0.408% 
90 bareland 416546 374891400 374.9 6.5% 289834 260850600 260.9 4.5% -114040800 -1.982% 

Total 6393733       5,754,359,700.00  5754.4 100.0% 6394118 5754706200 5754.7 100.0%     
 

Table 20. Transition matrix showing Landuse and landcover (LULC) change in C2-Kiambu sub-catchment between 2000 & 2020. 

Ref. 
Landuse 
Classification 

C2 - Kiambu sub-catchment 2000 Landuse C2 - Kiambu sub-catchment 2020 Landuse Percent % 
Change in 
Landuse 
between 

2000 & 2020 

Percent % 
Change 
between 

2000 & 2020 Pixel 
Count Area (m2) 

Area 
(km2) 

Percent  
Change 

(%) 
Pixel 

Count Area (m2) 
Area 
(km2) 

Percent  
Change 

(%) 
10 Cultivated Land 662062 595855800 595.9 74.1% 660953 594857700 594.9 74.0% -998100 -0.118% 
20 Forest 142833 128549700 128.5 16.0% 153261 137934900 137.9 17.2% 9385200 1.168% 
30 Grassland 20039 18035100 18.0 2.2% 14789 13310100 13.3 1.7% -4725000 -0.587% 
40 Shrubland 9697 8727300 8.7 1.1% 5953 5357700 5.4 0.7% -3369600 -0.419% 
60 Waterbodies 2064 1857600 1.9 0.2% 2029 1826100 1.8 0.2% -31500 -0.004% 
80 Urban 56495 50845500 50.8 6.3% 56518 50866200 50.9 6.3% 20700 0.003% 
90 bareland 399 359100 0.4 0.0% 18 16200 0.0 0.0% -342900 -0.043% 

Total 893589 
     
804,230,100.00  804.2 100.0% 893521 804168900 804.2 100.0%     
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Table 21. Transition matrix showing Landuse and landcover (LULC) change in C3-Nairobi sub-catchment between 2000 & 2020. 

Ref Landuse 
Classification 

C3 - Nairobi sub-catchment 2000 Landuse C3 - Nairobi sub-catchment 2020 Landuse Percent % 
Change in 
Landuse 
between 

2000 & 2020  

Percent % 
Change 

between 2000 
& 2020 

Pixel 
Count 

Area (m2) 
Area 
(km2) 

Percent % 
Change  

Pixel 
Count 

Area (m2) 
Area 
(km2) 

Percent 
% 

Change 

10 
Cultivated 
Land 

545274 490746600 
490.7 48.3% 

581740 523566000 
523.6 51.5% 32819400 3.2% 

20 Forest 57823 52040700 52.0 5.1% 50100 45090000 45.1 4.4% -6950700 -0.7% 
30 Grassland 87688 78919200 78.9 7.8% 69884 62895600 62.9 6.2% -16023600 -1.6% 
40 Shrubland 23992 21592800 21.6 2.1% 5835 5251500 5.3 0.5% -16341300 -1.6% 
60 Waterbodies 5966 5369400 5.4 0.5% 3110 2799000 2.8 0.3% -2570400 -0.3% 
80 Urban 406067 365460300 365.5 36.0% 416954 375258600 375.3 36.9% 9798300 1.0% 
90 bareland 1988 1789200 1.8 0.2% 1136 1022400 1.0 0.1% -766800 -0.1% 

Total 1128798 
  
1,015,918,200.00  1015.9 100.0% 1128759 1015883100 1015.9 100.0%     

 

Table 22.Transition matrix showing Landuse and landcover (LULC) change in C4-Machakos sub-catchment between 2000 & 2020. 

Ref 
Landuse 
Classification 

C4 - Machakos sub-catchment 2000 Landuse C4 - Machakos sub-catchment 2020 Landuse 
Percent % 
Change in 
Landuse 
between 
2000 & 2020 

Percent % 
Change 
between 
2000 & 2020 

Pixel Count Area (m2) 
Area 
(km2) 

Percent 
(%) Pixel Count Area (m2) 

Area 
(km2) 

Percent 
(%) 

10 
Cultivated 
Land 

122992 110692800 
110.7 15.3% 

183988 165589200 
165.6 22.9% 54896400 7.585% 

20 Forest 44915 40423500 40.4 5.6% 53677 48309300 48.3 6.7% 7885800 1.090% 
30 Grassland 462740 416466000 416.5 57.5% 410984 369885600 369.9 51.1% -46580400 -6.428% 
40 Shrubland 25551 22995900 23.0 3.2% 37502 33751800 33.8 4.7% 10755900 1.486% 
60 Waterbodies 390 351000 0.4 0.0% 550 495000 0.5 0.1% 144000 0.020% 
80 Urban 88638 79774200 79.8 11.0% 92173 82955700 83.0 11.5% 3181500 0.441% 
90 bareland 59179 53261100 53.3 7.4% 25441 22896900 22.9 3.2% -30364200 -4.194% 

Total 804405  723,964,500.00  724.0 100.0% 804315 723883500 723.9 100.0%     
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7.3 Hazard Vulnerability Classification of Land Use Change and Climate 
Change 

Fundamental to the estimation of flood hazard due to the impact of climate change and land use 

change in this study is the estimation of flood depth, flood velocity, and depth and velocity in 

combination. The calculation of flood hazard raster layers for the five model scenarios is undertaken 

in the HEC-RAS model by using the raster calculator script described in Figure 31. The procedure for 

the calculation of flood hazard raster layers in the HEC-RAS model is shown in Figure 50 and the 

flow path for simulated flood extent for the S3-CP4 model is shown in Figure 51.  

 

Figure 52 shows the hazard vulnerability maps for the S1-Baseline, S2-2000LU, S3-CP4uplift and S4-

P25uplift models for the catchments C1, C2, C3 and C4 respectively. The RawDEM model is not 

included in the flood hazard vulnerability classification analysis. The flood hazard vulnerability raster 

layers are calculated in the HEC-RAS model by adding the hazard vulnerability curves (Smith et al., 

2014) described in Figure 30 onto the results of the four model scenarios namely S1-Baseline, S2-

2000LU, S3-CP4uplift and S4-P25uplift. The purpose of using the flood hazard vulnerability 

classification in this study is to make an assessment of the vulnerability of people, buildings and 

infrastructure within the catchment to flood hazard by identifying specific flood parameters that can 

be measured consistently for the March 2018 flood events and to benchmark these parameters against 

certain thresholds (Smith et al., 2014).  

 
Figure 50. A screenshot from the HEC-RAS model showing the generation of calculated flood hazard raster layers for the 
five model scenarios by adding the hazard curves onto the results. 
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Figure 51. Cell to cell flow paths of simulated floods for the S3-CP4 model. 

 

The results show the overall impacts of land use change and climate change over the study area under 

the S1-Baseline, S2-2000LU, S3-CP4uplift and S4-P25uplift model scenarios. The results show how 

the set hazard thresholds that relate to the vulnerability of the catchment and sub-catchments when 

interacting with floodwaters. Interrogation of the four sets of flood models results to determine flood 

hazard as the product of flood depth (D) multiplied by flood velocity (V) (Smith et al., 2014), showed 

that the peak flood hazard (D.V) corresponded with the maximum inundation of the study area at the 

peak of the flood hydrographs. Analysis of the mapped hazard value (D x V) for a range of the four 

model scenarios (S1-Baseline, S2-2000LU, S3-CP4uplift and S4-P25uplift) showed the magnitude of 

predicted flood hazard level varied significantly under future climate change rainfall of the CP4 and 

P25 climate models Figure 54.  

 

The calculated flood hazard vulnerability maps in Figure 52 for the S1-Baseline, S2-2000LU, S3-

CP4uplift and S4-P25uplift models show H6 the most hazardous area to people, infrastructure and 

vehicles in the catchment and is shown in pink zone in the plots. The vast majority of the rest of the 

catchment where flooding occurs has been calculated to have hazard vulnerability classification of 

H5, which is represented by the yellow zone in the plots. Zones 5 and Zones 6 are considered the most 

hazardous vulnerability zones i.e. unsafe for vehicles and people (Smith et al., 2014). The remaining 
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hazard vulnerability represented by H1, H2, H3, and H4, (purple, cyan, green and yellow) in the plots 

are at less risk to severe damage and destruction. For the purposes of assessing hazard vulnerability to 

people, infrastructure and vehicles in the catchment due to flooding, C3 sub-catchment has been 

selected for the analysis due to the urbanized nature of the catchment, i.e. central business district of 

Nairobi city.  

 

Table 23, Table 24, Table 25 and Table 26 show the results of the analysis of the hazard vulnerability 

maps Figure 52 imported into the QGIS software for further analysis. The results show that when 

calculating and comparing the areas of each hazard vulnerability classification for the S1-Baseline 

with S3-CP4uplift and S4-P25uplift models across the C3 sub-catchment, the two most severe hazard 

levels, H5 and H6, have increased in area over the baseline model by +6.2% and +1.6%, and +9.5% 

and +2.5% respectively (Table 23, Table 24, & Table 26). When comparing the change in hazard area 

between models, the result show the combined hazard area (H1 to H6) for the S3-CP4uplift and S4-

P25uplift models increased by +16 and +22% respectively under the S1-Baseline model. The sharp 

increase in the hazard vulnerability category is attributed to the higher velocity and higher depth of 

the flood water that’s due to climate change and land use change applied to the S3-CP4uplift and S4-

P25uplift models.  

 

Total hazard area for the vulnerability classification for H1, H2, H3, & H4 increased by +1%, +0.3%, 

+3.2 and +3.3% respectively for the S3-CP4uplift model and +1.8%, +0.5%, +3.2% and +4.5% 

respectively for the S4-P25uplift models (Table 23 and Table 24). The total hazard vulnerability area 

increased by 14.2 km2 from 90.6 km2 to 104.8 km2 in the S3-CP4uplift model and by 19.9 km2 from 

90.6 km2 to 110.5 km2 in the S4-P25uplift model (Table 23, Table 24 and Table 26). A similar 

comparison of the results between the S1-Baseline model and the S2-2000LU model show the two 

most severe hazard levels, H5 and H6 increased in area +1.7% & +0.2% (Table 25 & Table 26) in the 

C3 Nairobi sub-catchment. The total hazard area for the vulnerability classification for H1, H2, H3, & 

H4 increased by +0.1%, +0.8%, +0.5% and +0.5% respectively. The total hazard vulnerability area 

increased by 3.2 km2 from 87.4 km to 90.6 km between 2000 and 2020, Table 25 & Table 26.  

The results show that climate change is a bigger pluvial flood hazard threat than change in urban 

landuse.  
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Figure 52.  A screenshot from the HECRAS model of the flood hazard category map for A: S1-Baseline; B: S2-2000LU; S3-
C: CP4uplift; and D: S4-P25uplift over C1 catchment. 

 

(A) (B) 

(C) (D) 



 
 

127 
 

 
Figure 53. (A) Flood Hazard Category map for S1_Baseline and (B) Flood Hazard Category map for S2-200LU for C3 
Nairobi sub-catchment area processed within the QGIS software. 

 
Figure 54. (C) Flood Hazard Category map for S3_CP4uplift and (D) Flood Hazard Category map for S4-P25uplift for C3 
Nairobi sub-catchment area processed within the QGIS software. 
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Table 23. Areas of each hazard vulnerability classification for S4-P25uplift model for C3: Nairobi sub-catchment area. 

 

 

Table 24. Areas of each hazard vulnerability classification for S3-CP4uplift model for C3: Nairobi sub-catchment area. 

 

 

Table 25. Areas of each hazard vulnerability classification for S2-2000LU model for C3: Nairobi sub-catchment area. 

 

 

 

 

 

 

Pixel Count
Hazard Area 

(m2)

Hazard Area 

(km2)
% of Area 
Occupied

% Change from 
Baseline

H1 2660 22707128.11 22.7 25.0% 1.8%

H2 1478 12616968.18 12.6 13.9% 0.5%

H3 3150 26890020.14 26.9 29.7% 3.2%

H4 2029 17320587.57 17.3 19.1% 4.5%

H5 2881 24593697.78 24.6 27.1% 9.5%

H6 752 6419458.775 6.4 7.1% 2.5%

Total 12950 110,547,860.56          110.5 122.0% 22.0%

S4-P25uplift Model for Nairobi sub-catchment 
Hazard 

Category

Pixel Count
Hazard Area 

(m2)

Hazard Area 

(km2)

% of Area 
Occupied

% Change from 
Baseline

H1 2573 21964451.37 22.0 24.2% 1.0%

H2 1466 12514530.01 12.5 13.8% 0.3%

H3 3148 26872947.11 26.9 29.6% 3.2%

H4 1906 16270596.31 16.3 17.9% 3.3%

H5 2534 21631527.31 21.6 23.9% 6.2%

H6 651 5557270.828 5.6 6.1% 1.6%

Total 12278 104,811,322.93          104.8 115.6% 15.6%

S3-CP4uplift Model for Nairobi sub-catchment 
Hazard 

Category

Pixel Count
Hazard Area 

(m2)

Hazard Area 

(km2)

% of Area 
Occupied

% Change from 
Baseline

H1 2461 21008361.76 21.0 23.2% -0.1%

H2 1346 11490148.29 11.5 12.7% -0.8%

H3 2760 23560779.55 23.6 26.0% -0.5%

H4 1504 12838917.55 12.8 14.2% -0.5%

H5 1697 14486464.82 14.5 16.0% -1.7%

H6 466 3978015.677 4.0 4.4% -0.2%

Total 10234 87,362,687.64            87.4 96.4% -3.6%

S2-2000LU Model for Nairobi sub-catchment 
Hazard 

Category
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Table 26. Areas of each hazard vulnerability classification for S1-Baseline model for C3: Nairobi sub-catchment area. 

 

 

The S5-RawDEM model uses the raw, uncorrected DEM as key input data and a was undertaken to 

compare the flood inundation maps from the S1-Baseline model and the S5-RawDEM model with 

actual flood height data obtained from three flooding hotspot sites across Nairobi. The result of the 

comparison of the two models with site data is shown in Table 54. The results show the S5-RawDEM 

model underestimates flood height level at the flooding hotspot sites by between 56% to 58% 

compared to 25% to 33% for the S1-Baseline model with corrected DEM. to the . It is clear from the 

results that the urban correction of global DEMs can have some impacts on the accuracy of urban 

flood models in estimating flood heights.   

 

7.4 CREATION OF ADDITIONAL SIX MODEL SIMULATION 
SCENARIOS USING URBAN CORRECTED GLOBAL AND LOCAL 
DEMs.  

In order to analyse the effect of DEMs on the model outputs and therefore, try to isolate the effect of 

building density errors, additional simulations were run in the HEC-HMS and HEC-RAS 2 D 

hydrological and hydraulic models using the remaining five urban corrected global DEMs as key 

input data including the use of the reference DEM. Six more sets of  model scenarios are developed 

using the five urban corrected  global DEMs and the local JICA reference DEM (SRTM DEM, ALOS 

DEM, NASA DEM, TanDEM-X 12m, TanDEM-X 90m DEM, and the JICA Reference DEM). 

Additional details of the simulated scenarios are reported below. 

 

 

 

Pixel Count
Hazard Area 

(m2)

Hazard Area 

(km2)
% of Area 
Occupied

% Change from 
2000LU

H1 2468 21068117.36 21.1 23.2% 0.1%

H2 1430 12207215.49 12.2 13.5% 0.8%

H3 2809 23979068.75 24.0 26.5% 0.5%

H4 1552 13248670.24 13.2 14.6% 0.5%

H5 1874 15997427.85 16.0 17.6% 1.7%

H6 486 4148745.964 4.1 4.6% 0.2%

Total 10619 90,649,245.66            90.6 100.0% 3.6%

S1-Baseline Model for Nairobi sub-catchment 
Hazard 

Category
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 JICA Reference DEM Model 

S1_ Ref-Baseline model uses the urban corrected NASADEM DEM, 2020 land use map and 

March 2018 precipitation data as key input data 

S2_ Ref-2010LU model is developed using the same key input data as S1-Baseline model 

apart from using land use the 2010 land use map for the catchment  

S3_ Ref-CP4uplift model is developed using the 2020 land use map, the urban corrected 

DEM and future CP4 climate change rainfall model 

S4_ Ref model uses the 2020 land use map, the urban corrected DEM and future P25 climate 

change rainfall model 

S5_ TanDEM-X 90m-RawDEM model is similar to the S1-Baseline model but uses a raw 

DEM as key input data instead of an urban corrected DEM. 

 

 SRTM DEM Model.  

S1_SRTM-Baseline model uses the urban corrected SRTM DEM, 2020 land use map and 

March 2018 precipitation data as key input data 

S2_SRTM-2010LU model is developed using the same key input data as S1-Baseline model 

apart from using land use the 2010 land use map for the catchment  

S3_SRTM-CP4uplift model is developed using the 2020 land use map, the urban corrected 

DEM and future CP4 climate change rainfall model 

S4_SRTM-P25uplift model uses the 2020 land use map, the urban corrected DEM and future 

P25 climate change rainfall model 

S5_SRTM-RawDEM model is similar to the S1-Baseline model but uses a raw DEM as key 

input data instead of an urban corrected DEM. 

 

 ALOS DEM Model 

S1_ALOS-Baseline model uses the urban corrected ALOS DEM, 2020 land use map and 

March 2018 precipitation data as key input data 

S2_ALOS-2010LU model is developed using the same key input data as S1-Baseline model 

apart from using land use the 2010 land use map for the catchment  

S3_ALOS-CP4uplift model is developed using the 2020 land use map, the urban corrected 

DEM and future CP4 climate change rainfall model 

S4_ALOS-P25uplift model uses the 2020 land use map, the urban corrected DEM and future 

P25 climate change rainfall model 
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S5_ALOS-RawDEM model is similar to the S1-Baseline model but uses a raw DEM as key 

input data instead of an urban corrected DEM. 

 

 NASA DEM Model 

S1_NASA-Baseline model uses the urban corrected NASADEM DEM, 2020 land use map 

and March 2018 precipitation data as key input data 

S2_ NASA-2010LU model is developed using the same key input data as S1-Baseline model 

apart from using land use the 2010 land use map for the catchment  

S3_ NASA-CP4uplift model is developed using the 2020 land use map, the urban corrected 

DEM and future CP4 climate change rainfall model 

S4_ NASA-P25uplift model uses the 2020 land use map, the urban corrected DEM and 

future P25 climate change rainfall model 

S5_ NASA-RawDEM model is similar to the S1-Baseline model but uses a raw DEM as key 

input data instead of an urban corrected DEM. 

 

 TanDEM-X 12m DEM Model 

S1_ TM12-Baseline model uses the urban corrected TanDEM-X 12m DEM, 2020 land use 

map and March 2018 precipitation data as key input data 

S2_ TM12-2010LU model is developed using the same key input data as S1-Baseline model 

apart from using land use the 2010 land use map for the catchment  

S3_ TM12-CP4uplift model is developed using the 2020 land use map, the urban corrected 

DEM and future CP4 climate change rainfall model 

S4_ TM12-P25uplift model uses the 2020 land use map, the urban corrected DEM and future 

P25 climate change rainfall model 

S5_ TM12-RawDEM model is similar to the S1-Baseline model but uses a raw DEM as key 

input data instead of an urban corrected DEM. 

 TanDEM-X 90m DEM Model 

S1_ TM90-Baseline model uses the urban corrected TanDEM-X 90m DEM, 2020 land use 

map and March 2018 precipitation data as key input data 

S2_ TM90-2010LU model is developed using the same key input data as S1-Baseline model 

apart from using land use the 2010 land use map for the catchment  

S3_ TM90-CP4uplift model is developed using the 2020 land use map, the urban corrected 

DEM and future CP4 climate change rainfall model 
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S4_ TM90-P25uplift model uses the 2020 land use map, the urban corrected DEM and future 

P25 climate change rainfall model 

S5_ TM90-RawDEM model is similar to the S1-Baseline model but uses a raw DEM as key 

input data instead of an urban corrected DEM. 

 

Table 27 To Table 53 show the results of the hazard vulnerability classifications for the models using 

the remainder five urban corrected global DEMs and a local Reference DEM (SRTM DEM, ALOS 

DEM, NASA DEM, TanDEM-X 12m, TanDEM-X 90m DEM, and the JICA Reference DEM) for  

the Nairobi sub-catchment. Similar to the results obtained from the model using the MERIT urban 

corrected DEM as key input data, the results obtained from the six models show H6 the most 

hazardous area to people, infrastructure and vehicles in the catchment and is shown in pink zone in 

the tables. The vast majority of the rest of the catchment where flooding occurs has been calculated to 

have hazard vulnerability classification of H5, which is represented by the yellow zone in the plots. 

Zones 5 and Zones 6 are considered the most hazardous vulnerability zones i.e. unsafe for vehicles 

and people (Smith et al., 2014). The remaining hazard vulnerability represented by H1, H2, H3, and 

H4, (purple, cyan, green and yellow) in the table are at less risk to severe damage and destruction.  

 

When comparing the results of hazard vulnerability classifications for all seven models comprising 

the Reference model, MERIT, SRTM, NASADEM, ALOS, TanDEM x 12m, TanDEM x 90m (Table 

27 To Table 53), the Reference/truth DEM have the highest values for the hazard vulnerability 

classifications across all board of H1 to H6 in terms of total area exposed to pluvial flooding. 

Topography has been identified as a key critical dataset for flood modelling accuracy and  for 

estimating flood extent (Horritt and Bates, 2001) and many models of flood extent rely on DEMs in 

order to simulate paths of water flow, flood extent and depth. Therefore, the better performance of the 

local reference DEM in capturing flood hazards more profoundly than the global DEMs can be 

attributed to the better resolution  of the reference DEM. For example, in Table 51, when considering 

the extent of the areas covered by the hazard vulnerability classifications for the H1 to H6 across all 

seven models (S4-P25uplift), the reference DEM is MERIT DEM model is next to the Reference 

DEM model, followed by the SRTM model, the TanDEM-X 12m, TanDEM-X 90m, NASADEM 

model and the ALOS DEM model in that order.  

 

When observing the results of the seven models and comparing the results with actual flood height 

data obtained from the flooding hotspots, the Reference DEM model showed the best performance 

(Table 52). The MERIT, SRTM and TanDEM X 12m models show the better performance compared 

to the TanDEM X 90m, NASADEM, and the ALOS model. From all models, the Reference DEM 

model shows the most realistic results Table 52 when compared to the site survey data.  
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There are multiple studies of the influence of surface topography of digital elevation models—DEMs 

on the outcome of hydrodynamic modelling when DEMs are used as key input data (Horritt and 

Bates, 2001, Casas et al., 2006, Sanders, 2007a, Saksena and Merwade, 2015, Savage et al., 2015, 

Thomas Steven Savage et al., 2016, Acharya et al., 2018, Garrote, 2022). The central narrative of one 

of the main conclusions typical to these studies is the positive relationship between higher spatial 

resolutions and more accurate flooding predictions.  

 

The validation of the global DEMs and the Reference DEM using site survey data for the three 

flooding hotspots sites aligns with the conclusions reached in these studies. Also, the use of the urban 

corrected DEMs and the Reference DEMS in the hydrodynamic models appears to be essential for 

urban flooding assessments where the effect on buildings is less evident.  

 

Table 27. Hazard vulnerability classification for the S4-P25uplift JICA Reference model for C3: Nairobi catchment area. 

 
Table 28. Hazard vulnerability classification for the S3-CP4uplift JICA Reference model for C3: Nairobi catchment area. 

 
 

 

 

 

 

Pixel Count
Hazard Area 

(m2)

Hazard Area 

(km2)
% of Area 
Occupied

% Change from 
Baseline

H1 2740 24984674 25.0 24.4% 1.7%

H2 1498 13964363 14.0 13.3% -0.2%

H3 3176 31863537 31.9 28.3% 1.9%

H4 2048 18173351 18.2 18.2% 3.2%

H5 2995 23176387 23.2 26.7% 9.1%

H6 830 7698632 7.7 7.4% 2.6%

Hazard 
Category

S4Ref-P25uplift Model for Nairobi sub-catchment 

Pixel Count
Hazard Area 

(m2)

Hazard Area 

(km2)

% of Area 
Occupied

% Change from 
Baseline

H1 2722 22362813 22.4 24.2% 1.5%

H2 1577 12961797 13.0 14.0% 0.5%

H3 3245 26107406 26.1 28.9% 2.5%

H4 2046 16883637 16.9 18.2% 3.2%

H5 2578 23887734 23.9 23.0% 5.4%

H6 721 5787454 5.8 6.4% 1.6%

Hazard 
Category

S3Ref-CP4uplift Model for Nairobi sub-catchment 
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Table 29. Hazard vulnerability classification for the S2-2000LU JICA Reference model for C3: Nairobi catchment area. 

 
Table 30. Hazard vulnerability classification for the S1-Baseline JICA Reference model for C3: Nairobi catchment area. 

 

 

Table 31. Hazard vulnerability classification for the S4-P25uplift SRTM model for C3: Nairobi sub-catchment area. 

 
 

 

 

 

 

 

 

Pixel Count
Hazard Area 

(m2)

Hazard Area 

(km2)

% of Area 
Occupied

% Change from 
Baseline

H1 2462 21343445 21.3 21.9% -0.8%

H2 1365 11767107 11.8 12.2% -1.4%

H3 2788 23877871 23.9 24.8% -1.6%

H4 1523 12906782 12.9 13.6% -1.4%

H5 1728 14861575 14.9 15.4% -2.2%

H6 478 4327131 4.3 4.3% -0.5%

Hazard 
Category

S2Ref-2000LU Model for Nairobi sub-catchment 

Pixel Count
Hazard Area 

(m2)

Hazard Area 

(km2)
% of Area 
Occupied

% Change from 
2000LU

H1 2548 21437459 21.4 22.7% 0.8%

H2 1521 12790339 12.8 13.5% 1.4%

H3 2965 25399036 25.4 26.4% 1.6%

H4 1684 13264658 13.3 15.0% 1.4%

H5 1974 16723743 16.7 17.6% 2.2%

H6 538 4484948 4.5 4.8% 0.5%

Hazard 
Category

S1Ref-Baseline Model for Nairobi sub-catchment 

Pixel Count
Hazard Area 

(m2)

Hazard Area 

(km2)
% of Area 
Occupied

% Change from 
Baseline

H1 2556 20148963 20.1 24.7% 0.7%

H2 1456 10981266 11.0 14.1% 1.1%

H3 2998 24360614 24.4 29.0% 2.8%

H4 1980 16773355 16.8 19.2% 4.1%

H5 2567 21815856 21.8 24.8% 7.8%

H6 688 5877911 5.9 6.7% 2.1%

Hazard 
Category

S4_SRTM-P25uplift Model for Nairobi sub-catchment 
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Table 32. Hazard vulnerability classification for the S3-CP4uplift SRTM model for C3: Nairobi catchment area. 

 
Table 33. Hazard vulnerability classification for the S2-2000LU SRTM model for C3: Nairobi catchment area. 

 
Table 34. Hazard vulnerability classification for the S1-Baseline SRTM model for C3: Nairobi catchment area. 

 
Table 35. Hazard vulnerability classification for the S4-P25uplift TM12 model for C3: Nairobi sub-catchment area. 

 

Pixel Count
Hazard Area 

(m2)

Hazard Area 

(km2)

% of Area 
Occupied

% Change from 
Baseline

H1 2498 21964451 22.0 24.2% 0.1%

H2 1455 12514530 12.5 14.1% 1.1%

H3 2987 26872947 26.9 28.9% 2.7%

H4 1789 16270596 16.3 17.3% 2.3%

H5 2284 21631527 21.6 22.1% 5.0%

H6 624 5557271 5.6 6.0% 1.5%

Hazard 
Category

S3_SRTM-CP4uplift Model for Nairobi sub-catchment 

Pixel Count
Hazard Area 

(m2)

Hazard Area 

(km2)

% of Area 
Occupied

% Change from 
Baseline

H1 2414 21008362 21.0 23.4% -0.7%

H2 1298 11490148 11.5 12.6% -0.4%

H3 2556 23560780 23.6 24.7% -1.5%

H4 1467 12838918 12.8 14.2% -0.8%

H5 1567 14486465 14.5 15.2% -1.9%

H6 434 3978016 4.0 4.2% -0.4%

Hazard 
Category

S2_SRTM-2000LU Model for Nairobi sub-catchment 

Pixel Count
Hazard Area 

(m2)

Hazard Area 

(km2)
% of Area 
Occupied

% Change from 
2000LU

H1 2488 21068117 21.1 24.1% 0.7%

H2 1344 12207215 12.2 13.0% 0.4%

H3 2709 23979069 24.0 26.2% 1.5%

H4 1552 13248670 13.2 15.0% 0.8%

H5 1764 15997428 16.0 17.1% 1.9%

H6 474 4148746 4.1 4.6% 0.4%

Hazard 
Category

S1_SRTM-Baseline Model for Nairobi sub-catchment 

Pixel Count
Hazard Area 

(m2)

Hazard Area 

(km2)
% of Area 
Occupied

% Change from 
Baseline

H1 2422 19836252 19.8 23.9% 0.0%

H2 1388 12886473 12.9 13.7% 0.7%

H3 2698 22885599 22.9 26.6% 0.1%

H4 1876 16394774 16.4 18.5% 3.6%

H5 2482 20736363 20.7 24.5% 7.2%

H6 672 5773635 5.8 6.6% 2.3%

Hazard 
Category

S4_TM12-P25uplift Model for Nairobi sub-catchment 
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Table 36. Hazard vulnerability classification for the S3-CP4uplift TM12 model for C3: Nairobi sub-catchment area. 

 
Table 37. Hazard vulnerability classification for the S2-2000LU TM12 model for C3: Nairobi sub-catchment area. 

 
Table 38. Hazard vulnerability classification for the S1-Baseline TM12 model for C3: Nairobi sub-catchment area. 

 

 

Table 39. Hazard vulnerability classification for the S4-P25uplift TM90 model for C3: Nairobi sub-catchment area. 

 

Pixel Count
Hazard Area 

(m2)

Hazard Area 

(km2)

% of Area 
Occupied

% Change from 
Baseline

H1 2496 20282813 20.3 24.6% 0.7%

H2 1389 12161797 12.2 13.7% 0.7%

H3 2747 25374036 25.4 27.1% 0.6%

H4 1711 16218994 16.2 16.9% 2.0%

H5 2223 21394566 21.4 21.9% 4.6%

H6 588 5413463 5.4 5.8% 1.5%

Hazard 
Category

S3_TM12-CP4uplift Model for Nairobi sub-catchment 

Pixel Count
Hazard Area 

(m2)

Hazard Area 

(km2)

% of Area 
Occupied

% Change from 
Baseline

H1 2409 20034435 20.0 23.8% -0.1%

H2 1277 10267107 10.3 12.6% -0.4%

H3 2545 22477871 22.5 25.1% -1.4%

H4 1433 11806782 11.8 14.1% -0.8%

H5 1555 13161575 13.2 15.4% -2.0%

H6 428 3227131 3.2 4.2% -0.1%

Hazard 
Category

S2_TM12-2000LU Model for Nairobi sub-catchment 

Pixel Count
Hazard Area 

(m2)

Hazard Area 

(km2)
% of Area 
Occupied

% Change from 
2000LU

H1 2422 20637459 20.6 23.9% 0.1%

H2 1318 11490339 11.5 13.0% 0.4%

H3 2689 22499036 22.5 26.5% 1.4%

H4 1511 12384658 12.4 14.9% 0.8%

H5 1755 14923743 14.9 17.3% 2.0%

H6 435 3894948 3.9 4.3% 0.1%

Hazard 
Category

S1_TM12-Baseline Model for Nairobi sub-catchment 

Pixel Count
Hazard Area 

(m2)

Hazard Area 

(km2)
% of Area 
Occupied

% Change from 
Baseline

H1 2411 19774492 19.8 24.0% 0.0%

H2 1361 12674926 12.7 13.5% 0.5%

H3 2697 22730975 22.7 26.8% 0.2%

H4 1858 15903672 15.9 18.5% 3.5%

H5 2446 20548892 20.5 24.3% 7.2%

H6 668 5479075 5.5 6.6% 2.4%

Hazard 
Category

S4_TM90-P25uplift Model for Nairobi sub-catchment 
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Table 40. Hazard vulnerability classification for the S3-CP4uplift TM90 model for C3: Nairobi sub-catchment area. 

 
Table 41. Hazard vulnerability classification for the S2-2000LU TM90 model for C3: Nairobi sub-catchment area. 

 
Table 42. Hazard vulnerability classification for the S1-Baseline TM90 model for C3: Nairobi sub-catchment area. 

 
Table 43. Hazard vulnerability classification for the S4-P25uplift NASADEM model for C3: Nairobi sub-catchment area. 

 

Pixel Count
Hazard Area 

(m2)

Hazard Area 

(km2)

% of Area 
Occupied

% Change from 
Baseline

H1 2477 20282810 20.3 24.6% 0.6%

H2 1363 12161768 12.2 13.5% 0.5%

H3 2721 25374021 25.4 27.0% 0.4%

H4 1700 16218998 16.2 16.9% 1.9%

H5 2213 21394532 21.4 22.0% 4.9%

H6 568 5413443 5.4 5.6% 1.4%

Hazard 
Category

S3_TM90-CP4uplift Model for Nairobi sub-catchment 

Pixel Count
Hazard Area 

(m2)

Hazard Area 

(km2)

% of Area 
Occupied

% Change from 
Baseline

H1 2388 20034422 20.0 23.7% -0.2%

H2 1258 10267101 10.3 12.5% -0.5%

H3 2527 22477834 22.5 25.1% -1.5%

H4 1412 11806740 11.8 14.0% -1.0%

H5 1525 13161545 13.2 15.2% -2.0%

H6 415 3227121 3.2 4.1% -0.1%

Hazard 
Category

S2_TM90-2000LU Model for Nairobi sub-catchment 

Pixel Count
Hazard Area 

(m2)

Hazard Area 

(km2)
% of Area 
Occupied

% Change from 
2000LU

H1 2412 20637438 20.6 24.0% 0.2%

H2 1310 11490328 11.5 13.0% 0.5%

H3 2678 22499014 22.5 26.6% 1.5%

H4 1510 12384639 12.4 15.0% 1.0%

H5 1723 14923720 14.9 17.1% 2.0%

H6 430 3894934 3.9 4.3% 0.1%

Hazard 
Category

S1_TM90-Baseline Model for Nairobi sub-catchment 

Pixel Count
Hazard Area 

(m2)

Hazard Area 

(km2)
% of Area 
Occupied

% Change from 
Baseline

H1 2423 19697463 19.7 24.2% 0.1%

H2 1342 12234567 12.2 13.4% 0.4%

H3 2678 21686437 21.7 26.8% 0.3%

H4 1724 15848965 15.8 17.2% 2.1%

H5 2348 20336564 20.3 23.5% 6.4%

H6 660 5373565 5.4 6.6% 2.3%

Hazard 
Category

S4_NASA-P25uplift Model for Nairobi sub-catchment 



 
 

138 
 

Table 44. Hazard vulnerability classification for the S3-CP4uplift NASADEM model for C3: Nairobi sub-catchment area. 

 
Table 45. Hazard vulnerability classification for the S2-2000LU NASADEM model for C3: Nairobi sub-catchment area. 

 
Table 46. Hazard vulnerability classification for the S1-Baseline NASADEM model for C3: Nairobi sub-catchment area. 

 
Table 47. Hazard vulnerability classification for the S4-P25uplift ALOS model for C3: Nairobi sub-catchment area. 

 
Table 48. Hazard vulnerability classification for the S3-CP4uplift ALOS model for C3: Nairobi sub-catchment area. 

Pixel Count
Hazard Area 

(m2)

Hazard Area 

(km2)

% of Area 
Occupied

% Change from 
Baseline

H1 2455 19798021 19.8 24.5% 0.5%

H2 1342 11864832 11.9 13.4% 0.4%

H3 2687 24848494 24.8 26.9% 0.4%

H4 1689 15774946 15.8 16.9% 1.8%

H5 2200 20464664 20.5 22.0% 4.9%

H6 555 5046646 5.0 5.5% 1.3%

Hazard 
Category

S3_NASA-CP4uplift Model for Nairobi sub-catchment 

Pixel Count
Hazard Area 

(m2)

Hazard Area 

(km2)

% of Area 
Occupied

% Change from 
Baseline

H1 2382 18953006 19.0 23.8% -0.3%

H2 1250 10017533 10.0 12.5% -0.5%

H3 2511 22181109 22.2 25.1% -1.4%

H4 1389 11397128 11.4 13.9% -1.2%

H5 1512 12987444 13.0 15.1% -2.0%

H6 400 3029288 3.0 4.0% -0.3%

Hazard 
Category

S2_NASA-2000LU Model for Nairobi sub-catchment 

Pixel Count
Hazard Area 

(m2)

Hazard Area 

(km2)
% of Area 
Occupied

% Change from 
2000LU

H1 2408 20209433 20.2 24.1% 0.3%

H2 1298 11108454 11.1 13.0% 0.5%

H3 2647 22073993 22.1 26.5% 1.4%

H4 1509 12048921 12.0 15.1% 1.2%

H5 1711 14633220 14.6 17.1% 2.0%

H6 428 3584774 3.6 4.3% 0.3%

Hazard 
Category

S1_NASA-Baseline Model for Nairobi sub-catchment 

Pixel Count
Hazard Area 

(m2)

Hazard Area 

(km2)
% of Area 
Occupied

% Change from 
Baseline

H1 2419 19409822 19.4 24.4% 0.2%

H2 1311 11993558 12.0 13.2% 0.4%

H3 2655 21609476 21.6 26.8% 0.3%

H4 1699 15438764 15.4 17.1% 2.0%

H5 2128 20029877 20.0 21.5% 4.3%

H6 577 5293618 5.3 5.8% 1.6%

Hazard 
Category

S4_ALOS-P25uplift Model for Nairobi sub-catchment 
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Table 49. Hazard vulnerability classification for the S2-2000LU ALOS model for C3: Nairobi sub-catchment area. 

 
Table 50. Hazard vulnerability classification for the S1-Baseline ALOS model for C3: Nairobi sub-catchment area. 

 

 

 

Table 51. Comparison of the Hazard vulnerability classifications (H1 to H6) for all seven DEMs for the S4-P25uplift model 
for the Nairobi sub-catchment area – (all values in square km) 

 

Pixel Count
Hazard Area 

(m2)

Hazard Area 

(km2)

% of Area 
Occupied

% Change from 
Baseline

H1 2437 19406874 19.4 24.6% 0.4%

H2 1323 11690016 11.7 13.4% 0.6%

H3 2687 24630013 24.6 27.1% 0.7%

H4 1656 15511986 15.5 16.7% 1.6%

H5 2198 20310347 20.3 22.2% 5.0%

H6 543 4908725 4.9 5.5% 1.2%

Hazard 
Category

S3_ALOS-CP4uplift Model for Nairobi sub-catchment 

Pixel Count
Hazard Area 

(m2)

Hazard Area 

(km2)

% of Area 
Occupied

% Change from 
Baseline

H1 2344 18788339 18.8 23.7% -0.5%

H2 1238 9817533 9.8 12.5% -0.3%

H3 2489 21811733 21.8 25.1% -1.3%

H4 1365 11022890 11.0 13.8% -1.3%

H5 1501 12108832 12.1 15.2% -2.0%

H6 389 2887336 2.9 3.9% -0.3%

Hazard 
Category

S2_NASA-2000LU Model for Nairobi sub-catchment 

Pixel Count
Hazard Area 

(m2)

Hazard Area 

(km2)
% of Area 
Occupied

% Change from 
2000LU

H1 2398 19688742 19.7 24.2% 0.5%

H2 1267 10883681 10.9 12.8% 0.3%

H3 2622 21833980 21.8 26.5% 1.3%

H4 1498 11894462 11.9 15.1% 1.3%

H5 1700 14299036 14.3 17.2% 2.0%

H6 422 3187822 3.2 4.3% 0.3%

Hazard 
Category

S1_NASA-Baseline Model for Nairobi sub-catchment 

Hazard 
Category

Reference 
DEM Model

MERIT DEM 

Model (m2)

SRTM DEM 

Model (km2)
TanDEM 12 
DEM Model

TanDEM 90 
DEM Model

NASADEM 
DEM Model

ALOS DEM 
MODEL

H1 25.0 22.7 20.1 19.8 19.8 19.7 19.4

H2 14.0 12.6 11.0 12.9 12.9 12.2 12.0

H3 31.9 26.9 24.4 22.9 22.9 21.7 21.6

H4 18.2 17.3 16.8 16.4 16.4 15.8 15.4

H5 23.2 24.6 21.8 20.7 20.7 20.3 20.0

H6 7.7 6.4 5.9 5.8 5.8 5.4 5.3
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Figure 55.  Comparison of Flood Hazard Vulnerability Classification (H1) for seven DEMs under the S4-P25uplift Model 
Scenario 

 
Figure 56. Comparison of Flood Hazard Vulnerability Classification (H2) for seven DEMs under the S4-P25uplift Model 
Scenario 
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Figure 57. Comparison of Flood Hazard Vulnerability Classification (H3) for seven DEMs under the S4-P25uplift Model 
Scenario 

 
Figure 58. Comparison of Flood Hazard Vulnerability Classification (H4) for seven DEMs under the S4-P25uplift Model 
Scenario 
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Figure 59. Comparison of Flood Hazard Vulnerability Classification (H5) for seven DEMs under the S4-P25uplift Model 
Scenario 

 
Figure 60.Comparison of Flood Hazard Vulnerability Classification (H6) for seven DEMs under the S4-P25uplift Model 
Scenario 
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Figure 61. Comparison of Flood Hazard Vulnerability Classification (H1) for seven DEMs under the S2-2000LU Model 
Scenario 

 
Figure 62. Comparison of Flood Hazard Vulnerability Classification (H2) for seven DEMs under the S2-2000LU Model 
Scenario 
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Figure 63. Comparison of Flood Hazard Vulnerability Classification (H3) for seven DEMs under the S2-2000LU Model 
Scenario 

 

Figure 64. Comparison of Flood Hazard Vulnerability Classification (H4) for seven DEMs under the S2-2000LU Model 
Scenario 
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Figure 65. Comparison of Flood Hazard Vulnerability Classification (H5) for seven DEMs under the S2-2000LU Model 
Scenario 

 

Figure 66. Comparison of Flood Hazard Vulnerability Classification (H6) for seven DEMs under the S2-2000LU Model 
Scenario 
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Table 52. Model Validation: Comparison of site survey data across three flooding hotspots areas of Nairobi with model 
results of the seven DEM models 

 

 

7.5 Model Validation 

The validation of the model was undertaken using actual field data collected across various flooding 

hotspots located within the catchment, during a one-week field trip to Nairobi, Kenya. The main 

purpose of the model validation was to assess the accuracy and reliability of the five model scenarios 

developed in this study by comparing simulated flood water levels with site data collected from 

flooding hotspots across Nairobi, Kenya. 

 

The March 2018 rainfall across Kenya and parts of East Africa caused serious devastation to lives and 

properties. Approximately three hundred thousand people were displaced across Kenya by the 

flooding events that ravaged through the country (OCHA, 10th May, 2018). At the peak of the rains in 

March 2018 the flooding has caused widespread damage across Kenya, particularly several counties 

in the capital city, Nairobi, Kenya. There were approximately 150 deaths resulting directly from the 

flooding and a further 310,000 displaced across 40 counties in Kenya. The flooding event resulted in 

the destruction of public infrastructure such as bus terminals, hospitals, shopping malls, schools, 

police stations and government offices across Nairobi (UNICEF, 15th June, 2018). The flooding 

events provide reliable field data suitable for the validation of the five sets of 2D hydraulic models 

developed in this study.  

 

The three sites for flood inundation analysis were selected from areas where major flood damages 

have occurred in in the past and which are listed as flood prone areas by the Kenya Meteorological 

Service. The field trip to collect flood height data at the flooding hotspots was undertaken between 

20th to 28th July 2018. Photo images of the  topographical survey are shown in Figure 68, Figure 69, 

Figure 70, Figure 71, and Figure 72. The timing of the field trip Nairobi was specifically arranged to 

coincide with the immediate aftermath the national & international recovery efforts to address the 

devastation caused by the historic flooding events in Kenya, March 2018. Figure 67 shows the three 

flooding hotspots: (1). Westgate Shopping Mall, Westlands, Nairobi. (2). Lindi Area, Kibera. (3). 

Flooding 
Hotspots

Site Survey 
Flood Depth 
(m) 

Reference 
DEM model

MERIT DEM 
model

SRTM DEM 
model

TanDEM-X 
12m DEM 
model

TanDEM-X 
90m DEM 
model

NASADEM 
DEM model

ALOS DEM 
model

Westgate 
Shopping Mall 1.58 1.71 1.99 2.15 2.32 2.45 2.58 2.77

Thika Super 
Highway and 
Industrial Area  1.39 1.52 1.86 2.08 1.79 2.17 2.31 2.52

Lindi Area, 
Kibera 1.78 2.01 2.38 2.55 2.3 2.57 2.68 2.81
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Thika Super Highway and Industrial Area, Nairobi where site survey was undertaken to collect flood 

height/depth data.   

 

 
Figure 67. A screenshot from the QGIS software showing locations of three flooding hotspots in (1). Westgate Shopping 
Mall, Westlands, Nairobi. (2). Lindi Area, Kibera. (3). Thika Super Highway and Industrial Area  in Nairobi where model 
validation data were collected between 20th and 27th July 2018. 

 

7.6 Survey errors 

There is  potential for errors in the surveying process of the flooding hotspots that could include 

instrumental errors associated with faulty equipment due to age and lack of regular maintenance of 

survey equipment provided and operated by local surveyor in Nairobi. It was impossible to travel with 

survey equipment from the United Kingdom to Nairobi during the fieldwork exercise. The survey was 

undertaken at historic flooding hotspots sites where ‘flood marks’ have been left on walls, buildings 

and other surface features. There is  potential for the introduction of gross error in the measurement 

from the survey instrument, human error associated with observing, taking or recording reading at 

flooding hotspot sites, and difficulty in identifying the exact level/locations etc.  
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Readings are taking at six locations of each of the three flooding hotspots site spanning an area of 

10m2 to 15m2 in other to mitigate the impacts of these errors and uncertainties associated with the 

survey. Therefore, there is  a high level of confidence in the accuracy of the survey results and any 

errors introduced could have been very negligible and   have little significance  on the overall 

accuracy of the survey results.  The order of error is estimated at approximately 1cm.  

Loose tripod shoes will always result in unstable set-ups of the survey equipment impacting on the 

accuracy of survey results. Therefore, it was ensured the tripod has no loose fixings that could cause 

twisting and movement of the tripod head.  

 

 

 

 
Figure 68. Offloading of survey equipment (researcher) from car on arrival at the Westgate Shopping Mall flooding hotpot 
site to undertake topographic survey – 27th March 2018. 
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Figure 69. A hired local surveyor (Stanley Kimani) of the Kenya National Survey authority, Nairobi, with highly technical 
surveying knowledge providing support during the survey exercise. 
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Figure 70. Setting up of the survey equipment by the survey team at one of the survey sites. 

 

 
Figure 71. Survey in progress at the Westgate Shopping Mall flooding hotspot showing a breach of the shopping mall fence 
line during the March 2018 flooding event to allow the passage of floodwater – brick rubble can be seen visible behind  the 
gaping hole in fence wall in the background. 
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Figure 72. Measurement of flood historic flood depth levels at flooding hotspot site. 

 

Sample data relating to the March 2018 flooding event were taken/recorded within 30m radius of the 

locations shown in Figure 67 across each site. The choice of the flooding hotspots were dictated by 

(1) the urban nature of the Westgate Shopping Mall located at the Central Business District in 

Nairobi. (2). the densely populated informal urban settlement of Kibera and (3) the industrial nature of 

the Thika area. A comparison of the of the average flood depths at the three flooding hotspots with the 

values represented in the baseline model, S1-Baseline is presented in Table 53.  The results show 

acceptable level of accuracy in comparison with actual site survey data across the representative three 

flooding hotspot sites.   

 

Table 53. Model Validation: Comparison of site survey data across three flooding hotspots areas of Nairobi with model 
results 

Ref Survey 
Flooding 
Hotspots 

Coordinates 
(decimal) 

Site Survey 
Elevation 
(mAOD)  

Site Survey 
Flood Depth (m)  

DEM Elevation 
(mAOD) 

S1-Baseline 
Flood Depth 

(m) 
1 Westgate 

Shopping 
Mall 

-1.257, 36.803 1701.8 1.58 1702.5 1.99 

2 Thika Super 
Highway and 
Industrial 
Area   

-1.257, 36.895 1600.6 1.39 1601.8 1.86 

3 Lindi Area, 
Kibera 

-1.314, 36.792 1713.5 1.78 1715.0 2.38 
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8.0      SYNTHESIS OF RESEARCH FINDINGS 

Accurate flood prediction using hydrodynamic models that rely on use of free, global datasets are 

crucial for making decisions to reduce urban pluvial flood hazard at city scale level. Climate change 

and land use change are some of the factors affecting urban pluvial flood hazard in rapidly developing 

cities most at risk areas from flooding but have not been modelled extensively. Building density in 

urban areas has been shown to contribute to vertical height accuracy of global DEMs and influential 

on flood predictions.  This thesis has applied hydrodynamic models to assess the impact of climate 

change and land use change on urban pluvial flood hazard predictions. The major scientific findings 

from this thesis are: 1) when considering model application, data available, computational resources, 

and time available, it is possible to develop a hydrodynamic model that achieves a trade-off between 

model complexity and resolution of the input datasets. 2) A city-scale hydrodynamic model of the 

Nairobi catchment built using freely available, global data shows a good level of skill in urban flood 

predictions with topography a major control on predicted flood extent and flood depth; 3) Removal of 

building density error from global DEMs resulted in the improvement of the vertical height accuracy 

of global DEMs; 4) The use of corrected urban global DEM as key input data in the hydrodynamic 

flood models resulted in a more accurate flood predictions; 5) Land use change contributed to 

increases in urban pluvial flood hazard; 6) Climate change has a significant influence in increasing 

urban pluvial flood hazard.   

 

8.1 Work on Urban Correction of Global DEM and Impacts on Urban Flood 
Modelling.  

Global DEMs used in flood models are representations of physical ground surface and the spatial 

resolution of a DEM refers to the area of land being represented by single regular or irregular grid, 

with the value of each grid element representing the height of the ground at the corresponding datum 

(Vaze et al., 2010). There are many open access global scale DEMs such as the Shuttle Radar 

Topography Mission (SRTM), and its derivatives, the Multi-Error-Removed Improved-Terrain DEM 

(MERIT DEM) and NASA DEM (NASADEM), as well as Advanced Spaceborne Thermal Emission 

and Reflection Radiometer (ASTER) DEM and TerraSAR-X add-on for Digital Elevation 

Measurement (TanDEM-X 90m) etc. The global coverage of these DEMs makes them highly suitable 

for use in scientific applications where they are used extensively in flood models and have been 

critical in facilitating important flood studies, particularly in data-sparse areas, where local data is 

often difficult to access or unavailable (Hawker et al., 2018).  
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Chen and Hill (Chen and Hill, 2007) investigated the influence of DEM resolution on flood hazard 

modelling in urban areas and found that both vertical height error and spatial resolution of DEMs can 

impact on flood inundation depth and extent in urban flood modelling. Although, spaceborne DEMs 

provide fundamental input to many geoscience studies, they suffer from non-negligible height errors 

(Yamazaki et al., 2017). Sources of error in spaceborne DEMs include: (i) incomplete spatial 

sampling; (ii) measurement errors, such as positional inaccuracy, data entry errors; and (iii) 

processing errors such as computational numerical errors, interpolation errors, and classification and 

generalisation errors (Burrough, 1986). Global DEMs suffer from many different types of errors, 

some of which are significant at local scales; for example, (Rodríguez et al., 2006) reported a global 

mean and standard vertical height error of 8.2 ± 0.7 and 6.9 ± 0.5 m for SRTM X- and C-band data, 

respectively.  

 

(Muthusamy et al., 2021) investigated impact of DEM resolution on urban flood modelling outputs 

using DEMs with different grid resolutions. The results show that there is a 30% increase in flood 

extent and a 150% increase in mean flood depth when the resolution of DEM reduces from a 1 m grid 

to a 50 m grid. There is a number of published work on the correction of errors in global DEMs, 

especially vegetation errors. (Falorni et al., 2005, Bhang et al., 2007, Dong et al., 2015, Gallant et al., 

2012, Baugh et al., 2013, O'Loughlin et al., 2016, Chen et al., 2018).  Also, there are many previous 

studies focused on the assessment of the vertical height accuracy of DEMs by comparing elevation 

values of DEMs to that of a reference local DEM having a higher vertical accuracy. A more accurate 

reference DEM such as the Light Detection and Ranging (LiDAR) is required in order to make an 

assessment of the vertical accuracy of global DEMs (Dong et al., 2015, Wessel et al., 2018, Acharya 

et al., 2018).  

 

Although many studies (Robinson et al., 2014, Yamazaki et al., 2012, Yamazaki et al., 2017) have 

developed new vegetation-corrected DEMs, by either editing or adjusting existing global DEMs. 

However, despite significant advances in developing vegetation-corrected DEMs, there is limited 

understanding of DEM errors that can be attributed to building heights and building density in urban 

areas. Local DEMs that are based on airborne light detection and ranging (LiDAR) are preferential 

over open access, global DEMs due of their superior vertical accuracy, horizontal resolution, and 

ability to distinguish between ‘bare earth’ from built structures and vegetation (Yamazaki et al., 

2017). However, (LiDAR) DEMs (<10 m horizontal resolution) are only available for a very small 

percentage of Earth's land surface (~0.005%), and data acquisition is often expensive (Hawker et al., 

2018).  
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Topography plays an important role in the accuracy of flood inundation maps (Saksena, 2015). 

Therefore, in order to investigate the impact of the urban correction of global DEMs on flooding 

within an urban context (C3 sub-catchment), a fifth model was created in the HEC-RAS model 

environment that uses raw MERIT DEM and titled S5-RawDEM. The objective is to demonstrate 

how the building errors in global DEMs can impact negatively on accuracy of urban flood models that 

use them as key input data. The S5-RawDEM model is similar to the S1-Baseline model except for 

the variation in the input DEM data i.e. corrected MERIT DEM and uncorrected/Raw MERIT DEM 

for the S1-Baseline model and S5-RawDEM model respectively. The hazard vulnerability 

classification map for the S5-RawDEM model is shown in Figure 73. A comparison of the 

hydrograph for the S1-Baseline model and the S5-RawDEM model is also shown in Figure 74. 

 

 
Figure 73. A screenshot from the HEC-RAS model showing hazard vulnerability classification map for the S5-RawDEM 
model that used raw DEM data instead of the corrected MERIT DEM. 
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Figure 74. Cmparison of the flow hydrograph for the S1-Baseline model and S5-RawDEM model. 

The flood hazard category map for the S1-Baseline model using the corrected MERIT DEM as key 

model input data compared to the flood hazard category map for S5-RawDEM model that uses the 

Raw MERIT DEM is shown in Figure 75. A comparison of flood depth levels between the S1-

Baseline and S5-Baseline models with actual survey data at flooding hotspot sites is presented in 

Figure 45. Figure 76 illustrates the difference between the Hazard Vulnerability Classification of the 

S1-Baseline model and the S5-RawDEM model for the Nairobi C3 sub-catchment. The results show 

that there’s a similarity in the volume of water in the two models and very similar level of runoff 

including both models achieving peak flowrate of 1,649 m3 1,685 m3 for S1-Baseline and S5-

RawDEM respectively, near about the same time (19:25 hrs) on March the 5th 2018 Figure 74.   

 

In Figure 76, a comparison of the hazard vulnerability classification for the two models is shown. The 

hazard vulnerability classification for the S5-RawDEM is slightly higher than the S1-Baseline model 

across all the six hazard measurement thresholds, H1 to H6, due to the different flow paths internally 

in the uncorrected DEM fused into the S5-RawDEM and leading to these errors. A comparison of the 

flood depths for the S1-Baseline Model and S5-RawDEM model with measurements taken from 

across the three validation flooding hotspot sites show (Table 54) that the S5-RawDEM has a higher 

margin of deviation from the site reference data in comparison to the S1-Baseline model. The result 
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show the S5-RawDEM model overestimating flood height by 18% to 23% more than the S1-Baseline 

model when compared to the reference site data collected at the flooding hotspot sites. From the 

results, it is evident that the s1-Baseline model is more accurate that the S5-RawDEM model 

predominantly due to the building error inherent in the raw DEM used as input data in the S5-

RawDEM model.  

 

The results obtained that show the S5-RawDEM model overestimating flood inundation depth more  

than the S1-Baseline is in agreement with previous studies such as (Ogania et al., 2019) that 

found  digital elevation model with higher vertical accuracy generates more accurate flood hazard 

maps whilst DEMs with less vertical height accuracy over-predicts the flood hazard. The results of 

comparing the S1-Baseline model and the S5-RawDEM model with site data show that the S5-

RawDEM model is less accurate by over predicting flood inundation depths across the three flooding 

hotspot sites where site data have been collected. The over prediction of the flood inundation depths 

by the S1-RawDEM model over the S1-Baseline model is evident in the comparison of hazard 

vulnerability classification for the two model.  

 

The result of the hazard vulnerability classification of the S1-Baseline and the S5-RawDEM show the 

S5-RawDEM with slightly higher values across the H1 to H6 classification categories, Figure 76. The 

result of the model validation show that even though a comparison of the hazard vulnerability 

classification of the S1-Baseline model and S5-RawDEM model show slightly higher values across all 

hazard categories (H1 to H6), the model validation Table 54 show that the difference is important for 

model fit to reality. The hazard vulnerability classification maps comparing S1-Baseline and S5-

RawDEM is shown in Figure 75. 

 

Table 54. Comparison of flood height levels between the S1-Baseline and S5-RawDEM models with actual survey data at 
flooding hotspot sites. 

Ref Survey 
Flooding 
Hotspots 

Coordinates 
(decimal) 

Survey 
Elevation 
(mAOD)  

Survey 
Flood 
Height 

(m)  

S1-
Baseline 
(mAOD) 

S1-
Baseline 

Flood 
Height 

(m) 

S5-
RawDEM   
(mAOD) 

S5-
RawDEM 

Flood 
Height (m) 

1 Westgate 
Shopping 
Mall 

-1.257, 
36.803 

1701.8 1.58 1702.5 1.99 1703.4 2.35 

2 Thika Super 
Highway and 
Industrial 
Area   

-1.257, 
36.895 

1600.6 1.39 1601.8 1.86 1602.9 2.23 

3 Lindi Area, 
Kibera 

-1.314, 
36.792 

1713.5 1.78 1715.0 2.38 1715.8 2.95 
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Figure 75. (A) Flood Hazard Category map for the S1-Baseline and (B) Flood Hazard Category map for S5-RawDEM 
models for C3 Nairobi sub-catchment area. 
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Figure 76. Comparison of Hazard Vulnerability Classification between S1-Baseline model and S5-RawDEM  model for the 
Nairobi C3 sub-catchment. 

 

8.2 Impacts of Land use change on Pluvial Flooding. 

Climate change and urbanization pose significant threats for flooding and water quality in urban areas 

(Miller and Hutchins, 2017). Various researches have highlighted how rapid urbanization processes 

have influenced flood behaviour and contributed to flooding (Braud et al., 2013, Chen et al., 2017b, 

Donald Houston, 2011, Miller and Hutchins, 2017, Sanyal et al., 2014, Suriya and Mudgal, 2012). 

They found that physical growth of urban areas, amongst others characterized by the increase of 

impervious surfaces lead to the decrease in infiltration rate thus to an increase of overland flow. 

Removing vegetation and soil, grading the land surface, and constructing drainage networks increase 

runoff to streams from rainfall and snowmelt. As a result, the peak discharge, volume, and frequency 

of floods increase in nearby streams. Roads and buildings constructed in flood-prone areas are 

exposed to increased flood hazards, including inundation and erosion, as new development continues. 

Floodplains can alter the capacity of a channel to convey water and can increase the height of the 

water surface corresponding to a given discharge. In particular, structures that encroach on the 

floodplain, such as bridges, can increase upstream flooding by narrowing the width of the channel and 

increasing the channel’s resistance to flow. As a result, the water is at a higher stage as it flows past 

the obstruction, creating a backwater that will inundate a larger area upstream.  

 

(Suriya and Mudgal, 2012) found that the rapid increase in population and the change in land use 

pattern between 1976 and 2005 are the major reasons for occurrence of flooding at the Thirusoolam 
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sub watershed. The land use pattern of the Thirusoolam was classified into a built-up area and the 

results reflect that the increase in impervious area has altered the water cycle and obstructed natural 

runoff, which in turn led to flood risks to inhabitants. Similarly, (Konrad, 2003) found, generally, 

urbanization increases the size and frequency of floods and expose communities to increasing flood 

hazards. Urbanisation affects hydrological processes, often detrimentally and the growth of urban 

population, combined with an increase of extreme rainfall events due to climate change call for a 

better understanding and representation of urban floods (Courty et al., 2018). One of the key aims of 

this study is to assess the impact of urbanization, changes in land use, land cover on pluvial flooding 

at a city-scale. 

 

Using the Storm water Management Model (SWMM), (Zhou et al., 2019), whilst taking into account 

the role of urban drainage system, found that urbanization led to an increase in annual surface runoff 

by 208 to 413% and annual flood volumes increases within a range of 194 to 942% whilst extension 

in size of the urban area resulted in increasing surface runoff from 208% to up to 413%. The flow 

hydrograph for the S1-Baseline model and the S2-2000LU model is shown in Figure 77.  Figure 78, 

illustrates the change in hazard vulnerability classification under the S1-Baseline model and S2-

2000LU land use scenarios at 2000 and 2020 in the Nairobi, C3 sub-catchment. The result show a 

percentage increase (hazard area) of 0.1%, 0.8%, 0.5%, 0.5%, 1.7%, and 0.2% in hazard area in H1, 

H2, H3, H4, H5, and H6 respectively. The results show the changes in land use over a period of 20 

years, are significant enough to increase flood hazard vulnerability of the Nairobi sub-catchment. The 

result show that a total volume of 112,148,000 m3 runoff was induced as a result of the changes in 

land use that occurred in the catchment between 2000 and 2020. The change in flood volume and 

surface runoff due to land use change within the sub-catchment equates to a 36% increase in flood 

extent between 2000 and 2020.   
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Figure 77. A screenshot from the HEC-RAS software showing comparison of flood hydrographs for the S1-Baseline model 
and the S2-2000LU model. 

 

 
Figure 78. Comparison of Hazard Vulnerability Classification between S1-Baseline model and S2-2000LU model for the 
Nairobi C3 sub-catchment. 

 



 
 

162 
 

A comparison of the six hazard vulnerability classification for the S1-Baseline model with the S3-

CP4uplift and S4-P25uplift climate models is shown in Figure 88, Figure 89, Figure 90, Figure 91, 

Figure 92, and Figure 93. 

 

   

 

 

 
Figure 79. Comparison of Hazard Vulnerability Classification, H1 for the S2-2000LU model and the S1-Baseline model. 

(a) 
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Figure 80. Comparison of Hazard Vulnerability Classification, H2 for the S2-2000LU model and the S1-Baseline model. 

 

Figure 81. Comparison of Hazard Vulnerability Classification, H3 for the S2-2000LU model and the S1-Baseline model. 

 

Figure 82. Comparison of Hazard Vulnerability Classification, H4 for the S2-2000LU model and the S1-Baseline model. 
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Figure 83. Comparison of Hazard Vulnerability Classification, H5 for the S2-2000LU model and the S1-Baseline model. 

 

Figure 84. Comparison of Hazard Vulnerability Classification, H6 for the S2-2000LU model and the S1-Baseline model. 
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8.3 Impacts of climate change on urban pluvial flooding 

Climate models are primary tools used to estimate how climate might change in future. Rainfall is one 

of the most important variables to assess in a changing climate, is not adequately simulated in present 

climate models. For Africa, the ranges of available climate models largely disagree in the direction of 

projected changes (i.e. whether getting wetter or drier). Global and regional climate models cannot 

simulate local-scale processes such as convection due to their relatively large grid cells (coarse 

resolution), typically several tens of kilometre across. Projections of climate change over Africa are 

highly uncertain, therefore, (Rowell et al., 2016) addressed this uncertainty by ranking models 

according to their historical climate performance and disregard those with least skill. The inability of 

global and regional models to accurately capture local-level processes results in biases in key 

outcomes such as temperature and rainfall compared to observations that increase uncertainty in 

future climate projections from these models. This study found that when the more capable models 

are selected by an overall performance measure, projection uncertainty is not reduced because these 

models are typically spread across the full range of projections. Further research must develop an 

expert judgement approach that will discriminate models using an in-depth understanding of the 

mechanisms that drive the errors and uncertainty in projected changes over Africa. Many of the most 

important impacts of climate change on society can typically be found on the micro- and meso-scale. 

For example, water supply management demand for reliable climate projections on the scale of single 

river catchments are in most cases much smaller than the resolution of modern Global Climate 

Models (GCMs). All processes which have smaller spatial scales than those resolved in the GCMs 

cannot be represented explicitly.  

 

As improvements in technology and data sharing allow researchers to set up novel experiments to 

overcome the problem of large grid cells, scientists have developed very high-resolution climate 

models with grid cells that are a few kilometres wide, rather than tens of kilometres. They are known 

as “convection-permitting” models because they can simulate larger convective storms without the 

need of parameterisation schemes. They have been shown to improve the representation of dynamics 

such as the influence of mountains and statistical properties of convection and heavy rainfall, and 

hence have the potential to better represent changes in convection and local storms in future 

projections. The rainfall uplift factors used in the study are for the end of century data (RCP85). For 

CORDEX, the historical period was 1989 - 1999, the future period 2089 - 2099. For CP4A and P25 

the historical period is 1997 - 2006, the future period is 2097 - 2106.  

 

Changes to the timing and magnitude (depth) of rainfall events as a result of climate change are 

predicted to significantly alter the flooding experienced in many urban areas of the world (Ashley et 

al., 2005a, Wheater and Evans, 2009, Hunt and Watkiss, 2011, Arnell et al., 2015). Global warming 
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have been found to be responsible for increases in frequency and intensity of extreme rainfall (IPCC, 

2014, IPCC, 2007). The number of quantitative assessment studies of the impact of climate 

change on urban drainage remains, however, rather limited (Willems et al., 2012a). It has been found 

that future changes in rainfall intensities and frequencies will render most large urban areas vulnerable 

to extreme rainfall and pluvial flooding due to lack of resilience in existing drainage infrastructure 

(Willems et al., 2012b). (Veijalainen et al., 2010) found increase precipitation resulted in growing 

floods in major central lakes and their outflow rivers in Finland.  

 

 

The frequency and severity of the Combined Sewer Overflow (CSO) discharges are strongly 

influenced by climatic factors governing the occurrence of urban storm water runoff, particularly the 

amount and intensity of the rainfall. Modelling studies undertaken by (Abdellatif et al., 2014) found 

that urbanisation and increasing rainfall intensity will increase drainage overflow volumes, resulting 

significant uplift (10% and 20%) to the 0.5% AEP event and more frequent and severe pluvial 

flooding. (Ashley et al., 2005a), found that due to the effects of climate change, flood risks may be 

increased by a factor of almost 30 times.  

 

A comparison of the flood hydrographs for the S1-Baseline model, S3-CP4uplift model and the S4-

P25uplift model is shown in Figure 85. The result show that climate change rainfall used in the S3-

CP4uplift model and the S4-P25uplift model has a significant effect on flood extent and flood depth.  

There is a sharp increase in peak flowrates peak flowrates to up to 55% when comparing S1-Baseline 

model to the S3-CP4uplift model. Similarly, when comparing the S1-Baseline model with the S4-P25 

model, the increase in peak flowrate is more pronounced with a sharp increase in peak flowrate of up 

to 67%. Figure 86 and Figure 87 show the change in Hazard Vulnerability Classification when the S1-

Baseline model is compared to the S3-CP4uplift model and the S4-P25uplift model respectively. The 

results show the climate change models (S3-CP4uplift and S4-P25uplift) have higher hazard 

vulnerability thresholds when compared to the S1-Baseline model. The result show that climate 

change will create severe impacts resulting in more flooding in urban areas. The results show the S4-

P25uplift climate change model with higher hazard levels and an indication that the extent and scale 

of the flood forecasting in urban areas will depend on the climate model simulation considered and 

used in the hydraulic flood model. A comparison of the six hazard vulnerability classification for the 

S1-Baseline model with the S3-CP4uplift and S4-P25uplift climate models is shown in Figure 88, 

Figure 89, Figure 90, Figure 91, Figure 92, and Figure 93,  
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Figure 85. A screenshot from the HEC-RAS software showing comparison of flood hydrographs for the S1-Baseline model, 
S3-CP4uplift model and the S4-P25uplift model. 

 

 
Figure 86. Comparison of Hazard Vulnerability Classification between S1-Baseline model and S3-CP4uplift model for the 
Nairobi C3 sub-catchment. 
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Figure 87. Comparison of Hazard Vulnerability Classification between S1-Baseline model and S4-P25uplift model for the 
Nairobi C3 sub-catchment. 

  

 
Figure 88. Comparison of Hazard Vulnerability Classification, H1 for S1-Baseline model vs S3-CP4uplift model vs S4-
P25uplift model. 

 

Figure 89. Comparison of Hazard Vulnerability Classification, H2 for S1-Baseline model vs S3-CP4uplift model vs S4-
P25uplift model. 
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Figure 90. Comparison of Hazard Vulnerability Classification, H3 for S1-Baseline model vs S3-CP4uplift model vs S4-
P25uplift model. 

 

Figure 91. Comparison of Hazard Vulnerability Classification, H4 for S1-Baseline model vs S3-CP4uplift model vs S4-
P25uplift model. 

 

Figure 92. Comparison of Hazard Vulnerability Classification, H5 for S1-Baseline model vs S3-CP4uplift model vs S4-
P25uplift model. 
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Figure 93. Comparison of Hazard Vulnerability Classification, H6 for S1-Baseline model vs S3-CP4uplift model vs S4-
P25uplift model. 

 

8.4 Discussion of study in the context of wider literature 

Digital Elevation Models (DEMs) are used for a wide range of applications, including hydrology and 

water resources, geology and geomorphology, civil engineering projects, vegetation 

survey, glaciology, volcanology and modelling natural hazards such as flooding, landslides and 

coastal inundation (Bamber, 1994). (Carabajal and Harding, 2005) validated the SRTM DEM 

using ICESat, a satellite laser altimeter, and discovered that the errors in SRTM increased with 

increasing tree cover. This was because the C-band radar used by SRTM could not fully penetrate 

the vegetation canopy to the ground. (Berry et al., 2007) utilised satellite radar altimeters to validate 

the SRTM DEM and supports the findings of (Carabajal and Harding, 2005).  

 

(O'Loughlin et al., 2016) developed the first global ‘Bare-Earth’ Digital Elevation Model (DEM) 

based on the Shuttle Radar Topography Mission (SRTM) for all landmasses between 60N and 54S. 

The new ‘Bare-Earth’ SRTM DEM combines multiple remote sensing datasets, including point-

ground elevations from NASA's laser altimeter ICESat, a database of percentage of tree cover from 

the MODIS satellite as a proxy for penetration depth of SRTM and a global vegetation height map in 

order to remove the vegetation artefacts present in the original SRTM DEM. The final ‘Bare-Earth’ 

SRTM product showed global improvements greater than 10 m in the bias over the original SRTM 

DEM in vegetated areas compared with ground elevations determined from ICESat data with a 

significant reduction in the root mean square error from over 14 m to 6 m globally.  
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(Zhao et al., 2018) used a linear regression based method to estimate the original SRTM DEM error 

and therefore corrected the SRTM DEM data. The results showed that the original SRTM DEM data 

is around 6 m higher than the actual land surfaces on average across all vegetation types. (Yamazaki 

et al., 2017)  Introduced a high-accuracy global DEM at 3″ resolution (~90 m at the equator) by 

eliminating major error components from existing DEMs. The study separated absolute bias, stripe 

noise, speckle noise, and tree height bias of the original SRTM DEM by using multiple satellite data 

sets and filtering techniques to create the Multi-Error-Removed Improved-Terrain DEM (MERIT). 

After the error removal, land areas mapped with ±2 m or better vertical accuracy were increased from 

39% to 58%. Significant improvements were found in flat regions where height errors larger than 

topography variability, and landscapes such as river networks and hill-valley structures, became 

clearly represented. The newly developed MERIT DEM has enhanced many geoscience applications 

which are terrain dependent.  
 

The previous studies dealt only with vegetation biases and do not develop methodologies for the 

correction or removal of biases due to built structures in urban areas. Despite recent advances in 

developing vegetation corrected DEMs, the effect of building height errors in DEMs in urban areas 

are still poorly understood, and their correction remains a challenge. This study presents the first 

urban corrected global DEM using building density data, locally for Nairobi, Kenya. By comparing 

six global DEMs (SRTM, MERIT, AW3DD30, NASADEM, TanDEM-X 12 m, and TanDEM-X 90 

m DEM) with a local reference DEM for the study area, a relationship is established between building 

density, derived from urban footprint map of the study area, and DEM error.  

 

The results reveal a linear relationship between building density and DEM error for SRTM; MERIT; 

AW3DD30; NASADEM; TanDEM X 12 m and TanDEM X 90 m, which have building errors of 2.2 

m, 5.0 m, 1.2 m, 4.5 m, 3.0 m and 3.3 m, respectively. A building density raster was created for the 

global DEMs using the building density – DEM error relationships, and then subtracted from the 

original DEMs to create a new urban-corrected DEM for the study area. A comparison of error 

statistics of the global DEMs, before and after urban correction, reveal an important improvement in 

the mean average error (MAE), root mean square error (RMSE), and standard deviation (SD) of the 

corrected DEMs. In urban flood modelling, there are often significant negative impacts of 

overestimating actual ground surfaces due to building density errors inherent in global DEMs. 

Therefore, the work on urban DEM correction will enable the development of more accurate flood 

models in urban areas and provide a template to scale up the methodology described in this study for 

global application.  
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Climate change and urbanization pose significant threats for flooding and water quality in urban areas 

(Miller and Hutchins, 2017). Changes to the timing and magnitude (depth) of rainfall events as a 

result of climate change are predicted to significantly alter the flooding experienced in many urban 

areas of the world and without suitable mitigation lead to increased future flood risk and associated 

damages (Wheater and Evans, 2009). Previous studies (Ashley et al., 2005a, Arnbjerg-Nielsen et al., 

2013, Jung et al., 2014, Yazdanfar and Sharma, 2015, Miller and Hutchins, 2017, Yang et al., 2021) 

have investigated the impacts of urban developments on hydrological runoff and urban flood volumes 

in major cities, and compared the impacts of urbanization with the effects induced by climate 

change. (Zhou et al., 2019) found that urbanization led to an increase in annual surface runoff by 208 

to 413% and by comparing the impacts of urbanization and climate change on urban runoff and flood 

volumes, highlighted the importance for re-assessment of current and future urban drainage in coping 

with the changing urban floods induced by local and large-scale changes. 

 

(Liu et al., 2022) found in general, that urbanization contributed greater to the nonstationarity of 

extreme precipitation than climate change in the majority of the study area whilst (Ashley et al., 

2005b) found that flood risks in urban areas due to climate change and urbanization may increase by a 

factor of almost 30 times and that traditional engineering measures alone are unlikely to be able to 

provide protection against loss of lives, properties and infrastructure. (Rangari et al., 2019) using 

similar HEC-RAS 2D hydraulic model used in this study, identified 17% of total study area to be 

liable to foods out of which 9% area are classified as high risk, with 52% area showing as medium 

risk and remaining 35% area falling under low risk of flooding. In this study, a comparison of the 

flood hydrographs for the S1-Baseline model, S3-CP4uplift model and the S4-P25uplift model is 

shown in Figure 85. The result show that climate change rainfall used in the S3-CP4uplift model and 

the S4-P25uplift model has a significant effect on flood extent and flood depth.   

When comparing the S1-Baseline model with the S4-P25 model, the increase in peak flowrate is more 

pronounced with a sharp increase in peak flowrate of up to 67%. Figure 86 and Figure 87 show the 

change in Hazard Vulnerability Classification when the S1-Baseline model is compared to the S3-

CP4uplift model and the S4-P25uplift model respectively. The results show the climate change 

models (S3-CP4uplift and S4-P25uplift) have higher hazard vulnerability thresholds when compared 

to the S1-Baseline model. The result show that climate change will create severe impacts resulting in 

more flooding in urban areas. The results show the S4-P25uplift climate change model with higher 

hazard levels and an indication that the extent and scale of the flood forecasting in urban areas will 

depend on the climate model simulation considered and used in the hydraulic flood model. A 

comparison of the six hazard vulnerability classification for the S1-Baseline model with the S3-

CP4uplift and S4-P25uplift climate models is shown in Figure 88, Figure 89, Figure 90, Figure 91, 

Figure 92, and Figure 93,  
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A review of current literatures and studies has shown there is a large body of literature on the impacts 

of climate change on flooding and water quality but that specific literature on urban areas and urban 

impacts is less well covered, and specifically that the combined pressures are less researched. A vast 

number of numerical models have evolved over the past few years which are capable of simulating 

urban flooding; with the majority of these models available on commercial basis only, rigorous and 

require extensive dataset, high computational efficiency etc to run and generate precise, accurate and 

reliable results. This thesis has subsequently enhanced our understanding of the value of free global 

hydrological and hydraulic models developed at city-scale to model the impacts of climate change and 

land use change on urban pluvial flood hazard in data-sparse context of rapidly developing cities 

where availability of high-quality data for urban flood studies are a rarity.  

 

The study has shown that it is possible to leverage the opportunities provided by the growing 

availability of free, global datasets to develop urban flood models. Traditional urban flood models 

rely on the use of high-quality datasets as key input data and require computers with high 

computational efficiency to run detailed flood inundation models. A trade-off is achieved between 

complexity and resolution by the use of simplified 2D hydraulic flood models that use global dataset 

as key input data. 

 

8.5 Summary 

Global DEMS are extensively used for flood modelling and both vertical height error and spatial 

resolution of DEMs can impact on flood inundation depth and extent, especially in urban areas (Chen 

and Hill, 2007). However, in chapter 4 of this study, I identified there is a major limitation to using 

these datasets in urban areas. I set out to correct these errors by developing a methodology for 

building error correction that can be applied to any other case study, where building density data and a 

local reference DEM data of vertical height accuracy higher than the global DEMs are available.  

 

I quantified the building error for the city of Nairobi, Kenya for six of the most widely used global 

DEMs: SRTM; MERIT; ALOS; NASADEM; TanDEM-X  12 m; and TanDEM-X  90 m. The results 

show building error at highest building density varying between 1.25 m and 5.07 m for the DEMs 

used. I found the MERIT DEM with the smallest vertical height deviation from the reference DEM, 

with an SD of 2.97 m, followed by TanDEM-X 12 and TanDEM-X 90 (3.03 m and 3.29 m 

respectively). In chapter 5, I ran two specific (S1-Baseline and S5-RawDEM) model scenarios to 

understand the implications of DEM correction for flood modelling. The results show that there’s a 

similarity in the volume of water in the two models and very similar level of runoff including both 

models achieving peak flowrate of 1,649 m3 1,685 m3 for S1-Baseline and S5-RawDEM 

respectively, near about the same time (19:25 hrs) on March the 5th 2018 Figure 74.   
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I compared the hazard vulnerability classification for the two models and found the hazard 

vulnerability classification for the S5-RawDEM to be slightly higher than the S1-Baseline model 

across all the six hazard measurement thresholds, H1 to H6, due to the different flow paths internally 

in the uncorrected DEM fused into the S5-RawDEM and leading to these errors. By comparing the 

flood heights at flooding hotspots sites in Nairobi, Kenya for the S1-Baseline Model and S5-

RawDEM, I found that the S5-RawDEM has a higher margin of deviation than the S1-Baseline model 

when both models are compared to the survey reference data. The results show that the S5-RawDEM 

model is slightly less accurate by over-predicting the flood extent and flood depth, hence, the flood 

vulnerability classification. While these are meaningful reductions in error, they do not necessarily 

translate to better flood modelling.   

 

In order assess the impact of climate change and land use change on pluvial flood hazard in urban 

areas using global datasets, in Chapter 6, I created and processed five modelling scenarios using the 

HEC-HMS hydrologic and HEC-RAS 2D hydraulic models: a baseline model (S1-Baseline), 2000LU 

model, S3-CP4uplift model, S4-P25uplift model, and the S5-RawDEM model. The five sets of 

models are created in 2D and make use of the diffusive wave equation of the HEC-RAS model for  

simplification. The results of the models show a lot of promises by justifying the hypothesis that 

urban flood models built at city-scale level using free global datasets have a good level of skill and 

proficient enough to accurately estimate urban flood inundation depth and extent in rapidly 

developing cities characterised by sparsity of data. A comparison of the results of the five sets of with 

flood height data taken from actual flooding hotspots sites across Nairobi, show that the models have 

a good level of accuracy that can be relied upon for urban flood modelling.   

 

I quantified the impact of land use change and climate change on urban pluvial flood hazard by using 

hazard vulnerability curve and classification factors adapted from (Smith et al., 2014). A hazard 

vulnerability factor of between H1 and H6 is used in the assessment by, first, quantifying the defined 

flood event using the HEC-RAS model. Second, quantify the flood hazard by using a combination of 

flood depth and flood velocity to quantify the flood hazard to people, buildings and infrastructure etc. 

The result show that climate change rainfall data used in the S3-CP4uplift model and the S4-P25uplift 

model have a significant effect on flood extent, flood depth and velocity.  There is a sharp increase in 

peak flowrates peak flowrates to up to 55% when comparing S1-Baseline model to the S3-CP4uplift 

model and up to 67% increase when comparing the S1-Baseline model with the S4-P25 climate 

model. When comparing the change in hazard vulnerability classification of the S1-Baseline model 

with the S3-CP4uplift and S4-P25uplift climate models, the results show the climate change models 

(S3-CP4uplift and S4-P25uplift) have significantly higher hazard vulnerability thresholds than the S1-

Baseline model.  



 
 

175 
 

 



 
 

176 
 

9.0      CONCLUSIONS AND RECOMMENDATIONS 

City-scale hydrodynamic models that can effectively utilise limited data and have an appropriate 

computation time that allows for simulations of the impacts of land use change and climate change on 

urban pluvial flooding are needed to improve our understanding of the flood hazard in data-sparse 

area in rapidly developing cities, which are often the most at-risk areas. To this end, this thesis aims to 

assess the skill of a hydrodynamic model built at the city-scale scale for a large city catchment, before 

investigating the impact of climate change, land use change and urban corrected DEM on flood 

predictions and how the hazard vulnerability relating to the impacts of these factors can be quantified. 

The following section will summarise the conclusions from each results chapter that addresses each 

objective in turn. The key conclusions and implications from this research are as follows: 

 

The five models (S1-Baseline; S2-2000SU; S3-CP4uplift; S4-P25uplift; S5-RawDEM) were verified 

by visually and qualitatively analysing topographic survey data collected from historic flood hotspots 

sites in Nairobi, Kenya. It was determined that the HEC-RAS 2D models created within this study is 

sufficiently accurate at representing realistic conditions of flood extent under extreme weather events 

and can be a useful tool in predicting the location and severity of future flooding events. 

 

Sophisticated full SWE-based models require high-quality data for representing urban features, such 

as buildings and a computational cost that is significant. Full 2D shallow water models are considered 

not feasible for calculations in very large-scale catchments with fine resolution grids because of the 

simulation time required. Simplified SWE-based models such as the diffusive wave equation (diffuse 

solver) of the HEC-RAS model used in this study, are less computationally expensive compared to 

full 2D shallow water equation models because of the simplification or omission of certain hydraulic 

processes. This study has shown that it is possible to undertake city-scale urban flood modelling by 

using simplified SWE models (diffusive wave equation) that require coarse global datasets whilst 

achieving a balance of computational efficiency and accuracy.  

 

Open-access global DEMs are not only useful datasets for estimating flood risks, but they also 

provide baseline data for flood studies. Despite significant advances in developing vegetation 

corrected DEMs, there is still a limited understanding of DEM errors that can be attributed to building 

heights and building density in urban areas. Current global DEMs are not corrected for building 

errors. Because building height data is unavailable on a global scale, this paper addresses errors due to 

building density biases. As part of this research, a methodology for building error correction in urban 

DEMs was developed and applied to the case study city. The building error for the city of Nairobi, 

Kenya was quantified for six of the most widely used global DEMs: SRTM; MERIT; ALOS; 
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NASADEM; TanDEM-X  12 m; and TanDEM-X  90 m. The results show building error at highest 

building density varying between 1.25 m and 5.07 m for the DEMs used. The results showed the 

MERIT DEM with the smallest vertical height deviation from the reference DEM, with an SD of 2.97 

m, followed by TanDEM-X 12 and TanDEM-X 90 (3.03 m and 3.29 m respectively). In addition, if 

the RMSE metric of the errors is considered alongside mean and median values, MERIT still provides 

the lowest overall values and highest accuracy. A plausible explanation for its higher accuracy is that 

the MERIT DEM is a multiple error-reduced improved version of SRTM with tree height bias, stripe 

noise, absolute bias, and speckle noise removed.  

 

By deriving a relationship between DEM error and building density, the building error associated with 

the global DEMs were evaluated and corrected. It was found that there is a linear and positive, but 

noisy relationship between DEM error and building density.  All the DEMs show a noisy relationship; 

with SRTM having the noisiest and TanDEM-X 12 m & 90 m DEMs the least noisy. The findings 

show that the removal of building density error from global DEMs resulted in the improvement of the 

vertical height accuracy of the global DEMs of up to 45% for MERIT and 40% for ALOS. Thus, the  

results show that global DEMs can be usefully corrected for building density errors in urban areas, 

even where specific building height data are not available. The results of the work on the urban 

correction of global DEMs for the Central Business District (CBD) area of Nairobi, which is 

characterized by taller buildings and high building density show the error parameters in the CBD area 

is between 15 to 45 % higher than those of the Nairobi city wide area for the six global DEMs. These 

results provided some further insights into significance of building heights contributing to errors in 

global DEMs. Therefore, future work is required to understand the nature of building height errors in 

global DEMs and how these errors can be corrected.  

 

The results of comparing the flood inundation maps for S1-Baseline model that uses a corrected 

version of the MERIT DEM with the S5-RawDEM model with the “raw” DEM as input data show 

that the hydraulic modelling outputs obtained from urban corrected global DEMs using the approach 

described extensively in Chapter 4 of this Thesis have a higher vertical accuracy than the latter, Table 

53. It is evident that the accuracy of flood inundation maps can be improved modestly by using urban 

corrected DEMs over raw DEMs as key input data when conducting both hydrological and hydraulic 

modelling. Therefore, by using the approach developed for urban correction of global DEMs in this 

study, it is possible to obtain more accurate flood maps from less accurate global topographic data in 

areas where LiDAR or any other form of accurate topography information is not available. 

 

Land use change due to urbanisation and climate change were found to be contribute significantly to 

surface water runoff and exacerbate urban flooding. However, it is found that climate change, rather 

than land use change is a bigger threat to urban flooding. Specifically, the effects induced by climate 
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change under the CP4 and P25 climate rainfall models are much higher than the effects induced by 

land use change due to urbanisation in Nairobi from 2000 to 20020. Therefore, it is found that 

changes caused by current and future changes in rainfall intensities and frequencies are most likely to 

render most large urban areas vulnerable to extreme rainfall and pluvial flooding due to lack of 

resilience in existing drainage infrastructure and flood mitigation system. Assessment of land use 

changes alone cannot fully account for hydrological and hydraulic alterations in the urban context and 

it is important for policy makers and people with responsibilities for managing urban flood risks to 

consider adaptation and mitigation strategies that considers increasing threat of urban flooding 

emanating from increased runoff from climate change rainfall.The HEC-HMS and HEC-RAS models 

were found to be capable of resolving to predict flood effects coupled with the QGIS for hydrologic 

risk management 

 

Finally, one of the key findings of this study is that in the context of conducting urban flood 

modelling in data sparse regions in rapidly developing cities across the world, it is possible to 

leverage on the opportunities provided by the growing availability of free, global datasets to develop 

urban flood models. Most urban flood models rely on the use of high quality datasets as key input data 

and require computers with high computational efficiency to run flood inundation models.  

Most importantly, this research demonstrated that it is possible to achieve the right balance between 

computational efficiency and accuracy by the use of simplified urban flood models that use global 

dataset as key input data. 
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9.1 Reflection of study objectives 

There is lack of adequate research focused on the impact of building density on the vertical accuracy 

of global DEMs and how these errors can be assessed and corrected especially for urban areas. This 

research managed to address this research gap by deriving a methodology for correcting building 

errors in freely available global DEMs with Nairobi, Kenya as a case study and that can be applied to 

any other case study anywhere in the world where building density data and local reference DEM data 

are available. To derive urban corrected DEMs with global datasets using Nairobi as a test city,  raster 

data for six global DEMs were pre-processed, resampled and DEM error for six global DEMs were 

calculated using QGIS raster algebra tools to determine the vertical accuracy for the six global DEMs 

followed by the creation  DEM error versus building density relationships. The error relationships 

were applied to the original global DEMs for Nairobi to correct the DEMs for building density errors.  

 

This research managed to identify global datasets especially remote sensing-based sources for: 

climate change rainfall, digital elevation model (DEM), and urban land use etc. global datasets 

required to build a city scale hydrodynamic models for assessing the impact of climate change and 

urbanization on urban pluvial flooding. In order to build and run the appropriate city scale numerical 

hydrological and hydraulic models used in this study, the research identified physical processes that 

are required that are required in building a hydrodynamic model including model set up, calibration, 

appropriate application scale, computational speed, analysis of model outputs and validation of model 

results.  

 

At the end of this study, a city scale hydrodynamic model that assesses the impacts of climate change 

and land use change (urbanization) on urban pluvial flooding was developed using Nairobi, Kenya as 

a test location. The extent of the model built involved the creation of five sets of model scenarios for 

the urban corrected MERIT DEM including model representations for urban corrected SRTM, 

TanDEM X 12m and 90m DEMs, the NASADEM DEM, ALOS DEM and the local JICA reference 

DEM. Validation of the models was undertaken by comparing results from the models with historical 

flooding observations at three flooding hotspots site across Nairobi. The results of the validation show 

urban flood models that uses global DEMs as key input data can be a useful, accurate and reliable tool 

for modelling the impacts of climate change and land use change on urban pluvial flooding at a city 

scale setting.   
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9.2 Summary 

The key summary from this research are as follows: 

 

 Identification of global datasets and hydraulic models that could be used for city scale   

modelling of pluvial flood hazard in data scarce areas using global datasets  

 Derivation of urban corrected DEMs with global datasets using Nairobi as a test city  

 Building and testing a city scale urban pluvial flood model with global datasets using Nairobi 

as a test city  

 

9.3 Research contribution to science and literature 

The key contribution of this research to science, current state of knowledge and its implications on the 

current state of knowledge in the field of urban flood studies are set out in the following subsections. 

 

9.4 Computational efficiency of 2D city-scale hydraulic flood models that use 
global datasets as key input data.  

The results show that in the context of conducting urban flood modelling in data sparse regions in 

rapidly developing cities across the world, it is possible to leverage the opportunities provided by the 

growing availability of free, global datasets to develop urban flood models. Most urban flood models 

rely on the use of high quality datasets as key input data and require computers with high 

computational efficiency to run flood inundation models. Most importantly, this research 

demonstrated that it is possible to achieve the right balance between computational efficiency and 

model accuracy by the use of coarse, free global datasets as key input data for use in simplified urban 

flood models. 

 

The results of the flood inundation depths of the five sets of hydraulic models show a lot of promises 

for the future of urban flood modelling in data sparse contexts that rely on the use of free, global 

datasets of coarse resolution. The results show that the five sets of models (S1-Baseline; S2-2000SU; 

S3-CP4uplift; S4-P25uplift; S5-RawDEM) developed in this study are computationally efficient and 

highly accurate when compared with measured data. The results show that the (S1-Baseline; S2-

2000SU; S3-CP4uplift; S4-P25uplift; S5-RawDEM). The validation of the results of the 2D hydraulic 

models show the flood inundation depths and flood extent at the selected flooding hotspots are 

comparable with real life flooding scenarios experienced across the sites. The results of this study 

show that city planners with responsibilities for managing urban flood risk can focus particularly on 

the full exploitation of the benefits of urban flood models that use free, global data sets.  
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9.5 Urban correction of global DEMs  

Urban flood models that use ground height surface models such as Digital Elevation Models (DEMs) 

for prediction of flood inundation rely on the accuracy of the DEMs for predicting flood events, extent 

and depth. Global DEMs have a significant influence on the outcome of flood modelling and the 

higher the vertical accuracy of the DEM, the better are the results of the flood model. Local DEMs 

that are based on airborne light detection and ranging (LiDAR) are preferential over open access, 

global DEMs due of their superior vertical accuracy, horizontal resolution, and ability to distinguish 

between ‘bare earth’ from built structures and vegetation. 

 

Global DEMs suffer from many different types of errors, some of which are significant at local scales; 

for example, (Rodríguez et al., 2006) reported a global mean and standard vertical height error of 8.2 

± 0.7 and 6.9 ± 0.5 m for SRTM X- and C-band data, respectively. There is a number of published 

work on the correction of errors in global DEMs, especially vegetation errors. (Falorni et al., 2005, 

Bhang et al., 2007, Dong et al., 2015, Gallant et al., 2012, Baugh et al., 2013, O'Loughlin et al., 2016, 

Chen et al., 2018). Although many studies (Robinson et al., 2014, Yamazaki et al., 2012, Yamazaki et 

al., 2017) have developed new vegetation-corrected DEMs, by either editing or adjusting existing 

global DEMs. However, despite significant advances in developing vegetation-corrected DEMs, there 

is limited understanding of DEM errors that can be attributed to building heights and building density 

in urban areas. This study created the first urban corrected global DEM using building density data, 

locally for Nairobi, Kenya. The work on urban DEM correction would allow more accurate flood 

models in urban areas and provide a template to scale up the methodology described in this thesis for 

global application. The work on urban correction of global DEMs using building density data for 

Nairobi, Kenya is published in the Earth Science Informatics Journal (Olajubu et al., 2021). 

 

 

9.6 Contribution to thinking around urban flood projections using future 
climate change precipitation dataset 

The results of the models on the impacts of urbanization and climate change on pluvial flooding is 

found to be consistent with science (literatures) on future pluvial flooding across the globe. This study 

will provide medium-high confidence of evidence that urban pluvial flooding is set to increase and 

worsen due to the effects of climate change and rapid urbanisation. There is overall lack of globally 

focussed research into the combined pressures of rapid urbanisation and climate change. For example, 

while localised flood risk assessments are carried out there is a lack of suitable climate model 

precipitation outputs and consideration of uncertainty.  
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Climate change and urbanization pose significant threats for flooding and water quality in urban areas 

(Miller and Hutchins, 2017). City planners and engineers from time to time seek up to date 

information on planning and designing new hydraulic-conveyance and flood water control facilities to 

prepare for and respond to floods. Historical hydrologic and hydraulic data for the catchment can be a 

good starting point for developing models that can predict the behavior of urban runoff under different 

scenarios. However, with the current limitations of inadequate credible, future climate change 

precipitation data, developers of urban flood models are increasingly faced with developing reliable 

urban flood models that take into account the change that has not yet taking place with the catchment. 

There is lack of city-scale assessments of the negative impacts of climate change and urbanization on 

pluvial flooding in rapidly developing cities across the globe. The findings of this research, 

specifically, results of the CP4 and P25 future climate models will provide city planners and officials 

ability to strategically plan flood mitigation measure and design effective flood management system 

that takes into account the impact of future climate change and urbanization/land use change.    

 

9.7 Quantification of Vulnerability of People and Built Environment to Urban 
Flood Hazard 

The use of the Hazard Vulnerability Classification adapted from (Smith et al., 2014) for use in this 

study has shown that, open access derived urban models can be a useful tool in identifying urban 

flood hazards that have the potentials of leading to loss of life, injury and economic loss caused by 

future flood events that’s due to climate change and land use change. This study has shown how the 

degree of hazard varies with the severity of flooding and how flood hazard in urban areas is affected 

by flood behaviour i.e. flood extent, depth, velocity, topography. This study will be useful in 

providing vital information on the scale, and the drivers (climate change and land use change) for 

urban flood hazard to people, vehicles, buildings and the built environment. This work would 

influence decisions in urban flood risk management and aid in devising mitigation measures that may 

be considered at city-scale level to manage the risk. 
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9.8 Study Limitations and Recommendations for Future Research   

The HEC-RAS 2D hydraulic model used in this study adopts the use of use of the diffusive wave 

approximation approach in undertaken flood inundation modelling by use of coarse, free global 

datasets. Consideration should be given to undertaking further research into the use of high quality 

local datasets if datasets become available in the future at city-scale level. The developments of such  

models with high quality data will create and provided opportunities to compare and contrast the level 

of accuracy of the two different sets of models.   

 

Nairobi, similar to other rapidly developing cities of the world faces challenges in relation to solid 

waste management. Increasing urbanization, rural-urban migration, rising standards of living and 

rapid development associated with population growth have resulted in increased solid waste 

generation. The city produces more solid waste than its collection and disposal systems can handle. 

Approximately a third of the city’s waste is collected. The city’s only official dumpsite Dandora is at 

overcapacity. The majority of waste is dumped in illegal dumpsites Nairobi produces approximately 

2,475 tonnes of waste each day. While 95% of Nairobi’s waste is potentially reusable, only 5% of 

waste is recycled. Moreover, only 33 per cent of waste produced is collected for disposal at Nairobi’s 

only official dumpsite, Dandora. The rest is dumped illegally in dumpsites, is left next to houses, or 

burned. Improperly disposed of waste is often collected by both natural and engineered storm water 

drainage systems resulting in blockages compounding the problems of frequent urban flooding 

witnessed in the city. Waste production and waste management in Nairobi is a severe challenge by 

international standards according to available data (ULA, 2021).  

 

When compared to cities of similar population size, Nairobi generates 50% more than Addis Ababa 

and 30% more than Dar es Salaam. The city generates more waste than its income levels would 

suggest, and its production per day per capita is expected to grow by nearly 70% by 2030 (ULA, 

2021). The scope of this research is limited to the city scale modelling of factors of land use change 

and climate change on urban pluvial flooding in rapidly developing cities. However, given the 

prevalent nature of problems of poor solid waste management in majority of rapidly developing cities 

in the world and how the significant role they play in exacerbating urban flooding by blocking both 

natural and engineered drainage network systems, it is recommended that future research be 

conducted into adding the factor of poor solid waste management into the 2D hydraulic modelling 

developed in this study. 

 

The work on urban correction of global DEMs described in Chapter 4 of this study is currently limited 

to the use of building density data and global DEMs. Building height data are currently unavailable at 

global scale level and it is anticipated that once building height data becomes globally available, the 
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urban correction of global DEMs can be extended to the use of not only building density data but 

equally building height data. 

 

The scope of this research is limited to the use of recent and historic land use datasets to develop the 

land use change models. The results of the simulation are very promising in simulating the impact of 

past land use change on urban flooding at city-scale level. However, the development of urban flood 

models that use projected/future land use change models at city-scale similar to the future climate 

change rainfall model used in this study would be beneficial for future research. 

 

Flood hazard assessment is a key input to the understanding of flood risk. This study is limited to the 

city-scale modelling of factors affecting urban pluvial flood hazard by focusing on the assessment of 

the sources of potential harm of urban pluvial floods to people and the built environment. It is 

recommended that future study on urban pluvial flooding focus on the flood risks that come from 

exposing people, communities and the built environment to that hazard.  
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11.0      LIST OF APPENDICES  

  
Figure 94. A screenshot from HEC-RAS software showing Water Surface Elevation Map (WSE) for the S1-Baseline model. 
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Figure 95. A screenshot from HEC-RAS software showing Water Surface Elevation Map (WSE) for the S2-2000LU model. 
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Figure 96. A screenshot from HEC-RAS software showing Water Surface Elevation Map (WSE) for the S3-CP4uplift model. 
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Figure 97. A screenshot from HEC-RAS software showing Water Surface Elevation Map (WSE) for the S4-P25uplift model. 
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Figure 98. A screenshot from HEC-RAS software showing Water Surface Elevation Map (WSE) for the S5-RawDEM model. 
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Figure 99. A screenshot from HEC-RAS software showing flood depth for the S1-Baseline model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

201 
 

 
Figure 100. A screenshot from HEC-RAS software showing flood depth for the S2-2000LU model. 
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Figure 101. A screenshot from HEC-RAS software showing flood depth for the S3-CP4uplift model. 
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Figure 102. A screenshot from HEC-RAS software showing flood depth for the S4-P25uplift model. 
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Figure 103. A screenshot from HEC-RAS software showing flood depth for the S5-RawDEM model. 
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Figure 104. A screenshot from HEC-RAS software showing flood velocity for the S1-Baseline model. 
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Figure 105. A screenshot from HEC-RAS software showing flood velocity for the S2-2000LU model. 
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Figure 106. A screenshot from HEC-RAS software showing flood velocity for the S3-CP4uplift model. 
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Figure 107. A screenshot from HEC-RAS software showing flood velocity for the S4-P25uplift model. 
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Figure 108. A screenshot from HEC-RAS software showing flood velocity for the S5-RawDEM model. 
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Table 55: Aim 1: Identification of global datasets and models that could be used for modelling of city scale-pluvial flood hazard in data scarce areas. 

Aim 1: Identify global datasets and models that could be used for modelling of city scale-pluvial flood hazard in data scarce areas – (ACHIEVED) 

Objectives Method Data 

Identify types of data required to 

build a city scale model 

Review literature, attend conferences and workshops, read model 

documentation. 

Journal/conference papers and model manuals. 

Identify appropriate, usable global 

datasets.  

Modelled and remote sensing-based sources for: climate change rainfall, 

digital elevation model (DEM), and urban land use. Create matrix of datasets 

with pros. and cons. 

DEMs: MERIT, ALOS, Tandem-X 

Precipitation: CP4 and Hycrystal climate output. 

City change: remotely sensed land use change. 

Identify appropriate numerical 

flood model for city scale urban 

flood modelling 

Identify physical processes that are required in model, and their appropriate 

application scale. Compare available models for computation speed, and 

process representation.  

HEC-HMS and HEC-RAS hydrologic and hydraulic 

models.  

Select and prepare DEMs for use in 

a city model.  

 

Process and test available DEMs for use in urban areas. Examine noise error, 

bias corrections and urban structure artefacts. Test against locally available 

data (eg Lidar). Process DEM for model input. 

ASTER DEM 90m, MERIT DEM, ALOS DEM,  

NASADEM, Tandem-X DEM. 
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Table 56: Aim 2: Derivation of urban corrected DEMs with global datasets using Nairobi as a test city 

Aim 2: Derive urban corrected DEMs with global datasets using Nairobi as a test city – (ACHIEVED) 

Objectives Method Data 

(2.1)    Pre-process DEM 

raster data using Nairobi as 

a case study. 

Process chosen global DEMs (six). Resample all DEMs to 90m resolution and transform DEMs 

(TanDEM-X 12 & 90m) referenced to the WGS84 (G1150) ellipsoid to EGM96 Geoid using the 

NOAA’s VDatum transformation tool, version 4.0.1 accessible via (https://vdatum.noaa.gov/).   

DEM (O1.4), JICA DEM. 

 Calculate global DEM 

error  

Use QGIS raster algebra tool to calculate the vertical accuracy for the six global DEMs and create 

error maps. Produce error rasters by subtracting elevations of the JICA reference DEM with higher 

vertical accuracy.   

DEM (O1.4), JICA DEM. 

Calculate building density  Process the Facebook high-resolution settlement layer data (HRSL) and the Sentinel-1 SAR urban 

footprint map to generate building density maps.  

 

Facebook high-resolution settlement 

30m layer data (HRSL) LIST 

building density data. 

(2.4) Determine DEM error 

relationship with building 

density 

Establish a relationship between DEM error and building density by using QGIS tools. Created plots 

of DEM error versus building density for all six global DEMs. 

DEM error maps. 

Building density maps.  

(2.5) Apply error 

relationship to derive urban 

corrected global DEM 

Remove fraction of vertical error component associated with building density by subtracting the 

building density error raster from global DEMs.   

Original global DEMs 

Building density error raster. 
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Table 57. Aim 3: Build and test a city scale urban pluvial flood model with global datasets using Nairobi as a test city 

Aim 3: Build and test a city scale urban pluvial flood model with global datasets using Nairobi as a test city (ACHIEVED) 

Objectives Method Data 

(3.1) Build a city scale model using 

Nairobi as a test location. 

 

 

Process chosen datasets (O1.1 & O1.2) for inclusion in 

chosen model (O1.3), develop and run baseline scenario/s. 

Examine historical flood events for appropriate baseline 

model run date/s. 

DEM (O1.4), synthetic drainage network (O1.5), Precipitation 

time series (O1.6). Historical reports of flooding. 

(3.2) Collect local data for Nairobi City Visit city officials and other organisations with Nairobi City 

to identify and collect relevant local datasets related to urban 

flooding and drainage with which to test model. 

Local city plans, drainage information, flooding hotspots. 

Rainfall datasets for four stations across Nairobi and environs: 

Dagoretti, JKIA, Thika, & Machakos. 

(3.3) Quantify sensitivity of model 

behaviour / results to choice of datasets 

and assumptions made in model build 

Vary parameters/datasets in model build (eg DEM urban 

artefact correction factor/method.) Rerun baseline model and 

analyse differences in results. 

All relevant datasets identified in Aim 1. Test global datasets 

against locally available data (e.g. rain gauges). 

(3.4) Model validation  Comparison of baseline model results with historical flooding 

observations. 

Observations of flooding hotspots recorded by local 

authorities, news, social media etc. Satellite observations of 

historic flooding. 

 

 

 

 

 

 



 
 

213 
 

Table 58. Aim 4: Test if model is suitable for exploring factors affecting pluvial urban flooding by scenario analysis. 

Aim 4: Test if model is suitable for exploring factors affecting pluvial urban flooding by scenario analysis. (ACHIEVED) 

Objectives Method Data 

Investigating the climate change impacts 

on pluvial flooding. 

Apply uplift factor from future climate rainfall model.  Run 

future climate scenarios and compare to baseline. 

Regional Climate Model: CP4 & P25 future climate rainfall 

datasets for Nairobi. HYCRYSTAL 

  

Investigating the impact of urbanization 

on pluvial flooding. 

Develop a new drainage network for 2030 based on 

projections of urban growth. Run scenario and compare to 

baseline. 

Globeland30 land use change data capturing urban land 

transition between 2000 and 2020ization and population 

growth. 

 

 

 

 

 

 

 

 

 

 


